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ABSTRACT 
 

LAURA FARNAN: Estimation and Testing of Parameters under Constraints for 

Correlated Data 

(Under direction of Dr. Shyamal D. Peddada and Dr. Anastasia Ivanova) 

 

 

This dissertation work is motivated by problems encountered in the analysis of 

some toxicological and clinical trials data, where repeated measurements are made on 

each subject, and the investigator expects trends in mean response among dose groups 

and/or time points.  There are two components to this research.  The first component 

focuses on estimation of parameters subject to inequality constraints when the covariance 

matrix of the unrestricted estimator is non-diagonal.  In particular, statistical properties of 

several available constrained estimators are investigated theoretically and via simulations 

under different covariance structures.  The second component is developing a simple, yet 

statistically appropriate methodology for testing hypotheses in a linear mixed effects 

model with an inequality constraint in the alternative.  Since in many applications one 

cannot be certain about the normality of the data, a bootstrap based methodology using 

MINQUE-Williams’ type test is implemented for testing the above hypotheses.  The 

resulting methodology is illustrated by re-analyzing the blood mercury level data 

provided in Cao et al. (2011). 
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CHAPTER 1 

INTRODUCTION – LITERATURE REVIEW 

1.1. Motivation 

This dissertation work is motivated by problems encountered in the analysis of 

some toxicological data and clinical trials data, where repeated measurements are made 

on each subject, and the investigator expects trends in mean response among dose groups 

and/or time points.  For example, Cao et al., 2011 were interested whether succimer, a 

mercaptan compound known to reduce blood lead concentration in children, also reduces 

blood mercury concentration.  They used samples from a randomized placebo-controlled, 

double-blind trial clinical trial of succimer for lead poisoning in 780 children aged 12-33 

months, called the Treatment of Lead-exposed Children trial, or TLC (Rogan, 1998).  In 

TLC, 384 children were assigned to the placebo group and 396 to the succimer group.  

Up to three 26-day courses of succimer or placebo therapy were administered, depending 

on response to treatment in those, who were given succimer.  For children in each group, 

blood lead concentrations were obtained twice before randomization and then on days 7, 

28, and 42 after the beginning of each course of treatment.  After treatment was stopped, 

blood lead levels were measured every three to four months until 36 months after the 

initiation of treatment.  Cao et al. (2011) measured mercury in pre-treatment samples 

from 393 children given succimer and 374 given placebo.  They also measured mercury 
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in 1-week post-treatment blood samples (N = 768) and in a 20% random sample of the 

338 children who received the maximum 3 courses of treatment. 

In addition to the presence of variance components, the data can be potentially 

heteroscedastic since the variability across time may not necessarily be constant.  Very 

little literature exists on constrained inference in linear mixed models even under 

homoscedasticity, let alone under heteroscedasticity.  Silvapulle (1997) proposed a 

methodology for testing linear constraints regarding fixed effects parameters under some 

conditions on the design matrices.  The resulting test procedure does not depend upon the 

unknown variance components, thus ignores correlations within the subject over time.  

Thus the methodology developed in Silvapulle (1997) is restrictive and is not applicable 

to the present context.  As observed in Hoferkamp and Peddada (2002), the biggest 

challenge in linear mixed models with or without heteroscedasticity is the derivation of 

restricted maximum likelihood estimators (RMLE) for various parameters of the model.  

Consequently, the derivation of the likelihood ratio test is non-trivial and has not been 

derived in the literature so far. 

Examples such as the above one are rather common in applications, and often 

researchers tend to use the classical mixed effects analysis of variance followed by “post-

hoc” analyses to make pair-wise comparisons rather than testing for the desired order 

restriction.  There is clearly a demand for well developed theory and methodology for 

such problems.  

Another example that motivated this research is a recently published proof-of-

concept clinical trial (Ivanova, Liu, Snyder and Snavely, 2009).  The clinical trial was a 

three period crossover trial, where each subject received placebo, active control and a 
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dose of an investigational drug.  The objectives of this trial were estimation of the mean 

response (measured in minutes) under the assumption that mean responses are 

constrained by an umbrella order and comparing the best dose with placebo and control.  

Since each subject received two different doses (one of which was dose 0 mg, placebo), 

unrestricted estimates of mean response were correlated.  Instead of maximizing the 

likelihood under restrictions while taking into account correlation structure, the 

investigators obtained unrestricted estimates first, while taking into account correlation 

structure and then obtained parameter estimates using a simpler method that is based on a 

well known pool adjacent violators algorithm (PAVA) (Silvapulle and Sen, 2005). The 

PAVA is used when non-decreasing order is assumed and proceeds as follows.  If a pair 

of adjacent unrestricted estimates violates the hypothesized order, then, according to the 

algorithm, each such pair of estimates is replaced by their average.  The process is 

repeated until all estimates satisfy the hypothesized order.  Although PAVA is a very 

convenient methodology to implement, as described in the following sections, very little 

is known about theoretical properties of PAVA. 

Motivated by the above applications, in this dissertation research we will focus on 

two aspects of constrained inference; (a) estimation of parameters for correlated data 

subject to inequality constraints, and (b) testing hypothesis for correlated data under 

inequality constraints.  In section 1.2, we will review the literature on the estimation of 

parameters under constraints, when the underlying data are correlated, and in section 1.3 

we will review the literature on the testing problem.  
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1.2. Methods of estimation 

Let ( )1 2, ,.., pθ θ θ ′=θθθθ  denote an unknown parameter vector whose components 

satisfy inequality constraints.  Problem of estimating parameters under constraints arises 

for a variety of reasons.  In some applications, such as in dose-finding clinical trials, 

constrained estimation plays an important role for determining dose at which the next 

patient needs to be treated (Stylianou and Flournoy, 2002; Ivanova et al., 2009; Conaway, 

Dunbar and Peddada, 2004).  In other situations, such as in toxicology, researchers are 

often interested in testing for patterns of response.  Again, in all such situations one needs 

to perform constrained testing of parameters.  For example, toxicologists are usually 

interested in testing the hypothesis that the tumor incidence rate increases with the dose 

of a toxin, i.e. testing 0 1 2: pH θ θ θ= = =…  against 1 2:A pH θ θ θ≤ ≤ ≤… , known as 

simple order restriction (Peddada, Dinse and Kissling, 2007).  Similarly, when 

comparing multiple toxins with the control, toxicologists often test the hypothesis that the 

tumor incidence due to a toxin is larger than the tumor incidence due to control, i.e., test 

0 1 2: pH θ θ θ= = =…  against 1:A iH θ θ≤ , 2i ≥ , known as simple tree order.  In all such 

situations, the test statistic requires the estimation of parameters under the inequalities 

specified by the alternative hypothesis. 

A variety of inequality constraints have been discussed in the literature, such as 

the simple order 1 2 pθ θ θ≤ ≤ ≤… , the umbrella order 1 2 1i i pθ θ θ θ θ+≤ ≤ ≤ ≥ ≥ ≥… … , the 

single loop order, etc. (Stylianou and Flournoy, 2002; Ivanova et al., 2009; Conaway et 

al., 2004). 
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Often order restrictions can be expressed using graphs as shown in Figure 1.  In 

Chapter 3 we will focus on simple order restriction (a). 

Figure 1.  Examples of some order restrictions. 

 

There exists over 50 years of literature on the estimation and testing of hypothesis 

under inequality constraints on the parameters 1 2, ,.., pθ θ θ  in a variety of settings.  For a 

comprehensive review on estimation and testing of parameters under constraints, one 

may refer to Silvapulle and Sen (2005) and van Eeden (2006).  Much of the literature is 

based on the likelihood principle.  However, as reviewed in van Eeden (2006) and  

Silvapulle and Sen (2005), several alternative estimation and testing procedures have 

been proposed in the literature.  They are often computationally simpler to implement and 

are designed for the specific parametric model and specific order restrictions.  Among 

these methods, PAVA is one of the most popular methods for estimating parameters 

under simple order restriction. 

Suppose ( )1 2
ˆ ˆ ˆ ˆ, ,..,UMLE UMLE UMLE UMLE

pθ θ θ
′

=θθθθ  is an unrestricted estimator of θθθθ , where 

the components of ( )1 2
ˆ ˆ ˆ ˆ, ,..,UMLE UMLE UMLE UMLE

pθ θ θ
′

=θθθθ  are independently distributed, then 

the constrained estimator of θθθθ  is usually obtained by solving the minimization problem 
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 ( )
2

1

ˆmin ,
p

UMLE

i i i
C

i

w θ θ
∈

=

−∑
θθθθ

 (1) 

where C  is the set of known inequalities satisfied by the components of θθθθ , and iw  is 

some known weight, usually taken to be the reciprocal of the variance of ˆUMLE

iθ . 

If C  is a subset of the parameter space satisfying simple order constraints, then 

the above minimization problem (1) is often solved by using the well-known pool 

adjacent violator algorithm (PAVA) (cf. Silvapulle and Sen, 2005).  Analytically, the 

PAVA estimator for pii ,...,2,1 , =θ  under 1 2 ... pθ θ θ≤ ≤ ≤  is given by the following 

equivalent formulae (cf van Eeden, 2006): 

 ( )

1

ˆ

ˆ min max

t
UMLE

j j

j sPAVA p

i ti t p s i

j

j s

w

w

θ

θ =

≤ ≤ ≤ ≤

=

=
∑

∑
 (2) 

 
1

ˆ

                max  min

t
UMLE

j j

j s

ti t ps i

j

j s

w

w

θ
=

≤ ≤≤ ≤

=

=
∑

∑
,  

where 
( )
1

.
ˆj UMLE

j

w
Var θ

=   The superscript (p) in ( )ˆPAVA p

iθ  denotes the PAVA estimate of 

iθ  based on p groups. 

If the components of ˆUMLEθθθθ  are independently and normally distributed with 

known variances, then PAVA results in the restricted maximum likelihood estimator 

(RMLE) of θθθθ  under the inequality constraints.  PAVA provides a valid methodology for 

estimating parameters under constraints even when the data are not normally distributed.  

Thus it is “robust” to non-normality.  For correlated normally distributed data, the RMLE 
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is derived by solving the following constrained minimization problem, where Σ  is the 

(known) covariance matrix of ˆUMLEθθθθ :  

 ( ) ( )1

C

ˆ ˆmin  .UMLE UMLE−

∈

′
− −Σ

θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  (3) 

Diaz and González (1988) identified some sufficient conditions on Σ  for which 

PAVA and RMLE are the same.  For example, the sufficient conditions are satisfied 

when Σ  is an intra-class correlation matrix.  In general, however, they are not the same.  

If the unconstrained estimator is multivariate normally distributed, then the above 

minimization problem results in RMLE.  Again, we emphasize on the fact that PAVA, as 

well as the solution to (3), provides robust estimators to θθθθ  by not relying on the 

knowledge of the underlying likelihood function which may not always be known. 

Furthermore, the computation of the RMLE may not always be straightforward, 

especially when Σ  is unknown (Shi, Zheng and Guo, 2005; Hoferkamp and Peddada, 

2002).  Also, as observed by several authors (cf. Lee, 1988; Fernandez, Rueda and 

Salvador, 1999), the RMLE may not always perform well in terms of the mean squared 

error even when Σ  is known.  Hwang and Peddada (1994) argued that the RMLE is not 

only universally dominated by the UMLE under certain conditions, but any fixed width 

confidence interval centered at the RMLE may actually have a zero coverage probability 

as p increases.  They surprisingly note that the RMLE may fail even in the case of simple 

order when the underlying covariance matrix is non-diagonal. 

As an example of the RMLE failing in the case of some specific covariance 

matrix, let us discuss an example of star-shaped ordering presented by Shaked (1979).  

Consider a species consisting of k individuals each of which has a quantitative 

characteristic of interest X.  Denote the expected value of X for each offspring of the ith 
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generation by 1 0iµ + ≥ .  The expected value of X of the population in generation i is 

denoted by iθ .  Assume that k new individuals are produced in each generation, are 

added to the population, and that 1i iµ θ+ ≥  (i.e. X is improving on the average).  The 

expected value of X in generation i is  

 ( )1 2 ...i i iθ µ µ µ= + + +  and 1i iθ θ+ ≥  for all 1, , 1i p= −… .  (4) 

Figure 2.  Star-shaped ordering 

 

In this example ( ), ,
p

µ µ µ1 2= ,…µµµµ  satisfies star-shaped order restriction 

( ) ( )1 1 2 1 2
2 ... ...

p
pµ µ µ µ µ µ≤ + ≤ ≤ + + +  and ( ), ,

p
θ θ θ1 2= ,…θθθθ  satisfies the 

simple order restriction pθθθ ≤≤≤ ...21 .  Thus, if ~ ( , )NX Iµµµµ  and 

( )1
ˆ ... ,i iX X iθ = + +  we have ˆ ~ ( , )UMLE

N Σθ θθ θθ θθ θ , where the covariance matrix Σ  is non-

diagonal and is given by the equation (6) on page 14.  We performed a simulation study 

with ~ ( , )N IX µµµµ , where the components of µµµµ  follow star-shaped ordering.  Simulation 
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results indicate that RMLE is dominated by PAVA and, as the dimension p increases, it is 

also dominated by UMLE.  These results are consistent with findings of Hwang and 

Peddada (1994).  This example is revisited on page 13. 

PAVA is widely used even in situations where the unrestricted estimators are not 

independently distributed, due to its computational simplicity.  For instance, in clinical 

trials involving repeated measurements on the same subject, Ivanova et al. (2009) 

describe a proof-of-concept trial with crossover allocation, where PAVA was used to 

estimate the target dose at the end of the trial.  Other examples where PAVA was used for 

correlated data include multidimensional scaling (Robertson, Wright and Dykstra, 1988), 

non-parametric semi-variogram estimation (Kim and Boos, 2004), linear models with 

covariates (Bretz, 2006), general constrained smoothing (Mammen, Marron, Turlach and 

Wand, 2001), estimation of the baseline survivor function in a proportional hazard model 

(Young, Jewell and Samuels, 2008; Li and Tseng, 2008), analysis of functional magnetic 

resonance imaging (FMRI) data (Woolrich, Ripley, Brady and Smith, 2001), and ranking 

and selection (Huang, 1984). 

Shin et al. (1996) demonstrated that the solution to (3) is asymptotically equal to 

the solution of ( ) ( )1
C

ˆ ˆmin  UMLE UMLE

∈

′
− −Ω

θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ , where 1Ω  is a suitable diagonal matrix.  

Thus by choosing suitable weights, one may solve the simpler isotonic regression 

problem (1) using standard PAVA, which only requires a simple hand held calculator 

rather than solving the optimization problem (3). 

Although PAVA is widely used even when the components of ˆUMLEθθθθ  are not 

independent, there do not seem to exist any results in the literature on the performance of 

PAVA in such situations.  Also, not much is known regarding the relationship between 
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PAVA and solution to (3), with the exception of Diaz and González (1988) who identify 

sufficient conditions under which PAVA provides the solution to (3). 

In Chapter 2, PAVA will be evaluated in terms of mean squared error and 

universal domination criterion (Hwang, 1985) under the assumption, that the unrestricted 

estimator is multivariate normally distributed.  For a pair of univariate estimators 1̂η  and 

2η̂  of a parameter η , 1̂η  is said to universally dominate (also known as stochastically 

dominate) 2η̂  if for all η  and all 0>c , ( ) ( )1 2
ˆ ˆ| | | |P c P cη η η η− < ≥ − <  with a strict 

inequality for some η .  Equivalently, 1̂η  is said to universally dominate 2η̂  if 

( ) ( )1 2
ˆ ˆ| | | |E Eφ η η φ η η   − ≤ −     for all non-decreasing functions φ  with a strict 

inequality for some η .  We demonstrate, that under certain conditions the RMLE 

dominates the PAVA estimator in terms of the mean squared error when 2p = , and that 

under certain conditions the PAVA estimator dominates the UMLE.  In the case of 2>p  

we will consider a variety of covariance structures, that are commonly encountered in the 

theory of experimental designs, clinical trials, econometrics, etc.  Under certain 

conditions on the elements of the covariance matrix we demonstrate that the PAVA 

estimator universally dominates the UMLE.  Since for certain patterns of covariance 

matrices, the PAVA estimator and the RMLE are the same (Diaz and González, 1988), 

thus, in such situations we actually derive universal domination results for the RMLE.  

All proofs are provided in the Appendix A of this document. 
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1.2.1. Some special covariance structures 

Since it may not be possible to investigate the properties of the PAVA estimator 

for arbitrary covariance matrices, in this dissertation the universal domination of the 

PAVA estimator over the UMLE will be explored under some special covariance 

structures.  The covariance structures considered in this dissertation are described below. 

1.2.1.1. Supplemented balance designs (SBD) 

There exists an exhaustive amount of literature on experimental designs for 

comparing treatment groups against a control group.  For an efficient design it is well 

known that the number of replicates for the control group should be larger than the total 

number of treatment groups (Pearce, 1960).  The basic idea of SBD is to “supplement” 

(also referred to as “augment” or “reinforce”) a block design consisting of 1p −  

treatment groups by m replicates of the control group in each block.  Typically these 

designs are such, that every pair of treatments occurs with equal frequency in all blocks, 

and the frequency of co-occurrence of a treatment and the control is constant in all 

blocks.  Pearce (1960) termed these designs Supplemented Balance Designs (SBD). 

Properties of such designs have been well studied in the literature (Stufken, 1987; 

Hedayat, Jacroux and Majumdar, 1988; Gupta, 1989).  Consider a SBD where 

observations are taken in blocks of size ( )1m p n+ − , with m observations in a block 

taken on the control treatment, 1i = , and n observations taken on each of the treatments 

2, ,i p= … .  Observations are normally distributed with variance 
2σ .  While 

observations from different blocks are independently distributed, observations within 
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each block are assumed to be correlated with a correlation coefficient ρɶ .  Denote 

[ ]2 2

1 1 ( 1)m mσ σ ρ= + − ɶ , [ ]2 2

2 1 ( 1)n nσ σ ρ= + − ɶ  and  

[ ] [ ]1 ( 1) 1 ( 1)m m n n

ρ
ρ

ρ ρ
=

+ − + −

ɶ

ɶ ɶ
. 

Let ˆUMLEθθθθ  denote the UMLE of θθθθ .  The first component of θθθθ  is the mean of the 

control group, and the remaining 1p −  components are the means of the treatment 

groups.  Then the variance-covariance matrix of the vector ˆUMLEθθθθ  is  

 

2

1 1 2

2

1 2 2

σ ρσ σ

ρσ σ σ

′ 
=  
 

Σ
K

1

1
, (5) 

where 1 is a vector of 1s, 1 ( 2)pρ ≥ − −  and (1 )ρ ρ= − +K I J .  As usual, I  denotes the 

( ) ( )1 1p p− × −  identity matrix, and J  is a ( ) ( )1 1p p− × −  matrix of 1s (see Nigam et 

al., 1988, for more details).  

Note that the above covariance structure also arises naturally in other contexts as 

well, such as graphical models (Whittaker, 1990; Lauritzen, 1996), and lattice model 

(Andersson and Perlman, 1993; Dempster, 1972).  For a review on Σ  one may refer to 

Sun and Sun (2005), where the authors consider a more general form of this matrix. 

In this dissertation we focus on estimation of the control mean 1θ , the largest 

mean 
p

θ  and elementary contrasts of treatment means with the control mean 1i
θ θ− , 

2, 3, ,i p= …  under the constraint that 1 2 ... pθ θ θ≤ ≤ ≤ .  In section 2.2 (page 23) we 

present Theorem 2.2 demonstrating that in case of SBD covariance structure (5) and 

simple order restriction on the mean components, PAVA performs better than UMLE for 
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the control and the highest dose groups.  Supporting simulation results are presented in 

Figure 5 and Figure 6. 

We also argue that, since Theorem 2.2 also holds in the case of simple tree order 

restriction as well, PAVA may perform better than UMLE for the control group in this 

case.  Results of supporting simulation studies are presented in Figure 7. 

1.2.1.2. Designs where 1 is an eigenvector of the covariance matrix 

There are many designs used in clinical trials and in other applications where 

every principal sub-matrix of Σ  has (1,1,...,1) '=1  as an eigenvector.  Some common 

examples include: (a) the intra-class covariance matrix of the form α β= +Σ I J , where 

J  is a matrix of 1’s, (b) cross-over designs where patients in Group A receive treatments 

1, 3, 5, etc, patients in Group B receive treatments 2, 4, 6, etc; all observations have the 

same variance, and the correlation coefficient within subject is same in both groups, and 

(c) covariance matrix of elementary contrasts 

( )2 1 3 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,...,

UMLE UMLE UMLE UMLE UMLE UMLE

pθ θ θ θ θ θ
′

= − − −δδδδ  in a SBD. 

