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ABSTRACT 
 

Jamie Kay Pero:  Advancements in Methodologies and Theories Regarding Model 
Membrane Environments by Total Internal Reflection with  

Fluorescence Correlation Spectroscopy 
(Under the Direction of Nancy L. Thompson) 

 
Total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) was 

utilized to determine the diffusion coefficient of nine fluorescently labeled antibodies, 

antibody fragments, and antibody complexes approximately 85 nm from a planar membrane.  

The diffusion coefficient decreased with increasing molecular size over what would be 

expected from the Stokes-Einstein Equation.  Theory was derived specific to use with TIR-

FCS to describe spatially dependent diffusion near membranes.  The decreased diffusion is 

likely due to increased frictional coefficients when molecules are in close proximity to 

membranes.  This described spatially dependent diffusion could be one contributor to the 

nonideality observed in ligand-receptor kinetics at membranes. 

A stacked phospholipid bilayer system was developed by utilizing the interaction 

between NeutrAvidin and biotin.  A biotinylated bilayer was deposited on a substrate and 

then treated with NeutrAvidin.  Finally, a second biotinylated bilayer was allowed to adsorb 

and fuse atop the NeutrAvidin.  This stacked bilayer system was characterized using epi-

fluorescence, fluorescence pattern photobleaching recovery (FPPR), order parameter 

measurements, and atomic force microscopy (AFM).  These techniques indicated that the 

stacked bilayer was relatively continuous but did exhibit some gaps where bilayer was 

missing.  Fluorescence experiments indicated that the second bilayer was less fluorescent 
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than the primary bilayer.  The stacked bilayer system will have application in multilayer 

systems and as a cushioning system.  Other applications are likely forthcoming. 

High refractive index substrates would be beneficial for application in TIR-FCS 

because they produce much shallower evanescent wave depths (18-43 nm) than fused silica 

(63-104 nm).  It was verified that phospholipid bilayers can be formed upon TiO2 and 

SrTiO3. A second verification was required because conflicting reports were present in the 

literature.  TIR-FCS was attempted upon these substrates with some success.  The data were 

fit to a simplified version of the appropriate autocorrelation function.  The data did 

autocorrelate, but the fit was extremely noisy and did not fit well at fast times (< 0.1ms).  

TiO2 and SrTiO3 were determined to be natively luminescent in the visible region with 

SrTiO3 being about 6x more luminescent than TiO2. Further investigations are required to 

fully amend the use of TiO2 to TIR based techniques. 
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Chapter 1 Introduction 

 Throughout the centuries, science has proven itself a vast playground for the curious 

and imaginative.  As man and womankind’s understanding of the universe has grown through 

their investigations, most of the simple scientific principles have been deduced.  The 

deduction of “simple” science has fueled a hunger for the more complex.  As graduate 

students in science, we find ourselves embracing this complexity.  Interfaces are at no loss 

for complexity.  When two separate species or phases are forced into contact with each other, 

many interesting phenomena occur.  This is where proven principles break down and 

boundary values reap their reason.  Couple the inherent complexity of an interface to the 

doubly complex nature of biological material and you have a membrane. 

 The biological membrane mediates a myriad of functions, and it is the site of much of 

the interesting chemistry with regards to cellular function.  Although many of the mysteries 

of the biological membrane remain to be discovered, it is known to play a central role in 

neurotransmission (Kim and Huganir, 1999), immunological response (Ravetch and Bolland, 

2001), and nutrient uptake (Zorzano et al., 2000).  The membrane is central in many of these 

processes because it serves as a final gateway restricting what may enter and mingle with the 

fragile components inside the cell.  It is this role as the gateway which also necessitates that 

the membrane be intrinsically linked to ligand-receptor interactions.  Consequently, 

biological membranes are complex phospholipid bilayers containing integral transmembrane 

proteins (Wagner and Tamm, 2000), lipid rafts (Edidin, 2003; Lagerholm et al., 2005), 

receptors (Lieto et al., 2003) and a plethora of other relevant structures.  The complexity of 
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the membrane impedes the elucidation of its properties.  Resultantly, simplified model 

membrane systems have been employed in its study.  

 Several different techniques have been developed to make planar supported model 

phospholipid bilayers.  The earliest attempts date back to the early 1900’s when in 1918 

Langmuir transferred a floating monolayer to a substrate (Stryer, 1995).  This subsequently 

led to the development of the Langmuir-Blodgett (LB) and the Langmuir-Schaefer (LS) 

techniques in which a bilayer is created by the successive transfer of a monolayer to a 

substrate from the air/water interface (Wright et al., 1988; Tamm and McConnell, 1985).  In 

the 1980’s the McConnell lab developed a simpler technique to produce phospholipid 

bilayers known as vesicle fusion (Brian and McConnell, 1984).  In vesicle fusion, small 

unilamellar vesicles (SUVs) are produced by tip sonication.  They are then allowed to adsorb 

and fuse to form a bilayer.  Recent advancements have produced hybrids of the two 

techniques (Kalb et al., 1992).  The utility of phospholipid bilayers has seen extension 

beyond its use as a model membrane system.  Phospholipid bilayers now find application in 

biosensors (Pompeo, et al., 2005; Amenitsch et al, 2004), the biofunctionalization of 

inorganic solids (Sackmann, 1996), and immobilization of proteins and DNA (Pompeo et al., 

2005; Sackmann, 1996; Amenitsch et al., 2004). 

 The continued use of phospholipid bilayers in experimental settings requires that the 

methodology continue to grow alongside the current needs in experiments.  This requires the 

amendment of model membrane technology to increasingly complex and stringent 

requirements.  One such current requirement is the production of “cushioning systems” for 

model membranes.  The desire to produce cushioned membranes was born from several 

contributing factors including the need to shelter the membrane from the roughness of the 
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surface (Spinke et al., 1992).  Protecting the model membrane from the surface roughness 

creates more “fluid” membranes.  Also, model membranes are currently limited in their 

ability to mimic the biological membrane because they do not allow transmembrane proteins 

to retain their lateral mobility (Wagner and Tamm, 2000; Sackmann, 1996; Naumann et al., 

2002; Kühner et al., 1994; Wong, et al., 1999; Huang, 1985; Spinke et al., 1992).  A 

cushioning system would limit interactions between the transmembrane protein and the 

substrate.  This could possibly allow a transmembrane protein to have lateral mobility similar 

to that seen in biological membranes.  Currently, several cushioning systems have been 

proposed (Wanger and Tamm, 2000; Sackmann, 1996; Naumann et al., 2002; Kühner et al., 

1994; Wong, et al., 1999; Huang, 1985; Spinke et al., 1992).  Many involve the use of 

polymers and ultra-thin polymer films (Sackmann, 1996). 

 A novel approach to the development of a cushioning system is to utilize the 

interactions of biotin and avidin to produce a stacked bilayer system.  The utility of such a 

system would also see usage in multilayer applications.  This stacked bilayer system has been 

constructed (see Chapter 3) by first depositing phospholipid vesicles containing a small 

fraction of biotin onto a fused silica substrate.  The biotinylated vesicles are allowed to fuse 

at and adsorb to the substrate.  Then NeutrAvidin (a commercially available derivative of 

avidin) is applied to the bilayer.  Finally, biotinylated vesicles are applied atop this system 

and allowed to adsorb and become a bilayer.  The primary bilayer and NeutrAvidin serve as 

the cushioning system atop which the secondary bilayer rests.  The continuity and 

homogeneity of this system has been analyzed by fluorescence microscopy and atomic force 

microscopy. 
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 Another area requiring advancement in membrane science is the theory surrounding 

ligand-receptor interactions near model or cellular membranes.  As was aforementioned, the 

inherent gate-like nature of the biological membrane mandates that numerous different 

ligands diffuse up to and possibly bind to the membrane (Figure 1.1).  The theory 

surrounding ligand-receptor interactions and their association/dissociation kinetics at 

membranes has never adequately modeled what is seen experimentally (Hsieh and 

Thompson, 1995; Payne et al., 1997; McKiernan et al., 1987; Anderson and McConnell, 

1999; Sahu et al., 2000; Domagala et al., 2000).   The deviations from expectation caused 

scientists to postulate that other factors influence ligand translational mobility in very close 

proximity to membranes (see Chapter 2).  One such possibility is related to physical 

chemistry and the effect that the wall-like boundary of the membrane has upon the 

translational mobility of the ligand.  If the close proximity of the membrane causes an 

increase in the frictional coefficient of the ligand, the diffusion coefficient will decrease from 

what was previously anticipated (Forster and Lauffenburger, 1994).  One way to measure the 

effects that the close proximity of the membrane has upon the diffusion of the ligand would 

be to study ligand translational mobility as a function of ligand radii.  If the membrane is 

effecting the diffusion of these ligands, the trend would manifest itself more for larger 

particles (Frej and Prieve, 1993; Bevan and Prieve, 2000; Lin et al., 2000; Dufresne et al., 

2000; Pagac et al., 1996; Pralle et al., 1998; Sholl et al., 2000; Oetama and Walz, 2005). 
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Figure 1.1 The Diffusing and Binding of Ligands at a Model Membrane. 

The nature of the biological membrane requires that numerous different ligands diffuse up 

and bind to receptors embedded in the membrane.  The membrane contains many different 

receptor types. This schematic represents a simplified version of what is occurring. 

 

 The study of diffusion and binding near model membranes requires specialization of 

existing techniques so that information gathered is specific to the interface and does not 

include information about bulk solution.  One popular way in which this is done is by total 

internal reflection (TIR).  Total internal reflection occurs when a plane wave traveling in a 

medium of higher refractive index (n1) impinges on a planar medium of lower refractive 

index (n2) at an angle (defined from the normal to the interface) greater than the critical angle 

(ac) 

)(sin
1

21

n

n
C

−
=α         (1.1). 

During internal reflection, the plane wave completely reflects into the higher refractive index 

medium and a surface-associated evanescent wave is generated in the lower refractive index 

medium (Thompson and Pero, in press).  The evanescent field propagates parallel to the 

interface and penetrates into the lower refractive index medium with a distance on the order 
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of the incident light wavelength.  Resultantly, a small distance from the interface (63-104 nm 

at the fused silica/water interface) is selectively excited, and interactions in close vicinity to 

the model membrane can be probed.  The depth of the evanescent wave is defined by 

2

2

22

1 sin4 nn
d

−

=

απ

λ
       (1.2) 

where d is the evanescent wave depth, l is the vacuum wavelength of light, and a is the 

incident angle of the light. 

 Total internal reflection has been combined with many fluorescence techniques to 

render them surface sensitive (Thompson and Pero, 2005).  One such technique is 

fluorescence correlation spectroscopy (FCS).  FCS first made its debut in 1974 when other 

correlation based techniques such as light scattering were being introduced (Elson and 

Magde, 1974; Elson, 1985).  In FCS, a small observation volume is defined by placing an 

aperture (usually 50-200 mm in radius) at the confocal image plane of a microscope.  By 

using this small observation volume to monitor a dilute fluorescently-labeled solution (~15-

100 nM), temporal fluctuations in the measured fluorescence can yield information about the 

processes giving rise to these fluctuations (Thompson, 1991).  These fluctuations can be 

caused by molecules moving into and out of the observation volume or changes in the 

fluorescent state of molecules (singlet to triplet and vice-versa) (Elson and Magde, 1974, 

Thompson, 1991; Gösch and Rigler, 2005; Fradin et al., 2005).  Consequently, FCS takes 

advantage of what effectively can be considered the inherent noise in a fluorescent 

measurement to derive information about the molecular motion and fluorescent properties of 

its participants.  These fluctuations are then autocorrelated 

2

)()(
)(

F

tFtF
G

δτδ
τ

+
=        (1.3) 
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where F(t) is the instantaneous fluorescence intensity at time t, <F> is the average 

fluorescence intensity over the course of the experiment, t is the correlation time, and dF(t) 

(defined by dF(t) = F(t) - <F>) is the fluorescence fluctuation.  G(t) decays monotonically 

with t to zero at t = ¶.   A number of recent reviews have been published describing FCS 

(Vukojevic et al., 2005; Gosch and Rigler, 2005; Haustein and Schwille, 2004; Enderlein et 

al., 2004; Pramanik, 2004; Weiss and Nilsson, 2004; Kahya et al., 2004; Levin and Carson, 

2004; Muller et al., 2003; Hink et al., 2003; Thompson et al., 2002; Frieden et al., 2002; 

Rigler and Elson, 2001). 

 In 1977 total internal reflection was combined with fluorescence correlation 

spectroscopy (TIR-FCS) in an instrument known as a virometer (Hirschfeld and Block, 1977; 

Hirschfeld et al., 1977).  The virometer was a rudimentary, proof-of-principle instrument that 

was devised to identify ethidium bromide stained viral molecules by their rate of diffusion 

through the evanescent wave.  In 1981, TIR-FCS was brought to fruition and the theory was 

derived (Thompson et al., 1981).  The derivation of the theory for TIR-FCS paved the way 

for its application in biophysics.  The advantages of using TIR-FCS as opposed to FCS are 

most profound for studying dynamic processes at interfaces (Figure 1.2).  By using a TIR set-

up, the technique becomes especially applicable to membrane science.  However, there are 

additional advantages that are useful in other aspects.  For instance, FCS measurements 

require that the area in which measurements be taken remain small.  This is easily 

accomplished in the xy plane by placing an aperture at a confocal image plane in the path of 

light (Thompson, 1991).  TIR increases the ability to limit sample observation volume by 

making it possible to specify the z-distance that is probed by changing the incidence angle of 

the impinging light (Eq. 1.2).  Furthermore, although conventional solution-based FCS has 
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been used to study the kinetics of some systems, this type of FCS has some distinct 

disadvantages in this area of investigation.  Using FCS to probe the kinetics of two ligands 

binding involved watching the change in the rate of translational diffusion upon binding.  

This is not optimum because to see significant changes in translational mobility the size 

increase upon binding must be of a significant magnitude, and this is rarely the case.  TIR-

FCS circumvents this problem by immobilizing a nonfluorescent ligand to the surface.  Then 

a fluorescent ligand must diffuse into the evanescent wave and bind to a surface-immobilized 

ligand to elicit fluorescence, thus making kinetic investigations much more facile. 
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Figure 1.2 Total Internal Reflection with Fluorescence Correlation Spectroscopy. 

a) Light is totally internally reflected through a fused silica prism to selectively excite 

molecules near the interface.  b) The experimental apparatus for TIR-FCS.  After light is 

totally internally reflected, it is sent through a pinhole at the confocal image plane.  Photons 

are measured by a photomultiplier tube and then autocorrelated.  c) The measured fluorescent 

intensity displays temporal fluctuations in the signal commonly referred to as noise.  d) The 

fluorescent fluctuations are autocorrelated.   The fluorescent fluctuations yield information 

about the movement of molecules in close proximity to the membrane and about transitions 

in fluorescent state. 
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 From the advent of TIR-FCS there existed a lag time during which the technique saw 

little application.  However, now TIR-FCS is beginning to see abundant application and it 

appears that the technique is fast becoming a staple in biophysical research.  A recent review 

of TIR-FCS provides detailed information about its applications (Thompson and Pero, in 
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press).  However, a brief review of the use of TIR-FCS has been included here.  Shortly after 

the first theoretical paper, a second short theory paper was published (Thompson, 1982).  

This paper hypothesized that TIR-FCS could be used to measure the surface binding kinetics 

of nonfluorescent ligands competing with fluorescent ligands for the same binding sites.  The 

first experimental example that united the theory and TIR-FCS was when the reversible 

kinetics of tetramethylrhodamine-labeled immunoglobulin and insulin interacting with fused 

silica coated with serum albumin
 
was measured (Thompson and Axelrod, 1983). 

TIR-FCS was used to measure the diffusion coefficients and concentrations of 

fluorescently-labeled IgG diffusing within the depth of the evanescent wave (Starr and 

Thompson, 2001; Starr and Thompson, 2002).  Also, TIR-FCS was recently demonstrated to 

measure the kinetics of a specific and reversible association between fluorescently labeled 

ligands (IgG) in solution and their receptors (mouse FcγRII) embedded in substrate-

supported planar membranes (Lieto et al., 2003; Scwhille, 2003).  This application is 

noteworthy because it was the first demonstration of nonfluorescent and fluorescent ligands 

(of the same type) being measured by TIR-FCS as proposed by the second theory paper 

(Thompson, 1982).  The next extension of this would be to monitor the binding of ligands of 

different types (one fluorescently-labeled species and one unlabeled species).  Although this 

has not occurred to date, investigations of this nature are being proposed. 

Of late, two studies monitored the diffusion of fluorescein within the evanescent 

wave depth using TIR-FCS
 
(Harlepp et al., 2004; Hassler et al., 2005).  These represent the 

first studies demonstrating the application of TIR-FCS by through-objective as opposed to 

through-prism optics (Hassler et al., 2005) and also the use of TIR-FCS to calibrate the depth 

of the evanescent wave.  The application of TIR-FCS to live cell studies still remains limited.  
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However, TIR-FCS has been used to monitor the motions of fluorescently labeled, 

intracellular vesicles near the plasma membranes of adherent cells
 
(Johns et al., 2001; Holt et 

al., 2004).    

TIR-FCS is also being extended beyond usage in the area of biophysics.  TIR-FCS 

has been used to monitor the reversible kinetics of rhodamine 6G interacting with C-18-

modified silica surfaces
 

(Hansen and Harris, 1998a; Hansen and Harris, 1998b).  

Subsequently, a comprehensive set of measurements employed TIR-FCS to investigate 

molecular transport in substrate-supported, sol-gel films
 
(McCain and Harris, 2002; McCain 

et al., 2004a; McCain et al., 2004b).   

 Some recent interest in TIR-FCS has been in its use with high refractive index 

substrates to generate very small evanescent waves.  Smaller evanescent waves would be of 

use because they would facilitate the study of systems with weaker binding constants and 

provide information about chemistry occurring closer to surfaces (Thompson and Pero, 

2005).  Recently, it has been proven that phospholipid bilayers can be formed upon titanium 

dioxide and strontium titanate (Starr and Thompson, 2000; Rossetti et al. 2005).  

Consequently, the first step to amending the use of high refractive index substrates to 

biophysical surface studies has been taken.  Furthermore, combining high refractive index 

substrates with techniques like variable angle total internal reflection (VA-TIR) will allow 

depth profiling studies to be performed.  VA-TIR changes the incidence angle of the 

impinging laser light and produces smaller evanescent depths by Eq. 1.2. 

