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ABSTRACT

BETHANY JABLONSKI HORTON: TEST-DEPENDENT SAMPLING
DESIGN AND SEMI-PARAMETRIC INFERENCE FOR THE ROC CURVE

(Under the direction of Dr. Haibo Zhou)

The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC)

are used to describe the ability of a screening test to discriminate between diseased and

non-diseased subjects. As evaluating the true disease status can be costly, researchers can

increase study efficiency by allowing selection probabilities to depend on the screening test.

We consider a test dependent sampling (TDS) design where TDS inclusion depends on a

continuous screening test measure. Disease status is validated only for subjects in the SRS and

TDS components. To improve efficiency, this sampling design incorporates three components:

the simple random sample (SRS) component, TDS component, and the un-sampled subjects.

We propose semi-parametric empirical likelihood estimators for the AUC, partial AUC,

and the covariate-specific ROC curve. First, the AUC estimator allows us to summarize

the ability of the screening test to distinguish between diseased and non-diseased subjects.

Empirical likelihood methods are used to avoid making distributional assumptions for the

screening test variable. Second, the AUC estimator is adapted to estimate partial AUC when

a subset of false positive rates is more clinically relevant. Third, the covariate-specific ROC

curve is estimated using a binormal model for the screening test variable. Although parametric

assumptions are made for the screening test, distributional assumptions are avoided for the

covariates by using empirical likelihood methods. This ROC curve estimator allows us to

assess the influence covariates have on the accuracy of the diagnostic test.

This cost-effective sampling design allows for a more powerful study on the same budget.

Efficiency is gained in all three estimators by incorporating information from both the sampled

and un-sampled portions of the population.
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Chapter 1

Literature Review

1.1 Introduction and motivation

Using statistical tools to discriminate between different populations is beneficial in a wide

variety of areas. One such tool is the receiver operating characteristic (ROC) curve, which

was developed for electronic signal detection (Hanley, 1989). The diagnostic methods have

been expanded to be useful in a wide variety of medical applications: from medical imaging

techniques (Swets, 1979) and studying risk markers for cardiovascular disease (Yeboah et al.,

2012) to using prostate-specific antigen to detect prostate cancer (Dodd and Pepe, 2003b)

and applying time-dependent accuracy summaries in the setting of survival analysis models

(Heagerty and Zheng, 2005). There is also a wide variety of statistical methods proposed in

this area: from new summary measurements to methods of dealing with missing data in this

diagnostic setting and changing the way in which subjects are sampled into the study.

Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) are

summary measures used to describe the ability of a screening test to discriminate between

diseased and non-diseased subjects (Bamber, 1975). As evaluating the true disease status can

be costly, it is beneficial for researchers to increase study efficiency by allowing selection prob-

abilities to depend on the screening test (Wang et al., 2012). Increased efficiency translates

to cost and time savings for studies as well as decreased burden on subjects.

Consider screening for non-small-cell lung carcinoma (NSCLC) cancer recurrence. Lung

cancer is the most common cause of cancer death among men and women in the world

(Blanchon et al., 2006). Lung cancer is classified as either small-cell lung carcinoma (SCLC)
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or non-small-cell lung carcinoma (NSCLC), of which NSCLC accounts for approximately 80%

of all lung cancers. After surgical lung resection, a large proportion of stage 1 NSCLC patients

have cancer recurrence within five years (Bueno et al., 2012). When surgery is used as the

primary treatment for NSCLC, adjuvant chemotherapy may benefit patients who have a high

risk of cancer recurrence. Identifying patients who are at high risk of cancer recurrence

is important in order for treatment to be given to those who would benefit most. This is

an important area of study for patients, families, and doctors when making decisions on a

treatment plan.

We used data from the data from the CALGB 150807 study conducted by the Cancer and

Leukemia Group B (Bueno et al., 2012). This study is a subset of patients registered in the

CALGB 140202 study who have stage 1A or 1B non-small-cell lung cancer (NSCLC). Among

patients in the CALGB 150807 study, 1,061 patients were not censored before 12 months

and were used in this analysis. The Balcone risk score, outlined by Blanchon et al. (2006),

has been developed to identify patients who are at greatest risk of cancer recurrence. The

risk score is developed by considering factors such as age, gender, activity level at diagnosis,

histological type, and the tumor-node-metastasis staging system.

There are many interesting questions that can be explored in this study. AUC can be

used to investigate the ability of the Balcone risk score to predict cancer recurrence. Given

the need for an accurate test, partial AUC (pAUC) can be used to evaluate the performance

of the Balcone risk score where a specific range of FPRs or TPRs is considered. Because large

FPRs are less clinically relevant, we can restrict the range of interest to FPR∈ (0, 0.3), for

example. With the wealth of patient information available, a covariate-specific ROC would

allow us to evaluate the performance of the Balcone risk score, while accounting for covariates

that appear to be associated with cancer recurrence. This covariate-specific ROC estimator

can then be used to identify subsets of the population where the screening test is better at

distinguishing between subjects who have cancer recurrence and those who do not.

There have been many methods studied and proposed in the area of ROC and AUC

analysis. Bamber (1975) proposed a nonparametric AUC estimator, which is equivalent to

the Mann-Whitney U-statistic (Pepe, 2004). Parametric AUC estimators were developed by
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Swets and Pickett (1982) and Hanley et al. (1983). These methods use SRS for selection

into the study. Wang et al. (2012) proposed a nonparametric AUC estimator which utilizes

a biased sampling design in order to target subjects who contribute more information to the

study. McClish (1989) and Thompson and Zucchini (1989) introduced the idea of evaluating

only part of the AUC when a subset of FPRs are of interest. The pAUC can be interpreted

as the joint probability that YD > YD̄ and YD̄ fall within the FPR range of interest (Dodd

and Pepe, 2003a). Estimators similar to those given above for the AUC have been proposed

for the pAUC. A nonparametric pAUC estimator that uses SRS data was proposed by Dodd

and Pepe (2003a) and a nonparametric pAUC estimator using a biased sampling scheme

was proposed by Wang et al. (2012). Another discriminatory measure used to differentiate

between two populations when data are available over time is the C statistic (Rizopoulos,

2011; Pencina et al., 2012b; Heagerty and Zheng, 2005; Antolini et al., 2005). The C statistic

is a weighted average of the AUCs across multiple time points in the study. Heagerty and

Zheng (2005) suggested that the time specific AUCs can be plotted over time to assess changes

in accuracy across time for a time to event outcome.

Another important area of research the use of covariates in modeling ROC and in esti-

mating AUC and pAUC. The use of covariates allows us to better understand the influence

covariates have on accuracy of the screening test (Wang et al., 2013). Thompson and Zucchini

(1989) proposed nonparametric direct estimation of the AUC for specific level of a categorical

covariate. Wang et al. (2013) proposed ROC estimation which uses a biased sampling design

and a binormal model for screening test variable. Dodd and Pepe (2003a,b) proposed using

a generalized linear model framework for modeling the screening test, which can be used to

estimate AUC and pAUC.

The proposed work focuses on estimation of AUC, pAUC, and a covariate-specific ROC

curve using biased sampling methods and all available information, including incomplete

information available for un-sampled subjects. We consider a test dependent sampling (TDS)

design where TDS inclusion is dependent on a continuous screening test measure. Here,

the Balcone risk score is the measure used for the biased sampling scheme. This biased

sampling design incorporates a simple random sample (SRS), the TDS component, and the
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un-sampled subjects as opposed to a design using only a simple random sample of the same

size. The idea behind the supplemental sample is to target resources where the greatest

amount of information can be attained (Zhou et al., 2002). Cancer recurrence and other

covariate information are known only for those included in the SRS and TDS components.

The screening test measure and other baseline information are available for all subjects in the

study. Information from un-sampled subjects will also be utilized in the proposed methods.

Using the biased sampling design as well as incorporating observed information from the un-

sampled subjects can lead to efficiency improvements. This suggests that a smaller sample

size can be used with these methods, compared to existing methods, where a larger sample

size would be necessary to obtain the same level of efficiency in the estimator. A smaller

sample size translates to cost savings for the study and decreased subject burden. Using this

biased sampling design, we propose multiple approaches to studying these data that answer

different questions, which are helpful in understanding the utility of the screening test.

1.2 ROC Curves and Area under the ROC curve (AUC)

1.2.1 Unadjusted methods

There are many ways to approach the use of data in the area of medical decision making.

Methods have been proposed for a variety of types of estimators. Greenhouse and Mantel

(1950) suggested that to be considered an acceptable test, a screening test should be able to

correctly classify at least a pre-specified percentage of the diseased subjects and incorrectly

classify no more than a set percentage who are well. Other common measures include area

under the ROC curve (AUC) and partial AUC, where a particular interval of FPRs or TPRs

are of interest. A three dimensional extension of ROC and AUC was proposed by Skaltsa

et al. (2012), where instead of a two level outcome (diseased or not diseased) the outcome can

have more levels. This is beneficial for studying diseases such as Alzheimer’s disease. In this

case, the disease naturally presents with a transition state that falls between normal aging

and irreversible Alzheimer’s disease, which can be described as mild cognitive impairment. Yu

et al. (2011), Liu and Zhou (2011), and Long et al. (2011b,a) considered methods to account
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for a missing outcome or diagnostic screening variable without eliminating those subjects

from the analysis, limiting bias and loss in efficiency. Wang et al. (2012, 2013) suggested

an alternate approach to sampling subjects in order to target those who contribute more

information. With this biased sampling scheme, a smaller sample size can be used to attain

estimates that are as good as or better than alternative sampling methods, such as SRS.

ROC and AUC

The receiver operating characteristic (ROC) curve is a tool used to display how well a

screening test, Y , is able to indicate disease status, D. The ROC curve is constructed by

plotting the false positive rate (FPR, Pr (Y ≥ c|D = 0)) versus the true positive rate (TPR,

Pr (Y ≥ c|D = 1)), where c is the threshold for the screening test to indicate disease. The area

under the ROC curve (AUC) is a summary measure used to determine both the importance

of a difference between two populations and also describes the accuracy of discrimination

performance (Bamber, 1975). Figure 1.1 shows an ROC curve with corresponding AUC. The

FPR and TPR range from 0 to 1, and the AUC ranges from 0.5 to 1. An ROC curve with

intercept 1 and slope 0 indicates a perfect screening test that correctly identifies disease status

in every subject. An ROC curve with intercept 0 and slope 1, creating a 45o line, indicates

a screening test that is essentially as good as flipping a coin. A screening test with an ROC

curve that falls above the 45o line indicates some level of ability of the screening test to

discriminate between diseased and non-diseased subjects.

Another summary measure is the partial AUC (pAUC), shown in Figure 1.2. The pAUC

restricts the FPR (or TPR) to a range that is more clinically relevant. McClish (1989)

and Thompson and Zucchini (1989) introduced the idea of evaluating only part of the AUC

for certain FPR intervals that are of interest. The pAUC can be interpreted as the joint

probability that YD > YD̄ and YD̄ fall within the FPR range of interest (Dodd and Pepe,

2003a). There are downsides that must be considered when using the pAUC. The standard

error of the pAUC estimator increases and there is a loss in precision when a major restriction

is made on FPR (Walter, 2005).
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Figure 1.1: Area under the ROC curve Figure 1.2: Partial area under the ROC
curve

AUC and pAUC estimators

A binormal model for estimating AUC was proposed by Swets and Pickett (1982) and

Hanley et al. (1983). They compared the binormal model for estimating AUC to the non-

parametric AUC estimator. Swets and Pickett (1982) suggested that the method assum-

ing a binormal model for the screening test variable is superior to the nonparametric es-

timator because with the binormal model, the estimator is less affected by location and

spread of points that define the ROC. The area under the empirical ROC curve is given by

ÂSRS = 1
nDnD̄

∑nD̄
j=1

∑nD
i=1

[
I
(
YDi > YD̄j

)
+ 1

2I
(
YDi = YD̄j

)]
, which is the Mann-Whitney U-

statistic (Bamber, 1975). Both of these approaches to estimating the AUC use data that are

sampled from the population with SRS.

Dodd and Pepe (2003a) extended this AUC estimator in the SRS setting for pAUC. The

proposed pAUC estimator restricts the FPR (or TPR) and is given by

ÂSRSt =
1

nDnD̄

n∑
i=1

n∑
j=1

Di (1−Dj) I (Yi > Yj , Yj ∈ (q0, q1))

where q0 = FPR−1 (t1) and q1 = FPR−1 (t0). This estimator is nonparametric and shows

great improvements compared to other estimators, such as being more robust while losing
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only moderate efficiency compared to parametric estimators. For the FPR component of the

estimator, they found that using the estimated quantiles instead of the true quantiles gave

improved efficiency for estimating pAUC (Dodd and Pepe, 2003a).

An empirical likelihood method for estimating AUC was proposed by Qin and Zhou (2006).

This estimator showed improved small sample properties compared to assuming a normal ap-

proximation. A confidence interval for the AUC was also developed. The empirical likelihood

methods made it possible to obtain estimates for parameters without specifying a distribution

for the screening test. To obtain confidence intervals, they showed that their proposed AUC

estimator followed a scaled chi-square distribution, giving asymptotically correct coverage

probability. Although these methods were derived for a SRS, the methods can be extended

to account for a stratified sampling design. McNeil et al. (1984) developed methods when a

fixed FPR or TPR are of interest. These methods assumed normality of the screening test

variable.

TDS methods

Wang et al. (2012) proposed estimators for both AUC and pAUC that improve efficiency by

using a biased sampling design. These estimators are nonparametric and show improvement

over the simple random sampling setting when using the standard AUC estimator and the

pAUC estimator proposed by Bamber (1975) and Dodd and Pepe (2003a), respectively. The

form of these estimators is similar to that of the SRS estimators, but weights are incorporated

that account for the biased sampling design. The AUC and pAUC estimators proposed by

Wang et al. (2012) are given by:

ÂTDS =

∑n
i=1

∑n
j=1 pipjDi (1−Di) I (Yi > Yj)∑n
i=1

∑n
j=1 pipjDi (1−Di)

Ât
TDS

=

∑n
i=1

∑n
j=1 pipjDi (1−Di) I

(
Yi > Yj , Yj ∈ ˆFPR

)
∑n

i=1

∑n
j=1 pipjDi (1−Di)

where the false positive rate is estimated by ˆFPRj =
∑
i p̂i(1−Di)I(Yi>Yj)∑

i p̂i(1−Di)
. In Wang et al.

(2012), the TDS methods described for AUC and pAUC were used in evaluating the survival

benefit of celecoxib, a COX-2 inhibitor, for patients with positive COX-2 expression. COX-2
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is a protein that is over-expressed with lung cancer. Its intensity ranges from 0 to 10, and it

stratified into three groups to obtain the TDS portion of the sample: negative (COX-2 < 2),

moderate (2 ≤ COX-2 < 4), and positive (COX-2 ≥ 4). Preliminary data showed that the

proportions of patients falling into these categories were approximately 60%, 13%, and 27%,

respectively. In order to study the relationship between COX-2 value and survival, a range of

COX-2 values needs to be seen. Because treating and tracking outcomes for subjects is costly,

a sample is usually taken in order to complete the study on a fixed budget. The TDS method

for sampling was implemented in order to select enough subjects with moderate and positive

COX-2 to study this relationship. Define D = 1 as patients who survive less than 6 years

and D = 0 otherwise. Targeting a small range for the FPR can be important as false positive

results add increased cost and burden on subjects. With this in mind, the FPR interval of

interest was (0, 0.1). More details in the biased sampling component for this estimator are

given later in the Outcome-Dependent-Sampling portion of the literature review.

1.2.2 Covariate adjusted methods

Methods have been developed which consider the effect of covariate information on ROC

curves. This can be accomplished in many ways, such as estimating the covariate effect

on the screening test, directly estimating the AUC, and directly estimating the covariate

specific ROC curve. Tosteson and Begg (1988) proposed modeling the effect of covariates on

the screening test, Y . Here, a distribution function was assigned for Y , and the resulting

covariate effect on the ROC curve was calculated. There are limitations here, as model

misspecification can lead to erroneous results. Thompson and Zucchini (1989) and Dodd and

Pepe (2003a) proposed directly estimating the AUC, and Dodd and Pepe (2003a) proposed

directly estimating pAUC, while accounting for covariates. Methods for directly estimating

the survival function or the ROC curve were proposed by Pepe (1997, 2000), Cai and Pepe

(2002), and Wang et al. (2013). Generalized linear modeling methods were used in Pepe

(1997, 2000). These results were extended to a semi-parametric approach by Cai and Pepe

(2002).
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Thompson and Zucchini (1989) proposed that estimation can be completed by specifying

a distribution function for Y or can be completed nonparametrically using the Wilcoxon

statistic: ˆAUCk = n−1
D,kn

−1
D̄,k

∑nD,k
i

∑nD̄,k
i {I [Yj < Yi] + 0.5I [Y i = Yj ]}, where k = 1, . . . ,K

denotes the covariate level. Thompson and Zucchini (1989) also proposed an analysis of

variance (ANOVA) approach for modeling to compare the means of an accuracy index for

different combinations of variables. In this setting, images are read by multiple people and

these results are compared to see how ratings compare between readers. The model is given

by Yijk = µ+ αi + bj + (ab)ij + c+ eijk, where µ+ αi represents the mean level of Y for the

i-th combination of the variables. The variable bj is a random variable, allowing for variation

between image readers. Zheng and Heagerty (2007) proposed a semi-parametric estimate

of the survival function of the screening test over time. The ROC is constructed from this

estimated survival function, and AUC can be assessed over time. The added component of

following a subject’s screening test variable over time allows for the ability to assess diagnostic

accuracy at different intervals of time between measurement and diagnosis.

Methods to estimate the AUC and pAUC while adjusting for covariates provide useful

model interpretations for both discrete and continuous covariates (Dodd and Pepe, 2003a,b).

These methods are semi-parametric and take advantage of generalized linear model frame-

work. Dodd and Pepe (2003b) define the covariate specific AUC as Pr
(
Y D
i > Y D̄

j |XD
i , X

D̄
j

)
=

θij . The regression model is given by g (θij) = XT
ijβ, where β is a vector of parameters and

g is a monotone increasing link function. The proposed estimating function is given by

SN (β) =
∑nD

i

∑nD̄
j

∂θij
∂β v (θij)

−1 (Uij − θij) ≡
∑nD

i

∑nD̄
j Sij (β). Dodd and Pepe (2003a)

propose the covariate-specific pAUC given by

AUCX (t0, t1) = Pr
(
Y D > Y D̄, Y D̄ ∈ (q0, q1) |X

)
.

The general model is given by AUCX (t0, t1) = g
(
XTβ

)
for a specified link function g. For

the pAUC setting the estimating equation is given by

VnD,nD̄ (β) =

nD∑
i

nD̄∑
j

∂θX
∂β

v (θX)−1
(
V

(q0,q1)
ij − θX

)
= 0
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where V
(q0,q1)
ij = I

(
Y D
i > Y D̄

j , Y
D̄
j ∈ (q1, q0)

)
. When using the logit link, exponentiated

model parameters can be interpreted as AUC or pAUC odds. For a binary covariate, the

exponentiated model parameter can be interpreted as the ratio of AUC or pAUC odds be-

tween the two levels of that covariate. For a continuous covariate, the exponentiated model

parameter can be used to describe how AUC or pAUC changes for diseased and not dis-

eased subjects as that covariate changes. Dodd and Pepe (2003b) used their proposed AUC

methods to study the ability of the distortion product otoacoustic emission (DPOAE) de-

vice in assessing impaired hearing. The DPOAE device is used at three different frequencies

and three intensity settings, creating nine combinations of settings. The severity of hearing

loss is also of interest in this setting. A behavioral test where subjects indicate the point

at which a sound is audible is the gold standard in assessing hearing loss. The model used

here is given by log
(

AUC
1−AUC

)
= β0 + β1intensity + β2frequency + β3severity. Results from

this analysis showed that DPOAE is able to discriminate between severely impaired ears and

normal ears better than mildly impaired and normal ears, which is not surprising. Also,

stimuli with lower intensities achieved greater accuracy. Dodd and Pepe (2003a) considered

the ability of prostate-specific antigen (PSA) to diagnose prostate cancer. The data came

from the α-Tocopheraol and β-Carotene Study (ATBC). Serum samples were collected and

stored at baseline and three years later. Adjusting for time was important here, especially

because the time from measurement to diagnosis varied greatly and it was expected that

PSA levels taken close to the time of diagnosis would be more predictive. Clinical evidence

showed a relationship between PSA levels and prostate cancer. Two methods of quantifying

PSA were considered, total PSA and the ratio of free to total PSA. The comparison of these

two methods was incorporated into the model. Ultimately, 240 subjects in the study were

diagnosed with prostate cancer during the eight year study follow-up period. Serum samples

were age matched for 237 non-prostate diagnosed subjects who were sampled for comparison.

They considered FPR values in (0, 0.4). The model was given by:

log

[
AUC (0, 0.4)

0.4−AUC (0, 0.4)

]
= β0 + β1test + β2time + β3test ∗ time
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The results showed that PSA accuracy improved when subjects were measured at times closer

to the time of diagnosis. Total PSA appeared to be a better diagnostic tool for prostate cancer

than the ratio.

Pepe (1997) proposed a regression design that directly modeled covariate effects on the

ROC curve. Denote D the binary indicator of disease status, Y the non binary diagnostic test,

Z the factors that potentially influence test accuracy, and X the vector of covariates. The

ROC curve associated with Z for a logistic model is given by ROCZ (t) = exp{α0(t)+Xβ}
1+exp{α0(t)+Xβ} ,

where α0 (t) is a monotone function from (0, 1) to (−∞,∞), and t denotes the false positive

rate. No distributional assumptions are made for Y ; assumptions are made only for the

relationship between diseased and non diseased subjects through the ROC curve model. This

approach allows for examining the influence covariates have on the accuracy of a diagnostic

test in discriminating disease status. This method was applied to radiology data, the same

used in Thompson and Zucchini (1989), where images were constructed and then evaluated

by three readers. Here, there were 50 each of diseased and non diseased images and the

readers classified their evaluation of each image with an ordinal scale from 1 to 5. After

data collection, the 4th and 5th categories were collapsed due to sparse data. A logistic

type regression was fit to the data with the model ROCZ (t) = exp{α0(t)+β1X1+β2X2+β3X3}
1+exp{α0(t)+β1X1+β2X2+β3X3} ,

where Xi corresponds to the evaluation made by the ith reader. This technique allowed for

comparisons between readers, such as reader 3 rating images systematically lower than the

other two readers.

An ROC curve estimator was proposed by Wang et al. (2013), which uses test dependent

sampling (TDS), a biased sampling design. With this method, portions of the population

are oversampled to gain efficiency. A binormal model is assumed for the screening test, Y ,

such that Y = β0 + βDD + βTXX + βTDXDXD + σ (D) ε, where ε ∼ N (0, 1) and σ (D) =

σ1I [D = 1] + σ0 [D = 0]. No distributional assumptions are needed for the covariates due to

the use of empirical likelihood methods. Estimates of the survival function were estimated

and combined for a covariate-specific ROC curve, given by: ROCX (t) = S1X

(
S−1

1X (t)
)

=

Φ
(
βD+βTDXXD+σ0Φ−1(t)

σ1

)
. This method was applied to data from a study evaluating the

prognostic value of COX-2 for survival of patients with lung cancer, the same used in Wang
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et al. (2012). Covariates such as age and gender were included in the model. These covariates

not only have a relationship with cancer survival, but also on the COX-2 expression, so

ability to include these covariates in the study is valuable. Simulation studies showed that

the estimator will perform fairly well under mild misspecification of the binormal model.

Other summary measures

Another discriminatory measure used to differentiate between two populations is the C

statistic (Rizopoulos, 2011; Pencina et al., 2012b; Heagerty and Zheng, 2005; Antolini et al.,

2005). In situations such as survival analysis settings, time dependent ROC and AUC can

be used to evaluate the screening test over time. Rizopoulos (2011) described the C statistic

as a summary of the screening test variable over the study period. This weighted average

of the AUCs is given by C =
∫
AUCtPr(T ∗i >t)dt∫

Pr(T ∗i >t)dt
, where Pr (T ∗i > t) is the marginal survival

probability. The marginal survival probability takes into account censoring, since all time

points will not contribute equally. Heagerty and Zheng (2005) suggested that the time spe-

cific AUCs can be plotted over time to assess a change in accuracy across time. While the

methods proposed by Heagerty and Zheng (2005) and Rizopoulos (2011) are semiparametric,

the methods proposed by Antolini et al. (2005) are non-parametric making them more robust.

Missing data

Instead of focusing of new types of summary measures for discrimination between popula-

tions, Yu et al. (2011), Liu and Zhou (2011), and Long et al. (2011b,a) considered the common

issue of missing data. Long et al. (2011b,a) developed methods for missing screening test val-

ues. Loss of efficiency and, depending on the type of missingness, bias may be introduced

when only including subjects with complete data. Both missing at random and missing not at

random scenarios are considered. This AUC estimator was shown to work well under model

misspecification. Nonparametric imputation procedures were used in developing methods to

analyze ROC when the biomarker for screening was missing. In this case, other auxiliary

variables were present and were used in imputing the main biomarker of interest. Instead of

the absence of the screening test variable, Yu et al. (2011) and Liu and Zhou (2011) developed

methods where the gold standard (verification of disease status) was missing. Yu et al. (2011)
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combined multiple continuous tests together as a composite test to discriminate between two

populations. It was assumed that the test values are binormal, and a Bayesian latent disease

model was used, along with an MCMC algorithm for computation. Glomerular filtration rate

(GFR) is a measurement associated with the ability of the kidneys to filter. A reduced GFR

is a marker for chronic kidney disease. Chronic kidney disease is defined as kidney damage

or GFR measurement below a set threshold. There are different ways to estimate the GFR

and no true gold standard in defining chronic kidney disease. Methods proposed by Yu et al.

(2011) were used to assess the optimal way of measuring GFR to diagnose chronic kidney dis-

ease. Liu and Zhou (2011) developed a semiparametric ROC curve estimator where the gold

standard is missing for a subset of the study population. The missing at random assumption

was assumed in the development of these estimators. Weighted estimating equations were

used to account for the missing gold standard for a subset of the subjects.

Optimal threshold for Y

Another interesting and important research topic in the area of ROC and AUC is choos-

ing the best threshold value of the screening test to indicate disease. Different approaches

can be considered in finding the optimal threshold for the screening test and in assessing

improvement in the screening tests available. Molanes-López and Letón (2011) used empir-

ical likelihood methods to assess the most appropriate cut-off value for the diagnostic test

using the Youden index. The nonparametric empirical likelihood methods were compared to

a newly developed parametric methods. Simulation studies showed that the nonparametric

method was competitive with other parametric methods and was superior. Pencina et al.

