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ABSTRACT

Taehee Hwang

Integration of spatio-temporal vegetation dynamics into a bliged ecohydrological model:
Application to optimality theory and real-time watershed sithuta
(Under the direction of Lawrence E. Band)

Spatio-temporal vegetation dynamics are important drivers to cearacteasonal to annual
water and carbon budgets. Spatial adjustment and evolution of the enosystosely related to
the geomorphic, climatic, and hydrologic settings. In particular, latgdxologic redistribution
along flowpaths control the long-term joint adjustments of vegetationadnaver successional
and quasi-geological time scales. For this reason, it is coraptéxhallenging to incorporate the
many relevant processes and feedbacks between ecological anddigdiadystems for the full
simulation of water, carbon, and nutrient cycling. Recent developnmergmbte sensing
technology provide the potential to link dynamic canopy measurementsiteiginated process
descriptions within distributed ecohydrological modeling framewadirk this dissertation, three
research studies are presented concerning estimation of tgmagioral vegetation dynamics in
application into a distributed ecohydrological model at the Coweeta LangHeblogical
Research site. In Chapter 2, we test whether the simulated spa&ah patvegetation
corresponds to measured canopy patterns and an optimal state relatigedbexgsystem
processes, defined as maximizing ecosystem productivity and water usmneyfat the
catchment scale. A distributed ecohydrological model is simulategnalhcatchment scale

with various field measurements to see if the evolved patterrgetatgon density along the



flowpaths leads to system-wide emergent optimality for carbon uptakeand above the
individual patch. Lateral hydrological connectivity determinesdihgree of dependency on
productivity and resource use with other patches along flowpaths, resultififgierdisystem-
wide carbon and water uptake by vegetation. In Chapter 3, phenologiabsare extracted
from global satellite products to find the topography-mediated controlsgatat®n phenology
in the study site. It provides a basis to understand spatial variatitotab¥egetation phenology
as a function of microclimate, vegetation community types, and hillslagggns. In Chapter 4,
near real-time vegetation dynamics are estimated by fusingtembporal satellite images, and
integrated into the catchment scale distributed ecohydrolagjioalation. Integration of spatio-
temporal vegetation dynamics into a distributed ecohydrological modeltbedpsulate
ecohydrological feedbacks between vegetation patterns and lateral higialedistribution by

reducing uncertainty related to state and flux variables.
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Chapter 1 Introduction

1.1 Background

Ecohydrology may be defined as the science which seeks to describe thedigdrol
mechanisms that underlie ecologic patterns and processes (Rodrigue20@@heNe
expand on this definition by including the complementary question of how ecadlogica
mechanisms underlie hydrologic patterns and processes, essentially egah@énioupled

evolution and interactions within ecohydrological systems.

Ecohydrological processes incorporate a very wide variation in tengzaials ranging from sub-
daily energy, water, carbon and nutrient flux, to decadal and century lewehgand aggradation of
ecosystems and biogeochemical development of soils. These procesaesreonnected over both
time and space by three-dimensional circulation of water throughntieciape by the set of dominant
surface and subsurface flowpaths, interacting with long term roatidn of canopy and soil
conditions. Forested watershed responses to climatic patterns ineohptex interactions between
ecological and hydrological processes (e.g. interception, infiltratioppéagspiration,
photosynthesis, drainage, succession etc.) mediated by soil moisturdadyrmgarating at different
temporal and spatial scales. Therefore, spatio-temporal dynahsog moisture are key links
between hydrologic and biogeochemical processes (Rodriguez-Iturbe 2000).

This level of complexity suggests that prescription of majorafettate or flux variables (e.g. leaf

area index, soil saturation, streamflow, and evapotranspiration@a&and the accumulation of



significant bias in model behavior. Especially in topographically caxteleains, prescribing
averaged spatial and temporal variations of state variables magstaate the effect of severe
drought due to asymmetric nature of the spatial distribution of siditume along with its non-linear
control on water and carbon processes (e.g. Baatl1993). Given the complexity of these
interactions and their spatio-temporal variations, we must incogoneat observations of ecological
and hydrological form and process to reduce the uncertainty related tattharsl flux variables in
the model. In this process, temporal and spatial resolutions of datéla@ssi strongly depend on
available ecohydrological datasets.

Recent developments in ground based and remote sensing observational geshradting with
coupled distributed ecohydrological modeling paradigms provide the potentidigate this problem
by linking dynamics measurements with integrated process descripfighstesolution spatial
information (e.g. land cover, topography, canopy cover, soil moisture, preoipigat.) have aided
the development of complex fully distributed models that construct a detpagidl representation of
the variability of the hydrological processes within the watersinggldticular, near real-time global
satellite products (MODIS; MODerate Resolution Imaging Spectiimnzeter) enable us to integrate
spatio-temporal dynamics of key ecohydrological processes, such astepgitral vegetation
dynamics, which are difficult to adequately incorporate in claskiogded hydrological models.

Vegetation density is usually represented by the fraction of absorbed pitbatally active
radiation (FPAR) and leaf area index (LAI). FPAR is a robust indidatanergy absorption by
vegetation and subsequent carbon uptake (e.g. light use efficiencyiy aimportant driver in
process-based biogeochemical models, which tends to be correlated withrabogenet primary
production and biomass across a broad range of ecosystems. LAl representsntarcgption
capacity for evaporation and potential transpiration through stomata in tireoyele. Vegetation
compromises between its growth and water stress for optimal carbon (guadaled ‘growth-stress

trade-off’) represented as a non-linear relationship between F@#gRgy use) and LAI (water use).



These two important biophysical properties are linearly or non-lineartelated with NDVI
(normalized difference vegetation index) from remote sensing imsgése NDVI plays a crucial
role in estimating spatio-temporal dynamics of vegetation defnsityremote sensing images at
different scales. In this study, phenological state variables (eAdQ?,AFAl) are locally estimated
within the study area using NDVI values from multi-temporal rergatehsed data (e.g. IKONOS,
Landsat TM, MODIS), further evaluated with field measurements.

This dissertation aims to integrate spatio-temporal vegetativenaigs into a distributed
ecohydrological model at different scales, operating over sub-dailctalddevel time scales with
specific applications to ecological optimality theory and real-tirmeerghed simulations. Three

related questions and topics are addressed within the dissertation papers

1. To determine if the observed vegetation patterns along hydrologic mpsadighin a small
catchment represent long-term ecohydrologic pattern optimizatioarfioor uptake (e.g., full

system productivity or water use efficiency maximization) at thelbge scale.

2. Tofind topography-mediated controls on local vegetation phenology froRIBIQDVI
data, and to relate these spatial phenological patterns to mimiatelvariations and other factors

(e.g. vegetation community types, topographic positions).

3. To develop a downscaling method fusing multi-temporal MODIS-Landsatrdata i
conjunction with topographic information to produce near real-timmatts of high spatial and
temporal resolution canopy phenology in complex terrain, for assimilatiornhie distributed

ecohydrological model.

For the first question, Chapter 2 specifically uses the modeling¥vank to assess long term
development and co-evolution of the ecosystem canopy, soil, and topographyafidlegsadient of
vegetation density within a small catchment is estimated wighriésolution satellite imagery

(IKONOS) and various field measurements, evaluated with sietilgegetation growth patterns from
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different root depth and allocation strategies as a function of hillsloptgopo3 hen, we test whether
the simulated spatial pattern of vegetation corresponds to measured patiepys and an optimal
state relative to a set of ecosystem processes, defined as mnagietiosystem productivity and water
use efficiency at the catchment scale.

In Chapter 3, we develop a robust filtering and fitting method to extract hgcelsignals from
the multi-year trajectories of MODIS NDVI data, and relateiappatterns of vegetation phenology
to topographic factors by a statistical analysis to answer tondejuestion. These topography-
mediated phenological patterns are interpreted based on spatiibmarof micro-climate and other
factors (e.g. vegetation community types, hillslope positions). In patjadale issues would be
examined by comparing these phenological patterns with historical feddurements and
interannual variations between very wet and dry years.

For the last question, we develop methods to estimate near reakgeiation dynamics by
downscaling the fitted MODIS FPAR into the Landsat scale with two stegielownscaling methods
for the 8-year period (2001 ~ 2008) in Chapter 4. The sub-grid vityiadfivegetation density within
the MODIS pixels is inferred each day from composite NDVI irsaggea function of day of year
assuming they are interannually consistent. Examples of a disttibaohydrological model are
shown assimilating the real-time downscaled vegetation dysamic

Finally, Chapter 5 summarizes important findings and discusseduttber implications.

12 A Process-based Distributed Ecohydrological Model

RHESSYys (Regional Hydro-Ecological Simulation System) is alfakgd, ecohydrological
modeling framework designed to simulate carbon, water and nutrient cycliogppiex terrain (Band
et al. 1993; Tague and Band 2004). One of the unique features of RHESSys isaitshial
landscape representation. RHESSys combines both a set of physicallyroassd podels and a

methodology for partitioning and parameterizing the landscape. The gpdistfibuted structure
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enables the modeling of spatio-temporal interactions between thedifesohydrological processes
at the plot to the watershed scale. This approach allows difigrecdsses to be affiliated at different
spatio-temporal scales and the basic modeling unit to be of arbitraey, shther than strictly grid-
based.

RHESSys has been developed from several pre-existing models. Rirstpalimate model, MT-
CLIM (Runninget al.1987) uses topography and user supplied base station information to extrapolate
spatially variable climate variables over topographicallyivarterrain. At the patch level, an eco-
physiological model is adapted from BIOME-BGC (Running and Coughlan 1988; Running and Hun
1993; Kimballet al. 1997) to estimate carbon, water and potential nitrogen fluxes from different
canopy cover types, while representation of soil organic matter aneintatycling in RHESSys is
largely based on CENTURY model (Partetnal. 1993). RHESSYys also uses the CENT R4
(Partonet al. 1996) approach to model nitrogen cycling processes such as nitrification and
denitrification (Bandet al.2001). At a hillslope scale, a quasi-distributed hydrological model,
TOPMODEL (Beven and Kirkby 1979) is integrated which distributes soiture based on the
distribution of a topographically defined wetness index.

A modified version 5.8 of RHESSys is used in this study. Recent BIOME-B&Sig¢n 4.1.1)
changes from the comparison with flux tower data were updated to this verRBtE8ISys for this
study. These are relevant to the deployment strategy of retrateslottrogen and the treatment of
daily allocation in the face of a carbon pool deficit (Thornton 2000).ndlitional three-layer model
in the soil column (Famiglietti and Wood 1994) is integrated foliczdrivater processes; the root
zone layer, the transmission layer, and the saturated layer. Tdteramesd soil layer is partitioned into
two layers (root zone and transmission layers) only when waterdaptb is below prescribed root
zone depth. Roots are assumed to extend uniformly throughout the root zone. The upamd cap

flux from the water table passes through the transmission layer aotiydiméo the root zone layer.



RHESSys has been successfully applied for ecohydrological simulatitorested watersheds
across diverse climate regions; watershed scale tramgpieand production (Banet al. 1991, 1993;
Band 1993; Nemarsgt al. 1993; Mackayet al.2003; Zierlet al.2007; Hwanget al. 2008, 2009),
nitrogen processes (Baed al.2001; Creeckt al. 1996; Creed and Band 1998a; Groffnedral. 2009;
Tague 2009), spatial patterns of vegetation growth (Mackay and Band 19%ay\&01), spatial
patterns of vegetation species (Meentemeyed. 2001; Meentemeyer and Moody 2002), hydrologic
responses to climate change (Bata@l. 1996; Baroret al.2000; Christenseet al.2008; Taguest al.
2008, 2009; Jeffersoet al.2008), snow distribution (Christensenal.2008; Tagueet al.2008;
Hartmanet al. 1999), the characterization of scale-dependent flow variability ¢&hef al.2007),
and streamflow prediction of ungauged watersheds (Tague and Pohl-«C268@8). Key processes in
RHESSys are shown in Table 1.1. Detailed explanations aithitel are available in the RHESSys

homepage_(http://fiesta.bren.ucsb.edu/~rhessysd Tague and Band (2004).




Table 1.1: Key processes of RHESSys model

Processes or Parameters

References

Vegetation

Water

Interception
Transpiration

Leaf Conductance

f(all-sided LAI)
Penman-Monteith Eq.?
f(T, 6, APAR, VPD, CO,)* (Jarvis 1976)

Carbon Photosynthesis Farquhar Eq.? (Farquhar et al. 1980)
Maintenance Respiration f(T, N,C)T (Ryan 1991)
Growth Respiration Constant (Biome-BGC)
Allocation / Mortality Constant (Biome-BGC)
Turnover Constant (Biome-BGC)
Nitrogen Stoichiometrically constant C/N ratios for all compartments
Retranslocation of stored nitrogen during the litterfall process
Soil
Water Infiltration Phillip’s Eq.
Drainage (Clapp and Hornberger 1978)
Exfiltration / Capillary Rise (Eagleson 1978c)
Lateral Redistribution TOPMODEL (Beven and Kirkby 1979)
Saturated Throughflow TOPMODEL (Beven and Kirkby 1979)
Carbon Decomposition f(T, 6, C, M, N) (Parton et al. 1996)
Nitrogen ~ Mineralization f(T, 6, M, NH,") (Parton et al. 1996)

Denitrification
Leaching
Plant Uptake

f(6, M, NOy) (Parton et al. 1996)
Flushing hypothesis
f(soil mineral N)

dcomputed for sunlit and shaded leaves separately; LAl = leaf area index, T =
temperature, 6 = rootzone soil moisture contents, APAR = absorbed
photosynthetically active radiation, VPD = vapor pressure deficit, N = nitrogen
contents, C = substrate (carbon) quality, M = substrate (carbon) storage
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Chapter 2 Ecosystem processes at the water shed scale: Extending

optimality theory from plot to catchment

21 Abstract

The adjustment of local vegetation conditions to limiting soil wiayegither maximizing
productivity or minimizing water stress has been an area of centrakiriteezohydrology since
Eagleson’s classic study (Eagleson 1978a, 1978b, 1978c, 1978d, 1978e129888f,1982; Eagleson
and Tellers 1982). This work has typically been limited to considedwnensional exchange and
cycling within patches and has not incorporated the effects of laeliatribution of soil moisture,
coupled ecosystem carbon and nitrogen cycling, and vegetation allocation p@tesgaopographic
gradients. We extend this theory to the hillslope and catchment withlén situ and downslope
feedbacks between water, carbon and nutrient cycling within a fullgiénat, distributed model. We
explore whether ecosystem patches linked along hydrologic flowpathsagena evolve to form an
emergent pattern optimized to local climate and topographic conditiomsalaydrologic
connectivity of a small catchment is calibrated with streamflow aladsfurther tested with measured
soil moisture patterns. Then, the spatial gradient of vegetatiwitglevithin a small catchment
estimated with fine-resolution satellite imagery and field megsents is evaluated with simulated
vegetation growth patterns from different root depth and allocaticegitea as a function of hillslope
position. This is also supported by the correspondence of modeled and fieldategpsiial patterns
of root depths and catchment-level aboveground vegetation productivity. Wéhetker the

simulated spatial pattern of vegetation corresponds to measured gatigogs and an optimal state



relative to a set of ecosystem processes, defined as maximizsygtnn productivity and water use
efficiency at the catchment scale. Optimal carbon uptake rangesefieative compromises between
multiple resources (water, light, and nutrients), modulated by vegetdtioatadn dynamics along

hillslope gradient.

2.2 I ntroduction

Eagleson proposed an elegant optimality hypothesis in water-limitedséamsy(Eagleson 1978a,
1978b, 1978c, 1978d, 1978e, 1978f, 1978g, 1982; Eagleson and Tellers 1982), basedomitienD
approach that ‘current vegetation composition is an optimal state farginaty’ (Eagleson 2002). In
the absence of significant disturbance, natural soil-vegetaticensystould co-evolve ‘gradually and
synergistically’ with changes in soil structure driven by vegatao achieve an equilibrium state.
Eagleson posited that these equilibria are based on three differenizaptin strategies at different
temporal scales. At short time scales with given climate and soiltmmgjiminimization of soil water
stress produces a vegetation canopy in which steady-state soilrmaigtlbe maximized to minimize
vegetation water stress. This short-term equilibrium hypothesis isyBualipreted as a ‘growth-
stress trade-off’ (Mackay 2001; Kerkhaff al. 2004), which conceptually describes the optimal
carbon uptake or biomass productivity represented by canopy density irofemater use.
Maximization of biomass productivity is then assumed to control the longidérhadjustment of
vegetation species and soil over successional and quasi-geologicaldle®ersspectively. This
hypothesis suggests that optimal canopy density in water-limited émosyis to be found between
minimum water stress and maximum productivity (Rodriguez-ltetksd. 1999a).

Over past three decades, the optimization of vegetation structhee@Eot scale has been defined
in the ecological and hydrological fields as various terms including fogloogéquilibrium concepts
for terrestrial vegetation or vegetation species distributitmcat (Nemani and Running 1989),

catchment (Mackay 2001; Caylet al.2004, 2005), and continental scales (Arris and Eagleson 1994),
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minimization of global water stress through tree/grass coexistBockiguez-Iturbest al. 1999a,
1999b), emergent optimal water use properties across different biomesgietxah 2004; Emanuel
et al.2007), and the evaluation of carbon and water fluxes with a short-term phigsibtggimality
hypothesis (Haret al. 1999, 2000; Schymansét al.2008; van der Takt al.2008a, 2008b). In most
cases, the adjustment of the canopy to maximize productivity relativeeo availability and flux has
been evaluated with respect to one dimensional (vertical) water and nexgbange at the
ecosystem patch scale, without incorporating lateral moisture rbdttri at the landscape scale.

Ecohydrological feedbacks between vegetation patterns and latezalredistribution have been
reviewed in various studies, including interactions between surfack gemeration and patterned
vegetation (e.g. ‘Tiger bush’) in semiarid ecosystems (e.g. Byosnlal. 1997; Howes and Abrahams
2003; Ludwiget al.2005; Sacet al.2007), and feedbacks between groundwater hydrology and
vegetation especially in riparian ecosystems (e.g. Camporealedwoifi F006). Spatial patterns of
vegetation are often integrated into hillslope-scale hydrologiodefs to explain the active role of
vegetation on local water balance and lateral hydrological prodgsgefamiglietti and Wood 1994;
Wigmostaet al.1994; Cheret al. 2005). Mackay (2001) previously evaluated the adjustment of
canopy density (leaf area index) to soil moisture and soil nutrietits atllslope and catchment level,
with respect to lateral soil moisture transport.

Determining vertical root profiles and the extent of deep rootalkasheen a main component of
optimality models, as root zone moisture dynamics affect stomatabtontteaf carbon and water
exchange, and nitrogen cycling and assimilation (Bzrad. 2001; Mackay and Band 1997; Mackay
2001; Rodriguez-lturbet al.1999a; Porporatet al.2003). Recent studies of optimal rooting
strategies have focused on maximum plant water uptake and transpiratiater-limited ecosystems
with analytical solutions (Laiet al.2006) and numerical approaches (Collins and Bras 2007). Cost
and benefit analysis of deep roots for carbon uptake was also integrétetithe optimal rooting

depth strategy at local (Guswa 2008) and global scales (Kleidon and Heimann i 2@@ljtibn,
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Schymansket al. (2008) introduced a model of root water uptake dynamically optimizing uoiatce
area to meet the canopy water demand while minimizing carbon costd tel#te root maintenance.
However, the above models do not simulate shifts of allocation strasagienutrient availability with
changing rooting depth or profiles. Increased allocation to deep roots déan ecreased allocation
to foliar biomass and shallow roots, resulting in less light and nugnentbility.

We explore general principles that would explain the tendency to eaptireal ecosystem
patterns at the hillslope scale, where ecosystem patches exidt @fsgpadrainage chain, or catena, that
share some degree of dependency on productivity and resource uséhesithatches along flowpaths.
Optimization has been used to represent a number of different coimceptisology and ecology,
ranging from maximization of ecosystem functions, to parameter atidibs maximizing model fit to
measured runoff. We define optimality here as the maximization of ecosftstetions at the
hillslope or catchment scale, such as net primary productivity, evapotediggpor water use
efficiency. We investigate whether these self organizing canopypatiave the emergent property
of maximizing long term (annual to multi-annual) ecosystem net primary praitiyct
evapotranspiration or water use efficiency at the catchment scalegralabove the optimization at
individual patches.

The modeling approach we take is fully transient including short term logicalynamics, long
term canopy growth, and soil biogeochemical evolution, and does not incorarndterdong term
optimality in the process dynamics. Instead, we use our model to investlggtteewhydrological and
physiological feedbacks result in the emergent property of catchosataptimality. The basic
concept of this study is that lateral water flux produces impograients in limiting water and
nutrient availability, such as upslope patches condition resourcalzilgildownslope. Therefore, in
the absence of significant human manipulation, current vegetationydgraglients within a hillslope
and a catchment can be the result of self-organization betweenmgjatahes in a catenary sequence

of flowpaths. Mackay and Band (1997), and Mackay (2001) used an earfimmvef our modeling
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approach to demonstrate the adjustment of canopy leaf area gradients alofagiytlowpaths with
soil water and nutrient conditions in catchments in central Ontario diidr@ia.

In this study, the model is parameterized with detailed measureméms@oweeta Long Term
Ecological Research (LTER) site. The spatial gradient of vegetdensity within a small catchment,
estimated with fine-resolution satellite imagery and field meaments, is evaluated with simulated
vegetation growth patterns from different rooting and allocatioregfied. The modeling study will
simulate net primary productivity (NPP) and evapotranspiration (@&Thé different range of
vegetation patterns. The goal of this modeling study is to determimedbiserved patterns of
vegetation density within a small catchment are from long-term ecalbgilr pattern optimization for
carbon uptake (e.qg. full system productivity or water use efficiermymization) at the hillslope

scale.

2.3 M odel overview

This study is based on the use of a process-based ecohydrological modeS{RHESyional
Hydro-Ecological Simulation System) (Bartlal. 1993, 2001; Tague and Band 2004; Mackay and

Band 1997) and detailed measurements in the Coweeta LTER site.

2.3.1 A Farquhar photosynthesis model

The concept of ecosystem optimality emerged from eco-physioldGistgan and Farquhar 1977;
Cowan 1982), who developed theories based on principles stating that a maximunt ehcarbon
is assimilated for a given amount of water loss. Their theory deflagestomatal conductance with
photosynthesis using a constant water use efficiency concept foaslddong-term regulations
(referred to as ‘marginal cost’). The Farquhar photosynthesis nfeatejuharet al. 1980)

hypothesizes that plants optimize stomatal conductivity dynamicalipéximizing carbon uptake
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with respect to water loss (Cowan and Farquhar 1977; Farquah?001). Farquhar’s equations for
C3 plants are controlled by two rate-determining steps in the photosyméaetion: a carboxylation
rate @) and an electron transport ra#g)( the minimum of which is the net rate of leaf photosynthesis

(A) (Farquhaet al.1980; de Pury and Farquhar 1997).
A=min{A ,A}-R, (2.1)

whereRy is daily leaf respiration. In the mod&, is calculated using reference values at 20 °C and an
empirical relationship between leaf nitrogen content and respirat®Rgan 1991). Carboxylation
limited photosynthesis¥()) is mediated by Rubisco enzyme, and is referred to as Rubisco-limited

photosynthesis (Farquhat al. 1980; de Pury and Farquhar 1997; Farquhar and von Caemmerer 1982).

_v C-L.
"™C +K,@+0O/K,)

A, (2.2)

whereK. andK, are the Michaelis-Menten constant of Rubisco fop @@l Q, andC; andGO; are
partial pressure of within leaf G@nd Q, andI' is the CQ-compensation point. Botk andI'- are
temperature-dependent usually expressed with reference valueaar®b their increase ratios with
10 °C increase;o values) (Collatzt al. 1991).V,, represents the maximum rate of carboxylation,
assumed to be a linear relationship with leaf nitrogen content pdeaingrea and Rubisco activity,
which includes a temperature-dependent function (de Pury and Farquhar 199&t &h£899a;
Wilson et al.2000).

Electron transport limited photosynthestg) s catalyzed by Ribulose-bisphosphate carboxylase-
oxygenase (RuBP) enzyme, often called RuBP-limited photosynthesis (Faetjahd980; de Pury

and Farquhar 1997; Farquhar and von Caemmerer 1982).
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A =3 _ G L 0y
45C. +105T,

wherel is the electron transport rate, calculated from a quadratic equetia function of effective
irradiance Ig) and the maximum electron transport ratg§. A fixed ratio (2.1; Wullschleger 1993)
is usually assumed betwe&n, andV .« even though this ratio can vary with temperature sensitivities

of both components.