 This thesis represents the compilation of new methodologies and theories all 

intrinsically related to model membranes, total internal reflection, and TIR-FCS.  Their 

development should modify existing methodology, facilitate the growth of new experimental 
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protocols, and lead to the modification of theories governing interactions near membranes.  It 

is hoped that this contribution provides a stepping stone upon which future contributors may 

lay a firm foot. 



 
 
Reproduced with permission from the American Chemical Society Copyright 2006 
Pero, J.K., Haas, E.M., and Thompson, N.L. 2006 J. Phys. Chem. B. 110:10910-10918. 
 
Chapter 2 Size Dependence of Protein Diffusion Very Close to 
Membrane Surfaces:  Measurement by Total Internal Reflection 
with Fluorescence Correlation Spectroscopy 
 
2.1 Abstract 

The diffusion coefficients of nine fluorescently labeled antibodies, antibody 

fragments and antibody complexes have been measured in solution very close to supported 

planar membranes by using total internal reflection with fluorescence correlation 

spectroscopy (TIR-FCS).  The hydrodynamic radii (3 to 24 nm) of the nine antibody types 

were determined by comparing literature values with bulk diffusion coefficients measured by 

spot FCS.  The diffusion coefficients very near membranes decreased significantly with 

molecular size, and the size dependence was greater than that predicted to occur in bulk 

solution.  The observation that membrane surfaces slow the local diffusion coefficient of 

proteins in a size-dependent manner suggests that the primary effect is hydrodynamic as 

predicted for simple spheres diffusing close to planar walls.  The TIR-FCS data are 

consistent with predictions derived from hydrodynamic theory.  This work illustrates one 

factor that could contribute to previously observed non-ideal ligand-receptor kinetics at 

model and natural cell membranes.  

2.2 Introduction 

The interactions of ligands with their receptors at biological interfaces such as 

membranes are at the heart of many if not all biological processes including, for example, 

neurotransmission (Kim and Huganir, 1999), immunological response (Ravetch and Bolland, 
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2001), and nutrient uptake (Zorzano et al., 2000).  Previous studies have indicated that the 

association/dissociation kinetics of ligands in solution with receptors in natural or model 

membranes are very often not adequately explained as simple, reversible, bimolecular 

reactions between point particles (Hsieh and Thompson, 1995; Payne et al., 1997; McKiernan 

et al., 1987; Anderson and McConnell, 1999; Sahu et al., 2000; Domagala et al., 2000).  

Numerous hypotheses have been developed to account for the observed non-ideality 

including models with an increased number of discrete states (Lauffenburger and 

Lindermann, 1993) or models in which the system is described as containing a continuum of 

bound states (Kopelman, 1988; Frauenfelder et al., 1991; Murray and Honig, 2002).  Other 

investigations into the molecular details of ligand-receptor kinetics have included rebinding 

effects (Lagerholm and Thompson, 1998; Levin et al., 2002), rotational mobility or 

orientational effects (Shoup et al., 1981; Schweitzer-Stenner et. al., 1992).  An additional 

possibility is that the observed non-ideality arises at least in part from deviations of the 

ligand translational mobility in close proximity to membranes from the bulk diffusion 

coefficient. 

Total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) is a 

method particularly well-suited to probing molecular motions and interactions close to 

surfaces.  In TIR-FCS, a laser beam is internally reflected at the interface of a planar surface 

and an aqueous medium.  The internal reflection generates a surface-associated evanescent 

field that penetrates only slightly into the aqueous medium and excites fluorescence from 

molecules bound to the surface or in solution but very close to the surface.  The fluorescence 

arising from a small surface-adjacent volume, defined by the depth of the evanescent field 

along with an image-plane aperture, is monitored and fluctuates as molecules move into and 
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out of the volume.  The time-dependence of the autocorrelation function of the fluorescence 

fluctuations provides information about the local translational mobility of the fluorescent 

molecules and if they reversibly interact with surface sites, the kinetics associated with the 

surface interaction. 

The theoretical basis for using TIR-FCS to examine near-surface dynamics, including 

translational diffusion in solution very close to the surface as well as the kinetics of 

reversible association and dissociation with the surface, has been established (Thompson et 

al., 1981; Starr and Thompson, 2001; Lieto and Thompson, 2004).  A number of 

experimental TIR-FCS studies have also been carried out.  Initially, TIR-FCS was used to 

examine the reversible kinetics of tetramethylrhodamine-labeled immunoglobulin and insulin 

interacting with fused silica coated with serum albumin (Thompson and Axelrod, 1983) and 

of rhodamine 6G interacting with C-18-modified silica surfaces (Hansen and Harris, 1998a; 

Hansen and Harris, 1998b).  Subsequently, a comprehensive set of measurements employed 

TIR-FCS to investigate molecular transport in substrate-supported, sol-gel films (McCain and 

Harris, 2002; McCain et al., 2004a; McCain et al., 2004b).  Two recent studies monitored the 

diffusion of fluorescein within the evanescent wave using TIR-FCS (Harlepp et al., 2004; 

Hassler et al., 2005).  The first demonstration of TIR-FCS as a method for monitoring the 

kinetics of a specific and reversible association between fluorescently labeled ligands (IgG) 

in solution and their receptors (mouse FcγRII) embedded in substrate-supported planar 

membranes has been recently described (Lieto et al., 2003).  Versions of TIR-FCS have also 

been used to monitor the motions of fluorescently labeled, intracellular vesicles near the 

plasma membranes of adherent cells (Johns et al., 2001; Holt et al., 2004).    
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  The work described here addresses the nature of protein diffusion very near model 

phospholipid membrane surfaces.  The question considered is the manner in which the 

membrane affects local protein diffusion and therefore might affect the kinetics of interaction 

between protein ligands and their membrane-associated receptors.  In a previous work, 

comprehensive TIR-FCS measurements were carried out for monoclonal mouse IgG 

diffusing close to substrate-supported planar model membranes (Starr and Thompson, 2002).  

The main conclusion of this work was that if local electrostatic fields significantly affect 

protein diffusion close to membrane surfaces, the effects are confined to distances much 

smaller than 100 nm from the surface.  However, this work did suggest that hydrodynamic 

effects might affect protein mobility close to membrane surfaces in a manner that might be 

observable even at distances extending 100 nm or more from the membrane.   

Indeed, there exists a long-lived literature describing decreased diffusion of spherical 

particles close to planar walls.  The core of these theories is related to the development of the 

notion of frictional coefficients when addressing macromolecular hydrodynamics.  In these 

continuum-based theoretical treatments, the frictional coefficients for sphere motion through 

a viscous medium close to and both tangential or normal to the surface are increased, and the 

diffusion coefficients are decreased.  These effects, for spheres diffusing close to walls, have 

been theoretically predicted for decades and the signature is an increased dependence of the 

local diffusion coefficient on the size of the sphere (Forster and Lauffenburger, 1994).  The 

theoretical predictions have been experimentally verified, in part, for large colloidal particles 

(Frej and Prieve, 1993; Bevan and Prieve, 2000; Lin et al., 2000; Dufresne et al., 2000; 

Pagac et al., 1996; Pralle et al., 1998; Sholl et al., 2000; Oetama and Walz, 2005). 



 17

In the work described herein, the diffusion coefficients of nine fluorescently labeled 

antibody fragments, antibodies and antibody complexes (with hydrodynamic radii ranging 

from 3 to 24 nm) adjacent to planar supported model membranes were measured by using 

TIR-FCS.  The results show that the local diffusion coefficient decreases with the 

hydrodynamic radius, over and above that predicted by the Stokes-Einstein equation 

describing diffusion in bulk solution, and in a manner consistent with theoretical predictions 

according to hydrodynamic theories describing particle motions next to walls.   

2.3 Theoretical Background 

2.3.1 Apparatus   

A laser beam is internally reflected at a substrate/solution interface and creates an 

evanescent intensity that penetrates exponentially with characteristic depth d into the solution 

adjacent to the surface (Thompson and Pero, in press; Abramowitz and Stegun, 1968) (Figure 

2.1).  The evanescent intensity, I(z), is given by 

 

)exp()( 0 d
zIzI −=      (2.1) 

 

where z is the distance in solution from the interface, d is the depth of the evanescent wave, 

and I0 is the intensity at the interface.  In the measurements described here, the interface of a 

fused silica substrate (refractive index n1 = 1.467) and an aqueous salt solution (refractive 

index n2 ≈ 1.337) (Starr and Thompson, 2002) is illuminated by a 488.0 nm laser line.  For 

these refractive indices, the critical angle for internal reflection is αC = 65.7o.  Thus, the 

incidence angle (α) can in practice range from α ≈ 71° to α ≈ 85°.  For these conditions, the 
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evanescent depth ranges from d ≈ 105 nm to d ≈ 65 nm.  Fluorescence is collected through a 

60x, 1.4 N.A. objective.  The evanescent intensity along with a small circular aperture (50 

μm radius) placed at an intermediate image plane of a microscope, corresponding to a radius 

h ≈ 1 μm in the sample plane, defines a small observation volume. 

 

Figure 2.1 Schematic of TIR-FCS. 
A small sample volume is defined by the depth of the evanescent intensity, d, in combination 
with a circular aperture placed at an intermediate image plane of the microscope that defines 
an area of radius h in the sample plane.  The fluorescence measured from the small sample 
volume adjacent to the surface fluctuates with time as molecules diffuse close to the surface, 
and the fluorescence fluctuations are autocorrelated. 
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2.3.2 Fluorescence Fluctuation Autocorrelation Function G(τ) 

Individual fluorescent molecules in solution diffuse into and out of the defined 

observation volume.  Their motion causes the measured fluorescence to fluctuate with time.  

These fluctuations are defined as the difference between the instantaneous fluorescence 

intensity, F(t), and its time-averaged value, <F>; i.e., δF(t) = F(t) - <F>.  The fluorescence 

fluctuations are autocorrelated to obtain information about the diffusion of fluorescent 

molecules in the observation volume.  The fluorescence fluctuation autocorrelation function 

is defined as 
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2.3.3 Magnitude of the Fluorescence Fluctuation Autocorrelation Function 

As shown previously (Starr and Thompson, 2001), if the concentration of fluorescent 

molecules in solution does not depend on z, as we assume here, the magnitude of the 

fluorescence fluctuation autocorrelation function (Ge(0)) is 
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where Ne is the average number of fluorescent molecules in the observed volume, defined 

here as 
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dAhNe
2π=            (2.4) 

 

Ge(0) is inversely related to the solution concentration A. 

 

2.3.4 Shape of the Fluorescence Fluctuation Autocorrelation Function for Spatially 

Independent Diffusion.    

In this work, we assume that the sample volume radius along the surface, h, is much 

greater than the evanescent depth, d. When the diffusion coefficient, D, does not depend on z, 

the theoretical form of the TIR-FCS fluorescence fluctuation autocorrelation function is 

(Starr and Thompson, 2001) 
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πη
γγ

6
&22

kT
rdd

DRe ===        (2.6) 

 

Here, Re is the rate for diffusion in solution through the depth of the evanescent intensity, r is 

the hydrodynamic radius, k is Boltzmann’s constant, T is the absolute temperature, and η is 

the solution viscosity.  As shown in Figure 2.2a, Ge(τ)/Ge(0) decays monotonically with time.  

The magnitude of the initial slope is (Abramowitz and Stegun, 1968) 
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The time at which Ge(τ) equals one half of its initial value is 3.3 Re
-1.   

 
Figure 2.2 Fluorescence Fluctuation Autocorrelation Function for Spatially 

Independent Diffusion. 
G(τ)/G(0) decays with time.  The blue line shows Ge(τ)/Ge(0) for evanescent illumination 
(Eq. 2.5).  In this case, the initial slope is –Re and the half-time for decay is 3.3 Re

-1.  The 
pink line shows Gs(τ)/Gs(0) for illumination with a focused spot in solution (Eq. 2.12).  In 
this case, the initial slope is –Rs and the half-time for decay is Rs

-1.    
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2.3.5 Spatially Dependent Diffusion Coefficients  

In this work, we are particularly concerned with the situation in which the diffusion 

coefficient depends on the distance from the interface.  We test the hypothesis that the 

diffusion coefficient of proteins near membrane surfaces is significantly slowed by 
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hydrodynamic effects.  In this case, even in the absence of local potentials, this coefficient is 

predicted to depend on z (and the sphere radius, denoted here by r) for a sphere diffusing next 

to a wall.  The predicted form of D(z, r), for diffusional motion normal to the interface, is 

(Brenner, 1961; Lin et al., 2000; Oetama and Walz, 2005) 
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where r is the particle radius, z is the distance between the sphere edge and the wall, and 

D(∞, r) = D is the diffusion coefficient in the bulk far from the wall.  A much simpler, 

approximate form for Eq. 2.8 has been reported (Sholl et al., 2000) as 
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Numerical calculations show that Eqs. 2.8 and 2.9 deviate by no more than 0.6%.  The 

function D(z,r)/D, which ranges from zero to one as a function of z, is shown in Figure 2.3a.   
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Figure 2.3 Distance-Dependent Diffusion for a Sphere Near a Wall. 
(a) The diffusion coefficient as a function of the sphere radius r and the distance from the 
wall z increases from zero at the wall to the bulk diffusion coefficient as z approaches 
infinity.  This plot was calculated from Eq. 2.9 and also equals Eq. 2.8.  The distance for 
which D(z,r) = (1/2)D is z/r = (5+731/2)/12=1.13. (b) The value of Eq. 2.10 (with Eq. 2.9), 
calculated numerically, is shown for particle radii ranging from 0 ≤ r ≤ 30 nm and for 
evanescent depths of (black) d = 65 nm, (pink) d = 75 nm, (green) d = 85 nm, (blue) d = 95 
nm and (red) d = 105 nm.   The effect on Se/Re is more prominent for larger radii and thinner 
evanescent wave depths.  
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2.3.6 Shape of the Fluorescence Fluctuation Autocorrelation Function for Spatially 

Dependent Diffusion    

The generalization of Eq. 2.5 for the case in which the diffusion coefficient depends 

on z is not known.  However, as shown in the Appendix, if D(0) = 0 (see Eq. 2.9), the 

magnitude of the initial slope of the normalized fluorescence fluctuation autocorrelation 

function is 
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where Re is given by Eq. 2.6.  The value of Se/Re was calculated numerically from Eqs. 2.9 

and 2.10 and is shown in Figure 2.3b.  The ratio Se/Re decreases for larger particle radii and 

for thinner evanescent wave depths.  Remarkably, Se is predicted to be measurably less than 

that for pure bulk diffusion, Re, even in cases where the particle radius is significantly less 

than the evanescent wave depth. 

2.3.7 Fluorescence Correlation Spectroscopy with a Focused Spot in Solution   

In some measurements, the bulk diffusion coefficients of different protein 

preparations were examined by carrying out fluorescence correlation spectroscopy far from 

the membrane surface.  In these measurements, the sample volume was defined by tightly 

focusing the laser beam and aligning a confocal pinhole in a back image plane.  In this case 

(Thompson, 1991), 
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where Ns is the average number of molecules in the new sample volume.  The shape of the 

fluorescence fluctuation autocorrelation function is approximated as (see Methods) 
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s is the 1/e2-radius of the focused spot and γ is defined in Eq. 2.6 (Figure 2.2b).  The 

magnitude of the initial slope is  
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and the half-time for decay is Rs
-1. 
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2.4 Materials and Methods 

2.4.1 Antibody Preparation 

Antibodies of the type IgM (Sigma-Aldrich, St. Louis, MO), IgA (Sigma-Aldrich), 

IgG F(ab’)2 (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA), and IgG Fab 

(Jackson ImmunoResearch Laboratories) were dialyzed into phosphate-buffered saline (PBS; 

0.05 M sodium phosphate, 0.15 M NaCl, pH 7.4).  IgG antibodies were obtained from the 

anti-dinitrophenyl mouse-mouse hybridoma 1B711 (American Type Culture Collection, 

Rockville, MD), the anti-rat IgG mouse-mouse hybridoma MAR18.5 (American Type 

Culture Collection), and the anti-Thy-1 rat-mouse hybridoma 31-11 (Gerald J. Spangrude, 

University of Utah, Salt Lake City).   Hybridomas were maintained in culture and the 

secreted antibodies were purified from cell supernatants by affinity chromatography with 

DNP-conjugated human serum albumin for 1B711 antibodies (Starr and Thompson, 2002), 

with Protein G for MAR18.5 antibodies, and with MAR18.5 for 31-11 antibodies (Poglitsch 

and Thompson, 1990).  For MAR18.5 purification, the wash buffer was PBS and the elution 

buffer was 0.1 M glycine, 0.01% NaN3, pH 2.7.  Each liter of supernatant yielded 

approximately 10-15 mg of antibody as determined spectrophotometrically by assuming that 

the molar absorptivity at 280 nm was 1.4 mL mg-1 cm-1.  All antibodies were subjected to 

SDS-PAGE with silver staining and FPLC-dynamic light scattering to ascertain their purity.   

Covalently conjugated antibody complexes (AbC’s) were engineered to make 

molecules of differing radii than those found naturally and provide a broader range of 

molecular sizes to study.  31-11 antibodies were mixed with MAR18.5 antibodies at a 2:1 

ratio as a MAR18.5 antibody can in principle bind two 31-11 antibodies on their light chains.     

After mixing the antibodies the final antibody concentration ranged between 3-10 mg/mL in 
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PBS.  Bis(sulfosuccinimidyl) suberate (BS3) (Pierce Biotechology, Rockford, IL) was then 

added to the antibodies in a 20-120 molar excess to bind the antibodies together and prevent 

equilibrium dissociation.  The reaction with BS3 was carried out for 30 minutes and then 

quenched with 25-45 mM glycine, at room temperature. The mixture was then dialyzed 

against PBS at 4oC to remove excess glycine and BS3.  

The mixture of antibody complexes was then subjected to SDS-PAGE analysis with 

silver staining to determine the number of products formed.  The gels indicated that a broad 

range of products had been created.  This mixture of AbC’s was dialyzed into PBS with 0.5 

M NaCl and passed through a 0.2 μm filter.  The AbC’s were separated using an ÄKTA 

FPLC interfaced with a Tricorn Superose 6 column (Amersham Biosciences, Piscataway, 

NJ).  The FPLC was operated at a flow rate between 0.4-0.5 mL/min and 0.5 mL fractions 

were collected.  Analysis of the chromatographic trace revealed that the separation was 

incomplete and produced one broad peak.  Numerous separations were performed under the 

same conditions and the eluents were pooled fraction by fraction.  The broad peak was 

divided into five groups.  The first of the five groups was discarded as it contained extremely 

large AbC’s.  The remaining four groups were dialyzed into PBS and named AbC1, AbC2, 

AbC3, and AbC4 with AbC1 being the largest and first to elute and AbC4 being the smallest 

and last to elute.   

