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ABSTRACT 

 

YEN SIA LOW: TOXICITY PREDICTION USING MULTI-DISCIPLINARY DATA INTEGRATION  

AND NOVEL COMPUTATIONAL APPROACHES  

(Under the direction of Alexander Tropsha and Ivan Rusyn) 

 

Current predictive tools used for human health assessment of potential chemical 

hazards rely primarily on either chemical structural information (i.e., cheminformatics) or 

bioassay data (i.e., bioinformatics). Emerging data sources such as chemical libraries, high 

throughput assays and health databases offer new possibilities for evaluating chemical 

toxicity as an integrated system and overcome the limited predictivity of current fragmented 

efforts; yet, few studies have combined the new data streams. 

This dissertation tested the hypothesis that integrative computational toxicology 

approaches drawing upon diverse data sources would improve the prediction and 

interpretation of chemically induced diseases. First, chemical structures and toxicogenomics 

data were used to predict hepatotoxicity. Compared with conventional cheminformatics or 

toxicogenomics models, interpretation was enriched by the chemical and biological insights 

even though prediction accuracy did not improve. This motivated the second project that 

developed a novel integrative method, chemical-biological read-across (CBRA), that led to 

predictive and interpretable models amenable to visualization. CBRA was consistently 

among the most accurate models on four chemical-biological data sets. It highlighted 

chemical and biological features for interpretation and the visualizations aided transparency. 
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Third, we developed an integrative workflow that interfaced cheminformatics prediction with 

pharmacoepidemiology validation using a case study of Stevens Johnson Syndrome (SJS), an 

adverse drug reaction (ADR) of major public health concern. Cheminformatics models first 

predicted potential SJS inducers and non-inducers, prioritizing them for subsequent 

pharmacoepidemiology evaluation, which then confirmed that predicted non-inducers were 

statistically associated with fewer SJS occurrences. By combining cheminformatics’ ability 

to predict SJS as soon as drug structures are known, and pharmacoepidemiology’s statistical 

rigor, we have provided a universal scheme for more effective study of SJS and other ADRs.  

Overall, this work demonstrated that integrative approaches could deliver more 

predictive and interpretable models. These models can then reliably prioritize high risk 

chemicals for further testing, allowing optimization of testing resources. A broader 

implication of this research is the growing role we envision for integrative methods that will 

take advantage of the various emerging data sources.  
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CHAPTER 1. INTRODUCTION 

Contrary to popular belief, most of the 83,000 chemicals in use in the US under the 

Toxic Substances Control Act have not been extensively tested. Adding to this backlog are 

another 700 chemicals introduced each year (Stephenson 2009). Consequently, there is an 

urgent need for smarter toxicity testing strategies to facilitate timely and informed decisions. 

Central to this is a tiered approach which funnels the chemicals through in silico, in vitro and 

in vivo tests in order of decreasing throughput (Dix et al. 2007, Keller et al. 2012, Merlot 

2008). 

Among the in silico methods, cheminformatics and bioinformatics have established 

themselves as integral parts of toxicity testing, especially in the initial stages where their high 

throughput advantage comes into play. The following sections will describe their current 

roles in toxicity testing and lay down a framework for an integrative chemical-biological 

approach that I posit will improve toxicity assessment in terms of higher accuracy and richer 

interpretation. 

1.1. Chemical structural data and cheminformatics in predictive toxicology 

Because cheminformatics models require only chemical structures as inputs for 

modeling, they allow prediction as soon as the molecule is designed in silico and are 

increasingly seen as the de facto tools during the first stages of toxicity testing. Among the 

best known cheminformatics tools in widespread use are OECD Toolbox, Derek expert 
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system, and MultiCASE, drawing upon various cheminformatics methods detailed below 

(Gatnik & Worth 2010). 

Cheminformatics methods may be broadly classified into ligand-based or structure-

based approaches depending on the reference frame used to define the molecule of interest 

(small molecule ligand or large biomolecule structure). Structure-based approaches are more 

commonly used in drug discovery where the drug target structure (e.g., a protein receptor) is 

defined. Ligand-based approaches are preferred in toxicity assessment especially when the 

exact molecular targets mediating toxicity may not have been elucidated.  

Cheminformatics-based toxicity prediction relies heavily on ligand-based approaches, 

especially quantitative structure-activity relationship (QSAR) modeling. QSAR models 

which relate small molecule structure to chemical activity through statistical functions first 

appeared in 1962 when Hansch et al. correlated growth activity of auxins with their 

molecular electronic properties (Hansch et al. 1962). It built upon the research in descriptor 

development quantifying key molecular properties, most notably, electronic (Hammett 1937), 

hydrophobic (Collander et al. 1951) and steric (Taft 1952) properties (Selassie & Verma 

2010). Since then, the number of chemical descriptors has grown into the thousands in our 

attempt to comprehensively characterize molecules. For a thorough discussion of descriptors, 

refer to (Selassie & Verma 2010, Todeschini & Consonni 2000). The diverse range of 

descriptors covers physicochemical properties, substructural fragments (e.g. presence of 

chemical function groups), molecular signatures (e.g. MACCS fingerprints) and abstract 

mathematical derivations based on quantum theory (e.g. orbital energies). Parallel to the 

development of descriptors, modeling methods have evolved from simple linear regression to 

complex machine learning algorithms.  
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Arising from this multitude of descriptors and methods are (Q)SAR and related 

variants to suit various user needs (Gleeson et al. 2012). The simplest and most interpretable 

among them is the structural alert or toxicophore whose presence in a molecule acts as a 

heuristic indicator for toxicity. Structural alerts may be expert-derived (Ashby 1978) or 

empirically mined (Rosenkranz & Klopman 1988). The Derek expert system uses a 

collection of structural alerts to predict mutagenicity. The next simplest is SAR which, unlike 

QSAR, qualitatively relates chemical features to toxicity. Another widely used technique is 

read-across which infers toxicity from the known toxicity outcomes of similar chemicals. 

Here, chemical similarity may be defined qualitatively (e.g. presence of substructures) or 

quantitatively (e.g. Tanimoto similarity coefficients calculated from chemical descriptors). 

The OECD Toolbox is powered by a mix of (Q)SAR and read-across methods. 

Generally, quantitative modeling with more descriptors increases predictivity but 

requires the use of more complicated modeling methods which obscure interpretability. 

Hence, the choice of tool for toxicity estimation depends on the user’s needs. A medicinal 

chemist may opt for a high accuracy QSAR model to eliminate unpromising drug candidates 

while a regulator may prefer an interpretable read-across method whose transparency fulfills 

documentation requirements and sheds light on toxicological mechanisms. However, pitting 

predictivity against interpretability presents a false dichotomy as the two are inextricably 

inter-dependent: interpretation is conditional on predictivity; prediction without explanatory 

power raises doubts on its scientific validity (Shmueli 2010). 

One may argue that the common criticism of QSAR models being black boxes is 

unjustified. Perhaps, the limitation is the unfortunate consequence of QSAR’s success as its 

ease of use has encouraged blind application among practitioners who lack the fundamental 
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understanding in chemistry and statistics for model interpretation. In defense of QSAR 

modeling, Chapter 4 will show how the appropriate choice of chemical descriptors and 

modeling methods can achieve both predictivity and interpretability. 

Nevertheless, limitations in data quality, training set selection, modeling methods, 

validation procedures and model interpretation pose challenges. Countermeasures include 

careful data curation (Fourches et al. 2010), appropriate data treatment (Eriksson et al. 2003), 

representative sampling of the chemical space (Golbraikh & Tropsha 2002a), high 

dimensional modeling techniques, stringent validation (Tropsha & Golbraikh 2007) and 

rationale-driven descriptor selection to simplify interpretation (Scior et al. 2009). Such 

attempts to standardize and improve (Q)SAR modeling practices have led to the development 

of guidelines (OECD 2007) and best practices for QSAR modeling (Tropsha 2010). The five 

OECD principles for good (Q)SAR modeling are: (1) a well-defined endpoint, (2) 

unambiguous algorithm, (3) defined applicability domain, (4) appropriate measures of model 

performance, and (5) mechanistic interpretation where possible. 

Despite the above measures, cheminformatics-based prediction of complex toxic 

phenomena has fallen short of expectation. In reality, the relationship between chemical 

structures and toxicity is far more circuitous than the models assume, involving many non-

chemical factors including those dependent on the biological host (e.g. toxicokinetics, repair 

capacity). The significance of these non-chemical factors depends on the prediction target. 

Generally, QSAR models are more successful at predicting direct chemical-induced 

outcomes (e.g. mutagenicity) than outcomes farther downstream of chemical-initiating events 

(e.g. carcinogenicity). While QSAR models for mutagenicity (largely molecular interactions 

between chemical and DNA) approach the accuracy of the Ames assay, carcinogenicity has 
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been notoriously difficult to predict because of its heterogeneous modes of action and the 

biological host’s adaptive capacity for recovery (Benigni 2005). One way to account for 

these biological factors is to formulate them into the QSAR models. 

1.2. Bioassay data and bioinformatics in predictive toxicology 

The post-genome era saw a shift towards molecular toxicology and the corresponding 

rise of bioinformatics. The field of bioinformatics is broad, involving the computational 

analysis of biological information arising from the detailed characterization of an organism at 

various levels (molecular, cellular, tissue, organ, system). While bioinformatics has many 

subdisciplines (e.g. sequencing, ‘omics, systems biology), this section focuses on a subset 

with toxicology applications where the goal is to systematically study multiple biological 

perturbations in response to chemical insult.  

Two broad applications for bioinformatics are toxicity prediction and mechanistic 

elucidation. Prediction attempts to forecast long-term toxicity endpoints such as cancer from 

short-term assay surrogates, while elucidation is more concerned with explaining complex 

toxicological phenomena in terms of simpler biological entities. In addition to forecasting, 

predicting toxicity from a reduced battery of assays allows researchers to focus their testing 

resources. 

Regardless of the objective, large-scale bioassay data is first required. Fortunately, 

advances in assay technology has given rise to a diversity of biological measures such as 

‘omics (e.g. transcriptomics, proteomics, metabonomics), enzymatic activity, receptor 

binding affinity, cytotoxicity, and histology imaging, allowing toxicologists to probe into 

both microscopic and macroscopic changes in the body. These bioassays may have different 

predictive power depending on the experimental error and biological relevance. High-
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dimensional ‘omics, especially transcriptomics, were shown to have high predictive value  

(Afshari et al. 2011, Chen et al. 2012, Heijne et al. 2005). Long term toxicity endpoints such 

as 2-year hepatic tumorigenicity were successfully predicted from short-term 1-, 3-, 5-day 

transcriptomics (Fielden et al. 2007). The same group also identified 35 gene expression 

markers important for predicting nephrotoxicity in another study (Fielden et al. 2005), 

obviating the need for subsequent full microarray analysis. Others such as ToxCast assays, 

capturing a large diversity of biological characteristics, were less predictive (Thomas et al. 

2012).  

Simultaneously studying thousands of bioassays offers several advantages: key 

biomarkers can be quickly identified and interactions between them characterized, allowing a 

systems toxicology approach. In drug discovery, the use of diverse bioassay panels helps to 

quickly identify potentially toxic properties (e.g. cytochrome P450 inhibition, transporter 

blockage) which may be clues into the pathogenesis of a compound. The bioassay signatures 

of compounds exemplifying certain toxic modes of action may be used to probe for similarly 

acting compounds. An example is the Japanese Toxicogenomics Project which ascertained 

toxicogenomic signatures representative of various types of hepatotoxicities (e.g. 

phospholipidosis, glutathione depletion) for which drugs with unknown hepatoxicities may 

be measured against (Uehara et al. 2010). 

However, bioinformatics is not without criticism. The ease of collecting large-scale 

bioassay data has encouraged fishing expeditions which tax the limits of current 

computational methods, leading to false discoveries. Applied to thousands of assays, small 

probabilities due to chance translate to multiple “discoveries”. Overly sensitive ‘omics 

markers may be more noise than signal (Zhang et al. 2012). Countermeasures include proper 
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statistical correction (e.g. Bonferroni, Holm) and proper application of biological context to 

draw meaningful conclusions from the data.  

Fortunately, the interpretation of key biological events underlying toxicity is aided by 

numerous curated databases such as the Comparative Toxicogenomics Database 

(http://ctdbase.org/), Connectivity Map (http://www.broadinstitute.org/cmap/) and Ingenuity 

Knowledge Base (http://www.ingenuity.com/) which maps functional genomics markers 

associated with chemicals and toxicological phenotypes onto functional pathways. As much 

as these knowledge repositories have made functional analysis more accessible, the 

generation of new insight still requires a profound understanding of toxicology. Fundamental 

differences in the way biological processes are organized at the various levels within an 

organism dictate the extent of in vitro-in vivo extrapolation. For instance, the absence of 

metabolism in in vitro systems means that subcellular changes are unlikely to be 

representative of whole animal phenotypes involving metabolic activation or metabolic 

clearance (Kienhuis et al. 2009). Therefore, the importance of biological expertise in guiding 

interpretation cannot be overstressed. 

In efforts to improve interpretation, some studies employ complementary 

technologies. Of note is one multi-omics study which reported that separate genomics, 

proteomics and metabolomics analyses mutually validate one another’s findings and point 

towards common biological processes consistent with methapyrilene-induced hepatotoxicity 

(Craig et al. 2006).  

The focus on biological information, due to the nature of bioinformatics, has 

regrettably overlooked another important component of toxicology: chemical information.  

While bioassays were previously performed for a few chemicals due to throughput 

http://ctdbase.org/
http://www.broadinstitute.org/cmap/
http://www.ingenuity.com/
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limitations, it is now possible to perform HTS on numerous chemicals. Consequently, 

toxicity data is rich in both biological and chemical information. The underlying chemical 

patterns, a rich data source for modeling as demonstrated by cheminformatics, have not been 

capitalized upon by bioinformatics. A reasonable approach may be to complement 

bioinformatics with cheminformatics for improved toxicity prediction. This leads to the 

following thesis that an integrative chemical-biological approach will benefit toxicity 

prediction in terms of predictivity and interpretability. 

1.3. Motivation for integrative chemical-biological modeling in predictive toxicology  

Given cheminformatics’ inadequate consideration of biological factors and 

bioinformatics’ non-use of chemical structures, the concurrent study of both biological and 

chemical domains may uncover new insights previously invisible to either domain alone. 

Such integrated approaches attempt to formulate chemical toxicity as a system of 

interconnected chemical and biological entities. Toxicity, whether occurring at the molecular, 

cellular, or systemic level, originates from a complex interplay between the chemical inducer 

and the biological host. Chemical factors govern the molecular interactions between the 

chemical and its protein targets. The molecular interactions then initiate a cascade of 

interactions within the cell, organ or organism, eventually giving rise to the observed toxicity 

phenotype.  

Moreover, the rise of several recent enabling trends facilitates chemical-biological 

integration. First, there is an increased demand for in silico and in vitro tests instead of in 

vivo tests in efforts to boost testing throughput, improve animal welfare and deepen our 

understanding of the toxicological mechanisms, accelerated by recent initiatives such as 

REACH (Registration, Evaluation and Authorization of CHemicals) in Europe and Toxicity 
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Testing for the 21
st
 Century (National Academy of Sciences & National Research Council 

2007) in the US. 

Second, toxicity databases now contain large amounts of chemical and biological 

information through data consolidation (e.g. ACToR, TOXNET, DSSTox, (Judson et al. 

2009)) and large-scale testing. Programs such ToxCast (Judson et al. 2010), Tox21 (Collins 

et al. 2008), Molecular Libraries Initiatives (Austin et al. 2004) perform high throughput 

screening (HTS) on thousands of chemicals over thousands of biological endpoints. The 

enlarged data scale in terms of broader chemical scope (chemical breadth) and deeper 

biological assay characterization (biological depth) has opened up new opportunities for 

cheminformatics and bioinformatics. Where previously only a few chemicals were tested, the 

broader chemical scope of the data has reinvigorated interest in cheminformatics to transform 

latent chemical patterns into useful chemical insight. On the other hand, the deeper biological 

assay characterization allows one to learn more about each chemical in terms of its biological 

responses. Yet, sticking to the approach of only chemical or biological modeling is unlikely 

to take full advantage of the richness of the data that may be unlocked by integrating the two. 

Third, the many parallels between bioinformatics and cheminformatics provide points 

of commonality to facilitate integration. Underpinning both fields are statistical functions 

relating molecular features of a chemical to its behavior. These statistical relationships rely 

on the similarity principle which expects chemicals similar in their molecular feature profiles 

to exhibit similar behavior. The key difference between cheminformatics and bioinformatics 

here lies in the choice of appropriate molecular features, whether as ‘omics profiles assayed 

by HTS or molecular structural information represented by chemical descriptors. The 
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statistical techniques, whether as simple as read-across or as complex as machine learning, 

are equally applicable to both fields.  

As such, one possible means of integration is to apply existing statistical methods to 

both types of molecular features, chemical and biological (data pooling/integration, Figure 

1.1). Another way is to merge chemical models with biological models (model pooling or 

ensemble modeling). Other approaches may be less straightforward, strategically combining 

chemical structures and biological assays such that the two data sources compensate for each 

other’s shortcomings and the complementary information between them is maximally used.  

 

Figure 1.1: Integrative chemical-biological approaches for toxicity prediction 

1.4. Review of integrative chemical-biological modeling for predictive toxicology  

Using the classification scheme described above (Figure 1.1), recent integrative 

efforts merging chemical and biological data are reviewed below (Table 1.1). Because many 

of the integrative methods are not specific to a particular type of data, they may also 

incorporate other data types such as text annotations mined from biomedical literature or 

drug labels and clinical data from health databases. 
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Table 1.1: Integrative approaches used for toxicity prediction 

Prediction target Data sources Integrative approach Publication 

Rat LD50 Chemical structures, 

Cytotoxicity 

Data pooling (Zhu et al. 2008) 

Rat LD50 Chemical structures, 

Cytotoxicity 

Other integrative method (Zhu et al. 2009) 

Rat LD50 Chemical structures, 

Dose-cytotoxicity 

profiles 

Data pooling (Sedykh et al. 

2011) 

Rat reproductive 

toxicity 

Chemical structures, 

In vitro assays 

Other integrative method (Zhang 2011) 

In vivo toxicities Chemical structures, 

In vitro assays 

Data pooling (Thomas et al. 

2012) 

Drug 

hepatotoxicity 

Chemical structures, 

Transcriptomics 

Data pooling, 

Model pooling, 

Other integrative method 

Chapter 2 (Low et 

al. 2011) 

Chapter 3 

Drug 

hepatotoxicity 

Chemical structures, 

Hepatocyte imaging 

assays 

Data pooling (Zhu et al. 2013) 

Adverse drug 

reactions 

Chemical structures, 

Drug properties, 

Adverse drug reactions 

Data pooling, 

Other integrative method 

(Cami et al. 2011) 

Adverse drug 

reactions  

Chemical structures, 

Electronic health 

records 

Model pooling (Vilar et al. 2011, 

2012) 

Adverse drug 

reactions 

Chemical structures, 

Bioactivities, 

Adverse drug reactions, 

Therapeutic indications 

Data pooling (Liu et al. 2012) 

Adverse drug 

reactions 

Chemical structures, 

Drug targets, 

Adverse drug reactions, 

Clinical outcomes 

Data pooling, 

Other integrative method 

(Cheng et al. 2012, 

2013) 

Adverse drug 

reactions 

Chemical structures, 

Bioactivities 

Other integrative method (Yamanishi et al. 

2012) 

Drug properties Chemical structures, 

Bioactivities 

Other integrative method (Lounkine et al. 

2011) 

Drug targets Chemical structures, 

Adverse drug reactions 

Data pooling, 

Other integrative method 

(Campillos et al. 

2008) 

Drug targets Chemical structures, 

Protein sequence 

Data pooling, 

Other integrative method 

(Yamanishi et al. 

2008) 

Drug targets Chemical structures, 

Adverse drug reactions 

Data pooling, 

Model pooling, 

Other integrative method 

(Oprea et al. 2011) 

Drug targets Chemical structures, 

Adverse drug reactions 

Data pooling,  

Other integrative method 

(Lounkine et al. 

2012) 

Drug targets 

associated with 

agranulocytosis 

Protein docking profiles 

Transcriptomics 

Other integrative method (Yang et al. 2011) 
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1.4.1. Chemical-biological data pooling (data integration) 

One way of chemical-biological integration is data pooling or data integration in 

which disparate data sources are pooled to create a larger data matrix for modeling by 

existing statistical methods. This has been aided by the growing availability of public 

repositories such as PubChem, ChEMBL and ACToR/DSSTox.  Besides high throughput 

experimentation, automated data generation has expanded non-traditional sources of data 

such as text annotations mined from biomedical literature (InSTEM, ChemoText), product 

labels (SIDER) and clinical notes (Bai & Abernethy 2013, Chiang & Butte 2009, Iskar et al. 

2012, Oprea et al. 2007).  

Table 1.1 includes several studies predicting toxicity from pooling various 

combinations of data. Generally, prediction performance improved as data were pooled. 

However, several exceptions exist. A comprehensive evaluation of models predicting 60 in 

vivo toxicities from chemical structures and/or in vitro assays in ToxCast phase I described 

mixed success with data pooling (Thomas et al. 2012). Zhu et al. reported lower predictivity 

of hepatotoxicity from data pooling of chemical structures and hepatocyte imaging profiles 

(Zhu et al. 2013). 

To overcome the limited prediction performance from data pooling, additional data 

treatment may be required, especially when biological assay data include considerable 

experimental noise. For example, Sedykh et. al. introduced a noise filter to transform 

cytotoxicity profiles into dose-response curve parameters that, when pooled with chemical 

structures, provided more accurate models of rat acute toxicity than the original cytotoxicity 

assay values (Sedykh et al. 2011). Chapter 2 explores the pooling of chemical structures and 

toxicogenomics profiles for hepatotoxicity prediction and compares the resultant “hybrid” 

models against the chemical-only or biological-only models. 
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1.4.2. Chemical-biological model pooling (ensemble modeling) 

Another way of integrating chemical and biological data is by ensemble modeling 

which pools individual predictions from several models into a final predicted value. The 

main benefit of ensemble modeling, increased predictivity, arises when the constituent 

models compensate for the errors of one another (Dietterich 2000). The notion that many 

models are better than one is best exemplified by the random forest algorithm which seeks 

the consensus vote of numerous constituent decision tree models within its “forest” (Breiman 

2001). In the case of toxicity modeling, chemical-based models and biological-based models 

may be pooled such that their consensus vote provides the final prediction outcome.  

Such model pooling is already widely practiced in regulatory assessment and drug 

discovery during which the user weighs all the prediction outcomes from various toxicity 

models before arriving at a consensus decision (Kruhlak et al. 2012, Wang et al. 2012). For 

example, drugs must not contain structural alerts of mutagenicity and their bioassay profiles 

must not inhibit the major cytochrome P450 enzymes required for drug metabolism.  

Ensemble modeling can be used in one of two ways. One can require that all the 

constituent models for a compound point to the same prediction outcome such that their 

intersection represents an enriched space in which toxicity can be estimated with higher 

confidence. Alternatively, one can argue that ensemble modeling enlarges the modelable 

space of molecules such that compounds that cannot be predicted with confidence by one 

model be supplanted by another model that can. In the first case, Vilar et. al. showed 

increased precision when a chemical similarity model was pooled with a model based on 

clinical notes (Vilar et al. 2011, 2012). In the second case, as Chapter 3 will illustrate, the 

ensemble chemical-biological model compensates for the invalid predictions by the QSAR 

model outside the chemical coverage area. While conceptually simple, ensemble models may 
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not always outperform their constituent chemical and biological models, as Chapter 3 will 

demonstrate on four data sets containing chemical structures and bioassays. 

1.4.3. Other integrative chemical-biological modeling 

The shortcomings of merely pooling data or models have led to more innovative 

integrative approaches that rely on the rational use of data and modeling methods. Zhu et. al. 

described a two-step hierarchical approach which first stratified compounds by their in vitro-

in vivo correlation and then built stratum-specific models.  Poorly correlated compounds with 

in vitro surrogates were assumed to be strongly influenced by biological factors and would 

benefit from the inclusion of biological data. Such compounds were shown to benefit from 

models pooling chemical structures and in vitro assay data (Zhang 2011). Such strategic use 

of biological data to stratify data sets into clusters for localized modeling was also attempted 

by Lounkine et al. who clustered compounds by chemical similarity and their bioactivity 

(Lounkine et al. 2011). 

Another class of integrative approaches employ network modeling which allows the 

simultaneous study of disparate entities (chemicals, targets and phenotypes) (Berger & 

Iyengar 2009). In a network, entities (nodes) are connected (edges) if they are associated. 

Association may be defined in terms of physical interactions (e.g., drug binds to target) or 

statistical associations. In such modeling, the goal is to discover new associations among the 

entities through indirect associations. This is best illustrated by Swanson’s ABC paradigm 

(Swanson 1986) in which entities A and C are indirectly associated if there exist direct 

associations between pairs A-B and B-C (Figure 1.2A). Networks may be further enriched by 

chemical similarity (Lounkine et al. 2012, Oprea et al. 2011), protein sequence similarity 



15 

 

(Yamanishi et al. 2008), side effect similarity (Campillos et al. 2008) such that novel 

inferences can be drawn (Figure 1.2B (Tatonetti et al. 2009)) 

  

Figure 1.2: (A) Swanson ABC paradigm, adapted from (Baker & Hemminger 2010) (B) 

Network enriched by similarity (solid edges) enable novel inferences (dotted edges) to be 

drawn, adapted from (Tatonetti et al. 2009) 

 

Associations successfully predicted in recent studies include those of target-

phenotype (Lounkine et al. 2012), chemical-phenotype (Cami et al. 2011, Cheng et al. 2013), 

chemical-target (Campillos et al. 2008, Yang et al. 2011). For examples of broader efforts to 

infer more than a single type of associations, readers are best referred to (Berger & Iyengar 

2009, Cheng et al. 2012, Oprea et al. 2011, Tatonetti et al. 2012) 

Another integrative method, quantitative chemical-biological read-across (CBRA) 

based on the principles of k nearest neighbors, is presented in Chapter 3. Unlike an ensemble 

model that pools chemical-based predictions and biological-based predictions, enhanced 

pooling utilizing similarity weights maximizes the complementarity between chemical and 

biological data and resolve their conflicting predictions. Chapter 3 also compares the three 

types of integrative approaches (data pooling, model pooling and CBRA) on four data sets. 
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1.5. Human health data and epidemiology in predictive toxicology 

Besides chemical and bioassay databases, increasing digitization of health databases 

(e.g. health insurance claims, national health records) offers new ways of studying toxic 

health effects in human populations (Adami et al. 2011, Hall et al. 2012). Health data may be 

more informative than toxicology studies performed in non-human model organisms which 

sometimes extrapolate poorly to humans due to inherent interspecies differences. To bridge 

the disconnect, one can draw upon human health data and apply epidemiological methods to 

systematically study health effects in human populations.  

Epidemiology and toxicology have always complemented each other: epidemiology 

provides the tools for discovery, to reliably identify the risk factors of a certain health 

outcome while toxicology provides the tools for corroboration, to verify that the risk factors 

are indeed causative through experiments and to suggest a plausible mode of action. 

Sometimes, their roles reverse. Toxicology, taking on a predictive role, may accumulate 

reasonable experimental evidence from non-human studies to suspect a chemical of human 

toxicity. Epidemiology, now taking on a confirmatory role, attempts to verify the 

toxicological findings in humans (Adami et al. 2011). 

Drug safety, in particular, could benefit from the integration of toxicology and 

epidemiology, specifically pharmacoepidemiology, the specific branch of epidemiology 

concerned with the study of drug effects in human populations. Although human drug 

toxicity is extensively investigated in clinical trials prior to market approval, many adverse 

drug reactions (ADR) may have been missed in clinical trials which do not reflect the “real-

world” setting with pediatric or geriatric patients or patients with co-morbidities (Arellano 

2005, Strom et al. 2012). ADR are a major cause of medical errors and account for $75 
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billion of unnecessarily healthcare expenditure (Ahmad 2003, National Research Council 

2007).  

Current ADR detection by most drug authorities (e.g. US Adverse Events Reporting 

System, World Health Organization VigiBase) relies on the passive surveillance of 

spontaneous ADR reports. When an unusually high number of ADR reports are linked to a 

drug, determined by statistical tests of association,  a warning signal is generated (Bate & 

Evans 2009, Harpaz et al. 2012). However, passive surveillance systems are prone to 

underreporting and reporting bias as the spontaneous reports are only voluntary for 

healthcare professionals and patients. 

In response, recent initiatives such as the Food and Drug Administration (FDA) 

Sentinel Initiative (Platt et al. 2012) and EU-ADR (Oliveira et al. 2012) have called for 

active surveillance of ADR. Such a system, instead of passively relying on spontaneous 

reports, actively monitors clinical data for ADR signals. Increasingly, ADR prediction is 

performed with alternative data sources such as patient health records (LePendu et al. 2013), 

health administrative databases, patient web forums (White et al. 2013), biomedical literature 

(Bisgin et al. 2011, Shetty & Dalal 2011), chemical structures (Bender et al. 2007, Matthews 

et al. 2009a,b; Scheiber et al. 2009) and bioassays (Chiang & Butte 2009, Pouliot et al. 

2011).  

Because of the large amount of data involved, effective surveillance aims for a tiered 

approach in which signal detection composes of three stages: signal generation, refinement 

and evaluation (Platt et al. 2012). In the first stage (signal generation), high throughput data 

mining methods generate suspect drug-ADR pairs. The second stage (signal refinement) 

typically employs pharmacoepidemiology to check if the initial signal persists after statistical 
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adjustment for confounders such as demography, co-medications and co-morbidities 

(McClure et al. 2012). Signals progressing to the third stage (signal evaluation) will then 

undergo a careful clinical expert evaluation.  