2.3.2 Coupled photosynthesis — stomatal conductance models

Many stomatal conductancg models (e.g. Cheet al. 1999a; Baldocchét al. 1991; McMurtrie
et al. 1992; Selleret al.1992; Leuning 1995; Oren and Pataki 2001; kinal. 2008) use an
empirical equation from (Jarvis 1976), which assumes that environmenitakfact independently to

control stomatal conductance.

gs = gs.maxf (\/PD) f (l//) f (APAR f (COZ) (24)

wheregs maxiS the maximum stomatal conductance for wdferare linear or non-linear scalar
functions that evaluate between 0 and IMBD (vapor pressure deficity; (soil water potential),
APAR(absorbed photosynthetically active radiation per unit leaf areal;@nthtmospheric
concentration of carbon dioxide).

Stomatal conductance is the key link between carbon uptake and watgjelémicause gas
exchange through stomata is usually assumed to be dominated by a diffusios foitmeg
concentration gradients under a steady-state assumption (CowarrquigdaFd 977). Stomatal
conductivity for CQ (g.) can be calculated by dividing the abayevith a constant factor (set to 1.6;

Cowan and Farquhar 1977) which accounts for the ratio of atmospheric diifssbetween water
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vapor and C@(Leuning 1995). The rate of G&ansport across stomat) Can be expressed as a
function of stomatal conductivity for carbogy) and a concentration gradient ter@ { G) (Cowan

and Farquhar 1977).

A=g.(C,-C) (25)

A, from Eq. 2.2 and\ from Eq. 2.3 can be solved using the quadratic equation, by subst@uting
from the above equation (Farquhar and von Caemmerer 1982eChkeh999a). Note that stomatal
conductance and photosynthesis are all unit leaf area basis, not unit grourasaeahich would be

scaled up with dynamic separation between sunlit and shaded leaves.

2.3.3 Scaling up fluxes from leaves to canopy

Many coupled modeling efforts show that dynamic separation between sunliteaiedi deaves is
the most efficient way to represent different rate determiningr&afo photosynthesis with canopy
depth profile without multi-layer simulations (de Pury and Farquhar 1997; €lari1999a; Wang
and Leuning 1998). Following Chext al.(1999a), total sunlit leaf area index (LADAlsuniy) IS

defined as

LAI =2c0sd(1-exp05QLAI /cosd)) (2.6)

sunlit

whered is sun zenith angle, agelis the foliage clumping index. Shaded LAP(shadd iS LAlshage=
LAI - LAlg,ni. Dynamic weighting is applied to calculate canopy-scale stomataluctanceg), and

photosynthesisA) per unit ground area.

gs = gs.sunlitLAlsunlit + gs.shadeLAlshade (27)
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A= Aynicl Al i + Asnagd-Al ghage  (2.8)

This dynamic separation between sunlit and shaded leaves is justitied the upper canopy is
usually light-saturated whereas the lower canopy responds lineamtgdiance, which should result
in a vertical distribution of leaf nitrogen and specific leaf &edheir optimal exploitation (Field

1983; de Pury and Farquhar 1997).

2.3.4 Nitrogen limitation

Most temperate forests are limited by nutrients, in particular nitrgeousek and Howarth 1991;
Schimelet al.1997; Nadelhoffeet al. 1999; Oreret al.2001). Most ecohydrological catchment
models usually incorporate only soil moisture patterns into vegetati@amdys, derived by
topographic position, local soil texture, and available rooting depth infamaithout nutrient
limitation (Wigmostaet al. 1994; Rodriguez-lturbet al. 1999a; Porporatet al.2002; Ilvanowet al.
2008; van der Toét al.2008b) and are often applied in strictly water-limited ecosystems

The spatial distribution of plant-available nitrogen is alsoatjoelated to local soil moisture
dynamics, which itself is a composite result of micro-climate canditdbcal soil texture, and local
vegetation; both directly (e.g. mineralization, nitrification, d#igation, and leaching) and indirectly
through plants (e.g. translocation, residues decomposition, and nitrogen fixBaodgt al.2001;
Creed and Band 1998a, 1998b; Mackay and Band 1997; Mackay 2001; Pogpata2003). Figure
2.1 shows the adjustment of nitrogen transformation rates as a furfcsimihraoisture content
following Partonet al.(1996), which determines a direct topographic effect on spatial patferns o
plant-available nitrogen. Note that available nitrogen content wouldbkeawailable around 60% of
volumetric soil water saturation for sandy loam soil by increpanaerobic condition of soil at high

soil moisture content, where denitrification process is moreeactiv
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The nitrogen cycle in the model is largely based on the BIOME-BGC ngdehing and
Coughlan 1988; Running and Hunt 1993; Kimlelal. 1997; Thorntoret al.2002) for vegetation and
the CENTURYXcas model (Partoret al. 1996) for soil. The model assumes stoichiometrically
constant ratios between carbon and nitrogen (C/N ratio) for all vegetangmartments (leaf, litter,
fine root, live wood, and dead wood) and soil pools (Tague and Band 2004). At a daily pinad ste
soil/litter pools calculate the potential immobilization and decontiposiates based on soil water and
temperature. If nitrogen availability cannot satisfy the sum of potenitaobial uptake
(immobilization) and plant growth demands (plant uptake), these two den@ngdste for available
soil mineral nitrogen. Plants can also use an internally-recycledjertrpool translocated from
turnover of leaves and live vegetation parts (stem, coarse roognfiaining demands for nitrogen.
Available nitrogen also includes atmospheric deposition, feribzabr symbiotic/asymbiotic fixation.

Detailed explanations are available in the works of Thorrit888§), and Tague and Band (2004).

2.3.5 Allocation

The amount of fixed carbon available to the leaf depends on subsequent imetadrdk after
photosynthesis, called allocation, which includes the storage, utilizationsasgdrt of fixed carbon
in the plant (Taiz and Zeiger 2002). Interannual effects of clinaaters on vegetation are largely
from translocation of these stored carbohydrates to leaves @atlyegrowing season. In the model,
these allocation dynamics depend on mixed daily and yearly allocatiogissatelated to temporal
phenological changes (Figure 2.2) (Running and Hunt 1993; Thornton 1998; Thetratad2002).
Daily gross photosynthesis is allocated to both vegetation and sfarag@ble for budburst in the
following growing season) at a constant ratio after considering autatragsgiiration (maintenance
and growth respirations). Transfer from storage to vegetation compéstoweurs during the
prescribed growing season. Leaf and fine root turnovers occurs only duringsheled leaf-fall

season, whereas those for live stem and coarse root occur at a cotestanbughout the year.
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Biogeochemical models usually do not simulate actual tree stands which iaterpee seedling,
recruitments, and mortality (Frierad al. 1997). Only total plant mortality is simulated which describe
the portion of the plant pools either replaced each year or removedhHim@ugr plant death.

Note that LAI is not prescribed into the model, but the model is self-regylaith respect to LAI
based on photosynthate production, respiration, and allocation processesliptiotels that
prescribe aboveground vegetation density and belowground biomass (or rooting defithhegigzt
the feedbacks and constraints of previous, transient carbon, water anadt tvalaece. Allocation
processes compromise between light, water, and nutrients proportionishgdk®n into different
vegetation compartments based on limiting resources (Tilman 1988; Gxd@lot996;

McConnaughay and Coleman 1999).
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Figure 2.1: Water scalar functions of nitrogen transformation rates as a function of
soil moisture saturation for sandy loam soils; after Parton et al. (1996).
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Figure 2.2: A compartment flow diagram of carbon allocation, transfer, and turnover
with mixed daily and yearly allocation strategies following the current BIOME-BGC
algorithm (Thornton et al. 2002; Thornton 1998).
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24 Materials and methods

2.4.1 Site description

The Coweeta Hydrologic Lab is located in western North Carolina angresentative of the
Southern Appalachian forest. The Southern Appalachian forest has vesedloea as a result of
combined effect of terrain, microclimate and soil moisture (WhittaR&6; Day and Monk 1974).
Mean monthly temperature varies from 3.6 °C in January to 20.2 °C in Julglifibée in the
Coweeta Basin is classified as marine, humid temperate, and pramipgatlatively even in all
seasons; annual precipitation ranges from 1870 mm to 2500 mm with about a Z%eivate 100 m
(Swift et al. 1988). The dominant canopy species are oaks and mixed hardwoods inGQudnegs
spp. (oaks)Caryaspp. (hickory)Nyssa sylvaticgblack gum)Liriodendron tulipifera(yellow
poplar), andl'suga canadens{gastern hemlock), while major evergreen undergrowth species are
Rhododendron maximu(rhododendron) andalmia latifolia (mountain laurel) (Day and Monk
1974; Dayet al.1988). The main study site is Watershed 18 (WS18), a northwest-facemyste
sloping (average 52% slope), 13-ha catchment with an elevation range from98&n (Figure
2.3c). This study site is a control watershed with mixed hardwoods standsitheti since 1927. Soil
moisture is a primary control on vegetation patterns within WS18, déiseitegh annual rainfall

(Day and Monk 1974; Dagt al.1988).
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® Pit locations
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= Liter LAl Obs.

Figure 2.3: Study site (WS18); (a) NDVI (normalized difference vegetation index)
from a June 1, 2003 IKONOS image, (b) wetness index, and (c) locations for WS18
(square), LAI (leaf area index) measurements, and soil pits within the Coweeta LTER
site. Litter LAI points are from Bolstad et al. (2001). Red and yellow lines represent
the boundaries of watersheds, and dashed lines indicate roads along which artificial
gaps are shown. (a) and (b) are perspective views from the WS18 outlet. The
rectangles within WS18 are three gradient plots (118, 218, and 318). A paired
experimental watershed (WS17) is also shown next to the target watershed where
white pines (Pinus strobus L.) are planted in 1956 after 15-year clear cut periods.
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2.4.2 Climate data and historical field measurements

Daily climate (maximum and minimum daily temperature, daily precipitaCS01/RGO06 climate
station) and streamflow data (WS18; Coweeta LTER research data ID 3038a#able from 1937,
one of the longest hydrological records for forested headwater catchm#r@svorld. For the model
simulation, we used universal kriging with elevational trends from 7gpoierasurements within the
Coweeta basin from 1991 to 1995 to develop long-term rainfall isohyets to sibaleréeipitation
over the terrain.

Three LTER research plots have been established along a topograpleagat high, mid and
low catchment positions (118 - xeric, 218 - mesic, and 318 — intermetiat®dy ecohydrologic
trends within the study watershed (Figure 2.3b), where detailethtiege soil and various
microclimate data are available. Detailed explanations of thesegtadivts are available at the

Coweeta LTER homepage (http://coweeta.ecology.uga.edu/gradiericgbmgmil). We use daily

volumetric water content data (Coweeta LTER research data ID 101)tedIwith 30-cm CS615
sensors (Water Content Reflectometer, Campbell Scientific Incarl.agir, USA) every 15 minutes
from March 1999. At each gradient plot, these TDR sensors are instadlié@rent depths (0 ~ 30
and 30 ~ 60 cm) and at two locations (upper slope and lower slope) within 20 x 4firal ori
rectangular plots.

Aboveground net primary productivity (ANPP) was estimated from treemorgments and
litterfall measurements in the early 1970’s for the full watersBeg @nd Monk 1974, 1977; Day
al. 1988). Biomass increases were estimated from tree ring increm#nteacally-derived biometric
equations for each species (Day and Monk 1974, and references theregnflyRBolstacdet al.
(2001) also estimated ANPP at four circular 0.1 ha plots within the \Wwatk(site number 3, 4, 13,

14) from 2-year litterfall (1995 ~ 1996) and 10-year tree ring measuremé&86 { 1995).
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2.4.3 Hydrologic gradients of vegetation density

Leaf area index (LAI), an important carbon state variable in procesd-bimggochemical models,
is also a valuable driver in the scaling effort as it is waltedated with normalized difference
vegetation index (NDVI) derived from remote sensing images (Neetahi1993; Gholzt al. 1991,
Chen and Cihlar 1996; Fassnaehtl.1997). The NDVI is a normalized ratio between red and near

infrared bands.

NDVI = (pyr — Preo) [(Pnur + Prep)  (2.9)

LAI values were measured at 39 points around the WS18 in early June 2007 osttiifetrent
methods (Figure 2.3c), with GPS coordinates measured during the prewicol ason
(GeoExplorer; Field Data Solutions Inc., Jerome, ID, USA). LAl was megsvite an LAI-2000
Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) using two instrumeéntsli&neously for
above and below canopy during overcast sky condition or at dawn or at dusk. Hemisdpi
were also taken at the same sites, and analyzed with the Gap Lightéxrsadftware (Institute of
Ecosystem Studies, Millbrook, New York, USA). We also used LAI data asdrirom litter biomass
and specific leaf area around the Coweeta LTER site (Figure 2.3chffabiich are located within
WS18 (Bolstackt al.2001). These litter-trap measurements are quite valuable in thalopti
measurements usually do not show much sensitivity in ranges of high lafide® (Nemanet al.
1993; Fassnaclet al. 1997; Pierce and Running 1988; Gower and Norman 1991).

Spatial patterns of LAl within the watershed were determined fromittiepsecific correlation
between point-measured LAl and NDVI values from a summer IKONOSdrflame 1, 2003; Figure
2.3a) with varying average window size of NDVI pixels and masking fromasitnmgs in a
sequence for optical LAI calculation. Optical measurements of uegetasing LAI-2000 in complex

terrain can be biased by topographic interference especially intéreriogs. We found the best
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match between LAI calculations of 0° ~ 23° zenith ranges (1 and 2 ringsPafid/élues by a 3 x 3
averaging window (Figure 2.3a). Considering average canopy height (~vighin)the watershed
and 4-meter IKONOS pixel size, this match is quite reasonable is tdrtheir size correspondences.

Most LAl measurements are located along the regression line except foostiers (Figure 2.4a),
from which we estimated spatial patterns of vegetation density witaitarget watershed. These
outliers are mostly from the sites where thick rhododendRom@ximumdevelops in understory
canopy. Dense understory canopy can easily decouple upward ground optical me@susach
downward remote sensing images, and also affects NDVI values whichnagemsitive to canopy
background variations (Huete 1988; Huetel.1994).

Hydrologic gradients of vegetation density were calculated by grouping 10 >pa€ches at equal
wetness index intervals (0.5) to suppress noises, where only groups ovgelewere counted
(Figure 2.4b). Wetness index (or topographic index; Beven and Kirkby 197@pleatated from 6.1-
m (20 ft.) LIDAR elevation data (Figure 2.3c) representing hydrologi@adients in the TOPMODEL
algorithm. Upslope contributing area for wetness index was caldutat@ D-infinity (D) method
allowing flow to be proportioned between multiple downslope pixels accotaliggadient (Tarboton
1997). A 30-m buffer area along the road is masked in this analysis to eaditidel vegetation

gaps (Figure 2.3a).
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Figure 2.4: (a) A scatter plot between LAI (leaf area index) measurements and NDVI (normalized difference
vegetation index), and (b) hydrologic gradients of estimated LAl within the study watershed. Litter LAl measurements
are from Bolstad et al. (2001). Circles represent average values, and box plots have lines at the lower quatrtile,

median, and upper quartile values from each binned group. Counts are the number of 10 x 10 m patches in each
group, which are basic units of model simulation.



2.4.4 Rooting depth and root distributions from soil pits

Haleset al.(2009) estimated spatial distributions of root depth, with 15 manuallyabechsoil
pits around WS36 (Figure 2.3c), undisturbed since 1919. WS36 has steepeiptop@avarage 65 %
slope) with steeper gradients of vegetation density (not shown here) trendhevatershed (WS18).
We did not excavate in WS18 as it is now preserved and adjacent eatshare recently disturbed
(e.g. selective logging). Nine pits were located close to the statgoutlet, while another four pits
were excavated higher in the watershed (Figure 2.3c). Soils asndy-silt loam inceptisols with a
typical colluvial appearance.

Pits were dug with horizontal dimensions of approximately 100 cm by 150 cm, with @eyitigy
between 120 cm and 180 cm due to difficulties excavating pits below the sdpy@iteEach pit was
located downslope (within 0.8 m) from an individual specimen of one of ther m&jdwood species
within the Coweeta LTER site (Table 2.Pjt locations were carefully chosen in the field based on
topographic positions, classified based on their curvature as ridgsiogid, and hollow (Table 2.1).
From GPS coordinates and the LIDAR data, the average wetiessdf ridge pits was computed to
be 3.79, while that of hollow pits was 5.65. Note that on-site curvatureasearobust method to
determine topographic positions for each tree, because even detailbelexformation (e.g.
LIDAR) cannot decide a hillslope position of each tree for geolocatiorate pooblems.

Summaries of soil pit measurements are available in Table 2dilddemethods of pit
construction, root frequency, and diameter measurements are descrilzdelset ldl. (2009). Note
that the limited number of measurements was due to careful hand-diggiaple fine root
structures. The vertical distribution of roots was quantified by countioig,rwhere the cumulative

frequency function of roots was drawn to determine rooting depth andaveant distribution.
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Table 2.1: Detailed measurements for soll pits at different topographic positions

Topographic ) Wetness Rooting depth
- Species DBH (cm) ) a
positions index (RDgs) (m)
Acer rubrum 5.1 412 1.00
Acer saccharum 20.9 3.10 1.01
Carya spp. 38.8 3.97 0.90
Liriodendron tulipifera 20.1 4.08 0.60
ridge
Quercus prinus 58.7 2.59 0.93
Quercus rubra 33.2 412 1.02
Rhododendron maximum” 9.2 461 0.98
Tsuga canadensis” 33.9 3.70 0.57
Average 27.5 3.79 0.88
sideslope Liriodendron tulipifera 17.5 3.89 0.74
Betula lenta 28.5 4.20 0.91
Liriodendron tulipifera 22.5 5.38 0.94
Quercus rubra 84.0 4.60 1.21
hollow
Quercus rubra 37.7 7.89 0.71
Quercus velutina 33.7 5.88 0.75
Rhododendron maximum” 4.3 5.93 0.92
Average 351 5.65 0.91

3Defined from 95% cumulative distribution of root counts; °Note that these species
are not deciduous broadleaf.
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Table 2.2: Species-specific eco-physiologic model parameters?®

Percent Specific Shadegl Leaf CN Maximum Photosynthe- Quo for . Maximum rate of
basal leaf area to sunlit . leaf . autotrophic .
Vegetation species area’ (SLA) SLA ratio ratio conductance U Parameter respiration carboxylation
(%) (m’kg CY)  (unitless)  (unitless) (ms™) (unitless) (unitless)  (umol CO; m? s™)

Quercus prinus 21.3 17.8 (22) 2.21 (24) 25.9(85) 0.0234 (94) 2.33(31) 14.54 (94)
Acer rubrum 9.3 25.8 (18) 1.78(22) 18.5(103) 0.0058 (NA)  0.0167 (221)  2.43 (40) 7.24 (221)
Quercus coccinea 7.9 19.0 (13) 1.39(18) 18.8 (80) 0.0083 (NA) 0.0133 (84) 2.37 (25) 27.53 (84)
Quercus rubra 6.8 20.8 (15) 1.74 (24) 26.4 (88) 0.0213 (27) 2.42 (27) 12.77 (27)
Liriodendron tulipifera 6.4 26.8 (18) 1.60(18) 24.2(85)  0.0110 (NA)  0.0248 (91) 2.24 (29) 10.18 (91)
Carya glabra 5.1 23.8(20) 1.69 (24) 21.3(90) 0.0217 (99) 2.46 (36) 9.42 (99)
Kalmia latifolia 5.1 18.9 (NA) 11.5 (NA)  0.0042 (NA)
Oxydendrum arboreum 4.4 52.4 (10) 1.03 (8) 20.0 (64) 3.02 (14)
Nyssa sylvatica 3.7 0.0285 (32) 5.62 (32)
Cornus florida 3.2 29.6 (8) 1.78 (9)  21.2(65) 0.0662 (20) 2.60 (11) 3.40 (20)
Betula lenta 2.7 34.0(21) 1.68(21) 25.4(79) 0.0115 (290)  2.71 (27) 16.95 (290)
Rhododendron maximum 7.4 48.9 (NA) 10.2 (14) 0.0033 (NA) 2.54 (7)
Weighted average 23.8 1.66 22.1 0.0065 0.0229 2.43 11.37
References 1 2,345 3 2,3,4,6 4 8 6,9 8

3Detailed explanations of parameters are available in White et al. (2000); PAll species under 2% (29 species) are not
considered. Numbers in parenthesis are sample sizes. NA represents non-available. References are as follows: (1)
Day et al. (1988), (2) Martin et al. (1998), (3) Mitchell et al. (1999), (4) Reich et al. (1999), (5) Bolstad et al. (2001),
(6) Vose and Bolstad (1999), (7) Vose and Bolstad (2006), (8) Sullivan et al. (1996), (9) Bolstad et al. (1999).



2.4.5 Model parameterization

The model is simulated at 10 x 10 m grid cell resolution (patehl1253), which we treat as
control volumes for biogeochemical and hydrological processes. Mangspecific physiological
parameters (Table 2.2) and other (e.g. soil, nutrient) parametdaie (4.3) were measured intensively
within WS18 and Coweeta LTER site. We calculated represenfdtixgological parameters at the
whole catchment scale with these species-specific parametigisted by vegetation composition
within the study watershed (Table 2.2). We did not simulate the motled species level, because a
detailed vegetation species map is not available and some physiofay@aleters (e.g. allocation,
phenological parameters) are not measured at the species leveloBlwahparameters (Table 2.3)
are estimated from 8-day composite MODIS (MODerate Resolution ImagewjrSradiometer)
satellite images for five years (2001 ~ 2005), aggregated to the 5 x Bokstae large enough to
include the whole Coweeta basin (21.8°kand minimize geolocation problems.

Lateral hydrologic connectivity within the study watershed is definechbgrating the model with
streamflow data varying the TOPMODEL parametar§the decay rate of hydraulic conductivity
with depth), and the lateral/vertid&l.o (Saturated hydraulic conductivity at surface). Monte-Carlo
simulation was implemented three thousand times with randomly sampledeparaatues within
certain acceptable ranges. A three-year calibration period (€ct889 ~ September 2002) was
chosen to include extreme drought precipitation patterns (Figure 2Egtier representations of soil
moisture status during drought periods. To allow soil moisture to gglalione and a half year
initialization was employed before the calibration period. The Maghliffe (N-S) coefficient (Nash
and Sutcliffe 1970) for lognormal streamflow discharge was used to tvahaalel performance
because this objective function is biased toward base flow, closalgd¢b soil moisture status in
this study area (Hewlett 1961). A maximum efficiency value of theredlon period was 0.802,

whereas that of a 16-year validation period was 0.873 (Figure 2.5).
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Table 2.3: Other model parameters

Parameters® Value Unit References
Eco-physiological Parameters
CN ratio of leaf litter 34.8
fine root 51.1 Unitless 1,2
live wood 75.6
Q10 value for heterotrophic respiration 3.56 Unitless 3
Allocation parameters
Fine root to leaf carbon 1.21
Stem to leaf carbon 1.0 Unitless 4,5,6,7
Live wood to total wood carbon 0.16
Coarse root to stem carbon 0.22
Light extinction coefficient (k) 0.54 Unitless 8
Phenological parameters
Start day of leaf on 105 DOY
Start day of leaf off 260 DOY 5,6
Length of growth period 35 days
Length of senescence period 50 days
Whole plant mortality 0.5 Percent 8,10, 11
Soil texture parameters
sand 55.2
clay 16.9 percent 12,13, 14
silt 27.9
Nitrogen input parameters
Wet nitrogen deposition rate 0.0010 ka N m2 v 15
Biological nitrogen fixation rate 0.0011 g y 16

®Detailed explanations of parameters are available in White et al. (2000). References
are as follows: (1) Martin et al. (1998), (2) Vose and Bolstad (2006), (3) Bolstad and
Vose (2005), (4) McGinty (1976), (5) Day and Monk (1977), (6) 5-year MODIS data
(2001 ~ 2005), (7) Monk and Day (1988), (8) White et al. (2000), (9) Sullivan et al.
(1996), (10) Elliott and Swank (1994), (11) Clinton et al. (2003), (12) Zak et al. (1994),
(13) Yeakley et al. (1998), (14) Unpublished data from Todd Lookingbill, (15) Knoepp

et al. (2008), (16) Todd et al. (1975).
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Figure 2.5: Long-term observed and simulated daily streamflow at the study watershed (1990 ~ 2006), including the
3-year calibration period (October 1999 ~ September 2002).