All antibodies and AbC’s were fluorescently labeled using the AlexaFluor488 Protein 

Labeling Kit (Molecular Probes, Inc., Eugene OR).  The free dye was removed by using size 

exclusion chromatography with Sephadex G-25 or G-50 in PBS.  The molar concentrations 

of antibody or AbC and the molar ratios of AlexaFluor488 to antibody or AbC (0.5-9 

dyes/protein) were determined spectrophotometrically according to the manufacturer’s 
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protocol. The molar extinction coefficients (in M-1cm-1) for the antibodies and antibody 

complexes were approximated by multiplying 1.4 L/cm g by the estimated molecular 

weights.  The estimated molecular weights for the AbCs were determined by using a Wyatt 

DAWN EOS light scattering instrument interfaced to an Amersham Biosciences ÄKTA.  As 

described above, the FPLC separation was incomplete.  Consequently, the peak was split into 

five segments, the first segment was excluded, and the light scattering software was used to 

determine an average molecular weight for the remaining four segments.   Immediately 

before use, Fab, F(ab’)2, IgG, and AbC4 were clarified using 0.1 μm and then 0.02 μm 

filters; IgM, IgA, AbC1, AbC2, and AbC3 were clarified using 0.2 μm filters.  

2.4.2 Phospholipid Vesicles 

Small unilamellar vesicles of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) 

(Avanti Polar Lipids, Birmingham, AL) were prepared by tip sonication of 2 mM 

suspensions of POPC in water as previously described (Lagerholm et al., 2000).  In some 

experiments, 2 mol% of the fluorescent lipid 1-acyl-2-[12-(7-nitro-2-1,3-benzoxadiazol-4-yl) 

aminododecanoyl]-glycero-3-phophocholine (NBD-PC) was included to monitor bilayer 

formation and quality (see below).  Vesicle suspensions were clarified by air 

ultracentrifugation (130000g, 30 min) immediately before use. 

2.4.3 Substrate-Supported Phospholipid Bilayers   

Substrate-supported planar phospholipid bilayers were formed as previously 

described (Starr and Thompson, 1993).  Fused silica substrates were cleaned extensively by 

boiling in detergent (ICN, Aurora, OH), bath sonicating, rinsing thoroughly with deionized 

water, and drying at 160 ˚C.  Substrates were cleaned in an argon ion plasma cleaner (15 

minutes, 25 °C) (PDC-3XG, Harrick Scientific, Ossining, NY).  Planar bilayers were formed 
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by applying 75 μL of the vesicle suspension to a fused silica substrate (1 h, 25 °C), and 

rinsing with 3 mL of PBS.  Fluorescence imaging microscopy and fluorescence pattern 

photobleaching recovery indicated that bilayers containing NBD-PC were continuous and 

fluid.  For TIR-FCS measurements, bilayers without NBC-PC were treated with 400 μL of 

15-90 nM antibody or AbC in PBS.  For FCS experiments with a focused spot, bilayers 

without NBC-PC were treated with a mixture of 3 nM antibody or AbC and 27 nM 

unlabelled antibody or AbC. 

2.4.4 Fluorescence Microscopy   

TIR-FCS and FCS with a focused spot were carried out on an instrument consisting 

of an argon ion laser (Innova 90-3; Coherent, Palo Alto, CA), an inverted microscope (Zeiss 

Axiovert 35), and a single-photon counting photomultiplier (RCA C31034A, Lancaster, PA).  

All experiments were conducted at 25 °C using the 488 nm laser line.  For TIR-FCS 

measurements, the laser beam was s-polarized while incident on the fused silica/aqueous 

interface and generated an evanescent field polarized parallel to the interface. The incidence 

angle was ≈ 71-85°, corresponding to theoretically predicted evanescent wave depths ranging 

from 105-65 nm (see above).  For conventional FCS measurements, the laser beam was 

focused in the protein solution approximately 20 μm from the bilayer surface to form a small 

Gaussian-shaped illumination with a radius on the order of s ≈ 1 μm. 

In both TIR-FCS and focused beam experiments, a pinhole with a radius of 50 μm 

placed at an internal image plane defined an area with a radius of h ≈ 1 μm when projected 

onto the sample plane.  The fluorescence arising from the volume defined by the excitation 

light and the pinhole was collected through a 60x, 1.4 N.A. objective.  The fluorescence 

signal was autocorrelated by a PC-based correlator board (model 5000/E, ALV).  
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Autocorrelation functions were obtained within 5-10 min using incident laser intensities of 4-

17 μW/μm2 for TIR-FCS experiments or 5-30 μW/μm2 for FCS experiments using the 

focused beam.  The resulting evanescent intensities at the interface differed by a factor of ≈ 

0.2-2.5.  (Thompson et al., 2005)  Average blank signals were measured from samples 

containing buffer adjacent to supported bilayers.  Possible detector afterpulsing was 

examined by using a published procedure (Hillesheim and Muller, 2005).  The measurements 

demonstrated that any afterpulsing present was extremely minimal and in any case much 

faster that the time range of the TIR-FCS data (see Figure 2.4). 

2.4.5 Data Analysis   

Autocorrelation functions were background-corrected by multiplying by the factor 

〈S〉2/〈F〉2, where 〈F〉 = 〈S〉 - 〈B〉 was the average fluorescence calculated by subtracting the 

average measured blank signal 〈B〉 from the average measured total signal 〈S〉 (Thompson, 

1991). TIR-FCS autocorrelation functions were fit to Eq. 2.5 with Eq. 2.3 plus an arbitrary 

constant G∞, and the free parameters were Re, Ne, and G∞.  Autocorrelation functions 

measured using the focused beam were fit to Eq. 2.12 with Eq. 2.11 plus an arbitrary constant 

G∞, and the free parameters were Rs, Ns, and G∞.  For spot FCS measurements, the more 

general expression, Gs(τ)≈Gs(0)[1+Rsτ]-1[1+(Rsτ/σ2)]-1/2, where σ is the “structure 

parameter”, may also be used for data analysis.  However, the value of σ in our apparatus is 

approximately three, and the second factor in the more general expression is negligible (Allen 

and Thompson, 2006). 
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Figure 2.4  Representative TIR-FCS Autocorrelation Functions. 
The background-corrected Ge(τ) are for (a) AbC1 or (b) AbC4 in PBS adjacent to a POPC 
membrane.  The fluorescence was monitored and autocorrelated for 300 s.  The average 
signals 〈S〉 and background intensities 〈B〉 were (a) 10.61 & 0.04 kHz and (b) 10.03 & 0.19 
kHz.  The best fits of these particular functions to Eq. 2.5 with Eq. 2.3 gave (a) Ne = 2.55, Re 
= 0.826 ms-1; and (b) Ne = 4.81, Re = 4.51 ms-1.  Note that the theoretical curves accurately 
find the initial slope (insets). 
 

τ (msec)

0.01 0.1 1 10 100

G
e( τ

)

0.0

0.1

0.2

0.25 0.50 0.75 1.00

0.2

a)

b)

τ (msec)

0.01 0.1 1 10 100

G
e( τ

)

0.00

0.05

0.10

0.25 0.50 0.75 1.00

0.1

 



 32

2.5 Results 

As viewed through a 1.4 N.A. objective using evanescent illumination, samples 

consisting of soluble antibodies or AbC’s near planar model POPC membranes displayed 

visually apparent fluorescence fluctuations which appeared as fluorescent twinkles against a 

uniform background.  The temporal fluctuations in fluorescence, as measured through a small 

pinhole at a back image plane (Figure 2.1), were autocorrelated (Eq. 2.2).   These TIR-FCS 

measurements were carried out for nine antibodies or AbC’s.   Correlation functions for 

matched samples not containing fluorescent solutes were not measurable.   

Background-corrected TIR-FCS autocorrelation functions, Ge(τ), were fit to Eq. 2.5 

(with Eq. 2.3)  plus an arbitrary constant G∞, with free parameters Ne, Re, and G∞.  Typical 

experimentally obtained Ge(τ) and their best fits to this theoretical form, for two of the nine 

samples, are shown in Figure 2.4.  The best-fit values of the arbitrary offset, G∞, were on the 

average less than ∼10% in magnitude compared to the best-fit values of Ge(0).  The best-fit 

values of Ne ranged from ∼2 to 20, consistent with the expected values of Ne for solution 

concentrations A = 15-90 nM, an evanescent wave depth d = 85 nm (see below) and an 

observation area radius h = 1.0 μm (Eq. 2.4).  The best fit-values of Re ranged from 7.8 ms-1 

to 0.8 ms-1 and decreased systematically with molecular size, consistent with expectations.  

To ensure that the TIR-FCS data did not show photoartifacts, the incident intensity was kept 

between 4 and 17 μW/μm2 (Starr and Thompson, 2002) and Ge(τ) were measured for at least 

two different incident intensities.  No significant change in the best-fit parameters was 

observed for the two different intensities.   

In principle, Eq. 2.5 does not describe the precise shape of the autocorrelation 

function when the diffusion coefficient depends on the distance from the surface (see above).  
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The form of this function is unknown, but the magnitude of its initial slope Se is predicted by 

Eq. 2.10 (see Appendix).  Thus, it is important to note that the best-fits of the experimental 

autocorrelation functions to Eq. 2.5 accurately find the initial slope (Figure 2.4), upon which 

further analysis is based.  Both the magnitude of the initial slope Se and the characteristic 

time for decay of Eq. 2.5 are equal to Re (Eqs. 2.6 and 2.7). 

Conventional FCS measurements with a focused spot were carried out in solutions 

adjacent but not close to planar membranes, on each of the nine sample types, to determine 

the hydrodynamic radii of the AbC molecules and the IgA molecule.  These autocorrelation 

functions were background-corrected and the resulting functions Gs(τ) were fit to Eq. 2.12 

(with Eq. 2.11)  plus an arbitrary constant G∞, with free parameters Ns, Rs and G∞.  

Hydrodynamic radii for IgG Fab, IgG (Fab’)2, IgG and IgM were taken from the literature 

(Armstrong et al., 2004).  The literature value for the IgA radius was not included because it 

was for monomeric IgA and dynamic light scattering measurements (see Methods) indicated 

that the IgA used here was dimeric and trimeric in form.  At room temperature in aqueous 

solution, γ ≈ 218 μm2-nm-s-1 (Eq. 2.6).  Linear regression of the measured values of Rs as a 

function of the inverse of the four literature values of r (Eq. 2.13) implied 4γs-2 = 793.9 nm s-

1, consistent with a (reasonable) s value of ≈1 μm.  The constant 4γs-2 was then used with the 

other measured values of Rs and Eq. 2.13 to determine the radii of the AbC’s and IgA (Table 

1). 
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Table 2.1  Hydrodynamic Radii. 
 
 
 
 
 
 
 
 
 
 
 
 
Diffusion rates in bulk solution, Rs, were determined for all nine molecule types by using 
conventional FCS with a spot focused far from the membrane surface.  aIgG Fab, IgG 
(Fab’)2, IgG, and IgM radii are from the literature (Armstrong et al., 2004).  The average 
measured values of Rs for these four molecules were plotted against the reciprocal of their 
radii and used to find a best- fit value for the constant 4γs-2 (Eqs. 2.6 and 2.13).  bThe best-fit 
value of this constant was used with Eq. 2.13 to determine the radii r for the remaining five 
molecules, IgA and AbC1-4.  
 

For the three molecules with the smallest literature-derived molecular radii (Fab, 

(Fab’)2 and IgG) there should be only small surface effects and their bulk diffusion 

coefficients can be estimated by using the measured values of Re and D = Red2 (Eq. 2.6).  For 

evanescent wave depths ranging from 80 to 90 nm, these calculations implied D values of 50-

63 μm2s-1, 36-45 μm2s-1, and 29-37 μm2s-1, respectively.  These values are in good agreement 

with expectations (i.e., slightly lower than) the values predicted by D = γr-1 (Eq. 2.6) and the 

hydrodynamic radii given in Table 1, which are 75 μm2s-1, 49 μm2s-1, and 41 μm2s-1.   

The average best-fit values of Re( = Se) for each of the nine sample types are shown as 

a function of the hydrodynamic radius in Figure 2.5a.  As expected, Se decreased 

significantly with increasing molecular size.  In addition, the Se values agreed very well with 

the values predicted by Eqs. 2.6, 2.9 and 2.10.  These predicted values are also shown in 

Protein Hydrodynamic 
Radius (nm) 

IgG Fab 2.91a 
IgG (Fab')2 4.48a 
IgG 5.29a 
IgA 6.92b 
IgM 12.65a 
AbC4 4.73b 
AbC3 6.60b 
AbC2 12.98b 
AbC1 23.73b 
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Figure 2.5a, for γ = 2.18 x 105 nm3-ms-1 and evanescent wave depths of d = 75, 85, and 95 

nm.     

Although there is good agreement between the measured and predicted values of Se, a 

decrease in the bulk diffusion coefficient is predicted with molecular size, even in the 

absence of surface effects, by the Stokes-Einstein Equation (Eq. 2.6).  A more stringent test 

for the presence of surface effects is to remove the influence of the Stokes-Einstein Equation 

and question if the values of Se still decrease with molecular radius; i.e., to question if the 

product rSe decreases with r.  In the absence of surface effects, Se = γ(rd2)-1 is predicted to be 

inversely proportional to r and rSe = γd-2 to be independent of r.  Figure 2.5b shows the 

measured values of the product rSe as a function of r.  Although the values of the standard 

deviations of these products relative to the average product magnitudes are ∼15%, the 

average product values themselves do not strictly monotonically decay, although, overall, rSe 

appears to decrease with r.  (A possible source of noise in the relative average values of the 

products was day-to-day variability in the incidence angle and therefore evanescent wave 

depth).   
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Figure 2.5 Se and rSe as a Function of r. 
(a) The measured values of Se decrease significantly with the hydrodynamic radius r.   (b) 
The measured values of rSe also decrease with r.  In both (a) and (b), each experimental point 
shows the average and standard deviation found from approximately 35 independently 
measured autocorrelation functions.  These values are compared with theoretical predictions 
(Eqs. 2.6, 2.9 and 2.10 with γ = 2.18 x 105 nm3-ms-1) for evanescent wave depths d equal to 
(blue) 75 nm, (pink) 80 nm, (green) 85 nm, (light blue) 90 nm, and (red) 95 nm.  
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To determine statistically whether or not rSe in fact decreased with r, linear regression 

analyses with four data sets were carried out:  (1) the nine average values of rSe vs. r shown 

in Figure 2.5b; (2) the first eight average values of rSe vs. r shown in Figure 2.5b (because 

the last point, for AbC1, seemed not to be as low as one might predict); (3) the 312 individual 

values of rSe used to construct the nine average values of rSe shown in Figure 2.5b; and (4) 

the 290 individual values of rSe used to construct the first eight average values of rSe shown 

in Figure 2.5b.  The results of these analyses are as follows, where α denotes the intercept, β 

denotes the slope, and R denotes the correlation coefficient: (1) α = 24.1 nm-ms-1,  β = -0.225 

ms-1,  R = 0.725; (2) α = 25.5 nm-ms-1,  β = -0.437 ms-1,  R = 0.814; (3) α = 24.2 nm-ms-1,  β 

= -0.255 ms-1, R = 0.364; and (4) α = 25.3 nm-ms-1,  β = -0.425 ms-1, R = 0.401.    

The most important question is whether or not the correlation coefficients R indicate a 

statistically significant decrease in the product rSe with r.  The probabilities p1 that the 

correlation coefficients would be of their magnitude or greater, in the absence of a correlation 

between rSe and r and given the number of data points included in the various sets, are as 

follows (Taylor, 1997):  (1) p1 = 0.027; (2) p1 = 0.014; (3) p1 << 0.0001; (4) p1 <<<0.0001.  

The first two values of p1 imply that the product rSe most likely decreases with r.  However, 

these cases are more stringent tests in that all of the data points are not included in the 

analysis.  The last two values of p1, which are found from the more accurate analysis, imply 

that the product rSe almost certainly decreases with r.  This result is the main conclusion of 

the work presented here:  After accounting for the decrease in the diffusion coefficient in 

bulk as a function of molecular size, there remains a statistically significant decrease in the 

diffusion coefficient of proteins close to membrane surfaces that increases in strength with 
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molecular size.  The most likely explanation for this result is that it is a consequence of the 

predicted decrease in diffusion of particles close to walls due to hydrodynamic effects. 

To evaluate the magnitudes of the intercepts α and slopes β, the theoretically 

predicted values of rSe were calculated from Eqs. 2.6, 2.9 and 2.10 for the nine 

hydrodynamic radii shown in Table 1.  These values were subjected to linear regression for 

six cases.  The value of γ was assumed to be 2.18 x 105 nm3-ms-1 (see above) and the 

evanescent wave depth d was assumed to equal 80, 85 or 90 nm.  The first set of three fits 

were carried out for all nine r values and for the three assumed evanescent wave depths.  

These calculations implied intercepts α ranging from 23 to 28 nm-ms-1 and slopes β ranging 

from -0.41 to -0.54 ms-1.  The second set of three fits were carried out for the first eight 

points and for evanescent wave depths equal to 80, 85 or 90 nm.   These calculations implied 

intercepts α ranging from 23 to 29 nm-ms-1 and slopes β ranging from -0.54 to -0.71 ms-1.  

Thus, the measured values of the intercept, α = 24-25 nm-ms-1 (see above) agree extremely 

well with the predicted values.  However, the measured values of the slope β do not have 

quite as good agreement with the theoretically predicted values.  For the data sets containing 

all nine points, the theoretically predicted values (-0.41 to -0.54 ms-1) are higher in 

magnitude than the experimental values (-0.23 to -0.26 ms-1) by factors ranging from 1.6 to 

2.3.  For data sets containing only the first eight points, the theoretically predicted values (-

0.54 to -0.71 ms-1) are higher than the experimental values (-0.43 to -0.44 ms-1) by factors 

ranging from 1.2 to 1.6.  This result suggests that other factors may have contributed to the 

observed decrease in rSe; however, agreement is still very good given the noise in the data. 

