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ABSTRACT

JOSHUA J. CLEMONS: Dynamical Properties of Weierstrass Elliptic Functions on

Square Lattices

(Under the direction of Prof. Jane Hawkins)

Abstract. In this dissertation we prove that the Julia set of a Weierstrass elliptic

function on a square lattice is connected. We further show that the parameter space con-

tains an infinite number of Mandelbrot sets. As a consequence, this proves the existence

of Siegel disks and gives a description of the bifurcation locus about super-attracting

parameters corresponding to super-attracting fixed points. We conclude with a descrip-

tion of a family of rational maps that approximate the Weierstrass elliptic function on a

square lattice.
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CHAPTER 0

Introduction

It is our goal in this thesis to present a detailed description of the dynamics of Weier-

strass elliptic functions on square lattices. To do so, we show that the dynamics are

intimately related to those of the classical quadratic map, z2 + c. When studying and

classifying holomorphic families of maps, a natural starting point is to look at degree 1

rational maps. These form the class of conformal biholomorphisms of the sphere. This

case is relatively elementary and can be worked out explicitly. The next step is to look

at rational maps of degree 2. The simplest of these is the family of quadratic polynomi-

als. We show that Weierstrass elliptic functions on square lattices share many dynamical

properties with the family of quadratic polynomials.

When studying the dynamics of elliptic functions, one would naturally ask: “What

are the simplest elliptic functions?” We argue that the Weierstrass elliptic functions are

the simplest to study for the following reason. The elliptic functions on a fixed lattice

form a finitely generated field. That field can be generated by the Weierstrass elliptic

function and its derivative [26]. Taking the perspective that every elliptic function is

built out of the Weierstrass elliptic function and its derivative, it follows that one would

like to understand the dynamics of Weierstrass elliptic functions to better understand

the dynamics of elliptic functions in general.



In complex dynamics, the classification and understanding of the critical orbits can

to some degree classify the dynamics. For rational maps this is described in [4, 41]

and for more general meromorphic functions in [5]. A basic example is that the basin

of attraction always contains a critical value [4, 5]. The unique feature of Weierstrass

elliptic functions on square lattices is that there is only one “free” critical orbit, even

though it has three critical values. One of the critical values is 0, a pole, and the other

two collapse after one iterate to the same value. The critical value of 0 is mapped to ∞

and can no longer be iterated, leaving the other critical orbit to determine the dynamics.

This implies, for instance, that the function can have at most one non-repelling cycle [5].

Typically a Weierstrass elliptic function can have as many as three distinct critical orbits

and so as many as three non-repelling cycles. (Of note is the triangular case, which we

do not study here. In this case one can say that these functions also have “one critical

orbit” since the critical orbits are 2π/3 rotations of each other [33, 32, 35].)

We begin with introducing Weierstrass elliptic functions and discussing their mapping

properties. As mentioned previously we have a sharp interest in the critical points and

critical values. We then show in Chapter 2 that the Julia set of a Weierstrass elliptic

function on a square lattice is connected (Theorem 2.2.1). This was known in the case

of a real super-attracting fixed point [31] or a cycle of Siegel disks [33]. If all cycles

are repelling, then the Fatou set is empty and the Julia set is the whole sphere. This

can occur and is dynamically interesting. We refer the reader to [31] and especially [30]

(and the references therein). As a consequence of connecting the dynamics of Weierstrass

elliptic functions on square lattices to the classical quadratic family we demonstrate the

existence of Siegel disks (discussed in Chapter 3). It was known that these occur for

elliptic functions of the form ℘Γ(z) + b where Γ is triangular [32].
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The Mandelbrot set is defined to be the set {c : pnc (0) is bounded} where pc(z) =

z2 + c. To identify an analog to this set in the parameter space of Weierstrass elliptic

functions on square lattices we let λ be a non-zero complex number and define ℘λ to be

the Weierstrass elliptic function defined on the square period lattice determined by λ and

λi. We then consider the following set:

{λ : the critical orbit of ℘λ is “contained”}

and show that it contains infinitely many copies of the Mandelbrot set. We define the

notion of “contained” in Chapter 3.

In Chapter 4 we prove preliminary symmetry results and conjugacy results between

singular perturbations and two-term Laurent expansions about the origin of Weierstrass

elliptic functions. Singular perturbations are studied extensively by Devaney et al. in

[6, 17, 19] and the references therin. We prove a theorem similar to Theorem 2.2.1 and

discuss the structure of the parameter spaces of the approximations as they relate to the

parameter space of Weierstrass elliptic functions.

The main results of this thesis are as follows. In Chapter 2 we prove that given any

square lattice Ω the Julia set of the Weierstrass elliptic function, ℘Ω, is connected. This

is Theorem 2.2.1. In Chapter 3 we prove three main results which build on each other.

We first prove the Weierstrass elliptic functions on square lattices are quadratic-like

(Theorem 3.2.8). After showing that the quadratic-like mappings are analytic families

(Theorem 3.2.11) we show that the parameter space contains Mandelbrot sets (Theorem

3.2.19).
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CHAPTER 1

Weierstrass Elliptic ℘ Functions

The dynamics of the family of Weierstrass elliptic ℘ functions the main object of

study in this thesis. In order to understand the dynamics of ℘ for a given lattice we

must first analyze how it maps. However, because the function is not algebraic, it is

more challenging to evaluate explicit values of the function. In contrast, the Weierstrass

elliptic functions do have strong algebraic properties that allow us to analyze their values

more thoroughly than one would expect.

While the rational functions form the class of meromorphic functions defined on the

Riemann sphere, the elliptic functions form the class of meromorphic functions defined on

complex tori, called elliptic curves. We approach these functions as objects of dynamical

interest instead of just meromorphic functions on elliptic curves. One familiar with elliptic

function theory needs to keep in mind that two lattices that correspond to conformally

homeomorphic elliptic curves may produce Weierstrass elliptic ℘ functions with very

different dynamical properties: the dynamical properties of elliptic functions depend on

more than the equivalence class of the analytic structure on an elliptic curve.

1.1. Lattices

The Weierstrass ℘ function is considered to be the most basic of the family of elliptic

functions. With that consideration we would like to study it in detail so that we may



better understand other elliptic functions. Let C denote the complex plane, C∗ = C\{0}

and C∞ = C ∪ {∞} be the Riemann sphere.

Definition 1.1.1. A lattice Ω is an additive subgroup of Cwith two generators that

is isomorphic to Z2, such that the generators ω1, ω2 ∈ C∗ are R linearly independent:

(1.1) Ω = {mω1 + nω2 : m,n ∈ Z}.

We denote this Ω = 〈ω1, ω2〉.

The residue class of a point z with respect to a lattice Ω is the set of values

(1.2) z + Ω = {z + ω : ω ∈ Ω},

and a fundamental region is a simply connected region in C that contains a representative

of each residue class of each point. The most commonly used example of a fundamental

region is a period parallelogram, which is defined as:

PΩ = {tω1 + sω2 : 0 ≤ t, s < 1}.

The generators of a lattice are by no means unique.

Proposition 1.1.2. ([26]) Two lattices Ω and Ω′ are equal if and only if ω′1

ω′2

 =

 a b

c d


 ω1

ω2



for some

 a b

c d

 ∈ SL2(Z).

Remark 1. Given a lattice Ω, one must choose generators ω1 and ω2 before a period

parallelogram can be defined.

5



We say that two lattices are similar if Ω′ = λΩ for some λ ∈ C∗. The similarity classes

form equivalence classes of lattices, and we primarily study parameterized dynamics

within a similarity class. The natural question that arises is the issue of how to index

the different similarity classes uniquely. We begin by noting that the lattice 〈ω1, ω2〉 is

similar to 〈1, ω2/ω1〉. Thus, one can always consider the lattice 〈1, τ〉 as a representative

of a similarity class, i.e. we can parameterize similarity classes by τ ∈ C∗. However, this

representative is not unique. Consider the lattices 〈1, i〉 and 〈1,−i〉, for example. We

can assume that =τ > 0 since we could replace τ with −τ . Considering the orbit of the

similarity classes of 〈1, τ〉 under the SL2(Z)/{I,−I} action in the following way:

 a b

c d


 τ

1

 =

 aτ + b

cτ + d

 7→
 a+bτ

c+dτ

1

 ,

we have a group action on the upper half plane z 7→ az+b
cz+d

. Just as in the case where we

choose a fundamental region for a lattice’s group action on the plane, a period parallel-

ogram, we can do so again here.

Theorem 1.1.3. [26] Every lattice is similar to a lattice of the form 〈1, τ〉 for some

unique τ ∈ T , where

(1.3) T = {z : Im(z) > 0, −1/2 ≤ Re(z) < 1/2, |z| ≥ 1, (|z| > 1 when Re(z) > 0)}.

The region T in the τ plane described in Thereom 1.1.3 is pictured in Figure 1.1. To

specific values of τ we attach names of similarity classes.

Definition 1.1.4. The following lattice shapes are defined as follows:

(1) A lattice Ω is square if τ(Ω) = i.

6



Square
Triangular

!2 !1 0 1 2

0

1

2

3

Figure 1.1. τ ∈ T

(2) A lattice Ω is triangular if τ(Ω) = e2πi/3.

(3) A lattice Ω is rectangular if τ(Ω) is pure imaginary.

(4) A lattice Ω is rhombic if |τ(Ω)| = 1

1.2. The Elliptic Functions of Weierstrass

We begin by defining analytic and meromorphic functions.

Definition 1.2.1. Let U be an open subset of C. We say that f : U → C is analytic

if f is complex differentiable at every point of U .

Definition 1.2.2. Let U be an open subset of C. We say that f : U → C∞ is

meromorphic on U if f is analytic on U except at a set {pi} of isolated points in U , and

at these isolated points limz→pi |f(z)| =∞.

We say that a meromorphic function is elliptic if it is periodic with respect to a lattice,

i.e. it is well defined on residue classes.

7



Definition 1.2.3. A meromorphic function, f : C → C∞, is elliptic if there is a

lattice Ω so that f(z + ω) = f(z) for all ω ∈ Ω.

Liouville’s Theorem [2] gives that the only entire (analytic on C) elliptic functions

are the constant functions. For if we suppose that an elliptic function is entire, then it

must be bounded by its maximum value on the closure of a fundamental region. Thus a

non-constant elliptic function must have poles.

Theorem 1.2.4. [26] An elliptic function assumes any value c ∈ C on n ∈ N residue

classes, where n is independent of c and allows for multiplicities at critical values.

This number n is the order of the elliptic function.

Definition 1.2.5. The order of an elliptic function f on a lattice Ω is #{z ∈ C/Ω :

f(z) = c}, where c is not a critical value.

Theorem 1.2.6. [26] Every elliptic function has order at least two.

The Weierstrass elliptic ℘ function is an elliptic function of order 2 defined as:

(1.4) ℘Ω(z) =
1

z2
+
∑
ω∈Ω∗

(
1

(z − ω)2
− 1

ω2

)
,

where Ω∗ = Ω\{0}.

The first property to check is periodicity. We check this for ℘Ω(z + ω1) = ℘Ω(z).

Checking ℘Ω(z + ω2) = ℘Ω(z) is identical. Plugging in to the definition, we have

℘Ω(z + ω1) =
1

(z + ω1)2
+
∑
ω∈Ω∗

(
1

(z + ω1 − ω)2
− 1

ω2

)

8



and interchanging the first term with the term 1
(z+ω1−ω1)2

we have the result.

One also needs to verify that the series converges for all z ∈ C\Ω. This is done in [26].

Let 〈ω1, ω2〉 be denoted by Ω. When scaling the lattice we have the following relations,

which we refer to as the homogeneity equations. For k ∈ C∗ we have

(1.5) ℘kΩ(kz) =
1

k2
℘Ω(z),

or similarly,

(1.6) ℘kΩ(z) =
1

k2
℘Ω

(z
k

)
.

These relations follow directly from the definition of ℘Ω and give a very useful tool for

analyzing the families ℘λΩ where λ ∈ C∗. Recall that

PΩ = {tω1 + sω2 : 0 ≤ t, s < 1}

and that PΩ + u is a fundamental region for any u ∈ C.

Theorem 1.2.7. [26] For any u ∈ C the mapping

℘Ω : PΩ + u→ C∞

is a 2-1 and onto map except at points in the Ω-orbit of {0, ω1/2, ω2/2, (ω1 + ω2)/2}.

Elliptic functions can be thought of as n-fold branched coverings of the Riemann

sphere by the torus C/Ω. In this case, the Weierstrass elliptic ℘ functions are 2-1 branched

coverings.

Theorem 1.2.8. ([26]) The map

(1.7) ℘Ω : C/Ω→ C∞

9



is a 2-1 branched covering.

By differentiating the series defining ℘Ω we can obtain a series for ℘′Ω:

(1.8) ℘′Ω(z) = −2
∑
ω∈Ω∗

1

(z − ω)3
.

The derivative of ℘Ω squared can be written as a polynomial of ℘Ω [26]:

(1.9) (℘′Ω(z))
2

= 4℘Ω(z)3 − g2(Ω)℘λ(z)− g3(Ω),

where g2 and g3 are invariants of the lattice. The invariants g2 and g3 can be written as

follows:

g2(Ω) = 60
∑
ω∈Ω∗

1

ω4
; g3(Ω) = 140

∑
ω∈Ω∗

1

ω6
(1.10)

and so these invariants also have homogeneity properties:

g2(kΩ) =
1

k4
g2(Ω); g3(kΩ) =

1

k6
g3(Ω).(1.11)

These invariants also have the property that given complex numbers g2 and g3 with

g3
2 − 27g2

3 6= 0 there exists a unique lattice Ω so that g2 = g2(Ω) and g3 = g3(Ω) [26].

Critical values of ℘Ω correspond to zeros of 4℘Ω(z)3− g2(Ω)℘λ(z)− g3(Ω). Using the

Fundamental Theorem of Algebra we can write

(1.12) (℘′Ω(z))2 = 4(℘Ω(z)− e1)(℘Ω(z)− e2)(℘Ω(z)− e3).

It is known that the roots {e1, e2, e3} are distinct [26] and are e1 = ℘Ω(ω1/2), e2 =

℘Ω(ω2/2), and e3 = ℘Ω((ω1 + ω2)/2).

10



Remark 2. As with the definition of a period parallelogram the labeling of the critical

values {e1, e2, e3} depends on the choice of generators ω1 and ω2. We adhere to this

convention when it is understood that Ω = 〈ω1, ω2〉.

The critical values satisfy important algebraic relations obtained by equating like

terms in the factorization and the original expression (℘′Ω(z))2 = 4℘Ω(z)3−g2(Ω)℘λ(z)−

g3(Ω). We list the ones we use most:

e1 + e2 + e3 = 0, e1e2 + e1e3 + e2e3 =
−g2

4
, e1e2e3 =

g3

4
.(1.13)

Because of our focus on square lattices we develop in detail the formulas for the

critical values in terms of the lattice.

Proposition 1.2.9. [26] Suppose that Ω is a square lattice. Then e3 = 0 and e2 =

−e1. Furthermore, g2 = 4e2
1 and g3 = 0.

Certain lattices have symmetry about the real axis. These lattices are called real

lattices.

Proposition 1.2.10. If Ω is a lattice so that Ω = Ω, where Ω = {ω : ω ∈ Ω}, then

℘Ω : R\Ω→ R

and

℘′Ω : R\Ω→ R.

Proof. It is sufficient to show that ℘Ω(z) = ℘Ω(z) for all z such that z = z. From

the definition of ℘Ω we have that

℘Ω(z) = ℘Ω(z),

11



and by assumption Ω = Ω and z = z. Thus,

℘Ω(z) = ℘Ω(z).

The same argument applies to ℘′Ω. �

Proposition 1.2.11. Given a lattice Ω, ℘Ω is even.

Proof. We show that ℘Ω(−z) = ℘Ω(z). Since Ω is an additive group we have

−Ω = Ω. Using the homogeneity equations (1.5) we have

℘−Ω(−z) =
1

(−1)2
℘Ω(z) = ℘Ω(z).