We show fairly good agreement between measured and simulated stilrenoistent (1999 ~
2006) at upper 60-cm soil depth from three gradient plots that range frimntaxenet soil conditions
(Figure 2.6). Therefore, reasonable spatio-temporal patternstafamm® moisture dynamics further
constrains model parameterization in addition to streamflow datanwiite watershed.

Figure 2.7 shows key long term nitrogen transformation rates alongltlegglgradient,
simulated based on the current vegetation gradients and the definaidhadeologic connectivity. In
this area, nitrogen is cycled tightly with increasing mineralizatr@huptake rates downslope. A small
proportion of available nitrogen is nitrified, with significant denitafion restricted to the wettest
parts of the catchment. The difference in mineralization and plant N uptkgely explained by
atmospheric deposition (< 1.0 g N°ryi*; Knoeppet al.2008), and fixation (1.1 g N fiy™; Toddet
al. 1975). We point out that these gradients largely from in situ N cyclimggaBd not include lateral
transport of mobile nitrogen (nitrate), or mass transport of orgdt@cdiownslope in the model

version we used.

2.4.6 Prescribed rooting depth as a function of hillslope position

Lateral water flux through shallow soil columns is dominant in thesentainous forest
catchments (Hewlett and Hibbert 1963), which results in uneven distributparafavailable water
along hydrologic flowpaths (Yeaklest al. 1998). The spatial pattern of vegetation density within a
watershed is a good estimator for spatial patterns of root zone maighaics and lateral
connectivity within watersheds. However, temporal dynamics of plailableawater are dependent
not only on hillslope position, but also on local properties like soil textung@Patoet al.2001;

Brady and Weil 2002) and rooting depth (Oren and Pataki 2001; Schenk and Jackson 2002).
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Figure 2.6: Time series and scatter plots of observed and simulated soil water
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within the target watershed (Figure 2.3b).
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Figure 2.7: Simulated long term (1941 ~ 2005) nitrogen transformation rates (plant
uptake, mineralization, nitrification, and denitrification) in litter and soil as a function of
wetness index. Note that these modeled gradients largely result from in situ N cycling
as lateral transport of mobile nitrogen (nitrate), or organic litter downslope is not
included in the simulation version. Each point represents a 10 x 10 m cell (n = 1253),
a basic unit of model simulation.
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We use maximum rooting depth in this study, rather than the usual definitiootioly depth (the
depth of 95% cumulative distribution of root biomass; Arora and Boer 2003)mm rooting depth
represents temporal dynamics of plant available water bettee a@eépest 5% of roots may play an
important role for vegetation transpiration especially during aegan (Nepstaet al. 1994,
Canadellet al. 1996; Jacksoet al.1999).

Soil and vegetation may also vary systematically as a function ofraqug position. Colluvial
soils are thicker and slightly finer in wet and convergent topograjithymesic species, but thinner
and coarser in dry and divergent topography with xeric species in¢hig@ayet al. 1988; Yeakley
et al. 1998; Halet al.2009). To reflect these local properties, a local rooting d&idh i6 expressed
as a linear function of local wetness indeé) with two rooting depth parameters, average rooting

depth RD.yg and spatial pattern of rooting depROe,).

RD= RD,, + RD,, x (WI —WI (2.10)

avg)
whereWl,,q represents the average wetness index within the hillslope. Tt ppitern of rooting
depth RDge,) parameter is the change in rooting depth with unit increase nésgeindex, hence a
positive value means increasing rooting depth in a downslope direction.

Soil texture variation within the watershed is small, and we do notporate specific patterns in
model parameterization. The model is then further calibrated byeMoatio sampling oRD,,q and
RDyev Using degree-of-fit between simulated and estimated hydrologic gradievegetation density
(Figure 2.4Db). Different combinations BD.,q andRDye, result in variations in spatial patterns of LAl
due to variations in water and nutrient availability, resulting photosysthes allocation dynamics.
The minimum rooting depth was set as 0.2 m to avoid numerical problems imttbal Veydrological

processes in the model.
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2.4.7 Allocation dynamics with varying rooting depth

We used a constant allocation strategy between vegetation compartengnesaf, stem, fine root,
coarse root) in the model, from the current BIOME-BGC algorithm (Thornton T9@8ntonet al.
2002). Allocation parameters are estimated from detailed field measuseofi@boveground woody
biomass increase, annual foliage productions, and root biomass dynamiakthmstudy site (Table
2.3) (Dayet al.1988; Day and Monk 1977; McGinty 1976). Specifically, McGinty (1976) medsur
actual root growth dynamics by re-filling three excavated pits otx@o ear period, providing
information to calculate rough estimates for allocation ratios leetwegetation compartments. He
also measured the vertical distribution of root biomass in the mixed haddaest from twenty pits
around the study area (WS14, WS22, and WS27), from which we estimate maximung depth.

However, the allocation scheme can respond to local water avgjladgtermined by a hillslope
position and local properties. Many studies show that decreasing reseaifability (water and
nutrients) can favor partitioning more carbon belowground, in terms of digpatiients (Schenk and
Jackson 2002; Hui and Jackson 2006) and field experiments (Gedibt996; McConnaughay and
Coleman 1999; Cromer and Jarvis 1990; Rgal. 2004, Littonet al.2007). For this reason, there is
a long history of modeling efforts to integrate this dynamic allocatibarae based on light, water,
and nutrient availability (see Mackay 2001; Wilson 1988; Running and Gower lr@&dljrigsteinet
al. 1999).

In this study, we incorporated two kinds of allocation strategies. First, wlecasstant allocation
parameters measured on site (Table 2.3) regardless of ppétians of prescribed rooting depth.
Second, we simply assume the linear relationship between local rogpitingashel constant
belowground allocation ratios, which means that more fixed carbon is atidoatelowground with
increasing prescribed local rooting depth. This alternative allocatategy is justified by the fact
that deeper roots require more belowground biomass. Under this alteal&ication strategy, if

aboveground biomass remains the same, total belowground biomass yssinppktional to the
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rooting depth while it does not change under the constant allocatioggtifaddowing Arora and
Boer (2003), this simple linear relationship between total belowgrowmdblsis and rooting depth

assumes that roots grow mainly vertically downward while maintasunigce root density.

25 Results

2.5.1 Topographic controls on rooting depth

Figure 2.8 shows the difference of rooting depths and root distributionedsetidge and hollow
locations. Our data suggests that there is no significant differencetimgrdepth between them,
whether they are defined as 95% cumulative distribution of root cdrbyg, (Table 2.1) or maximum
sampled roots depth (Figure 2.8). The avefRDg is 0.88 m in ridgesn(= 8) and 0.91 m in hollows
(n=6). If we exclude coniferoug$uga Canadensi®emlock) and evergreeRliododendron
maximumrhododendron) species and just compare deciduous forests, they areqeiadient
(about 0.9 m). We note that maximum rooting depth is more error prone as rcsgimated in a two-
dimension face along a single pit which may miss individual deep roots stagh rasts.

The average diameter at breast height (DBH) for deciduous babaglecies is 41.3 cm in hollows
(n=6) and 29.5 cm in ridges € 5) (Table 2.1), although this difference is dominated by a single
large DBH stemQ@. rubrg). Bolstadet al.(2001) also found general increases of aboveground
biomass and leaf area from ridge to hollow from sixteen circular 0.1 Fsavgtbtmixed deciduous
hardwood stands in the Coweeta basin. Maatial. (1998) found that DBH values from ten deciduous
broadleaf species in the Coweeta basin have a linear allomé&itionship with leaf area, estimated
from leaf mass and specific leaf area (SLR) % 0.822,n = 87). Therefore, although there is about
40% increase of LAI from ridge to hollow in this sample, maximum rooting deptiamealmost

constant.
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Figure 2.8: The distribution of roots as a function of soil depth for pits located on (a)
ridges and (b) hollows. Distributions are expressed as root cumulative frequency and
as absolute number. Grey lines represent individual pits, while black lines are the
mean of all pits. Photographs are vertical sections of two Q. rubra pits (Table 2.1)
dug within 20 m of each other. Note the difference in the depth of the dark A horizon
between the two sites. Blue painted roots were used for analysis of root distributions.
Modified from Figure 3 in Hales et al. (2009).
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2.5.2 Parameter spaces

Figure 2.9 indicates parameter spacesidy,, andRDye, in regard to MAE (mean absolute error)
values between simulated and estimated LAI from hydrologic gradienégetation (Figure 2.4b) for
all patchesr{ = 1253). These parameter spaces are not much different if we ualkestimated LAI
values from the IKONOS image directly, but much higher MAE values (> B@xpected even
around the best-fit parameter space.

Best-fit parameter spaces are very similar for both allocatirategies, wheiRD,q is right above
0.8 m andRDyey is around zero or very slightly positive values (Figure 2.9). Tolbosh&D,,g or high
RDgevCan result in steeper gradients of vegetation density along thepelitian estimated ones,
where local vegetation density is too dependent on hillslope positionsdinsitealated spatial
gradients of vegetation density can disappear atRify, or low RD,e, ranges, where local vegetation
density is a weaker function of hillslope positions. The patterns of Mi#titn parameter spaces are
very different between two allocation strategies. As for consiamettion strategy, MAE increases
very rapidly at shallovlRD,,4 ranges (Figure 2.9a), while it increases rapidly in the ddepgy
regions in alternative allocation strategy (Figure 2.9b).

This range of estimateRID,4 is quite comparable to the actual maximum rooting depth
measurements in the hardwood forest at the same northwest-facing stopekthe study area
(McGinty 1976). Roots measured at our pits are located in southeast-flapieg, so slightly higher
maximum rooting depth values are reported. Nevertheless, we found véay spatial pattern of
rooting depth from pits excavation data (Table 2.1; Figure 2.8), not so mustenifbetween

topographic positions (ridges and hollows).
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2.5.3 Long-term ecohydrologic optimality at the hillslopakes

Figure 2.10 and Figure 2.11 show the simulated long-teean annual NPP (net primary
productivity) and ET (evapotranspiration) at the study waterslieing the 65-year simulation
period (1941 ~ 2005) with different rooting and allocatioatsigies. Annual ET is calculated on a
water year basis to compare with estimated ET fronsrbakance calculations (precipitation —
runoff) at the catchment scale. Water use efficiency (W#ties are calculated with total ET on
an annual basis rather than transpiration to bettersepté¢he site-level WUE (Huxmaeat al.
2004). Figure 2.12 shows how aboveground NPP (ANPP) chamje total NPP values under
different allocation strategies, where ANPP to NPP ratflect model allocation ratios in the
model. In the alternative allocation strategy, ANPP/N&tfos start around one at a very shallow
rooting depth and decline with increasiRB.,q (Figure 2.12b), but are invariant in the constant
allocation strategy (Figure 2.12a). Simulated ANP#&sisful not only to compare with the
estimated ANPP values at the study site, but also tesept allocation to aboveground vegetation
density (foliar biomass) in the long-term simulatioln&l is not prescribed in the model, but a
constant portion of cumulative ANPP is allocated intcafiobiomass.

For both allocation strategies, optimal carbon uptake occammdrtheRD,,4 with the best fit to
the spatial gradients of vegetation density (based on neshand simulated LAI) within the
watershed (Figure 2.9). Optimal carbon uptake ranges awvtased withRDg., values slightly
negative and very close to zero, similar to g, estimates. Maximum WUE values are also
established around these parameter ranges for both allosatategies.

The simulated ANPP ranges at optimal parameter sifapse 2.12) are similar to estimated
long-term ANPP both at the whole catchment scal®.6f C nf y*) (Day and Monk 1974, 1977:;
Day et al. 1988) and at the plot scale (Bolstatdal. 2001). Also, note that there is significant
discrepancy between optimal NPP and ANPP parameter rangesalternative allocation

simulations (Figure 2.12hb).
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Figure 2.10: 3-D and 2-D contour plots of long-term simulated (1941 ~ 2005)
average annual (a) NPP (net primary productivity), (b) ET (evapotranspiration), and
(c) WUE (water used efficiency) over sampled RDayg and RDgey under constant
allocation strategy. The color bar represents the mean absolute error (MAE) of
simulated LAI (Figure 2.9a).
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Figure 2.11: 3-D and 2-D contour plots of long-term simulated (1941 ~ 2005)
average annual (a) NPP (net primary productivity), (b) ET (evapotranspiration), and
(c) WUE (water used efficiency) over sampled RDayg and RDgey Under alternative
allocation strategy, where allocation ratios are as a function of local rooting depth.
The color bar represents the mean absolute error (MAE) of simulated LAI (Figure
2.9b).
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Figure 2.12: 3-D plots for long-term annual NPP (net primary productivity) and ANPP (aboveground NPP) under (a)
constant and (b) alternative allocation strategies with varying RDayg and RDgey parameters. Contours at the x-y plane
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vegetation density (LAI) follow ANPP as a constant portion of cumulative ANPP is allocated into foliar biomass.



Optimal ET ranges (Figure 2.10b and Figure 2.11b) aitdealbwer than the catchment-scale
estimated ET during the same period (794 min owever, recent studies suggest that upscaled
ET estimates from plot measurements in steep mourgthments are lower than ET from mass
balance, usually attributed to deep ground water bypags\vglsonet al.2001). Fordet al.

(2007) also shows that two-year ET estimates upscaleddetailed sap flux measurements are
about 10% lower than catchment-based estimated ET atljhheeat pair watershed (WS17; Figure

2.3c).

2.6 Discussion and conclusions

2.6.1 Optimal vegetation gradients for system-wide proouitgti

This study suggests that the existing hydrologic gradientsgetagon density measured within
the watershed effectively represent the long-term optitase $or system-wide carbon uptake.
Model parameters controlling lateral hydrologic connettiof the watershed are first calibrated
from long-term streamflow data, which also producesaralsle spatio-temporal dynamics of
surface soil moisture. To investigate the optimality of vatigt gradients, multiple spatial patterns
of vegetation within the watershed are simulated by varyingngaepth as a function of hillslope
position. Optimal ranges of rooting depth parameters aoesaisported by field measurements
from pits excavation. Two different allocation stratediethe simulations elaborate the importance
of canopy carbon allocation to the emergent optimality ametion of vegetation canopy patterns.

Less vegetation upslope produces a subsidy of more wademtoslope vegetation, where more
water and nitrogen are available. Model results suggest thateffizient photosynthesis can take
place downslope for two reasons. First, increased nitragaitability can increase carbon uptake
per unit water loss (water use efficiency) in downslometation. Second, ample soil moisture

downslope allows plants to allocate proportionately l@sban into belowground biomass and
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more into aboveground, which increases leaf area, light absorptid total carbon uptake.
However, steeper vegetation gradients (sparser canopy upgtser downslope) than the
existing canopy pattern simulated by decrea&by,q or increasindRDyey (Figure 2.9), provide a
water subsidy from upslope that exceeds the capacityeafatvnslope canopy to transpire
following an asymptotic response of ET to available waithis results in less total ET and greater
catchment runoff ratios (Figure 2.10b and Figure 2.11b).

Uniform or inverse vegetation gradients are established bgasmgRD,,q or decreasingRDyey
(Figure 2.9), with system-wide declines of carbon uptakewordifferent allocation strategies.
With the constant allocation strategy, greater upslope watake provides less water subsidy
downslope, resulting in increased total catchment ET. Meweatchment productivity does not
follow increasing plant water uptake because of lower génoavailability, specifically in upslope
regions (Figure 2.7). Less nitrogen availability can refsaih decreases both in nitrogen
transformation rates and limited amount of nitrogen ygsia the model. Second, with the
alternative allocation strategy (greater proportionablwglound allocation of photosynthate with
increasing rooting depth), total ET and NPP decline withtdichlight availability (lower canopy
light absorption).

In summary, the current vegetation density gradients cait fesm self-organization for
optimal carbon uptake between adjacent patches alongdtbwpThey may effectively represent
the degree of dependency of multiple interacting resourcate\and nutrients), moderated by
feedbacks with canopy light absorption. Therefore, vegetatittenn along hydrologic flowpaths is

a function of lateral hydrologic connectivity within the Hibige.

2.6.2 Compromises between multiple resources

Competition for light, water, and nutrients are the mosbirtgmt factors determining allocation

of fixed carbon into vegetation compartments, providing topRysiologic basis for compromising
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between multiple stresses for optimal carbon uptake (Tilh®88; Gedroet al. 1996;
McConnaughay and Coleman 1999). Simulated optimalorauptake ranges in this study show
effective compromises between multiple stresses (wiggbt, and nutrients) for optimal carbon
uptake. For both of the allocation strategies, there are Avaii¢ed productivity conditions up to
optimalRD,,4 ranges, whereas different stress terms act as a linféctor for carbon uptake above
optimalRD,,4 ranges.

With the constant allocation strategy, catchment scaleiblRily steady above optim&D.,q
ranges even though annual mean ET increases (Figure Pil®)ncrease of ET is mainly
attributed to transpiration with increasing local rootingtle not evaporation (interception), as LAl
(following ANPP) remains almost constant (Figure 2.12ajs Thmainly explained by decreasing
nitrogen availability with increasinBD.,q especially in upslope regions (Figure 2.7). More
localized soil water uptake with increasing local rootiegttis requires more nitrogen especially
upslope, which however is not available. In the modelpgén is assumed to be confined within
specified rooting depth. Therefore, increased root deitiyses more water availability but not
nitrogen. Rather, wetter root zone moisture dynamics reducansformation rates as upper 60-cm
soil moisture ranges within the study site are already eese to the levels maximizing
decomposition, mineralization, and nitrification raitesoils highest (around 60% saturation for
sandy loam soils) (Figure 2.1 and Figure 2.6), excepHort dry seasons. The decline of nitrogen
availability results in consistent decreases of WUE aloptienal RD,,4 ranges (Figure 2.10c). In
contrast, for the alternative allocation strategy carbon umaleannual ET decline quickly above
the optimalRD,,4 ranges (Figure 2.11). Deeper rooting depth increasts weaailability, while
increased proportional belowground carbon allocationtdiricliar biomass which decreases light
absorption (Figure 2.12b).

Significant discrepancy between optimal NPP and ANPRBmater ranges in the alternative

allocation simulations (Figure 2.12b) shows an examplefet&fe compromise between light and

51



water resources for optimal system-wide carbon uptake XN®IBcation of limited photosynthate
into vegetation compartments (e.g. foliar, root), is relatetrade-off between resources (e.g. light,
water), for a plant would be increasing one resource dilitijaby decreasing the other (Tilman
1988). For example, even though there is higher abovegrounthtiegedensity (or higher light
availability) by more aboveground allocation at shallof®Bx,4 ranges (around 0.4 m), catchment
scale optimal carbon uptake is limited by water stréiggen by lower belowground allocation.
This suggests that the ‘growth-stress trade-off’ concept shmutdgarded as a compromise
between two main complementary resources (light andriateoptimal carbon uptake itself
through the control of aboveground vegetation density bydophotosynthate allocation (Tilman
1988; Gedroet al. 1996; McConnaughay and Coleman 1999).

Simulation results also show that the relation betwekelkzen transpiration) and
photosynthesis is not constant. Most optimality models asedan a steady state assumption
without the dynamics of vegetation density or nitrogen avaitglait a function of changing
rooting strategy (Rodriguez-lturket al. 1999a; Porporatet al. 2001; Collins and Bras 2007;
Guswa 2008). However, only transpiration (not ET) is diyeelated to carbon uptake via stomatal
responses (Schymansi al.2007), a proportion which is actively changing with vetietacover
and resulting transpiration and interception proportioggeeially in water-limited ecosystems.
This effect cannot be properly simulated with a threshold agpréor interception loss without
simulating actual vegetation dynamics. The linear ET-gotthesis assumption is only true when
there is not so much change in vegetation density and nitaagelability which can control the
portion of transpiration and the relationship betweandpiration and photosynthesis (see
equations (2) and (3); Schymangkial. 2008). We can see this example in the constant allocation
simulations (Figure 2.10) where annual carbon uptake renainost constant in spite of increases

annual ET, because nitrogen availability decreases.
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2.6.3 An objective function of optimality models

Rodriguez-Iturbe and co-workers used the ‘water stress’asran objective function for
optimal vegetation density where water stress was quawtityaexpressed as a non-linear function
of soil moisture (Rodriguez-lturbet al. 1999a; Porporatet al.2001). They postulated that
optimal vegetation condition can be found between minimutemgaress and maximum
productivity assuming that productivity is directly proportibtmaevapotranspiration under water-
limited ecosystems (Porporag¢b al.2001).

Vegetation density, quantified as leaf area index (LAInat only an indicator for energy
absorption of photosynthetically active radiation (PAR),dgb a main channel for water loss
through transpiration and interception storage. Vegetatitiely compromises between light and
water resources at short (e.g. leaf orientation) and lerrg-¢cale to achieve optimal carbon uptake
given climate and soil conditions by density adjustment wittemsiress driven foliage reduction
in water-limited condition or more allocation into léafan energy-limited condition.

If vegetation density is above the optimal state given céraad soil conditions, large
interception storage effectively decouples water loss frarbon uptake which eventually results in
severe water stress and productivity decline. Many studpEst decreasing water use efficiency
and decoupling between water loss and carbon uptake dusiagesgrought conditions (e.g.
Hwanget al.2008; Baldocchi 1997; Reichstedt al. 2002; Leuninget al. 2005). On the other
hand, if vegetation density (or cover) is below the optinaksgiven climate and soil conditions,
energy absorbed by vegetation can be a limiting factor faiopiinthesis which will result in
increased allocation to foliar carbon increasing lighbgitson toward an optimal vegetation state.

In this context, the current canopy density pattern irl8/&ypears to be close to an optimal
state for carbon uptake itself, not a compromise betweemuomm water stress and maximum
productivity. Vegetation fully exploits the most limiting facts possible for their maximum

growth across diverse ecosystems, often called ‘Liebigyg &f the minimum’ (Tilman 1988).
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Even in water-limited ecosystems, the current vegetatide skeould be the maximization point of
vegetation productivity because they are opening their stoasamuch as possible for efficient
uptake of CQat the least cost of water to avoid severe water stveggetations in water-limited
ecosystems always fully use available water in soil (Keffkat al. 2004) while avoiding severe
water stress to maximize their productivity, not to minenizater stress itself. Moreover, a water
stress term cannot be a general objective function for aptimmodels as limiting factors for
carbon assimilation should be different across various e@rsgst

Recently, Schymanslat al. (2007, 2009) asserted that carbon uptake (e.g. nabrcgrofit)
should be an objective function of optimality models regaydianspiration as the ‘inevitable’ cost
or leak for carbon assimilation process. While this agsei$ consistent with the approach taken
here and in a number of previous studies, the appropriatenessa#rbon profit (NCP) as a
driving force in optimality models is somewhat controvdr@aupach 2005). Schymansd al.
(2007, 2009) tried to estimated seasonal optimal stategstation from measured water fluxes
throughout a monthly and a daily basis. This approach has posblems in that current vegetation
structure or cover is not just a result of short-term ogtition for carbon uptake, but also a result
of cumulative and transient effect of previous photosynshesspiration and allocation. Many
researchers reported an inter-annual transient effetintate factor on vegetation dynamics from
flux measurements (Lawat al. 2002; Barret al. 2004), satellite observations (Goward and Prince
1995; Mohamedckt al. 2004), and tree ring growth measurements (Gonzalez-Elenal. 2005;
Andreasseret al.2006; Pumijumnong and Wanyaphet 2006; Tardif anddiatori 2006).
Vegetation structure in forest ecosystems does not adjust pyamphanging environmental

conditions (e.g. water stress) unlike grass-based ecosystem.

