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ABSTRACT 

 
Taehee Hwang 

 
Integration of spatio-temporal vegetation dynamics into a distributed ecohydrological model: 

Application to optimality theory and real-time watershed simulations 

(Under the direction of Lawrence E. Band) 

 
 

Spatio-temporal vegetation dynamics are important drivers to characterize seasonal to annual 

water and carbon budgets. Spatial adjustment and evolution of the ecosystem is closely related to 

the geomorphic, climatic, and hydrologic settings. In particular, lateral hydrologic redistribution 

along flowpaths control the long-term joint adjustments of vegetation and soil over successional 

and quasi-geological time scales. For this reason, it is complex and challenging to incorporate the 

many relevant processes and feedbacks between ecological and hydrological systems for the full 

simulation of water, carbon, and nutrient cycling. Recent developments in remote sensing 

technology provide the potential to link dynamic canopy measurements with integrated process 

descriptions within distributed ecohydrological modeling frameworks. In this dissertation, three 

research studies are presented concerning estimation of spatio-temporal vegetation dynamics in 

application into a distributed ecohydrological model at the Coweeta Long Term Ecological 

Research site. In Chapter 2, we test whether the simulated spatial pattern of vegetation 

corresponds to measured canopy patterns and an optimal state relative to a set of ecosystem 

processes, defined as maximizing ecosystem productivity and water use efficiency at the 

catchment scale. A distributed ecohydrological model is simulated at a small catchment scale 

with various field measurements to see if the evolved pattern of vegetation density along the 
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flowpaths leads to system-wide emergent optimality for carbon uptake over and above the 

individual patch. Lateral hydrological connectivity determines the degree of dependency on 

productivity and resource use with other patches along flowpaths, resulting in different system-

wide carbon and water uptake by vegetation. In Chapter 3, phenological signals are extracted 

from global satellite products to find the topography-mediated controls on vegetation phenology 

in the study site. It provides a basis to understand spatial variations of local vegetation phenology 

as a function of microclimate, vegetation community types, and hillslope positions. In Chapter 4, 

near real-time vegetation dynamics are estimated by fusing multi-temporal satellite images, and 

integrated into the catchment scale distributed ecohydrological simulation. Integration of spatio-

temporal vegetation dynamics into a distributed ecohydrological model helps to simulate 

ecohydrological feedbacks between vegetation patterns and lateral hydrological redistribution by 

reducing uncertainty related to state and flux variables.  



 
 

v 
 

 
 
 
 
 
 
 
 
 

 
 
 

DEDICATION 

 
 
 
 

This dissertation is dedicated 

To my wife and precious daughter, Yuri Kim and Arwen Hwang 

To my parents, Jaemook Hwang and Gongja Lee



 
 

vi 
 

 

 
 
 
 

ACKNOWLEDGEMENTS 

 

First, I would like to thank my advisor, Dr Lawrence Band who deepened and broadened my 

scope of research views. Considering broad topics of my dissertation, I was so lucky to meet such 

an open-minded advisor with consistent enthusiasm and a positive manner. He is my role model 

not only for an academic advisor but also as a lifetime mentor.    

I am also grateful to other committee members, Dr. Aaron Moody, Dr. Conghe Song, Dr. Greg 

Characklis, and Dr. Jim Clark. I learned a lot from their classes over the years. Even though I did 

not finish all I suggested, they encouraged me and showed interests to my researches from 

different perspectives. In addition, I would like to thank Dr. Jim Vose, Dr. Paul Bolstad, and Dr. 

Todd Lookingbill for their support in providing data in Coweeta Hydrologic Lab. I also like to 

thank my colleagues and friends who worked with me in the fields and helped me for the 

completion of this dissertation. During pit-digging experiments in the fields, Dr. T.C. Hales 

broadened my geological views also with impressive untiring energy. Tamara Mittman and Jon 

Duncan also gave valuable feedbacks to improve my dissertation both academically and 

grammatically. 

Finally, I would like to express my truthful gratitude to my family for their love and supports. 

My beautiful wife, Yuri Kim was always there not only as a lifetime companion, but also as an 

academic colleague. My newborn daughter, Arwen Hwang let me know the true happiness of a 

life. My parents always believed in me from start to finish. I could not have done this without 

their beliefs.  



 
 

vii 
 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................ xii 

LIST OF FIGURES ..................................................................................................... xiii 

LIST OF ABBREVIATIONS ...................................................................................... xix 

LIST OF SYMBOLS ................................................................................................... xxi 

Chapter 1 Introduction ................................................................................................. 1 

1.1 Background .......................................................................................................... 1 

1.2 A Process-based Distributed Ecohydrological Model ......................................... 4 

References ....................................................................................................................... 8 

Chapter 2 Ecosystem processes at the watershed scale: Extending optimality 

theory from plot to catchment ....................................................................................... 12 

2.1 Abstract .............................................................................................................. 12 

2.2 Introduction ........................................................................................................ 13 

2.3 Model overview.................................................................................................. 16 

2.3.1 A Farquhar photosynthesis model .............................................................. 16 

2.3.2 Coupled photosynthesis – stomatal conductance models ........................... 18 

2.3.3 Scaling up fluxes from leaves to canopy .................................................... 19 



 
 

viii 
 

2.3.4 Nitrogen limitation ...................................................................................... 20 

2.3.5 Allocation .................................................................................................... 21 

2.4 Materials and methods ....................................................................................... 24 

2.4.1 Site description............................................................................................ 24 

2.4.2 Climate data and historical field measurements ......................................... 26 

2.4.3 Hydrologic gradients of vegetation density ................................................ 27 

2.4.4 Rooting depth and root distributions from soil pits .................................... 30 

2.4.5 Model parameterization .............................................................................. 33 

2.4.6 Prescribed rooting depth as a function of hillslope position ....................... 36 

2.4.7 Allocation dynamics with varying rooting depth........................................ 40 

2.5 Results ................................................................................................................ 41 

2.5.1 Topographic controls on rooting depth ....................................................... 41 

2.5.2 Parameter spaces ......................................................................................... 43 

2.5.3 Long-term ecohydrologic optimality at the hillslope scales ....................... 45 

2.6 Discussion and conclusions ................................................................................ 49 

2.6.1 Optimal vegetation gradients for system-wide productivity ....................... 49 

2.6.2 Compromises between multiple resources.................................................. 50 

2.6.3 An objective function of optimality models ............................................... 53 

2.6.4 Allocation dynamics along the hillslope gradients ..................................... 54 

2.6.5 Limitations of this study ............................................................................. 56 

2.6.6 Conclusions ................................................................................................. 57 



 
 

ix 
 

Acknowledgements ....................................................................................................... 58 

References ..................................................................................................................... 59 

Chapter 3 Topography-mediated controls on local vegetation phenology estimated 

from MODIS vegetation index ....................................................................................... 71 

3.1 Abstract .............................................................................................................. 71 

3.2 Introduction ........................................................................................................ 72 

3.3 Materials and methods ....................................................................................... 74 

3.3.1 Study area.................................................................................................... 74 

3.3.2 MODIS vegetation index ............................................................................ 78 

3.3.3 Post-processing analysis ............................................................................. 79 

3.3.4 A phenology model for multi-year VI datasets........................................... 83 

3.3.5 Analytical solutions for phenological transition dates ................................ 85 

3.3.6 Topographical variables .............................................................................. 89 

3.3.7 Interannual variations between wet and dry years ...................................... 90 

3.3.8 Statistical analysis ....................................................................................... 92 

3.4 Results ................................................................................................................ 96 

3.4.1 Topographical controls on local vegetation phenology .............................. 96 

3.4.2 Vegetation phenology between wet vs. dry years ....................................... 98 

3.5 Discussion and conclusions .............................................................................. 103 

3.5.1 Temperature controls on vegetation phenology ........................................ 103 

3.5.2 Photoperiod controls on vegetation phenology......................................... 104 



 
 

x 
 

3.5.3 Other controls on vegetation phenology ................................................... 106 

3.5.4 Growing season length (GSL) vs. vegetation growth ............................... 107 

3.5.5 Spatial scale issues .................................................................................... 109 

3.5.6 Conclusions ............................................................................................... 112 

Acknowledgements ..................................................................................................... 113 

Appendix ..................................................................................................................... 114 

References ................................................................................................................... 115 

Chapter 4 Estimation of real-time vegetation dynamics for distributed 

ecohydrological modeling by fusing multi-temporal MODIS and Landsat NDVI 

data 123 

4.1 Abstract ............................................................................................................ 123 

4.2 Introduction ...................................................................................................... 124 

4.3 Method and Materials....................................................................................... 129 

4.3.1 Study site ................................................................................................... 129 

4.3.2 Landsat NDVI ........................................................................................... 131 

4.3.3 MODIS NDVI and FPAR ......................................................................... 132 

4.3.4 Downscaling MODIS FPAR into sub-grid scale ...................................... 134 

4.3.5 Simulation of a distributed ecoydrological model .................................... 137 

4.4 Results .............................................................................................................. 138 

4.4.1 MODIS and Landsat NDVI values ........................................................... 138 

4.4.2 An example of downscaling...................................................................... 145 



 
 

xi 
 

4.4.3 The effect of the topographically corrected downscaling ......................... 149 

4.4.4 An example of distributed hydrological modeling ................................... 155 

4.5 Discussion and conclusions .............................................................................. 157 

4.5.1 General discussion .................................................................................... 157 

4.5.2 The FPAR-NDVI relationship .................................................................. 158 

4.5.3 Scale invariance in sub-grid variability .................................................... 160 

4.5.4 Topographic correction ............................................................................. 164 

4.5.5 Conclusions ............................................................................................... 165 

Acknowledgements ..................................................................................................... 166 

References ................................................................................................................... 168 

Chapter 5 Summary and conclusions ...................................................................... 175 

 



 
 

xii 
 

LIST OF TABLES 

Table 1.1: Key processes of RHESSys model .................................................................... 7 

Table 2.1: Detailed measurements for soil pits at different topographic positions .......... 31 

Table 2.2: Species-specific eco-physiologic model parametersa ...................................... 32 

Table 2.3: Other model parameters ................................................................................... 34 

Table 3.1: Summary of phenological and topographic variables ..................................... 91 

Table 3.2: Pearson correlation coefficients between topographic factors and phenological 

variables (n = 252) ....................................................................................................... 95 

Table 3.3: Summaries of multiple regression models (n = 252) ....................................... 97 

Table 4.1: Landsat TM and MODIS bandwidths of red and near infrared bands .......... 127 

 



 
 

xiii 
 

LIST OF FIGURES 

Figure 2.1: Water scalar functions of nitrogen transformation rates as a function of soil 

moisture saturation for sandy loam soils; after Parton et al. (1996). ........................... 23 

Figure 2.2: A compartment flow diagram of carbon allocation, transfer, and turnover with 

mixed daily and yearly allocation strategies following the current BIOME-BGC 

algorithm (Thornton et al. 2002; Thornton 1998). ....................................................... 23 

Figure 2.3: Study site (WS18); (a) NDVI (normalized difference vegetation index) from a 

June 1, 2003 IKONOS image, (b) wetness index, and (c) locations for WS18 (square), 

LAI (leaf area index) measurements, and soil pits within the Coweeta LTER site. 

Litter LAI points are from Bolstad et al. (2001). Red and yellow lines represent the 

boundaries of watersheds, and dashed lines indicate roads along which artificial gaps 

are shown. (a) and (b) are perspective views from the WS18 outlet. The rectangles 

within WS18 are three gradient plots (118, 218, and 318). A paired experimental 

watershed (WS17) is also shown next to the target watershed where white pines (Pinus 

strobus L.) are planted in 1956 after 15-year clear cut periods. .................................. 25 

Figure 2.4: (a) A scatter plot between LAI (leaf area index) measurements and NDVI 

(normalized difference vegetation index), and (b) hydrologic gradients of estimated 

LAI within the study watershed. Litter LAI measurements are from Bolstad et al. 

(2001). Circles represent average values, and box plots have lines at the lower quartile, 

median, and upper quartile values from each binned group. Counts are the number of 

10 × 10 m patches in each group, which are basic units of model simulation. ............ 29 

Figure 2.5: Long-term observed and simulated daily streamflow at the study watershed 

(1990 ~ 2006), including the 3-year calibration period (October 1999 ~ September 

2002). ........................................................................................................................... 35 

Figure 2.6: Time series and scatter plots of observed and simulated soil water content at 

(a) 118 (xeric), (b) 218 (mesic), and (c) 318 (intermediate) gradient plots within the 

target watershed (Figure 2.3b). .................................................................................... 37 



 
 

xiv 
 

Figure 2.7: Simulated long term (1941 ~ 2005) nitrogen transformation rates (plant 

uptake, mineralization, nitrification, and denitrification) in litter and soil as a function 

of wetness index. Note that these modeled gradients largely result from in situ N 

cycling as lateral transport of mobile nitrogen (nitrate), or organic litter downslope is 

not included in the simulation version. Each point represents a 10 × 10 m cell (n = 

1253), a basic unit of model simulation. ...................................................................... 38 

Figure 2.8: The distribution of roots as a function of soil depth for pits located on (a) 

ridges and (b) hollows. Distributions are expressed as root cumulative frequency and 

as absolute number. Grey lines represent individual pits, while black lines are the 

mean of all pits. Photographs are vertical sections of two Q. rubra pits (Table 2.1) dug 

within 20 m of each other. Note the difference in the depth of the dark A horizon 

between the two sites. Blue painted roots were used for analysis of root distributions. 

Modified from Figure 3 in Hales et al. (2009). ............................................................ 42 

Figure 2.9: Mean absolute error (MAE) of simulated LAI within WS18 over multiple 

realizations of average rooting depth (RDavg) and spatial pattern of rooting depth 

(RDdev) under (a) the constant and (b) the alternative allocation strategies. ................ 44 

Figure 2.10: 3-D and 2-D contour plots of long-term simulated (1941 ~ 2005) average 

annual (a) NPP (net primary productivity), (b) ET (evapotranspiration), and (c) WUE 

(water used efficiency) over sampled RDavg and RDdev under constant allocation 

strategy. The color bar represents the mean absolute error (MAE) of simulated LAI 

(Figure 2.9a). ................................................................................................................ 46 

Figure 2.11: 3-D and 2-D contour plots of long-term simulated (1941 ~ 2005) average 

annual (a) NPP (net primary productivity), (b) ET (evapotranspiration), and (c) WUE 

(water used efficiency) over sampled RDavg and RDdev under alternative allocation 

strategy, where allocation ratios are as a function of local rooting depth. The color bar 

represents the mean absolute error (MAE) of simulated LAI (Figure 2.9b). ............... 47 

Figure 2.12: 3-D plots for long-term annual NPP (net primary productivity) and ANPP 

(aboveground NPP) under (a) constant and (b) alternative allocation strategies with 

varying RDavg and RDdev parameters. Contours at the x-y plane represent ANPP values. 

Note that allocation ratios of ANPP to NPP are constant under constant allocation 



 
 

xv 
 

strategy, while they decrease in proportion to rooting depth under alternative 

allocation strategy. Long term patterns of vegetation density (LAI) follow ANPP as a 

constant portion of cumulative ANPP is allocated into foliar biomass. ...................... 48 

Figure 3.1: A study site (Coweeta Hydrologic Lab). Grids represent the MODIS 

(MOD13Q1; about 230 m) pixels. Red lines represent the boundaries of watersheds. 

Letters indicates the pixels for examples of filtering and fitting methods (Figure 3.3; 

Figure 3.4). ................................................................................................................... 76 

Figure 3.2: A typic diagram from Day et al. (1988), which describes vegetation 

community types within the study site as a function of slope, aspect, elevation, and 

hillslope positions. ....................................................................................................... 77 

Figure 3.3: Examples of two-step filtering methods from 8-year historical trajectories 

(left column) and time-series (right column) of estimated LAI at selected MODIS 

pixels ((a) ~ (i); Figure 3.1). Grey and black dots represent filtered values by the 

outlier exclusion analysis and the modified BISE methods, respectively. .................. 81 

Figure 3.4: Examples of the difference logistic function fitting for 8-year estimated LAI 

datasets at selected MODIS pixels ((a) ~ (i); Figure 3.1). Vertical dotted lines are 

phenological transition dates (t´) from Eq. 3.5. ........................................................... 86 

Figure 3.5: Analytical solutions of phenological variables; (a) the difference logistic 

function, (b) the first derivative, (c) the second derivative (a thick line) and curvature 

(grey lines; Eq. 3.4), and (d) the third derivative (a thick line) and the rate of curvature 

change (CCR; grey lines). The curvature and CCR curves are drawn with different c 

parameter values (0.5 ~ 4.0; Eq. 3.2). The vertical grey lines are analytical solutions 

for phenological variables from Eq. 3.5, not changed with different c parameter values.

 ...................................................................................................................................... 87 

Figure 3.6: Paired scatter plots between topographic and phenological variables. Fitted 

lines show strongly significant relationships from multiple regression models (Table 

3.3). .............................................................................................................................. 94 



 
 

xvi 
 

Figure 3.7: Elevational controls on (a) Midon (grey) and Midoff (black), (b) Lengthon (grey) 

and Lengthoff (black), and (c) LAImax (grey) and LAImin (black). Horizontal error bars 

represent Lengthon and Lengthoff. ................................................................................ 100 

Figure 3.8: Scatter plots of six phenological variables (Midon, Midoff, Lengthoff, Lengthon, 

LAImin, and LAImax) between extremely wet (2003, 2005) and dry (2001, 2008) years.

 .................................................................................................................................... 101 

Figure 3.9: Major topographic controls (elev, taspect) on length phenological variables 

(Lengthon, Lengthoff) between wet (light circles and dashed lines) and dry years (dark 

circles and solid line). ................................................................................................ 102 

Figure 3.10: Comparison of radiation proxies (taspect, PRRg) from two different 

upscaling methods at each MODIS pixels. Radiation proxies of x-axis were calculated 

from upscaled DEM at MODIS scale (about 250 m), while those of y-axis from 

averaging of the original scale radiation proxies from LIDAR DEM (about 6 m). ... 111 

Figure 4.1: A study site (Coweeta Hydrologic Lab). Grids represent the MODIS 

(MOD13Q1; about 230 m) pixels. Red and yellow lines represent the boundaries of 

sub-watersheds and WS08 (an upper basin of Coweeta). Letters indicates the pixels for 

examples of fitting and downscaling methods (Figure 4.2; Figure 4.3; Figure 4.8; 

Figure 4.9) .................................................................................................................. 130 

Figure 4.2: Examples of fitting by the difference logistic function for 8-year MODIS 

NDVI datasets (2001 ~ 2008) at selected MODIS pixels ((a) ~ (i); Figure 4.1). ...... 140 

Figure 4.3: Interannual phenological variations of the fitted MODIS NDVI model at 

selected MODIS pixels ((a) ~ (i); Figure 4.1). ........................................................... 142 

Figure 4.4: Boxplots for spatial variations of mid-day of (a) greenup and (b) senescence 

periods, and (c) fitted maximum and minimum NDVI values within the study site (n = 

369) for each year, calculated from the fitted MODIS NDVI model (Figure 4.3). 

Boxes have lines at the lower, median, and upper quartile values. Lines are extended 

to the most extreme values within the Whiskers, defined as 1.5 times the inter-quartile 

range from the lower and upper quartiles. Outliers are displayed with black dots. ... 143 



 
 

xvii 
 

Figure 4.5: Spatio-temporal patterns of Landsat NDVI values within the Coweeta basin 

as a function of DOY. All Landsat TM images are from 2000 to 2008, and absolutely 

cloud-free. Points and vertical lines represent an average, and 5th and 95th percentiles 

of spatial NDVI values within the WS08 watershed (n = 8654; Figure 4.1). ............ 144 

Figure 4.6: An example of two downscaling methods on May 5, 2008; (a) a fitted 

MODIS FPAR image, (b) a composite Landsat NDVI image, (c) a proportionality 

parameter (αt) map by the simple downscaling method, (d) a downscaled FPAR map 

by the simple downscaling method, (e) a potential hourly radiation map (kJ m-2 h-1), 

and (f) a downscaled FPAR map by the topographically corrected downscaling 

method. ....................................................................................................................... 147 

Figure 4.7: Two examples of the topographically corrected downscaling method on July 

1, 2008 (left column) and February 8, 2008 (right column); (a) and (b) fitted MODIS 

FPAR images, (c) and (d) composite Landsat TM NDVI images, and (e) and (f) 

downscaled FPAR maps. ........................................................................................... 148 

Figure 4.8: Examples of the topographically corrected downscaling for the MODIS 

FPAR at selected MODIS pixels in 2008 ((a) ~ (i); Figure 4.1). Grey dotted and color 

solid lines represent the fitted MODIS FPAR and the downscaled sub-grid FPAR 

values respectively. .................................................................................................... 151 

Figure 4.9: Examples of the topographically corrected downscaling at selected MODIS 

pixels in 2008 ((a) ~ (i); Figure 4.1). Color solid lines represent the downscaled sub-

grid LAI values estimated from downscaled sub-grid FPAR values (Figure 4.8). .... 152 

Figure 4.10: A scatter plot between αtopo_corrected (a proportionality parameter in the 

topographically corrected downscaling) and αsimple (a proportionality parameter in the 

simple downscaling) values on May 5 (cross), February 8 (triangle), and July 1 (circle), 

2008. ........................................................................................................................... 153 

Figure 4.11: Temporal patterns of αtopo_corrected (upper) and αsimple (lower) values for a 

simulation period (2001 ~ 2008) with 5-day intervals. Points and vertical lines 

represent average, and 5th and 95th percentiles of spatial distributions in the study site 

(n = 369) on the same DOY each year. Note that α parameters are calculated each day, 

not each DOY. ............................................................................................................ 154 



 
 

xviii 
 

Figure 4.12: Observed and simulated daily streamflow at the study watershed (WS08; 

Figure 4.1), including the 3-year calibration period (October 2003 ~ September 2006).

 .................................................................................................................................... 156 

Figure 4.13: Temporal patterns of relative differences (left column) and scatter plots 

(right column) between (a) NDVIavg and NDVIlump, (b) NDVIavg and NDVIwgt, and (c) 

NDVIlump and NDVIwgt. NDVIlump is the NDVI calculated from aggregated radiance at 

the MODIS scale. NDVIavg is the averaged NDVI at MODIS scale from sub-grid 

Landsat NDVI values. NDVIwgt is the weighted averaged NDVI with respect to sub-

grid incoming radiance (Eq. 4.8). Horizontal and vertical lines represent 5th and 95th 

percentiles of the spatial NDVI values within the WS08 watershed (n = 8654; Figure 

4.1). ............................................................................................................................ 162 

 



 
 

xix 
 

  

LIST OF ABBREVIATIONS 

ANPP  Aboveground Net Primary Productivity 

AVHRR  Advanced Very High Resolution Radiometer 

BISE  Best Index Slope Extraction 

BRDF Bidirectional Reflectance Distribution Function  

CCR  Curvature Change Rate 

DBH Diameter at Breast Height 

DEM Digital Elevation Model  

DOS Dark Object Subtraction  

DOY Day Of Year 

ET  Evapotranspiration 

EVI  Enhanced Vegetation Index 

FPAR Fraction of absorbed Photosynthetically Active Radiation  

GPS Geographic Positioning System 

GSL Growing Season Length  

L1T  Level-one Terrain-corrected 

LAI  Leaf Area Index 

TM  Thematic Mapper 

LIDAR  LIght Detection And Ranging 

LTER Long Term Ecological Research 

MAE Mean Absolute Error 

MODIS MODerate resolution Imaging Spectro-radiometer 



 
 

xx 
 

MRT MODIS Reprojection Tool 

NDVI Normalized Difference Vegetation Index 

NPP Net Primary Productivity 

PAR Photosynthetically Active Radiation 

QC  Quality Control 

RHESSys Regional Hydro-Ecological Simulation System 

RuBP Ribulose-BisPhosphate carboxylase-oxygenase 

SLA Specific Leaf Area 

SR  Simple Ratio 

STARFM Spatial and Temporal Adaptive Reflectance Fusion Model 

UTM Universal Transverse Mercator  

VI   Vegetation Index 

WUE Water Use Efficiency  



 
 

xxi 
 

LIST OF SYMBOLS 

A   net rate of leaf photosynthesis 

a, b  fitting variables in the logistic function 

Aj   RuBP-limited photosynthesis (an electron transport rate) 

APAR absorbed photosynthetically active radiation per unit leaf area 

APARi,t  absorbed PAR at each sub-grid pixel i and date t  

Av   Rubisco-limited photosynthesis (a carboxylation rate) 

c    difference between fitted maximum and minimum NDVI or LAI 

Ci   partial pressure of within leaf CO2 

CO2  atmospheric concentration of carbon dioxide 

d    a fitted minimum or background NDVI or LAI value 

elev  elevation 

FPAR  MODIS FPAR 

FPARi,t  FPAR values of sub-grid i on date t 

FPARt  MODIS FPAR on date t  

gc   stomatal conductivity for CO2  

gs   stomatal conductance for water 

gs.max  maximum stomatal conductance for water 

gs.shade  stomatal conductance for water per unit shaded leaf area 

gs.sunlit  stomatal conductance for water per unit sunlit leaf area 

i    sub-grid pixel locations 

Ie   effective irradiance  

IPARi  potential incident PAR at each sub-grid pixel i 

IPARi,DOY  potential incident PAR at each sub-grid pixel i on corresponding DOY 



 
 

xxii 
 

J    electron transport rate 

Jmax  maximum electron transport rate  

Kc   Michaelis-Menten constant of Rubisco for CO2 

Ko   Michaelis-Menten constant of Rubisco for O2 

LAImax  fitted maximum leaf area index 

LAImin  fitted minimum leaf area index 

LAIshade  total shaded leaf area index  

LAIsunlit  total sunlit leaf area index 

Lengthoff  length of the senescence period  

Lengthon  length of the greenup period  

Midoff  mid-day of the senescence period 

Midon  mid-day of the greenup period 

n    number of sub-grid pixels within a single MODIS pixel 

NDVIavg  mean NDVI of NDVIi values within a single MODIS pixel  

NDVIi  composite Landsat NDVI at each sub-grid pixel i 

NDVIi,DOY  composite Landsat NDVI at each sub-grid pixel i on corresponding DOY 

NDVIlump  lumped NDVI calculated from aggregated radiance at the MODIS scale 

NDVIwgt  weighted mean of NDVIi with respect to IPARi 

Oi   partial pressure of within leaf O2 

PRR  potential relative radiation for the whole year 

PRRf  potential relative radiation for the senescence season (Oct, Nov) 

PRRg  potential relative radiation for the greenup season (Apr, May) 

RD  a local rooting depth  

Rd   daily leaf respiration 

RDavg  average rooting depth within the hillslope 

RDdev  spatial pattern of rooting depth  



 
 

xxiii 
 

t    date 

t´    transition dates for phenological signals 

taspect  transformed aspect 

topidx  wetness index (or topographic index) 

Vmax  maximum rate of carboxylation 

VPD  vapor pressure deficit 

WI   local wetness index  

WIavg  average wetness index within the hillslope  

α    a proportionality parameter 

αsimple  α of the simple downscaling method 

αt   α on date t 

αt.simple  α of the simple downscaling method on date t 

αt.topo-corrected α of the topographically corrected downscaling method on date t 

αtopo-corrected α of the topographically corrected downscaling method 

Γ*   CO2-compensation point 

θ    sun zenith angle 

κ    signed curvature  

ψ    soil water potential 

Ω   foliage clumping index 



 
 

Chapter 1 Introduction 

1.1 Background 

Ecohydrology may be defined as the science which seeks to describe the hydrologic 

mechanisms that underlie ecologic patterns and processes (Rodriguez-Iturbe 2000). We 

expand on this definition by including the complementary question of how ecological 

mechanisms underlie hydrologic patterns and processes, essentially examining the coupled 

evolution and interactions within ecohydrological systems. 

Ecohydrological processes incorporate a very wide variation in temporal scales ranging from sub-

daily energy, water, carbon and nutrient flux, to decadal and century level growth and aggradation of 

ecosystems and biogeochemical development of soils. These processes are interconnected over both 

time and space by three-dimensional circulation of water through the landscape by the set of dominant 

surface and subsurface flowpaths, interacting with long term modification of canopy and soil 

conditions. Forested watershed responses to climatic patterns involve complex interactions between 

ecological and hydrological processes (e.g. interception, infiltration, evapotranspiration, 

photosynthesis, drainage, succession etc.) mediated by soil moisture dynamics, operating at different 

temporal and spatial scales. Therefore, spatio-temporal dynamics of soil moisture are key links 

between hydrologic and biogeochemical processes (Rodriguez-Iturbe 2000).  