Figure 2.5b shows the measured values of rSe as a function of r, along with the 

theoretically predicted values numerically calculated from Eqs. 2.6, 2.9 and 2.10 with γ = 
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2.18 x 105 nm3-ms-1.  Given the statistical significance of the main conclusion, that the 

product rSe decreases with r, the agreement between the measured values of rSe and the 

theoretically predicted values, with no adjustable parameters, is remarkable.  As a final 

statistical test, weighted, reduced χ2 values for comparing the measured and predicted values 

of rSe were calculated as a function of the evanescent wave depth (d = 75, 70, 85, 90 and 95 

nm) and by including all nine or the first eight points.  In the both cases, χ2 was minimized at 

d = 85 nm.  For all nine points, the minimum value of χ2 was 1.02 and for the first eight 

points, the minimum value of χ2 was 0.34.  The probabilities p2 of finding χ2 values equal to 

or larger than the determined ones, given that the data are well described by the theory, were 

calculated to equal 0.42 and 0.95, respectively.  These values of p2 are well above the 

conventional value (≤ 0.05) for which it is concluded that significant disagreement exists 

between data and theoretical predictions (Taylor, 1997).  Therefore, the statistical analysis 

confirms the visual impression that the data in Figure 2.5b agree well with the theoretical 

predictions. 

2.6 Discussion 

Although the parameters governing protein diffusion in homogeneous, aqueous 

solution are well characterized (Russell et al. 1989; Weissman et al., 1979; Gaigalas et al., 

1992; Kuehner et al., 1997; Le Bon et al., 1999; Beretta et al., 2000; Bowen et al., 2000; 

Grigsby et al., 2000), very little is known about the manner in which cell membrane surfaces 

affect the diffusion of nearby proteins causing putative deviations from what one would 

expect in bulk solution.  This question is of biological significance at least in part because of 

the role that diffusion can play in the kinetics of protein-protein interactions.  If membrane 

surfaces significantly change the local diffusion properties of protein ligands, the effects 
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could govern the kinetics of ligand-receptor interactions and therefore associated cellular 

responses. 

In a previous study, it was shown that TIR-FCS can be used to characterize protein 

diffusion very close to substrate-supported planar membranes (Starr and Thompson, 2002).   

In this work, TIR-FCS measurements were carried out for a model protein, monoclonal 

mouse IgG; for a variety of electrostatic conditions including membranes that were positively 

charged, negatively charged or zwitterionic; for different solution pH values spanning the 

isoelectric point of the IgG; and for solutions with different ionic strengths.  No statistically 

significant change in the local diffusion coefficient was observed for differently charged 

membranes or IgG molecules; however, the IgG diffusion did decrease somewhat with 

increasing ionic strength, suggesting that salt-induced changes in the IgG molecules might be 

changing the local diffusion coefficient indirectly through hydrodynamic effects.  

In the work described here, the hypothesis that protein ligands close to membrane 

surfaces experience hydrodynamic reductions in diffusion was tested according to the 

primary signature of this predicted effect, that planar surfaces restrict the local diffusion of 

spherical particles in a manner that depends on the particle size.  To do so, nine different 

proteins with similar chemical characteristics (i.e., all derived from antibodies) but different 

sizes were assembled (Table 1).  As shown in Figure 2.5a, the local diffusion rate as 

measured by TIR-FCS decreased significantly with the molecular radius, as expected.  As 

shown in Figure 2.5b, even after accounting for the decrease in the diffusion coefficient with 

molecular radius that would be expected in bulk solution, the local diffusion coefficient still 

decreased with molecular size, consistent with the hydrodynamic hypothesis.  Remarkably, 

(1) the data are entirely consistent with predictions for the manner in which a planar surface 
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affects the local mobility of a spherical particle (Brenner, 1961; Lin et al., 2000; Sholl et al., 

2000; Oetama and Walz, 2005.) (Eqs. 2.8 and 2.9), with no adjustable parameters included in 

the comparison of theory and data; and (2) the effects are long-range in that they are 

observable even at an evanescent wave depth of d ≈ 85 nm.  We therefore tentatively 

conclude that future reaction-diffusion models for cell-surface ligand-receptor interactions 

should account for these hydrodynamic effects on local ligand diffusion. 

In future studies measurements carried out as a function of the incidence angle and 

therefore the evanescent wave depth could provide additional confirmation of the observed 

effect.  Opportunities also exist for using substrates with very high refractive indices (e.g., 

single crystal TiO2 or SrTiO3) to create extremely thin evanescent waves (as low as 18 nm) 

(Starr and Thompson, 2000). Eq. 2.7 predicts that, in the absence of hydrodynamic effects, 

no reduction in the product rSe will be observed.  Much different results are expected in the 

presence of hydrodynamic effects and the results are predicted to be more prominent for 

thinner evanescent waves (Eq. 2.10).  Other possibly useful approaches include the use 

photon counting histograms (Kask and Palo, 2001) or high-order autocorrelation (Thompson 

and Mitchell, 2001).   

It will also be important to carry out these measurements near natural cell 

membranes.  For adherent, thick cells, TIR-FCS can in principle monitor the diffusion of 

cytoplasmic molecules close to the inner membrane leaflet (Mashanov, et al., 2004; Ueda et 

al., 2001).  This method is also likely to be adaptable to external ligands interacting with very 

thin extended regions of adherent cells where the double-membrane and cellular interior are 

thin enough so that the evanescent wave extends through the entire cell to the outer leaflet of 

the apical cell membrane. 



 
 
 
 
Chapter 3 Stacked Phospholipid Bilayers on Planar Supports  
 
3.1 Abstract 
 

A stacked bilayer system has been created utilizing the interactions of biotin and 

NeutrAvidin.  This stacked system contains a primary bilayer of biotinylated lipids, followed 

by a layer of NeutrAvidin, and finally a secondary bilayer of biotinylated lipids.   The 

stacked bilayer system and various control systems were characterized using FPPR, order 

parameter measurements, intensity measurements by epi-illumination, and atomic force 

microscopy.  Results from these experiments indicate that the system is semi-continuous.    It 

appears to have “holes” and the second bilayer is often “dimmer” in fluorescence 

microscopy.  It appears that 20% lipid transfer occurs for some control samples where the 

secondary bilayer transfers lipids to the primary bilayer.  Further studies are required to see if 

transmembrane proteins can be successfully inserted into this system.  Overall, this system is 

continuous and quite possibly has broad application in fields utilizing multilayers, planar 

membranes as models for biological membranes, and biomolecular devices. 

3.2 Introduction 

The use of planar supported lipid layers has seen vast application and widespread use 

since their inception (Brian and McConnell, 1984) in a large number of applications.  The 

widest application for lipid layers has been as simplified models of biological membranes 

(Wagner and Tamm, 2000; Kühner et al., 1994; Wong, et al., 1999; Amenitsch et al, 2004).  

However, they have also sparked an impressive number of applications in the construction of 
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biomolecular devices such as sensors (optical and electrical) (Pompeo, et al., 2005; 

Sackmann, 1996; Amenitsch et al, 2004), the biofunctionalization of inorganic solids 

(Sackmann, 1996), and immobilization of proteins and DNA (Pompeo et al., 2005; 

Sackmann, 1996; Amenitsch et al, 2004).  Lipid multilayers (stacks of bilayers) have also 

been utilized for many different purposes.  The main application of multilayers has been in 

light scattering techniques.  The stacked system enhances the scattering signal over that seen 

for monolayers and single bilayers (Amentisch et al., 2004).  However, multilayers also find 

usage as a model system for myelin in the central nervous system (Lanteri et al., 2000), and 

in atomic force microscopy (AFM) where they are much more stable than monolayers when 

in contact with the tip (Lanteri et al., 2000). 

Much recent interest in the field of lipid bilayers has been devoted to developing 

cushioning systems that limit the bilayer’s interaction with the substrate upon which they are 

formed.  This interest came about as the utility of lipid bilayers to serve as model membranes 

became limited by their inability to incorporate transmembrane proteins (Wanger and Tamm, 

2000; Sackmann, 1996; Naumann et al., 2002; Kühner et al., 1994; Wong, et al., 1999; and 

Huang, 1985; Spinke et al., 1992).  Bilayers supported on glass or silica substrates are 

separated from the substrate by approximately 10-20Þ.  While this distance is sufficient to 

maintain the lateral mobility of the lipids themselves, integral membrane proteins interact 

with the hydrophilic substrate thus impeding their lateral mobility (Wagner and Tamm, 

2000).  Lipid bilayer cushioning systems would also be of importance because the roughness 

of the substrate upon which bilayers form prevents the undisturbed (self-) organization of 

lipids as a monomolecular layer (Spinke et al., 1992).  A cushioning system would “protect” 

the bilayer from the surface roughness and produce a more fluid membrane.  Several 
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different methods have been proposed to make bilayer cushions (Wanger and Tamm, 2000; 

Sackmann, 1996; Naumann et al., 2002; Kühner et al., 1994; Wong, et al., 1999; Huang, 

1985; Spinke et al., 1992).  Many involve the use of polymers or ultra thin polymer films like 

dextran (Sackmann, 1996).  Recently, biotinylated lipid bilayers have also been formed on a 

layer of streptavidin (Proux-Delrouyre et al., 2002; Berquand et al., 2003). 

Another possibility in the field of lipid layers is to construct a system of stacked 

bilayers utilizing the interaction of avidin (or one of its chemical derivatives) and biotin.  

Avidin is a homotetrameric protein found natively in egg white (Lieto, 2003).  Avidin binds 

four molecules of D-biotin with one of the highest affinity coefficients found in nature (Kd ~ 

10-15 M).  Due to its large affinity coefficient, avidin or streptavidin (a bacterial protein 

similar in structure to avidin) has seen many applications.  Two binding sites are found on 

each side of avidin or streptavidin and one molecule of avidin has the approximate size of 56 

x 50 x 40 Þ (Rosano et al., 1999; Livnah et al., 1993).  Before a bilayer was built upon a 

layer of avidin, the use of avidin in lipid layers was well described.  This began with the 

binding of avidin to biotinylated monolayers (Schmidt et al., 1992; Zhao and Reichert, 1992; 

Zhao et al., 1993), bilayers (Spinke et al., 1992; Edmiston and Saavedra, 1998; Kaasgaard et 

al., 2002), and vesicles (Chiruvolu et al., 1994).   

The stacked system we propose involves the fusion and adsorption of vesicles upon a 

fused silica substrate to form a biotinylated bilayer.  Then the bilayer is treated with 

NeutrAvidin.  NeutrAvidin is a commercially available derivative of avidin that has reduced 

nonspecific adsorption as compared to Avidin or Streptavidin.  Finally, a second set of 

biotinylated lipid vesicles is applied and allowed to form a bilayer (Figure 3.1).  We have 

characterized this system and its continuity using various fluorescence techniques (FPPR, 
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order parameter measurements, and intensity measurements) and AFM.  This stacked system 

would bring together many diverse participants in the world of lipid layers including lipid 

multilayers, bilayer cushioning systems, and model biological membranes.  Due to its 

versatility, the stacked bilayer system is likely to have applicability beyond what is now 

imagined. 

 
Figure 3.1 Stacked Bilayer System. 

A primary bilayer containing 0.3% biotinylated lipids is formed by vesicle fusion on a fused 
silica substrate.  This bilayer is then treated with NeutrAvidin, and then a second bilayer is 
deposited by vesicle fusion atop the NeutrAvidin. 
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3.3 Theoretical Background 

3.3.1 Fluorescence Pattern Photobleaching Recovery (FPPR) 

Fluorescence pattern photobleaching recovery (FPPR) is a technique that can measure 

the translational mobility of bound proteins and phospholipid bilayers (Starr and Thompson, 

2002).  FPPR utilizes a Ronchi ruling placed at the back image plane of the microscope to 

create a spatial gradient of both the fluorescence observation and bleaching intensity in an 

expanded Gaussian beam.  The utility in this technique is that samples are first hit by an 

intense brief pulse of light which effectively bleaches all molecules touched by the laser’s 

radiation.  A subsequent post bleach fluorescence recovery is then due to unbleached 

molecules moving from the non-illuminated regions into the laser beam’s path.  Assuming 

one had a sample in which the fluorescent species were 100% mobile, a maximum recovery 

in the fluorescence would lie midway between the pre-bleach and post-bleach fluorescence 

intensity.  The recovery in the fluorescence intensity can then be used to extrapolate 

information about molecular movement within the sample and obtain a diffusion coefficient 

(D) (Smith and McConnell, 1978; Starr and Thompson, 2000; Lieto, 2003) 
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where ki is the characteristic rate for the recovery of the ith species and a is the stripe 
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where F(−) is the pre-bleach fluorescence (t < 0), β is the bleached fraction, n is the number 

of fluorophore populations, and  fi is the fraction of the fluorescence recovery associated with 
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the ith species.  One premise in the use of this form of the recovery equation is that the 

illuminated area is much larger than the stripe periodicity.  To ascertain that this premise is 

met control measurements are performed where the bleaching experiment is conducted 

without the Ronchi ruling so that the entire observation area is bleached.  If the premise is 

true and fluorescence recovery from diffusing unbleached species outside the observation 

area is negligible, then the post-bleach fluorescence for this measurement will remain 

constant and show no recovery.   However, if the control measurement demonstrates a 

fluorescent recovery, then a theoretical treatment for samples with multi-component 

diffusion in FPPR can be used (Starr and Thompson, 2002).  This theoretical treatment can 

account for recovery from outside the observation area. 

3.3.2 F-Statistics 

The use of F-statistics in FPPR analysis came about in an attempt to explain why 

FPPR experimental data were not fitting the theoretical equations as well as one might hope 

(Wright et al., 1988).  It was found that by assuming there are two mobile fluorescent 

populations (i=2 in Eqs. 3.1 and 3.2) FPPR data often more adequately fit to Eq. 3.2 (Wright 

et al., 1988).  However, this is to be expected as i=2 introduces more free parameters for 

which to fit to in comparison to i=1.  To prove that i=2 actually produces a more accurate 

representation of the experimental data a statistical approach must be pursued.  The F-

statistic equation mathematically probes the significance of the improvement of the fit by 

using an n species model over an n-1 species model  
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pre-bleach (t < 0) bleach (t = 0) 

recovery (t > 0) 

where χn
2 is the chi-squared goodness-of-fit statistic (Taylor, 1982) for the n mobile species 

model function, and N is the number of data points.  Mathematically, the n species model 

produces a significant improvement over the n-1 species model if Fn is greater than 3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.2 FPPR Experiment. 
A Ronchi ruling is placed in the laser’s path to create a stripe pattern.  The sample is 
illuminated with less intense laser light and fluorescence is recorded (pre-bleach).  The 
sample is then briefly illuminated by an intense beam of laser light that photobleaches the 
sample (bleach).   Less intense laser light is then used to watch the fluorescent recovery of 
the sample as unbleached molecules diffuse into the observation area from behind the width 
of the stripe (recovery).   The recovery is monitored and fit to Eq. 3.2. 
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3.3.3 Order Parameter Measurements 

The evanescent light that propagates at the interface between two media of differing 

refractive index during total internal reflection is polarized.  A consequence of the inherent 

polarization is that by altering the polarization angle of the incident light, it is possible to 

alter the polarization of the evanescent wave.  The evanescent polarization can indirectly 

provide information about the order of the sample in which total internal reflection is 

occurring.   Order parameter measurements utilize this principle to probe the orientation 

distribution of transition dipoles in phospholipid bilayers (Thompson et al., 1984).  Here the 

fluorescence is recorded as a function of the excitation light’s polarization.  As the excitation 

light rotates through all possible orientation angles, the evanescent light rotates primarily 

between perpendicular and parallel to the interface and provides information about the polar 

tilt angle (Lieto, 2003).  When using epi-illumination, the light propagates normal to the 

surface and yields information about the azimuthal asymmetry in the orientation distribution 

(Thompson et al., 1984; Timbs and Thompson, 1990). 

The experiment is performed with a high numerical aperture that collects 

approximately half of the light that is emitted.  It is the change in fluorescent intensity as the 

polarization angle is rotated that provides insights in the order of the system.  The light that is 

emitted as well as absorbed is dependent upon the distribution of the absorption dipole 

orientations.  The theoretical equation for azimuthally asymmetric samples that have been 

normalized to one is 

)cos(cos1)( 0
22 ψψψ −+= BF        (3.4) 

where ψ is the angle that the beam polarization makes with the incidence plane, ψ0 is the 

angle at which F(ψ) is a maximum (0 or 90°), and B is a measured constant (positive or 
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negative, respectively).  The constant B depends on the following parameters: (1) the 

evanescent field polarization, which depends on the incident angle (α) and polarization (ψ) of 

the totally internally reflected beam, and the relative refractive index of the substrate/solution 

interface (n); (2) the dichroic factor (γ), which describes the relative fluorescence collection 

efficiency for emission dipoles oriented perpendicular or parallel to the optical axis of the 

objective; and (3) the orientation distribution of fluorophore absorption dipoles, N(θ) (Lieto, 

2003).  The orientation distribution of dipoles is normalized to one and is written as an 

expansion in Legendre polynomials Pi, with order parameters si,  
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The only order parameters in N(θ) that affect B are s2 and s4.  In the theoretically ideal 

situation, when γ = 0, B depends only on s2 (Thompson et al., 1984).  Consequently, s2 is 

often referred to as the order parameter.  However, in experimental practice γ ≠ 0 because the 

substrate affects the angular distribution of emitted fluorescence from the molecules with 

different orientations, and this causes that the fluorescence is not truly collected over 2π 

steradians. 

Practically, even though γ ≠ 0 the effect of s4 has been found to be negligible for 

small values of γ (Timbs and Thompson, 1984).  The value of γ for an experimental set-up 

similar to the one used here is 0.1 (Burghardt and Thompson, 1984).  Consequently, it is 

assumed that information about the polar tilt angle is extracted from s2. 

3.3.4 Atomic Force Microscopy 

AFM is a sensitive surface imaging technique that allows one to map surfaces on the 

nanometer scale.  AFM came about as an extension of scanning tunneling microscopy 
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(STM).  Scientists performing STM experiments noted that a finite force existed between the 

tip and sample when in close proximity (Binning and Quate, 1986).   It was eventually 

realized that the finite force that existed between the tip and sample is that of a van der Waals 

force.   The van der Waals attraction causes the cantilever tip to deflect as the surface of a 

sample changes.  The advent of AFM extended STM to samples that were formerly off-limits 

including nonconductive, soft, and live biological samples (Yang et al., 2002). 