�

Let R+ = {t ∈ R : t > 0}. Putting together Propositions 1.2.11 and 1.2.10 we have

the following:

Proposition 1.2.12. If Ω = Ω, then

℘Ω : R\Ω→ R+.

An important benchmark quantity is defined as the following:

Definition 1.2.13. We define γ > 0 as

(1.14) γ2 = ℘〈1,i〉(1/2).

This constant is referred to the lemniscate constant;

γ ≈ 2.62206... ,
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and the exact formula for γ is the following

γ =
1

4

√
2

π
(Γ (1/4))2 ,

where Γ(z) is the classical Gamma function. Both the decimal approximation and the

exact formula can be found in [1].

Using the homogeneity equations and lemniscate constant we can describe the critical

values of ℘Ω when Ω is square. Let Ω = 〈λ, λi〉 for some λ ∈ C∗. Using (1.5) and the

lemniscate constant, γ, we have

(1.15) e1 = ℘Ω

(
λ

2

)
=

1

λ2
℘〈1,i〉(1/2) =

γ2

λ2
.

This gives the following.

Proposition 1.2.14. Let λ ∈ C∗. The critical values of ℘〈λ,λi〉 are

(1.16) {−e1, 0, e1} =

{
−γ

2

λ2
, 0,

γ2

λ2

}
.

1.3. General Elliptic Functions

Given a fixed lattice, Ω the elliptic functions on that lattice form a field. This field

is finitely generated and, in fact, is the field generated by ℘Ω and ℘′Ω [26]. In addition

to noting that ℘ has the lowest possible order, this partially justifies the statement that

the Weierstrass elliptic ℘ functions are the simplest elliptic functions.

Theorem 1.3.1. [26] Let f be an elliptic function on a lattice Ω. Then there exist

rational functions R and S so that f(z) = R(℘Ω(z)) + S(℘Ω(z))℘′Ω(z).

From this we can conclude that every elliptic function has a finite number of critical

values.
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Theorem 1.3.2. If f is elliptic then it has finitely many critical values.

Proof. From Theorem 1.3.1 and Corollary 1.2.4 we have that f ′(z) has finitely many

zeros in a fundamental period and thus f has finitely many critical values. �

1.4. Dynamics of Meromorphic Maps

Much of the theory of meromorphic maps is a generalization of the work on rational

maps. However, there are also many results for rational maps that do not hold in this

setting. Whereas a rational function is defined and analytic at infinity, a transcendental

meromorphic function cannot be defined to be continuous at infinity, much less analytic.

Thus transendental meromorphic functions cannot be iterated on the entire Riemann

sphere. This fact alone makes the theory somewhat different. However, we can iterate

on the complex plane with the convention that if a point iterates to a pole then its orbit

terminates at infinity.

Although it is true that the composition of rational functions is rational, it is not the

case that the composition of transcendental meromorphic functions is even meromorphic.

This is the case in our setting; the composition of two elliptic functions need not be

meromorphic, much less elliptic. One can see this by noting that ℘Ω ◦ ℘Ω has infinitely

many poles in a fundamental region of ℘Ω; namely each point of ℘−1
Ω (Ω) is a pole. This

is because each value ω ∈ Ω is attained two times by ℘Ω on a fundamental region, and so

℘Ω ◦ ℘Ω has infinitely many poles in a fundamental region, which is bounded. The poles

of ℘Ω ◦ ℘Ω are therefore not isolated, and so ℘Ω ◦ ℘Ω cannot be meromorphic on C.
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1.5. The Fatou and Julia Sets

The notation for composition in this paper is fn(z) and does not mean (f(z))n. We

always assume that f is not constant or a linear transformation to avoid degenerate

cases. Since one cannot define a transcendental function at ∞ to be continuous much

less analytic, we need to consider poles and points that arrive at poles in their forward

obits.

Definition 1.5.1. Define

A1(f) = {z : f(z) =∞},

which we call prepoles of order 1 or just poles;

An(f) = {z : fn(z) =∞},

which we call prepoles of order n; and

A∞(f) =
⋃
n>0

An(f),

which we call the set of prepoles.

In complex dynamics it is common to analyze the iterates of functions as a sequence

in a function space. We begin by defining the notion of local uniform convergence.

Definition 1.5.2. Let X and Y be complete metric spaces. A sequence of functions

{fn : X → Y }n∈N converges locally uniformly to a function f : X → Y if on every

compact subset K ⊂ X, fn|K → f uniformly.

The following result can be found in [2].
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Proposition 1.5.3. Let U ⊂ C be an open set. Let fn : U → C be a sequence

of holomorphic functions that converges locally uniformly to a function f . Then f is

holomorphic.

Thus the set of holomorphic functions on U is closed in the topology of local uniform

convergence.

Definition 1.5.4. Let X and Y be complete metric spaces. A family of functions {f :

X → Y : f ∈ F} is normal if every sequence of functions in F contains a subsequence

which converges locally uniformly. Furthermore, a family is normal at x ∈ X if it is

normal in a neighborhood of x.

A normal family of functions has a property very similar to the Bolzano-Weierstrass

property that says that every bounded sequence in R has a convergent subsequence.

One could loosely think of a normal family as a “bounded” or “restricted” collection of

functions. The family of functions we consider are the iterates {f, f ◦ f, ..., fn, ...} of a

meromorphic function f where fn = f ◦ f ◦ · · · ◦ f n times. The Fatou set is the set

where the dynamics are predictable and well behaved. This set includes points that are

attracted to a periodic cycle, for instance.

Definition 1.5.5. The Fatou set F (f) of a meromorphic function f : C → C∞, is

defined to be

F (f) = {z : {fn}n∈N are defined and form a normal family at z}.

If f is transcendental meromorphic then

F (f) = {z ∈ C\A∞(f) : {fn}n∈N forms a normal family at z},
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since fn is defined at z for all n if and only if z ∈ C\A∞(f). In contrast to the Fatou

set, the Julia set is the set where the dynamics are unpredictable and chaotic. Repelling

periodic points are included in the Julia set, for example.

Definition 1.5.6. The Julia set of a meromorphic function f , J(f) is defined to be

J(f) = C∞\F (f).

The first key fact is that for rational maps the Fatou and Julia sets are forward and

backward invariant [4]. Furthermore, the Fatou set is open, since it is a union of open

sets, and so the Julia set is closed.

Theorem 1.5.7. [4](Montel’s Theorem) Suppose that a family of functions F map-

ping U ⊂ C to C∞ has the property that f(U) ⊂ C∞\{a, b, c} where a, b and c are distinct

points in C∞. Then F is a normal family on U .

Using Montel’s Theorem, we have the following fact. We say a set X is completely

invariant if z ∈ X implies f(z) ∈ X (unless f(z) is undefined) and f(w) = z implies

w ∈ X.

Proposition 1.5.8. [5] The Julia set is the smallest completely invariant closed set

containing at least three points.

We recall that a transcendental meromorphic function is a meromorphic function

which is not rational. These can be split into three distinct types:

(1) E = {f : f is transcendental entire}

(2) P = {f : f is transcendental meromorphic with one pole

which is an omitted value}
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(3) M = {f : f is transcendental meromorphic and not in P or E}

The family M contains functions with at least two poles or a pole that is not an

omitted value. The backward orbit of a point z is defined as

O−(z) = {w : fn(w) = z for some n ∈ N}.

Proposition 1.5.9. [5] Suppose that f ∈M . Then A∞(f) = O−(∞) = J(f).

We prove this in the case that f is elliptic.

Proof. Assume that f is elliptic. We have that ∞ ∈ J(f), and so O−(∞) ⊂ J(f)

by the complete invariance of J(f). To show equality we only have to argue that O−(∞)

has at least three points. Since O−(∞) contains the lattice with which f is periodic, this

gives that O−(∞) is infinite, and so has at least three points. By Montel’s Theorem, we

have that O−(∞) = J(f). �

1.6. Periodic Points

It is often convenient to think of maps in some standard canonical form. By changing

coordinates we can often simplify the map and identify qualitative features of the local

(and sometimes global) dynamics.

Definition 1.6.1. Let f, g : C → C∞ be meromorphic maps. If there is a homeo-

morphism φ : C → C so that f ◦ φ = φ ◦ g, we say that f and g are conjugate. If φ is

conformal, we say they are conformally conjugate.

Suppose that f(z0) = z0 and let φ(z) = z − z0. Then set g(z) = (φ ◦ f ◦ φ−1)(z). We

see that g(0) = 0 and g is conformally conjugate to f . For the sake of studying local
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behavior near a fixed point we make use of this observation. We remark that we may

consider a fixed point to be the origin.

If φ has additional properties associated to it we add those. Key examples are quasi-

conformal homeomorphisms and the notion of hybrid equivalences (see Section 3.3.3).

The nature of fixed and periodic points can be split into three categories: attracting,

repelling, and neutral. The neutral case then splits into several others depending on

subtle differences in the derivative at the fixed point.

Definition 1.6.2. Suppose that f is a meromorphic function with fn(z0) = z0, so

that fk(z0) 6= z0 for 1 ≤ k ≤ n − 1. We say that z0 has period n and is attracting if

|(fn)′(z0)| < 1, repelling if |(fn)′(z0)| > 1, or neutral if |(fn)′(z0)| = 1. Furthermore, we

define the number (fn)′(z0) as themultiplier of the cycle z0 → f(z0)→ · · · → fn−1(z0)→

z0.

If fn(z0) = z0 and (fn)′(z0) = 0, we say that z0 is a super-attracting periodic point or

super-attracting cycle. The local behavior near an attracting fixed point is surprisingly

elementary. The following theorem from [4] was proved in the context of rational maps

but applies to transcendental meromorphic functions as well. It relies only on local

analyticity of the map near the fixed point.

Theorem 1.6.3. (6.3.2 in [4]) Suppose that f is analytic in a neighborhood of the

origin, that f(0) = 0, and that f ′(0) = a, where 0 < |a| < 1. Then there exists a unique

function g which is analytic in some disc {z : |z| < r} with g(0) = 0, g′(0) = 1, and

which satisfies gfg−1(z) = az for all z sufficiently close to the origin.
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This theorem states that we can locally linearize the map by changing coordinates.

The super-attracting case is only slightly different. This theorem is due to Böttcher.

Theorem 1.6.4. (9.1 in [41]) Suppose f(z) = anz
n + an+1z

n+1 + · · · near the origin.

There exists a local analytic change of coordinates w = φ(z), with φ(0) = 0, which

conjugates f to the nth power map, w → wn, throughout some neighborhood of zero.

Furthermore, φ is unique up to multiplication by an (n− 1)st root of unity.

The repelling case is identical to the attracting case in that one can change coordinates

to linearize the inverse. The neutral periodic points are a rich and interesting topic in

their own right. The local behavior is much more complicated and, in fact, not completely

understood in some cases. We begin with a case that is completely understood.

Definition 1.6.5. We say that a periodic point z0 is rationally neutral or parabolic

of period n if

(fn)′(z0)) = eα2πi

and α ∈ Q. We say that z0 is irrationally neutral if α ∈ R\Q.

Rationally neutral periodic points are always in the Julia set. This is Proposition

1.6.6. However, they form the center of a collection of “petals” in the Fatou set called

Leau petals. To study these points we can assume that the fixed point, z0, is the origin,

since we can conjugate by the affine map φ(z) = z − z0. For simplicity we replace fn

with f . After conjugating we have a Taylor expansion of the form

f(z) = az + bzk + 0(zk+1),

where k > 1 and a is a root of unity, i.e. al = 1 for some integer l ≥ 1. So
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f l(z) = alz + czp +O(zp+1) = z + czp +O(zp+1).

Let g(z) = f l(z). By Corollary 2.6.5 in [4], we have

gn(z) = z + nczp +O(zp+1).

This gives that {gn}n∈N is not normal at 0, and therefore {fn}n∈N is not normal at 0.

We state this more explicitly below.

Proposition 1.6.6. [4] If z0 is a parabolic point, then z0 ∈ J(f).

Proof. Using the construction above, the pth derivative of g at 0 is (gn)(p)(0) = ncp!,

which has no convergent subsequence as n goes to infinity. �

Leau petals are a useful tool in understanding the local behavior near a parabolic

point. Various authors use different definitions of “petal.” We follow Beardon’s definition.

For a slightly different approach we refer to [41].

We define a petal of order p to be the following:

Πp
k(t) = {reiθ : rp < t(1 + cos(pθ)); |2kπ/p− θ| < π/p},

where 0 ≤ k ≤ p − 1. A “flower” of Leau petals of order 3 is pictured in Figure 1.2 in

addition to the Julia set of e2πi/3z + z2.

One can work harder on the above expansion near a parabolic point to obtain the

following result.

Lemma 1.6.7. (6.5.7 in [4]) Suppose that f is analytic near 0 with

f(z) = z + azp+1 +O(zp+2)
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Figure 1.2. Leau Petals

for a 6= 0. Then f is conjugate near 0 to a function

w(z) = z − zp+1 +O(z2p+1).

Using this result we can now state the local dynamical behavior near a parabolic fixed

point.

Theorem 1.6.8. (Petal Theorem [4]) Suppose that the analytic map f has a Taylor

expansion

f(z) = z − zp+1 +O(z2p+1)

at the origin. Then for small enough t we have the following:

(1) f : Πp
k(t)→ Πp

k(t)

(2) fn → 0 as n→∞ on each Πp
k(t)

(3) arg(fn(z))→ 2kπ/p locally uniformly on Πp
k(t) as n→∞

(4) |f(z)| < |z| on a neighborhood of the axis of each petal (arg(z) = 2kπ/p)
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(5) f : Πp
k(t)→ Πp

k(t) is conjugate to a translation

The local behavior of irrationally neutral fixed points is much more complicated than

in the parabolic case and is not completely understood. Unlike the parabolic case, where

each parabolic fixed point is always in the Julia set, an irrationally neutral point may be

in either the Fatou set or the Julia set. If it is in the Fatou set, we have the following

theorem for rational maps. We need one definition before stating the theorem.

Definition 1.6.9. A analytic map f with the following expansion near the origin,

f(z) = λz +O(z2) is locally linearizable if there is a map φ, analytic on a neighborhood

of the origin, which conjugates f to the map z → λz near the origin.

Theorem 1.6.10. [4, 41] Let f be a rational function of degree≥ 2 with a neutral

fixed point z0. Then the following are equivalent:

(1) f is locally linearizable around z0

(2) z0 ∈ F (f)

(3) the component U ⊂ F (f) containing z0 is conformally isomorphic to the open

unit disk under an isomorphism which conjugates f on U to an irrational rotation

of that disk.

When this disk occurs we refer to it as a Siegel disk (or a cycle of Siegel disks) and

the fixed point a Siegel point (respectively a cycle of Siegel points). (See Theorem 1.7.1)

If the map is not locally linearizable near an irrational fixed point, then that point is

called a Cremer point. The local behavior near these points is still not well understood

[4, 41].
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To summarize, attracting periodic points are always in the Fatou set, and repelling

periodic points are always in the Julia set. Neutral points can be in either. Considering

the Julia set as the unstable set can be justified by the following theorem.

Theorem 1.6.11. [5] Let f be a meromorphic function. Then J(f) is the closure of

the set of repelling periodic points of f .

1.7. Fatou Components and The Critical Orbit

The classification of Fatou components is an important tool for understanding the

dynamics of both rational and transcendental meromorphic functions. This classification

theorem is due mostly to Cremer [8] and Fatou [28, 29] and was first presented in this

form by Baker, Kotus, and Lü [3].

Theorem 1.7.1. [5] Let f be a meromorphic function on C and let U be a periodic

component of F (f) of period p. Then we have exactly one of the following properties:

(1) U contains an attacting periodic point z0 of period p. Then fnp(z) → z0 for

z ∈ U as n→∞, and U is called the immediate basin of attraction for z0.

(2) ∂U contains a periodic point z0 of period p and fnp(z) → z0 for z ∈ U as

n→∞. Then (fp)′(z0) = 1 if z0 ∈ C. (For z0 =∞ we have (gp)′(0) = 1, where

g(z) = 1/(f(1/z)).) In this case, U is a Leau domain (also called parabolic

domain).