2.6.4 Allocation dynamics along the hillslope gradients
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It is widely accepted that proportional belowground afiiecausually increases with decreasing
water and nutrient availability (Gedret al. 1996; McConnaughay and Coleman 1999; Cromer
and Jarvis 1990; Ryaat al.2004; Littonet al.2007; Friedlingsteiret al. 1999). In WS18,
surface soil moisture dynamics (Figure 2.6) indicate tleter regions are more favorable to
available nitrogen along with associated nutrient transhostigh shallow subsurface flow.
Moreover, soil moisture has a primary control on vegetatensity (Figure 2.4b), which suggests
that the amount of nitrogen input through litter inputodbllows hillslope gradients. For these
reasons, there are significant increases of nitrogeitaluay with wetness within the study site
(Knoepp and Swank 1998; Knoeppal.2008), which also suggests a more rapid cycling of
organic matter and greater amount of nutrients availableataITherefore, the belowground
allocation proportion may decrease with hillslope mois gradients (without a species shift)
simply because water and nutrient availability increases.

This spatial allocation pattern is very similar to whatfaend in pits excavation experiments
(Figure 2.8) and the alternative allocation strategy sitima (Figure 2.11) with spatially
homogeneous vegetation species. There was significanagecod DBH from ridge to hollow in
our sample, maximum rooting depths are almost constami€™.1). Even though we did not
actually calculate total belowground biomass for the laditefal roots spread information, this
shows possible transitions in allocation dynamics alondpifletope gradients. In the simulation,
the optimalRDye, parameter for optimal carbon uptake is located at $jigiegative ranges, so
maximum rooting depth and belowground allocation proposlaitly decreases downslope.
However, transitions into more tolerant vegetation speciasinny region may offset this optimal
allocation dynamics along the hillslope gradient. As fawa know, there are no empirical studies
on the allocation dynamics along hillslope gradients, that atdouthe effects of downslope
changes of water, nutrients, light availability (McConnaaygand Coleman 1999, and references

therein), species shifts (McConnaughay and Colem&9;1Goweret al. 2001), and stand ages
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(often called ‘ontogenic drift’) (McConnaughay and Coéenil999; Ryaret al. 2004, Littonet al.
2007). For this reason, it would be difficult to find cistsnt allocation patterns along hillslope

gradients in natural situations.

2.6.5 Limitations of this study

In this study, we used a simple representation of rootpghdgiven the complexity of spatial
variation and transport processes, assuming densitydodrgy distributed with depth. However, a
vertical distribution of roots is important for determigiwater and nutrient availability (Jacksen
al. 2000; Collins and Bras 2007). Shallow roots play an imamb role in nutrient recycling as
most nutrients (especially nitrogen) are concentratelderstrface soil layer (Jobbagy and Jackson
2001), while deep roots mostly determine water availghdliring a dry season. For this reason,
vertical distribution of roots can play an important roleompromising between these two
resources (water and nutrients). Pit observations in taiskow fine roots are more evenly
distributed with depth in hollow soils, while fine roottem show bimodal distributions at shallow
soil depth and the soil-saprolite boundary (Hadeal.2009). A feedback between greater carbon
allocation to deeper roots and the density of shallow finesnmaty be useful to explore in future
modeling efforts. However, this would require significantlgrminformation on soil profile form
and computational effort, especially if multiple modellizdions are required.

Second, we did not integrate detailed spatial patterns otatewespecies and soil in the study
area. Vegetation species varies from xeric to mesic eapéailowing hillslope position in this study
site (Day and Monk 1974; Dast al. 1988). Xeric species are more tolerant to water stsess,
optimal carbon uptake may occur at shallower rooting depthsinauiated by the model in upslope
regions. Mesic species need more water, so optimal caftake may occur at deeper rooting
depth than simulated in downslope regions. Hence optiméhgdepth patterndlRDye) may show

a small positive trend downslope given the spatial pattesp@dies transition. We note that in both

56



simulated and observed rooting depth, trends are classrdo contrary to our initial expectations.
However, this trend is consistent with the trend of thelalbs amount of photosynthate production
and the proportional aboveground/belowground allocation.

In the study catchment, soil texture varies from finedlgdoam to silt loam (from soil texture
data provided by Todd Lookingbill) with increasing wetness@lthe hillslope gradients, while
soil tends from thinner to thicker (Hales al. 2009). However, our soil pit observations did not
indicate any strong textural gradients, but did reveal largal heterogeneity in colluvial soils.
Transition of soil texture along the hillslope gradientsyrfavor soil water holding capacity in
wetter regions per unit soil depth (Brady and Weil 20Ghe®k and Jackson 2002; Dingman
2002). However, Halest al.(2009) also found high fine root density profiles in the-saprolite
boundaries in dry region. This suggests that soil-saprolite laovrdts as a physical barrier for
deep roots in the dry region, in which case optimal rootimghdeatterns may not be properly

established along the hillslope gradients.

2.6.6 Conclusions

This study suggests that the existing hydrologic gradientsggtagon within the catchment
effectively represent the long-term optimal state fmbon uptake, which is closely modulated by
rooting and allocation strategies. Traditionally, optimalippmaches have assumed a steady state
mechanism within the model, based on water or carbonipk&sc We have used a different
approach emphasizing a fully transient, distributed rhtwdmvestigate whether optimal ecosystem
properties emerge as a result of self organizing spatiakpaité canopy density, specifically in the
form of catchment scale ecosystem productivity and wateretficiency. The existing vegetation
pattern must be understood as a feedback between msttipéses (e.qg. light, water, and nutrients)
as connected by water flow along topographic gradients. Tiustanent and evolution of the

ecosystem with the geomorphic, climatic and hydrologicregdtresults in an emergent pattern that
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optimizes system-wide carbon uptake, over and above thadodl patch. This study extends and
tests the concept of eco-physiological optimality theonhattsterm and plot scales to long-term

ecohydrological optimality at catchment and hillslope scales.
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Chapter 3 Topography-mediated controls on local vegetation

phenology estimated from M ODI S vegetation index

31 Abstract

Forest canopy phenology is an important control of annual vmatécarbon budgets, and has
been shown to respond to interannual climate variationsolmtainous areas, there may be a
detailed spatial variation in phenology in response to asgifessed topoclimate. The near real-
time remote sensing products from the moderate-resnolutiaging spectro-radiometer (MODIS)
are invaluable in understanding vegetation phenology acrdssetif spatial scales. In this paper,
we used the MODIS vegetation indices to derive the topograuyated vegetation phenology at
a local scale. A simple post-processing analysis using-yedr trajectories was developed to
provide an efficient way to filter out unqualified data psirftour local phenological variables
(mid-days of greenup/senescence, lengths of greenup/senssasmestimated by non-linearly
fitting time-series of transformed vegetation indices wittifference logistic function.
Phenological variables are then related to local topogralptégiables by multiple regression
analysis. Elevation had the most explanatory power for athplogical variables. The mid-day of
greenup period showed a strong linear relationship wabagion, while the other three variables
(mid-day of senescence, and lengths of greenup/senescehitedesl quadratic responses.
Radiation proxies (transformed aspect and potential reledidiation) also had significant
explanatory power for all these variables. Though hillslopstion was not observed to have a

significant effect on vegetation phenology at this coarseugsnl(about 230 m), interannual



variations of vegetation phenology between very wet and digsy@howed that more extended
periods of greenup/senescence are found without shifting mglafagreenup/senescence. These
topography-mediated controls on local vegetation phenologgiasely related to micro-climate
variations, vegetation community types, and hydrological mosiiihe capability of detecting the
topography-mediated local phenology also offers the potdot@etect vegetation responses to
climate change in mountainous terrains, and can serve hagtseto develop ecohydrological

models incorporating space-time variations in vegetationgibgn.

3.2 I ntroduction

In recent decades, changes in global vegetation phenolagyifeing of greenup and
senescence) induced by global-warming have been studied lyyres@archers (e.g. Menzel and
Fabian 1999; Zhoet al.2001; Walthert al. 2002; Matsumotet al.2003). These changes are
believed to be closely linked to the amplitude and timingeafsonal cycles of atmospheric LO
(Keelinget al. 1996; Myneniet al. 1997; Randersoat al. 1999; Churkinaet al. 2005) (but see
White and Nemani 2003; Angest al. 2005 for counter example). Specifically, much reseias
focused on climate controls on vegetation phenology in ide amd high-latitudes, where
phenological patterns are more sensitive to global wariaihgu et al. 2001; Randersoat al.
1999; Whiteet al. 1997; Jenkingt al.2002; Zhanget al.2004, 2006). This is believed to occur
because vegetation phenology in the mid- and high-latitudesiie controlled by temperature and
photoperiod, while vegetation phenology in the tropics arsgimi-arid areas is primarily
controlled by seasonal rainfall (Childes 1988; Battal. 2000; Jolly and Running 2004; Joky
al. 2005, and references therein). Single climate fachmwever, are not always sufficient to
explain vegetation phenology at a given location. Rathaltiple factors act on phenology together
or at different phases of vegetation (Whéteal. 1997; Junttila 1980; Nilsen and Muller 1981,

Partaneret al. 1998).
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A time-series analysis of vegetation indices from globadlki@ images (e.g. normalized
difference vegetation index, enhanced vegetation index) makssible to understand
phenological signals across different spatial scales (ehiteWt al. 1997; Jenkin®t al.2002;
Zhanget al.2006; Jolly and Running 2004; Schwaetzal. 2002; Fisheeet al. 2006, 2007; Beck
et al. 2006). Whereas several researchers have used fieldiregeesnts to study the topography-
mediated controls on vegetation phenology (e.g. Fishat.2006; Seghieri and Simier 2002;
Tatenoet al. 2005; Richardsomt al. 2006), few studies have used satellite imagery for this
purpose. The lack of studies using global satellite prodact®pography-mediated vegetation
phenology is mostly due to sensor coarse spatial sedhsh) may obscure the fine-scale variations
in phenological signals despite their frequent temporal résol(t ~ 2 days).

Spatial variations in vegetation phenology have significapaits on terrestrial ecohydrologic
modeling at the local scale especially during vegetatemsttion periods (e.g. Nemaei al. 1993;
Running and Nemani 1991; Obrist al.2003; Huntington 2004). Topography-related controls on
vegetation phenology are not only mediated by micro-clifet®rs (e.g. temperature, radiation
etc.), but also by species distributions, and hydrological gredi€#hough most phenological
models use climate variables (e.g. Jatyal. 2005; Richardsoet al. 2006; Chuineet al. 2000;
Arora and Boer 2005), topographic factors (e.g. elevatispect and slope etc.) are more easily
measurable and scalable especially in topographically comgigans. An understanding of the
topography-mediated controls on vegetation phenology may tiergield more accurate
prediction of climate change effects on local vegetation mptex terrain.

The U.S. National Aeronautics and Space AdministratohSA) Earth Observing System

(EOS;_ http://modis.gsfc.nasa.gpelrrently produces a global vegetation index (V1) for therenti

terrestrial earth surface at 250-m spatial resolufW®D13Q1) to provide a consistent measure of
vegetation conditions from the MODerate Resolution Img@pectroradiometer (MODIS) sensor

aboard Terra/Aqua platforms launched in 1999 and 2002t@+#1 al. 2002). The MODIS land
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products offer significant advantages over previous globdlisatgroducts (e.g. AVHRR) in terms
of radiometric and geometric properties, combined withrbved calibration, atmospheric
correction and cloud screening (Justéteal. 1998). Previous global satellite products often
included high-level noise for the lack of precise calibratedaud screening information, and view
angle biases (e.g. Gowaed al. 1991). MODIS land products provide more stable informadion
vegetation phenology in both the spatial and temporal domamashave been successfully
compared with field measurements (Zhaatal. 2003, 2004, 2006; Beakt al. 2006; Fisher and
Mustard 2007; Sakamotet al. 2005).

The MODIS spatial scale may not be fine enough to fihtbpbgraphy-mediated controls on
local vegetation phenology, especially in topographically coxgeain, because major
topographical factors still have significant sub-gridiability within a MODIS pixel. However,
this approach can give us basic information on how vegetplienology varies with topography,
and which factors (e.g. micro-climate, hydrological positiand vegetation community types) are
dominant in controlling phenology at the local scale.

The objectives of this study are (1) to develop a robystogeh to extract phenological signals
from the multi-year trajectories of MODIS NDVI, (2) to det topography-mediated controls on
local vegetation phenology at the MODIS scale, and (3) denstand these spatial phenological
patterns based on spatial variations of micro-climateaginer factors (e.g. vegetation community

types, hillslope positions).

3.3 Materials and methods

3.3.1 Study area

The Coweeta Hydrologic Lab is located in western Nodhoiha, USA and is representative of

the Southern Appalachian forest (Figure 3.1). The SomtAppalachian forest has very diverse
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flora as a result of the complex terrain and consequentoiésian microclimates and soil

moisture (Whittaker 1956; Day and Monk 1974). Meaonthly temperature varies from 3.6 °C in
January to 20.2 °C in July. The climate in the Coweeta Basilassified as marine, humid
temperate, and precipitation is relatively even in all sesisannual precipitation ranges from 1870
mm to 2500 mm with about a 5% increase for each 100 nft($wal. 1988). The dominant

canopy species are oaks and mixed hardwoods incl@@lirgcusspp. (oaks)Caryaspp. (hickory),
Nyssa sylvaticgblack gum) Liriodendron tulipifera(yellow poplar), and’suga canadensis
(eastern hemlock), while major evergreen undergrowth sp@ceRhododendron maximum
(rhododendron) anKalmia latifolia (mountain laurel) (Dagt al. 1988). Spatial distributions of
forest community types in this study area are closbted to the elevation, aspect, and moisture
gradients (Figure 3.2; Dast al. 1988), associated with distinct phenological patterresfasction

of topographic positions. Note that it is classified as INart Hardwood forest types in higher
elevation regions, dominated Bgtula luteayellow birch), Tilia heterophylla(basswood),
Aesculus octandrgbuckeye), an®@. rubra(northern red oak) etc. The local vegetation phenology
is well preserved in the study site, even though there s@me partial logging experiments in
several of the watersheds in the 1950’s and 1970’s. Detdigéatbance histories for the sub-
watersheds are available at the Coweeta LTER homepage

(http://coweeta.ecology.uga.edu/ecology/cbase)html
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Figure 3.1: A study site (Coweeta Hydrologic Lab). Grids represent the MODIS
(MOD13Q1; about 230 m) pixels. Red lines represent the boundaries of
watersheds. Letters indicates the pixels for examples of filtering and fitting methods
(Figure 3.3; Figure 3.4).

"

=~

X :
. s L

76



1370 =
NORTHERN

HnnnwV
- I_/ (Re)

1060 =

OAK FCHESTNUT)

ELEVATION (M)

(CO) (s0)
900 = COVE
HARDWOODS

760 (W0, BO)
OAK=PINE

67 IrrIIL[1III1l|11IIPIIl
ME N ENW W SE SSWINE N EH'HI'I' SESS‘I[H[H ENW WSE 5 SW

COVE SLOPE RIDGE

maois! - dry
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community types within the study site as a function of slope, aspect, elevation, and
hillslope positions.
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3.3.2 MODIS vegetation index

Due to its high temporal frequency, the MODIS normalidiéfirence vegetation index (NDVI)
is particularly useful to detect subtle phenological chargB¥/l is a normalized ratio between of

surface reflectance red and near infrared bands:

NDVI = (pyr — Preo) /(P + Preo)  (3.1)

whereprep andpyr are surface reflectance of red and near-infrared baesizectively. MODIS VI
products (MOD13Q1 version 5) are released in the HDF-88& format as Sinusoidal projections
with 16-day temporal resolution and approximately 250patial resolution (Huetet al.2002),
reprojected to the GeoTIFF file format with the Universal $va@nse Mercator (UTM) coordinate
system by MODIS reprojection tool (MRT;

https://Ipdaac.usgs.gov/lpdaac/tools/modis_reprojection).tool

NDVI, however, usually has a non-linear relationship vigaf Area Index (LAI) (Mynenet al.
2002), which is a more meaningful measure of actual vegetathis non-linearity can result in
significant bias, including exaggerated phenological signal®wNDVI ranges (Fisheet al.
2006). We estimated this non-linear relationship lgclayl matching 1-km MODIS NDVI
(MOS13A2) and LAI (MOD15A2) of the study area. We then tiée relationship to transform the
250-m MODIS NDVI (MOD13Q1) into estimated LAI valuesdoalyze phenological signals.

There are two main reasons why we used transformed MADM (MOD13Q1) values rather
than MODIS LAI (MOD15A2) values for extracting local phergittal patterns. First, MODIS LAl
is temporally unstable even though they are provided megaiéntly (8-day temporal resolution)
than MODIS NDVI. It seems that both quality control (2 the extra QC flags in MOD15
cannot remove unqualified data well because of the substspégal variations in microclimate in

this humid and mountainous area. Second, MODIS IMDOD15A2) is currently provided only at
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about 1-km spatial resolution, which is too coarse tioenee the differences in phenological
patterns between various topographic positions in this contgteain.

In the production of VI values from 2001 to 2008, only good mearginal VI values were
chosen based on the pixel reliability values, a paranadteh was recently added to MODIS VI
products (version 5) and is usually recommended for posepsing analysis (Didan and Huete
2006). We included marginal data for this study because thenewot enough points with good
guality data to show the full phenological patterns, and eved goality data have unreasonable
phenological patterns by cloud contaminations in this highypitation region. Rather, we
incorporated the post-processing analysis to remove falagpdamts. The day of composite
information at each pixel, another parameter regeadtled into collection 5 datasets of MODIS VI,
was also retrieved to get the exact acquisition dategleach composite period (Didan and Huete
2006). This information was suggested to be quite importarextracting exact phenological
signals (Fisher and Mustard 2007).

Two experimental watersheds (WS01, WS17; Figure &i¢re white pineRinus strobug..)
was planted in 1957 and 1956 respectively, were masked witheadjpixels to exclude the distinct
phenological patterns featured by coniferous forests. Atsee experimental watersheds that were
recently subjected to artificial treatments (WS06, WS0id WS13; Figure 3.1) were excluded

because full successional vegetation is not yet established.

3.3.3 Post-processing analysis

There are several traditional filtering or fitting metho@weloped for time-series VI, including
the Best Index Slope Extraction (BISE) method (Vi@tyal. 1992), the modified BISE algorithm
(Lovell and Graetz 2001), the Fourier Transform (Hgpeathm (Olsson and Eklundh 1994;
Verhoefet al. 1996; Roerinket al.2000), the wavelet transform algorithm (Sakamettal. 2005),

the weighted least-square linear or non-linear fit meéttdonsson and Eklundh 2002; Chedral.
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2004), and the mean-value iteration filter (Ma andodstraete 2006). As discussed previously,
MODIS land products offer significant advantages ovéligraglobal satellite products in terms of
radiometric and geometric properties (Runn@tgal. 2000; Heinsctet al. 2003). We integrated
two-step simple filtering methods to identify occasiosiadlden negative or positive spikes not
indicated by the quality assurance flags as false WeslMost spikes were negative forms due to
remnant cloud cover, aerosols, or cloud shadow, all of weitth to decrease the NDVI values
(Didan and Huete 2006).

First, we eliminated unqualified data points from 8-yaatdnical phenological trajectories
(2001 ~ 2008) by assuming that temporal phenological patiéfesest-based ecosystems are quite
periodic and that interannual variations are relativelyllsfieom historical trajectories of
estimated MODIS LAl as a function of day of year at egiglel (Figure 3.3), we made a group at
each data point by identifying all data points occurring wifté days before and after. If the data
point is classified as an outlier beyond the ends of the k&tgsdefined as 1.5 times the inter-
guartile range from the lower and upper quartiles ofgtteeip, we excluded it from further analysis.
By including the 16 days before and after each LAI vatueHis outlier-exclusion analysis, we can
account for interannual variations in phenological changesciedlyan transition periods, and
obtain statistically significant numbers for outlier gysd. This outlier-exclusion technique can be
applied to both sides, so that positive spikes can besfilteithout specifying different threshold

values (Figure 3.3).
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Figure 3.3: Examples of two-step filtering methods from 8-year historical
trajectories (left column) and time-series (right column) of estimated LAI at selected
MODIS pixels ((a) ~ (i); Figure 3.1). Grey and black dots represent filtered values
by the outlier exclusion analysis and the modified BISE methods, respectively.
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Second, we used the modified BISE method with a 30-daglaw size to remove the remnant
spikes (Lovell and Graetz 2001). Recently, this methad also applied to the temporal MOD15
data as a complementary or post-process method giieeinfy the data with the original quality
control flags (Reichsteint al. 2007). A main difference between our method and the original
method is that we applied the modified BISE method tets@ries of transformed LAI values, by
which we are using stricter threshold values in high VI rarigan low VI ranges. We did not use
the modified BISE method alone mainly because it wasvoodking well with consecutive false
composite VI data points with a narrow window size, \Wwlace common phenomena in this humid
region. Increasing the window size can solve some of theddepns, but it can result in the loss of
distinct phenological signals by over-smoothing (Viatyal. 1992).

Our simple filtering technique was very effective in exclgdimqualified data points from the
time-series of transformed MODIS LAl values for seleqtecetls in topographically different
positions in the study site (Figure 3.3). This outlier-ag@n method from historical trajectories is
especially useful for rare positive spikes and consecutige fita points from composite periods.
It also worked well around transition periods by allowilexibility in interannual phenological

variations, when unqualified data points could easily beusad with real phenological signals.

3.3.4 A phenology model for multi-year VI datasets

A common phenology model for temporal MODIS VI or LAllwes is the logistic function

(Zhanget al.2003, 2004; Ahkt al.2006; Kanget al.2003), which can be expressed as:

C
y(t):m“rd (32)

wherey(t) is the NDVI or LAl value at timé (day of year)a andb are fitting coefficientsd is the

minimum or background NDVI or LAI value, amds the difference between maximum and
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minimum NDVI or LAI. Logistic phenology models are gengrailsed for a single growth or
senescence phase (Zhagtgal. 2003), which may be hard to define from a multi-year tsmees of
MODIS VI or LAI. Phenological changes in forest-basedsystems, however, are quite periodic
(as opposed to grass-based ecosystems), so there is ussiafileamode of growth and senescence
per year. We therefore selected the difference logistictimmto develop a functional
representation of a one-year period from multi-year wscof LAl values (Fisheet al.2006). The

difference logistic function has the following form:

1 1
YO = (g ) €0 (89

wherea andb are fitting variables for the greenup period, ahdndb’ are fitting variables for the
senescence period. In this model, all available nyaltir MODIS LAI data are analyzed together as
a function of day of year, which helps us extract the gemnapalgraphy-mediated controls on
vegetation phenology without considering interannual variatibhe.difference logistic function

has been shown to describe time-series of NDVI datarlibtia the Fourier series or the
asymmetric Gaussian function (Beekal.2006). This model also reduces the number of fitting
variables and assures the continuity of maximum and minilnihwvalues between phases in
multi-year LAl datasets.

We used the nonlinear regression functiolinfit) in Matlab (Matlab R2007b, MathWorks Inc.,
Natick, MA) to find least-squares parameter estimateshidifference logistic model. This
function uses the Gauss-Newton algorithm with Levenberggiardt modifications for global
convergence (Seber and Wild 1989). The fitting mecinamigs halted either after 2000 iterations,
or when marginal improvements of the residual sum of sgutl below the specified threshold
(109).

Stable fitted temporal patterns of MODIS LAI are estdigdcsat MODIS pixels in

topographically different positions within the study am@araged from the 8-year period (2001 ~
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2008) (Figure 3.4). Distinct phenological patterns were doatrdifferent topographic positions
within the study area, induced by the combined effectsiafoatlimate conditions, vegetation

types and hillslope positions.

3.3.5 Analytical solutions for phenological transition éat

Following Zhanget al. (2003, 2004), phenological transition dates (greenupjniat
senescence, and dormancy onset) in the logistic modelecdetérmined from the local minima
and maxima for the rate of curvature change (CCR; gneg lin Figure 3.5d), the derivative of the
signed curvature of the logistic function (Eq. 3 in Zpah al. 2003). Because this equation cannot
be solved analytically, cumbersome numerical solutionsismally used to find the local minima
and maxima for transition dates (Adt al. 2006).