This level of complexity suggests that prescription of major sets of state or flux variables (e.g. leaf 

area index, soil saturation, streamflow, and evapotranspiration) can lead to the accumulation of 
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significant bias in model behavior. Especially in topographically complex terrains, prescribing 

averaged spatial and temporal variations of state variables may underestimate the effect of severe 

drought due to asymmetric nature of the spatial distribution of soil moisture along with its non-linear 

control on water and carbon processes (e.g. Band et al. 1993). Given the complexity of these 

interactions and their spatio-temporal variations, we must incorporate new observations of ecological 

and hydrological form and process to reduce the uncertainty related to the state and flux variables in 

the model. In this process, temporal and spatial resolutions of data assimilation strongly depend on 

available ecohydrological datasets. 

Recent developments in ground based and remote sensing observational technologies, along with 

coupled distributed ecohydrological modeling paradigms provide the potential to mitigate this problem 

by linking dynamics measurements with integrated process descriptions. High resolution spatial 

information (e.g. land cover, topography, canopy cover, soil moisture, precipitation etc.) have aided 

the development of complex fully distributed models that construct a detailed spatial representation of 

the variability of the hydrological processes within the watershed. In particular, near real-time global 

satellite products (MODIS; MODerate Resolution Imaging Spectro-radiometer) enable us to integrate 

spatio-temporal dynamics of key ecohydrological processes, such as spatio-temporal vegetation 

dynamics, which are difficult to adequately incorporate in classical lumped hydrological models.  

Vegetation density is usually represented by the fraction of absorbed photosynthetically active 

radiation (FPAR) and leaf area index (LAI). FPAR is a robust indicator for energy absorption by 

vegetation and subsequent carbon uptake (e.g. light use efficiency). LAI is an important driver in 

process-based biogeochemical models, which tends to be correlated with aboveground net primary 

production and biomass across a broad range of ecosystems. LAI represents canopy interception 

capacity for evaporation and potential transpiration through stomata in the water cycle. Vegetation 

compromises between its growth and water stress for optimal carbon uptake (so-called ‘growth-stress 

trade-off’) represented as a non-linear relationship between FPAR (energy use) and LAI (water use). 
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These two important biophysical properties are linearly or non-linearly correlated with NDVI 

(normalized difference vegetation index) from remote sensing images, so the NDVI plays a crucial 

role in estimating spatio-temporal dynamics of vegetation density from remote sensing images at 

different scales. In this study, phenological state variables (e.g. FPAR, LAI) are locally estimated 

within the study area using NDVI values from multi-temporal remotely sensed data (e.g. IKONOS, 

Landsat TM, MODIS), further evaluated with field measurements.  

This dissertation aims to integrate spatio-temporal vegetation dynamics into a distributed 

ecohydrological model at different scales, operating over sub-daily to decadal level time scales with 

specific applications to ecological optimality theory and real-time watershed simulations. Three 

related questions and topics are addressed within the dissertation papers: 

1. To determine if the observed vegetation patterns along hydrologic gradients within a small 

catchment represent long-term ecohydrologic pattern optimization for carbon uptake (e.g., full 

system productivity or water use efficiency maximization) at the hillslope scale. 

2. To find topography-mediated controls on local vegetation phenology from MODIS NDVI 

data, and to relate these spatial phenological patterns to micro-climate variations and other factors 

(e.g. vegetation community types, topographic positions). 

3. To develop a downscaling method fusing multi-temporal MODIS-Landsat data in 

conjunction with topographic information to produce near real-time estimates of high spatial and 

temporal resolution canopy phenology in complex terrain, for assimilation into the distributed 

ecohydrological model. 

For the first question, Chapter 2 specifically uses the modeling framework to assess long term 

development and co-evolution of the ecosystem canopy, soil, and topography. The spatial gradient of 

vegetation density within a small catchment is estimated with fine-resolution satellite imagery 

(IKONOS) and various field measurements, evaluated with simulated vegetation growth patterns from 
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different root depth and allocation strategies as a function of hillslope position. Then, we test whether 

the simulated spatial pattern of vegetation corresponds to measured canopy patterns and an optimal 

state relative to a set of ecosystem processes, defined as maximizing ecosystem productivity and water 

use efficiency at the catchment scale.  

In Chapter 3, we develop a robust filtering and fitting method to extract phenological signals from 

the multi-year trajectories of MODIS NDVI data, and relate spatial patterns of vegetation phenology 

to topographic factors by a statistical analysis to answer the second question. These topography-

mediated phenological patterns are interpreted based on spatial variations of micro-climate and other 

factors (e.g. vegetation community types, hillslope positions). In particular, scale issues would be 

examined by comparing these phenological patterns with historical field measurements and 

interannual variations between very wet and dry years.  

For the last question, we develop methods to estimate near real-time vegetation dynamics by 

downscaling the fitted MODIS FPAR into the Landsat scale with two suggested downscaling methods 

for the 8-year period (2001 ~ 2008) in Chapter 4. The sub-grid variability of vegetation density within 

the MODIS pixels is inferred each day from composite NDVI images as a function of day of year 

assuming they are interannually consistent. Examples of a distributed ecohydrological model are 

shown assimilating the real-time downscaled vegetation dynamics. 

Finally, Chapter 5 summarizes important findings and discusses their further implications. 

 

1.2 A Process-based Distributed Ecohydrological Model 

RHESSys (Regional Hydro-Ecological Simulation System) is a GIS-based, ecohydrological 

modeling framework designed to simulate carbon, water and nutrient cycling in complex terrain (Band 

et al. 1993; Tague and Band 2004). One of the unique features of RHESSys is its hierarchical 

landscape representation. RHESSys combines both a set of physically based process models and a 

methodology for partitioning and parameterizing the landscape. The spatially distributed structure 
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enables the modeling of spatio-temporal interactions between the different ecohydrological processes 

at the plot to the watershed scale. This approach allows different processes to be affiliated at different 

spatio-temporal scales and the basic modeling unit to be of arbitrary shape, rather than strictly grid-

based.  

RHESSys has been developed from several pre-existing models. First, a microclimate model, MT-

CLIM (Running et al. 1987) uses topography and user supplied base station information to extrapolate 

spatially variable climate variables over topographically varying terrain. At the patch level, an eco-

physiological model is adapted from BIOME-BGC (Running and Coughlan 1988; Running and Hunt 

1993; Kimball et al. 1997) to estimate carbon, water and potential nitrogen fluxes from different 

canopy cover types, while representation of soil organic matter and nutrient cycling in RHESSys is 

largely based on CENTURY model (Parton et al. 1993). RHESSys also uses the CENTURYNGAS 

(Parton et al. 1996) approach to model nitrogen cycling processes such as nitrification and 

denitrification (Band et al. 2001). At a hillslope scale, a quasi-distributed hydrological model, 

TOPMODEL (Beven and Kirkby 1979) is integrated which distributes soil moisture based on the 

distribution of a topographically defined wetness index.  

A modified version 5.8 of RHESSys is used in this study. Recent BIOME-BGC (version 4.1.1) 

changes from the comparison with flux tower data were updated to this version of RHESSys for this 

study. These are relevant to the deployment strategy of retranslocated nitrogen and the treatment of 

daily allocation in the face of a carbon pool deficit (Thornton 2000). A conditional three-layer model 

in the soil column (Famiglietti and Wood 1994) is integrated for vertical water processes; the root 

zone layer, the transmission layer, and the saturated layer. The unsaturated soil layer is partitioned into 

two layers (root zone and transmission layers) only when water table depth is below prescribed root 

zone depth. Roots are assumed to extend uniformly throughout the root zone. The upward capillary 

flux from the water table passes through the transmission layer and directly into the root zone layer. 
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RHESSys has been successfully applied for ecohydrological simulations in forested watersheds 

across diverse climate regions; watershed scale transpiration and production (Band et al. 1991, 1993; 

Band 1993; Nemani et al. 1993; Mackay et al. 2003; Zierl et al. 2007; Hwang et al. 2008, 2009), 

nitrogen processes (Band et al. 2001; Creed et al. 1996; Creed and Band 1998a; Groffman et al. 2009; 

Tague 2009), spatial patterns of vegetation growth (Mackay and Band 1997; Mackay 2001), spatial 

patterns of vegetation species (Meentemeyer et al. 2001; Meentemeyer and Moody 2002), hydrologic 

responses to climate change (Band et al. 1996; Baron et al. 2000; Christensen et al. 2008; Tague et al. 

2008, 2009; Jefferson et al. 2008), snow distribution (Christensen et al. 2008; Tague et al. 2008; 

Hartman et al. 1999), the characterization of scale-dependent flow variability (Sanford et al. 2007), 

and streamflow prediction of ungauged watersheds (Tague and Pohl-Costello 2008). Key processes in 

RHESSys are shown in Table 1.1. Detailed explanations of this model are available in the RHESSys 

homepage (http://fiesta.bren.ucsb.edu/~rhessys/), and Tague and Band (2004). 
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Table 1.1: Key processes of RHESSys model 

acomputed for sunlit and shaded leaves separately; LAI = leaf area index, T = 
temperature, θ = rootzone soil moisture contents, APAR = absorbed 
photosynthetically active radiation, VPD = vapor pressure deficit, N = nitrogen 
contents, C = substrate (carbon) quality, M = substrate (carbon) storage 

Processes or Parameters References 

Vegetation 

Water 

 

 

Interception 

Transpiration 

Leaf Conductance 

f(all-sided LAI) 

Penman-Monteith Eq.a 

f(T, θ, APAR, VPD, CO2)
a (Jarvis 1976) 

Carbon 

 

 

 

 

Photosynthesis 

Maintenance Respiration 

Growth Respiration 

Allocation / Mortality 

Turnover 

Farquhar Eq.a (Farquhar et al. 1980) 

f(T, N,C)† (Ryan 1991) 

Constant (Biome-BGC) 

Constant (Biome-BGC) 

Constant (Biome-BGC) 

Nitrogen 

 

Stoichiometrically constant C/N ratios for all compartments 

Retranslocation of stored nitrogen during the litterfall process 

Soil 

Water 

 

 

 

 

Infiltration 

Drainage 

Exfiltration / Capillary Rise 

Lateral Redistribution 

Saturated Throughflow 

Phillip’s Eq. 

(Clapp and Hornberger 1978) 

(Eagleson 1978c) 

TOPMODEL (Beven and Kirkby 1979) 

TOPMODEL (Beven and Kirkby 1979) 

Carbon Decomposition f(T, θ, C, M, N) (Parton et al. 1996) 

Nitrogen 

 

 

 

Mineralization 

Denitrification 

Leaching 

Plant Uptake 

f(T, θ, M, NH4
+) (Parton et al. 1996) 

f(θ, M, NO3
-) (Parton et al. 1996) 

Flushing hypothesis 

f(soil mineral N) 
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Chapter 2 Ecosystem processes at the watershed scale: Extending 

optimality theory from plot to catchment 

2.1 Abstract 

The adjustment of local vegetation conditions to limiting soil water by either maximizing 

productivity or minimizing water stress has been an area of central interest in ecohydrology since 

Eagleson’s classic study (Eagleson 1978a, 1978b, 1978c, 1978d, 1978e, 1978f, 1978g, 1982; Eagleson 

and Tellers 1982). This work has typically been limited to consider one-dimensional exchange and 

cycling within patches and has not incorporated the effects of lateral redistribution of soil moisture, 

coupled ecosystem carbon and nitrogen cycling, and vegetation allocation processes along topographic 

gradients. We extend this theory to the hillslope and catchment scale, with in situ and downslope 

feedbacks between water, carbon and nutrient cycling within a fully transient, distributed model. We 

explore whether ecosystem patches linked along hydrologic flowpaths as a catena evolve to form an 

emergent pattern optimized to local climate and topographic conditions. Lateral hydrologic 

connectivity of a small catchment is calibrated with streamflow data and further tested with measured 

soil moisture patterns. Then, the spatial gradient of vegetation density within a small catchment 

estimated with fine-resolution satellite imagery and field measurements is evaluated with simulated 

vegetation growth patterns from different root depth and allocation strategies as a function of hillslope 

position. This is also supported by the correspondence of modeled and field measured spatial patterns 

of root depths and catchment-level aboveground vegetation productivity. We test whether the 

simulated spatial pattern of vegetation corresponds to measured canopy patterns and an optimal state 
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relative to a set of ecosystem processes, defined as maximizing ecosystem productivity and water use 

efficiency at the catchment scale. Optimal carbon uptake ranges show effective compromises between 

multiple resources (water, light, and nutrients), modulated by vegetation allocation dynamics along 

hillslope gradient.  

 

2.2 Introduction 

Eagleson proposed an elegant optimality hypothesis in water-limited ecosystems (Eagleson 1978a, 

1978b, 1978c, 1978d, 1978e, 1978f, 1978g, 1982; Eagleson and Tellers 1982), based on the Darwinian 

approach that ‘current vegetation composition is an optimal state for productivity’ (Eagleson 2002). In 

the absence of significant disturbance, natural soil-vegetation systems would co-evolve ‘gradually and 

synergistically’ with changes in soil structure driven by vegetation to achieve an equilibrium state. 

Eagleson posited that these equilibria are based on three different optimization strategies at different 

temporal scales. At short time scales with given climate and soil conditions, minimization of soil water 

stress produces a vegetation canopy in which steady-state soil moisture will be maximized to minimize 

vegetation water stress. This short-term equilibrium hypothesis is usually interpreted as a ‘growth-

stress trade-off’ (Mackay 2001; Kerkhoff et al. 2004), which conceptually describes the optimal 

carbon uptake or biomass productivity represented by canopy density in terms of water use. 

Maximization of biomass productivity is then assumed to control the long-term joint adjustment of 

vegetation species and soil over successional and quasi-geological time scales respectively. This 

hypothesis suggests that optimal canopy density in water-limited ecosystems is to be found between 

minimum water stress and maximum productivity (Rodriguez-Iturbe et al. 1999a). 

Over past three decades, the optimization of vegetation structure at the plot scale has been defined 

in the ecological and hydrological fields as various terms including hydrologic equilibrium concepts 

for terrestrial vegetation or vegetation species distribution at local (Nemani and Running 1989), 

catchment (Mackay 2001; Caylor et al. 2004, 2005), and continental scales (Arris and Eagleson 1994), 
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minimization of global water stress through tree/grass coexistence (Rodriguez-Iturbe et al. 1999a, 

1999b), emergent optimal water use properties across different biomes (Huxman et al. 2004; Emanuel 

et al. 2007), and the evaluation of carbon and water fluxes with a short-term physiological optimality 

hypothesis (Hari et al. 1999, 2000; Schymanski et al. 2008; van der Tol et al. 2008a, 2008b). In most 

cases, the adjustment of the canopy to maximize productivity relative to water availability and flux has 

been evaluated with respect to one dimensional (vertical) water and nutrient exchange at the 

ecosystem patch scale, without incorporating lateral moisture redistribution at the landscape scale.  

Ecohydrological feedbacks between vegetation patterns and lateral water redistribution have been 

reviewed in various studies, including interactions between surface runoff generation and patterned 

vegetation (e.g. ‘Tiger bush’) in semiarid ecosystems (e.g. Bromley et al. 1997; Howes and Abrahams 

2003; Ludwig et al. 2005; Saco et al. 2007), and feedbacks between groundwater hydrology and 

vegetation especially in riparian ecosystems (e.g. Camporeale and Ridolfi 2006). Spatial patterns of 

vegetation are often integrated into hillslope-scale hydrological models to explain the active role of 

vegetation on local water balance and lateral hydrological processes (e.g. Famiglietti and Wood 1994; 

Wigmosta et al. 1994; Chen et al. 2005). Mackay (2001) previously evaluated the adjustment of 

canopy density (leaf area index) to soil moisture and soil nutrients at the hillslope and catchment level, 

with respect to lateral soil moisture transport. 

Determining vertical root profiles and the extent of deep roots has also been a main component of 

optimality models, as root zone moisture dynamics affect stomatal control on leaf carbon and water 

exchange, and nitrogen cycling and assimilation (Band et al. 2001; Mackay and Band 1997; Mackay 

2001; Rodriguez-Iturbe et al. 1999a; Porporato et al. 2003). Recent studies of optimal rooting 

strategies have focused on maximum plant water uptake and transpiration in water-limited ecosystems 

with analytical solutions (Laio et al. 2006) and numerical approaches (Collins and Bras 2007). Cost 

and benefit analysis of deep roots for carbon uptake was also integrated to find the optimal rooting 

depth strategy at local (Guswa 2008) and global scales (Kleidon and Heimann 1998). In addition, 
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Schymanski et al. (2008) introduced a model of root water uptake dynamically optimizing root surface 

area to meet the canopy water demand while minimizing carbon costs related to the root maintenance. 

However, the above models do not simulate shifts of allocation strategies and nutrient availability with 

changing rooting depth or profiles. Increased allocation to deep roots can lead to decreased allocation 

to foliar biomass and shallow roots, resulting in less light and nutrient availability. 

We explore general principles that would explain the tendency to evolve optimal ecosystem 

patterns at the hillslope scale, where ecosystem patches exist as part of a drainage chain, or catena, that 

share some degree of dependency on productivity and resource use with other patches along flowpaths. 

Optimization has been used to represent a number of different concepts in hydrology and ecology, 

ranging from maximization of ecosystem functions, to parameter calibrations maximizing model fit to 

measured runoff. We define optimality here as the maximization of ecosystem functions at the 

hillslope or catchment scale, such as net primary productivity, evapotranspiration or water use 

efficiency. We investigate whether these self organizing canopy patterns have the emergent property 

of maximizing long term (annual to multi-annual) ecosystem net primary productivity, 

evapotranspiration or water use efficiency at the catchment scale, over and above the optimization at 

individual patches. 

The modeling approach we take is fully transient including short term hydrologic dynamics, long 

term canopy growth, and soil biogeochemical evolution, and does not incorporate short or long term 

optimality in the process dynamics. Instead, we use our model to investigate whether hydrological and 

physiological feedbacks result in the emergent property of catchment scale optimality. The basic 

concept of this study is that lateral water flux produces important gradients in limiting water and 

nutrient availability, such as upslope patches condition resource availability downslope. Therefore, in 

the absence of significant human manipulation, current vegetation density gradients within a hillslope 

and a catchment can be the result of self-organization between adjacent patches in a catenary sequence 

of flowpaths. Mackay and Band (1997), and Mackay (2001) used an earlier version of our modeling 
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approach to demonstrate the adjustment of canopy leaf area gradients along hydrologic flowpaths with 

soil water and nutrient conditions in catchments in central Ontario and California. 

In this study, the model is parameterized with detailed measurements in the Coweeta Long Term 

Ecological Research (LTER) site. The spatial gradient of vegetation density within a small catchment, 

estimated with fine-resolution satellite imagery and field measurements, is evaluated with simulated 

vegetation growth patterns from different rooting and allocation strategies. The modeling study will 

simulate net primary productivity (NPP) and evapotranspiration (ET) for the different range of 

vegetation patterns. The goal of this modeling study is to determine if the observed patterns of 

vegetation density within a small catchment are from long-term ecohydrologic pattern optimization for 

carbon uptake (e.g. full system productivity or water use efficiency maximization) at the hillslope 

scale. 

 

2.3 Model overview 

This study is based on the use of a process-based ecohydrological model (RHESSys; Regional 

Hydro-Ecological Simulation System) (Band et al. 1993, 2001; Tague and Band 2004; Mackay and 

Band 1997) and detailed measurements in the Coweeta LTER site.  

 

2.3.1 A Farquhar photosynthesis model 

The concept of ecosystem optimality emerged from eco-physiologists (Cowan and Farquhar 1977; 

Cowan 1982), who developed theories based on principles stating that a maximum amount of carbon 

is assimilated for a given amount of water loss. Their theory related the stomatal conductance with 

photosynthesis using a constant water use efficiency concept for short and long-term regulations 

(referred to as ‘marginal cost’). The Farquhar photosynthesis model (Farquhar et al. 1980) 

hypothesizes that plants optimize stomatal conductivity dynamically for maximizing carbon uptake 
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with respect to water loss (Cowan and Farquhar 1977; Farquhar et al. 2001). Farquhar’s equations for 

C3 plants are controlled by two rate-determining steps in the photosynthetic reaction: a carboxylation 

rate (Av) and an electron transport rate (Aj), the minimum of which is the net rate of leaf photosynthesis 

(A) (Farquhar et al. 1980; de Pury and Farquhar 1997).  

djv RAAA −= },min{   (2.1) 

where Rd is daily leaf respiration. In the model, Rd is calculated using reference values at 20 ºC and an 

empirical relationship between leaf nitrogen content and respiration rate (Ryan 1991). Carboxylation 

limited photosynthesis (Av) is mediated by Rubisco enzyme, and is referred to as Rubisco-limited 

photosynthesis (Farquhar et al. 1980; de Pury and Farquhar 1997; Farquhar and von Caemmerer 1982).  
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where Kc and Ko are the Michaelis-Menten constant of Rubisco for CO2 and O2, and Ci and Oi are 

partial pressure of within leaf CO2 and O2, and Γ* is the CO2-compensation point. Both K and Γ* are 

temperature-dependent usually expressed with reference values at 25 ºC and their increase ratios with 

10 ºC increase (Q10 values) (Collatz et al. 1991). Vmax represents the maximum rate of carboxylation, 

assumed to be a linear relationship with leaf nitrogen content per unit leaf area and Rubisco activity, 

which includes a temperature-dependent function (de Pury and Farquhar 1997; Chen et al. 1999a; 

Wilson et al. 2000).  

Electron transport limited photosynthesis (Aj) is catalyzed by Ribulose-bisphosphate carboxylase-

oxygenase (RuBP) enzyme, often called RuBP-limited photosynthesis (Farquhar et al. 1980; de Pury 

and Farquhar 1997; Farquhar and von Caemmerer 1982). 
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where J is the electron transport rate, calculated from a quadratic equation as a function of effective 

irradiance (Ie) and the maximum electron transport rate (Jmax). A fixed ratio (2.1; Wullschleger 1993) 

is usually assumed between Jmax and Vmax even though this ratio can vary with temperature sensitivities 

of both components. 

 

2.3.2 Coupled photosynthesis – stomatal conductance models 

Many stomatal conductance (gs) models (e.g. Chen et al. 1999a; Baldocchi et al. 1991; McMurtrie 

et al. 1992; Sellers et al. 1992; Leuning 1995; Oren and Pataki 2001; Kim et al. 2008) use an 

empirical equation from (Jarvis 1976), which assumes that environmental factors act independently to 

control stomatal conductance. 

)()()()( 2max. COfAPARffVPDfgg ss ψ=   (2.4) 

where gs.max is the maximum stomatal conductance for water, f(·) are linear or non-linear scalar 

functions that evaluate between 0 and 1 for VPD (vapor pressure deficit), ψ (soil water potential), 

APAR (absorbed photosynthetically active radiation per unit leaf area), and CO2 (atmospheric 

concentration of carbon dioxide).  

Stomatal conductance is the key link between carbon uptake and water leakage because gas 

exchange through stomata is usually assumed to be dominated by a diffusion process following 

concentration gradients under a steady-state assumption (Cowan and Farquhar 1977). Stomatal 

conductivity for CO2 (gc) can be calculated by dividing the above gs with a constant factor (set to 1.6; 

Cowan and Farquhar 1977) which accounts for the ratio of atmospheric diffusivities between water 
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vapor and CO2 (Leuning 1995). The rate of CO2 transport across stomata (A) can be expressed as a 

function of stomatal conductivity for carbon (gc) and a concentration gradient term (Ca - Ci) (Cowan 

and Farquhar 1977). 

)( iac CCgA −=   (2.5) 

Av from Eq. 2.2 and Aj from Eq. 2.3 can be solved using the quadratic equation, by substituting Ci 

from the above equation (Farquhar and von Caemmerer 1982; Chen et al. 1999a). Note that stomatal 

conductance and photosynthesis are all unit leaf area basis, not unit ground area basis, which would be 

scaled up with dynamic separation between sunlit and shaded leaves. 

 

2.3.3 Scaling up fluxes from leaves to canopy 

Many coupled modeling efforts show that dynamic separation between sunlit and shaded leaves is 

the most efficient way to represent different rate determining factors for photosynthesis with canopy 

depth profile without multi-layer simulations (de Pury and Farquhar 1997; Chen et al. 1999a; Wang 

and Leuning 1998). Following Chen et al. (1999a), total sunlit leaf area index (LAI) (LAIsunlit) is 

defined as 

))cos/5.0exp(1(cos2 θθ LAILAI sunlit Ω−−=   (2.6) 

where θ is sun zenith angle, and Ω is the foliage clumping index. Shaded LAI (LAIshade) is LAIshade = 

LAI - LAIsunlit. Dynamic weighting is applied to calculate canopy-scale stomatal conductance (gs), and 

photosynthesis (A) per unit ground area.  

shadeshadessunlitsunlitss LAIgLAIgg .. +=   (2.7) 
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shadeshadesunlitsunlit LAIALAIAA +=   (2.8) 

This dynamic separation between sunlit and shaded leaves is justified in that the upper canopy is 

usually light-saturated whereas the lower canopy responds linearly to irradiance, which should result 

in a vertical distribution of leaf nitrogen and specific leaf area for their optimal exploitation (Field 

1983; de Pury and Farquhar 1997). 

  

2.3.4 Nitrogen limitation 

Most temperate forests are limited by nutrients, in particular nitrogen (Vitousek and Howarth 1991; 

Schimel et al. 1997; Nadelhoffer et al. 1999; Oren et al. 2001). Most ecohydrological catchment 

models usually incorporate only soil moisture patterns into vegetation dynamics, derived by 

topographic position, local soil texture, and available rooting depth information without nutrient 

limitation (Wigmosta et al. 1994; Rodriguez-Iturbe et al. 1999a; Porporato et al. 2002; Ivanov et al. 

2008; van der Tol et al. 2008b) and are often applied in strictly water-limited ecosystems.  

The spatial distribution of plant-available nitrogen is also closely related to local soil moisture 

dynamics, which itself is a composite result of micro-climate condition, local soil texture, and local 

vegetation; both directly (e.g. mineralization, nitrification, denitrification, and leaching) and indirectly 

through plants (e.g. translocation, residues decomposition, and nitrogen fixation) (Band et al. 2001; 

Creed and Band 1998a, 1998b; Mackay and Band 1997; Mackay 2001; Porporato et al. 2003). Figure 

2.1 shows the adjustment of nitrogen transformation rates as a function of soil moisture content 

following Parton et al. (1996), which determines a direct topographic effect on spatial patterns of 

plant-available nitrogen. Note that available nitrogen content would be most available around 60% of 

volumetric soil water saturation for sandy loam soil by increasing anaerobic condition of soil at high 

soil moisture content, where denitrification process is more active. 
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The nitrogen cycle in the model is largely based on the BIOME-BGC model (Running and 

Coughlan 1988; Running and Hunt 1993; Kimball et al. 1997; Thornton et al. 2002) for vegetation and 

the CENTURYNGAS model (Parton et al. 1996) for soil. The model assumes stoichiometrically 

constant ratios between carbon and nitrogen (C/N ratio) for all vegetation compartments (leaf, litter, 

fine root, live wood, and dead wood) and soil pools (Tague and Band 2004). At a daily time step, all 

soil/litter pools calculate the potential immobilization and decomposition rates based on soil water and 

temperature. If nitrogen availability cannot satisfy the sum of potential microbial uptake 

(immobilization) and plant growth demands (plant uptake), these two demands compete for available 

soil mineral nitrogen. Plants can also use an internally-recycled nitrogen pool translocated from 

turnover of leaves and live vegetation parts (stem, coarse root) for remaining demands for nitrogen. 

Available nitrogen also includes atmospheric deposition, fertilization, or symbiotic/asymbiotic fixation. 

Detailed explanations are available in the works of Thornton (1998), and Tague and Band (2004). 

 

2.3.5 Allocation 

The amount of fixed carbon available to the leaf depends on subsequent metabolic events after 

photosynthesis, called allocation, which includes the storage, utilization and transport of fixed carbon 

in the plant (Taiz and Zeiger 2002). Interannual effects of climate factors on vegetation are largely 

from translocation of these stored carbohydrates to leaves in the early growing season. In the model, 

these allocation dynamics depend on mixed daily and yearly allocation strategies related to temporal 

phenological changes (Figure 2.2) (Running and Hunt 1993; Thornton 1998; Thornton et al. 2002). 