(2012a) evaluated the improvement in population discrimination using AUC. These methods

assume multivariate normality and use a linear discriminant analysis. The measures under

study reduce to a function of Mahalanobis distance, which helps to describe the magnitude of

improvement in estimation. Let M2
p+q = δTΣ−1δ denote the Mahalanobis distance for p + q

cases. The first of the three estimators proposed was assessing the change in AUC, ∆AUC.

This estimator reduces to ∆AUC = Φ

(√
M2
p+q

2

)
− Φ

(√
M2
p

2

)
.

To evaluate competing events, Zheng et al. (2012) proposed a method that evaluates
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the predictive accuracy of a marker for each type of event. Huang et al. (2011) proposed a

nonparametric procedure that optimizes the linear combination of diagnostic tests to max-

imize the AUC. Combining these diagnostics provides a combined score that can used to

estimate the AUC estimator. Four methods were considered in estimating AUC, including

cross-validation, bootstrap, sigmoid function smoothing, and approximated cross-validation

for variable selection. As these methods can be very computationally intensive, the cross-

validation methods are strongly suggested, in an effort to reduce computational cost.

ROC and AUC are discriminatory measures that can be used when the outcome has two

levels, such as diseased versus not diseased. When the outcome has more than two levels,

other approaches need to be considered. Skaltsa et al. (2012) developed methods to assess

the optimum threshold for this diagnostic setting. Consider Alzheimer’s disease. This disease

naturally presents with a transition state that can be described as mild cognitive impairment,

which falls between normal aging and irreversible Alzheimer’s disease. A three-dimensional

classification plot is constructed, which is similar to the ROC curve. Volume under the surface

of this three-dimensional plot gives a measure of accuracy that is similar to AUC. Different

weights can be used in the estimator that involve the cost of evaluation to aid in finding the

optimum threshold. Disease prevalence and classification cost are incorporated here, both of

which need to be considered when finding the cut-off for the optimal test.

1.3 Outcome dependent sampling

1.3.1 Methods for binary and discrete outcomes

Many study designs exist to help assess the relationship between disease and exposure.

Prospective studies are one such example, but these studies tend to be time consuming and

expensive. When a rare disease or event is of interest, the study population would have to

be quite large to observe enough subjects with disease in order to assess a relationship. Time

is also an important factor in this type of study design, especially if time from exposure to

observing the event is large. Retrospective studies are another way of studying disease and

exposure relationships.
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The case-control sampling design is a very beneficial design when exploring relationships

between covariates and a dichotomous disease (or outcome) status. Logistic regression is a

tool used to explore the relationship between the dichotomous disease outcome and multiple

variables of interest. The logistic model is expressed as log
(

p
1−p

)
= β0+β1x1+· · ·+βjxj = xβ

where p = Pr(y = 1|x) (Prentice and Pyke, 1979). This tool extends the ability to study the

relationship between disease and exposure status to include other covariates of interest. In

situations where subjects are selected using biased sampling methods, the sampling design

must be accounted for, and basic logistic regression cannot be used.

When there is interest in studying a rare disease or exposure, taking a random sample

of the population may not provide a sufficient number of diseased or exposed subjects to

obtain model estimates and understanding of the rare disease or exposure of interest. White

(1982) suggested a two-stage approach where disease and exposure status are found for a

large sample in the first stage, which can be time consuming and costly. This design offers

improvement over a one stage design because some groups would contribute small cells in the

stratum-specific table. In the second stage, covariate information is found for only a stratified

subsample of the first stage subjects. Sub-sampling in the second stage is accomplished by

separating subjects into four groups based on their disease and exposure status. Rare diseases

or exposures will have more representation in the study by using this approach. Ascertaining

exposure status and covariates can be expensive and also invasive for subjects, which can

be problematic since exposure is established in the first stage. Similar to the two-stage case

control design described above is the case-cohort design. Prentice (1986) suggested a two stage

design where the disease status is identified in the first stage. One or more subjects without

disease are then matched to a diseased subject, and a random sample is then selected from

the entire cohort, or study population, in the second stage. From here, covariate information

is ascertained for the selected cohort and case subjects.

Multi-level outcome and exposure

Discrete choice analysis was discussed in Manski and McFadden (1981). Instead of the

binary classification for outcome and exposure, the classification is generalized so that there
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can be many options of outcome and exposure indication. This structure is beneficial in

situations where instead of looking at non-diseased versus diseased, it may be more informative

to consider non diseased and multiple levels of disease severity. Hsieh et al. (1985) and

Scott and Wild (1986) developed a conditional maximum likelihood method for choice-based

sampling. Estimators for response probabilities (the probability of illness given exposure and

other covariates) were proposed. Breslow and Cain (1988) combined the two-stage sampling

framework with the conditional maximum likelihood developed by Hsieh et al. (1985) for

choice-based sampling. This modified logistic regression method adjusts for potential biased

caused by oversampling certain groups in the second stage. Fears and Brown (1986) used

a maximum likelihood estimation method that included stratum specific terms for the case-

control setting. This work was improved upon by Scott and Wild (1991) where the method

was made more computationally reasonable.

1.3.2 Methods for continuous outcomes

Zhou et al. (2002) proposed a semiparametric empirical likelihood method using outcome

dependent sampling design for continuous outcomes. The information available for sam-

pled subjects is a continuous outcomes variable, Y , and a vector of covariates, X. For the

continuous outcome Y , consider splitting the variable into K mutually exclusive intervals,

Ck = (ak−1, ak], k = 1, ...,K, where a0 = −∞ < a1 < a2 < · · · < aK = ∞. The sampling

components consist of a SRS portion and an ODS portion. For the ODS portion, sampling

is targeted within the K intervals. The available data is given by {Yki, Xki}, where k indexes

the sampling group (k = 0 indicates the SRS sampling component) and i indexes the subject

within the kth sampling group. The sample size is n = n0 +n1 + · · ·+nK . Denote the density

of Y given X as fY |X (y|x, β) where β is the regression coefficient of interest. The cumulative

distribution of X is given by GX and the density function is given by gX . The likelihood of
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the observed data is given by

L (β,GX) =

{
n0∏
i=0

fβ (y0i|x0i) gX (x0i)

}
×

 K∏
k=1

nk∏
j=0

fβ (ykj , xkj |ykj ∈ Ck)


=

∏ fβ (y0i|x0i)×
K∏
k=1

nk∏
j=0

fβ (ykj |xki)
F (ak|xkj)− F (ak−1|xkj)


×

∏ gX (x0i)×
K∏
k=1

nk∏
j=0

F (ak|xkj)− F (ak−1|xkj)
F (ak)− F (ak−1)


= L1 (β)× L2 (β,GX) .

Without loss of generality, let K = 3. In order to get an estimate for β they first estimate

GX . The distribution of X is not defined. By fixing β, the empirical likelihood function

of GX can be found over all observed values of X. Denote π1 = F (a1), π3 = F̄ (a2), and

pi = gX (wi) where (w1, . . . , wn) = (x01, . . . , x0n0 , x11, . . . , x1n1 , x31, . . . , x3n3). The portion of

the likelihood that involves gX (wi) is given by L2 (β,GX) = L2 (β, {pi}) ∝
∏n
i=1 piπ

−n1
1 π−n3

3 .

To find {p̂i} that maximizes L2, they considered the following constraints:

{
pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi {F (a1|wi)− π1} = 0,

n∑
i=1

pi
{
F̄ (a2|wi)− π3

}
= 0

}

From Qin and Lawless (1994), a unique maximum exists for {pi} under the above con-

straints if 0 is inside the convex hull of points {F (a1|w1)− π1} , . . . , {F (a1|wn)− π1} and{
F̄ (a2|w1)− π3

}
, . . . ,

{
F̄ (a2|wn)− π3

}
. The maximum over {pi} can be found by incorpo-

rating Lagrange multipliers:

H = logL2 (β, {pi}) + ρ

(
1−

n∑
i=1

pi

)
+ nλ1

n∑
i=1

pi {F (a1|wi)− π1}

+nλ3

n∑
i=1

pi
{
F̄ (a2|wi)− π3

}

From here, they find that ρ = n and p̂i = 1
n

[
1 + λ1 {F (a1|wi)− π1}+ λ3

{
F̄ (a2|wi)− π3

}]−1
.
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Plugging this estimate {p̂i} into the original likelihood function gives an empirical log likeli-

hood. An iterative procedure such as the Newton-Raphson algorithm can be used to obtain

estimates for β. This method proposed by Zhou et al. (2002) gives a method of estimation

that is not only efficient, but no distributional assumptions need to be made for the covariates

of interest.

Zhou et al. (2007) proposed the Horvitz-Thompson approach with inverse-probability

weights for the sampling design described in Zhou et al. (2002). The parameter β is esti-

mated without specifying G (X), where β is the vector of regression coefficients that links

the exposure and outcome, X and Y , respectively. This approach requires knowledge of the

sampling probabilities, unlike in Zhou et al. (2002). If all N subjects are observed, the log-

likelihood is given by
∑N

i=1 logP (yi|xi;β). The log-likelihood is estimated by weighting the

observed subjects with the inverse of their second-stage selection probability. The inverse

probability weighted estimator, β̂IPW , is found by solving 1
N

∑
k

∑
i∈Ck

1
pk

∂
∂β
Pβ(yi|xi)

Pβ(yi|xi) = 0,

where p̂k = nk
Nk

. Simulation results show that for evaluating the linear relationship between

a continuous exposure and continuous outcome, using the ODS technique described is more

efficient than a simple random sample. This method reduces the number of subjects needed

to obtain the same level of accuracy compared to a SRS design. This weighted method is

only available if the weights are known or can be estimated, which can be difficult in some

circumstances. Gains in efficiency are found when the continuous outcome, Y , is stratified

into a large number of groups, defined by Ck.

Inclusion of non-validation data

Chatterjee et al. (2003) and Weaver and Zhou (2005) suggested methods for an outcome

dependent sampling design that allowed for the utilization of the un-sampled portion of the

data. Consider the sampling design detailed by Zhou et al. (2002). Let Y be a continuous

outcome variable of interest that is partitioned into K mutually exclusive intervals. The kth

stratum is given by Ck = (ak−1, ak] where a0 = −∞ < a1 < a2 < · · · < aK = ∞ and

k = 1, ...,K. Let the SRS and ODS components be referred to as the validation set, indexed

by V . The un-sampled portion of the population is referred to as the non-validation set,
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indexed by V̄ . The outcome variable must be known for all subjects in the population in

order to use the ODS design. However, the covariates of interest, X, are only ascertained for

the validation set. A sampling indicator is created to distinguish between the validation and

non-validation portions where Ri = 1 if Xi is observed and Ri = 0 if Xi is not observed. The

likelihood for the validation set where the variable information is complete is given by

LV (θ,GX) =

[∏
i∈V

f (Yi|Xi; θ)

][∏
i∈V

dGX (Xi)

][
K∏
k=1

πk (θ,GX)−nk

]
(1.1)

where πk (θ,GX) =
∫
Pk (x; θ) dGX (x) and Pk (x; θ) dGX (x) =

∫
Ck
f (y|x; θ) dy. Here Pk (x; θ)

and πk (θ,GX) are the conditional and marginal probabilities that Y is in the kth stratum.

Consider the use of all validation and non-validation subjects. The stratum sizes for the

non-validation set are calculated by taking the total number of subjects in Ck and sub-

tracting the number of validation subjects whose outcome variable fall within Ck, given by

nV̄ ,k = Nk − n0,k − nk. The stratum size follows a multinomial law where Pr
({
nV̄ ,k

})
=

(N−n0)!∏K
k=1 (Nk−n0,k)!

∏K
k=1 [πk (θ,GX)]Nk−n0,k . Non-validation contribution to the likelihood is given

by

K∏
k=1

∏
j∈V̄k

fY (Yj ; θ)

πk (θ,GX)
, (1.2)

where fY (Yj ; θ) =
∫
f (Yj |u; θ) dGX (u). The full likelihood is found by combining (1.1) and

(1.2), and reduces to

LF (θ,GX) ∝

[∏
i∈V

f (Yi|Xi; θ)

]
×

[∏
i∈V

dGX (Xi)

]
×

∏
j∈V̄

f (Yi; θ)

 . (1.3)

The maximum estimated likelihood estimator (MELE) developed by (Weaver and Zhou,

2005) is similar to the pseudoscore estimator (PSE) proposed by Chatterjee et al. (2003).

The semiparametric estimator proposed by Chatterjee et al. (2003) relaxes the assumption

that all subjects have a positive probability of selection. By not requiring all subjects to

have a positive selection probability, it is possible to create a sampling framework for a
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case or control only design. Although much of the results are given for a discrete outcome,

exploring these methods for a continuous outcome is possible and would require nonparametric

regression methods. These two methods (MELE and PSE) were compared and found to be

more efficient than a semiparametric maximum likelihood estimator. The MELE is found by

replacing the unspecified marginal distribution function (such as GX in (1.3) above) with a

consistent estimator. The resulting likelihood incorporates the observed selection probability

p
′
k =

(n0,k+nk)
Nk

. To use the PSE estimator, function qθ (Xi) =
∑K

l=1 p
′
lPl (Xi; θ) is substituted

for the observed selection probability (p
′
k).

Restricted maximum likelihood

Song et al. (2009) proposed an estimation method using the ODS design described in

Weaver and Zhou (2005). Empirical likelihood methods similar to those used in Zhou et al.

(2002) and Weaver and Zhou (2005) were incorporated in developing the likelihood, which

gives

ĝi =

n−∑
j∈V̄

f (Yj |Xi; θ)∑
k∈V ĝkf (Yj |Xj ; θ)


−1

, (1.4)

where g (·) is the probability density function for X. It is noted that the number of con-

straints increases as the sample size increases, and the mixed Newton method for estimation

is suggested with the following steps:

1. Begin with initial estimates θ0 and g0
i , i ∈ V .

2. Insert θ0 and g0
i in to the right hand side of the score equations given above (1.4) and

solve the equations iteratively using the fixed-point algorithm until it converges, calling

the solution gci .

3. Take gci from the second step and plug into the likelihood to maximize the parametric

likelihood using Newton’s method to update θc.

4. Repeat the second and third steps until the proposed convergence criteria is met.
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Efficiency gains seen in simulation studies depends heavily on the proportion of subjects

sampled in the tails for the validation set.

OADS

Outcome and auxiliary dependent sampling is a biased method of sampling where a sub-

ject’s probability of selection depends on both the outcome and an auxiliary variable. A semi-

parametric empirical likelihood method was proposed by Wang et al. (2009). These methods

were applied to a lung cancer biomarker study where it was seen that subjects with epidur-

mal growth factor receptor (EGFR) mutations responded to EGFR inhibitor drugs differently

than those without the mutation. Because of the expense in testing for the EGFR mutation,

the predicted probability of a subject having the EGFR mutation was used as the auxiliary

variable for the ODS design. Logistic regression was used to obtain the predicted probability

with the model incorporating patient record information, including variables known to be

associated with EGFR mutation. The supplementary sample was made up of two groups:

those who responded to the inhibitor (Y , outcome) and those who did not respond to the

inhibitor but had predicted probability above a set threshold (W , auxiliary). The likelihood

was developed using a generalized linear model with known link function. Misspecification

of the distribution of the covariates, G (X|w = k), will lead to inconsistent results. Because

of this, empirical likelihood methods were used to estimate the distribution function of X,

similar to the approach described for Zhou et al. (2002). Simulation studies suggest that the

OADS design shows gains in efficiency when there is a moderate to high correlation between

the biomarker and the auxiliary variable. For rare disease, this method improves efficiency

compared to SRS.

ROC and AUC

Wang et al. (2012) used the ODS framework to estimate area under the receiver operating

characteristic curve. Consider a disease outcome D and a screening test Y , where it is of

interest to measure how well this screening test is able to indicate a subject’s disease status.

In this situation, the biased sampling design is completed using the screening test, which is

known, instead of the disease status outcome, which is unknown. For this reason, instead

21



of an outcome dependent sample, a test-dependent sampling design is discussed. Similar

to Zhou et al. (2002), the empirical likelihood method was used to obtain an estimate for

pi = f (Yi, Di). An ROC curve estimator was proposed by Wang et al. (2013) that incorporates

other covariate information. A binormal model is assumed for the screening test, Y . No

distributional assumptions are needed for the covariates due to the use of empirical likelihood

methods.

1.4 Proposed research

1.4.1 AUC using test-dependent sampling

Motivated by the need to improve efficiency, a semi-parametric AUC estimator is proposed

that incorporates the test dependent sampling design and the of inclusion of information from

the un-sampled portion of the population. The TDS sampling design has three components:

the SRS component, TDS component, and non-validation set (un-sampled subjects). The

subjects sampled in the SRS and TDS components combined make up the validation set,

indexed by V , where true disease status is validated. The remainder of the population not

selected for sampling makes up the non-validation set, indexed by V̄ . The disease status, D,

is only ascertained for subjects who are in the validation set. These components are defined

by

SRS component (D0j , Y0j) j = 1, ..., n0

TDS1 component (D1j , Y1j |Y1j ∈ C1) j = 1, ..., n1

...
...

...

TDSK component (DKj , YKj |Y1j ∈ CK) j = 1, ..., nK

Non-validation component (Yv̄j |i 6= (0, 1, . . . ,K)) j = 1, ..., nV̄

where nv̄ = N−n0−
∑K

k=1 nk. The portion of the likelihood for the sampled subjects is given

by LV and the portion of the likelihood for the un-sampled portion of the subjects is given
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by LV̄ . These likelihood components are given below.

LV (fD) =
K∏
k=1

nk∏
j=1

Pr (Ykj ∈ Ck)−nk ×
K∏
k=0

f (Yij |Dkj)Pr (Dkj = d)

LV̄ (fD) =
(N − n0)!∏K

k=1 (Nk − n0,k)!
×

nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |DV̄ j = d

)
Pr
(
DV̄ ,j = d

)
×

K∏
k=1

Pr (Ykj ∈ Ck)−nk . (1.5)

The full likelihood is given by L (fD) = LV (fD) × LV̄ (fD) where the distribution of the

screening test conditional on disease status, f (Yij |Dij = d), is not specified. Empirical like-

lihood inference is used to estimate the distribution of the screening test, Y , conditional on

disease status. This is desirable as model misspecification can introduce problems for full

or semi parametric estimators. The Newton-Raphson algorithm is used to obtain estimates

for model parameters, which are then used to estimate the expected disease status. The

estimated expected disease status is necessary in this design because true disease status is

missing for subjects in the non-validation component. The proposed AUC estimator is given

by

ÂPV,V̄ =

∑N
l 6=l′ D

∗
l

(
1−D∗l′

)
I (Yl > Yl′)∑N

l 6=l′ D
∗
l

(
1−D∗l′

) ,

where D∗l =


Dl if l ∈ V

Ê (Dl) = p̂

p̂+eα̂+β̂yl (1−p̂)
if l ∈ V̄

. (1.6)

Simulation studies show that the proposed AUC estimator improves efficiency over other

current methods, including a SRS only estimator proposed by Bamber (1975) and a method

proposed by Wang et al. (2012) that utilizes the TDS design without incorporating informa-

tion from the un-sampled portion of the population.
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1.4.2 Partial AUC using test-dependent sampling

It may be more clinically relevant to evaluate the utility of a screening test for a subset of

false positive rates. Using the likelihood development in (1.5), then we use empirical likelihood

methods to estimate pAUC without making assumptions of the distribution of the screening

test variable. The proposed pAUC estimator is given by

ÂPt:V,V̄ =

∑N
l 6=l′ D

∗
l

(
1−D∗l′

)
I
(
Yl > Yl′ , F̂PRl′ ∈ (t0, t1)

)
∑N

l 6=l′ D
∗
l

(
1−D∗l′

) ,

where F̂PRl′ =

∑N
l (1−D∗l ) I (Yl > Yl′)∑N

l

(
1−D∗l

)
and D∗l =


Dl if l ∈ V

Ê (Dl) = p̂

p̂+eα̂+β̂yl (1−p̂)
if l ∈ V̄

. (1.7)

Simulation studies show that efficiency is improved for the proposed pAUC estimator

compared to other current methods, including a SRS only estimator proposed by Dodd and

Pepe (2003a) and a method proposed by Wang et al. (2012) that utilizes the TDS design

without including information from the un-sampled portion of the population.

1.4.3 Covariate-specific ROC curve estimation using test-dependent sam-
pling

In evaluating a ability of the screening test to assign disease or outcome status correctly,

it may be beneficial to also evaluate covariate effects on diagnostic accuracy. We propose a

semi-parametric covariate-specific ROC curve estimator which incorporates a test-dependent

sampling design and inclusion of un-sampled subjects. A binormal model is used to describe

the relationship between the screening test, the disease status, and covariates. The sampling

components are the same as described for the AUC estimator. The screening test model is

given by

Y = Xβ + σ (D) ε = β0 + β1D + β2X + β3XD + σ (D) ε (1.8)
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where ε ∼ N (0, 1) and σ (D) = σ1D + σ0 (1−D). The likelihood is given by

L (G, p,β, σ) ∝
3∏
i=0

ni∏
j=1

f (Yij |Xij , Dij) g (Xij |Dij = d)h (Dij)

×
nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |XV̄ j , DV̄ j

)
g
(
XV̄ j |DV̄ j

)
Pr
(
DV̄ ,j = d

)
dX. (1.9)

Although the screening test distribution is specified, empirical likelihood methods are used in

maximizing the likelihood without specifying the distribution function for the covariates.

1.5 Outline of dissertation

In Chapter 2, notation and data structure are defined and AUC estimation is explored.

We develop a semi-parametric AUC estimator by using empirical likelihood methods. Sim-

ulation results and analysis of data from a lung cancer study and the Preterm Prediction

Study show that the proposed AUC estimator is unbiased and more efficient than other AUC

estimators compared.

In Chapter 3, partial AUC is considered. Similar to the AUC estimator proposed in Chap-

ter 2, a semi-parametric empirical likelihood estimator for the pAUC is proposed. Simulation

results and analysis of data from a lung cancer study and the Preterm Prediction Study show

that the proposed pAUC estimator is unbiased and more efficient than other pAUC estima-

tors compared.

In Chapter 4, the covariate-specific ROC curve estimator is proposed. This semi-parametric

estimator uses empirical likelihood methods to estimate the ROC curve without making as-

sumptions on the distribution of the covariates. Simulation studies show gains in efficiency

compared to current ROC curve estimators due to the TDS design and inclusion of un-sampled

subjects. Analysis of data for a lung cancer study and the Preterm Prediction Study show

the utility of this ROC curve estimator by showing that the screening test is more effective

for some covariate values than others.
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Chapter 2

AUC under Test-Dependent Sampling

2.1 Introduction

The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC)

are summary measures used to describe the ability of a screening test to discriminate between

diseased and non-diseased subjects (Bamber, 1975). As evaluating the true disease status can

be costly, it is important for researchers to increase study efficiency by allowing selection

probabilities to depend on the screening test (Wang et al., 2012, 2013). Increased efficiency

translates to cost and time savings for studies as well as decreased burden on subjects. We

propose a semi-parametric AUC estimator which incorporates a test-dependent sampling

design and inclusion of un-sampled subjects. Simulation studies show that the proposed

AUC estimator is unbiased and improves efficiency compared to estimators using a simple

random sample (SRS) design and those that use only information from the sampled subjects.

Our research is motivated by the study of non-small-cell lung cancer where we identify

patients at high risk of cancer recurrence in order to adjust treatment plans to be most

effective. Using data from the Cancer and Leukemia Group B (CALGB) 150807 study, we

evaluate the ability of the Balcone risk score to identify patients who are at greatest risk of

non-small-cell lung cancer (NSCLC) recurrence by estimating the AUC. The ROC curve is

a tool used to graphically display the ability of the Balcone risk score to identify patients

who survive beyond 12 months by plotting the false positive rate (FPR, Pr (Y ≥ c|D = 0))

against the true positive rate (TPR, Pr (Y ≥ c|D = 1)). The AUC is a summary measure

used to describe the ability of the Balcone risk score to discriminate between patients who
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survive beyond 12 months and those who do not. When surgery is used as the primary

treatment for NSCLC, adjuvant chemotherapy may benefit patients who have a high risk of

cancer recurrence. Identifying patients who are at high risk of cancer recurrence is important

in order for treatment to be given to those who would benefit most. This is an important

area of study for patients, families, and doctors when making decisions on a treatment plan.

The proposed methods are especially beneficial considering the length of time this type of

study will follow patients and cost of following a large number of subjects in this setting.

We also consider data from the Preterm Prediction Study in evaluating the utility of the

proposed AUC estimator (Goldenberg et al., 1996). Preterm birth (PTB), defined as delivery

at less than 37 weeks of gestation, contributes to neonatal morbidity and mortality. This is

an important area of study due to the negative impact of spontaneous PTB on maternal and

child health outcomes. Knowing the fetal fibronectin (FFN) measurement will not change the

incidence of spontaneous PTB, but it can affect the treatment plan. We evaluate the ability

of FFN to predict spontaneous PTB by estimating the AUC.

Previous research has explored multiple approaches to estimating AUC. A non-parametric

AUC estimator proposed by Bamber (1975) is equivalent to the Mann-Whitney U-statistic

(Pepe, 2004). Although the Bamber (1975) estimator is unbiased, the normal approximation-

based Mann-Whitney confidence interval has low coverage accuracy for high values of the

AUC when sample sizes for diseased and non-diseased subjects are small and unequal (Qin

and Zhou, 2006). A binormal model for estimating AUC was proposed by Swets and Pickett

(1982) and Hanley et al. (1983) where the estimator is less affected by the location and

spread of points that define the ROC. For both of these approaches, subjects are selected

by SRS from the population. An empirical likelihood method was proposed by Qin and

Zhou (2006) to estimate AUC, making it possible to obtain estimates for parameters without

specifying a distribution for the screening test. Qin and Zhou (2006) showed that their AUC

estimator followed a scaled chi-square distribution, giving asymptotically correct coverage

probability and a reliable alternative approach for constructing the confidence interval of the

AUC. Although these methods were derived for SRS, the methods can be extended to account

for a stratified sampling scheme. Under a test-dependent sampling (TDS) design, Wang et al.
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(2012) proposed a non-parametric estimator for the AUC. This sampling design includes SRS

and TDS components and improves efficiency over SRS-only designs. The TDS design is

related to outcome-dependent sampling (ODS). Zhou et al. (2002) used the ODS design and

empirical likelihood methods in regression modeling to develop parameter estimates where

inclusion in the sample depends on a continuous outcome variable. Weaver and Zhou (2005)

developed semi-parametric estimators for regression coefficients using the ODS framework

which utilize incomplete information for the un-sampled portion of the population. In the

design proposed by Weaver and Zhou (2005), the outcome which is used to develop the ODS

is observed for all subjects but covariates, which are observed for subjects selected in the

sample, are missing for the un-sampled portion of the population.