However, if the slopey() is relatively small, the approximation of the signed cuma) is

equivalent to the second derivatiwg)(as follows:

"

y

"

~Yy (3.4

In this case, transition dates$)(can be obtained from the analytic solution of the fourthveérie

of the logistic function as follows (Appendix):

_In(5+2J6)-a
b

t (3.5)
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Figure 3.4: Examples of the difference logistic function fitting for 8-year estimated
LAl datasets at selected MODIS pixels ((a) ~ (i); Figure 3.1). Vertical dotted lines
are phenological transition dates (t") from Eq. 3.5.
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Figure 3.5: Analytical solutions of phenological variables; (a) the difference logistic
function, (b) the first derivative, (c) the second derivative (a thick line) and
curvature (grey lines; Eq. 3.4), and (d) the third derivative (a thick line) and the rate
of curvature change (CCR; grey lines). The curvature and CCR curves are drawn
with different c parameter values (0.5 ~ 4.0; Eg. 3.2). The vertical grey lines are
analytical solutions for phenological variables from Eg. 3.5, not changed with
different c parameter values.
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Even in cases when the slop8 (s not relatively small, the transition dates at which doall
minima and maxima values are established do not chiigeare 3.5d) because the slogg (
values determine only amplitudes of the curvature curves (Eg.This property of the logistic
function is shown in Figure 3.5, where the first (FigBrgb), second (Figure 3.5c), and third
(Figure 3.5d) derivative curves of the logistic function (FegBr5a) were drawn with the curvature
functions (grey lines in Figure 3.5¢) and rate of curvatunetfans (grey lines in Figure 3.5d) for
different values of the parameter (0.5 ~ 4.0; Eq. 3.2). Analytical solutions lierlbcal maxima
and minima of the third derivative (Appendix) from Eq. 3:&rfical lines in Figure 3.5) are the
same as those for the rate of curvature change (Figut® artd do not change with different
parameter values.

From these solutions, we can calculate the length ofthramd senescence periods between two
transition dates to characterize the local phenologidt¢me of the study site (Eqg. 3.6). Note that
each length of greenup/senescence petieddth, or Lengthy) is only a function of thé (or b’)

parameter related to the shape of the logistic function.

5+2V6) (36

Length=1lo
g 9(5_ 276

The above two equations (Eg. 3.5 and 3.6) show that pbginal transition dates are only a
function of thea andb parameters, while the lengths of greenup/senescence pdrardgli, and
Lengthy) are determined only by theparameter.

We used the mid-day of leaf greenup/senescence pehbds, @ndMid.) for the statistical
analysis in this study, equivalent to inflection points fordtierence logistic function (Figure
3.5b). These dates can easily be calculated frora #melb parameters-&/b), where NDVI or LAI
values are established at the half-point between maxiamdiminimum values. These inflection

points have been incorporated by several previous phenologidés (Whiteet al. 1997, 2002;
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Schwartzet al.2002; Fisheet al. 2006; Fisher and Mustard 2007; Bradktyal.2007) for a
number of different reasons. First, NDVI values at lawges are often mixed with soil reflectance
because they are very sensitive to canopy background vari@iloese 1988; Huetet al. 1994).
Second, these points are more ecologically meaningful andunaéies in that the change rates of
greenness are most rapid around these dates (\thatle1997). Third, solving for the inflection
points can create a more robust solution for vegetation phenadgging the errors in
conventional transition dates (e.g. greenup, maturity seemee, and dormancy onset) associated
with their greater sensitivity to data availability andetrly spring understory growth (Fishetral.

2006).

3.3.6 Topographical variables

We relate phenological variables to basic topographic varigblgselevation, aspect, slope, and
wetness index) for each MODIS pixel (Figure 3.1). Elevateey) data were upscaled from North
Carolina LIDAR digital elevation model (about 6.1-m resolutitataset from the North Carolina

flood mapping program: http://www.ncfloodmaps.goin this region, elevation is related not only

to local temperature with lapse rate (Bolsedhl. 1998), but also to precipitation which increases
by approximately 5% with each 100 m rise in elevationifiSet al. 1988). From these upscaled
elevation datasets, aspect and slope were calculatee same spatial scale. To create a more
direct measure of radiation load for statistical analyaspect was transformed into a relative
number ranging from —1 (for northeast-facing slopes) torlsputhwest-facing slopedaépect

(Beerset al. 1966).

taspect —cos@spect-45°) (3.7)

Slope is also related to incoming radiation. In additithe transformed aspect term cannot

explain seasonal variation in incoming radiation, whicé fanction of solar zenith and azimuth

89



angles. Potential relative radiatiodPRR Pierceet al.2005) is introduced to better represent
seasonal radiation potential at each topographic positsamg theHillshadefunction in ArcGIS
(ArcGIS 9.2, ESRI Inc., Redlands, CA). While transfodnaspecttaspec) only uses aspect to
estimate radiation potentiaBRRsums up hourly hillshade radiation calculated from asgémte,
solar zenith, and azimuth angles. We calcul@&B&Rvalues for each month using mean solar period,
and then derived the growing season (Apr, MigRR), senescence season (Oct, NeRR), and
whole-yearPRRvalues.

Wetness indextgpidx Beven and Kirkby 1979) was calculated at the originBIAR elevation
data scale to represent hydrological gradients with dgsiposition, then upscaled to the MODIS
scale. This is because detailed hydrological variationdedast when we calculate wetness index
at the MODIS scale, in contrast to aspect and slope opesontributing area for the wetness
index was calculated with tHg-infinity (Do) method, which allows flow to be proportioned

among multiple neighboring downslope pixels according tdigra (Tarboton 1997).

All phenological and topographic variables are summarized in

Table 3.1.

3.3.7 Interannual variations between wet and dry years

At the MODIS scale, much of the local topographic variatimslost by being aggregated to
coarse spatial resolution, and the range of wetness smidicggnificantly reduced. This scale issue
makes it more difficult to detect the topography-mediai@utrols on vegetation phenology in
terms of hillslope position. For this reason, we decidecbmpare phenological variables between
very wet and very dry years to determine whether soil m@stiatus has a significant effect on

vegetation phenology.
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Table 3.1: Summary of phenological and topographic variables

Abbreviation Description Unit Equation or reference
Phenological variables
Midon Mid-day of the greenup period DOY -a/bfrom Eq. 3.3
Midss Mid-day of the senescence period DOY -a’/b” from Eqg. 3.3
Lengthg, Length of the greenup period days Eq.3.6
Length Length of the senescence period days Eq.3.6
LAl min Fitted minimum LAl value unitless dfrom Eq. 3.3
LAl max Fitted maximum LAl value unitless c+d from Eq. 3.3
Topographic variables
elev Elevation m http://www.ncfloodmaps.com
taspect Transformed aspect unitless Eq.3.7
PRR Potential relative radiation for the whole year unitless (Pierce et al. 2005)
PRRy Potential relative radiation for growing season unitless PRR from Apr, May
PRR; Potential relative radiation for falling season unitless PRR from Oct, Nov
topidx Wetness index (or topographic index) unitless (Beven and Kirkby 1979)




In this region, we have experienced exceptionally wetdapgituations since 2000.
Phenological signals were assembled and analyzed fromxtwaoresly dry years (2002, 2008) and
two extremely wet years (2003, 2005), with drought conditaeiermined by the Palmer Drought
Severity Index (Palmer 1965). By using phenological sigimate independent years of extreme
moisture conditions, we may attribute phenological déifees to interannual variations of moisture
condition, minimizing the effect of interannual variasosf other climate variables (e.g.
temperature, radiation etc.). We may also explore how nagpagraphy-mediated controls on
vegetation phenology change between wet and dry years, andidgcan interpret such changes

with respect to the role of moisture status for vegetati@mplogy.

3.3.8 Statistical analysis

We used a multiple regression analysis to relate phenologicables to topographic variables.
A multiple regression allows us to test and model muliipdependent variables (topographic
variables) simultaneously with one predictor variable (phagiodl variables). Correlation and
interactions between explanatory variables often complicatentlitiple regression analysis,
especially in case of near-linear relations among exptap variables, leading to unstable
parameter estimates. For this reason, we did not incledgldpe variable in this analysis. In this
study area, there is a significant positive correlatiawben slope and elevation (Pearson
correlation coefficientsdR = 0.592 P < 2><1016), and the inclusion of the slope factor would
complicate the interaction structure of the data. Ar§eacorrelation matrix between all
explanatory and response variables indicates that theresigmiticant correlation among
explanatory variables (Table 3.2) except for the correldigiween radiation proxies (transformed
aspect anéPRRvalues). Therefore, only one radiation proxy was used fotipfeiregression
analysis at a timgaspect(model } or PRR(model 3 (Table 3.3). In addition, each seasoRRR

value PRR, or PRR) seems to be more correlated to each seasonal phenoliiedile than to
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the other seasonBRRvalue or the whole-yed@RRvalue (Table 3.2). We therefore used each
seasonaPRRvalue, instead of the whole-yelRRRvalue, as a radiation proxy model 2 Paired
graphs show some possible non-linear responses to etq@hanariables (Figure 3.6). We therefore
included quadratic terms for each of three explanatory vasabk well as interaction terms among
explanatory variables for both models. Correlation coieffits of fitted LAl valuesl(Al,, and

LAlnay With topographic and other phenological variables stimaspatial pattern of vegetation
type and their relationship with vegetation phenology in thidyssite (Table 3.2). A strong
negative correlation betweéml i, andLAl . (R = -0.697 P < 2x10'% Table 3.2) indicates that
their spatial pattern is related to the vegetationmasition of coniferous and understory evergreen
species (Figure 3.2), represented with lower NDVIimmer and higher NDVI in winter.

Therefore LAl effectively represent the amount of evergreen vegetatiorhwias distinct
phenological patterns compared to deciduous broadleafdofesexplain the effect of evergreen
vegetation in phenological signalsAlmi, was also added into explanatory variables in the multiple
regression analysis.

To minimize the risk of over-parameterization, we usedautomatic model simplification
functionstepAlCin Packag®M ASS version 7.2 for R (version 2.7.0, The R Foundation for
Statistical Computing) for parsimonious models, whiehfgrms stepwise model selection by a
penalized log-likelihood (Akaike’s Information Criterion). VEliso manually pruned insignificant
variables in sequenc® ¢ 0.005) (see Crawley 2007 for a detailed methodology).

The analysis of covariance technique is incorporated tdhteshequality of regression lines (for
separate lines) between topographic controls on vegetatemofdgy for wet and dry years. This
technique allows us to test whether the responses ofdepéndent variables (phenological
variables) are different between groups as a linear funofithe predictor variables (topographic
variables). Only major linear topographic controls on vegetgii@mology were tested to simplify

this procedure.
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Figure 3.6: Paired scatter plots between topographic and phenological variables. Fitted lines show strongly significant
relationships from multiple regression models (Table 3.3).
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Table 3.2: Pearson correlation coefficients between topographic factors and phenological variables (n = 252)

elev taspect PRR PRRy PRR¢ topidx Midon Midot Lengthon Lengthos LAlmin LAlmax
elev 1.0
taspect -0.051 1.0
PRR -0.129 0.915 1.0
PRRy -0.247 0.841 0.966 1.0
PRRs -0.110 0.919 0.998 0.954 1.0
topidx 0.112 -0.134 -0.132 -0.138 -0.127 1.0
Midon 0.972 -0.040 -0.103 -0.218 -0.084 0.180 1.0
Midoft -0.229 0.373 0.397 0.384 0.395 -0.070 -0.327 1.0
Lengthon 0.307 -0.371 -0.455 -0.514 -0.440 0.159 0.251 -0.085 1.0
Lengthoss 0.058 0.193 0.183 0.162 0.184 -0.049 -0.108 -0.410 -0.124 1.0
LAlmin -0.440 -0.137 -0.101 -0.007 -0.113 -0.135 -0.324 -0.523 -0.281 0.028 1.0
LAlmax 0.766 -0.008 -0.117 -0.246 -0.098 0.079 0.698 0.148 0.471 0.069 -0.697 1.0




34 Results

3.4.1 Topographical controls on local vegetation phenology

Summaries of the multiple regression analyses are sholahbie 3.3. For both modelsodel
1 andModel 2, elevusually has the most explanatory power for all phenologexables.

However, in both modelslid,, exhibits a linear relationship witlev, while the other three
phenological variableMid.s, Length,,, andLengthy) exhibit quadratic responses. Radiation
proxies faspectand season®RR$ are also significant for phenological variablBs<(0.005),
which usually exhibit linear relationships witdispect and linear or quadratic relationships with
seasonaPRRs. For both modeld,Al i, is strongly significant for two mid-day phenological
variables Mid,, andMid.s), whereadopidxhas some explanatory power only fdid,,. All
interaction and quadratic terms other tledev taspecteleV, andPRR are insignificant for both
models.

Introducing the seasonBRR(PRR, or PRR) as a radiation proxy resulted in some improvement
in model performanceRf) for Mid,; andLength, (Table 3.3). Moreover, 95% confidence intervals
for the coefficients of the remaining independent varialg#s?( elev, andtopidx) overlapped
significantly for both models, indicating that the choiceaafiation proxy has minimal influence on
the relationships among other topographic and phenologigables.

The mid-day of greenup perioMid,,) is delayed by about 3.1 days for every 100 m increase in
elevation (Figure 3.7). This pattern of delay with elevat®quite comparable to Hopkin’s Law
which states the onset of spring is delayed by one day with iB@rease in elevation (Hopkins
1918; Fitzjarraldet al.2001). Interestingly, fitted quadratic graphs betweevagien and
phenological variables show very similar ranges of the itiflegoint from the 1100 m to 1200 m
elevation bands (Figure 3.7), usually regarded as a tramgitioe from the Southern Appalachian

forests to the Northern Hardwood forests (Figure 3.2).

96



Table 3.3: Summaries of multiple regression models (n = 252)

Model 1 (taspect)

Model 2 (PRR)

Equation: Mido, ~ elev + topidx + taspect + LAlmin

+ elev*taspect

Coefficients
elev: 3.40x107 + 4.17x10™ (P < 2x10™°)
topidx: 1.57 +0.18 (P = 1.02x10™°)

Equation: Midon ~ elev + topidx + PRRg + LAlmin

Coefficients
elev: 3.35x1072 + 4.2x10™ (P < 2x10*%)
topidx: 1.51 +0.19 (P = 9.95x10™)
PRRgy: 1.63x10° +3.8x10™ (P = 2.08x107)

Mid,, _ _ A _ 16
taspect: -3.00 + 0.63 (P = 2.90x107) LAlmin: 4.45 £0.39 (P <2x107)
LAlmin: 4.86  0.38 (P < 2x10™*°)
elev*taspect: 3.53x10° + 6.4x10™ (P = Multiple R?: 0.969
8.54x107)
Multiple R?: 0.972
Equation : Midof ~ elev? + elev + taspect + LAlnin Equation : Midof ~ elev® + elev + PRR{Z + LAlnin
Coefficients: Coefficients:
elev?: -2.74x10™ + 2.2x107° (P < 2x10™°) elev?: -2.75x10™ + 2.2x107° (P < 2x10™°)
Mid s elev: 5.16x107 + 4.8x107® (P < 2x10™*°) elev: 5.21x107 + 4.7x107® (P < 2x10™°)
taspect: 1.16 + 0.14 (P = 4.39x10™™) PRR{: 3.61x107 + 4.0x10 (P < 2x10*%)
LAlmin: -9.10 +0.52 (P < 2x10™°) LAlmin: -9.04 +0.51 (P < 2x10™°)
Multiple R?: 0.751 Multiple R?: 0.761
Equation : Lengthen ~ elev? + elev + taspect + Equation : Lengthon ~ elev? + elev + PRR92+
LAlmin I-Almin
Coefficients: Coefficients:
Lenath elev?: -3.39x10™ + 5.6x107° (P = 6.74x107°) elev?: -3.25x10™ + 5.3x107° (P = 4.11x107°)
gfon elev: 7.78x1072 £ 1.23x10% (P = 1.31x10°) elev: 7.26x102 £ 1.17x102 (P = 2.23x10°)
taspect: -2.60 + 0.36 (P = 3.23x10%) PRRy* -1.50x10° + 1.6x10” (P < 2x10')
LAlmin: -4.43 +1.33 (P = 0.00096) LAlmin: -4.30 + 1.24 (P = 0.00063)
Multiple R?: 0.366 Multiple R?: 0.435
Equation : Lengthes ~ elev? + elev + taspect Equation : Lengthes ~ elev? + elev + PRR;
Coefficients: Coefficients:
elev?: 4.25x10™° +5.7x10° (P = 1.74x10™%) elev?: 4.23x10° +5.7x10° (P = 2.50x10™%)
Lengthys

elev: -9.01x1072 + 1.24x1072 (P = 4.70x10™?)
taspect: 1.18 £ 0.36 (P = 0.0012)

Multiple R?: 0.216

elev: -8.94x107? + 1.24x1072 (P = 7.56x10™?)
PRRy: 1.82x107% +5.9x10™ (P = 0.0021)

Multiple R?: 0.213
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Both radiation proxiest@spectand season&®RR show significant positive relationships with
two senescence variablddifl,; andLengthy), and a significant negative relationships with
Length, (Table 3.3; Figure 3.6). However, they show weak mixedetieMid,, which depends
on including an interaction term withev(Table 3.3). An approximately 2.3-day delayMindy is
indicated on south-facing slopes as compared to northgatopesLength,, on south-facing
slopes is about 5.2 days shorter than on north-facing slopesaghengthy is about 2.4 days
longer.Mid,, is delayed by about 3.1 days for every unit increasepiux

Strong significant relationships betwelefil,i, and two mid-day phenological variablégid,,
andMid.q) (Table 3.3) may be attributable to mixed phenologicéakpas with evergreen
vegetation, reflecting delayed greenup and earlier semesdeAl . Shows a significant quadratic
relation with elevation®® = 0.630,P < 2x10'® Figure 3.7), reflecting the strong orographic effect
along elevation gradients up to 1300 m and the transitiorNotthern Hardwood forest which

have usually brighter infrared reflectance.

3.4.2 Vegetation phenology between wet vs. dry years

Figure 3.8 presents scatter plots of six phenological variables (Midon, Lengthgn,
Midgs, Lengthes, LAlmin, and LAlImax;

Table 3.1) between wet and dry years for each MODIS pixeltalyéhere is no significant
difference for either mid-day variabledi@l,, andMid), though greenup is occasionally delayed at
wet years in mid- and high-elevation regions (Figure 3.8)hBength variabled €ngth,, and
Lengths), however, are significantly larger in wet years than in deyyat most pixels with
Lengthy values exhibiting greater increaskfl . values for wet years are higher than those for
dry years, especially in low LAI ranges, while fitteAl, values are similar for wet and dry years

(Figure 3.8). This difference in fittddAl,.x values between wet and dry years demonstrates that
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these extended transition periods during wet yearsdarartifacts from more cloud contamination,
which can possibly reduce NDVI values and extend fitted lengthransition periods. The shorter
transition periodsl{ength,, andLengthy) in dry years appears to be more related to the lower
LAlqax Values, as less soil water availability may limit leafvgifoearly and hasten leaf drop. This
is also supported by the significant positive correlatietwkeenLAl,.candLength,, at the spatial
scale R= 0.471;P = 2.4x10"; Table 3.2).

Figure 3.9 shows the differences in major topography-nedlieontrols €levandtaspec) on
two phenological length variablesgngth, andLengthy) between wet and dry years. These
controls onLength, andLengths show clear shifts between wet and dry years, while generally
preserving their trends. However, there are some diffesendhese shift patternsspectcontrols
show parallel shifts between wet and dry years (Figure 89 he analysis of covariance tests for
separate lines shows that the slopes of the regressémdre not significantly different between
wet and dry yeard(> 0.1), indicating thataspectcontrols on the two phenological length
variables does not vary substantially with interannual vanatin moisture condition. In contrast,
elevcontrols on the two phenological length variables do varytantially between wet and dry
years. Though elevational controls loength,, show mixed signals, the differences between wet
and dry years are smallest in low-elevation ranges (Fig8e9.3lhe differences ibengthy
between wet and dry years are smallest in mid-elevatiagyesaand largest in high- and low-
elevation ranges (Figure 3.9¢). This means that in wesyaare extended senescence periods are

expected in high- and low-elevation ranges than in medatlon ranges.
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35 Discussion and conclusions

3.5.1 Temperature controls on vegetation phenology

This study quantifies how local vegetation phenology is mediby topographic factors (e.g.
elevation, aspect, and hillslope positions), closely relatedicro-climate variations, vegetation
community types, and soil water availability in the stsdg. In particular, elevation is a primary
factor to characterize topography-mediated phenologiealifes, associated with environmental
temperature lapse rate (Bolstadal. 1998) and orographic precipitation increases (Setifil.

1988).

The mid-day of greenugMid,) is a strong linear function of elevation, exactly follogin
general empirical trends (Hopkin's law) (Hopkins 1918zjairraldet al. 2001). This is induced by
the dominant temperature effect on on-set of spring,cépedaily minimum temperature.
Interestingly, the start of sprin§l(d,n) is a little delayed with increase of the topographic wetness
index topidX), which can be explained by cold air drainage along hillsgppdient, not by plant
water availability. Bolstaekt al. (1998) found that temperature lapse rates decreased alaig |
hillslope gradients in this study region, which was attributecbtd air drainage downslope formed
by radiative cooling during still nights (Mahet al. 2001; Soleret al.2002). Bolstacet al.(1998)
also found that reduced lapse rates are most pronounded the early spring, a period critical to
on-set phenological timing, and lapse rates for minimunperature are negative throughout the
year because cold air drainage is predominant at night-tirary gtudies show that minimum (or
suboptimal) temperature is a stronger constraint on vegefatienology across various ecosystems
(e.g. Jollyet al.2005; Larcher and Bauer 1981; Jarvis and Lind@020Fisheret al.(2006) also
reported a significant impact of cold air drainage on greg@mgmology, a strong negative

correlation between elevation and on-set date along feuational transects in New England.
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It is also possible that transitions to cove hardwoods epéeigl. tulipifera, T. canadensiand
A. rubrumetc.) in cove regions (Figure 3.2; Dayal.1988) lead to unique sensitivity of greenup
phenological variable to thepidx variable. However, observed phenology of five major deciduous
species in the study area reported that there was néicagn difference in greenup timing between
these species (Day and Monk 19717)canadensig¢eastern hemlock), one of the principal riparian
and cove species, may have unique phenological pattermzaced to broadleaf deciduous species.
However, it is facing recent severe extirpation by thethiced insect (hemlock woolly adelgid)
(Ford and Vose 2007), so it may have limited effectemently observed phenological signals in

this study.

3.5.2 Photoperiod controls on vegetation phenology

Radiation proxiestaspectandPRR$ are also significant for all phenological variables (€abl
3.3; Figure 3.6), which may be related to photoperiodptgature, and water stress. Many studies
have shown that photoperiod plays an important role in bo#mgpeand senescence vegetation
phenology across different ecosystems (e.g. Watite. 1997; Partanert al. 1998; Hanninen
1990; Hakkineret al. 1998). Radiation proxies have positive relationships twithsenescence
phenological variableMid; andLengthy) in this study, while a negative relationship with
Length,. However, they show weak mixed effectMid,, depending on including the interaction
term withelev(Table 3.3). Note thaaspectcontrols on length phenological variablésiigth,
andLengthy) between wet and dry years are consistent (Figure 3.9)hwbissibly involves
photoperiod controls on vegetation phenology. In additionatiaai proxies have more explanatory
power for senescence timinglid.s) than greenup timing\idan).

Elongated photoperiods on south-facing slopes can d&lhy: and lengthemengthy. There
have also been some studies that the cessation of vegetatidh gtage is closely related to

photoperiod (Zhangt al.2004; Junttila 1980; Hannineat al. 1990; Schwartz 1990). Even
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though there is no common agreement on an appropriate nind#lee for leaf senescence
(Schaber and Badeck 2003), some studies reviewed roarimant roles of photoperiod on
senescence (or dormancy onset) than greenup phenology (garesaimr dormancy release) for
cool and temperate woody plants (Wheteal. 1997, 2002; Wareing 1956; Le¢ al.2003).

However, shortetength,, are also observed on south-facing slopes, which is haxjpiain
with photoperiod alone. We found that longength, may correspond to higher vegetation density
(LAlnmay both along elevation gradients (Figure 3.7) and interannuatiyié& 3.8). However,
multiple regression analysis (not shown here) show that raiptoxies are not significant for
LAlnax (P > 0.1; not shown here), which implies that shokiemgth, on south-facing slopes are not
related to lower vegetation density. In addition, radiafimoxies also show weak negative
relationships wittMid,, if the interaction terms witklevare included for both models (Table 3.3).
They may represent faster growth of vegetation by combinedt @fehotoperiod and temperature,
but more limited growth or belowground allocation by watieess on south-facing slopes.