(3) There exists an analytic homeomorphism φ : U → D, where D is the unit disk,

such that (φ ◦ fp ◦ φ−1)(z) = e2πiαz for some α ∈ R\Q. In this case, U is called

a Siegel disk.

24



(4) There exists an analytic homeomorphism φ : U → A where A is an annulus,

A = {z : 1 < |z| < r} for some r > 1, such that (φ ◦ fp ◦ φ−1)(z) = e2πiαz for

some α ∈ R\Q. In this case, U is called a Herman ring.

(5) There exists z0 ∈ ∂U such that fnp(z) → z0 for z ∈ U as n →∞, but fp(z0) is

not defined. In this case, U is called a Baker domain.

The existence of functions with Siegel discs and Herman rings is a non-trivial question.

For example it was not known if Weierstrass elliptic functions have Siegel disks. We give a

positive answer to this question in Section 3.7. The detection of Siegel disks and Herman

rings can be done using the following characterization:

Proposition 1.7.2. [5] Let f be meromorphic and let U be a component of F (f).

If the closure of {fn|U} (in the local uniform topology) contains non-constant functions,

then U is a Siegel disk or a Herman ring.

This is often a difficult condition to check, but it is sometimes the case that one can

rule out Herman rings.

Proposition 1.7.3. (Exercise 15-a in [41]) If f is a polynomial, then f does not

have any Herman rings.

Proof. We use the Maximum Modulus Principle. Suppose that fn : U → U is a

Herman ring. For simplicity, replace fn with f : U → U , since fn is also a polynomial.

Now, C\U has two closed components (one can draw a Jordan curve in U separating

them). One component is bounded and one is unbounded. Let U ′ be the union of U

with the bounded component of its complement. The Maximum Modulus principle states

that if z0 ∈ U and |f(z)| ≤ |f(z0)| then f is constant. This immediately implies that
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f : U ′ → U ′, since the values of f on the interior component of the complement of

U cannot exceed the values of f on U , which is invariant. By analytic continuation the

limit functions of {fn|U} extend uniquely to limit functions of {fn|U ′}. Since U ′ is simply

connected and contains U , f cannot have any Herman rings. �

The following result concerning elliptic functions was proved in [32].

Theorem 1.7.4. For any lattice Ω, ℘Ω has no cycle of Herman rings.

The natural question that arises is the existence of Siegel disks and Herman rings.

We will not attempt to discuss the existence of Herman rings, since they do not arise in

our context. We refer the reader to [42], published in 1987, which uses quasi-conformal

surgery to construct examples of rational maps with Herman rings. Siegel disks were

shown to exist by C. L. Siegel in 1941 [43]. We are interested in the following question:

Question 1.7.5. Do Weierstrass elliptic ℘Ω functions have Siegel disks?

One of the results of this thesis gives an affirmative answer to this question. In order

to do this we must first show that the family pc(z) = z2 + c has Siegel disks. Begin by

conjugating to the family λz+ z2. Let φc(z) = z− a(c), where a(c) = (−1 +
√

1− 4c)/2.

Thus (φ−1
c ◦ pc ◦ φc)(z) =

(z − a)2 + c+ a = z2 − 2az + a2 + c+ a = −2az + z2 = λ(a(c))z + z2.
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Consider λ = e2πiα where α ∈ R\Q. Since α is irrational it has an infinite continued

fraction expansion

α = [a0; a1, a2, a3, ...] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

· · ·

,

and so we let pn/qn = [0; a1, a2, a3, ..., an] be the nth rational approximation. If the series

(1.17)
∞∑
n=1

log(qn+1)

qn

converges, then we say that α is a Brjuno number (also spelled Bryuno). The following

theorem is due to Brjuno, Rüssmann, and Yoccoz.

Theorem 1.7.6. (Theorems 11.10 and 11.11 in [41]) If α is a Brjuno number, then

for λ = e2πiα, f(z) = λz + O(z2) is locally linearizable at the origin. Conversely, if λ is

not a Brjuno number, then λz + z2 is not linearizable at the origin.

As a consequence of this and Proposition 1.7.3 we have the following.

Proposition 1.7.7. If λ is a Brjuno number then λz + z2 has a Siegel disk at the

origin.

For the sake of illustration we present one example of a Brjuno number, the golden

mean, φ = (
√

5 + 1)/2. Since φ is a fixed point of 1 + 1/z we have that φ = [1; 1, 1, 1, ...]
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Figure 1.3. Julia set and invariant circles for e2πiφz + z2

and φ − 1 = [0; 1, 1, 1, ...]. It is easy to check that pn/qn = Fn+1/Fn, where Fn are the

Fibonacci numbers. We have that

log qn+1

qn
=

logFn+1

Fn
.

Doing a ratio test one can check that
(

logFn+2

Fn+1

)
/
(

logFn+1

Fn

)
→ 1/φ < 1 and so the

summation converges. Thus, the golden ratio is a Brjuno number.

Example 1.7.8. Let φ be the golden ratio. Then

e2πiφz + z2

has a Siegel disk at the origin. A numerical attempt to show a Julia set and invariant

circles for this function is made in Figure 1.3
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The existence of Fatou components that are not pre-periodic is an important issue.

These components that are not periodic or pre-periodic are called “wandering domains.”

Sullivan settled the question for rational maps.

Theorem 1.7.9. [4] [Sullivan] If f is rational, then f has no wandering domains,

i.e., all Fatou components are pre-periodic.

This result is not true for transcendental meromorphic functions. The first example

was given by Baker and others have followed. One example is f(z) = z − 1 + e−z + 2πi

[5, 3]. To see that this has a wandering domain, consider Newton’s method applied to

h(z) = ez − 1. The function that arises is g(z) = z − h′(z)/h(z) = z − 1 + e−z. Baker

showed that J(f) = J(g). The points zk = 2kπi are super-attracting fixed points of g.

Each has a simply connected basin of attraction Uk. These basins of attraction of g are

wandering domains for f [3].

There are classes of meromorphic functions which do not have wandering domains.

These classes include a class called S. Class S functions have only finitely many critical

and asymptotic values. The reader will notice that both f and g as above have infinitely

many critical values.

Definition 1.7.10. A complex number α is called an asymptotic value of a tran-

scendental meromorphic function f : C → C∞ if there is a path s : [0, 1) → C with the

property

lim
t→1

s(t) =∞

so that

lim
t→1

f(s(t)) = α.
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A good example of a function with asymptotic values is ez. Taking curves along the

real line, we can see that both 0 and ∞ are asymptotic values.

Definition 1.7.11. A function is of class S if it has finitely many critical values and

finitely many asymptotic values.

Proposition 1.7.12. An elliptic function f has no asymptotic values.

Proof. Assume that an elliptic function f on the lattice Ω = 〈ω1, ω2〉 has an asymp-

totic value α. Let ε > 0. We have a path s : [0, 1)→ C with the property

lim
t→1

s(t) =∞,

so that

lim
t→1

f(s(t)) = α.

So there exists δ > 0 so that if 1− t′ < δ then |f(s(t′))−α| < ε. First, s : (1− δ, 1)→ C

must pass through infinitely many period parallelograms. If it passed through only

finitely many period parallelograms then the path could not approach infinity. Consider

the quotient map

pr : C→ C/Ω,

which is continuous. By periodicity we have that f(s(t′)) = f(pr(s(t′))). Thus we may

consider the curve pr(s(t)) as a subset of a period parallelogram, say

PΩ = {tω1 + sω2 : 0 ≤ t, s < 1}.

Since s : (1 − δ, 1) → C passes through infinitely may period parallelograms, we have

that pr(s(t′)) has infinitely many values on {tω1 : 0 ≤ t < 1}∪ {sω2 : 0 ≤ s < 1}. Using
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the order on [1− δ, 1), this produces a sequence {zn}, and so evidently

lim
t→1

f(s(t)) = lim
n→∞

f(zn) = α.

Now at least one of {tω1 : 0 ≤ t < 1} or {sω2 : 0 ≤ s < 1} contains an infinite

subsequence {znk}. For simplicity assume it is {tω1 : 0 ≤ t < 1}. This establishes that

it is sufficient to look along the ray {tω1 : 0 ≤ t < ∞} for the asymptotic value α. But

since f is periodic along this ray it cannot be the case that |f(z)−α| < ε for large values

of t in {tω1 : 0 ≤ t <∞}. �

Theorem 1.7.13. [5] A meromorphic function of class S has no wandering domains.

Proposition 1.7.14. An elliptic function is of class S and so has no wandering

domains or Baker domains.

Proof. We have already established that an elliptic function has only finitely many

critical values in Corollary 1.3.2. Since an elliptic function is doubly periodic, it cannot

have any asymptotic values. Thus it is class S and cannot have wandering domains [5]

or Baker domains [27]. �
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CHAPTER 2

Connectivity of Julia Sets of the Weierstrass Elliptic Functions

on a Square Lattice

In this chapter we prove that the Julia set of ℘λ = ℘〈λ,λi〉 is connected for all parameter

values λ ∈ C∗. We begin by discussing a sufficient condition for the Julia set of a

Weierstrass elliptic function to be connected. Using this tool we first prove the result

in the case when the parameter is real. We then generalize the result for all parameter

values. It is sufficient for us to prove the result when ℘λ has an attracting or parabolic

cycle. It has already been proved in [33] that J(℘λ) is connected when ℘λ has a cycle of

Siegel disks. If ℘λ does not have a non-repelling cycle, then J(℘λ) is the whole Riemann

sphere and thus is connected.

2.1. General Properties of Julia Sets of Elliptic Functions

To determine if a subset of C∞ is connected we have the following fundamental

proposition.

Proposition 2.1.1. [4] A subset S ⊂ C∞ is connected if and only if C∞\S is simply

connected, i.e. has simply connected components.

Applying this to Julia sets we see that a Julia set is connected if and only if the

Fatou set is simply connected. The following theorem, adapted from [40, Theorem 3.1],

is proved in [33]. We present a similar proof here.



Theorem 2.1.2. [33] If every Fatou component of F (℘Ω) contains 0 or 1 critical

values, then J(℘Ω) is connected.

Proof. If the Fatou set is empty, then J(℘Ω) = C∞, which is connected and we are

done. Assume that the Fatou set is non-empty. It must be shown that F (℘Ω) is simply

connected. We show this is the case component-wise. Let V ⊂ F (℘ω) be a component.

Let α be a loop in V . Since ℘Ω has no wandering domains or Baker domains (1.7.14)

and no Herman rings (1.7.4), V must be pre-periodic. Thus there is a large enough k so

that ℘kΩ(α) is contained in a simply connected open set U ⊂ V in:

(1) an immediate basin of attraction for an attracting or super-attracting periodic

point;

(2) a Leau domain for a periodic parabolic point;

(3) or a Siegel disk in a cycle of Siegel disks.

It was shown in [33] that a Siegel disk is contained in a period parallelogram. Thus by

choosing a large enough k and small enough U we may assume that U lies in a period

parallelogram P so that U ⊂ P . We may also assume that the boundary of U contains no

critical points. We need only to show that ℘−kΩ (U) is simply connected. We use induction

on k. The k = 0 case is established, since U is simply connected. Assume that ℘k−1
Ω (U) is

simply connected. Let W be a component of ℘k−1
Ω (U), which we have assumed is simply

connected. Suppose that W contains no critical value. Then each fundamental region

℘−1
Ω (W ) consists of two disjoint simply connected regions. If W contains one critical

value then ℘−1
Ω (W ) consists of one simply connected region in each fundamental region.

This is because ℘Ω : ℘−1
Ω (W ) → W is a two-to-one branched cover in each fundamental

region. Applying this argument to each component, we have our result. �
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The connectivity of J(℘Ω) when Ω is triangular (Ω =
〈
λ, eπi/3λ

〉
) was settled in [33]

and [32].

Theorem 2.1.3. [33] If Ω is triangular then J(℘Ω) is connected.

Proof. It was shown in [32] that the critical values of ℘Ω lie in different components

of F (℘Ω), and so Theorem 2.1.2 applies to give the result. �

The following classification of Fatou components for Weierstrass elliptic functions with

square lattices was established in [32]. First we define the general basin of attraction for

an attracting or parabolic periodic cycle. We recall that we defined the immediate basin

in 1.7.1.

Definition 2.1.4. Let {p1, ..., pk} be an attracting or parabolic cycle of period k for

the meromorphic function f . We define the basin of attraction to be the set of points z

so that fnk(z)→ pi for some 1 ≤ i ≤ k.

Whereas the immediate basin is the minimal collection of Fatou components contain-

ing the cycle, the basin is the set of all pre-images of the immediate basin.

Theorem 2.1.5. [32] Let Ω be a square lattice. Then exactly one of the following

must occur:

(1) F (℘Ω) is empty and J(℘Ω) = C∞;

(2) F (℘Ω) is the basin of an attracting cycle;

(3) F (℘Ω) is the basin of a parabolic cycle;

(4) or F (℘Ω) consists of a cycle of Siegel disks and their pre-images.
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2.2. Real Rectangular Square Lattices with an Attracting Fixed Point

Our goal will be to prove the following theorem in the next section.

Theorem 2.2.1. For each λ ∈ C∗ the Julia set of ℘λ = ℘〈λ,λi〉 is connected.

We say that a lattice Ω is real rectangular if there are real numbers a > 0 and b > 0

so that Ω = 〈a, bi〉. Let Ω(λ) = 〈λ, λi〉 for λ 6= 0. In this section we assume that λ > 0

to illustrate the technique for obtaining the general result. Define ℘λ = ℘Ω(λ). Since

iΩ(λ) = Ω(iλ) = Ω(λ), the homogeneity property in Equation (1.5) gives

℘λ(iz) = ℘iλ(iz) = i−2℘λ(z) = −℘λ(z).

We define R+ = {x > 0 : x ∈ R} and R− = {x < 0 : x ∈ R}. By Theorem 1.2.10 and

Proposition 1.2.11 with (1.5) we have:

(2.1) ℘λ : R\Ω(λ)→ R+

(2.2) ℘λ : iR\Ω(λ)→ R−.

Theorem 2.2.2. Suppose Γ is a real rectangular square lattice and that ℘Γ has an

attracting fixed point a0. Then J(℘Γ) is connected.

Proof. Let Γ = 〈λ, λi〉 for λ > 0. From Propositions 1.2.9 and 1.2.12 we have

that e1 = ℘λ(λ/2) > 0, e2 = −e1 and e3 = 0. It is sufficient to show that each Fatou

component contains at most one critical value, by Theorem 2.1.2. The critical value

e3 = 0 is not in the Fatou set, since it is a pole. We proceed by contradiction.
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Suppose that a Fatou component, U , contains both e1 and e2 = −e1. Each Fatou com-

ponent is path connected since it is open and connected. Consider a path C connecting

e1 and −e1 in U .

We claim that C ∩ (iR\0) 6= ∅ since C cannot contain 0. To prove this claim we

parameterize C on [0, 1]. Set γ(t) = r(t)eiθ(t), where γ : [0, 1]→ C so that γ(0) = e1 and

γ(1) = −e1. r(t) is a non-vanishing function since 0 /∈ C. Since e1 ∈ R, we have that

θ(0) = 0 and θ(1) = (2k + 1)π for some k ∈ Z. Since θ is a continuous function of t,

the Intermediate Value Theorem applies, giving that θ attains the value π/2 or −π/2 for

some value t0 ∈ [0, 1]. We have that γ(t0) = r(t0)eiπ/2 or γ(t0) = r(t0)e−iπ/2 for some t0.

This establishes that C ∩ (iR\0) 6= ∅.

We note that C is a compact subset of the immediate basin of attraction of the

attracting fixed point a0, which is necessarily real and positive since the critical orbit,

{℘nλ(e1)} = {℘nλ(e2)}, is contained in the positive real axis and cannot cluster on zero.