We propose the use of a test-dependent sampling (TDS) design in which TDS inclusion

depends on the continuous screening test measure, such as the Balcone risk score. The TDS

design incorporates an SRS component, a TDS component, and the remaining un-sampled

portion of the population. The TDS design allows investigators to over-sample subjects from

specified ranges of the screening test variable, allowing for a concentration of resources where

there is the greatest amount of information. All data are available for subjects sampled in

the study, but only the screening test value is available for the un-sampled portion of the

population. Wang et al. (2012) showed that the TDS design yields more efficient estimates

of AUC than the SRS design. We show that the efficiency of AUC estimation under the TDS

design can be further improved by utilizing information from both the sample and un-sampled

subjects.

Many screening tests define results in dichotomous terms, “positive” for a test value above

a threshold and “negative” for a test value below the threshold. Verification bias is a concern

for studies where all subjects whose test result is “positive” for the outcome have their disease

status verified (Pepe, 2004) but among subjects who test “negative” for the outcome, either

none or a subset of this group have their disease status verified. For the TDS design, subjects

are selected conditional on their test result, but only a subset of subjects within groups are

selected for ascertaining disease status. Accordingly, verification bias exists in the TDS design

(Wang et al., 2012, 2013). In the proposed design, all subjects are included in estimating
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the AUC. Although disease status is missing for subjects in the un-sampled portion of the

population, the inclusion of these subjects eliminates the bias typically associated with the

TDS design.

This chapter is organized as follows. In Section 2.2, we introduce existing AUC estimators,

propose use of empirical likelihood methods to develop a semi-parametric estimator for AUC.

In Section 2.3, asymptotic properties of the proposed AUC estimator are studied. In Section

2.4, we use simulation studies to compare the proposed estimator with existing methods. In

Section 2.5, we analyze data from the lung cancer study. In Section 2.6, we use the proposed

method to analyze data from the Preterm Prediction Study. We conclude with a discussion

in Section 2.7.

2.2 Semi-parametric empirical likelihood AUC (SPEL-AUC) estimation

2.2.1 Notation and data structure for the SPEL-AUC

Consider a continuous test variable, Y , and a binary disease indicator, D. The distribution

of Y can be divided into K mutually exclusive intervals defined by Ck = (ak−1, ak] where k =

1, . . . ,K. The sample size within each of the Ck intervals can be different. The TDS is made

up of three components: the SRS component, TDS component, and non-validation set (un-

sampled subjects). The subjects sampled in the SRS and TDS components combined make

up the validation set, indexed by V , where true disease status is validated. The remainder of

the population not selected for ascertainment of disease status makes up the non-validation

set, indexed by V̄ . The sample size of the validation set is given by nV = n0 +
∑K

k=1 nk, where

n0 is the sample size from the SRS component and nk is the sample size for the kth TDS

component interval, k = 1, . . . ,K. The size of the non-validation set is given by nV̄ = N−nV .

To define subscripts, i indexes the sampling group where i = {0, 1, ...,K, V̄ } and j = {1, ..., ni}

denotes the individual in the ith sampling group. The test variable, Y , is observed for all

subjects in the dataset. The disease status, D, is only ascertained for subjects who are in the
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validation set. The data framework is given by

SRS component (D0j , Y0j) j = 1, ..., n0

TDS1 component (D1j , Y1j |Y1j ∈ C1) j = 1, ..., n1

...
...

...

TDSK component (DKj , YKj |Y1j ∈ CK) j = 1, ..., nK

Non-validation component
(
Yv̄j |i = V̄

)
j = 1, ..., nV̄ .

(2.1)

2.2.2 Existing AUC estimators

Two existing nonparametric AUC estimators are included in the simulation study to

compare with the proposed AUC estimator. These estimators are

1) the SRS only estimator (MW-AUC) proposed by Bamber (1975), denoted ÂSRSV , and

2) the empirical likelihood estimator (NPEL-AUC) proposed by Wang et al. (2012), de-

noted ÂTDSV .

First, we introduce the MW-AUC. This estimator utilizes a SRS design and is equivalent

to the Mann-Whitney U-statistic (Pepe, 2004), given by

ÂSRSV =

∑n
i=1

∑n
j=1Di (1−Di) I (Yi > Yj)∑n
i=1

∑n
j=1Di (1−Di)

. (2.2)

The second estimator under comparison, NPEL-AUC, was proposed by Wang et al. (2012)

for a TDS design where TDS inclusion depends on the test variable, Y. Empirical likelihood

methods were used to avoid making distributional assumptions on the screening test, Y. The

data structure is similar to the structure described in Section 2.2.1, except that non-validation

data are not included in the NPEL-AUC. The sample size within each of the Ck intervals is

equal. The sample size is given by n = n0 +
∑K

k=1 nk, where n0 is the sample size from the

SRS component and nk = n−n0
K is the sample size for the kth TDS interval, k = 1, . . . ,K.

The estimator is given by

ÂTDSV =

∑n
i=1

∑n
j=1 p̂ip̂jDi (1−Di) I (Yi > Yj)∑n
i=1

∑n
j=1 p̂ip̂jDi (1−Di)

, (2.3)
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where p̂i =
[
n0 +

∑K
k=1

nk
θ̂k
I (yi ∈ Ck)

]−1
. The biased sampling scheme is accounted for by

incorporating the empirical probability masses pi and pj in the numerator and denominator.

The MW-AUC and NPEL-AUC use the same number of subjects to estimate the AUC and

differ in their allocation of subjects, where the MW-AUC uses only SRS to generate the

sample.

2.2.3 Semi-parametric empirical likelihood approach

Denote fY,D (Yij , Dij) the joint distribution of disease status (D) and screening test (Y ),

fY (Yij) the marginal distribution of Y , and fY,D (Yij , Dij |Yij ∈ Ck) the distribution of Y and

D conditional on Yij ∈ Ck, k = (1, 2, 3). For k = {1, 2, 3}, let Nk be the stratum size for

the kth strata in the population, Nk = n0,k + nk + nV̄ ,k, where n0,k =
∑ni

j=1 I(Y0j ∈ Ck),

nV̄ ,k =
∑ni

j=1 I(YV̄ j ∈ Ck), and nk is predetermined. The likelihood for the validation data

can be written as

LV (fD) =

n0∏
j=1

f (Y0j , D0j)×
K∏
k=1

nk∏
j=1

f (YkjDkj |Ykj ∈ Ck)

=
K∏
k=1

nk∏
j=1

Pr (Ykj ∈ Ck)−nk ×
K∏
k=0

f (Yij |Dkj)Pr (Dkj = d). (2.4)

The non-validation portion of the likelihood takes into account the missing data, where the

disease status is unknown, and is given by

LV̄ (fD) =
(N − n0)!∏K

k=1 (Nk − n0,k)!

K∏
k=1

Pr (Ykj ∈ Ck)Nk−n0,k

nV̄∏
j=1
Y ∈Ck

f
(
YV̄ j

)
Pr (Ykj ∈ Ck)

=
(N − n0)!∏K

k=1 (Nk − n0,k)!
×

nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |DV̄ j = d

)
Pr
(
DV̄ ,j = d

)
×

K∏
k=1

Pr (Ykj ∈ Ck)−nk . (2.5)
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The full likelihood is found by combining the validation and non-validation portions of the

likelihood, 2.4 and 2.5, given by

L ({qij} , {rij} , p) = LV (fD)× LV̄ (fD)

∝
∏
k,j∈V
D=1

f (Ykj |Dkj = 1)Pr (Dij = 1)
∏
k,j∈V
D=0

f (Ykj |Dkj = 0)Pr (Dkj = 0)

×
nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |DV̄ j = d

)
Pr
(
DV̄ j = d

)
=
∏
k,j∈V
D=1

qkjp×
∏
k,j∈V
D=0

rkj (1− p)×
nV̄∏
j=1

[
qV̄ jp+ rV̄ j (1− p)

]
, (2.6)

where p = Pr (D = 1), qij = f (Yij |Dij = 1), and rij = f (Yij |Dij = 0). We propose to non-

parametrically estimate {qij} and {rij} in (2.6). An interesting constraint between {qij} and

{rij}, given by
rij
qij

= eα+βyij , was developed by Qin and Zhang (1997, 2003). To see this,

consider the standard logistic regression model where Pr (D = 1|Y ) = em
∗(Y )α

1+em
∗(Y )α = ψ (Y ).

The Bayes’ rule gives f (Y |D = 1) = f(Y )Pr(D=1|Y )
Pr(D=1) = f(Y )ψ(Y )

p . Similarly, f (Y |D = 0) =

f(Y )(1−ψ(Y ))
1−p . Consider the ratio

rij
qij

=
f (Y |D = 0)

f (Y |D = 1)

=

[
f (Y ) (1− ψ (Y ))

1− p

]
×
[

p

f (Y )ψ (Y )

]
=

p

1− p

(
1

1 + em∗(Y )α

)(
em
∗(Y )α

1 + em∗(Y )α

)
= em(Y )α,

which implies that rij = qije
m(Xij)α. Let m (Xij)α = α + βY . Applying this constraint to

the log-likelihood gives

l ({qij} , p, α, β) ∝
∑
ij

ln qij + nV,D=0α+ β
∑
i,j∈V
D=0

yij +

nV̄∑
j=1

ln
[
p+ eα+βyV̄ j (1− p)

]
.(2.7)

Without loss of generality, consider partitioning the screening test variable into three
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mutually exclusive intervals: C1 = (−∞, a1], C2 = (a1, a2], and C3 = (a2,∞). The TDS

consists of an SRS of size n0, a TDS component of size n1 + n2 + n3, and the non-validation

set of size N − nV , where nV = n0 + n1 + n2 + n3. Subjects are eligible to be sampled for

the TDS component based on their screening test result, Y. For example, if a subject’s test

result is less than or equal to a1 and n1 > 0, the probability of being selected in the TDS

component for C1 is greater than zero.

To develop the proposed SPEL-AUC estimator, we first estimate ({qij} , α, β) using em-

pirical likelihood methods outlined below. We then estimate the expected value of disease

for subjects in the non-validation set, whose true disease status is missing, using ({q̂ij} , α̂, β̂)

and use this expected disease status estimate for those in the non-validation set to construct

the proposed SPEL-AUC estimator.

Estimation of ({qij} , α, β) is done using the profile likelihood approach by first fixing

(α, β) and obtaining {qij} from a constrained likelihood function. Specifically, we estimate

{qij} = f (Yij |Dij = 1) by maximizing a constrained likelihood function of (2.6) under the

following constraints:

qij ≥ 0,
∑

i∈(0,1,2,3,V̄ )

ni∑
j=1

qij = 1,
∑

i∈(0,1,2,3,V̄ )

ni∑
j=1

qij

{
eα+βyij − 1

}
= 0

 . (2.8)

A unique maximum for {qij} exists under the constraints given in (2.8) if 1 is inside the

convex hull of points eα+βyij for all (i, j) (Owen, 1988, 1990; Qin and Lawless, 1994). The

Lagrange multiplier method can be used to derive the maximum over {q̂ij}. The logarithm

of the constrained likelihood is as follows:

H ∝
∑
ij

ln qij + nv,D=0α+ β
∑
i,j∈V
D=1

yij +

nV̄∑
j=1

ln
[
p+ eα+βyV̄ j (1− p)

]

+λ1

1−
∑
ij

qij

+Nλ2

∑
ij

qij

{
eα+βyij − 1

}
. (2.9)

Estimates {q̂ij} and λ̂1 are found by taking the derivative of H with respect to qij and

setting the derivative equal to zero. The derivative of H is given by ∂H
∂qij

= 1
qij
− λ1 +
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Nλ2

{
eα+βyij − 1

}
. The estimate λ̂1 is found by evaluating

∑
ij qij

∂H
∂qij

= N − λ1
∑

ij qij +

Nλ2
∑

ij qij
{
eα+βyij − 1

}
= 0. By setting the derivative of H equal to zero and solving for

qij , we have

q̂ij =
1

N

[
1− λ2

(
eα+βyij − 1

)]−1
, (2.10)

for i ∈ (0, 1, 2, 3, V̄ ) and j ∈ (1, . . . , ni).

Profile log-likelihood

The empirical profile log-likelihood is obtained by plugging the estimates q̂ij given by

(2.10) into (2.7). Denoting pl (ξ) as the natural logarithm of the empirical profile likelihood,

we have

pl (ξ) ∝ −
∑
ij

ln
[
1− λ2

(
eα+βyij − 1

)]
+ nV,D=0α+ β

∑
i,j∈V
D=0

Yij

+

nV̄∑
j=1

ln
[
p+ eα+βYV̄ j (1− p)

]
. (2.11)

The Newton-Raphson algorithm can be used to obtain ξ̂, where ξ = (α, β, λ2). These esti-

mators, ξ̂, are used in estimating the expected disease status. Disease status is unknown for

the non-validation portion of the population. For these subjects, an estimate of the expected

disease status is used in place of the true disease status in the SPEL-AUC. The expected

value of disease is given by

E (Dl) = 1 ∗ Pr (Dl = 1|Yl)

=
f (Dl = 1, Yl)

f (Yl)

=
f (Yl|Dl = 1)Pr (Dl = 1)

f (Yl|Dl = 1)Pr (Dl = 1) + f (Yl|Dl = 0)Pr (Dl = 0)

=
qlp

qlp+ rl (1− p)

=
p

p+ eα+βyij (1− p)
. (2.12)
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An estimate of the expected disease status is found by plugging estimators ξ̂ and p̂ into (2.12).

This estimate of expected disease status is given by

Ê (Dl) =
p̂

p̂+ eα̂+β̂yl (1− p̂)
. (2.13)

The SPEL-AUC uses the information from both the validation and non-validation portions

of the population. Estimated expected disease, given by (2.13), is used for non-validation

subjects where the true disease status is missing. Let l = 1, ..., N index the entire population.

The SPEL-AUC is given by

ÂPV,V̄ =

∑N
l 6=l′ D

∗
l

(
1−D∗l′

)
I (Yl > Yl′)∑N

l 6=l′ D
∗
l

(
1−D∗l′

) ,

where D∗l =


Dl if l ∈ V

Ê (Dl) = p̂

p̂+eα̂+β̂yl (1−p̂)
if l ∈ V̄

. (2.14)

2.3 Asymptotic properties of the SPEL-AUC

The asymptotic properties of the proposed SPEL-AUC estimator are established in The-

orem 1. Detail of the proof is provided in the appendix, including asymptotic results for

the components that make up the proposed SPEL-AUC estimator. Consider the U-process

UN (A, η) = RN (A, η)− E (RN (A, η)). Let RN (A, η) = 1
N2

×
∑

i 6=j D
′
i

(
1−D′j

)
(Iij −A) where Iij = I (Yi > Yj , Yj ∈ (t0, t1)) and

D′l =

 Dl if l ∈ V

Ê (Dl) = p
p+eα+βyl (1−p) if l ∈ V̄

. Using this U-process, we show that

√
N
(
ÂPV,V̄ −A

)
= −

{
∂E [RN (A, η)]

∂A

}−1 ∑
i∈(0,1,2,3,V̄ )

ρin
−1/2
i

ni∑
j=1

Qij ,

where Qij (η) = E
(
R(ij)(ij)′ +R(ij)′(ij)

)
+ ρ−1

i
∂ERN (A,η)

∂p

[
−1
n0

∂2lsrs(p)
p2

]−1
P0jI (i = 0)

+ ∂ERN (A,η)
∂ξ

[
−1
N

∂2pl(ξ)
∂ξi∂ξi′

]−1
Hij (η).
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Theorem 1: Under general regularity conditions,

√
N
(
ÂPV,V̄ −A

)
d→ N (0,Σ), (2.15)

where Σ =
[
∂E[RN (A,η)]

∂A

]−2∑
i∈(0,1,2,3,V̄ ) ρivar (Qij).

We propose a variance estimator using the above asymptotic variance by replacing the

large sample quantities in Σ with their corresponding finite sample quantities. Specifically,

we have

Σ̂ =

[
∂E [RN (A, η)]

∂A

]−2 ∑
i∈(0,1,2,3,V̄ )

ρ̂ivar
(
Q̂ij

)
. (2.16)

2.4 Simulation study

We evaluate the behavior of the SPEL-AUC under various situations to examine its be-

havior. The simulation studies were conducted using R version 2.14. The data were generated

under the model

Y = β0 +Dβ1 + ε,

where D = 1 for diseased subjects and D = 0 for non-diseased subjects. For the following

simulations, we generated data where ε ∼ N (0, 1) and D ∼ Bernoulli (0.3). The population

size used in simulations is N = 2000 and the distribution of Y is partitioned into three

mutually exclusive sets given by C1 = (−∞, a1], C2 = (a1, a2], and C3 = (a2,∞). In the

following simulations, we consider the impact of 1) varying the cut points used to partition the

range of screening test values, {a1, a2} = {µY − ασY , µY + ασY }; 2) varying overall sample

size, nV ; 3) varying the proportion of SRS to TDS component sizes, n0
nV

; and 4) varying model

parameter β1. The variations under consideration are: cut-point parameter (α) 1 and 1.5;

validation sample size (nV ) 120, 240, and 360; proportion of SRS subjects among validation

set ( n0
nV

) 0.5 and 0.75; and model parameter for disease status (β1) 0.5 and 1. For simulation

results, the estimated means, standard errors, mean of the standard error estimates, and 95%
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nominal coverage probabilities for an estimator are obtained from 1000 independent runs.

Sample allocation for TDS

The SPEL-AUC uses the TDS design to target subjects on both tails of the distribution.

This sample consists of the following three components:

1) SRS component of size n0,

2) TDS component sample of size n1 + n2 + n3 where n1 subjects are sampled such that

Y1j ∈ C1 = (−∞, a1], n3 subjects are sampled such that Y3j ∈ C3 = (a2,∞), and

n1=n3, and

3) non-validation component of size N − nV , comprised of all subjects not sampled into

the SRS and TDS components.

Because the TDS component only over-samples from the tails, n2 = 0 where Y2j ∈ C2 =

(a1, a2]. Other sample allocations were considered and results are presented in the last two

lines of Table 2.2. The two-tailed allocation for the SPEL-AUC was chosen due to its con-

sistent estimation of the AUC and consistent reduction in standard error compared to other

sample allocations. For the NPEL-AUC, proposed by Wang et al. (2012), the sample con-

sists of the SRS and TDS components, except that in the TDS component, the subjects are

allocated equally across the three intervals, such that Yij ∈ Ci and n1 = n2 = n3.

Estimators to be compared

The SPEL-AUC, ÂP
V,V̄

in (2.14), is compared to three estimators in the simulation studies.

These estimators are given below. Specifically, under each setting, we compare the following

four estimators.

1) MW-AUC: the SRS only estimator (Bamber, 1975), denoted by ÂSRSV , is given by (2.2).

2) SPEL-AUC(SRS): the SRS with validation and non-validation data estimator, denoted

ÂSRS
V,V̄

, has the same form as the proposed estimator given in (2.14). The difference

between this estimator and the proposed estimator is the sampling design. This gives

a comparison of the SRS and TDS methods while incorporating non-validation data.
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3) NPEL-AUC: the TDS data only estimator (Wang et al., 2012), denoted ÂTDSV , is given

by (2.3).

4) SPEL-AUC: the proposed TDS with validation and non-validation data estimator, de-

noted ÂP
V,V̄

, is given by (2.14).

Results

Unbiasedness Simulation results are summarized in Tables 2.1 through 2.3. All four AUC

estimators yield unbiased estimates. To illustrate this, we simulated data using multiple

allocations, sample sizes, and cut-points. Tables 2.1 and 2.3 show that the averages of all

AUC estimators are close to or equal to the true value. Other allocation schemes were

considered for the SPEL-AUC in Table 2.2 by varying the proportion of subjects allocated to

the SRS component ( n0
nV

= (0.5, 0.75)), the cut-point defining the TDS component intervals

(α = (1, 1.5) where {a1, a2} = {µY − ασY , µY + ασY }), and the TDS component allocation

(one tail, both tails, and three intervals). In all of these variations, the SPEL-AUC continues

to be unbiased.

Efficiency Efficiency-wise, the proposed SPEL-AUC, ÂP
V,V̄

, is the most efficient among

all compared. The NPEL-AUC, ÂTDSV , is more efficient than the SRS estimators (SPEL-

AUC(SRS) and MW-AUC) and the MW-AUC is the least efficient among those compared.

This supports the idea that both the use of the TDS design and inclusion of non-validation

subjects create a more efficient alternative to the SRS design and validation-only estimators

while sampling the same number of subjects. For the SPEL-AUC, efficiency is similar when

the cut-points, µY ±ασY , are further from the mean (α = 1 versus α = 1.5) but performance

of the asymptotic standard error estimator (ŜE) is improved for α = 1. The asymptotic

standard error estimator is obtained using the proposed asymptotic variance estimator in

(2.16), by substituting finite sample quantities for large sample quantities. For example,

consider the results in Table 2.2 for nV = 360, n0
nV

= 0.75, and allocation (270,45,0,45,1640).

For both α = 1 and α = 1.5 SE=0.024 with ŜE = 0.23 for α = 1 compared to ŜE = 0.22

for α = 1.5. We show a similar result when comparing the proportion of SRS subjects

within the TDS sample for n0
nV

= 0.75 versus 0.5. In Table 2.2, for nV = 360 and α = 1,
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we have SE=0.024 for both n0
nV

= 0.75 and n0
nV

= 0.5 but the asymptotic standard error is

underestimated in the case of n0
nV

= 0.5 (ŜE = 0.21 versus ŜE = 0.23 when n0
nV

= 0.75).

Table 2.2 shows that the estimated standard errors are very close to their true values. The

last two lines of Table 2.2 show that for the SPEL-AUC, allocation to only one tail gives

results that are less efficient than the two-tailed allocation.

Robustness The SPEL-AUC does not require model specification for the screening test, Y.

To explore the SPEL-AUC’s robustness, simulation studies were generated using both Normal

and Chi-squared distributions for the screening test. Simulation results reported in Table 2.3

show that across multiple sample sizes (120, 240, and 360) the simulation study gives similar

results. All estimators are unbiased and the SPEL-AUC is more efficient than the MW-AUC,

SPEL-AUC(SRS), and NPEL-AUC estimators.

2.5 Analysis of the lung cancer study data

We used the SPEL-AUC to analyze non-small-cell lung cancer (NSCLC) data from the

CALGB 150807 study conducted by the Cancer and Leukemia Group B (Bueno et al., 2012).

This study is a subset of patients registered in the CALGB 140202 study who have stage 1A

or 1B non-small-cell lung cancer (NSCLC), have not received preoperative chemotherapy or

radiation, and are not missing histological, demographic, clinical, and follow-up information

of interest. Among patients in the CALGB 150807 study, 1,061 patients were not censored

before 12 months and were used in this analysis.

Lung cancer is the most common cause of cancer death among men and women in the world

(Blanchon et al., 2006). Lung cancer is classified as either small-cell lung carcinoma (SCLC)

or non-small-cell lung carcinoma (NSCLC), of which NSCLC accounts for approximately 80%

of all lung cancers. After surgical lung resection, a large proportion of stage 1 NSCLC patients

have cancer recurrence within five years (Bueno et al., 2012). When surgery is used as the

primary treatment for NSCLC, adjuvant chemotherapy may benefit patients who have a high

risk of cancer recurrence. Identifying patients who are at high risk of cancer recurrence

is important in order for treatment to be given to those who would benefit most. This is
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an important area of study for patients, families, and doctors when making decisions on a

treatment plan.

The Balcone risk score, outlined by Blanchon et al. (2006), has been developed to identify

patients who are at greatest risk of cancer recurrence. To select the variables that are included

in the scoring algorithm, Blanchon et al. (2006) used a Cox model to identify variables that

were independently associated with mortality. The associated variables were then weighted to

create the Balcone risk index. The components of the risk score are given by: age (>70 years,

1 point); sex (male, 1 point); performance status at diagnosis (reduced activity, 3 points;

active >50%, 5 points; inactive >50%, 8 points; and total incapacity, 10 points); histological

type (large-cell carcinoma, 2 points); and tumour-node-metastasis (TNM) staging system

(IIA or IIB, 3 points; IIIA or IIIB, 6 points; and IV, 8 points). For the data used in this

analysis, the Balcone risk score ranges from 0 to 15.

The goal of this analysis is to summarize the ability of the Balcone risk score to distinguish

between patients who survive beyond 12 months and those who do not. This will allow us to

evaluate the benefit of using this risk score to identify patients at a higher risk of early cancer

recurrence. The outcome of interest is survival beyond 12 months and the screening test is

the Balcone risk score. Although all information is available for these patients, we illustrate

the utility of the proposed AUC estimator by sampling from the study data and evaluating

the estimated AUC. Table 2.4 gives descriptive statistics for the Balcone risk score, stratified

by survival at 12 months. Cut-points for the TDS component were defined by α = 1 standard

deviations from the mean of the Balcone risk score. A sample size of nV = 360 was used for

all estimators compared and details on sample allocation for each estimator are given in Table

2.5. The MW-AUC has an SRS of size n = 360. The SPEL-AUC(SRS) allocates 100% of the

sample to the SRS component and utilizes incomplete data from the non-validation set. The

NPEL-AUC allocates 50% of the validation sample to the SRS component and the remaining

50% are allocated equally between the three intervals, Ci, such that n1 = n2 = n3 = 60. The

SPEL-AUC allocates 75% of the sample to the SRS component and samples the remaining

25% from the tails, where n1 = n3 = 45 and n2 = 0, while utilizing incomplete data from the

non-validation set. Because all data has been obtained for these patients, we can apply the

40



MW-AUC estimator on the full data (1,061 subjects) and we obtain an AUC of 0.657. Using

a sample size of n = 360, the AUC estimates and estimates of the standard error for the

methods compared are given by: MW-AUC 0.680 (0.051), SPEL-AUC(SRS) 0.670 (0.050),

NPEL-AUC 0.681 (0.046), and SPEL-AUC 0.724 (0.044). All estimators compared have an

estimated AUC that is similar to the best estimate we have for the true pAUC, which is 0.657,

found by using the complete data. We can also see that the proposed SPEL-AUC estimator

has the smallest estimated variance among the four AUC estimators compared.

2.6 Analysis of the Preterm Prediction Study data

We used the SPEL-AUC to analyze data from the Preterm Prediction Study, a multi-center

prospective study designed to study spontaneous preterm birth (Goldenberg et al., 1996). The

Maternal Fetal Medicine Units Network of the National Institute of Child Health and Human

Development carried out this study using ten centers to recruit women. There were 3073

women recruited between October 1992 and July 1994. Measurements were collected every

two weeks from 22 to 30 weeks’ gestation. Among the 3073 women recruited, 3001 had valid

measurements of interest for this analysis.

PTB, defined as delivery at less than 37 weeks of gestation, contributes to neonatal mor-

bidity and mortality which increases as gestational age decreases (McCormick, 1985). Bastek

and Elovitz (2013) combined results from multiple studies on this topic to gain a better un-

derstanding the relationship between biomarkers and PTB. The results were not definitive

for most biomarkers with the exception of fetal fibronectin (FFN).