In this study, radiation proxies are more significantlfength,, than forMid,, (Table 3.3). This
result implies that radiation proxies are more relatechtiigperiod and photosynthetically active
radiation (PAR) (or daily temperature amplitude) thamtoimum temperature, which is more
important forMid,,. There are some disagreements as to whether the tifgrgwth onset is
regulated solely by temperature (Partapeal. 1998; Richardsoet al.2006; Chuinest al. 1999).
Interactions between photoperiod and temperature mayfbiidt phenology. As an example, bud-
burst may not be triggered by temperature without correspgmatiotoperiod changes especially in
high-latitude regions (Partane al. 1998; Hakkineret al. 1998; Heide 1993). However, many
studies in deciduous forests also reported that a larg@partithe spatial and interannual
variations in spring canopy development are explained by tetope@one (Jenkinst al.2002;

Richardsoret al.2006; Chuine and Cour 1999).
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3.5.3 Other controls on vegetation phenology

Temperature effects alone cannot explain the quadrapomess of the three phenological
variables Mid., Length,, andLengthy) to elevation (Figure 3.7), which could be explained by
combined effects with orographic precipitation patte@wift et al. 1988). Delayed senescence in
the mid-elevation region is related to higher water avaitgtahd vegetation density following
orographic precipitation increases with elevation (Figur. Fitted maximum LAI valued Aly.y)
show this increased vegetation density along elevatioadigmts up to 1200 m, correlated not only
to increased water availability but also to increaseddepbsition of nitrogen following
precipitation (Knoeppet al. 2008). The increase afAl .« is possibly from the increase of NDVI by
the transition into Northern Hardwood forest at higHevation, which has usually brighter
infrared reflectance. Higher vegetation densiiil(,.,) is also relevant to longer greenup period
(Lengthy,) at mid-elevation regions, represented by a significartipesorrelation at the MODIS
spatial scale (Table 3.2).

The comparison dfAl,.x between wet and dry years shows that water availabilayni®re
limiting factor at lower elevation regions (Figure 3.8). Geeancreases dfAl,.in wet years are
found in lowerLAl . ranges, usually developed at lower elevation regions (FRjid)e Also,
elevational controls ohengths between wet and dry years show higher increases in lower
elevation regions (Figure 3.9c). Vegetation in lower elevatgions is more sensitive to
precipitation than mid-elevation regions, as water (or gémn) is a more limiting factor for their
growth.

Temperature is still a dominant factor for other phenokldgrariables in high elevation regions,
represented as early litterfall, shorter greenup periodlaayr senescence period. Combined
effects of temperature and orographic precipitation shotindisjuadratic responses of three
phenological variables as a function of elevation, alsoeraidd by forest community types. Note

that high elevation regions are regarded as transition ZosrasSouthern Appalachian to Northern
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Hardwoods forest (Figure 3.2), which has different phenoldgesponses to climate factors
(Fisheret al.2007). These patterns also relate to different limitirgofies of vegetation growth
along elevational gradients, water or nitrogen limited weloelevation regions and temperature
limited at higher elevation regions (Knoepp and Swank 189®eppet al.2008).

Strong significance dfAlq,, to two mid-day phenological variables effectively repnés¢he
effect of coniferous and understory evergreen species omatiegephenology (Table 3.3), which is
characterized as more delayed greenup and earlier seoesaiém highelLAl.,;,. Seasonal
dynamics of pine LAl in this study site show typical sindabpatterns (Vose and Swank 1990;
Voseet al. 1994), which may reduce the length of a growing seasbath ends. In addition, early
development of understory broadleaf may not be detectecbwétlie sensor due to overstory
evergreen vegetation in low NDVI ranges. This may also réasdkelayed greenup and early

senescence in averaged phenological signals within a MQIR¢EE

3.5.4 Growing season length (GSL) vs. vegetation growth

Growing season length (GSL) is usually defined as the ldregiieen greenup onset and
dormancy onset (Churkingt al. 2005; Cheret al. 1999b). In this study, interannual variations of
GSL between wet and dry years show a possible correlati@$bfwith vegetation growth (Figure
3.8). Earlier greenup and extended senescence periodsbsmeved in wet years (Figure 3.8).
Extended GSL is also associated with higher vegetation gr@adkimum LAI), known to be
tightly coupled with net ecosystem production (e.g. Baral. 2004). However, this correlation
between GSL and vegetation growth depends on how GSL is déforad Al trajectories. If GSL
is defined as the length betwelid,, andMid; (White et al. 1999), there is not much difference
of GSL between wet and dry years (Figure 3.8).

Many studies point out a major role of GSL in the terrdstagbon cycle (Keelingt al. 1996;

Myneni et al. 1997; Randersoat al. 1999; Whiteet al. 1999; Cheret al. 1999b; Blacket al.
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2000; Churkineet al.2005). However, recent studies also reviewed the ptigsibiat more soil
water depletion could cancel out early spring carbon aksdion by enhancing summer drought
(White and Nemani 2003; Angeet al. 2005). From multi-year flux tower measurements, leaf
phenology is known to be strongly correlated with annukoesystem production in temperate
and boreal forests (Gouldex al. 1996; Baldocchet al.2001; White and Nemani 2003; Bat
al. 2004).

Most studies of the relationship between GSL and caupdake by vegetation have focused on
early greenup onset driven by increased temperature andogstimn atmospheric G@mplitudes
and carbon uptake by vegetation. They usually report theg Wis@s no significant extension of
growing season during the fall despite early greenup (Myeeai. 1997; Randersoat al. 1999;
Chenet al. 1999b; Blacket al.2000; Barret al. 2004). However, this study shows that GSL can
be extended at both growth and senescence ends in extreatelgars compared to extremely dry
years, possibly related to higher vegetation grow#i {,) and more carbon uptake by vegetation.
A dominant role of seasonal rainfall or soil water st@ssegetation phenology has usually been
reported for most drought-deciduous species in tropidsami-arid areas (Nilsen and Muller
1981; Childes 1988; Borchert 1994; Bo#thal. 2000; Bach 2002; Jolly and Running 2004),
where greenup is initiated by the first large precipitagoent, and senescence is more slowly
modulated by available soil water. In the Piedmont,aPesaki and Oren (2003) found that early
autumn leaf senescence and abscission is the primacy effsevere drought rather than stress-
driven stomatal closure from sap flux measurements of six contraciduous species in eastern
oak-hickory forest during severe drought.

Note that we could not find any significant positive correlabetween GSL antAl .« at the
MODIS spatial scale. Some studies reported inter-sitdip@giorrelations between GSL and net

ecosystem production (Whit al. 1999; Baldocchet al.2001; Churkinaet al.2005). However,
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we found a significant correlation betweleength, andLAl .« at local patterns of topography-

mediated vegetation phenology (Table 3.2).

3.5.5 Spatial scale issues

In this study, sub-grid variability of topographic variablespeciallytaspectandtopidx
suggests important scale issues in the relationship betwwpegraphic and phenological variables.
The hillslope positiontppidx) seems significant only for thdid,, variables, which can be
explained by cold air drainage rather than soil water awétha The insignificance ofopidxto
senescence phenological variables may be attributie tmansition of vegetation community
types into cove hardwood species, for which phenologictlifes may be constrained by other
factors (e.g. light) rather than soil water availability. Hoere we found strong precipitation-
related controls on phenological variables in terms of botgraphic and interannual variations.
Therefore, sub-grid variability can be a more reasonable exjgarfar the insensitivity of
vegetation senescence as a function of hillslope posiiogragedopidx ranges at the MODIS
scale are from 4 to 5.5 (Figure 3.6), not enough to examlhedntrols of soil water on
phenological features at finer scales. Interestingly, coldrainage effects on greenup vegetation
phenology came out in this study because cold air drainagemosy broader flowpath patterns
than water along hillslope gradient at the MODIS scale. N@topidxat MODIS scale was
calculated from aggregating values from the original DEMesavhile radiation proxies were
calculated from degraded DEM to MODIS scale.

Micro-topography can be lost when aspect BRIRsare calculated at the MODIS scale.
Contrary to elevation, very diverse sub-grid distributionagpfect anPRRsare expected within a
single MODIS pixel, so it is possible that phenologresponses to these radiation proxies are
more exaggerated at finer scale. Comparisons of radiptmaes between two different upscaling

methods would clarify this point. Figure 3.10 shows scatistis between radiation proxies at each
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MODIS pixel from two different upscaling methods. Radiatpyoxies on the x-axis are calculated
from upscaled DEM, while those on the y-axis from aggiagatdiation proxies at the original
DEM scale. They show some reasonable correlations, beteliff patterns between them.

As for taspect we have narrower ranges when they are aggregated from ghneabBDEM
(Figure 3.10). The pixel classified as south-facing at M®Bxdale can have diverse aspects in the
level of sub-grid variability. Note thaaspects a relative term between -1 and 1 to represent
radiation potentials at each pixel. HoweVeRR, values from upscaled DEM show narrower ranges
than those aggregated from the original DEM (Figure 3.1@.rhainly because the coarse DEM
simplifies topography and reduces slope, so it may losesnicro-topographic features which
usually decreases the heterogeneity of incident radiation.

This scaling issue implies that phenological responses toimadjaioxies described in this study
show reduced gradients compared to actual vegetationnsspby filtering their signals and
topographic variables at the MODIS scale. Previous ssuldiave also shown that aggregating
topographic variables into a coarse resolution (e.g. AVHRRDIS) can significantly reduce
variations in these variables and resulting LAl values (e.gdRaal. 1991; Band 1993; Band and
Moore 1995).

Continuous field measurements of optical LAI at six défe locations in this study site
(unpublished data from Dr James Vose), apparently supoitieed phenological responses at
coarser resolution, especially in terms of radiatiorxigs Temporal patterns of LAl were
previously measured at six different locations representemjas imid-, low-elevation and south-,
north-facing slopes within the study site throughout the yéeny similar relationships between
topographical factors and vegetation phenological patteens found in the field measurements. In
terms of greenup timing, elevation was a dominant factbergas both elevation and aspect were

crucial for senescence timing. Estimaddl,, andMid in this study, largely corresponded with
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Figure 3.10: Comparison of radiation proxies (taspect, PRR,) from two different
upscaling methods at each MODIS pixels. Radiation proxies of x-axis were
calculated from upscaled DEM at MODIS scale (about 250 m), while those of y-axis
from averaging of the original scale radiation proxies from LIDAR DEM (about 6 m).
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those from field measurements. However, field measemnesrbetween south and north facing
slopes exhibited more than a 3-day differencédiihy;, estimated in this study. The scale variance
nature of both qualitative and quantitative radiation poxiegure 3.10) makes it hard to find a

consistent relationship with phenological variables.

3.5.6 Conclusions

In this study, we extract phenological signals from &rydODIS NDVI (2001 ~ 2008) with a
two-step filtering and non-linear fitting method within tGeweeta LTER site. These phenological
signals are related to topographic variables, such as ieleyvaspect, potential relative radiation,
and wetness index, by multiple regression analysis. Elevatiows strong linear or quadratic
relationships with four phenological variables. Quadraspoases of three phenological variables
(Midos, Lengthy,, andLengthy) with elevation are explained by combined effects of teatpee
and precipitation along the elevation gradient. RadiationigsataspectandPRR$ also have
explanatory power for phenological variables, associate ptibtoperiod controls on vegetation
phenology. Hillslope positiongdpidx show significant effects on thid,, phenological variables,
possibly related to decreased temperature lapse ratgs lakal hillslope gradients by cold air
drainage downslope. Though topographic wetness position atadbserved to have a significant
effect on vegetation phenology from MODIS NDVI, the diffiece of vegetation phenology
between extremely wet and dry years reveals possible extermemhgrseason length in wet years.
These topography-mediated phenological patterns are streugported by field measurements at
different topographic positions within the study sitewt¢ver, phenological responses to radiation
proxies might be mitigated due to the scale variance natietlofradiation proxies between fine
and coarse resolutions.

In conclusion, topography-mediated controls on local veigetghenology are closely related to

the combined effect of micro-climate variations, vegetatiommunity types, and hydrological
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positions. The capability of detecting the topography-medi&dcal phenology offers the potential

to detect vegetation responses to future global climategeharmountainous terrains.
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Appendix

The fourth derivative of the logistic function (E®)2) is solved as

d 4y B 24b4ce4(a+bt) 3&4C€(a+bt) 14b4ce2(a+bt) b4cea+bt

it fref e * Lrenf ey

a+bt

If we substitute € = X and rearrange this equation

d'y  bfox{24x® - 36x2 (1L+ X) +14x(1+ X)° - (1+X)°]  bex(x® —11¢ +11x—1)

dt* @+ x)° 2+ x)

Then, this equation can be factorized as

d'y  box{(x=1)(¢ + x+1) -1Ix(x-1)}  b*ex(x—1)(x* —10x+1)

dt* 2+ x)° (2+x)

We can get local minima and maxima values of the third dérévaf the logistic function

(Figure 3.5d) by setting the above equation to zero. Natx ttannot be zero.
X=1o X*-10x+1=0

where the firstX = 1) represents the middle minima or maxima values andfttiee ¢& — 10« + 1 =
0) represents both side maxima or minima values (Figsd.3rom the quadratic formula, we can

get this solution as
x=5+2/6
If x is resubstituted by we can get final solutions for transition dates.

v _InGz 2.6)-a
- b
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Chapter 4 Estimation of real-time vegetation dynamics for
distributed ecohydrological modeling by fusing multi-

temporal MODIS and Landsat NDVI data

4.1 Abstract

Canopy phenology is an important driver of seasonal toamwater and carbon budgets. Recent
developments in remote sensing technology provide the pdtentiak dynamic canopy
measurements with integrated process descriptions wdikiributed ecohydrological modeling
frameworks. In particular, near real-time global sagfproducts (e.g. MODIS) make it possible to
integrate temporal patterns of vegetation dynamics &iriduted hydrological modeling. However,
the coarse spatial resolution is not able to discrimicatehment scale ecohydrological dynamics.
In addition, global satellite products significantly averadarge portion of the landscape terrain
variance, therefore a significant bias can result fronplkoirepresentation of hydrological
processes. Two downscaling methods are developed to owetbgrnissue by fusing multi-
temporal MODIS and Landsat data in conjunction wittotgraphic information to estimate high
resolution daily vegetation density over complex terrain. M®BIPAR (fraction of absorbed
photosynthetically active radiation) is used to provide madiesolution phenology, while sub-grid
variability of vegetation density is estimated from compas#edsat NDVI images as a function of
day of year. The relationship between the downscaled MODMRFhd the composite sub-grid

NDVI values is represented with a simple linear propaogliity parameter, which includes the



linear relationship between sub-grid NDVI and FPAR, a# as proportional phenological
discrepancy between the MODIS FPAR and the Landsat caraptidVI. Combining spatial
resolution of Landsat and temporal resolution of MODIS aéolge gaps between spatial and
temporal limitations of both image sets in applicatiansatchment-scale distributed hydrological
modeling. This method is used to assimilate downscal®®Ns-derived seasonal phenology into
dynamic simulations of high spatial resolution patterns déwaarbon and nutrient cycling in

mountainous watersheds.

4.2 I ntroduction

Remote sensing products provide valuable information for dig&ibhydrological modeling
across different spatial and temporal scales, includiggekémates of water and carbon state
variables (e.g. soil moisture, snow, leaf area indeijatic forcing variables (e.g. precipitation,
temperature), and other spatial information (e.g. landryoVle near real-time global satellite
products from the moderate-resolution imaging spectro-naetier (MODIS) on the Terra/Aqua
platforms make it possible to estimate the spatial angdeshvariations of water fluxes (e.g.
evapotranspiration, streamflow) by assimilating sevieeglvariables for distributed hydrological
modeling; snow cover (MOD10), land surface temperaturegwitis (MOD11), land cover
(MOD12), leaf area index (LAl)/fraction of absorbed prsytathetically active radiation (FPAR)
(MOD15), and white sky albedo (MODA43) (Andreadis andémmaier 2006; Cleugét al.2007;
Mu et al.2007; Leuninget al. 2008; Paret al.2008; Zhanget al. 2008).

However, global satellite products from MODIS signifidlgt average a large portion of the
landscape terrain variance. Therefore, a significant biabeaerived from lumped representation
of surface resistance and significant sensitivity of vapdrizeat flux to soil water distributions
(Bandet al.1993; Band and Moore 1995). For example, non-Gaussib-grid variability in soil

moisture distributions especially under dry conditions (Fgietiti et al. 1999; Ryu and Famiglietti
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2005) result in significant bias in modeling water and gynéuxes at the global scale, associated
with non-linear responses of ecohydrological processesltmssture condition, transpiration
(Rodrigueziturbest al.1991; Avissar 1992), runoff generation (Bronstert Baddossy 1999;
Graysonet al. 1997; Uchideaet al. 2005), net primary production (Band 1993; Band andido
1995; Hwanget al.2008), and boundary layer development (Watkal. 2000).

For this reason, there have been efforts to integrate thie-¢paporal distribution of soil
moisture sub-grid variability for macro-scale hydrologicaldels, based on a priori probability
distribution function of precipitation (Entekhabi and Esgpn 1989; Liangt al. 1996), terrain
variables (Famiglietti and Wood 1994; Baedal. 1991; Avissar 1992; Band and Moore 1995),
snow cover (Lucet al. 1999; Luce and Tarboton 2004), and soil propertiesn@.&t al. 1996;
Liang and Xie 2001). However, a major problem of #pgroach is that there is no consensus for
the appropriate probability distribution function for sub-gradiability (see Ryu and Famiglietti
2005). Particularly in applications for topographicalbmplex regions, it is hard to solve for the
appropriate probability density function analytically calesing non-linear interactions and
complex covariance structures with other biophysical veegaf#.g. LAI, rooting depth).

The sub-grid variability of vegetation is often integrated imacro-scale hydrological models as
a form of vegetative fraction (Gutman and Ignatov 1988)culated from maximum and minimum
vegetation indices (e.g. NDVI, EVI). A recently develd@dODIS evapotranspiration algorithm
estimates seasonal and spatial variations of vegetatigtidn to linearly partition net radiation into
vegetative and non-vegetative fraction within a MODIS pikétlidaet al. 2003; Cleuglet al.
2007; Muet al.2007). However, this method simplified sub-grid variapitif vegetation density
for the application to global evapotranspiration estimatess naay not be appropriate for local or
catchment scale simulations.

Combining multi-resolution imagery can provide a posssiolieition for this problem. Landsat

has 30-m spatial resolution with 16-day overpass frequenityldud contamination often limits
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the ability to detect dynamics of biophysical properties sgolegetation phenology. MODIS has
more frequent temporal resolution (twice a day), but a coapsgial scale (about 250 m for red
and near-infrared bands, about 500 m for other bands) traghsht. Landsat and Terra have equal
orbital parameters and less than a 30 minute differenegquator crossing time. MODIS bands
have slightly narrower bandwidths compared to corresporiziings of Landsat Thematic Mapper
(TM) (Table 4.1). Therefore, combining the spatial ragoh of Landsat TM and the temporal
resolution of MODIS can bridge gaps between limitationlsath image sets in applications to
distributed hydrological modeling at local scales.

Traditional studies fusing multi-resolution images have $eduon producing high resolution
multi-spectral images by combining a fine resolution panoata band and coarse resolution
spectral bands (e.g. Pohl and van Genderen 1998). Recgabet al.(2006) successfully
produced high-resolution spatial reflectance by blendinglkat Enhanced TM+ and MODIS
surface reflectance with the spatial and temporal adaptflectance fusion model (STARFM).
However, this method is too dependent on finding pure caoasssution neighborhood pixels and
is hard to apply for topographically complex terrain wheresthiar bidirectional reflectance
distribution function (BRDF) changes not only temporally, &lsb as a function of topographic
position. Royet al.(2008) also suggested an interesting fusing method beths®lsat and
MODIS data using the MODIS BRDF/albedo products (MCDZ43jey used a simple ratio to
estimate Landsat reflectance on a prediction date fefiectance on an observation date. The ratio
was calculated from the 500 m surface reflectanceatin dates, simulated with the MODIS BRDF
parameters and sun-sensor geometry (8ogl. 2008). Note that the target variable of these fusing

methods was reflectance at each spectral band.
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Table 4.1: Landsat TM and MODIS bandwidths of red and near infrared bands

Landsat TM bandwidth (nm) MODIS band bandwidth (nm)
Red 630 ~ 690 (band 3) 620 ~ 670 (band 1)
Near infrared 760 ~ 900 (band 4) 841 ~ 876 (band 2)
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The ‘ratioing’ indices (e.g. NDVI, EVI, SR) provide morenststent spatial and temporal
criteria for vegetation conditions than reflectance aft@malization of external radiometric and
atmospheric effects. This is because they may cancellatgeportion of the multiplicative noise
attributed to illumination differences, cloud shadowppgraphic variations, and atmospheric
conditions (Hueteet al. 2002). Normalized difference vegetation index (NDVIxisormalized

ratio between surface reflectance of red and near infranedisb

NDVI = (pyir = Preo) [(Onr + Prep)  (4.1)

whereprep andpyr are surface reflectance of red and near-infrared batiolgl is directly related
to various vegetation biophysical parameters (e.g. LAl, RP#anopy cover, and biomass) across
different ecosystems (Tucker 1979; Asedral. 1984; Sellers 1985). The spatio-temporal
consistency of NDVI for vegetation dynamics can provideifigant advantages over reflectance
as a target variable when applying multi-resolution methapoio topographically complex terrain.
Vegetation density is closely related to the fraction of absiophetosynthetically active
radiation (FPAR) and leaf area index (LAl). FPAR is adyoulicator for energy absorption by
vegetation and subsequent carbon uptake based on the lighticisa@f. LAl is an important
driver in process-based biogeochemical models, which tertus ¢orrelated with aboveground net
primary production and biomass across a broad range of eewsy@Gowelet al.2001; Asneret
al. 2003). LAI determines canopy interception capacityefaaporation and potential transpiration
through stomata in the water cycle. Vegetation compranbséween its growth and water stress
for optimal carbon uptake (so-called ‘growth-stresseraff’) (Mackay 2001; Kerkhofkt al.
2004), represented as a non-linear relationship betwBA&R (energy use) and LAI (water use).

These two important biophysical properties are linearlgon-linearly correlated with NDVI from

128



remote sensing images, so NDVI may play a crucial roldd@amscaling vegetation density by
combining multi-resolution images at topographically complevate.

In this study, we suggest two downscaling methods of readitime global satellite products
(MODIS) into Landsat scale FPAR/LAI values for distributadirological modeling. MODIS
FPAR can be downscaled into fine resolution each day, ba$gdmsub-grid variability of
composite Landsat TM NDVI with (a topographically catesl downscaling) or without (a simple
downscaling) considering sub-grid variability of potentialiming radiation. Combining spatial
resolution of Landsat and temporal resolution of MODIS carame temporal and spatial
limitations of both image sets in applications of glob&kige products into catchment-scale

distributed hydrological modeling.

4.3 Method and Materials

4.3.1 Study site

The Coweeta Hydrologic Lab is located in western Nodholina, USA and is representative of
the Southern Appalachian forest (Figure 4.1). The SoutAppalachian forest has very diverse
flora as a result of the complex terrain and consequentoiésian microclimates and soil
moisture (Whittaker 1956; Day and Monk 1974). Meaonthly temperature varies from 3.6 °C in
January to 20.2 °C in July. The climate in the Coweeta lmsiassified as marine, humid
temperate, and precipitation is relatively even in allsesisannual precipitation ranges from 1870
mm to 2500 mm with about a 5% increase for each 100 nft($wal. 1988). The dominant
species are oaks and mixed hardwoods inclu@ugrcusspp. (oaks)Caryaspp. (hickory)Nyssa
sylvatica(black gum) Liriodendron tulipifera(yellow poplar), and'suga canadensigastern
hemlock), while major evergreen undergrowth specieRamlodendron maximu(rhododendron)

andKalmia latifolia (mountain laurel) (Dat al. 1988).
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Figure 4.1: A study site (Coweeta Hydrologic Lab). Grids represent the MODIS
(MOD13Q1; about 230 m) pixels. Red and yellow lines represent the boundaries of
sub-watersheds and WSO08 (an upper basin of Coweeta). Letters indicates the
pixels for examples of fitting and downscaling methods (Figure 4.2; Figure 4.3;
Figure 4.8; Figure 4.9)
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A distributed hydrological model is simulated at the uppsirbaf Coweeta (Shope Fork creek;
WSO08; Figure 4.1) with 30-m grid scale£ 8654), which includes very diverse ranges of
topographic factors (elevation, aspect, slope, and topoigragatex). The Coweeta basin has
distinct phenological patterns at different topographictpos. Onset of greenup is delayed by
about a month as a strong linear relationship of elevati@hpaset of dormancy also shows unique
spatial patterns by a combination of temperature, orograhi@pitation, and photoperiod
(Chapter 3). These distinct spatial patterns of vegetatiomgbbgy within the basin facilitate the
use of near real-time global satellite products for disted hydrological simulation, with respect

to not only interannual variations but also spatial variatioftvegetation phenology.