All iterates of ℘Γ are defined on C since all pre-poles lie in the Julia set. Now {℘nΓ}n∈N

converges uniformly on C to the constant function a0 in the Euclidean metric [5, 4]. So

for each ε > 0 there is an N ∈ N so that supz∈C |℘nΓ(z)− a0| < ε.

We claim that for each n ∈ N, ℘nΓ(C) contains a point in each of R+, R−, and iR\0

and is connected. We proceed by induction. We have established these properties for C

(the n = 0 case). For the induction hypothesis we assume that ℘nΓ(C) contains a point in

each of R+, R−, and iR\0 and is connected. We can immediately establish that ℘n+1
Γ (C)

is connected since all iterates are defined on C and ℘Γ is continuous away from its pre-

poles. Furthermore, ℘n+1
Γ (C) contains a point on R+ and a point on R− by equations

(2.1) and (2.2). Lastly ℘n+1
Γ (C) contains a point on iR\0 by the same argument given for

C (n = 0 case), replacing e1 and −e1 by the point on R+ and a point on R− respectively.
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Choose a point an in ℘nΓ(C) ∩ R− for each n ∈ N. We have that

sup
z∈C
|℘nΓ(z)− a0| ≥ |an − a0| > a0

for all n ∈ N, since an < 0 and a0 > 0. This contradicts the uniform convergence of ℘nΓ

on C to the constant function a0. Thus every Fatou component contains at most one

critical value, and so the Julia set is connected. �

2.3. Proof of Theorem 2.2.1

We now return to the general case. Consider λ ∈ C and set ℘λ = ℘〈λ,λi〉 as before.

Definition 2.3.1. Fix λ ∈ C∗. Define L1 = {tλ−2 : t ∈ R+} and L2 = −L1.

Furthermore, define S1 = {tλ : t ∈ R\Z}. Set S2 = iS1.

Proposition 2.3.2. For each λ ∈ C∗ we have that

℘λ(S1) ⊂ L1

and

℘λ(S2) ⊂ L2.

Proof. If z ∈ S1, then z = tλ for some t ∈ R\Z. By the homogeneity equations

(1.5), we have that

℘λ(tλ) = λ−2℘1(t).

Furthermore, ℘1(t) > 0 for all t ∈ R\Z by Equation (2.1), giving that λ−2℘1(t) ∈ L1.

If z ∈ S2, then z = itk for t ∈ R\Z. We have that i 〈λ, λi〉 = 〈λ, λi〉. Using the

homogeneity equations a second time, we have

℘λ(itλ) = (iλ)−2℘1(t) = −λ−2℘1(t).
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Since ℘1(t) > 0 for all t ∈ R\Z, we have that −λ−2℘1(t) ∈ L2. �

We observe that e1 ∈ L1 and e2 ∈ L2 by equation (1.15).

Lemma 2.3.3. Fix λ ∈ C∗. Let p 6= 0. Then

K(p) = max{ inf
z∈L1

d(z, p), inf
z∈L2

d(z, p)} > 0,

where d is the Euclidean metric on C.

Proof. Suppose that p 6= 0. If p ∈ L1 then

K(p) = inf
z∈L2

d(z, p) ≥ d(0, p) > 0.

Similarly for p ∈ L2. Suppose that p /∈ L1 ∪ L2 ∪ {0}. Denote L = L1 ∪ L2 ∪ {0} which

is a line passing through the origin. The distance c from p to L is positive, since p is not

on L. By the triangle inequality, we have K(p) ≥ c > 0. Thus K(p) > 0. �

The distance K(p) depends on λ, but we write K(λ, p) = K(p) as in Lemma 2.3.3.

Lemma 2.3.4. Let C be a curve connecting z1 ∈ L1 and z2 ∈ L2 in C. Let H be a

line passing through the origin. Then C ∩H 6= ∅.

Proof. Parameterize C on [0, 1] by γ : [0, 1]→ C. If C contains the origin then we

are done. Suppose that C does not contain the origin. Let γ(t) = r(t)eiθ(t). Let θ0 = θ(0)

and θ1 = θ(1) = θ0 + (2k + 1)π, where k ∈ Z. If w ∈ H then arg(w) = θH or arg(w) =

θH −π for some θH ∈ (0, π], and H contains all such w’s. We have that θ is a continuous

function of t, so the Intermediate Value Theorem gives that θ(t0) = θH , or θ(t0) = θH−π,

for some t0 ∈ [0, 1]. Thus, there is t0 ∈ [0, 1] such that γ(t0) = r(t0)eiθ(t0) ∈ H. �
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Theorem 2.3.5. Suppose that ℘λ has an attracting fixed point p. Then J(℘λ) is

connected.

Proof. It is sufficient to show that each Fatou component contains at most one

critical value [33]. The critical value 0 is not in the Fatou set, since it is a pole. We

proceed by contradiction.

Suppose that a Fatou component U contains both e1 and e2 = −e1. It is evident that

U must be the immediate basin of the attracting fixed point, since the immediate basin

must contain a critical point [4, 5], and e1 and −e1 are both in U . Each Fatou component

is path connected, since it is open and connected. Let C be a curve connecting e1 and

−e1 in U .

All iterates of ℘k are defined on C, since all pre-poles lie in the Julia set. Since C

is a compact subset of the immediate basin, {℘nλ}n∈N converges uniformly on C to the

constant function p in the Euclidean metric [4, 5]. So for all ε > 0 there is an N ∈ N so

that supz∈C |℘nλ(z)− p| < ε.

We claim that for each n ∈ N, ℘nk(C) contains a point on each of L1, L2, S1, and S2

and is connected. We proceed by induction. We first establish these properties for the

n = 0 case, C.

By construction C contains a point on L1 and on L2. We establish that C ∩ Si 6= ∅

for i = 1, 2. Fix i. Now Si is a line passing through the origin, so by Lemma 2.3.4 we

have that C ∩ Si 6= ∅. Since C does not contain any poles, we have that C ∩ Si 6= ∅.

For the induction hypothesis, we assume that ℘nλ(C) contains a point in L1, L2, S1,

and S2 and is connected. We can immediately establish that ℘n+1
λ (C) is connected, since

all iterates are defined on C and ℘k is continuous off of its pre-poles. Furthermore,

39



℘n+1
λ (C) contains a point on L1 and a point on L2 by Proposition 2.3.2. Lastly, we can

establish that ℘n+1
λ (C) contains a point on S1 and S2 by Lemma 2.3.4.

If p /∈ L2 choose an in ℘nλ(C) ∩ L2 for each n ∈ N (if p ∈ L2 then choose an in L1).

We have that

sup
z∈C
|℘nλ(z)− p| ≥ |an − p| > K(p)

for all n ∈ N, by Lemma 2.3.3. This contradicts the uniform convergence of ℘nλ on C

to the constant function p. Thus every Fatou component contains at most one critical

value, and so the Julia set is connected. �

We now generalize this result to the case when ℘λ has an attracting or parabolic

cycle. If ℘λ has a parabolic cycle {p0, ..., pl−1}, then ℘lnλ → pj locally uniformly on the

immediate basin of pj [5]. Furthermore, the immediate basin of a parabolic cycle contains

a critical point [5]. We have the following theorem. The proof utilizes the same tools

that were used in the above result.

Theorem 2.3.6. Suppose that ℘λ has an attracting or parabolic cycle {p0, ..., pl−1}.

Then J(℘λ) is connected.

Proof. Again, it is sufficient to show that each Fatou component contains at most

one critical value [33]. The critical value 0 is not in the Fatou set, since it is a pole. We

proceed by contradiction.

Suppose that a Fatou component U contains both e1 and e2 = −e1. It is evident that

U must be the immediate basin of the attracting cycle, since the immediate basin must

contain a critical point [4, 5], and e1 and −e1 are both in U . Each Fatou component is

path connected, since it is open and connected. Let C be a curve connecting e1 and −e1

in U .
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All iterates of ℘λ are defined on C since all pre-poles lie in the Julia set. Since C

is a compact subset of the immediate basin, {℘lnλ }n∈N converges uniformly on C to the

constant function pj in the Euclidean metric for some 0 ≤ j ≤ l − 1 [4, 5]. This means

that for all ε > 0 there is an N ∈ N so that supz∈C |℘lnλ (z)− pj| < ε for n > N .

We have established in Theorem 2.3.5 that for each m ∈ N, ℘mλ (C) contains a point

on each of L1, L2, S1, and S2 and is connected .

If pj /∈ L2, choose an in ℘lnλ (C)∩L2 for each n ∈ N (if pj ∈ L2 then choose an in L1).

We have that

sup
z∈C
|℘lnλ (z)− pj| ≥ |an − pj| > K(pj)

for all n ∈ N, by Lemma 2.3.3. This contradicts the uniform convergence of {℘lnλ }n∈N on

C to the constant function pj. Thus every Fatou component contains at most one critical

value, and so the Julia set is connected.

�

We now prove the main result for all square lattices.

Proof. (Proof of Theorem 2.2.1) If F (℘) is empty, then J(℘) = C∞ and so is

connected. (For example, this occurs when the lattice is a so-called “rhombic square”

lattice [30]. It also occurs when the critical orbit lands on a pole. There are other

examples as well; n.b. [31]). If ℘ has an attracting cycle or a parabolic cycle, we have

that J(℘) is connected by Theorems 2.3.6 and ??. If the Fatou set consists of pre-

periodic Siegel disks, then the Julia set is connected [5, 33]. This exhausts all possible

Fatou components. Thus J(℘λ) is connected for all λ 6= 0. �
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CHAPTER 3

Mandelbrot-Like Sets in Parameter Space

In this chapter we show that the parameter space of ℘λ = ℘〈λ,λi〉, parameterized by the

lattice generator λ, contains infinitely many homeomorphic copies of the Mandelbrot set

which are pairwise dynamically inequivalent up to a conformal change of coordinates. We

use the tools of Douady and Hubbard [25] concerning polynomial-like mappings to prove

the result. We begin by discussing the parameterization of iterated Weierstrass elliptic ℘

functions as presented by J. Hawkins and L. Koss in [32]. We then proceed to construct

analytic families of quadratic-like mappings corresponding to each Mandelbrot-like set.

Then, using a theorem of Douady and Hubbard, we show that the Mandelbrot-like sets

are actually homeomorphic to the Mandelbrot set.

3.1. Holomorphic Families

The theory of holomorphic families of meromorphic maps of the sphere was first

introduced by Mañé, Sad, and Sullivan in [38]; McMullen and Sullivan furthered this

study in [39]. The setting for this theory was extended to meromorphic maps of class S

by Keen and Kotus in [36] and adapted to ℘λ by Hawkins and Koss in [32].

Definition 3.1.1. (1) A holomorphic family of meromorphic maps fλ over a

complex manifold M is a holomorphic map M × C∞ → C∞, given by (λ, z) 7→

fλ(z).



(2) M top ⊂ M is the set of points λ that have a neighborhood U with the property

that ω ∈ U implies there is a homeomorphism φ : C∞ → C∞ such that fω =

φ−1 ◦ fλ ◦ φ.

(3) The set M qc ⊂M is defined similarly except that φ must be quasiconformal.

(4) Suppose that fλ has a finite singular set for every λ ∈ M . Let M0 ⊂ M be

the set of parameters such that the number of singular values of fλ is locally

constant. For λ ∈M0, the singular values can be locally labelled by holomorphic

functions s1(λ), s2(λ), . . . , sn(λ). A singular orbit relation is a set of integers

(i, j,m, n) with m,n ≥ 0 such that fmλ (si(λ)) = fnλ (sj(λ)). The set Mpost ⊂ M0

of postsingularly stable parameters consists of all λ such that the set of singular

orbit relations is locally constant.

(5) A holomorphic motion of a set J ⊂ C∞ over a connected complex manifold with

basepoint (M,λ0) is a map φ : M × J → C∞ given by (λ, z) 7→ φλ(z) satisfying

(a) for each fixed z ∈ J , φλ(z) is holomorphic in λ;

(b) for each fixed λ, φλ(z) is an injective function of z;

(c) φλ0(z) = z for all z ∈ J ; i.e., it is the identity function at the basepoint.

(6) A holomorphic motion over (M,λ0) respects the dynamics if

φλ(fλ0(z)) = fλ(φλ(z))

whenever z and fλ0(z) both belong to J .

(7) The set M stab ⊂ M denotes the J-stable set of parameters such that the Julia

set moves by a holomorphic motion respecting the dynamics.

The next result was proved in [36] using the techniques in [39].
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Theorem 3.1.2. For any holomorphic family of meromorphic maps of class S defined

over the complex manifold M:

(1) The topologically stable parameters are open and dense.

(2) M qc = Mpost = M top;

(3) M stab is the set of parameters for which the total number of attracting and su-

perattracting cycles of fλ is constant in a neighborhood of λ;

(4) M stab is open and dense in M .

Often one may study a smaller set of parameters to obtain information about the

whole parameter space.

Definition 3.1.3. We will say that a parameter space M is reduced if λ, λ′ ∈M and

λ 6= λ′ implies that fλ is not conformally conjugate to fλ′.

In our setting we are interested in parameterizing Weierstrass elliptic functions on

square lattices. It was shown in [32] that the parameterization ℘λ = ℘〈λ,λi〉 where λ ∈ C∗

forms a holomorphic family. We present the relevant results here.

Proposition 3.1.4. [32, Proposition 6.2] Let ψ(z) = e2πi/3z. Then

ψ ◦ ℘λ = ℘eπi/6λ ◦ ψ.

Proof. Plugging in and using the homogeneity equations (1.5), we have

(ψ ◦ ℘λ)(z) = e2πi/3℘λ(z) =
1

(eπi/6)2
℘λ(z) = ℘eπi/6λ(e

πi/6λ),

which completes the proof. �

The converse is also true.
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Theorem 3.1.5. The maps ℘λ and ℘′λ are conformally conjugate if and only if λ =

enπi/6λ′ for some n ∈ Z.

We begin with a lemma.

Lemma 3.1.6. For λ, λ′ ∈ C∗ the maps ℘λ and ℘λ′ are identically equal if and only if

λ′ = ikλ for some k ∈ Z

Proof. From Proposition 1.1.2 we have that the lattices 〈λ, λi〉 and 〈λ′, λ′i〉 are

equivalent if and only if  λ′

λ′i

 =

 a b

c d


 λ

λi



for some

 a b

c d

 ∈ SL2(Z). By factoring out λ and λ′, we can obtain the following:

λ′

λ

 1

i

 =

 a b

c d


 1

i

 .

Let r = λ′

λ
and break r into real and imaginary parts, r = r1 + ir2. From this we obtain r1 + ir2

ir1 − r2

 =

 a b

c d


 1

i



, which implies that a = r1, b = r2, c = −r2, and d = r1. Since

a b

c d

 ∈ SL2(Z), we

have that r2
1 + r2

2 = 1 and r1 and r2 are integer valued. Thus r = λ′

λ
= 1, −1, i, or −i.

�
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Proof. (of Theorem 3.1.6) (⇒) Suppose that ℘λ and ℘′λ are conformally conjugate.

By Lemma 6.3 in [32], we have that the conformal conjugacy is of the form ψ(z) = az.

This induces the following equation:

(3.1) ℘λ(az) = a℘λ′(z).

Using homogeneity, we obtain

(3.2)
1

a2
℘λ/a(z) = a℘λ′(z).

Since both ℘λ/a and ℘λ′ share the same poles, the lattices they are defined on are

identical. This implies that ℘λ/a = ℘λ′ , and so a3 = 1. Thus, a is a third root of unity.

Using Lemma 3.1.6 we have that λ/a = ikλ′, i.e., λ = aikλ′ for some k ∈ Z. We must

show that aik = enπi/6 for some n. Since a = e2lπi/3 for some l ∈ Z, and i = eπi/2, we

have

aik = enπi/6ekπi/2 = e(n+3k)πi/6,

which gives the first direction of the proof.

(⇐) If λ = enπi/6λ′ then set φ(z) = e2π1/3z. Using Proposition 3.1.4, we have that

φ ◦ ℘λ = ℘λ′ ◦ φ. �

We define

(3.3) M = C∗/ ∼,

where λ1 ∼ λ2 if λ1 = eπi/6λ2. The following result was proved in [32].