Daily gross photosynthesis is allocated to both vegetation and storage (available for budburst in the 

following growing season) at a constant ratio after considering autotrophic respiration (maintenance 

and growth respirations). Transfer from storage to vegetation compartments occurs during the 

prescribed growing season. Leaf and fine root turnovers occurs only during the prescribed leaf-fall 

season, whereas those for live stem and coarse root occur at a constant rate throughout the year. 
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Biogeochemical models usually do not simulate actual tree stands which incorporate tree seedling, 

recruitments, and mortality (Friend et al. 1997). Only total plant mortality is simulated which describe 

the portion of the plant pools either replaced each year or removed through fire or plant death.  

Note that LAI is not prescribed into the model, but the model is self-regulating with respect to LAI 

based on photosynthate production, respiration, and allocation processes. Optimality models that 

prescribe aboveground vegetation density and belowground biomass (or rooting depth) usually neglect 

the feedbacks and constraints of previous, transient carbon, water and nutrient balance. Allocation 

processes compromise between light, water, and nutrients proportioning fixed carbon into different 

vegetation compartments based on limiting resources (Tilman 1988; Gedroc et al. 1996; 

McConnaughay and Coleman 1999). 
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Figure 2.1: Water scalar functions of nitrogen transformation rates as a function of 
soil moisture saturation for sandy loam soils; after Parton et al. (1996). 

 

 

Figure 2.2: A compartment flow diagram of carbon allocation, transfer, and turnover 
with mixed daily and yearly allocation strategies following the current BIOME-BGC 
algorithm (Thornton et al. 2002; Thornton 1998). 
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2.4 Materials and methods 

2.4.1 Site description 

The Coweeta Hydrologic Lab is located in western North Carolina and is representative of the 

Southern Appalachian forest. The Southern Appalachian forest has very diverse flora as a result of 

combined effect of terrain, microclimate and soil moisture (Whittaker 1956; Day and Monk 1974). 

Mean monthly temperature varies from 3.6 ºC in January to 20.2 ºC in July. The climate in the 

Coweeta Basin is classified as marine, humid temperate, and precipitation is relatively even in all 

seasons; annual precipitation ranges from 1870 mm to 2500 mm with about a 5% increase with 100 m 

(Swift et al. 1988). The dominant canopy species are oaks and mixed hardwoods including Quercus 

spp. (oaks), Carya spp. (hickory), Nyssa sylvatica (black gum), Liriodendron tulipifera (yellow 

poplar), and Tsuga canadensis (eastern hemlock), while major evergreen undergrowth species are 

Rhododendron maximum (rhododendron) and Kalmia latifolia (mountain laurel) (Day and Monk 

1974; Day et al. 1988). The main study site is Watershed 18 (WS18), a northwest-facing, steeply 

sloping (average 52% slope), 13-ha catchment with an elevation range from 726 to 993 m (Figure 

2.3c). This study site is a control watershed with mixed hardwoods stands undisturbed since 1927. Soil 

moisture is a primary control on vegetation patterns within WS18, despite the high annual rainfall 

(Day and Monk 1974; Day et al. 1988). 
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Figure 2.3: Study site (WS18); (a) NDVI (normalized difference vegetation index) 
from a June 1, 2003 IKONOS image, (b) wetness index, and (c) locations for WS18 
(square), LAI (leaf area index) measurements, and soil pits within the Coweeta LTER 
site. Litter LAI points are from Bolstad et al. (2001). Red and yellow lines represent 
the boundaries of watersheds, and dashed lines indicate roads along which artificial 
gaps are shown. (a) and (b) are perspective views from the WS18 outlet. The 
rectangles within WS18 are three gradient plots (118, 218, and 318). A paired 
experimental watershed (WS17) is also shown next to the target watershed where 
white pines (Pinus strobus L.) are planted in 1956 after 15-year clear cut periods. 
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2.4.2 Climate data and historical field measurements 

Daily climate (maximum and minimum daily temperature, daily precipitation; CS01/RG06 climate 

station) and streamflow data (WS18; Coweeta LTER research data ID 3033) are available from 1937, 

one of the longest hydrological records for forested headwater catchments in the world. For the model 

simulation, we used universal kriging with elevational trends from 7 points measurements within the 

Coweeta basin from 1991 to 1995 to develop long-term rainfall isohyets to scale daily precipitation 

over the terrain. 

Three LTER research plots have been established along a topographic gradient at high, mid and 

low catchment positions (118 - xeric, 218 - mesic, and 318 – intermediate) to study ecohydrologic 

trends within the study watershed (Figure 2.3b), where detailed vegetation, soil and various 

microclimate data are available. Detailed explanations of these gradient plots are available at the 

Coweeta LTER homepage (http://coweeta.ecology.uga.edu/gradient_physical.html). We use daily 

volumetric water content data (Coweeta LTER research data ID 1013) collected with 30-cm CS615 

sensors (Water Content Reflectometer, Campbell Scientific Inc., Logan, UT, USA) every 15 minutes 

from March 1999. At each gradient plot, these TDR sensors are installed at different depths (0 ~ 30 

and 30 ~ 60 cm) and at two locations (upper slope and lower slope) within 20 × 40 m original 

rectangular plots.  

Aboveground net primary productivity (ANPP) was estimated from tree ring increments and 

litterfall measurements in the early 1970’s for the full watershed (Day and Monk 1974, 1977; Day et 

al. 1988). Biomass increases were estimated from tree ring increments with locally-derived biometric 

equations for each species (Day and Monk 1974, and references therein). Recently, Bolstad et al. 

(2001) also estimated ANPP at four circular 0.1 ha plots within the watershed (site number 3, 4, 13, 

14) from 2-year litterfall (1995 ~ 1996) and 10-year tree ring measurements (1986 ~ 1995).  
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2.4.3 Hydrologic gradients of vegetation density 

Leaf area index (LAI), an important carbon state variable in process-based biogeochemical models, 

is also a valuable driver in the scaling effort as it is well correlated with normalized difference 

vegetation index (NDVI) derived from remote sensing images (Nemani et al. 1993; Gholz et al. 1991; 

Chen and Cihlar 1996; Fassnacht et al. 1997). The NDVI is a normalized ratio between red and near 

infrared bands. 

)/()( REDNIRREDNIRNDVI ρρρρ +−=   (2.9) 

LAI values were measured at 39 points around the WS18 in early June 2007 using two different 

methods (Figure 2.3c), with GPS coordinates measured during the previous leaf-off season 

(GeoExplorer; Field Data Solutions Inc., Jerome, ID, USA). LAI was measured with an LAI-2000 

Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) using two instruments simultaneously for 

above and below canopy during overcast sky condition or at dawn or at dusk. Hemispheric images 

were also taken at the same sites, and analyzed with the Gap Light Analyzer software (Institute of 

Ecosystem Studies, Millbrook, New York, USA). We also used LAI data estimated from litter biomass 

and specific leaf area around the Coweeta LTER site (Figure 2.3c), four of which are located within 

WS18 (Bolstad et al. 2001). These litter-trap measurements are quite valuable in that optical 

measurements usually do not show much sensitivity in ranges of high leaf area index (Nemani et al. 

1993; Fassnacht et al. 1997; Pierce and Running 1988; Gower and Norman 1991). 

Spatial patterns of LAI within the watershed were determined from the site-specific correlation 

between point-measured LAI and NDVI values from a summer IKONOS Image (June 1, 2003; Figure 

2.3a) with varying average window size of NDVI pixels and masking from outmost rings in a 

sequence for optical LAI calculation. Optical measurements of vegetation using LAI-2000 in complex 

terrain can be biased by topographic interference especially in the outer rings. We found the best 
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match between LAI calculations of 0º ~ 23º zenith ranges (1 and 2 rings) and NDVI values by a 3 × 3 

averaging window (Figure 2.3a). Considering average canopy height (~ 16 m) within the watershed 

and 4-meter IKONOS pixel size, this match is quite reasonable in terms of their size correspondences.  

Most LAI measurements are located along the regression line except for some outliers (Figure 2.4a), 

from which we estimated spatial patterns of vegetation density within the target watershed. These 

outliers are mostly from the sites where thick rhododendron (R. maximum) develops in understory 

canopy. Dense understory canopy can easily decouple upward ground optical measurements and 

downward remote sensing images, and also affects NDVI values which are very sensitive to canopy 

background variations (Huete 1988; Huete et al. 1994).  

Hydrologic gradients of vegetation density were calculated by grouping 10 × 10 m patches at equal 

wetness index intervals (0.5) to suppress noises, where only groups over ten pixels were counted 

(Figure 2.4b). Wetness index (or topographic index; Beven and Kirkby 1979) was calculated from 6.1-

m (20 ft.) LIDAR elevation data (Figure 2.3c) representing hydrological gradients in the TOPMODEL 

algorithm. Upslope contributing area for wetness index was calculated from D-infinity (D∞) method 

allowing flow to be proportioned between multiple downslope pixels according to gradient (Tarboton 

1997). A 30-m buffer area along the road is masked in this analysis to exclude artificial vegetation 

gaps (Figure 2.3a). 
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Figure 2.4: (a) A scatter plot between LAI (leaf area index) measurements and NDVI (normalized difference 
vegetation index), and (b) hydrologic gradients of estimated LAI within the study watershed. Litter LAI measurements 
are from Bolstad et al. (2001). Circles represent average values, and box plots have lines at the lower quartile, 
median, and upper quartile values from each binned group. Counts are the number of 10 × 10 m patches in each 
group, which are basic units of model simulation.
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2.4.4 Rooting depth and root distributions from soil pits 

Hales et al. (2009) estimated spatial distributions of root depth, with 15 manually excavated soil 

pits around WS36 (Figure 2.3c), undisturbed since 1919. WS36 has steeper topography (average 65 % 

slope) with steeper gradients of vegetation density (not shown here) than the study watershed (WS18). 

We did not excavate in WS18 as it is now preserved and adjacent catchments are recently disturbed 

(e.g. selective logging). Nine pits were located close to the watershed outlet, while another four pits 

were excavated higher in the watershed (Figure 2.3c). Soils are all sandy-silt loam inceptisols with a 

typical colluvial appearance.  

Pits were dug with horizontal dimensions of approximately 100 cm by 150 cm, with depth varying 

between 120 cm and 180 cm due to difficulties excavating pits below the saprolite layer. Each pit was 

located downslope (within 0.8 m) from an individual specimen of one of the major hardwood species 

within the Coweeta LTER site (Table 2.2). Pit locations were carefully chosen in the field based on 

topographic positions, classified based on their curvature as ridge, sideslope, and hollow (Table 2.1). 

From GPS coordinates and the LIDAR data, the average wetness index of ridge pits was computed to 

be 3.79, while that of hollow pits was 5.65. Note that on-site curvature is a more robust method to 

determine topographic positions for each tree, because even detailed elevation information (e.g. 

LIDAR) cannot decide a hillslope position of each tree for geolocation or scale problems. 

Summaries of soil pit measurements are available in Table 2.1. Detailed methods of pit 

construction, root frequency, and diameter measurements are described in Hales et al. (2009). Note 

that the limited number of measurements was due to careful hand-digging to sample fine root 

structures. The vertical distribution of roots was quantified by counting roots, where the cumulative 

frequency function of roots was drawn to determine rooting depth and vertical root distribution. 



 
 

31 
 

 

 

Table 2.1: Detailed measurements for soil pits at different topographic positions 

Topographic 

positions 
Species DBH (cm) 

Wetness 

index 

Rooting depth 

(RD95) (m)a 

ridge 

Acer rubrum 5.1 4.12 1.00 

Acer saccharum 20.9 3.10 1.01 

Carya spp. 38.8 3.97 0.90 

Liriodendron tulipifera 20.1 4.08 0.60 

Quercus prinus 58.7 2.59 0.93 

Quercus rubra 33.2 4.12 1.02 

Rhododendron maximumb 9.2 4.61 0.98 

Tsuga canadensisb 33.9 3.70 0.57 

Average 27.5 3.79 0.88 

sideslope Liriodendron tulipifera 17.5 3.89 0.74 

hollow 

Betula lenta 28.5 4.20 0.91 

Liriodendron tulipifera 22.5 5.38 0.94 

Quercus rubra 84.0 4.60 1.21 

Quercus rubra 37.7 7.89 0.71 

Quercus velutina 33.7 5.88 0.75 

Rhododendron maximumb 4.3 5.93 0.92 

Average 35.1 5.65 0.91 

aDefined from 95% cumulative distribution of root counts; bNote that these species 
are not deciduous broadleaf.
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Table 2.2: Species-specific eco-physiologic model parametersa 

Vegetation species 

Percent 
basal 
areab 

Specific 
leaf area 

(SLA) 

Shaded 
to sunlit 

SLA ratio 

Leaf CN 
ratio 

Maximum 
leaf 

conductance 

Photosynthe-
tic parameter 

Q10 for 
autotrophic 
respiration 

Maximum rate of 
carboxylation 

(%) (m2 kg C-1) (unitless) (unitless) (m s-1) (unitless) (unitless) (µmol CO2 m
-2 s-1) 

Quercus prinus 21.3 17.8 (22) 2.21 (24) 25.9 (85)  0.0234 (94) 2.33 (31) 14.54 (94) 

Acer rubrum 9.3 25.8 (18) 1.78 (22) 18.5 (103) 0.0058 (NA) 0.0167 (221) 2.43 (40) 7.24 (221) 

Quercus coccinea 7.9 19.0 (13) 1.39 (18) 18.8 (80) 0.0083 (NA) 0.0133 (84) 2.37 (25) 27.53 (84) 

Quercus rubra 6.8 20.8 (15) 1.74 (24) 26.4 (88)  0.0213 (27) 2.42 (27) 12.77 (27) 

Liriodendron tulipifera 6.4 26.8 (18) 1.60 (18) 24.2 (85) 0.0110 (NA) 0.0248 (91) 2.24 (29) 10.18 (91) 

Carya glabra 5.1 23.8 (20) 1.69 (24) 21.3 (90)  0.0217 (99) 2.46 (36) 9.42 (99) 

Kalmia latifolia 5.1 18.9 (NA)  11.5 (NA) 0.0042 (NA)    

Oxydendrum arboreum 4.4 52.4 (10) 1.03 (8) 20.0 (64)   3.02 (14)  

Nyssa sylvatica 3.7     0.0285 (32)  5.62 (32) 

Cornus florida 3.2 29.6 (8) 1.78 (9) 21.2 (65)  0.0662 (20) 2.60 (11) 3.40 (20) 

Betula lenta 2.7 34.0 (21) 1.68 (21) 25.4 (79)  0.0115 (290) 2.71 (27) 16.95 (290) 

Rhododendron maximum 7.4 48.9 (NA)  10.2 (14) 0.0033 (NA)  2.54 (7)  

Weighted average  23.8 1.66 22.1 0.0065 0.0229 2.43 11.37 

References 1 2,3,4,5 3 2,3,4,6 4 8 6,9 8 

aDetailed explanations of parameters are available in White et al. (2000); bAll species under 2% (29 species) are not 
considered. Numbers in parenthesis are sample sizes. NA represents non-available. References are as follows: (1) 
Day et al. (1988), (2) Martin et al. (1998), (3) Mitchell et al. (1999), (4) Reich et al. (1999), (5) Bolstad et al. (2001), 
(6) Vose and Bolstad (1999), (7) Vose and Bolstad (2006), (8) Sullivan et al. (1996), (9) Bolstad et al. (1999).
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2.4.5 Model parameterization 

The model is simulated at 10 × 10 m grid cell resolution (patch; n = 1253), which we treat as 

control volumes for biogeochemical and hydrological processes. Many species-specific physiological 

parameters (Table 2.2) and other (e.g. soil, nutrient) parameters (Table 2.3) were measured intensively 

within WS18 and Coweeta LTER site. We calculated representative physiological parameters at the 

whole catchment scale with these species-specific parameters weighted by vegetation composition 

within the study watershed (Table 2.2). We did not simulate the model at the species level, because a 

detailed vegetation species map is not available and some physiological parameters (e.g. allocation, 

phenological parameters) are not measured at the species level. Phenological parameters (Table 2.3) 

are estimated from 8-day composite MODIS (MODerate Resolution Imaging Spectroradiometer) 

satellite images for five years (2001 ~ 2005), aggregated to the 5 × 5 km grid scale large enough to 

include the whole Coweeta basin (21.8 km2) and minimize geolocation problems. 

Lateral hydrologic connectivity within the study watershed is defined by calibrating the model with 

streamflow data varying the TOPMODEL parameters, m (the decay rate of hydraulic conductivity 

with depth), and the lateral/vertical Ksat0 (saturated hydraulic conductivity at surface). Monte-Carlo 

simulation was implemented three thousand times with randomly sampled parameter values within 

certain acceptable ranges. A three-year calibration period (October 1999 ~ September 2002) was 

chosen to include extreme drought precipitation patterns (Figure 2.5) for better representations of soil 

moisture status during drought periods. To allow soil moisture to stabilize, a one and a half year 

initialization was employed before the calibration period. The Nash-Sutcliffe (N-S) coefficient (Nash 

and Sutcliffe 1970) for lognormal streamflow discharge was used to evaluate model performance 

because this objective function is biased toward base flow, closely related to soil moisture status in 

this study area (Hewlett 1961). A maximum efficiency value of the calibration period was 0.802, 

whereas that of a 16-year validation period was 0.873 (Figure 2.5).  
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Table 2.3: Other model parameters  

Parametersa Value Unit References 

Eco-physiological Parameters    

  CN ratio of leaf litter 
            fine root 
            live wood 

34.8 
51.1 
75.6 

Unitless 1, 2 

  Q10 value for heterotrophic respiration 3.56 Unitless 3 

  Allocation parameters 
     Fine root to leaf carbon 
     Stem to leaf carbon 
     Live wood to total wood carbon 
     Coarse root to stem carbon 

 
1.21 
1.0 
0.16 
0.22 

Unitless 4, 5, 6, 7 

  Light extinction coefficient (k) 0.54 Unitless 8 

  Phenological parameters 
     Start day of leaf on 
     Start day of leaf off 
     Length of growth period 
     Length of senescence period 

 
105 
260 
35 
50 

 
DOY 
DOY 
days 
days 

5, 6 

  Whole plant mortality 0.5 Percent 8,10, 11 

Soil texture parameters    

  sand 
  clay 
  silt 

55.2 
16.9 
27.9 

percent 12, 13, 14 

Nitrogen input parameters    

  Wet nitrogen deposition rate 
  Biological nitrogen fixation rate 

0.0010 
0.0011 

kg N m-2 y-1 
15 
16 

aDetailed explanations of parameters are available in White et al. (2000). References 
are as follows: (1) Martin et al. (1998), (2) Vose and Bolstad (2006), (3) Bolstad and 
Vose (2005), (4) McGinty (1976), (5) Day and Monk (1977), (6) 5-year MODIS data 
(2001 ~ 2005), (7) Monk and Day (1988), (8) White et al. (2000), (9) Sullivan et al. 
(1996), (10) Elliott and Swank (1994), (11) Clinton et al. (2003), (12) Zak et al. (1994), 
(13) Yeakley et al. (1998), (14) Unpublished data from Todd Lookingbill, (15) Knoepp 
et al. (2008), (16) Todd et al. (1975). 
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Figure 2.5: Long-term observed and simulated daily streamflow at the study watershed (1990 ~ 2006), including the 
3-year calibration period (October 1999 ~ September 2002).
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We show fairly good agreement between measured and simulated soil moisture content (1999 ~ 

2006) at upper 60-cm soil depth from three gradient plots that range from xeric to wet soil conditions 

(Figure 2.6). Therefore, reasonable spatio-temporal patterns of root zone moisture dynamics further 

constrains model parameterization in addition to streamflow data within the watershed.  

Figure 2.7 shows key long term nitrogen transformation rates along the hillslope gradient, 

simulated based on the current vegetation gradients and the defined lateral hydrologic connectivity. In 

this area, nitrogen is cycled tightly with increasing mineralization and uptake rates downslope. A small 

proportion of available nitrogen is nitrified, with significant denitrification restricted to the wettest 

parts of the catchment. The difference in mineralization and plant N uptake is largely explained by 

atmospheric deposition (< 1.0 g N m-2 y-1; Knoepp et al. 2008), and fixation (1.1 g N m-2 y-1; Todd et 

al. 1975). We point out that these gradients largely from in situ N cycling as we did not include lateral 

transport of mobile nitrogen (nitrate), or mass transport of organic litter downslope in the model 

version we used. 

 

2.4.6 Prescribed rooting depth as a function of hillslope position 

Lateral water flux through shallow soil columns is dominant in these mountainous forest 

catchments (Hewlett and Hibbert 1963), which results in uneven distribution of plant available water 

along hydrologic flowpaths (Yeakley et al. 1998). The spatial pattern of vegetation density within a 

watershed is a good estimator for spatial patterns of root zone moisture dynamics and lateral 

connectivity within watersheds. However, temporal dynamics of plant available water are dependent 

not only on hillslope position, but also on local properties like soil texture (Porporato et al. 2001; 

Brady and Weil 2002) and rooting depth (Oren and Pataki 2001; Schenk and Jackson 2002).  
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Figure 2.6: Time series and scatter plots of observed and simulated soil water 
content at (a) 118 (xeric), (b) 218 (mesic), and (c) 318 (intermediate) gradient plots 
within the target watershed (Figure 2.3b). 
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Figure 2.7: Simulated long term (1941 ~ 2005) nitrogen transformation rates (plant 
uptake, mineralization, nitrification, and denitrification) in litter and soil as a function of 
wetness index. Note that these modeled gradients largely result from in situ N cycling 
as lateral transport of mobile nitrogen (nitrate), or organic litter downslope is not 
included in the simulation version. Each point represents a 10 × 10 m cell (n = 1253), 
a basic unit of model simulation. 
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We use maximum rooting depth in this study, rather than the usual definition of rooting depth (the 

depth of 95% cumulative distribution of root biomass; Arora and Boer 2003). Maximum rooting depth 

represents temporal dynamics of plant available water better as the deepest 5% of roots may play an 

important role for vegetation transpiration especially during a dry season (Nepstad et al. 1994; 

Canadell et al. 1996; Jackson et al. 1999).  

Soil and vegetation may also vary systematically as a function of topographic position. Colluvial 

soils are thicker and slightly finer in wet and convergent topography with mesic species, but thinner 

and coarser in dry and divergent topography with xeric species in this area (Day et al. 1988; Yeakley 

et al. 1998; Hales et al. 2009). To reflect these local properties, a local rooting depth (RD) is expressed 

as a linear function of local wetness index (WI) with two rooting depth parameters, average rooting 

depth (RDavg) and spatial pattern of rooting depth (RDdev).  

 )( avgdevavg WIWIRDRDRD −×+=   (2.10)  

where WIavg represents the average wetness index within the hillslope. The spatial pattern of rooting 

depth (RDdev) parameter is the change in rooting depth with unit increase of wetness index, hence a 

positive value means increasing rooting depth in a downslope direction. 

Soil texture variation within the watershed is small, and we do not incorporate specific patterns in 

model parameterization. The model is then further calibrated by Monte-Carlo sampling of RDavg and 

RDdev using degree-of-fit between simulated and estimated hydrologic gradients of vegetation density 

(Figure 2.4b). Different combinations of RDavg and RDdev result in variations in spatial patterns of LAI 

due to variations in water and nutrient availability, resulting photosynthesis, and allocation dynamics. 

The minimum rooting depth was set as 0.2 m to avoid numerical problems in the vertical hydrological 

processes in the model. 
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2.4.7 Allocation dynamics with varying rooting depth 

We used a constant allocation strategy between vegetation compartments (e.g. leaf, stem, fine root, 

coarse root) in the model, from the current BIOME-BGC algorithm (Thornton 1998; Thornton et al. 

2002). Allocation parameters are estimated from detailed field measurements of aboveground woody 

biomass increase, annual foliage productions, and root biomass dynamics around the study site (Table 

2.3) (Day et al. 1988; Day and Monk 1977; McGinty 1976). Specifically, McGinty (1976) measured 

actual root growth dynamics by re-filling three excavated pits over a two year period, providing 

information to calculate rough estimates for allocation ratios between vegetation compartments. He 

also measured the vertical distribution of root biomass in the mixed hardwood forest from twenty pits 

around the study area (WS14, WS22, and WS27), from which we estimate maximum rooting depth.  

However, the allocation scheme can respond to local water availability, determined by a hillslope 

position and local properties. Many studies show that decreasing resource availability (water and 

nutrients) can favor partitioning more carbon belowground, in terms of climatic gradients (Schenk and 

Jackson 2002; Hui and Jackson 2006) and field experiments (Gedroc et al. 1996; McConnaughay and 

Coleman 1999; Cromer and Jarvis 1990; Ryan et al. 2004; Litton et al. 2007). For this reason, there is 

a long history of modeling efforts to integrate this dynamic allocation scheme based on light, water, 

and nutrient availability (see Mackay 2001; Wilson 1988; Running and Gower 1991; Friedlingstein et 

al. 1999). 

In this study, we incorporated two kinds of allocation strategies. First, we used constant allocation 

parameters measured on site (Table 2.3) regardless of spatial patterns of prescribed rooting depth. 

Second, we simply assume the linear relationship between local rooting depth and constant 

belowground allocation ratios, which means that more fixed carbon is allocated to belowground with 

increasing prescribed local rooting depth. This alternative allocation strategy is justified by the fact 

that deeper roots require more belowground biomass. Under this alternative allocation strategy, if 

aboveground biomass remains the same, total belowground biomass is simply proportional to the 
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rooting depth while it does not change under the constant allocation strategy. Following Arora and 

Boer (2003), this simple linear relationship between total belowground biomass and rooting depth 

assumes that roots grow mainly vertically downward while maintaining surface root density.  

 

2.5 Results 

2.5.1 Topographic controls on rooting depth 

Figure 2.8 shows the difference of rooting depths and root distributions between ridge and hollow 

locations. Our data suggests that there is no significant difference in rooting depth between them, 

whether they are defined as 95% cumulative distribution of root counts (RD95; Table 2.1) or maximum 

sampled roots depth (Figure 2.8). The average RD95 is 0.88 m in ridges (n = 8) and 0.91 m in hollows 

(n = 6). If we exclude coniferous (Tsuga Canadensis; hemlock) and evergreen (Rhododendron 

maximum; rhododendron) species and just compare deciduous forests, they are nearly equivalent 

(about 0.9 m). We note that maximum rooting depth is more error prone as roots are sampled in a two-

dimension face along a single pit which may miss individual deep roots such as tap roots. 

The average diameter at breast height (DBH) for deciduous broadleaf species is 41.3 cm in hollows 

(n = 6) and 29.5 cm in ridges (n = 5) (Table 2.1), although this difference is dominated by a single 

large DBH stem (Q. rubra). Bolstad et al. (2001) also found general increases of aboveground 

biomass and leaf area from ridge to hollow from sixteen circular 0.1 ha plots with mixed deciduous 

hardwood stands in the Coweeta basin. Martin et al. (1998) found that DBH values from ten deciduous 

broadleaf species in the Coweeta basin have a linear allometric relationship with leaf area, estimated 

from leaf mass and specific leaf area (SLA) (R2 = 0.822, n = 87). Therefore, although there is about 

40% increase of LAI from ridge to hollow in this sample, maximum rooting depths remain almost 

constant.  
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Figure 2.8: The distribution of roots as a function of soil depth for pits located on (a) 
ridges and (b) hollows. Distributions are expressed as root cumulative frequency and 
as absolute number. Grey lines represent individual pits, while black lines are the 
mean of all pits. Photographs are vertical sections of two Q. rubra pits (Table 2.1) 
dug within 20 m of each other. Note the difference in the depth of the dark A horizon 
between the two sites. Blue painted roots were used for analysis of root distributions. 
Modified from Figure 3 in Hales et al. (2009). 
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2.5.2 Parameter spaces 

Figure 2.9 indicates parameter spaces for RDavg and RDdev in regard to MAE (mean absolute error) 

values between simulated and estimated LAI from hydrologic gradients of vegetation (Figure 2.4b) for 

all patches (n = 1253). These parameter spaces are not much different if we use actual estimated LAI 

values from the IKONOS image directly, but much higher MAE values (> 2.0) are expected even 

around the best-fit parameter space. 