Fetal fibronectin (FFN) is a protein that is produced by the fetal membrane. Knowing

the FFN measurement will not change the incidence of spontaneous PTB but it will effect

the treatment plan. Deshpande et al. (2013) found that FFN has moderate accuracy in

predicting PTB. Although many studies are concerned with the ability to predict spontaneous

PTB, Bastek and Elovitz (2013) suggest that the ability to predict those who will not have

spontaneous PTB is also valuable. Because FFN typically has a high negative predictive value

(proportion of true negatives over all who test negative), a negative FFN test is widely used
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in clinical practice to send patients home. Measurable levels of FFN are considered to be

abnormal between 20 and 37 weeks’ gestation. Lockwood et al. (1991) show that in 588 FFN

samples from uncomplicated pregnancies, a higher percentage of subjects were positive for

FFN (level above 0.05 µg/mL) before 22 and after 37 weeks’ gestation compared to between

22 and 37 weeks’ gestation. For example the percentage of cervical samples with positive

FFN for <22, 22 to 37 and >37 weeks’ gestation were 24%, 4%, and 32%, respectively. This

is an important area of study due to the negative effects of spontaneous PTB on maternal

and child health outcomes.

In our analysis, the outcome of interest is spontaneous PTB at less than 37 weeks’ gestation

and the screening test considered in FFN. Table 2.6 gives descriptive statistics for FFN,

stratified by spontaneous PTB. Because the standard deviation is large compared to the

mean, the cut-points for the TDS component were defined using α = 0.15. A sample size

of nV = 360 was used for all estimators compared and details on sample allocation for each

estimator are given in Table 2.7. The MW-AUC has an SRS of size n = 360. The SPEL-

AUC(SRS) allocates 100% of the sample to the SRS component and utilizes incomplete data

from the non-validation set. The NPEL-AUC allocates 50% of the validation sample to

the SRS component and the remaing 50% are allocated equally between the three intervals,

Ci, such that n1 = n2 = n3 = 60. The SPEL-AUC allocates 75% of the sample to the

SRS component and samples the remaining 25% from the tails, where n1 = n3 = 45 and

n2 = 0, while utilizing incomplete data from the non-validation set. Because the outcome of

spontaneous PTB is known for all patients, we can apply the MW-AUC estimator on the full

data (3,001 patients) and we obtain an AUC of 0.576. The estimates from each estimator are:

MW-AUC 0.522, SPEL-AUC(SRS) 0.536, NPEL-AUC 0.575, and SPEL-AUC 0.591. These

results show that all estimators accurately estimate the AUC.

2.7 Discussion

We have proposed a semi-parametric estimator for area under the ROC curve (AUC),

which allows us to summarize the ability of a screening test to discern between diseased and
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non-diseased subjects. This estimator incorporates a TDS design and includes both validation

and non-validation data. The use of empirical likelihood methods allows us to estimate the

AUC without specifying a distribution for the screening test. We establish the asymptotic

properties of the proposed estimator under general regularity conditions and show that this

estimator has good finite sample properties.

The proposed design is motivated by the need to improve efficiency in estimating AUC.

Ascertaining true disease status can be costly and invasive for subjects. Although disease

status is missing for the non-validation set, the proposed estimator takes advantage of all

information available for a larger number of subjects than the validation-only estimators.

Although all estimators are unbiased, the proposed estimator was shown to be the most

efficient, compared to three competing AUC estimators. This suggests that to obtain the

same variability less subjects would be needed when the proposed method is used, reducing

study cost and subject burden. These results support the idea that both the use of the TDS

design and inclusion of non-validation subjects create a more efficient alternative to the SRS

design and the validation-only estimators while sampling the same number of subjects. For

example, with a sample size of 240, the standard error of the proposed estimator is 0.03

compared to 0.034 and 0.035 in the competing methods (Table 2.1). In this case, we have

an estimated standard error of 0.029 which gives coverage proportion of 0.945. The proposed

method is also robust in its ability to estimate AUC under varying distributions. Simulation

studies show that when the screening test is simulated from a Chi-squared distribution, the

AUC estimators are unbiased and the SPEL-AUC continues to be the most efficient AUC

estimator under comparison.

Care should be taken when choosing the sample allocation and cut-points for the test-

dependent sample. If data are skewed with a long tail the standard error could be quite

large, as in the case of the Preterm Prediction Study and simulation studies where screening

test data are generated from a Chi-squared distribution. The proportion of subjects selected

for the SRS component and the TDS allocation of subjects within the intervals defined by

cut-points will largely depend on the characteristics of the data used.
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Table 2.1: Comparison of SPEL-AUC and competing methods

nV = 120 nV = 240 nV = 360

Method Mean SE Mean SE Mean SE

YD=1 ∼ N (1, 1), YD=0 ∼ N (0, 1) and True AUC= 0.7601

ÂSRSV 0.761 0.049 0.758 0.035 0.760 0.028

ÂSRS
V,V̄

0.761 0.049 0.760 0.034 0.760 0.026

ÂTDSV 0.762 0.048 0.759 0.034 0.759 0.027

ÂP
V,V̄

0.765 0.045 0.762 0.030 0.761 0.024

YD=1 ∼ N (0.5, 1), YD=0 ∼ N (0, 1) and True AUC= 0.6380

ÂSRSV 0.639 0.055 0.635 0.040 0.638 0.033

ÂSRS
V,V̄

0.639 0.055 0.638 0.038 0.637 0.031

ÂTDSV 0.637 0.051 0.640 0.037 0.637 0.030

ÂP
V,V̄

0.637 0.045 0.639 0.033 0.637 0.027

Cutpoints for the TDS component are defined by (a1, a2) =
(µY − ασY , µY + ασY ) where α = 1. ÂSRS

V denotes the MW-

AUC which uses SRS; ÂSRS
V,V̄

denotes the SPEL-AUC(SRS)

which uses SRS and utilizes information for both validation and
non-validation data; ÂTDS

V denotes the NPEL-AUC which uses

TDS; and ÂP
V,V̄

denotes the proposed SPEL-AUC which uses

TDS and utilizes information from both validation and non-
validation data. All estimators sample the same number of sub-
jects.
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Table 2.2: Asymptotic results for SPEL-AUC

nV
n0
nV

α (n0, n1, n2, n3, nV̄ ) Mean SE ŜE CP

n1 = n3 and n2 = 0

120 0.75 1 (90, 15, 0, 15, 1880) 0.765 0.045 0.043 0.936
240 0.75 (180, 30, 0, 30, 1760) 0.762 0.030 0.029 0.945
360 0.75 (270, 45, 0, 45, 1640) 0.761 0.024 0.023 0.938

n1 = n2 = n3

120 0.75 1 (90, 10, 10, 10, 1880) 0.764 0.047 0.045 0.921
240 0.75 (180, 20, 20, 20, 1760) 0.761 0.032 0.030 0.937
360 0.75 (270, 30, 30, 30, 1640) 0.760 0.025 0.024 0.946

n1 = n3 and n2 = 0

360 0.5 1 (180, 90, 0, 90, 1640) 0.761 0.024 0.021 0.922
360 0.75 1.5 (270, 45, 0, 45, 1640) 0.761 0.024 0.022 0.931

n1 6= n3 and n2 = 0

360 0.75 1 (270, 90, 0, 0, 1640) 0.760 0.025 0.024 0.944
360 0.75 1 (270, 0, 0, 90, 1640) 0.761 0.026 0.022 0.901

The true AUC is 0.7601. Screening test data is simulated assuming
YD=1 ∼ N (1, 1) and YD=0 ∼ N (0, 1). The fraction n0

nV
is the propor-

tion of subjects allocated to the SRS component out of the total num-
ber of validation subjects sampled. Cutpoints for the TDS component
are defined by (a1, a2) = (µY − ασY , µY + ασY ). The sample allocation,
(n0, n1, n2, n3, nV̄ ), gives the number of subjects allocated to the SRS com-
ponent, three intervals of the TDS component, and the non-validation set,
respectively.

Table 2.3: Comparison of SPEL-AUC and competing methods for Chi-Squared Distributed
Data

nV = 120 nV = 240 nV = 360
Method Mean SE Mean SE Mean SE

ÂSRSV 0.802 0.044 0.802 0.032 0.802 0.026

ÂSRS
V,V̄

0.790 0.044 0.790 0.032 0.790 0.025

ÂTDSV 0.804 0.048 0.802 0.034 0.803 0.027

ÂP
V,V̄

0.790 0.041 0.789 0.029 0.789 0.023

The true AUC is 0.8023. Screening test data is sim-
ulated assuming YD=1 ∼ χ (4, 3) and YD=0 ∼ χ (3).
Cutpoints for TDS component are defined by (a1, a2) =
(µY − ασY , µY + ασY ) where α = 1.
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Table 2.4: Descriptive statistics for the Balcone risk score

N Minimum Q1 Median Q3 Maximum

Overall 1076 0 1 1 3 10
Survival beyond 12 months 965 0 1 1 3 10

Survival less than 12 months 111 0 1 2 5 9

Table 2.5: Sample allocation for the non-small-cell lung cancer data

Component MW-AUC SPEL-AUC(SRS) NPEL-AUC SPEL-AUC

SRS 360 360 180 270
TDS (n1, n2, n3) (0, 0, 0) (0, 0, 0) (60, 60, 60) (45, 0, 45)
non-validation 0 701 0 701

Table 2.6: Descriptive statistics for FFN

N Minimum Q1 Median Q3 Maximum Mean St.Dev.

Spontaneous PTB 309 0 0.88 4.48 17.08 924.56 43.64 123.86
Not PTB 2692 0 0.28 2.61 7.22 2151.44 13.35 83.73

Table 2.7: Sample allocation for the Preterm Prediction Study

Component MW-AUC SPEL-AUC(SRS) NPEL-AUC SPEL-AUC

SRS 360 360 180 270
TDS (n1, n2, n3) (0, 0, 0) (0, 0, 0) (60, 60, 60) (45, 0, 45)
non-validation 0 2641 0 2641
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Chapter 3

Partial AUC under Test-Dependent Sampling

3.1 Introduction

The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC)

are summary measures used to describe the ability of a screening test to discriminate between

diseased and non-diseased subjects (Bamber, 1975). When it is clinically relevant to consider

only a subset of false positive rates (FPR) or true positive rates (TPR), the partial AUC

(pAUC) is another summary measure that should be considered. As evaluating the true

disease status can be costly, it is important for researchers to increase study efficiency by

allowing selection probabilities to depend on the screening test (Wang et al., 2012). Increased

efficiency translates to cost for studies as well as decreased burden on subjects. We propose

a semi-parametric pAUC estimator which incorporates a test-dependent sampling design and

inclusion of un-sampled subjects. Simulation studies show that the proposed pAUC estimator

is unbiased and improves efficiency compared to estimators using a simple random sample

(SRS) design and those that use only information from the sampled subjects.

Using data from the Cancer and Leukemia Group B (CALGB) 150807 study, we evaluate

the ability of the Balcone risk score to identify patients who are at greatest risk of non-small-

cell lung cancer (NSCLC) recurrence by estimating the AUC while restricting the FPR to be

within the interval (0.1, 0.3) (Bueno et al., 2012). The ROC curve is a tool used to graphically

display the ability of the Balcone risk score to identify patients who survive beyond 12 months

by plotting the false positive rate (FPR, Pr (Y ≥ c|D = 0)) against the true positive rate

(TPR, Pr (Y ≥ c|D = 1)). The pAUC is a summary measure used to describe the ability
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of the Balcone risk score to discriminate between patients who survive beyond 12 months

and those who do not while restricting the FPRs (or TPRs) to an interval that is clinically

relevant. When surgery is used as the primary treatment for NSCLC, adjuvant chemotherapy

may benefit patients who have a high risk of cancer recurrence. Identifying patients who are

at high risk of cancer recurrence is important in order for treatment to be given to those

who would benefit most. At the same time, we want a screening test that minimizes the

false positives to reduce the number of patients that are subjected to potentially dangerous

treatments that are unnecessary. The proposed methods are especially beneficial considering

the length of time this type of study will follow patients and the cost of following a large

number of subjects in this setting.

We also evaluate data from the Preterm Prediction Study to assess the utility of fetal

fibronectin (fFN) in predicting spontaneous preterm birth while restricting the FPRs (or

TPRs) to an interval that is clinically relevant (Goldenberg et al., 1996). Preterm birth

(PTB), defined as delivery at less than 37 weeks of gestation, contributes to neonatal mor-

bidity and mortality. The prevalence of adverse events increases as gestational age decreases

(McCormick, 1985). This is an important area of study due to the negative impact of spon-

taneous PTB on maternal and child health outcomes. Knowing the fFN measurement will

not change the incidence of spontaneous PTB, but it will affect the treatment plan.

Previous research has explored multiple approaches to estimating pAUC. McClish (1989)

and Thompson and Zucchini (1989) introduced the idea of evaluating only part of the AUC

for a specified FPR interval. A nonparametric pAUC estimator proposed by Dodd and Pepe

(2003a), which is similar to the AUC estimator proposed by Bamber (1975), incorporates

a restriction in the numerator for the FPR interval of interest. The estimator proposed by

Dodd and Pepe (2003a) uses an SRS design for sampling subjects. Wang et al. (2012) pro-

posed a nonparametric pAUC estimator using a test-dependent sampling (TDS) design. This

estimator uses empirical likelihood methods to avoid making assumptions on the distribution

of the screening test, Y. Weights are incorporated into the estimator to account for the biased

sampling design. The TDS design is related to outcome-dependent sampling (ODS). Zhou

et al. (2002) used the ODS design and empirical likelihood methods in regression modeling
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to develop parameter estimates in which inclusion in the sample depends on a continuous

outcome variable. Weaver and Zhou (2005) developed a semi-parametric estimator for re-

gression coefficients using the ODS framework, which utilizes incomplete information for the

un-sampled portion of the population. In the design proposed by Weaver and Zhou (2005),

the outcome used to develop the ODS is observed for all subjects, but covariates are observed

for subjects selected in the sample.

We propose the use of a test-dependent sampling (TDS) design where TDS inclusion

depends on the continuous screening test measure fFN. The TDS design incorporates an SRS

component, a TDS component, and the remaining un-sampled portion of the population. The

TDS design allows investigators to over-sample subjects from specified ranges of the screening

test variable, allowing for a concentration of resources where there is the greatest amount of

information. All data are available for subjects sampled in the study, but only the screening

test value is available for the un-sampled portion of the population. The proposed method

gives improved estimates of the pAUC which are more efficient than those given by Dodd and

Pepe (2003a) and Wang et al. (2012).

Verification bias is associated with the TDS design described by Wang et al. (2012) in that

both designs generate bias. Many screening tests define results in dichotomous terms, “posi-

tive” for a test value above a threshold and “negative” for a test value below the threshold.

Verification bias is a concern, mostly for cohort studies, where all subjects whose test result is

“positive” for the outcome have their disease status verified (Pepe, 2004) but among subjects

who test “negative” for the outcome, either none or a subset of this group have their disease

status verified. For the TDS design described by Wang et al. (2012), subjects are selected

conditional on their test result, but only a subset of subjects within groups are selected. In

the proposed design, all subjects are included in estimating the AUC. Although disease sta-

tus is missing for subjects in the un-sampled portion of the population, the inclusion of these

subjects eliminates the bias typically associated with the TDS design.

This chapter is organized as follows. In Section 3.2, we introduce existing pAUC estima-

tors, propose use of empirical likelihood methods to develop a semi-parametric estimator for

pAUC. In Section 3.3, asymptotic properties of the proposed pAUC estimator are explored.
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In Section 3.4, we use simulation studies to compare the proposed estimator with existing

methods. In Section 3.5, we analyze data from the lung cancer study. In Section 3.6, we use

the proposed method to analyze data from the Preterm Prediction Study. We conclude with

a discussion in Section 3.7.

3.2 Semi-parametric empirical likelihood pAUC (SPEL-pAUC) estimation

3.2.1 Notation and data structure

Consider a continuous test variable, Y , and binary disease indicator, D. The distribution

of Y can be divided into K mutually exclusive intervals defined by Ck = (ak−1, ak] where

k = 1, . . . ,K. The sample size within each of the Ck intervals may be different. The TDS is

made up of three components: the SRS component, TDS component, and the non-validation

set (un-sampled subjects). This set of subjects sampled in the SRS and TDS components

combined make up the validation set, indexed by V , where the true disease status is validated.

The remainder of the population not selected for sampling makes up the non-validation set,

indexed by V̄ . The sample size of the validation set is given by nV = n0 +
∑K

k=1 nk, where

n0 is the sample size from the SRS component and nk is the sample size for the kth TDS

interval, k = 1, . . . ,K. The size of the non-validation set is given by nV̄ = N −nV . To define

subscripts, i indexes the sampling group where i =
(
0, 1, ...,K, V̄

)
and j = {1, ..., ni} denotes

the individual in the ith sampling group. The test variable, Y , is observed for all subjects in

the dataset. The disease status, D, is only ascertained for subjects who are in the validation

set. The data framework is given by

SRS component (D0j , Y0j) j = 1, ..., n0

TDS1 component (D1j , Y1j |Y1j ∈ C1) j = 1, ..., n1

...
...

...

TDSK component (DKj , YKj |Y1j ∈ CK) j = 1, ..., nK

Non-validation component (Yv̄j |i 6= (0, 1, . . . ,K)) j = 1, ..., nV̄ .

(3.1)
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3.2.2 Existing pAUC estimators

Two existing pAUC estimators are included in the simulation study to compare with the

proposed pAUC estimator. These estimators are

1) the SRS only estimator (NP-pAUC) proposed by Dodd and Pepe (2003a), denoted

ÂSRSt:V , and

2) the nonparametric empirical likelihood estimator (NPEL-pAUC) proposed by Wang

et al. (2012), denoted ÂTDSt:V .

First, we introduce the NP-pAUC proposed by Dodd and Pepe (2003a). This nonpara-

metric estimator utilizes an SRS structure and is given by

ÂSRSt:V =

∑n
i=1

∑n
j=1Di (1−Di) I (Yi > Yj , Yj ∈ (q0, q1))∑n

i=1

∑n
j=1Di (1−Di)

. (3.2)

where q0 = F−1
Y |D=0 (1− t1) = FPR−1 (t1) and q1 = F−1

Y |D=0 (1− t0) = FPR−1 (t0).

The second estimator under comparison, NPEL-pAUC, was proposed by Wang et al.

(2012) and uses a TDS design, incorporating the SRS and TDS components where TDS

inclusion depends on the continuous screening test variable, Y. Empirical likelihood methods

were used to avoid making distributional assumptions on the screening test, Y. The data

structure is similar to the structure described in Section 3.2.1, except that non-validation

data are not included in the NPEL-pAUC. The sample size is given by n = n0 +
∑K

k=1 nk,

where n0 is the sample size from the SRS component and nk = n−n0
K is the sample size for

the kth TDS interval, k = 1, . . . ,K. This pAUC estimator incorporates a restriction for the

FPR interval of interest, (t0, t1), given by F̂PRj =
∑
i p̂i(1−Di)I(Yi>Yj)∑

i p̂i(1−Di)
. The pAUC estimator

is given by

ÂTDSt:V =

∑n
i=1

∑n
j=1 p̂ip̂jDi (1−Di) I

(
Yi > Yj , F̂PRj ∈ (t0, t1)

)
∑n

i=1

∑n
j=1 p̂ip̂jDi (1−Di)

, (3.3)

where p̂i =
[
n0 +

∑K
k=1

nk
θ̂k
I (yi ∈ Ck)

]−1
. The biased sampling scheme is accounted for by

incorporating weights pi and pj in the numerator and denominator. Empirical likelihood
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methods were used in developing the estimator proposed by Wang et al. (2012).

3.2.3 Semi-parametric empirical likelihood approach

To develop the likelihood, denote fY,D (Yij , Dij) the joint distribution of disease status and

screening test. The marginal distribution of the screening test variable is given by fY (Yij).

The distribution of disease status and screening test, conditional on Yij falling in the interval

Ck, is given by fY,D (Yij , Dij |Yij ∈ Ck), k = (1, . . . ,K). Consider stratum sizes in the popula-

tion Nk = n0,k +nk +nV̄ ,k, where ni,k =
∑ni

j=1 I(Yi ∈ Ck) for i =
{

0, V̄
}

and k = {1, . . . ,K}.

The validation portion of the likelihood is given by

LV (fD) =

n0∏
j=1

f (Y0j , D0j)×
K∏
k=1

nk∏
j=1

f (YkjDkj |Ykj ∈ Ck)

=

K∏
k=1

nk∏
j=1

Pr (Ykj ∈ Ck)−nk ×
K∏
k=0

f (Yij |Dkj)Pr (Dkj = d). (3.4)

The non-validation portion of the likelihood takes into account the missing data, where the

disease status is unknown, and is given by

LV̄ (fD) =
(N − n0)!∏K

k=1 (Nk − n0,k)!

K∏
k=1

Pr (Ykj ∈ Ck)Nk−n0,k

nV̄∏
j=1
Y ∈Ck

f
(
YV̄ j

)
Pr (Ykj ∈ Ck)

=
(N − n0)!∏K

k=1 (Nk − n0,k)!
×

nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |DV̄ j = d

)
Pr
(
DV̄ ,j = d

)
×

K∏
k=1

Pr (Ykj ∈ Ck)−nk . (3.5)
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The full likelihood is found by combining the validation and non-validation portions of the

likelihood, (3.4) and (3.5), given by

L ({qij} , {rij} , p) = LV (fD)× LV̄ (fD)

∝
∏
k,j∈V
D=1

f (Ykj |Dkj = 1)Pr (Dij = 1)
∏
k,j∈V
D=0

f (Ykj |Dkj = 0)Pr (Dkj = 0)

×
nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |DV̄ j = d

)
Pr
(
DV̄ j = d

)
=
∏
k,j∈V
D=1

qkjp
∏
k,j∈V
D=0

rkj (1− p)
nV̄∏
j=1

[
qV̄ jp+ rV̄ j (1− p)

]
, (3.6)

where p = Pr (D = 1), qij = f (Yij |Dij = 1), and rij = f (Yij |Dij = 0). The probability of

having disease, p, is estimated from the SRS component of the TDS. Due to the relationship

between qij and rij and the need to decrease computational load, Qin and Zhang (1997,

2003) propose a constraint given by
rij
qij

= eα+βyij . Consider the standard logistic regression

model where Pr (D = 1|Y ) = em
∗(Y )α

1+em
∗(Y )α = ψ (Y ). The Bayes’ rule gives f (Y |D = 1) =

f(Y )Pr(D=1|Y )
Pr(D=1) = f(Y )ψ(Y )

p . Similarly, f (Y |D = 0) = f(Y )(1−ψ(Y ))
1−p . Consider the ratio

rij
qij

=
f (Y |D = 0)

f (Y |D = 1)

=

[
f (Y ) (1− ψ (Y ))

1− p

]
×
[

p

f (Y )ψ (Y )

]
=

p

1− p

(
1

1 + em∗(Y )α

)(
em
∗(Y )α

1 + em∗(Y )α

)
= em(Y )α,

which implies that rij = qije
m(Xij)α. Let m (Xij)α = α + βY . Applying this constraint to

the log-likelihood gives

l ({qij} , p, α, β) ∝
∑
ij

ln qij + nV,D=0α+ β
∑
i,j∈V
D=0

yij +

nV̄∑
j=1

ln
[
p+ eα+βyV̄ j (1− p)

]
.(3.7)

Without loss of generality, the continuous screening test variable is partitioned into three
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mutually exclusive intervals: C1 = (−∞, a1], C2 = (a1, a2], and C3 = (a2,∞). The TDS

consists of an SRS of size n0, a TDS component of size n1 + n2 + n3, and the non-validation

set of size N −nV , where nV = n0 +n1 +n2 +n3. Subjects are eligible to be sampled for the

TDS groups based on their screening test result. For example, if a subject’s test result is less

than or equal to a1 and n1 > 0, the probability of being selected in the TDS component for

C1 is greater than zero.

In order to develop the semi-parametric empirical likelihood pAUC estimator (SPEL-

pAUC), we first need to obtain estimates for {qij}, α, and β. We accomplish this by using

empirical likelihood methods outlined below. Once we have these parameter estimates, we

estimate the expected value of disease for subjects in the non-validation set and we estimate

the false positive rate for all subjects. We can then use this expected disease status and false

positive rate estimates in the SPEL-pAUC for the non-validation subjects where the true

disease status is missing.

To obtain estimates for α and β the profile likelihood must be constructed. The distri-

bution of the screening test conditional on disease status, f (Yij |Dij = 1), is not known or

assumed. A robust estimator for the pAUC can be constructed without making these dis-

tributional assumptions by fixing α and β and obtaining the empirical likelihood function of

F (Yij |Dij = 1), with support at the observed values of Y . To maximize the likelihood, we

estimate {q̂ij} = f (Yij |Dij = 1) under the following constraints:

qij ≥ 0,
∑

i∈(0,1,2,3,V̄ )

ni∑
j=1

qij = 1,
∑

i∈(0,1,2,3,V̄ )

ni∑
j=1

qij

{
eα+βyij − 1

}
= 0

 . (3.8)

A unique maximum for {qij} exists under the constraints given in (3.8) if 1 is inside the

convex hull of points eα+βyij for all (i, j) (Owen, 1988, 1990; Qin and Lawless, 1994). Lagrange
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multipliers, λ1 and λ2, are used to derive the maximum over {q̂ij}. Consider the function

H ∝
∑
ij

ln qij + nv,D=0α+ β
∑
i,j∈V
D=1

yij +

nV̄∑
j=1

ln
[
p+ eα+βyV̄ j (1− p)

]

+λ1

1−
∑
ij

qij

+Nλ2

∑
ij

qij

{
eα+βyij − 1

}
. (3.9)

Estimates {q̂ij} and λ̂1 are found by taking the derivative of H with respect to qij , where H

is given by (3.9), and setting the derivative equal to zero. The derivative of H is given by

∂H
∂qij

= 1
qij
− λ1 + Nλ2

{
eα+βyij − 1

}
. The estimate λ̂1 is found by evaluating

∑
ij qij

∂H
∂qij

=

N −λ1
∑

ij qij +Nλ2
∑

ij qij
{
eα+βyij − 1

}
= 0. By setting the derivative of H equal zero and

solving for qij , we have

q̂ij =
1

N

[
1− λ2

(
eα+βyij − 1

)]−1
, (3.10)

for i ∈ (0, 1, 2, 3, V̄ ) and j ∈ (1, . . . , ni).