1.2.1.3. Covariance matrix in a star-shaped ordering 

Suppose ~ ( , )N IX µµµµ , then the components of µµµµ  are said to satisfy a star-shaped 

order if ( ) ( )1 1 2 1 22 ... ...
p

pµ µ µ µ µ µ≤ + ≤ ≤ + + + .  As discussed in Shaked (1979) and 

Dykstra and Robertson (1982), star-shaped order restriction arises naturally in many 

applications.  Performing a liner transformation ( )1
ˆ ... ,
i i

X X iθ = + +  we have 

ˆ ~ ( , )N Σθ θθ θθ θθ θ  with ( )1 ...i i iθ µ µ= + +  satisfying the simple order restriction 

pθθθ ≤≤≤ ...21 .  Note that the covariance matrix Σ  is given by  
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1 1 2 1 3 1

1 2 1 2 1 3 1

1 3 1 3 1 3 1

1 1 1 1

p

p

p

p p p p

 
 
 
 =
 
 
 
 

Σ

…

…

…

⋮ ⋮ ⋮ ⋱ ⋮

…

. (6) 

In section 2.2 (page 29), we present Theorem 2.3 demonstrating that in case of 

star-shaped order restriction on the mean components, PAVA may perform better than 

UMLE for the control group.  Supporting simulation results are presented in Figure 3. 

1.3. Testing of hypotheses 

Testing hypotheses under inequality constraints is a well researched area.  For a 

comprehensive account, one may refer to the recent book by Silvapulle and Sen (2005). 

In addition to the standard likelihood ratio test, a variety of alternative tests are available 

for comparing means of two or more independent normal populations when no covariates 

are present.  Suppose 2ˆ ~ ( , )UMLE N σ Iθ θθ θθ θθ θ  and suppose one is interested in testing the 

following hypotheses regarding the components of θθθθ , where the alternative hypothesis is 

the simple tree order 

 0 1 2 1:  versus  : ,  2
p A i

H H i pθ θ θ θ θ= = = ≤ ≤ ≤…   

(with at least one strict inequality).  In addition to the classical likelihood ratio test, a 

popular alternative test for testing the above hypotheses is the Dunnett’s test (Dunnett, 

1955), which is defined as follows.  For an elementary contrast 1,
i

θ θ−  the UMLE is 

1
ˆ ˆUMLE UMLE

i
θ θ− , 2i ≥ .  An estimator of the variance of this estimator is given by 

( ) 2

1
ˆ ˆˆ ˆ2

UMLE UMLE

i
Var θ θ σ− = , where 

2σ̂  is the usual mean residual sum of squares in the 
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linear model.  The Dunnett’s test statistic is given by 1
ˆ ˆ ˆmax 2 .UMLE UMLE

i
i

θ θ σ−   As 

noted by Marcus and Talpaz (1992), a potential weakness of this statistic is that its 

numerator does not use the inequality constraint specified by the alternative hypothesis.  

Accordingly, they modified the numerator of the statistic by replacing the UMLE by the 

RMLE of θθθθ  under the simple tree order constraint.  Although the resulting test improves 

the power of Dunnett’s test for certain choices of θθθθ , it is surprising that it does not 

improve the power uniformly for all θθθθ .  More recently Tang and Lin (1997) introduced 

an Approximate Likelihood Ratio (ALR) test that can be used for testing the above 

hypothesis.  A distinct advantage of ALR is that it is computationally simple to 

implement for any p and it performs very well in terms of power in comparison to both 

the classical likelihood ratio test as well as Dunnett’s test for certain choices of θθθθ .  The 

procedure of Marcus and Talpaz (1992) was inspired by the earlier papers of Williams 

(1971, 1972, 1977).  In his 1971 and 1972 papers, Williams discussed the problem of 

comparing means of the treatment groups with the control group in a dose response study 

where the population means are assumed to be non-decreasing with dose (i.e. 

1 2 ...
p

θ θ θ≤ ≤ ≤ ).  In Williams (1971) the test statistic was 
( )1

ˆ ˆ

ˆ 2

RMLE UMLE

p
θ θ

σ

−
, where as in 

Williams (1972) he used 
( )1

ˆ ˆ

ˆ 2

RMLE RMLE

p
θ θ

σ

−
, where RMLEθ̂  is the RMLE under the simple 

order constraint.  In his 1977 paper, Williams considered the problem of testing 

0 1 2: ...
p

H θ θ θ= = =  versus 1 2: ...
a p

H θ θ θ≤ ≤ ≤  (with at least one strict inequality) 

using the statistic 
( )1

ˆ ˆ

ˆ 2

RMLE RMLE

p
θ θ

σ

−
. 
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Nonparametric versions of Dunnett's test and Williams’ test were also developed 

in the literature using rank based methods by Dunn (1964) and Shirley (1977), 

respectively.  These methods are widely used in practice for their practical simplicity, and 

simulation studies reported in the literature suggest, that these methods compete very 

well against the likelihood ratio tests.   

It is reasonable to anticipate or assume a monotonic mean response in dose 

response studies conducted by toxicologists.  In such situations, the Williams’ test (1972, 

1977) tends to have a higher power than the Dunnett’s test when comparing the mean 

response at the highest dose with that of the control group.  However, there are instances 

where, perhaps due to toxicity at high doses, the mean response at the higher doses may 

change direction resulting in a down-turn (or up-turn) in the mean response.  In such 

situations, the Williams’ test (1972, 1977) loses power in comparison to the Dunnett’s 

test when comparing the mean of the highest dose with the control.  Typically, in the 

analysis of their 90 day pre-chronic rodent cancer studies, the National Toxicology 

Program (NTP) uses either Dunnett’s test or Williams’ test depending upon the data – 

which is unsatisfactory.  Since in practice it is not feasible to determine a priori whether 

the departure from monotonic response will take place or not, it is important to develop a 

method that would be robust to both possibilities.  In Peddada et al. (2006) such a robust 

procedure was developed using the point estimators developed in Hwang and Peddada 

(1994).  The resulting methodology seems to perform as well as the Williams’ test when 

the mean responses are monotonic in dose and performs as well as Dunnett’s test when 

the mean responses depart from monotonicity at the higher doses.  
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In many applications such as in epidemiology, researchers are often interested in 

testing for the equality of mean responses of various groups against the alternative 

hypothesis that the means are constrained by some inequality constraints, after adjusting 

for various covariates.  Often such problems can be formulated using fixed effects linear 

models and applying the likelihood ratio methodology as detailed in Silvapulle and Sen 

(2005).  Several variations to the likelihood ratio principle have been proposed in the 

literature.  As previously stated, the likelihood ratio principle provides a rich framework 

to conduct the analyses of such data.  In the presence of covariates (whether continuous 

or categorical), the unrestricted estimators of treatment means are not necessarily 

independently distributed.  In such a case, as noted in the previous sections and in Hwang 

and Peddada (1994) and others, the RMLE may not perform well as an estimator of the 

mean vector.  Consequently, one cannot assume that the likelihood ratio based methods 

would perform well in terms of power since they use RMLE.  For this reason, Betcher 

and Peddada (2009) developed a Dunnett-type test statistic that uses a modified RMLE as 

the point estimator of the mean vector.  Based on the simulation studies reported in 

Betcher and Peddada (2009), in the case of simple order, their new method provides 

better confidence intervals than those based on RMLE. 

Constrained inference in linear mixed effects models arises naturally in many 

applications, such as the ones described in this Chapter1.  Specifically, they arise 

naturally in the context of repeated measurement designs.  Silvapulle (1997) proposed a 

simple methodology for testing linear constraints regarding fixed effects parameters 

under some conditions on the design matrices.  The resulting test procedure does not 

seem to depend upon the unknown variance components. 
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In the case of general mixed effects models, a natural strategy for testing for 

inequalities among treatment effects after adjusting for covariates would be to develop a 

likelihood ratio test.  Such a strategy necessarily requires the derivation of RMLE under 

inequality constraints.  As noted in the literature, this is a very challenging problem.  

Hoferkamp and Peddada (2002) proposed an EM based algorithm for estimating 

regression parameters under constraints, when the error variances are heteroscedastic and 

potentially subject to inequality constraints.  Under some conditions on design matrices, 

they discussed the convergence of their algorithm.  Recently, Shi et al. (2005) addressed 

the problem in a slightly different context.  They considered the usual fixed effects model 

but allowed the error variance to be multivariate normally distributed with an unknown 

non-diagonal covariance matrix Σ .  Thus, unlike the linear mixed effects model where 

Σ  has a special structure, in Shi et al. (2005) it was not constrained by a particular 

structure. 

They developed EM algorithm to estimate regression parameters subject to 

inequality constraints in such a linear model and identified conditions under which the 

EM algorithm converges.  None of these papers discusses the problem of testing 

regression parameters under constraints in a linear mixed effects model.  They are all 

limited to the constrained estimation problem and none of these papers address the testing 

problem. 

Apart from the earlier attempts in some special cases, tests for linear mixed 

models under inequality constraints on the fixed effects parameters has not been well 

developed in the literature.  For example, Mukerjee (1988) noted that the usual tests for 

order restrictions on the means of independent normal populations can be extended to the 
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case when normal populations are correlated as in a repeated measurements design. In 

this paper, the author does not include any covariates.  Silvapulle (1997) generalized 

Mukerjee (1988) to some unbalanced designs with incomplete data.  He noted that 

within-subject correlations make it difficult to generalize some tests into repeated models.  

Earlier, Singh and Wright (1990) considered order restricted inference on fixed effects in 

a two-factor mixed model.  They presented an analogue to the usual F-test for 

homogeneity and obtained several closed-form results. 

There did not exist a systematic general methodology for the analysis of linear 

mixed effects models, when the regression parameters are subject to inequality 

constraints, until Davidov and Rosen (2011), who derived the likelihood ratio test for 

testing the hypotheses of the type 0 : 0  vs  : 0
A

H H= ≥η ηη ηη ηη η  when 2

Nσ=Σ I .  In Section 

3.2, the likelihood ratio test of Davidov and Rosen (2011) is reviewed, and in Section 3.3, 

the likelihood ratio test under heteroscedastic error structure 

1 2

2 2 2

1 2: : :
kn n k n

diag σ σ σ =  Σ I I I…  is derived.  Motivated by various limitations of these 

likelihood ratio tests, in Section 3.4 an EBLUP bootstrap methodology is described under 

homoscedastic as well as heteroscedastic error structures.  An alternative method 

analogous to Williams (1971) and based on Rao’s MINQUE theory (1970, 1971, 1972) is 

explored in Section 3.5.  In Chapter 4, extensive simulation studies are performed to 

evaluate the performance of various tests in terms of the Type I error and power.  Since 

very limited literature is available for this very important practical problem, this 

dissertation work extends the existing knowledge in this field substantially.  The 

proposed methodologies are illustrated in Chapter 5 using the recently published 

succimer data (Cao et al., 2011). 



CHAPTER 2 

CONSTRAINED ESTIMATION AND THE PERFORMANCE 

OF PAVA 

In this section, we will describe some of the theoretical and simulation results 

obtained so far in this dissertation with regards to the constrained estimation problem.  

Proofs of theorems are presented in Appendix A. 

We assume that UMLE of θθθθ , ˆUMLEθθθθ , is distributed according to a multivariate 

normal distribution with mean θθθθ  and covariance matrix Σ .  As often done, without loss 

of generality, unless stated otherwise, we assume the sample size of 1, because it can be 

absorbed in Σ .  In general, the order restricted estimators (whether RMLE or other 

constrained estimators) do not always perform well in all settings.  Their performance 

depends upon the type of inequality constraints as well as the covariance structure and the 

dimension p  (cf. Lee, 1988; Hwang and Peddada, 1994; Fernandez et al., 1999). 

To illustrate this point, we provide results of a small simulation study in Figure 3.  

In this study, we simulated data from a -variatep  normal distribution with mean vector 

0=θθθθ  and covariance matrix Σ  given by (6).  

Under the constraint 1 2 pθ θ θ≤ ≤ ≤… , we estimated the MSE of the UMLE, 

RMLE and PAVA estimator of 
1θ  (Figure 3 (a)).  We also simulated the coverage 

probabilities of fixed width confidence intervals centered at the UMLE, RMLE and 
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PAVA estimator, i.e. ( )1 1
ˆ 1.96UMLE

P θ θ− < , ( )1 1
ˆ 1.96RMLE

P θ θ− <  and 

( )1 1
ˆ 1.96PAVA

P θ θ− <  (Figure 3 (b)).  We chose the value of 1.96, because for this value 

of the critical constant, the confidence interval centered at UMLE has a coverage 

probability of 0.95.  All results are based on 100,000 simulation runs. 

Figure 3.  MSE and Coverage Probability of 1θ : UMLE (dotted line), RMLE (dashed 

line), PAVA estimator (solid line).  The data are simulated with 0=θθθθ  and Σ  given 

by (6); parameters are estimated under the constraint 1 2 pθ θ θ≤ ≤ ≤… . 

 

From the Figure 3, it is clear that for the covariance matrix considered in this 

example, the RMLE performs poorly both in terms of MSE as well as the coverage 

probability, as p  increases, while the PAVA estimator performs the best.  In view of the 

above illustration and the fact that PAVA is widely used in practice even for correlated 

data, we investigate its performance relative to UMLE in terms of universal domination 

criterion. 
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2.1. Performance of PAVA in the case of p = 2 

We begin by comparing the MSE of the UMLE, RMLE and PAVA estimator for 

2p =  to demonstrate that, even in this simple setting, the performance of PAVA can 

depend upon the underlying correlation structure.  We assume that ( )ˆ ,UMLE
N Σ∼θ θθ θθ θθ θ , 

1 2θ θ≤  and the elements of Σ  have no special structure with ( ) 2

1 1
ˆUMLE

Var θ σ= , 

( ) 2

2 2
ˆUMLE

Var θ σ= , and ( )1 2 1 2
ˆ ˆ,UMLE UMLE

Cov θ θ ρσ σ= .  

Theorem 2.1: 

(a)  If 0ρ ≤  and either 2 1 0θ θ≥ ≥  or 2 10 θ θ≥ ≥ , then 

     2 2

2 2 2 2
ˆ ˆ( ) ( )PAVA

E Eθ θ θ θ− ≤ − ; 

(b)  if 1 2θ θ≤  and 2 1 2 1( )( ) 0ρ σ σ ρσ σ− − ≥ , then  

     
2 2

2 2 2 2
ˆ ˆ( ) ( )RMLE PAVA

E Eθ θ θ θ− ≤ − . 

To understand the performance of PAVA in the case, when the sufficient 

conditions of Theorem 2.1 are not true, we simulated the data from bivariate normal 

distributions with mean vector ( )0,0 ′ , 1 1σ = , 0.9ρ =  and 2σ  ranging from 0.1 to 1.4.  

Under the constraint 1 2θ θ≤ , the estimated MSE of UMLE, RMLE and PAVA estimator 

are provided in Figure 4.  
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Figure 4. MSE of 2θ  as a function of 2σ : UMLE (dotted line), RMLE (dashed line), 

PAVA estimator (solid line).  The data are simulated with 1 2 0θ θ= = , 0.9ρ = , 1 1σ = ; 

parameters are estimated under the constraint 1 2θ θ≤ . Shaded area shows the values of 

2σ , where the conditions of Theorem 2.1 are satisfied, i.e., 2 1σ σ ρ≥ . 
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Theorem 2.1, together with Figure 4, suggests that the performance of PAVA 

depends upon the underlying correlation structure even in the case of 2p = .  We note 

from Figure 4, that RMLE performs better than PAVA for the choice of parameters 

considered in this simulation study.  In view of the above findings, we deduce that 

domination results may not exist for arbitrary covariance structures when 2p > .  

Therefore in section 2.2 we consider some covariance structures that arise naturally in 

many applications and investigate the performance of PAVA relative to UMLE for those 

structures. 

2.2. Performance of PAVA for p > 2 under various covariance structures 

2.2.1. SBD covariance structure 

It is well-known that in many situations the total MSE of the RMLE is smaller 

than that of the UMLE (cf. Fernandez et al., 1999).  Surprisingly, based on a small 

simulation study reported in Figure 5, we discover that the total MSE of the PAVA 
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estimator is not only smaller than the total MSE of the UMLE but it is almost as small as 

the total MSE of the RMLE, if not smaller.  We find this to be an interesting and a 

surprising result.  In this simulation experiment, ˆUMLEθθθθ , the UMLE of θθθθ , was generated 

according to a multivariate normal distribution with mean θθθθ  and the covariance matrix 

given by (5), 10p = , 1 1σ =  and 0.4ρ = .  However, since it is well-known that 

reduction in the total MSE does not necessarily imply a reduction in the MSE of 

individual coordinates (Lee, 1988; Fernandez et al., 1999), in Figure 6 we investigated 

the performance of the PAVA estimator of the control mean 1θ  and the largest mean pθ  

in terms of universal domination criterion. We identify sufficient conditions, under which 

PAVA performs better than UMLE.  Recall from Hwang (1985) that universal 

domination is equivalent to domination in terms of all monotonic functions of quadratic 

loss and hence implies domination in terms of MSE.  Analytical comparisons between 

PAVA and RMLE appear to be intractable and hence are not discussed here.  

Theorem 2.2: Suppose ( )ˆ ,UMLE
N Σ∼θ θθ θθ θθ θ , where Σ  is of the form (5) and suppose 

1 2 ... pθ θ θ≤ ≤ ≤ . 

 (a) If either 
2 2

1 2

1 2

( 1 / )
0,

( 1)( 2 2 / )

p

p p

σ σ
ρ

σ σ

− +
− < <

− − +
 1 2σ σ<  or 0,ρ >  1 2σ σ> , then for 

       all 0c > , ( ) ( )( )

1 1 1 1
ˆ ˆPAVA p UMLE

P c P cθ θ θ θ− < ≥ − < .  

(b)  If either 
2 2

1 2
1 2

1 2

( 1 / )
0,   

( 1)( 2 2 / )

p

p p

σ σ
ρ σ σ

σ σ

− +
− < < >

− − +
 or 1

2

0 1
σ

ρ
σ

< < < , then for all 

      0c > , ( ) ( )( )ˆ ˆPAVA p UMLE

p p p p
P c P cθ θ θ θ− < ≥ − < .  
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Figure 5.  Total MSE as a function of 2σ : UMLE (dotted line), RMLE (dashed line), 

PAVA estimator (solid line).  The data are simulated with 10p = , 0iθ = , 1, , ,i p= …  Σ  

given by (5), 0.4ρ = , 1 1σ = ; parameters are estimated under the constraint 

1 2 pθ θ θ≤ ≤ ≤… .  
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We performed extensive simulation studies to compare UMLE, RMLE and 

PAVA including the situations where the sufficient conditions of the above theorem are 

not satisfied.  A small sample of the results is provided in Figure 6.  As expected, PAVA 

performs well in terms of MSE as well as the coverage probability, when the sufficient 

conditions of Theorem 2.2 are satisfied.  However, its performance can be rather poor 

when the sufficient conditions are not satisfied.  It is important to recognize that the 

sufficient conditions provided in parts (a) and (b) of Theorem 2.2 are disjoint.  Together 

with the fact that simulation results suggest these conditions may even be necessary, we 

conclude that universal domination results for PAVA of iθ , 1 i p< <  over the 

corresponding UMLE may not exist. 
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Figure 6.  MSE and Coverage Probability of 1θ  and pθ  as a function of 2σ : UMLE 

(dotted line), RMLE (dashed line), PAVA estimator (solid line).  The data are simulated 

with 5p = , 0iθ = , 1, ,i p= … , Σ  given by (5), 0.9ρ = , 1 1σ = ; parameters are 

estimated under the constraint 1 2 pθ θ θ≤ ≤ ≤… . Shaded area shows the values of 2σ , 

where the conditions of Theorem 2.2 are satisfied, i.e. 2 1σ σ<  for (a), (b) and 

1 2 1σ σ σ ρ< <  for (c), (d). 
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Note that the proof of Theorem 2.2 does not use any information regarding the 

inequalities among pθθθ ,...,, 32  but only uses the information that 1 iθ θ≤ , 2,3, ,i p= … .  