Best-fit parameter spaces are very similar for both allocation strategies, where RDavg is right above 

0.8 m and RDdev is around zero or very slightly positive values (Figure 2.9). Too shallow RDavg or high 

RDdev can result in steeper gradients of vegetation density along the hillslope than estimated ones, 

where local vegetation density is too dependent on hillslope positions. Instead, simulated spatial 

gradients of vegetation density can disappear at high RDavg or low RDdev ranges, where local vegetation 

density is a weaker function of hillslope positions. The patterns of MAE within parameter spaces are 

very different between two allocation strategies. As for constant allocation strategy, MAE increases 

very rapidly at shallow RDavg ranges (Figure 2.9a), while it increases rapidly in the deeper RDavg 

regions in alternative allocation strategy (Figure 2.9b). 

This range of estimated RDavg is quite comparable to the actual maximum rooting depth 

measurements in the hardwood forest at the same northwest-facing slopes around the study area 

(McGinty 1976). Roots measured at our pits are located in southeast-facing slopes, so slightly higher 

maximum rooting depth values are reported. Nevertheless, we found very similar spatial pattern of 

rooting depth from pits excavation data (Table 2.1; Figure 2.8), not so much different between 

topographic positions (ridges and hollows).  
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Figure 2.9: Mean absolute error (MAE) of simulated LAI within WS18 over multiple realizations of average rooting 
depth (RDavg) and spatial pattern of rooting depth (RDdev) under (a) the constant and (b) the alternative allocation 
strategies.
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2.5.3 Long-term ecohydrologic optimality at the hillslope scales 

Figure 2.10 and Figure 2.11 show the simulated long-term mean annual NPP (net primary 

productivity) and ET (evapotranspiration) at the study watershed during the 65-year simulation 

period (1941 ~ 2005) with different rooting and allocation strategies. Annual ET is calculated on a 

water year basis to compare with estimated ET from mass balance calculations (precipitation – 

runoff) at the catchment scale. Water use efficiency (WUE) values are calculated with total ET on 

an annual basis rather than transpiration to better represent the site-level WUE (Huxman et al. 

2004). Figure 2.12 shows how aboveground NPP (ANPP) changes with total NPP values under 

different allocation strategies, where ANPP to NPP ratios reflect model allocation ratios in the 

model. In the alternative allocation strategy, ANPP/NPP ratios start around one at a very shallow 

rooting depth and decline with increasing RDavg (Figure 2.12b), but are invariant in the constant 

allocation strategy (Figure 2.12a). Simulated ANPP is useful not only to compare with the 

estimated ANPP values at the study site, but also to represent allocation to aboveground vegetation 

density (foliar biomass) in the long-term simulations. LAI is not prescribed in the model, but a 

constant portion of cumulative ANPP is allocated into foliar biomass. 

For both allocation strategies, optimal carbon uptake occurs around the RDavg with the best fit to 

the spatial gradients of vegetation density (based on measured and simulated LAI) within the 

watershed (Figure 2.9). Optimal carbon uptake ranges are simulated with RDdev values slightly 

negative and very close to zero, similar to the RDdev estimates. Maximum WUE values are also 

established around these parameter ranges for both allocation strategies.  

The simulated ANPP ranges at optimal parameter spaces (Figure 2.12) are similar to estimated 

long-term ANPP both at the whole catchment scale (419.5 g C m-2 y-1) (Day and Monk 1974, 1977; 

Day et al. 1988) and at the plot scale (Bolstad et al. 2001). Also, note that there is significant 

discrepancy between optimal NPP and ANPP parameter ranges in the alternative allocation 

simulations (Figure 2.12b).  
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Figure 2.10: 3-D and 2-D contour plots of long-term simulated (1941 ~ 2005) 
average annual (a) NPP (net primary productivity), (b) ET (evapotranspiration), and 
(c) WUE (water used efficiency) over sampled RDavg and RDdev under constant 
allocation strategy. The color bar represents the mean absolute error (MAE) of 
simulated LAI (Figure 2.9a).  
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Figure 2.11: 3-D and 2-D contour plots of long-term simulated (1941 ~ 2005) 
average annual (a) NPP (net primary productivity), (b) ET (evapotranspiration), and 
(c) WUE (water used efficiency) over sampled RDavg and RDdev under alternative 
allocation strategy, where allocation ratios are as a function of local rooting depth. 
The color bar represents the mean absolute error (MAE) of simulated LAI (Figure 
2.9b).  
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Figure 2.12: 3-D plots for long-term annual NPP (net primary productivity) and ANPP (aboveground NPP) under (a) 
constant and (b) alternative allocation strategies with varying RDavg and RDdev parameters. Contours at the x-y plane 
represent ANPP values. Note that allocation ratios of ANPP to NPP are constant under constant allocation strategy, 
while they decrease in proportion to rooting depth under alternative allocation strategy. Long term patterns of 
vegetation density (LAI) follow ANPP as a constant portion of cumulative ANPP is allocated into foliar biomass. 
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Optimal ET ranges (Figure 2.10b and Figure 2.11b) are a little lower than the catchment-scale 

estimated ET during the same period (794 mm y-1). However, recent studies suggest that upscaled 

ET estimates from plot measurements in steep mountain catchments are lower than ET from mass 

balance, usually attributed to deep ground water bypass (e.g. Wilson et al. 2001). Ford et al. 

(2007) also shows that two-year ET estimates upscaled from detailed sap flux measurements are 

about 10% lower than catchment-based estimated ET at the adjacent pair watershed (WS17; Figure 

2.3c). 

 

2.6 Discussion and conclusions 

2.6.1 Optimal vegetation gradients for system-wide productivity 

This study suggests that the existing hydrologic gradients of vegetation density measured within 

the watershed effectively represent the long-term optimal state for system-wide carbon uptake. 

Model parameters controlling lateral hydrologic connectivity of the watershed are first calibrated 

from long-term streamflow data, which also produces reasonable spatio-temporal dynamics of 

surface soil moisture. To investigate the optimality of vegetation gradients, multiple spatial patterns 

of vegetation within the watershed are simulated by varying rooting depth as a function of hillslope 

position. Optimal ranges of rooting depth parameters are also supported by field measurements 

from pits excavation. Two different allocation strategies in the simulations elaborate the importance 

of canopy carbon allocation to the emergent optimality as a function of vegetation canopy patterns. 

Less vegetation upslope produces a subsidy of more water to downslope vegetation, where more 

water and nitrogen are available. Model results suggest that more efficient photosynthesis can take 

place downslope for two reasons. First, increased nitrogen availability can increase carbon uptake 

per unit water loss (water use efficiency) in downslope vegetation. Second, ample soil moisture 

downslope allows plants to allocate proportionately less carbon into belowground biomass and 
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more into aboveground, which increases leaf area, light absorption, and total carbon uptake. 

However, steeper vegetation gradients (sparser canopy upslope, denser downslope) than the 

existing canopy pattern simulated by decreasing RDavg or increasing RDdev (Figure 2.9), provide a 

water subsidy from upslope that exceeds the capacity of the downslope canopy to transpire 

following an asymptotic response of ET to available water. This results in less total ET and greater 

catchment runoff ratios (Figure 2.10b and Figure 2.11b). 

Uniform or inverse vegetation gradients are established by increasing RDavg or decreasing RDdev 

(Figure 2.9), with system-wide declines of carbon uptake for two different allocation strategies. 

With the constant allocation strategy, greater upslope water uptake provides less water subsidy 

downslope, resulting in increased total catchment ET. However, catchment productivity does not 

follow increasing plant water uptake because of lower nitrogen availability, specifically in upslope 

regions (Figure 2.7). Less nitrogen availability can result from decreases both in nitrogen 

transformation rates and limited amount of nitrogen upslope in the model. Second, with the 

alternative allocation strategy (greater proportional belowground allocation of photosynthate with 

increasing rooting depth), total ET and NPP decline with limited light availability (lower canopy 

light absorption).  

In summary, the current vegetation density gradients can result from self-organization for 

optimal carbon uptake between adjacent patches along flowpaths. They may effectively represent 

the degree of dependency of multiple interacting resources (water and nutrients), moderated by 

feedbacks with canopy light absorption. Therefore, vegetation pattern along hydrologic flowpaths is 

a function of lateral hydrologic connectivity within the hillslope. 

 

2.6.2 Compromises between multiple resources 

Competition for light, water, and nutrients are the most important factors determining allocation 

of fixed carbon into vegetation compartments, providing the ecophysiologic basis for compromising 
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between multiple stresses for optimal carbon uptake (Tilman 1988; Gedroc et al. 1996; 

McConnaughay and Coleman 1999). Simulated optimal carbon uptake ranges in this study show 

effective compromises between multiple stresses (water, light, and nutrients) for optimal carbon 

uptake. For both of the allocation strategies, there are water-limited productivity conditions up to 

optimal RDavg ranges, whereas different stress terms act as a limiting factor for carbon uptake above 

optimal RDavg ranges.  

With the constant allocation strategy, catchment scale NPP is fairly steady above optimal RDavg 

ranges even though annual mean ET increases (Figure 2.10). This increase of ET is mainly 

attributed to transpiration with increasing local rooting depth, not evaporation (interception), as LAI 

(following ANPP) remains almost constant (Figure 2.12a). This is mainly explained by decreasing 

nitrogen availability with increasing RDavg especially in upslope regions (Figure 2.7). More 

localized soil water uptake with increasing local rooting depths requires more nitrogen especially 

upslope, which however is not available. In the model, nitrogen is assumed to be confined within 

specified rooting depth. Therefore, increased root depth produces more water availability but not 

nitrogen. Rather, wetter root zone moisture dynamics reduce N transformation rates as upper 60-cm 

soil moisture ranges within the study site are already very close to the levels maximizing 

decomposition, mineralization, and nitrification rates in soils highest (around 60% saturation for 

sandy loam soils) (Figure 2.1 and Figure 2.6), except for short dry seasons. The decline of nitrogen 

availability results in consistent decreases of WUE above optimal RDavg ranges (Figure 2.10c). In 

contrast, for the alternative allocation strategy carbon uptake and annual ET decline quickly above 

the optimal RDavg ranges (Figure 2.11). Deeper rooting depth increases water availability, while 

increased proportional belowground carbon allocation limits foliar biomass which decreases light 

absorption (Figure 2.12b).  

Significant discrepancy between optimal NPP and ANPP parameter ranges in the alternative 

allocation simulations (Figure 2.12b) shows an example of effective compromise between light and 
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water resources for optimal system-wide carbon uptake (NPP). Allocation of limited photosynthate 

into vegetation compartments (e.g. foliar, root), is related to trade-off between resources (e.g. light, 

water), for a plant would be increasing one resource availability by decreasing the other (Tilman 

1988). For example, even though there is higher aboveground vegetation density (or higher light 

availability) by more aboveground allocation at shallower RDavg ranges (around 0.4 m), catchment 

scale optimal carbon uptake is limited by water stress, driven by lower belowground allocation. 

This suggests that the ‘growth-stress trade-off’ concept should be regarded as a compromise 

between two main complementary resources (light and water) for optimal carbon uptake itself 

through the control of aboveground vegetation density by limited photosynthate allocation (Tilman 

1988; Gedroc et al. 1996; McConnaughay and Coleman 1999). 

Simulation results also show that the relation between ET (even transpiration) and 

photosynthesis is not constant. Most optimality models are based on a steady state assumption 

without the dynamics of vegetation density or nitrogen availability as a function of changing 

rooting strategy (Rodriguez-Iturbe et al. 1999a; Porporato et al. 2001; Collins and Bras 2007; 

Guswa 2008). However, only transpiration (not ET) is directly related to carbon uptake via stomatal 

responses (Schymanski et al. 2007), a proportion which is actively changing with vegetation cover 

and resulting transpiration and interception proportions, especially in water-limited ecosystems. 

This effect cannot be properly simulated with a threshold approach for interception loss without 

simulating actual vegetation dynamics. The linear ET-photosynthesis assumption is only true when 

there is not so much change in vegetation density and nitrogen availability which can control the 

portion of transpiration and the relationship between transpiration and photosynthesis (see 

equations (2) and (3); Schymanski et al. 2008). We can see this example in the constant allocation 

simulations (Figure 2.10) where annual carbon uptake remains almost constant in spite of increases 

annual ET, because nitrogen availability decreases. 
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2.6.3 An objective function of optimality models  

Rodriguez-Iturbe and co-workers used the ‘water stress’ term as an objective function for 

optimal vegetation density where water stress was quantitatively expressed as a non-linear function 

of soil moisture (Rodriguez-Iturbe et al. 1999a; Porporato et al. 2001). They postulated that 

optimal vegetation condition can be found between minimum water stress and maximum 

productivity assuming that productivity is directly proportional to evapotranspiration under water-

limited ecosystems (Porporato et al. 2001). 

Vegetation density, quantified as leaf area index (LAI), is not only an indicator for energy 

absorption of photosynthetically active radiation (PAR), but also a main channel for water loss 

through transpiration and interception storage. Vegetation actively compromises between light and 

water resources at short (e.g. leaf orientation) and long-term scale to achieve optimal carbon uptake 

given climate and soil conditions by density adjustment with water-stress driven foliage reduction 

in water-limited condition or more allocation into leaf in an energy-limited condition.  

If vegetation density is above the optimal state given climate and soil conditions, large 

interception storage effectively decouples water loss from carbon uptake which eventually results in 

severe water stress and productivity decline. Many studies report decreasing water use efficiency 

and decoupling between water loss and carbon uptake during severe drought conditions (e.g. 

Hwang et al. 2008; Baldocchi 1997; Reichstein et al. 2002; Leuning et al. 2005). On the other 

hand, if vegetation density (or cover) is below the optimal state given climate and soil conditions, 

energy absorbed by vegetation can be a limiting factor for photosynthesis which will result in 

increased allocation to foliar carbon increasing light absorption toward an optimal vegetation state. 

In this context, the current canopy density pattern in WS18 appears to be close to an optimal 

state for carbon uptake itself, not a compromise between minimum water stress and maximum 

productivity. Vegetation fully exploits the most limiting factor as possible for their maximum 

growth across diverse ecosystems, often called ‘Liebig's Law of the minimum’ (Tilman 1988). 
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Even in water-limited ecosystems, the current vegetation state should be the maximization point of 

vegetation productivity because they are opening their stomata as much as possible for efficient 

uptake of CO2 at the least cost of water to avoid severe water stress. Vegetations in water-limited 

ecosystems always fully use available water in soil (Kerkhoff et al. 2004) while avoiding severe 

water stress to maximize their productivity, not to minimize water stress itself. Moreover, a water 

stress term cannot be a general objective function for optimality models as limiting factors for 

carbon assimilation should be different across various ecosystems.  

Recently, Schymanski et al. (2007, 2009) asserted that carbon uptake (e.g. net carbon profit) 

should be an objective function of optimality models regarding transpiration as the ‘inevitable’ cost 

or leak for carbon assimilation process. While this assertion is consistent with the approach taken 

here and in a number of previous studies, the appropriateness of net carbon profit (NCP) as a 

driving force in optimality models is somewhat controversial (Raupach 2005). Schymanski et al. 

(2007, 2009) tried to estimated seasonal optimal state of vegetation from measured water fluxes 

throughout a monthly and a daily basis. This approach has some problems in that current vegetation 

structure or cover is not just a result of short-term optimization for carbon uptake, but also a result 

of cumulative and transient effect of previous photosynthesis, respiration and allocation. Many 

researchers reported an inter-annual transient effect of climate factor on vegetation dynamics from 

flux measurements (Law et al. 2002; Barr et al. 2004), satellite observations (Goward and Prince 

1995; Mohamed et al. 2004), and tree ring growth measurements (Gonzalez-Elizondo et al. 2005; 

Andreassen et al. 2006; Pumijumnong and Wanyaphet 2006; Tardif and Conciatori 2006). 

Vegetation structure in forest ecosystems does not adjust promptly to changing environmental 

conditions (e.g. water stress) unlike grass-based ecosystem.  

 

2.6.4 Allocation dynamics along the hillslope gradients 
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It is widely accepted that proportional belowground allocation usually increases with decreasing 

water and nutrient availability (Gedroc et al. 1996; McConnaughay and Coleman 1999; Cromer 

and Jarvis 1990; Ryan et al. 2004; Litton et al. 2007; Friedlingstein et al. 1999). In WS18, 

surface soil moisture dynamics (Figure 2.6) indicate that wetter regions are more favorable to 

available nitrogen along with associated nutrient transport through shallow subsurface flow. 

Moreover, soil moisture has a primary control on vegetation density (Figure 2.4b), which suggests 

that the amount of nitrogen input through litter inputs also follows hillslope gradients. For these 

reasons, there are significant increases of nitrogen availability with wetness within the study site 

(Knoepp and Swank 1998; Knoepp et al. 2008), which also suggests a more rapid cycling of 

organic matter and greater amount of nutrients available to plants. Therefore, the belowground 

allocation proportion may decrease with hillslope moisture gradients (without a species shift) 

simply because water and nutrient availability increases.  

This spatial allocation pattern is very similar to what we found in pits excavation experiments 

(Figure 2.8) and the alternative allocation strategy simulations (Figure 2.11) with spatially 

homogeneous vegetation species. There was significant increase of DBH from ridge to hollow in 

our sample, maximum rooting depths are almost constant (Table 2.1). Even though we did not 

actually calculate total belowground biomass for the lack of lateral roots spread information, this 

shows possible transitions in allocation dynamics along the hillslope gradients. In the simulation, 

the optimal RDdev parameter for optimal carbon uptake is located at slightly negative ranges, so 

maximum rooting depth and belowground allocation proportion slightly decreases downslope. 

However, transitions into more tolerant vegetation species in a dry region may offset this optimal 

allocation dynamics along the hillslope gradient. As far as we know, there are no empirical studies 

on the allocation dynamics along hillslope gradients, that account for the effects of downslope 

changes of water, nutrients, light availability (McConnaughay and Coleman 1999, and references 

therein), species shifts (McConnaughay and Coleman 1999; Gower et al. 2001), and stand ages 
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(often called ‘ontogenic drift’) (McConnaughay and Coleman 1999; Ryan et al. 2004; Litton et al. 

2007). For this reason, it would be difficult to find consistent allocation patterns along hillslope 

gradients in natural situations. 

 

2.6.5 Limitations of this study 

In this study, we used a simple representation of rooting depth given the complexity of spatial 

variation and transport processes, assuming density to be evenly distributed with depth. However, a 

vertical distribution of roots is important for determining water and nutrient availability (Jackson et 

al. 2000; Collins and Bras 2007). Shallow roots play an important role in nutrient recycling as 

most nutrients (especially nitrogen) are concentrated in the surface soil layer (Jobbagy and Jackson 

2001), while deep roots mostly determine water availability during a dry season. For this reason, 

vertical distribution of roots can play an important role in compromising between these two 

resources (water and nutrients). Pit observations in our site show fine roots are more evenly 

distributed with depth in hollow soils, while fine roots often show bimodal distributions at shallow 

soil depth and the soil-saprolite boundary (Hales et al. 2009). A feedback between greater carbon 

allocation to deeper roots and the density of shallow fine roots may be useful to explore in future 

modeling efforts. However, this would require significantly more information on soil profile form 

and computational effort, especially if multiple model realizations are required. 

Second, we did not integrate detailed spatial patterns of vegetation species and soil in the study 

area. Vegetation species varies from xeric to mesic species following hillslope position in this study 

site (Day and Monk 1974; Day et al. 1988). Xeric species are more tolerant to water stress, so 

optimal carbon uptake may occur at shallower rooting depth than simulated by the model in upslope 

regions. Mesic species need more water, so optimal carbon uptake may occur at deeper rooting 

depth than simulated in downslope regions. Hence optimal rooting depth patterns (RDdev) may show 

a small positive trend downslope given the spatial pattern of species transition. We note that in both 
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simulated and observed rooting depth, trends are close to zero, contrary to our initial expectations. 

However, this trend is consistent with the trend of the absolute amount of photosynthate production 

and the proportional aboveground/belowground allocation. 

In the study catchment, soil texture varies from fine sandy loam to silt loam (from soil texture 

data provided by Todd Lookingbill) with increasing wetness along the hillslope gradients, while 

soil tends from thinner to thicker (Hales et al. 2009). However, our soil pit observations did not 

indicate any strong textural gradients, but did reveal large local heterogeneity in colluvial soils. 

Transition of soil texture along the hillslope gradients may favor soil water holding capacity in 

wetter regions per unit soil depth (Brady and Weil 2002; Schenk and Jackson 2002; Dingman 

2002). However, Hales et al. (2009) also found high fine root density profiles in the soil-saprolite 

boundaries in dry region. This suggests that soil-saprolite boundary acts as a physical barrier for 

deep roots in the dry region, in which case optimal rooting depth patterns may not be properly 

established along the hillslope gradients.  

 

2.6.6 Conclusions 

This study suggests that the existing hydrologic gradients of vegetation within the catchment 

effectively represent the long-term optimal state for carbon uptake, which is closely modulated by 

rooting and allocation strategies. Traditionally, optimality approaches have assumed a steady state 

mechanism within the model, based on water or carbon principles. We have used a different 

approach emphasizing a fully transient, distributed model to investigate whether optimal ecosystem 

properties emerge as a result of self organizing spatial patterns of canopy density, specifically in the 

form of catchment scale ecosystem productivity and water use efficiency. The existing vegetation 

pattern must be understood as a feedback between multiple stresses (e.g. light, water, and nutrients) 

as connected by water flow along topographic gradients. This adjustment and evolution of the 

ecosystem with the geomorphic, climatic and hydrologic settings results in an emergent pattern that 
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optimizes system-wide carbon uptake, over and above the individual patch. This study extends and 

tests the concept of eco-physiological optimality theory at short-term and plot scales to long-term 

ecohydrological optimality at catchment and hillslope scales. 
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Chapter 3 Topography-mediated controls on local vegetation 

phenology estimated from MODIS vegetation index  

3.1 Abstract 

Forest canopy phenology is an important control of annual water and carbon budgets, and has 

been shown to respond to interannual climate variations. In mountainous areas, there may be a 

detailed spatial variation in phenology in response to well expressed topoclimate. The near real-

time remote sensing products from the moderate-resolution imaging spectro-radiometer (MODIS) 

are invaluable in understanding vegetation phenology across different spatial scales. In this paper, 

we used the MODIS vegetation indices to derive the topography-mediated vegetation phenology at 

a local scale. A simple post-processing analysis using multi-year trajectories was developed to 

provide an efficient way to filter out unqualified data points. Four local phenological variables 

(mid-days of greenup/senescence, lengths of greenup/senescence) are estimated by non-linearly 

fitting time-series of transformed vegetation indices with a difference logistic function. 

Phenological variables are then related to local topographical variables by multiple regression 

analysis. Elevation had the most explanatory power for all phenological variables. The mid-day of 

greenup period showed a strong linear relationship with elevation, while the other three variables 

(mid-day of senescence, and lengths of greenup/senescence) exhibited quadratic responses. 

Radiation proxies (transformed aspect and potential relative radiation) also had significant 

explanatory power for all these variables. Though hillslope position was not observed to have a 

significant effect on vegetation phenology at this coarse resolution (about 230 m), interannual 
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variations of vegetation phenology between very wet and dry years showed that more extended 

periods of greenup/senescence are found without shifting mid-days of greenup/senescence. These 

topography-mediated controls on local vegetation phenology are closely related to micro-climate 

variations, vegetation community types, and hydrological position. The capability of detecting the 

topography-mediated local phenology also offers the potential to detect vegetation responses to 

climate change in mountainous terrains, and can serve as the basis to develop ecohydrological 

models incorporating space-time variations in vegetation phenology. 

 

3.2 Introduction 

In recent decades, changes in global vegetation phenology (e.g. timing of greenup and 

senescence) induced by global-warming have been studied by many researchers (e.g. Menzel and 

Fabian 1999; Zhou et al. 2001; Walther et al. 2002; Matsumoto et al. 2003). These changes are 

believed to be closely linked to the amplitude and timing of seasonal cycles of atmospheric CO2 

(Keeling et al. 1996; Myneni et al. 1997; Randerson et al. 1999; Churkina et al. 2005) (but see 

White and Nemani 2003; Angert et al. 2005 for counter example). Specifically, much research has 

focused on climate controls on vegetation phenology in the mid- and high-latitudes, where 

phenological patterns are more sensitive to global warming (Zhou et al. 2001; Randerson et al. 

1999; White et al. 1997; Jenkins et al. 2002; Zhang et al. 2004, 2006). This is believed to occur 

because vegetation phenology in the mid- and high-latitudes is more controlled by temperature and 

photoperiod, while vegetation phenology in the tropics and in semi-arid areas is primarily 

controlled by seasonal rainfall (Childes 1988; Botta et al. 2000; Jolly and Running 2004; Jolly et 

al. 2005, and references therein). Single climate factors, however, are not always sufficient to 

explain vegetation phenology at a given location. Rather, multiple factors act on phenology together 

or at different phases of vegetation (White et al. 1997; Junttila 1980; Nilsen and Muller 1981; 

Partanen et al. 1998). 
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A time-series analysis of vegetation indices from global satellite images (e.g. normalized 

difference vegetation index, enhanced vegetation index) make it possible to understand 

phenological signals across different spatial scales (e.g. White et al. 1997; Jenkins et al. 2002; 

Zhang et al. 2006; Jolly and Running 2004; Schwartz et al. 2002; Fisher et al. 2006, 2007; Beck 

et al. 2006). Whereas several researchers have used field measurements to study the topography-

mediated controls on vegetation phenology (e.g. Fisher et al. 2006; Seghieri and Simier 2002; 

Tateno et al. 2005; Richardson et al. 2006), few studies have used satellite imagery for this 

purpose. The lack of studies using global satellite products for topography-mediated vegetation 

phenology is mostly due to sensor coarse spatial scales, which may obscure the fine-scale variations 

in phenological signals despite their frequent temporal resolution (1 ~ 2 days).  

Spatial variations in vegetation phenology have significant impacts on terrestrial ecohydrologic 

modeling at the local scale especially during vegetation transition periods (e.g. Nemani et al. 1993; 

Running and Nemani 1991; Obrist et al. 2003; Huntington 2004). Topography-related controls on 

vegetation phenology are not only mediated by micro-climate factors (e.g. temperature, radiation 

etc.), but also by species distributions, and hydrological gradients. Though most phenological 

models use climate variables (e.g. Jolly et al. 2005; Richardson et al. 2006; Chuine et al. 2000; 

Arora and Boer 2005), topographic factors (e.g. elevation, aspect and slope etc.) are more easily 

measurable and scalable especially in topographically complex regions. An understanding of the 

topography-mediated controls on vegetation phenology may therefore yield more accurate 

prediction of climate change effects on local vegetation in complex terrain. 

The U.S. National Aeronautics and Space Administration (NASA) Earth Observing System 

(EOS; http://modis.gsfc.nasa.gov/) currently produces a global vegetation index (VI) for the entire 

terrestrial earth surface at 250-m spatial resolution (MOD13Q1) to provide a consistent measure of 

vegetation conditions from the MODerate Resolution Imaging Spectroradiometer (MODIS) sensor 

aboard Terra/Aqua platforms launched in 1999 and 2002 (Huete et al. 2002). The MODIS land 
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products offer significant advantages over previous global satellite products (e.g. AVHRR) in terms 

of radiometric and geometric properties, combined with improved calibration, atmospheric 

correction and cloud screening (Justice et al. 1998). Previous global satellite products often 

included high-level noise for the lack of precise calibration, cloud screening information, and view 

angle biases (e.g. Goward et al. 1991). MODIS land products provide more stable information on 

vegetation phenology in both the spatial and temporal domains, and have been successfully 

compared with field measurements (Zhang et al. 2003, 2004, 2006; Beck et al. 2006; Fisher and 

Mustard 2007; Sakamoto et al. 2005). 

The MODIS spatial scale may not be fine enough to find all topography-mediated controls on 

local vegetation phenology, especially in topographically complex terrain, because major 

topographical factors still have significant sub-grid variability within a MODIS pixel. However, 

this approach can give us basic information on how vegetation phenology varies with topography, 

and which factors (e.g. micro-climate, hydrological position, and vegetation community types) are 

dominant in controlling phenology at the local scale. 