Profile log-likelihood

The empirical profile log-likelihood is obtained by plugging the estimates q̂ij , given in

(3.10), into (3.7). Denoting pl (ξ) as the natural logarithm of the empirical profile likelihood,

we have

pl (ξ) ∝ −
∑
ij

ln
[
1− λ2

(
eα+βyij − 1

)]
+ nV,D=0α+ β

∑
i,j∈V
D=1

yij

+

nV̄∑
j=1

ln
[
p+ eα+βyV̄ j (1− p)

]
. (3.11)

The Newton-Raphson algorithm can be used to obtain ξ̂, where ξ = (α, β, λ2). These estima-

tors, ξ̂, are used in estimating the expected disease status. Disease status is unknown for the

non-validation portion of the population. For these subjects, an estimate for the expected

disease status is used in place a true disease status in the SPEL-pAUC. The expected value
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of disease is given by

E (Dl) = 1 ∗ Pr (Dl = 1|Yl)

=
f (Dl = 1, Yl)

f (Yl)

=
f (Yl|Dl = 1)Pr (Dl = 1)

f (Yl|Dl = 1)Pr (Dl = 1) + f (Yl|Dl = 0)Pr (Dl = 0)

=
qlp

qlp+ rl (1− p)

=
p

p+ eα+βyij (1− p)
, (3.12)

since rl = qle
α+βyl . An estimate of the expected disease status is found by plugging estimators

ξ̂ and p̂ into (3.12). This estimate of expected disease status is given by

Ê (Dl) =
p̂

p̂+ eα̂+β̂yl (1− p̂)
. (3.13)

The pAUC measures the area under the ROC curve where we are interested only in the

region where the FPR falls within (t0, t1), such that 0 < t0 < t1 < 1. This restriction

is accounted for in the estimator by incorporating an estimate of the FPR along with the

chosen t0 and t1 bounds. The false positive rate is estimated by

F̂PRl′ =

∑N
l (1−D∗l ) I (Yl > Yl′)∑N

l

(
1−D∗l

) . (3.14)

The SPEL-pAUC uses the information from both the validation and non-validation por-

tions of the population. Estimated expected disease, give by (3.13), is used for non-validation

subjects where true disease status is missing. Let l = 1, ..., N index the entire population.
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The SPEL-pAUC is given by

ÂPt:V,V̄ =

∑N
l 6=l′ D

∗
l

(
1−D∗l′

)
I
(
Yl > Yl′ , F̂PRl′ ∈ (t0, t1)

)
∑N

l 6=l′ D
∗
l

(
1−D∗l′

) ,

where F̂PRl′ =

∑N
l (1−D∗l ) I (Yl > Yl′)∑N

l

(
1−D∗l

)
and D∗l =


Dl if l ∈ V

Ê (Dl) = p̂

p̂+eα̂+β̂yl (1−p̂)
if l ∈ V̄

. (3.15)

3.3 Asymptotic properties of the SPEL-pAUC

In this section we give the asymptotic properties of the SPEL-pAUC. Theorem 1 es-

tablishes the asymptotic normality of the SPEL-pAUC. Further detail is provided in the

appendix, including asymptotic results for the components that make up the SPEL-pAUC.

Consider the U-process UN (At, η) = RN (At, η)− E (RN (At, η)). Let RN (At, η) = 1
N2

×
∑

i 6=j D
′
i

(
1−D′j

)
(It:ij −At) where It:ij = I (Yi > Yj , Yj ∈ (t0, t1)) and

D′l =

 Dl if l ∈ V

Ê (Dl) = p
p+eα+βyl (1−p) if l ∈ V̄

. Using this U-process, we show that

√
N
(
ÂPt:V,V̄ −At

)
= −

{
∂E [RN (At, η)]

∂At

}−1 ∑
i∈(0,1,2,3,V̄ )

ρin
−1/2
i

ni∑
j=1

Qij ,

where Qij (η) = E
(
R(ij)(ij)′ +R(ij)′(ij)

)
+ ρ−1

i
∂ERN (At,η)

∂p

[
−1
n0

∂2lsrs(p)
p2

]−1
P0jI (i = 0)

+ ∂ERN (At,η)
∂ξ

[
−1
N

∂2pl(ξ)
∂ξi∂ξi′

]−1
Hij (η).

Theorem 1: Under general regularity conditions,

√
N
(
ÂPt:V,V̄ −At

)
d→ N (0,Σt), (3.16)

where Σ =
[
∂E[RN (At,η)]

∂At

]−2∑
i∈(0,1,2,3,V̄ ) ρivar (Qij).
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The asymptotic variance estimator

Σ̂t =

[
∂E [RN (At, η)]

∂At

]−2 ∑
i∈(0,1,2,3,V̄ )

ρ̂ivar
(
Q̂ij

)
(3.17)

is obtained by replacing the large sample quantities in Σt with their corresponding finite

sample quantities.

3.3.1 Alternative estimation of the variance of the SPEL-pAUC

Standard error estimates were generated using the bootstrap method (Efron and Tibshi-

rani, 1993). The following algorithm was applied to each of 1,000 iterations of the simulation.

1) From the generated sample population, we drew B independent bootstrap samples

s1, s2, ..., sB of size nV with replacement, following the proposed sampling design in

Section 3.2.

2) For each bootstrap sample we then computed the SPEL-pAUC, denoted θ̂b and given

in (3.15), resulting in B values of the SPEL-pAUC.

3) The average of these bootstrap ROC estimators is given by
¯̂
θb = 1

B

∑B
b=1 θ̂b with variance

V̂
(
θ̂b

)
= 1

B

∑B
b=1

(
θ̂b −

¯̂
θb

)2
and standard deviation given by

√
V̂
(
θ̂b

)
.

4) We repeated these steps 1,000 times in generating the simulation results.

The ŜE displayed in the simulation results was found by taking the average of the standard

deviation estimates across 1,000 independent iterations of the simulation.

3.4 Simulation study

We evaluate the behavior of the SPEL-pAUC under many situations to better examine

its robustness. The simulation studies were conducted using R version 2.14. The data were

generated under the model Y = β0 +Dβ1 + ε, where D = 1 for diseased subjects and D = 0

for non-diseased subjects. For the following simulations, we generate data where ε ∼ N (0, 1)

and D ∼ Bernoulli (0.3). The population size used in simulations is N = 2000 and the
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distribution of Y is partitioned into three mutually exclusive sets given by C1 = (−∞, q̂0] ,

C2 = ( q̂0, q̂1] , and C3 = ( q̂1,∞) . The values q̂0 and q̂1 are the empirical quantiles of the SRS

component in the TDS data. Here, q̂1 corresponds to (1− t1)× 100% of the SRS component

data falling below q̂1. In the following simulations, we consider the impact of 1) varying

overall sample size, nV ; 2) varying proportion of SRS to TDS component sizes, n0
nV

; and

3) varying model parameter β1. The variations under consideration are: validation sample

size (nV ) 120, 240, and 360; proportion of SRS subjects among validation set ( n0
nV

) 0.25,

0.5, and 0.75; and FPR intervals. For simulation results, the estimated means, standard

errors, mean of the standard error estimates, and 95% nominal coverage probabilities for an

estimator are obtained from 1000 independent runs. Estimated standard errors were obtaining

with bootstrapping, using 50 replicate samples.

Sample allocation for TDS

The SPEL-pAUC uses the TDS design to target subjects on the left tail of the distribution.

This sample consists of the following three components:

1) the SRS component of size n0,

2) the TDS component of size n − n0 where all subjects are sampled from the left-most

interval, depending on the FPR interval of interest, and n0
nV

= 0.5. For example, if we

are interested in FPR ∈ (0, 0.1), then n1 = 0 subjects are sampled such that Y1j ∈ C1,

n2 = 1
2nV subjects are sampled such that Y2j ∈ C2, and n3 = 0 subjects are sampled

such that Y3j ∈ C3. Whereas, if we are interested in FPR ∈ (0.1, 0.2), then n1 = 1
2nV

subjects are sampled such that Y1j ∈ C1, n2 = 0 subjects are sampled such that

Y2j ∈ C2, and n3 = 0 subjects are sampled such that Y3j ∈ C3, and

3) the non-validation component of size N − nV , comprised of all subjects not sampled

into the SRS and TDS components.

For the NPEL-pAUC, proposed by Wang et al. (2012), the sample consists of the same SRS

and TDS components, except that in the TDS component, the subjects are allocated equally
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across all intervals. For interest in FPR ∈ (0, 0.1), n1 = 0 and n2 = n3 = 1
2 (n− n0). For

interest in FPR ∈ (0, 0.1), n1n2 = n3 = 1
3 (n− n0).

Estimators to be compared

The proposed estimator, SPEL-pAUC in (3.15), is compared to three estimators in the

simulation studies. These estimators are given below. Specifically, under each setting, we

compare the following four estimators.

1) NP-pAUC: the SRS only estimator Dodd and Pepe (2003a), denoted by ÂSRSt:V , is given

by (3.2).

2) SPEL-pAUC(SRS): the SRS with validation and non-validation data estimator, denoted

ÂSRS
t:V,V̄

, has the same form as the SPEL-pAUC in (3.15). The difference between this

estimator and the SPEL-pAUC is the sampling scheme. This gives a comparison of the

SRS and TDS designs while incorporating non-validation data.

3) NPEL-pAUC: the TDS data only estimator (Wang et al., 2012), denoted ÂTDSt:V , is given

by (3.3).

4) SPEL-pAUC: the proposed TDS with validation and non-validation data estimator,

denoted ÂP
t:V,V̄

, is given by (3.15).

Results

Unbiasedness All four AUC estimators yield unbiased estimates. To illustrate this, we

simulated data using multiple allocations, sample sizes, and FPR intervals. Tables 3.1 and

3.3 show that the average of all AUC estimators are close to or equal to the true value.

Other allocation schemes were considered for the SPEL-pAUC in Table 3.2 by varying the

proportion of subjects allocated to the SRS component ( n0
nV

= (0.25, 0.5, 0.75)) and the TDS

component allocation. In all of the allocations considered, the SPEL-pAUC continues to be

unbiased.

Efficiency The SPEL-pAUC is the most efficient among pAUC estimators compared and

the NP-pAUC is the least efficient among those compared. This supports the idea that both

the use of the TDS design and inclusion of non-validation subjects create a more efficient
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alternative to the SRS design and validation-only estimators while sampling the same number

of subjects. In most cases for the chosen allocation ( n0
nV

= 0.5 and allocation to left-most

interval), shown in Table 3.2, the bootstrapped standard errors are equal to the standard

error of the estimator. For FPR∈ (0, 0.2), for example, the first three lines of results show

that for sample sizes 120, 240, and 360, the bootstrapped standard errors are 0.014, 0.010,

0.008, respectively, which equals the standard error of the SPEL-pAUC estimator. For FPR∈

(0.1, 0.5), the first line gives results for nV = 120 with a bootstrapped standard error 0.027

compared to the standard error of 0.029. As the sample size increases, the bootstrapped

standard error does a better job of estimating the standard error of the SPEL-AUC. Table

3.2 shows that the standard error is only slightly effected for FPR∈ (0, 0.2) when alternate

allocations are considered. Whereas for FPR∈ (0.1, 0.5) the chosen allocation is the smallest

standard error at 0.015 for nV = 360, compared to 0.016, 0.017, and 0.018 for alternate

allocations.

Robustness The SPEL-pAUC does not require model specification for the screening test,

Y. To explore the SPEL-pAUC’s robustness, simulation studies were generated using both

Normal and Chi-squared distributions for the screening test. Simulation results reported

in Table 3.3 show that the simulation study gives similar results when the screening test

is generated using a Chi-squared distribution, as far as unbiasedness of the estimators and

efficiency of the SPEL-pAUC.

3.5 Analysis of the lung cancer study data

We used the SPEL-pAUC to analyze non-small-cell lung cancer (NSCLC) data from the

CALGB 150807 study (Bueno et al., 2012) conducted by the Cancer and Leukemia Group B.

This study is a subset of patients registered in the CALGB 140202 study who have stage 1A

or 1B non-small-cell lung cancer (NSCLC), have not received preoperative chemotherapy or

radiation, and are not missing histological, demographic, clinical, and follow-up information

of interest. Among patients in the CALGB 150807 study, 1,061 patients were not censored

before 12 months and were used in this analysis.
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Lung cancer is the most common cause of cancer death among men and women in the world

(Blanchon et al., 2006). Lung cancer is classified as either small-cell lung carcinoma (SCLC)

or non-small-cell lung carcinoma (NSCLC), of which NSCLC accounts for approximately 80%

of all lung cancers. After surgical lung resection, a large proportion of stage 1 NSCLC patients

have cancer recurrence within five years (Bueno et al., 2012). When surgery is used as the

primary treatment for NSCLC, adjuvant chemotherapy may benefit patients who have a high

risk of cancer recurrence. Identifying patients who are at high risk of cancer recurrence

is important in order for treatment to be given to those who would benefit most. This is

an important area of study for patients, families, and doctors when making decisions on a

treatment plan.

The Balcone risk score, outlined by Blanchon et al. (2006), has been developed to identify

patients who are at greatest risk of cancer recurrence. To select the variables that are included

in the scoring algorithm, Blanchon et al. (2006) used a Cox model to identify variables that

were independently associated with mortality. The associated variables were then weighted to

create the Balcone risk index. The components of the risk score are given by: age (>70 years,

1 point); sex (male, 1 point); performance status at diagnosis (reduced activity, 3 points;

active >50%, 5 points; inactive >50%, 8 points; and total incapacity, 10 points); histological

type (large-cell carcinoma, 2 points); and tumour-node-metastasis (TNM) staging system

(IIA or IIB, 3 points; IIIA or IIIB, 6 points; and IV, 8 points). For the data used in this

analysis, the Balcone risk score ranges from 0 to 15.

The goal of this analysis is to summarize the ability of the Balcone risk score to distinguish

between patients who survive beyond 12 months and those who do not when the FPR falls

within (0.1, 0.3). This FPR range allows us to assess the utility of the SPEL-pAUC when

the FPR is low. Clinicians may be less interested in the Balcone risk score at higher FPR

values because this would suggest that patients are being falsely identified as high risk for

cancer recurrence, leading to treatment plans that may be dangerous and unnecessary. The

outcome of interest is survival beyond 12 months and the screening test is the Balcone risk

score. Although all information is available for these patients, we illustrate the utility of

the proposed AUC estimator by sampling from the study data and evaluating the estimated
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AUC. Table 3.4 gives descriptive statistics for the Balcone risk score, stratified by survival at

12 months. A sample size of nV = 360 was used for all estimators compared and details on

sample allocation for each estimator are given in Table 3.5. The NP-pAUC has an SRS of

size n = 360. The SPEL-pAUC(SRS) allocates 100% of the sample to the SRS component

and utilizes incomplete data from the non-validation set. The NPEL-pAUC allocates 50%

of the validation sample to the SRS component and the remaing 50% are allocated equally

between the three intervals, Ci, such that n1 = n2 = n3 = 60. The SPEL-pAUC allocates

50% of the sample to the SRS component and samples the remaining 50% to the left tail,

where n1 = 180 and n2 = n3 = 0, while utilizing incomplete data from the non-validation

set. Because survival at 12 months is known for all subjects, we use the NP-pAUC estimator

to evaluate the pAUC using complete information, given by 0.150. The pAUC estimates are:

NP-pAUC 0.132, SPEL-pAUC(SRS) 0.158, NPEL-pAUC 0.149, and SPEL-pAUC 0.147. All

estimators compared have an estimated pAUC that is similar to the best estimate we have

for the true pAUC, which is 0.15, found by using the complete data.

3.6 Analysis of the Preterm Prediction Study data

We used the SPEL-pAUC to analyze data from the Preterm Prediction Study, a multi-

center prospective study designed to study spontaneous preterm birth (Goldenberg et al.,

1996). The Maternal Fetal Medicine Units Network of the National Institute of Child Health

and Human Development carried out this study using ten centers to recruit women. There

were 3073 women recruited between October 1992 and July 1994. Measurements were col-

lected every two weeks from 22 to 30 weeks’ gestation. Among the 3073 women recruited,

3001 had valid measurements of interest for this analysis.

PTB is defined as delivery at less than 37 weeks of gestation, contributes to neonatal

morbidity and mortality which increases as gestational age decreases (McCormick, 1985).

Bastek and Elovitz (2013) combined results from multiple studies on this topic to gain a

better understanding the relationship between biomarkers and PTB. The results were not

definitive for most biomarkers with the exception of fetal fibronectin (FFN).
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Fetal fibronectin (FFN) is a protein that is produced by the fetal membrane. Knowing

the FFN will not change the incidence of spontaneous PTB but it will affect the treatment

plan. Deshpande et al. (2013) found that FFN has moderate accuracy in predicting PTB.

Although many studies are concerned with the ability to predict spontaneous PTB, Bastek

and Elovitz (2013) suggest that the ability to predict those who will not have spontaneous

PTB is also valuable. Because FFN typically has a high negative predictive value (proportion

of true negatives over all who test negative), a negative FFN test is widely used in clinical

practice to send patients home. Measurable levels of FFN are considered to be abnormal

between 20 and 37 weeks’ gestation. Lockwood et al. (1991) show that in 588 FFN samples

from uncomplicated pregnancies, a higher percentage of subjects were positive for FFN (level

above 0.05 µg/mL) before 22 and after 37 weeks’ gestation compared to between 22 and 37

weeks’ gestation. For example the percentage of cervical samples with positive FFN for <22,

22 to 37 and >37 weeks’ gestation were 24%, 4%, and 32%, respectively. This is an important

area of study due to the negative effects of spontaneous PTB on maternal and child health

outcomes.

In our analysis, the outcome of interest is spontaneous PTB at less than 37 weeks’ gestation

and the screening test considered in FFN. Values of the screening test that are associated with

high FPRs are not of interest clinically and very low FPRs may not be realistic. Because

of this, we are interested in estimating the pAUC where we restrict the FPR interval to

(0.1, 0.5). Table 3.6 gives descriptive statistics for FFN, stratified by spontaneous PTB.

A sample size of nV = 360 was used for all estimators compared and details on sample

allocation for each estimator are given in Table 3.7. The NP-pAUC has an SRS of size

n = 360. The SPEL-pAUC(SRS) allocates 100% of the sample to the SRS component and

utilizes incomplete data from the non-validation set. The NPEL-pAUC allocates 50% of the

validation sample to the SRS component and the remaing 50% are allocated equally between

the three intervals, Ci, such that n1 = n2 = n3 = 60. The SPEL-pAUC allocates 50% of the

sample to the SRS component and samples the remaining 50% to the left tail, where n1 = 180

and n2 = n3 = 0, while utilizing incomplete data from the non-validation set. Because the

outcome of spontaneous PTB is known for all subjects, we use the NP-pAUC estimator to
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evaluate the pAUC using complete information, given by 0.177. The pAUC estimates are:

NP-pAUC 0.189, SPEL-pAUC(SRS) 0.133, NPEL-pAUC 0.157, and SPEL-pAUC 0.126. All

estimators compared have an estimated pAUC that is similar to the best estimate we have

for the true pAUC, which is 0.177, found by using the complete data.

3.7 Discussion

We have proposed a semi-parametric estimator for the partial area under the ROC curve

(pAUC), which allows us to summarize the ability of a screening test to discern between

diseased and non-diseased subjects while restricting the FPR to a range that is clinically

relevant. This estimator incorporates a TDS design and includes both validation and non-

validation data. The use of empirical likelihood methods allows us to estimate the pAUC

without specifying a distribution for the screening test. We use bootstrapping to estimate

the standard error and simulation studies show good coverage probabilities when using the

standard error estimated using bootstrap methods.

The proposed design is motivated by the need to improve efficiency in estimating pAUC.

Ascertaining true disease status can be costly and invasive for subjects. Although disease

status is missing for the non-validation set, the proposed estimator takes advantage of all

information available for a larger number of subjects than the validation-only estimators.

Although all estimators are unbiased, the proposed estimator was shown to be the most

efficient, compared to three competing pAUC estimators. This suggests that to obtain the

same variability less subjects would be needed when the SPEL-pAUC is used, reducing study

cost and subject burden. These results support the idea that both the use of the TDS design

and inclusion of non-validation subjects create a more efficient alternative to the SRS design

and the validation-only estimators while sampling the same number of subjects. For example,

with a sample size of 120 and FPR interval of (0, 0.02), the standard error of the proposed

estimator is 0.014 compared to 0.018 and 0.016 in the competing methods (Table 3.1). In

this case, we have an estimated standard error of 0.014 which gives coverage proportion

of 0.952. The SPEL-pAUC is also robust in its ability to estimate pAUC under varying
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distributions. Simulation studies show that when the screening test is simulated from a Chi-

squared distribution, the pAUC estimators are unbiased and the SPEL-pAUC continues to

be the most efficient pAUC estimator under comparison.
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Table 3.1: Comparison of SPEL-pAUC and competing methods

nV = 120 nV = 240 nV = 360
Method Mean SE Mean SE Mean SE

FPR∈ (0, 0.2) and True pAUC=0.0727

ÂSRSt:V 0.076 0.018 0.074 0.013 0.074 0.010

ÂSRS
t:V,V̄

0.074 0.016 0.073 0.011 0.073 0.008

ÂTDSt:V 0.074 0.016 0.075 0.012 0.074 0.009

ÂP
t:V,V̄

0.074 0.014 0.073 0.010 0.073 0.008

FPR∈ (0.1, 0.5) and True pAUC=0.2646

ÂSRSt:V 0.265 0.033 0.263 0.023 0.265 0.019

ÂSRS
t:V,V̄

0.266 0.030 0.265 0.021 0.264 0.016

ÂTDSt:V 0.266 0.030 0.263 0.022 0.264 0.018

ÂP
t:V,V̄

0.266 0.029 0.265 0.018 0.263 0.015

Screening test data is simulated assuming YD=1 ∼ N (1, 1)
and YD=0 ∼ N (0, 1). ÂSRS

t:V denotes the NP-pAUC which

uses SRS; ÂSRS
t:V,V̄

denotes the SPEL-pAUC(SRS) which uses

SRS and utilizes information for both validation and non-
validation data; ÂTDS

t:V denotes the NPEL-pAUC which uses

TDS; and ÂP
t:V,V̄

denotes the proposed SPEL-pAUC which

uses TDS and utilizes information from both validation and
non-validation data. All estimators sample the same num-
ber of subjects.
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Table 3.2: Properties of the SPEL-pAUC

nV
n0
nV

(n0, n1, n2, n3, nV̄ ) Mean SE ŜE CP

FPR∈ (0, 0.2) and True pAUC=0.0727

n1 = n3 = 0

120 0.5 (60, 0, 60, 0, 1880) 0.074 0.014 0.014 0.952
240 0.5 (120, 0, 120, 0, 1760) 0.073 0.010 0.010 0.944
360 0.5 (180, 0, 180, 0, 1640) 0.073 0.008 0.008 0.950

n1 = n3 = 0

360 0.25 (90, 0, 270, 0, 1640) 0.072 0.009 0.010 0.951
360 0.75 (270, 0, 90, 0, 1640) 0.073 0.008 0.008 0.948

n1 = n2 = n3

360 0.5 (180, 0, 90, 90, 1640) 0.073 0.008 0.008 0.950

FPR∈ (0.1, 0.5) and True pAUC=0.2646

n2 = n3 = 0

120 0.5 (60, 60, 0, 0, 1880) 0.265 0.029 0.027 0.926
240 0.5 (120, 120, 0, 0, 1760) 0.265 0.018 0.018 0.953
360 0.5 (180, 180, 0, 0, 1640) 0.263 0.015 0.016 0.955

n2 = n3 = 0

360 0.25 (90, 270, 0, 0, 1640) 0.263 0.018 0.018 0.957
360 0.75 (270, 90, 0, 0, 1640) 0.265 0.016 0.017 0.962

n1 = n2 = n3

360 0.5 (180, 60, 60, 60, 1640) 0.265 0.017 0.016 0.937

Screening test data is simulated assuming YD=1 ∼ N (1, 1) and YD=0 ∼
N (0, 1). The fraction n0

nV
is the proportion of subjects allocated to

the SRS component out of the total number of validation subjects
sampled. The sample allocation, (n0, n1, n2, n3, nV̄ ), gives the number
of subjects allocated to the SRS component, three intervals of the TDS
component, and the non-validation set, respectively.
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Table 3.3: Comparison of SPEL-pAUC and competing methods for Chi-Squared Distributed
Data

FPR∈ (0, 0.2) FPR∈ (0.1, 0.5)

Method Mean SE Mean SE

ÂSRSt:V 0.092 0.018 0.291 0.032

ÂSRS
t:V,V̄

0.096 0.016 0.286 0.026

ÂTDSt:V 0.092 0.017 0.293 0.029

ÂP
t:V,V̄

0.101 0.016 0.307 0.024

Screening test data is simulated assuming
YD=1 ∼ χ (4, 3) and YD=0 ∼ χ (3) and nV =
120. The true pAUC for FPR∈ (0, 0.2) is
0.0901 and for FPR∈ (0.1, 0.5) is 0.2921.

Table 3.4: Descriptive statistics for the Balcone risk score

N Minimum Q1 Median Q3 Maximum

Overall 1076 0 1 1 3 10
Survival beyond 12 months 965 0 1 1 3 10

Survival less than 12 months 111 0 1 2 5 9

Table 3.5: Sample allocation for the non-small-cell lung cancer data

Component MW-AUC SPEL-AUC(SRS) NPEL-AUC SPEL-AUC

SRS 360 360 180 180
TDS (n1, n2, n3) (0, 0, 0) (0, 0, 0) (60, 60, 60) (180, 0, 0)
non-validation 0 701 0 701

Table 3.6: Descriptive statistics for FFN

N Minimum Q1 Median Q3 Maximum

Spontaneous PTB 309 0 0.88 4.48 17.08 924.56
Not PTB 2692 0 0.28 2.61 7.22 2151.44
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Table 3.7: Sample allocation for the Preterm Prediction Study

Component NP-pAUC SPEL-pAUC(SRS) NPEL-pAUC SPEL-pAUC

SRS 360 360 180 180
TDS (n1, n2, n3) (0, 0, 0) (0, 0, 0) (60, 60, 60) (180, 0, 0)
non-validation 0 2641 0 2641

The FPR interval of interest is (0.1, 0.5).
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Chapter 4

Covariate-specific ROC Curve under Test-Dependent Sampling

4.1 Introduction

The receiver operating characteristic (ROC) curve is a summary measure used to describe

the ability of a screening test to discriminate between diseased and non-diseased subjects

(Bamber, 1975). Consider a screening test, Y, and disease or outcome, D, where D=1 indicates

presence of the disease and D=0 indicates no disease. The ROC curve is constructed by

plotting the false positive rate (FPR, Pr (Y ≥ c|D = 0)) against the true positive rate (TPR,

Pr (Y ≥ c|D = 1)), where c is the threshold for the screening test to indicate disease. As

evaluating the true disease status can be costly, it is important for researchers to increase

study efficiency by allowing selection probabilities to depend on the screening test (Wang

et al., 2012). Increased efficiency translates to cost and time savings for studies as well as

decreased burden on subjects. Incorporating covariates into the ROC curve estimator allows

for evaluation of the utility of the screening test for different subsets of a population. We

propose a semi-parametric covariate-specific ROC curve estimator, which incorporates a test-

dependent sampling design and inclusion of un-sampled subjects. Simulation studies show

that the proposed ROC curve estimator is unbiased and improves efficiency compared to

estimators using a simple random sample (SRS) design and those that use only information

from the sampled subjects.