4.3.2 Landsat NDVI

We acquired forty-nine Landsat 5 TM images in this stitlyfrom 2000 to 2008 (WRS path
19/row 36 and path 18/row 36), all of which are absolutelyd:foee for the study area and
standard level-one terrain-corrected (L1T) products. Tl product includes radiometric,
systematic geometric, and precision correction using groantfol chips, and uses digital
elevation model (DEM) to correct parallax error due to leopbgraphic relief (Johnsaet al.

2009). Geolocation accuracy of the L1T product depends oresaéution of the DEM used. The
geolocation error of L1T-level corrected Landsat imagesss than 30 m in the United States even
in areas with substantial terrain relief (Letal. 2004). All images are provided as a GeoTIFF file
format with the Universal Transverse Mercator (UTM) coaatie system. Dark object subtraction
(DOS) method is commonly used for Landsat TM imagery toecbatmospheric effects on surface
reflectance (Chavez 1996). In this study, we useddifirad DOS method which adds the effect of
Rayleigh scattering to the conventional DOS method. Thitodewas claimed to produce the best

overall results in terms of classification and change tieteaccompared to other more complicated
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atmospheric correction method (Soeigal. 2001). A detailed methodology is available in Setg
al. (2001).

Daily composite NDVI images at each day of year (DOY) aoglpced from Landsat images
within 15-days after and before with an inverse distancghieig method. Based on daily
composite NDVI images, near real-time MODIS NDVI vawe downscaled into Landsat
resolution. A compositing method is usually integrated tafidlud-contaminated or missing pixels
for near-daily global satellite products (e.g. AVHRR, MISD(Hueteet al.2002). In this study,
however, this method is integrated to estimate the siabwgriability of the MODIS NDVI at each
DOY. Note that sub-grid variability of MODIS NDVI tempolakhanges as vegetation phenology
has distinct temporal patterns at sub-grid scale by a ic@thleffect of micro-climate condition,
vegetation community types, and hillslope position in thisystil (Chapter 3).

This method explicitly assumes that the sub-grid vaitgitmf MODIS NDVI changes
seasonally, but has negligible interannual variations. Vagetat the sub-grid scale may respond
differently to interannual climatic variations, therefdnestassumption introduces some error. A
main reason why we do not produce daily composite NIMéges at each date is that there are not
enough images to cover full phenological patterns each yeare\tén, we believe that temporal
variations of sub-grid variability are more dynamic and sigaiit than interannual variations of
sub-grid variability. We will check this assumption lafEnerefore, interannual variations of
vegetation phenology are solely dependent on temporal wegsof MODIS NDVI, while sub-
grid variability of MODIS NDVI is determined by compositandsat NDVI on corresponding

DOY.

4.3.3 MODIS NDVI and FPAR

MODIS NDVI products (MOD13Q1 version 5) are releasechinHiIDF-EOS data format as

Sinusoidal projections with 16-day temporal resolutiod approximately 250-m spatial resolution.
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The MODIS geolocation error is approximately 50 m at nadiolfévet al.2002). They are
reprojected to the GeoTIFF file format with the UTM coordiratstem using a bilinear resampling
technique by the MODIS reprojection tool (MRT;

https://lpdaac.usgs.qgov/lpdaac/tools/modis reprojection).t®dbe current version of MODIS

NDVI products (version 5) is provided with two newly addedapagters; pixel reliability and day
of composite (Didan and Huete 2006). Based on thd mkability, good and marginal NDVI
values are chosen for post-processing analysis for the produwdtMODIS NDVI values from late
2000 to early 2009. Marginal data are included for this studligeas is an insufficient number of
good quality data to show the full range of phenologicakpas, and even good quality data have
unreasonable phenological patterns in this high-precipitatgioneThe day of composite
information at each pixel is also retrieved to get tkeceacquisition date during the composite
period (Didan and Huete 2006). This information was ssiggeto be quite important for
extracting exact phenological signals (Fisher and Mu2aa¥).

A simple two-step filtering method is incorporated ttefi out unqualified data points after
initial quality control based on pixel reliability valueseach pixel. This two-step filtering
technique consists of an outlier exclusion method anddifiad Best Index Slope Extraction
(BISE) method (Chapter 3). After this simple post-pssteg, a difference logistic function is used

to fit temporal MODIS NDVI values (Fisheat al.2006).

1 1
t) = - —)-c+d 4.2
YO = (g g o d (42)

Details in filtering and fitting MODIS NDVI values arealable in chapter 3.3. In the process
of non-linear model fitting, fitting parameters are somes not identifiable as there are no proper

intermediate values between maximum and minimum Nib\the middle of the greenup and
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senescence periods. In this case, we reduced fittingblasi by using shape parametdraridb” in
Eq. 4.2) estimated from 8-year composite trajectoriesfasaion of DOY (Figure 3.4).

Vegetation phenology at forest-based ecosystems is quitaljmeri herefore there is only a
single mode of greenup and senescence per year. Compar&sbtstic function, fitting with the
difference logistic function can reduce the number of fitiagables and assure the continuity of
maximum NDVI values between phases during the summerackt gear, the model is fitted
between mid-days of dormancy periods in this year and theypak Mid-day of dormancy periods
are calculated from the model fitting of multi-year ND\dj#&ctories as a function of DOY at each
pixel.

A key MODIS product to downscale is the fraction of abedrphotosynthetically active
radiation (FPAR) (Mynenét al. 2002). Phenological patterns of FPAR are importanonbt for
carbon assimilation based on light use efficiency, but ptgential canopy interception capacity for
evaporation in a water cycle. FPAR has a linear relationsitipNDV1 across different satellite
sensors (Mynengt al.2002; Sellers 1985; Asrat al. 1992; Myneni and Williams 1994;
Knyazikhinet al. 1998; Hallet al. 1992). The linear NDVI-FPAR relationship is known ® b
largely dependent on vegetation community type and strudi/ge=stimated a linear NDVI-FPAR
relationship locally by matching 1-km MODIS NDVI (MOD12Aand FPAR (MOD15A2) in the
study area. Note that the MODIS FPAR/LAI (MOD15A2xigrently provided at only about 1-km
spatial resolution, so we used this linear NDVI-FP&Rtionship to transform the 250-m MODIS

NDVI (MOD13Q1) into estimated MODIS FPAR values.

4.3.4 Downscaling MODIS FPAR into sub-grid scale

MODIS FPAR represents the integrated effect of sub-grilfFPalues. There can be two ways

to express the relationship between the MODIS FPAR aba&ysd FPAR values. First, the MODIS
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FPAR on daté¢ (FPAR) can be expressed as a mean value of all sub-grid FPARS\@iugate

(FPAR,) as in

i FPAR,
FPAR =2———  (4.3)

wherei represents sub-grid pixel locations, anid the number of sub-grid pixels within a single
MODIS pixel. The numbers of sub-grid pixely @re between 49 (7 x 7) and 64 (8 x 8) considering
that MODIS (~ 230 m) and Landsat TM (30 m) spatial netsmhs. However, this equation

explicitly assumes that all sub-grid pixels receive umifancident PAR. If we consider the sub-

grid variability of incident PARFPAR can be expressed with a weighted averadgeP#R ; with

incident PAR at each sub-grid pixel on corresponding DIPAR poy) as in

Zn:APAF\,”t 3 (FPAR, - IPAR 5oy )
FPAR =i e (4.4)

n

Z IPAR,DOY Z II:)AR,DOY
i=1

i=1

whereAPAR; is the absorbed PAR at each sub-grid pixaid datd. Total potential incoming
PAR on each slope is a function of topography and sotang#y. Potential incoming radiation at
each pixel (PAR pov) is calculated at Terra crossing time (around 10 a.ml tooa) on the
corresponding DOY, based on MT-Clim algorithm (Runnétgl. 1987). Note that potential IPAR
should be used for this equation, not actual PAR measuteberause fitteBPAR values are not
actual measurements, but estimates under the assuroptimud-free conditions.

Checking the difference between Eq. 4.3 and 4.4 is tetade invariance of FPAR; a concept
proposed by Halkt al. (1992). The definition of scale invariance is that biophaigdarameters
estimated from aggregated radiance at coarse resolution @sipeuld be the same with

aggregated biophysical parameters calculated from fineutesolradiance (averaged). In Eq. 4.3,
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integrated FPARKPAR) is defined as aggregated mean from sub-grid FFARR =
APARIPAR pov), Whereas=PAR is calculated from aggregated IPARIPAR poy) and APAR E
APAR)) in Eq 4.4.

We used the composite Landsat NDVI image as an indicator fauthgrid variability of the
MODIS FPAR, assuming the simple linear relationshipvieen sub-grid FPAR at each time

(FPAR,) and composite Landsat NDVI on corresponding DODYI; pov) as in

FPAR, =, -NDVI, oo,  (4.5)

whereq, is a key proportionality parameter of the downscaling m®ae each MODIS pixel that
varies with timet. a; parameter includes both the linear relationship betwaaléat NDVI and
sub-grid FPAR, as well as proportional phenological disamey between near real-time MODIS
FPAR and composite Landsat NDVI on corresponding DRte thatFPAR; is a final target
variable for a downscaling process, simply calculated byiphgihg NDVI; povy With the time-
varying proportionality parametes,J. This method explicitly assumes a constant coefficient of
variance betweeRPAR; andNDVI;poy. The equation is also based on the assumption that there is
no disturbance during the simulation period, which may lbeitr this study site.

a; can be solved by inserting Eq. 4.5 into Eq. 4.3 and 44 asic

FPAR-n

.simple™ n

> NDVI, 5oy

i=1

FPAR- i IPAR 5o¢
=1 (4.7)

Z (NDVIi ,Doy ’ lPAR,DOY)

i=1

(4.6)

o

at.topo—corrected =
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Both o are calculated at MODIS scale on each date, which preydgportionality between
target variablesHPAR;) and the composite NDVI values on corresponding DABVI; poy). We
would call these two techniques as a simple and a topogediyhcorrected downscaling method.
Note that all variables related to sub-grid variabilNOV 1 pov, IPAR poy) are calculated based on
DOY, which would not only reduce computational loads, &t arovide a basis of fusion between
spatial and temporal resolutions of MODIS and Landsat irsatge For significant geolocation
errors for both Landsat (< 30 m) and MODIS (< 50 m) imabesdsat pixels with two and more
MODIS grids crossover, are calculated as a sub-pix¢leoMODIS grid to which largest portion of
these Landsat pixels belongs.

Finally, sub-grid LAl values are calculated frétRAR; values by a non-linear relationship
between FPAR and LAI, which is locally derived by field mgasents in the study area (Sullivan

et al. 1996).

4.3.5 Simulation of a distributed ecoydrological model

A process-based ecohydrological model (RHESSys; Regigydrio-Ecological Simulation
System) (Bancet al. 1993; Tague and Band 2004) is used in this study. Thelnsosienulated at
30 x 30 m downscaled grid cell resolution within WS08d¢pat = 8654). Daily climate (maximum
and minimum temperature, precipitation, average vaporymeskeficit, total downward direct
radiation) at two climate/rain gauge stations at low and &ighation (CS01/RG06 and
CS28/RG31) are used in this study. For the model sinonlatve used universal kriging with
elevational trends from 7-point measurements within the Cawmesesin from 1991 to 1995 to
develop long-term rainfall isohyets to scale daily preatfn over the terrain. Many physiological
parameters and other (e.g. soil, nutrient) parameteasumed within the study site are used

(Hwanget al.2009).
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The model is calibrated with streamflow data varying tir@@®MODEL parametersn (the
decay rate of hydraulic conductivity with depth), and therédteerticalKsa0 (Saturated hydraulic
conductivity at surface). Monte-Carlo simulation is impénted two thousand times with randomly
sampled parameter values within certain acceptable rangagtioge-year calibration period
(October 2003 ~ September 2006). To allow soil moistoistabilize, a one and a half year
initialization is employed before the calibration peridtle Nash-Sutcliffe (N-S) coefficient (Nash
and Sutcliffe 1970) for lognormal streamflow dischargesed to evaluate model performance
because this objective function is biased toward base flowhvid more sensitive to vegetation

dynamics.

4.4 Results

4.4.1 MODIS and Landsat NDVI values

Figure 4.2 shows 8-year (2001 ~ 2008) temporal patternieyefi MODIS NDVI values and
fitted models on MODIS pixels in topographically differgratsitions within the study site (Figure
4.1). They show very periodic phenological patterns each gsawell as very stable maximum and
minimum NDVI values during maturity and dormancy periodse @iverse phenological patterns
shown within the Coweeta LTER site can be explained &yxtmbined effect of micro-climate
variations, vegetation community types, and hillslope positichapter 3). Note that there are some
discontinued patterns between years because filtered M@&tSare non-linearly fitted
independently with the difference logistic function for egehr.

Figure 4.3 presents phenological patterns at selected MPiR¢® for the same 8-year period as
a function of DOY. Interannual variations of vegetationraiiegy appear smaller than spatial
variations. Senescence shows more interannual vari&i@ngreenup. This pattern can be observed

more clearly from boxplots of all mid-days of greenup agrescence periods in each yaar (
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369; Figure 4.4a, b), defined as inflection points of tlfieince logistic function (Eq. 4.2). The
mid-days of greenup show smaller interannual variatibas those of senescence for the Coweeta
basin. The greenup was delayed significantly in 2005 comparetther years. Significantly

delayed senescence was observed in 2005, while earliexceace was found in 2001, 2003, and
2004.

All Landsat NDVI values are presented in Figure 4.8 &sction of DOY, where vertical lines
represent 5th and 95th percentiles of spatial NDVI valudsimihe WS08 watershed € 8654;
Figure 4.1). The atmospheric correction method efficientiynalized NDVI values. It produces
very stable patterns in terms of not only absolute mean valutealso their spatial distributions
except for greenup and senescence periods. Note how stadilal distributions of Landsat NDVI
values are between adjacent images even though there arinseraenual differences in absolute
terms. The consistency in spatial patterns of LandsatINWMes is quite important as we estimate
sub-grid variability of MODIS FPAR on each DOY based omposite spatial patterns without
considering interannual variations. Note that theeestitl small systematic decreases of average
Landsat NDVI values and small increases of their spdigatibutions in the middle of winter
(Figure 4.5). These phenomena are thought to be related todleeestimation of NDVI values at
high solar zenith angle and large spatial variance ofalse of illumination angle around the

winter solstice. We discuss this issue later with resjpettpographic correction.
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Figure 4.2: Examples of fitting by the difference logistic function for 8-year MODIS
NDVI datasets (2001 ~ 2008) at selected MODIS pixels ((a) ~ (i); Figure 4.1).
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Figure 4.2 (cont’d)
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Figure 4.3: Interannual phenological variations of the fitted MODIS NDVI model at
selected MODIS pixels ((a) ~ (i); Figure 4.1).
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Maximum and minimum values of Landsat NDVI (Figure 418 eonsistently lower than those
of fitted MODIS NDVI (Figure 4.4c). Note that Landsat MDss just used to estimate the sub-grid
variability of MODIS pixels assuming the standard deviaigproportional to the mean value, so
these differences in maximum and minimum NDVI values hiawéed effects on the suggested
downscaling techniques. Greenup and senescence timmgLfindsat NDVI images (Figure 4.5)
are quite comparable to those from fitted MODIS NDV (ke 4.4a, b). Fall Landsat NDVI shows
earlier senescence in 2001 and 2003, but is delayed in 2a0E0A8. Interannual variations in the
mid-day of senescence from MODIS NDVI data (Figure Aedactly agree with these observed
patterns from fall Landsat NDVI images, as well as thiegotute timing as DOY values. Even
though it is hard to see interannual variations in gre¢imipg for the lack of cloud-free Landsat
TM images, earlier greenup is observed in 2001 compar2d0é and 2005 (Figure 4.5), also

partially supported by the MODIS data (Figure 4.4b).

4.4.2 An example of downscaling

Figure 4.6 presents an example of downscaling MODIS FP#@dRLiandsat-scale FPAR by the
two methods. This downscaling example (May 5, 2008) iseshasound the middle of the greenup
period (Figure 4.4b), when broad ranges of FPAR and ND& ka&pected to show this downscaling
process more efficiently. A fitted MODIS FPAR image (Fig4.6a) and a composite Landsat
NDVI image on corresponding DOY (Figure 4.6b) show verylsingpatial patterns along the
elevation gradient. A proportionality paramete) Of the simple downscaling is calculated for each
MODIS pixel by Eq. 4.6 (Figure 4.6c), which is multigliey the composite NDVI image to
produce a final downscaled FPAR map (Figure 4.6d). Grath@kases of; value along the
elevation gradient are observed except for several pixels arbermhsin outlet, where the Coweeta
lab buildings are. Note that theparameter adjusts Landsat NDVI values each day based on

observed global satellite signals while preserving subagaidhbility. Therefore, this elevational
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trend of then; parameter may explain the phenological discrepancy betweddlMBEPAR and
composite Landsat NDVI. The topographically correetggarameter (not shown here) is
calculated by Eq. 4.7 with estimated potential hourtiiation (Figure 4.6e). A final FPAR map
developed by topographically corrected downscaling is showigure 4.6f, which appears similar
to a final FPAR map from the simple downscaling (Figiuexl).

More downscaling examples are available in Figure 4.7 fdrsmmmer (July 1, 2008; left
column) and mid-winter (February 8, 2008; right colunB)th composite NDVI images clearly
show boundaries of coniferous watersheds (WS01, WS17;&~guy, characterized as lower
NDVI values in summer (Figure 4.7c) and higher NDVI valuewinter (Figure 4.7d). These
distinct patterns of coniferous watersheds are lessmgigshable in the MODIS FPAR images
(Figure 4.7a, b), where the effect of coniferous forestsixed with adjacent pixels. FPAR maps
from the topographically corrected downscaling (Figure 4)7show relatively good spatial
continuity between adjacent pixels. In the middle of summeaturity) and winter (dormancy),
there is little interannual variation in vegetation phegg|soa, parameters are expected to be
more spatially uniform than those of the transition peridtisvever, there are still discrete
downscaled FPAR patterns from MODIS pixels with mikéaine types especially in summer
(Figure 4.7e). Note that few discrete patterns are foundntemFigure 4.7f), when only
coniferous and understory evergreen broadleaf (e.g. rhodamendountain laurel) forests are

photosynthetically active.
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Figure 4.6: An example of two downscaling methods on May 5, 2008; (a) a fitted
MODIS FPAR image, (b) a composite Landsat NDVI image, (c) a proportionality
parameter (a;) map by the simple downscaling method, (d) a downscaled FPAR
map by the simple downscaling method, (e) a potential hourly radiation map (kJ m™
h™), and (f) a downscaled FPAR map by the topographically corrected downscaling
method.
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Figure 4.7: Two examples of the topographically corrected downscaling method on
July 1, 2008 (left column) and February 8, 2008 (right column); (a) and (b) fitted
MODIS FPAR images, (c) and (d) composite Landsat TM NDVI images, and (e)
and (f) downscaled FPAR maps.
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Figure 4.8 and Figure 4.9 show examples of downscaled FAPR_AI values by the
topographically corrected downscaling at selected MQi8Is with 5-day intervals (Figure 4.1).
Temporal patterns of downscaled FPAR show exaggeragidisypariance in low ranges due to the
non-linear relationship between LAl and FPAR (Figure 4\Rjte that each MODIS pixel presents
quite different downscaled FPAR and LAI patterns dependmtemporally variant sub-grid
variability estimated from composite Landsat NDVI imaddsually, relatively stable patterns of
downscaled FPAR and LAI values are found during dormandynaaturity periods with a few
crossovers. Some instability of downscaled FPAR mighitdre interannual variations of
composite Landsat NDVI images or geolocation problenisoti images (Figure 4.5). Note that
increases of downscaled FPAR and LAI are found inesb®DIS pixels in the middle of winter
(Figure 4.8e, g and Figure 4.9¢e, g), which could notie We believe that this pattern is related
to underestimation of NDVI in faintly illuminated areaghwery high solar zenith angle around
the winter solstice. This pattern is also related to systie decreases of average Landsat NDVI
values and small increases of their spatial distributidhérmiddle of winter (Figure 4.5). Note
that these two MODIS pixels (Figure 4.1e, g) are locatetbrth-facing slopes, where diffuse

radiation is dominant during the winter season.

4.4.3 The effect of the topographically corrected dowtisga

The example for two downscaling methods in spring showdltleee is no apparent difference
between final downscaled FPAR products (Figure 4.6d, &.Sdatter plots betweeginpie (a
proportionality parameter in the simple downscaling; Eq. @M)opo_corrected(@ proportionality
parameter in the topographically corrected downscaling; Eyimspring (May 5, 2008), winter
(February 8, 2008), and summer (July 1, 2008) are showigure 4.10. Note that final
downscaled FPAR maps are developed as the product @iostie NDVI images and the

parameters. Therefore, the effect of the topographicathected downscaling can be assessed by
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comparison betweem parameters from both methods. In the summer, therlésdifference
between twax parameters. Few points are found out of the 1-to-litinke spring, but they are
located within a broader range. The greatest deviationstine 1-to-1 line are in the winter season
with the broadest range.

Increased discrepancy of theparameters in winter is related to increased covaribeteeen
sub-grid NDVI valuesNIDVI; pov; EQ. 4.7) and incident radiatiolPAR pov; EQ. 4.7). Most
outlying points are located below the 1-to-1 line (Figudé®}.such that the topographically
corrected downscaling produces smadlefalues than the simple downscaling. Smadlg), corrected
values thamsimpie indicate that there exists significant positive covareabetween sub-grid
IPAR poy andNDVI; poy Values (Eqg. 4.7) within the MODIS pixels. On the contréagger
awopo_correctedvalues are expected in MODIS pixels with significant tiegecovariance between sub-
grid IPAR poy andNDVI, poy.

Temporal patterns afiop,_corected@Ndasimple Parameters help to understand the effects of the
topographically corrected downscaling. Figure 4.11 shiewsporal patterns of the two
parameters at 5-day intervals from 2001 to 2008. Veflilwa$ represent 5th and 95th percentiles in
terms of their spatial variations. Battparameters remain stable during a maturity period (suinme
with narrow ranges of spatial variations. Slightly increggatterns are found during this period, as
both MODIS and Landsat NDVI have a minor decrease byclgaf changes (Figure 4.2; Figure
4.5), but the fitted MODIS model does not represent thigsahse. More fluctuating interannual
patterns of botlx parameters are observed during transition periods. tNatehea parameters
compensate phenological discrepancy between compositsataN®VI images and fitted MODIS
FPAR while preserving sub-grid variability. Therefore, itjiste clear that those values are more
temporally variable during the greenup/senescence pevidis major interannual phenological

variations may occur.
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Figure 4.8: Examples of the topographically corrected downscaling for the MODIS
FPAR at selected MODIS pixels in 2008 ((a) ~ (i); Figure 4.1). Grey dotted and
color solid lines represent the fitted MODIS FPAR and the downscaled sub-grid
FPAR values respectively.
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Figure 4.9: Examples of the topographically corrected downscaling at selected
MODIS pixels in 2008 ((a) ~ (i); Figure 4.1). Color solid lines represent the
downscaled sub-grid LAI values estimated from downscaled sub-grid FPAR values
(Figure 4.8).
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(circle), 2008.
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Figure 4.11: Temporal patterns of Qiopo_corrected (UPPEr) and asimpie (Iower) values for
a simulation period (2001 ~ 2008) with 5-day intervals. Points and vertical lines
represent average, and 5th and 95th percentiles of spatial distributions in the study

site (n = 369) on the same DOY each year. Note that a parameters are calculated
each day, not each DOY.
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The effects of the topographically corrected downscalingpaigent only during the dormancy
period (winter), already seen in Figure 4.10. Spatidhtian of botha parameters increase in the
middle of winter (Figure 4.11) with slightly reduced rangeghie topographically corrected
downscaling. As mentioned earlier, these effects ofdpegraphically corrected downscaling
during the winter are due to positive covariance betweemgsdbncident PAR and composite
NDVI values, as well as increased sub-grid variabilitincident PAR with a high sun zenith angle.
This indicates greater evergreen species on south-facingssiophe study site. Increased spatial
variations of botlu parameters in the middle of winter are also derived frgstesatic increases in

the spatial variation of composite Landsat NDVI valueg\fFa 4.5).