Therefore, one practical way for implementing an effective ADR detection system is 

to first apply high throughput cheminformatics techniques which utilize readily available 

drug chemical structures for the prediction of potential ADR (signal generation). Then, the 

potential ADR are assessed by pharmacoepidemiology using patient health data (signal 

refinement). As pharmacoepidemiology calls for thoughtful study design and rigorous 

statistical analysis, it, unlike cheminformatics, is less amenable to large-scale automated 

analysis. Coupling cheminformatics to pharmacoepidemiology will combine the best of both 

methods: the high throughput advantage of the former and the statistical rigor of the latter. 

Such an approach is exemplified in Chapter 4 for the prediction and validation of drugs 

inducing Stevens Johnson Syndrome (SJS), an ADR of major concern. 

1.6. Dissertation outline  

This dissertation presents integrative approaches addressing some of the above 

problems facing predictive toxicology. Poor model performance due to the lack of biological 

factors in cheminformatics and chemical structures in bioinformatics may be overcome by 

integrative modeling of both chemical and biological factors. Chapter 2 illustrates 

hepatotoxicity prediction from the combined use of chemical structures and toxicogenomics 

assays with existing machine learning methods [k nearest neighbors (kNN), support vector 

machines (SVM), random forests (RF) and distance-weighted discrimination (DWD)].  
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Chapter 3 extends the work in Chapter 2 by developing a new integrative method, 

chemical-biological read across (CBRA), that exploits the complementary information 

between chemical structure and bioassays for more accurate prediction.  

Chapter 4 attempts to account for human health effects in the study of ADR through 

the use of pharmacoepidemiology to evaluate human health data. Compared to current ADR 

detection methods which rely only on spontaneous ADR reports, Chapter 4 draws from 

various data sources (chemical structures, spontaneous ADR reports, health insurance claims) 

and various methods (cheminformations, pharmacoepidemiology) for the study of Stevens 

Johnson Syndrome ADR. It provides a feasible workflow coupling high throughput 

cheminformatics with in-depth pharmacoepidemiology analysis, a process in which 

cheminformatics predicts high risk drugs for pharmacoepidemiology validation. 

Chapter 4 also addresses the lack of interpretability of QSAR “black box” modeling 

by proposing an interpretation framework for identifying important chemical substructures 

associated with SJS.  

The concluding chapter interweaves the findings from chapters 2 to 4 and discusses 

their contributions towards predictive toxicology. Chapter 5 also examines their study 

limitations, some of which may provide the motivation for future research. 
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CHAPTER 2. INTEGRATIVE CHEMICAL-BIOLOGICAL MODELING WITH 

EXISTING METHODS: PREDICTING DRUG-INDUCED HEPATOTOXICITY 

USING QSAR AND TOXICOGENOMICS APPROACHES
1
 

2.1. Overview 

Quantitative structure-activity relationship (QSAR) modeling and toxicogenomics are 

typically used independently as predictive tools in toxicology. In this study, we evaluated the 

power of several statistical models for predicting drug hepatotoxicity in rats using different 

descriptors of drug molecules, namely, their chemical descriptors and toxicogenomics 

profiles. The records were taken from the Toxicogenomics Project rat liver microarray 

database containing information on 127 drugs (http://toxico.nibio.go.jp/datalist.html). The 

model end point was hepatotoxicity in the rat following 28 days of continuous exposure, 

established by liver histopathology and serum chemistry. First, we developed multiple 

conventional QSAR classification models using a comprehensive set of chemical descriptors 

and several classification methods (k nearest neighbor, support vector machines, random 

forests, and distance weighted discrimination). With chemical descriptors alone, external 

predictivity (correct classification rate, CCR) from 5-fold external cross-validation was 61%. 

Next, the same classification methods were employed to build models using only 

toxicogenomics data (24 h after a single exposure) treated as biological descriptors. The 

optimized models used only 85 selected toxicogenomics descriptors and had CCR as high as 

76%. Finally, hybrid models combining both chemical descriptors and transcripts were 

                                                 

1
 This chapter is a reproduction, in whole, with permission of a publication in Chemical 

Research in Toxicology by (Low et al. 2011) at doi:10.1021/tx200148a. 
 

http://toxico.nibio.go.jp/datalist.html
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developed; their CCRs were between 68 and 77%. Although the accuracy of hybrid models 

did not exceed that of the models based on toxicogenomics data alone, the use of both 

chemical and biological descriptors enriched the interpretation of the models. In addition to 

finding 85 transcripts that were predictive and highly relevant to the mechanisms of drug-

induced liver injury, chemical structural alerts for hepatotoxicity were identified. These 

results suggest that concurrent exploration of the chemical features and acute treatment-

induced changes in transcript levels will both enrich the mechanistic understanding of 

subchronic liver injury and afford models capable of accurate prediction of hepatotoxicity 

from chemical structure and short-term assay results. 

2.2. Introduction 

Hepatotoxicity is a major factor contributing to the high attrition rate of drugs. At 

least a quarter of the drugs are prematurely terminated or withdrawn from the market due to 

liver-related liabilities (Schuster et al. 2005). As a result, modern drug development has 

evolved into a complex process relying on the iterative evaluation of multiple data sources to 

eliminate potentially harmful candidates as cheaply and as early as possible. In addition, high 

throughput, high content, and other data-rich experimental techniques, accompanied by the 

appropriate informatics tools, are rapidly incorporated into toxicity testing. 

Quantitative structure–activity relationship (QSAR) modeling is widely used as a 

computational tool that allows one to relate the potential activity (e.g., toxicity) of an agent to 

its structural features represented by multiple chemical descriptors. As with any multivariate 

statistical modeling, rigorous validation procedures are necessary to guard against overfitting 

and overestimating model predictivity (Tropsha 2010). QSAR models have demonstrated 

good predictivity especially for specific end points such as solubility or binding affinity to a 
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certain target. However, QSAR predictivity is generally poor in the case of a complex end 

point such as hepatotoxicity where the structure–activity relationship is less straightforward 

due to multiple mechanisms of action (Hou & Wang 2008). 

Toxicogenomics is now routinely used in drug and chemical safety evaluation, 

providing valuable mechanistic understanding of the molecular changes associated with the 

disease or treatment (Cui & Paules 2010). In addition, its utility for predicting toxicity has 

been explored. Blomme et al. developed models using transcriptional changes after short-

term (5 days) exposure to predict bile duct hyperplasia that otherwise required long-term in 

vivo experiments (Blomme et al. 2009). Fielden et al. developed a 37-gene classification 

model using microarray data following short-term (1–5 days) exposure to predict 

nongenotoxic hepatocarcinogenicity with over 80% accuracy (Fielden et al. 2007). Zidek et 

al. reported high accuracy with a 64-gene classifier for the prediction of acute hepatotoxicity 

(Zidek et al. 2007). The Toxicogenomics Project in Japan, set up by the Ministry of Health, 

Labour and Welfare, National Institute of Health Sciences, and 15 pharmaceutical 

companies, has also identified several toxicogenomics signatures indicative of the various 

toxic modes of action such as phospholipidosis (Hirode et al. 2008), glutathione depletion 

(Kiyosawa et al. 2007), bilirubin elevation (Hirode et al. 2009a), nongenotoxic 

hepatocarcinogenesis (Uehara et al. 2008), and peroxisome proliferation (Tamura et al. 

2006). 

Most previous studies on statistical modeling of toxicity used either chemical 

descriptors (conventional QSAR) or toxicogenomics profiles independently for model 

development. However, in our recent studies, we have demonstrated the benefits of hybrid 

classification models of in vivo carcinogenicity (Zhu et al. 2008) and toxicity (Sedykh et al. 
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2011), and employing both chemical descriptors and biological assay data (treated as 

biological descriptors). In the first study of this type (Zhu et al. 2008), we used the results of 

high-throughput screening assays of environmental chemicals along with their chemical 

descriptors to arrive at improved models of rat carcinogenicity. This approach was extended 

to predicting acute toxicity half-maximal lethal dose in rats using dose–response in vitro data 

as quantitative biological descriptors (Sedykh et al. 2011). 

Following our hybrid (chemical and biological descriptors) data modeling paradigm, 

we sought to integrate QSAR and toxicogenomics data to develop classification models of 

hepatotoxicity using a data set of 127 drugs studied in the Japanese Toxicogenomics Project 

(Uehara et al. 2010). We built classifiers combining chemical descriptors and 

toxicogenomics data alongside the conventional QSAR, as well as toxicogenomics models. 

Our objective was to investigate if chemical descriptors and biological descriptors, such as 

gene expression, could be complementary. In addition, we sought to enhance the 

interpretation of the models in terms of elucidating the chemical structural features and 

biological mechanisms associated with hepatotoxicity. We show that statistically significant 

and externally predictive models can be developed by combining chemical and biological 

descriptors and can be used to predict hepatotoxicity and prioritize chemicals for 

toxicogenomics and other in vivo studies.  
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2.3. Materials and Methods 

2.3.1 Data 

 The chemical name, dosage, administration route, and vehicle for the 127 

compounds used in this study are summarized in Appendix 1 Table A1.2.1. The detailed 

protocol for the animal study was described previously (Uehara et al. 2010). Briefly, 6-week 

old male Sprague–Dawley rats (Charles River Japan, Inc., Kanagawa, Japan) with five 

animals per group were used in the study. Animals were sacrificed 24 h after a single dose or 

24 h after repeat daily treatment for 28 days. Blood samples were collected from the 

abdominal aorta under ether anesthesia. Serum chemical indicators included alanine 

aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, direct 

bilirubin, and gamma-glutamyl transpeptidase. The livers were quickly removed following 

exsanguination and sections of the livers were placed in 10% phosphate-buffered formalin 

for histopathology. Formalin-fixed liver tissue was embedded in paraffin, and sections were 

stained with hematoxylin and eosin and examined histopathologically under light 

microscopy. Remaining liver tissues from left lateral lobes were soaked in RNALater 

(Ambion Inc., Austin, TX) and stored at −80 °C until used for microarray analysis. Detailed 

methods for microarray analysis were previously reported (Uehara et al. 2010). Raw 

microarray data files with individual animal histopathological data are available 

(http://toxico.nibio.go.jp/datalist.html). In this study, toxicogenomics data obtained from rats 

treated with a single dose of a drug or vehicle for 24 h was used. The experimental protocols 

were reviewed and approved by the Ethics Review Committee for Animal Experimentation 

of the National Institute of Health Sciences (Tokyo, Japan). 
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Liver histopathology and serum chemistry in animals treated for 28 days were 

assessed for the determination of the hepatotoxicity end point for prediction. Histopathology 

was graded by two trained pathologists in a blinded manner as follows: no change, very 

slight (minimal), slight, moderate, and severe. Spontaneously observed lesions (e.g., minimal 

focal necrosis and microgranuloma) were not used for grading. The results of a 

histopathology analysis were considered positive if the grade recorded was other than “no 

change.” Appendix 1 Table A1.2.1 lists serum chemistry and histopathology classification 

for each compound. A compound was denoted hepatotoxic if it exhibited histopathology 

characteristics of hepatotoxicity (e.g., hepatocellular necrosis/degeneration, inflammatory 

cell infiltration, bile duct proliferation, etc.) regardless of the findings from serum chemistry. 

Conversely, a compound was deemed nonhepatotoxic if it did not result in adverse 

histopathological features. When the histopathological observations were inconclusive (e.g., 

hepatocellular hypertrophy, vacuolization, etc.), serum chemistry data was considered. Under 

these circumstances, significant changes (Dunnett’s test) in at least one enzyme marker 

would render the compound hepatotoxic. Otherwise, the compounds with inconclusive 

histopathology and normal serum chemistry were denoted nonhepatotoxic. In total, there 

were 53 (42%) hepatotoxic and 74 (58%) nonhepatotoxic compounds.  

2.3.2. Curation of chemical data  

 The data set was curated according to the procedures described by (Fourches 

et al. 2010). Briefly, counterions and duplicates were removed, and specific chemotypes such 

as aromatic and nitro groups were normalized using several cheminformatics software such 

as ChemAxon Standardizer (v.5.3, ChemAxon, Budapest, Hungary), HiT QSAR (Kuz’min et 

al. 2008) and ISIDA (Varnek et al. 2008). Following the automated curation, the data set was 
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inspected manually, and two metal-containing compounds for which most chemical 

descriptors cannot be calculated, cisplatin and carboplatin, were removed. Chemical 

descriptors were calculated with Dragon (v.5.5, Talete SRL, Milan, Italy) and Molecular 

Operating Environment (MOE, v.2009.10, Chemical Computing Group, Montreal, Canada) 

software. Simplex representation of molecular structure (SiRMS) descriptors were derived as 

detailed elsewhere (Muratov et al. 2010). After range scaling (from 0 to 1), low variance (SD 

< 10
-6

) and highly correlated descriptors (if pairwise r
2
 > 0.9, one of the pair was randomly 

removed) were removed. QSAR models were built separately using 304 Dragon, or 116 

MOE, or 271 SiRMS descriptors (Figure 2.1).  

 

Figure 2.1. Workflow illustrating data curation and feature selection for modeling. 

2.3.3. Selection of transcripts 

Transcripts were selected for modeling using various feature selection methods. Of 

the 31,042 transcripts measured, we removed those consistently absent across all compounds. 

Then we extracted 2,991 transcripts with sufficient variation across all the compounds on the 
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basis of the following criteria: the largest change of any transcript over its untreated 

equivalent must exceed 1.5-fold, and the smallest false discovery rate (Welch t-test) must be 

less than 0.05. Next, transcripts with low variance (all, or all but one value is constant) and 

high correlation (if pairwise r
2
 > 0.9, one of the pair, chosen randomly, was removed) were 

excluded leaving 2,923 transcript variables (Figure 2.1) which were range scaled. 

Then, supervised selection methods were used to filter genes differentially expressed 

between hepatotoxic and nonhepatotoxic compounds. Significance analysis of microarrays 

(SAM) (Tusher et al. 2001), a permutation variant of the t-test commonly used for transcript 

selection, was used. Top ranked transcripts were retained for modeling. Different sets of 

transcripts were selected for each modeling set used in 5-fold external cross-validation to 

avoid selection bias introduced by a supervised selection process. 

2.3.4. Modeling and Validation 

kNN (Zheng & Tropsha 2000), SVM (Vapnik 2000), random forest (RF) (Polishchuk 

et al. 2009), and distance weighted discrimination (DWD) (Marron et al. 2007) machine 

learning techniques, designed to effectively handle high dimension-low sample size data, 

were used for modeling. The modeling workflow (Tropsha 2010, Tropsha & Golbraikh 2007) 

used both internal and external validation (Appendix 2 Figure A2.2.1). In a 5-fold external 

cross-validation, 127 compounds were randomly partitioned into 5 subsets of nearly equal 

size. Each subset was paired with the remaining 80% of the compounds to form a pair of 

external and modeling sets. The data within each modeling set were further divided into 

multiple pairs of training and test sets for internal validation. 

Although models were built using the training set, model selection depended on their 

performance on both the training and test sets (i.e., internal validation) since training set 
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accuracy alone is insufficient to establish robust and externally predictive models (Golbraikh 

& Tropsha 2002b). The prediction outcome for each model was categorized as “0” for 

nontoxic compounds or “1” for toxic ones. Selected models were then pooled into a 

consensus model by simple averaging and used to predict the hepatotoxicity of compounds in 

the external sets (i.e., external validation). The toxicity threshold was set at 0.5 unless 

otherwise mentioned, i.e., a compound is predicted to be nontoxic if a consensus mean is less 

than 0.5 and toxic otherwise. 

The y-randomization test was employed to ensure that there was no chance 

correlation between selected descriptors and hepatotoxicity. After random permutation of the 

hepatotoxicity labels in the modeling sets, models were rebuilt following the same workflow, 

and their CCR values for both training and test sets were collected and compared. This test 

was repeated at least three times. Models generated from the randomized labels were 

expected to perform significantly worse than those derived from the original data set. 

All reported model predictivity measures, specificity, sensitivity, and correct 

classification rate, were obtained from 5-fold external cross-validation. Specificity denotes 

the true negative rate, or the rate correctly predicted within the nonhepatotoxic class. 

Similarly, sensitivity, the true positive rate, measures the rate correctly predicted within the 

hepatotoxic class. CCR is the average of the rates correctly predicted within each class (CCR 

= [specificity + sensitivity]/2). Coverage is the percentage of compounds in the external set 

within the applicability domain (AD) of the model. The AD is a similarity threshold within 

which compounds can be reliably predicted (Tropsha et al. 2003). 

Chemical and toxicogenomics descriptors found to be predictive were subsequently 

analyzed. Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City, CA) software was 
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used for the functional analysis of the significant transcripts. The networks were constructed 

on the basis of predefined molecular interactions in the Ingenuity database, and the Ingenuity 

score was used to rank pathways for analysis. Chemicals were clustered by the selected 

toxicogenomics descriptors using an unsupervised self-organizing map (SOM) in R 

(Kohonen package). Chemical structural alerts for hepatotoxicity were identified using HiT 

QSAR (Kuz’min et al. 2008) and verified with XCHEM (Sedykh & Klopman 2006). Briefly, 

XCHEM searches for common structural motifs within each class and ranks them by their 

relative frequencies.  

2.4. Results 

2.4.1. Model development 

First, we developed QSAR models of subchronic (28 days of treatment) 

hepatotoxicity using various types of chemical descriptors (Table 2.1). Prediction 

performance was generally poor (55–61% CCR) across all descriptor types and classification 

methods. Three compounds (tannic acid, vancomycin, and cyclosporine) with molecular 

weights exceeding 1,200 (median molecular weight of the data set was 285) were excluded 

from the data set, corresponding to a coverage of 98% for some of the models. Given the 

generally unpromising results of the QSAR models described in Table 2.1, further 

combinatorial-QSAR (Kovatcheva et al. 2004) efforts to systematically combine each 

descriptor type with each classification method were not attempted. 
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Table 2.1. 5-Fold External Cross-Validation Prediction Performance of QSAR Models 

Descriptors Dragon Dragon MOE SiRMS 

Method kNN SVM kNN RF 

Specificity  SD
a
 0.620.17 0.620.16 0.600.18 0.770.08 

Sensitivity  SD 0.560.14 0.480.17 0.560.16 0.450.14 

CCR  SD 0.590.11 0.550.09 0.580.12 0.610.10 

Coverage (%) 98 98 98 100 

a
 SD refers to the standard deviation of the external predictivity measures (e.g. specificity) 

across the 5 folds. 

 

Second, we developed classification models of subchronic (28 days of treatment) 

hepatotoxicity using liver toxicogenomics data obtained after a single dose treatment as a 

predictor of future toxicity. To find the optimal number of variables (transcripts), several sets 

of top ranking transcripts were selected (based on SAM analysis) for modeling by SVM, and 

the outcomes were compared (Figure 2.2). CCR ranged from 72% with top 4 significant 

transcripts per modeling fold to 78% with all 2,923 significant transcripts. An optimal model 

with a CCR of 76% was achieved when 30 transcripts per fold were used. These 5 sets of 30 

transcripts per fold comprised of 85 unique transcripts across all folds, which may serve as 

predictive biomarkers (Appendix 1 Table A1.2.2). We used these 85 transcripts to develop 

additional models employing other classification methods (Table 2.2). The RF model had the 

highest performance with a CCR of 76%. DWD was also applied to the full set of 2,923 

transcripts and had a CCR of 73%. The difference in performance between the QSAR and the 

toxicogenomic models was significant (p < 0.001). 
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Table 2.2. 5-Fold External Cross-Validation Prediction Performance of Toxicogenomics 

Models Based on the 85 Selected Transcripts 

Method kNN SVM DWD RF 

Specificity  SD 0.820.08 0.840.10 0.770.11 0.840.05 

Sensitivity  SD 0.570.07 0.670.12 0.620.17 0.660.20 

CCR  SD 0.700.06 0.760.09 0.690.11 0.760.10 

Coverage (%) 95 99 99 100 

 

 

Third, we developed hybrid models of subchronic (28 days of treatment) 

hepatotoxicity using both chemical descriptors and single-dose treatment toxicogenomics 

data as biological descriptors. We studied how SVM model predictivity was affected when 

both the number of chemical descriptors and the number of transcripts were varied. To that 

effect, SAM was applied to independently rank chemical descriptors and transcripts, after 

which, different portions of top ranked variables were used for SVM modeling. Figure 2.2 

shows that the CCR of the hybrid models did not exceed that of the models based on 

toxicogenomics data alone. However, hybrid models identified both important chemical 

descriptors and transcripts for the enhanced interpretation of the modeling outcomes. We 

could not have reliably detected the important chemical features from the relatively poorly 

fitted QSAR models. Adding transcripts boosted the predictivity of the hybrid models such 

that important chemical features were identified with greater confidence. Specifically, 

contributions of SiRMS descriptors used in RF hybrid models were interpreted using the 

approach of (Kuz’min et al. 2011) to uncover chemical substructures critical to 

hepatotoxicity. The substructures obtained through this analysis were compared to the alerts 
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derived using XCHEM (Sedykh & Klopman 2006) and found to be concordant. The largest 

and most frequent substructures within each toxicity class are listed in Table 2.3 and provide 

evidence of the structure–activity relationship in the hybrid model. All QSAR, 

toxicogenomics, and hybrid models were significantly better than y-randomized models (p < 

0.05 by Z-test), indicating that our models were not the result of chance correlations. 

 

Figure 2.2. CCR accuracy of the models with respect to the number of chemical descriptors 

and transcripts used. All models were generated by SVM classification with 5-fold external 

cross-validation. 
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Table 2.3. Structural Alerts Mapped onto Example Compounds 

Substructure A (Acetanilide) 

 

Substructure B (thioamide) 

 

Substructure C (C-Cl) 

 

Substructure D (Styerene) 

 

acetaminophen phenacetin bucetin

phenylbutazone*

thioacetamide ethionamide methimazole*disulfiram

cyclophosphamide lomustine chloramphenicol
carbon 

tetrachloride

benzbromarone amiodarone* coumarinbenziodarone



34 

 

The toxicity threshold of the consensus models was set to 0.5, below which the 

compounds were classified as nontoxic and above which they were classified as toxic. 

Because the compounds on the margin are typically predicted with less confidence, we 

sought to determine the effect of adjusting the toxicity threshold on prediction performance. 

Figure 2.3A shows the distribution of QSAR-predicted values (using kNN method) for 

nontoxic and toxic compounds. Overall, the separation was poor due to a large proportion of 

nontoxic compounds that were predicted as toxic. While alternative thresholds yielding 

models with very high CCR may be selected (Figure 2.3C), severely reduced coverage of 

such models is a considerable drawback (Figure 2.3E). For example, setting two thresholds 

(dashed lines in Figure 2.3A), one at 0.36 (<0.36 are assigned nontoxic) and the second one 

at 0.56 (>0.56 are assigned as toxic) increased CCR to 68%, as compared to 59% with a 

single threshold of 0.5. However, the coverage of such a model was only 80% because the 

compounds whose predicted activities were between 0.36 and 0.56 could no longer be 

classified. Conversely, the toxicogenomics model developed with kNN showed good 

separation between toxic and nontoxic compounds (Figure 2.3B). A change in thresholds had 

a minor effect on the model’s CCR and coverage (Figure 2.3D and 2.3F), showing that a 

single threshold was sufficient and that optimization of the activity thresholds would not be 

necessary. The optimal thresholds will be useful in the prediction of additional external 

compounds. 
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Figure 2.3. External prediction results of the QSAR (A, C, and E) and toxicogenomics (B, D, 

and F) models by kNN using different classification criteria. Classification accuracy (C and 

D, CCR) and coverage (E and F, percent chemicals within the applicability domain) results 

are shown. Dashed (A and B) and diagonal (B–F) lines denote a default single-threshold 

classification (threshold = 0.5). An example of a double-threshold classification (nontoxic if 

activity <0.36; toxic if activity >0.56) is shown by the dashed lines (C and E). 
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2.4.2. Model interpretation 

Toxicogenomics data-based models were the most predictive of hepatotoxicity. To 

explore the biological significance and the mechanistic relevance of the selected 85 

transcripts (64 up-regulated and 21 down-regulated), functional pathway analysis was 

performed. Hepatic nuclear factor 4α (Hnf4a)- and v-myc myelocytomatosis viral oncogene 

homologue (Myc)-centered interactomes were the two highest ranked networks involving 

large numbers of the 64 selected up-regulated genes (Appendix 2 Figure A2.2.4A–B and 

Table 2.IIIa). Canonical pathway analysis revealed that the eukaryotic initiation factor (Eif) 2 

signaling pathway responsible for protein translation was up-regulated (Appendix 1 Table 

A1.2.IIIb). Among the down-regulated genes, the network involving cellular function and 

maintenance including transporters and inflammatory responses was the highest ranked 

network (Appendix 2 Figure A2.2.4C and Appendix 1 Table A1.2.IIIc). Canonical pathway 

analysis also revealed that many down-regulated genes were involved in the complement 

pathway (Appendix 1 Table A1.2.IIId). 
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Figure 2.4. Molecular networks representing the 

toxicogenomics predictors of hepatotoxicity. 

Hnf4a-centered (A), Myc-centered (B), and 

cellular function, and maintenance-related (C) 

interactomes were selected as the highest ranked 

networks among the 64 up- or 21 down-regulated 

genes used in modeling.  

Red and green represent molecules up-regulated 

or down-regulated, respectively, by the 

hepatotoxic compounds. Ellipses, squares, 

triangles, trapezoids, lozenges, and circles 

represent transcription regulator, cytokine, kinase, 

transporter, enzyme, and other molecules, 

respectively. Arrows indicate molecular 

interactions, while lines indicate binding. Dashed 

arrows or lines indicate indirect interactions or 

binding.  

See Tables 3.IIIa-d in the Appendix for a 

complete list of networks. 
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In addition, we used an unsupervised self-organizing map to cluster chemicals on the 

basis of their gene expression profiles (Figure 2.5 and Appendix 2 Figure A2.2.2). The 

objective was to uncover commonalities within clusters with similar gene expression profiles. 

As expected, the nonhepatotoxic agents were tightly clustered (green background). Among 

the hepatotoxic drugs (orange background), there were several clusters of compounds which 

may act through similar mechanisms of action. For example, oxidative stress-inducing agents 

(red text) such as acetaminophen, methapyriline, and nimesulide, and peroxisome 

proliferator-activated alpha (PPARα) agonists (blue text) such as fenofibrate, WY-14643, 

benzbromarone, clofibrate, and gemfibrozil formed two subclusters among the 

hepatotoxicants. The model-selected 85 transcripts were sufficient to cluster the drugs into 

toxicologically meaningful groups with similar modes of hepatotoxicity. 

Understanding this difference in performance between the QSAR and the 

toxicogenomics models warrants an in-depth examination of the spatial distribution of 

compounds in their chemical and toxicogenomics descriptor space. Principal component 

analysis of the chemical features (Dragon descriptors, Figure 2.6A) and toxicogenomics data 

(85 selected transcripts, Figure 2.6B) demonstrated that the separation between nontoxic and 

toxic classes was poor in the chemical space. Appendix 1 Table A1.2.IVa lists 40 most 

chemically similar pairs of compounds. Half of them had opposite toxicities. Conversely, 

among pairs of compounds with the most similar gene expression profiles, only 23% 

exhibited opposite toxicities (Appendix 1 Table A1.2.IVb). In other words, pairs of 

compounds with similar gene expression profiles were more likely to have the same 

hepatotoxicity than pairs of chemically similar compounds. 
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Figure 2.5. Self-organizing map of the compounds clustered by the expression of the 85 

selected transcripts. Nontoxic (underlined) compounds are tightly clustered in the bottom 

right. PPARα activating and oxidative stress-inducing chemicals are colored in blue and red, 

respectively.  
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Figure 2.6. Principal component analysis of the chemical (A) and toxicogenomics (B) 

descriptors. Toxic and nontoxic compounds are colored red and black, respectively. 

Compounds mis-predicted by the toxicogenomics model but correctly predicted by the 

QSAR model are marked as crosses (×). An example of a nontoxic compound (danazol, 

DNZ) which has distant toxic toxicogenomic neighbors but close nontoxic chemical 

neighbors is shown. 
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Table 2.4. Confusion Matrix Showing Predictions by the QSAR Model and Toxicogenomics 

Model. Compounds mis-predicted by the toxicogenomics model but correctly predicted by 

the QSAR model are identified in italicized font. Compounds mis-predicted by both the 

QSAR model and by the toxicogenomics model are underlined. 
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The best hybrid model had similar performance to the best toxicogenomics model 

(76–77% CCR), differing only in the predictions of three compounds (ajmaline, griseofulvin, 

propylthiouracil). Examining QSAR and toxicogenomics models in comparison with each 

other revealed instances for which the models were complementary. When both QSAR and 

toxicogenomics models were in agreement, it implied greater reliability of the prediction 

(Table 2.4). When predictions made with these two types of models were in disagreement, 

deferring to the toxicogenomics model (statistically superior to the QSAR model) would 

more likely return correct predictions. However, of note were 19 compounds (italicized in 

Table 2.4) mis-predicted by the toxicogenomics model but correctly predicted by the QSAR 

model. The PCA plot shows that many of these compounds (denoted by crosses in Figures 

2.6A and 2.6B) had neighbors in the multidimensional toxicogenomics descriptor space of 

opposite toxicities (Figure 2.6B), but their neighbors in the chemistry space had similar 

toxicities (Figure 2.6A). For example, nontoxic danazol has toxic neighbors in the 

toxicogenomics descriptor space (Figure 2.6B) but nontoxic neighbors in the chemistry space 

(Figure 2.6A). Some of these mis-predicted compounds, e.g., gemfibrozil (PPARα activator) 

and lomustine (genotoxic hepatocarcinogen), exhibit late-onset toxicity which could explain 

the failure of 24 h expression profiles to capture relevant changes and consequently to predict 

their 28-day hepatotoxicity. 