The objectives of this study are (1) to develop a robust approach to extract phenological signals 

from the multi-year trajectories of MODIS NDVI, (2) to detect topography-mediated controls on 

local vegetation phenology at the MODIS scale, and (3) to understand these spatial phenological 

patterns based on spatial variations of micro-climate and other factors (e.g. vegetation community 

types, hillslope positions). 

 

3.3 Materials and methods 

3.3.1 Study area 

The Coweeta Hydrologic Lab is located in western North Carolina, USA and is representative of 

the Southern Appalachian forest (Figure 3.1). The Southern Appalachian forest has very diverse 
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flora as a result of the complex terrain and consequent variability in microclimates and soil 

moisture (Whittaker 1956; Day and Monk 1974). Mean monthly temperature varies from 3.6 ºC in 

January to 20.2 ºC in July. The climate in the Coweeta Basin is classified as marine, humid 

temperate, and precipitation is relatively even in all seasons; annual precipitation ranges from 1870 

mm to 2500 mm with about a 5% increase for each 100 m (Swift  et al. 1988). The dominant 

canopy species are oaks and mixed hardwoods including Quercus spp. (oaks), Carya spp. (hickory), 

Nyssa sylvatica (black gum), Liriodendron tulipifera (yellow poplar), and Tsuga canadensis 

(eastern hemlock), while major evergreen undergrowth species are Rhododendron maximum 

(rhododendron) and Kalmia latifolia (mountain laurel) (Day et al. 1988). Spatial distributions of 

forest community types in this study area are closely related to the elevation, aspect, and moisture 

gradients (Figure 3.2; Day et al. 1988), associated with distinct phenological patterns as a function 

of topographic positions. Note that it is classified as Northern Hardwood forest types in higher 

elevation regions, dominated by Betula lutea (yellow birch), Tilia heterophylla (basswood), 

Aesculus octandra (buckeye), and Q. rubra (northern red oak) etc. The local vegetation phenology 

is well preserved in the study site, even though there were some partial logging experiments in 

several of the watersheds in the 1950’s and 1970’s. Detailed disturbance histories for the sub-

watersheds are available at the Coweeta LTER homepage 

(http://coweeta.ecology.uga.edu/ecology/cbase.html).  
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Figure 3.1: A study site (Coweeta Hydrologic Lab). Grids represent the MODIS 
(MOD13Q1; about 230 m) pixels. Red lines represent the boundaries of 
watersheds. Letters indicates the pixels for examples of filtering and fitting methods 
(Figure 3.3; Figure 3.4). 
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Figure 3.2: A typic diagram from Day et al. (1988), which describes vegetation 
community types within the study site as a function of slope, aspect, elevation, and 
hillslope positions.  
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3.3.2 MODIS vegetation index 

Due to its high temporal frequency, the MODIS normalized difference vegetation index (NDVI) 

is particularly useful to detect subtle phenological changes. NDVI is a normalized ratio between of 

surface reflectance red and near infrared bands:  

)/()( REDNIRREDNIRNDVI ρρρρ +−=   (3.1) 

where ρRED and ρNIR are surface reflectance of red and near-infrared bands, respectively. MODIS VI 

products (MOD13Q1 version 5) are released in the HDF-EOS data format as Sinusoidal projections 

with 16-day temporal resolution and approximately 250-m spatial resolution (Huete et al. 2002), 

reprojected to the GeoTIFF file format with the Universal Transverse Mercator (UTM) coordinate 

system by MODIS reprojection tool (MRT; 

https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool).  

NDVI, however, usually has a non-linear relationship with Leaf Area Index (LAI) (Myneni et al. 

2002), which is a more meaningful measure of actual vegetation. This non-linearity can result in 

significant bias, including exaggerated phenological signals in low NDVI ranges (Fisher et al. 

2006). We estimated this non-linear relationship locally by matching 1-km MODIS NDVI 

(MOS13A2) and LAI (MOD15A2) of the study area. We then use this relationship to transform the 

250-m MODIS NDVI (MOD13Q1) into estimated LAI values to analyze phenological signals. 

There are two main reasons why we used transformed MODIS NDVI (MOD13Q1) values rather 

than MODIS LAI (MOD15A2) values for extracting local phenological patterns. First, MODIS LAI 

is temporally unstable even though they are provided more frequently (8-day temporal resolution) 

than MODIS NDVI. It seems that both quality control (QC) and the extra QC flags in MOD15 

cannot remove unqualified data well because of the substantial spatial variations in microclimate in 

this humid and mountainous area. Second, MODIS LAI (MOD15A2) is currently provided only at 
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about 1-km spatial resolution, which is too coarse to retrieve the differences in phenological 

patterns between various topographic positions in this complex terrain.  

In the production of VI values from 2001 to 2008, only good and marginal VI values were 

chosen based on the pixel reliability values, a parameter which was recently added to MODIS VI 

products (version 5) and is usually recommended for post-processing analysis (Didan and Huete 

2006). We included marginal data for this study because there were not enough points with good 

quality data to show the full phenological patterns, and even good quality data have unreasonable 

phenological patterns by cloud contaminations in this high-precipitation region. Rather, we 

incorporated the post-processing analysis to remove false data points. The day of composite 

information at each pixel, another parameter recently added into collection 5 datasets of MODIS VI, 

was also retrieved to get the exact acquisition date during each composite period (Didan and Huete 

2006). This information was suggested to be quite important for extracting exact phenological 

signals (Fisher and Mustard 2007).  

Two experimental watersheds (WS01, WS17; Figure 3.1), where white pine (Pinus strobus L.) 

was planted in 1957 and 1956 respectively, were masked with adjacent pixels to exclude the distinct 

phenological patterns featured by coniferous forests. Also, three experimental watersheds that were 

recently subjected to artificial treatments (WS06, WS07, and WS13; Figure 3.1) were excluded 

because full successional vegetation is not yet established.  

 

3.3.3 Post-processing analysis 

There are several traditional filtering or fitting methods developed for time-series VI, including 

the Best Index Slope Extraction (BISE) method (Viovy et al. 1992), the modified BISE algorithm 

(Lovell and Graetz 2001), the Fourier Transform (FT) algorithm (Olsson and Eklundh 1994; 

Verhoef et al. 1996; Roerink et al. 2000), the wavelet transform algorithm (Sakamoto et al. 2005), 

the weighted least-square linear or non-linear fit method (Jonsson and Eklundh 2002; Chen et al. 
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2004), and the mean-value iteration filter (Ma and Veroustraete 2006). As discussed previously, 

MODIS land products offer significant advantages over earlier global satellite products in terms of 

radiometric and geometric properties (Running et al. 2000; Heinsch et al. 2003). We integrated 

two-step simple filtering methods to identify occasional sudden negative or positive spikes not 

indicated by the quality assurance flags as false VI values. Most spikes were negative forms due to 

remnant cloud cover, aerosols, or cloud shadow, all of which tend to decrease the NDVI values 

(Didan and Huete 2006). 

First, we eliminated unqualified data points from 8-year historical phenological trajectories 

(2001 ~ 2008) by assuming that temporal phenological patterns of forest-based ecosystems are quite 

periodic and that interannual variations are relatively small. From historical trajectories of 

estimated MODIS LAI as a function of day of year at each pixel (Figure 3.3), we made a group at 

each data point by identifying all data points occurring within 16 days before and after. If the data 

point is classified as an outlier beyond the ends of the Whiskers, defined as 1.5 times the inter-

quartile range from the lower and upper quartiles of the group, we excluded it from further analysis. 

By including the 16 days before and after each LAI value for this outlier-exclusion analysis, we can 

account for interannual variations in phenological changes, especially in transition periods, and 

obtain statistically significant numbers for outlier analysis. This outlier-exclusion technique can be 

applied to both sides, so that positive spikes can be filtered without specifying different threshold 

values (Figure 3.3).  
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Figure 3.3: Examples of two-step filtering methods from 8-year historical 
trajectories (left column) and time-series (right column) of estimated LAI at selected 
MODIS pixels ((a) ~ (i); Figure 3.1). Grey and black dots represent filtered values 
by the outlier exclusion analysis and the modified BISE methods, respectively. 
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Figure 3.3 (cont’d) 



 
  

83 
 

Second, we used the modified BISE method with a 30-day window size to remove the remnant 

spikes (Lovell and Graetz 2001). Recently, this method was also applied to the temporal MOD15 

data as a complementary or post-process method after filtering the data with the original quality 

control flags (Reichstein et al. 2007). A main difference between our method and the original 

method is that we applied the modified BISE method to time-series of transformed LAI values, by 

which we are using stricter threshold values in high VI ranges than low VI ranges. We did not use 

the modified BISE method alone mainly because it was not working well with consecutive false 

composite VI data points with a narrow window size, which are common phenomena in this humid 

region. Increasing the window size can solve some of these problems, but it can result in the loss of 

distinct phenological signals by over-smoothing (Viovy et al. 1992).  

Our simple filtering technique was very effective in excluding unqualified data points from the 

time-series of transformed MODIS LAI values for selected pixels in topographically different 

positions in the study site (Figure 3.3). This outlier-exclusion method from historical trajectories is 

especially useful for rare positive spikes and consecutive false data points from composite periods. 

It also worked well around transition periods by allowing flexibility in interannual phenological 

variations, when unqualified data points could easily be confused with real phenological signals.  

 

3.3.4 A phenology model for multi-year VI datasets 

A common phenology model for temporal MODIS VI or LAI values is the logistic function 

(Zhang et al. 2003, 2004; Ahl et al. 2006; Kang et al. 2003), which can be expressed as: 

 d
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where y(t) is the NDVI or LAI value at time t (day of year), a and b are fitting coefficients, d is the 

minimum or background NDVI or LAI value, and c is the difference between maximum and 
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minimum NDVI or LAI. Logistic phenology models are generally used for a single growth or 

senescence phase (Zhang et al. 2003), which may be hard to define from a multi-year time series of 

MODIS VI or LAI. Phenological changes in forest-based ecosystems, however, are quite periodic 

(as opposed to grass-based ecosystems), so there is usually a single mode of growth and senescence 

per year. We therefore selected the difference logistic function to develop a functional 

representation of a one-year period from multi-year records of LAI values (Fisher et al. 2006). The 

difference logistic function has the following form: 
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where a and b are fitting variables for the greenup period, and a′ and b′ are fitting variables for the 

senescence period. In this model, all available multi-year MODIS LAI data are analyzed together as 

a function of day of year, which helps us extract the general topography-mediated controls on 

vegetation phenology without considering interannual variations. The difference logistic function 

has been shown to describe time-series of NDVI data better than the Fourier series or the 

asymmetric Gaussian function (Beck et al. 2006). This model also reduces the number of fitting 

variables and assures the continuity of maximum and minimum LAI values between phases in 

multi-year LAI datasets.  

We used the nonlinear regression function (nlinfit) in Matlab (Matlab R2007b, MathWorks Inc., 

Natick, MA) to find least-squares parameter estimates for the difference logistic model. This 

function uses the Gauss-Newton algorithm with Levenberg-Marquardt modifications for global 

convergence (Seber and Wild 1989). The fitting mechanism was halted either after 2000 iterations, 

or when marginal improvements of the residual sum of squares fell below the specified threshold 

(10-8). 

Stable fitted temporal patterns of MODIS LAI are established at MODIS pixels in 

topographically different positions within the study area, averaged from the 8-year period (2001 ~ 
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2008) (Figure 3.4). Distinct phenological patterns were found at different topographic positions 

within the study area, induced by the combined effects of micro-climate conditions, vegetation 

types and hillslope positions. 

 

3.3.5 Analytical solutions for phenological transition dates 

Following Zhang et al. (2003, 2004), phenological transition dates (greenup, maturity, 

senescence, and dormancy onset) in the logistic model can be determined from the local minima 

and maxima for the rate of curvature change (CCR; grey lines in Figure 3.5d), the derivative of the 

signed curvature of the logistic function (Eq. 3 in Zhang et al. 2003). Because this equation cannot 

be solved analytically, cumbersome numerical solutions are usually used to find the local minima 

and maxima for transition dates (Ahl et al. 2006).  

However, if the slope (y′) is relatively small, the approximation of the signed curvature (κ) is 

equivalent to the second derivative (y") as follows: 

y
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In this case, transition dates (t´) can be obtained from the analytic solution of the fourth derivative 

of the logistic function as follows (Appendix): 
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Figure 3.4: Examples of the difference logistic function fitting for 8-year estimated 
LAI datasets at selected MODIS pixels ((a) ~ (i); Figure 3.1). Vertical dotted lines 
are phenological transition dates (t´) from Eq. 3.5. 
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Figure 3.5: Analytical solutions of phenological variables; (a) the difference logistic 
function, (b) the first derivative, (c) the second derivative (a thick line) and 
curvature (grey lines; Eq. 3.4), and (d) the third derivative (a thick line) and the rate 
of curvature change (CCR; grey lines). The curvature and CCR curves are drawn 
with different c parameter values (0.5 ~ 4.0; Eq. 3.2). The vertical grey lines are 
analytical solutions for phenological variables from Eq. 3.5, not changed with 
different c parameter values. 
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Even in cases when the slope (y′) is not relatively small, the transition dates at which the local 

minima and maxima values are established do not change (Figure 3.5d) because the slope (y′) 

values determine only amplitudes of the curvature curves (Eq. 3.4). This property of the logistic 

function is shown in Figure 3.5, where the first (Figure 3.5b), second (Figure 3.5c), and third 

(Figure 3.5d) derivative curves of the logistic function (Figure 3.5a) were drawn with the curvature 

functions (grey lines in Figure 3.5c) and rate of curvature functions (grey lines in Figure 3.5d) for 

different values of the c parameter (0.5 ~ 4.0; Eq. 3.2). Analytical solutions for the local maxima 

and minima of the third derivative (Appendix) from Eq. 3.5 (vertical lines in Figure 3.5) are the 

same as those for the rate of curvature change (Figure 3.5d), and do not change with different c 

parameter values. 

From these solutions, we can calculate the length of growth and senescence periods between two 

transition dates to characterize the local phenological patterns of the study site (Eq. 3.6). Note that 

each length of greenup/senescence period (Lengthon or Lengthoff) is only a function of the b (or b′) 

parameter related to the shape of the logistic function. 

bLength /)
625

625
log(

−

+
=   (3.6) 

The above two equations (Eq. 3.5 and 3.6) show that phenological transition dates are only a 

function of the a and b parameters, while the lengths of greenup/senescence periods (Lengthon and 

Lengthoff) are determined only by the b parameter.  

We used the mid-day of leaf greenup/senescence periods (Midon and Midoff) for the statistical 

analysis in this study, equivalent to inflection points for the difference logistic function (Figure 

3.5b). These dates can easily be calculated from the a and b parameters (-a/b), where NDVI or LAI 

values are established at the half-point between maximum and minimum values. These inflection 

points have been incorporated by several previous phenological studies (White et al. 1997, 2002; 
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Schwartz et al. 2002; Fisher et al. 2006; Fisher and Mustard 2007; Bradley et al. 2007) for a 

number of different reasons. First, NDVI values at low ranges are often mixed with soil reflectance 

because they are very sensitive to canopy background variations (Huete 1988; Huete et al. 1994). 

Second, these points are more ecologically meaningful and measurable in that the change rates of 

greenness are most rapid around these dates (White et al. 1997). Third, solving for the inflection 

points can create a more robust solution for vegetation phenology reducing the errors in 

conventional transition dates (e.g. greenup, maturity, senescence, and dormancy onset) associated 

with their greater sensitivity to data availability and to early spring understory growth (Fisher et al. 

2006).  

  

3.3.6 Topographical variables 

We relate phenological variables to basic topographic variables (e.g. elevation, aspect, slope, and 

wetness index) for each MODIS pixel (Figure 3.1). Elevation (elev) data were upscaled from North 

Carolina LIDAR digital elevation model (about 6.1-m resolution dataset from the North Carolina 

flood mapping program: http://www.ncfloodmaps.com). In this region, elevation is related not only 

to local temperature with lapse rate (Bolstad et al. 1998), but also to precipitation which increases 

by approximately 5% with each 100 m rise in elevation (Swift  et al. 1988). From these upscaled 

elevation datasets, aspect and slope were calculated at the same spatial scale. To create a more 

direct measure of radiation load for statistical analysis, aspect was transformed into a relative 

number ranging from –1 (for northeast-facing slopes) to 1 (for southwest-facing slopes) (taspect) 

(Beers et al. 1966). 

)45cos( °−−= aspecttaspect   (3.7) 

Slope is also related to incoming radiation. In addition, the transformed aspect term cannot 

explain seasonal variation in incoming radiation, which is a function of solar zenith and azimuth 
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angles. Potential relative radiation (PRR; Pierce et al. 2005) is introduced to better represent 

seasonal radiation potential at each topographic position, using the Hillshade function in ArcGIS 

(ArcGIS 9.2, ESRI Inc., Redlands, CA). While transformed aspect (taspect) only uses aspect to 

estimate radiation potentials, PRR sums up hourly hillshade radiation calculated from aspect, slope, 

solar zenith, and azimuth angles. We calculated PRR values for each month using mean solar period, 

and then derived the growing season (Apr, May; PRRg), senescence season (Oct, Nov; PRRf), and 

whole-year PRR values.  

Wetness index (topidx; Beven and Kirkby 1979) was calculated at the original LIDAR elevation 

data scale to represent hydrological gradients with hillslope position, then upscaled to the MODIS 

scale. This is because detailed hydrological variations can be lost when we calculate wetness index 

at the MODIS scale, in contrast to aspect and slope. Upslope contributing area for the wetness 

index was calculated with the D-infinity (D∞) method, which allows flow to be proportioned 

among multiple neighboring downslope pixels according to gradient (Tarboton 1997).  

All phenological and topographic variables are summarized in  

Table 3.1. 

 

3.3.7 Interannual variations between wet and dry years 

At the MODIS scale, much of the local topographic variations are lost by being aggregated to 

coarse spatial resolution, and the range of wetness indices is significantly reduced. This scale issue 

makes it more difficult to detect the topography-mediated controls on vegetation phenology in 

terms of hillslope position. For this reason, we decided to compare phenological variables between 

very wet and very dry years to determine whether soil moisture status has a significant effect on 

vegetation phenology. 
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Table 3.1: Summary of phenological and topographic variables 

Abbreviation Description Unit Equation or reference 

Phenological variables 

Midon Mid-day of the greenup period DOY -a/b from Eq. 3.3 

Midoff Mid-day of the senescence period DOY -a´/b´ from Eq. 3.3 

Lengthon Length of the greenup period days Eq.3.6 

Lengthoff Length of the senescence period days Eq.3.6 

LAImin Fitted minimum LAI value unitless d from Eq. 3.3 

LAImax Fitted maximum LAI value unitless c+d from Eq. 3.3 

Topographic variables 

elev Elevation m http://www.ncfloodmaps.com 

taspect Transformed aspect unitless Eq.3.7 

PRR Potential relative radiation for the whole year unitless (Pierce et al. 2005) 

PRRg Potential relative radiation for growing season unitless PRR from Apr, May 

PRRf Potential relative radiation for falling season unitless PRR from Oct, Nov 

topidx Wetness index (or topographic index) unitless (Beven and Kirkby 1979) 
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In this region, we have experienced exceptionally wet and dry situations since 2000. 

Phenological signals were assembled and analyzed from two extremely dry years (2002, 2008) and 

two extremely wet years (2003, 2005), with drought conditions determined by the Palmer Drought 

Severity Index (Palmer 1965). By using phenological signals from independent years of extreme 

moisture conditions, we may attribute phenological differences to interannual variations of moisture 

condition, minimizing the effect of interannual variations of other climate variables (e.g. 

temperature, radiation etc.). We may also explore how major topography-mediated controls on 

vegetation phenology change between wet and dry years, and how we can interpret such changes 

with respect to the role of moisture status for vegetation phenology. 

 

3.3.8 Statistical analysis 

We used a multiple regression analysis to relate phenological variables to topographic variables. 

A multiple regression allows us to test and model multiple independent variables (topographic 

variables) simultaneously with one predictor variable (phenological variables). Correlation and 

interactions between explanatory variables often complicate the multiple regression analysis, 

especially in case of near-linear relations among explanatory variables, leading to unstable 

parameter estimates. For this reason, we did not include the slope variable in this analysis. In this 

study area, there is a significant positive correlation between slope and elevation (Pearson 

correlation coefficients; R = 0.592, P < 2×10-16), and the inclusion of the slope factor would 

complicate the interaction structure of the data. A Pearson correlation matrix between all 

explanatory and response variables indicates that there is no significant correlation among 

explanatory variables (Table 3.2) except for the correlation between radiation proxies (transformed 

aspect and PRR values). Therefore, only one radiation proxy was used for multiple regression 

analysis at a time, taspect (model 1) or PRR (model 2) (Table 3.3). In addition, each seasonal PRR 

value (PRRg or PRRf) seems to be more correlated to each seasonal phenological variable than to 
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the other seasonal PRR value or the whole-year PRR value (Table 3.2). We therefore used each 

seasonal PRR value, instead of the whole-year PRR value, as a radiation proxy in model 2. Paired 

graphs show some possible non-linear responses to explanatory variables (Figure 3.6). We therefore 

included quadratic terms for each of three explanatory variables, as well as interaction terms among 

explanatory variables for both models. Correlation coefficients of fitted LAI values (LAImin and 

LAImax) with topographic and other phenological variables show the spatial pattern of vegetation 

type and their relationship with vegetation phenology in this study site (Table 3.2). A strong 

negative correlation between LAImin and LAImax (R = -0.697, P < 2×10-16; Table 3.2) indicates that 

their spatial pattern is related to the vegetation composition of coniferous and understory evergreen 

species (Figure 3.2), represented with lower NDVI in summer and higher NDVI in winter. 

Therefore, LAImin effectively represent the amount of evergreen vegetation which has distinct 

phenological patterns compared to deciduous broadleaf forests. To explain the effect of evergreen 

vegetation in phenological signals, LAImin was also added into explanatory variables in the multiple 

regression analysis. 

To minimize the risk of over-parameterization, we used the automatic model simplification 

function stepAIC in Package MASS version 7.2 for R (version 2.7.0, The R Foundation for 

Statistical Computing) for parsimonious models, which performs stepwise model selection by a 

penalized log-likelihood (Akaike’s Information Criterion). We also manually pruned insignificant 

variables in sequence (P > 0.005) (see Crawley 2007 for a detailed methodology).  

The analysis of covariance technique is incorporated to test the inequality of regression lines (for 

separate lines) between topographic controls on vegetation phenology for wet and dry years. This 

technique allows us to test whether the responses of the independent variables (phenological 

variables) are different between groups as a linear function of the predictor variables (topographic 

variables). Only major linear topographic controls on vegetation phenology were tested to simplify 

this procedure. 
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Figure 3.6: Paired scatter plots between topographic and phenological variables. Fitted lines show strongly significant 
relationships from multiple regression models (Table 3.3). 
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Table 3.2: Pearson correlation coefficients between topographic factors and phenological variables (n = 252) 

 elev taspect PRR PRRg PRRf topidx Midon Midoff Lengthon Lengthoff LAImin LAImax 

elev 1.0            

taspect -0.051 1.0           

PRR -0.129 0.915 1.0          

PRRg -0.247 0.841 0.966 1.0         

PRRf -0.110 0.919 0.998 0.954 1.0        

topidx 0.112 -0.134 -0.132 -0.138 -0.127 1.0       

Midon 0.972 -0.040 -0.103 -0.218 -0.084 0.180 1.0      

Midoff -0.229 0.373 0.397 0.384 0.395 -0.070 -0.327 1.0     

Lengthon 0.307 -0.371 -0.455 -0.514 -0.440 0.159 0.251 -0.085 1.0    

Lengthoff 0.058 0.193 0.183 0.162 0.184 -0.049 -0.108 -0.410 -0.124 1.0   

LAImin -0.440 -0.137 -0.101 -0.007 -0.113 -0.135 -0.324 -0.523 -0.281 0.028 1.0  

LAImax 0.766 -0.008 -0.117 -0.246 -0.098 0.079 0.698 0.148 0.471 0.069 -0.697 1.0 



 

96 
 

3.4 Results 

3.4.1 Topographical controls on local vegetation phenology 

Summaries of the multiple regression analyses are shown in Table 3.3. For both models (Model 

1 and Model 2), elev usually has the most explanatory power for all phenological variables. 

However, in both models Midon exhibits a linear relationship with elev, while the other three 

phenological variables (Midoff, Lengthon, and Lengthoff) exhibit quadratic responses. Radiation 

proxies (taspect and seasonal PRRs) are also significant for phenological variables (P < 0.005), 

which usually exhibit linear relationships with taspect, and linear or quadratic relationships with 

seasonal PRRs. For both models, LAImin is strongly significant for two mid-day phenological 

variables (Midon and Midoff), whereas topidx has some explanatory power only for Midon. All 

interaction and quadratic terms other than elev* taspect, elev2, and PRR2 are insignificant for both 

models. 

Introducing the seasonal PRR (PRRg or PRRf) as a radiation proxy resulted in some improvement 

in model performance (R2) for Midoff and Lengthon (Table 3.3). Moreover, 95% confidence intervals 

for the coefficients of the remaining independent variables (elev2, elev, and topidx) overlapped 

significantly for both models, indicating that the choice of radiation proxy has minimal influence on 

the relationships among other topographic and phenological variables.  

The mid-day of greenup period (Midon) is delayed by about 3.1 days for every 100 m increase in 

elevation (Figure 3.7). This pattern of delay with elevation is quite comparable to Hopkin’s Law 

which states the onset of spring is delayed by one day with 30 m increase in elevation (Hopkins 

1918; Fitzjarrald et al. 2001). Interestingly, fitted quadratic graphs between elevation and 

phenological variables show very similar ranges of the inflection point from the 1100 m to 1200 m 

elevation bands (Figure 3.7), usually regarded as a transition zone from the Southern Appalachian 

forests to the Northern Hardwood forests (Figure 3.2). 



 
  

 
97 

 

Table 3.3: Summaries of multiple regression models (n = 252) 

 Model 1 (taspect) Model 2 (PRR) 

Midon 

Equation: Midon ~ elev + topidx + taspect + LAImin 

+ elev*taspect 

 

Coefficients 

  elev: 3.40×10-2 ± 4.17×10-4 (P < 2×10-16) 

  topidx: 1.57 ± 0.18 (P = 1.02×10-15) 

  taspect: -3.00 ± 0.63 (P = 2.90×10-6) 

  LAImin: 4.86 ± 0.38 (P < 2×10-16) 

  elev*taspect: 3.53×10-3 ± 6.4×10-4 (P = 

8.54×10-8) 

    

Multiple R2 : 0.972 

Equation: Midon ~ elev + topidx + PRRg
 + LAImin  

 

Coefficients 

  elev: 3.35×10-2 ± 4.2×10-4 (P < 2×10-16) 

  topidx: 1.51 ± 0.19 (P = 9.95×10-14) 

  PRRg: 1.63×10-3 ± 3.8×10-4 (P = 2.08×10-5) 

  LAImin: 4.45 ± 0.39 (P < 2×10-16) 

 

Multiple R2 : 0.969 

Midoff 

Equation : Midoff ~ elev2 + elev + taspect + LAImin 

 

Coefficients: 

  elev2: -2.74×10-5 ± 2.2×10-6 (P < 2×10-16) 

  elev: 5.16×10-2 ± 4.8×10-3 (P < 2×10-16) 

  taspect: 1.16 ± 0.14 (P = 4.39×10-15) 

  LAImin: -9.10 ± 0.52 (P < 2×10-16) 

       

Multiple R2 : 0.751 

Equation : Midoff ~ elev2 + elev + PRRf
2 + LAImin 

 

Coefficients: 

  elev2: -2.75×10-5 ± 2.2×10-6 (P < 2×10-16) 

  elev: 5.21×10-2 ± 4.7×10-3 (P < 2×10-16) 

  PRRf
2: 3.61×10-7 ± 4.0×10-8 (P < 2×10-16) 

  LAImin: -9.04 ± 0.51 (P < 2×10-16) 

    

Multiple R2 : 0.761 

Lengthon 

Equation : Lengthon ~ elev2 + elev + taspect + 

LAImin 

 

Coefficients: 

  elev2: -3.39×10-5 ± 5.6×10-6 (P = 6.74×10-9) 

  elev: 7.78×10-2 ± 1.23×10-2 (P = 1.31×10-9)    

  taspect: -2.60 ± 0.36 (P = 3.23×10-12) 

  LAImin: -4.43 ± 1.33 (P = 0.00096) 

  

Multiple R2 : 0.366 

Equation : Lengthon ~ elev2 + elev + PRRg
2+ 

LAImin 

 

Coefficients: 

  elev2: -3.25×10-5 ± 5.3×10-6 (P = 4.11×10-9) 

  elev: 7.26×10-2 ± 1.17×10-2 (P = 2.23×10-9) 

  PRRg
2: -1.50×10-6 ± 1.6×10-7 (P < 2×10-16) 

  LAImin: -4.30 ± 1.24 (P = 0.00063) 

 

Multiple R2 : 0.435 

Lengthoff 

Equation : Lengthoff ~ elev2 + elev + taspect  

 

Coefficients: 

  elev2: 4.25×10-5 ± 5.7×10-6 (P = 1.74×10-12) 

  elev: -9.01×10-2 ± 1.24×10-2 (P = 4.70×10-12) 

  taspect: 1.18 ± 0.36 (P = 0.0012) 

    

Multiple R2 : 0.216 

Equation : Lengthoff ~ elev2 + elev + PRRf 

 

Coefficients: 

  elev2: 4.23×10-5 ± 5.7×10-6 (P = 2.50×10-12) 

  elev: -8.94×10-2 ± 1.24×10-2 (P = 7.56×10-12) 

  PRRf: 1.82×10-3 ± 5.9×10-4 (P = 0.0021) 

 

Multiple R2 : 0.213 
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Both radiation proxies (taspect and seasonal PRR) show significant positive relationships with 

two senescence variables (Midoff and Lengthoff), and a significant negative relationships with 

Lengthon (Table 3.3; Figure 3.6). However, they show weak mixed effect on Midon, which depends 

on including an interaction term with elev (Table 3.3). An approximately 2.3-day delay in Midoff is 

indicated on south-facing slopes as compared to north-facing slopes. Lengthon on south-facing 

slopes is about 5.2 days shorter than on north-facing slopes, whereas Lengthoff is about 2.4 days 

longer. Midon is delayed by about 3.1 days for every unit increase in topidx.  