Proposition 3.1.7. [32, Corollary 6.6 and Proposition 6.3] The family ℘λ = ℘〈λ,λi〉

with λ ∈M forms a reduced holomorphic family of maps over M . Furthermore, M stab =

M qc and forms an open dense set in M .
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3.2. Analytic Families of Quadratic-Like Mappings

We make heavy use of a conformally conjugate family of mappings Wµ(z) = µ℘γ(γz),

each of which is conformally conjugate to a unique ℘λ.

A Simplifying Family of Elliptic Functions.

In this subsection we show that we can think of ℘λ as a multiple of ℘1 up to conformal

conjugacy.

Definition 3.2.1. For µ ∈ C∗ define

(3.4) Wµ(z) = µ℘γ(γz) =
µ

γ2
℘1(z),

where γ is the lemniscate constant defined as the positive root of γ2 = ℘1(1/2).

We observe that Wµ(z) = (µ/γ2)℘1(z), which is a complex parameter times the

Weierstrass elliptic function on the lattice 〈1, i〉. Thus, as the parameter changes, the

lattice under consideration remains the same. We first prove the following proposition

to show that the families Wµ and ℘λ are dynamically equivalent.

Proposition 3.2.2. Let λ 6= 0 and set φλ(z) = λz. The map ℘λ is conformally

conjugate under φλ to Wµ, where µ = γ2/λ3.

Proof. Let λ ∈ C∗ and note that

(3.5)
(
φ−1
λ ◦ ℘λ ◦ φλ

)
(z) =

1

λ
℘λ(λz).

Using the homogeneity equations (1.5) we have that the above is equal to

1

λ3
℘1(z) =

γ2

λ3
℘γ(γz),
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which completes the proof. �

Proposition 3.2.3. For every µ ∈ C∗ the map Wiµ is conformally conjugate to the

map Wµ.

Proof. Let ψ(z) = −iz. Consider

(ψ−1 ◦Wiµ ◦ ψ)(z) =
1

−i
Wiµ(−iz) =

1

−i
iµ℘γ(γiz)

= −µ℘γ(γiz) = µ℘γ(γz) = Wµ(z).

�

We define

(3.6) N = C∗/ ∼,

where µ ∼ µ′ if µ′ = iµ. Using M as defined in Equation (3.3), define the map h : M → N

by

(3.7) h(z) =
γ2

z3
.

Proposition 3.2.4. The map h : M → N is well defined and one-to-one.

Proof. Let λ ∼ λ′ and let [z]N be the equivalence class of z in N (respectively for

M). We must show that [h(λ)]N = [h(λ′)]N . We know that λ′ = ekπi/6λ for some k ∈ Z,

so

h(ekπi/6λ) =
γ2

(ekπi/6λ)3
= ik

γ2

λ3
.

Since [
ik
γ2

λ3

]
N

=

[
γ2

λ3

]
N

,

we have the result. �
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We can now restate the connection between Wµ and ℘λ.

Proposition 3.2.5. For λ ∈M the map Wh(λ) is conformally conjugate to ℘λ.

Since h is an analytic change of coordinates, we have the following result.

Proposition 3.2.6. The family Wµ parameterized over N forms a reduced holomor-

phic family.

Quadratic-Like Behavior.

Definition 3.2.7. Let U and V be simply connected open subsets of C, not equal to

C, such that U is relatively compact in V . A map f : U → V is quadratic-like if it is a

2-fold branched covering map with one critical point in U .

For any z ∈ C define ‖z‖1 = |Re(z)| + |Im(z)| and recall that this is a norm on C

considered as a vector space over R. Let

(3.8) cm,n1 = 1/2 +m+ ni, and cm,n2 = i/2 +m+ ni,

which are the critical points of Wµ. One useful property of Wµ is that the critical points

do not depend on µ. Since Wµ(cm,n3 ) = 0 and 0 is a pole, we do not consider it in the

context of studying quadratic-like mappings.

Set

(3.9) Um,n
i = {z : ‖z − cm,ni ‖ < 1/2}

for i = 1, 2, which are diamond-shaped regions centered on cm,ni which tile the plane.
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Furthermore, set

(3.10) Vµ = {µz : Re(z) > 0} .

We identify a fundamental region of N in C∗. Define

Nquad = {z ∈ C∗ : −π/4 ≤ Arg(µ) ≤ π/4}/ ∼,

where z ∼ z′ if z′ = ikz for some k ∈ Z. The following map is a trivial biholomorphism:

i : Nquad → N, i(z) = [z]N .

We defined the “seam” in Nquad to be

(3.11) Ns =
{[
teπi/4

]
Nquad

: t > 0
}
.

To keep the notation from being too cumbersome, we define N̂ = Nquad\Ns which is

simply the open wedge {z 6= 0 : −π/4 < Arg(z) < π/4}.

Theorem 3.2.8. For µ ∈ N̂ , the following maps are quadratic-like.

m > 0, −m ≤ n ≤ m, Wµ : Um,n
1 → Vµ,

m < 0, m ≤ n ≤ −m− 1, Wµ : Um,n
2 → V−µ.

The proof of Theorem 3.2.8 is postponed until later in the chapter so that we can

develop the tools needed for the proof.

Remark 3. In Figure 3.1 the reader will notice that U0,0
1 ⊂ Vµ but U0,0

1 includes the

origin, which is not in Vµ. We will address this in the next section as a special case.
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Figure 3.1. Um,n
i ’s as subsets of Vµ or V−µ

Let Mquad = h−1(Nquad), where h−1(z) = γ2/3z−1/3 and the cube root denotes the

principal root eiθ/3. From this we see that

Mquad = {z ∈ C∗ : −π/12 ≤ Arg(µ) ≤ π/12}/ ∼,

where z ∼ z′ if z′ = ekπi/6z for some k ∈ Z. Also define the seam as before: Ms = h−1(Ns).

Theorem 3.2.9. For ℘λ parameterized over M̂ = Mquad\Ms the following parame-

terized families of maps are quadratic-like:

m > 0, −m ≤ n ≤ m, ℘λ : φλ (Um,n
1 )→ φλ

(
Vh(λ)

)
,

m < 0, m ≤ n ≤ −m− 1, ℘λ : φλ (Um,n
2 )→ φλ

(
V−h(λ)

)
,

where φλ(z) = λz.

An analytic family of quadratic-like maps is a collection of quadratic-like maps where

the domain and range of the maps vary continuously with changes in the parameter
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space. The formal definition is given below. We recall that a proper map is a continuous

map with the property that pre-images of compact sets are compact.

Definition 3.2.10. Let Λ be a Riemann surface and let B = {fλ : Uλ → Vλ} be a

family of quadratic-like mappings. Let

U = {(λ, z)|λ ∈ Λ, z ∈ Uλ},

V = {(λ, z)|λ ∈ Λ, z ∈ Vλ}, and

f(λ, z) = (λ, fλ(z))

The family is analytic if:

(1) U and V are homeomorphic over Λ to Λ× D,

(2) the projection from the closure of U in V to Λ is proper, and

(3) the map f : U → V is holomorphic and proper.

For each family described in Theorem 3.2.8 we must show this definition is satisfied.

Again, we note that we treat the Wµ : U0,0
1 → Vµ case separately (Remark 3).

Theorem 3.2.11. Let Λ = N̂ . For m > 0, −m ≤ n ≤ m, the quadratic-like family

{Wµ : Um,n
1 → Vµ}

is analytic; and for m < 0, m ≤ n ≤ −m− 1, the quadratic-like family

{Wµ : Um,n
2 → V−µ}

is analytic.

Stating the result in terms of ℘λ, we have the following theorem:
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Theorem 3.2.12. Let Λ′ = M̂ . For m > 0, −m ≤ n ≤ m, the quadratic-like family

{℘λ : φλ (Um,n
1 )→ φλ

(
Vh(λ)

)
}

is analytic; and for m < 0, m ≤ n ≤ −m− 1, the quadratic-like family

{℘λ : φλ (Um,n
2 )→ φλ

(
V−h(λ)}

)
is analytic.

The canonical example of an analytic family of quadratic-like mappings are the maps

pc(z) = z2 + c. However, one cannot use pc : C→ C, as C is not conformally equivalent

to the open unit disk. One must make a choice of Uc and Vc for each value of c. At first

glance, this freedom of choice may make some definitions ill-defined. For instance, the

filled Julia set for pc,

(3.12) K(pc) = {z : pnc (z) is bounded},

is also defined in terms of the choice of Uc and Vc. For example, see Definition 3.2.14.

Thus, to avoid misleading the reader we specify one possible choice of Uc and Vc. Fur-

thermore, the techniques used in this elementary case will be used later.

Proposition 3.2.13. Let pc(z) = z2 + c. Let Uc = {z : |z| < 3} and Vc = pc(Uc) =

{z : |z − c| < 9}. For Λ = {|c| < 4}, the map pc : Uc → Vc is an analytic family of

quadratic-like mappings.

Proof. First we note that pc : Uc → Vc is a 2-1 covering with one critical point in

Uc, namely 0, for each c. We must verify that Uc ⊂ Vc. We have that Vc = pc(Uc) which

is a ball of radius 32 = 9 centered at c. If |c| < 4, a simple triangle inequality argument
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gives that Uc ⊂ Vc. In fact, Vc always contains a ball of radius 5 centered at the origin.

We now need to check the analyticity of the family.

(1) We can state explicit homeomorphisms. Define the map (z, c) 7→ (z/(2 + ε), c).

This is a homeomorphism of U to D × Λ. For the second map define (z, c) 7→

((z − c)/(2 + ε)2, c). This is again a homeomorphism of V to D× Λ.

(2) Since U is compact, this is trivial.

(3) Properness is again simple, because the inverse image of a closed and bounded

set is closed and bounded in Uc. Since pc is analytic in both its argument and

parameter we have the result.

�

These choices of Uc and Vc are somewhat arbitrary. They are chosen essentially to

have the property Uc ⊂ pc(Uc) = Vc. It is not yet clear that given different choices of Uc

and Vc that there is any equivalence between the families. This question was answered

by the Straightening Theorem of Douady and Hubbard in [25]. This is the subject of

the next section.

We define the filled Julia set of a quadratic-like map. We now assume that fλ : Uλ →

Vλ is an analytic family quadratic-like mappings.

Definition 3.2.14. We define the filled Julia set of fλ : Uλ → Vλ of an analytic

family of quadratic-like mappings as

Kfλ = Kλ =
⋂
n≥0

f−nλ (Uλ) = {z ∈ Uλ|fnλ (z) ∈ Uλ, for all n ≥ 0}.
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Figure 3.2. p2 : U2 → V2 and U2 ⊂ V2

Definition 3.2.15. We define the Mandelbrot-like set MB of the analytic family B,

as defined in Definition 3.2.10, to be

MB = {λ|Kλ is connected}.

The standard Mandelbrot set or justMandelbrot set is:

M = {c : Kpc is connected},

where pc = z2 + c as above. It is pictured in Figure 3.3.

We show that the sets Cm,ni and Dm,ni , defined below, are indeed MB, where B =

{Wµ : Um,n
i → Wµ(Um,n

i ) : µ ∈ M̂}.

Definition 3.2.16. For i = 1, 2, (m,n) ∈ Z2, and µ ∈ M̂ , we define

(3.13) Cm,ni = {µ : W k
µ (cm,ni ) ∈ Um,n

i for all k ≥ 0)},

where cm,ni are defined in equation (3.8).

55



Figure 3.3. The Mandelbrot Set

Connecting back to ℘λ, we formulate the equivalent definition.

Definition 3.2.17. For i = 1, 2, (m,n) ∈ Z2, and λ ∈ N̂ , we define

Dm,ni = {λ : ℘kλ(φλ (cm,ni )) ∈ φλ (Um,n
i ) for all k ≥ 0)}.

Proposition 3.2.18. For each i = 1, 2 and (m,n) ∈ Z2 we have the following map

between Dm,ni and Cm,ni :

h(Dm,ni ) = Cm,ni ,

where h is defined in equation (3.7).

Our main result of this chapter is the following. Again, we postpone the proof until

later in the chapter.

Theorem 3.2.19. For i = 1, 2 and all (m,n) ∈ Z2, the set Cm,ni is homeomorphic

to the standard Mandelbrot set M. Furthermore this homeomorphism is analytic on the

interior of Cm,ni .
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Connectedness of the Filled Julia Set.

The following result is a key tool in identifying if a parameter value c lies inM for the

family pc(z) = z2 + c. Furthermore, using the Straightening Theorem 3.3.3, this result

is fundamental in locating the Mandelbrot-like sets for any analytic family of quadratic

like mappings.

Proposition 3.2.20. [25] Let f : U → V be quadratic-like. The filled Julia set, Kf ,

is connected if and only if the critical point is in Kf .

We present a partial proof of this for the map pc(z) = z2 + c. The general result for

quadratic-like mappings follows from the Straightening Theorem presented in the next

section.

Proof. This proof can be found in [41]. Suppose that the critical point 0 lies in

the filled Julia set. Denote the basin of infinity by Bc = C∞\Kpc . Since infinity is a

super-attracting fixed point, we have a Böttcher coordinate φ, which extends to a map

φ : Bc → D since Bc contains only the critical point at infinity ([41, Theorem 9.3]). This

naturally gives rise to a map

φ̂ : C\Kpc → C\D,

where φ̂ = 1/φ. Consider the annuli Aε = {z : 1 < |z| < 1 + ε}. Now φ̂−1(Aε) is a

connected set with compact closure that must contain the Julia set, which is ∂Bc. Thus,

J(pc) =
⋂
ε>0

φ̂−1(Aε)

is connected, and so Kpc is connected.
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To prove that Kpc is disconnected if 0 ∈ Bc, we refer to [41].

�

To determine the location of M we prove the following.

Proposition 3.2.21. The Mandelbrot set M is contained in a closed ball of radius

3 centered at zero.

Proof. Suppose that |c| > 3. Then the critical value, pc(0) = c /∈ Uc = {z : |z| < 3}

and so c /∈ Kpc , which implies that c /∈M. Thus, M⊂ {|z| ≤ 3}. �

Therefore, in general one looks for parameter values so that the critical value of the

corresponding map lies in the domain on which a map is quadratic-like; i.e. if cλ is the

critical point of fλ : Uλ → Vλ, one solves for λ so that fλ(cλ) ∈ Uλ. This provides a

region, A ⊂ Λ, which contains MB.

3.3. The Straightening Theorem

We now introduce the tools to connect the dynamics of Weierstrass elliptic functions

on square lattices to the classical quadratic map pc(z) = z2 +c. We begin with the formal

definition of a quasi-conformal mapping.

Definition 3.3.1. Let U be a an open subset of C. Let ∂
∂z

= ∂
∂x

+ i ∂
∂y

and ∂
∂z

=

∂
∂x
− i ∂

∂y
. Let φ(x, y) = φ1(x, y)+ iφ2(x, y) where x+ iy is identified as (x, y) and suppose

that φ has continuous partial derivatives on U . A map φ : U → C is quasi-conformal if

∂φ

∂z
= µ(z)

∂φ

∂z
,

where µ is a Lebesgue measurable function with |µ| < 1.
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One can think of quasi-conformal maps as maps that take small circles to small

ellipses. If φ is conformal, then µ(z) = 0, so one can think of µ(z) as a measure of

distortion from being conformal.

Definition 3.3.2. Two quadratic-like maps f : U → V and g : U ′ → V ′ are hybrid

equivalent if there is a quasi-conformal homeomorphism φ mapping a neighborhood W of

Kf to a neighborhood W ′ of Kg so that g ◦ φ = φ ◦ f and φ is conformal on Kf .

Theorem 3.3.3. [25, The Straightening Theorem] Let f : U → V be a quadratic-like

map. The map f is hybrid equivalent to pc : Uc → Vc for some c. If Kf is connected, the

conjugacy is unique.

This theorem gives rise to a map χ : MB → M, χ(λ) = c, where M is the Man-

delbrot set. The following theorem gives a sufficient condition for the map χ to be a

homeomorphism.