2.5. Discussion 

 Our study showed that chemical features and toxicogenomics data were useful 

and relevant for the development of classification models for understanding and predicting 

hepatotoxicity. The high classification accuracy of toxicogenomics models supports the use 

of early transcriptional response as an indicator for long-term toxicity and for understanding 
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a potential mode of action. Even though QSAR models were less predictive, they will 

continue to be used for initial virtual screening in cases where no experimental data (e.g., 

toxicogenomics) are available. By developing hybrid models using both chemical descriptors 

and toxicogenomics data, we identified both chemical features and transcripts, which 

provided additional insights into understanding drug-induced liver injury. 

2.5.1. Biological Pathways Involved in Liver Injury 

Toxicogenomics data from single exposure were not only useful for the classification 

of 28-day liver injury phenotype but also provided important mechanistic insights into 

pathways that may lead to long-term toxicity. Pathway analysis showed that the 85 most 

predictive transcripts were in Hnf4α-, Myc-, and Eif2-centered networks, all of which have 

been implicated in hepatotoxicity. Hnf4α, a transcriptional factor of the nuclear hormone 

receptor family, is known to play an important role in liver function, morphological and 

functional differentiation of hepatocytes, cell proliferation, and detoxification (Parviz et al. 

2003). Although the Hnf4α gene itself was not among the selected transcripts, Hnf4α-

regulated genes were up-regulated in the early stage of hepatocellular injury. 

In addition, Hnf4α is essential for controlling the acute phase response of the liver 

induced by endoplasmic reticulum (ER) stress (Luebke-Wheeler et al. 2008). ER stress is a 

common response to many toxicants, and under conditions of severe or prolonged ER stress, 

apoptosis is triggered by accumulation of incompletely assembled or misfolded proteins (Ji & 

Kaplowitz 2006). Activation of Eif2 signaling pathway is widely recognized as a key 

contributor to ER stress. In the present study, we found the characteristic up-regulation of 

several genes involved in Eif2 signaling pathway after treatment with several 

hepatotoxicants, such as Eif2 subunit 1 alpha (Eif2s1), Eif3 subunits G (Eif3G) and J (Eif3J), 
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and Eif4a1. Thus, our analysis provided additional supporting evidence that the Eif2 

signaling pathway may be a common mechanism involved in early liver damage through ER 

stress. 

Myc is a transcription factor which regulates cell proliferation, differentiation, and 

apoptosis (Lin et al. 2009). In the present study, we found up-regulations of several genes in 

the Myc-centered network including transcription factors nucleophosmin 1 (Npm1), TAF9 

RNA polymerase II, TATA box binding protein (TBP)-associated factor (Taf9), Eif4a1, and 

general transcription factor IIIC polypeptide 3 (Gtf3c3). While further studies are needed to 

link the effects of individual chemicals to transcriptional changes in the Myc-centered 

network, our analysis shows that these transcripts may be important early predictive 

biomarkers for subchronic hepatocellular injury. 

Biological pathway analysis revealed the down-regulation of genes involved in 

cellular function and maintenance, consisting of transporters and inflammatory response, 

such as the complement system pathway. Abnormal homeostasis and cellular function are 

often associated with hepatotoxicity. In particular, coagulopathy is often involved because 

many factors in the coagulation system are synthesized in the liver. Recently, toxicogenomics 

biomarkers for diagnosis and prognosis of hepatotoxicity-related coagulation abnormalities 

have been reported (Hirode et al. 2009b). Our results further support that malfunction of the 

coagulation system is a common feature in liver injury and that the down-regulation of 

complement 8, β-polypeptide (C8b), complement 9 (C9), and complement factor B (Cfb) 

may be an early indicator of impaired liver function by different types of drugs. 

Many of the 85 selected transcripts have also been previously implicated with liver 

diseases by the same chemicals in the Comparative Toxicogenomics Database 
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(http://ctd.mdibl.org/). For instance, ubiquitin specific peptidase 10 (Usp10) has been 

associated with the Myc-centered network in acetaminophen-induced liver toxicity (Beyer et 

al. 2007). It is also closely related to ubiquitin specific peptidase 2 (Usp2) which is among 

the 37 genes used to derive a toxicogenomics model for hepatotumorigenesis by (Fielden et 

al. 2007). The agreement with previous findings lends credence to our selected list of 

transcripts as biomarkers for hepatotoxicity. 

2.5.2. Hybrid Models Afford More Reliable Exploration of Chemical Structural Alerts 

Development of QSAR models of hepatotoxicity for structurally diverse chemicals is 

a challenge (Rodgers et al. 2010), and the results of this study show that a correct 

classification rate of such models ranged between 55 and 61%. Thus, interpretation of such 

models with regards to the potential chemical “structural alerts” for hepatotoxicity may be 

futile. However, when chemical descriptors and toxicogenomics data were used together to 

develop hybrid models, significantly higher predictive accuracy (as high as 77%) of the 

models provided additional confidence for considering the chemical fragments selected by 

the models as potentially predictive of an increased risk of liver toxicity. By examining the 

chemical substructures suggested by the hybrid models (see Table 2.3), we observe that 

features selected through the modeling procedure are several well-known toxicophores. This 

finding provides a strong indication of the value of hybrid modeling for identification of the 

toxicophores as compared to the traditional QSAR, which is plagued by a weaker predictive 

power. 

http://ctd.mdibl.org/
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2.5.2.1. Substructure A (Acetanilide): Toxic Species Formed, N-Hydroxylamines and Nitroso 

Compounds 

The acetanilide substructure was present in several hepatotoxic drugs, as well as the 

nontoxic phenylbutazone. The acetanilide substructure is especially susceptible to N-

oxidation (Loew & Goldblum 1985). The N-hydroxylamine and nitroso products are highly 

reactive. However, some compounds may be toxic due to activation at sites outside of the 

acetanilide substructure. For example, acetaminophen owes much of its toxicity to the 

quinone imine metabolite despite its chemical similarity with phenacetin. Its only difference 

from phenacetin is its 4-hydroxyl group, which is preferentially oxidized by CYP2E1 to the 

reactive quinone imine. In phenacetin and bucetin, the 4-hydroxyl group is replaced by an 

alkoxyl substituent which renders them less susceptible to quinone formation and more likely 

to be activated by N-hydroxylation (Peters et al. 1999). Phenylbutazone also undergoes 

another transformation (aromatic hydroxylation) instead of N-hydroxylation (Aarbakke et al. 

1977). This probably explains its lack of rat hepatotoxicity in this study despite containing 

the acetanilide substructure. 

2.5.2.2. Substructure B (Thioamide): Toxic Species Formed, Sulfur Species of Various 

Oxidation States 

Our models showed that the presence of thioamide (Table 2.3, substructure B) is 

associated with hepatotoxicity. Thiocarbonyls are often oxidized or desulfurated to produce 

toxic sulfur-containing species. Thioacetamide S-oxide is highly polar and forms adducts 

with proteins (Porter & Neal 1978). Disulfiram, despite being a dithiocarbamate instead of a 

thioamide, also forms a sulfoxide that binds to proteins and inhibits their activity. Such 

protein binding is also responsible for disulfiram’s therapeutic inhibition of aldehyde 

dehydrogenase (Shen et al. 2001). The only nontoxic drug that has this substructure was 
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methimazole. Although methimazole was defined as nonhepatotoxic in this study, it has been 

reported to yield atomic sulfur species that bind and inhibit P450 activity, possibly leading to 

liver necrosis (Lee & Neal 1978). 

2.5.2.3. Substructure C (Alkyl Chloride): Toxic Species Formed, Alkyl Radicals 

Hepatotoxicity of alkyl chloride compounds has been attributed to the homolytic 

cleavage of the C–Cl bond which produces damaging free radicals, especially among highly 

halogenated compounds. This is a well-studied phenomenon best exemplified by carbon 

tetrachloride and its alkyl halide analogs such as chloroform and bromotrichloromethane 

(Rechnagel & Glende 1973). However, other chlorinated alkanes studied here, 

cyclophosphamide, lomustine and chloramphenicol, do not share the same toxic mechanism 

as carbon tetrachloride and cannot be attributed to the C–Cl bond. For instance, the ultimate 

toxicant responsible for cyclophosphamide hepatotoxicity is acrolein, which is formed 

independently of the alkyl chloride group. 

2.5.2.4. Substructure D (Styrene): Toxic Species Formed: Epoxides 

The nonaryl double bond in substructure D when it is part of a benzofuran or 

benzopyran is especially prone to epoxide formation (Kaufmann et al. 2005). Such epoxides 

often form DNA and protein adducts (Adam et al. 1993). Coumarin’s toxicity requires the 

formation of an epoxide, which is followed by subsequent rearrangement of the epoxide to o-

hydroxyphenylacetaldehyde, which is considered to be the hepatotoxic intermediate 

(Vassallo et al. 2004). Hence, it is comparatively more toxic in rats than in humans because 

of the rat’s metabolism via the 3,4-epoxide (Lake et al. 1989), while in humans, coumarin 

primarily undergoes aromatic hydroxylation instead of forming the above-mentioned epoxide 

(Felter et al. 2006, Vassallo et al. 2004). The three benzofurans in our study, benziodarone, 
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benzbromarone, and amiodarone, are known hepatotoxic agents whose toxicity has been 

attributed to the 2-substituted benzofuran (Kaufmann et al. 2005). Although amiodarone was 

not found to be hepatotoxic on the basis of its 28-day histopathology and serum chemistry 

results, hepatocellular vacuolization indicative of phospholipidosis was noted (Appendix 1 

Table A1.2.1). 

2.5.3. Limitations 

The performance of QSAR models generally suffers when predicting complex 

toxicity end points such as hepatotoxicity, a phenotype with several complex mechanisms. 

There are numerous examples of chemically similar compounds with widely divergent liver 

effects. While ibuprofen is safe in humans, ibufenac, lacking a methyl group, is toxic 

(Rodgers et al. 2010). In our data set, nontoxic caffeine and toxic theophylline differ by a 

methyl group. This phenomenon is known as an “activity cliff” where very similar molecules 

possess disparate activities, such that the profile of activity plotted against compound’s 

similarity is akin to a rugged landscape with many cliffs (Maggiora 2006). QSAR can be 

realistically applied if there are enough compounds to adequately represent the complex 

activity landscape. Unfortunately, this was not the case for our data set. The high proportion 

(50%) of opposite activities among chemically similar pairs compounded by the lack of 

congeners in our chemically diverse set posed further challenges to QSAR modeling. Hence, 

it was not surprising that the CCR of the QSAR models could barely exceed 60% in 

predicting the biologically complex hepatotoxicity end point. 
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2.6. Conclusions 

In conclusion, this study shows that while QSAR and toxicogenomics are both 

important predictive tools on their own, concomitant exploration in chemical and 

toxicogenomics descriptor spaces, through hybrid models, will elicit deeper insight. 

Consistent with results from other toxicogenomics studies, we showed that toxicogenomics is 

predictive and provides valuable mechanistic information. The pathways suggested several 

mechanisms such as ER stress and coagulopathy that could be related to hepatotoxicity. As 

QSAR is entirely computational and obviates the need for experiments, it will remain an 

important virtual screening tool. Importantly, structural alerts can be identified with greater 

confidence from the better fitted hybrid models. In addition, hybrid models improve and 

refine the interpretation of the data in terms of chemical alerts for hepatotoxicity. Additional 

studies using methodologies and descriptors that can handle activity cliffs in both chemical 

and toxicogenomics descriptor spaces may improve the predictive power of models 

developed in this study and exploit further the complementarities between QSAR and 

toxicogenomics models of hepatotoxicity. 
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CHAPTER 3. INTEGRATIVE CHEMICAL-BIOLOGICAL MODELING WITH 

NEW METHODS: INTEGRATIVE CHEMICAL AND BIOLOGICAL READ-

ACROSS (CBRA) FOR TOXICITY PREDICTION
2
 

3.1. Overview 

Traditional read-across approaches typically rely on the chemical similarity principle 

to predict chemical toxicity; however, the accuracy of such predictions is often inadequate 

due to the underlying complex mechanisms of toxicity. Here we report on the development 

of a hazard classification and visualization method that draws upon both chemical structural 

similarity and comparisons of biological responses to chemicals measured in multiple short-

term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) 

approach infers each compound’s toxicity from those of both chemical and biological 

analogs whose similarities are determined by the Tanimoto coefficient. Classification 

accuracy of CBRA was compared to that of classical RA and other methods using chemical 

descriptors alone, or in combination with biological data. Different types of adverse effects 

(hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified 

using several biological data types (gene expression profiling and cytotoxicity screening). 

CBRA-based hazard classification exhibited consistently high external classification 

accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is 

aided by the use of radial plots that show the relative contribution of analogous chemical and 

biological neighbors. Identification of both chemical and biological features that give rise to 

                                                 

2
 This chapter is a reproduction, in whole, with permission of a publication in Chemical 

Research in Toxicology by (Low et al. 2013a) at doi:10.1021/tx400110f. 
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the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of 

the models. 

3.2. Introduction 

The chemical similarity principle (Johnson & Maggiora 1990, Willett et al. 1998) 

posits that chemically similar compounds are likely to exhibit similar effects. Consequently, 

a variety of chemical similarity-based methods have been developed to predict chemical-

induced responses from chemical structures alone. The chemical similarity principle provides 

the basis for both straightforward read-across analysis (Enoch et al. 2008, Hewitt et al. 2010, 

Schüürmann et al. 2011, Wang et al. 2012, Wu et al. 2010), and more complex machine 

learning-based approaches used in Quantitative Structure-Activity Relationship (QSAR) 

modeling (Gleeson et al. 2012, Voutchkova et al. 2010, Zvinavashe et al. 2008).  

Chemical structure-based prediction methods face limitations, especially when the 

challenge is to accurately predict complex in vivo outcomes (Gleeson et al. 2012, Nikolova & 

Jaworska 2003). Data from in vitro screening of thousands of chemicals in hundreds of 

experimental systems provide additional biological activity information at molecular and 

cellular levels potentially useful for predictive toxicology modeling (Judson et al. 2012, 

Rusyn et al. 2012, Valerio & Choudhuri 2012). Indeed, integration of chemical structural 

features and biological screening data provides important advantages over traditional QSAR 

modeling, such as improved prediction accuracy (Sedykh et al. 2011, Zhu et al. 2008), 

greater coverage of chemical space and a better interpretation of chemical and biological 

features (Low et al. 2011).  

While QSAR modeling approaches have grown in popularity and complexity, end-

users often show preference for simple and more transparent methods such as read-across, 
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e.g., OECD QSAR Toolbox (http://www.qsartoolbox.org/). The read-across methodology 

requires chemical (i.e., structure-based) similarity as a starting point. The objective of this 

method is to predict the toxicity behavior of a compound (i.e., produce an equivalent of a test 

result) by inferring from structurally similar chemicals with available toxicity data. Grouping 

and read-across of chemicals in a hazard and/or risk assessment context are well established 

and can be used to satisfy information requirements under Registration, Evaluation, 

Authorization and Restriction of Chemicals (REACH) regulation in the European Union. For 

example, more than 20% of high production volume chemicals submitted for the first 

REACH deadline relied on read-across for hazard information on a number of toxicity 

endpoints necessary for registration 

(http://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2011_en.pdf). 

Under REACH, flexibility exists for how the analogs are selected; however, the read-across 

argument needs to be convincingly substantiated with scientifically credible justification. 

Thus, even though chemical structure-based read-across represents an alternative to standard 

animal-based tests, the inherited uncertainty of the prediction, combined with a lack of a 

standardized framework for its application by the decision-makers, creates a need to increase 

confidence in prediction and utilize visual aids for presenting evidence in a transparent 

manner.  

Although chemical and biological factors are sometimes considered using a weight-

of-evidence framework (Hewitt et al. 2010, Wang et al. 2012, Wu et al. 2010), these 

approaches are largely qualitative, not completely transparent, and may be prone to bias. 

Hence, there is a need to automate a read-across process that would combine both chemical 

and biological factors and yet, keep the process transparent for expert interrogation. To that 

http://www.qsartoolbox.org/
http://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2011_en.pdf
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end, we introduce a quantitative toxicity prediction approach combined with a visualization 

methodology, termed chemical-biological read-across (CBRA), that relies not only on 

inherent chemical properties (chemical descriptors), but also on biological profiles measured 

by short-term experimental assays (biological descriptors). A graphical display of the 

compound’s classification, along with the identity of the neighbors and weights applied, is 

employed to increase transparency and interpretability. Using several data sets with short-

term bioassay profiles, we demonstrate the advantages of CBRA over other methods that rely 

on biological and/or chemical descriptors alone.  

3.3. Materials and methods 

3.3.1.Data sets 

Four data sets were used in this study (descriptor matrices and prediction endpoints of 

compounds are available as supplemental material of the online publication). The first data 

set contained 127 compounds from the Toxicogenomics Project-Genomics Assisted Toxicity 

Evaluation system (TG-GATES). The target property for prediction is sub-chronic 

hepatotoxicity previously modeled in (Low et al. 2011) based on liver histopathology and 

clinical chemistry findings over 28 days of repeat dosing (Uehara et al. 2010). Gene 

expression data (biological features) and chemical descriptors (inherent chemical features) 

were processed as explained in (Low et al. 2011). Briefly, of the 31,042 probes on the arrays, 

we removed those that were consistently not expressed or did not change their expression 

values across all compounds between treated vs. vehicle control groups. Next, 2,991 

transcripts were selected that varied in their expression across all the compounds based on 

the following criteria: the largest change of any transcript over its untreated equivalent was 

over 1.5 fold and the smallest false discovery rate (Welch t-test) was less than 0.05. Then, 
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transcripts with low variance (all, or all but one value is constant) were excluded and further, 

one of each pair of transcripts with high pairwise correlation (r
2
>0.9) chosen randomly, was 

removed; this left 2,923 transcript variables which were range scaled and used for model 

building. Further, genes differentially expressed between hepatotoxic and nonepatotoxic 

compounds were ranked by a permutation t-test (signfiicance analysis of microarrays). To 

avoid feature selection bias, such supervised feature selection was performed according to 

the same 5-fold external cross-validation scheme later used for model evaluation. In the end, 

we selected 85 unique transcripts (5 sets of 30 top-ranked transcripts per fold).  

The second data set contained 132 compounds (DrugMatrix®, 

https://ntp.niehs.nih.gov/drugmatrix). The biological descriptors were the expression of 200 

genes in the rat liver (5 day repeat dosing), that were selected as detailed in (Natsoulis et al. 

2008). The data for the prediction target, hepatocarcinogenicity, was compiled in a related 

study by (Fielden et al. 2007) using literature sources and the Carcinogenicity Potency 

Database (CPDB, http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html). 

The third and fourth data sets were from (Lock et al. 2012) in which 240 compounds 

were tested for cytotoxicity (intracellular ATP and caspase-3/7 apoptosis) in 84 

lymphoblastoid cell lines with different genotypes. The 148 biological descriptors used here 

were the consolidated cytotoxicity profiles derived as detailed in (Sedykh et al. 2011). Of the 

original 240 compounds, 185 compounds were assigned mutagenicity labels according to 

CCRIS (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS) and 122 compounds were 

assigned rat oral LD50 according to ChemIDplus (http://chem.sis.nlm.nih.gov/chemidplus/). 

Because CCRIS provides detailed-level mutagenicity test results (including test strains, 

concentrations, and type of metabolic activation), the final mutagenicity assignments were 

https://ntp.niehs.nih.gov/drugmatrix
http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS
http://chem.sis.nlm.nih.gov/chemidplus/
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determined using the protocol described in (Mortelmans & Zeiger 2000): mutagens must test 

positively in any one of the five standard Ames Salmonella test strains; non-mutagens, in 

contrast, must be consistently negative (in at least 4 out of 5 test strains). Additionally, when 

Ames Salmonella strains beyond the standard five were available, we defined mutagens as 

those tested positively in at least 20% of the strains and non-mutagens as those tested 

negatively in at least 80% of the strains regardless of metabolic activation. For the other 

classification endpoint, continuous rat oral LD50 values were split into two classes based on a 

threshold of 300 mg/kg, consistent with the threshold separating categories 1-3 and 4-6 in the 

Globally Harmonized System of Classification and Labeling of Chemicals (UNECE 2009). 

3.3.2. Chemical descriptors and data processing 

Chemicals utilized in all data sets underwent structural curation according to the 

procedures described in (Fourches et al. 2010). This involved standardizing the molecular 

structures and removing salts, duplicates and problematic structures (e.g., metal-containing, 

molecular weight > 2000). Next, Dragon (v.5.5, Talete SRL, Milan, Italy) descriptors were 

computed for all chemicals.  

After additional treatment of gene expression data (data sets 1 and 2, see above), all 

chemical and biological descriptors were range scaled to fall between 0 and 1. Furthermore, 

descriptors with low-variance (standard deviation <10
-6

) or one of any pair of descriptors 

with high intercorrelation (pairwise r
2
 >0.9) were removed.  
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3.3.3. Quantitative read-across methodology 

For read-across, the predicted activity of a compound (Apred) was calculated using the 

following equation (Equation 1) from the similarity (Si) weighted aggregate of the activities 

Ai of k nearest neighbors.   

𝐴       =
∑ 𝑆 ∙ 𝐴 
 

   

∑ 𝑆 
 

   

 

[

1] 

The pairwise Tanimoto similarity, Si, between the molecule of interest (A) and its ith 

neighbor (B), was calculated from the Jaccard distance dJac [Equation 2, (Willett et al., 

1998)] across descriptors x1,…, xp. For a set of range-scaled continuous descriptors, Tanimoto 

similarity is normalized between 0 and 1 with 1 corresponding to identical pairs. 

𝑆 =       =
∑     ∙     
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[

2] 

The similarity-weighted aggregate in Equation 1 ensures that the activities of more 

similar neighbors are given higher weights when calculating the predicted activity. 

For CBRA, compound activity was estimated from sets of neighbors in both the 

biological (bio) and chemical (chem) data (Equation 3). 

𝐴         =
∑ 𝑆 ⋅ 𝐴 
    
    ∑ 𝑆 ⋅ 𝐴 

     
   

∑ 𝑆 
    
    ∑ 𝑆 

     
   

 

[

3] 

Two sets of nearest neighbors (kbio biological neighbors in the biological space 

characterized by bioassay profiles and kchem neighbors in the chemical space characterized by 

Dragon descriptors) were used for the estimation of the toxicity for each test compound. 

Activities of nontoxic compounds were assigned “-1” while those of toxic compounds were 

assigned “+1”. The predicted classification threshold was set at zero such that compounds 

with negative predicted activity were considered as nontoxic and toxic otherwise.  



57 

 

Read-across was performed in two ways depending on how the maximum number of 

neighbors was determined: 1) by a similarity threshold (RA-sim), or 2) by a set value of k 

(RA-kNN). RA-sim included all neighbors with similarity greater than or equal to a similarity 

threshold set at 0, 0.6, 0.7, 0.8, or 0.9; RA-kNN included only k nearest neighbors (possible k 

values: integers from 1 to 5). Limiting the number of nearest neighbors by 5 is arbitrary; 

generally it should be understood that the selection of a large number of nearest neighbors 

would undermine the nearest neighbor selection principle so “5” is a threshold number we 

have been using typically in our implementation of the kNN QSAR method (Zheng & 

Tropsha 2000). 

Other models using both biological and chemical descriptors 

In addition to CBRA, other approaches combining biological and chemical data for 

toxicity prediction were examined. First, biological and chemical descriptors were pooled 

together constituting a “hybrid” space which generated a single set of k nearest neighbors for 

each molecule (see Equation 1 where k=khybrid). Second, compounds’ activities were 

predicted by developing independent biological read-across and chemical read-across models 

and pooling the resulting predictions, essentially forming an ensemble model (Equation 4). 

𝐴             =
 

2
(
∑ 𝑆 ∙ 𝐴 
    
   

∑ 𝑆 
    
   

 
∑ 𝑆 ∙ 𝐴 
     
   

∑ 𝑆 
     
   

) 

[

4] 
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3.3.4. Model evaluation 

External 5-fold cross validation. 

All models were evaluated using an external 5-fold cross validation. Briefly, each 

data set was randomly divided into five equal parts with the same toxic/nontoxic ratio before 

modeling. Each of the five parts was left out in turn to form an external set for validating the 

model developed on the remaining four parts (modeling set). For each target compound in 

the external set, neighbors were selected from the modeling set and not from the external set. 

Internal 10-fold cross validation in read across kNN method 

In RA-kNN, optimal kbio and kchem were selected from values between 1 and 5 by 

additional internal 10-fold cross-validation. Briefly, each modeling set was further divided 

according to a 10-fold cross-validation scheme, forming ten pairs of training and test sets. 

For each training set, we performed a grid search across all 25 possible pairs of kbio and kchem 

values and validated the models using the corresponding test set. For each pair of kbio and 

kchem values, the balanced accuracies across the ten test sets were averaged. The pair yielding 

the highest mean balanced accuracy was considered to be optimal and its kbio and kchem values 

were subsequently applied to the corresponding external validation set. Therefore, the five 

modeling sets resulted in five optimal models with various kbio and kchem values. 

y-randomization 

The y-randomization test (randomization of the response) was performed to ensure 

that models were robust and not due to chance correlations. After random permutation of the 

activity labels in the modeling sets, models were rebuilt following the same workflow as 

described above. This protocol was repeated 30 times. Performance of the models generated 
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from the permuted labels was compared to that of the models derived from the original data 

sets. Statistical significance of the difference in balanced accuracy was determined with one-

tailed one-sample t-test. 

Prediction performance metrics 

All metrics characterizing model performance [i.e., specificity, sensitivity, accuracy, 

balanced accuracy, and area under curve (AUC)] were obtained from external 5-fold cross-

validation. Metric values close to 1 indicate high classification accuracy while 0.5 serves as 

the random baseline for binary classification. Specificity is the fraction of compounds 

predicted correctly within the nontoxic class; conversely, sensitivity is the fraction of 

compounds predicted correctly within the toxic class. Accuracy is the fraction of compounds 

predicted correctly in total. Balanced accuracy is the average of the rates correctly predicted 

within each class ((specificity + sensitivity)/2). AUC is the area under the receiver operating 

characteristic curve of sensitivity against (1-specificity). Thus, AUC is a function of 

sensitivity and specificity, providing an overall accuracy metric independent of a predefined 

activity threshold unlike the other prediction metrics which were calculated using a 

predefined activity threshold of zero (for activity values ranging between -1 to +1). 

Coverage of the models is reported as the fraction of compounds in the external set 

that are within the applicability domain (AD) for which reliable predictions are expected to 

be obtained. In RA-sim, a target compound is within the AD if there exists at least one 

neighbor in the modeling set whose similarity is above the similarity threshold; in RA- kNN, 

a compound is within the AD if there exists at least one neighbor with a minimum similarity 

of 0.3. Standard errors were calculated by the bootstrap method (Efron & Tibshirani 1986) 

using 1000 sampling trials. 
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3.3.5. Model interpretation 

Identification of informative descriptors 

Adapted from the local importance score used in the random forest method (Breiman 2001), 

we use a local importance score based on x-randomization to rank descriptors by their 

contribution to a target compound’s predicted activity. x-randomization involves the random 

permutation of a descriptor x across the modeling set such that the descriptor’s effect on the 

model’s accuracy before and after permutation is compared. This difference is expected to be 

more pronounced for important descriptors. Specifically, after permutation, the similarity 

between the target compound and its k neighbors (previously used for RA-kNN) will change. 

This resultant change in similarity is averaged over 99 random permutations to obtain the 

local importance score I(x,compound) which measures  the descriptor x’s contribution 

towards the target compound’s predicted activity. This procedure was repeated for each 

descriptor per target compound. A high local importance score indicates that the descriptor is 

highly contributory to the target compound’s prediction. 

Visualization of nearest neighbors using radial plots 

To visualize the information used to generate the predicted activity of a compound 

(Apred), the radial plot is used (see Figures 3.1-3 for examples). The central node marks the 

target compound. Surrounding it are nodes representing biological neighbors (left hand side) 

and chemical neighbors (right hand side), all colored according to their known toxicity 

assignments (red=toxic, black=nontoxic). The relative position of each neighbor from the 

central node (i.e., edge length) reflects the Jaccard distance (Equation 2) from the target 

compound. The nearest neighbors (shortest edges) are placed closest to the 12 o’clock 

position. Each radial plot displays all the neighbors relevant to a compound’s prediction (i.e., 

kchem chemical neighbors and kbio biological neighbors above 0.3 Tanimoto similarity, 
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consistent with the AD similarity threshold for RA-kNN). The algorithm for generating the 

radial plots was written in R Statistical Software (version 2.14; R Foundation for Statistical 

Computing, Vienna, Austria) and is available as supplemental material of the online 

publication. 

3.4. Results 

3.4.1. Visualisation of the chemical-biological read across classification  

The premise of this study was to establish a transparent methodology for inferring a 

compound’s potential toxicity from its biological and chemical analogs. Here, we use 

graphical means to illustrate how CBRA integrates information from both biological and 

chemical analogs of a compound to predict its toxicity. Because the relevant information (the 

analogs, their similarities and known toxicity assignments) can be communicated using the 

radial plot, CBRA offers a highly transparent and interpretive method for hazard 

classification. 

Figures 3.1-3.3 show the radial plots of three case study compounds, classifying them 

as hepatotoxic or not (see Methods for description of hepatotoxicity class designation) using 

both their biological (similar toxicogenomic profiles) and chemical (similar structures) 

analogs in the TG-GATES data set. Figure 3.1 depicts the basis for classifying 

chloramphenicol as “toxic”. The central node was colored red to denote chloramphenicol’s 

known toxicity. On the left hand side, all five biological neighbors were labeled as toxic (red) 

and they are highly similar to chloramphenicol (similarities: 0.826-0.857). On the right hand 

side, the five closest chemical neighbors are nontoxic (black, similarities: 0.645-0.667). All 

neighbors’ activities are aggregated according to their similarity weights by CBRA (Equation 
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3), yielding Apred=+0.126, i.e., a “toxic” prediction concordant with the known “toxic” 

assignment.  Figure 3.2 shows the opposite case in which the correct classification of 

carbamazepine (known to be nontoxic; Apred=-0.099) was due to its greater similarity with 

its chemical neighbors (similarities: 0.721-0.813). Figure 3.3 shows that benzbromarone’s 

biological and chemical neighbors were mostly toxic (red), yielding concordant predictions 

(Apred=+0.688), in agreement with its known toxicity. 