Using data from the Cancer and Leukemia Group B (CALGB) 150807 study, we evaluate

the ability of the Balcone risk score to identify patients who are at greatest risk of non-

small-cell lung cancer (NSCLC) recurrence by estimating the covariate-specific ROC curve

(Bueno et al., 2012). When surgery is used as the primary treatment for NSCLC, adjuvant
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chemotherapy may benefit patients who have a high risk of cancer recurrence. Identifying

patients who are at high risk of cancer recurrence is important in order for treatment to be

given to those who would benefit most. We can evaluate the utility of the Balcone risk score

in predicting survival at 12 months for specific values of a covariate. Including covariates,

such as age and gender, in the model will help of identify subsets of the population where the

screening test is more effective at predicting survival at 12 months. This is an important area

of study for patients, families, and doctors when making decisions on a treatment plan. The

proposed methods are especially beneficial considering the length of time this type of study

will follow patients and the cost of following a large number of subjects in this setting.

We also use data from the Preterm Prediction Study to evaluate the ability of fetal fi-

bronectin (FFN) to predict spontaneous preterm birth by estimating the covariate-specific

ROC curve, while incorporating information from un-sampled subjects and including cervical

length, maternal age, and previous PTB (Goldenberg et al., 1996). Preterm birth (PTB),

defined as delivery at less than 37 weeks of gestation, contributes to neonatal morbidity

and mortality. The prevalence of adverse events increases as gestational age decreases (Mc-

Cormick, 1985). We can consider covariates, such a cervical length, when estimating the

ROC curve to identify subset of the study population in which FFN is a better predictor of

PTB. This is an important area of study due to the negative impact of spontaneous PTB

on maternal and child health outcomes. Knowing the FFN measurement will not change the

incidence of spontaneous PTB, but it will affect the treatment plan. The use of covariates

allows us to better understand the influence covariates have on accuracy of this screening test

(Wang et al., 2013).

Methods have been developed which consider the effect of covariate information on ROC

curves and summary measures area under the ROC curve (AUC) and partial AUC (pAUC).

Thompson and Zucchini (1989) and Dodd and Pepe (2003a) proposed direct estimation of the

AUC, and Dodd and Pepe (2003a) proposed direct estimation of the pAUC, while account-

ing for covariates. Pepe (2000) and Cai and Pepe (2002) used generalized linear modeling

methods to estimate the covariate-adjusted ROC curve. An alternative to direct ROC curve

estimation is to model the screening test variable as a function of covariates and the disease
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status. This approach has been used by Tosteson and Begg (1988) and Wang et al. (2013).

These methods make parametric assumptions for the screening test. Wang et al. (2013) pro-

posed the use of test-dependent sampling (TDS) in which inclusion in the sample depends

on the continuous screening test measure. The TDS design is related to outcome-dependent

sampling (ODS). Zhou et al. (2002) used the ODS design and empirical likelihood methods in

regression modeling to develop parameter estimates where inclusion in the sample depends on

a continuous outcome variable. Weaver and Zhou (2005) developed a semi-parametric estima-

tor for regression coefficients using the ODS framework, which utilizes incomplete information

for the un-sampled portion of the population. In the design proposed by Weaver and Zhou

(2005), the outcome used to develop the ODS is observed for all subjects, but covariates are

missing for the un-sampled portion of the population.

We propose the use of a test-dependent sampling (TDS) design in which TDS inclusion

depends on the continuous screening test measure. The TDS design incorporates an SRS

component, a TDS component, and the remaining un-sampled portion of the population.

The TDS design allows investigators to over-sample subjects from specified ranges of the

screening test variable, allowing for a concentration of resources where there is the greatest

amount of information. All data are available for subjects sampled in the study, but only the

screening test value and covariates are available for the un-sampled portion of the population.

The proposed method gives improved estimates of the covariate-specific ROC curve which are

more efficient than methods which utilize only the sampled subjects.

This chapter is organized as follows. In Section 4.2, we introduce an alternative covariate-

specific ROC curve estimator and propose use of empirical likelihood methods to develop a

semi-parametric estimator for the covariate-specific ROC curve. In Section 4.3, a variance

estimator for the proposed covariate-specific ROC curve estimator is described. In Section

4.4, we use simulation studies to compare the proposed estimator with competing methods. In

Section 4.5, we analyze data from the lung cancer study. In Section 4.6, we use the proposed

method to analyze data from the Preterm Prediction Study. We conclude with a discussion

in Section 4.7.
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4.2 Semi-parametric empirical likelihood ROC curve (SPEL-ROC) estima-
tion

4.2.1 Notation and data structure

Consider a continuous test variable, Y , a vector of covariates, X, and binary disease

indicator, D. The distribution of Y can be divided into K mutually exclusive intervals

defined by Ck = (ak−1, ak] where k = 1, . . . ,K. The sample size within each of the Ck

intervals may be different. The TDS is made up of 3 components: the SRS component, TDS

component, and the non-validation set (un-sampled subjects). The subjects sampled in the

SRS and TDS components combined make up the validation set, indexed by V , where the

true disease status is validated. The remainder of the population not selected for sampling

makes up the non-validation set, indexed by V̄ . The sample size of the validation set is given

by nV = n0 +
∑K

k=1 nk, where n0 is the sample size from the SRS component and nk is the

sample size for the kth TDS interval, k = 1, . . . ,K. The size of the non-validation set is given

by nV̄ = N−nV . To define subscripts, i indexes the sampling group where i =
(
0, 1, ...,K, V̄

)
and j = {1, ..., ni} denotes the individual in the ith sampling group. The test variable, Y ,

and covariates, X, are observed for all subjects in the dataset. The disease status, D, is only

ascertained for subjects who are in the validation set. The data framework is given by

SRS component (D0j , Y0j ,X0j) j = 1, ..., n0

TDS1 component (D1j , Y1j ,X1j |Y1j ∈ C1) j = 1, ..., n1

...
...

...

TDSK component (DKj , YKj ,XKj |YKj ∈ CK) j = 1, ..., nK

Non-validation component
(
Yv̄j ,Xv̄j |i = V̄

)
j = 1, ..., nV̄ .

(4.1)

4.2.2 Alternative ROC curve estimator

The alternative covariate-specific ROC estimator (LS-ROC) included in the simulation

studies uses a binormal ROC model, discussed in Pepe (2004) and Wang et al. (2013), and
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samples subjects with an SRS design. The model is given by

Y = Xβ + σ (D) ε = β0 + β1D + β2X + β3XD + σ (D) ε (4.2)

where ε ∼ N (0, 1) and σ (D) = σ1D + σ0 (1−D). Parameter estimates are found using

the ordinary least squares method where β̂ =
[
XTX

]−1
XT y and the variances, σ2

1 and σ2
0,

are found by calculating the sample variance for the respective outcome groups, D = 1 and

D = 0. The covariate-specific survival function is estimated for the diseased and non-diseased

groups for a chosen covariate value, giving Ŝ1X = Φ
(
µ̂1X−c√

v̂1

)
and Ŝ0X = Φ

(
µ̂0X−c√

v̂0

)
where

µ̂1X = β̂0 + β̂D + β̂TXX + β̂TDXXD and µ̂0X = β̂0 + β̂TXX. The ROC curve is then estimated

by

R̂OC (t) = Ŝ1X

(
Ŝ−1

0X (t)
)
. (4.3)

The covariate-specific ROC curve can be generated by plotting Ŝ1X (t) against Ŝ0X (t) for

specified covariate values, X.

4.2.3 Semi-parametric empirical likelihood approach

To develop the likelihood, denote f (Yij |Xij , Dij) the distribution of the screening test con-

ditional on covariates and disease status. Denote g (Xij |Dij = d) the distribution of the co-

variates conditional on disease status. The joint distribution of disease status, covariates, and

screening test, conditional on Yij falling in the interval Ck is given by f (Yij , Dij ,Xij |Yij ∈ Ck),

k = (1, . . . ,K). Consider stratum sizes in the population Nk = n0,k + nk + nV̄ ,k, where

ni,k =
∑ni

j=1 I(Yi ∈ Ck) for i =
{

0, V̄
}

and k = {1, . . . ,K}. We use a binormal model to

describe the relationship between the screening test and the disease status and covariates,

given by

Y = Xβ + σ (D) ε = β0 + β1D + β2X + β3XD + σ (D) ε (4.4)
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where ε ∼ N (0, 1) and σ (D) = σ1D + σ0 (1−D) (Pepe, 2004; Wang et al., 2013). Let

σ = (σ1, σ0).

The validation portion of the likelihood is given by

LV (G, p,β,σ)

=

n0∏
j=1

f (Y0j , X0j , D0j)×
K∏
k=1

nk∏
j=1

f (Ykj , Xkj , Dkj |Ykj ∈ Ck)

=
K∏
k=1

Pr (Ykj ∈ Ck)−nk
K∏
i=0

ni∏
j=1

f (Yij |Xij , Dij = d) g (Xij |Dij = d)Pr (Dij = d).(4.5)

The non-validation portion of the likelihood takes into account the missing data, where the

disease status is unknown, and is given by

LV̄ (G, p,β,σ)

=
(N − n0)!∏K

k=1 (Nk − n0,k)!

K∏
k=1

Pr (Ykj ∈ Ck)Nk−n0,k

nV̄∏
j=1
Y ∈Ck

f
(
YV̄ j ,XV̄ j

)
Pr (Ykj ∈ Ck)

=
(N − n0)!∏K

k=1 (Nk − n0,k)!

K∏
k=1

Pr (Ykj ∈ Ck)nk

×
nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |XV̄ j , DV̄ j = d

)
g
(
XV̄ j |DV̄ j = d

)
Pr
(
DV̄ j = d

)
. (4.6)

The full likelihood is found by combining the validation and non-validation portions of the
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likelihood, (4.5) and (4.6), given by

L ({qij} , {rij} , p,β,σ) = LV (G, p,β,σ)× LV̄ (G, p,β,σ)

∝
∏
i,j∈V

f (Yij |Xij , Dij) g (Xij |Dij)Pr (Dij = d)

×
nV̄∏
j=1

1∑
d=0

f
(
YV̄ j |XV̄ j , DV̄ j = d

)
g
(
XV̄ j |DV̄ j = d

)
Pr
(
DV̄ j = d

)
=
∏
i,j∈V
D=1

f (Yij |Xij , Dij = 1) qijp×
∏
i,j∈V
D=0

f (Yij |Xij , Dij = 0) rij (1− p)

×
nV̄∏
j=1

[
f
(
YV̄ j |XV̄ j , DV̄ j = 1

)
qV̄ jp+ f

(
YV̄ j |XV̄ j , DV̄ j = 0

)
rV̄ j (1− p)

]
, (4.7)

where p = Pr (D = 1), qij = g (Xij |Dij = 1), and rij = g (Xij |Dij = 0). The probability of

having disease, p, is estimated from the SRS component of the TDS. Due to the relationship

between qij and rij and the need to decrease computational load, Qin and Zhang (1997,

2003) propose a constraint given by
rij
qij

= em(Xij)α. Consider the standard logistic regression

model where Pr (D = 1|Y ) = em
∗(Y )α

1+em
∗(Y )α = ψ (Y ). The Bayes’ rule gives f (Y |D = 1) =

f(Y )Pr(D=1|Y )
Pr(D=1) = f(Y )ψ(Y )

p . Similarly, f (Y |D = 0) = f(Y )(1−ψ(Y ))
1−p . Consider the ratio

rij
qij

=
f (Y |D = 0)

f (Y |D = 1)

=

[
f (Y ) (1− ψ (Y ))

1− p

]
×
[

p

f (Y )ψ (Y )

]
=

p

1− p

(
1

1 + em∗(Y )α

)(
em
∗(Y )α

1 + em∗(Y )α

)
= em(Y )α,
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which implies that rij = qije
m(Xij)α. Applying this constraint to the log-likelihood gives

l ({qij} , p,α,β,σ)

∝
∑
ij

ln qij +
∑
ij∈V

f (Yij |Xij , Dij = d) +
∑
i,j∈V
D=0

m (Xij)α

+

nV̄∑
j=1

ln [ f
(
YV̄ j |XV̄ j , DV̄ j = 1

)
p+ f

(
YV̄ j |XV̄ j , DV̄ j = 0

)
em(Xij)α (1− p) ] . (4.8)

Without loss of generality, consider partitioning the screening test variable into three

mutually exclusive intervals: C1 = (−∞, a1], C2 = (a1, a2], and C3 = (a2,∞). The TDS

consists of an SRS component of size n0, a TDS component of size n1 + n2 + n3, and the

non-validation set of size N − nV , where nV = n0 + n1 + n2 + n3. Subjects are eligible to

be sampled for the TDS component based on their screening test result, Y. For example, if a

subject’s test result is less than or equal to a1 and n1 > 0, the probability of being selected

in the TDS component for C1 is greater than zero.

In order to develop the semi-parametric empirical likelihood ROC curve estimator (SPEL-

ROC), we first need to obtain estimates for {qij}, α, β, and σ. We estimate {qij} using

empirical likelihood methods outlined below. Parameters α, β, and σ are estimated using

the Newton-Raphson algorithm. Then we can use these parameter estimates in the ROC

curve equation, in (4.3), to obtain the SPEL-ROC.

To obtain estimates for α, β, and σ the profile likelihood must be constructed. The

distribution of the covariates conditional on disease status, g (Xij |Dij = 1), is not known

or assumed. A robust estimator for the covariate-specific ROC curve can be constructed

without making these distributional assumptions by fixing α and then obtaining the empirical

likelihood function of G (Xij |Dij = 1), with support at the observed values of X. To maximize

L ({qij} , p,α,β,σ), we estimate {q̂ij} = g (Xij |Dij = 1) under the following constraints:

qij ≥ 0,
∑

i∈(0,1,2,3,V̄ )

ni∑
j=1

qij = 1,
∑

i∈(0,1,2,3,V̄ )

ni∑
j=1

qij

{
em(Xij)α − 1

}
= 0

 . (4.9)

A unique maximum for {qij} exists under the constraints given in (4.9) if 1 is inside
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the convex hull of points em(Xij)α for all (i, j) (Owen, 1988, 1990; Qin and Lawless, 1994).

Lagrange multipliers, λ1 and λ2, are used to derive the maximum over {q̂ij}. Consider the

function

H = l ({qij} , p,α,β,σ) + λ1

1−
∑
ij

qij

+ nλ2

∑
ij

qij

{
em(Xij)α − 1

}

∝
∑
ij

ln qij + λ1

1−
∑
ij

qij

+Nλ2

∑
ij

qij

{
em(Xij)α − 1

}
. (4.10)

Estimates {q̂ij} and λ̂1 are found by taking the derivative of H with respect to qij , where H

is given by (4.10), and setting the derivative equal to zero. The derivative of H is given by

∂H
∂qij

= 1
qij
− λ1 + Nλ2

{
em(Xij)α − 1

}
. The estimate λ̂1 is found by evaluating

∑
ij qij

∂H
∂qij

=

N −λ1
∑

ij qij +Nλ2
∑

ij qij
{
em(Xij)α − 1

}
= 0 and solving for λ1. By setting the derivative

of H equal zero and solving for qij , we have

q̂ij =
1

N

[
1− λ2

(
em(Xij)α − 1

)]−1
(4.11)

for i ∈ (0, 1, 2, 3, V̄ ) and j ∈ (1, . . . , ni).

Profile log-likelihood

The empirical profile log-likelihood is obtained by plugging the estimates q̂ij given in (4.11)

into the log-likelihood, given in (4.8). Define ξ = (α,β,σ, λ2). Denoting pl (ξ) as the natural
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logarithm of the empirical profile likelihood, we have

pl (ξ)

∝ −
∑
ij

ln
[
1− λ2

(
em(Xij)α − 1

)]
+
∑
ij∈V

ln f (Yij |Xij , Dij = d) +
∑
i,j∈V
D=0

m (Xij)α

+

nV̄∑
j=1

ln [ f
(
YV̄ j |XV̄ j , DV̄ j = 1

)
p+ f

(
YV̄ j |XV̄ j , DV̄ j = 0

)
em(XV̄ j)α (1− p) ]

∝ −
∑
ij

ln
[
1− λ2

(
em(Xij)α − 1

)]
+
∑
i,j∈V
D=0

m (Xij)α−
1

2
nv,D=1 lnσ2

1

−
∑
i,j∈V
D=1

[
1

2σ2
1

(Yij −Xijβ)2

]
−
∑
i,j∈V
D=0

[
1

2σ2
0

(Yij −Xijβ)2

]
− 1

2
nv,D=0 lnσ2

0

+

nV̄∑
j=1

ln

[
(2π)−1/2σ−1

1 exp

{
−1

2σ2
1

(
YV̄ j −XV̄ j,D=1β

)2}
p

+(2π)−1/2σ−1
0 exp

{
−1

2σ2
0

(
YV̄ j −XV̄ j,D=0β

)2}
em(XV̄ j)α (1− p)

]
.(4.12)

The Newton-Raphson algorithm can be used to obtain ξ̂.

The ROC curve is given by ROC = S1

(
S−1

0 (t)
)

and can be viewed by plotting S1 (t)

against S0 (t) for all possible screening test thresholds t, where Sd is the survival function of

the screen test for subjects with disease outcome d. For the SPEL-ROC, the screening test

is assumed to be normally distributed and the survival function can be estimated by

ŜD (t) = Φ

(
Xβ̂ − t
σ̂ (D)

)
,

(4.13)

where Φ denotes the standard normal cumulative distribution function, Xβ = β̂0 + β̂1D +

β̂2X + β̂3XD, and σ̂ (D) = σ̂1D + σ̂0 (1−D). The estimated ROC curve is seen by plotting

Ŝ1 (t) against Ŝ0 (t) for all possible screening test values, t, and it is estimated by

R̂OC
P

V,V̄ (t) = Ŝ1

(
Ŝ−1

0 (t)
)
. (4.14)
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4.3 Variance estimation of the SPEL-ROC

Standard error estimates were generated using the bootstrap method (Efron and Tibshi-

rani, 1993). The following algorithm was applied to each of 1,000 iterations of the simulation.

1) From the generated sample population, we drew B independent bootstrap samples

s1, s2, ..., sB of size nV with replacement, following the proposed sampling design in

Section 4.2.

2) For each bootstrap sample we then computed the SPEL-ROC, denoted θ̂b and given in

(4.14), resulting in B values of the SPEL-ROC.

3) The average of these bootstrap ROC estimators is given by
¯̂
θb = 1

B

∑B
b=1 θ̂b with variance

V̂
(
θ̂b

)
= 1

B

∑B
b=1

(
θ̂b −

¯̂
θb

)2
and standard deviation given by

√
V̂
(
θ̂b

)
.

4) We repeated these steps 1,000 times in generating the simulation results.

The ŜE displayed in the simulation results was found by taking the average of the standard

deviation estimates across 1,000 independent iterations of the simulation.

4.4 Simulation study

We evaluate the behavior of the SPEL-ROC under many situations to better examine

its robustness. The simulation studies were conducted using R version 2.14. The data were

generated under the binormal model given by Y = Xβ + σ (D) ε = β0 + βDD + βXX +

βXDXD + σ (D) ε, where ε ∼ N (0, 1), X ∼ N (0, 2), σ (D) = σ1D + σ0 (1−D), and D ∼

Bernoulli (0.3) where D = 1 for diseased subjects and D = 0 for non-diseased subjects.

Model parameters are given by: β0 = 0.5, βD = 1, βX = 0.5, βXD = −0.3, σ2
1 = 1, and

σ2
0 = 2. The population size used in simulations is N = 1000 and the distribution of Y is

partitioned into three mutually exclusive sets given by C1 = (−∞, a1], C2 = (a1, a2], and

C3 = (a2,∞). In the following simulations, we consider the impact of 1) varying the sample

size, nV and 2) varying the proportion of SRS to TDS component sizes, n0
nV

. The variations

under consideration are: validation sample size (nV ) 120, 240, and 360; and proportion of
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SRS subjects among validation set ( n0
nV

) 0.25, 0.5, and 0.75. For simulation results, the

estimated ROC curve, standard errors, average of the standard error estimates, and 95%

nominal coverage probabilities for an estimator are obtained from 1000 independent runs.

Estimated standard errors were obtaining with bootstrapping, using 50 replicate samples.

Sample allocation for TDS

The SPEL-ROC uses the TDS design to target subjects in all three intervals of the screen-

ing test distribution with sampling fraction n0
nV

= 0.5. This sample consists of the following

three components:

1) SRS component of size n0,

2) TDS component of size n1 + n2 + n3 where n1 subjects are sampled such that Y1j ∈

C1 = (−∞, a1], n2 subjects are sampled such that Y2j ∈ C2 = (a1, a2], n3 subjects are

sampled such that Y3j ∈ C3 = (a2,∞), and n1 = n2 = n3, and

3) non-validation component of size N − nV , comprised of all subjects not sampled into

the SRS and TDS components.

Estimators to be compared

The SPEL-ROC, given by R̂OC
P

V,V̄ in (4.14), is compared to two estimators in the simu-

lation study. Under each setting, we compare the following three estimators.

1) LS-ROC: the SRS data only estimator, denoted R̂OC
SRS

V (t), given in Section 4.2.2.

2) SPEL-ROC(SRS): the SRS with validation and non-validation data estimator, denoted

R̂OC
SRS

V,V̄ , has the same form as the SPEL-ROC given in (4.14). The difference between

the SPEL-ROC(SRS) and the SPEL-ROC is the sampling scheme. Inclusion of this

estimator gives a comparison of the SRS and TDS designs while incorporating both

validation and non-validation data.

3) SPEL-ROC: the proposed TDS with validation and non-validation data estimator, de-

noted R̂OC
P

V,V̄ , is given by (4.14).
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Results

Unbiasedness All three ROC curve estimators yield unbiased estimates. To illustrate this,

we simulated data using multiple allocations and sample sizes. Table 4.1 shows that the

average of each ROC curve estimator is close to or equal to the true value. Other allocation

schemes were considered for the SPEL-ROC in Table 4.3 by varying the proportion of subjects

allocated to the SRS component ( n0
nV

= (0.25, 0.5, 0.75)). In all allocations and sample sizes,

the SPEL-ROC continues to be unbiased.

Efficiency The SPEL-ROC and SPEL-ROC(SRS) are more efficient than the LS-ROC.

For smaller sample sizes, nV = 120 in Table 4.1, the SPEL-ROC has smaller SE for lower

FPR values and the SPEL-ROC(SRS) has a smaller SE for a FPR of 0.5 or greater. With

a larger sample size, nV = 360, Table 4.1 shows that while the SPEL-ROC has smaller SE

for low FPRs (0.3 or less), and the SEs for this SPEL-ROC and the SPEL-ROC(SRS) are

the same when the FPR exceeds 0.3 For example, consider nV = 120 and FPR= {0.1, 0.3},

the SPEL-ROC has SEs of 0.057 and 0.069, respectively, compared to 0.060 and 0.070 for the

SPEL-ROC(SRS). Whereas, for nV = 360 and FPR= {0.1, 0.3}, the SPEL-ROC has SEs of

0.038 and 0.045, respectively, compared to 0.042 and 0.047 for the SPEL-ROC(SRS) and for

FPR= {0.5, 0.7, 0.9} both SPEL-ROC and SPEL-ROC(SRS) have SEs 0.031, 0.014, 0.002,

respectively. This supports the idea that both the inclusion of non-validation subjects creates

a more efficient alternative to the SRS design using the ordinary least squares method to

estimate the model parameters while sampling the same number of subjects. The simulation

studies suggest that for smaller values of the FPR, less than 0.5, the SPEL-ROC is the most

efficient out of the three ROC estimators. The bootstrapped standard errors estimated the

SE well, with coverage probabilities close to the nominal level of 0.95. For both nV = 120 and

nV = 360, the SE and ŜE are equal or very close to the same value. The greatest difference

can be seen for nV = 360 and n0
nV

= 0.25, for a FPR of 0.3 we have SE of 0.048 and ŜE

slightly underestimates the SE, given by 0.045. In Table 4.3, for nV = 360 and n0
nV

= 0.5,

the coverage probability declines (0.950, 0.941, 0.922, 0.910, 0.891) as the FPR increases (0.1,

0.3, 0.5, 0.7, 0.9). This trend was observed for all allocations considered in Table 4.3. Table

4.2 shows results similar to Table 4.1 in terms of efficiency of the covariate specific ROC
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curve estimators. Table 4.2 and Figure 4.1 show the utility of covariate-specific ROC curve

estimator by identifying covariate values where the screening test is more effective.

4.5 Analysis of the lung cancer study data

We used the SPEL-ROC to analyze non-small-cell lung cancer (NSCLC) data from the

CALGB 150807 study (Bueno et al., 2012) conducted by the Cancer and Leukemia Group B.

This study is a subset of patients registered in the CALGB 140202 study who have stage 1A

or 1B non-small-cell lung cancer (NSCLC), have not received preoperative chemotherapy or

radiation, and are not missing histological, demographic, clinical, and follow-up information

of interest. Among patients in the CALGB 150807 study, 1,061 patients were not censored

before 12 months and were used in this analysis.

Lung cancer is the most common cause of cancer death among men and women in the world

(Blanchon et al., 2006). Lung cancer is classified as either small-cell lung carcinoma (SCLC)

or non-small-cell lung carcinoma (NSCLC), of which NSCLC accounts for approximately 80%

of all lung cancers. After surgical lung resection, a large proportion of stage 1 NSCLC patients

have cancer recurrence within five years (Bueno et al., 2012). When surgery is used as the

primary treatment for NSCLC, adjuvant chemotherapy may benefit patients who have a high

risk of cancer recurrence. Identifying patients who are at high risk of cancer recurrence

is important in order for treatment to be given to those who would benefit most. This is

an important area of study for patients, families, and doctors when making decisions on a

treatment plan.

The Balcone risk score, outlined by Blanchon et al. (2006), has been developed to identify

patients who are at greatest risk of cancer recurrence. To select the variables that are included

in the scoring algorithm, Blanchon et al. (2006) used a Cox model to identify variables that

were independently associated with mortality. The associated variables were then weighted to

create the Balcone risk index. The components of the risk score are given by: age (>70 years,

1 point); sex (male, 1 point); performance status at diagnosis (reduced activity, 3 points;

active >50%, 5 points; inactive >50%, 8 points; and total incapacity, 10 points); histological
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type (large-cell carcinoma, 2 points); and tumour-node-metastasis (TNM) staging system

(IIA or IIB, 3 points; IIIA or IIIB, 6 points; and IV, 8 points). For the data used in this

analysis, the Balcone risk score ranges from 0 to 15.