Therefore, under a simple tree order constraint, we obtain the following corollary for the 

following PAVA based estimator derived from (2): 
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1( )

1
1

1

ˆ

ˆ min .

t
UMLE

j j

jPAVA p

t
t p

j

j

w

w

θ

θ =

≤ ≤

=

=
∑

∑
  

Corollary 1: Suppose ( )ˆ ,UMLE
N Σ∼θ θθ θθ θθ θ , where Σ  is of the form (5) and suppose 1 iθ θ≤ , 

2i ≥ .  If either 
2 2

1 2

1 2

( 1 / )
0,

( 1)( 2 2 / )

p

p p

σ σ
ρ

σ σ

− +
− < <

− − +
 1 2σ σ<  or 0,ρ >  1 2  σ σ> , then 

for all 0c > , ( ) ( )( )

1 1 1 1
ˆ ˆPAVA p UMLE

P c P cθ θ θ θ− < ≥ − < .  

Again, as above, the simulation results provided in Figure 7 suggest that PAVA 

performs very well relative to both UMLE and RMLE when the sufficient conditions of 

Corollary 1 are satisfied (shaded area).  Otherwise, its performance can be very poor 

(unshaded area). 

Figure 7.  MSE and Coverage Probability of 1θ  as a function of 2σ : UMLE (dotted line), 

RMLE (dashed line), PAVA estimator (solid line).  The data are simulated with 5p = , 

0
i

θ = , 1, ,i p= … , Σ  given by (5), 0.9ρ = , 1 1σ = ; parameters are estimated under the 

constraint 1 iθ θ≤ , 2i ≥ . Shaded area shows the values of 2σ  where the conditions of 

Corollary 1 are satisfied, i.e. 2 1σ σ< . 
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2.2.2. Covariance matrices where 1 is an eigenvector 

Recall the design described in section 1.2 on page 13, where every principal sub-

matrix of Σ  has (1,1,...,1) '=1  as an eigenvector.  Following arguments similar to those 

in the proof of Theorem 2.2 or by appealing to Hwang and Peddada (1994), we deduce 

the following important corollary. Note that, different from Theorem 2.2, the following 

result applies to all coordinates of the mean vector .θθθθ  

Corollary 2: Suppose ( )ˆ ,UMLE
N Σ∼θ θθ θθ θθ θ .  If every principal sub-matrix of Σ  has 

(1,1,...,1) '1 =  as an eigenvector, and suppose that pθθθ ≤≤≤ ...21 , then for all 

1,2,...,i p=  and 0>c , ( ) ( )( )ˆ ˆPAVA p UMLE

i i i iP c P cθ θ θ θ− < ≥ − < . 

In the case of intra-class covariance structure, from Theorem 2.2 of Diaz and 

González (1988), we deduce that RMLE and PAVA are identical. Hence in that case the 

above corollary applies to RMLE as well.  

2.2.3. Star-shaped order covariance structure 

Recall the star-shaped order restriction (defined in section 1.2.1 on page 13) with 

covariance matrix Σ  given by (6).  Appealing to Theorem 2.2 in Diaz and González 

(1988) we note that PAVA and RMLE of µ  are the same, but PAVA and RMLE of θ  

are not the same. As observed in the simulation study reported in Figure 3, RMLE of 1θ  

can perform very poorly as p  increases, but PAVA performs very well for all p .  In the 

following theorem we demonstrate this fact analytically. 
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Theorem 2.3: Suppose ( )ˆ ,UMLE
N Σ∼θ θθ θθ θθ θ , where ( )1 2, ,..., pθ θ θ=θθθθ , pθθθ ≤≤≤ ...21 , 

and Σ  is given by (6).  For all 0c > , ( ) ( )( )

1 1 1 1
ˆ ˆPAVA p UMLE

P c P cθ θ θ θ− < ≥ − < . 

2.3. Conclusions and recommendations 

Often in clinical trials repeated measurements are made on each subject, the 

investigator expects trends in the mean response among dose groups and/or time points, 

and the problem of interest is to estimate and test parameters under such constraints on 

the mean responses.  For example, Ivanova et al. (2009) describe such a Phase II trial, 

where each patient received control and two doses of the drug.  The Pool Adjacent 

Violators Algorithm (PAVA) was designed for estimating parameters under the simple 

order restriction (i.e. increasing or decreasing order among the mean responses), when 

unrestricted estimators of parameters are independent.  However, PAVA is also often 

used even when unrestricted estimators are correlated.  Based on the results obtained in 

this research, it appears that simple PAVA based algorithms may be reasonable even if 

the unrestricted estimators are correlated. 

For example, in a Supplemented Balance Design (SBD), where a researcher is 

interested in estimating elementary contrasts of each dose group with the control group 

(under the constraint that the mean responses are monotonic in dose), we found that the 

confidence interval centered at PAVA estimate of an elementary contrast between the 

dose group and the control group will have larger coverage probability than the 

confidence interval centered at the UMLE of the contrast.  Thus, PAVA is recommended 

over UMLE for estimating all elementary contrasts of dose groups with the control group.  

If variances of the control group and treatment group under a SBD are equal, then the 
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covariance matrix of the sample mean vector has an intra-class covariance structure and 

satisfies the conditions of Corollary 2; thus, PAVA is recommended over UMLE for 

estimating all treatment means under the simple order constraint, and also, all elementary 

contrasts when they are subject to the simple order constraint.  We also note that for 

estimating the control group mean (under either simple order or simple tree order 

restriction on treatment means), the PAVA performs better than the UMLE if: 1) the 

variance in the control group is smaller than the variance in the treatment group and the 

correlation between groups is negative or 2) the variance in the control group is larger 

than the variance in the treatment group, and the correlation between groups is positive. 

There are situations in clinical trials, when a large number of treatments need to 

be compared, and not all treatments can be present in each block.  In such case, a 

balanced incomplete block design (BIBD) may be considered.  For illustration, consider a 

dose-response study consisting of control, low-dose and high-dose groups of a drug, and 

litters of mice are taken to be blocks.  A BIBD can be constructed as follows.  Suppose 

each block (litter) consists of two pups.  The pups in the first block are randomly 

assigned to either control or low-dose group; pups in the second block are randomly 

assigned to either control or high-dose group; and the pups in the third block are 

randomly assigned to the low or high-dose group.  The resulting design is a BIBD. 

A feature of a BIBD is that all blocks have the same number of treatments, and all 

treatments, as well as all pairs of treatments, are observed the same number of times in 

the experiment.  Furthermore, the correlation coefficient between sample means is 

constant for any pair of treatments within a block and is zero across blocks.  As a 

consequence, the covariance matrix of the sample mean vector of all treatment means in a 
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BIBD has an intra-class covariance structure.  Thus, the covariance matrix satisfies the 

conditions of Corollary 2.  Note that the randomized complete block design (RCBD) can 

be thought as a special case of BIBD.  Thus, Corollary 2 also applies to an RCBD.  Thus, 

in these cases PAVA is recommended over UMLE for estimating all treatment means 

under the simple order constraint, and more importantly, all elementary contrasts when 

they are subject to simple order constraint.  Again, a confidence interval centered at 

PAVA of any such contrast will have larger coverage probability than the confidence 

interval centered at the UMLE of the contrast. 

Analytical comparisons between PAVA and RMLE appeared to be intractable and 

hence were not discussed in Chapter 2.  However, performed simulations indicate that the 

RMLE might perform better or worse than PAVA, depending on the covariance matrix of 

the UMLE.  It is known that in many situations the total mean squared error (MSE) of the 

RMLE is smaller than that of the UMLE.  Surprisingly, based on a small simulation study 

under SBD, when the variance in the control group is smaller than the variance in the 

treatment group, and the correlation between groups is positive, we discover that the total 

MSE of the PAVA estimator is not only smaller than the total MSE of the UMLE, but it 

is also smaller than the total MSE of the RMLE.  Note, that if variances of the control 

group and treatment group under a SBD are equal, RMLE and PAVA estimates of 

treatment means under the simple order constraint are the same.  Star-shaped order is a 

known example where the RMLE does not perform well.  We have shown that PAVA is 

superior to UMLE as well as RMLE for estimating the control mean in the case, where 

treatment means are under a star-shaped order constraint. 
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In general, it may not be possible to recommend an estimation procedure for an 

arbitrary experimental design. 

 



CHAPTER 3 

CONSTRAINED TESTING IN A LINEAR MIXED EFFECTS 

MODEL 

Motivated by the data of Cao et al. (2011) discussed in Chapter 1, the focus of this 

chapter is to develop statistical methodology for performing constrained inference on the 

location parameters of a linear mixed effects model, where covariance structure is of the 

form ( )Cov ′= +UTU ΣY , where T  and Σ  are diagonal matrices.  Although such a 

structure is reasonable in the motivating example and is often used when analyzing 

repeated measures data (cf. Khattree and Naik, 1999), in general, however, depending 

upon the application, the covariance structures may be more complicated or unspecified.  

For example, in a random slopes model for repeated measurement designs, it is common 

to have the structure of T  to be of the form = ⊗T I Ω , where Ω  is a non-diagonal 

matrix.  A common choice for Ω  is the auto-correlation structure.  There are also 

instances where the structure of the covariance matrix ( )Cov Y  may not be pre-specified. 

In Sections 3.2 and 3.3  we describe the likelihood ratio tests (LRT), developed in 

Davidov and Rosen (2011) for constrained inference in linear models with covariance 

structure of the form ( )Cov ′= +UTU ΣY , where T  and Σ are diagonal matrices.  

However, as will be seen, the LRT depends upon unknown parameters T  and Σ  and 

hence cannot be used directly in most biostatistical and other applications.  Consequently, 
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in Sections 3.4 and 3.5 of this dissertation, a bootstrap methodology is introduced, which 

can be used for most problems commonly encountered in biostatistics and public health.  

Some concluding remarks are made in Section 3.6, where we summarize the limitations 

of the proposed methodology and suggest simple modifications for some alternate 

covariance structures.  As noted in Chapter 1, very limited literature exists on the analysis 

of linear mixed effects models, when the regression parameters are subject to inequality 

constraints.  Thus this dissertation research makes an important contribution to the 

literature for some special covariance structures.  The proofs of theorems are provided in 

Appendix B. 

3.1. The model and notations 

Let  

 1 1 2 2= + + +X X UY θ θ ξ εθ θ ξ εθ θ ξ εθ θ ξ ε  (7) 

denote a linear mixed effects models where 1θθθθ  is the vector of treatment effects of the 

order 1 1p × , 1X  is a design matrix of the order 1N p×  consisting of 0s and 1s, 2X  is a 

known matrix of covariates of the order 2N p×  with corresponding (unknown) 

regression parameter vector 2θθθθ  of the order 2 1p × , and U  is a N c×  matrix of known 

design constants.  For convenience, we denote ( )1 2:=X X X  and ( )1 2: : ... : q=U U U U , 

where iU  is of order iN c× , with 
1

q

i

i

c c
=

=∑ , and ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  of order 1p × , where 

1 2p p p= + .  The observation vector Y  is of the order 1N ×  and the unobservable 

random vectors ( )1 2: : ... :
q

′′ ′ ′=ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  and εεεε  are independently and normally distributed 
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with mean 0  and covariance matrices Τ  and Σ , respectively, with 

( )qCov 1 2
′ ′ ′= : : :Τ …ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ ( )

1

2 2

1 : :
qc q cdiag τ τ= I I… .  Each iξξξξ , 1,2,..., ,qi c=  is a random 

vector of order 1.ic ×  Motivated by applications, two different structures of Σ  are 

considered in Chapter 3, namely, homoscedastic error structure, where 2

Nσ=Σ I , and 

heteroscedastic error structure, where 
1 2

2 2 2

1 2: : :
kn n k n

diag σ σ σ =  Σ I I I…  and 

2 2 2

1 2, ,..., kσ σ σ  are unknown variances with 
1

k

i

i

n N
=

=∑ . 

Let Α  denote a r p×  matrix of known constants, such that = Aη θη θη θη θ  is an 1r ×  

estimable linear function (i.e. ( ) ( )C C⊆A X , where C  denotes the column space of a 

matrix).  The problem of the interest is to test hypotheses of the form: 

 0 : 0  versus  : 0AH H= ≥η ηη ηη ηη η , (8) 

where the inequalities are component-wise, with at least one strict inequality.  For 

example, if one is interested in testing a simple order among the components of 1θθθθ  then 

[ ]1 :=A A 0  where   

1

1 1 0 0 0

0 1 1 0 0

0 0 0 1 1

− 
 

− 
 =
 
 
 − 

A

…

…

⋮

⋮

…

 

and 0  is the null matrix of suitable order. 
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3.2. The likelihood ratio test under homoscedastic errors 

We begin this section by deriving the RMLE of θθθθ , Τ  and Σ  under the constraint 

0≥ηηηη .  Let ( ), ,L T Σθθθθ  denote the log-likelihood, then derivation of RMLE of θθθθ , Τ  and 

Σ  entails the following maximization problem: 

 ( )
0

max , ,L
≥

T Σ
ηηηη

θθθθ . (9) 

Davidov and Rosen (2011) addressed this problem by providing three 

asymptotically equivalent algorithms.  Among the three algorithms, their Algorithm 3.3 is 

an E-M type algorithm.  This algorithm is similar to a previously published algorithm of 

Hoferkamp and Peddada (2002), who discussed the problem of estimating θθθθ , Τ  and Σ  

under the heteroscedastic variance structure with variances 2 2 2

1 2, , , kσ σ σ…  subject to 

inequality constraints.  The methodology in Hoferkamp and Peddada (2002) was 

motivated by situations, where same experiments are repeated in multiple labs with 

unequal precision in observed data.  Hoferkamp and Peddada (2002) did not impose 

constraints on the regression vector θθθθ .  

In the optimization problem (9), the basic idea underlying the E-M type algorithm 

is to perform the following constrained optimization 

 ( ) ( )1

0

ˆ ˆˆmin ,
i i

i

−

≥

′
− −

A
V

θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  (10) 

where ˆ iθθθθ  is the estimate of θθθθ  at the ith iterate of the algorithm and ˆ
iV  is the 

corresponding covariance matrix of θ̂θθθ , at the end of the M-step during the ith iterate of 

the algorithm.  Observe that, asymptotically, the constrained optimization problem (9) is 

equivalent to the constrained optimization problem in Algorithm 3.3 in Davidov and 
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Rosen (2011).  The main difference between the two is in the objective function (10).  

Davidov and Rosen (2011) minimize  

 -1( )

1 1 2 2 1 1 2 2
0

ˆ ˆ ˆmin( - ) ' ( - ),
i i i i i

≥
− −

A
X X Ψ X XY Y

θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  (11) 

where ( )ˆ i
Ψ  is the estimated covariance matrix of Y  at the ith iterate of the algorithm.  

We note a minor typographical error in Algorithm 3.3, either the quadratic form should 

have a negative sign in front of the summation or the authors should state it as a 

minimization problem rather than maximization.  As proved in Davidov and Rosen 

(2011), the constrained estimators derived from this algorithm are consistent.  

Below we describe the algorithm for solving problem (9). 

Algorithm A:  

Let ( )

1
ˆ mθθθθ , ( )

2
ˆ mθθθθ , 2( )ˆ mττττ , 2( )ˆ mσ  denote the rth iterate estimates of 1θθθθ , 2θθθθ , 2ττττ , and 2σ  

respectively. 

Step 0.  Let [ ]1 2:=X X X , ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ .  Compute ( )
1(0) −

′ ′= X X X Yθθθθ , the 

ordinary least squares estimator for θθθθ .  Compute 
2

2(0) (0)1
 

n
σ = − XY θθθθ .  For 2(0)τ̂τττ  we 

use MINQUE (Rao, 1972). 

Step 1.  Set m = m + 1.  Fix 1θθθθ , 2θθθθ , and 2ττττ  at ( 1)

1
ˆ m−θθθθ , ( 1)

2
ˆ m−θθθθ , 2( 1)ˆ m−ττττ  respectively, 

and iteratively estimate 2σ : 

( ) ( )( ) ( )

( )

2( ) 2( 1)

1 1
4( 1) ( 1) ( 1)

1 1 2 2 1 1 2 2

1
( 1)

ˆ

1 ˆ ˆˆ

ˆ ,

r r

r r r

r

tr
n

σ σ

σ

−

− −
− − −

−
−

=

 ′+ − − − −

−


Y YΨ X X X X Ψ

Ψ

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ   
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where ( 1) ( 1)ˆ ˆ ˆr r− − ′= +Ψ UT U Σ , ( )
1

( 1) ( 1)2 ( 1)2

1
ˆ : :

q

r r r

c q cdiag τ τ− − −=Τ I I… , 2(0) 2( 1)ˆ mσ σ −= , and 

Aii indicates the (i, i)th block of A. 

 Step 2.  Fix 2σ  at 2( )mσ  and iteratively estimate 1θθθθ , 2θθθθ , and 2ττττ  using the 

following estimation equations: 

( ) ( ) ( )
11

( ) ( 1) 1 ( 1) ( 1) ( 1)

1 1 1 1 1 1 1 2 2
ˆ ˆ ˆ ˆ ˆˆr r r r r

−−
− − − − −′ ′= + − −X Σ X X Ψ X XYθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,   

( ) ( ) ( )
11

( ) ( 1) 1 ( 1) ( 1) ( 1)

2 2 2 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆˆr r r r r

−−
− − − − −′ ′= + − −X Σ X X Ψ X XYθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,   

( ) ( ){
( ) ( ) ( ) }

4 1
2( ) 2 ( 1) ( 1) ( 1)

1 1 2 2

1 1
( 1) ( 1) ( 1) ( 1)

1 1 2 2

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ,   1, , ,

r r r ri
i i i

i

r r r r

i

tr
c

i q

τ
τ τ

−
− − −

− −
− − − −

′= + − − ×


′ × − − − =


U Ψ X X

X X Ψ Ψ U

Y

Y …

θ θθ θθ θθ θ

θ θθ θθ θθ θ

  

where (0) ( 1)ˆ m−=θ θθ θθ θθ θ , 2(0) 2( 1)ˆ m−=τ ττ ττ ττ τ , ( 1) ( 1)ˆ ˆ ˆr r− − ′= +Ψ UT U Σ , and 

( )
1

( 1) ( 1)2 ( 1)2

1
ˆ : :

q

r r r

c q cdiag τ τ− − −=Τ I I… .  Then -1( )

1 1 2 2 1 1 2 2
0

ˆ ˆ ˆmin( - ) ' ( - )
i i i i i

≥
− −

A
X X Ψ X XY Y

θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  

is used to obtain 
( )

1
ˆ rθθθθ . 

Steps 1 and 2 are iterated until convergence.  Note that Algorithm A is equivalent 

to Algorithm B on page 39 with k = 1. 

Let ( ) �
1 2

ˆ ˆ ˆ, , 
′

′ ′= Tθ θ θθ θ θθ θ θθ θ θ  and �Σ  denote the constrained estimators of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , T  

and Σ  under the alternative hypothesis, and let ( )0 0 0 0

1 2, ,  
′

′ ′= Tɶ ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , and 
0
Σɶ  denote the 

corresponding estimators under the null hypothesis (Searle, Casella and McCulloch, 

1992).  Then for an estimable linear function Aθθθθ  the likelihood ratio test for testing 

0 : 0H =Aθθθθ  versus : 0
A

H ≥Aθθθθ  is ( ) ( )( )0 0 0ˆ ˆ ˆ 2 , ,  - , ,lrtS L L= T Σ T Σɶ ɶ ɶθ θθ θθ θθ θ  (Davidov and 
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Rosen, 2011). Davidov and Rosen (2011) deduced that asymptotically under the null 

hypothesis,  

 ( ) 2

0

 lim
r

lrt i i
n

i

P S c w χ
→∞

=

> =∑ .   

Unfortunately, in the above expression, the weights 
i

w  depend upon the unknown 

variance components T  and 2σ .  Furthermore, even if the variance components are 

assumed to be known, the weights can be computed exactly only for the case 3r ≤ , 

otherwise they are computed approximately.  Lastly, the simulation studies conducted in 

Davidov and Rosen (2011) suggest that unless the sample sizes are extremely large, the 

above likelihood ratio test can potentially be liberal, that is the true Type I error rates 

exceed the nominal levels even when a conservative upper bound for 2

0

r

i i

i

w χ
=

∑  was used 

when rejecting the null hypothesis. 

3.3. The likelihood ratio test under heteroscedastic errors 

To handle heteroscedasticity, the following algorithm is derived along the lines of 

Hoferkamp and Peddada (2002). 

Algorithm B: Let ( )

1
ˆ mθθθθ , ( )

2
ˆ mθθθθ , 2( )ˆ mττττ , 2( )ˆ mσσσσ  denote the rth iterate estimates of 1θθθθ , 2θθθθ , 2ττττ , 

and 2σσσσ  respectively. 