 

Figure 3.1. A radial plot for chloramphenicol in the TG-GATES data set.  

The central node representing the target compound chloramphenicol is surrounded by 

biological neighbors (left hand side) and chemical neighbors (right hand side). Nearest (i.e., 

most similar) neighbors are placed at the top. Neighbors are positioned from the target 

compound at a distance proportional to the Jaccard distance. Edges and nodes are colored 

according to the known activity classification (black: nontoxic; red: toxic). 
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Figure 3.2. A radial plot for carbamazepine in the TG-GATES data set. See legend to Figure 

3.1 for details. 

 

Figure 3.3. A radial plot for benzbromarone in the TG-GATES data set. See legend to Figure 

3.1 for details. 
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Figure 3.4 provides a visual comparison of radial plots for selected compounds from 

the TG-GATES data set that may facilitate expert judgment of each predicted classification. 

As with previous radial plots, each central node represents the compound of interest and is 

colored according to its experiment-derived toxicity (black=nontoxic, red=toxic). Radial 

plots were organized by the predicted activities using only chemical neighbors (horizontal 

axis) and those using only biological neighbors (vertical axis). As such, the compounds can 

be assessed by whether the chemical or biological neighbors had higher contribution to the 

final classification. The lower left corner (e.g., quinidine) is populated by radial plots with 

mostly nontoxic (black) neighbors while the upper right corner (e.g., benzbromarone) is 

filled by those with mostly toxic (red) neighbors. Conversely, other radial plots involve 

discordant predictions. Such radial plots are surrounded by neighbors of various toxicities 

(i.e., edges of various colors). Despite the discordance, the target compounds were still 

correctly predicted by CBRA because the activities of more similar neighbors (shorter edges) 

were given higher weight than those of less similar neighbors (longer edges). This simple 

visualization identifying neighbors based on an objective and standardized similarity metric 

such as the Tanimoto similarity allows users to assess the relevance of the neighbors and 

their contribution to the final prediction for every compound of interest.  
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Figure 3.4. Radial plots of compounds in TG-GATES data set ordered by predictions based 

on chemical neighbors (horizontal axis) and biological neighbors (vertical axis). Along the 

horizontal axis, nontoxic predictions (black) by chemical neighbors are shown on the left and 

toxic predictions (red) are shown on the right. Along the vertical axis, nontoxic predictions 

(black) by biological neighbors are shown at the bottom while toxic predictions (red) 

predominate at the top. Compounds predicted with high confidence by near neighbors of 

similar toxicities are indicated by radial plots with short edges of the same color.  
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3.4.2. Model performance  

RA-kNN vs RA-sim  

As read-across can be performed in two ways using either a similarity threshold (RA-

sim) or a set value of k (RA- kNN), we first compared these two approaches on the TG-

GATES data set (Figure 3.5 and Appendix 1 Table A1.3.1). The first approach (RA-sim, 

solid filled bars in Figure 3.5) utilizing chemical descriptors only (“chemical read-across”, 

white solid bars), showed that higher balanced accuracy may be achieved by restricting 

chemical similarity thresholds; however, the cost of such improved accuracy is much reduced 

coverage. RA-sim using gene expression data only (“biological read-across”, black solid 

bars) had a higher balanced accuracy as compared to chemical read-across when all 

compounds were considered (i.e., 100% coverage). However, the accuracy of biological 

read-across did not increase markedly when more stringent similarity thresholds were 

applied. Finally, CBRA (dark gray solid fill) showed the highest balanced accuracy while 

being the least affected by the increasing similarity threshold. RA-sim utilizing hybrid 

descriptors resulting from pooling both chemical and biological descriptors (light gray solid 

bars) together, exhibited intermediate accuracy. The second read-across approach (RA-kNN, 

patterned fill) showed comparable or higher balanced accuracy across all four types of 

methods integrating chemical and biological descriptors when compared to RA-sim (solid 

fill). For this reason, RA-kNN was selected as the preferred algorithm for read-across. 
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Figure 3.5. Performance of RA-sim (solid fill) and RA-kNN (patterned fill) models for the 

TG-GATES data set. RA-sim models were varied using various similarity thresholds for 

neighbor selection. Models based on various spaces are denoted by colors: chemical space 

(white), biological space (black), hybrid space (light gray), and chemical-biological spaces 

(dark gray). 

 

Comparison of read-across in biological and/or chemical spaces 

Next, we tested the performance of various read-across methods for different toxicity 

endpoints (liver toxicity and carcinogenicity, mutagenicity and acute lethality) and for 

different “biological descriptor” types (e.g. gene expression data from two different studies 

and in vitro cytotoxicity screening data). For this, we used both chemical and/or biological 

descriptors and the RA-kNN algorithm. In all four data sets, we applied: 1) chemical read-

across (white bars); 2) biological read-across (black bars); 3) hybrid read-across by pooling 

chemical and biological descriptors (Equation 1, light gray bars); 4) ensemble read-across 

from pooling predictions from (1) and (2) (Equation 4, dark gray bars); and 5) CBRA 

(Equation 3, medium gray bars). Figure 3.6 and Appendix 1 Tables A1.3.1 and A1.3.2 show 

a comparison of the performance of the various read-across methods in each data set.  



68 

 

 

Figure 3.6. Performance of various RA-kNN models for four data sets. The models are 

colored as follows: chemical RA (white), biological RA (black), hybrid RA (from pooling 

chemical and biological descriptors, light gray), ensemble RA (consensus of chemical RA 

and biological RA, dark gray) and CBRA (gray). *Coverage values <0.95% are indicated on 

the chart. 

 

While chemical read-across (white bars) exhibited highest balanced accuracy of 

classification for some endpoints (i.e., mutagenicity and rat acute toxicity), biological read-

across (black bars) had greater balanced accuracy for data sets 1 and 2 of rat hepatotoxicity 

and carcinogenicity, respectively, where biological descriptors represented gene expression 

data.  However, biological read-across based on in vitro cytotoxicity screening data alone in 

data sets 3 and 4 exhibited the poorest classification accuracy (close to 50%), a result similar 

to that reported previously (Zhu et al. 2008). Importantly, the balanced accuracy of CBRA 

(medium gray bars) was consistently among the highest across all types of read-across 

models. Still, in three data sets (rat hepatotoxicity, mutagenicity, and rat acute toxicity), 

CBRA’s performance, though among the best, did not surpass that of the simpler chemical 

read-across (white bars) or biological read-across (black bars). Similar outcomes were 

obtained when a comparison was made of the number of compounds correctly predicted by 

chemical read-across, biological read-across, and CBRA (Figure 3.7). Thus, we posit that 
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given CBRA’s consistently good performance, it should be employed where possible because 

it often offers the best chance of improving classification accuracy and model interpretation.  

 

Figure 3.7. Venn diagrams depicting the number of compounds correctly predicted by 

chemical RA (blue circles), biological RA (red circles) and CBRA (yellow circles) in four 

data sets: rat hepatotoxicity (A), rat hepatocarcinogenicity (B), mutagenicity (C), and rat 

acute oral toxicity (D) 
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y-randomization test 

The prediction performance of all models presented in this study is given in Appendix 

1 Table A1.3.1. Most models built with real data significantly outperformed those generated 

by y-randomization (p-value < 0.05) and hence, were unlikely to be fitted by chance. There 

were two exceptions, however, i.e., models whose balanced accuracies were very poor (50%, 

52%), indistinguishable from the random baseline of 50% (Appendix 1 Table A1.3.1).  

3.5. Discussion 

3.5.1. Improvements due to ensemble modeling and enhanced aggregation  

Ensemble models have been shown to be more accurate than their constituent 

models
28

. The CBRA approach, effectively an ensemble model, utilizes two distinct 

descriptor types, i.e., chemical and biological, to increase classification accuracy and uncover 

associations between different types of descriptors that may characterize each compound. 

Our results show that simple ensemble modeling, which gives equal weights to both 

chemical and biological models, is insufficient to achieve high classification accuracy, as 

illustrated by the modest results of the simple ensemble model (dark gray, Figure 3.6). 

Instead, enhanced aggregation employed by CBRA ensures that the more similar neighbors 

have higher weights, regardless of whether they are biological or chemical neighbors.  This 

feature of CBRA is perhaps best exemplified by the following three case studies and their 

radial plots (Figures 3.1-3.3) illustrating how highly similar neighbors drive the prediction 

outcome.  These case studies were selected to represent: 1) prediction driven by biological 

neighbors, 2) prediction driven by chemical neighbors, and 3) concordant predictions by 

biological and chemical neighbors.  
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3.5.2. Case study: Chloramphenicol (biological space-based prediction) 

Chloramphenicol (Figure 3.1 and Appendix 1 Table A1.3.3) is an anti-bacterial drug 

whose hepatotoxicity was linked to oxidative stress initiated by reactive metabolites 

(Farombi et al. 2002). Chloramphenicol increased the level of serum enzymes, as well as 

caused liver hypertrophy and necrosis in treated rats in the TG-GATES studies (Uehara et al. 

2010). There is greater similarity in toxicogenomics profiles between chloramphenicol and 

its several “toxic” biological neighbors (0.826-0.856) than that with its nontoxic chemical 

neighbors identified using inherent chemical properties (0.645-0.667).  

The gene expression profiles of chloramphenicol and its highly similar biological 

neighbors across 30 genes showed a consistent gene signature (Appendix 2 Figure A2.3.1A). 

In contrast, chloramphenicol and its chemical neighbors were characterized by relatively 

dissimilar descriptor profiles (Appendix 2 Figure A2.3.1B). Several genes critical to the 

prediction of chloramphenicol’s activity (Abce1, Tomm22 and Bmf) are known to be 

implicated in mitochondrial and cell cycle regulation processes (Appendix 1 Table A1.3.4). 

Such deregulation is consistent with the known oxidative stress mediated hepatotoxicity of 

chloramphenicol. More importantly, this analysis indicates that statistically significant 

features elucidated by the CBRA model agree with the existing mechanistic knowledge of 

the compound’s toxicity.  Thus, such model interpretation by CBRA may generate 

hypotheses about a compound’s possible mechanisms when only short-term assays are 

available. 

3.5.3. Case study: Carbamazepine (chemical space-based prediction) 

Carbamazepine is an anti-convulsant drug that acts on neuronal voltage-gated sodium 

channels. In the TG-GATES data set, it was classified as non-hepatotoxic in the rat. The case 
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of carbamazepine (Figure 3.2) contrasts with that of chloramphenicol. Whereas biological 

RA afforded more accurate prediction than chemical RA for chloramphenicol, the opposite 

was found to be true for carbamazepine. Nonetheless, CBRA, in taking a similarity-weighted 

aggregate of the activities of kbio=5 biological neighbors and kchem=5 chemical neighbors, 

correctly predicted carbamazepine as nontoxic. 

Carbamazepine and its highly similar chemical neighbors, in addition to sharing 

several chemical features, also exert similar pharmacological effects. Carbamazepine’s 

nearest chemical neighbors (phenytoin, pemoline, phenylbutazone and phenobarbital) are 

also anti-convulsant drugs that share a tricyclic scaffold with a polar amide group in the 

middle (Figure 3.2). This common chemical motif is also responsible for their anti-

convulsant effects. The associated pharmacophore involves an amide moiety in the middle 

and a side lipophilic aryl ring for interaction with the sodium channel in order to exert the 

drug’s anti-convulsant effects (Lipkind & Fozzard 2010, Sridhar et al. 2002).  

Carbamazepine’s nearest biological neighbors (bendazac, flutamide, 

chloramphenicol, disulfiram and phenylanthranilic acid) have few obvious commonalities. 

Their gene expression profiles across the 30 predictor genes showed considerable 

heterogeneity (Appendix 2 Figure A2.3.1C). They also induce liver injury via different 

mechanisms and exhibit different histopathology and blood chemistry in the TG-GATES 

database (Uehara et al. 2010). In this instance, biological similarity determined by 24-hour 

gene expression may not suffice to signal 28-day liver injury.  

3.5.4. Case study: Benzbromarone (concordant chemical and biological predictions) 

Benzbromarone is an anti-gout agent withdrawn from the market in 2003 due to 

hepatotoxicity concerns (Lee et al. 2008). In the TG-GATES data set, both its biological and 
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chemical neighbors were predictive of its hepatotoxicity. Here, we show how CBRA can 

provide a prediction outcome bolstered by concordant predictions as well as postulate 

associations between the biological and chemical neighbors for subsequent analysis (Figure 

3.3). 

Benzbromarone-induced hepatotoxicity is attributed to disruptions in the 

mitochondrial β-oxidation of fatty acids, possibly mediated by peroxisome proliferator-

activated receptor-alpha (PPARα) activation (Kunishima et al. 2007). It exhibits a gene 

expression profile similar to those of its biological neighbors (fenofibrate, benziodarone, 

clofibrate and WY-14643), all known PPARα activators. Furthermore, the genes important 

for predicting benzbromarone’s activity (Bcs1l, Tomm20, Abce1 and LOC100360017, 

Appendix 1 Table A1.3.4), relate to mitochondrial functions, indicative of the mitochondrial-

mediated hepatotoxicity observed in benzbromarone. 

In this case, benzbromarone’s biological and chemical neighborhoods overlap and 

provide concordant predictions, possibly indicative of common biological-chemical 

associations between the two neighborhoods. The overlapping neighbor, benziodarone, 

exhibits PPAR activity similar to its biological neighbors and a lipophilic, planar structure 

similar to its chemical neighbors. In addition, the cross-talk between estrogen and other sex 

hormones and PPAR-mediated signaling is well recognized (Komar 2005), which makes the 

association of its chemical analog, ethinyl estradiol, plausible. Hence, such cross-inference 

from one neighborhood to another can still provide useful clues for formulating hypotheses 

about biological-chemical associations, the strength of which are dependent on the extent of 

the overlapping neighborhoods. Furthermore, such analysis provides a novel way for the 

concurrent study of chemical and biological features and their underlying interactions. 
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3.5.5. Advantages and Limitations of CBRA 

Read-across method is based on the expectation that chemically similar molecules 

should elicit similar biological responses. It is worth noting, however, that whichever way the 

chemical similarity is defined, it always has relative meaning; that is, the similarity search 

exercise identifies the most similar compounds in a given set of compounds, and not 

necessarily the most similar chemically feasible structures. Further, structure-activity 

relationship landscapes are known to be “rough,” with many molecules appearing chemically 

similar but nevertheless having rather different biological activities. The latter observation is 

best illustrated by the frequent presence of so called “activity cliffs” (Maggiora 2006) in 

many chemical data sets. It is for this reason that we observed different chemical and 

biological neighbors for many compounds across four data sets that were evaluated. Thus, we 

argue that it is critical to weigh in both chemical and biological neighbor’s contribution in 

predicting every compound’s activity. Such “enhanced” aggregation underlying CBRA 

exploits the complementary information inherent in both the chemical and biological 

neighbors to arrive at the most optimal prediction. 

Despite the power of relative similarity, CBRA, as with any modeling method, may 

still yield incorrect predictions by either or both set(s) of neighbors. In the latter case, neither 

biological nor chemical neighbors are instructive for model prediction or interpretation. In 

the former case, using either biological or chemical neighbors (instead of both as in CBRA) 

would yield better predictions for certain compounds. However, such accuracy provided by 

one set of neighbors may be limited to certain compounds and not the entire data set, as 

evident by the slightly smaller fraction of compounds correctly predicted by biological or 

chemical read-across models (50-77% overall accuracy, mean=65%, SD=9%) vs. that by 

CBRA (57-80% overall accuracy, mean=69%, SD=10%, Appendix 1 Table A1.3.1). In other 
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words, CBRA’s predictions may be less accurate than either biological or chemical read-

across for a minority of compounds but the CBRA approach succeeds overall showing higher 

accuracy on average as compared to other read-across methods. 

As with most ensemble models, the decreased interpretability and increased 

computational cost may outweigh the gains in accuracy (Elder 2003, Hewitt et al. 2007). 

CBRA, like other instance-based learners, is better suited to data sets where variable 

selection has already been performed to reduce noise due to irrelevant variables (Aha et al. 

1991). This variable selection step is necessary because, unlike models employing variable-

specific weights, all variables in CBRA, including irrelevant ones, are given equal 

consideration when calculating similarity.  

Despite certain limitations we argue that CBRA remains transparent and interpretable 

since neighbors of each compound can be easily identified and important variables (chemical 

features or specific genes) can be elicited as illustrated in our case studies. The important 

variables not only suggest mechanisms of action for closer toxicological examination but 

may also act as markers for a particular mechanism. Such marker profiles may help to 

uncover the toxicity mechanisms of new compounds whose toxicities were previously 

unknown. Additional studies may be undertaken to investigate the potential chemical-

biological relationships identified by CBRA.  

In addition, the consideration of toxicokinetics may be essential for constructing a 

read-across argument, but CBRA does not yet take this into account in the present format. 

The similarity of toxicokinetic profiles, especially metabolism, is often considered before 

weighing similarity in terms of mechanism of action. It is therefore reasonable to conclude 

that the inclusion of toxicokinetic descriptors may ultimately help in improving prediction 
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accuracy and acceptance of read-across. This is especially relevant when in vitro data is used 

to predict in vivo endpoints (Thomas et al. 2012). Indeed, CBRA may be extended to more 

than two spaces to accommodate toxicokinetic considerations although additional 

visualization techniques (Reif et al. 2013) may be required. 

3.5.6. Recommendations for chemical-biological modeling and its application in hazard 

assessment 

Our experience and observations with using both chemical and biological descriptors 

suggest the following methodological implications for predicting chemical hazards. First, 

biological assays such as gene expression are expected to be more predictive than more 

simple assays measuring binary biological responses in vitro (e.g., binding/nonbinding to a 

target protein). Second, it is advantageous to consider biological variables relevant to the 

prediction target. The bioassays may be selected rationally according to biological pathways 

(Judson et al. 2011). Third, variable selection and rigorous model validation prevent selection 

bias towards overly optimistic models (Thomas et al. 2012). Thus, careful modeling and 

validation according to OECD (Q)SAR principles (OECD 2007) are necessary to ensure 

robust and accurate models (Tropsha 2010). Lastly, irrelevant variables may affect some 

classification methods more than others. For example, as explained earlier, instance-based 

methods including CBRA are more susceptible to irrelevant variables while others such as 

random forest can better tolerate noisy variables (Breiman 2001). 

In addition, our work has potential practical applications for the use of read-across 

under REACH and other regulatory initiatives. Read-across approach guidance under 

REACH (http://www.reachonline.eu/REACH/EN/REACH_EN/articleXI.html) stipulates that 

“physicochemical properties, human health effects and environmental effects or 

environmental fate may be predicted from data for reference substance(s) within the group by 

http://www.reachonline.eu/REACH/EN/REACH_EN/articleXI.html


77 

 

interpolation to other substances in the group.” In this sense, even though typical 

interpretation of “similarity” is focused on a common functional group, or common 

precursors/breakdown products, the biological data provides additional confirmation 

especially when chemical and biological data exhibit consistent patterns. CBRA’s 

transparency in displaying the compounds selected for read-across allows users to examine 

the suitability of the neighbors before relying on them for subsequent prediction. As such, 

CBRA satisfies the requirement for “adequate and reliable documentation of the applied 

method” by providing a defined process for analog selection and prediction, as well as 

enabling visual interpretation of the similarities across several data domains. 

3.6. Conclusions 

Given the complex biological processes mediating chemical toxicity, hazard 

prediction will benefit from the inclusion of biological data in addition to chemical 

information. Previously, we have demonstrated that hybrid models of hepatotoxicity pooling 

biological (gene expression profiles) and chemical features could not achieve higher 

accuracy than biological models (Low et al. 2011). Herein, we have developed CBRA as an 

alternative method combining the same biological and chemical descriptors and 

demonstrated that its balanced accuracy was among the best when compared with other 

models using biological and/or chemical descriptors. This result was also replicated in three 

other data sets.  

One reason for the success of CBRA is that, as a local modeling technique 

incorporating relative similarity weighting scheme, it relies on objective metrics to predict 

toxicity class of a compound when predictions made with chemical vs. biological neighbors 

disagree. Additionally, since prediction is based on a small number of similar compounds, 
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both the modeling process and its outcome are transparent. Radial plots display the target 

compound's neighbors and their relative similarities. They allow users to examine the 

arguments made by the model when assigning a specific call (toxic or non-toxic) to the target 

compound. CBRA also highlights key biological and chemical features for further 

mechanistic interpretation. In summary, CBRA represents a novel hybrid read-across method 

that is both predictive and interpretable. It combines the simplicity and transparency of read-

across methods with the benefits afforded by more sophisticated techniques such as ensemble 

modeling and instance-based learning while incorporating modern diverse data streams, 

making CBRA a potentially appealing tool for chemical hazard assessment. 
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CHAPTER 4. INTEGRATIVE STUDY OF ADVERSE DRUG REACTIONS: 

CHEMINFORMATICS PREDICTION AND PHARMACOEPIDEMIOLOGY 

EVALUATION OF DRUG-INDUCED STEVENS JOHNSON SYNDROME 

4.1. Introduction 

Adverse drug reactions (ADR) account for up to $75 billion in healthcare expenditure 

in the US.(Ahmad 2003, National Research Council 2007)  Predicting ADR for current and 

investigational medications will benefit drug surveillance and minimize patient exposure to 

harmful drugs. Drug surveillance (or pharmacovigilance) systems currently collect and 

monitor spontaneous ADR reports. VigiBase, with over 12 million records, is the largest and 

most authoritative resource maintained by the Uppsala Monitoring Center under the auspices 

of the World Health Organization. Additional data concerning reported ADR can be obtained 

from pharmacoepidemiological (Coloma et al. 2012, Platt et al. 2012) studies, where drugs 

are associated with specific ADR through statistical analysis of large patient populations. 

Increasing digitization of health data such as electronic medical records and insurance claims 

provide rich sources for pharmacoepidemiology to draw from.(Hennessy 2006, Strom et al. 

2012, Wilson et al. 2003)  

Increasingly, cheminformatics, in particular Quantitative Structure Activity 

Relationships (QSAR) modeling, is used to predict ADR since they only require drug 

chemical structures as input (Matthews et al. 2009b, Shirakuni et al. 2012, Vilar et al. 2011, 

2012). Such early ADR prediction can minimize harmful drug exposure and has established 

cheminformatics as an integral tool for drug development(Bender et al. 2007, Gleeson et al. 

2012, Scheiber et al. 2009) and regulatory decision support (Matthews et al. 2009a,b).  
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Despite their common goals in predicting ADRs, pharmacoepidemiology and 

cheminformatics have not been used together. Herein, for the first time, we explore their 

combined power. Cheminformatics, using pharmacovigilance reports for building QSAR 

models, will uncover the relationships between drug chemical structures and ADR; 

thereafter, pharmacoepidemiology, using health insurance claims, will validate these models.  

For this proof-of-concept study, we chose Steven Johnson Syndrome (SJS) as the 

ADR of interest because of its medical severity and well-established structure-activity 

relationships (Roujeau et al. 1995, Shirakuni et al. 2012) linking drug classes such as 

sulfonamide antibiotics, penicillins, and quinolones to SJS (Roujeau et al. 1995). In SJS, 

epithelial membranes detach, leaving denuded haemorrhagic areas with up to 30-40% 

mortality rate (Roujeau et al. 1995). Although the exact pathogenesis is unknown, SJS is 

often drug-induced and immune-mediated.(Reilly & Ju 2002)  Unfortunately, many 

commonly used drugs have been falsely implicated with SJS (Toler & Rodriguez 2004), 

leading many prescribers to limit their use and hence, therapeutic options.  Thus, there is a 

need to develop high-accuracy models capable of discriminating harmful SJS inducers and 

safe drugs. 

Drawing from the most comprehensive data sources available (VigiBase (Lindquist 

2008) ADR reports, DrugBank (Wishart et al. 2008) chemical structures, and MarketScan 

health insurance claims (Truven Health Analytics)), we have developed, interpreted, applied 

and validated QSAR prediction models of SJS (Figure 1). Models were developed using a 

diverse set of drugs associated with SJS according to VigiBase. Then we applied these 

models to virtual screening of DrugBank for potential SJS inducers, some of which were 

validated by pharmacoepidemiology analysis of health insurance claims. We posit that 
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models developed in this study may not only guide rational drug design and selection of safe 

drug candidates but also direct pharmacovigilance surveillance of the established and 

emerging drugs.  

 

Figure 4.1. Schematic workflow bridging cheminformatics and pharmacoepidemiology. 

VigiBase provided 364 drugs (known SJS inducers and non-inducers) that were used for 

QSAR modeling. QSAR models provided structural alerts (SA) for interpretation and 

predicted potential SJS inducers and non-inducers in DrugBank. The predicted inducers and 

non-inducers were evaluated by a cohort study following patients for occurrence of SJS using 

health insurance claims (MarketScan). 
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4.2. Results 

4.2.1. Properties of drugs used for QSAR modeling 

A reference set of 194 SJS-inducing and 170 non-inducing drugs, defined by the 

disproportionate frequency of SJS spontaneous reports, were extracted from VigiBase (Table 

A1.4.S1). The SJS inducers (Table 4.1) had more SJS reports in VigiBase than non-inducers 

(mean=104 versus 1.5), more ADR reports overall (mean=6,953 versus 3,505) and were 

disproportionately drawn from Anatomical Therapeutic Chemical (ATC) groups J (anti-

infectives) and M (musculo-skeletal system) while non-inducers were disproportionately 

drawn from ATC groups G (genito-urinary system and sex hormones) and N (nervous 

system).  

 

Table 4.1. Properties of SJS-inducing and non-inducing drugs used for QSAR modeling 

 
a
significant difference (p-value <0.01) by Welch t-test for unequal variances 

b
signficance was not determined for ATC as drugs could belong to multiple ATC 
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To explore the structure-activity landscape, a self-organizing map (SOM)(Guha et al. 

2004, Kohonen 2008) clustered 364 drugs into 36 cells based on the drugs’ chemical 

descriptors such that chemically similar drugs were placed close to one another (Figure 4.2). 

SOM cells were colored by the proportion of SJS inducers (pink if a majority were SJS 

inducers; gray if a majority were non-inducers). The emergence of an upper pink block (SJS 

inducer majority) and a lower gray block (non-inducer majority) suggests that the SJS 

inducers may be distinguished from the non-inducers based on their chemical structures, 

warranting further application of QSAR modeling to refine this discrimination. 

Further, we examined the relationship between the drugs’ chemical structures and 

their therapeutic uses. Each SOM cell was populated by respective ATC letters such that the 

letters’ size and color indicated the number of drugs and proportion of SJS inducers, 

respectively. For instance, on the lower left corner, the largest letter “G” indicated that most 

of the drugs in the SOM cell belonged to ATC class G, although some belonged to other 

ATC classes (L, D, N). Overall, the SOM shows that non-inducers often belonged to ATC 

classes G and N (nervous system) as indicated by the largest letters in gray while SJS 

inducers often belonged to ATC classes J (anti-infectives) and M (musculo-skeletal system) 

as indicated by the largest ATC letters in pink. Thus, clustering with SOM allows one to 

draw associations among chemical structures, ATC and SJS activity. 
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Figure 4.2. Self-organizing map (SOM) in which 364 drugs were clustered into 36 cells 

based on Dragon descriptor profiles. Chemically similar drugs were positioned close to one 

another such that their topological proximity on the SOM reflected their chemical similarity. 

Within each SOM cell, letters represent ATC of drugs such that the largest letters indicate the 

most frequent ATC. SOM cells and ATC letters were colored by their proportion of SJS 

inducers (pink if mostly inducers, grey if mostly non-inducers). The emergence of an upper 

pink block (containing mostly SJS inducers) and lower gray block (containing mostly non-

inducers) suggests that inducers and non-inducers may be discriminated by chemical 

descriptors.  
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4.2.2. QSAR model performance 

QSAR models were built using three sets of chemical descriptors [Dragon 

(Todeschini & Consonni 2000), ISIDA (Varnek et al. 2005) and Molecular ACCess System 

(MACCS)(Durant et al. 2002)] and two classification methods [Random Forest 

(RF)(Breiman 2001) and Support Vector Machines (SVM)(Vapnik 2000)]. Both the six 

models and their consensus (single-vote average of six predictions) showed high accuracies 

characterized by the Area Under the Curve (AUC) values of 75-81% (Table A1.4.S2). 

Coverage (i.e., the fraction of the dataset that could be reliably predicted by the models) was 

generally high for all models (97-100%) although a few macrolides (e.g., bleomycin) were 

too structurally different (too large) to be predicted reliably. The y-randomization (i.e., 

random permutation of the target property) test showed that all models were unlikely to be 

fitted by chance (p-value < 0.05). 

4.2.3. QSAR model interpretation: structural alerts (SA) for SJS 

We analyzed the RF model built with the ISIDA fragments, many of which 

correspond to chemical functional groups. We focused on f most important (Strobl et al. 

2008) fragments that could provide a reduced model with equivalent or lower out-of-bag 

(OOB)(Breiman 2001) error than that of the full model with 1,091 fragments. By examining 

the OOB at various f values, f=29 fragments afforded models as predictive as that built with 

all 1,091 fragments; thus, these 29 fragments were used for subsequent analysis to identify 

structural alerts associated with SJS. 