Theorem 3.3.4. [25] Let A ⊂ Λ be a closed set of parameters homeomorphic to a

disk and containing MB. Let ωλ be the critical point of fλ, and suppose that for each

λ ∈ Λ\A the critical value fλ(ωλ) ∈ Vλ\Uλ. Assume also that as λ goes once around

∂A, the vector fλ(ωλ) − ωλ turns once around 0. Then the map χ : MB → M is a

homeomorphism and is analytic on the interior of MB.

3.4. The Proofs of Theorems 3.2.8 and 3.2.11

In this section we develop the technical material to prove the main theorems of the

chapter. We restate them now.
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Theorem 3.2.8 For µ ∈ N̂ , the following maps are quadratic-like:

m > 0, −m ≤ n ≤ m, Wµ : Um,n
1 → Vµ,

m < 0, m ≤ n ≤ −m− 1, Wµ : Um,n
2 → V−µ.

Theorem 3.2.11 Let Λ = N̂ . For m > 0, −m ≤ n ≤ m, the quadratic-like family

{Wµ : Um,n
1 → Vµ}

is analytic; and for m < 0, m ≤ n ≤ −m− 1, the quadratic-like family

{Wµ : Um,n
2 → V−µ}

is analytic.

Assume that µ ∈ N̂ . We focus our attention on W1 since Wµ = µW1. Thus, if

W1 : A→ B, then Wµ : A→ µB.

Recall that for i = 1, 2

Um,n
i = {z : ‖z − cm,ni ‖1 < 1/2} ,

which can be described as the interior of a diamond centered at cm,ni with vertices cm,ni +

1/2, cm,ni − 1/2, cm,ni + i/2, and cm,ni − 1/2.

As a consequence of Theorem 1.2.7 we have the following.

Proposition 3.4.1. The map Wµ is of order 2, i.e., 2-1 on a fundamental region.

The reflection of a point z0 + z through the point z0 is z0 − z. We say a map S is

symmetric about a point z0 ∈ C if S(z0 + z) = S(z0 − z).
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Proposition 3.4.2. The function Wµ is symmetric about cm,ni , i.e., Wµ(cm,ni + z) =

Wµ(cm,ni − z).

Proof. The point 2cm,ni is a lattice point and Wµ is even, so

Wµ(cm,ni − z) = Wµ(z − cm,ni ) = Wµ(z − cm,ni + 2cm,ni ) = Wµ(cm,ni + z).

�

Lemma 3.4.3. The map W1 : ∂Um,n
1 → iR ∪ {∞} is 2-1 and onto.

Proof. We note that W1(cm,n1 + 1/2) =∞ = W1(cm,n1 − 1/2), W1(cm,n1 + i/2) = 0 =

W1(cm,n1 − i/2), and W1 has no critical points on the lines connecting the vertices. We

now show that the image of the lines connecting the vertices is the imaginary axis. First

note that the points on the edges are 〈1, i〉 equivalent to points on eiπ/4t or e−iπ/4t for

some −
√

2/2 < t <
√

2/2 (t 6= 0). Computing,

W1(eiπ/4t) = ℘γ(γe
iπ/4t) = (eiπ/4)−2℘e−iπ/4γ(t) = −i℘e−iπ/4γ(t)

and

W1(e−iπ/4t) = ℘γ(γe
−iπ/4t) = (e−iπ/4)−2℘eiπ/4γ(t) = i℘eiπ/4γ(t).

In both cases, ℘e−iπ/4γ and ℘e−iπ/4γ, the lattice is real (Ω = Ω) and so ℘e−iπ/4γ(t) and

℘eiπ/4γ(t) are both real. From this we obtain the result. �

Theorem 3.4.4. The map

W1 : Um,n
1 → V1

is a 2-1 branched covering map.
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Proof. We know that the image of Um,n
1 is connected, since W1 is continuous. We

also have W1(cm,n1 ) = 1, from equation (1.15). Suppose that <(W1(z)) ≤ 0. Consider a

curve α connecting cm,n1 to z. Then W1(α) must intersect the imaginary axis. This is a

contradiction, since W1 is an elliptic function of order 2, Um,n
1 is contained in a period

parallelogram,

{1/2 +m+ ni+ s+ ti : −1/2 ≤ s, t < 1/2},

and Lemma 3.4.3 gives that W1 : ∂Um,n
1 → iR ∪ {∞} is 2-1 and onto. Thus, W1 :

Um,n
1 → V1. Since Um,n

1 is symmetric about cm,n1 , Proposition 3.4.2 gives that the map is

2-1. Lastly, we need to show that the map is onto.

Using a similar argument one can show that

W1 : Um,n
2 → V−1.

Since Um,n
1 ∪ Um,n

2 is the closure of a fundamental region,

W1 : Um,n
1 ∪ Um,n

2 → V1 ∪ V−1

must be onto, by Theorem 1.2.7. Thus, decomposing, we have

W1 : Um,n
1 → V1

W1 : Um,n
2 → V−1

W1 : ∂Um,n
1 ∪ ∂Um,n

2 → iR,

which implies that W1 : Um,n
1 → V1 is onto and thus a 2-1 branched cover. �

Corollary 3.4.5. The map

W1 : Um,n
2 → V−1
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is a 2-1 branched covering map. Furthermore, we have

Wµ : Um,n
1 → Vµ

and

Wµ : Um,n
2 → V−µ

are 2-1 branched covering maps.

We justify the restrictions on m,n. These restrictions arise due to our choice of

fundamental region of N , Nquad.

Proposition 3.4.6. For |Arg(µ)| < π/4, the set Um,n
1 ⊂ Vµ if and only if m > 0

and −m ≤ n ≤ m. Furthermore, for |Arg(µ)| < π/4, the set Um,n
2 ⊂ V−µ if and only if

m < 0 and m ≤ n ≤ −m− 1.

Proof. We have ⋂
|Arg(µ)|<π/4

Vµ = {z : |Arg(z)| < π/4}

which implies Um,n
1 ⊂ Vµ if and only if m > 0 and −m ≤ n ≤ m. The proof of the second

part is similar. �

Proof. (Proof of Theorem 3.2.8) Theorem 3.2.8 follows immediately from Proposi-

tion 3.4.6 and Corollary 3.4.5. �

We now prove that the families are analytic. These ideas are almost identical to the

ones presented in the proof of Proposition 3.2.13.

Proof. (Proof of Theorem 3.2.11) Fix i,m, n satisfying the hypotheses of Theorem

3.2.8. We proved that the maps are quadratic-like in Theorem 3.2.8. It remains to show
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that the family {Wµ : Um,n
i → V±µ} satisfies the three conditions required for analyticity

in Definition 3.2.10.

(1) We show that U = {(µ, z) : µ ∈ N̂ , z ∈ Um,n
i } is homeomorphic to N̂ × D. We

have that Um,n
i is homeomorphic to an open disk by the Riemann Mapping The-

orem. Call this homeomorphism h1 : Um,n
i → D. The desired homeomorphism

of U to N̂ ×D is (µ, z) 7→ ((µ, h1(z)). The case for V = {(u, z) : µ ∈ N̂ , z ∈ Vµ}

is almost identical. Very simply, Vµ = µV1. Since V1 is homeomorphic to the

open unit disk by the Riemann Mapping Theorem, we can repeat the process.

Let h2 : V1 → D now be the conformal homeomorphism of V1 to the open

unit disk. Let h3(µ, z) = µz. The desired homeomorphism of V to N̂ × D is

(µ, z) 7→ (µ, h2(z/µ)) = (µ, (h2◦h−1
3 )(z)). (The argument is similar for −µ when

i = 2.)

(2) We must show the properness of (µ, z) 7→ µ where z ∈ Um,n
i ⊂ Vµ. The inverse

image of a compact set K is closed and contained in K×Um,n
i , and so is bounded,

thus compact.

(3) To show that (µ, z) 7→ (µ,Wµ(z)) for (µ, z) ∈ U is proper, we have only to

observe that since Um,n
i is a bounded set, the inverse image of a compact set K

is closed and bounded in K×Um,n
i and thus compact. By viewing the definition

of the map Wµ(z) = µ℘γ(γz), we can clearly see that the map is analytic in the

parameter. Since Um,n
i contains no poles, Wµ is analytic in z. Thus, the map

(µ, z) 7→ (µ,Wµ(z)) for (µ, z) ∈ U is holomorphic.

�
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3.5. The Case of U0,0
1 Tangent to the Origin

The obstacle in showing the family Wµ : U0,0
1 → Vµ is quadratic-like is that U0,0

1

contains the origin which is not contained in Vµ for µ ∈ N̂ . Our strategy to rectify the

problem is to remove a small ball around the origin, which then forces one to remove

the symmetric (with respect to the critical point 1/2) region about the other corner at

1. After doing this, the image of the modified region under Wµ is no longer the full

half-plane. We will also need to modify the parameter space N̂ slightly.

Definition 3.5.1. Let r > 0. We define

(3.14) U0,0
1 (r) = U0,0

1 \(Br(0) ∪Br(1)),

where Br(z0) = {z : |z − z0| < r}.

Proposition 3.5.2. If r < 1/γ and z ∈ Br(0) then

|W1(z)| > 1

γ2

(∣∣∣∣ 1

z2

∣∣∣∣− γ2 3

14

)
.

Proof. We prove this using the Laurent series of W1(z) = 1/γ2℘1(z) = ℘γ(γz). We

recall from 1.2.9 that g2 = 4e2
1 = 4, since λ = γ. The Laurent series centered at zero for

W1(z) is [1]:

(3.15)
1

(γz)2
+
∞∑
k=2

ck(γz)2k−2,

where c2 = g2/20 = 1/5, c3 = g3/28 = 0, and

ck =
1

(2k + 1)(k − 3)

k−2∑
m=2

cmck−m

65



for k > 3. As a consequence of c3 = 0 we have that ck = 0, when k is odd. Furthermore,

we have estimates on |c2l| < c2

(
c2
3

)l−1
([1]). So we have that

|c2l| <
1

5

(
1

15

)l−1

.

Examining the polynomial terms and using geometric series we have:

(3.16)

∣∣∣∣∣
∞∑
l=1

c2l(γz)4l−2

∣∣∣∣∣ ≤ |(γz)2|
5

∞∑
l=1

∣∣∣∣(γz)4

15

∣∣∣∣(l−1)

=
|(γz)2|

5

1

1−
∣∣∣ (γz)415

∣∣∣ .
Thus using the triangle inequality,

(3.17)

∣∣∣∣∣ 1

(γz)2
+
∞∑
l=1

c2l(γz)4l−2

∣∣∣∣∣ ≥
∣∣∣∣∣∣
∣∣∣∣ 1

(γz)2

∣∣∣∣−
∣∣∣∣∣∣ |(γz)2|

5

1

1−
∣∣∣ (γz)415

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ;

and if |z| < 1/γ, we have

(3.18)

∣∣∣∣∣ 1

(γz)2
+
∞∑
l=1

c2l(γz)4l−2

∣∣∣∣∣ ≥
∣∣∣∣∣∣∣∣ 1

(γz)2

∣∣∣∣− 3

14

∣∣∣∣ ,
giving the result after factoring out 1/γ2. �

Using the same techniques used to prove Corollary 3.4.4, we have the following.

Theorem 3.5.3. Let r < 1/100. For µ ∈ N̂ with |µ| > r/2 > 0, we have that

Wµ : U0,0
1 (r)→ Wµ

(
U0,0

1 (r)
)

is a quadratic-like map.

Proof. It has already been established that Wµ : U0,0
1 (r) → Wµ

(
U0,0

1 (r)
)

is a 2-1

cover with one critical point. What is left to show is that U0,0
1 (r) ⊂ Wµ

(
U0,0

1 (r)
)
. It is

sufficient to show that |Wµ(z)| > 1 for z ∈ Br(0). From Proposition 3.5.2 we have

|Wµ(z)| ≥ |µ|
(∣∣∣∣ 1

z2

∣∣∣∣− 3γ2

14

)
>

1

100γ2

(
10000− 3γ2

14

)
> 10.

66



�

Analyticity of the quadratic-like family Wµ : U0,0
1 (r) → Wµ

(
U0,0

1 (r)
)

follows using

the proof in Theorem 3.2.11 by replacing Um,n
i with U0,0

1 (r) and Vµ with Wµ

(
U0,0

1 (r)
)
.

Theorem 3.5.4. Let r < 1/100. The family

Wµ : U0,0
1 (r)→ Wµ

(
U0,0

1 (r)
)
,

parameterized over µ ∈ N̂ with |µ| > r/2 > 0, is an analytic family of quadratic-like

maps.

Restating Theorem 3.5.4 in terms of ℘λ, we have the following.

Corollary 3.5.5. Let r < 1/100. The family

℘λ : φλ
(
U0,0

1 (r)
)
→ ℘λ

(
φλ
((
U0,0

1 (r)
)))

parameterized over λ ∈ M̂ with |γ2

λ3 | > r/2 > 0, is an analytic family of quadratic-like

maps.

We note that we can make r as small as we like. Thus we can consider Wµ : U0,0
1 → Vµ

to be an analytic family of quadratic-like maps, with the understanding that one must

remove small neighborhoods about 0 and 1.

The Dynamics Along the Seam.

All the theorems up to this point concerning Wµ have been about µ ∈ N̂ which we

recall is Nquad, except the “seam” Ns, where arg µ = ±π/4. The dynamics along Ns in

Nquad are treated in [30]. We present the theory below.
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Theorem 3.5.6. [30, Proposition 1.1] If a lattice Ω is rhombic, then the Julia set

J(℘Ω) is connected if and only if it is the entire Riemann sphere C∞.

We have shown that in the setting for square lattices the Julia set is always connected.

We claim first that the seam of Mquad as mentioned before is the set of parameters which

produce “rhombic” dynamics.

Proposition 3.5.7. If arg λ = ±π/12, then ℘λ is conformally conjugate to ℘′λ, where

arg λ′ = ∓π/4 and so λ′ = iλ′.

Proof. By Proposition 3.1.4, we have that ℘λ is conformally conjugate to ℘ekπi/6λ

for any k ∈ Z. Assume that arg λ = π/12. Let k = −2 and set λ′ = e−2πi/6λ. Thus,

arg(λ′) = −π/4. Since iλ′ = λ′, we are done. The case where arg λ = −π/12 is similar.

�

Since h : Mquad → Nquad preserves the seam, i.e. h : Ms → Ns, we obtain similar

results for Wh(λ) where λ ∈Ms.

Corollary 3.5.8. Let λ ∈Mquad. If arg(λ) = ±π/12, then J(℘λ) = C∞ = J(Wh(λ)).

Consequently, if arg µ = ±π/4 (µ ∈ Ns) then J(Wµ) = C∞.

3.6. Mandelbrot Sets in the Parameter Space, the Proof of Theorem 3.2.19

In this section we prove that the parameter space contains copies of the Mandelbrot

set. In addition, this will imply that there are parameters λ such that ℘λ has Siegel

disks. This is proved in Corollary 3.7.7. We restate the theorem that we now prove

in this section. Before concluding the section with the proof, we develop the notation

needed to describe the locations of the Mandelbrot sets.
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Theorem 3.2.19 For all i = 1, 2 and all (m,n) ∈ Z2, the set Cm,ni is homeomorphic

to the standard Mandelbrot setM. Furthermore this homeomorphism is analytic on the

interior of Cm,ni .

To find regions in parameter space where the filled Julia set is connected, we are

interested in when the critical point of a quadratic-like map is actually in the filled Julia

set.

We use the following notation for the filled Julia set:

Km,n
i (µ) =

⋂
k≥0

W−k
µ (Um,n

i ),

where i=1,2. Recall that the 1-norm is defined as ‖z‖1 = |Re(z)| + |Im(z)| where C is

thought of as a vector space over R. The following is a statement that follows directly

from the definition of Km,n
i (µ) (i=1,2).