Step 0.  Let [ ]1 2:=X X X , ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ .  Compute ( )
1(0) −

′ ′= X X X Yθθθθ , the 

ordinary least squares estimator for θθθθ .  Compute 
2

2(0) (0)1
 for 1, , .

i i i

i

i k
n

σ = − =XY …θθθθ  

For 2(0)

î
τ  we use MINQUE (Rao, 1972). 
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Step 1.  Set m = m + 1.  Fix 1θθθθ , 2θθθθ , and 2ττττ  at ( 1)

1
ˆ m−θθθθ , ( 1)

2
ˆ m−θθθθ , 2( 1)ˆ m−ττττ  respectively, 

and iteratively estimate 2σσσσ : 

( ) ( )( ) ( )

( )

2( ) 2( 1)

1 1
4( 1) ( 1) ( 1)

1 1 2 2 1 1 2 2

1
( 1)

ˆ

1 ˆ ˆˆ

ˆ ,  1, , ,

r r

i i

r r r

i

i

r

ii

tr
n

i k

σ σ

σ

−

− −
− − −

−
−

=

 ′+ − − − −

− =


Ψ X X X X Ψ

Ψ

Y Y

…

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ   (12) 

where ( 1) ( 1)ˆ ˆ ˆr r− − ′= +Ψ UT U Σ , ( )
1

( 1) ( 1)2 ( 1)2

1
ˆ : :

q

r r r

c q cdiag τ τ− − −=Τ I I… , 2(0) 2( 1)ˆ m−=σ σσ σσ σσ σ , and 

Aii indicates the (i, i)th block of A. 

 Step 2.  Fix 2σσσσ  at 2( )mσσσσ  and iteratively estimate 1θθθθ , 2θθθθ , and 2ττττ  using the 

following estimation equations: 

( ) ( ) ( )
11

( ) ( 1) 1 ( 1) ( 1) ( 1)

1 1 1 1 1 1 1 2 2
ˆ ˆ ˆ ˆ ˆˆr r r r r

−−
− − − − −′ ′= + − −X Σ X X Ψ X XYθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,  (13) 

( ) ( ) ( )
11

( ) ( 1) 1 ( 1) ( 1) ( 1)

2 2 2 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆˆr r r r r

−−
− − − − −′ ′= + − −X Σ X X Ψ X XYθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,  (14) 

( ) ( ){
( ) ( ) ( ) }

4 1
2( ) 2 ( 1) ( 1) ( 1)

1 1 2 2

1 1
( 1) ( 1) ( 1) ( 1)

1 1 2 2

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ,   1, , ,

r r r ri
i i i

i

r r r r

i

tr
c

i q

τ
τ τ

−
− − −

− −
− − − −

′= + − − ×


′ × − − − =


U Ψ X X

X X Ψ Ψ U

Y

Y …

θ θθ θθ θθ θ

θ θθ θθ θθ θ

 (15) 

where (0) ( 1)ˆ m−=θ θθ θθ θθ θ , 2(0) 2( 1)ˆ m−=τ ττ ττ ττ τ , ( 1) ( 1)ˆ ˆ ˆr r− − ′= +Ψ UT U Σ , and 

( )
1

( 1) ( 1)2 ( 1)2

1
ˆ : :

q

r r r

c q cdiag τ τ− − −=Τ I I… .  Then -1( )

1 1 2 2 1 1 2 2
0

ˆ ˆ ˆmin( - ) ' ( - )
i i i i i

≥
− −

A
X X Ψ X XY Y

θθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  

is used to obtain 
( )

1
ˆ rθθθθ . 

Steps 1 and 2 are iterated until convergence. 

The following theorems derive the estimation equations for the EM algorithm for 

the heteroscedastic case. 
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Theorem 3.1. The EM estimates, at the rth iteration, for 2σσσσ , when 1 2,θ θθ θθ θθ θ  and 2ττττ  are 

known, are given by (12). 

Theorem 3.2. The EM estimates, at the rth iteration, for 1 2,θ θθ θθ θθ θ , and 2ττττ , when 2σσσσ  is 

known, are given by (13), (14), and (15) respectively. 

Using the general theory established in Nettleton (1999), we note that the above 

constrained estimator ( )1 2
ˆ ˆ ˆ,

′
′ ′=θ θ θθ θ θθ θ θθ θ θ  is consistent.  As before, let the estimators under the 

null hypothesis be denoted by ( )0 0 0 0

1 2, ,  
′

′ ′= Tɶ ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , and 
0
Σɶ , then the likelihood ratio test 

for testing the hypothesis (8) is given by ( ) ( )( )0 0 0ˆ ˆ ˆ 2 , ,  - , ,lrtS L L= T Σ T Σɶ ɶ ɶθ θθ θθ θθ θ .  Following 

the arguments in Davidov and Rosen (2011), asymptotically under the null hypothesis,  

 ( ) 2

0

 lim
r

lrt i i
n

i

P S c w χ
→∞

=

> =∑   

As in the case of homoscedastic errors, the weights 
i

w  in the above limiting 

distribution involve unknown variance components 
2 2 2

1 2, ,..., qτ τ τ  and 2 2 2

1 2, ,..., kσ σ σ .  

Hence, as stated in the previous section, the likelihood ratio test cannot be used in 

practice.  This motivates us to develop a bootstrap based methodology described in 

sections 3.4 and 3.5. 

3.4. Parametric EBLUP bootstrap in linear mixed models under inequality 

constraints 

To create residuals that honor the data structure, we will use the parametric 

EBLUP (empirical best linear unbiased prediction) bootstrap, described below. 
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3.4.1. Homoscedastic errors 

We begin this section with homoscedastic data, where 2

N
σ=Σ I . 

Step Hom1: Obtain the point estimator of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  under the null hypothesis.  

Denote it by ( )0 0 0

1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ . 

Step Hom2: Obtain the point estimators of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , T , and Σ  under no 

constraints on the parameters.  Denote them by ( )1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , Tɶ , and Σɶ .  

Step Hom3: Generate a random vector *

i
ηηηη  of size 1,  1,2, ,

i
c i q× = …  from a 

multivariate normal distribution with mean 0 and covariance matrix I.  Similarly, 

generate an independent random vector 
∗υυυυ  of size 1N ×  from a multivariate normal 

distribution with mean 0 and covariance matrix I.  Finally, let * *

i i i
=ɶ ɶξ τ ηξ τ ηξ τ ηξ τ η and 

* *=ɶ ɶε συε συε συε συ , 

then the EBLUP bootstrap sample is given by  

 
* 0 * *= + +X UY ɶ ɶ ɶθ ξ εθ ξ εθ ξ εθ ξ ε . (16) 

Recently, the asymptotic properties of parametric EBLUP bootstrap, when the 

random errors are normally distributed, have been discussed in Chatterjee et al. (2008). 

Thus, the above model honors the null hypothesis regarding the parameter 

( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , as well as the underlying variance components structure.  Thus, one may 

derive the bootstrap null distribution of any test statistic, including the likelihood ratio 

test, by repeatedly generating the null data in (16) (say 1000 times) and computing the 

desired test statistic for each null data.  
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3.4.2. Heteroscedastic errors 

In the case of heteroscedastic errors, the construction of bootstrap sample *Y  

requires a minor modification from the homoscedastic case as follows.  

Step Het1: Obtain the point estimator of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  under the null hypothesis.  

Denote it by ( )0 0 0

1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ . 

Step Het2: Obtain the point estimators of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , T , and Σ  under no 

constraints on the parameters.  Denote them by ( )1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , Tɶ , and Σɶ . 

Step Het3: Generate a random vector *

i
ηηηη  of size 1,  1,2, ,

i
c i q× = …  from a 

multivariate normal distribution with mean 0 and covariance matrix I.  Similarly, 

generate an independent random vector 
*

iυυυυ , 1,2, ,i k= …  of size 1
i

n ×  from a 

multivariate normal distribution with mean 0 and covariance matrix I.  Finally, let 

* *

i i i
τ=ɶ ɶξ ηξ ηξ ηξ η , 1,2, ,i q= …  and * *

i i i
σ=ɶ ɶε υε υε υε υ , 1,2, ,i k= … , then the EBLUP bootstrap sample is 

given by  

 * 0 * *= + +X UY ɶ ɶ ɶθ ξ εθ ξ εθ ξ εθ ξ ε . (17) 

3.5. MINQUE-Williams based methodology 

Methodology described in previous sections assumed that Y is multivariate 

normally distributed.  In many applications, this may not necessarily be true.  Therefore, 

in this section, we develop a distribution free methodology for performing constrained 

inference in linear mixed effects models.  For the rest of this dissertation we limit to A  

such that Aθθθθ  is estimable and ≥A 0θθθθ  is a simple order cone.  
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We begin with the estimation of variance components in the linear model (1).  

There exists considerable literature on the estimation of variance components 
2 2 2

1 2, ,..., qτ τ τ  

and 2 2 2

1 2, ,..., kσ σ σ .  As an alternative to MLE, which was developed for normally 

distributed data, several distribution free methods have been proposed in the literature, 

such as the ANOVA based methods of Henderson (1953), the MINQUE (minimum norm 

quadratic unbiased estimation) theory of Rao (1970, 1971, 1972).  Henderson’s ANOVA 

based estimators are essentially method of moments type estimators, whereas Rao’s 

MINQUE theory is based on some basic principles an estimator of variance components 

should possess, namely: (i) quadratic form of the data, since the parameter is quadratic, 

(ii) translation invariant, hence does not depend upon the location (or regression 

parameter), (iii) unbiasedness, and (iv) minimum norm.  Several variations to MINQUE 

have been proposed in the literature, such as, I-MINQUE, MINQE, CMINQUE, 

MINQUE (SD), etc.  A well established theory for MINQUE and related methods has 

been developed.  For a comprehensive account on this subject, one may refer to Rao and 

Kleffe (1988). 

We now describe MINQUE for estimating the variance components under 

heteroscedasticity case since the homoscedasticity is a special case and can be easily 

deduced.  Thus in this section we describe the MINQUE methodology for estimating 

( )2 2 2 2 2 2

1 2 1 2, ,..., , , ,...,
q k

φ τ τ τ σ σ σ ′= .  We rewrite the linear model (1) as  

 = +XY θ ζθ ζθ ζθ ζ ,  



 

 45 

where ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , ( )1 2:=X X X  with ( ) 0E =ζζζζ , 
1

( )
q k

i i

i

Var φ φ
+

=

= =∑G Fζζζζ , 

,  1,2,  ..., ,
i i i

i q′= =F U U  and [0 : 0 : ... : : 0...0]
i

Diag=F I , 1,2,  ...,i q q k= + +  with the 

identity matrix of order 
i q i q

n n− −×  located at the ith location.  Each 
i

F  is N N× .  Let  

1 2 q k: : ... : +
 =  F F F F , 

φ φ
′= +W G XX , 

( ' ) 'φ φ φ φ φ
− − − − −= −R W W X X W X X W ,  

1 2( , ,..., )
q kφ φ φ φ φ φ φ+

′ ′ ′ ′ ′ ′ ′= R F R R F R R F Rz Y Y Y Y Y Y , and  

( ),  , 1,2,...,
i j

Tr i j q kφ φ φ
′ = = + S R F R F . 

In the above expression, −A  denotes a generalized inverse (or g-inverse) of A .  

The above expressions are invariant to the choice of g-inverse.  Hence without loss of 

generality one may use the Moore-Penrose inverse +A .  The MINQUE of φφφφ  is then 

obtained by solving the following system of linear equations (Rao, 1972):  

 (0) (0) ,=S z
φ φφ φφ φφ φ

φφφφ  (18) 

where 
(0)φφφφ  denotes an initial estimate of φφφφ .  Since the MINQUE depends upon 

the initial estimate, Rao and Kleffe (1988) recommend iterating (18) until convergence.  

The resulting estimator is known as the iterated MINQUE (or I-MINQUE).  Denote the I-

MINQUE of φφφφ  by φ̂φφφ .  As discussed in Rao and Subrahmaniam (1971), estimated 

parameters can be negative.  As is commonly done, in such cases we replace them with 

0.01. 
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Let = Aη θη θη θη θ  be an estimable linear function of θθθθ , then its weighted least squares 

estimator is given by  

 ˆ ˆ
ˆ ( )

φ φ

+ + +′ ′= A X W X X W Yηηηη . (19) 

Under mild regularity conditions stated below, in Theorem 3.3 we note that the 

weighted least squares estimator is asymptotically normally distributed. 

R1: ( ) ( )1 2 1 20 min , , , min , , ,
q k q k

φ φ φ φ φ φ+ +< ≤ < ∞… … .  

R2: 
4

E < ∞ζζζζ . 

R3: 
( )
( )

i j

ij

i i

Tr
d

Tr

φ φ

φ φ

+ +

+ +
→

W F W F

W F W F
, where the matrix ( ),  , 1,2, ,ijd i j q k= = +D …  is non-

singular. 

R4: 
( ) ( )

( )
max max

0
i j

i iTr

φ φ

φ φ

λ λ+ +

+ +
→

W F W F

W F W F
, where ( )maxλ H  denotes the largest eigenvalue 

of a matrix H . 

R5: ( ) ( )φ

+
+′ ′ →X X W X X M φφφφ , where ( )M φφφφ  is a positive definite matrix.  

R6: max ( ) 0φ φ φλ + +′ ′ →XX W G W XX . 

Theorem 3.3. For any estimable linear function Aθθθθ  in a linear mixed model (1) 

satisfying the regularity conditions R1 to R6,  

 ( ) ( )1ˆ  0,  ( )
asymptotically

N − ′A AM A∼θ − θ φθ − θ φθ − θ φθ − θ φ .  

As a consequence of asymptotic normality of ˆAθθθθ , one may appeal to Davidov 

and Rosen (2011) and derive a constrained estimator for Aθθθθ  under the constraint 

≥A 0θθθθ  and construct the likelihood ratio test.  However, as noted in Section 3.3, the 
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asymptotic null distribution of the likelihood ratio test involves the unknown variance 

components.  Furthermore, it is not easy to compute the null distribution when the 

dimension is large. 

To keep the methodology distribution free and computationally simple we 

estimate 1θθθθ  under the simple order constraint by applying PAVA on 1θ̂θθθ .  We denote the 

resulting constrained estimator by 1
ˆPAVAθθθθ . 

Owing to the simplicity of expression and superior power, the Williams’ test 

(Williams, 1972) is used widely in applications.  For example, the National Toxicology 

Program uses the Williams’ test to test for trends in its pre-chronic 90-day rodent 

bioassay.  Motivated by its popular use, in this thesis, as an alternative to the likelihood 

ratio test, we propose the following test statistic. 

 

( )
1 11

1 11

ˆ ˆ

ˆ ˆ

PAVA PAVA

p

p

W

Var

θ θ

θ θ

−
=

−
, (20) 

where ( )1 11
ˆ ˆ

pVar θ θ−  is the estimated variance of the contrast ( )1 11
ˆ ˆ

pθ θ− .  We now 

describe the nonparametric EBLUP bootstrap methodology for deriving the null 

distribution of the test statistic (20).   

3.5.1. Homoscedastic errors 

As in section 4.3, we begin this section with homoscedastic data, where 2

Nσ=Σ I .  

Let ( ),Cov= =C UTY ξξξξ  and let ( )Cov ′= =Ψ UTU +ΣY , then the best linear unbiased 

predictor (BLUP) of ξξξξ  is given by ( )1−′ −CΨ I P Y , where ( )
1

1 1
−

− −′ ′=P X XΨ X XΨ .  

However, since C  and Ψ  are unknown, the empirical version of ( )′ −-1CΨ I P Y , known 
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as the empirical best linear unbiased predictor (EBLUP) of ξξξξ , when no constraints are 

imposed on the parameters, is given by ( ) ( )1 2: : ... : q

′′ ′ ′ ′= -1= CΨ I - P Yɶ ɶ ɶ ɶ ɶ ɶ ɶξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  and the 

estimated residuals are given by ( )= −I P Yɶɶεεεε . 

Step Hom1: Obtain the point estimator of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  under the null hypothesis. 

Denote it by ( )0 0 0

1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ . 

Step Hom2: Obtain the point estimators of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , T , and Σ  under no 

constraints on the parameters.  Denote them by ( )1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , Tɶ , and Σɶ  then compute 

( ) ( )1 2: : ... : q

′′ ′ ′ ′= -1= CΨ I - P Yɶ ɶ ɶ ɶ ɶ ɶ ɶξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  and ( )= −I P Yɶɶεεεε . 

Step Hom3: Let 
( )

i
i

i
sd

=
ɶ

ɶ

ξξξξ
ηηηη

ξξξξ
, 1,2, ,i q= …  and let 

( )sd
=
ɶ

ɶ

εεεε
υυυυ

εεεε
, where ( )sd ζζζζ  

represents the usual sample standard deviation of the elements in the vector ζζζζ . 

Step Hom4: Let *

iηηηη , 1,2, ,i q= …  denote a random vector obtained by taking simple 

random sample (with replacement) of size 1,  1,2, ,ic i q× = …  from the elements of iηηηη .  

Similarly, let 
*υυυυ  denote a random vector obtained by taking a simple random sample 

(with replacement) of size 1N ×  from the elements of υυυυ .  Finally, let * *

i i iτ=ɶ ɶξ ηξ ηξ ηξ η , 

1,2, ,i q= …  and 
* *σ=ɶ ɶε υε υε υε υ , then the EBLUP bootstrap sample is given by  

 * 0 * *= + +X UY ɶ ɶ ɶθ ξ εθ ξ εθ ξ εθ ξ ε . (21) 
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Thus, the above model honors the null hypothesis regarding the parameter 

( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , as well as the underlying variance components structure.  Repeatedly 

generating the null data in (21) and computing (20) for each null data yields the null 

distribution of (20). 

While preparing this dissertation, in a personal communication with Dr. Peddada, 

Dr. Chatterjee informed that he is currently investigating the asymptotic properties of the 

nonparametric EBLUP, and the manuscript is being completed.   

3.5.2. Heteroscedastic errors 

As in the case of parametric EBLUP bootstrap, the construction of bootstrap 

sample *Y  requires a minor modification from the homoscedastic case as follows.  

Step Het1: Obtain the point estimator of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  under the null hypothesis. 

Denote it by ( )0 0 0

1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ . 

Step Het2: Obtain the point estimators of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , T , and Σ  under no 

constraints on the parameters.  Denote them by ( )1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , Tɶ , and Σɶ , then compute 

( )1 2: : ... : q

′′ ′ ′ ′= -1= CΨ (I - P)Yɶ ɶ ɶ ɶ ɶ ɶ ɶξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  and ( )= −I P Yɶɶεεεε . 

Step Het3: Let 
( )

i
i

i
sd

=
ɶ

ɶ

ξξξξ
ηηηη

ξξξξ
, 1,2, ,i q= …  and let 

( )

i
i

isd
=
ɶ

ɶ

εεεε
υυυυ

εεεε
, 1,2, ,i k= …  where 

( )sd ζζζζ  represents the usual sample standard deviation of the elements in the vector ζζζζ .  

Note that unlike in the homoscedastic case, here 
2( ) ,  1,2,..., .

ii i nVar i kσ= =Iεεεε  
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Step Het4: Let *

iηηηη , 1,2, ,i q= …  denote a random vector obtained by taking simple 

random sample (with replacement) of size 1,  1,2, ,ic i q× = …  from the elements of iηηηη .  

Similarly, let 
*

iυυυυ , 1,2, ,i k= …  denote a random vector obtained by taking a simple 

random sample (with replacement) of size in 1×  from the elements of iυυυυ .  Finally, let 

* *=i i iτɶ ɶξ ηξ ηξ ηξ η , 1,2, ,i q= …  and * *

i i iσ=ɶ ɶε υε υε υε υ , 1,2, ,i k= … , then the EBLUP bootstrap sample is 

given by  

 * 0 * *= + +X UY ɶ ɶ ɶθ ξ εθ ξ εθ ξ εθ ξ ε . (22) 

The above model honors the null hypothesis regarding the parameter ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  

as well as honors the underlying variance components structure.  Repeatedly generating 

the null data in (22) and computing (20) for each null data yields the null distribution of 

(20). 