Although each of these 29 discriminatory fragments could individually serve as an 

indicator for SJS activity (or lack thereof), fragments occurring frequently within the same 

drugs could be fused to generate larger, more accurate substructures to serve as structural 



86 

 

alerts (SA) for SJS. To uncover these SA by co-occurrence analysis (Method 1), every pair of 

fragments were tested for association between their co-occurrence and SJS activity using 

Fisher’s exact test (Figure 4.3A). Their co-occurrences could be visualized by a network of 

fragment nodes, connected whenever a pair co-occurred significantly (Figure 4.3B). In the 

network, clusters of co-occurring fragments formed densely connected subnetworks (i.e., 

communities) which were identified by walktrap community detection (Pons & Latapy 2005) 

(Figure 4.3B). Within each community, some co-occurring fragments may be assembled into 

a larger substructure as an indicator for either SJS class (Figure 4.3C). Of the five 

communities identified, two contained fragments that could be assembled into larger 

substructures forming SA for SJS activity (communities C1 and C2, Figures 3B-C). The first 

community (C1, purple) consisted of five fragments corresponding to arylamines, 

sulfonylarenes and sulfones that were assembled into a sulfonylarylamine SA, the 

substructure fitting all the fragments. The second community (blue) formed a β-lactam 

substructure. The green and yellow communities were composed of aliphatic chains and 

secondary amines that were more frequently present among non-inducers than SJS inducers, 

forming a “safe” substructure indicative of non-inducers (C3, C4, not shown). However, 

because such fragments are often present in many drugs, their practical use as “safe” 

substructures is limited. The remaining community (C5, pink) contained only two fragments, 

too small for meaningful interpretation.  
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Figure 4.3. Results of co-occurrence analysis of ISIDA chemical fragments.   
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Figure 4.3 (continued). (a) Adjusted p-values show the association between pairwise co-

occurrence of any two fragments and SJS inducing activity (from two-sided Fisher’s exact 

test). (b) Distinctly colored communities of co-occurring fragments detected by walktrap 

community algorithm. Fragment nodes are connected if significantly co-occurring (p-value 

<0.1). (c) Heatmap shows the joint presence of co-occurring fragments within a community 

(e.g. purple C1, corresponding to sulfonylarylamine structural alert assembled from five co-

occurring fragments, is more frequently present among SJS inducing drugs. 

 

 

Both SA uncovered by the above co-occurrence analysis were consistent with those 

obtained from the second approach, Maximal Common Substructure (MCS), which has been 

commonly used to identify frequent substructures.  This concordance provides evidence that 

co-occurrence analysis is a valid method to derive SA. However, MCS discovered two 

additional SA, fluoroquinolones and tetracyclines (Figure 4.4, IIIb, IVb) that were only 

present in at least six drugs. Because of their rarity, their key related fragments (e.g., 

fluorinated groups, quinones) were not among the 29 most important fragments analyzed for 

co-occurrences. Thus, co-occurrence analysis may be better suited to detecting substructures 

above a minimum frequency. 
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Figure 4.4. Structural alerts (SA) whose presence in a drug alerts for SJS inducing activity. 

Left column shows previously inferred substructures. Right column shows SA uncovered in 

this study. Structural differences are highlighted in gray. 

 

Substructures previously associated with SJS inducers (Roujeau et al. 1995, 2011) are 

shown in Figure 4.4. Such substructures were inferred from drug classes implicated with SJS 

such as sulfonamide antibiotics, penicillins, quinolones and tetracyclines (Roujeau et al. 

1995, 2011). Our systematic chemical analysis found larger, more specific substructures 

(Figure 4.4, right column) that were more likely to yield true positives (i.e., higher precision). 

For example, the sulfonylarylamine SA (Figure 4.4, Ib) correctly identified drugs causing 

SJS all 20 times it was present in a drug, unlike the sulfonamide SA (Figure 4.4, Ia) which 

falsely predicted the SJS-inducing potential for some sulfonamide drugs. In minimizing false 
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positives, more precise SA could “spare” drugs from wrongful association with SJS and 

leave more drug options available for use. 

4.2.4. QSAR model application: predict SJS inducers and non-inducers in DrugBank 

We used the best QSAR model (Dragon-RF) for virtual screening of DrugBank, 

assessing 4,122 drug structures for potential SJS activity (Appendix 1 Table A1.4.S4). 

Among the ten most likely SJS inducers (excluding experimental drugs), eight contained 

either the sulfonylarylamine or β-lactam with adjacent sulfur SA (Appendix 2 Figure 

A2.4.S2). Among the ten most likely non-inducers, etonogestrel, mestranol and 

rapacuronium were chemically similar to many steroidal non-inducers in our reference set 

such as progesterone. 

4.2.4.1. Validation of predictions by QSAR models 

4.2.4.1.1. By VigiBase, ChemoText and Micromedex 2.0. 

We checked VigiBase and the medical literature (ChemoText(Baker & Hemminger 

2010) and MicroMedex 2.0) for reports of SJS associated with the predicted SJS inducers 

and non-inducers (Table 4.2). Between predicted inducers and predicted non-inducers, the 

former were associated with disproportionally more SJS reports and higher Information 

Component (IC)(Bate et al. 1998) values indicative of higher-than-expected SJS reporting in 

VigiBase, and more instances of SJS in ChemoText and Micromedex 2.0. Despite the 

evidence in VigiBase, these predicted drugs were not included in our reference set for 

modeling as they were not obvious candidates for known inducers and non-inducers due to 

co-reporting with other co-medications and low usage (evident by the few ADR reports). 

Where ADR reports were few, we cautioned against relying on IC as the only evidence of 
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SJS given that their 95% credibility intervals were very wide. Nevertheless, the general 

trends in the IC values and other data sources showed that the predicted inducers were 

associated with more SJS instances than predicted non-inducers in support of our models’ 

predictions. 

Table 4.2. Most likely SJS inducers and non-inducers in the DrugBank, as predicted by 

Dragon-RF model 

    VigiBase ChemoText Micromedex 
DrugBank 

ID 
Predicted 

Value 
SD Name SJS 

reports 
All ADR 
reports 

ICa SJS articlesb  

Predicted inducers (from DrugBank) 
DB01581 0.978 0.010 Sulfamerazine 0 1 -0.01 2 N 
DB01332 0.967 0.006 Ceftizoxime 2 748 -0.26 0 Y 
DB00493 0.966 0.016 Cefotaxime 40 7550 0.66 15 Y 
DB00576 0.964 0.007 Sulfamethizole 5 490 1.37 5 Y 
DB01325 0.963 0.007 Quinethazone 0 25 -0.22 0 N 
DB00880 0.959 0.040 Chlorothiazide 2 800 -0.34 1 Y 
DB00891 0.955 0.011 Sulfapyridine 0 29 -0.25 2 N 
DB01333 0.951 0.012 Cefradine 3 994 -0.12 1 Nc 
DB00301 0.937 0.020 Flucloxacillin 29 5272 0.71 3 N 
DB01607 0.937 0.006 Ticarcillin 2 338 -0.11 0 Y 

Predicted non-inducers (from DrugBank) 
DB00294 0.066 0.031 Etonogestrel 1 4443 -3.35 0 Nc 
DB01357 0.084 0.036 Mestranol 0 26 -0.23 2 N 
DB00202 0.099 0.144 Succinylcholine 4 3581 -1.46 0 N 
DB01160 0.100 0.080 Dinoprost  0 161 -1.05 0 N 
DB01088 0.103 0.020 Iloprost 1 1518 -1.88 0 N 
DB01049 0.109 0.037 Ergoloid mesylate 2 171 1.23 0 N 
DB00966 0.110 0.023 Telmisartan 8 4845 -0.96 0 Nc 
DB01089 0.120 0.044 Deserpidine 0 9 -0.08 0 N 
DB04834 0.123 0.079 Rapacuronium 0 112 -0.80 0 N 
DB00654 0.124 0.042 Latanoprost 3 5423 -2.40 1 Nc 

Known inducers/positive controls (from reference set) 
- - - Sulfamethoxazole 37 971 1.43 104 Y 
- - - Amoxicillin 648 48501 1.36 44 Y 

Known non-inducers/negative controls (from reference set) 
- - - Progesterone 0 3825 -4.72 0 Nc 
- - - Vardenafil 0 4506 -4.95 0 N 

a
Information component (IC) is a disproportionality frequency measuring the number of SJS reports lower than 

or higher than expected in VigiBase. 

b
Number of articles in Medline matching the search terms: [drugname] AND "Stevens-Johnson 

Syndrome"[Mesh] OR "Erythema Multiforme"[Mesh] OR "epidermal necrolysis, toxic"[MeSH] Filters: 

Humans (as of Februrary 2013) 

c
Hypersensitivity reaction although SJS was not explicitly mentioned 
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4.2.4.1.2. By pharmacoepidemiology analysis of health insurance claims. 

Pharmacoepidemiology evaluation of MarketScan (Truven Health Analytics) health 

insurance claims data found predicted non-inducers as a group were associated with lower 

odds of SJS compared to known inducers (adjusted odds ratio, OR=0.43, 95% CI [0.19, 1.0], 

p-value=0.04, Figure 4.5). Comparisons involving predicted inducers were underpowered 

and could not be evaluated as there were only 1,005 patients on predicted inducers, too few 

for even one observable SJS case. 

 

Figure 4.5. Crude and adjusted odds ratio (with 95% confidence intervals) comparing 

patients on SJS inducers (known or predicted) vs those on non-inducers (known or 

predicted). 

 

4.3. Discussion 

To meet our objectives of developing, interpreting, applying and validating QSAR 

models of SJS, we first developed QSAR classifiers that predicted SJS inducers and non-

inducers from chemical structures with consistently high accuracy (75-81% AUC, Appendix 

1 Table A1.4.S3).  
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Second, we interpreted the ISIDA models by identifying the most predictive 

fragments from which we further identified co-occurring combinations (SA) frequently 

associated with the inducer class (Figure 4.3). Although the SA were present in fewer drugs, 

they alerted for SJS activity with greater precision than previously suspected substructures, 

defining an enriched chemical space for which their presence more effectively alerted for SJS 

(Figure 4.4). 

The additional chemical features encapsulated in our larger SA offered mechanistic 

clues. For example, sulfonamides antibiotics have long been implicated with SJS (Roujeau et 

al. 1995) although it is known that sulfonamides alone do not induce SJS (Toler & Rodriguez 

2004). Instead, studies have attributed immunogenic reactions related to SJS to an arylamine 

group within the sulfonylarylamine (Brackett et al. 2004) SA (Figure 4.4, Ib). The purported 

mechanism involves the metabolic transformation of the arylamine group into a reactive 

nitroso metabolite which covalently binds to cellular macromolecules to initiate an immune 

response consistent with the hapten hypothesis (Brackett et al. 2004, Naisbitt et al. 1999, 

Toler & Rodriguez 2004). Arylamines are generally rare among drugs due to their reactivity. 

Exceptions are drugs such as sulfonamide antibiotics, which contain a sulfone group (SO2) in 

the electron-withdrawing para-position to stabilize the arylamine against overt toxicity but 

not exculpate it from metabolizing into the nitroso culprit (Uetrecht 2002).  

The other SA, β-lactam with adjacent sulfur (Figure 4.4, IIb), suggests that the 

additional sulfur atom may be necessary for SJS activity. By specifying the adjacent sulfur 

atom, precision increased to 100% such that all β-lactam antibiotics containing it were SJS 

inducers. Conversely, analogs without the adjacent sulfur atom such as latamoxef were non-

inducers. 
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Our third SA refers to a fluoroquinolone (Figure 4.4, IIIb) instead of quinolone as 

previously suspected. However, because all the quinolones in our study were also 

fluoroquinolones, we could not compare them and conclude that one was a better alert. We 

note that such a distinction between the two may be irrelevant as most unfluorinated 

quinolones have been discontinued in favor of the more efficacious fluoroquinolones(King et 

al. 2000). 

Our fourth SA refers to tetracycline antibiotics instead of the more general four-ring 

system present in both tetracycline antibiotics and anthracyclines. In our study, all six 

tetracycline antibiotics were inducers while all three anthracyclines were non-inducers. Their 

structural differences lie in the presence of a dimethylamine group and absence of a sugar 

ring in tetracycline antibiotics. In using a more refined SA that can differentiate the SJS-

inducing tetracycline antibiotics from the non-inducing anthracyclines, we improved the 

precision to 100%. 

Other substructures such as the aromatic ring has been suggested as a SA for 

anticonvulsants by a previous study (Handoko et al. 2008). However, we did not find this 

trend in our study using our expanded set of drugs including non-anticonvulsants. One reason 

may be the ubiquity of the aromatic ring in both SJS inducers and non-inducers. 

Third, we demonstrated the practical utility of the QSAR models, using them to 

screen the DrugBank library of 4,122 drug structures for potential SJS inducers. Those 

predicted with high confidence were chemically similar to drugs in our reference set used for 

training QSAR models (Appendix 2 Figure A2.4.S2).  

Fourth, when verified against SJS reports, predicted inducers were associated with 

more SJS reports than predicted non-inducers (Table 4.2). Pharmacoepidemiology evaluation 
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also found predicted non-inducers associated with lower SJS odds (Figure 4.6). However, 

similar assessment of predicted inducers was inconclusive as both predicted inducer usage 

and the SJS outcome were rare. 

Some pitfalls of our approach warrant a discussion.  One limitation stems from 

VigiBase’s voluntary spontaneous reporting system which is prone to underreporting and 

reporting bias. Nevertheless, it remains the largest source of ADR reports providing the 

largest set of reference drugs for analysis. Another vulnerability relates to the definition of 

SJS inducers and non-inducers for modeling. Drugs were statistically defined by 

disproportionality analysis (see Methods) instead of being clinically defined by a gold 

standard. Fortunately, the two definitions have been reported to be in good agreement (83% 

accuracy) (Harpaz et al. 2013). Another drawback is the limited predictivity by chemical 

structures alone (up to 81% AUC) despite rigorous modeling and validation in line with 

OECD QSAR guidelines (OECD 2007). Better understanding of the SJS mechanisms may 

help to identify non-chemical factors such as metabolism (Hou & Wang 2008) currently 

unexplained by the chemical descriptors used. The pharmacoepidemiology analysis of 

insurance claims posed statistical limitations for rare outcomes such as SJS. For lack of 

temporal data, we could not demonstrate earlier detection of ADR than current methods. This 

could be addressed by a prospective validation in which later data would be set aside for 

validating models built on earlier data. 

4.4. Conclusions 

In conclusion, our tiered strategy demonstrated the combined power of 

cheminformatics and pharmacoepidemiology in predicting and validating drugs that could 

cause SJS. We advocate applying such a strategy for other ADRs.  
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4.5. Methods 

4.5.1. VigiBase as data source.  

For QSAR modeling, a reference set of drugs was extracted based on their reporting 

correlations with SJS in VigiBase (~20,000 drugs and 2,000 ADR among 7,014,658 reports 

from 107 countries as of February 2012, coded according to WHO Drug Dictionary 

Enhanced and WHO-ART(Lindquist 2008)). 

SJS inducers were drugs with higher-than-expected reporting with SJS (i.e., positive 

coefficients in a shrinkage regression model (Caster et al. 2010)). Non-inducers were defined 

by the following criteria. For drugs with <1000 ADR reports in total, the criterion was to 

never be reported with SJS. For drugs with ≥1000 reports in total, both these criteria were 

required: (i) no reports where the drug was the only drug suspected of causing SJS; and (ii) 

disproportionately few SJS reports  (i.e., negative IC 95% credibility interval (Bate et al. 

1998, Norén et al. 2011)).  

4.5.2. Chemical structures.  

Chemical structures were retrieved for drugs excluding mixtures and biologics. 

Chemical curation ensured that drug structures were correctly represented and standardized 

prior to the modeling(Fourches et al. 2010). After removing salts, metal-containing 

compounds, large molecules (molecular weight > 2,000) and structural duplicates 

(ChemAxon v.5.0; Pipeline Pilot Student Edition v.6.1.5, Accelrys Inc), 194 SJS inducers 

and 170 non-inducers remained for QSAR modeling  (Appendix 1 Table A1.4.S1). 

Molecular structures were converted into three different types of chemical 

descriptors: 457 Dragon descriptors, 3,404 ISIDA fragments, and 166 MACCS fingerprints. 
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The 457 Dragon descriptors (v.5.5, Talete SRL, Milan, Italy)(Todeschini & Consonni 2000) 

included constitutional groups, functional groups, atom-centered fragments, molecular 

properties and 2D frequency fingerprints. ISIDA/Fragmentor (Varnek et al. 2005) split each 

chemical structure into substructural fragments containing 2 to 6 atoms in linear sequence. 

Fragment descriptors were binarized depending on whether they were present (1) or absence 

(0) in the drug. MACCS fingerprints are binary representations of a predefined set of 166 

chemical features (Durant et al. 2002).  

All subsequent analyses were performed in R (v.2.14). Continuous descriptors 

(Dragon) were autoscaled to z-scores. Descriptors were excluded if they were invariant (< 

0.001 standardized standard deviation, > 99% constant values) or intercorrelated (if pairwise 

r
2
 > 0.99, randomly remove one of the two descriptors), such that 354 Dragon, 138 MACCS 

and 1,091 ISIDA descriptors remained for modeling (Appendix 1 Table A1.4.S2). 

4.5.3. Preliminary chemical exploration by SOM clustering of drugs in chemical space 

To visualize the 364 drugs in the chemical space, they were clustered by their Dragon 

descriptor profiles using a SOM(Kohonen 2008) which projected the drugs onto a two-

dimensional 6 x 6 grid of cells such that similar drugs were clustered together within a cell 

and cells with similar groups of drugs were placed closed to one another (Figure 4.2). Thus, 

the topological distance between the drugs based on SOM reflects the Euclidean distance of 

their chemical descriptor profiles. Each cell was colored by its proportion of SJS inducers 

(gray if mostly SJS inducers, pink if mostly SJS inducers). Each cell was also populated with 

letters representing the drugs’ ATC codes, and the letters were sized and colored according to 

the number of drugs and proportion of SJS inducers. 
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4.5.4. QSAR model development. 

For each of the three descriptor sets, two classification methods, RF (Breiman 2001) 

and SVM (Vapnik 2000), were used to build QSAR models.  All models were evaluated by 

external 5-fold cross validation (CV) (Tropsha & Golbraikh 2007) whereby the data set was 

divided randomly into five equal parts and each individual part was systematically used as an 

external validation set while the remaining 80% was used as a modeling set. Additionally, 

modeling parameters were tuned by internal 5-fold CV which further split each modeling set. 

A tuned model had modeling parameters that resulted in the smallest error averaged across 

the five training sets from internal 5-fold CV. This tuned model was subsequently externally 

validated with the corresponding external set, which was never used for parameter tuning. 

Only prediction accuracies for the external sets were reported (Appendix 1 Table A1.4.S3). 

Models were assessed by specificity, sensitivity, balanced accuracy, AUC and 

coverage. Balanced accuracy is the average of specificity and sensitivity. Coverage is the 

fraction of drugs in the external set that are within the models’ extrapolation domain 

(Tropsha et al. 2003). Additionally, precision was used to assess the SA. Standard errors of 

all metrics were calculated by bootstrapping (Efron & Tibshirani 1986) with 1000 trials. 

We performed y-randomization to ensure that models were robust and not due to 

chance correlations.(Wold & Eriksson 1995) After permuting the y activity labels in the 

modeling sets, models were rebuilt following the same procedures as outlined above for non-

permuted data. This process was repeated 30 times to generate a distribution of y-randomized 

model accuracies for comparison under a one-tailed one-sample t-test. 
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4.5.5. QSAR model interpretation. 

Model interpretation involved identifying key chemical predictors of SJS in terms of f 

most important individual chemical fragments and fused substructures reconstituted from the 

fragments. This was only possible for the models based on ISIDA fragments.  

4.5.5.1. f most important chemical fragments. 

From the ISIDA-RF model, ISIDA fragments were ranked by RF conditional 

importance (Strobl et al. 2008). Because the fragment ranking varied slightly across the five 

models generated with 5-fold external CV, only f fragments that were consistently among the 

top 10, 25, 50, 75, and 150 fragments in all five models were selected (see Appendix 3). We 

then determined the smallest number of f fragments that could yield RF models with out-of-

bag error that was smaller or equal to that of full RF models with 1,091 fragments (Appendix 

2 Figure A2.4.S1). 

4.5.5.2. Structural alerts by Method 1 (co-occurring fragments) 

The fused SA were reconstituted from clusters of fragments that co-occurred more 

frequently in SJS inducers than in non-inducers. All possible pairs of f fragments were tested 

for higher-than-expected co-occurrence in inducers than in non-inducers by a two-tailed 

Fisher’s exact test. A fragment pair was said to have significant co-occurrence when its p-

value was <0.1 (after adjustment for multiple testing by permutation; see Appendix 3 and 

Figure 4.3A). 

Co-occurring fragments were represented by a network where fragment nodes were 

connected if they co-occurred significantly (Figure 4.3B). Frequently co-occurring fragments 

formed densely connected subnetworks known as communities in network analysis. 

Communities were detected by the walktrap algorithm, a bottom-up approach which 
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stochastically agglomerated the fragment nodes such that they were disproportionately more 

connected with nodes inside the community than outside.(Pons & Latapy 2005) Within a 

distinctly colored community, the fragments are said to co-occur more frequently in drugs of 

one class vs. the other. Hence, they can be assembled into a larger substructure as SA for a 

certain class of drugs.  

Structural alerts by Method 2 (maximal common substructures, MCS). 

MCS (Chakravarti et al. 2012) provided a second set of SA for comparison with those 

obtained by co-occurring fragments (Method 1). MCS extracted the largest substructures 

more frequently associated with SJS inducers than with non-inducers that would meet all the 

following pre-defined criteria: size ≥8 atoms, frequency ratio ≥2 and derived from ≥6 

molecules. 

4.5.6. QSAR model application: predict SJS inducers and non-inducers in DrugBank. 

As an application of our best QSAR model (RF model of Dragon descriptors), we 

screened the DrugBank library of 4,122 drugs (Wishart et al. 2008) for potential SJS 

inducers, after excluding drugs used for modeling and applying the same chemical curation 

and descriptor treatment procedures used earlier for modeling.  

4.5.7. Validate predictions by QSAR models. 

The following drugs were evaluated for evidence of SJS (or lack of) using VigiBase 

(Lindquist 2008), ChemoText (Baker & Hemminger 2010), Micromedex 2.0 and MarketScan 

(Truven Health Analytics) (Table 4.2): top ten predicted SJS inducers, top ten predicted non-

inducers, two known inducers (i.e., positive controls) and two known non-inducers (i.e., 
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negative controls). Drugs were ranked according to the consistency of predictions by the five 

models stemming from 5-fold CV. 

4.5.7.1. Validation by VigiBase, ChemoText and Micromedex 2.0. 

For each drug of interest, we queried VigiBase for the IC (Bate et al. 1998) 

disproportionality measure of SJS reports. From ChemoText, a chemocentric database of 

MeSH annotations sourced from PubMed (Baker & Hemminger 2010), we counted the 

number of human studies co-annotating the drug of interest and “Stevens-Johnson 

syndrome”, “erythema multiforme”, or “epidermal necrolysis, toxic”, inclusive of their 

MeSH synonyms. From Micromedex 2.0, we looked for mention of SJS and related 

hypersensitivity.   

4.5.7.2. Validation by pharmacoepidemiology analysis of health insurance claims. 

We performed a retrospective cohort study that followed patients prescribed drugs 

predicted as inducers or non-inducers for occurrences of SJS using MarketScan (Truven 

Health Analytics), the largest database of US health insurance claims. Eligible patients on the 

drugs of interest (in either outpatient and inpatient setting) between 2000 and 2011 were 

selected according to an incident user study design (Ray 2003) using the following criteria: 

all ages, washout period ≥30 days before index drug date and follow-up period of 45 days 

after index date (see Appendix 3 and Appendix 2 Figure A2.4.S3). The short washout period 

(≥30 days) boosted the number of eligible patients on several rare drugs. The short follow-up 

period (45 days) was chosen to reflect the quick onset of drug-induced SJS, typically 

expected within 21 days of initial drug use (Chan et al. 1990). During the study period, 

patients must have maintained continuous insurance coverage (<7 days uninsured). Drug 

exposure period started from index drug date to the end of the days’ supply of the last 



102 

 

prescription fill, allowing a gap of ≤30 days between fills.  Patient characteristics considered 

included age, sex, US geographical region, employment status and employment industry 

(Appendix 1 Table A1.4.S5). Cases of SJS were defined as patients with any outpatient or 

inpatient diagnosis coded 695.1x according to the International Classification of Diseases, 

Ninth Revision (ICD-9) as used by previous studies (Chan et al. 1990, Eisenberg et al. 2012, 

Hällgren et al. 2003, Schneider et al. 2012, Strom et al. 1991a,b).  

For the comparisons between inducers and non-inducers, we computed crude OR and 

OR obtained from logistic regression adjusted for age and sex. Crude OR was calculated with 

small-sample adjustment (Jewell 1986) to account for the small cell counts (≤5). 
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CHAPTER 5. GENERAL DISCUSSION AND CONCLUSIONS 

This dissertation presented several integrative approaches to address the problems 

facing toxicity prediction models, namely the lack of accuracy and interpretation due to 

incomplete formulation of chemical and biological factors central to chemical toxicity. To 

this end, integrative chemical-biological modeling combining both chemical and biological 

factors enhanced interpretation but not predictivity (Chapter 2). In efforts to further improve 

predictivity, chemical-biological read-across (CBRA) was developed (Chapter 3). Besides 

integrating chemical structures and bioassays, the use of alternative data sources such as 

patient health insurance claims may increase the relevance of our models to human toxicity. 

Chapter 4 demonstrates a feasible workflow coupling cheminformatics with 

pharmacoepidemiology to predict and validate drugs likely to induce Stevens Johnson 

Syndrome (SJS). 

Note that since the conclusions, study limitations, and future perspectives specific to 

each chapter have been described in detail in the chapters themselves, this chapter will 

instead summarize the key findings, discuss their contributions, highlight study limitations 

and propose recommendations for future work. 
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5.1. Summary of key findings 

5.1.1. Integrative chemical-biological modeling with existing methods improved 

interpretability but not predictivity (Chapter 2) 

Pooling chemical structures and toxicogenomics assays for modeling with existing 

machine learning methods (kNN, SVM, RF, DWD) did not improve prediction performance 

as expected. However, chemical and toxicogenomic markers predictive of hepatotoxicity 

were identified. Instead of models based on over 30,000 genes, 85 gene markers could 

predict hepatotoxicity with 76% balanced accuracy (Section 2.5). When mapped onto 

pathways, the 85 genes signaled changes in ER stress and mitochondrial regulation, 

underscoring their importance in mitigating hepatotoxicity. Structural alerts suggested 

metabolic activation as a major mechanism underlying hepatotoxicity. The liver, being a 

primary site for metabolism, converts many drugs into reactive metabolites capable of 

eliciting oxidative stress. 

The lower-than-expected prediction performance was a major shortcoming which 

prompted the subsequent development of an integrative method that would optimize the use 

of both chemical structures and bioassays for toxicity prediction (Chapter 3). 

5.1.2. Novel integrative chemical-biological read-across (CBRA) improved predictivity and 

interpretability (Chapter 3) 

Using CBRA to integrate chemical structural and bioassay assay in four data sets 

resulted in models with consistently high prediction performance compared to other models 

using either or both data types. CBRA learns from both chemical analogs and biological 

analogs for toxicity prediction and does so in a way that exploits the complementary 

information between them by an appropriate similarity-weighted aggregate.  
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CBRA is conceptually simple and lends itself to visualization and automation, 

making it an appealing tool for high-throughput regulatory assessment. To attain 

transparency, CBRA is represented as a radial plot which visually displays the most similar 

chemical and biological analogs such that the user can assess their suitability for read-across. 

To attain interpretability, CBRA calculates a feature importance score for identifying 

important chemical and biological features such that chemical and biological insights may be 

drawn.  

CBRA also highlights important chemico-biological associations that would have 

been missed in chemical-only or biological-only analysis. In the analysis of benzbromarone 

(Section 3.5.4), CBRA uncovered a link between bent molecular structures and PPAR 

activity. Chemical analogs (e.g. ethinyl estradiol) resembling the bent molecular structure of 

benzbromarone were hypothesized to share benzbromarone’s PPAR activity. Such 

concurrent study of chemical and biological features generates testable hypotheses for further 

research inquiry. 

5.1.3. Cheminformatics prediction and pharmacoepidemiology validation demonstrated a 

practical tiered approach for detecting adverse drug reactions (Chapter 4) 

Using the most comprehensive data sources available, QSAR models were developed 

to predict drug-induced SJS. Using the interpretation framework developed in Chapter 4, the 

QSAR models were deciphered for key chemical features associated with SJS. To 

demonstrate the practical utility of the QSAR models, the DrugBank library of 4,122 drugs 

was screened for SJS. Predicted SJS inducers and non-inducers were subsequently validated 

by a pharmacoepidemiology analysis of health insurance claims which confirmed predicted 

non-inducers to be associated with lower odds of SJS. 



106 

 

Out of 1,091 chemical fragments, the QSAR model identified 29 chemical fragments 

necessary for predicting drug-induced SJS. Structural alerts, generated by a co-occurrence 

analysis of the 29 fragments, predicted SJS with greater precision than previous structural 

alerts (Section 4.5). The structural alerts also hinted at key functional groups possibly leading 

to SJS. For instance, our sulfonyl arylamine structural alert found the arylamine group to be a 

critical feature for SJS. The arylamine group, being relatively reactive, is known to form 

immunogenic protein adducts inciting a SJS response (Naisbitt et al. 1999). 

Notably, this study demonstrated a feasible scheme for coupling cheminformatics and 

pharmacoepidemiology for pharmacovigilance detection. QSAR models predicted high risk 

drugs from DrugBank while subsequent in-depth pharmacoepidemiology validated the 

results. Such a tiered approach combines the high throughput advantage of cheminformatics 

with the statistical rigor of pharmacoepidemiology while avoiding the ethical and time 

obstacles of conducting additional clinical trials. 

5.2. Contributions and practical implications 

5.2.1. Improved predictivity 

Current fragmented efforts in predicting toxicity from only biological or chemical 

considerations have not maximized the opportunities enabled by the new toxicity data 

landscape of deeper biological assay characterization and broader chemical scope. More 

importantly, the models do not fully reflect the underlying toxicological processes which 

result from a complex interplay between the chemical inducer and biological host. 