Strong significant relationships between LAImin and two mid-day phenological variables (Midon 

and Midoff) (Table 3.3) may be attributable to mixed phenological patterns with evergreen 

vegetation, reflecting delayed greenup and earlier senescence. LAImax shows a significant quadratic 

relation with elevation (R2 = 0.630, P < 2×10-16; Figure 3.7), reflecting the strong orographic effect 

along elevation gradients up to 1300 m and the transition into Northern Hardwood forest which 

have usually brighter infrared reflectance. 

 

3.4.2 Vegetation phenology between wet vs. dry years 

Figure 3.8 presents scatter plots of six phenological variables (Midon, Lengthon, 
Midoff, Lengthoff, LAImin, and LAImax;  

Table 3.1) between wet and dry years for each MODIS pixel. Overall, there is no significant 

difference for either mid-day variables (Midon and Midoff), though greenup is occasionally delayed at 

wet years in mid- and high-elevation regions (Figure 3.8). Both length variables (Lengthon and 

Lengthoff), however, are significantly larger in wet years than in dry years at most pixels with 

Lengthoff values exhibiting greater increases. LAImax values for wet years are higher than those for 

dry years, especially in low LAI ranges, while fitted LAImin values are similar for wet and dry years 

(Figure 3.8). This difference in fitted LAImax values between wet and dry years demonstrates that 
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these extended transition periods during wet years are not artifacts from more cloud contamination, 

which can possibly reduce NDVI values and extend fitted lengths of transition periods. The shorter 

transition periods (Lengthon and Lengthoff) in dry years appears to be more related to the lower 

LAImax values, as less soil water availability may limit leaf growth early and hasten leaf drop. This 

is also supported by the significant positive correlation between LAImax and Lengthon at the spatial 

scale (R = 0.471; P = 2.4×10-15; Table 3.2). 

Figure 3.9 shows the differences in major topography-mediated controls (elev and taspect) on 

two phenological length variables (Lengthon and Lengthoff) between wet and dry years. These 

controls on Lengthon and Lengthoff show clear shifts between wet and dry years, while generally 

preserving their trends. However, there are some differences in these shift patterns. taspect controls 

show parallel shifts between wet and dry years (Figure 3.9b, d). The analysis of covariance tests for 

separate lines shows that the slopes of the regression lines are not significantly different between 

wet and dry years (P > 0.1), indicating that taspect controls on the two phenological length 

variables does not vary substantially with interannual variations in moisture condition. In contrast, 

elev controls on the two phenological length variables do vary substantially between wet and dry 

years. Though elevational controls on Lengthon show mixed signals, the differences between wet 

and dry years are smallest in low-elevation ranges (Figure 3.9a). The differences in Lengthoff 

between wet and dry years are smallest in mid-elevation ranges and largest in high- and low-

elevation ranges (Figure 3.9c). This means that in wet years more extended senescence periods are 

expected in high- and low-elevation ranges than in mid-elevation ranges.  
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Figure 3.7: Elevational controls on (a) Midon (grey) and Midoff (black), (b) Lengthon 
(grey) and Lengthoff (black), and (c) LAImax (grey) and LAImin (black). Horizontal 
error bars represent Lengthon and Lengthoff.  
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Figure 3.8: Scatter plots of six phenological variables (Midon, Midoff, Lengthoff, 
Lengthon, LAImin, and LAImax) between extremely wet (2003, 2005) and dry (2001, 
2008) years.   
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Figure 3.9: Major topographic controls (elev, taspect) on length phenological 
variables (Lengthon, Lengthoff) between wet (light circles and dashed lines) and dry 
years (dark circles and solid line). 
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3.5 Discussion and conclusions 

3.5.1 Temperature controls on vegetation phenology 

This study quantifies how local vegetation phenology is mediated by topographic factors (e.g. 

elevation, aspect, and hillslope positions), closely related to micro-climate variations, vegetation 

community types, and soil water availability in the study site. In particular, elevation is a primary 

factor to characterize topography-mediated phenological features, associated with environmental 

temperature lapse rate (Bolstad et al. 1998) and orographic precipitation increases (Swift et al. 

1988).  

The mid-day of greenup (Midon) is a strong linear function of elevation, exactly following 

general empirical trends (Hopkin’s law) (Hopkins 1918; Fitzjarrald et al. 2001). This is induced by 

the dominant temperature effect on on-set of spring, especially daily minimum temperature. 

Interestingly, the start of spring (Midon) is a little delayed with increase of the topographic wetness 

index (topidx), which can be explained by cold air drainage along hillslope gradient, not by plant 

water availability. Bolstad et al. (1998) found that temperature lapse rates decreased along local 

hillslope gradients in this study region, which was attributed to cold air drainage downslope formed 

by radiative cooling during still nights (Mahrt et al. 2001; Soler et al. 2002). Bolstad et al. (1998) 

also found that reduced lapse rates are most pronounced during the early spring, a period critical to 

on-set phenological timing, and lapse rates for minimum temperature are negative throughout the 

year because cold air drainage is predominant at night-time. Many studies show that minimum (or 

suboptimal) temperature is a stronger constraint on vegetation phenology across various ecosystems 

(e.g. Jolly et al. 2005; Larcher and Bauer 1981; Jarvis and Linder 2000). Fisher et al. (2006) also 

reported a significant impact of cold air drainage on greenup phenology, a strong negative 

correlation between elevation and on-set date along four elevational transects in New England. 
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It is also possible that transitions to cove hardwoods species (e.g. L. tulipifera, T. canadensis and 

A. rubrum etc.) in cove regions (Figure 3.2; Day et al. 1988) lead to unique sensitivity of greenup 

phenological variable to the topidx variable. However, observed phenology of five major deciduous 

species in the study area reported that there was no significant difference in greenup timing between 

these species (Day and Monk 1977). T. canadensis (eastern hemlock), one of the principal riparian 

and cove species, may have unique phenological patterns compared to broadleaf deciduous species. 

However, it is facing recent severe extirpation by the introduced insect (hemlock woolly adelgid) 

(Ford and Vose 2007), so it may have limited effect on recently observed phenological signals in 

this study. 

 

3.5.2 Photoperiod controls on vegetation phenology 

Radiation proxies (taspect and PRRs) are also significant for all phenological variables (Table 

3.3; Figure 3.6), which may be related to photoperiod, temperature, and water stress. Many studies 

have shown that photoperiod plays an important role in both greenup and senescence vegetation 

phenology across different ecosystems (e.g. White et al. 1997; Partanen et al. 1998; Hanninen 

1990; Hakkinen et al. 1998). Radiation proxies have positive relationships with two senescence 

phenological variables (Midoff and Lengthoff) in this study, while a negative relationship with 

Lengthon. However, they show weak mixed effect on Midon depending on including the interaction 

term with elev (Table 3.3). Note that taspect controls on length phenological variables (Lengthon 

and Lengthoff) between wet and dry years are consistent (Figure 3.9), which possibly involves 

photoperiod controls on vegetation phenology. In addition, radiation proxies have more explanatory 

power for senescence timing (Midoff) than greenup timing (Midon).  

Elongated photoperiods on south-facing slopes can delay Midoff and lengthen Lengthoff. There 

have also been some studies that the cessation of vegetation growth stage is closely related to 

photoperiod (Zhang et al. 2004; Junttila 1980; Hanninen et al. 1990; Schwartz 1990). Even 
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though there is no common agreement on an appropriate model structure for leaf senescence 

(Schaber and Badeck 2003), some studies reviewed more dominant roles of photoperiod on 

senescence (or dormancy onset) than greenup phenology (greenup onset or dormancy release) for 

cool and temperate woody plants (White et al. 1997, 2002; Wareing 1956; Lee et al. 2003).  

However, shorter Lengthon are also observed on south-facing slopes, which is hard to explain 

with photoperiod alone. We found that longer Lengthon may correspond to higher vegetation density 

(LAImax) both along elevation gradients (Figure 3.7) and interannually (Figure 3.8). However, 

multiple regression analysis (not shown here) show that radiation proxies are not significant for 

LAImax (P > 0.1; not shown here), which implies that shorter Lengthon on south-facing slopes are not 

related to lower vegetation density. In addition, radiation proxies also show weak negative 

relationships with Midon if the interaction terms with elev are included for both models (Table 3.3). 

They may represent faster growth of vegetation by combined effect of photoperiod and temperature, 

but more limited growth or belowground allocation by water stress on south-facing slopes.  

In this study, radiation proxies are more significant for Lengthon than for Midon (Table 3.3). This 

result implies that radiation proxies are more related to photoperiod and photosynthetically active 

radiation (PAR) (or daily temperature amplitude) than to minimum temperature, which is more 

important for Midon. There are some disagreements as to whether the timing of growth onset is 

regulated solely by temperature (Partanen et al. 1998; Richardson et al. 2006; Chuine et al. 1999). 

Interactions between photoperiod and temperature may limit foliar phenology. As an example, bud-

burst may not be triggered by temperature without corresponding photoperiod changes especially in 

high-latitude regions (Partanen et al. 1998; Hakkinen et al. 1998; Heide 1993). However, many 

studies in deciduous forests also reported that a large portion of the spatial and interannual 

variations in spring canopy development are explained by temperature alone (Jenkins et al. 2002; 

Richardson et al. 2006; Chuine and Cour 1999).  
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3.5.3 Other controls on vegetation phenology 

Temperature effects alone cannot explain the quadratic responses of the three phenological 

variables (Midoff, Lengthon, and Lengthoff) to elevation (Figure 3.7), which could be explained by 

combined effects with orographic precipitation patterns (Swift et al. 1988). Delayed senescence in 

the mid-elevation region is related to higher water availability and vegetation density following 

orographic precipitation increases with elevation (Figure 3.7). Fitted maximum LAI values (LAImax) 

show this increased vegetation density along elevational gradients up to 1200 m, correlated not only 

to increased water availability but also to increased wet deposition of nitrogen following 

precipitation (Knoepp et al. 2008). The increase of LAImax is possibly from the increase of NDVI by 

the transition into Northern Hardwood forest at higher elevation, which has usually brighter 

infrared reflectance. Higher vegetation density (LAImax) is also relevant to longer greenup period 

(Lengthon) at mid-elevation regions, represented by a significant positive correlation at the MODIS 

spatial scale (Table 3.2).  

The comparison of LAImax between wet and dry years shows that water availability is a more 

limiting factor at lower elevation regions (Figure 3.8). Greater increases of LAImax in wet years are 

found in lower LAImax ranges, usually developed at lower elevation regions (Figure 3.7). Also, 

elevational controls on Lengthoff between wet and dry years show higher increases in lower 

elevation regions (Figure 3.9c). Vegetation in lower elevation regions is more sensitive to 

precipitation than mid-elevation regions, as water (or nitrogen) is a more limiting factor for their 

growth.  

Temperature is still a dominant factor for other phenological variables in high elevation regions, 

represented as early litterfall, shorter greenup period, and longer senescence period. Combined 

effects of temperature and orographic precipitation show distinct quadratic responses of three 

phenological variables as a function of elevation, also moderated by forest community types. Note 

that high elevation regions are regarded as transition zones from Southern Appalachian to Northern 
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Hardwoods forest (Figure 3.2), which has different phenological responses to climate factors 

(Fisher et al. 2007). These patterns also relate to different limiting factors of vegetation growth 

along elevational gradients, water or nitrogen limited at lower elevation regions and temperature 

limited at higher elevation regions (Knoepp and Swank 1998; Knoepp et al. 2008).  

Strong significance of LAImin to two mid-day phenological variables effectively represents the 

effect of coniferous and understory evergreen species on vegetation phenology (Table 3.3), which is 

characterized as more delayed greenup and earlier senescence with higher LAImin. Seasonal 

dynamics of pine LAI in this study site show typical sinusoidal patterns (Vose and Swank 1990; 

Vose et al. 1994), which may reduce the length of a growing season at both ends. In addition, early 

development of understory broadleaf may not be detected well by the sensor due to overstory 

evergreen vegetation in low NDVI ranges. This may also result in delayed greenup and early 

senescence in averaged phenological signals within a MODIS pixel.  

 

3.5.4 Growing season length (GSL) vs. vegetation growth 

Growing season length (GSL) is usually defined as the length between greenup onset and 

dormancy onset (Churkina et al. 2005; Chen et al. 1999b). In this study, interannual variations of 

GSL between wet and dry years show a possible correlation of GSL with vegetation growth (Figure 

3.8). Earlier greenup and extended senescence periods were observed in wet years (Figure 3.8). 

Extended GSL is also associated with higher vegetation growth (maximum LAI), known to be 

tightly coupled with net ecosystem production (e.g. Barr et al. 2004). However, this correlation 

between GSL and vegetation growth depends on how GSL is defined from LAI trajectories. If GSL 

is defined as the length between Midon and Midoff (White et al. 1999), there is not much difference 

of GSL between wet and dry years (Figure 3.8). 

Many studies point out a major role of GSL in the terrestrial carbon cycle (Keeling et al. 1996; 

Myneni et al. 1997; Randerson et al. 1999; White et al. 1999; Chen et al. 1999b; Black et al. 
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2000; Churkina et al. 2005). However, recent studies also reviewed the possibility that more soil 

water depletion could cancel out early spring carbon assimilation by enhancing summer drought 

(White and Nemani 2003; Angert et al. 2005). From multi-year flux tower measurements, leaf 

phenology is known to be strongly correlated with annual net ecosystem production in temperate 

and boreal forests (Goulden et al. 1996; Baldocchi et al. 2001; White and Nemani 2003; Barr et 

al. 2004).  

Most studies of the relationship between GSL and carbon uptake by vegetation have focused on 

early greenup onset driven by increased temperature and its impact on atmospheric CO2 amplitudes 

and carbon uptake by vegetation. They usually report that there was no significant extension of 

growing season during the fall despite early greenup (Myneni et al. 1997; Randerson et al. 1999; 

Chen et al. 1999b; Black et al. 2000; Barr et al. 2004). However, this study shows that GSL can 

be extended at both growth and senescence ends in extremely wet years compared to extremely dry 

years, possibly related to higher vegetation growth (LAImax) and more carbon uptake by vegetation. 

A dominant role of seasonal rainfall or soil water stress on vegetation phenology has usually been 

reported for most drought-deciduous species in tropics and semi-arid areas (Nilsen and Muller 

1981; Childes 1988; Borchert 1994; Botta et al. 2000; Bach 2002; Jolly and Running 2004), 

where greenup is initiated by the first large precipitation event, and senescence is more slowly 

modulated by available soil water. In the Piedmont area, Pataki and Oren (2003) found that early 

autumn leaf senescence and abscission is the primary effect of severe drought rather than stress-

driven stomatal closure from sap flux measurements of six common deciduous species in eastern 

oak-hickory forest during severe drought. 

Note that we could not find any significant positive correlation between GSL and LAImax at the 

MODIS spatial scale. Some studies reported inter-site positive correlations between GSL and net 

ecosystem production (White et al. 1999; Baldocchi et al. 2001; Churkina et al. 2005). However, 
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we found a significant correlation between Lengthon and LAImax at local patterns of topography-

mediated vegetation phenology (Table 3.2).  

 

3.5.5 Spatial scale issues 

In this study, sub-grid variability of topographic variables, especially taspect and topidx, 

suggests important scale issues in the relationship between topographic and phenological variables. 

The hillslope position (topidx) seems significant only for the Midon variables, which can be 

explained by cold air drainage rather than soil water availability. The insignificance of topidx to 

senescence phenological variables may be attributed to the transition of vegetation community 

types into cove hardwood species, for which phenological features may be constrained by other 

factors (e.g. light) rather than soil water availability. However, we found strong precipitation-

related controls on phenological variables in terms of both orographic and interannual variations. 

Therefore, sub-grid variability can be a more reasonable explanation for the insensitivity of 

vegetation senescence as a function of hillslope position. Averaged topidx ranges at the MODIS 

scale are from 4 to 5.5 (Figure 3.6), not enough to examine full controls of soil water on 

phenological features at finer scales. Interestingly, cold air drainage effects on greenup vegetation 

phenology came out in this study because cold air drainage may show broader flowpath patterns 

than water along hillslope gradient at the MODIS scale. Note that topidx at MODIS scale was 

calculated from aggregating values from the original DEM scale, while radiation proxies were 

calculated from degraded DEM to MODIS scale.  

Micro-topography can be lost when aspect and PRRs are calculated at the MODIS scale. 

Contrary to elevation, very diverse sub-grid distributions of aspect and PRRs are expected within a 

single MODIS pixel, so it is possible that phenological responses to these radiation proxies are 

more exaggerated at finer scale. Comparisons of radiation proxies between two different upscaling 

methods would clarify this point. Figure 3.10 shows scatter plots between radiation proxies at each 
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MODIS pixel from two different upscaling methods. Radiation proxies on the x-axis are calculated 

from upscaled DEM, while those on the y-axis from aggregating radiation proxies at the original 

DEM scale. They show some reasonable correlations, but different patterns between them.  

As for taspect, we have narrower ranges when they are aggregated from the original DEM 

(Figure 3.10). The pixel classified as south-facing at MODIS scale can have diverse aspects in the 

level of sub-grid variability. Note that taspect is a relative term between -1 and 1 to represent 

radiation potentials at each pixel. However, PRRg values from upscaled DEM show narrower ranges 

than those aggregated from the original DEM (Figure 3.10). It is mainly because the coarse DEM 

simplifies topography and reduces slope, so it may lose some micro-topographic features which 

usually decreases the heterogeneity of incident radiation.  

This scaling issue implies that phenological responses to radiation proxies described in this study 

show reduced gradients compared to actual vegetation responses by filtering their signals and 

topographic variables at the MODIS scale. Previous studies have also shown that aggregating 

topographic variables into a coarse resolution (e.g. AVHRR, MODIS) can significantly reduce 

variations in these variables and resulting LAI values (e.g. Band et al. 1991; Band 1993; Band and 

Moore 1995).  

Continuous field measurements of optical LAI at six different locations in this study site 

(unpublished data from Dr James Vose), apparently supports reduced phenological responses at 

coarser resolution, especially in terms of radiation proxies. Temporal patterns of LAI were 

previously measured at six different locations represented as high-, mid-, low-elevation and south-, 

north-facing slopes within the study site throughout the year. Very similar relationships between 

topographical factors and vegetation phenological patterns were found in the field measurements. In 

terms of greenup timing, elevation was a dominant factor, whereas both elevation and aspect were 

crucial for senescence timing. Estimated Midon and Midoff in this study, largely corresponded with  
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Figure 3.10: Comparison of radiation proxies (taspect, PRRg) from two different 
upscaling methods at each MODIS pixels. Radiation proxies of x-axis were 
calculated from upscaled DEM at MODIS scale (about 250 m), while those of y-axis 
from averaging of the original scale radiation proxies from LIDAR DEM (about 6 m). 
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those from field measurements. However, field measurements between south and north facing 

slopes exhibited more than a 3-day differences in Midoff, estimated in this study. The scale variance 

nature of both qualitative and quantitative radiation proxies (Figure 3.10) makes it hard to find a 

consistent relationship with phenological variables. 

 

3.5.6 Conclusions 

In this study, we extract phenological signals from 8-year MODIS NDVI (2001 ~ 2008) with a 

two-step filtering and non-linear fitting method within the Coweeta LTER site. These phenological 

signals are related to topographic variables, such as elevation, aspect, potential relative radiation, 

and wetness index, by multiple regression analysis. Elevation shows strong linear or quadratic 

relationships with four phenological variables. Quadratic responses of three phenological variables 

(Midoff, Lengthon, and Lengthoff) with elevation are explained by combined effects of temperature 

and precipitation along the elevation gradient. Radiation proxies (taspect and PRRs) also have 

explanatory power for phenological variables, associated with photoperiod controls on vegetation 

phenology. Hillslope positions (topidx) show significant effects on the Midon phenological variables, 

possibly related to decreased temperature lapse rates along local hillslope gradients by cold air 

drainage downslope. Though topographic wetness position was not observed to have a significant 

effect on vegetation phenology from MODIS NDVI, the difference of vegetation phenology 

between extremely wet and dry years reveals possible extended growing season length in wet years. 

These topography-mediated phenological patterns are strongly supported by field measurements at 

different topographic positions within the study site. However, phenological responses to radiation 

proxies might be mitigated due to the scale variance nature of both radiation proxies between fine 

and coarse resolutions. 

In conclusion, topography-mediated controls on local vegetation phenology are closely related to 

the combined effect of micro-climate variations, vegetation community types, and hydrological 
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positions. The capability of detecting the topography-mediated local phenology offers the potential 

to detect vegetation responses to future global climate change in mountainous terrains. 
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Appendix 

The fourth derivative of the logistic function (Eq. 3.2) is solved as 
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If we substitute xe bta =+  and rearrange this equation 
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Then, this equation can be factorized as 
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We can get local minima and maxima values of the third derivative of the logistic function 

(Figure 3.5d) by setting the above equation to zero. Note that x cannot be zero. 

1=x  or 01102 =+− xx  

where the first (x = 1) represents the middle minima or maxima values and the latter (x2 – 10x + 1 = 

0) represents both side maxima or minima values (Figure 3.5d). From the quadratic formula, we can 

get this solution as 
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If x is resubstituted by t, we can get final solutions for transition dates. 
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Chapter 4 Estimation of real-time vegetation dynamics for 

distributed ecohydrological modeling by fusing multi-

temporal MODIS and Landsat NDVI data  

 

4.1 Abstract 

Canopy phenology is an important driver of seasonal to annual water and carbon budgets. Recent 

developments in remote sensing technology provide the potential to link dynamic canopy 

measurements with integrated process descriptions within distributed ecohydrological modeling 

frameworks. In particular, near real-time global satellite products (e.g. MODIS) make it possible to 

integrate temporal patterns of vegetation dynamics for distributed hydrological modeling. However, 

the coarse spatial resolution is not able to discriminate catchment scale ecohydrological dynamics. 

In addition, global satellite products significantly average a large portion of the landscape terrain 

variance, therefore a significant bias can result from lumped representation of hydrological 

processes. Two downscaling methods are developed to overcome this issue by fusing multi-

temporal MODIS and Landsat data in conjunction with topographic information to estimate high 

resolution daily vegetation density over complex terrain. MODIS FPAR (fraction of absorbed 

photosynthetically active radiation) is used to provide medium resolution phenology, while sub-grid 

variability of vegetation density is estimated from composite Landsat NDVI images as a function of 

day of year. The relationship between the downscaled MODIS FPAR and the composite sub-grid 

NDVI values is represented with a simple linear proportionality parameter, which includes the 
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linear relationship between sub-grid NDVI and FPAR, as well as proportional phenological 

discrepancy between the MODIS FPAR and the Landsat composite NDVI. Combining spatial 

resolution of Landsat and temporal resolution of MODIS can bridge gaps between spatial and 

temporal limitations of both image sets in applications to catchment-scale distributed hydrological 

modeling. This method is used to assimilate downscaled MODIS-derived seasonal phenology into 

dynamic simulations of high spatial resolution patterns of water, carbon and nutrient cycling in 

mountainous watersheds. 

 

4.2 Introduction 

Remote sensing products provide valuable information for distributed hydrological modeling 

across different spatial and temporal scales, including key estimates of water and carbon state 

variables (e.g. soil moisture, snow, leaf area index), climatic forcing variables (e.g. precipitation, 

temperature), and other spatial information (e.g. land cover). The near real-time global satellite 

products from the moderate-resolution imaging spectro-radiometer (MODIS) on the Terra/Aqua 

platforms make it possible to estimate the spatial and temporal variations of water fluxes (e.g. 

evapotranspiration, streamflow) by assimilating several key variables for distributed hydrological 

modeling; snow cover (MOD10), land surface temperature/emissivity (MOD11), land cover 

(MOD12), leaf area index (LAI)/fraction of absorbed photosynthetically active radiation (FPAR) 

(MOD15), and white sky albedo (MOD43) (Andreadis and Lettenmaier 2006; Cleugh et al. 2007; 

Mu et al. 2007; Leuning et al. 2008; Pan et al. 2008; Zhang et al. 2008). 

However, global satellite products from MODIS significantly average a large portion of the 

landscape terrain variance. Therefore, a significant bias can be derived from lumped representation 

of surface resistance and significant sensitivity of vapor and heat flux to soil water distributions 

(Band et al. 1993; Band and Moore 1995). For example, non-Gaussian sub-grid variability in soil 

moisture distributions especially under dry conditions (Famiglietti et al. 1999; Ryu and Famiglietti 
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2005) result in significant bias in modeling water and energy fluxes at the global scale, associated 

with non-linear responses of ecohydrological processes to soil moisture condition, transpiration 

(Rodrigueziturbe et al. 1991; Avissar 1992), runoff generation (Bronstert and Bardossy 1999; 

Grayson et al. 1997; Uchida et al. 2005), net primary production (Band 1993; Band and Moore 

1995; Hwang et al. 2008), and boundary layer development (Walko et al. 2000). 

For this reason, there have been efforts to integrate the spatio-temporal distribution of soil 

moisture sub-grid variability for macro-scale hydrological models, based on a priori probability 

distribution function of precipitation (Entekhabi and Eagleson 1989; Liang et al. 1996), terrain 

variables (Famiglietti and Wood 1994; Band et al. 1991; Avissar 1992; Band and Moore 1995), 

snow cover (Luce et al. 1999; Luce and Tarboton 2004), and soil properties (Liang et al. 1996; 

Liang and Xie 2001). However, a major problem of this approach is that there is no consensus for 

the appropriate probability distribution function for sub-grid variability (see Ryu and Famiglietti 

2005). Particularly in applications for topographically complex regions, it is hard to solve for the 

appropriate probability density function analytically considering non-linear interactions and 

complex covariance structures with other biophysical variables (e.g. LAI, rooting depth).  

The sub-grid variability of vegetation is often integrated into macro-scale hydrological models as 

a form of vegetative fraction (Gutman and Ignatov 1998), calculated from maximum and minimum 

vegetation indices (e.g. NDVI, EVI). A recently developed MODIS evapotranspiration algorithm 

estimates seasonal and spatial variations of vegetative fraction to linearly partition net radiation into 

vegetative and non-vegetative fraction within a MODIS pixel (Nishida et al. 2003; Cleugh et al. 

2007; Mu et al. 2007). However, this method simplified sub-grid variability of vegetation density 

for the application to global evapotranspiration estimates, and may not be appropriate for local or 

catchment scale simulations.  