4.4.4 An example of distributed hydrological modeling

Figure 4.12 shows observed and simulated daily streamiithvin the study watershed from
2001 with integration of downscaled LA, including the threaryealibration period (October 2003
~ September 2006). The maximum efficiency value of théielon period is 0.815, whereas that
of the whole simulation period (January 2000 ~ February 280F)'89. Note that precipitation is
relatively even in this region throughout the year. Forrdason, strong seasonal fluctuations of
streamflow depend on phenological patterns of vegetatiom sirhulated level of low flows
smoothly follows observed patterns without a seasonal biashwidicates a seasonal pattern of
evapotranspiration is well simulated by integrating vegatalynamics downscaled from the real-
time global satellite products. Note that simulatedastrflow still misses some peak flows
especially during the low flow periods. This is mainly hexmathe steady-state assumption of
TOPMODEL fails during summer storm periods (Beven )9%9%e development of perched water
tables in the study area with steep topography (Hewlett)l#6its the validity of topographic

index-based approach.
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Figure 4.12: Observed and simulated daily streamflow at the study watershed (WSO08; Figure 4.1), including the 3-year
calibration period (October 2003 ~ September 2006).



Note that the improvement in prediction of watershed streamflow comymaaesimulation
that uses a constant (spatially invariant) phenology is small as lohg sgdtial mean
interannual phenology is specified. However, we expect the significanceluding spatially
and temporally varying phenology will be much greater for spatial pattéoanopy and

subcatchment response. This will be investigated in the future.

45 Discussion and conclusions

45.1 General discussion

In this study, we suggest two downscaling methods of near real-time MOBIS t6Fsub-
grid scale, where sub-grid variability is estimated from composite Lantis&DVI images on
corresponding DOY. Fusing the MODIS FPAR with the Landsat NDVI overcomgsotal and
spatial limitations of both Landsat TM and MODIS image sets ®afiplication to catchment-
scale distributed hydrological modeling. Integration of sub-grid vaityabil potential incident
radiation during the downscaling process may improve some downscaled resduitstioaly
winter, when substantial sub-grid variability of incident radiatiot positive covariance
between sub-grid incident radiation and NDVI are expected in this studpjsievaporation and
transpiration processes are minimal during the winter season, timersignificant advantage of
the topographically corrected downscaling compared to the simple downsoaldigtfibuted
hydrological modeling even in topographically complex terrain.

The spatio-temporal consistency of NDVI values provides an advantage inmthgcading
process of vegetation dynamics over reflectance especially in topagidpbomplex terrain.
The ‘ratioing’ property of NDVI especially has an advantage in ternspatial consistency as it
cancels out a large portion of the multiplicative noise from illurienadifferences, cloud

shadows, topographic variations, and atmospheric conditions. As mentioned BEDIHS



NDVI (Figure 4.2) and Landsat NDVI (Figure 4.5) values are veryistam in terms of spatial
and temporal variations, as well as interannual phenological easatrigure 4.4 and Figure 4.5).

There are slight discrepancies between maximum and minimum NDV kviatue Landsat
and MODIS images, which may be attributed to differences in correspdvailyvidths (Table
4.1) (Gupteet al.2000; Teilletet al.2007) or atmospheric correction methods (Vernebta!.
1997). Many studies of multi-sensor comparison of NDVI values report that botisdteand
MODIS NDVI values are comparable within a very close range, thoughnitssisat the MODIS
NDVI is slightly higher than Landsat NDVI (Huegt al.2002; Gacet al.2003; Morisettest al.
2004; Brownet al.2006; Cheng 2006). Another possible explanation of the discrepancy between
MODIS and Landsat NDVI values is a scale variant nature of NDVI. Weessldhis issue later
in the discussion.

The study area is located in a high-precipitation region (around 2000 )nsoyavailable
cloud-free images are quite limited by cloud contamination. Ttwexeh post-processing analysis
for MODIS NDVI values (filtering and fitting) is necessary, evéteraremoval of unqualified
data points with quality assurance flags at each MODIS pixel. In additiomythiger of cloud-
free Landsat images is limited, although the study site is located imppiEd regions between
two paths of Landsat orbits. This is a major reason why composite NDyésran
corresponding DOY (over multiple years), not on corresponding dates, are used in t
downscaling process. If enough Landsat NDVI images were availakdehnyear, fluctuations
of thea parameters during transition periods would have been reduced (Figlixeld dddition,
if reasonable spatio-temporal patterns of MODIS NDVI valueg\agailable without the post-
processing analysis, more stable patterns of th@rameters would have been expected during

maturity and dormancy periods (Figure 4.11).

4.5.2 The FPAR-NDVI relationship
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This study is based on a simple linear assumption between NDVI and FPARentpdeas
proportionality parameterg;(Eq. 4.5). This linear relationship is known to be a function of
biome types and forest structures (Knyazikbiral. 1998; Myneniet al. 1997). Eq. 4.5 explicitly
assumes that sub-grid variability of FPAR within the MODIS pixéhesarly proportional to
sub-grid NDVI values. Therefore, if there are different biome amd ¢@ver types within a
MODIS pixel, this assumption fails. This is a reason why spatiallyetspatterns of
parameters (Figure 4.6c) and downscaled FPAR values (Figure 4.6dfduad around the
Coweeta basin outlet, where grass and open space for lab facilitiesadeel. There are also two
plantation conifer watersheds (WS01, WS17; Figure 4.1) and open fieldsedimsinorthern
boundaries of the Coweeta basin. Distinct patterns in downscaled FPAR dresmdegions are
more recognizable in summer (Figure 4.7¢e) and winter (Figure 4.7fp futhe-grown deciduous
forests are distinct in Landsat NDVI images (Figure 4.7c, d).

Following Knyazikhinet al.(1998), this simple proportional assumption between NDVI and
FPAR is valid only if the canopy background is ideally black. Other modékstatso found that
this linear relationship between NDVI and FPAR is very consistent wiplece$o various
canopy and optical properties (e.g. clumping, canopy cover, leaf angle distribpétal, s
heterogeneity, and solar zenith angle etc.), but sensitive to soil backgreathnee (e.g. Asrar
et al. 1992; Myneni and Williams 1994). However, many studies of field-measurkig BRd
Landsat NDVI values show that estimated intercept values of the Ni2dl-FPAR relationship
are not actually zero, but usually slightly negative under non-ideal séifjtwaund color (e.qg.
Asraret al. 1984, 1992; Gowardt al. 1994; Friedlet al. 1995). This means that sub-grid
variability based on Eg. 4.5 might be underestimated and actual proportionadityepars (Eq.
4.6 and 4.7) might be slightly larger than estimated in this study. Ifasiniome types, the
above studies have also reported slightly larger slope values of teNiD¥|-FPAR
relationship with negative intercepts across different im@dgaeni and Williams 1994; Myneni

et al. 1997, 2002) than the estimated range parameters in this study (Figure 4.11). In addition,
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the linear assumption between NDVI and FPAR may not be supported dgpelceal canopy
stand structure is gappy (e.g. Song and Band 2004). However, it should nog ligsadin this
study site, where upper canopy is dominant with broadleaf closest.fore

Sub-grid FPAR values are a better indicator for sub-grid vatiabilithe MODIS FPAR than
sub-grid NDVI values. Note that tleparameter in this study (Eq. 4.5) includes both the linear
NDVI-FPAR relationship, as well as proportional phenological discreparneyeba near real-
time MODIS FPAR and composite Landsat NDVI on corresponding DOY. Sepaladtisg tivo
relationships can be a possible solution for the problem in apptyagameter directly to
composite Landsat NDVI values. The sub-grid FPAR can be estimatdddiinsthe composite
Landsat NDVI image, and then a proportionality parameter can be applieddd¢HPAR
values rather than to NDVI directly. In this approacparameter solely represents phenological
discrepancy between MODIS and Landsat FPAR values. This approach camdide pore
flexibility in the application of these downscaling methods ingdares with mixed biome and
land cover types by applying different NDVI-FPAR relationshipgitferent land cover and
biome types. However, it would be another issue to properly estimatadhe felationship

between FPAR and NDVI in different biome and land cover types.

4.5.3 Scale invariance in sub-grid variability

The limited effect of the topographically corrected downscaling misan$PAR may not be
scale invariant during the winter season in this study area (Eq. 4.3 andl didhple test of scale
invariance of NDVI between Landsat and MODIS scales may give an idea tiesgrdi NDVI
values are affected by different spatial aggregation methods. It alsprovage a possible
explanation of the discrepancy of maximum and minimum NDVI values bethaelsat and
MODIS scales. The scale invariance of NDVI between Landsat and M@BIKs<an be tested

by comparing between the mean NDWI{VI,,) of sub-grid Landsat NDVI within a single
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MODIS pixel and the lumped NDVNDVIm) from aggregated radiance at the MODIS scale. In
the same way, the scale invariance of FPAR can be checked by comparirgydtgl 4.4 values.

If o parameters (Eq. 4.5) are assumed to be constant at each sub-gitopircgeneous land
cover and biome types), this test results in the comparison belNiEéa,, (Eq. 4.3) and the
weighted mean of sub-grid NDVINDVI;) with respect to sub-grid incoming radiatidRAR). It

can be rewritten from Eq. 4.4 and 4.5 without the time funciiddYandt) as

n

> (NDVI, - IPAR)
NDVI,, = -L— (4.8)
Z IPAR

Figure 4.13a shows a scatter plot betw&V1l,,, andNDVlym, and the temporal patterns of
relative difference between them in the study site 869). NDVI is definitely not scale invariant
in the middle of winter season, whBIDV1,,q underestimateNDVlm, This test presents a
possibility that the mean Landsat NDVI can be slightly lower than the lumpdI®BDVI in
the middle of winter in the study site. Note that systematic decreadesmban Landsat NDVI
in the middle of winter are observed in this study (Figure 4.5), but not reealgni the filtered
MODIS NDVI (Figure 4.2).

Figure 4.13b shows a scatter plot betwl@&Vl,,, andNDVl,y, and the temporal patterns of
relative difference between them in the study site 869). They shows similar pattern to the
relation betweeNDVI,,q andNDVlyn, S0 FPAR is not scale invariant during the winter season.
Note that largetisimpie Values (Eq. 4.6) thadepo_corecedvalues (Eq. 4.7) in the winter (Figure

4.10) already analytically supports the overestimatiad@¥l,,, compared titNDV I,
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Figure 4.13: Temporal patterns of relative differences (left column) and scatter
plots (right column) between (a) NDVla,g and NDVliymp, (b) NDVlayg and NDViygt,
and (c) NDVliymp and NDVlyg. NDVIiymp is the NDVI calculated from aggregated
radiance at the MODIS scale. NDVl,y is the averaged NDVI at MODIS scale
from sub-grid Landsat NDVI values. NDVl,g is the weighted averaged NDVI with
respect to sub-grid incoming radiance (Eq. 4.8). Horizontal and vertical lines
represent 5th and 95th percentiles of the spatial NDVI values within the WS08
watershed (n = 8654; Figure 4.1).
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The temporal patterns of relative difference betwgbV 1., andNDV|,m, (Figure 4.13a), and
betweerNDVl,,, andNDVl, (Figure 4.13b) show that these relative differences are veryasimil
on corresponding dates. Therefore, there seems little relative diféebetweeNDVI,m, and
NDVl,g: (Figure 4.13c) even in winter season, when only increasdéidlsgiances are observed.

Therefore, we can derive this relationship from Eq. 4.4 and 4.5.

FPAR=«a-NDVI,, ~ a-NDVI (4.9)

lump
whereFPARrepresents the integrated FPAR at the MODIS scale. Eg. 4.9tggltbat the same

o parameter between FPAR and NDVI is applied both at the sub-grid Egak.%) and at the
MODIS scale. Therefore, the linear NDVI-FPAR relationship may bkegovariant in the study
site, though FPAR and NDVI is not scale invariant.

Previous studies of the scale invariance of NDVI show conflictindtsastiether the lumped
NDVI calculated from aggregated reflectance is larger thaavwbeeged NDVI (Halkt al. 1992;
Friedl et al. 1995). Hu and Islam (1997) proved that the difference between lumped aageaver
NDVI was dependent on the variances of the red and near-infrared déartes and the
covariance between two radiances using a Taylor series appnaxiniad. 4.4 shows that the
scale invariance of FPAR is only dependent on the covariance bd®&Rnoy andNDVI poy
in Eq. 4.8, but not on each variance term. The similarity bethN&af,,m, andNDVI, (Figure
4.13c) indicates the scale invariance of NDVI is only dependent on theamse between
IPAR poy andNDVI, poy Within a coarse pixel in the regions with homogeneous land cover and
biome types.

In this study, the linear NDVI-FPAR relationship is estimated by magchikm MODIS
NDVI (MOD13A2) and FPAR (MOD15A2) in the study area. This relatignéhiused to derive
250-m MODIS FPAR from 250-m MODIS NDVI (MOD13Q1). Tiahal.(2002a) examined the

scale-dependent property of the MODIS NDVI and LAI algorithms and they founM®BIS
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LAl is not scale invariant between 250 m and 1 km while the mean of MODM Blianged
little with different spatial resolutions. Tiaet al.(2002b) also found that LAI retrieval errors at
coarse resolutions are proportional to sub-pixel heterogeneity in laadespecially mixed with
non-forest biome types. However, Friedlal.(1995) pointed out that the linear NDVI-FPAR
relationship was little affected by aggregating NDVI and FPAR unlikedimelinear NDVI-LAI
relationship due to its linearity. In this sense, several studies hseedimensional radiation
transfer models pointed out that the linear NDVI-FPAR relationshipéke invariant by
comparing estimated relationships from homogeneous and heterogeneous cammyy &vig
Williams 1994; Mynengt al. 1995). Moreover, the study area is represented as relatively
homogeneous land cover as deciduous broadleaf forests with closed canopyl arnigeaslel
colluvial soils. Therefore, the assumption of scale invariance dihter NDVI-FPAR

relationship may be valid in the study area.

4.5.4 Topographic correction

Some gradual decreases in average Landsat NDVI values are foundtlenivigter season
with increased spatial variation (Figure 4.5). These pattesudt in increases of average
parameters and their spatial variation in the middle of wintgu(gi4.11). Several studies
reported that NDVI is not significantly affected by different topogirapbrrection methods
(Ekstrand 1996; Turneat al. 1999; Matsushitat al.2007) because the ‘ratioing’ property of
NDVI can effectively normalize illumination differences on différsiopes. However, most of
these studies were done with images with low sun zenith angles. \@haih{2002) reported
that NDVI calculation from topographically uncorrected Landsat TM legidtematic
underestimation of NDVI values especially in areas with high illuminatgtes.

In this study area, the sun illumination angles (Teétetl. 1982) on north-facing slopes are

over 90° in the middle of winter, where diffuse radiation dominates. Thisnfaaes it hard to
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apply the cosine-based topographic correction method with Lambertidiet(@eal. 1982; Civco
1989) and non-Lambertian assumptions (Minnaert 1941) for these LandssetdafBhese
cosine-based topographic correction methods were known to overly correatlinifiaiminated
areas with very low illumination angle (Meyet al. 1993), so modified methods with additive
terms were proposed to solve this problem (e.g. the C correction me#ilbet; &t al. 1982, and
the Gamma method; Shepherd and Dymond 2003). However, the modified cosine-baseds method
with additive terms could not produce the proper range of NDVI values in tHisesten though
they can solve systematic decrease of average Landsat NDV$ @abuend the winter solstice.
For this reason, it is hard to find a consistent topographic comeauethod through the year.
The effect of topographic correction for the NDVI calculation is moigegd when sun zenith
angle is high. Also, it seems that separation of direct and diffuseioadiating the process of
topographic correction (Shepherd and Dymond 2003) is quite necessary forinvages

because faint diffuse radiation is dominant at slopes with high illuminatigiesa

455 Conclusions

NDVI has rarely been used as an indicator of sub-grid variabibinlpnbecause NDVI is
usually regarded as not scale invariant (Hu and Islam 1997). Howewwpadnation of FPAR as
a downscaling variable can solve the scale invariance problem of WB&duse FPAR is more
physically meaningful and more easily scalable between diffspatial resolutions. Moreover,
the linear NDVI-FPAR relationship in homogeneous regions is shown to learseariant in this
study, which facilitates its use as a measure of sub-grid vésiabil this study, the fitted
MODIS FPAR is downscaled into the Landsat scale with two suggested dosehswthods (the
simple and the topographically corrected downscaling) for the 8-yeadd2001 ~ 2008). The
relationship between the downscaled MODIS FPAR and the composite sub-fld/alDes is

represented with a simple linear proportionality parameter, whichdeslthe linear relationship
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between sub-grid NDVI and FPAR, as well as proportional phenological discydpetmeen the
MODIS FPAR and composite Landsat NDVI on corresponding DOY. The sub-grid lityriabi
vegetation density on each day is estimated from composite NDVésgvaga function of DOY.
In the topographically corrected downscaling, the sub-grid variability ehgat incoming
radiation is calculated in conjunction with digital elevation data, aed tssweight average sub-
grid NDVI values. The effects of the topographically corrected dowmsciiquite limited with
the exception of winter when there is positive covariance betweeggrisuincident PAR and
composite NDVI values, as well as increased sub-grid variabilitycadent PAR with a high sun
zenith angle. Suggested downscaling methods are applicable only teehglatimnogeneous
landscapes due to the simple linear assumption between sub-grid NDVI anthipEGRAR.
However, if different NDVI-FPAR relationships can be estimatedifferent land cover and
biome types, these methods are also extendable into heterogeneoup&mdscmbining the
spatial resolution of Landsat and the temporal resolution of MODIS canitrgdssible to
compromise between limitations of both image sets in applications of glatedlite products
into distributed hydrological modeling at local scale. Furthermoresthity provides the
potential for ecohydrological nowcasts and forecasts at the catchraknivit integration of

near real-time global satellite products by downscaling techniques.
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Chapter 5 Summary and conclusions

In this dissertation, three research studies are presented dngdertegration of spatio-
temporal vegetation dynamics into a distributed ecohydrological modeapjlication to
optimality theory and real-time simulation. Spatial pattern get&ion density is estimated at
different scales with a combination of simulation and multi-temperabte sensing data sets,
further evaluated with field measurements. Hydrologic gradifntegetation density within a
small catchment are related to the optimal state for carbon wgdakéunction of lateral
hydrologic connectivity. Phenological features are extracted @lobal satellite products to find
the topography-mediated controls on vegetation phenology at a localFSnally, near real-time
dynamics of vegetation density are updated for distributed ecohydrdlsigicdation by fusing
multi-temporal Landsat and MODIS data.

In Chapter 2, we test whether the simulated spatial pattern datiegecorresponds to
measured canopy patterns and an optimal state relative to a set ofesngeystesses, defined as
maximizing ecosystem productivity and water use efficiency agral catchment scale.
Vegetation density along the hillslope gradient may effectively reptelse degree of
dependency of multiple interacting resources (water and nutrientsyast@h of lateral
hydrologic connectivity, moderated by feedbacks with canopy light absorpti

In this study, we found the following:

° Model results suggest that more efficient photosynthesis can takeduanslope

due to more efficient water use for carbon uptake and increasegemtavailability,



producing a feedback with more light absorption through the development @rgrea

leaf area and lower belowground proportional allocation.

. The spatial distribution of rooting depth and allocation dynamics atgarrom
pit excavations show very similar patterns to those estimedadthe optimal

hydrologic gradients of vegetation density.

. Simulated canopy growth shows effective compromises between multgdsestr
(water, light, and nutrients) for optimal carbon uptake through the tafitro

aboveground vegetation density by limited photosynthate allocation.

. The existing hydrologic gradients of vegetation density within the caichm
effectively represent the degree of dependency on productivity andae s with
other patches along flowpaths and the long-term optimal state for carladee uphich

is closely modulated by rooting and allocation strategies.

In Chapter 3, multi-year trajectories of the MODIS NDVI data ateréd and fitted to find
the topography-mediated controls on vegetation phenology within the steidysitfind well
expressed spatial patterns of phenological signals as a function ofapppgriosely related to

micro-climate variations, vegetation community types, and hillslopéiguos

. Elevation is a primary factor characterizing topography-medijaitenological
features for both greenup and senescence, related to environmentahteregapse

rate and combined orographic precipitation.
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. Radiation proxies have significant explanatory powers for all phemalogi
variables, which are affiliated with photoperiod controls or combinedteffich

temperature.

Hillslope position only show positive relationships with greenumplogical
variables which may be explained by cold air drainage. Howstreng precipitation-
related controls on phenology are found in terms of both orographic and mitairan

variations.

Phenological signals at MODIS scale lead to important scale issthesr
relationships with topographic factors, especially due to the saebknce nature of
radiation proxies and reduced variances produced by aggregating pheai@adic

topographic information.

In Chapter 4, daily spatial patterns of vegetation density (FPAR,dver complex terrain are
estimated at a high resolution by fusing multi-temporal MODIS and Lafd$aata in
conjunction with topographic information. Two downscaling methods areajgsd to overcome
spatial and temporal limitations of MODIS and Landsat image sets in apgpiie of spatially and
interannually variable vegetation phenology into catchment-scaiédisd hydrological

modeling.

. FPAR is more physically meaningful and more easily scalable betwviéenek
spatial resolutions, therefore the incorporation of FPAR as a dolmgseariable
helps to solve the scale invariance problem of NDVI in the applicatiowulbi-

resolution methodology.
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. Sub-grid variability of the fitted MODIS FPAR is representedi®/composite
Landsat NDVI images with a simple linear proportionality pareméthis includes a
linear relationship between sub-grid NDVI and FPAR, as well as propdrtiona
phenological discrepancy between MODIS FPAR and composite Landsat NDVI on

corresponding day of year.

A simple linear assumption between sub-grid NDVI and FPAR is not met when
there is significant heterogeneity in biome and land cover type witi@RIS pixel

as the relationship strongly depends on biome types and forest ssucture

Considering sub-grid variability of incoming radiation during a dowirsgal
process has limited effects with the exception of winter seaken there is significant
positive covariance between sub-grid incident PAR and composite NDVkyalsie

well as increased sub-grid variability of incident PAR with a high saitlzangle.

In this dissertation, two different complementary approaches (top-dod/bottom-up) are
incorporated into a distributed ecohydrological model for spatio-terpagatation dynamics. A
major question is how ecological mechanisms underlie spatio-temporaldyidpatterns and
processes, essentially examining the coupled evolution and interactibmsegibhydrological
systems. With a bottom-up approach, emergent optimality within thé caahment expands
our knowledge of the degree of dependency on productivity and resource use wigatithes
along flowpaths as a function of lateral hydrological connectivity. Wiitp-down approach,
spatio-temporal patterns of vegetation phenology are related td spatimterannual variations
of hydrological patterns as well as topographic variables. Még@hysical variables (FPAR,
LAI) are assimilated into a distributed ecohydrological model by fusing-teahporal remote
sensing products. Spatial pattern of vegetation is a good indicatanfaxtes soil moisture

dynamics and lateral hydrologic redistribution. These approaches heimtate and understand
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complicated ecohydrological feedbacks between water and carbon citbiesdigtributed
ecohydrological modeling frameworks. Furthermore, this study algwiras our understanding
of spatio-temporal ecohydrologic responses (e.g. streamflow, evegpitedion, vegetation
phenology, vegetation growth) to near-future global climate charsgesgially in mountainous
terrains. It also provides the potential for ecohydrological nowcadtfegcasts at the local

catchment scale. These studies also suggest forthcoming wddteamg:

. Real-time ecohydrological nowcasts and forecasts in terms of sireeight and

near-future climate changes at the local catchment scale.

° Downscaling vegetation phenology as a function of topographic factortsand i

application for vegetation response to future climate changes.

. Cross verification of interannual vegetation dynamics with various fiel
measurements such as continuous FPAR measurements, phenological obseavadi

tree ring data.

. Validation of suggested allocation dynamics along the hillslope gradights w

detailed aboveground and belowground biomass estimation.

. Further studies about the relationship between hydrologic gradienegetation

density and lateral hydrologic connectivity at different sub-whégts in the study site.
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