Chapters 2 and 3 exemplified attempts to reconcile the chemical and biological 

domains for predicting hepatotoxicity. When data pooling of chemical structures and 
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biological assays failed to increase prediction performance of models as expected, an 

integrative method, CBRA, was developed to exploit the complementary information 

between chemical structures and biological assays. It acknowledges that chemical structures 

and biological assays are not always equally predictive of toxicity in every compound and 

thus, allows for different weights depending on the chemical and biological neighbors used 

for learning. In using a similarity weight, learning from similar analogs is favored over that 

from dissimilar analogs. As a result, previous conflicts between chemical-based and 

biological-based predictions were resolved by CBRA, netting an overall gain in the number 

of compounds correctly predicted. This was shown in four data sets where CBRA was 

consistently among the best models (Figure 3.6).  

5.2.2. Improved interpretability 

Interpretable models that can highlight key chemical and biological features among 

thousands allows us to focus our testing resources, deepen our understanding of the 

toxicological processes and open up new lines of inquiry for further experimentation. To this 

end, Chapter 2 identified 85 gene markers which were predictive of hepatotoxicity and were 

indicative of mechanisms related to aberrant liver growth and repair. 

A novel method of deriving structural alerts based on co-occurring chemical 

fragments was presented in Chapter 4. Unlike current methods based on expert opinion or 

substructure mining, this new method drew upon the chemical descriptors used in the QSAR 

model, increasing the model’s explanatory power and validity. 

Structural alerts, as heuristic indicators, allow a user to quickly estimate toxicity by 

their presence in a compound without the need for thorough modeling. Particularly, they 

often correspond to chemical functional groups and are highly intuitive to a chemist who can 
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then avoid such substructures during molecular design. The increased precision of our 

structural alerts for SJS meant that fewer drugs were falsely implicated with SJS (i.e. fewer 

false positives), making more drugs available for use. In contrast, previous cautious 

avoidance of all sulfonamides has left prescribers and patients with fewer drug options (Toler 

& Rodriguez 2004). Besides increased precision, the structural alerts also suggested chemical 

mediators of drug-induced SJS such as the sulfoynyl arylamine group whose role in SJS has 

been reported in (Naisbitt et al. 1999). 

CBRA, the integrative chemical-biological method developed in Chapter 3, achieved 

predictivity without compromising interpretability. Transparent and highly visual, CBRA is 

in line with current risk assessment efforts such as ToxPi (Reif et al. 2013), enabling large-

scale automation while illuminating the assessment process. Not only does CBRA display the 

most similar chemical and biological analogs for read-across, it identifies key chemical and 

biological features and potential associations between them for subsequent inquiry. 

5.2.3. Practical integrative schemes for toxicity prediction 

This dissertation demonstrated the feasibility of integrating data and techniques from 

cheminformatics, bioinformatics and epidemiology for the study of chemical toxicity. 

Presented here are two ways: 1) using cheminformatics and bioinformatics (specifically 

toxicogenomics) for toxicity prediction, and 2) coupling cheminformatics prediction with 

pharmacoepidemiology validation. The first way recognizes that chemical toxicity arises 

from the complex interactions between the chemical toxicant and the biological host and tries 

to account for both chemical and biological factors during toxicity prediction. To this end, 

several integrative chemical-biological approaches were explored and compared in Chapter 

3. We discovered that the naïve use of existing classification methods with data pooling or 
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model pooling did not always result in improved predictivity, requiring new methods such as 

CBRA to be developed.  

The second way combined the advantages of two disciplines, the high throughput 

scale of cheminformatics models and the statistical rigor of pharmacoepidemiology, to 

address some of the inadequacies faced by current pharmacovigilance efforts. Spontaneous 

reports, the primary source of data for ADR detection, are known to underreport and are 

prone to reporting bias. Increasingly, complementary data sources such as chemical 

structures, biological assays and clinical records are drawn upon in order to detect ADR more 

quickly and accurately. The study of clinical records has put the spotlight on 

pharmacoepidemiology which provides the tools to reliably link human health effects to drug 

exposure (or chemical exposure in the closely related branch of environmental 

epidemiology). As human experiments are not always feasible or ethical, the use of 

(pharmaco)epidemiology for assessing human toxicity becomes ever more important, 

especially when animal or in vitro models extrapolate poorly to human toxicity. However, 

because (pharmaco)epidemiology requires careful study design and rigorous statistical 

adjustment of confounders, it is less amenable to large-scale automated analysis unlike 

cheminformatics.  

To overcome the lower throughput scale of pharmacoepidemiology, Chapter 4 

presented a practical tiered approach in which high throughput cheminformatics first 

predicted from chemical structures drugs likely to induce SJS. Next, likely inducers were 

validated by pharmacoepidemiology analysis of health insurance claims of over 13 million 

patients. Such a tiered approach meets the goals of the new proposal for active drug 
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surveillance (e.g. Mini-Sentinel) to apply increasingly rigorous methods to elicit true signals 

of ADR (Platt et al. 2012). 

5.3. Limitations and future solutions 

5.3.1. Chemical data limitations and future solutions 

QSAR modeling is inherently limited by the chemical space representation of the 

chemicals available for modeling. Chemical space is defined as the multi-dimensional 

descriptor space spanned by the chemicals within a data set. An ideal chemical space for 

QSAR modeling should be densely and uniformly populated with sufficient compounds and 

be wide enough to be applicable to most test compounds. Such qualities allude to the 

chemical diversity and representativity of the data set (Bayada et al. 1999). Areas in which 

chemicals are underrepresented, termed diversity voids by (Pearlman & Smith 1998), lack 

relevant structural information for training models. Consequently, the underrepresented 

compounds become structural outliers for which the QSAR model is no longer instructive 

(Golbraikh 2000). Thus, chemical diversity and representativity should be considered during 

the collection of experimental data. While this is practiced in drug discovery to optimize 

sampling of a diverse chemical space for assay characterization (Bayada et al. 1999), this is 

not yet the case in toxicity testing which is more often driven by factors related to public 

health (e.g. use by vulnerable populations) and commerce (e.g. production volume) than 

chemistry.  

For example, the comparatively poor prediction performance of QSAR models in the 

toxicogenomics project in Chapter 2 was due to numerous diversity voids in the chemical 

space (Figure 2.6A). The 127 compounds in the data set were selected to represent various 
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hepatotoxic modes of action (e.g. phospholipidosis, glutathione depletion) rather than 

chemical diversity. As such, certain drug classes such as fibrates were overrepresented while 

others such as xanthines were underrepresented, resulting in an unevenly distributed 

chemical space with considerable diversity voids and activity cliffs (Sections 2.4 and 2.5). 

On average, the 127 compounds had low chemical similarities with their nearest neighbors 

(mean Tanimoto coefficient=0.65) and could not be reliably predicted from the relatively 

dissimilar neighbors. In contrast, the more biologically similar neighbors (mean Tanimoto 

coefficient=0.79) provided more accurate predictions.  

To improve QSAR models, diversity voids may be filled in with additional chemical 

data points such that the voids are longer underrepresented. Such data set enrichment tries to 

span the largest chemical space with the fewest compounds in order to minimize data 

collection costs (Willett 2000). Data set enrichment may also resolve activity cliffs as 

additional data points with consistent SAR patterns dilute the activity outlier’s contribution. 

In short, where QSAR modeling is expected, data sets should be designed with chemical 

diversity and representativity in mind. 

5.3.2. Biological data limitations and future solutions 

First, the bioassay data carried a certain degree of experimental error. Second, they 

were selected according to their availability instead of a rational basis. Because we had 

limited ourselves to bioassays that were generated under the same experimental conditions 

across all chemicals, only toxicogenomics and cytotoxicity assays from three experiments, 

TG-GATES, DrugMatrix and NCGC were used (Section 3.3.1). Of the chemicals with 

bioassays, toxicity labels for training models were extracted for as many chemicals as 
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possible but might not necessarily relate to the bioassays by design. As such, the bioassays 

may not be useful predictors of the toxicity labels. 

Chapter 3 showed that toxicogenomics assays, rich descriptions of general biological 

processes, were often better predictors of toxicity than cytotoxicity assays (Sections 3.4.2 and 

3.5.6). In particular, cytotoxicity assays predicted mutagenicity with only 50% balanced 

accuracy. One possible reason may be the lack of biological relevance between cytotoxicity 

and mutagenicity which makes the case for rational selection of bioassays. In response, a 

framework for estimating toxicity centered on biological pathways has been proposed 

(Judson et al. 2011). Instead of predicting toxicity from all available bioassay data, only 

bioassays relevant to the pathway will be used. This will help to focus testing and modeling 

resources and improve overall model interpretation. Indeed, rational selection of bioassays by 

gene and protein functions increased prediction performance in several cases (Thomas et al. 

2012). 

Despite the array of bioassays available, important toxicological determinants such as 

toxicokinetics factors and exposure measures remain unaccounted for. Attempts to include 

bioavailability and metabolic clearance improved in vitro-in vivo extrapolation models 

(Rotroff et al. 2010, Wetmore et al. 2011). In light of these results, a future direction for 

CBRA may be to incorporate other toxicological factors in addition to the current use of 

chemical structures and bioassays. 

5.3.3. Methodological limitations and future solutions 

Further predictivity improvements may be achieved by more advanced machine 

learning techniques beyond the mainstream approaches used here. These advanced 

techniques exploit hidden data structures for learning and in doing so, arrive at more 
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predictive models. Several examples include multi-task learning, which cross-learns from 

correlated toxicity activities (Caruana 1997, Zhang et al. 2013), and Bayesian hierarchical 

modeling, which can adjust for heterogeneous data with different degrees of error such that 

the different data sources are more effectively pooled for modeling (Liang et al. 2009). The 

latter recognizes that experimentally derived bioassays, being “noisier” than computed 

chemical descriptors, should be handled differently and allows the formulation of within-lab 

and between-lab errors.  

Although this dissertation drew upon several methods besides machine learning 

classification (e.g. SOM clustering and network community detection), many more methods 

remain at our disposal. Exploratory analysis such as canonical correlation analysis may 

explain how two feature spaces (e.g. chemical and biological) are related. Regularized CCA 

was successfully used by Pauwels et al. to investigate how drug chemical structures relate to 

multiple ADR (Pauwels et al. 2011). The same technique may be applied to study how 

chemical structures relate to bioassays to generate key chemico-biological insights for 

subsequent examination.  

Additional analysis, while not necessarily performed for prediction, may generate 

insight to support the interpretation of the prediction models. For example, the interpretation 

framework in Chapter 4 found a subset of chemical features associated with the SJS 

phenotype, knowledge that aided the development of a more parsimonious and interpretable 

QSAR model. Such feature selection, because of its parallels with genome-wide association 

studies (GWAS) (Moore et al. 2010, Touw et al. 2013), could be termed  “Chemical-Wide 

Association Studies” (CWAS) (Low et al. 2013b), similar to other GWAS analogies such as 

Environmental-WAS (Patel et al. 2010) and Phenome-WAS) (Denny et al. 2010). Further 
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development of CWAS could mirror the extensions made to GWAS, for example, to 

characterize fragment-fragment interactions akin to characterizing epistatic interactions 

(Cordell 2009, Winham et al. 2012). 

Methodological challenges specific to each chapter include SJS being too rare an 

outcome for conclusive pharmacoepidemiology analysis. Its low incidence (one SJS case per 

2-10 million patient-years, (Chan et al. 1990, Strom et al. 1991a)) meant that very few cases 

could be observed from our data set of 13 million patients, despite being extracted from the 

largest database of health insurance claims. Furthermore, the drugs of interest were rarely 

used and hence, provided a limited subpopulation that was underpowered for analysis 

(Section 4.6). In contrast, a more common ADR such as cardiotoxicity may be a better 

demonstration of the combined prowess of QSAR modeling and pharmacoepidemiology. 

Confounder adjustment was limited to mainly demographic factors as only claims 

data were used. Additional data sources (clinical notes, laboratory reports) may provide a 

richer medical history for adjustment. Another major drawback relates to the way reference 

drugs were defined for training the SJS prediction models. Drugs should have been clinically 

defined by a gold standard instead of being statistically defined by a disproportionately high 

frequency of SJS spontaneous reports (Section 4.3.1). 

Temporal analysis was not performed due to the lack of temporal data. Benefits in 

terms of earlier SJS prediction could be demonstrated through a prospective validation which 

sets aside new data for validating models derived from older data. Examples of effective use 

of prospective validation include (Cami et al. 2011) which showed that simultaneous 

modeling of multiple ADR and drugs resulted in earlier detection of ADR and (Baker 2010) 
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which showed that earlier biomedical literature foretold later disease-chemical-protein 

associations.  

5.4. Epilogue 

In closing, this work demonstrated improved predictivity and interpretation of 

toxicity models through several integrative approaches, drawing data and methods from 

cheminformatics, bioinformatics and pharmacoepidemiology. The work presented two of 

many possible integrative approaches that could benefit the study of toxicology. One can 

envision further gains through tighter and broader integration of the various disciplines. 

Tighter integration calls for greater familiarity of the data and techniques across disciplines 

to facilitate interaction. Broader integration adopts an inclusive outlook to draw from as 

many relevant disciplines as possible. The ingredients for such multi-disciplinary efforts are 

unlikely to occur organically and will require deliberate efforts to foster a collaborative 

environment. I hope that this work has demonstrated the practical benefits of integrative 

methods and will motivate further research to develop more accurate and insightful toxicity 

prediction models towards safer chemicals and healthier lives. 
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APPENDIX 1: SUPPLEMENTAL TABLES 

Supplemental tables for Chapter 2 (also available online at doi:10.1021/tx200148a) 

Table A1.2.I. List of compounds and their hepatotoxicities 

 
a Doses in single dosing and repeated dosing studies are identical unless denoted in parenthesis as repeated dose. 

b Histopathology classes: 0 = no hepatotoxic findings, 1 = hepatotoxic findings, or 2 = other findings 

c Serum chemistry classes: 0 = no changes in biochemical markers  or 1 = changes in biochemical markers 

d Heptotoxicity classes: 0 = non-hepatotoxic or 1 =  hepatotoxic 

Histopathology class is denoted "0" when no histopathology findings are observed, "1" when hepatocell necrosis, degeneration, or 
inflammation are present, and  "2" for all other findings. 

The determination of hepatotoxicity was further augmented by the statistically significant elevation of the serum chemistry biomarkers: 

alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin 
(DBIL), and gamma-glutamyl transpeptidase (GGT). 

A compound is hepatotoxic (1) if histopathology alone showed hepatotoxicity (histopathology class=1), or it has other histopathology 

findings (histopathology class=2) and elevated serum chemistry (blood chemistry class=1). A compound is non-hepatotoxic(0) if no 
histopathology findings were observed (histopathology class=0), or it has other histopathology findings (histopathology class=2) but normal 

serum chemistry (blood chemistry class=1).  



117 

 

Table A1.2.I (continued). List of compounds and their hepatotoxicities 

 
a Doses in single dosing and repeated dosing studies are identical unless denoted in parenthesis as repeated dose. 

b Histopathology classes: 0 = no hepatotoxic findings, 1 = hepatotoxic findings, or 2 = other findings 

c Serum chemistry classes: 0 = no changes in biochemical markers  or 1 = changes in biochemical markers 

d Heptotoxicity classes: 0 = non-hepatotoxic or 1 =  hepatotoxic 

Histopathology class is denoted "0" when no histopathology findings are observed, "1" when hepatocell necrosis, degeneration, or 
inflammation are present, and  "2" for all other findings. 

The determination of hepatotoxicity was further augmented by the statistically significant elevation of the serum chemistry biomarkers: 

alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin 
(DBIL), and gamma-glutamyl transpeptidase (GGT). 

A compound is hepatotoxic (1) if histopathology alone showed hepatotoxicity (histopathology class=1), or it has other histopathology 

findings (histopathology class=2) and elevated serum chemistry (blood chemistry class=1).A compound is non-hepatotoxic(0) if no 
histopathology findings were observed (histopathology class=0), or it has other histopathology findings (histopathology class=2) but normal 

serum chemistry (blood chemistry class=1).  
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Table A1.2.II. List of 85 predictive genes 
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Table A1.2.IIIa. List of 40 chemically closest compound pairs and their hepatotoxicities. 

Twenty pairs (50%) have opposite toxicities despite their chemical similarity (0=dissimilar, 

1=identical)
a
 

 
 
a
 Similarity = 1 - normalized pairwise Euclidean distance. 

Identical pairs have a similarity of 1; completely different pairs have zero similarity.  
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Table A1.2.IIIb. List of 40 biologically closest compound pairs and their hepatotoxicities. 

Nine pairs (23%) have opposite toxicities despite the similarity in gene expression values 

(0=dissimilar, 1=identical)
a
 

 
 
a
 Similarity = 1 - normalized pairwise Euclidean distance. 

Identical pairs have a similarity of 1; completely different pairs have zero similarity.  



121 

 

Table A1.2.IVa. Molecular networks representing the predictors of hepatotoxicity (64 up-

regulated genes) 
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Table A1.2.IVb. Canonical pathways representing the predictors of hepatotoxicity (64 up-

regulated genes) 

 

 

 

Table A1.2.IVc. Molecular networks representing the predictors of hepatotoxicity (21 down-

regulated genes) 

 

 

 

Table A1.2.IVd. Canonical pathways representing the predictors of hepatotoxicity (21 down-

regulated genes) 
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Supplemental tables for Chapter 3 (also available online at doi:10.1021/tx400110f) 

 

Table A1.3.1. Model performance 
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Table A1.3.2. Number of compounds correctly predicted by various read-across (RA) models 

per data set 
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Table A1.3.3. Compounds and their chemical and biological neighbors in TG-GATES data 

set. 
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Table A1.3.3 (continued). Compounds and their chemical and biological neighbors in TG-

GATES data set. 

 



 

 

Table A1.3.4. Genes and their local importance scores 

 
a
 Global rank sorts the descriptors in order of decreasing global importance. 

b
 Global importance measures the decrease in overall external balanced accuracy when the gene is permuted. Unlike the local importance score 

I(x,compound) which depends on the target compound, global importance G(x) measures gene x's contribution to the overall balanced accuracy of 

the model.  

1
2
7
 



 

 

Table A1.3.4 (continued). Genes and their local importance scores 

 
a
 Global rank sorts the descriptors in order of decreasing global importance. 

b
 Global importance measures the decrease in overall external balanced accuracy when the gene is permuted. Unlike the local importance score 

I(x,compound) which depends on the target compound, global importance G(x) measures gene x's contribution to the overall balanced accuracy of 

the model. 

1
2
8
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Table A1.3.5. Chemical descriptors and their local importance scores 

 
a
 Global rank sorts the descriptors in order of decreasing global importance. 

b
 Global importance measures the decrease in overall external balanced accuracy when the descriptor is 

permuted. Unlike the local importance score I(x,compound) which depends on the target compound, global 

importance G(x) measures descriptor x's contribution to the overall balanced accuracy of the model.  
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Table A1.3.5 (continued). Chemical descriptors and their local importance scores 

 
a
 Global rank sorts the descriptors in order of decreasing global importance. 

b
 Global importance measures the decrease in overall external balanced accuracy when the descriptor is 

permuted. Unlike the local importance score I(x,compound) which depends on the target compound, global 

importance G(x) measures descriptor x's contribution to the overall balanced accuracy of the model.  
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Table A1.3.5 (continued). Chemical descriptors and their local importance scores 

 
a
 Global rank sorts the descriptors in order of decreasing global importance. 

b
 Global importance measures the decrease in overall external balanced accuracy when the descriptor is 

permuted. Unlike the local importance score I(x,compound) which depends on the target compound, global 

importance G(x) measures descriptor x's contribution to the overall balanced accuracy of the model.  
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Table A1.3.5 (continued). Chemical descriptors and their local importance scores 

 

a
 Global rank sorts the descriptors in order of decreasing global importance. 

b
 Global importance measures the decrease in overall external balanced accuracy when the descriptor is 

permuted. Unlike the local importance score I(x,compound) which depends on the target compound, global 

importance G(x) measures descriptor x's contribution to the overall balanced accuracy of the model. 
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Supplemental tables for Chapter 4 

Table A1.4.S1. Drugs used for modeling 

 

  

Name SJS 

activity

ATC codes Canonical Smiles

armodafinil 1 N06 NC(=O)CS(=O)C(c1:c:c:c:c:c:1)c2:c:c:c:c:c:2

levofloxacin 1 J01,S01 CC1COc2:c(N3CCN(C)CC3):c(F):c:c4C(=O)C(=CN1c:2:4)C(=O)O

abacavir 1 J05 Nc1:n:c(NC2CC2):c3:n:c:n(C4CC(CO)C=C4):c:3:n:1

acetylcysteine 1 R05,S01,V03 CC(=O)NC(CS)C(=O)O

acetylsalicylic_acid 1 A01,B01,N02 CC(=O)Oc1:c:c:c:c:c:1C(=O)O

aciclovir 1 D06,J05,S01 Nc1:n:c(O):c2:n:c:n(COCCO):c:2:n:1

albendazole 1 P02 CCCSc1:c:c:c2:[nH]:c(NC(=O)OC):n:c:2:c:1

allopurinol 1 M04 Oc1:n:c:n:c2:n:[nH]:c:c:1:2

amantadine 1 N04 NC12CC3CC(CC(C3)C1)C2

ambroxol 1 R05 Nc1:c(Br):c:c(Br):c:c:1CNC2CCC(O)CC2

amifostine 1 V03 NCCCNCCSP(=O)(O)O

aminoglutethimide 1 L02 CCC1(CCC(=O)NC1=O)c2:c:c:c(N):c:c:2

amoxicillin 1 J01 CC1(C)SC2C(NC(=O)C(N)c3:c:c:c(O):c:c:3)C(=O)N2C1C(=O)O

ampicillin 1 J01,S01 CC1(C)SC2C(NC(=O)C(N)c3:c:c:c:c:c:3)C(=O)N2C1C(=O)O

ascorbic_acid 1 G01,S01 OCC(O)C1OC(=O)C(O)C1=O

azithromycin 1 J01,S01 CCC1OC(=O)C(C)C(OC2CC(C)(OC)C(O)C(C)O2)C(C)C(OC3OC(C)CC(C3O)N(C)C)C(C)(O)CC(

C)CN(C)C(C)C(O)C1(C)O

bacampicillin 1 J01 CCOC(=O)OC(C)OC(=O)C1N2C(SC1(C)C)C(NC(=O)C(N)c3:c:c:c:c:c:3)C2=O

bendamustine 1 L01 Cn1:c(CCCC(=O)O):n:c2:c:c(:c:c:c:1:2)N(CCCl)CCCl

benoxaprofen 1 M01 CC(C(=O)O)c1:c:c:c2:o:c(:n:c:2:c:1)c3:c:c:c(Cl):c:c:3

benzylpenicillin 1 J01,S01 CC1(C)SC2C(NC(=O)Cc3:c:c:c:c:c:3)C(=O)N2C1C(=O)O

beta-acetyldigoxin 1 C01 CC1OC(CC(O)C1OC2CC(O)C(OC3CC(O)C(OC(=O)C)C(C)O3)C(C)O2)OC4CCC5(C)C(CCC6C5C

C(O)C7(C)C(CCC67O)C8=CC(=O)OC8)C4

bisacodyl 1 A06 CC(=O)Oc1:c:c:c(:c:c:1)C(c2:c:c:c(OC(=O)C):c:c:2)c3:c:c:c:c:n:3

bisoprolol 1 C07 CC(C)NCC(O)COc1:c:c:c(COCCOC(C)C):c:c:1

bromhexine 1 R05 CN(Cc1:c:c(Br):c:c(Br):c:1N)C2CCCCC2

brotizolam 1 N05 Cc1:n:n:c2CN=C(c3:c:c:c:c:c:3Cl)c4:c:c(Br):s:c:4n:1:2

bupropion 1 N06 CC(NC(C)(C)C)C(=O)c1:c:c:c:c(Cl):c:1

carbamazepine 1 N03 NC(=O)N1c2:c:c:c:c:c:2C=Cc3:c:c:c:c:c1:3

carbimazole 1 H03 CCOC(=O)N1C=CN(C)C1=S

carbocisteine 1 R05 NC(CSCC(=O)O)C(=O)O

cefaclor 1 J01 NC(C(=O)NC1C2SCC(=C(N2C1=O)C(=O)O)Cl)c3:c:c:c:c:c:3

cefadroxil 1 J01 CC1=C(N2C(SC1)C(NC(=O)C(N)c3:c:c:c(O):c:c:3)C2=O)C(=O)O

cefalexin 1 J01 CC1=C(N2C(SC1)C(NC(=O)C(N)c3:c:c:c:c:c:3)C2=O)C(=O)O

cefazolin 1 J01 Cc1:n:n:c(SCC2=C(N3C(SC2)C(NC(=O)Cn4:c:n:n:n:4)C3=O)C(=O)O):s:1

cefdinir 1 J01 Nc1:n:c(:c:s:1)C(N=O)C(=O)NC2C3SCC(=C(N3C2=O)C(=O)O)C=C

cefepime 1 J01 CO\N=C(\C(=O)NC1C2SCC(=C(N2C1=O)C(=O)O)CN3(C)CCCC3)/c4:c:s:c(N):n:4

cefixime 1 J01 Nc1:n:c(:c:s:1)\C(=N/OCC(=O)O)\C(=O)NC2C3SCC(=C(N3C2=O)C(=O)O)C=C

cefotiam 1 J01 CN(C)CCn1:n:n:n:c:1SCC2=C(N3C(SC2)C(NC(=O)Cc4:c:s:c(N):n:4)C3=O)C(=O)O

cefpodoxime 1 J01 COCC1=C(N2C(SC1)C(NC(=O)\C(=N\OC)\c3:c:s:c(N):n:3)C2=O)C(=O)O

cefprozil 1 J01 C\C=C\C1=C(N2C(SC1)C(NC(=O)C(N)c3:c:c:c(O):c:c:3)C2=O)C(=O)O

ceftazidime 1 J01 CC(C)(O\N=C(\C(=N\C1C2SCC(=C(N2C1=O)C(=O)O)CN3=CC=CC=C3)\O)/C4=CSC(=N)N4)C(

=O)O

ceftibuten 1 J01 Nc1:n:c(:c:s:1)\C(=C/CC(=O)O)\C(=O)NC2C3SCC=C(N3C2=O)C(=O)O

ceftriaxone 1 J01 CO\N=C(\C(=O)NC1C2SCC(=C(N2C1=O)C(=O)O)CSC3=NC(=O)C(=O)NN3C)/c4:c:s:c(N):n:4

cefuroxime 1 J01 CO\N=C(\C(=O)NC1C2SCC(=C(N2C1=O)C(=O)O)COC(=O)N)/c3:o:c:c:c:3

chloral_hydrate 1 N05 OC(O)C(Cl)(Cl)Cl

chloramphenicol 1 D06,D10,G01,J01,S01,S02,S03 OCC(NC(=O)C(Cl)Cl)C(O)c1:c:c:c(:c:c:1)N(=O)=O

chlormezanone 1 M03 CN1C(c2:c:c:c(Cl):c:c:2)S(=O)(=O)CCC1=O

chloroquine 1 P01 CCN(CC)CCCC(C)Nc1:c:c:n:c2:c:c(Cl):c:c:c:1:2

chlorphenamine 1 R06 CN(C)CCC(c1:c:c:c(Cl):c:c:1)c2:c:c:c:c:n:2

chlorpropamide 1 A10 CCCNC(=O)NS(=O)(=O)c1:c:c:c(Cl):c:c:1

chlortetracycline 1 A01,D06,J01,S01 CN(C)C1C2CC3C(C(=O)c4:c(O):c:c:c(Cl):c:4C3(C)O)C(=O)C2(O)C(=O)C(C(=O)N)C1=O

cinnarizine 1 N07 C(\C=C\c1:c:c:c:c:c:1)N2CCN(CC2)C(c3:c:c:c:c:c:3)c4:c:c:c:c:c:4

ciprofloxacin 1 J01,S01,S02,S03 OC(=O)C1=CN(C2CC2)c3:c:c(N4CCNCC4):c(F):c:c:3C1=O

clarithromycin 1 J01 CCC1OC(=O)C(C)C(OC2CC(C)(OC)C(O)C(C)O2)C(C)C(OC3OC(C)CC(C3O)N(C)C)C(C)(CC(C)C

(=O)C(C)C(O)C1(C)O)OC

clemastine 1 D04,R06 CN1CCCC1CCOC(C)(c2:c:c:c:c:c:2)c3:c:c:c(Cl):c:c:3

clindamycin 1 D10,G01,J01 CCCC1CC(N(C)C1)C(=O)NC(C(C)Cl)C2OC(SC)C(O)C(O)C2O

clobutinol 1 R05 CC(CN(C)C)C(C)(O)Cc1:c:c:c(Cl):c:c:1

clomethiazole 1 N05 Cc1:n:c:s:c:1CCCl

clotrimazole 1 A01,D01,G01 Clc1:c:c:c:c:c:1C(c2:c:c:c:c:c:2)(c3:c:c:c:c:c:3)n4:c:c:n:c:4

cloxacillin 1 J01 Cc1:o:n:c(c2:c:c:c:c:c:2Cl):c:1C(=O)NC3C4SC(C)(C)C(N4C3=O)C(=O)O
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Table A1.4.S1 (continued). Drugs used for modeling 

 