3.6. Some concluding remarks 

In this dissertation we developed a bootstrap based methodology for performing 

constrained inference in linear mixed effects models with covariance structure of the 

form ( )Cov ′= +UTU ΣY , where T  and Σ are diagonal matrices.  As noted earlier, 

although this covariance structure is encountered in many applications, in general, 

however, depending upon the application, the covariance structures may be more 

complicated or unspecified.  In such situations, the bootstrap methodology proposed in 

Sections 3.4 and 3.5 may not be robust in achieving the desired nominal type I error rate 

or may also potentially lose power.  This is not surprising and is not unique to the present 

situation.  For example, even in the classical Behrens-Fisher problem of comparing 
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means of two independent univariate normal populations with unequal and unknown 

variances (Lehmann, 1975), the pooled two-sample t-test could result in an inflated type I 

error rate.  On the other hand, Welch’s t-test (Welch, 1938) would lose power to the 

pooled t-test when the two population variances are equal.  More recently, a similar issue 

was discussed in great detail in Lim, Sen and Peddada (2010, 2011) in the context of non-

linear regression models under homoscedastic and heteroscedastic errors.  Thus, 

performance of a method depends highly on the underlying assumptions regarding the 

model and the covariance structure.  In Chapter 4, we evaluate the robustness of the 

proposed bootstrap based methodology, when the structure of the underlying covariance 

matrix is either unspecified or it has an auto-correlation structure. 

Although the proposed methodology depends upon the underlying covariance 

structure, it can be easily be adapted to a given covariance structure.  We illustrate this by 

considering two common covariance structures. 

Unspecified covariance structure 

Recently researchers at NIEHS conducted a large study to understand the factors 

associated with growth of fibroids (benign smooth muscle tumors of the uterus) in 

premenopausal women (Peddada et al., 2008).  Since the researchers collected data on 

multiple tumors within each woman, it is reasonable to assume that the growth rates of 

tumors within the same woman are correlated.  However, one cannot be sure about the 

correlation structure a priori.  A question of biological interest is whether the rate of 

growth of a tumor depends upon the tumor size.  Often very large tumors tend to 

experience necrosis since blood supply to the tumor may be cut off or reduced.  

Consequently, one may be interested in testing the hypothesis that the rate of growth of a 
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tumor decreases or stays same with tumor size.  One may want to test such hypothesis 

after adjusting for a variety of covariates such as the location of the tumor (e.g. located in 

the fundus, corpus or in the lower segment of the uterus), tumor type (submucosal, 

intramural or subserosal), age of the subject, race of the subject, etc.  Often for the 

convenience of interpretation biologists categorize tumors into 1p  size categories, such as 

small, medium, large, etc., and are interested in comparing these categories in terms of 

tumor growth rates.  Thus, if 
11 11 12 1( , ,..., )

p
θ θ θ ′=θθθθ  is a vector of parameters describing the 

growth rates of tumors in the 1p  size categories, then one may be interested in testing the 

following hypothesis: 

 
10 11 12 1: ... pH θ θ θ= = =  versus 

111 12 1: ... .A pH θ θ θ≥ ≥ ≥  (23) 

Data and the problems such as the above ones can be described using classical 

fixed effects linear regression model with unknown and unstructured covariance matrix.  

More precisely, for the ith subject, 1,2,..., ,i n=  let iY  denote the growth rate of 1p  

tumors in a given interval of interest, and let iX  denote the 1 2p p×  model matrix of 

covariates with the corresponding 2 1p ×  unknown regression parameter 2θθθθ .  Then the 

linear model corresponding to the ith subject is given by: 

 1 2 .i i i= + +XY θ θ εθ θ εθ θ εθ θ ε  (24) 

We assume that the random errors ~ (0, )i N Σεεεε , where the structure of the 

covariance matrix Σ  is unknown.  The general bootstrap methodology described in the 

previous sections can be easily modified by re-sampling suitable residuals as follows.  

Let ( )1 2
ˆ ˆ ˆ, ,Σθ θθ θθ θθ θ  denote the UMLE of ( )1 2, ,Σθ θθ θθ θθ θ  under no restrictions on the parameters 
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and let ( )0 0

1 2
ˆ ˆ,θ θθ θθ θθ θ  denote the maximum likelihood estimator of ( )1 2,θ θθ θθ θθ θ  under the null 

hypothesis.  Let 1 2
ˆ ˆ

î i i= − − XYε θ θε θ θε θ θε θ θ  denote the residual vector corresponding to the ith 

subject, 1,2,...,i n= .  Draw a simple random sample (with replacement) of n  subjects 

from the sample of n  subjects in the study.  Denote the residuals corresponding to these 

re-sampled subjects by { }* * *

1 2, ,..., nη η ηη η ηη η ηη η η .  Then the bootstrap data corresponding to the ith 

subject selected in the bootstrap sample is given by: 

 * 0 0 *

1 2
ˆ ˆ .i i i= + +XY θ θ ηθ θ ηθ θ ηθ θ η  (25) 

As in Section 3.3, let 
1
ˆPAVAθθθθ  denote the PAVA estimator of 1θθθθ  under the inequality 

constraints specified by the alternative hypothesis.  Then, as before, the hypotheses in 

(23) can be tested using the following test statistic using the null distribution derived 

according to the above bootstrap methodology: 

 
( )

11 1

11 1

ˆ ˆ
.

ˆ ˆ

PAVA PAVA

p

PAVA PAVA

p

W

Var

θ θ

θ θ

−
=

−
  

Random slopes model 

In many applications researchers model repeated measurement data using random 

slopes model as follows.  For the ith subject, 1,2,3,..., ,i n=  the model (24) is modified as 

follows: 

 1 2i i i i i= + + +X UY θ θ ξ εθ θ ξ εθ θ ξ εθ θ ξ ε  (26) 

where 1, , ,i iXY θθθθ  and 2θθθθ  are as defined above.  The random vectors iξξξξ  and iεεεε  are 

assumed to be independently distributed with unspecified non-diagonal covariance 
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structures, Λ  and Σ , respectively.  Stacking the models for all subjects together, we 

have the following linear mixed effects model: 

 1 2= ⊗ + + +X UY 1 θ θ ξ εθ θ ξ εθ θ ξ εθ θ ξ ε  (27) 

where [ ]1 2: : : n
′′ ′ ′=Y Y Y Y… , [ ]1 2: : ... : n

′′ ′ ′=X X X X , [ ]1 2: : ... : ndiag=U U U U , 

[ ]1 2: : ... : n
′′ ′ ′=ξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ , [ ]1 2: : ... : n

′′ ′ ′=ε ε ε εε ε ε εε ε ε εε ε ε ε , ( )Cov= = ⊗T I Λξξξξ , and ( )Cov = ⊗I Σεεεε . 

Thus the covariance matrix of Y  is given by ( ) ( )Cov ′= = ⊗ + ⊗Ψ U I Λ U I ΣY .  

The bootstrap methodology described in Section 3.5.1 can be suitably modified for this 

covariance structure as follows.  Notations used in Section 3.5.1 are slightly different 

from those used here, since the vectors are stacked here by subject rather than by time 

point, as was done in Section 3.5.1.  The overall notations are still the same.  That is, 

( ),Cov= =C UTY ξξξξ , ( )
1

1 1
−

− −′ ′=P X XΨ X XΨ . 

The bootstrap methodology can be described as follows: 

Step 1: Obtain the UMLE of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ  under the null hypothesis.  Denote it by 

( )0 0 0

1 2,′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ . 

Step 2: Obtain the UMLE of ( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , Λ  and Σ  under no constraints on the 

parameters.  Denote them by ( )1 2,
′

′ ′=ɶ ɶ ɶθ θ θθ θ θθ θ θθ θ θ , Λɶ  and Σɶ  respectively.  Let ( )= ⊗C U I Λɶ ɶ , 

( ) ′= ⊗ + ⊗Ψ U I Λ U I Σɶ ɶ ɶ  and ( )
1

1 1
−

− −′ ′=P X XΨ X XΨɶ ɶɶ .  As in Section 3.5.1, compute the 

residuals ( )1

1 2: : ... : n

−′ ′ ′ ′ ′= = −  CΨ I P Yɶ ɶ ɶ ɶ ɶ ɶ ɶξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξξ ξ ξ ξ  and [ ] ( )1 2: : ... : n
′′ ′ ′= = −I P Yɶɶ ɶ ɶ ɶε ε ε εε ε ε εε ε ε εε ε ε ε . 
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Step 3: Unlike in Section 3.4.1, randomly select subjects and use the residuals of 

the selected subject.  Thus, corresponding to the subject i, we randomly select (with 

replacement) the subject *
i , whose residuals are denoted by *

i

ɶξξξξ  and *i
ɶεεεε  respectively.  

Then the bootstrap sample may be constructed as follows: 

 
* *

* 0

1 2 ,  1,2,..., .i i i i i
i n= + + + =X UY ɶ ɶ ɶθ θ ξ εθ θ ξ εθ θ ξ εθ θ ξ ε

  

Thus, the above model honors the null hypothesis regarding the parameter 

( )1 2, ′′ ′=θ θ θθ θ θθ θ θθ θ θ , as well as the underlying variance components structure.   

Once the bootstrap samples are obtained, a test statistic similar to the one 

described in Section 3.5.1 may be constructed, and its bootstrap null distribution may be 

derived.  Thus, the general framework described in this chapter can be modified for other 

commonly observed covariance structures. 



CHAPTER 4 

SIMULATION STUDIES FOR CONSTRAINED TESTING 

IN LINEAR MIXED EFFECTS MODELS 

4.1. Normally distributed data 

4.1.1. Study design 

Extensive simulations studies were performed to evaluate the performance of 

various tests in terms of the Type I error and power.  The data were simulated using the 

following model: 

 1 1 2 2= + + +X X UY θ θ ξ εθ θ ξ εθ θ ξ εθ θ ξ ε , (28) 

where 1θθθθ  denotes the 1p×  vector of treatment effects, 1X  is a N p×  design matrix 

consisting of 0’s and 1’s, 2X  is a known 1N ×  matrix of covariates, 2 2=θθθθ  is a 

corresponding regression parameter, U  is a known matrix of design constants, where U  

is of order N c× , ξξξξ  is a 1c ×  vector of independent subject random effects.  

The random vectors ,ξ εξ εξ εξ ε  were independently and normally distributed with 

means 0 and covariance matrices Τ  and Σ , where ( ) 2

cCov τ= =Τ Iξξξξ .  Two different 

structures of Σ  were considered, namely, homoscedastic error structure with 2

Nσ=Σ I  

and heteroscedastic error structure with 
1 2

2 2 2

1 2: : :
pn n k ndiag σ σ σ =  Σ I I I… , where 
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2 2 2

1 2, ,..., pσ σ σ  are unknown variances with 
1

.
p

i

i

n N
=

=∑   Simulations were performed for 

p = 3, 5 and 10 treatment groups, c = 10, 30, 50 subjects per treatment and four different 

patterns of treatment means 1θθθθ :  

(1) 0, ... , 0, a, 

(2) 0, a, ... , a, 

(3) a + d, a + 2d, ... , a + (p-1)d, 

(4) 0, a, ... , a, b. 

The components of 1θθθθ  were restricted to satisfy a simple order constraint 

1 2 pθ θ θ≤ ≤ ≤… .  We compared the type I error and power of two proposed tests 

(MINQUE-based bootstrap test and likelihood ratio bootstrap test) with other methods, 

namely the asymptotic likelihood ratio test (Davidov and Rosen, 2011), unconstrained F 

test, unconstrained F test assuming linear regression on treatment parameters, as well as 

parametric and non-parametric bootstrap implementations of these tests.  Complete 

simulation results are presented in Appendix C. 

Simulation results are based on 500 data simulation runs and 500 bootstrap runs 

(where applicable).  If the true type I error rate is 0.05, the estimated type I error rate is 

within (0.031, 0.069) 95% of the time.  On type I error plots, we show the nominal alpha 

level of 0.05 as a solid line and the upper bound of the 95% confidence interval, 0.069, as 

a dashed line.  For conciseness, only results for 10 and 50 subjects per treatment are 

presented. 
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4.1.2. Results for homoscedastic case 

Simulations were performed with 2

Nσ=Σ I  ( 1σ = ), 2 0.2,  1,  2τ = , and treatment 

mean patterns (1)-(3).  Type I error and power of the proposed MINQUE-based Williams 

bootstrap test, the likelihood ratio bootstrap test, and the asymptotic likelihood ratio test 

(Davidov and Rosen, 2011) are compared in Figure 8.  Type I errors of all tests attain the 

nominal level of 0.05.  Both bootstrap tests have similar power (MINQUE-based one is 

slightly higher) and gain in power over the asymptotic likelihood ratio test.  Note that 

power of asymptotic likelihood ratio test is descending with increasing number of 

treatment groups. 

Figure 8.  Type I Error and Power of homoscedastic tests on the normally distributed 

homoscedastic data 
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We also explored performance of heteroscedastic tests on the data simulated 

assuming homoscedastic errors.  Results are presented in Figure 9.  Note, that while type 

I errors still attain the nominal level of 0.05, both asymptotic likelihood ratio test and 

likelihood ratio bootstrap test lose power comparing to homoscedastic tests.  Pairwise 

power comparisons of three tests indicate that MINQUE-based bootstrap test performs 

the best, while asymptotic likelihood ratio test performs the worst.  Simulation results for 

the tests considered in section 4.1.3 are provided in Table 7.2 and Table 7.3 of 

Appendix C. 

Figure 9.  Comparison of Type I Error and power of heteroscedastic tests on the normally 

distributed homoscedastic data 

A. Type I error comparison 
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Figure 9. 

B. Power comparison 
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4.1.3. Results for heteroscedastic case 

Simulations were performed with 2 1τ =  and 
1 2

2 2 2

1 2: : :
pn n k ndiag σ σ σ =  Σ I I I… , 

( )2 2 2 2

1 2, , , pσ σ σ= …σσσσ , 
1

p

i

i

N n
=

=∑ , where 2 2

i iσ θ=  (in the case of 20,  0.1i iθ σ= = ).  Type I 

error and power of the proposed MINQUE-based bootstrap test, likelihood ratio bootstrap 

test, and asymptotic likelihood ratio test (Davidov and Rosen, 2011) are compared in 

Figure 10.  Again, type I errors of all tests attain nominal level of 0.05.  Both bootstrap 

tests have similar power and gain in power over the likelihood ratio test. 
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Figure 10.  Type I Error and Power of heteroscedastic tests on the normally distributed 

heteroscedastic data 

0.00 0.02 0.04 0.06 0.08

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Type I Error

Asymp-LRT (het)

L
R

T
-B

o
o

t 
(h

e
t)

0.00 0.02 0.04 0.06 0.08
0

.0
0

0
.0

2
0

.0
4

0
.0

6
0

.0
8

Type I Error

LRT-Boot (het)

M
-W

-B
o

o
t 
(h

e
t)

0.00 0.02 0.04 0.06 0.08

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Type I Error

Asymp-LRT (het)

M
-W

-B
o

o
t 
(h

e
t)

3 groups
5 groups

 

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

Power

Asymp-LRT (het)

L
R

T
-B

o
o

t 
(h

e
t)

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

Power

LRT-Boot (het)

M
-W

-B
o

o
t 

(h
e

t)

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

Power

Asymp-LRT (het)

M
-W

-B
o

o
t 

(h
e

t)

3 groups
5 groups

 

Even though the data were simulated assuming heteroscedastic errors, we also 

explored performance of homoscedastic tests and presented them in Figure 11.  We see 

elevated type I errors in both bootstrap tests, thus their use is not recommended.  

Simulation results for the tests considered in section 4.1.3 are provided in Table 7.4 and 

Table 7.5 of Appendix C. 
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Figure 11.  Comparison of Type I Error and Power of homoscedastic tests on the 

normally distributed heteroscedastic data 

A. Type I error comparison 
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B. Power comparison 
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4.1.4. Robustness under the misspecified covariance structure 

As noted in Section 3.6, there are many cases in which the underlying covariance 

structure will be different from the one considered in the linear mixed effects model 

described in (7).  In this section, we evaluate the robustness of the proposed bootstrap 

based methodology when for a given subject i, the structure of the underlying covariance 

matrix is either unspecified or it has an auto-correlation structure.  More precisely, using 

the same notations as before, for the ith subject, 1,2,3,..., ,i c=  suppose the response 

vector iY  is modeled as 1 2i i i= + +XY θ θ εθ θ εθ θ εθ θ ε .  We consider two structures for ( )iCov =Ωεεεε , 

namely, (a) Ω  has no pre-specified structure and (b) Ω  is an auto-correlation matrix of 

the form: 

 

2

1

1

2

1

1

1

1

p

p

p

p

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

−

−

 
 
 
 
 
 
 
 

…

…

⋱ ⋱ ⋱

…

…

. 

In contrast, the covariance structure considered earlier in the simulation studies 

induced an intra-class covariance structure for each subject. 

We considered two different values for the dimension p, namely, p = 3, 5.  In the 

case of (a) we generated Ω  using a Wishart distribution with degrees of freedom df and a 

pattern of the scale matrix constructed from the data provided in Cao et al. (2011). We 

used two scale matrices in our simulation study as follows: 

             (1) 

0.31 0.21 0.11

0.21 0.29 0.13

0.11 0.13 0.27

 
 
 
 
 

 (placebo group) or  



 

 64 

             (2) 

0.34 0.26 0.13

0.26 0.33 0.10

0.13 0.10 0.27

 
 
 
 
 

 (succimer group). 

To generate the data for the case p = 5, we augmented the above matrices with 

two additional rows and columns such that the diagonal elements were 0.25 and 0.23, 

while off-diagonal elements were 0.2.   

In the case of (b), we again considered two different values for the dimension p, 

namely, p = 3, 5, and we also considered four different patterns of correlation 

coefficients, namely, (3) 0.2,ρ =  (4) 0.4,ρ =  (5) 0.6,ρ =  (6) 0.9ρ = .  Thus we 

considered a total of six different patterns of covariance structures, which are labeled as 

(1), (2), (3), (4), (5) and (6).  For each pattern, we considered two patterns of dimensions 

p, i.e. p = 3 or 5.  Since the focus of this study is to determine whether the proposed 

methodology is robust to departures from the assumed covariance structure in terms of 

type I error, in Figure 12 we summarized the type I errors of all patterns considered in 

this simulation study.  The X-axis denotes the six patterns under consideration, and the 

Y-axis denotes the type I error.  The nominal level was taken to 0.05.  As before, the 

results are based on 500 simulation runs using 500 bootstrap samples.  As expected, when 

the covariance matrix is very different from the presumed covariance matrix, the type I 

error exceeds the nominal level.  This happens in the case of the unspecified covariance 

matrix and the auto-correlation structure with patterns (5) and (6).  The type I errors 

corresponding to the auto-correlation structure seem to be below the nominal level in 

patterns (3) and (4).  Thus, in general, as one would expect, the proposed methodology 

may not be robust to departures from the presumed covariance structure.  Complete set of 

results are provided in Tables 7.6, 7.7, 7.8 and 7.9 in the Appendix C.   



 

 65 

Figure 12. Type I errors under the misspecified covariance matrix 
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4.2. Non-normally distributed data 

In this dissertation research, we also explored the robustness of the proposed 

methodology for departures from normality.  We simulated data according to the 

following mixed effects model, where the elements of the random error term 

( )1 2, , , Nr r r=r …  followed one of the following commonly studied distributions, namely, 

the log-normal, gamma and mixture of two normally distributed variables: 

 1 1 2 2= + + +X X UY rθ θ ξθ θ ξθ θ ξθ θ ξ , (29) 

where the terms 1 1 2 2, ,X X U,θ ,θ,θ ,θ,θ ,θ,θ ,θ  and ξξξξ  are defined in section 4.1.1. 
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4.2.1. Log-normally distributed data 

4.2.1.1. Study design 

Suppose ( )exp=r εεεε , ( ),N Σ0∼εεεε , with other definitions presented in section 

4.1.1 on page 56.  We compared type I error and power of the proposed MINQUE-based 

bootstrap test, likelihood ratio bootstrap test and asymptotic likelihood ratio test (Davidov 

and Rosen, 2011). 

4.2.1.2. Results for homoscedastic case 

Simulations were performed with 2

Nσ=Σ I  ( 1σ = ), 2 0.2,  1,  2τ = , and treatment 

mean patterns (1)-(3).  Results are presented in Figure 13.  As in the case of normal data, 

type I errors of all three homoscedastic tests attain the nominal level of 0.05.  Both 

bootstrap tests have similar power (though MINQUE-based one is higher in most cases) 

and gain in power over the asymptotic likelihood ratio test. 
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Figure 13.  Type I Error and Power of homoscedastic tests on the log-normally distributed 

homoscedastic data 
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We also explored how heteroscedastic tests perform on the homoscedastic non-

normal data.  Results are presented in Figure 14.  Note that type I errors are elevated for 

likelihood ratio bootstrap test while attaining the nominal level of 0.05 for the asymptotic 

likelihood ratio and the MINQUE-based bootstrap tests.  In the most cases, MINQUE-

based bootstrap test gains in power over the asymptotic likelihood ratio test.  Simulation 

results for the tests considered in section 4.2.1.2 are provided in Table 7.10 and Table 

7.11 of Appendix C. 
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Figure 14.  Comparison of Type I Error and power of heteroscedastic tests on the 

log-normally distributed homoscedastic data 

A. Type I error comparison 
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B. Power comparison 
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4.2.1.3. Results for heteroscedastic case 

Simulations were performed with 2 1τ = , 
1 2

2 2 2

1 2: : :
pn n k ndiag σ σ σ =  Σ I I I… , 

( )2 2 2 2

1 2, , , pσ σ σ= …σσσσ , 
1

p

i

i

N n
=

=∑ , where 2 2

i iσ θ=  (in the case of 20,  0.1i iθ σ= = ).  Type I 

error and power of the proposed MINQUE-based bootstrap test, likelihood ratio bootstrap 

test, and likelihood ratio test (Davidov and Rosen, 2011) are compared in Figure 15.  