Theorem 3.6.1. The orbit of cm,ni lies in the filled Julia set Km,n
i (µ) (i=1,2) if and

only if ∥∥W k
µ (cm,ni )− cm,ni

∥∥
1
<

1

2

for all k ≥ 0. This is equivalent to µ ∈ Cm,ni .

To use Theorem 3.3.4 we need to define the regions in parameter space, N̂ , where the

Mandelbrot sets occur. We define these to be

Am,n1 = Um,n
1

and

Am,n2 = −Um,n
2 = U−m,−n−1

2

where the closure is in N̂ .
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Remark 4. The indexing and locations of Cm,ni and Am,ni are the same in the sense

that Cm,ni ⊂ Am,ni . This inclusion is in the proof of Theorem 3.2.19 at the end of the

section.

Taking the union over the allowable choices of m,n so that µ ∈ Um,n
1 and µ ∈ N̂ or

−µ ∈ Um,n
2 and µ ∈ N̂ we have the following theorem.

Theorem 3.6.2. The parameter space Nquad is the following union:

Nquad =

 ⋃
i=1,m≥0,−m≤n≤m
i=2,m<0,m≤n≤−m−1

Am,ni

 ∪Ns

Proof. This theorem is best illustrated by Figures 3.4 and 3.5. Considering the

dynamic plane on the left in Figure 3.5, one can see that exactly one of the following

must occur for µ ∈ Nquad:

(1) µ ∈ Um,n
1 for m ≥ 0, −m ≤ n ≤ m,

(2) −µ ∈ Um,n
2 for m < 0, m ≤ n ≤ −m− 1, or

(3) µ ∈ Ns (and so also −µ ∈ −Ns).

�

The restrictions on m,n can be relaxed by using the preceding theorem. One needs

only to recall that Wµ is conjugate to Wiµ by Proposition 3.2.3. Thus, covering the plane

with ikNquad where k = 0, 1, 2, 3 one no longer needs to restrict the allowable choices of

m,n.

Remark 5. If one relaxes the restriction on m,n, i by allowing µ ∈ C∗ one looses

the unique association between ℘λ and Wµ. However, the relaxation only produces the
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Figure 3.4. The parameter µ-plane for Wµ

following problem:

h : C∗ → C∗

is a three-to-one covering map. One may consider branches of h−1 to relate results back

to ℘λ. Taking a branch cut along the negative real axis, we let h−1C∗ = X1 ∪ X2 ∪ X3

where X1 = {z : −π/3 ≤ arg z ≤ π/3}/ ∼, X2 = {z : π/3 ≤ arg z ≤ π}/ ∼, and

X3 = {z : −π ≤ arg z ≤ −π/3}/ ∼ where z ∼ z′ if e2kπ/3z = z′ for some k ∈ Z. Since

h : Xi → C∗

is a biholomorphism, one may relax the restrictions on on (m,n, i) induced by the coor-

dinates of Mquad if one allows λ ∈ Xi for only one of i = 1, 2, or 3.

Relating back to ℘λ, we recall that ℘λ is conformally conjugate to Wh(λ), where h(λ) =

γ2/λ3. Thus, the regions in Mquad corresponding to the Am,ni ’s in Nquad are h−1 (Am,ni ). It

is easily seen that the centers of the Mandelbrot sets h−1 (Cm,ni ), λ = (γ2/(1/2+m+ni))1/3

and λ = (γ2/(i/2 + m + ni))1/3, cluster on the origin; and there is a largest center in
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Figure 3.5. The locations of Cm,n
i

Figure 3.6. Centers of Mandelbrot set in N̂ and M̂ respectively

Mquad, namely λ = (γ2/(1/2))1/3 = (2γ2)1/3. We illustrate this in Figure 3.6. One can see

the difficulties in describing the regions containing Mandelbrot sets in λ-space without

utilizing the family Wµ.
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Proof. (Proof of Theorem 3.2.19) It is enough to verify that the conditions of The-

orem 3.3.4 are all satisfied. We recall that

Cm,n1 =

{
µ :
∥∥W k

µ (cm,n1 )− cm,n1

∥∥
1
<

1

2
for all k ≥ 0

}
⊂
{
µ : ‖µ− cm,n1 ‖1 <

1

2

}
= Am,n1

and

Cm,n2 =

{
µ :
∥∥W k

µ (cm,n2 )− cm,n2

∥∥
1
<

1

2
for all k ≥ 0

}
⊂
{
µ : ‖−µ− cm,n2 ‖1 <

1

2

}

=

{
µ : ‖µ− (−cm,n2 )‖1 <

1

2

}
= −Um,n

2 = Am,n2 .

We show first that if µ is in the complement of Am,ni , then the critical value lies outside

of Um,n
i . However, this is trivial since the critical value of Wµ is simply µ.

Next, we parameterize the boundary of Am,ni , by αm,ni (t) where 0 ≤ t ≤ 2π. We have

that αm,n1 (t) goes once around cm,n1 (and αm,n2 (t) goes once around −cm,n2 ), so δm,n1 (t) =

αm,n1 (t)− cm,n1 (respectively δm,n2 (t) = αm,n2 (t)− (−cm,n2 )) goes once around zero. In both

cases, i = 1, 2, δm,ni traces out a diamond about the origin. Applying Theorem 3.3.4 we

are done. �

In Figure 3.7 we show illustrations of C1,0
1 and C2,1

1 respectively.

3.7. Contained Cycles

In this section we discuss the implications of the quadratic-like theory presented

earlier. We focus on non-repelling cycles of Wµ contained in Um,n
i for some i = 1, 2 and

m,n ∈ Z.

Definition 3.7.1. We say that the family ℘λ parameterized over Mquad has a con-

tained cycle of type (m,n, i) with multiplier α where (m,n, i) ∈ Z2 × {1, 2} if the map

℘λ has a cycle {p1, p2, ..., pn} ⊂ φλ (Um,n
i ).
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Figure 3.7. C1,0
1 and C2,1

1

It is a bit cumbersome to use ℘λ, so we use Wµ. This is justified by the following

statement which is an immediate consequence of the unique conjugacy between ℘λ and

Wµ where µ = h(λ) (n.b. Proposition 3.2.2).

Proposition 3.7.2. For λ ∈ Mquad, ℘λ has a contained cycle {p1, p2, ..., pn} in

φλ (Um,n
i ) if and only if Wµ = Wh(λ) has a contained cycle φ−1

λ {p1, p2, ..., pn} in Um,n
i .

Furthermore, these cycles have the same multiplier.

We can state an equivalent definition:

Definition 3.7.3. We say that the family ℘λ parameterized over Mquad has a con-

tained cycle of type (m,n, i) with multiplier α where (m,n, i) ∈ Z2 × {1, 2} if the map

Wµ has a cycle {p1, p2, ..., pn} ⊂ Um,n
i with multiplier α.

It is the case that all super-attracting fixed points are contained; the only thing to

check is that if a critical point is fixed, then it is in Um,n
i . Since all critical points which

can be fixed are cm,n1 or cm,n2 , every super-attracting fixed point is of this form. (The
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other critical points, 1/2 + i/2 +m+ni, are pre-poles and so cannot be fixed.) However,

it is not the case that all super-attracting cycles are contained. We present the following

example to illustrate this.

Example 3.7.4. We show that there exist super-attracting period 2 cycles that are

not contained. For each m,n we know that there is exactly one which is contained. This

is a consequence of Theorem 3.2.19. To find others, which are necessarily not contained,

we show that there are solutions to

(3.19) W 2
µ(cm,n1 ) = Wµ(µ) = cm,n1

with µ /∈ Um,n
1 . Using the definition of Wµ we can restate Equation 3.19 as

(3.20)
µ

γ2
℘1(µ) =

1

2
+m+ ni.

For simplicity we handle the cases where n = 0, m ∈ Z and we consider solutions along

the positive real axis. Let f(x) = Wx(x) on R and note that f(1/2 + m) = 1/2 + m

for all m ∈ Z. Furthermore, f ′(1/2 + m) = 1. Thus, the line y = x is tangent to the

graph of f(x) at the points (1/2 + m, 1/2 + m) for each m ∈ Z. Consider c1,0
1 = 3/2.

We apply the Intermediate Value Theorem applied to the interval [0, 1/2] to give a real

value µ ∈ U0,0
1 so that f(µ) = 3/2. To illustrate the argument we refer the reader to

Figure 3.8. We know that f(1/2) = 1/2 < 3/2 and limx→1− f(x) = ∞ > 3/2. Thus, on

[1/2, 1− ε], for some sufficiently small number ε, the Intermediate Value Theorem gives

a solution to f(x) = 3/2 in [1/2, 1− ε].

In summary, we have a µ so that 3/2 is a super-attracting cycle of period 2 (3/2 →

µ→ 3/2), and µ /∈ U1,0
1 with 3/2 ∈ U1,0

1 .
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Figure 3.8. The graphs of f(x) = Wx(x), y = x, and y = 1/2, 3/2

There is, in fact, a clustering of solutions to Wµ(µ) = 1/2 + m (m > 0) on all poles

of Wµ. We do not prove this here. Instead, we refer the reader to [34].

The first main result of this section is the following.

Theorem 3.7.5. Suppose that Wµ for µ ∈ Nquad has a contained cycle {p1, p2, ..., pk}

of type (m,n, i) with multiplier α. If

(1) |α| < 1, i.e., {p1, p2, ..., pk} is an attracting cycle,

(2) α = e2πiθ for θ ∈ Q, i.e., {p1, p2, ..., pk} is a parabolic cycle, or

(3) α = e2πiθ for θ ∈ R\Q and W k
µ is locally linearizable at pj, i.e., {p1, p2, ..., pk} is

a cycle of Siegel points,

then µ ∈ Cm,ni .

Proof. In each case the filled Julia set of the quadratic like map Wµ : Um,n
i → V±µ

(or a conformally conjugate map Wikµ if µ is not in N̂) is connected [41]. By definition,

µ ∈ Cm,ni . �
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The second main result is the following. As before, let pc(z) = z2 + c.

Theorem 3.7.6. Fix (m,n, i) ∈ Z2 × {1, 2}.

(1) For each c ∈M so that pc has an attracting cycle with multiplier α, there exists

a unique µ ∈ Cm,ni so that

Wµ : Km,n
i (µ)→ Km,n

i (µ)

is conformally conjugate to pc : Kpc → Kpc, and Wµ has a contained cycle with

multiplier α.

(2) For each c ∈M so that pc has a parabolic cycle with multiplier α, there exists a

unique µ ∈ Cm,ni so that

Wµ : Km,n
i (µ)→ Km,n

i (µ)

is conformally conjugate to pc : Kpc → Kpc, and Wµ has a contained cycle with

multiplier α.

(3) For each c ∈ M so that pc has a cycle of Siegel points with multiplier α, there

exists a unique µ ∈ Cm,ni so that

Wµ : Km,n
i (µ)→ Km,n

i (µ)

is conformally conjugate to pc : Kpc → Kpc, and Wµ has a contained cycle of

Siegel points with multiplier α.

Proof. This is immediate from the Straightening Theorem 3.3.3 and the fact that

Km,n
i (µ) ⊂ Um,n

i . �

The following corollary answers Question 1.7.5.
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Corollary 3.7.7. There exists a parameter λ ∈Mquad so that the Fatou set F (℘λ) of

℘λ consists of periodic and pre-periodic Siegel disks associated to a contained irrationally

neutral cycle.

Proof. By Proposition 1.7.7 and Theorem 3.7.6 we have the result. �

Misiurewicz Points.

The next set of results concern the case when the critical value is strictly pre-

periodic. The parameters associated to this phenomenon are traditionally called Mis-

iurewicz points. It is necessary that the critical orbit must land on a repelling cycle ([4,

Theorem 9.4.4]; see also [30] and [31] for the elliptic case). We discuss the existence of

parameters λ so the ℘λ has a critical value which is strictly pre-periodic and the orbit is

contained in φλ (Um,n
i ).

Theorem 3.7.8. Suppose that all critical values for ℘λ are strictly pre-periodic and

pre-poles. Then ℘λ has no non-repelling cycles and thus J(℘λ) = C∞.

Let l denote Lebesgue measure. Define ω(z), called the ω-limit set of z, to be

ω(z) =
∞⋂
n=0

{fk(z) : k ≥ n}.

Furthermore, let S(f) denote the set of critical and asymptotic values of f and let

P (f) =
∞⋃
n=0

fn(S(f)).

Our motivation for studying Misiurewicz points is the following theorem proved in [37].

Theorem 3.7.9. [37, Theorem 1] Let f : C→ C∞ be a transcendental meromorphic

function satisfying the following two conditions:
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(1) J(f) = C∞ and

(2) l({z : ω(z) ⊂ P (f) ∪ {∞}}) = 0.

Then there exists a σ-finite ergodic conservative f -invariant measure equivalent to Lebesgue

measure.

If the critical values of ℘Ω are all pre-periodic and pre-poles then the set described in

item 2 is countable. If the critical values that are not pre-poles are strictly pre-periodic

then the Julia set is the whole sphere.

In the case of z2 +c, infinity is always a super attracting fixed point, and thus infinity

can never be strictly pre-periodic. However, the other critical value c can. In this case

the Fatou set is the basin of attraction of infinity and Kpc = J(pc) [41]. Two examples

are c = i and c = −2:

c = i : i 7→ −1 + i 7→ −i 7→ −1 + i;

c = −2 : −2 7→ 2 7→ 2.

There is a natural notation for these points which identifies the pre-period and the

period.

Definition 3.7.10. We say that a point c ∈M is a Misiurewicz point is type Mk,l if

pkc (c) = pk+l
c (c),

where k and l are minimal. Similarly, a point µ ∈ Cm,n1 is a Misiurewicz point is type

Mk,l if

W k
µ (µ) = W k+l

µ (µ),
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where k and l are minimal. A point µ ∈ Cm,n2 is a Misiurewicz point is type Mk,l if

W k
µ (−µ) = W k+l

µ (−µ),

where k and l are minimal.

Theorem 3.7.11. Suppose that c is a Misiurewicz point of type Mk,l for pc. Then for

each (m,n, i) ∈ Z2×{1, 2} there is a parameter µ ∈ Cm,ni so that the critical value of Wµ

is strictly pre-periodic and µ is a Misiurewicz point of type Mk,l. Furthermore, the orbit

of the critical value is contained in Um,n
i .

Proof. Applying the Straightening Theorem 3.3.3 to the families

Wµ : Um,n
1 → Vµ

and

℘λ : Um,n
2 → V−µ,

and keeping in mind the relaxation of the restrictions of (m,n, i) we have the result. �

Corollary 3.7.12. Suppose that µ ∈ Cm,ni is a Misiurewicz point of type Mk,l for

Wµ. Letting λ = h−1(µ) for some branch of h−1 we have that the critical value of ℘λ is

strictly pre-periodic and the critical value’s orbit is contained in φλ (Um,n
i ).

Disconnected Filled Julia Sets.

We take a more global look at the filled Julia sets. We fix λ ∈ M̂ and consider

φλ (Km,n
i (h(λ))) for each (m,n, i) ∈ Z2×{1, 2}. It is known that the Julia set of pc(z) =

z2 + c is connected if and only if the filled Julia set is connected [41]. This leads to the

following question.
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Question 3.7.13. We know that the Julia set J(℘λ) is always connected. What does

this say about the filled Julia sets

{φλ (Km,n
i (h(λ)))}(m,n,i)∈Z2×{1,2}

for a fixed λ?

Theorem 3.7.14. For all choices of (m,n, i) ∈ Z2 × {1, 2}, the filled Julia sets

φλ (Km,n
i (h(λ))) are disconnected, except at most one.

Proof. Each filled Julia set Km,n
i (µ) for Wµ, and thus each φλ (Km,n

i (h(λ))) for ℘λ,

is pairwise disjoint from any other. Furthermore, the two free critical values, µ and −µ

for Wµ and γ2/λ2 and −γ2/λ2 for ℘λ, both map to the same value by evenness. The

critical orbit can be contained in at most one filled Julia set. In other words, the tail

of the critical orbit, {W n
µ (µ)}n≥1 = {W n

µ (−µ)}n≥1 (similarly for ℘λ), can be completely

contained in at most one Um,n
i . Thus, at most one filled Julia set is connected, by

Proposition 3.2.20. �

Definition 3.7.15. For λ ∈ M̂ , we say that ℘λ has a connected filled Julia set if

φλ (Km,n
i (h(λ))) is connected for some (m,n, i) ∈ Z2 × {1, 2}.