Name SJS 

activity

ATC codes Canonical Smiles

codeine 1 R05 COc1:c:c:c2CC3C4C=CC(O)C5Oc:1:c:2C45CCN3C

colchicine 1 M04 COC1=CC=C2C(=CC1=O)C(CCc3:c:c(OC):c(OC):c(OC):c2:3)NC(=O)C

dapsone 1 D10,J04 Nc1:c:c:c(:c:c:1)S(=O)(=O)c2:c:c:c(N):c:c:2

darunavir 1 J05 CC(C)CN(CC(O)C(Cc1:c:c:c:c:c:1)NC(=O)OC2COC3OCCC23)S(=O)(=O)c4:c:c:c(N):c:c:4

dexamethasone 1 A01,C05,D07,D10,H02,R01,S01,S02,S03 CC1CC2C3CCC4=CC(=O)C=CC4(C)C3(F)C(O)CC2(C)C1(O)C(=O)CO

dexpanthenol 1 A11,D03,S01 CC(C)(CO)C(O)C(=O)NCCCO

diclofenac 1 D11,M01,M02,S01 OC(=O)Cc1:c:c:c:c:c:1Nc2:c(Cl):c:c:c:c:2Cl

dicloxacillin 1 J01 Cc1:o:n:c(:c:1C(=O)NC2C3SC(C)(C)C(N3C2=O)C(=O)O)c4:c(Cl):c:c:c:c:4Cl

diflunisal 1 N02 OC(=O)c1:c:c(:c:c:c:1O)c2:c:c:c(F):c:c:2F

digitoxin 1 C01 CC1OC(CC(O)C1O)OC2C(O)CC(OC3C(O)CC(OC4CCC5(C)C(CCC6C5CCC7(C)C(CCC67O)C8=C

C(=O)OC8)C4)OC3C)OC2C

dihydrocodeine 1 N02 COc1:c:c:c2CC3C4CCC(O)C5Oc:1:c:2C45CCN3C

diltiazem 1 C08 COc1:c:c:c(:c:c:1)C2Sc3:c:c:c:c:c:3N(CCN(C)C)C(=O)C2OC(=O)C

dimetindene 1 D04,R06 CC(C1=C(CCN(C)C)Cc2:c:c:c:c:c1:2)c3:c:c:c:c:n:3

doxycycline 1 A01,J01 CC1[C@H]2[C@@H](O)[C@H]3[C@@H](N(C)C)C(=O)C(C(=O)N)C(=O)[C@]3(O)C(=O)C2C(

=O)c4:c(O):c:c:c:c1:4

efavirenz 1 J05 FC(F)(F)C1(OC(=O)Nc2:c:c:c(Cl):c:c1:2)C#CC3CC3

erythromycin 1 D10,J01,S01 CCC1OC(=O)C(C)C(OC2CC(C)(OC)C(O)C(C)O2)C(C)C(OC3OC(C)CC(C3O)N(C)C)C(C)(O)CC(

C)C(=O)C(C)C(O)C1(C)O

ethambutol 1 J04 CCC(CO)NCCNC(CC)CO

etodolac 1 M01 CCc1:c:c:c:c2:c3CCOC(CC)(CC(=O)O)c:3:[nH]:c:1:2

etoricoxib 1 M01 Cc1:c:c:c(:c:n:1)c2:n:c:c(Cl):c:c:2c3:c:c:c(:c:c:3)S(=O)(=O)C

etravirine 1 J05 Cc1:c:c(:c:c(C):c:1Oc2:n:c(Nc3:c:c:c(:c:c:3)C#N):n:c(N):c:2Br)C#N

felbamate 1 N03 NC(=O)OCC(COC(=O)N)c1:c:c:c:c:c:1

fenbufen 1 M01 OC(=O)CCC(=O)c1:c:c:c(:c:c:1)c2:c:c:c:c:c:2

feprazone 1 M01,M02 CC(=CCC1C(=O)N(N(C1=O)c2:c:c:c:c:c:2)c3:c:c:c:c:c:3)C

fluconazole 1 D01,J02 OC(Cn1:c:n:c:n:1)(Cn2:c:n:c:n:2)c3:c:c:c(F):c:c:3F

fosphenytoin 1 N03 OP(=O)(O)OCN1C(=O)NC(C1=O)(c2:c:c:c:c:c:2)c3:c:c:c:c:c:3

furosemide 1 C03 NS(=O)(=O)c1:c:c(C(=O)O):c(NCc2:o:c:c:c:2):c:c:1Cl

gatifloxacin 1 J01,S01 COc1:c(N2CCNC(C)C2):c(F):c:c3C(=O)C(=CN(C4CC4)c:1:3)C(=O)O

gemifloxacin 1 J01 CO\N=C\1/CN(CC1CN)c2:n:c3N(C=C(C(=O)O)C(=O)c:3:c:c:2F)C4CC4

glibenclamide 1 A10 COc1:c:c:c(Cl):c:c:1C(=O)NCCc2:c:c:c(:c:c:2)S(=O)(=O)NC(=O)NC3CCCCC3

glimepiride 1 A10 CCC1=C(C)CN(C(=O)NCCc2:c:c:c(:c:c:2)S(=O)(=O)NC(=O)NC3CCC(C)CC3)C1=O

glipizide 1 A10 Cc1:c:n:c(:c:n:1)C(=O)NCCc2:c:c:c(:c:c:2)S(=O)(=O)NC(=O)NC3CCCCC3

griseofulvin 1 D01 COC1=CC(=O)CC(C)C12Oc3:c(Cl):c(OC):c:c(OC):c:3C2=O

hexetidine 1 A01 CCCCC(CC)CN1CN(CC(CC)CCCC)CC(C)(N)C1

hydrochlorothiazide 1 C03 NS(=O)(=O)c1:c:c2:c(NCNS2(=O)=O):c:c:1Cl

hydroxychloroquine 1 P01 CCN(CCO)CCCC(C)Nc1:c:c:n:c2:c:c(Cl):c:c:c:1:2

ibuprofen 1 C01,G02,M01,M02 CC(C)Cc1:c:c:c(:c:c:1)C(C)C(=O)O

indapamide 1 C03 CC1Cc2:c:c:c:c:c:2N1NC(=O)c3:c:c:c(Cl):c(:c:3)S(=O)(=O)N

indometacin 1 C01,M01,M02,S01 COc1:c:c:c2:c(:c:1):c(CC(=O)O):c(C):n:2C(=O)c3:c:c:c(Cl):c:c:3

isoniazid 1 J04 NNC(=O)c1:c:c:n:c:c:1

isopromethazine 1 R06 CC(CN1c2:c:c:c:c:c:2Sc3:c:c:c:c:c1:3)N(C)C

isosorbide_mononitrate 1 C01 OC1COC2C(COC12)ON(=O)=O

itraconazole 1 J02 CCC(C)N1N=CN(C1=O)c2:c:c:c(:c:c:2)N3CCN(CC3)c4:c:c:c(OCC5COC(Cn6:c:n:c:n:6)(O5)c7:c

:c:c(Cl):c:c:7Cl):c:c:4

josamycin 1 J01 COC1C(CC(=O)OC(C)C\C=C/C=C/C(O)C(C)CC(CC=O)C1OC2OC(C)C(OC3CC(C)(O)C(OC(=O)C

C(C)C)C(C)O3)C(C2O)N(C)C)OC(=O)C

kanamycin 1 A07,J01,S01 NCC1OC(OC2C(N)CC(N)C(OC3OC(CO)C(O)C(N)C3O)C2O)C(O)C(O)C1O

ketoconazole 1 D01,G01,J02 CC(=O)N1CCN(CC1)c2:c:c:c(OCC3COC(Cn4:c:c:n:c:4)(O3)c5:c:c:c(Cl):c:c:5Cl):c:c:2

lamotrigine 1 N03 Nc1:n:n:c(:c(N):n:1)c2:c:c:c:c(Cl):c:2Cl

leflunomide 1 L04 Cc1:o:n:c:c:1C(=O)Nc2:c:c:c(:c:c:2)C(F)(F)F

lenalidomide 1 L04 Nc1:c:c:c:c2C(=O)N(Cc:1:2)C3CCC(=O)NC3=O

lincomycin 1 J01 CCCC1CC(N(C)C1)C(=O)NC(C(C)O)C2OC(SC)C(O)C(O)C2O

linezolid 1 J01 CC(=O)NCC1CN(C(=O)O1)c2:c:c:c(N3CCOCC3):c(F):c:2

loracarbef 1 J01 NC(C(=O)NC1C2CCC(=C(N2C1=O)C(=O)O)Cl)c3:c:c:c:c:c:3

loxoprofen 1 M01,M02 CC(C(=O)O)c1:c:c:c(CC2CCCC2=O):c:c:1

lymecycline 1 J01 CN(C)C1C2CC3C(C(=O)c4:c(O):c:c:c:c:4C3(C)O)C(=O)C2(O)C(=O)C(C(=O)NCNCCCCC(N)C(=

O)O)C1=O

maprotiline 1 N06 CNCCCC12CCC(c3:c:c:c:c:c1:3)c4:c:c:c:c:c2:4

mefenamic_acid 1 M01 Cc1:c:c:c:c(Nc2:c:c:c:c:c:2C(=O)O):c:1C

meloxicam 1 M01 CN1C(C(=O)Nc2:n:c:c(C):s:2)C(=O)c3:c:c:c:c:c:3S1(=O)=O

melperone 1 N05 CC1CCN(CCCC(=O)c2:c:c:c(F):c:c:2)CC1

meropenem 1 J01 CC(O)C1C2C(C)C(=C(N2C1=O)C(=O)O)SC3CNC(C3)C(=O)N(C)C

mesna 1 R05,V03 OS(=O)(=O)CCS

metamizole 1 N02 CN(CS(=O)(=O)O)C1=C(C)N(C)N(C1=O)c2:c:c:c:c:c:2

methazolamide 1 S01 CN1N=C(S/C/1=N/C(=O)C)S(=O)(=O)N

methotrexate 1 L01,L04 CN(Cc1:c:n:c2:n:c(N):n:c(N):c:2:n:1)c3:c:c:c(:c:c:3)C(=O)NC(CCC(=O)O)C(=O)O
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Table A1.4.S1 (continued). Drugs used for modeling 

 

Name SJS 

activity

ATC codes Canonical Smiles

metildigoxin 1 C01 COC1C(O)CC(OC2C(O)CC(OC3C(O)CC(OC4CCC5(C)C(CCC6C5CC(O)C7(C)C(CCC67O)C8=CC(

=O)OC8)C4)OC3C)OC2C)OC1C

metolazone 1 C03 CC1Nc2:c:c(Cl):c(:c:c:2C(=O)N1c3:c:c:c:c:c:3C)S(=O)(=O)N

metronidazole 1 A01,D06,G01,J01,P01 Cc1:n:c:c(N(=O)=O):n:1CCO

midecamycin 1 J01 CCC(=O)OC1CC(=O)OC(C)C\C=C/C=C/C(O)C(C)CC(CC=O)C(OC2OC(C)C(OC3CC(C)(O)C(OC(

=O)CC)C(C)O3)C(C2O)N(C)C)C1OC

minocycline 1 A01,J01 CN(C)C1C2CC3Cc4:c(:c:c:c(O):c:4C(=O)C3C(=O)C2(O)C(=O)C(C(=O)N)C1=O)N(C)C

morniflumate 1 M01 FC(F)(F)c1:c:c:c:c(Nc2:n:c:c:c:c:2C(=O)OCCN3CCOCC3):c:1

moxifloxacin 1 J01,S01 COc1:c(N2CC3CCCNC3C2):c(F):c:c4C(=O)C(=CN(C5CC5)c:1:4)C(=O)O

nabumetone 1 M01 COc1:c:c:c2:c:c(CCC(=O)C):c:c:c:2:c:1

nevirapine 1 J05 Cc1:c:c:n:c2N(C3CC3)c4:n:c:c:c:c:4C(=O)Nc:1:2

nimesulide 1 M01,M02 CS(=O)(=O)Nc1:c:c:c(:c:c:1Oc2:c:c:c:c:c:2)N(=O)=O

norfloxacin 1 J01,S01 CCN1C=C(C(=O)O)C(=O)c2:c:c(F):c(:c:c1:2)N3CCNCC3

nystatin 1 A07,D01,G01 CC1OC(=O)CC(O)CC(O)CC(O)CCC(O)C(O)CC(=O)CC(O)C(C(O)CC(OC2OC(C)C(O)C(N)C2O)\

C=C/C=C/C=C/C=C/CC\C=C\C=C\C(C)C(O)C1C)C(=O)O

oxaprozin 1 M01 OC(=O)CCc1:o:c(c2:c:c:c:c:c:2):c(:n:1)c3:c:c:c:c:c:3

oxazepam 1 N05 OC1N=C(c2:c:c:c:c:c:2)c3:c:c(Cl):c:c:c:3NC1=O

oxcarbazepine 1 N03 NC(=O)N1c2:c:c:c:c:c:2CC(=O)c3:c:c:c:c:c1:3

oxomemazine 1 R06 CC(CN(C)C)CN1c2:c:c:c:c:c:2S(=O)(=O)c3:c:c:c:c:c1:3

oxyphenbutazone 1 M01,M02,S01 CCCCC1C(=O)N(N(C1=O)c2:c:c:c(O):c:c:2)c3:c:c:c:c:c:3

oxytetracycline 1 D06,G01,J01,S01 CN(C)[C@@H]1[C@@H]2[C@H](O)[C@H]3C(C(=O)c4:c(O):c:c:c:c:4[C@]3(C)O)C(=O)[C@

@]2(O)C(=O)C(C(=O)N)C1=O

pantoprazole 1 A02 COc1:c:c:n:c(CS(=O)c2:n:c3:c:c:c(OC(F)F):c:c:3:[nH]:2):c:1OC

paracetamol 1 N02 CC(=O)Nc1:c:c:c(O):c:c:1

pefloxacin 1 J01 CCN1C=C(C(=O)O)C(=O)c2:c:c(F):c(:c:c1:2)N3CCN(C)CC3

phenobarbital 1 N03 CCC1(C(=O)NC(=O)NC1=O)c2:c:c:c:c:c:2

phenoxymethylpenicillin 1 J01 CC1(C)SC2C(NC(=O)COc3:c:c:c:c:c:3)C(=O)N2C1C(=O)O

phenylbutazone 1 M01,M02 CCCCC1C(=O)N(N(C1=O)c2:c:c:c:c:c:2)c3:c:c:c:c:c:3

phenytoin 1 N03 O=C1NC(=O)C(N1)(c2:c:c:c:c:c:2)c3:c:c:c:c:c:3

phthalylsulfathiazole 1 A07 CCOC(=O)C1(CCN(CCc2:c:c:c(N):c:c:2)CC1)c3:c:c:c:c:c:3

piperacillin 1 J01 CCN1CCN(C(=O)NC(C(=O)NC2C3SC(C)(C)C(N3C2=O)C(=O)O)c4:c:c:c:c:c:4)C(=O)C1=O

pirenzepine 1 A02 CN1CCN(CC(=O)N2c3:c:c:c:c:c:3C(=O)Nc4:c:c:c:n:c2:4)CC1

piritramide 1 N02 NC(=O)C1(CCN(CCC(C#N)(c2:c:c:c:c:c:2)c3:c:c:c:c:c:3)CC1)N4CCCCC4

piroxicam 1 M01,M02,S01 CN1C(C(=O)Nc2:c:c:c:c:n:2)C(=O)c3:c:c:c:c:c:3S1(=O)=O

pivampicillin 1 J01 CC(C)(C)C(=O)OCOC(=O)C1N2C(SC1(C)C)C(NC(=O)C(N)c3:c:c:c:c:c:3)C2=O

prednisolone 1 A07,C05,D07,H02,R01,S01,S02,S03 CC12C[C@H](O)[C@H]3[C@H](CCC4=CC(=O)C=C[C@]34C)[C@@H]1CC[C@@]2(O)C(=O)C

O

propylthiouracil 1 H03 CCCC1=NC(=S)NC(=O)C1

pyrazinamide 1 J04 NC(=O)c1:c:n:c:c:n:1

raltegravir 1 J05 CN1C(=O)C(=O)C(N=C1C(C)(C)NC(=O)c2:o:c(C):n:n:2)C(=O)NCc3:c:c:c(F):c:c:3

rifampicin 1 J04 COC1\C=C/OC2(C)Oc3:c(C):c(O):c4:c(O):c(NC(=O)\C(=C/C=C\C(C)C(O)C(C)C(O)C(C)C(OC(

=O)C)C1C)\C):c(\C=N\N5CCN(C)CC5):c(O):c:4:c:3C2=O

roxithromycin 1 J01 CCC1OC(=O)C(C)C(OC2CC(C)(OC)C(O)C(C)O2)C(C)C(OC3OC(C)CC(C3O)N(C)C)C(C)(O)CC(

C)\C(=N\OCOCCOC)\C(C)C(O)C1(C)O

sitagliptin 1 A10 NC(CC(=O)N1CCn2:c(C1):n:n:c:2C(F)(F)F)Cc3:c:c(F):c(F):c:c:3F

spiramycin 1 J01 COC1C(O)CC(=O)OC(C)C\C=C/C=C/C(OC2CCC(C(C)O2)N(C)C)C(C)CC(CC=O)C1OC3OC(C)C(

OC4CC(C)(O)C(O)C(C)O4)C(C3C)N(C)C

spironolactone 1 C03 CC(=O)SC1CC2=CC(=O)CCC2(C)C3CCC4(C)[C@@H](CC[C@]45CCC(=O)O5)[C@@H]13

streptomycin 1 A07,J01 CNC1C(O)C(O)C(CO)OC1OC2C(OC3C(O)C(O)C(N=C(N)N)C(O)C3N=C(N)N)OC(C)C2(O)C=O

sulfacetamide 1 S01 CC(=O)NS(=O)(=O)c1:c:c:c(N):c:c:1

sulfadiazine 1 J01 Nc1:c:c:c(:c:c:1)S(=O)(=O)Nc2:n:c:c:c:n:2

sulfadimethoxine 1 J01 COc1:c:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):n:c(OC):n:1

sulfadimidine 1 J01 Cc1:c:c(C):n:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):n:1

sulfadoxine 1 J01 COc1:n:c:n:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):c:1OC

sulfafurazole 1 J01,S01 Cc1:n:o:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):c:1C

sulfaguanidine 1 A07 NC(=N)NS(=O)(=O)c1:c:c:c(N):c:c:1

sulfalene 1 J01 COc1:n:c:c:n:c:1NS(=O)(=O)c2:c:c:c(N):c:c:2

sulfamethoxazole 1 J01 Cc1:o:n:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):c:1

sulfamethoxypyridazine 1 J01 COc1:c:c:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):n:n:1

sulfametoxydiazine 1 J01 COc1:c:n:c(NS(=O)(=O)c2:c:c:c(N):c:c:2):n:c:1

sulfasalazine 1 A07 OC(=O)c1:c:c(:c:c:c:1O)N=Nc2:c:c:c(:c:c:2)S(=O)(=O)Nc3:c:c:c:c:n:3

sulindac 1 M01 CC1=C(CC(=O)O)c2:c:c(F):c:c:c:2/C/1=C/c3:c:c:c(:c:c:3)S(=O)C

sultamicillin 1 J01 CC1(C)SC2C(NC(=O)C(N)c3:c:c:c:c:c:3)C(=O)N2C1C(=O)OCOC(=O)C4N5C(CC5=O)S(=O)(=O)

C4(C)C

temozolomide 1 L01 CN1N=Nc2:c(:n:c:n:2C1=O)C(=O)N

tenoxicam 1 M01 CN1C(C(=O)Nc2:c:c:c:c:n:2)C(=O)c3:s:c:c:c:3S1(=O)=O

terbinafine 1 D01 CN(C\C=C\C#CC(C)(C)C)Cc1:c:c:c:c2:c:c:c:c:c:1:2

tetracycline 1 A01,D06,J01,S01,S02,S03 CN(C)C1C2CC3C(C(=O)c4:c(O):c:c:c:c:4C3(C)O)C(=O)C2(O)C(=O)C(C(=O)N)C1=O
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Table A1.4.S1 (continued). Drugs used for modeling 

 

Name SJS 

activity

ATC codes Canonical Smiles

tetrazepam 1 M03 CN1C(=O)CN=C(C2=CCCCC2)c3:c:c(Cl):c:c:c1:3

thioacetazone 1 J04 CC(=O)Nc1:c:c:c(\C=N\NC(=S)N):c:c:1

tiabendazole 1 D01,P02 c1:c:c:c2:[nH]:c(:n:c:2:c:1)c3:c:s:c:n:3

tiaprofenic_acid 1 M01 CC(C(=O)O)c1:c:c:c(:s:1)C(=O)c2:c:c:c:c:c:2

tocainide 1 C01 CC(N)C(=O)Nc1:c(C):c:c:c:c:1C

torasemide 1 C03 CC(C)NC(=O)NS(=O)(=O)c1:c:n:c:c:c:1Nc2:c:c:c:c(C):c:2

trihexyphenidyl 1 N04 OC(CCN1CCCCC1)(C2CCCCC2)c3:c:c:c:c:c:3

trimethoprim 1 J01 COc1:c:c(Cc2:c:n:c(N):n:c:2N):c:c(OC):c:1OC

valdecoxib 1 M01 Cc1:o:n:c(c2:c:c:c:c:c:2):c:1c3:c:c:c(:c:c:3)S(=O)(=O)N

vancomycin 1 A07,J01 CNC(CC(C)C)C(=O)NC1C(O)c2:c:c:c(Oc3:c:c4:c:c(Oc5:c:c:c(:c:c:5Cl)C(O)C6NC(=O)C(NC(=O)

C4NC(=O)C(CC(=O)N)NC1=O)c7:c:c:c(O):c(:c:7)c8:c(O):c:c(O):c:c:8C(NC6=O)C(=O)O):c:3O

C9OC(CO)C(O)C(O)C9OC%10CC(C)(N)C(

O)C(C)O%10):c(Cl):c:2

verapamil 1 C08 COc1:c:c:c(CCN(C)CCCC(C#N)(C(C)C)c2:c:c:c(OC):c(OC):c:2):c:c:1OC

voriconazole 1 J02 CC(c1:n:c:n:c:c:1F)C(O)(Cn2:c:n:c:n:2)c3:c:c:c(F):c:c:3F

xylometazoline 1 R01,S01 Cc1:c:c(:c:c(C):c:1CC2=NCCN2)C(C)(C)C

zonisamide 1 N03 NS(=O)(=O)Cc1:n:o:c2:c:c:c:c:c:1:2

acebutolol 0 C07 CCCC(=O)Nc1:c:c:c(OCC(O)CNC(C)C):c(:c:1)C(=O)C

acenocoumarol 0 B01 CC(=O)CC(C1C(=O)Oc2:c:c:c:c:c:2C1=O)c3:c:c:c(:c:c:3)N(=O)=O

adenosine 0 C01 Nc1:n:c:n:c2:c:1:n:c:n:2C3OC(CO)C(O)C3O

agomelatine 0 N06 COc1:c:c:c2:c:c:c:c(CCNC(=O)C):c:2:c:1

alfuzosin 0 G04 COc1:c:c2:n:c(:n:c(N):c:2:c:c:1OC)N(C)CCCNC(=O)C3CCCO3

alosetron 0 A03 Cc1:[nH]:c:n:c:1CN2CCc3:c(C2=O):c4:c:c:c:c:c:4:n:3C

alprostadil 0 C01,G04 CCCCCC(O)\C=C\C1C(O)CC(=O)C1CCCCCCC(=O)O

amfepramone 0 A08 CCN(CC)C(C)C(=O)c1:c:c:c:c:c:1

atracurium 0 M03 COc1:c:c:c(CC2c3:c:c(OC):c(OC):c:c:3CCN2(C)CCC(=O)OCCCCCOC(=O)CCN4(C)CCc5:c:c(OC)

:c(OC):c:c:5C4Cc6:c:c:c(OC):c(OC):c:6):c:c:1OC

azacitidine 0 L01 NC1=NC(=O)N(C=N1)C2OC(CO)C(O)C2O

azelastine 0 R01,R06,S01 CN1CCCC(CC1)N2N=C(Cc3:c:c:c(Cl):c:c:3)c4:c:c:c:c:c:4C2=O

beclometasone 0 A07,D07,R01,R03 CC1CC2C3CCC4=CC(=O)C=CC4(C)C3(Cl)C(O)CC2(C)C1(O)C(=O)CO

benzatropine 0 N04 CN1C2CCC1CC(C2)OC(c3:c:c:c:c:c:3)c4:c:c:c:c:c:4

benzoyl_peroxide 0 D10 O=C(OOC(=O)c1:c:c:c:c:c:1)c2:c:c:c:c:c:2

bleomycin 0 L01 CC(O)C(NC(=O)C(C)C(O)C(C)NC(=O)C(NC(=O)c1:n:c(:n:c(N):c:1C)C(CC(=O)N)NCC(N)C(=O

)N)C(OC2OC(CO)C(O)C(O)C2OC3OC(CO)C(O)C(OC(=O)N)C3O)c4:c:[nH]:c:n:4)C(=O)NCCc5

:n:c(:c:s:5)c6:n:c(:c:s:6)C(=O)NCCCS(C)C

bosentan 0 C02 COc1:c:c:c:c:c:1Oc2:c(NS(=O)(=O)c3:c:c:c(:c:c:3)C(C)(C)C):n:c(:n:c:2OCCO)c4:n:c:c:c:n:4

brimonidine 0 S01 Brc1:c(NC2=NCCN2):c:c:c3:n:c:c:n:c:1:3

bromfenac 0 S01 Nc1:c(CC(=O)O):c:c:c:c:1C(=O)c2:c:c:c(Br):c:c:2

bromocriptine 0 G02,N04 CC(C)CC1N2C(=O)C(NC(=O)C3CN(C)C4Cc5:c(Br):[nH]:c6:c:c:c:c(C4=C3):c:5:6)(OC2(O)C7CC

CN7C1=O)C(C)C

bupivacaine 0 N01 CCCCN1CCCCC1C(=O)Nc2:c(C):c:c:c:c:2C

busulfan 0 L01 CS(=O)(=O)OCCCCOS(=O)(=O)C

butorphanol 0 N02 Oc1:c:c:c2CC3N(CC4CCC4)CCC5(CCCCC35O)c:2:c:1

cabergoline 0 G02,N04 CCNC(=O)N(CCCN(C)C)C(=O)C1CC2C(Cc3:c:[nH]:c4:c:c:c:c2:c:3:4)N(CC=C)C1

carmustine 0 L01 ClCCNC(=O)N(CCCl)N=O

cetirizine 0 R06 OC(=O)COCCN1CCN(CC1)C(c2:c:c:c:c:c:2)c3:c:c:c(Cl):c:c:3

cilazapril 0 C09 CCOC(=O)C(CCc1:c:c:c:c:c:1)NC2CCCN3CCCC(N3C2=O)C(=O)O

cinacalcet 0 H05 CC(NCCCc1:c:c:c:c(:c:1)C(F)(F)F)c2:c:c:c:c3:c:c:c:c:c:2:3

cisapride 0 A03 COC1CN(CCCOc2:c:c:c(F):c:c:2)CCC1NC(=O)c3:c:c(Cl):c(N):c:c:3OC

clobetasol 0 D07 CCC(=O)OC1(C(C)CC2C3CCC4=CC(=O)C=CC4(C)C3(F)C(O)CC12C)C(=O)CCl

clodronic_acid 0 M05 OP(=O)(O)C(Cl)(Cl)P(=O)(O)O

clonazepam 0 N03 Clc1:c:c:c:c:c:1C2=NCC(=O)Nc3:c:c:c(:c:c2:3)N(=O)=O

cocaine 0 N01,R02,S01,S02 COC(=O)C1C(CC2CCC1N2C)OC(=O)c3:c:c:c:c:c:3

cromoglicic_acid 0 A07,D11,R01,R03,S01 OC(COc1:c:c:c:c2OC(=CC(=O)c:1:2)C(=O)O)COc3:c:c:c:c4OC(=CC(=O)c:3:4)C(=O)O

cyamemazine 0 N05 CC(CN(C)C)CN1c2:c:c:c:c:c:2Sc3:c:c:c(:c:c1:3)C#N

cyclizine 0 R06 CN1CCN(CC1)C(c2:c:c:c:c:c:2)c3:c:c:c:c:c:3

cycloserine 0 J04 NC1CONC1=O

cyproterone 0 G03 CC(=O)C1(O)CCC2C3C=C(Cl)C4=CC(=O)C5CC5C4(C)C3CCC12C

dacarbazine 0 L01 CN(C)N=Nc1:n:c:[nH]:c:1C(=O)N

daunorubicin 0 L01 COc1:c:c:c:c2C(=O)c3:c(O):c4CC(O)(CC(OC5CC(N)C(O)C(C)O5)c:4:c(O):c:3C(=O)c:1:2)C(=O)

C

desogestrel 0 G03 CCC12CC(=C)C3C(CCC4=CCCCC34)C1CCC2(O)C#C

dexamfetamine 0 N06 CC(N)Cc1:c:c:c:c:c:1

dextran 0 B05 OCC1OC(OCC2OC(OCC(O)C(O)C(O)C(O)C=O)C(O)C(O)C2O)C(O)C(O)C1O

dicycloverine 0 A03 CCN(CC)CCOC(=O)C1(CCCCC1)C2CCCCC2

diethylstilbestrol 0 G03,L02 CC\C(=C(\CC)/c1:c:c:c(O):c:c:1)\c2:c:c:c(O):c:c:2

digoxin 0 C01 CC1OC(CC(O)C1O)OC2C(O)CC(OC3C(O)CC(OC4CCC5(C)C(CCC6C5CC(O)C7(C)C(CCC67O)C8

=CC(=O)OC8)C4)OC3C)OC2C
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Table A1.4.S1 (continued). Drugs used for modeling 

 

Name SJS 

activity

ATC codes Canonical Smiles

dinoprostone 0 G02 CCCCCC(O)\C=C\C1C(O)CC(=O)C1C\C=C\CCCC(=O)O

diosmin 0 C05 COc1:c:c:c(:c:c:1O)C2=CC(=O)c3:c(O):c:c(OC4OC(COC5OC(C)C(O)C(O)C5O)C(O)C(O)C4O):c