The goal of this analysis is to summarize the ability of the Balcone risk score to distinguish

between patients who survive beyond 12 months and those who do not. This will allow us

to evaluate the benefit of using the Balcone risk score to identify patients at a higher risk

of early cancer recurrence. The outcome of interest is survival beyond 12 months and the

screening test is the Balcone risk score. The ROC curve is estimated at different ages to see if

the Balcone score is a more effective screening test at certain ages. Although all information

is available for these patients, we illustrate the utility of the proposed ROC curve estimator

by sampling from the study data and evaluating the estimated ROC curve by age. Table 4.4

gives descriptive statistics for the Balcone risk score and patient age, stratified by survival at

12 months. Cut-points for the TDS component were defined by α = 1 standard deviations

from the mean of the Balcone risk score. A sample size of nV = 360 was used for all estimators

compared and details on sample allocation for each estimator are given in Table 4.8. The LS-

ROC has an SRS of size n = 360. The SPEL-ROC(SRS) allocates 100% of the sample to the

SRS component and utilizes incomplete data from the non-validation set. The SPEL-ROC

allocates 50% of the validation sample to the SRS component and samples the remaining 50%

are allocated equally between the three intervals, Ci, such that n1 = n2 = n3 = 60, while

utilizing incomplete data from the non-validation set.

Table 4.6 and Figure 4.2 show the results from the analysis of the lung cancer study data.

We have modeled the Balcone risk score using information for the disease status and the

patient age. These results show that the Balcone risk score is a more effective screening test

for survival at 1 year for younger ages compared to older ages.

4.6 Analysis of the Preterm Prediction Study data

We used the SPEL-ROC to analyze data from the Preterm Prediction Study, a multi-

center prospective study designed to study spontaneous preterm birth (Goldenberg et al.,
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1996). The Maternal Fetal Medicine Units Network of the National Institute of Child Health

and Human Development carried out this study using ten centers to recruit women. There

were 3073 women recruited between October 1992 and July 1994. Measurements were col-

lected every two weeks from 22 to 30 weeks’ gestation. Among the 3073 women recruited,

3001 had valid measurements of interest for this analysis.

PTB is defined as delivery at less than 37 weeks of gestation and contributes to neonatal

morbidity and mortality which increases as gestational age decreases (McCormick, 1985).

Bastek and Elovitz (2013) combined results from multiple studies on this topic to gain a

better understanding the relationship between biomarkers and PTB. The results were not

definitive for most biomarkers with the exception of fetal fibronectin (FFN).

Fetal fibronectin (FFN) is a protein that is produced by the fetal membrane. Knowing

the FFN measurement will not change the incidence of spontaneous PTB but it will effect the

treatment plan. Other variables are important in studying the ability of FFN to distinguish

between PTB and not-PTB. Cervical length (CL) has been shown to be associated with PTB,

so a model that allows us to observe the estimated ROC curve at different CL measurements

may lead to a better understanding of population subgroups where FFN functions as a better

screening test. Other variables, such as maternal age and previous PTB, are also of interest

in this setting. Deshpande et al. (2013) found that FFN has moderate accuracy in predicting

PTB. Although many studies are concerned with the ability to predict spontaneous PTB,

Bastek and Elovitz (2013) suggest that the ability to predict those who will not have spon-

taneous PTB is also valuable. Because FFN typically has a high negative predictive value

(proportion of true negatives over all who test negative), a negative FFN test is widely used

in clinical practice to send patients home. Measurable levels of FFN are considered to be

abnormal between 20 and 37 weeks’ gestation. Lockwood et al. (1991) show that in 588 FFN

samples from uncomplicated pregnancies, a higher percentage of subjects were positive for

FFN (level above 0.05 µg/mL) before 22 and after 37 weeks’ gestation compared to between

22 and 37 weeks’ gestation. For example the percentage of cervical samples with positive

FFN for <22, 22 to 37 and >37 weeks’ gestation were 24%, 4%, and 32%, respectively. This

is an important area of study due to the negative effects of spontaneous PTB on maternal
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and child health outcomes.

In our analysis, the outcome of interest is spontaneous PTB at less than 37 weeks’ gestation

and the screening test considered in FFN. We include cervical length as a covariate in the

model. Because the standard deviation is large compared to the mean, the cut-points for

the TDS component were defined using α = 0.15. A sample size of nV = 360 was used for

all estimators compared. The LS-ROC has an SRS of size n = 360. The SPEL-ROC(SRS)

allocates 100% of the sample to the SRS component and utilizes incomplete data from the non-

validation set. The SPEL-ROC allocates 50% of the validation sample to the SRS component

and the remaing 50% are allocated equally between the three intervals, Ci, such that n1 =

n2 = n3 = 60, while utilizing incomplete data from the non-validation set. Table 4.9 and

Figure 4.3 show the results from the analysis of the Preterm Prediction Study data. We

have modeled the screening test using information for the disease status and the cervical

length. These results show that the screening test, FFN, is a more effective at screening for

spontaneous PTB when the cervical length is shorter.

4.7 Discussion

We have proposed a semi-parametric estimator for the covariate-specific ROC curve, which

allows us to summarize the ability of a screening test to discern between diseased and non-

diseased subjects for specified covariate values. This estimator incorporates a TDS design

and includes both validation and non-validation data. Although a binormal distribution is

assumed for the screening test variable, the use of empirical likelihood methods allows us to

estimate the ROC without specifying a distribution for the covariates.

The proposed design is motivated by the need to improve efficiency in estimating the

ROC curve and to develop methods to observe the utility of the screening test at different

covariate values. Ascertaining true disease status can be costly and invasive for subjects.

Although disease status is missing for the non-validation set, the proposed estimator takes

advantage of all information available for a larger number of subjects than the validation-only

estimators. Although all estimators are unbiased, the proposed estimator was shown to be
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the most efficient for low FPR values, compared to two competing ROC curve estimators. It

is unclear if the either the SPEL-ROC or SPEL-ROC(SRS) is superior at higher FPR values,

in terms of the standard error. These results suggest that to obtain the same variability less

subjects would be needed when the non-validation subjects are used to estimate the ROC

curve, reducing study cost and subject burden. These results support the idea that inclusion

of non-validation subjects creates a more efficient alternative to the validation-only estimators

while sampling the same number of subjects. For example, with a sample size of 360 and FPR

of 0.1, the standard error of the proposed estimator is 0.038 compared to 0.080 and 0.060 for

the LS-ROC and SPEL-ROC(SRS), respectively (in Table 4.1). In contrast, with a sample

size of 360 and FPR of 0.7, the standard error of the proposed estimator is 0.014 compared

to 0.016 and 0.014 for the LS-ROC and SPEL-ROC(SRS), respectively.

More simulation studies are needed to explore the robustness of the SPEL-ROC. Non-

normally distributed data should be simulated for both the screening test and the covariates.

The empirical likelihood methods allow for ROC curve estimation without specification of the

distribution of the covariates. Simulating covariates using non-normal distributions will allow

us to see how well the ROC curve estimator works for different types of data. Simulating

the screening test variable using non-normal distributions will allow us to see how well the

SPEL-ROC performs when the distribution of the screening test is mis-specified.
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Table 4.1: Comparison of SPEL-ROC and competing methods

R̂OC
SRS

V R̂OC
SRS

V,V̄ R̂OC
P

V,V̄

nV FPR True ROC Mean SE Mean SE Mean SE

120 0.1 0.208 0.212 0.080 0.200 0.060 0.200 0.057
0.3 0.602 0.600 0.092 0.582 0.070 0.581 0.069
0.5 0.841 0.838 0.063 0.826 0.046 0.824 0.048
0.7 0.959 0.955 0.029 0.952 0.021 0.950 0.023
0.9 0.998 0.996 0.005 0.996 0.006 0.996 0.004

360 0.1 0.208 0.212 0.048 0.208 0.042 0.207 0.038
0.3 0.602 0.605 0.054 0.600 0.047 0.599 0.045
0.5 0.841 0.842 0.036 0.839 0.031 0.839 0.031
0.7 0.959 0.958 0.016 0.958 0.014 0.958 0.014
0.9 0.998 0.997 0.002 0.997 0.002 0.997 0.002

Cutpoints for the TDS component are defined by (a1, a2) = (µY − ασY , µY + ασY )

where α = 1. R̂OC
SRS

V denotes the LS-ROC which uses SRS; R̂OC
SRS

V,V̄ denotes the
SPEL-ROC(SRS) which uses SRS and utilizes information for both validation and non-

validation data; and R̂OC
P

V,V̄ denotes the proposed SPEL-ROC which uses TDS and
utilizes information from both validation and non-validation data. All estimators sample
the same number of subjects. ROC curve estimates are calculated for the population
average of the covariate.
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Table 4.2: SPEL-ROC for specific covariate values

R̂OC
SRS

V R̂OC
SRS

V,V̄ R̂OC
P

V,V̄

FPR True ROC Mean SE Mean SE Mean SE

X = population average of the covariate

0.1 0.208 0.212 0.048 0.208 0.042 0.207 0.038
0.3 0.602 0.605 0.054 0.600 0.047 0.599 0.045
0.5 0.841 0.842 0.036 0.839 0.031 0.839 0.031
0.7 0.959 0.958 0.016 0.958 0.014 0.958 0.014
0.9 0.998 0.997 0.002 0.997 0.002 0.997 0.002

X = −0.5 0.1 0.246 0.260 0.054 0.257 0.049 0.255 0.043
0.3 0.649 0.664 0.054 0.662 0.050 0.658 0.046
0.5 0.870 0.877 0.033 0.876 0.030 0.874 0.029
0.7 0.969 0.970 0.013 0.971 0.011 0.970 0.011
0.9 0.998 0.998 0.002 0.998 0.001 0.998 0.001

X = 1 0.1 0.144 0.136 0.043 0.137 0.039 0.137 0.037
0.3 0.503 0.485 0.066 0.489 0.062 0.487 0.059
0.5 0.773 0.758 0.052 0.762 0.049 0.759 0.048
0.7 0.932 0.924 0.027 0.926 0.024 0.925 0.024
0.9 0.995 0.993 0.005 0.994 0.004 0.993 0.004

Cutpoints for the TDS component are defined by (a1, a2) = (µY − ασY , µY + ασY ) where
α = 1.
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Figure 4.1: Covariate-specific ROC Curve

The SPEL-ROC is calculated with a sample size of nV = 360 and allocation given by
(n0, n1, n2, n3, nV̄ ) = (180, 60, 60, 60, 640). The parameter c indicates all possible values of the screen-
ing test, Y. Cutpoints for the TDS component are defined by (a1, a2) = (µY − ασY , µY + ασY ) where
α = 1.
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Table 4.3: Properties of the SPEL-ROC

FPR

(n0, n1, n2, n3, nV̄ ) 0.1 0.3 0.5 0.7 0.9

nV = 120, n0
nV

= 0.5

(60,20,20,20,880) R̂OC
P

V,V̄ 0.200 0.581 0.824 0.950 0.996

SE 0.057 0.068 0.048 0.023 0.004

ŜE 0.059 0.070 0.050 0.025 0.006
95% CP 0.942 0.936 0.938 0.929 0.941

nV = 360, n0
nV

= 0.5

(180,60,60,60,640) R̂OC
P

V,V̄ 0.207 0.599 0.839 0.958 0.997

SE 0.038 0.045 0.031 0.014 0.002

ŜE 0.039 0.045 0.030 0.012 0.002
95% CP 0.950 0.941 0.922 0.910 0.891

nV = 360, n0
nV

= 0.25

(90,90,90,90,640) R̂OC
P

V,V̄ 0.208 0.600 0.840 0.958 0.997

SE 0.040 0.048 0.033 0.014 0.002

ŜE 0.039 0.045 0.030 0.012 0.002
95% CP 0.930 0.934 0.913 0.892 0.869

nV = 360, n0
nV

= 0.75

(270,30,30,30,640) R̂OC
P

V,V̄ 0.209 0.600 0.839 0.958 0.997

SE 0.041 0.048 0.032 0.014 0.002

ŜE 0.041 0.046 0.030 0.013 0.002
95% CP 0.940 0.931 0.924 0.913 0.909

The fraction n0

nV
is the proportion of subjects allocated to the SRS com-

ponent out of the total number of validation subjects sampled. Cutpoints
for the TDS component are defined by (a1, a2) = (µY − ασY , µY + ασY )
where α = 1. The sample allocation, (n0, n1, n2, n3, nV̄ ), gives the number
of subjects allocated to the SRS component, three intervals of the TDS
component, and the non-validation set, respectively. The standard error
estimators, ŜE, are found by bootstrapping.
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Table 4.4: Descriptive statistics for the Balcone risk score and age of patients

N Minimum Q1 Median Q3 Maximum

Balcone risk score (FFN)
Overall 1061 0 1 1 3 10

Survival beyond 12 months 965 0 1 1 3 10
Survival less than 12 months 111 0 1 2 5 9

Age
Overall 1061 23.9 61.9 69.3 75.5 95.1

Survival beyond 12 months 965 23.9 61.4 68.9 75.0 95.1
Survival less than 12 months 111 43.2 66.2 72.0 76.8 87.5

Table 4.5: Sample allocation for the non-small-cell lung cancer data

Component MW-AUC SPEL-AUC(SRS) NPEL-AUC SPEL-AUC

SRS 360 360 180 180
TDS (n1, n2, n3) (0, 0, 0) (0, 0, 0) (60, 60, 60) (60, 60, 60)
non-validation 0 701 0 701
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Table 4.6: Lung Cancer Study: Comparison of Covariate-specific ROC Curve Estimators

FPR R̂OC
SRS

V R̂OC
SRS

V,V̄ R̂OC
P

V,V̄

68.3 Years old (study average)

0.1 0.330 0.229 0.432
0.3 0.551 0.474 0.701
0.5 0.699 0.657 0.844
0.7 0.820 0.809 0.932
0.9 0.931 0.939 0.986

45 Years old 0.1 0.352 0.442 0.489
0.3 0.575 0.704 0.748
0.5 0.720 0.841 0.875
0.7 0.835 0.929 0.949
0.9 0.939 0.984 0.990

85 Years old 0.1 0.317 0.137 0.400
0.3 0.537 0.338 0.671
0.5 0.686 0.521 0.823
0.7 0.810 0.700 0.921
0.9 0.926 0.885 0.982

All estimators are calculated with a sample size of nV =
360. For the SPEL-ROC, cutpoints for the TDS com-
ponent are defined by (a1, a2) = (µY − ασY , µY + ασY )
where α = 1.

Table 4.7: Preterm Prediction Study: Descriptive Statistics for FFN and Cervical Length

N Minimum Q1 Median Q3 Maximum

Fetal fibronectin (FFN)

Overall 2987 0 0.37 2.80 7.68 2151.44
Spontaneous PTB 308 0 0.88 4.47 16.22 926.55

Not PTB 2679 0 0.28 2.60 7.20 2151.44

Cervical length (CL)

Overall 2987 0 30 35 40 70
Spontaneous PTB 308 0 26 33 38 58

Not PTB 2679 0 31 35 40 70
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Figure 4.2: Lung Cancer Study: SPEL-ROC by Age

The SPEL-ROC is calculated with a sample size of nV = 360 and allocation given by
(n0, n1, n2, n3, nV̄ ) = (180, 60, 60, 60, 701). Cutpoints for the TDS component are defined by (a1, a2) =
(µY − ασY , µY + ασY ) where α = 1.

Table 4.8: Sample allocation for the Preterm Prediction Study

Component LS-ROC SPEL-ROC(SRS) SPEL-ROC

SRS 360 360 180
TDS (n1, n2, n3) (0, 0, 0) (0, 0, 0) (60, 60, 60)
non-validation 0 2627 2627
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Table 4.9: Preterm Prediction Study: Comparison of Covariate-specific ROC Curve Estima-
tors

FPR R̂OC
SRS

V R̂OC
SRS

V,V̄ R̂OC
P

V,V̄

CL = 35.2mm (population average)

0.1 0.153 0.200 0.188
0.3 0.370 0.391 0.378
0.5 0.558 0.547 0.536
0.7 0.734 0.697 0.687
0.9 0.906 0.861 0.856

CL = 15mm 0.1 0.442 0.446 0.304
0.3 0.708 0.668 0.525
0.5 0.847 0.797 0.678
0.7 0.934 0.890 0.805
0.9 0.986 0.964 0.925

CL = 25mm 0.1 0.281 0.312 0.242
0.3 0.545 0.533 0.452
0.5 0.723 0.684 0.609
0.7 0.857 0.809 0.751
0.9 0.961 0.926 0.895

CL = 40mm 0.1 0.109 0.154 0.165
0.3 0.264 0.328 0.345
0.5 0.475 0.480 0.500
0.7 0.662 0.635 0.655
0.9 0.866 0.820 0.835

All estimators are calculated with a sample size of nV =
360. For the SPEL-ROC, cutpoints for the TDS component
are defined by (a1, a2) = (µY − ασY , µY + ασY ) where α =
1.
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Figure 4.3: Preterm Prediction Study: SPEL-ROC by Cervical Length

The SPEL-ROC is calculated with a sample size of nV = 360 and allocation given by
(n0, n1, n2, n3, nV̄ ) = (180, 60, 60, 60, 2627). CL indicates cervical length (mm) and c indicates
all possible values of the screening test, FFN. Cutpoints for the TDS component are defined by
(a1, a2) = (µY − ασY , µY + ασY ) where α = 1.
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Chapter 5

Conclusions

In this dissertation, we have used semi-parametric empirical likelihood methods to develop

estimators for the area under the ROC curve (AUC), partial AUC, and the covariate-specific

ROC curve. These tools help us study the ability of a screening test to discern between

diseased and non-diseased populations. We use a test-dependent sampling (TDS) design

where TDS inclusion depends on the continuous screening test measure. The TDS design

incorporates an SRS component, a TDS component, and the remaining un-sampled portion of

the population in which disease status is not validated. The TDS design allows investigators

to over-sample subjects from specified ranges of the screening test variable, allowing for a

concentration of resources where there is the greatest amount of information. This sampling

design is particularly useful in studies similar to the lung cancer study described by Bueno

et al. (2012), where the true disease status is expensive to ascertain due to the length of time

needed to observe the outcome or the invasive procedures needed to validate disease status.

In Chapters 2 and 3, we developed semi-parametric empirical likelihood estimators for

the area under the ROC curve (AUC) and the partial AUC, respectively. No distributional

assumptions are made for the screening test and the disease status is not validated for the

non-validation subjects in the un-sampled portion of the population. Simulation studies show

that both the use of the TDS design and the inclusion of non-validation subjects give a more

efficient alternative to the SRS designs and validation-only estimators when sampling the

same number of subjects. Although all estimators compared are unbiased, the proposed AUC

and pAUC estimators are shown to be the most efficient, compared to competing estimators.

This suggests that to obtain the same variability, fewer subjects would be needed when the
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proposed method is used, reducing study cost and subject burden. Analysis of data from the

lung cancer study and the Preterm Prediction Study show that the proposed AUC and pAUC

estimators are effective tools for discerning between the two outcome populations.

In Chapter 4, we developed a semi-parametric estimator for the covariate-specific ROC

curve. Empirical likelihood methods were used to estimate the ROC curve without making

assumptions on the distribution of the covariates. Normality of the screening test variable

is assumed for this estimator. Simulation studies support the idea that inclusion of the

un-sampled subjects, in which the disease status is not validated, improves efficiency com-

pared to the estimator which uses only sampled subjects will full data available. Analysis

of data from the lung cancer study and the Preterm Prediction Study show the utility of

the covariate-specific ROC curve estimator by showing that by including covariates in the

model, the screening test is more effective at discerning disease status for certain subsets of

the population.

The TDS design is shown to improve efficiency of the proposed estimators compared to

current estimators both in simulation studies and in analyzing data from the lung cancer

study described by Bueno et al. (2012) and data from the Preterm Prediction Study (Gold-

enberg et al., 1996). The proposed estimators utilize empirical likelihood methods to reduce

the distributional assumptions needed to estimate AUC, pAUC, and the covariate-specific

ROC curve. Future research for the covariate-specific ROC curve will include relaxation of

distributional assumptions of the screening test variable.
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APPENDIX A

Asymptotic results for the SPEL-AUC

In this section we develop the asymptotic distribution of the SPEL-AUC, given by ÂP
V,V̄

in (2.14). First we show the asymptotic distribution of η = (p, α, β, λ2) in Section A.1. Next,

we derive the asymptotic distribution of R̂N (A, η) in Section A.2, which is used to find the

asymptotic distribution of the proposed estimator, ÂP
V,V̄

.

A.1 Asymptotic properties of η = (p, β, α, λ)

A.1.1 Asymptotic distribution for ξ = (α, β, λ2)

The Newton-Raphson algorithm was used to construct estimators for ξ = (α, β, λ2). The

estimator for p was constructed independently of ξ. Consider the profile log-likelihood function

pl (ξ) ∝ −
∑
ij

ln
[
1− λ2

(
eα+βyij − 1

)]
+ nV,D=0α+ β

∑
i,j∈V
D=0

Yij

+

nV̄∑
j=1

ln
[
p+ eα+βYV̄ j (1− p)

]
. (A.1)

Define Hij (η) such that the derivative of the profile likelihood (A.1) is given by ∂pl(ξ)
∂ξ =∑N

l=1 Hij (η). As N → ∞, ni
N → ρi for i =

(
0, 1, 2, 3, V̄

)
. Consider the Taylor expansion of
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∂pl(ξ)
∂ξ |ξ=ξ̂ at ξ:

∂pl (ξ)

∂ξ
|ξ=ξ̂ = 0 =

∂pl (ξ)

∂ξ
+
(
ξ̂ − ξ

) ∂2pl (ξ)

∂ξl∂ξl′
+ op(1)

⇒ N1/2
(
ξ̂ − ξ

)
= N−1/2

[
−1

N

∂2pl (ξ)

∂ξl∂ξl′

]−1
∂pl (ξ)

∂ξ
+ op(1)

= N−1/2

[
−1

N

∂2pl (ξ)

∂ξl∂ξl′

]−1 ∑
i∈(0,1,2,3,V̄ )

ni∑
j=1

Hij (η) + op(1)

=
∑

i∈(0,1,2,3,V̄ )

ρ
1/2
i n

−1/2
i

[
−1

N

∂2pl (ξ)

∂ξl∂ξl′

]−1 ni∑
j=1

Hij (η) + op(1). (A.2)

Lemma 1: Applying the central limit theorem to each term n
−1/2
i

[
−1
N

∂2pl(ξ)
∂ξi∂ξi′

]−1∑ni
j=1 Hij (η)

in (A.2), we have

√
N
(
ξ̂ − ξ

)
d→ N (0, ψξ), (A.3)

where ψξ =
∑

i∈(0,1,2,3,V̄ ) ρ
1/2
i var

([
−1
N

∂2pl(ξ)
∂ξl∂ξl′

]−1
Hij (η)

)
.

A.1.2 Asymptotic properties of p

The estimate of p is found using the SRS portion of the test-dependent sample. Consider

the likelihood and log-likelihood for the subjects sampled in the SRS portion, given by

LSRS (fD) =

n0∏
j=1

f (Y0j , D0j)

=
∏
j:D=1

f (Y0j |D0j = 1) p×
∏
j:D=0

f (Y0j |D0j = 0) (1− p)

lSRS (fD) =
∑
j:D=1

{ln f (Y0j |D0j = 1) + ln p}+
∑
j:D=0

{ln f (Y0j |D0j = 0) + ln (1− p)}

∝ n0,D=1 ln p+ n0,D=0 ln (1− p) . (A.4)

Define P0j such that dlSRS(p)
dp =

∑n0
j=1 P0j (p). Consider the Taylor expansion of dlSRS(p)

dp |p=p̂
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at p:

dlSRS (p)

dp
|p=p̂ = 0 =

dlSRS (p)

dp
+ (p̂− p) d

2lSRS (p)

dp2
+ op(1)

=

n0∑
j=1

P0j + (p̂− p)
n0∑
j=1

d

dp
P0j + op(1)

⇒ n
1/2
0 (p̂− p) = n

−1/2
0

[
−1

n0

∂2lsrs (p)

p2

]−1 n0∑
l=1

P0j + op(1) (A.5)

Lemma 2: Applying the central limit theorem to A.5, we have

√
N (p̂− p) d→ N (0, ψp), (A.6)

where ψp =
∑n0

j=1 ρ
1/2
i var

([
−1
n0

∂2lsrs(p)
p2

]−1
P0j

)
.

A.2 Asymptotic properties of R̂N (A, η)

In developing the asymptotic distribution of ÂP
V,V̄

, we assume that the U-statistic, UN (A, η) =

RN (A, η)−E (RN (A, η)) is stochastically equicontinuous. In this section we derive the asymp-

totic distribution of RN (A, η) and use this to develop the asymptotic distribution of the

SPEL-AUC, given by ÂP
V,V̄

. Suppose A is the true AUC value and η = (p, α, β, λ2). To show

asymptotic normality of ÂP
V,V̄

, consider the two-sample U-process, UN (A, η) = RN (A, η) −

E (RN (A, η)), where RN (A, η) = 1
N2

∑
i 6=j D

′
i

(
1−D′j

)
(Iij −A), Iij = I (Yi > Yj), and

D′l =

 Dl if l ∈ V

Ê (Dl) = p
p+eα+βyl (1−p) if l ∈ V̄

.

Now, consider the difference between the proposed AUC estimator and the true AUC.

Next, we use this difference to solve for RN (A, η), given by:

ÂPV,V̄ −A =

∑
i 6=j D

′
i

(
1−D′j

)
Iij∑

i 6=j D
′
i

(
1−D′j

) −A

=
N2RN (A, η)∑
i 6=j D

′
i

(
1−D′j

)
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⇒ RN (A, η) =
1

N2

∑
i 6=j

D′i
(
1−D′j

)
(Iij −A)

=
(
ÂPV,V̄ −A

)
× 1

N2

∑
i 6=j

D′i
(
1−D′j

)
. (A.7)

Let Rij = D′i

(
1−D′j

)
(Iij −A). From Asymptotic Statistics (Chapter 12, van der Vaart),

we know that

R̂N (A, η) =
1

N

N∑
i

E [Rij |Yi, Di] +
1

N

N∑
j

E [Rij |Yj , Dj ]

=
1

N

N∑
i

E [Rij |Yi, Di] +
1

N

N∑
i

E [Rji|Yi, Di]

=
1

N

N∑
i

E [Rij +Rji|Yi, Di]. (A.8)

Lemma 3: From Asymptotic Statistics (Chapter 12, van der Vaart), if

E

[(
D′i

(
1−D′j

)
(Iij −A)

)2
]
< ∞ then

√
N
(
RN (A, η)− E [RN (A, η)]− R̂N (A, η)

)
p→ 0

and

√
N (RN (A, η)− E [RN (A, η)])

d→ N (0,Σ) (A.9)

where Σ = 4V ar (Rij).