Again, type I errors of all tests attain the nominal level of 0.05 and are comparable in 

power. 

Figure 15.  Type I Error and Power of heteroscedastic tests on the log-normally 

distributed heteroscedastic data 
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We also explored performance of homoscedastic tests when the data were 

simulated assuming heteroscedastic errors (Figure 16).  We note that MINQUE-based 

bootstrap test can have elevated type I errors.  Simulation results for the tests considered 

in section 4.2.1.3 are provided in Table 7.12 and Table 7.13 of Appendix C. 
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Figure 16.  Comparison of Type I Error and Power of homoscedastic tests on the log-

normally distributed heteroscedastic data 

A. Type I error comparison 
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B. Power comparison 

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

Asymp-LRT

Heteroscedastic

H
o

m
o

s
c
e

d
a

s
ti
c

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

LRT-Boot

Heteroscedastic

H
o

m
o

s
c
e

d
a

s
ti
c

0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

M-W-Boot

Heterocedastic

H
o

m
o

s
c
e

d
a

s
ti
c

3 groups
5 groups

 

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Power

Asymp-LRT (hom)

L
R

T
-B

o
o

t 
(h

o
m

)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Power

LRT-Boot (hom)

M
-W

-B
o

o
t 
(h

o
m

)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Power

Asymp-LRT (hom)

M
-W

-B
o

o
t 
(h

o
m

)

3 groups
5 groups

 



 

 71 

4.2.1.4. Type I errors 

Type I errors for of the proposed test are plotted in Figure 17.  In conclusion, the 

proposed methodology seems to maintain the nominal level for type I errors for log-

normally distributed data assuming both homoscedastic and heteroscedastic random 

errors. 

Figure 17.  Type I errors of a proposed test for the log-normally distributed data 
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4.2.2. A mixture of two normally distributed random variables 

The data were simulated according to (29) with ( )1 21ir e eπ π= + − , 1,2, ,i N= … , 

where ( )1 0,0.5e N∼ , ( )2 0,e N s∼ , 1,5s =  and (1) 0.2π = , (2) 0.4π = , (3) 0.6π = , (4) 

0.9π = .  Type I errors of the proposed test presented in Figure 18 indicate that the 

nominal level is maintained.  Complete simulation results are presented in Table 7.14 and 

Table 7.15 of Appendix C. 
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Figure 18.  Type I errors of a proposed test for a mixture of two normally distributed 

random variables 
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4.2.3. Gamma-distributed random errors 

The data were simulated according to (29) with ir  ( )1, ,i N= …  following a 

gamma distribution with a shape parameter α  and a scale parameter β  with the density 

function ( ) 1 ,  0,  , 0
( )

x
e

f x x x
k

β
α

α
α β

β

−
−= ≥ >

Γ
 under the following patterns: 

(1) 2,  2α β= = , (2) 2,  0.5α β= = , (3) 4,  2α β= = , (4) 4,  0.5α β= = .  Type I errors 

of the proposed test presented in Figure 19 indicate that the nominal level is maintained.  

Complete simulation results are presented in Table 7.16 and Table 7.17 of Appendix C. 
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Figure 19.  Type I errors of a proposed test when random errors follow the gamma 

distribution 
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In conclusion, simulations performed in section 4.2 indicate that when the data are 

not normally distributed, the proposed bootstrap methodology maintains the nominal 

level for type I errors. 

4.3. Concluding remarks and recommendations 

Analyzing simulations for normally distributed data, we noted that the 

heteroscedastic MINQUE-based bootstrap test performs the best.  For both 

homoscedastic and heteroscedastic data, its type I errors attain the nominal level of 0.05.  

For heteroscedastic data, it has similar power as the heteroscedastic likelihood ratio 

bootstrap test and gains in power over the asymptotic likelihood ratio test.  In the case of 

the homoscedastic data, it gains in power over both asymptotic likelihood ratio and 

likelihood ratio bootstrap tests.  Also, for the homoscedastic data, heteroscedastic 
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MINQUE-based bootstrap test does not lose much in power in comparison to the 

homoscedastic MINQUE-based bootstrap test. 

Analyzed cases of non-normally distributed data also support the usage of the 

heteroscedastic MINQUE-based bootstrap test.  For heteroscedastic data, its type I errors 

attain the nominal level of 0.05 and power is similar to other tests.  If the data are 

generated assuming homoscedasticity, MINQUE-based bootstrap test’s type I errors 

achieve the nominal level of 0.05, while being elevated for the likelihood ratio bootstrap 

test; also in most cases MINQUE-based bootstrap test gains in power over the asymptotic 

likelihood ratio test. 

In conclusion, we recommend the heteroscedastic MINQUE-based bootstrap test 

for performing constrained inference in linear mixed effects models.  For heteroscedastic 

data, its type I errors attain the nominal level of 0.05 and its power is similar to the power 

of other tests.  In the case of normally distributed data, it gains in power over the 

heteroscedastic likelihood ratio test.  If the data are homoscedastic, it gains in power over 

the likelihood ratio bootstrap test while its type I errors still attain the nominal level of 

0.05. 

For the cases when the covariance structure is either unspecified or has some 

other special structure, we recommend modifying the methodology by bootstrapping 

suitable residuals as described in Section 3.6. 

 



CHAPTER 5 

ILLUSTRATION 

To illustrate the methodology, we used the real data provided Dr. Walter Rogan, 

Epidemiology Branch, NIEHS.  The data were collected during a randomized placebo-

controlled, double-blind trial clinical trial of succimer for lead poisoning, called the 

Treatment of Lead-exposed Children trial, or TLC (Rogan, 1998).  In TLC, 384 children 

aged 12-33 months were assigned to the placebo group and 396 to the succimer group.  

Up to three 26-day courses of succimer or placebo therapy were administered, depending 

on response to treatment in those, who were given succimer.  Cao et al. (2011) were 

interested whether succimer, a mercaptan compound known to reduce blood lead 

concentration in children, also reduces blood mercury concentration.  At the baseline, 

blood mercury levels were obtained in 767 samples (393 succimer group and 374 placebo 

group) and detected and quantified in 657 samples (86%; 338 succimer and 319 placebo).  

At 1-week post treatment, total mercury concentration was measured in 768 samples (389 

succimer and 379 placebo) and detected and quantified in 623 samples (81%; 313 

succimer and 310 placebo).  After 5 months of treatment, blood mercury levels were 

obtained from a 20% random sample of 338 children completing 3 courses of treatment.  

Total mercury was detected and quantified in 61 samples: 30 (out of 393) succimer 

treated children and 31 (out of 374) placebo treated children.  Cao et al. (2011) used an 
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ad-hoc bootstrap-based isotonic regression method to compare the trend over time in the 

difference between the adjusted mean mercury concentrations in the succimer group and 

the placebo group.  Their analysis adjusted for child’s age, sex, race and the study center 

the child belonged to.  Cao et al. (2011) hypothesized a monotonic trend in the difference 

between the adjusted mean mercury concentrations in the succimer group and the placebo 

group.  Authors used point-wise confidence intervals for the mean differences at each 

time point to describe the differences between the two groups.  Although the bootstrap 

methodology used by the authors exploits the underlying dependence structure due to 

repeated measurements, the test statistic they used ignores it. 

Cao et al. (2011) implicitly inferred that the trend they observed could potentially 

be due to the fact that, over time, there is no real difference between the succimer and the 

placebo groups.  This motivated us to re-analyze their data for the succimer and placebo 

groups separately to understand the trend in mean mercury levels in the two treatment 

groups.  As done in Cao et al. (2011), we adjusted for child’s age, sex, race and the study 

center the child belonged to.  The variable of interest was organic mercury level in log-

scale.  The normal quantile-quantile (Q-Q) plots of studentized residuals for the placebo 

and the succimer groups (Figure 20) suggest that the data are potentially non-normally 

distributed.  They suggest heavy tails.  To illustrate heavy tails, in Figure 21 we present 

histograms of studentized residuals. 
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Figure 20. Normal probability plots of organic mercury level in log-scale for placebo and 

succimer groups. 
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Figure 21.  Histograms of organic mercury level in log-scale for placebo and succimer 

groups. 
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Studentized residuals were plotted against time in Figure 22.  Visually the 

variability in the data seems to be constant across time, with a few outliers in the 

succimer treated group’s 5-month data. 
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Figure 22. Studentized residuals by time point (0 – baseline, 1 – 1-week post-treatment, 2 

– 5-month post-treatment). 
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Since the data appear to be somewhat non-normal and possibly heteroscedastic, 

we used both heteroscedastic and homoscedastic MINQUE-Williams based non-

parametric bootstrap methods introduced in this dissertation.  In Tables 5.1 and 5.2, we 

provide UMLE and MINQUE-based PAVA estimates of organic mercury level in log-

scale.  In Figure 23, we present the estimates and standard errors for heteroscedastic 

methods. 

Table 5.1.  Mean blood concentration of organic mercury in children given placebo (in 

log-scale) 

Heteroscedastic errors Homoscedastic errors 

UMLE PAVA UMLE PAVA Time n 

Estimates SE Estimates SE Estimates SE Estimates SE 

Baseline 31 0.03 0.34 0.03 0.38 0.10 0.33 0.10 0.37 

1-week 31 0.13 0.34 0.13 0.38 0.21 0.33 0.21 0.37 

5-month 31 0.16 0.34 0.16 0.39 0.23 0.33 0.23 0.37 
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Table 5.2.  Mean blood concentration of organic mercury in children given succimer (in 

log-scale)
Heteroscedastic errors Homoscedastic errors 

UMLE PAVA UMLE PAVA Time n 

Estimates SE Estimates SE Estimates SE Estimates SE 

Baseline 29 -0.57 0.44 -0.57 0.51 -0.51 0.43 -0.51 0.49 

1-week 29 -0.78 0.45 -0.68 0.51 -0.73 0.43 -0.62 0.49 

5-month 29 -0.57 0.45 -0.68 0.52 -0.51 0.43 -0.62 0.49 

 

Figure 23.  Estimated mean blood log concentration of organic mercury in children given 

succimer or placebo; (a) UMLE, (b) PAVA.  Error bars demonstrate 1±  standard error. 

 

 

Denote the mean mercury levels at the tth time for the placebo and succimer 

groups as placebo

tθ  and succimer

tθ  respectively (t = 1 for baseline, t = 2 for 1-week and t = 3 

for 5-months).  In the placebo group we hypothesized the increase of blood mercury level 

over time, i.e. tested the hypothesis: 
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with at least one strict inequality among parameters.  To test this hypothesis, we 

performed a heteroscedastic MINQUE-Williams test.  The data were not strong enough 
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to reject the null hypothesis at 0.05 level (p-value was 0.152).  For comparison purposes 

we also considered other tests.  A heteroscedastic likelihood ratio test had a p-value of 

0.163.  Homoscedastic MINQUE-Williams test had a p-value of 0.122 and 

homoscedastic likelihood ratio test had a p-value of 0.139. 

In the succimer group we hypothesized the decrease of blood mercury level over 

time.  The hypothesis was the following: 

 
0 1 2 3

1 2 3
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succimer succimer succimer

succimer succimer succimer

a

H

H

θ θ θ

θ θ θ

= =

≥ ≥
  

with at least one strict inequality among parameters.  To test this hypothesis, we 

performed a heteroscedastic MINQUE-Williams test.  The data were not strong enough 

to reject the null hypothesis at 0.05 level (p-value was 0.192).  For comparison purposes 

we also considered other tests.  A heteroscedastic likelihood ratio test rejected the null 

hypothesis (p-value of 0.048).  Homoscedastic MINQUE-Williams test had a p-value of 

0.202 and homoscedastic likelihood ratio test had a p-value of 0.205. 

In conclusion, the data were not strong enough to support the hypotheses of the 

trend in placebo and succimer groups.  This is consistent with conclusions of Cao et al. 

(2011), that succimer chelation for low level organic mercury exposure in children has 

limited efficacy. 

 



CHAPTER 6 

SUMMARY AND CONCLUDING REMARKS 

Inequality constraints arise naturally in many applications, such as toxicology, 

where researchers are interested in studying dose-response of a chemical, gene expression 

studies in oncology, where a researcher may be interested in understanding the changes in 

gene expression according to cancer stage, etc.  There exists an extensive literature on 

statistical inference under inequality constraints, including four excellent books on the 

subject.  For a detailed review of the estimation of parameters subject to inequality 

constraints, one may refer to van Eeden (2006), while a comprehensive account on 

testing problems is provided in Silvapulle and Sen (2005).  This dissertation research has 

two components, estimation and testing under inequality constraints, with focus on 

simple order constraint where inequalities among all unknown parameters are known a 

priori.   

As summarized in van Eeden (2006), there are numerous methods available in the 

literature to estimate parameters under inequality constraints, the popular ones being the 

restricted maximum likelihood estimator (RMLE) and the pool adjacent violators 

algorithm (PAVA) type estimators.  The performance of RMLE is well understood for 

both independent and correlated data.  However, even though PAVA is widely used even 

when the underlying data are correlated, there does not exist any literature on its 
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performance in such cases.  This motivated the present dissertation work.  In this 

dissertation, the performance of PAVA estimator was evaluated using the universal 

domination (also known as stochastic domination) criterion.  It was demonstrated that 

performance of PAVA depends upon the underlying covariance matrix.  Under suitable 

sufficient conditions derived in this dissertation, it is shown that PAVA estimator 

universally dominates the unrestricted maximum likelihood estimator (UMLE).  

Interestingly, extensive simulation studies conducted in this dissertation work suggest 

that these sufficient conditions are also potentially necessary conditions.  Observe that for 

2p >  under the simple order cone, the sufficient conditions obtained in Chapter 2 for the 

largest and the smallest parameters are disjoint.   

Consequently, it may not be possible to obtain similar domination theorems for 

the intermediate population means.  

In view of the existing literature on RMLE (Hwang and Peddada, 1994; Peddada, 

Dunson and Tan, 2005; Betcher and Peddada, 2009) and the results obtained in this 

dissertation research, we conclude that none of the existing constrained estimators is 

expected to perform better than the UMLE for all covariance matrices, under all 

inequality constrains and for all parameters.  Furthermore, even for a given covariance 

matrix, under simple order constraint, it is not possible to analytically determine which of 

the existing constrained estimators, namely, RMLE, PAVA, the covariance weighted 

PAVA (Hwang and Peddada, 1994), the modified covariance-weighted PAVA (Peddada 

et al., 2005) or the modified RMLE (Betcher and Peddada, 2009) is the best choice.  

Perhaps, for a given application, given covariance matrix and the parameter of interest 
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the investigator should perform extensive simulation studies under a variety of plausible 

scenarios and choose the best estimator for that application.  

The second component of this dissertation work was statistical testing under 

inequality constraints when the underlying data are correlated.  Again, this work is 

largely motivated by applications in toxicology and clinical trials.  Although there is a 

well-developed asymptotic likelihood ratio based theory for general problems (Silvapulle 

and Sen, 2005), surprisingly, in the literature there is very little known about testing for 

specific covariance structures, such as those encountered in repeated measures type data.  

Very recently Davidov and Rosen (2011) were the first to provide a general framework 

for testing under inequality constraints in a linear mixed effects model.  Furthermore, it is 

important to note that Davidov and Rosen’s work was not known when this dissertation 

work was being prepared.  Davidov and Rosen (2011) provide an asymptotic test, 

whereas in this dissertation a nonparametric bootstrap based method was developed.  In 

the simple order restriction, extensive simulation studies conducted in this dissertation 

work suggest that the proposed methodology provides a better control of type I error than 

the asymptotic likelihood ratio test of Davidov and Rosen (2011) when the data are non-

normally distributed.  Since the proposed test uses Rao’s MINQUE theory (1970, 1971, 

1972) for estimating variance components and PAVA for estimating the means, it does 

not necessarily require normality. 

Although the focus of Chapters 3 and 4 of this dissertation work was on the 

simple order cone, the proposed methodology can be easily extended to other order 

restrictions.  The framework developed in this dissertation is very general and can be 
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easily adapted to other order restrictions by suitably choosing the elements of matrix A in 

the inequality (8). 

In toxicology, researchers are often interested in dose× time response surfaces, 

which results in a two-way classification that can be expressed as a constrained inference 

problem with constraints on rows and columns of a matrix.  The proposed testing 

procedure can be extended to such cases by generalizing the methodology developed in 

Teoh et al. (2008) along the lines of the non-parametric bootstrap developed in this 

dissertation work. 
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APPENDIX A 

Proofs and additional lemmas of Chapter 2 

We begin with the following lemma which can be derived using straightforward 

algebra.  Corresponding to a 2x2 real matrix C , let 
'1

1' 1
=

C

C
a , where )'1,1(=1 , and let 

(1, 1)b ′= − . 

Lemma A1: Suppose 

2

1 1 2

2

1 2 2

  

  

σ ρσ σ

ρσ σ σ

 
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Σ  is a 2x2 positive definite matrix and C  is a real 

2x2 matrix.  Let 
1

1

 
=  

− 
b  then 

2 2 22

1 2

2 2

1 2 1 2

(1 )( ' )
'

' 2

σ σ ρ

σ σ ρσ σ

−
− =

+ −

Σ
Σ

Σ

a b
a a

b b
, invariant of C .   

Lemma A2: Based on a random sample ( ) n

1 2 n
U , U ,...,U R= ∈U  suppose, for ,,21i =  

( ) ( ) ( ) ( ) ( )* c

i 0 i
T T I S T I S= ∈ + ∈U U U U U  are two estimators of a parameter µµµµ , where 

( )0T U  and ( )*

iT U  are arbitrary functions of U, c n
S S R∪ = , and ( )

n
I R∈U  is an 

indicator function taking value of 1 whenever n
R∈U  and is zero otherwise.  If 

(a) ( ) ( )( ) ( ){ }* *
1 1

2
* *

1 1| |c c

c

T S T S
E T E T I S − ∈

 
U U U  

 ( ) ( )( ) ( )* *
2 2

2
* *

2 2 ,c c

c

T S T S
E T E T I S

  = − ∈    
U U U  

(b) ( ) ( ){ } ( ) ( ){ }* *
1 2

2 2
* *

1 2| |
,c c c c

c c

S T S S T S
E E T I S E E T I Sµ   − ∈ ≤ − ∈

   
U U U Uµµµµ  

then ( ) ( )
2 2

1 2( )  ( )E T E Tµ µ− ≤ −U U .  
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Proof: For simplicity of notation we drop U  from ( )iT U .  Note that 

2 2 * 2

0( )  { ( ) ( )} { ( ) ( )}c

c

i S iS
E T E E T I S E E T I Sµ µ µ− = − ∈ + − ∈U U  therefore  

* *
1 2

2 2 * 2 * 2

1 2 1 2| |
( )  - ( ) { [( ) ( )] [( ) ( )]}}.c c c

c c

S T S T S
E T E T E E T I S E T I Sµ µ µ− − = − ∈ − − ∈U Uµµµµ

  

Note that  

( ) ( ) ( ){ } ( ) ( ){ }22 2 *

0 c

c

i S iS
E T E E T I S E E T I S− = − ∈ + − ∈U Uµ µ µµ µ µµ µ µµ µ µ  and 

( ) ( )

( )( ) ( )( ){ } ( )

( )( ){ } ( )

( )( ){ } ( )

( )( ){ } ( )( ){ }

*

*

*

*

*

* *

*

*

* *

2
*

|

|

|

|

|

2
* * *

| |

2
* *

|

2
*

|

* * *

| |
2

c

i

c

i

c

i

c

i

c

i

c c
i i

c
i

c
i

c c
i i

c

iT S

T S

T S

T S

T S

c c c

i i iT S T S

c c

i iT S

c c

iT S

c c

i i iT S T S

E T I S

E

E

E

E

T E T I S E T S I S

T E T I S I S

E T S I S

T E T I S E T S

− ∈

=

+

+

 
  

 
− ∈ + ∈ − ∈ =  

 
= − ∈ ∈  

 
∈ − ∈  

− ∈ ∈ −

U

U U U

U U

U U

U U

µµµµ

µµµµ

µµµµ

µµµµ ( )

( )( ){ } ( )

( )( ){ } ( )

*

*

*

*

|

|

2
* *

|

2
*

|
.

c

i

c

i

c
i

c
i

T S

T S

c

c c

i iT S

c c

iT S

E

E

I S

T E T I S I S

E T S I S+

 ∈  

 
= − ∈ ∈  

 
∈ − ∈  

U

U U

U Uµµµµ

 

Hence from (a) we have 

( ) ( ) ( ) ( ) ( ) ( ){ }* *
1 2

2 22 2 * *

1 2 1 2| |
.c c c

c c

S T S T S
E T E T E E T I S E T I S   − − − = − ∈ − − ∈

      
U Uµ µ µ µµ µ µ µµ µ µ µµ µ µ µ

 

The result follows from (b). 