In AFM, a tip (often constructed of Si or Si3N4) is attached to a flexible cantilever 

that is oscillated by a vibration piezo (Fig. 3.3).  The tip is rastered across the surface of a 

sample, and the cantilever moves and deflects as the surface features of a sample change on 

the atomic scale.  These oscillations are detected by focusing a laser on the back of the tip, 

and a photodiode is used to detect oscillations in the light intensity.  An image is created by 

plotting the z-movement of the piezo as a function of the x-y position (Yang et al., 2002).  

The z-movement of the tip is related to its spring constant.  The resonant frequency, fo, of the 

spring system can be found by (Binning and Quate, 1986) 
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where k is the spring constant, and mo is the mass that loads the spring.  An experimental 

consequence of this relationship is that AFM is susceptible to vibrational noise from the 

surrounding environment, and care must be taken to minimize it. 

The widespread use of AFM has brought about many variations of the technique.  

However, AFM is mainly operated in two modes: contact and tapping mode.  In contact 

mode, the tip is maintained in constant contact with the sample.  Consequently, contact mode 

can be damaging to samples of an extremely soft nature.  Alternatively, in tapping mode the 

tip gently taps along the surface (brought about by the vibration piezo) and images the 
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surface in a less invasive way.  Contrarily, tapping mode provides less image resolution than 

contact mode. 

AFM was originally conceived as a method to image atomic features in air.  

However, its application to biological samples necessitated that the technique be amended to 

imaging in liquid.  Liquid imaging is now possible and AFM  has been used to image many 

biologically relevant systems (Yang et al, 2002).  Its application to planar model membranes 

and biological cell membranes has also been demonstrated (Lagerholm et al., 2005; Yuan 

and Johnston, 2000; Rinia et al., 2001; Pompeo et al., 2005).  With reference to lipid 

membranes structures, AFM is particularly advantageous due to its ability to image the 

surface nanostructure of lipids with high spatial resolution and in real time (Pompeo et al., 

2005).  The advantageous nature of using AFM to study lipids is often most vividly realized 

in tapping mode. 
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Figure 3.3 Schematic of AFM. 
A cantilever with a tip is oscillated by a vibration piezo and is rastered across the surface.  A 
laser is tightly focused on the tip and the signal is recorded by a photodiode.  Oscillations in 
the recorded light signal are representative of the surface morphology and allow an image of 
the surface to be produced.  Figure courtesy of Asylum Research. 
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3.4 Materials and Methods 

3.4.1 Avidin and Soluble Biotin 
 

NeutrAvidin™ biotin-binding protein (60,000 MW) (Pierce, Rockford, IL) was 

dissolved in deionized water (dH20) and either dialyzed into 1× PBS (NeutrAvidin is not 

directly soluble in PBS, so it must first be brought up in water), or combined with 5× PBS to 

bring the final buffer concentration to 1×, and stored at 4°C.  For some control measurements 



 54

fluorescently labeled NeutrAvidin was utilized.  A standard Thompson laboratory protocol 

for labeling with fluorescein isothiocyanate (FITC) was followed.  NeutrAvidin (0.4−0.8 mg 

ml-1) was first dialyzed into 0.1 M sodium bicarbonate buffer.  Then a 20-50 molar excess of 

FITC was added from a 4 mg ml-1 solution in DMSO.  The labeling reaction was allowed to 

proceed for 1 h at room temperature before the sample was passed down a Sephadex G-100 

size exclusion column to remove the free dye and then immediately dialyzed into PBS.  The 

concentration of NeutrAvidin and the molar ratio of FITC to protein (1.2−1.8) were 

determined spectrophotometrically with an extinction coefficient at 280 nm of 1.66 ml mg-1 

cm-1 for NeutrAvidin (Pierce).  NeutrAvidin was clarified by air ultracentrifugation 

(130,000g, 30 min) immediately before use to separate the heavier aggregates.  To ensure 

that aggregates were not used during the experiments, NeutrAvidin was only taken from the 

top of the test tube.   

3.4.2 Sonicated Vesicles 

 Small unilamellar vesicles (SUVs) were prepared from mixtures of 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC; 760.1 MW), 1-acyl-2-[12-[7-nitro-2-1,3-

benzoxadiazol-4-yl]aminododecanoyl]-sn-glycero-3-phosphocholine (chain-labeled NBD-

PC; 857.06 MW) (Avanti Polar-Lipids, Inc., Birmingham, AL), N-[6-

[[biotinoyl]amino]hexanoyl]-dipalmitoyl-L-α-phosphatidylethanolamine, triethylammonium 

salt (Biotin-LC-DPPE; 1132.61 MW) (Pierce), and 1,2-Dipalmitoyl-sn-Glycero-3-

Phosphoethanolamine-N-(Cap Biotinyl) (Sodium Salt) (Biotin-cap-DPPE; 1053.40 MW) 

(Avanti Polar-Lipids, Inc., Birmingham, AL) .  Pierce discontinued production of Biotin-LC-

DPPE midway through this project, and so Avanti’s Biotin-cap-DPPE was utilized.  It should 

be noted that they are the same molecule.  Lipids were dried under vacuum for 30-90 min to 
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evaporate the chloroform solvent, suspended in dH20 such that the total concentration of 

lipids was 2 mM, and tip sonicated (Fisher Sonic Dismembrator, Model 300 with 

intermediate titanium tip) (typically for 10-15 min at ~60% maximum power) on ice to form 

SUVs.  Suspensions contained POPC and 0.3 mol% Biotin-LC-DPPE or Biotin-cap-DPPE.  

For fluorescence investigations, certain vesicle suspensions were made with the addition of 2 

mol% NBD-PC.  Vesicle suspensions were clarified immediately before use by air 

ultracentrifugation at 130,000g for 30 min. 

3.4.3 Slide Cleaning 

All microscope slides were cleaned with detergent and plasma cleaned immediately 

before use as described in Section 2.4.3. Sample dishes were soaked in Alkanox detergent 

overnight to remove any residual fluorophore from previous experiments and then rinsed 

thoroughly with two carboys of water.  Immediately before use sample dishes were cleansed 

with ethanol and rinsed clean with dH2O. 

3.4.4 Intensity Measurement and FPPR  Measurement Slide Preparation 

Order parameter measurements and FPPR measurements were taken in sample dishes 

containing a small hole in the bottom and a No. 0 glass cover slip securely glued above the 

hole.  This sample dish was filled with PBS buffer, and a fused silica substrate (1in x 1in x 

1mm) (Quartz Scientific) rested inside the sample dish.  The bilayer was adsorbed face-up on 

the fused silica. Initially this fused silica substrate was secured to a glass microscope slide (3 

in × 1 in × 1 mm) with Teflon tape as the spacer (to ensure adequate space for bilayer 

formation).  The bilayer was allowed to fuse and absorb here.  Once bilayer formation was 

complete, the sample was placed under buffer and transferred to the sample dish for 

microscopy. 
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3.4.5 Order Parameter Measurement Slide Preparation 

Order parameter measurements were conducted on slides made for use with total 

internal reflection microscopy (Section 2.4.3). 

3.4.6 Atomic Force Microscopy Slide Preparation 

Special slides were constructed for use on the AFM.  A well was made on fused silica 

slides (3 in × 1 in × 1 mm) using “Plumber’s Goop” (Lowe’s Hardware) and allowed to dry 

overnight in a vacuum dessicator.  Glass microscope slides (1.5 cm x 1.5 cm x 1 mm) with 

attached Teflon spacer were placed in the well and fastened to the slide using a binder clip.  

Vesicles were allowed to fuse and adsorb between these two slides.  Immediately before 

measurements, the samples were placed under buffer and the glass slide was discarded.  Care 

was taken to ensure that the well had adequate buffer to avoid exposure of the bilayer to air. 

3.4.7 Sample Preparation 

Primary planar bilayers were formed by applying at least 65 μl of a vesicle 

suspension to the substrates (30−60 min, 25°C), and then rinsing with 3 ml of PBS.  For 

samples containing NeutrAvidin, 250 μl of 20 (only for experiments in Section 3.5.3) or 40 

μg ml-1 NeutrAvidin in PBS was added (30 min, 25°C), followed by rinsing with 3 ml of 

PBS.  For samples with a second bilayer, 250 μl of a vesicle suspension was added (60 min, 

25°C), followed by rinsing with 3 ml of PBS.  For negative control measurements when 

investigating the specificity of NeutrAvidin binding to Biotin-LC-DPPE, either primary 

bilayers were formed without biotinylated lipids or a high molar excess of free biotin (100x 

or 500x) was added to the NeutrAvidin before application to the primary bilayers.  When 

measuring fluorescence intensities of samples, background samples contained only PBS. 
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3.4.8 FPPR and Intensity Measurements 

Experiments were carried out at 25°C using the 488 nm line of an argon ion laser, in 

combination with an inverted microscope and a PMT as described in Section 2.4.5.  A 

Ronchi ruling (50 lines per inch) was inserted in a back image plane of the microscope 

projecting a striped pattern onto the sample plane with a periodicity of 19.5 μm.  The excited 

fluorescence was collected through an image plane aperture and a 40x, 0.75 NA water 

immersion objective.  The laser power was set between 0.3-0.5 W for FPPR, and set to 50 

mW for intensity measurements.   Neutral density filters were inserted in its path such that 

the brightest sample yielded count rates in the range of ~1500-2500 counts per 50 ms interval 

when illuminated with the observation beam.  For intensity measurements, the fluorescence 

counts were averaged over 2.5 s.  For fluorescence pattern photobleaching recovery (FPPR) 

experiments, the bleach beam power was 81% of the total beam power (no filters), bleach 

pulse durations were 50−500 ms, and fractional bleach depths were 0.3−0.9.  The ratio of 

bleach to observation intensity was typically ~104-106.  Fluorescence recovery was typically 

monitored for 35−75 s after photobleaching, and data were curve-fit to theoretical forms 

using Sigma Plot 5.0 

3.4.9 Order Parameter Measurements 

For order parameter measurements, the laser beam was passed through a polarization 

rotator and was totally internally reflected at the substrate/solution interface through a fused 

silica prism; fluorescence was collected through a 60x, 1.4 N.A. oil immersion objective.  

The laser power was set at 50 mW.  The observe beam was used to illuminate the samples, 

and neutral density filters were inserted in its path so that the count rate was always below 

3000 counts per 50 ms time interval.  This was done to ensure that the sample was not being 
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photobleached over the time period of the measurement.  Fluorescence intensities were 

background subtracted and each sample was normalized to one.  Correction factors for each 

polarization angle were determined so that F(ψ) for a sample with randomly oriented 

fluorophore absorption dipoles (FITC-NeutrAvidin on fused silica) had B equal to the 

theoretically predicted value (see Eq. 3.4).  For an incident angle α = 70° and relative 

refractive index n = 0.909, B = 0.16 for γ = 0, B = 0.13 for γ = 0.1, and B = 0.09 for γ = 0.2.  

Normalized and corrected data were fit to Eq. 3.4 with Sigma Plot 5.0. 

3.4.10 Atomic Force Microscopy 

All AFM images were obtained using a Molecular Force Probe 3D from Asylum 

Research (Santa Barbara, CA) controlled with Igor Pro 5.04B (Wavemetrics; Lake Oswego, 

OR).  Olympus gold-coated “Biolever” cantilevers with nominal spring constants of 30 

pN/nm (determined using the thermal noise method (Butt and Jaschke, 1995) were purchased 

from Asylum Research.  Tips were cleaned with chloroform and gently dried in a stream of 

N2.   All AFM images were obtained with AC mode in water using Si3N4 tips at scan rates of 

0.68 to 0.98 Hz.   Images were analyzed using the MFP-3D software. 

3.5 Results 

3.5.1 Control Measurements 

Seventeen different sample compositions (Table 3.1) were proposed to probe 

different aspects of the stacked bilayer system.  The purpose of the various sample 

compositions was to investigate the nature of the stacked bilayer system, to compare the 

stacked bilayer to a single bilayer, to ascertain if a stacked bilayer was, in fact, formed, and 

to ascertain its continuity.  The numerical identifiers for each sample type are maintained 
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throughout the rest of the paper.  All sample types were formed by sonicated vesicles made 

as illustrated in Section 3.4.2. 

Table 3.1 Sample Composition. 
Sample Number Primary Bilayera NeutrAvidinb Secondary Bilayer 

#1 B-POPC No No 
#2 B-POPC Yes No 
#3 B-POPC No B-POPC 
#4 B-POPC No NBD-PC, B-POPC 
#5 B-POPC Yes B-POPC 
#6 B-POPC Yes NBD-PC, B-POPC 
#7 NBD-PC, B-POPC No No 
#8 NBD-PC, B-POPC Yes No 
#9 NBD-PC, B-POPC No B-POPC 
#10 NBD-PC, B-POPC No NBD-PC, B-POPC 
#11 NBD-PC, B-POPC Yes B-POPC 
#12 NBD-PC, B-POPC Yes NBD-PC, B-POPC 
#13c B-POPC Yes (Fluorescent) No 
#14 B-POPC Yes (Fluorescent) B-POPC 
#15 POPC Yes (Fluorescent) No 
#16 NBD-PC, POPC No No 
#17 NBD-PC, POPC Yes No 
aSamples represented as B-POPC contain a mixture of 0.3 mol% Biotin-cap-DPPE (or 
Biotin-LC-DPPE) and 99.7% POPC.  Samples represented as NBD-PC, B-POPC contain the 
same 0.3 mol% Biotin-cap-DPPE, and 2-3 mol% NBD-PC, and 96.7-97.7% POPC.   
Samples represented as NBD-PC, POPC contain 2-3 mol% NBD-PC and 97-98% POPC.  
bSamples with a yes located in the NeutrAvidin column were treated with 40 μg/ml 
NeutrAvidin in PBS.  cFor samples #13, #14, and #15 the NeutrAvidin was rendered 
fluorescent via reaction with FITC (see Section 3.4.1). 
 

3.5.2 Intensity Measurements  

Intensity measurements were performed on 1-4 samples/sample type using epi-

illumination with a Ronchi ruling placed at the back image plane to aid in aligning the 

sample.  Nine different spots were analyzed on each sample.  During analysis data sets were 

analyzed by day, and each individual sample type was averaged together.  The data were then 

background corrected using the average signal from sample #1-#3 and #5 as they should are 

essential background measurements.  The data were then normalized to sample #7.  After this 
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was done, it was then possible to average together all the data sets for one sample type (as the 

effects of taking the data at different intensities had been removed).  Data can be seen in 

Table 3.2 

Table 3.2 Fluorescence Intensity Results. 
Sample # Expected Fa Average Fb  
#1 0 0.02 ± 0.03 
#2 0 0.02 ± 0.03 
#3 0 0.02 ± 0.03 
#4 0 0.19 ± 0.17 
#5 0 0.02 ± 0.03 
#6 F 0.57 ± 0.10  
#7 F 1.00 ± 0.09 
#8 F 0.97 ± 0.19 
#9 F 0.80 ± 0.17  
#10 F 0.97 ± 0.09  
#11 F 0.70 ± 0.22 
#12 2F 1.44 ± 0.21 

aThe expected fluorescence is an a priori estimate of the fluorescence assuming the sample 
composition is that of a stacked bilayer.  bThe average fluorescent signal is a compilation of 
1-4 of days of data.  9 measurements were taken at different spots on each sample to get a 
more accurate representation of the variability within a sample.  Uncertainties are standard 
deviations. 
 

Samples #1, #2, #3, and #5 are effectively background measurements as they contain 

no fluorescent lipids.  The low F values for these samples are indicative of no contamination.  

Sample #4 has no NeutrAvidin between the bilayers and consequently, the second bilayer 

should not form.  As the second bilayer contains the fluorescent tag for this sample, it was 

anticipated that sample #4 should show no fluorescence.  Experimentally, sample #4 

displayed a small amount of fluorescence (0.19 ± 0.17) indicating possibly 20% nonspecific 

binding and/or lipid transfer.  Sample #6 is similar to sample #4.  Sample #6 differs because 

it contains the NeutrAvidin spacer and should form a secondary bilayer.  The sample’s 

experimental F value of 0.57 ± 0.10 is below the anticipated F value of 1.  However, the 



 61

increase in F for sample #6 indicates that the stacked bilayer was possibly formed.  The 

decrease in fluorescence under what was anticipated for the secondary bilayer is a theme that 

is realized throughout the fluorescence experiments. 

Sample #7 is the benchmark, and all others samples were normalized by it.  Sample 

#7 is a single fluorescent bilayer, and it displays the expected F value.  Sample #8 is a single 

bilayer with the NeutrAvidin spacer on top, and its displayed F value of 0.97 ± 0.19 fits well 

with expectations.  Sample #8 illustrates that the NeutrAvidin spacer does not interfere with 

the primary bilayer.  The F value of Sample #9 is 0.80 ± 0.17, and it is 20% lower than what 

was anticipated.  Sample #9 is two bilayers formed atop each other with no NeutrAvidin 

spacer.  The results for sample #9 fit well with sample #4 and suggest 20% reverse lipid 

transfer.  Sample #10 displays an F value of 0.97 ± 0.09 and fits well with expectation.  As 

there was no increase in the fluorescence with the addition of a secondary bilayer with no 

NeutrAvidin, it argues against the theory that nonspecific binding is occurring.  Sample #11 

represents the stacked bilayer system, and its F-value of 0.70 ± 0.22 is a little lower than 

anticipated suggesting once again that a little lipid transfer is occurring.  Sample #12 is also a 

stacked bilayer system in which both layers are fluorescent.  The displayed F value of 1.44 ± 

0.21 for sample #12 is lower than was assumed.  The lower experimental F value fits well 

with sample #6 and indicates again that the stacked bilayer has lower fluorescence for the 

secondary layer.  This is possibly due to the collection optics or incomplete formation of the 

secondary bilayer.  Overall, the intensity experiments provide preliminary evidence for the 

formation of a stacked bilayer system. 