:c:3O2

dipivefrine 0 S01 CNCC(O)c1:c:c:c(OC(=O)C(C)(C)C):c(OC(=O)C(C)(C)C):c:1

dipyridamole 0 B01 OCCN(CCO)c1:n:c(N2CCCCC2):c3:n:c(:n:c(N4CCCCC4):c:3:n:1)N(CCO)CCO

disopyramide 0 C01 CC(C)N(CCC(C(=O)N)(c1:c:c:c:c:c:1)c2:c:c:c:c:n:2)C(C)C

docosanol 0 D06 CCCCCCCCCCCCCCCCCCCCCCO

dofetilide 0 C01 CN(CCOc1:c:c:c(NS(=O)(=O)C):c:c:1)CCc2:c:c:c(NS(=O)(=O)C):c:c:2

donepezil 0 N06 COc1:c:c2CC(CC3CCN(Cc4:c:c:c:c:c:4)CC3)C(=O)c:2:c:c:1OC

droperidol 0 N01,N05 Fc1:c:c:c(:c:c:1)C(=O)CCCN2CCC(=CC2)N3C(=O)Nc4:c:c:c:c:c3:4

eletriptan 0 N02 CN1CCCC1Cc2:c:[nH]:c3:c:c:c(CCS(=O)(=O)c4:c:c:c:c:c:4):c:c:2:3

eltrombopag 0 B02 Cc1:c:c:c(:c:c:1C)n2:n:c(C):c(N=Nc3:c:c:c:c(:c:3O)c4:c:c:c:c(:c:4)C(=O)O):c:2O

encainide 0 C01 COc1:c:c:c(:c:c:1)C(=O)Nc2:c:c:c:c:c:2CCC3CCCCN3C

entacapone 0 N04 CCN(CC)C(=O)\C(=C/c1:c:c(O):c(O):c(:c:1)N(=O)=O)\C#N

entecavir 0 J05 NC1=Nc2:c(:n:c:n:2C3CC(O)C(CO)C3=C)C(=O)N1

epinephrine 0 A01,B02,C01,R01,R03,S01 CNCC(O)c1:c:c:c(O):c(O):c:1

epirubicin 0 L01 COc1:c:c:c:c2C(=O)c3:c(O):c4CC(O)(CC(OC5CC(N)C(O)C(C)O5)c:4:c(O):c:3C(=O)c:1:2)C(=O)

CO

eprosartan 0 C09 CCCCc1:n:c:c(\C=C(\Cc2:c:c:c:s:2)/C(=O)O):n:1Cc3:c:c:c(:c:c:3)C(=O)O

eptifibatide 0 B01 NC(=N)NCCCCC1NC(=O)CCSSCC(NC(=O)C2CCCN2C(=O)C(Cc3:c:[nH]:c4:c:c:c:c:c:3:4)NC(=O

)C(CC(=O)O)NC(=O)CNC1=O)C(=O)N

eszopiclone 0 N05 CN1CCN(CC1)C(=O)OC2N(C(=O)c3:n:c:c:n:c2:3)c4:c:c:c(Cl):c:n:4

ethanol 0 D08,V03 CCO

ethinylestradiol 0 G03,L02 CC12CCC3C(CCc4:c:c(O):c:c:c3:4)C1CCC2(O)C#C

everolimus 0 L01,L04 COC1CC(CC(C)C2CC(=O)\C(=C\C(C)C(O)C(OC)C(=O)C(C)CC(C)\C=C\C=C\C=C(\C)/C(CC3CC

C(C)C(O)(O3)C(=O)C(=O)N4CCCCC4C(=O)O2)OC)\C)CCC1OCCO

fampridine 0 N07 Nc1:c:c:n:c:c:1

fenfluramine 0 A08 CCNC(C)Cc1:c:c:c:c(:c:1)C(F)(F)F

gadobutrol 0 V08 OCC(O)C(CO)N1CCN(CC(=O)O)CCN(CC(=O)O)CCN(CC(=O)O)CC1

gadoteridol 0 V08 CC(O)CN1CCN(CC(=O)O)CCN(CC(=O)O)CCN(CC(=O)O)CC1

galantamine 0 N06 COc1:c:c:c2CN(C)CCC34C=CC(O)CC3Oc:1:c:24

glafenine 0 N02 OCC(O)COC(=O)c1:c:c:c:c:c:1Nc2:c:c:n:c3:c:c(Cl):c:c:c:2:3

glyceryl_trinitrate 0 C01,C05 O=N(=O)OCC(CON(=O)=O)ON(=O)=O

haloperidol 0 N05 OC1(CCN(CCCC(=O)c2:c:c:c(F):c:c:2)CC1)c3:c:c:c(Cl):c:c:3

hydrocodone 0 R05 COc1:c:c:c2CC3C4CCC(=O)C5Oc:1:c:2C45CCN3C

idarubicin 0 L01 CC1OC(CC(N)C1O)OC2CC(O)(Cc3:c(O):c4C(=O)c5:c:c:c:c:c:5C(=O)c:4:c(O):c2:3)C(=O)C

ifosfamide 0 L01 ClCCNP1(=O)OCCCN1CCCl

iobitridol 0 V08 CN(CC(O)CO)C(=O)c1:c(I):c(NC(=O)C(CO)CO):c(I):c(C(=O)N(C)CC(O)CO):c:1I

iomeprol 0 V08 CN(C(=O)CO)c1:c(I):c(C(=O)NCC(O)CO):c(I):c(C(=O)NCC(O)CO):c:1I

iotalamic_acid 0 V08 CNC(=O)c1:c(I):c(NC(=O)C):c(I):c(C(=O)O):c:1I

ioversol 0 V08 OCCN(C(=O)CO)c1:c(I):c(C(=O)NCC(O)CO):c(I):c(C(=O)NCC(O)CO):c:1I

irinotecan 0 L01 CCc1:c2CN3C(=O)C4=C(C=C3c:2:n:c5:c:c:c(OC(=O)N6CCC(CC6)N7CCCCC7):c:c:1:5)C(O)(CC)

C(=O)OC4

ixabepilone 0 L01 CC1CCCC2(C)OC2CC(NC(=O)CC(O)C(C)(C)C(=O)C(C)C1O)\C(=C\c3:c:s:c(C):n:3)\C

ketotifen 0 R06,S01 CN1CCC(=C2c3:c:c:c:c:c:3CC(=O)c4:s:c:c:c2:4)CC1

lacidipine 0 C08 CCCCc1:n:c(Cl):c(CO):n:1Cc2:c:c:c(:c:c:2)c3:c:c:c:c:c:3c4:n:n:n:[nH]:4

latamoxef 0 J01 COC1(NC(=O)C(C(=O)O)c2:c:c:c(O):c:c:2)C3OCC(=C(N3C1=O)C(=O)O)CSc4:n:n:n:n:4C

levonorgestrel 0 G03 CCC12CCC3C(CCC4=CC(=O)CCC34)C1CCC2(O)C#C

loxapine 0 N05 CN1CCN(CC1)C2=Nc3:c:c:c:c:c:3Oc4:c:c:c(Cl):c:c2:4

melphalan 0 L01 NC(Cc1:c:c:c(:c:c:1)N(CCCl)CCCl)C(=O)O

metamfetamine 0 N06 CNC(C)Cc1:c:c:c:c:c:1

methadone 0 N07 CCC(=O)C(CC(C)N(C)C)(c1:c:c:c:c:c:1)c2:c:c:c:c:c:2

methysergide 0 N02 CCC(CO)NC(=O)C1CN(C)C2Cc3:c:n(C):c4:c:c:c:c(C2=C1):c:3:4

metrizamide 0 V08 CN(C(=O)C)c1:c(I):c(NC(=O)C):c(I):c(C(=O)NC2C(O)OC(CO)C(O)C2O):c:1I

mibefradil 0 C08 COCC(=O)OC1(CCN(C)CCCc2:n:c3:c:c:c:c:c:3:[nH]:2)CCc4:c:c(F):c:c:c:4C1C(C)C

mifepristone 0 G03 CC#CC1(O)CCC2C3CCC4=CC(=O)CCC4=C3C(CC12C)c5:c:c:c(:c:c:5)N(C)C

misoprostol 0 A02,G02 CCCCC(C)(O)C\C=C\C1C(O)CC(=O)C1CCCCCCC(=O)OC

mitomycin 0 L01 COC12C3NC3CN1C4=C(C2COC(=O)N)C(=O)C(=N)C(C)C4=O

mitoxantrone 0 L01 OCCNCCNc1:c:c:c(NCCNCCO):c2C(=O)c3:c(O):c:c:c(O):c:3C(=O)c:1:2

moclobemide 0 N06 Clc1:c:c:c(:c:c:1)C(=O)NCCN2CCOCC2

mometasone 0 D07,R01,R03 CC1CC2C3CCC4=CC(=O)C=CC4(C)C3(Cl)C(O)CC2(C)C1(O)C(=O)CCl

nafarelin 0 H01 CC(C)CC(\N=C(\O)/C(Cc1:c:c:c2:c:c:c:c:c:2:c:1)\N=C(\O)/C(Cc3:c:c:c(O):c:c:3)\N=C(\O)/C(C

O)\N=C(\O)/C(Cc4:c:[nH]:c5:c:c:c:c:c:4:5)\N=C(\O)/C(Cc6:c:[nH]:c:n:6)\N=C(\O)/C7CCC(=

N7)O)\C(=N\C(CCCNC(=N)N)C(=

O)N8CCCC8\C(=N\CC(=N)O)\O)\O

nalbuphine 0 N02 OC1CCC2(O)C3Cc4:c:c:c(O):c5OC1C2(CCN3CC6CCC6)c:4:5

naltrexone 0 N07 Oc1:c:c:c2CC3N(CC4CC4)CCC56C(Oc:1:c:25)C(=O)CCC36O

nilotinib 0 L01 Cc1:c:n(:c:n:1)c2:c:c(NC(=O)c3:c:c:c(C):c(Nc4:n:c:c:c(:n:4)c5:c:c:c:n:c:5):c:3):c:c(:c:2)C(F)(F)

F
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Table A1.4.S1 (continued). Drugs used for modeling 

 

  

Name SJS 

activity

ATC codes Canonical Smiles

nizatidine 0 A02 C\N=C(/CN(=O)=O)\NCCSCc1:c:s:c(CN(C)C):n:1

norethisterone 0 G03 CC12CCC3C(CCC4=CC(=O)CCC34)C1CCC2(O)C#C

nortriptyline 0 N06 CNCCC=C1c2:c:c:c:c:c:2CCc3:c:c:c:c:c1:3

octreotide 0 H01 CC(O)C(CO)NC(=O)C1CSSCC(NC(=O)C(N)Cc2:c:c:c:c:c:2)C(=O)NC(Cc3:c:c:c:c:c:3)C(=O)NC(

Cc4:c:[nH]:c5:c:c:c:c:c:4:5)C(=O)NC(CCCCN)C(=O)NC(C(C)O)C(=O)N1

ondansetron 0 A04 Cc1:n:c:c:n:1CC2CCc3:c(C2=O):c4:c:c:c:c:c:4:n:3C

orciprenaline 0 R03 CC(C)NCC(O)c1:c:c(O):c:c(O):c:1

orlistat 0 A08 CCCCCCCCCCCC(CC1OC(=O)C1CCCCCC)OC(=O)C(CC(C)C)NC=O

oxybutynin 0 G04 CCN(CC)CC#CCOC(=O)C(O)(C1CCCCC1)c2:c:c:c:c:c:2

oxytocin 0 H01 CCC(C)C1NC(=O)C(Cc2:c:c:c(O):c:c:2)NC(=O)C(N)CSSCC(NC(=O)C(CC(=O)N)NC(=O)C(CCC(

=O)N)NC1=O)C(=O)N3CCCC3C(=O)NC(CC(C)C)C(=O)NCC(=O)N

pergolide 0 N04 CCCN1CC(CSC)CC2C1Cc3:c:[nH]:c4:c:c:c:c2:c:3:4

perindopril 0 C09 CCCC(NC(C)C(=O)N1C2CCCCC2CC1C(=O)O)C(=O)OCC

permethrin 0 P03 CC1(C)C(C=C(Cl)Cl)C1C(=O)OCc2:c:c:c:c(Oc3:c:c:c:c:c:3):c:2

pethidine 0 N02 CCOC(=O)C1(CCN(C)CC1)c2:c:c:c:c:c:2

phenylephrine 0 C01,R01,S01 CNCC(O)c1:c:c:c:c(O):c:1

phenylpropanolamine 0 R01 CC(N)C(O)c1:c:c:c:c:c:1

pimecrolimus 0 D11 CC\C\1=C/C(C)CC(C)CC(OC)C2OC(O)(C(C)CC2OC)C(=O)C(=O)N3CCCCC3C(=O)OC(C(C)C(O)

CC1=O)\C(=C\C4CCC(Cl)C(C4)OC)\C

pimozide 0 N05 Fc1:c:c:c(:c:c:1)C(CCCN2CCC(CC2)N3C(=O)Nc4:c:c:c:c:c3:4)c5:c:c:c(F):c:c:5

pindolol 0 C07 CC(C)NCC(O)COc1:c:c:c:c2:[nH]:c:c:c:1:2

pizotifen 0 N02 CN1CCC(=C2c3:c:c:c:c:c:3CCc4:s:c:c:c2:4)CC1

prasugrel 0 B01 CC(=O)Oc1:c:c2CN(CCc:2:s:1)C(C(=O)C3CC3)c4:c:c:c:c:c:4F

prazosin 0 C02 COc1:c:c2:n:c(:n:c(N):c:2:c:c:1OC)N3CCN(CC3)C(=O)c4:o:c:c:c:4

prilocaine 0 N01 CCCNC(C)C(=O)Nc1:c:c:c:c:c:1C

probucol 0 C10 CC(C)(C)c1:c:c(SC(C)(C)Sc2:c:c(:c(O):c(:c:2)C(C)(C)C)C(C)(C)C):c:c(:c:1O)C(C)(C)C

progesterone 0 G03 CC(=O)C1CCC2C3CCC4=CC(=O)CCC4(C)C3CCC12C

propafenone 0 C01 CCCNCC(O)COc1:c:c:c:c:c:1C(=O)CCc2:c:c:c:c:c:2

quinapril 0 C09 CCOC(=O)C(CCc1:c:c:c:c:c:1)NC(C)C(=O)N2Cc3:c:c:c:c:c:3CC2C(=O)O

rasagiline 0 N04 C#CCNC1CCc2:c:c:c:c:c1:2

retapamulin 0 D06 CC1CCC23CCC(=O)C2C1(C)C(CC(C)(C=C)C(O)C3C)OC(=O)CSC4CC5CCC(C4)N5C

rimonabant 0 A08 Cc1:c(:n:n(c2:c:c:c(Cl):c:c:2Cl):c:1c3:c:c:c(Cl):c:c:3)C(=O)NN4CCCCC4

ritodrine 0 G02 CC(NCCc1:c:c:c(O):c:c:1)C(O)c2:c:c:c(O):c:c:2

rizatriptan 0 N02 CN(C)CCc1:c:[nH]:c2:c:c:c(Cn3:c:n:c:n:3):c:c:1:2

ropinirole 0 N04 CCCN(CCC)CCc1:c:c:c:c2NC(=O)Cc:1:2

ropivacaine 0 N01 CCCN1CCCCC1C(=O)Nc2:c(C):c:c:c:c:2C

rotigotine 0 N04 CCCN(CCc1:c:c:c:s:1)C2CCc3:c(O):c:c:c:c:3C2

selegiline 0 N04 CC(Cc1:c:c:c:c:c:1)N(C)CC#C

sevoflurane 0 N01 FCOC(C(F)(F)F)C(F)(F)F

sotalol 0 C07 CC(C)NCC(O)c1:c:c:c(NS(=O)(=O)C):c:c:1

suxamethonium 0 M03 CN(C)(C)CCOC(=O)CCC(=O)OCCN(C)(C)C

temafloxacin 0 J01 CC1CN(CCN1)c2:c:c3N(C=C(C(=O)O)C(=O)c:3:c:c:2F)c4:c:c:c(F):c:c:4F

terazosin 0 G04 COc1:c:c2:n:c(:n:c(N):c:2:c:c:1OC)N3CCN(CC3)C(=O)C4CCCO4

terconazole 0 G01 CC(C)N1CCN(CC1)c2:c:c:c(OCC3COC(Cn4:c:n:c:n:4)(O3)c5:c:c:c(Cl):c:c:5Cl):c:c:2

thiethylperazine 0 R06 CCSc1:c:c:c2Sc3:c:c:c:c:c:3N(CCCN4CCN(C)CC4)c:2:c:1

thiopental 0 N01,N05 CCCC(C)C1(CC)C(=O)NC(=S)NC1=O

tiagabine 0 N03 Cc1:c:c:s:c:1C(=CCCN2CCCC(C2)C(=O)O)c3:s:c:c:c:3C

tibolone 0 G03 CC1CC2=C(CCC(=O)C2)C3CCC4(C)[C@@H](CC[C@@]4(O)C#C)[C@@H]13

tioconazole 0 D01,G01 Clc1:c:c:c(C(Cn2:c:c:n:c:2)OCc3:c:c:s:c:3Cl):c(Cl):c:1

tirofiban 0 B01 CCCCS(=O)(=O)NC(Cc1:c:c:c(OCCCCC2CCNCC2):c:c:1)C(=O)O

topotecan 0 L01 CCC1(O)C(=O)OCC2=C1C=C3N(Cc4:c:c5:c(CN(C)C):c(O):c:c:c:5:n:c3:4)C2=O

tranylcypromine 0 N06 NC1CC1c2:c:c:c:c:c:2

travoprost 0 S01 CC(C)OC(=O)CCC\C=C\CC1C(O)CC(O)C1\C=C\C(O)COc2:c:c:c:c(:c:2)C(F)(F)F

treprostinil 0 B01 CCCCCC(O)CCC1C(O)CC2Cc3:c(CC12):c:c:c:c:3OCC(=O)O

tretinoin 0 D10,L01 C\C(=C/C=C/C(=C/C(=O)O)/C)\C=C\C1=C(C)CCCC1(C)C

triamcinolone 0 A01,C05,D07,H02,R01,R03,S01 CC12CC(O)C3(F)C(CCC4=CC(=O)C=CC34C)C1CC(O)C2(O)C(=O)CO

triazolam 0 N05 Cc1:n:n:c2CN=C(c3:c:c:c:c:c:3Cl)c4:c:c(Cl):c:c:c:4n:1:2

valganciclovir 0 J05 CC(C)C(N)C(=O)OCC(CO)OCn1:c:n:c2:c(O):n:c(N):n:c:1:2

vardenafil 0 G04 CCCc1:n:c(C):c2:c(O):n:c(:n:n:1:2)c3:c:c(:c:c:c:3OCC)S(=O)(=O)N4CCN(CC)CC4

vecuronium 0 M03 CC(=O)OC1CC2CCC3C(CCC4(C)C3CC(C4OC(=O)C)N5(C)CCCCC5)C2(C)CC1N6CCCCC6

verteporfin 0 S01 COC(=O)CCc1:c(C):c2:c:c3:n:c(:c:c4:n:c(:c:c5:n:c(:c:c:1:n:2):c(CCC(=O)O):c:5C):c(C=C):c:4C)

C6=CC=C(C(C(=O)OC)C36C)C(=O)OC
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Table A1.4.S1 (continued). Drugs used for modeling 

 

 

 

 

 

Table A1.4.S2. Chemical descriptors used for QSAR modeling 

(only the first 10 rows of over 1000 rows are shown; table available upon request) 

Dragon descriptors ISIDA fragmentsa MACCS 
fingerprints 

MW H-C-C-N=C 8_QAAA@1 

AMW C-C-C-C-C 11_4MRING 

Ss H-C-C-N-C-C 17_CTC 

Mv C-C*C*C*C-O 19_7MRING 

Me C-C*C*C*C-N 22_3MRING 

Mp C*C*C-C-C-N 23_NC(O)O 

Ms H-C-C-N-C-H 24_N-O 

nBM C*C*C-C-C-O 25_NC(N)N 

SCBO H-C=C-N-C=O 26_C$=C($A)$A 

 
a
 types of ISIDA bonds  

- single bond 

= double bond 

* aromatic bond 

 

For explanation of descriptors, refer to:  

Dragon: http://www.talete.mi.it/products/dragon_molecular_descriptor_list.pdf  

ISIDA:  http://infochim.u-

strasbg.fr/recherche/Download/Fragmentor/Nomenclature_of_ISIDA_fragments_2011.pdf  

MACCS: http://www.mayachemtools.org/docs/scripts/html/MACCSKeysFingerprints.html  

 

  

Name SJS 

activity

ATC codes Canonical Smiles

vinblastine 0 L01 CCC1(O)CC2CN(CCc3:c(:[nH]:c4:c:c:c:c:c:3:4)C(C2)(C(=O)OC)c5:c:c6:c(:c:c:5OC)N(C)C7C(O)

(C(OC(=O)C)C8(CC)C=CCN9CCC67C89)C(=O)OC)C1

vincristine 0 L01 CCC1(O)CC2CN(CCc3:c(:[nH]:c4:c:c:c:c:c:3:4)C(C2)(C(=O)OC)c5:c:c6:c(:c:c:5OC)N(C=O)C7C(

O)(C(OC(=O)C)C8(CC)C=CCN9CCC67C89)C(=O)OC)C1

vinorelbine 0 L01 CCC1=CC2CN(C1)Cc3:c(:[nH]:c4:c:c:c:c:c:3:4)C(C2)(C(=O)OC)c5:c:c6:c(:c:c:5OC)N(C)C7C(O)

(C(OC(=O)C)C8(CC)C=CCN9CCC67C89)C(=O)OC

zafirlukast 0 R03 COc1:c:c(:c:c:c:1Cc2:c:n(C):c3:c:c:c(NC(=O)OC4CCCC4):c:c:2:3)C(=O)NS(=O)(=O)c5:c:c:c:c:c:

5C

zaleplon 0 N05 CCN(C(=O)C)c1:c:c:c:c(:c:1)c2:c:c:n:c3:c(:c:n:n:2:3)C#N

zolpidem 0 N05 CN(C)C(=O)Cc1:c(:n:c2:c:c:c(C):c:n:1:2)c3:c:c:c(C):c:c:3

zuclopenthixol 0 N05 OCCN1CCN(CC\C=C\2/c3:c:c:c:c:c:3Sc4:c:c:c(Cl):c:c2:4)CC1

http://www.talete.mi.it/products/dragon_molecular_descriptor_list.pdf
http://infochim.u-strasbg.fr/recherche/Download/Fragmentor/Nomenclature_of_ISIDA_fragments_2011.pdf
http://infochim.u-strasbg.fr/recherche/Download/Fragmentor/Nomenclature_of_ISIDA_fragments_2011.pdf
http://www.mayachemtools.org/docs/scripts/html/MACCSKeysFingerprints.html
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Table A1.4.S3. Performance of QSAR models 

 

 

 

 

 

 

Table A1.4.S4. Predictions of SJS activity of drugs in DrugBank 

(only the first 10 rows of over 4000 rows are shown; table available upon request) 

 

5 models corresponding to 5-fold CV random forest of Dragon descriptors (Drg-RF) were used for prediction. 

"predfold0", "predfold1", etc. are the predictions given by models from fold0, fold1, etc. 

"predmean" is the mean predicted value across the 5 models 

"predSD" is the standard deviation of the predicted value across the 5 models 

"NA" denotes invalid prediction (out of AD) 

  

DrugBank ID Name predfold0 predfold1 predfold2 predfold3 predfold4 predmean predSD

DB01581 Sulfamerazine 0.975 0.952 0.969 0.985 0.981 0.972 0.013

DB00891 Sulfapyridine 0.968 0.954 0.973 0.979 0.984 0.972 0.012

DB00576 Sulfamethizole 0.964 0.945 0.957 0.964 0.978 0.962 0.012

DB01332 Ceftizoxime 0.965 0.976 0.957 0.928 0.968 0.959 0.019

DB01325 Quinethazone 0.924 0.928 0.964 0.970 0.958 0.949 0.021

DB01298 Sulfacytine 0.918 0.909 0.935 0.964 0.952 0.936 0.023

DB01333 Cefradine 0.917 0.971 0.884 0.946 0.949 0.933 0.034

DB03294

1-Methyl-3-Oxo-1,3-

Dihydro-

Benzo[C]Isothiazole-5-

Sulfonic Acid Amide 0.919 0.899 0.941 0.948 0.956 0.933 0.023

DB00880 Chlorothiazide 0.936 0.900 0.936 0.946 0.933 0.930 0.018

DB00689 Cephaloglycin 0.948 0.945 0.925 0.880 0.941 0.928 0.028
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Table A1.4.S5. Baseline characteristics of patients employed for pharmacoepidemiology 

analysis 
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APPENDIX 2: SUPPLEMENTAL FIGURES 

Supplemental figure for Chapter 2 (also available online at doi:10.1021/tx200148a) 

 

Figure A2.2.1. Modeling workflow reproduced from Tropsha, A. (2010) Best Practices for 

QSAR Model Development, Validation, and Exploitation. Mol. Inf. 29, 476-488  
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Supplemental figure for Chapter 3 (also available online at doi:10.1021/tx400110f) 

 
Figure A2.3.S1. Descriptor profiles of chloramphenicol and (A) its biological neighbors 

across 30 genes, (B), its chemical neighbors across 304 chemical descriptors, and 

carbamazepine and (C) its biological neighbors across 30 genes, and (D) its chemical 

neighbors across 304 chemical descriptors. Each diamond marks a descriptor value of the 

target compound or its neighbors used for RA-kNN (red for toxic, black for nontoxic). For 

each descriptor, these values within the neighborhood form a range (orange ribbon). 

Descriptors are ranked in increasing range (i.e. orange bands widen along the x-axis). Target 

compounds with more similar neighbors are expected to exhibit narrower orange bands (e.g. 

panel A shows the narrow band formed by chloramphenicol and its highly similar biological 

neighbors). Smaller dots mark descriptor values of all other compounds and show their 

distribution along each descriptor dimension. Likewise, they are colored according to toxicity 

(red for toxic, black for nontoxic). All 304 chemical descriptors are shown although only 

every other 10th descriptor is labeled on the horizontal axis.  
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Supplemental figures for Chapter 4 

 
Figure A2.4.S1. Out-of-bag (OOB) error of RF model using f most important fragments. 

OOB error is at a minimum (0.29) when f=29 which outperformed the full model of f=1,091 

fragments (OOB=0.33)   



145 

 

 
Figure A2.4.S2. Most likely SJS inducers and non-inducers predicted by QSAR model 

(Dragon-RF). Structural alerts, if any, were mapped onto the predicted drugs  
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Figure A2.4.S3. Timeline and patient cohort selection criteria
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APPENDIX 3: SUPPLEMENTAL METHODS 

 

Supplemental methods for Chapter 4 

Preliminary chemical exploration: SOM clustering of drugs in chemical space 

To understand how the 364 drugs were distributed in the chemical space, the drugs 

were clustered according to their Dragon descriptor profiles using a Kohonen self-organizing 

map (SOM) (Kohonen 2008). Based on artificial neural networks, SOM (Kohonen package 

in R) projects the drugs onto a two-dimensional 6 x 6 grid of cells such that similar drugs are 

clustered together within a cell and similar cells are placed next to one another. Thus, the 

topological distance between the drugs on the SOM reflects their chemical distance from one 

another. The chemical distance between any two drugs is defined as the Euclidean distance 

of their chemical descriptor vectors.  

Each cell is colored by its proportion of SJS inducers (gray if no SJS inducers, pink if 

all SJS inducers). Within each cell, a tag cloud of ATC codes is overlaid. The ATC letters are 

respectively sized and colored according to frequency and proportion of SJS inducers. 

Determining p most important chemical fragments 

Because the ISIDA-RF model was developed using 5-fold external CV, it involved 

five models which each had a slightly different RF conditional importance rank for each 

fragment. We used the conditional importance as… (mean diff in accuracy).  

From each of the five models, the most important 10, 25, 50, 75 and 150 fragments 

were selected. Their intersection, made up of p fragments consistently among the top ranked 

across all five models, were selected for subsequent random forest modelling using the same 
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5-fold external CV scheme. The resultant reduced RF model’s out-of-bag (OOBp) error was 

compared to that of the full RF model, OOBfull. Optimal p was defined as p with the 

minimum OOBp error ≤ OOBfull error. Figure S1 shows the plot of OOBp vs p where optimal 

p=29. 

Determining significance score for co-occurring fragments. 

Each co-occurring pair of fragment was tested for higher-than-expected frequency in 

inducers than in non-inducers by a two-tailed Fisher’s exact test. As a conservative measure, 

p-values underwent permutation-based adjustment assuming a null distribution generated 

under pairwise co-occurrences with noise (randomly absent or present). Specifically for each 

fragment i, its pairwise co-occurrence with noise generated a null Fisher’s test value, ti,noise1. 

Its pairwise co-occurrences with 1000 noise fragments from 1000 permutations generated a 

set of test values, ti,noise1, ti,noise2, …, ti,noise1000 forming the null distribution, Di. To adjust the 

test value of the pairwise co-occurrence of fragments i and j, ti,j was compared against the 

relevant null distributions, Di and Dj, such that the larger of its quantiles along the null 

distributions, max (qi, qj) was taken as the adjusted p-value. A fragment pair was said to co-

occur more frequently than expected when its adjusted p-value was <0.05. 

Pharmacoepidemiology 

Patients using the drugs of interest were determined by outpatient prescription claims 

(using appropriate national drug codes, NDC) and inpatient claims (using Healthcare 

Common Procedure Coding System codes, HCPCS). The NDC of the drugs of interest were 

extracted from the FDA Redbook 2011 (according to generic name) and RxNORM 
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(according to ingredient name). Relevant HCPCS codes were extracted if their descriptions 

contained the drugs of interest.  

Because many of the drugs of interest (e.g. antibiotics) were used intermittently, only 

the first drug use period per patient fulfilling the eligibility criteria was considered. However, 

the same patient was included again if he/she was also eligible for the first drug use of 

another drug class. 
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License to reproduce Chapter 2 
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