Combining multi-resolution imagery can provide a possible solution for this problem. Landsat 

has 30-m spatial resolution with 16-day overpass frequency, but cloud contamination often limits 
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the ability to detect dynamics of biophysical properties such as vegetation phenology. MODIS has 

more frequent temporal resolution (twice a day), but a coarser spatial scale (about 250 m for red 

and near-infrared bands, about 500 m for other bands) than Landsat. Landsat and Terra have equal 

orbital parameters and less than a 30 minute difference in equator crossing time. MODIS bands 

have slightly narrower bandwidths compared to corresponding bands of Landsat Thematic Mapper 

(TM) (Table 4.1). Therefore, combining the spatial resolution of Landsat TM and the temporal 

resolution of MODIS can bridge gaps between limitations of both image sets in applications to 

distributed hydrological modeling at local scales. 

Traditional studies fusing multi-resolution images have focused on producing high resolution 

multi-spectral images by combining a fine resolution panchromatic band and coarse resolution 

spectral bands (e.g. Pohl and van Genderen 1998). Recently, Gao et al. (2006) successfully 

produced high-resolution spatial reflectance by blending Landsat Enhanced TM+ and MODIS 

surface reflectance with the spatial and temporal adaptive reflectance fusion model (STARFM). 

However, this method is too dependent on finding pure coarse-resolution neighborhood pixels and 

is hard to apply for topographically complex terrain where the solar bidirectional reflectance 

distribution function (BRDF) changes not only temporally, but also as a function of topographic 

position. Roy et al. (2008) also suggested an interesting fusing method between Landsat and 

MODIS data using the MODIS BRDF/albedo products (MCD43). They used a simple ratio to 

estimate Landsat reflectance on a prediction date from reflectance on an observation date. The ratio 

was calculated from the 500 m surface reflectance on both dates, simulated with the MODIS BRDF 

parameters and sun-sensor geometry (Roy et al. 2008). Note that the target variable of these fusing 

methods was reflectance at each spectral band. 
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Table 4.1: Landsat TM and MODIS bandwidths of red and near infrared bands 

 Landsat TM bandwidth (nm) MODIS band bandwidth (nm) 

Red 630 ~ 690 (band 3) 620 ~ 670 (band 1) 

Near infrared 760 ~ 900 (band 4) 841 ~ 876 (band 2) 
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The ‘ratioing’ indices (e.g. NDVI, EVI, SR) provide more consistent spatial and temporal 

criteria for vegetation conditions than reflectance after normalization of external radiometric and 

atmospheric effects. This is because they may cancel out a large portion of the multiplicative noise 

attributed to illumination differences, cloud shadows, topographic variations, and atmospheric 

conditions (Huete et al. 2002). Normalized difference vegetation index (NDVI) is a normalized 

ratio between surface reflectance of red and near infrared bands:  

)/()( REDNIRREDNIRNDVI ρρρρ +−=   (4.1) 

where ρRED and ρNIR are surface reflectance of red and near-infrared bands. NDVI is directly related 

to various vegetation biophysical parameters (e.g. LAI, FPAR, canopy cover, and biomass) across 

different ecosystems (Tucker 1979; Asrar et al. 1984; Sellers 1985). The spatio-temporal 

consistency of NDVI for vegetation dynamics can provide significant advantages over reflectance 

as a target variable when applying multi-resolution methodology in topographically complex terrain. 

Vegetation density is closely related to the fraction of absorbed photosynthetically active 

radiation (FPAR) and leaf area index (LAI). FPAR is a good indicator for energy absorption by 

vegetation and subsequent carbon uptake based on the light use efficiency. LAI is an important 

driver in process-based biogeochemical models, which tends to be correlated with aboveground net 

primary production and biomass across a broad range of ecosystems (Gower et al. 2001; Asner et 

al. 2003). LAI determines canopy interception capacity for evaporation and potential transpiration 

through stomata in the water cycle. Vegetation compromises between its growth and water stress 

for optimal carbon uptake (so-called ‘growth-stress trade-off’) (Mackay 2001; Kerkhoff et al. 

2004), represented as a non-linear relationship between FPAR (energy use) and LAI (water use). 

These two important biophysical properties are linearly or non-linearly correlated with NDVI from 
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remote sensing images, so NDVI may play a crucial role for downscaling vegetation density by 

combining multi-resolution images at topographically complex terrain.  

In this study, we suggest two downscaling methods of near real-time global satellite products 

(MODIS) into Landsat scale FPAR/LAI values for distributed hydrological modeling. MODIS 

FPAR can be downscaled into fine resolution each day, based only on sub-grid variability of 

composite Landsat TM NDVI with (a topographically corrected downscaling) or without (a simple 

downscaling) considering sub-grid variability of potential incoming radiation. Combining spatial 

resolution of Landsat and temporal resolution of MODIS can overcome temporal and spatial 

limitations of both image sets in applications of global satellite products into catchment-scale 

distributed hydrological modeling. 

 

4.3 Method and Materials 

4.3.1 Study site 

The Coweeta Hydrologic Lab is located in western North Carolina, USA and is representative of 

the Southern Appalachian forest (Figure 4.1). The Southern Appalachian forest has very diverse 

flora as a result of the complex terrain and consequent variability in microclimates and soil 

moisture (Whittaker 1956; Day and Monk 1974). Mean monthly temperature varies from 3.6 ºC in 

January to 20.2 ºC in July. The climate in the Coweeta basin is classified as marine, humid 

temperate, and precipitation is relatively even in all seasons; annual precipitation ranges from 1870 

mm to 2500 mm with about a 5% increase for each 100 m (Swift  et al. 1988). The dominant 

species are oaks and mixed hardwoods including Quercus spp. (oaks), Carya spp. (hickory), Nyssa 

sylvatica (black gum), Liriodendron tulipifera (yellow poplar), and Tsuga canadensis (eastern 

hemlock), while major evergreen undergrowth species are Rhododendron maximum (rhododendron) 

and Kalmia latifolia (mountain laurel) (Day et al. 1988). 
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Figure 4.1: A study site (Coweeta Hydrologic Lab). Grids represent the MODIS 
(MOD13Q1; about 230 m) pixels. Red and yellow lines represent the boundaries of 
sub-watersheds and WS08 (an upper basin of Coweeta). Letters indicates the 
pixels for examples of fitting and downscaling methods (Figure 4.2; Figure 4.3; 
Figure 4.8; Figure 4.9) 
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A distributed hydrological model is simulated at the upper basin of Coweeta (Shope Fork creek; 

WS08; Figure 4.1) with 30-m grid scale (n = 8654), which includes very diverse ranges of 

topographic factors (elevation, aspect, slope, and topographic index). The Coweeta basin has 

distinct phenological patterns at different topographic positions. Onset of greenup is delayed by 

about a month as a strong linear relationship of elevation, and onset of dormancy also shows unique 

spatial patterns by a combination of temperature, orographic precipitation, and photoperiod 

(Chapter 3). These distinct spatial patterns of vegetation phenology within the basin facilitate the 

use of near real-time global satellite products for distributed hydrological simulation, with respect 

to not only interannual variations but also spatial variations of vegetation phenology. 

 

4.3.2 Landsat NDVI 

We acquired forty-nine Landsat 5 TM images in this study site from 2000 to 2008 (WRS path 

19/row 36 and path 18/row 36), all of which are absolutely cloud-free for the study area and 

standard level-one terrain-corrected (L1T) products. The L1T product includes radiometric, 

systematic geometric, and precision correction using ground control chips, and uses digital 

elevation model (DEM) to correct parallax error due to local topographic relief (Johnson et al. 

2009). Geolocation accuracy of the L1T product depends on the resolution of the DEM used. The 

geolocation error of L1T-level corrected Landsat images is less than 30 m in the United States even 

in areas with substantial terrain relief (Lee et al. 2004). All images are provided as a GeoTIFF file 

format with the Universal Transverse Mercator (UTM) coordinate system. Dark object subtraction 

(DOS) method is commonly used for Landsat TM imagery to correct atmospheric effects on surface 

reflectance (Chavez 1996). In this study, we used a modified DOS method which adds the effect of 

Rayleigh scattering to the conventional DOS method. This method was claimed to produce the best 

overall results in terms of classification and change detection, compared to other more complicated 
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atmospheric correction method (Song et al. 2001). A detailed methodology is available in Song et 

al. (2001).  

Daily composite NDVI images at each day of year (DOY) are produced from Landsat images 

within 15-days after and before with an inverse distance weighting method. Based on daily 

composite NDVI images, near real-time MODIS NDVI values are downscaled into Landsat 

resolution. A compositing method is usually integrated to fill cloud-contaminated or missing pixels 

for near-daily global satellite products (e.g. AVHRR, MODIS) (Huete et al. 2002). In this study, 

however, this method is integrated to estimate the sub-grid variability of the MODIS NDVI at each 

DOY. Note that sub-grid variability of MODIS NDVI temporally changes as vegetation phenology 

has distinct temporal patterns at sub-grid scale by a combined effect of micro-climate condition, 

vegetation community types, and hillslope position in this study site (Chapter 3).  

This method explicitly assumes that the sub-grid variability of MODIS NDVI changes 

seasonally, but has negligible interannual variations. Vegetation at the sub-grid scale may respond 

differently to interannual climatic variations, therefore this assumption introduces some error. A 

main reason why we do not produce daily composite NDVI images at each date is that there are not 

enough images to cover full phenological patterns each year. However, we believe that temporal 

variations of sub-grid variability are more dynamic and significant than interannual variations of 

sub-grid variability. We will check this assumption later. Therefore, interannual variations of 

vegetation phenology are solely dependent on temporal trajectories of MODIS NDVI, while sub-

grid variability of MODIS NDVI is determined by composite Landsat NDVI on corresponding 

DOY.  

 

4.3.3 MODIS NDVI and FPAR 

MODIS NDVI products (MOD13Q1 version 5) are released in the HDF-EOS data format as 

Sinusoidal projections with 16-day temporal resolution and approximately 250-m spatial resolution. 
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The MODIS geolocation error is approximately 50 m at nadir (Wolfe et al. 2002). They are 

reprojected to the GeoTIFF file format with the UTM coordinate system using a bilinear resampling 

technique by the MODIS reprojection tool (MRT; 

https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool). The current version of MODIS 

NDVI products (version 5) is provided with two newly added parameters; pixel reliability and day 

of composite (Didan and Huete 2006). Based on the pixel reliability, good and marginal NDVI 

values are chosen for post-processing analysis for the production of MODIS NDVI values from late 

2000 to early 2009. Marginal data are included for this study as there is an insufficient number of 

good quality data to show the full range of phenological patterns, and even good quality data have 

unreasonable phenological patterns in this high-precipitation region. The day of composite 

information at each pixel is also retrieved to get the exact acquisition date during the composite 

period (Didan and Huete 2006). This information was suggested to be quite important for 

extracting exact phenological signals (Fisher and Mustard 2007). 

A simple two-step filtering method is incorporated to filter out unqualified data points after 

initial quality control based on pixel reliability values at each pixel. This two-step filtering 

technique consists of an outlier exclusion method and a modified Best Index Slope Extraction 

(BISE) method (Chapter 3). After this simple post-processing, a difference logistic function is used 

to fit temporal MODIS NDVI values (Fisher et al. 2006).  
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Details in filtering and fitting MODIS NDVI values are available in chapter 3.3. In the process 

of non-linear model fitting, fitting parameters are sometimes not identifiable as there are no proper 

intermediate values between maximum and minimum NDVI in the middle of the greenup and 
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senescence periods. In this case, we reduced fitting variables by using shape parameters (b and b´ in 

Eq. 4.2) estimated from 8-year composite trajectories as a function of DOY (Figure 3.4). 

Vegetation phenology at forest-based ecosystems is quite periodic. Therefore there is only a 

single mode of greenup and senescence per year. Compared to a logistic function, fitting with the 

difference logistic function can reduce the number of fitting variables and assure the continuity of 

maximum NDVI values between phases during the summer. At each year, the model is fitted 

between mid-days of dormancy periods in this year and the next year. Mid-day of dormancy periods 

are calculated from the model fitting of multi-year NDVI trajectories as a function of DOY at each 

pixel.  

A key MODIS product to downscale is the fraction of absorbed photosynthetically active 

radiation (FPAR) (Myneni et al. 2002). Phenological patterns of FPAR are important not only for 

carbon assimilation based on light use efficiency, but also potential canopy interception capacity for 

evaporation in a water cycle. FPAR has a linear relationship with NDVI across different satellite 

sensors (Myneni et al. 2002; Sellers 1985; Asrar et al. 1992; Myneni and Williams 1994; 

Knyazikhin et al. 1998; Hall et al. 1992). The linear NDVI-FPAR relationship is known to be 

largely dependent on vegetation community type and structure. We estimated a linear NDVI-FPAR 

relationship locally by matching 1-km MODIS NDVI (MOD13A2) and FPAR (MOD15A2) in the 

study area. Note that the MODIS FPAR/LAI (MOD15A2) is currently provided at only about 1-km 

spatial resolution, so we used this linear NDVI-FPAR relationship to transform the 250-m MODIS 

NDVI (MOD13Q1) into estimated MODIS FPAR values.  

   

4.3.4 Downscaling MODIS FPAR into sub-grid scale 

MODIS FPAR represents the integrated effect of sub-grid FPAR values. There can be two ways 

to express the relationship between the MODIS FPAR and sub-grid FPAR values. First, the MODIS 
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FPAR on date t (FPARt) can be expressed as a mean value of all sub-grid FPAR values on date t 

(FPARi,t) as in 
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where i represents sub-grid pixel locations, and n is the number of sub-grid pixels within a single 

MODIS pixel. The numbers of sub-grid pixels (n) are between 49 (7 × 7) and 64 (8 × 8) considering 

that MODIS (~ 230 m) and Landsat TM (30 m) spatial resolutions. However, this equation 

explicitly assumes that all sub-grid pixels receive uniform incident PAR. If we consider the sub-

grid variability of incident PAR, FPARt can be expressed with a weighted average of FPARi,t with 

incident PAR at each sub-grid pixel on corresponding DOY (IPARi,DOY) as in 
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where APARi,t is the absorbed PAR at each sub-grid pixel i and date t. Total potential incoming 

PAR on each slope is a function of topography and solar geometry. Potential incoming radiation at 

each pixel (IPARi,DOY) is calculated at Terra crossing time (around 10 a.m. local time) on the 

corresponding DOY, based on MT-Clim algorithm (Running et al. 1987). Note that potential IPAR 

should be used for this equation, not actual PAR measurement, because fitted FPARt values are not 

actual measurements, but estimates under the assumption of cloud-free conditions. 

Checking the difference between Eq. 4.3 and 4.4 is to test scale invariance of FPAR; a concept 

proposed by Hall et al. (1992). The definition of scale invariance is that biophysical parameters 

estimated from aggregated radiance at coarse resolution (lumped) should be the same with 

aggregated biophysical parameters calculated from fine resolution radiance (averaged). In Eq. 4.3, 
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integrated FPAR (FPARt) is defined as aggregated mean from sub-grid FPAR (FPARi,t= 

APARi,t/IPARi,DOY), whereas FPARt is calculated from aggregated IPAR (Σ IPARi,DOY) and APAR (Σ 

APARi,t) in Eq 4.4. 

We used the composite Landsat NDVI image as an indicator for the sub-grid variability of the 

MODIS FPAR, assuming the simple linear relationship between sub-grid FPAR at each time 

(FPARi,t) and composite Landsat NDVI on corresponding DOY (NDVIi,DOY) as in 

DOYitti NDVIFPAR ,, ⋅=α   (4.5) 

where αt is a key proportionality parameter of the downscaling process in each MODIS pixel that 

varies with time t. αt parameter includes both the linear relationship between Landsat NDVI and 

sub-grid FPAR, as well as proportional phenological discrepancy between near real-time MODIS 

FPAR and composite Landsat NDVI on corresponding DOY. Note that FPARi,t is a final target 

variable for a downscaling process, simply calculated by multiplying NDVIi,DOY with the time-

varying proportionality parameter (αt). This method explicitly assumes a constant coefficient of 

variance between FPARi,t and NDVIi,DOY. The equation is also based on the assumption that there is 

no disturbance during the simulation period, which may be true in this study site.  

αt can be solved by inserting Eq. 4.5 into Eq. 4.3 and 4.4 such as 
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Both αt are calculated at MODIS scale on each date, which provides proportionality between 

target variables (FPARi,t) and the composite NDVI values on corresponding DOY (NDVIi,DOY). We 

would call these two techniques as a simple and a topographically corrected downscaling method. 

Note that all variables related to sub-grid variability (NDVIi,DOY, IPARi,DOY) are calculated based on 

DOY, which would not only reduce computational loads, but also provide a basis of fusion between 

spatial and temporal resolutions of MODIS and Landsat image sets. For significant geolocation 

errors for both Landsat (< 30 m) and MODIS (< 50 m) images, Landsat pixels with two and more 

MODIS grids crossover, are calculated as a sub-pixel of the MODIS grid to which largest portion of 

these Landsat pixels belongs.  

Finally, sub-grid LAI values are calculated from FPARi,t values by a non-linear relationship 

between FPAR and LAI, which is locally derived by field measurements in the study area (Sullivan 

et al. 1996).  

 

4.3.5 Simulation of a distributed ecoydrological model 

A process-based ecohydrological model (RHESSys; Regional Hydro-Ecological Simulation 

System) (Band et al. 1993; Tague and Band 2004) is used in this study. The model is simulated at 

30 × 30 m downscaled grid cell resolution within WS08 (patch; n = 8654). Daily climate (maximum 

and minimum temperature, precipitation, average vapor pressure deficit, total downward direct 

radiation) at two climate/rain gauge stations at low and high elevation (CS01/RG06 and 

CS28/RG31) are used in this study. For the model simulation, we used universal kriging with 

elevational trends from 7-point measurements within the Coweeta basin from 1991 to 1995 to 

develop long-term rainfall isohyets to scale daily precipitation over the terrain. Many physiological 

parameters and other (e.g. soil, nutrient) parameters measured within the study site are used 

(Hwang et al. 2009). 



 
  

 
138 

 

The model is calibrated with streamflow data varying three TOPMODEL parameters, m (the 

decay rate of hydraulic conductivity with depth), and the lateral/vertical Ksat0 (saturated hydraulic 

conductivity at surface). Monte-Carlo simulation is implemented two thousand times with randomly 

sampled parameter values within certain acceptable ranges for a three-year calibration period 

(October 2003 ~ September 2006). To allow soil moisture to stabilize, a one and a half year 

initialization is employed before the calibration period. The Nash-Sutcliffe (N-S) coefficient (Nash 

and Sutcliffe 1970) for lognormal streamflow discharge is used to evaluate model performance 

because this objective function is biased toward base flow, which is more sensitive to vegetation 

dynamics.  

 

4.4 Results 

4.4.1 MODIS and Landsat NDVI values 

Figure 4.2 shows 8-year (2001 ~ 2008) temporal patterns of filtered MODIS NDVI values and 

fitted models on MODIS pixels in topographically different positions within the study site (Figure 

4.1). They show very periodic phenological patterns each year, as well as very stable maximum and 

minimum NDVI values during maturity and dormancy periods. The diverse phenological patterns 

shown within the Coweeta LTER site can be explained by the combined effect of micro-climate 

variations, vegetation community types, and hillslope position (Chapter 3). Note that there are some 

discontinued patterns between years because filtered MODIS data are non-linearly fitted 

independently with the difference logistic function for each year. 

Figure 4.3 presents phenological patterns at selected MODIS pixels for the same 8-year period as 

a function of DOY. Interannual variations of vegetation phenology appear smaller than spatial 

variations. Senescence shows more interannual variation than greenup. This pattern can be observed 

more clearly from boxplots of all mid-days of greenup and senescence periods in each year (n = 
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369; Figure 4.4a, b), defined as inflection points of the difference logistic function (Eq. 4.2). The 

mid-days of greenup show smaller interannual variations than those of senescence for the Coweeta 

basin. The greenup was delayed significantly in 2005 compared to other years. Significantly 

delayed senescence was observed in 2005, while earlier senescence was found in 2001, 2003, and 

2004. 

All Landsat NDVI values are presented in Figure 4.5 as a function of DOY, where vertical lines 

represent 5th and 95th percentiles of spatial NDVI values within the WS08 watershed (n = 8654; 

Figure 4.1). The atmospheric correction method efficiently normalized NDVI values. It produces 

very stable patterns in terms of not only absolute mean values but also their spatial distributions 

except for greenup and senescence periods. Note how stable spatial distributions of Landsat NDVI 

values are between adjacent images even though there are some interannual differences in absolute 

terms. The consistency in spatial patterns of Landsat NDVI values is quite important as we estimate 

sub-grid variability of MODIS FPAR on each DOY based on composite spatial patterns without 

considering interannual variations. Note that there are still small systematic decreases of average 

Landsat NDVI values and small increases of their spatial distributions in the middle of winter 

(Figure 4.5). These phenomena are thought to be related to the underestimation of NDVI values at 

high solar zenith angle and large spatial variance of the cosine of illumination angle around the 

winter solstice. We discuss this issue later with respect to topographic correction. 
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Figure 4.2: Examples of fitting by the difference logistic function for 8-year MODIS 
NDVI datasets (2001 ~ 2008) at selected MODIS pixels ((a) ~ (i); Figure 4.1).  
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Figure 4.2 (cont’d) 
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Figure 4.3: Interannual phenological variations of the fitted MODIS NDVI model at 
selected MODIS pixels ((a) ~ (i); Figure 4.1).
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Figure 4.4: Boxplots for spatial variations of mid-day of (a) greenup and (b) senescence periods, and (c) fitted maximum 
and minimum NDVI values within the study site (n = 369) for each year, calculated from the fitted MODIS NDVI model 
(Figure 4.3). Boxes have lines at the lower, median, and upper quartile values. Lines are extended to the most extreme 
values within the Whiskers, defined as 1.5 times the inter-quartile range from the lower and upper quartiles. Outliers are 
displayed with black dots. 



 
  

 
 
 

144 

 

 

Figure 4.5: Spatio-temporal patterns of Landsat NDVI values within the Coweeta basin as a function of DOY. All Landsat 
TM images are from 2000 to 2008, and absolutely cloud-free. Points and vertical lines represent an average, and 5th 
and 95th percentiles of spatial NDVI values within the WS08 watershed (n = 8654; Figure 4.1). 
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Maximum and minimum values of Landsat NDVI (Figure 4.5) are consistently lower than those 

of fitted MODIS NDVI (Figure 4.4c). Note that Landsat NDVI is just used to estimate the sub-grid 

variability of MODIS pixels assuming the standard deviation is proportional to the mean value, so 

these differences in maximum and minimum NDVI values have limited effects on the suggested 

downscaling techniques. Greenup and senescence timing from Landsat NDVI images (Figure 4.5) 

are quite comparable to those from fitted MODIS NDVI (Figure 4.4a, b). Fall Landsat NDVI shows 

earlier senescence in 2001 and 2003, but is delayed in 2005 and 2008. Interannual variations in the 

mid-day of senescence from MODIS NDVI data (Figure 4.4a) exactly agree with these observed 

patterns from fall Landsat NDVI images, as well as their absolute timing as DOY values. Even 

though it is hard to see interannual variations in greenup timing for the lack of cloud-free Landsat 

TM images, earlier greenup is observed in 2001 compared to 2004 and 2005 (Figure 4.5), also 

partially supported by the MODIS data (Figure 4.4b). 

 

4.4.2 An example of downscaling 

Figure 4.6 presents an example of downscaling MODIS FPAR into Landsat-scale FPAR by the 

two methods. This downscaling example (May 5, 2008) is chosen around the middle of the greenup 

period (Figure 4.4b), when broad ranges of FPAR and NDVI are expected to show this downscaling 

process more efficiently. A fitted MODIS FPAR image (Figure 4.6a) and a composite Landsat 

NDVI image on corresponding DOY (Figure 4.6b) show very similar spatial patterns along the 

elevation gradient. A proportionality parameter (αt) of the simple downscaling is calculated for each 

MODIS pixel by Eq. 4.6 (Figure 4.6c), which is multiplied by the composite NDVI image to 

produce a final downscaled FPAR map (Figure 4.6d). Gradual decreases of αt value along the 

elevation gradient are observed except for several pixels around the basin outlet, where the Coweeta 

lab buildings are. Note that the αt parameter adjusts Landsat NDVI values each day based on 

observed global satellite signals while preserving sub-grid variability. Therefore, this elevational 
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trend of the αt parameter may explain the phenological discrepancy between MODIS FPAR and 

composite Landsat NDVI. The topographically corrected αt parameter (not shown here) is 

calculated by Eq. 4.7 with estimated potential hourly radiation (Figure 4.6e). A final FPAR map 

developed by topographically corrected downscaling is shown in Figure 4.6f, which appears similar 

to a final FPAR map from the simple downscaling (Figure 4.6d).  

More downscaling examples are available in Figure 4.7 for mid-summer (July 1, 2008; left 

column) and mid-winter (February 8, 2008; right column). Both composite NDVI images clearly 

show boundaries of coniferous watersheds (WS01, WS17; Figure 4.1), characterized as lower 

NDVI values in summer (Figure 4.7c) and higher NDVI values in winter (Figure 4.7d). These 

distinct patterns of coniferous watersheds are less distinguishable in the MODIS FPAR images 

(Figure 4.7a, b), where the effect of coniferous forests is mixed with adjacent pixels. FPAR maps 

from the topographically corrected downscaling (Figure 4.7e, f), show relatively good spatial 

continuity between adjacent pixels. In the middle of summer (maturity) and winter (dormancy), 

there is little interannual variation in vegetation phenology, so αt parameters are expected to be 

more spatially uniform than those of the transition periods. However, there are still discrete 

downscaled FPAR patterns from MODIS pixels with mixed biome types especially in summer 

(Figure 4.7e). Note that few discrete patterns are found in winter (Figure 4.7f), when only 

coniferous and understory evergreen broadleaf (e.g. rhododendron, mountain laurel) forests are 

photosynthetically active. 
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Figure 4.6: An example of two downscaling methods on May 5, 2008; (a) a fitted 
MODIS FPAR image, (b) a composite Landsat NDVI image, (c) a proportionality 
parameter (αt) map by the simple downscaling method, (d) a downscaled FPAR 
map by the simple downscaling method, (e) a potential hourly radiation map (kJ m-2 
h-1), and (f) a downscaled FPAR map by the topographically corrected downscaling 
method. 
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Figure 4.7: Two examples of the topographically corrected downscaling method on 
July 1, 2008 (left column) and February 8, 2008 (right column); (a) and (b) fitted 
MODIS FPAR images, (c) and (d) composite Landsat TM NDVI images, and (e) 
and (f) downscaled FPAR maps. 
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Figure 4.8 and Figure 4.9 show examples of downscaled FPAR and LAI values by the 

topographically corrected downscaling at selected MODIS pixels with 5-day intervals (Figure 4.1). 

Temporal patterns of downscaled FPAR show exaggerated spatial variance in low ranges due to the 

non-linear relationship between LAI and FPAR (Figure 4.8). Note that each MODIS pixel presents 

quite different downscaled FPAR and LAI patterns depending on temporally variant sub-grid 

variability estimated from composite Landsat NDVI images. Usually, relatively stable patterns of 

downscaled FPAR and LAI values are found during dormancy and maturity periods with a few 

crossovers. Some instability of downscaled FPAR might be from interannual variations of 

composite Landsat NDVI images or geolocation problems of both images (Figure 4.5). Note that 

increases of downscaled FPAR and LAI are found in some MODIS pixels in the middle of winter 

(Figure 4.8e, g and Figure 4.9e, g), which could not be true. We believe that this pattern is related 

to underestimation of NDVI in faintly illuminated areas with very high solar zenith angle around 

the winter solstice. This pattern is also related to systematic decreases of average Landsat NDVI 

values and small increases of their spatial distribution in the middle of winter (Figure 4.5). Note 

that these two MODIS pixels (Figure 4.1e, g) are located in north-facing slopes, where diffuse 

radiation is dominant during the winter season.  