3.5.3 Specificity of NeutrAvidin Binding to Biotinylated Lipids 
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To ascertain the specificity of the interaction between NeutrAvidin and biotinylated 

lipids, NeutrAvidin was fluorescently labeled and allowed to react with a nonfluorescent 

bilayer made of 0.3% Biotin-LC-DPPE and 99.7% POPC.  The bilayer was treated with 20 or 

40 μg/ml FITC-labeled NeutrAvidin (FNA).  Additionally, two negative control samples 

were performed.  The application of FNA to a bilayer composed of 100% POPC (no biotin) 

was the first negative control.  The second negative control was performed by adding 100x or 

500x molar excess of soluble biotin to the FNA prior to FNA application to the biotinylated 

bilayer.  Theoretically, the soluble biotin should bind to the specific binding sites of the FNA 

and block its interaction with the biotin in the lipids.   The data were taken by measuring the 

relative fluorescence intensity.  The data were background corrected and normalized each 

day to sample #13 treated with 40 μg/ml FNA.  The results are listed in Table 3.3.  The 

control measurement confirmed that when there is no biotin in the lipids, FNA does not 

interact with the bilayer.  Furthermore, treating FNA with an excess of biotin before its 

application to the biotinylated lipids blocks its binding sites, and in this state FNA does not 

interact with the biotinylated bilayer.  Also, no significant difference was illustrated in the 

intensities measured from samples treated with 20 μg/ml vs. 40 μg/ml FNA indicating that 

the avidin-binding sites have been saturated. 

Table 3.1 Relative Intensity of Fluorescent NeutrAvidin. 

[FNA] (μg ml-1) 20 40 
#13 1.0 ± 0.2 1 (normalized) 
#15 0.04 ± 0.06 0.03 ± 0.03 
100× or 500× molar excess soluble biotin (all bilayer types) 0.05 ± 0.05 0.06 ± 0.04 
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3.5.4 Mobility of FNA Bound to Biotinylated Lipids 

The lateral mobility of FNA bound to biotinylated lipids was determined by using 

FPPR.    FPPR curves were fit to Eq. 3.2 with n=1 and n=2, and the F-statistics were 

performed to discriminate between the two fits.  The data were better fit by a single mobile 

population for greater than 50% of the recovery curves.  The results can be seen in table 3.4.  

They illustrate that FNA does not interfere with the fluidity of the single bilayer. 

Table 3.2 FPPR Results for Fluorescently Labeled NeutrAvidin. 

Fit 
model: n = 1 n = 2 

Sample # 
 ma D (10-8 cm2 

s-1) m1 m2 m1+m2
D1 (10-8 cm2 
s-1) 

D2 (10-8 cm2 
s-1) 

#13 78 ± 
5 1.1 ± 0.2 56 ± 

10 
35 ± 

9 92 ± 8 1.8 ± 0.3 0.3 ± 0.2 

aThe percent mobility, m=100f (Eq. 3.2).  Parameters are averaged over approximately six 
spots per sample, two samples per day, and two days of experiments for each condition; 
uncertainties are standard deviations. 
 

3.5.5 FPPR Measurements 

The lateral diffusion coefficients and fractional mobility of various sample types were 

determined by FPPR.  The reasoning behind determining the diffusion coefficients was 

twofold.  First, one possibility in developing a stacked bilayer of this type is that the 

secondary bilayer does not form.   In its place, it is possible that one finds large unfused 

vesicles.  If there are large unfused vesicles, the diffusion coefficient might be much slower 

than that seen for a single bilayer.  Secondly, if the secondary bilayer is continuous and well 

formed, the lipids should demonstrate a fluid nature seen in most bilayers.  The continuity 

can be deduced by reference to the diffusion coefficient as it will provide information about 

long range lateral mobility.  Results are shown in Table 3.5. 
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 Table 3.5 FPPR Results on the Stacked Bilayer System and Its Variants. 
Fit 
Model 

n=1  n=2     

Sample # ma D(10-8 cm2 
s-1) 

m1 m2 m1 + 
m2 

D1(10-8 cm2 
s-1) 

D2(10-8 cm2 
s-1) 

#6 61 ± 5 0.9 ± 0.2 40 ± 5 44 ± 8 83 ± 6 3.7 ± 0.7 0.3 ± 0.1 

#7 87 ± 3 1.4 ± 0.2 67 ± 
10 

31 ± 
10 

98 ± 
14 

2.7 ± 0.9  0.5 ± 0.3 

#8 76 ± 
16 

0.8 ± 0.1 38 ± 7 60 ± 
10 

98 ± 5 3.9 ± 0.8 0.4 ± 0.2 

#11 69 ± 6 0.8 ± 0.1 38 ± 4 51 ± 5 89 ± 6 2.7 ± 0.9 0.3 ± 0.2 

#12 82 ± 4 1.4 ± 0.2 59 ± 
12 

33±  
11  

92 ± 
17 

3.0 ± 1.0 0.6 ± 0.3 

#16 72 ± 9 0.9 ± 0.2 41 ± 6 52 ± 7 93 ± 6 4.2 ± 1.1 0.4 ± 0.2 

#17 73 ± 7 0.7 ± 0.1 38 ± 4 59 ± 6 97 ± 3 4.4 ± 0.7 0.3 ± 0.2 
aThe percent mobility, m=100f (Eq. 3.2).  Parameters are averaged over approximately 6 
spots per sample, and 1-10 days of experiments for each sample condition; uncertainties are 
standard deviations. 
 

Fluorescence recovery curves were fit to Eq. 3.2 with n=1 and n=2, and an F-statistic 

analysis was performed (Eq. 3.3).  All samples were fit better by two mobile populations in 

greater than 98% of the curves analyzed.  Representative curves are shown in Figure 3.4. 
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Figure 3.4 Representative FPPR Recovery Curves. 
Diffusion coefficients were determined for seven samples using FPPR.  a) Sample #7 was a 
single bilayer fit to n=1 populations.  The best fit of this particular curve to Eq. 3.2 produced 
f1=0.91, D1= 1.45 x 10-8 cm2 s-1, and β=0.7.  b)  Sample #7 fit to n=2 populations. The best 
fit gave f1 = 0.73, f2 = 0.26, D1 = 2.4 × 10-8 cm2 sec-1, D2 = 0.5 × 10-8 cm2 s-1, and β = 0.7.  c) 
The data are for sample #12.  The best fit of the data to Eq. 3.2 with n=1 populations gave 
f1=0.78, D1= 1.45 x 10-8 cm2 s-1, and β=0.7.  d) Sample #12 fit to Eq. 3.2 with n=2 
populations gave f1 = 0.52, f2 = 0.33, D1 = 2.9 × 10-8 cm2 sec-1, D2 = 0.7 × 10-8 cm2 s-1, and β 
= 0.7. 
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All the samples show plausible diffusion coefficients for lipid mobility in bilayers.  

Sample #6 particularly addresses lateral mobility in the second layer of a stacked system.  

Because the diffusion coefficient is within the error that would be expected for a bilayer, 

sample #6 provides evidence for the formation and continuity of the secondary bilayer.  

Sample #7 is a control measurement, and it particularly looks at a single bilayer for 

comparison with the stacked system.  Sample #8 addresses the influence that the binding of 

NeutrAvidin has upon lipid mobility.  The diffusion coefficient for Sample #8 yields further 

information that NeutrAvidin does not impede the fluid mosaic nature of the bilayer.  The 

reasonable diffusion coefficient of sample #11 indicates that the formation of a secondary 

bilayer atop a primary bilayer does not destroy or interfere with the mobility of the primary 

bilayer.  Sample #12 probes the overall mobility within the stacked system and the diffusion 

coefficient is indicative of continuity.  The mobility of FNA was also measured in the 

stacked system (between bilayers), and was found to be greatly reduced compared to FNA 

bound to a single bilayer (data not shown).  Overall, the FPPR studies of the stacked bilayer 

system provide further proof supporting the formation of a true stacked system. 

3.5.6 Order Parameter Measurements 

Order parameter measurements were performed to determine the orientation 

distribution (N(θ)) of the absorption dipoles of the NBD-PC or FNA incorporated into the 

various sample types.  The order found in the fluorescent lipids incorporated in the bilayer 

should be representative of the overall order found in the bilayer.  Consequently, this set of 

experiments should provide information about the order found in the stacked system. The 

average intensity as measured by epi-illumination was recorded for four spots/sample, in 10° 

increments, as the polarization was rotated from 0° to 180°.  Samples were background 
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corrected and then normalized by the largest value for each sample type performed on that 

data.   Theoretical plots were made of F(ψ) for a sample with randomly orientated dipoles at 

theoretical  B values (Eq. 3.4) of 0.16. 0.13, and 0.09.  These theoretical values for F(ψ) were 

then used to determine correction values for each angle by dividing the theoretical values by 

the average values measured for the random sample (FNA).  The data were multiplied by the 

correction factors and fit to Eq. 3.4.  Values for B were determined and can be found in Table 

3.6. 

Table 3.6 Order Parameter Fits. 
Sample # γ=0, Brandom=0.16 γ=0.1, Brandom=0.13 γ=0.2, Brandom=0.09 
FNA -0.16± 6.5e-17 0.15±6.6e-17 0.1±7.3e-17 
#4 -0.23±0.04 -0.28±0.04 -0.25±0.03 
#6 -0.54±0.01 -0.56±0.01 -0.56±0.03 
#7 -0.49±0.02 -0.51±0.02 -0.53±0.02 
#8 -0.49±0.01 -0.51±0.01 -0.53±0.01 
#9 -0.48±0.01 -0.50±0.01 -0.52±0.01 
#10 -0.51±0.01 -0.53±0.01 -0.55±0.01 
#11 -0.50±0.01 -0.52±0.01 -0.54±0.01 
#12 -0.50±0.01 -0.52±0.01 -0.54±0.01 
#13 0.04±0.02 0.02±0.02 -0.05±0.02 
#14 0.07±0.02 0.04±0.02 0.01±0.02 
 
 

Representative curves for all sample types are displayed in Figure 3.5.  The values of 

B determined for similar systems agree well with sample #6 - #12 (Thompson et al., 1984; 

Timbs and Thompson, 1990; Pearce, 1993).  This is indicative of order in these systems 

providing further support for the formation of a stacked bilayer system.  FNA, sample #13, 

and sample #14 should show no order, and this fits well with what is seen experimentally.  

Sample #4 follows the theme set by it during the intensity measurements (Section 3.5.2).  

Sample #4 should display no order as the fluorescent lipid is in the secondary bilayer, and no 

NeutrAvidin was applied.  However, sample #4 displays a small amount of order lending 
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proof to the hypothesis that some combination of nonspecific binding and lipid transfer is 

occurring.  Overall, the order parameter measurements provide one more piece of proof for 

the existence of a stacked bilayer system. 

Figure 3.5 Representative Order Parameter Curves. 
Representative curves are shown for all sample types.  All curves shown here were fit to Eq. 
3.4 using the correction factor determined assuming a theoretical B value of 0.16. 
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3.5.7 AFM Measurements 

As a final characterization of the stacked bilayer system not available via 

fluorescence microscopy, AFM was employed due to its utility to provide accurate height 

measurements from the three dimensional surface maps.  Specifically, it is anticipated that a 

bilayer is approximately 5 nm in diameter while NeutrAvidin is approximately 4 nm in 

diameter.  Therefore, the stacked system should be about 14 nm in height with about 1 nm of 

water between the substrate and the bilayer system.  Single bilayers often contain “holes” or 

regions where the bilayer is not completely continuous and the substrate shows through.  The 

stacked system is likely to contain these holes as well.  However, what will distinguish the 

stacked system from a single bilayer is that it is plausible to expect the holes to be of depths 

corresponding to the layer thickness.  These multiple depths would be due to a hole in the 

secondary bilayer (5nm), a hole in the secondary bilayer and a missing NeutrAvidin molecule 

(9nm), or a hole in the stacked system (14 nm).  It was anticipated that these holes would be 

evident in AFM images.  Furthermore, they should be made readily more apparent by 

analysis of a height trace. 

Three of the seventeen presented sample types were investigated using AFM.  The 

samples include the primary bilayer (sample #1), the primary bilayer and attached 

NeutrAvidin (sample #2), the stacked bilayer system (sample #5), and as a control, the bare 

fused silica substrate (data not shown). However, data obtained for sample #2 was not 

useable.  In retrospect, this is believed to be caused by the biotinylated lipids adhering to the 

tip, then interacting with exposed NeutrAvidin in other regions of the scan area.  This biotin-

NeutrAvidin interaction between the tip and planar bilayers caused large interactive forces 

between the tip and the sample.  Consequently, such significant adhesion occasionally 
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occurred when scanning sample #2 that the tip and substrate had to be manually disengaged 

and incomplete images were obtained.  Similar problems were encountered with sample #5 

but to a lesser extent.  Representative images and height traces of samples #1 and #5 are 

shown in Figure 3.6. 
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Figure 3.6 Representative AFM Images. 
All AFM images were obtained with AC mode in PBS buffer (pH 7.4) using Si3N4 tips at 
scan rates of 0.68 to 0.98 Hz. Corresponding section analyses are below respective images. a) 
Single bilayer showing holes of ca. 2.5 nm depth (z-scale: 5 nm). b) Stacked bilayer showing 
continuous nature of film. Section analysis traces separated to depict (z-scacle: 20 nm). c & 
d) Stacked bilayers showing holes of corresponding heights expected of the stacked system 
(z-scale: c: 15 nm, d: 25 nm). In c), Section analysis traces separated to clearly depict various 
hole depths. 
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The AFM images provide more information about the nature of the stacked system.  

By analysis of the image in a) (the single bilayer), it is evident that the holes seen in the 

height trace are approximately 2.5 nm.  The expected size of single bilayer is 5nm.  

Consequently, it would be reasonable to deduce that the holes are possibly missing pieces of 

one half of the bilayer (monolayers).  However, this would expose the hydrophobic tails of 

the lipids to an aqueous environment creating an energetically unfavorable interaction.  

Although the holes of 2.5 nm cannot be identified, the image shows no holes larger than 5 

nm and is thus consistent with a single bilayer.  The images in Figure 3.6 (b-d) are images 

taken of the stacked bilayer system.  The height trace in b) shows a region of the stacked 

system with few holes.  Although this gives us no information to ensure that this is a stacked 

system, it does illustrate large regions (5 μm2) of continuous bilayer.  The image in c) 

demonstrates similar results with a few holes of z-scale 10 nm, 5 nm, and 2.5 nm.  The height 

traces in d) illustrate holes of 15 nm, 5 nm, and 2.5 nm.  These are consistent with the 

expected hole depths for a stacked system.  Furthermore, the large depths of the holes 

eliminate the possibility that what was actually developed was a single bilayer with a layer of 

NeutrAvidin on top.  Secondly, the holes are small enough to negate the possibility that the 

secondary structures atop NeutrAvidin are unfused vesicles (~50 nm).  The majority of the 

height traces are uniform and continuous providing further evidence that the stacked system 

is homogenous. 

3.6 Discussion 
 

The use of planar model membranes has become an integral part of research and 

applied science.  However, the continued use of model membranes requires that the 

methodology in building bilayers continues to keep apace of the necessities of ever 
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increasingly difficult experiments.  This requires the amendment of existing techniques to 

newer protocols and their extension to more diverse ideas.  New advancements required in 

model membrane technology include the need to create “free bilayers” that show little 

interaction with the substrate upon which they are formed, the need to create more 

continuous and controlled multilayers, and the need to insert biologically relevant molecules 

into model membranes. 

To this end, we have created a stacked bilayer system using the interaction of 

biotinylated lipids and NeutrAvidin as a “lock and key” layering mechanism.  Furthermore, 

we have characterized this putative system using four different techniques (three 

fluorescence techniques and atomic force microscopy).  Through each of these techniques we 

have acquired evidence indicating that a stacked bilayer system was formed and that this 

system is relatively homogenous.   

Through FPPR measures we have confirmed that the lipids are laterally mobile.  This 

provides evidence indicating that the secondary bilayer is not mainly composed of unfused 

vesicles and the long range lateral mobility is consistent with a continuous bilayer.  Order 

parameter measurements illustrated the stacked bilayer has a continuous order.  This 

evidence is particularly compelling when compared to control measurements on derivatives 

of the stacked system that showed little or no order.  However, the order parameter 

measurements indicate that some lipid transfer is occurring between bilayers.  This transfer 

must be addressed and quantified if this new methodology is to find application.   

The intensity measurements agreed with the order parameter measurements and 

indicated that lipid transfer is occurring.  The intensity measurements indicated that the 

secondary bilayer is forming, but that it is less fluorescent than the primary bilayer.  It is 
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unknown at this time why this is occurring.  It was initially thought that this was indicative of 

incomplete bilayer coverage, but this possibility is less likely in view of the evidence 

provided by the other techniques.  The reasons behind the less intense fluorescence in the 

secondary bilayer must also be addressed if this system is to be applied as a technique to 

experimental research.  Finally, atomic force microscopy studies indicated that the stacked 

bilayer system exists and that it is mostly homogenous.  Areas of the multilayer system show 

“holes.”  However, this is also seen in bilayers. 

Future studies of the stacked bilayer system should attempt to incorporate 

transmembrane proteins into the stacked system.  This was initially attempted in our lab.  

Results indicated that the protein was not appreciably mobile.  However, more experiments 

must be conducted indicating why the protein is immobile and how the technology can be 

amended to correct this.  The immobility of the protein could be due to simple design flaws 

in the experimental set-up.  These must be investigated before it is assumed that the system is 

not utilizable here.  A detailed characterization of the transmembrane protein integrated into 

the system must be performed in a manner similar to the system characterization seen here.  

However, it is anticipated that the stacked system should not be limited to application in this 

field.  It is likely that the technique will be amendable to many studies. 

In conclusion, we have devised a novel stacked bilayer system and characterized it 

using four different techniques.  The system has been determined to be continuous and fluid.  

Its advent will likely find application in biomolecular devices, biofunctionalized inorganic 

surfaces, multilayer science, and as biological model membranes. 

 



 

 

 

Chapter 4 High Refractive Index Substrates to Generate Very 

Small Evanescent Wave Depths 

 
4.1 Abstract 

The use of TiO2 and SrTiO3 single crystal substrates in fluorescence based 

experiments was investigated.  The substrates were examined for their native luminescence, 

and it was concluded that both are extremely luminescent with 488 nm excitation.  However, 

TiO2 is less luminescent with 514 nm excitation and was consequently deemed more suited 

for use with an argon ion laser.  Studies were conducted to ascertain what concentration of 

fluorescently labeled antibodies was required to overcome the native luminescence of the 

TiO2 substrate at 514 nm.  The TiO2 substrate was utilized in experiments measuring the 

membrane-adjacent rate of diffusion of IgG antibodies by total internal reflection with 

fluorescence correlation spectroscopy.  The calculated rate of diffusion at the TiO2/solution 

interface was much higher than the experimentally determined rate of diffusion for IgG at the 

fused silica/solution interface.   This value fits well with predictions from the theory for 

ligand diffusion near interfaces (chapter 2).  This increased correlation rate corresponds to 

smaller evanescent wave depths.  The TIR-FCS autocorrelation functions are relatively 

noisy.  Further investigations are required to decrease this noise and continue the adaptation 

of high refractive index substrates to use with TIR-FCS.  A novel surface quenching effect 

was observed where the substrate appeared to quench the fluorescence of fluorescently-

labeled protein in the absence of phospholipid bilayers.  Further studies into the origin of the 
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surface quenching effect might provide further insight into the intrinsic luminescence of TiO2 

or possibly provide a new surface characterization technique. 