Remark 6. Fix λ ∈ M̂ so that J(℘λ) = C∞. Then a ℘λ may or may not have a

connected filled Julia set.

If the critical values are pre-poles, then the Julia set is the whole sphere, since ℘λ

cannot have any non-repelling cycles. In this case, all filled Julia sets are disconnected.

If the critical value is strictly pre-periodic, i.e. λ is a Misiurewicz point, and the orbit of
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the critical value is contained, then it is in a filled Julia set and that filled Julia set is

thus connected. These parameters exist by Corollary 3.7.12.

Remark 7. Fix λ ∈ M̂ so that J(℘λ) 6= C∞. Then a ℘λ may or may not have a

connected filled Julia set.

If there is an attracting cycle which is not contained, then all filled Julia sets φλ (Km,n
i (h(λ)))

are disconnected. This occurs in Example 3.7.4. However, as discussed throughout the

chapter, there exist attracting, parabolic, and Siegel cycles which are contained. In fact,

for a given Um,n
i , these types of cycles (of Wµ) are in one-to-one correspondence with

those of z2 + c, by Theorem 3.7.6. In all of these cases ℘λ has a connected filled Julia set.
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CHAPTER 4

Rational Approximations of the Weierstrass Elliptic ℘ Function

In the previous chapter we have shown explicit dynamical connections between Weier-

strass elliptic functions on square lattices and the classical quadratic map z2 + c. In this

chapter we begin exploring connections between higher degree rational maps and Weier-

strass elliptic functions on square lattices. The main result of this chapter is Theorem

4.1.5.

Proposition 4.0.1. [1] For the {g2, g3} invariant parameterization ℘{g2,g3}, of the

Weierstrass elliptic functions we have the following Laurent series centered at zero:

(4.1) ℘{g2,g3}(z) =
1

z2
+
∞∑
k=2

ckz
2k−2,

where c2 = g2/20, c3 = g3/28, and

ck =
3

(2k + 1)(k − 3)

k−2∑
m=2

cmck−m

for k > 3. This series converges on 0 < |z| < R, where R = minω∈Ω∗ |ω|.

Our family of interest is the similarity class of square lattices. Thus, we have that

g3 = 0 and g2 = 4γ4/λ4, where λ generates the lattice 〈λ, λi〉. This gives the following.

Proposition 4.0.2. [1] For ℘λ we have the following Laurent series centered at zero:

(4.2) ℘λ(z) =
1

z2
+
∞∑
k=1

c2kz
4k−2 =

1

z2
+

γ4

5λ4
z2 + · · · ,



where c2 = γ45λ4 and

c2k =
3

(4k + 1)(2k − 3)

k−1∑
m=1

c2mc2(k−m)

for k > 1. This series converges on 0 < |z| < |λ|.

By truncating the infinite Laurent series we obtain parameterized families of rational

approximations to ℘λ. The following families of rational maps of degree n+d are studied

in [6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24] and the references

therein:

(4.3) Dα,n,d(z) = zn +
α

zd
.

We show that these families are conformally conjugate to the following families:

(4.4) Pβ,n,d(z) = βzn +
1

zd

where β = α
n−1
d+1 . These maps are the first two terms of the Laurent series of an

elliptic function of order d.

Proposition 4.0.3. Let φα,d(z) = α1/(d+1)z, where α1/(d+1) is any branch. Then

φ−1
α,d ◦Dα,n,d ◦ φα,d = P

α
n−1
d+1 ,n,d

.

Proof. We show the direct calculation:

(
φ−1
α,d ◦Dα,n,d ◦ φα,d

)
(z) =

1

α1/(d+1)

(
(α1/(d+1)z)n +

α

(α1/(d+1)z)d

)

= α(n−1)/(d+1)zn +
1

zd
= P

α
n−1
d+1 ,n,d

(z).

84



�

There are symmetries in both the dynamical and parameter spaces of Pβ,n,d. We

begin with the parameter space.

Proposition 4.0.4. Let ap = e2πi/p. Then Pβ,n,d is conformally conjugate to Pan−1
d+1β,n,d

.

Thus, the parameter space is symmetric with respect to the multiplicative group generated

by an−1
d+1 .

Proof. Let φe2πi,d(z) = ad+1z as in 4.0.3. Then

(
φ−1
e2πi,d

◦ Pβ,n,d ◦ φe2πi,d
)

(z) =
1

ad+1

(
1

(ad+1z)d + β(ad+1z)n

)
= Pan−1

d+1β,n,d
.

�

This a general result which we will apply to the maps Pβ,n,d.

Theorem 4.0.5. Let f : C∞ → C∞ be a rational map. Suppose that for each z,

f(αz) = αkf(z) for some integer k and some α ∈ C with αm = 1 for some m. If z

lies in the basin of attraction of some attracting cycle, then αz also lies in the basin of

attraction of an attracting cycle.

Proof. Let α ∈ C with αm = 1 for some m and fix z so that fnd(z)→ w as n→∞,

where w is an attracting fixed point of fd. We begin with two claims.

(1) For l > 0 we have f(αlz) = αlkf(z), and

(2) for n > 0 fn(αz) = αk
n
f(z).

The first claim follows by induction on l. The l = 1 case is our assumption. Observe that

f(αl) = αkf(αl−1). The induction hypothesis gives αkf(αl−1) = αkαk(l−1) = αlkf(z),

which proves the first claim. The second claim uses induction on n. Again, the n = 1
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case is our assumption. Assume that fn−1(αz) = αk
n−1
fn−1(z). Our first claim gives us

that f(αk
n−1
fn−1(z)) = αk

n−1kfn(z) = αk
n
fn(z) which gives the second claim.

We compute that fnd(αz) = αk
nd
fnd(z), giving |fnd(αz) − αkndw| → 0 as n → ∞.

The set {αkndw|n ∈ N} is

(1) finite,

(2) forward fd invariant, and

(3) attracting.

The finiteness follows from the fact that {αn|n ∈ Z} forms a finite group of order

≤ m. The forward invariance follows from the calculation fd(αk
nd
w) = αk

(n+1)d
f(w) =

αk
(n+1)d

w. Consider |{αkndw|n ∈ N}| = p. Now fdp(αk
nd
w) = αk

nd
w. We need to show

that |(fdp)′(αkndw)| < 1. We have that

d

dz
fdp(αk

nd

z) =
d

dz
αk

dpkndfdp(z) = αk
(n+p)d d

dz
fdp(z).

Taking the modulus and evaluating at z = w, we have

|(fdp)′(αkndw)| =
p∏
i=1

|(fd)′(f id(w))| = |(fd)′(w)|p < 1,

so the cycle is attracting. �

Corollary 4.0.6. If f satisfies the hypotheses of 4.0.5 and F(f) is the union of the

basins of attracting cycles, then αkF(f) = F(f) and αkJ (f) = J (f) for all k ∈ Z.

As a result we have the following theorem.

Theorem 4.0.7. For ap = e2πi/p, we have that akn+dF(Pβ,n,d) = F(Pβ,n,d) and akn+dJ (Pβ,n,d) =

J (Pβ,n,d) for all k ∈ Z
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Proof. We check that Pβ,n,d(an+dz) = a−dn+dPβ,n,d(z) and, using Corollary 4.0.6, we

have our result. �

4.1. Connectivity of the Julia Set

Motivated by the connectivity results of Chapter 2, we prove a similar set of results

for the family of maps Pβ,2,2. The n = 2 = d case corresponds to the first two terms in

Laurent series for ℘λ. To maintain consistency we define the following family:

(4.5) Pλ(z) = Pγ4/(5λ4),2,2(z) =
1

z2
+

γ4

5λ4
z2,

since

(4.6) ℘λ(z) = Pλ(z) +O

(
z6

λ8

)

from Proposition 4.0.2.

Just as with ℘λ, Pλ satisfies a homogeneity equation:

(4.7) Pλ(λz) =
1

λ2
P1(z).

This family also has similar mapping properties.

Definition 4.1.1. Fix λ ∈ C∗. Define

L1 = {tλ−2 : t ∈ R+}

and

L2 = −L1.

Furthermore, define

S̃1 = {tλ : t ∈ R\{0}}.
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Set

S̃2 = iS̃1.

Proposition 4.1.2. For λ ∈ C∗ we have that

Pλ(S̃1) ⊂ L1

and

Pλ(S̃2) ⊂ L2.

Proof. If z ∈ S̃1, then z = tλ for some t ∈ R\{0}. By the homogeneity equations

(4.7), we have that

Pλ(tλ) = λ−2P1(t).

Furthermore, P1(t) > 0 for all t ∈ R\{0}, giving that λ−2P1(t) ∈ L1.

If z ∈ S2, then z = itk for t ∈ R\{0}. We have that Piλ = Pλ. Using the homogeneity

equations a second time, we have

Pλ(itλ) = Piλ(itλ) = (iλ)−2P1(t) = −λ−2P1(t).

Since P1(t) > 0 for all t ∈ R\{0}, we have that −λ−2P1(t) ∈ L2. �

The critical points of Pλ are {z : z4 = 5λ4

γ4 } and the point at infinity. The finite

critical points can be written as ik
4√5λ
γ

, where k = 0, 1, 2, or 3. The point at infinity is a

super-attracting fixed point. This leaves one free critical orbit, since after two iterations

all critical points (except infinity) land on the same point. Thus Pλ can have at most

one finite non-repelling periodic cycle [4].

Theorem 4.1.3. Suppose that Pλ has a finite attracting or parabolic cycle. Then each

Fatou component contains at most one critical value.
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Proof. This proof proceeds identically to the proof of Theorem 2.3.6. �

The following theorem appears without proof in [16].

Theorem 4.1.4. [16] If the critical values of Pλ do not tend to infinity then J(Pλ)

is connected.

We present the following theorem.

Theorem 4.1.5. Suppose that Pλ has an attracting cycle, parabolic cycle, cycle of

Siegel disks, or a strictly pre-periodic critical value. Then J(Pλ) is connected.

Proof. If Pλ has an attracting cycle or parabolic cycle then Theorem 2.3.6 gives

that each Fatou component contains at most one critical value. If Pλ has a cycle of

Siegel disks or a strictly pre-periodic critical value then the critical values are contained

in the Julia set, and so again, each Fatou component contains at most one critical value.

By applying [40, Theorem 3.1] we have the result. (We recall that Theorem 2.1.2 is an

adaptation of [40, Theorem 3.1].) �

4.2. The Parameter Space of Pλ

Just as in the setting with ℘λ Chapter 3, we introduce a new map that simplifies the

description of the critical points and critical values.

We show that the following family of maps is conjugate to the family Pλ where

µ = γ3

53/4λ3 :

(4.8) Rµ(z) =
µ

8

(
1

z2
+ 16z2

)
.

A brief calculation shows the following result.
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Figure 4.1. The parameter plane of Rµ

Proposition 4.2.1. The finite critical points of Rµ are {1/2, i/2,−1/2,−i/2}, and

the critical values are {−µ, µ}.

Let

h̃(z) =
γ3

53/4z3

and set ψλ(z) = 2λ
51/4γ

z. Using the above maps we have the following.

Proposition 4.2.2. The map Rh̃(λ) is conformally conjugate to Pλ via ψλ.

Proof. We show that Rh̃(λ) = ψ−1
λ ◦ Pλ ◦ ψλ:

(ψ−1
λ ◦ Pλ ◦ ψλ)(z) =

1
2λ

51/4γ

 1(
2λ

51/4γ
z
)2 +

γ4

5λ4

(
2λ

51/4γ
z

)2


h̃(λ)

8z2
+ 2h̃(λ)z2 =

h̃(λ)

8

(
1

z2
+ 16z2

)
.

�
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It is known that for n > 2, the parameter space of Dλ,n,n contains n− 1 copies of the

Mandelbrot set along the rays {te2kπi/(n−1) : t > 0, 0 ≤ k < n − 1} [12]. However, the

quadratic-like mapping theory fails in the case of Dλ,2,2. It is conjectured by Devaney

in [12] that there is one Mandelbrot set in the parameter plane centered on the super

attracting parameter with the “tip” missing. This tip corresponds to the parameter

c = −2. We present a picture of the parameter plane of Rµ in Figure 4.2. If Rµ has

a bounded critical orbit, then the point µ is colored black. This family is conformally

conjugate to Dλ,2,2. Since we have several maps under consideration, we present the

conjugacy explicitly here.

Proposition 4.2.3. The map Dµ4,2,2 is conformally conjugate to Rµ via the map

φµ(z) = z/(2µ).

Proof. We show φ−1
µ ◦Rµ ◦ φµ = Dµ4,2,2:

(
φ−1
µ ◦Rµ ◦ φµ

)
(z) = 2µ

µ

8

(
4µ2

z2
+

1

4µ2
z2

)
= Dµ4,2,2(z).

�

91



CHAPTER 5

Future Work

In this chapter we describe work in progress and describe unanswered questions rele-

vant to the work in this thesis.

The Connectedness of J(℘Ω).

In this section we assume that Ω =< ω1, ω2 > is any lattice, not necessarily square.

We have established in Theorem 2.2.1 that J(℘Ω) is connected when Ω is square. It

has been shown by Hawkins and Koss in [33, 32] that J(℘Ω) is connected when Ω is

triangular. We have the following conjecture of Hawkins, Koss, et al.:

Conjecture 5.0.1. Let Ω be any lattice. Then J(℘Ω) is connected.

If ℘Ω satisfies the hypotheses of Theorem 2.1.2 then J(℘Ω) is connected. This nat-

urally leads one to ask if Theorem 2.1.2 is a strong enough sufficient condition. It is

shown in [33] that there are lattices so that a Fatou component contains two critical

values. These produce so called “toral band” Fatou components. It is not known if the

complementary Julia sets are connected. Also, It is not known whether there is a lattice

so that three critical values of ℘Ω lie in the same Fatou component. However, if this

occurs, the Julia set is necessarily disconnected [33].

Buried Mandelbrot Sets.



Figure 5.1. The parameter plane of Dλ,3,3

As a model for the discussion of the parameter space of Wµ we will first discuss the

parameter space of

Dλ,n,n(z) = zn +
λ

zn
.

It is known that for n > 2, the parameter space of Dλ,n,n contains n − 1 copies of the

Mandelbrot set along the rays {te2kπi/(n−1) : t > 0, 0 ≤ k < n−1} [12]. It is conjectured

that there are smaller “buried” Mandelbrot sets in the parameter space. These sets are

disjoint from the n−1 “baby” Mandelbrot sets. One can clearly see smaller “Mandelbrot

sets” in the parameter plane of Dλ,3,3 in Figure 5 in addition to the 2 baby Mandelbrot

sets. Additionally, one can see these conjectured Mandelbrot sets in the parameter plane

of Rµ in Figure 4.2.

We conjecture that Wµ (and so ℘λ) also has these buried Mandelbrot sets in the

parameter space. If Figure 5 we color the parameter µ white if the critical orbit remains

bounded in the diamonds ‖z‖1 < 1, 2, 3 respectively.
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Figure 5.2. µ so that ‖W n
µ (µ)‖1 < 1, 2, 3 respectively for n < 200.

We have established that there is an embedding of the Mandelbrot set into the pa-

rameter plane of Wµ (and so also ℘λ) which respects the dynamics. We conclude with

the following question inspired by Figure 5:

Question 5.0.2. Is there an embedding (or partial embedding) of the parameter space

of Rµ into the parameter plane of Wµ which respects the dynamics?
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Figure 5.3. (left) The parameter plane of Rµ indicating when the critical

orbit is bounded

(right) The parameter plane of Wµ indicating when the orbit of the critical

value is bounded in a large disk of radius 10
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27. A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire
functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020. MR 1196102
(93k:30034)
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38. R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École
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