□ 

For notational simplicity in the rest of this Appendix we will drop the subscripts 

from the expectation E .  Let the Σ  denote the covariance matrix of 

( )1 2
ˆ ˆ ˆ,UMLE UMLE UMLEθ θ

′
=θθθθ  and 1Σ  be a diagonal matrix with the same diagonal elements as 
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Σ .  Recall that the UMLE, the RMLE, and the PAVA estimator of 1θ  under the 

constraint 21 θθ ≤  are of the form 
1 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ' ( )

UMLE UMLE

mI a Iθ θ θ θ θ θ< + > , where 

UMLE

′
=

′

V

V

1
a

1 1
, 

1

1

'

'
RMLE

−

−
=

Σ

Σ

1
a

1 1
, 

1

1

1

1

'

'
PAVA

−

−
=

Σ

Σ

1
a

1 1
, and 

1 1

1 1

 
=  

− 
V .  Following notations 

of Lemma A2, ( )1 2
ˆ ˆ ˆ,θ θ=θθθθ  corresponds to U , ( )0 1

ˆ ˆT θ=θθθθ , * ˆ( )i mT ′=U a θθθθ , { }1 2
ˆ ˆS θ θ= < .  

For a method m, let ( )1 2
ˆ ˆ( , ) ,UMLE UMLE

m mY Y θ θ
′

′ ′ ′= =Y a b , then from Lemma A1 and 

2

1 2

( ' )
( | ) '

'

m
m m mVar Y Y = −

Σ
Σ

Σ

a b
a a

b b
 we deduce the following lemma. 

Lemma A3:  1 2 1 2 1 2( | ) ( | ) ( | )RMLE PAVA UMLEVar Y Y Var Y Y Var Y Y= = . 

Proof of Theorem 2.1 (a):   

There is no loss of generality in assuming 2 0θ > .  If 02 <θ  then one may 

perform a simple linear transformation ii θθ ˆˆ −→  and exploit the symmetry of a normal 

distribution and prove the domination theorem for estimating 2θ−  under the constraint 

2 1.θ θ− ≤ −   Thus in the following we assume 2 0.θ >  

Note that  

( )
1

2 1
ˆ ˆ|RMLE

E θ
−

−

′
′ =

′

Σ

Σ

1
b

1 1

θθθθ
θθθθ  and ( ) ( )

1 1

1 1
2 1 1 1

1 1

' 'ˆ ˆ ˆ| .
' '

PAVA
E θ

− −

− − −
′ ′ ′= + −

′

Σ Σ Σ

Σ Σ Σ

1 1 b
b b b

1 1 1 1b b

θθθθ
θ θ θθ θ θθ θ θθ θ θ

 

Therefore  

( ) ( )

( )

2 2

2 2 2 2

2 2
1 1 1

1 1
2 21 1 1 1

1 1

ˆ ˆ ˆ ˆ| |

ˆ

PAVA RMLEE Eθ θ θ θ

θ
θ θ

− − −

− − − −

   ′ ′∆ = − − −
   

   ′ ′ ′
′ ′= + − − − −   ′ ′ ′ ′   

Σ Σ Σ Σ

Σ Σ Σ Σ

b b

1 1 b 1
b b

1 1 1 1b b 1 1

θ θθ θθ θθ θ

θθθθ
θ θθ θθ θθ θ  
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The above expression can be simplified as  

( ) ( )

( ) ( ) ( )( )( )( )

2

1 2

2 2
2 2 2 2

1 1 1 1 2 2

22
2 2 2 4 4

2 2 1 2 2 1 2 1 2 1 2

2

ˆ ˆ' 2b

σ σ

σ σ σ ρσ σ σ

ρ σ σ σ θ θ ρ σ σ ρσ σ θ θ θ

 
 ∆ =
 + − + 

 ′× − + + − − − +
  

b θθθθ

 

Hence  

( ) ( ) ( )
2 2

2 2 2 2
ˆ ˆ ˆ 0

PAVA RMLE
E E E Iθ θ θ θ  ′− − − = ∆ × >

 
bθθθθ

 
( ) ( )

( ) ( ) ( )
( )( )( ) ( ) ( )

2

1 2

2 2
2 2 2 2

1 1 1 1 2 2

22
2 2 2

2 2 1 2

4 4

2 1 2 1 2 1 2

2

ˆ ˆ 0

ˆ ˆ2 0

E I

E I

σ σ

σ σ σ ρσ σ σ

ρ σ σ σ θ

ρ σ σ ρσ σ θ θ θ

 
 =
 + − + 

 ′ ′− + >
 × 

′ ′+ − − − + >  

b b

b b

θ θθ θθ θθ θ

θ θθ θθ θθ θ

 

 

Since ( ) ( )
2

2
ˆ ˆ 0 0E Iθ′ ′+ > >b bθ θθ θθ θθ θ  and ( ) ( )2

ˆ ˆ 0 0E Iθ′ ′+ > >b bθ θθ θθ θθ θ , therefore the result 

follows from the sufficient conditions of the theorem. 

□ 

Proof of Theorem 2.1 (b):  

Similarly to the proof of Theorem 2.1 (a), it is sufficient to prove the theorem 

when 2 1 0θ θ≥ ≥ ; the proof in the case where 2 10 θ θ≥ ≥  follows by performing a simple 

linear transformation ˆ ˆ
i iθ θ→ −  and by exploiting the symmetry of a normal distribution.  

As in the above proof, straightforward algebra results in  
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( ) ( )
( )

( ) ( )

( )( ) ( ) ( )( )

22

2 2 2 2

2

1

2
2 2 2

1 2 1 1 2

3 2 2 4 2 2 4 4

1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1

ˆ ˆ ˆ ˆ|

ˆ

2

ˆ2 ' 2 2 2 2  .

PAVAE E

b

θ θ θ θ

σ

σ σ σ ρσ σ

ρσ σ σ σ σ θ θ θ σ σ σ σ ρ σ σ σ θ σ θ

  ′ ′∆ = − − −    

′
= ×

+ −

 − − + + + − − −
 

b b

b

θ θθ θθ θθ θ

θθθθ
 

Since 0 and 012 ≤≥≥ ρθθ , then the above expression is negative.  The result 

then follows by appealing to Lemma A2 and Lemma A3.  

 

□ 

 

In the following (1,1,1...,1) ,  '′= =J 111 and let I  denote the identity matrix.  The 

orders of the vectors and matrices would be apparent from the context. 

Lemma A4: Suppose Σ  is a pp ×  positive definite matrix defined as follows: 

2

1 1 2

2

1 2 2 1

        

1     

σ ρσ σ

ρσ σ σ

′ 
=   
 

Σ

K

1
, with 

1 (1 ) ,  1 / ( 2)pρ ρ ρ= − + ≥ − −K I J .  Then 

2

1 2 1 21

2

2 1 2 2 2

        1'

1     K

ψ ρ ψ ψ

ρ ψ ψ ψ

−
 

=   
 

Σ , where 
2 2 2(1 )ρ ρ= − +K I J , 

2
( 2) 1p

ρ
ρ

ρ
= −

− +
, 

1/2

2

( 2) 1

1 ( 2) ( 1)

p
k

p p

ρ

ρ ρ

 − +
=  

− − − − 
 and ,  1,2i

i

k
iψ

σ
= = . 

Proof: Proof follows by verifying that 1 .− =ΣΣ I  

□ 

Lemma A5: Let 2

1 2 1 2( 1)u pψ ρ ψ ψ= + − , 2 2

2 2 1 2 2 2( 1) ( 2)z p pψ ρ ψ ψ ρ ψ= + − + −  and 

.2,1 ,2 == −
iw ii σ  Then 
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0u ≥  if either 0ρ <  or 0ρ > , 
( )

( )
1

2

2 1

1

p

p

ρσ

σ ρ

− +
≤

−
. 

0u ≤  if 
( )

( )
1

2

2 1
0,

1

p

p

ρσ
ρ

σ ρ

− +
> ≥

−
 

0z >  if either 1

2

0
σ

ρ
σ

< ≤  or 0ρ <  

0z ≤  if 1

2

σ
ρ

σ
≥  

1

2

0
w

u z
w

− ≥  if either 1

2

0, 1
σ

ρ
σ

< ≥   or 1

2

0, 1
σ

ρ
σ

> ≤  

1

2

0
w

u z
w

− ≤  if either 1

2

0, 1
σ

ρ
σ

< <  or 1

2

0, 1
σ

ρ
σ

> >  

Proof:  

Note that 2 0ρ ≥  if and only if 0ρ ≤ .   

( ) ( ) ( )
2 2 2

2 2 2 1
1 2 1 2 2 2

1 1 2 1 2

1 1 1 1
k k k

u p p p
ρ ρ σ

ψ ρ ψ ψ
σ σ σ σ σ

 
= + − = + − = + − 

 
 is non-negative 

whenever 0ρ ≤ .  Since 
2

( 2) 1p

ρ
ρ

ρ
= −

− +
, then 

2

1

2

1 2

1 ( 1)
(1 ( 2) )

k
u p

p

ρσ

σ ρ σ

 
= − − 

+ − 
, 

which is non-negative if 0ρ > , 
( )

( )
1

2

2 1

1

p

p

ρσ

σ ρ

− +
≤

−
 and is non-positive if 0ρ >  and 

1

2

( 2) 1

( 1)

p

p

σ ρ

σ ρ

− +
≥

−
.  Hence (a) and (b) are true.  Note that 
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( ) ( )

( )( ) ( )( )( )

( )
( )( )

( )( ) ( )( )
( )

( ) ( )
( )

2 2 2
2 2 2 2
2 2 1 2 2 2 2 2

2 1 2 2

2 2

1 2 2 2 1 1 2 2 12 2

2 1 2 1

2

1 2 12

2 1

2
1 2 1

2

2 1

2
1 1 1 2

2

2 1

2 2

2 2

2
2 1

2 1 2

2 1

2 2

2

k k k
z p p

k k
p p

k
p

p

p pk

p

p pk

p

ρ ρ
ψ ρ ψ ψ ρ ψ

σ σ σ σ

σ ρ σ ρ σ σ ρ σ σ
σ σ σ σ

ρ
σ σ σ

σ σ ρ

σ ρ ρ σ σ

σ σ ρ

σ ρ σ σ ρ ρσ

σ σ

= + + − = + + − =

= + + − = + + − =

 
= − + − =  − + 

 − + − + −
= = 

 − + 

− + − − −
=

−

( )

1

2

1 2

2

2 1

1

2 1

k

p

ρ

σ ρσ

σ σ ρ

 
=  + 

 −
=   − + 

 

Hence 0z ≥  if either 0ρ ≤  or 1

2

0 ,
σ

ρ
σ

≤ ≤  and 0z ≤  if 1

2

σ
ρ

σ
≥ , which proves 

(c) and (d).  Similarly, it is straightforward to prove (e) and (f). 

□ 

Lemma A6: Let ( )1 2
ˆ ˆ ˆ ˆ, ,..., ~ ( , )

p
Nθ θ θ

′
= Σθ θθ θθ θθ θ  where Σ  is not necessarily diagonal with 

variance piwVar iii ,...,2,1  ,)ˆ( 12 === −σθ .  Then for any ,0>c  

 ( )( )

1 (1)

1ˆ exp [ ( ) ( )] ,
2

PAVA p

i i

Αp Y

P c k R c R c dYθ θ
θ

∂  
− < = − − − 

∂  
∫  

where ( ) ( )'

(1) , ~ ,
p

Y Y Y N c
′= − Σ1 , -(p/2) -1/2

1 (2 ) | |k π= Σ , 

1 1
min   max ( ) 0

t

Y j j j
i t p s i

j s

Α w Y θ
≤ ≤ − ≤ ≤

=

 
= + ≥ 
 

∑ , ( ) (1)' 1

(1)( ) :
Y

R c Y b c c
b

−
  

 ′= + +        
Σ1 1  and 

( )
1

1
max

p

j j j

j s

p
s i

p

w Y

b
w

θ

θ

−

=

≤ ≤

+

= − −
∑

. 
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Proof:  

Note that 

( ) ( ) ).()(ˆˆˆ )()()(
cQcQcPcPcP i

pPAVA
ii

pPAVA
ii

pPAVA
i −−=>−−−>−=





 <− θθθθθθ

Hence in the following we first compute ( )
p

Q c
θ

∂

∂
 so that ( )( )ˆPAVA p

i i

p

P cθ θ
θ

∂
− <

∂
 

can be computed as ( ) ( ).
p p

Q c Q c
θ θ

∂ ∂
− −

∂ ∂
 

Denote

∑

∑

=

=

=

t

sj
j

t

sj
jj

w

w

tsAve

θ

θ

ˆ

),( ˆ , then 

( )( )
ˆ ˆ

11 1 1

ˆ

ˆ min   max min min   max ( , ),  max ( , ) .

t

j j

j sPAVA p

i t
i t p i t ps i s i s i

j

j s

w

Ave s t Ave s p

w
θ θ

θ

θ =

≤ ≤ ≤ ≤ −≤ ≤ ≤ ≤ ≤ ≤

=

= =
∑

∑
.  

Performing a linear transformation ( )0

1 2
ˆ ˆ ˆ,  ,...,

p
X c c cθ θ θ

′
= − − −  we have 

0
~ ( , )X N c− Σ1θθθθ  and  

( )0 0

( )

1

1 1 1

ˆ

ˆ min   max

min min   max ( , ),  max ( , ) .

t

j j

j sPAVA p

i t
i t p s i

j

j s

X Xi t p s i s i

w

c c

w

Ave s t Ave s p

θ

θ =

≤ ≤ ≤ ≤

=

≤ ≤ − ≤ ≤ ≤ ≤

− = −

=

∑

∑  

Let ∑=
=

t

sj
jj

ts
XwS

0,  then 0),( ˆ ≥psA
θ

 if and only if 
p

ps

is
p

w

S
X

1,

1

0
max

−

≤≤
−≥ .  Then we 

have   
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( )

( ){ }
{ }

0 0

0 0

0

( )

1 1 1

1 1 1

, 1
0

1 1 1

ˆ( )

min min   max ( , ),  max ( , ) 0

min   max ( , ) 0,max ( , ) 0

min   max ( , ) 0, max .

PAVA p

i i

X Xi t p s i s i

X Xi t p s i s i

s p

pXi t p s i s i
p

Q c P c

P Ave s t Ave s p

P Ave s t Ave s p

S
P Ave s t X

w

θ θ

≤ ≤ − ≤ ≤ ≤ ≤

≤ ≤ − ≤ ≤ ≤ ≤

−

≤ ≤ − ≤ ≤ ≤ ≤

= − >

= ≥

= ≥ ≥

  
= ≥ ≥ − 

  

 

Performing another linear transformation ,,...,2,1 ,0
pjXY jjj =−= θ  we have 

~ ( , )Y N c− Σ1 .  Furthermore, without any loss we may assume that .0=iθ   Hence, 

{ }0 0
1 11 1

min   max ( , ) 0 min   max ( ) 0
t

j j j YX Xi t p i t ps i s i
j s

A Ave s t w Y Aθ
≤ ≤ − ≤ ≤ −≤ ≤ ≤ ≤

=

 
= ≥ = + ≥ = 

 
∑  and  

, 1
0

1
max

s p

p
s i

p

S
X

w

−

≤ ≤
≥ −  is equivalent to 

( )
1

1
max

p

j j j

j s

p p
s i

p

w Y

Y
w

θ

θ

−

=

≤ ≤

+

≥ − −
∑

. 

Therefore we may express ( )Q c  in terms of Y  as follows:  

0

, 1
0

1 1 1
( ) min   max ( , ) 0, max

s p

pXi t p s i s i
p

S
Q c P Ave s t X

w

−

≤ ≤ − ≤ ≤ ≤ ≤

  
= ≥ ≥ − 

  
1

1

( )

, max

p

j j j

j s

Y p p
s i

p

w Y

P A Y
w

θ

θ

−

=

≤ ≤

 
+ 

 
= ≥ − − 

 
  

∑
 

Since ~ ( , )Y N c− Σ1 , then 

( ) (1)' 1

1 (1) (1)

11
( ) exp 1' : '

2
Y

p

A b p

Y c
Q c k Y c Y c dY

Y c

−
  + 

= − + + Σ    +   
∫ ∫ .  Note that in the above 

expression only b is a function of pθ  and hence using a fundamental theorem of calculus 

we obtain the following 
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( ) ∫=∫
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
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
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

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
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2

1
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1
':'1

2

1
exp)( )1(1)1(

)1(1'
)1(1

θ
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.)](
2

1
exp[)](

2

1
exp[ˆ

)1(1
)(

dYcRcRkcP

Y
Α

i
pPAVA

i
p

∫








−−−−=




 <−

∂

∂
θθ

θ
 

□ 

Lemma A7:Let 
1 2

ˆ ˆ ˆ ˆ( , ,..., ) ' ~ ( , )
p

Nθ θ θ θ= Σθθθθ  where Σ  is not necessarily diagonal with 

variance piwVar iii ,...,2,1  ,)ˆ( 12 === −σθ .  Then for any ,0>c  

( )( )

1 (1)

1

1 1ˆ exp[ ( )] exp[ ( )] ,
2 2

PAVA p

i i

Α
Y

P c k R c R c dYθ θ
θ

∂  
− < = − − − − 

∂  
∫   

where ( ) ( )1 (1), ~ ,Y Y Y N c
′′= − Σ1 , -(p/2) -1/2

1 (2 ) | |k π= Σ , 

2
  max   min ( ) 0

t

Y j j j
i t ps i

j s

Α w Y θ
≤ ≤≤ ≤

=

 
= + ≥ 
 

∑ , ( ) 1

(1)

(1)

( ) , 1
b

R c b Y c c
Y

−
  

 ′ ′= + +        
Σ 1 , and 

( )
2

1

1

min

t

j j j

j

i t p

w Y

b
w

θ

θ=

≤ ≤

+

= − −
∑

. 

Proof: 

Proof follows along the same lines as the proof of Lemma A5 but it uses the fact 

that 

∑

∑

=

=

=

≤≤≤≤ t

sj
j

t

sj
jj

ptiis

pPAVA
i

w

w θ

θ

ˆ

min maxˆ

1

)(  and that 

( ) ( ) ).()(ˆˆˆ )()()(
cQcQcPcPcP i

pPAVA
ii

pPAVA
ii

pPAVA
i −−=−<−−<−=





 <− θθθθθθ
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Details of the proof are omitted as it follows exactly along the same lines as the 

proof of Lemma A5.   

□ 

 

Proof of Theorem 2.2 (a): 

The proof is deduced as follows.  We demonstrate that ( )( )

1 1
ˆPAVA p

P cθ θ− <  is a 

non-increasing function of pθ .  Since )1(
1

)(
1

ˆˆlim
−

∞→
= pPAVApPAVA

p

θθ
θ

, we therefore 

conclude that 

( ) ( )( ) ( 1)

1 1 1 1
ˆ ˆPAVA p PAVA p

P c P cθ θ θ θ−− < ≥ − < .   