4.2 Introduction 

Total internal reflection (TIR) has become a staple of the scientific community over 

the past two decades (Thompson and Pero, 2005).   The myriad of techniques and problems 

for which it finds application continues to grow.  TIR is closely linked and inherently suited 

to the study of supported phospholipid bilayers (Thompson and Pero, 20005; Sackmann, 

1996; Starr and Thompson, 2000; Ajo-Franklin et al., 2001).  TIR has been applied in the 

field of fiber optics and biosensors (Lee, 2003; Kurrat et al., 1997), microfluidics (Yang et al, 

2001; Yang et al., 2003), and genomic and proteomic assays (Lehr et al., 2003).   TIR has 

also been combined with numerous techniques to make them surface sensitive or obtain 

additional complementary information (fluorescence resonance energy transfer, atomic force 

microscopy, fluorescence correlation spectroscopy, fluorescence recovery after 

photobleaching, etc.). 

One limitation in the use of TIR is the difficulty of obtaining very small evanescent 

wave depths.  Very small evanescent wave depths would be intrinsically important because 

they would provide more information about surface chemistry closer to interfaces, extend 

TIR methodology to physical problems with weaker binding constants, and increase the z-

axis resolution (Thompson and Pero, 2005).  The difficulty in obtaining small evanescent 

wave depths arises because most TIR studies have been conducted at the interface of water 

and fused silica.  Fused silica has been the medium of choice because it has a well 

characterized history as a substrate for model membranes; it has lower background 

fluorescence than glass; it is transparent in the UV and visible regions; and its refractive 
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index is greater than water (Thompson and Pero, 2005).  For an interface between fused 

silica and water the critical angle is 65±.  Consequently, working angles that can bring about 

TIR on a fused silica substrate are ~70±-85±.  These angles produce corresponding z-depths 

of 63-104 nm by Eq. 4.1 
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where d is the evanescent wave depth, l is the vacuum wavelength of light, n1 is the higher 

refractive index (fused silica), n2 is the lower refractive index (water), and a is the incident 

angle of light (Thompson et al., 1993).   The incidence angle must be greater than the critical 
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where ac is the critical angle. 

One attempt to tweak this limitation and use TIR for depth profiling has been the 

advent of variable angle-total internal reflection (VA-TIR).  VA-TIR utilizes the relationship 

between the incidence angle of the impinging laser and the depth of the evanescent wave to 

probe a sample at different depths from the interface by merely changing the incidence angle 

(Reichert et al., 1987; Liebmann, 1991).  This allows the sample to be studied at the full 

range of evanescent wave depths obtainable by TIR (63-104 nm at the fused silica/water 

interface).  However, the true power of VA-TIR and TIR would be obtainable if samples 

could be probed at smaller depths. 

By examination of Eq. 4.1, it becomes apparent that another way to obtain small 

evanescent wave depths would be to employ a substrate of much higher refractive index than 

that of SiO2.  A higher refractive index would produce much smaller evanescent wave 
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depths, a smaller critical angle, and the possibility of smaller incidence angles.  These high 

refractive index substrates must display many of the intrinsic properties of fused silica if they 

are to be useful for TIR.  They must permit the formation of model phospholipid bilayers if 

they are to see the wide application of TIR that fused silica has created.  Much interest has 

been focused on TiO2 and somewhat on SrTiO3 for use as high refractive index substrates (n 

= 2.5 for both) (Starr and Thompson, 2000; Rossetti et al. 2005, Ajo-Franklin et al., 2001; 

Reimhult et al., 2003; Richter, 2006).  A refractive index as high as 2.5 will require a slightly 

different experimental set-up than traditional total internal reflection where glycerin is used 

to couple a fused silica prism to a fused silica slide (Figure 4.1).  This is because there are not 

many liquids with a refractive index of 2.5 by which the slide and prism could be coupled.  

Consequently, the bilayer must be directly formed on the prism. 
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Figure 4.1 Schematic for TIR with High Refractive Index Substrates. 

Due to the lack of refractive index matching liquid, the bilayer is formed directly on the 

prism.  TIR is then performed through the prism. 

 

 

 
 

 

Titanium based single crystals are particularly of interest in this application for 

several reasons.  First, titanium has already spawned much application in the biomedical field 

as an implant device in hip and knee joints, dental prosthetics, heart values, etc.  The 

biocompatibility of titanium is a consequence of the native layer of oxide that coats its 

surface (Rosetti et al., 2005)  Furthermore, the combination of its biocompatibility and  high 

refractive index make titanium an extremely good candidate for future biosensor applications 

given that it can be amended to use with TIR.  It has already been proven that phospholipid 

bilayers can be formed on TiO2 and SrTiO3 (Starr and Thompson, 2000; Rosetti et al., 2005).   

Although some reports have contrarily stated that titanium based materials oppose the 

formation of phospholipid bilayers (Ajo-Franklin et al., 2001; Reimhult et al., 2003), the 

general consensus remains today that bilayers do form on these substrates (Richter, 2006). 
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The use of high refractive index substrates would be of particular usefulness in the 

study of protein diffusion near model membranes.  In chapter two, the size dependence of 

protein diffusion was measured.  It was determined that as the diffusing proteins moved 

closer to the membrane, the rate of diffusion decreased as a function of protein radius due to 

increased frictional coefficients.  A complementary study of protein diffusion near model 

membranes would be to monitor the diffusion as a function of z-distance from the membrane.  

This could be attempted using conventional VA-TIR.  However, as Figure 4.2 illustrates the 

range of z-distances that can be probed using a fused silica substrate (63-104 nm) show little 

distance dependence.  It is not until much smaller distances from the model membrane, that a 

dramatic distance dependence is theoretically predicted.    TiO2 and SrTiO3 can produce 

evanescent wave depths of 18-43 nm.  In this region, there is a much stronger distance 

dependence.  By combining high refractive index substrates with VA-TIR, a systematic study 

of the distance dependence of protein diffusion very near model membranes would be 

plausible. 
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Figure 4.2 Theoretical Plot of Eq. 2.9.  

Eq. 2.9 describes the diffusion of a particle in close proximity to a boundary.   The equation 

relates the radius (r) of the particle, and the z distance from the interface to the diffusion.  

The equation is normalized by the diffusion one would expect in bulk solution (D(¶, r)) or 

the Stokes-Einstein Equation. 
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To this end we have begun the application of high refractive index substrates to total 

internal reflection based techniques.  Particularly, TIR-FCS has been used to attempt to 

characterize the diffusion of Fab fragments and IgG fluorescently-labeled antibodies.  There 

has been some success in this area, and some novel properties of TiO2 and SrTiO3 have been 

discovered. 
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4.3 Theoretical Background 

4.3.1 TIR-FCS 

The theoretical derivations of the autocorrelation function for these experiments were 

laid out in chapter 2.  In the experiments utilizing high refractive index substrates, the 

diffusion of Fab fragments and IgG antibodies is measured very near model membranes.  No 

surface binding or adsorption is expected; and consequently, the data should fit to Eq. 2.5.  

However, the autocorrelation functions performed atop SrTiO3 and TiO2 fit quite poorly to 

Eq. 2.5.  A simplified limiting version of Eq. 2.5 was used 

ττ eR

e

e
N

G
−=

2

1
)(       (4.3) 

where Ne is the average number of molecules in the observation volume, and Re is the rate of 

diffusion through the depth of the evanescent wave. 

4.4 Materials and Methods 

4.4.1 Substrate Preparation 

Epitaxially polished TiO2 and SrTiO3 crystals (First Reaction, Hampton Falls, NH) 

were soaked in acetone for one to twenty four hours and rinsed twice with deionized water.  

No. zero coverslips (Gold Seal Coverglass, Clay Adams, UK) and fused silica slides (Quartz 

Scientific, Fairport Harbor, OH) were cleaned extensively by boiling in detergent (ICN, 

Aurora, OH), bath sonicating, rinsing thoroughly with deionized water, and drying at 160 ˚C.  

All substrates were cleaned in an argon ion plasma cleaner immediately prior to use (10 

minutes, 25 ±C) (PDC-3XG, Harrick Scientific, Ossining, NY).   

4.4.2 Antibody Preparation 
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IgG antibodies were obtained from the anti-dinitrophenyl mouse-mouse hybridoma 

1B711 (American Type Culture Collection, Rockville, MD).  Hybridomas were maintained 

in culture, and the secreted antibodies were purified from cell supernatants by affinity 

chromatography with DNP-conjugated human serum albumin.  Each liter of supernatant 

yielded approximately 10-15 mg of antibody as determined spectrophotometrically by 

assuming that the molar absorptivity at 280 nm was 1.4 mL mg
-1

 cm
-1

.   Fab antibodies 

(Jackson ImmunoResearch Laboratories) were dialyzed into phosphate-buffered saline (PBS; 

0.05 M sodium phosphate, 0.15 M NaCl, pH 7.4).  All antibodies were fluorescently labeled 

using the AlexaFluor514 Protein Labeling Kit (Molecular Probes, Inc., Eugene OR) and the 

AlexaFluor488 Protein Labeling Kit.  The free dye was removed by using size exclusion 

chromatography with Sephadex G-25 or G-50 in PBS.  The molar concentrations of antibody 

and the molar ratios of AlexaFluor514 or AlexaFluor488 to antibody were determined 

spectrophotometrically according to the manufacturer’s protocol.  

4.4.3 Phospholipid Vesicles 

Small unilamellar vesicles of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) 

(Avanti Polar Lipids, Birmingham, AL) were prepared by tip sonication of 2 mM 

suspensions of POPC or POPC/cholesterol in water as previously described (Lagerholm et 

al., 2000).  In fluorescence imaging experiments, 2 mol% of the fluorescent lipid 1-acyl-2-

[12-(7-nitro-2-1,3-benzoxadiazol-4-yl) aminododecanoyl]-glycero-3-phophocholine (NBD-

PC) was included to monitor bilayer formation and quality, and to replicate previous 

experiments (Starr and Thompson, 2000) that indicated that bilayers can be formed on 

titanium based crystals.  Vesicle suspensions were clarified by air ultracentrifugation 

(130,000g, 30 min) immediately before use. 
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4.4.4 Substrate-Supported Phospholipid Bilayers 

Supported planar bilayers were deposited onto clean substrates by vesicle adsorption.   

For fluorescence imaging experiments, TiO2, SrTiO3, and fused silica substrates were 

separated by a Teflon spacer; and 65 mL of vesicle containing solution was applied to the 

substrates (1 h, 25 ±C).  Then the slide was rinsed with 3 mL of PBS buffer.  Slides were 

sealed with either Elmer’s glue (Elmer’s products, Inc., Columbus, OH), rubber cement 

(Ross Products, Inc., Columbus, OH), or clear nail polish (Sally Hanson Teflon Tuff, Del 

Laboratories, Inc., Farmingate, NY).  For TIR-FCS experiments TiO2 and SrTiO3 prisms 

were separated by a Teflon spacer and 20 mL of vesicle containing solution was applied to 

the prisms (1h, 25 ±C) and washed with 400 mL of PBS.  Slides were sealed using rubber 

cement. 

4.4.5 Fluorescence Imaging 

Epifluorescence images were taken on an instrument consisting of an inverted 

microscope (Zeiss Axiovert 35 with a 40x 0.75 NA objective) and a charge-coupled device 

(CCD) camera (AT200 Photometrics Ltd. Tucson, AZ).  Bilayers were exposed to laser light 

for times ranging from 100 to 500 ms with a laser power of 50 mW. 

4.4.6 TIR-FCS Experiments 

TIR-FCS was carried out on an instrument consisting of an argon ion laser (Innova 

90-3; Coherent, Palo Alto, CA), an inverted microscope (Zeiss Axiovert 35), and a single-

photon counting photomultiplier (RCA C31034A, Lancaster, PA).  All experiments were 

conducted at 25 ±C using the 514 nm laser line.  For TIR-FCS measurements, the laser beam 

was s-polarized while incident on the substrate/aqueous interface and generated an 

evanescent field polarized parallel to the interface.  TIR-FCS experiments were performed 
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with a pinhole with a radius of 50 mm placed at an internal image plane which defined an 

area with a radius of h º 1 mm when projected onto the sample plane.  The fluorescence 

arising from the volume defined by the excitation light and the pinhole was collected through 

a 100x, 1.3 N.A. objective.  The fluorescence signal was autocorrelated by a PC-based 

correlator board (model 5000/E, ALV).  Autocorrelation functions were obtained within 5-10 

minutes using incident laser intensities of 4-17 µW/µm
2
.  Average blank signals were 

measured from samples containing buffer adjacent to supported bilayers.   

4.4.7 Data Analysis 

Autocorrelation functions were background-corrected by multiplying by the factor 

‚SÚ2
/‚FÚ2

, where ‚FÚ = ‚SÚ - ‚BÚ was the average fluorescence calculated by subtracting the 

average measured blank signal ‚BÚ from the average measured total signal ‚SÚ.  TIR-FCS 

autocorrelation functions were fit to Eq. 4.3 plus an arbitrary constant G¶, and the free 

parameters were Re, Ne, and G¶ (see Chapter 2). 

4.5 Results 

4.5.1 Fluorescence Imaging 

To confirm that phospholipid bilayers can be formed upon TiO2 and SrTiO3, 

experiments identical to those previously conducted in this lab (Starr and Thompson, 2000) 

were repeated.  Bilayers were only created using vesicle fusion and results can be seen in 

Figure 4.3.  As the fluorescence images show, homogenous and continuous bilayers were 

made atop high refractive index substrates.  It is also important to note that the TiO2 and 

SrTiO3 crystals had not recently been polished and that the crystals had been used and 

cleaned several times since polishing.  It was suggested that the formation of bilayers atop 
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titanium-based materials was due to a silica residue created by polishing (Ajo-Franklin et al., 

2001). 

Figure 4.3 Epi-fluorescence Images of Bilayers atop SiO2, TiO2, and SrTiO3. 

Bilayers were formed by adsorption and fusion of POPC/NBD-PC or 

POPC/Cholesterol/NBD-PC atop a) fused silica, b) SrTiO3 and c) TiO2.  Each sample was 

exposed to 50mW laser light for 200 ms. 
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 It was previously reported that the TiO2 and SrTiO3 substrates exhibited decreased 

fluorescence intensity when compared to SiO2 during these experiments (Starr and 

Thompson, 2000).  The same phenomenon was observed here.  It is interesting to note that 

this general trend manifests itself throughout experiments conducted on high refractive index 

substrates.  The decreased fluorescence exhibited by fluorescently labeled species is 

especially intriguing in light of Section 4.5.2. 
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4.5.2. Native Luminescence of TiO2 and SrTiO3 

 As it was attempted to amend TiO2 and SrTiO3 to use with total internal reflection, it 

became apparent that both substrates exhibited some native luminescence.  This was first 

noted when total internal reflection was attempted using one of the substrates and a blank 

solution containing no fluorophore.  A bright TIR spot with a “winged” pattern was visible 

(Figure 4.4).  It was decided that the “winged” pattern was due to the intensity of the 

background luminescence.  To determine the wavelength dependence of the native 

luminescence of the substrates, emission spectra were taken for each (Figure 4.5). 

Figure 4.4 Total Internal Reflection on SrTiO3. 

TIR was performed on SrTiO3 and also on TiO2 (data not shown) without a fluorescent 

bilayer.  An elliptical spot with a fringe pattern at its ends was seen.  The appearance of TIR 

indicated that the substrate exhibited intrinsic luminescence. 

 

 

The emission spectra for both substrates were taken at excitation wavelengths of 400 nm, 488 

nm, and 514 nm.  The scans were taken over 420-800 nm, 495-800 nm, and 520-800 nm respectively.  

Excitation wavelengths were chosen because 488 nm and 514 nm excitation are the two most popular 

laser lines of the argon ion laser and 400 nm provides an overall view of the visible region.  The 

emission spectra of SrTiO3 provided some interesting information.  Although its main 

emission peaks are situated at about 420 nm and 550 nm, SrTiO3 has an extremely high 

overall luminescence intensity throughout the wavelength range scanned.  This overall high 
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background luminescence seen in Figure 4.5a-c makes strontium titanate a bad candidate for 

use in the visible region.  The emission spectra of TiO2 provided more promising evidence.  

Although titanium dioxide also exhibits background luminescence, the intensity of this 

background luminescence is much less intense over the visible region (Figure 4.5d-f).  

Titanium dioxide exhibits a broad peak from about 400-510 nm.  This broad peak 

complicates the use of the 488 nm line of the argon ion laser.  However, it is conceivable 

(with further experimental controls) to use the 514 nm laser line.  Consequently, all further 

experiments were conducted solely with TiO2. 
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Figure 4.5 Fluorescence Emission of SrTiO3 and TiO2. 

Parts a), b), and c) are of SrTiO3.  Parts d), e), and f) are of TiO2. Parts a) and d) were excited 

at 400 nm and scanned from 420-800 nm.  Parts b) and e) were excited at 488 nm and 

scanned from 495-800 nm.  Parts c) and f) were excited at 514 nm and scanned from 520-800 

nm.  SrTiO3 displays a much higher intensity background luminescence over the range 

scanned.  Ti02 has a decreased background luminescence that makes the material more 

amendable to use with visible lasers. 
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4.5.3 Fluorescent Antibody Experiments 

 Fluorescence intensity experiments were performed on titanium dioxide to determine at what 

concentration of fluorescently-labeled antibodies the intrinsic luminescence of the substrate is 

overcome.  These fluorescence intensity experiments were performed on both the 488 nm and 514 nm 

laser lines of an argon ion laser (Figure 4.6) using IgG antibodies.  Intensity data were taken for 300 

seconds.  An average intensity was calculated and all samples were corrected to the sample 

containing no antibody. 

 Figure 4.6a demonstrates that the background intensity effectively overwhelms the 

fluorescence of the dilute antibodies until about 80 nM on the 488 nm laser line.  Although this 

concentration is still small, the use of high refractive index substrates is being developed for use with 

TIR-FCS.  In TIR-FCS, the number of molecules in the observation volume, and consequently, the 

solution concentration must be small so that fluctuations in the fluorescent intensity can be seen.  