Ultimately, we want to know the asymptotic distribution of
√
N
(
ÂP
V,V̄
−A

)
. This can

be accomplished by considering the Taylor expansion of
√
NRN

(
ÂP
V,V̄

, η̂
)

at (A, η) and using

the asymptotic distribution of RN (A, η), given in (A.9). We expand
√
NRN

(
ÂP
V,V̄

, η̂
)

at

(A, η). First, note that
√
NRN

(
ÂP
V,V̄

, η̂
)

=
(
ÂP
V,V̄
− ÂP

V,V̄

)
×
∑

i 6=j D
′
i

(
1−D′j

)
= 0. This
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Taylor expansion is given by:

√
NRN

(
ÂPV,V̄ , η̂

)
=
√
NRN

(
ÂPV,V̄ , η̂

)
±
√
NRN (A, η)±

√
NE [RN (A, η)]±

√
NE

[
RN

(
ÂPV,V̄ , η̂

)]
=
√
N
{
RN

(
ÂPV,V̄ , η̂

)
− E

[
RN

(
ÂPV,V̄ , η̂

)]}
−
√
N {RN (A, η)− E [RN (A, η)]}

+
√
NE

[
RN

(
ÂPV,V̄ , η̂

)]
−
√
NE [RN (A, η)] +

√
NRN (A, η)

=
√
NE

[
RN

(
ÂPV,V̄ , η̂

)]
−
√
NE [RN (A, η)] +

√
NRN (A, η) . (A.10)

Since we assume that the U-process, UN (A, η) =
√
n {RN (A, η)− E [RN (A, η)]} is equicon-

tinuous, then

√
N
{
RN

(
ÂPV,V̄ , η̂

)
− E

[
RN

(
ÂPV,V̄ , η̂

)]}
→ 0 and

√
N {RN (A, η)− E [RN (A, η)]} → 0.

Now that we have simplified
√
NRN

(
ÂP
V,V̄

, η̂
)

, we can expand E
[
RN

(
ÂP
V,V̄

, η̂
)]

at (A, η)

within (A.10), which gives us:

√
NRN

(
ÂPV,V̄ , η̂

)
=
√
NE

[
RN

(
ÂPV,V̄ , η̂

)]
−
√
NE [RN (A, η)] +

√
NRN (A, η)

=
√
N { E [RN (A, η)] +

∂E [RN (A, η)]

∂A

(
ÂPV,V̄ −A

)
+

[
∂E [RN (A, η)]

∂η

]T
1x4

(
η̂P − η

)
4x1
}

−
√
NE [RN (A, η)] +

√
NRN (A, η) + op (1)

=
√
N

{
∂E [RN (A, η)]

∂A

(
ÂPV,V̄ −A

)
+

[
∂E [RN (A, η)]

∂η

]T
1x4

(
η̂P − η

)
4x1

}
+
√
NRN (A, η) + op (1) . (A.11)

To derive the asymptotic distribution of
√
N
(
ÂP
V,V̄
−A

)
, we solve for

(
ÂP
V,V̄
−A

)
in the

final expression of
√
NRN

(
ÂP
V,V̄

, η̂
)

in (A.11). Then, we use (A.2) and (A.5) to estimate the
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asymptotic variance. We express
√
N
(
ÂP
V,V̄
−A

)
as:

√
N
(
ÂPV,V̄ −A

)
= −

{
∂E [RN (A, η)]

∂A

}−1√
N

[
RN (A, η) +

[
∂E [RN (A, η)]

∂η

]T
1x4

(η̂ − η)4x1

]

= −
{
∂E [RN (A, η)]

∂A

}−1√
N

×

[
RN (A, η) +

∂E [RN (A, η)]

∂p
(p̂− p) +

[
∂E [RN (A, η)]

∂ξ

]T
1x3

(
ξ̂ − ξ

)
3x1

]

= −
{
∂E [RN (A, η)]

∂A

}−1 ∑
i∈(0,1,2,3,V̄ )

ρin
−1/2
i

ni∑
j=1

Qij .

We can re-express Rll′ = R(ij)(ij)′ so that the above express can be written as a double sum.

Define Qij as:

Qij (η) = E
(
R(ij)(ij)′ +R(ij)′(ij)

)
+ ρ−1

i

∂ERN (A, η)

∂p

[
−1

n0

∂2lsrs (p)

p2

]−1

P0jI (i = 0)

+
∂ERN (A, η)

∂ξ

[
−1

N

∂2pl (ξ)

∂ξi∂ξi′

]−1

Hij (η)

and Q̂ij = Ê
(
R(ij)(ij)′ +R(ij)′(ij)

)
+ ρ̂−1Ê

∂RN (A, η)

∂p

[
1

n0

∂2lsrs (p)

p2

]
|−1
p=p̂P0j (p̂)

+Ê
∂RN (A, η)

∂ξ

[
−1

N

∂2pl (ξ)

∂ξi∂ξi′

]
|−1

ξ=ξ̂
Hl

(
ξ̂
)
.
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APPENDIX B

Asymptotic results for the SPEL-pAUC

In this section we develop the asymptotic distribution of the SPEL-pAUC, given by ÂP
t:V,V̄

in (3.15). First we show the asymptotic distribution of η = (p, α, β, λ2) in section B.1. Next,

we derive the asymptotic distribution of R̂N (At, η) in section B.2, which is used to find the

asymptotic distribution of the proposed estimator, ÂP
t:V,V̄

.

B.1 Asymptotic distribution for η = (p, β, α, λ)

B.1.1 Asymptotic distribution for ξ = (α, β, λ2)

The Newton-Raphson algorithm was used to construct estimators for ξ = (α, β, λ2). The

estimator for p was constructed independently of ξ. Consider the profile log-likelihood function

pl (ξ) ∝ −
∑
ij

ln
[
1− λ2

(
eα+βyij − 1

)]
+ nV,D=0α+ β

∑
i,j∈V
D=0

Yij

+

nV̄∑
j=1

ln
[
p+ eα+βYV̄ j (1− p)

]
. (B.1)

Define Hij (η) such that the derivative of the profile likelihood (B.1) is given by ∂pl(ξ)
∂ξ =∑N

l=1 Hij (η). As N → ∞, ni
N → ρi for i =

(
0, 1, 2, 3, V̄

)
. Consider the Taylor expansion of
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∂pl(ξ)
∂ξ |ξ=ξ̂ at ξ:

∂pl (ξ)

∂ξ
|ξ=ξ̂ = 0 =

∂pl (ξ)

∂ξ
+
(
ξ̂ − ξ

) ∂2pl (ξ)

∂ξl∂ξl′
+ op(1)

⇒ N1/2
(
ξ̂ − ξ

)
= N−1/2

[
−1

N

∂2pl (ξ)

∂ξl∂ξl′

]−1
∂pl (ξ)

∂ξ
+ op(1)

= N−1/2

[
−1

N

∂2pl (ξ)

∂ξl∂ξl′

]−1 ∑
i∈(0,1,2,3,V̄ )

ni∑
j=1

Hij (η) + op(1)

=
∑

i∈(0,1,2,3,V̄ )

ρ
1/2
i n

−1/2
i

[
−1

N

∂2pl (ξ)

∂ξl∂ξl′

]−1 ni∑
j=1

Hij (η) + op(1). (B.2)

Lemma 1: Applying the central limit theorem to each term n
−1/2
i

[
−1
N

∂2pl(ξ)
∂ξi∂ξi′

]−1∑ni
j=1 Hij (η)

in (A.2), we have

√
N
(
ξ̂ − ξ

)
d→ N (0, ψξ), (B.3)

where ψξ =
∑

i∈(0,1,2,3,V̄ ) ρ
1/2
i var

([
−1
N

∂2pl(ξ)
∂ξl∂ξl′

]−1
Hij (η)

)
.

B.1.2 Asymptotic distribution for p

The estimate of p is found using the SRS portion of the test-dependent sample. Consider

the likelihood and log-likelihood for the subjects sampled in the SRS portion, given by

LSRS (fD) =

n0∏
j=1

f (Y0j , D0j)

=
∏
j:D=1

f (Y0j |D0j = 1) p×
∏
j:D=0

f (Y0j |D0j = 0) (1− p)

lSRS (fD) =
∑
j:D=1

{ln f (Y0j |D0j = 1) + ln p}+
∑
j:D=0

{ln f (Y0j |D0j = 0) + ln (1− p)}

∝ n0,D=1 ln p+ n0,D=0 ln (1− p) . (B.4)

Define P0j such that dlSRS(p)
dp =

∑n0
j=1 P0j (p). Consider the Taylor expansion of dlSRS(p)

dp |p=p̂
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at p:

dlSRS (p)

dp
|p=p̂ = 0 =

dlSRS (p)

dp
+ (p̂− p) d

2lSRS (p)

dp2
+ op(1)

=

n0∑
j=1

P0j + (p̂− p)
n0∑
j=1

d

dp
P0j + op(1)

⇒ n
1/2
0 (p̂− p) = n

−1/2
0

[
−1

n0

∂2lsrs (p)

p2

]−1 n0∑
l=1

P0j + op(1) (B.5)

Lemma 2: Applying the central limit theorem to A.5, we have

√
N (p̂− p) d→ N (0, ψp), (B.6)

where ψp =
∑n0

j=1 ρ
1/2
i var

([
−1
n0

∂2lsrs(p)
p2

]−1
P0j

)
.

B.2 Asymptotic distribution of R̂N (At, η)

In developing the asymptotic distribution of ÂP
t:V,V̄

, we assume that the U-statistic,

UN (At, η) = RN (At, η) − E (RN (At, η)) is stochastically equicontinuous. In this section

we derive the asymptotic distribution of RN (At, η) and use this to develop the asymptotic

distribution of the SPEL-pAUC, given by ÂP
t:V,V̄

. Suppose At is the true AUC value and

η = (p, α, β, λ2). To show asymptotic normality of ÂP
t:V,V̄

, consider the two-sample U-process,

UN (At, η) = RN (At, η)−E (RN (At, η)), whereRN (At, η) = 1
N2

∑
i 6=j D

′
i

(
1−D′j

)
(It:ij −At),

It:ij = I (Yi > Yj , Yj ∈ (t0, t1)), and D′l =

 Dl if l ∈ V

Ê (Dl) = p
p+eα+βyl (1−p) if l ∈ V̄

.

Now, consider the difference between the proposed pAUC estimator and the true pAUC.

Next, we use this difference to solve for RN (At, η), given by:

ÂPt:V,V̄ −At =

∑
i 6=j D

′
i

(
1−D′j

)
It:ij∑

i 6=j D
′
i

(
1−D′j

) −At

=
N2RN (At, η)∑
i 6=j D

′
i

(
1−D′j

)
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⇒ RN (At, η) =
1

N2

∑
i 6=j

D′i
(
1−D′j

)
(It:ij −At)

=
(
ÂPt:V,V̄ −At

)
× 1

N2

∑
i 6=j

D′i
(
1−D′j

)
. (B.7)

Let Rij = D′i

(
1−D′j

)
(It:ij −At). From Asymptotic Statistics (Chapter 12, van der

Vaart), we know that

R̂N (At, η) =
1

N

N∑
i

E [Rij |Yi, Di] +
1

N

N∑
j

E [Rij |Yj , Dj ]

=
1

N

N∑
i

E [Rij |Yi, Di] +
1

N

N∑
i

E [Rji|Yi, Di]

=
1

N

N∑
i

E [Rij +Rji|Yi, Di]. (B.8)

Lemma 3: From Asymptotic Statistics (Chapter 12, van der Vaart), if

E

[(
D′i

(
1−D′j

)
(It:ij −At)

)2
]
<∞ then

√
N
(
RN (At, η)− E [RN (At, η)]− R̂N (At, η)

)
p→

0. Consequently,

√
N (RN (At, η)− E [RN (At, η)])

d→ N (0,Σ) (B.9)

where Σ = 4V ar (Rij).

Ultimately, we want to know the asymptotic distribution of
√
N
(
ÂP
t:V,V̄

−At
)

. This can

be accomplished by considering the Taylor expansion of
√
NRN

(
ÂP
t:V,V̄

, η̂
)

at (At, η) and us-

ing the asymptotic distribution of RN (At, η), given in ((B.9)). We expand
√
NRN

(
ÂP
t:V,V̄

, η̂
)

at (At, η). First, note that
√
NRN

(
ÂP
t:V,V̄

, η̂
)

=
(
ÂP
t:V,V̄

− ÂP
t:V,V̄

)
×
∑

i 6=j D
′
i

(
1−D′j

)
= 0.
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This Taylor expansion is given by:

√
NRN

(
ÂPt:V,V̄ , η̂

)
=
√
NRN

(
ÂPt:V,V̄ , η̂

)
±
√
NRN (At, η)±

√
NE [RN (At, η)]±

√
NE

[
RN

(
ÂPt:V,V̄ , η̂

)]
=
√
N
{
RN

(
ÂPt:V,V̄ , η̂

)
− E

[
RN

(
ÂPt:V,V̄ , η̂

)]}
−
√
N {RN (At, η)− E [RN (At, η)]}

+
√
NE

[
RN

(
ÂPt:V,V̄ , η̂

)]
−
√
NE [RN (At, η)] +

√
NRN (At, η)

=
√
NE

[
RN

(
ÂPt:V,V̄ , η̂

)]
−
√
NE [RN (At, η)] +

√
NRN (At, η) . (B.10)

Since we assume that the U-process, UN (At, η) =
√
n {RN (At, η)− E [RN (At, η)]} is equicon-

tinuous, then

√
N
{
RN

(
ÂPt:V,V̄ , η̂

)
− E

[
RN

(
ÂPt:V,V̄ , η̂

)]}
→ 0 and

√
N {RN (At, η)− E [RN (At, η)]} → 0.

Now that we have simplified
√
NRN

(
ÂP
t:V,V̄

, η̂
)

, we can expand E
[
RN

(
ÂP
t:V,V̄

, η̂
)]

at

(At, η) within (1.23), which gives us:

√
NRN

(
ÂPt:V,V̄ , η̂

)
=
√
NE

[
RN

(
ÂPt:V,V̄ , η̂

)]
−
√
NE [RN (At, η)] +

√
NRN (At, η)

=
√
N { E [RN (At, η)] +

∂E [RN (At, η)]

∂At

(
ÂPt:V,V̄ −At

)
+

[
∂E [RN (At, η)]

∂η

]T
1x4

(
η̂P − η

)
4x1
}

−
√
NE [RN (At, η)] +

√
NRN (At, η) + op (1)

=
√
N

{
∂E [RN (At, η)]

∂A

(
ÂPt:V,V̄ −At

)
+

[
∂E [RN (At, η)]

∂η

]T
1x4

(
η̂P − η

)
4x1

}
+
√
NRN (At, η) + op (1) . (B.11)

To derive the asymptotic distribution of
√
N
(
ÂP
t:V,V̄

−At
)

, we solve for
(
ÂP
t:V,V̄

−At
)

in

the final expression of
√
NRN

(
ÂP
t:V,V̄

, η̂
)

in (B.11). Then, we use (B.2) and (B.5) to estimate
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the asymptotic variance. We express
√
N
(
ÂP
t:V,V̄

−At
)

as:

√
N
(
ÂPt:V,V̄ −At

)
= −

{
∂E [RN (At, η)]

∂A

}−1√
N

[
RN (At, η) +

[
∂E [RN (At, η)]

∂η

]T
1x4

(η̂ − η)4x1

]

= −
{
∂E [RN (At, η)]

∂A

}−1√
N

×

[
RN (At, η) +

∂E [RN (At, η)]

∂p
(p̂− p) +

[
∂E [RN (At, η)]

∂ξ

]T
1x3

(
ξ̂ − ξ

)
3x1

]

= −
{
∂E [RN (At, η)]

∂A

}−1 ∑
i∈(0,1,2,3,V̄ )

ρin
−1/2
i

ni∑
j=1

Qij .

We can re-express Rll′ = R(ij)(ij)′ so that the above express can be written as a double sum.

Define Qij as:

Qij (η) = E
(
R(ij)(ij)′ +R(ij)′(ij)

)
+ ρ−1

i

∂ERN (A, η)

∂p

[
−1

n0

∂2lsrs (p)

p2

]−1

P0jI (i = 0)

+
∂ERN (A, η)

∂ξ

[
−1

N

∂2pl (ξ)

∂ξi∂ξi′

]−1

Hij (η)

and Q̂ij = Ê
(
R(ij)(ij)′ +R(ij)′(ij)

)
+ ρ̂−1Ê

∂RN (A, η)

∂p

[
1

n0

∂2lsrs (p)

p2

]
|−1
p=p̂P0j (p̂)

+Ê
∂RN (A, η)

∂ξ

[
−1

N

∂2pl (ξ)

∂ξi∂ξi′

]
|−1

ξ=ξ̂
Hl

(
ξ̂
)
.

111



BIBLIOGRAPHY

Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index
for survival data. Statistics in medicine, 24(24):3927–3944.

Bamber, D. (1975). The area above the ordinal dominance graph and the area below the
receiver operating characteristic graph. Journal of mathematical psychology, 12(4):387–
415.

Bastek, J. A. and Elovitz, M. A. (2013). The role and challenges of biomarkers in spontaneous
preterm birth and preeclampsia. Fertility and sterility, 99(4):1117–1123.

Blanchon, F., Grivaux, M., Asselain, B., Lebas, F.-X., Orlando, J.-P., Piquet, J., and Zureik,
M. (2006). 4-year mortality in patients with non-small-cell lung cancer: development and
validation of a prognostic index. The lancet oncology, 7(10):829–836.

Breslow, N. and Cain, K. (1988). Logistic regression for two-stage case-control data.
Biometrika, 75(1):11–20.

Bueno, R., Wang, X., Richards, W. G., Harpole, D. H., and Kratzke, R. (2012). Validation of
molecular prognostic tests in nsclc: A companion study to calgb 140202. CALGB 150807
Protocol.

Cai, T. and Pepe, M. (2002). Semiparametric receiver operating characteristic analysis to eval-
uate biomarkers for disease. Journal of the American Statistical Association, 97(460):1099–
1107.

Chatterjee, N., Chen, Y., and Breslow, N. (2003). A pseudoscore estimator for regres-
sion problems with two-phase sampling. Journal of the American Statistical Association,
98(461):158–168.

Deshpande, S., van Asselt, A., Tomini, F., Armstrong, N., Allen, A., Noake, C., Khan, K.,
Severens, J., Kleijnen, J., and Westwood, M. (2013). Rapid fetal fibronectin testing to
predict preterm birth in women with symptoms of premature labour: a systematic review
and cost analysis. Health Technol Assess, 17(40):1–138.

Dodd, L. and Pepe, M. (2003a). Partial auc estimation and regression. Biometrics, 59(3):614–
623.

Dodd, L. and Pepe, M. (2003b). Semiparametric regression for the area under the receiver op-
erating characteristic curve. Journal of the American Statistical Association, 98(462):409–
417.

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap, volume 57. CRC press.

112

BIBLIOGRAPHY

Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index
for survival data. Statistics in medicine, 24(24):3927–3944.

Bamber, D. (1975). The area above the ordinal dominance graph and the area below the
receiver operating characteristic graph. Journal of mathematical psychology, 12(4):387–
415.

Bastek, J. A. and Elovitz, M. A. (2013). The role and challenges of biomarkers in spontaneous
preterm birth and preeclampsia. Fertility and sterility, 99(4):1117–1123.

Blanchon, F., Grivaux, M., Asselain, B., Lebas, F.-X., Orlando, J.-P., Piquet, J., and Zureik,
M. (2006). 4-year mortality in patients with non-small-cell lung cancer: development and
validation of a prognostic index. The lancet oncology, 7(10):829–836.

Breslow, N. and Cain, K. (1988). Logistic regression for two-stage case-control data.
Biometrika, 75(1):11–20.

Bueno, R., Wang, X., Richards, W. G., Harpole, D. H., and Kratzke, R. (2012). Validation of
molecular prognostic tests in nsclc: A companion study to calgb 140202. CALGB 150807
Protocol.

Cai, T. and Pepe, M. (2002). Semiparametric receiver operating characteristic analysis to eval-
uate biomarkers for disease. Journal of the American Statistical Association, 97(460):1099–
1107.

Chatterjee, N., Chen, Y., and Breslow, N. (2003). A pseudoscore estimator for regres-
sion problems with two-phase sampling. Journal of the American Statistical Association,
98(461):158–168.

Deshpande, S., van Asselt, A., Tomini, F., Armstrong, N., Allen, A., Noake, C., Khan, K.,
Severens, J., Kleijnen, J., and Westwood, M. (2013). Rapid fetal fibronectin testing to
predict preterm birth in women with symptoms of premature labour: a systematic review
and cost analysis. Health Technol Assess, 17(40):1–138.

Dodd, L. and Pepe, M. (2003a). Partial auc estimation and regression. Biometrics, 59(3):614–
623.

Dodd, L. and Pepe, M. (2003b). Semiparametric regression for the area under the receiver op-
erating characteristic curve. Journal of the American Statistical Association, 98(462):409–
417.

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap, volume 57. CRC press.

Fears, T. and Brown, C. (1986). Logistic regression methods for retrospective case-control
studies using complex sampling procedures. Biometrics, pages 955–960.

Goldenberg, R. L., Mercer, B. M., MEIS, P. L., Copper, R. L., Das, A., McNELLIS, D., et al.
(1996). The preterm prediction study: fetal fibronectin testing and spontaneous preterm
birth. Obstetrics & Gynecology, 87(5, Part 1):643–648.



Fears, T. and Brown, C. (1986). Logistic regression methods for retrospective case-control
studies using complex sampling procedures. Biometrics, pages 955–960.

Goldenberg, R. L., Mercer, B. M., MEIS, P. L., Copper, R. L., Das, A., McNELLIS, D., et al.
(1996). The preterm prediction study: fetal fibronectin testing and spontaneous preterm
birth. Obstetrics & Gynecology, 87(5, Part 1):643–648.

Greenhouse, S. and Mantel, N. (1950). The evaluation of diagnostic tests. Biometrics,
6(4):399–412.

Hanley, J. (1989). Receiver operating characteristic (roc) methodology: the state of the art.
Critical reviews in diagnostic imaging, 29(3):307–335.

Hanley, J., McNeil, B., et al. (1983). A method of comparing the areas under receiver operating
characteristic curves derived from the same cases. Radiology, 148(3):839–843.

Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and roc curves.
Biometrics, 61(1):92–105.

Hsieh, D., Manski, C., and McFadden, D. (1985). Estimation of response probabilities from
augmented retrospective observations. Journal of the American Statistical Association,
pages 651–662.

Huang, X., Qin, G., and Fang, Y. (2011). Optimal combinations of diagnostic tests based on
auc. Biometrics, 67(2):568–576.

Liu, D. and Zhou, X. (2011). Semiparametric estimation of the covariate-specific roc curve
in presence of ignorable verification bias. Biometrics, 67(3):906–916.

Lockwood, C. J., Senyei, A. E., Dische, M. R., Casal, D., Shah, K. D., Thung, S. N., Jones, L.,
Deligdisgh, L., and Garite, T. J. (1991). Fetal fibronectin in cervical and vaginal secretions
as a predictor of preterm delivery. New England Journal of Medicine, 325(10):669–674.

Long, Q., Zhang, X., and Hsu, C. (2011a). Nonparametric multiple imputation for receiver op-
erating characteristics analysis when some biomarker values are missing at random. Statis-
tics in medicine, 30(26):3149–3161.

Long, Q., Zhang, X., and Johnson, B. (2011b). Robust estimation of area under roc curve
using auxiliary variables in the presence of missing biomarker values. Biometrics, 67(2):559–
567.

Manski, C. and McFadden, D. (1981). Structural analysis of discrete data with econometric
applications, volume 11. MIT press Cambridge, MA.

McClish, D. (1989). Analyzing a portion of the roc curve. Medical Decision Making, 9(3):190–
195.

McCormick, M. C. (1985). The contribution of low birth weight to infant mortality and
childhood morbidity. The New England Journal of Medicine, 312(2):82–90.

McNeil, B., Hanley, J., et al. (1984). Statistical approaches to the analysis of receiver operating
characteristic (roc) curves. Medical decision making: an international journal of the Society
for Medical Decision Making, 4(2):137.

113

Greenhouse, S. and Mantel, N. (1950). The evaluation of diagnostic tests. Biometrics,
6(4):399–412.

Hanley, J. (1989). Receiver operating characteristic (roc) methodology: the state of the art.
Critical reviews in diagnostic imaging, 29(3):307–335.

Hanley, J., McNeil, B., et al. (1983). A method of comparing the areas under receiver operating
characteristic curves derived from the same cases. Radiology, 148(3):839–843.

Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and roc curves.
Biometrics, 61(1):92–105.

Hsieh, D., Manski, C., and McFadden, D. (1985). Estimation of response probabilities from
augmented retrospective observations. Journal of the American Statistical Association,
pages 651–662.

Huang, X., Qin, G., and Fang, Y. (2011). Optimal combinations of diagnostic tests based on
auc. Biometrics, 67(2):568–576.

Liu, D. and Zhou, X. (2011). Semiparametric estimation of the covariate-specific roc curve
in presence of ignorable verification bias. Biometrics, 67(3):906–916.

Lockwood, C. J., Senyei, A. E., Dische, M. R., Casal, D., Shah, K. D., Thung, S. N., Jones, L.,
Deligdisgh, L., and Garite, T. J. (1991). Fetal fibronectin in cervical and vaginal secretions
as a predictor of preterm delivery. New England Journal of Medicine, 325(10):669–674.

Long, Q., Zhang, X., and Hsu, C. (2011a). Nonparametric multiple imputation for receiver op-
erating characteristics analysis when some biomarker values are missing at random. Statis-
tics in medicine, 30(26):3149–3161.

Long, Q., Zhang, X., and Johnson, B. (2011b). Robust estimation of area under roc curve
using auxiliary variables in the presence of missing biomarker values. Biometrics, 67(2):559–
567.

Manski, C. and McFadden, D. (1981). Structural analysis of discrete data with econometric
applications, volume 11. MIT press Cambridge, MA.

McClish, D. (1989). Analyzing a portion of the roc curve. Medical Decision Making, 9(3):190–
195.

McCormick, M. C. (1985). The contribution of low birth weight to infant mortality and
childhood morbidity. The New England Journal of Medicine, 312(2):82–90.

McNeil, B., Hanley, J., et al. (1984). Statistical approaches to the analysis of receiver operating
characteristic (roc) curves. Medical decision making: an international journal of the Society
for Medical Decision Making, 4(2):137.

Molanes-López, E. and Letón, E. (2011). Inference of the youden index and associated thresh-
old using empirical likelihood for quantiles. Statistics in Medicine, 30(19):2467–2480.

Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika, 75(2):237–249.
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