 

4.4.3 The effect of the topographically corrected downscaling 

The example for two downscaling methods in spring shows that there is no apparent difference 

between final downscaled FPAR products (Figure 4.6d, f). The scatter plots between αsimple (a 

proportionality parameter in the simple downscaling; Eq. 4.6) and αtopo_corrected (a proportionality 

parameter in the topographically corrected downscaling; Eq. 4.7) in spring (May 5, 2008), winter 

(February 8, 2008), and summer (July 1, 2008) are shown in Figure 4.10. Note that final 

downscaled FPAR maps are developed as the product of composite NDVI images and the α 

parameters. Therefore, the effect of the topographically corrected downscaling can be assessed by 



 
  

 
150 

 

comparison between α parameters from both methods. In the summer, there is little difference 

between two α parameters. Few points are found out of the 1-to-1 line in the spring, but they are 

located within a broader range. The greatest deviations from the 1-to-1 line are in the winter season 

with the broadest range.  

Increased discrepancy of the α parameters in winter is related to increased covariance between 

sub-grid NDVI values (NDVIi,DOY; Eq. 4.7) and incident radiation (IPARi,DOY; Eq. 4.7). Most 

outlying points are located below the 1-to-1 line (Figure 4.10), such that the topographically 

corrected downscaling produces smaller α values than the simple downscaling. Smaller αtopo_corrected 

values than αsimple indicate that there exists significant positive covariance between sub-grid 

IPARi,DOY and NDVIi,DOY values (Eq. 4.7) within the MODIS pixels. On the contrary, larger 

αtopo_corrected values are expected in MODIS pixels with significant negative covariance between sub-

grid IPARi,DOY and NDVIi,DOY.  

Temporal patterns of αtopo_corrected and αsimple parameters help to understand the effects of the 

topographically corrected downscaling. Figure 4.11 shows temporal patterns of the two α 

parameters at 5-day intervals from 2001 to 2008. Vertical lines represent 5th and 95th percentiles in 

terms of their spatial variations. Both α parameters remain stable during a maturity period (summer) 

with narrow ranges of spatial variations. Slightly increasing patterns are found during this period, as 

both MODIS and Landsat NDVI have a minor decrease by leaf color changes (Figure 4.2; Figure 

4.5), but the fitted MODIS model does not represent this decrease. More fluctuating interannual 

patterns of both α parameters are observed during transition periods. Note that the α parameters 

compensate phenological discrepancy between composite Landsat NDVI images and fitted MODIS 

FPAR while preserving sub-grid variability. Therefore, it is quite clear that those values are more 

temporally variable during the greenup/senescence periods, when major interannual phenological 

variations may occur.  
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Figure 4.8: Examples of the topographically corrected downscaling for the MODIS 
FPAR at selected MODIS pixels in 2008 ((a) ~ (i); Figure 4.1). Grey dotted and 
color solid lines represent the fitted MODIS FPAR and the downscaled sub-grid 
FPAR values respectively.
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Figure 4.9: Examples of the topographically corrected downscaling at selected 
MODIS pixels in 2008 ((a) ~ (i); Figure 4.1). Color solid lines represent the 
downscaled sub-grid LAI values estimated from downscaled sub-grid FPAR values 
(Figure 4.8). 
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Figure 4.10: A scatter plot between αtopo_corrected (a proportionality parameter in the 
topographically corrected downscaling) and αsimple (a proportionality parameter in 
the simple downscaling) values on May 5 (cross), February 8 (triangle), and July 1 
(circle), 2008. 
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Figure 4.11: Temporal patterns of αtopo_corrected (upper) and αsimple (lower) values for 
a simulation period (2001 ~ 2008) with 5-day intervals. Points and vertical lines 
represent average, and 5th and 95th percentiles of spatial distributions in the study 
site (n = 369) on the same DOY each year. Note that α parameters are calculated 
each day, not each DOY. 
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The effects of the topographically corrected downscaling are evident only during the dormancy 

period (winter), already seen in Figure 4.10. Spatial variation of both α parameters increase in the 

middle of winter (Figure 4.11) with slightly reduced ranges in the topographically corrected 

downscaling. As mentioned earlier, these effects of the topographically corrected downscaling 

during the winter are due to positive covariance between sub-grid incident PAR and composite 

NDVI values, as well as increased sub-grid variability of incident PAR with a high sun zenith angle. 

This indicates greater evergreen species on south-facing slopes in the study site. Increased spatial 

variations of both α parameters in the middle of winter are also derived from systematic increases in 

the spatial variation of composite Landsat NDVI values (Figure 4.5).  

 

4.4.4 An example of distributed hydrological modeling 

Figure 4.12 shows observed and simulated daily streamflow within the study watershed from 

2001 with integration of downscaled LAI, including the three-year calibration period (October 2003 

~ September 2006). The maximum efficiency value of the calibration period is 0.815, whereas that 

of the whole simulation period (January 2000 ~ February 2007) is 0.789. Note that precipitation is 

relatively even in this region throughout the year. For this reason, strong seasonal fluctuations of 

streamflow depend on phenological patterns of vegetation. The simulated level of low flows 

smoothly follows observed patterns without a seasonal bias, which indicates a seasonal pattern of 

evapotranspiration is well simulated by integrating vegetation dynamics downscaled from the real-

time global satellite products. Note that simulated streamflow still misses some peak flows 

especially during the low flow periods. This is mainly because the steady-state assumption of 

TOPMODEL fails during summer storm periods (Beven 1997). The development of perched water 

tables in the study area with steep topography (Hewlett 1961) limits the validity of topographic 

index-based approach. 
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Figure 4.12: Observed and simulated daily streamflow at the study watershed (WS08; Figure 4.1), including the 3-year 
calibration period (October 2003 ~ September 2006). 



 

 
 

Note that the improvement in prediction of watershed streamflow compared to a simulation 

that uses a constant (spatially invariant) phenology is small as long as the spatial mean 

interannual phenology is specified. However, we expect the significance of including spatially 

and temporally varying phenology will be much greater for spatial patterns of canopy and 

subcatchment response.  This will be investigated in the future. 

 

4.5 Discussion and conclusions 

4.5.1 General discussion 

In this study, we suggest two downscaling methods of near real-time MODIS FPAR to sub-

grid scale, where sub-grid variability is estimated from composite Landsat TM NDVI images on 

corresponding DOY. Fusing the MODIS FPAR with the Landsat NDVI overcomes temporal and 

spatial limitations of both Landsat TM and MODIS image sets for the application to catchment-

scale distributed hydrological modeling. Integration of sub-grid variability of potential incident 

radiation during the downscaling process may improve some downscaled results only in the 

winter, when substantial sub-grid variability of incident radiation and positive covariance 

between sub-grid incident radiation and NDVI are expected in this study site. As evaporation and 

transpiration processes are minimal during the winter season, there is no significant advantage of 

the topographically corrected downscaling compared to the simple downscaling for distributed 

hydrological modeling even in topographically complex terrain. 

The spatio-temporal consistency of NDVI values provides an advantage in the downscaling 

process of vegetation dynamics over reflectance especially in topographically complex terrain. 

The ‘ratioing’ property of NDVI especially has an advantage in terms of spatial consistency as it 

cancels out a large portion of the multiplicative noise from illumination differences, cloud 

shadows, topographic variations, and atmospheric conditions. As mentioned earlier, MODIS 
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NDVI (Figure 4.2) and Landsat NDVI (Figure 4.5) values are very consistent in terms of spatial 

and temporal variations, as well as interannual phenological variations (Figure 4.4 and Figure 4.5).  

There are slight discrepancies between maximum and minimum NDVI values from Landsat 

and MODIS images, which may be attributed to differences in corresponding bandwidths (Table 

4.1) (Gupta et al. 2000; Teillet et al. 2007) or atmospheric correction methods (Vermote et al. 

1997). Many studies of multi-sensor comparison of NDVI values report that both Landsat and 

MODIS NDVI values are comparable within a very close range, though it seems that the MODIS 

NDVI is slightly higher than Landsat NDVI (Huete et al. 2002; Gao et al. 2003; Morisette et al. 

2004; Brown et al. 2006; Cheng 2006). Another possible explanation of the discrepancy between 

MODIS and Landsat NDVI values is a scale variant nature of NDVI. We address this issue later 

in the discussion. 

The study area is located in a high-precipitation region (around 2000 mm y-1), so available 

cloud-free images are quite limited by cloud contamination. Therefore, a post-processing analysis 

for MODIS NDVI values (filtering and fitting) is necessary, even after removal of unqualified 

data points with quality assurance flags at each MODIS pixel. In addition, the number of cloud-

free Landsat images is limited, although the study site is located in overlapping regions between 

two paths of Landsat orbits. This is a major reason why composite NDVI images on 

corresponding DOY (over multiple years), not on corresponding dates, are used in the 

downscaling process. If enough Landsat NDVI images were available in each year, fluctuations 

of the α parameters during transition periods would have been reduced (Figure 4.11). In addition, 

if reasonable spatio-temporal patterns of MODIS NDVI values were available without the post-

processing analysis, more stable patterns of the α parameters would have been expected during 

maturity and dormancy periods (Figure 4.11).  

 

4.5.2 The FPAR-NDVI relationship 
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This study is based on a simple linear assumption between NDVI and FPAR, represented as 

proportionality parameters (α; Eq. 4.5). This linear relationship is known to be a function of 

biome types and forest structures (Knyazikhin et al. 1998; Myneni et al. 1997). Eq. 4.5 explicitly 

assumes that sub-grid variability of FPAR within the MODIS pixel is linearly proportional to 

sub-grid NDVI values. Therefore, if there are different biome and land cover types within a 

MODIS pixel, this assumption fails. This is a reason why spatially discrete patterns of α 

parameters (Figure 4.6c) and downscaled FPAR values (Figure 4.6d, f) are found around the 

Coweeta basin outlet, where grass and open space for lab facilities are located. There are also two 

plantation conifer watersheds (WS01, WS17; Figure 4.1) and open fields outside the northern 

boundaries of the Coweeta basin. Distinct patterns in downscaled FPAR around these regions are 

more recognizable in summer (Figure 4.7e) and winter (Figure 4.7f), when fully-grown deciduous 

forests are distinct in Landsat NDVI images (Figure 4.7c, d). 

Following Knyazikhin et al. (1998), this simple proportional assumption between NDVI and 

FPAR is valid only if the canopy background is ideally black. Other model studies also found that 

this linear relationship between NDVI and FPAR is very consistent with respect to various 

canopy and optical properties (e.g. clumping, canopy cover, leaf angle distribution, spatial 

heterogeneity, and solar zenith angle etc.), but sensitive to soil background reflectance (e.g. Asrar 

et al. 1992; Myneni and Williams 1994). However, many studies of field-measured FPAR and 

Landsat NDVI values show that estimated intercept values of the linear NDVI-FPAR relationship 

are not actually zero, but usually slightly negative under non-ideal soil background color (e.g. 

Asrar et al. 1984, 1992; Goward et al. 1994; Friedl et al. 1995). This means that sub-grid 

variability based on Eq. 4.5 might be underestimated and actual proportionality parameters (Eq. 

4.6 and 4.7) might be slightly larger than estimated in this study. In similar biome types, the 

above studies have also reported slightly larger slope values of the linear NDVI-FPAR 

relationship with negative intercepts across different images (Myneni and Williams 1994; Myneni 

et al. 1997, 2002) than the estimated range of α parameters in this study (Figure 4.11). In addition, 
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the linear assumption between NDVI and FPAR may not be supported especially when canopy 

stand structure is gappy (e.g. Song and Band 2004). However, it should not be a big issue in this 

study site, where upper canopy is dominant with broadleaf closed forest. 

Sub-grid FPAR values are a better indicator for sub-grid variability of the MODIS FPAR than 

sub-grid NDVI values. Note that the α parameter in this study (Eq. 4.5) includes both the linear 

NDVI-FPAR relationship, as well as proportional phenological discrepancy between near real-

time MODIS FPAR and composite Landsat NDVI on corresponding DOY. Separating these two 

relationships can be a possible solution for the problem in applying α parameter directly to 

composite Landsat NDVI values. The sub-grid FPAR can be estimated first from the composite 

Landsat NDVI image, and then a proportionality parameter can be applied to sub-grid FPAR 

values rather than to NDVI directly. In this approach, α parameter solely represents phenological 

discrepancy between MODIS and Landsat FPAR values. This approach can also provide more 

flexibility in the application of these downscaling methods into regions with mixed biome and 

land cover types by applying different NDVI-FPAR relationships for different land cover and 

biome types. However, it would be another issue to properly estimate the linear relationship 

between FPAR and NDVI in different biome and land cover types.   

 

4.5.3 Scale invariance in sub-grid variability 

The limited effect of the topographically corrected downscaling means that FPAR may not be 

scale invariant during the winter season in this study area (Eq. 4.3 and 4.4). A simple test of scale 

invariance of NDVI between Landsat and MODIS scales may give an idea how different NDVI 

values are affected by different spatial aggregation methods. It also may provide a possible 

explanation of the discrepancy of maximum and minimum NDVI values between Landsat and 

MODIS scales. The scale invariance of NDVI between Landsat and MODIS scales can be tested 

by comparing between the mean NDVI (NDVIavg) of sub-grid Landsat NDVI within a single 
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MODIS pixel and the lumped NDVI (NDVIlump) from aggregated radiance at the MODIS scale. In 

the same way, the scale invariance of FPAR can be checked by comparing Eq. 4.3 and 4.4 values. 

If α parameters (Eq. 4.5) are assumed to be constant at each sub-grid pixel (homogeneous land 

cover and biome types), this test results in the comparison between NDVIavg (Eq. 4.3) and the 

weighted mean of sub-grid NDVI (NDVIi) with respect to sub-grid incoming radiation (IPARi). It 

can be rewritten from Eq. 4.4 and 4.5 without the time function (DOY and t) as 
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Figure 4.13a shows a scatter plot between NDVIavg and NDVIlump, and the temporal patterns of 

relative difference between them in the study site (n = 369). NDVI is definitely not scale invariant 

in the middle of winter season, when NDVIavg underestimates NDVIlump. This test presents a 

possibility that the mean Landsat NDVI can be slightly lower than the lumped MODIS NDVI in 

the middle of winter in the study site. Note that systematic decreases of the mean Landsat NDVI 

in the middle of winter are observed in this study (Figure 4.5), but not recognized in the filtered 

MODIS NDVI (Figure 4.2). 

Figure 4.13b shows a scatter plot between NDVIavg and NDVIwgt, and the temporal patterns of 

relative difference between them in the study site (n = 369). They shows similar pattern to the 

relation between NDVIavg and NDVIlump, so FPAR is not scale invariant during the winter season. 

Note that larger αsimple values (Eq. 4.6) than αtopo_corrected values (Eq. 4.7) in the winter (Figure 

4.10) already analytically supports the overestimation of NDVIwgt compared to NDVIavg.  
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Figure 4.13: Temporal patterns of relative differences (left column) and scatter 
plots (right column) between (a) NDVIavg and NDVIlump, (b) NDVIavg and NDVIwgt, 
and (c) NDVIlump and NDVIwgt. NDVIlump is the NDVI calculated from aggregated 
radiance at the MODIS scale. NDVIavg is the averaged NDVI at MODIS scale 
from sub-grid Landsat NDVI values. NDVIwgt is the weighted averaged NDVI with 
respect to sub-grid incoming radiance (Eq. 4.8). Horizontal and vertical lines 
represent 5th and 95th percentiles of the spatial NDVI values within the WS08 
watershed (n = 8654; Figure 4.1). 
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The temporal patterns of relative difference between NDVIavg and NDVIlump (Figure 4.13a), and 

between NDVIavg and NDVIwgt (Figure 4.13b) show that these relative differences are very similar 

on corresponding dates. Therefore, there seems little relative difference between NDVIlump and 

NDVIwgt (Figure 4.13c) even in winter season, when only increased spatial variances are observed. 

Therefore, we can derive this relationship from Eq. 4.4 and 4.5. 

 lumpwgt NDVINDVIFPAR ⋅≈⋅= αα   (4.9) 

where FPAR represents the integrated FPAR at the MODIS scale. Eq. 4.9 indicates that the same 

α parameter between FPAR and NDVI is applied both at the sub-grid scale (Eq. 4.5) and at the 

MODIS scale. Therefore, the linear NDVI-FPAR relationship may be scale invariant in the study 

site, though FPAR and NDVI is not scale invariant. 

Previous studies of the scale invariance of NDVI show conflicting results whether the lumped 

NDVI calculated from aggregated reflectance is larger than the averaged NDVI (Hall et al. 1992; 

Friedl et al. 1995). Hu and Islam (1997) proved that the difference between lumped and averaged 

NDVI was dependent on the variances of the red and near-infrared band radiances and the 

covariance between two radiances using a Taylor series approximation. Eq. 4.4 shows that the 

scale invariance of FPAR is only dependent on the covariance between IPARi,DOY and NDVIi,DOY 

in Eq. 4.8, but not on each variance term. The similarity between NDVIlump and NDVIwgt (Figure 

4.13c) indicates the scale invariance of NDVI is only dependent on the covariance between 

IPARi,DOY and NDVIi,DOY within a coarse pixel in the regions with homogeneous land cover and 

biome types. 

In this study, the linear NDVI-FPAR relationship is estimated by matching 1-km MODIS 

NDVI (MOD13A2) and FPAR (MOD15A2) in the study area. This relationship is used to derive 

250-m MODIS FPAR from 250-m MODIS NDVI (MOD13Q1). Tian et al. (2002a) examined the 

scale-dependent property of the MODIS NDVI and LAI algorithms and they found that MODIS 
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LAI is not scale invariant between 250 m and 1 km while the mean of MODIS NDVI changed 

little with different spatial resolutions. Tian et al. (2002b) also found that LAI retrieval errors at 

coarse resolutions are proportional to sub-pixel heterogeneity in land cover especially mixed with 

non-forest biome types. However, Friedl et al. (1995) pointed out that the linear NDVI-FPAR 

relationship was little affected by aggregating NDVI and FPAR unlike the non-linear NDVI-LAI 

relationship due to its linearity. In this sense, several studies using three-dimensional radiation 

transfer models pointed out that the linear NDVI-FPAR relationship is scale invariant by 

comparing estimated relationships from homogeneous and heterogeneous canopy (Myneni and 

Williams 1994; Myneni et al. 1995). Moreover, the study area is represented as relatively 

homogeneous land cover as deciduous broadleaf forests with closed canopy and well mixed 

colluvial soils. Therefore, the assumption of scale invariance of the linear NDVI-FPAR 

relationship may be valid in the study area.   

 

4.5.4 Topographic correction 

Some gradual decreases in average Landsat NDVI values are found during the winter season 

with increased spatial variation (Figure 4.5). These patterns result in increases of average α 

parameters and their spatial variation in the middle of winter (Figure 4.11). Several studies 

reported that NDVI is not significantly affected by different topographic correction methods 

(Ekstrand 1996; Turner et al. 1999; Matsushita et al. 2007) because the ‘ratioing’ property of 

NDVI can effectively normalize illumination differences on different slopes. However, most of 

these studies were done with images with low sun zenith angles. Vincini et al. (2002) reported 

that NDVI calculation from topographically uncorrected Landsat TM led to systematic 

underestimation of NDVI values especially in areas with high illumination angles.  

In this study area, the sun illumination angles (Teillet et al. 1982) on north-facing slopes are 

over 90° in the middle of winter, where diffuse radiation dominates. This fact makes it hard to 
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apply the cosine-based topographic correction method with Lambertian (Teillet et al. 1982; Civco 

1989) and non-Lambertian assumptions (Minnaert 1941) for these Landsat data sets. These 

cosine-based topographic correction methods were known to overly correct in faintly illuminated 

areas with very low illumination angle (Meyer et al. 1993), so modified methods with additive 

terms were proposed to solve this problem (e.g. the C correction method; Teillet et al. 1982, and 

the Gamma method; Shepherd and Dymond 2003). However, the modified cosine-based methods 

with additive terms could not produce the proper range of NDVI values in this study even though 

they can solve systematic decrease of average Landsat NDVI values around the winter solstice. 

For this reason, it is hard to find a consistent topographic correction method through the year. 

The effect of topographic correction for the NDVI calculation is more evident when sun zenith 

angle is high. Also, it seems that separation of direct and diffuse radiation during the process of 

topographic correction (Shepherd and Dymond 2003) is quite necessary for winter images 

because faint diffuse radiation is dominant at slopes with high illumination angles.  

 

4.5.5 Conclusions 

NDVI has rarely been used as an indicator of sub-grid variability mainly because NDVI is 

usually regarded as not scale invariant (Hu and Islam 1997). However, incorporation of FPAR as 

a downscaling variable can solve the scale invariance problem of NDVI, because FPAR is more 

physically meaningful and more easily scalable between different spatial resolutions. Moreover, 

the linear NDVI-FPAR relationship in homogeneous regions is shown to be scale invariant in this 

study, which facilitates its use as a measure of sub-grid variability. In this study, the fitted 

MODIS FPAR is downscaled into the Landsat scale with two suggested downscaled methods (the 

simple and the topographically corrected downscaling) for the 8-year period (2001 ~ 2008). The 

relationship between the downscaled MODIS FPAR and the composite sub-grid NDVI values is 

represented with a simple linear proportionality parameter, which includes the linear relationship 
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between sub-grid NDVI and FPAR, as well as proportional phenological discrepancy between the 

MODIS FPAR and composite Landsat NDVI on corresponding DOY. The sub-grid variability of 

vegetation density on each day is estimated from composite NDVI images as a function of DOY. 

In the topographically corrected downscaling, the sub-grid variability of potential incoming 

radiation is calculated in conjunction with digital elevation data, and used to weight average sub-

grid NDVI values. The effects of the topographically corrected downscaling is quite limited with 

the exception of winter when there is positive covariance between sub-grid incident PAR and 

composite NDVI values, as well as increased sub-grid variability of incident PAR with a high sun 

zenith angle. Suggested downscaling methods are applicable only to relatively homogeneous 

landscapes due to the simple linear assumption between sub-grid NDVI and incoming FPAR. 

However, if different NDVI-FPAR relationships can be estimated in different land cover and 

biome types, these methods are also extendable into heterogeneous landscapes. Combining the 

spatial resolution of Landsat and the temporal resolution of MODIS can make it possible to 

compromise between limitations of both image sets in applications of global satellite products 

into distributed hydrological modeling at local scale. Furthermore, this study provides the 

potential for ecohydrological nowcasts and forecasts at the catchment scale with integration of 

near real-time global satellite products by downscaling techniques. 
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Chapter 5 Summary and conclusions 

In this dissertation, three research studies are presented concerning integration of spatio-

temporal vegetation dynamics into a distributed ecohydrological model with application to 

optimality theory and real-time simulation. Spatial pattern of vegetation density is estimated at 

different scales with a combination of simulation and multi-temporal remote sensing data sets, 

further evaluated with field measurements. Hydrologic gradients of vegetation density within a 

small catchment are related to the optimal state for carbon uptake as a function of lateral 

hydrologic connectivity. Phenological features are extracted from global satellite products to find 

the topography-mediated controls on vegetation phenology at a local scale. Finally, near real-time 

dynamics of vegetation density are updated for distributed ecohydrological simulation by fusing 

multi-temporal Landsat and MODIS data. 

In Chapter 2, we test whether the simulated spatial pattern of vegetation corresponds to 

measured canopy patterns and an optimal state relative to a set of ecosystem processes, defined as 

maximizing ecosystem productivity and water use efficiency at the small catchment scale. 

Vegetation density along the hillslope gradient may effectively represent the degree of 

dependency of multiple interacting resources (water and nutrients) as a function of lateral 

hydrologic connectivity, moderated by feedbacks with canopy light absorption.  

In this study, we found the following:  

• Model results suggest that more efficient photosynthesis can take place downslope 

due to more efficient water use for carbon uptake and increased nitrogen availability, 
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producing a feedback with more light absorption through the development of greater 

leaf area and lower belowground proportional allocation. 

• The spatial distribution of rooting depth and allocation dynamics estimated from 

pit excavations show very similar patterns to those estimated from the optimal 

hydrologic gradients of vegetation density. 

• Simulated canopy growth shows effective compromises between multiple stresses 

(water, light, and nutrients) for optimal carbon uptake through the control of 

aboveground vegetation density by limited photosynthate allocation.  

• The existing hydrologic gradients of vegetation density within the catchment 

effectively represent the degree of dependency on productivity and resource use with 

other patches along flowpaths and the long-term optimal state for carbon uptake, which 

is closely modulated by rooting and allocation strategies.  

In Chapter 3, multi-year trajectories of the MODIS NDVI data are filtered and fitted to find 

the topography-mediated controls on vegetation phenology within the study site. We find well 

expressed spatial patterns of phenological signals as a function of topography, closely related to 

micro-climate variations, vegetation community types, and hillslope positions. 

• Elevation is a primary factor characterizing topography-mediated phenological 

features for both greenup and senescence, related to environmental temperature lapse 

rate and combined orographic precipitation.  
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• Radiation proxies have significant explanatory powers for all phenological 

variables, which are affiliated with photoperiod controls or combined effect with 

temperature. 

• Hillslope position only show positive relationships with greenup phenological 

variables which may be explained by cold air drainage. However, strong precipitation-

related controls on phenology are found in terms of both orographic and interannual 

variations. 

• Phenological signals at MODIS scale lead to important scale issues in their 

relationships with topographic factors, especially due to the scale variance nature of 

radiation proxies and reduced variances produced by aggregating phenological and 

topographic information.  

In Chapter 4, daily spatial patterns of vegetation density (FPAR, LAI) over complex terrain are 

estimated at a high resolution by fusing multi-temporal MODIS and Landsat TM data in 

conjunction with topographic information. Two downscaling methods are developed to overcome 

spatial and temporal limitations of MODIS and Landsat image sets in applications of spatially and 

interannually variable vegetation phenology into catchment-scale distributed hydrological 

modeling.  

• FPAR is more physically meaningful and more easily scalable between different 

spatial resolutions, therefore the incorporation of FPAR as a downscaling variable 

helps to solve the scale invariance problem of NDVI in the application of multi-

resolution methodology.  
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• Sub-grid variability of the fitted MODIS FPAR is represented by the composite 

Landsat NDVI images with a simple linear proportionality parameter. This includes a 

linear relationship between sub-grid NDVI and FPAR, as well as proportional 

phenological discrepancy between MODIS FPAR and composite Landsat NDVI on 

corresponding day of year. 

• A simple linear assumption between sub-grid NDVI and FPAR is not met when 

there is significant heterogeneity in biome and land cover type within a MODIS pixel 

as the relationship strongly depends on biome types and forest structures. 

• Considering sub-grid variability of incoming radiation during a downscaling 

process has limited effects with the exception of winter season when there is significant 

positive covariance between sub-grid incident PAR and composite NDVI values, as 

well as increased sub-grid variability of incident PAR with a high sun zenith angle. 

In this dissertation, two different complementary approaches (top-down and bottom-up) are 

incorporated into a distributed ecohydrological model for spatio-temporal vegetation dynamics. A 

major question is how ecological mechanisms underlie spatio-temporal hydrologic patterns and 

processes, essentially examining the coupled evolution and interactions within ecohydrological 

systems. With a bottom-up approach, emergent optimality within the small catchment expands 

our knowledge of the degree of dependency on productivity and resource use with other patches 

along flowpaths as a function of lateral hydrological connectivity. With a top-down approach, 

spatio-temporal patterns of vegetation phenology are related to spatial and interannual variations 

of hydrological patterns as well as topographic variables. Major biophysical variables (FPAR, 

LAI) are assimilated into a distributed ecohydrological model by fusing multi-temporal remote 

sensing products. Spatial pattern of vegetation is a good indicator of surface soil moisture 

dynamics and lateral hydrologic redistribution. These approaches help to simulate and understand 
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complicated ecohydrological feedbacks between water and carbon cycles within distributed 

ecohydrological modeling frameworks. Furthermore, this study also improves our understanding 

of spatio-temporal ecohydrologic responses (e.g. streamflow, evapotranspiration, vegetation 

phenology, vegetation growth) to near-future global climate changes especially in mountainous 

terrains. It also provides the potential for ecohydrological nowcasts and forecasts at the local 

catchment scale. These studies also suggest forthcoming works as following: 

• Real-time ecohydrological nowcasts and forecasts in terms of severe drought and 

near-future climate changes at the local catchment scale. 

• Downscaling vegetation phenology as a function of topographic factors and its 

application for vegetation response to future climate changes. 

• Cross verification of interannual vegetation dynamics with various field 

measurements such as continuous FPAR measurements, phenological observations, and 

tree ring data.  

• Validation of suggested allocation dynamics along the hillslope gradients with 

detailed aboveground and belowground biomass estimation. 

• Further studies about the relationship between hydrologic gradients of vegetation 

density and lateral hydrologic connectivity at different sub-watersheds in the study site. 