Most TIR-FCS measurements are taken below 100 nM, and therefore, it would be optimal to avoid 

approaching this upper limit.  Figure 4.6b demonstrates much more promising results.  The expected 

increase in fluorescence intensity should be linear as concentration increases, and that is what is seen 

here.  The linearity indicates that the background luminescence of the substrate is much less with 

514 nm excitation.   Resultantly, all TIR-FCS studies were conducted on TiO2 with 514 nm laser 

excitation. Furthermore, the concentration plot illustrated that a 30 nM IgG antibody solution was 

appropriate for these studies. 
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Figure 4.6 Fluorescence Intensity vs. Concentration Plots. 
Fluorescence intensity experiments were performed to determine at what concentration the 

fluorescence from labeled IgG antibodies overcomes the intrinsic TiO2 luminescence.  a) With 488 

nm excitation the fluorescence is swamped by the background signal until high concentrations.  b) 

With 514 nm laser excitation a linear relationship between fluorescence intensity and concentration is 

seen at all concentrations. 
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4.5.4 TIR-FCS 

Total internal reflection with fluorescence correlation spectroscopy was performed on 

fluorescently-labeled IgG antibodies using a TiO2 prism.  The use of TiO2 with TIR-FCS 

proved finicky during these experiments.  Consequently, data were taken for longer periods 

of time and fit to a simplified autocorrelation function (Eq. 4.3).  Figure 4.7 shows an 

autocorrelation function performed atop a TiO2 prism.  This particular autocorrelation 

function is an average of sixteen different experiments.  The corresponding Re for this curve 

is 25.44 ms
-1

 and Ne is 0.3267.  In chapter two, the Re value for IgG was determined at 

approximately 85 nm from the interface to be ~4.6 ms
-1

.  According to the theory set forth in 

chapter 2 (Eq. 2.9), the diffusion coefficient, D(z),  should decrease as a molecule approaches 

closer to the membrane.  On the contrary, TiO2 should produce a much smaller evanescent 

wave depth, d, and consequently, an extremely faster rate of diffusion, Re.   This increase in 

the rate of diffusion at smaller evanescent wave depths was demonstrated here.  The 

incidence angle is unknown for the experiments using TiO2 and consequently, the evanescent 

wave depth cannot be calibrated.  However, by utilizing the rate of diffusion for IgG at 85 

nm, an estimate of the Re value for evanescent wave depths of 18-43 nm can be calculated.  

These estimated Re values are 18 ms
-1

 to 102 ms
-1

, respectively, which fit well with the Re 

value calculated here.  It should be noted, however, that these estimates ignore the possible 

hydrodynamic effect illustrated in chapter 2. 

The next logical question to ask is how well the increase in Re fits the hydrodynamic 

theory laid out in chapter 2.  This can be deduced by comparing the theoretical values for the 

initial slope, Se (Eq. 2.10), to the experimental Re value obtained atop the TiO2 prism.  

Theroretical values of Se were generated at 18 nm, 35 nm, and 43 nm evanescent wave 
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depths for an IgG antibody.  The theoretical values of Se are 61.30 ms
-1

, 20.39 ms
-1

, and 

14.32 ms
-1

.  An Re value of 25.44 ms
-1

 fits well within this range.  However, to fully ascertain 

the impact of the hydrodynamic surface effect a more comprehensive study must be 

performed at known evanescent wave depths. 

As figure 4.7 illustrates, the data appear not to fit well to the autocorrelation function 

at times less than 0.1 ms.  This noise prevents TiO2 from being used to its full potential with 

TIR-FCS.  Consequently, future experiments should concentrate on the origin of the noise.  

One plausible explanation is that a photochemical reaction is occurring on TiO2.  Such 

reactions would manifest themselves at these earlier times in the autocorrelation function.  

Once the nature of the noise has been addressed, emphasis can then be placed on a more 

comprehensive study of the hydrodynamic effect predicted near interfaces. 

Figure 4.7 Representative Autocorrelation Function for Fluorescently Labeled IgG 

Antibodies atop a TiO2 Prism. 

An autocorrelation function obtained by TIR-FCS for 16 different experiments averaged 

together performed using 30 nM IgG antibodies.  The best fits for this particular experiment 

to Eq. 4.3 were Re = 25.44 ms
-1

 and Ne = 0.3267.   

ττττ (ms)

0.01 0.1 1 10 100

G
( ττ ττ

)

-4

-2

0

2

4

6

 

  



 94 

4.5.5 Quenching Phenomenon 

Serendipitously, in one day of experiments, the vesicles were mistakenly not tip 

sonicated.  This prevented unilamellar vesicles from forming, and no bilayer was adsorbed 

onto the surface.  Experiments identical to those in Section 4.5.3 were performed where 

increasingly high concentrations of fluorescently-labeled IgG were placed in the sample 

chamber between the prism and coverslip.  Remarkably, in the absence of a bilayer, 

increasing the concentration of the antibody caused a linear decrease in the fluorescence 

(data not shown).   This quenching phenomenon that is responsive to increasing the 

concentration is noteworthy for two reasons.  Primarily, during the fluorescence imaging 

experiments (Section 4.5.1) the high refractive index substrates produced lower fluorescence 

intensity than SiO2.  It is plausible to deduce that the decreased fluorescence from the 

bilayers during the imaging experiments is related to the decreased fluorescence with 

increasing antibody concentration seen here.  Secondly, TiO2 is natively luminescent and so a 

decrease in fluorescence intensity under this situation is unexpected.  It is possible that a 

FRET-like scenario is occurring between the substrate and fluorescent material very near to 

it.  Further experiments are required to deduce the nature of this quenching phenomenon. 

4.6 Discussion 

 The purpose of these experiments was to experimentally pioneer the use of SrTiO3 

and TiO2 as total internal reflection elements.  The first step in accomplishing this was to 

reconfirm that phospholipid bilayers can be formed atop these two substrates.  This was 

accomplished as demonstrated in Section 4.5.1.  The second step in amending SrTiO3 and 

TiO2 to use with TIR technologies was to prove that TIR can be accomplished through these 

prisms.  TIR was created using these two substrates, and an autocorrelation function was 
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obtained by TIR-FCS for TiO2.  However, more work is required in this area so that the data 

obtained from total internal reflection atop a TiO2 substrate can be fit to any autocorrelation 

function and not just simplified versions of the appropriate autocorrelation function.  The 

success achieved thus far in this area provides ample evidence indicating that TiO2 can be 

used in total internal reflection. 

 One obstacle that must be addressed is the high background luminescence exhibited 

by these substrates.  The extremely high background luminescence of SrTiO3 eliminated the 

possibilities for its use with TIR-FCS, and all efforts were focused on TiO2.  Although TiO2 

exhibited significantly less background luminescence, it is still considerably natively 

luminescent.  This native luminescence is much less a deterrent to obtaining data at 514 nm 

light.  Noisy autocorrelation functions were obtained at this wavelength by utilizing a 

simplified version of the appropriate autocorrelation function and by taking data at longer 

times.   

 Future investigations must also address the quenching phenomenon that has been 

observed.  At high concentrations of fluorophore, it is not uncommon to see self-quenching 

or self-absorption present in fluorescence data that would cause a negative deviation from 

linearity in intensity vs. concentration plots (Skoog et al., 1998).  Although concentrations in 

the nanomolar range are not considered high, the lack of a bilayer increases the propensity 

for nonspecific adsorption which would cause a high surface concentration.  Alternatively, 

perhaps the high background luminescence of the substrate is enough to cause self-quenching 

or self-absorption.  Right now there is not enough evidence to conclusively say if it is self-

quenching, self-absorption, a photochemical process, or a FRET-like substrate-fluorophore 
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interaction.  It is clear that if more knowledge is obtained about the luminescent activity seen 

on TiO2, this information might provide an avenue around these experimental complications.  

 Future studies in this area should concentrate on several important points.  First of all, 

with TiO2, the argon ion laser might not be the most appropriate laser choice.  Although there 

is significantly less background luminescence at 514 nm (Figure 4.5b), moving to a higher 

wavelength in the visible region might provide better results.  Potentially useful lasers in 

include the Nd:YAG laser (532 nm line) or a Krypton-Argon laser (568 nm or 647 nm laser 

line).  

 Secondly, the possibility of a photochemical reaction occurring on TiO2 can be 

addressed by taking intensity dependent measurements.  The possibility of a photochemical 

interaction occurring is plausible because the data does not fit well to Eq. 4.3 at fast times 

(less than 0.1 ms).  This is the time scale where one would expect to see a photochemical 

interaction manifest itself.  By doubling the laser intensity, obtaining TIR-FCS data, and 

monitoring the rate of diffusion one could probe this scenario.  The rate of diffusion is not 

intensity dependent, and so large changes in the calculated Re at high intensity would indicate 

that a photochemical reaction is occurring. 

 Another approach in determining the problems associated with using TiO2 with TIR-

FCS would be to choose a different antibody (with a different radius) to study or change the 

angle at which the laser is incident on the prism.  Both of these situations should produce 

different Re values according to the theory laid out in chapter 2.  The values obtained by 

these experiments would provide insight into the rates of diffusion already measured and if 

the substrates are accurately measuring the rate of diffusion. 
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 In conclusion, TiO2 was proven to be utilizable in TIR-FCS measurements and total 

internal reflection based techniques.  Future experiments are required before TiO2 can be 

successfully applied in a research study involving TIR-FCS.   These investigations should 

concentrate on eliminating the noise seen in the autocorrelated data.  It has also been 

experimentally verified that phospholipid bilayers can be formed on these substrates.  These 

experiments should provide a foundation for future applications in this area. 



 

 

 

 

 

Chapter 5 Summary and Future Directions 

 This compilation of work represents advancements in both theory and methodology.  

These advancements have application mainly in the field of biophysics, but contributions will 

be felt elsewhere.  Chapter 2 represents a theoretical and experimental study that 

demonstrates that the theory regarding ligand-receptor interactions near model membranes 

should be amended to include an increasing frictional force acting upon the molecules as they 

approach the membrane.  This experimental proof will most likely see the widest application 

from this body of work, because membranes are the site of a plethora of ligand-receptor type 

interactions, and they govern many inherently important processes. 

 Since the publication of Chapter 2 new ideas have surfaced about possible further 

investigations into how the membrane affects translational mobility.  Originally, the hope in 

working with high refractive index substrates was that they would provide an additional 

study of this manner.  By combining high refractive index substrates with VA-TIR, depth 

profiling experiments can be accomplished.  However, additional studies are required before 

this line of logic can be brought to fruition.  Another possible approach would be to 

investigate how altering solution viscosity changes diffusion near model membranes.  A 

study published in 2000 examined the rebinding of IgE Fab fragment antibodies at model 

membranes when increasing the glycerol concentration (Lagerholm et al., 2000).    By 

sequentially increasing the amount of glycerol, two things happen in a total internal reflection 

experiment (Table 5.1).  Primarily, the solution becomes increasingly viscous thus increasing 

the frictional coefficient.  The increase in the frictional coefficient causes a decrease in 
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translational mobility similar to that seen as the molecule approaches the membrane.  

Secondly and perhaps more interesting, the increasing glycerol solution causes an increase in 

the refractive index of the buffer solution.  The increase in the refractive index of the buffer 

solution elicits an affect similar to that seen with high refractive index substrates; it causes a 

change in the critical angle and subsequently alters the evanescent wave depth. 

Table 5.1 Relationship Between Glycerol Addition and Solution Viscosity
a
. 

Volume Fraction of 

glycerol (v) 

0 25 35 

Viscosity (theory) 

(g/cm s) x 10
2
 

1.002 2.404 3.714 

Viscosity (expt) 

(g/cm s) x 10
2
 

0.95 ≤ 0.01 2.29 ≤ 0.03 3.68 ≤ 0.02 

Refractive index 

n2(v) 

1.334 1.370 1.385 

Critical angle ac 
(deg) 

65.4 69.0 70.7 

Evanescent depth d 

(nm) 

70.0 84.7 94.5 

a
 Table is a partial reproduction of Table 3 from Lagerholm et al., 2000. 

 

 An examination of the relationship between translational mobility and viscosity could 

be accomplished by performing TIR-FCS on the original five unaltered antibodies from 

chapter 2 (IgM, IgA, IgG, IgG (Fab’)2, and IgG Fab).  The data would then be fit to Eq. 2.10 

which is the equation for the initial slope of autocorrelation function for a sample displaying 

spatially dependent diffusion.  In Chapter 2 the initial slope, Se, was corrected by antibody 

radius, r, to correct for contributions from the Stokes-Einstein Equation.  In this case, Se 

should be corrected by viscosity, h, to correct for similar contributions.  Theoretical curves 

have been prepared for the five antibody types at the three viscosities (glycerol additions) 

listed in Table 5.1 (Figure 5.1).   
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Figure 5.1 Theoretical Plots of hSe vs. h. 
The five unaltered antibody types from chapter 2 (IgM, IgA, IgG, IgG (Fab’)2, and IgG Fab) 

were fit to equation 2.10 plus a correction for h.  The data were plotted at the three viscosity 
values from Table 5.1.  Lines represent IgM (red), IgA (pink), IgG (blue), IgG (Fab’)2 

(green), and IgG Fab (yellow). 

η

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

η
S
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 

 

 A study of this nature would be beneficial for many reasons.  Primarily, the data in 

Chapter 2 (Figure 2.5) is a bit noisier than one would hope.  The noise was evident due to 

day to day variability in the evanescent wave depth which was increased due to the amount 

of time it took to study nine antibody types and also due to evanescent wave depth at which 

the measurements were taken.  The data in Chapter 2 were taken approximately 85 nm from 

the membrane, and the size dependence of diffusion should not be as strong here as it would 

be closer to the membrane.  Although a definite trend was established in Chapter 2, a second 

study confirming the results would increase its impact.  Furthermore, the viscosity 

experiments could possibly require less time than the original experiments in Chapter 2 as 
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there are less sample points and as the researcher has grown more advanced in the use of 

TIR-FCS.  Consequently, this shorter time period should correlate to less variability in the 

evanescent wave depth.  

 Another experimental possibility that has manifested itself is to study the diffusion of 

ligands near model membranes at a different ionic strength.  The experiments conducted in 

Chapter 2 were performed at a high ionic strength (50 mM sodium phosphate with 150 mM 

NaCl).  It would be interesting to perform TIR-FCS on fluorescently labeled antibodies and 

record the rate of diffusion as a function of antibody radius in a solution of low ionic 

strength.  Originally, the set of experiments that laid the background for the work 

accomplished in Chapter 2 measured the diffusion of fluorescently labeled IgG near a planar 

model membrane.  These studies found that IgG diffusion was faster at low ionic strength 

and slower at high ionic strength (Starr and Thompson, 2002).  These experiments also found 

that diffusion showed no dependence upon solution pH negating the hypothesis that the 

decreased diffusion at high ionic strengths is due to electrostatic interactions.  It is also 

interesting to note that in bulk solution diffusion only demonstrates an ionic strength 

dependence at extremely high protein concentrations (~10 mg/mL).  This provides further 

indication that the decreased diffusion is a hydrodynamic effect impacted by the close 

proximity of the model membrane.  A next logical step would be to combine these two pieces 

of evidence.  Further information would be gained about the nature of this effect if the 

decreased diffusion near model membranes was probed at low ionic strength in a systematic 

controlled approach. 

 It is still anticipated that a depth profiling study be initiated using high refractive 

index substrates.  However, before this can be done TiO2 must be optimized for use with TIR 



 102 

technologies.  This requires a systematic study of the native luminescence exhibited by 

titanium dioxide and also the quenching effect demonstrated by the prism.  Other possible 

approaches were outlined in Chapter 4.  They include utilizing the TiO2 prism on a different 

laser with a higher excitation wavelength.  This could possibly help minimize the native 

luminescence.  The possibilities of a photochemical reaction causing artifacts in the 

autocorrelation function can be probed by conducting TIR-FCS in a similar manner to that 

done in chapter 4 while using a higher incident power.  Then a systematic comparison of the 

data at the two incident powers will reveal any photochemical effects.  Finally, once these 

issues have been addressed, TIR-FCS should be performed on TiO2 using different 

antibodies and at different incidence angles. 

 In Chapter 3 the homogeneity and continuity of a stacked bilayer developed by our 

lab was probed.  The fluorescence and atomic force microscopy experiments demonstrated 

that the technology is ready to be applied to various problems including multilayer 

applications, and possibly as a cushioning system.  Before each new application is attempted, 

it must be validated that the stacked bilayer can be applied.  For instance, for the stacked 

bilayer to be applied in multilayer applications it would be worthwhile to perform light 

scattering experiments on the system and compare them to similar measurements already 

accomplished on other multilayer construction techniques.  This would be interesting because 

it would indicate if the stacked bilayer system can elicit the same increase in signal seen in 

other multilayers.  Also, if the stacked bilayer is to be used to incorporate a transmembrane 

protein, many more studies must be conducted to see why there exists an inherent difficulty 

in inserting transmembrane proteins into bilayers while maintaining their lateral mobility.  

Finally, if the stacked bilayer is to be applied to a situation where surface roughness is an 
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issue and a more fluid bilayer is required, tests must be performed that validate that the 

stacked bilayer decreases surface roughness. 
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APPENDIX:  TIR-FCS AUTOCORRELATION FUNCTION 

FOR SPATIALLY DEPENDENT DIFFUSION 

 

As described previously
 
(Starr and Thompson, 2001) 
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where φ(z,z’,τ) denotes the concentration fluctuation autocorrelation function; i.e., 
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A(z,τ) is the concentration at position z and time τ, <A> is the average concentration, and δA(z,τ) = 

A(z,τ) - <A> is the concentration fluctuation at position z and time τ.  The partial differential equation 

describing the behavior of  φ(z,z’,τ), for spatially dependent diffusion, is
 
(Bevan and Prieve, 2000) 
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The boundary conditions are 
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and the initial condition is 
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where δ(z-z’) is a Dirac delta function. Using Eq. A5 in Eq. A1 shows that [Ge(τ)/Ge(0)]τ=0 = 1.  We 

calculate the initial slope as (see Eqs. 10, A1 and A3) 
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Evaluating the integral over the variable z by parts (twice) and using the condition that D(0) = 0 

implies that 
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By using Eq. A5, one finds that 
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Evaluating the second integral by parts yields 
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Eq. A9 with Eq. 6 implies Eq. 10. 
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