Following same set of arguments inductively, we then have  

( ) ( ) ( )( ) ( 1) ( 2)

1 1 1 1 1 1
ˆ ˆ ˆPAVA p PAVA p PAVA pP c P c P cθ θ θ θ θ θ− −− < ≥ − < ≥ − <

( )1 1
ˆ... UMLEP cθ θ≥ ≥ − < ,  

proving the theorem.  Thus to prove the theorem it is sufficient to demonstrate that: 

( ) .0|ˆ| 1
)(

1 <<−
∂

∂
cP

pPAVA

p

θθ
θ

 

From Lemma A6, taking , 01 =θ without loss of generality, we note that for any 0>c , 

,)](
2

1
exp[)](

2

1
exp[ˆ

)1(1
)(

dYcRcRkcP

Y
Α

i
pPAVA

i
p

∫








−−−−=




 <−

∂

∂
θθ

θ
 



 

 96 

where ( ) ( )(1) , ~ ,
p

Y Y Y N c
′′= − Σ1 , -(p/2) -1/2

1 (2 ) | |k π= Σ , ( )
1 1

1

min  0
t

Y j j j
t p

j

Α w Y θ
≤ ≤ −

=

 
= + ≥ 
 

∑ , 

( ) (1)1

(1)( ) : 1 
Y

R c Y b c c
b

−
  

 ′ ′= + +        
Σ1 , and 

( )
1

1

p

j j j

j

p

p

w Y

b
w

θ

θ

−

=

+

= − −
∑

. 

Hence it is sufficient to demonstrate that ),()( cRcR >−  which is equivalent to 

demonstrating the following inequality  

( ) ( )(1) (1)1 1

(1) (1)

(1)1

: 1 1 : 1

 4 0.

Y Y
Y b c c Y b c c

b b

Y
c

b

− −

−

      
   ′ ′ ′ ′− − − + +            

         

 
′= − >  

 

Σ Σ

Σ

1

1

 

Equivalently, we need to demonstrate that  (1)1 0.
Y

b

−
 

′ <  
 

Σ1  

From Lemma A4 note that  

2

1 2 1 21

2

2 1 2 2 2

        1'

1     K

ψ ρ ψ ψ

ρ ψ ψ ψ

−
 

=   
 

Σ , where 
2 2 2(1 )ρ ρ= − +K I J , 

2
( 2) 1p

ρ
ρ

ρ
= −

− +
, 

1/2

2

( 2) 1

1 ( 2) ( 1)

p
k

p p

ρ

ρ ρ

 − +
=  

− − − − 
 and ,  1,2i

i

k
iψ

σ
= = . 

Hence 1 ( , , ,..., ) ',u z z z− =Σ 1  where 2

1 2 1 2( 1)u pψ ρ ψ ψ= + −  and 

2 2

2 2 1 2 2 2( 2)z pψ ρ ψ ψ ρ ψ= + + − . 

Consequently, 

( )
( )

1

(1) 11

1 2 3 1 1 2 3 1... ... .

p

j j j

j

p p p

p

w Y
Y

uY z Y Y Y b uY z Y Y Y
wb

θ

θ

−

=−
− −

 
+  

 = + + + + + = + + + + − −     
 
 

∑
Σ1

Since pwww === ...32 , the above expression simplifies to 
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(1)1

1 1 2

2

( / )
p

i

Y
Y u w z w z

b
θ−

 
′ = − −  

 
∑Σ1 .  Since the region of the above integral is 













∑ ≥+=
=−≤≤

t

j
jjj

pt
Y YwΑ

111
0)(  min θ  therefore .01 ≥Y   Also, since each ,2 ,01 ≥=≥ ii θθ

 

therefore to prove (1)1 0
Y

b

−
 

′ <  
 

Σ1  it is sufficient to verify that 0z >  and 1

2

0
w

u z
w

− < .  

From Lemma A5(c, f) we note that under the sufficient conditions of the theorem, 0z >  

and 1

2

0
w

u z
w

− < .  Hence the proof of part (a).  

Proof of Theorem 2.2 (b): Proof of part (b) follows along the same lines as the proof of 

part (a) and is hence omitted. 

□ 

 

Proof of Theorem 2.3:  

The proof follows exactly along the same lines as the proof of Theorem 2.2.  Thus 

to prove the theorem it is sufficient to demonstrate that: 

( ) .0|ˆ| 1
)(

1 <<−
∂

∂
cP

pPAVA

p

θθ
θ

 

From Lemma A6, taking , 01 =θ without loss of generality, we note that for any 

0,c >  ( )( )

1 (1)

1 1ˆ exp ( ) exp ( )
2 2

PAVA p

i i

Αp Y

P c k R c R c dYθ θ
θ

 ∂    
− < = − − − −    ∂     

∫ ,  
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where ( ) ( )(1) , ~ ,
p

Y Y Y N c
′′= − Σ1 , -(p/2) -1/2

1 (2 ) | |k π= Σ , ( )
1 1

1

min   0
t

Y j j j
t p

j

Α w Y θ
≤ ≤ −

=

 
= + ≥ 
 
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(1)1

(1)( ) ( : )
Y

R c Y b c c
b

−
  

′ = + +        
Σ1 1  and 

( )
1

1

p

j j j

j

p

p

w Y

b
w

θ

θ

−

=

+

= − −
∑

. 

Hence it is sufficient to demonstrate that ),()( cRcR >−  which is equivalent to 

demonstrating the following inequality  

( ) ( )(1) (1) (1)1 1 1

(1) (1): 1 :  = 4 0
Y Y Y

Y b c c Y b c c c
b b b

− − −
        

   ′ ′ ′ ′ ′− − − + + − >                           
Σ Σ Σ1 1 1 1 . 

Since ( )1 0,0,...,0, p
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(1)1
.

Y
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b

−
 

′ = 
 
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p
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b θ

θ

−
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 and in the region 





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





∑ ≥+=
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t

j
jjj
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Y YwΑ
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0)(  min θ  it is negative since 0pθ > .  Thus proving the 

theorem.   
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APPENDIX B 

Proofs of Chapter 3 

Proof of Theorem 3.1: 

1θθθθ , 2θθθθ , 2ττττ  are given, we need to estimate 2σσσσ . 

The complete data are defined as [ ]: ′′ ′= YYYYY εεεε .  ( ),N Ξ∼ µµµµYYYYYYYY , where 

1 1 2 2µ
+ 

=  
 

X X

0
YYYY

θ θθ θθ θθ θ
, 

 
=  
 

Ψ Σ
Ξ

Σ Σ
 and ′= +Ψ UTU Σ . 

The likelihood function is  

( ) ( ) ( ) ( ) ( )2 1 22 2 1

1 2

1
, , ; , 2 exp

2

N N
f σ π

− + − − ′
= − − − 

 
Ξ Ξθ θ τ µ µθ θ τ µ µθ θ τ µ µθ θ τ µ µY YY YY YY YY Y YY Y YY Y YY Y Y .  

Since 1− ′= −
′

A B
C A BC B

B C
 (Searle et al., 1992), 

21

1

.i

k
n

i

i

σ−

=

 
′ ′= − = − = =  

 
∏Ξ Σ Ψ ΣΣ Σ Σ Ψ Σ Σ UTU UTU  

Since ( ) ( )
1

1
1 1

1 1
,

N

N

−
−

− −

− −

     
′= + − −     ′ ′−     

A B 0 0 I
A BC B I BC

B C 0 C C B
 (Searle et al., 1992), 

( ) ( )

( ) ( ) ( ) ( )

1
1

1 1

1

1 1

1 1

,

, , .

N

N N

N

N N

N N N N

N N

−
−

− −

−

− −

− −

    
= = + − − =    

−     

      
′= + − − = + −      − −      

IΨ Σ 0 0
Ξ Ψ ΣΣ Σ I I

IΣ Σ 0 Σ

I I0 0 0 0
Ψ Σ I I UTU I I

I I0 Σ 0 Σ
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Since [ ]: ′′ ′= YYYYY εεεε  and 
1 1 2 2µ

+ 
=  
 

X X

0
YYYY

θ θθ θθ θθ θ
, thus 

1 1 2 2 1 1 2 2µ
+ − −     

= − =     
     

X X X X

0

Y Y
YYYYY -Y -Y -Y -

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

ε εε εε εε ε
. 

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

1 1 2 21 1

1 1 2 2

1 1 2 2

1 1 2 2 1

1 1 1 2 2

1 1 2 2

11

1 1 2 2

:

:

: ,
N

N N

N

− −

−

−

−−

− − ′  ′ ′− − = − −   
   

− −   ′ ′= − −   
   

− −    ′ ′ ′+ − − −    
−    

′′ ′= + − − − −

X X
Ξ X X Ξ

0 0 X X
X X

0 Σ

I X X
X X UTU I I

I

Σ X X UTU

Y
Y

Y
Y

Y
Y

Y Y

θ θθ θθ θθ θ
µ µ θ θ εµ µ θ θ εµ µ θ θ εµ µ θ θ ε

εεεε

θ θθ θθ θθ θ
θ θ εθ θ εθ θ εθ θ ε

εεεε

θ θθ θθ θθ θ
θ θ εθ θ εθ θ εθ θ ε

εεεε

ε ε θ θ εε ε θ θ εε ε θ θ εε ε θ θ ε

Y YY YY YY YY YY YY YY Y

( )

( ) ( ) ( )

1 1 2 2

12

1 1 2 2 1 1 2 2

1

.
k

i i i

i

σ ε ε
−−

=

− −

′′ ′= + − − − − − −∑

X X

X X UTU X XY Y

θ θ εθ θ εθ θ εθ θ ε

θ θ ε θ θ εθ θ ε θ θ εθ θ ε θ θ εθ θ ε θ θ ε

) 

Simplified likelihood function is the following: 

( ) ( )

( ) ( ) ( )

1 2

22 2

1 2

1

12

1 1 2 2 1 1 2 2

1

, , ; , 2

1
exp .

2

i

k
N n

i

i

k

i i i

i

f σ π σ

σ ε ε

−

−

=

−−

=

  
′= ×  

  

  ′′ ′× − + − − − − − −  
  

∏

∑

UTU

X X UTU X XY Y

θ θ τθ θ τθ θ τθ θ τ

θ θ ε θ θ εθ θ ε θ θ εθ θ ε θ θ εθ θ ε θ θ ε

YYYY

 

The log likelihood is the following: 

( ) ( )

( ) ( ) ( )

2 2 2

1 2

1

12

1 1 2 2 1 1 2 2

1

, , ; , ln 2 (1/ 2) ln (1/ 2) ln

1 1
               .

2 2

k

i i

i

k

i i i

i

l N nσ π σ

σ ε ε

=

−−

=

 
′= − − − 

 

′′ ′− − − − − − − −

∑

∑

UTU

X X UTU X XY Y

θ θ τθ θ τθ θ τθ θ τ

θ θ ε θ θ εθ θ ε θ θ εθ θ ε θ θ εθ θ ε θ θ ε

YYYY

 

The M (maximization) step of the EM algorithm finds maximum likelihood estimators of 

the unknown parameters as if the complete data were available. 

2 4

2

1
(1/ 2) ,  1, , .

2
i i i i i

i

l
n i kσ σ ε ε

σ
− −∂

′= − + =
∂

…  

By setting the derivative to be equal to 0 we obtain: 
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2 1
ˆ ,  1, , .i i i

i

i k
n

σ ε ε′= = …  

The E (expectation) step of the EM algorithm replaces the unknown quantities iε  with 

their expected values conditioned on the known values. 

Since 

2

1 1 2 2

2 2
,

0
i

i i

i i i ni

N
σ

σ σε

  +   
        ′     

Ψ ΓX X

Γ I

Y
∼

θ θθ θθ θθ θ
,  

where : : : : : : ,
ii n

′ =  Γ 0 0 I 0 0⋯ …  thus 

( ) ( )2 1

1 1 2 2| ,i i iiE ε σ −′= − −Γ Ψ X XY Y θ θθ θθ θθ θ  

( ) 2 4 1| ,  1, , .
ii i n i i iCov i kε σ σ −′= − =I Γ Ψ ΓY …  

Since ( ) ( )( ) ( ) ( )( )E E E tr Cov′′ = +A A Ay y y y y  and ( )tr′ ′=y y yy , 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )( )

4 1 1 2 4 1

1 1 2 2 1 1 2 2

4 1 1 2 4 1

1 1 2 2 1 1 2 2

4 1 1

1 1 2 2 1 1 2 2

| | | |

i

i i i i i

i i ii i n i i i

i i ii i i i i i

i ii i i

E E E tr Cov

tr

n tr

tr n

ε ε ε ε ε

σ σ σ

σ σ σ

σ σ

− − −

− − −

− −

′′ = +

′ ′ ′= − − − − + −

′ ′ ′= − − − − + −

 ′′= − − − − +  

X X Ψ Γ Γ Ψ X X I Γ Ψ Γ

X X Ψ Γ Γ Ψ X X Γ Ψ Γ

Γ Ψ X X X X Ψ Γ

Y Y Y Y

Y Y

Y Y

Y Y

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ ( )

( ) ( ){ }
( ) ( )

2 4 1

2 4 1 1 1

1 1 2 2 1 1 2 2

2 4 1 1 1

1 1 2 2 1 1 2 2 ,

i i i i

i i i ii i

i i i

ii

tr

n tr

n tr

σ

σ σ

σ σ

−

− − −

− − −

′−

 ′′= + − − − − −  

 ′= + − − − − −
  

Γ Ψ Γ

Γ Ψ X X X X Ψ Ψ Γ

Ψ X X X X Ψ Ψ

Y Y

Y Y

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

 

where Aii indicates the (i,i)th block of A. 

Thus  

( ) ( )( ) ( )

( )

1 1
2( ) 2( 1) 4( 1) ( 1) ( 1)

1 1 2 2 1 1 2 2

1
( 1)

1 ˆ ˆˆ ˆ

ˆ                                  ,  1, , ,

r r r r r

i i i

i

r

ii

tr
n

i k

σ σ σ
− −
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−
−

 ′= + − − − −

− =


Ψ X X X X Ψ

Ψ

Y Y

…

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
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where ( 1) ( 1)ˆ ˆr r− − ′= +Ψ UT U Σ  and ( )
1

( 1) ( 1)2 ( 1)2

1
ˆ : :

q

r r r

c q cdiag τ τ− − −=Τ I I… . 

□ 

Proof of Theorem 3.2: 

σ  is given, we need to estimate 1θθθθ , 2θθθθ , 2

iτ  with order restrictions on 1θθθθ . 

The complete data are defined as [ ]: ′′ ′= Y ξξξξYYYY .  ( ),N Ξ∼ µµµµYYYYYYYY ,  

where 

1 1 2 2µ
+ 

=  
 

X X

0
YYYY

θ θθ θθ θθ θ
, 

 
=  ′ 

Ψ UT
Ξ

TU T
 and ′= +Ψ UTU Σ . 

The likelihood function is  

( ) ( ) ( ) ( ) ( )2 1 22 2 1

1 2

1
, , ; , 2 exp

2

N c
f σ π

− + − − ′
= − − − 

 
Ξ Ξθ θ τ µ µθ θ τ µ µθ θ τ µ µθ θ τ µ µY YY YY YY YY Y YY Y YY Y YY Y Y . (30) 

Since 1− ′= −
′

A B
C A BC B

B C
 (Searle et al., 1992), 

21

1

.i

q
c

i

i

τ−

=

 
′ ′= − = − = =  

 
∏Ξ T Ψ UTT TU T Ψ UTU T Σ Σ  

Since ( ) ( )
1

1
1 1

1 1
,

N

N

−
−

− −

− −

     
′= + − −     ′ ′−     

A B 0 0 I
A BC B I BC

B C 0 C C B
 (Searle et al., 1992), 

( ) ( )

( ) ( ) ( )

1
1

1 1 1

1 1

1 1

1 1

,

, .

N

N

N N

N N

−
−

− − −

− −

− −

− −

     
′= = + − − =     ′ ′−     

       
′= + − − = + −       ′ ′− −       

Ψ UT 0 0 I
Ξ Ψ UTT TU I UTT

TU T 0 T T TU

0 0 I 0 0 I
Ψ UTU I U Σ I U

0 T U 0 T U
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Since [ ]: ′′ ′= Y ξξξξYYYY  and 
1 1 2 2µ

+ 
=  
 

X X

0
YYYY

θ θθ θθ θθ θ
, thus 

1 1 2 2 1 1 2 2µ
+ − −     

= − =     
     

X X X X

0

Y Y
YYYYY -Y -Y -Y -

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

ξ ξξ ξξ ξξ ξ
. 

( ) ( ) ( )

( )

( ) ( )

( )

1 1 2 21 1

1 1 2 2

1 1 2 2

1 1 2 2 1

1 1 2 21

1 1 2 2

1 1

1 1 2 2 1 1

:

:

: ,
N

N

− −

−

−

− −

− − ′  ′ ′− − = − −   
   

− −   ′ ′= − −   
   

− −    ′ ′+ − − −    ′−    

′′= + − − − − −

X X
Ξ X X Ξ

0 0 X X
X X

0 T

I X X
X X Σ I U

U

T X X U Σ X X

Y
Y

Y
Y

Y
Y

Y Y

Y YY YY YY YY YY YY YY Y
θ θθ θθ θθ θ

µ µ θ θ ξµ µ θ θ ξµ µ θ θ ξµ µ θ θ ξ
ξξξξ

θ θθ θθ θθ θ
θ θ ξθ θ ξθ θ ξθ θ ξ

ξξξξ

θ θθ θθ θθ θ
θ θ ξθ θ ξθ θ ξθ θ ξ

ξξξξ

ξ ξ θ θ ξ θξ ξ θ θ ξ θξ ξ θ θ ξ θξ ξ θ θ ξ θ( )

( ) ( )

2 2

2 1

1 1 2 2 1 1 2 2

1

.
q

i i i

i

τ ξ ξ− −

=

−

′′= + − − − − − −∑

U

X X U Σ X X UY Y

θ ξθ ξθ ξθ ξ

θ θ ξ θ θ ξθ θ ξ θ θ ξθ θ ξ θ θ ξθ θ ξ θ θ ξ

 

Simplified likelihood function is the following: 

( ) ( ) ( )

( ) ( )

1 2

2 22 2

1 2

1

2 1

1 1 2 2 1 1 2 2

1

, , ; , 2

1
exp .

2

i

q
N c c

i

i

q

i i i

i

f σ π τ

τ ξ ξ

−

− +

=

− −

=

  
= ×  

  

   ′′× − + − − − − − −  
   

∏

∑

Σ

X X U Σ X X UY Y

θ θ τθ θ τθ θ τθ θ τ

θ θ ξ θ θ ξθ θ ξ θ θ ξθ θ ξ θ θ ξθ θ ξ θ θ ξ

YYYY

 

The log likelihood is the following: 

( ) ( ) ( )

( ) ( )

2 2 2

1 2

1

2 1

1 1 2 2 1 1 2 2

1

, , ; , 2 ln 2 (1/ 2) ln (1/ 2) ln

1 1
               .

2 2

q

i i

i

q

i i i

i

l N c cσ π τ

τ ξ ξ

=

− −

=

 
 = − + − −  

 

′′− − − − − − − −

∑

∑

Σ

X X U Σ X X UY Y

θ θ τθ θ τθ θ τθ θ τ

θ θ ξ θ θ ξθ θ ξ θ θ ξθ θ ξ θ θ ξθ θ ξ θ θ ξ

YYYY

 

The M (maximization) step of the EM algorithm finds maximum likelihood estimators of 

the unknown parameters as if the complete data were available. 

( )

( )

1 1

1 2 2 1 1 1

1

1 1

1 2 2 1 1 1

1
2 2

2

.

l − −

− −

∂
′ ′ = − − − − + ∂

′ ′= − − −

X Σ X U X Σ X

X Σ X U X Σ X

Y

Y

θ ξ θθ ξ θθ ξ θθ ξ θ
θθθθ

θ ξ θθ ξ θθ ξ θθ ξ θ
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( )1 1

2 1 1 2 2 2

2

.
l − −∂

′ ′= − − −
∂

X Σ X U X Σ XY θ ξ θθ ξ θθ ξ θθ ξ θ
θθθθ

 

2 41 1

2 2
i i i i i

i

l
cτ τ ξ ξ

τ
− −∂

′= − +
∂

 

Derivatives are set to be equal to 0: 

( )1 1

1 1 1 1 2 2

− −′ ′= − −X Σ X X Σ X UYθ θ ξθ θ ξθ θ ξθ θ ξ  

( )1 1

2 2 2 2 1 1

− −′ ′= − −X Σ X X Σ X UYθ θ ξθ θ ξθ θ ξθ θ ξ  

2 4

i i i i icτ τ ξ ξ− − ′=  

Thus  

( ) ( )
1

1 1

1 1 1 1 2 2
ˆ

−
− −′ ′= − −X Σ X X Σ X UYθ θ ξθ θ ξθ θ ξθ θ ξ  

( ) ( )
1

1 1

2 2 2 2 1 1
ˆ

−
− −′ ′= − −X Σ X X Σ X UYθ θ ξθ θ ξθ θ ξθ θ ξ  

( ) ( )1 1

1 1 1 1 2 2
ˆ

+
− −′ ′= − −X Σ X X Σ X UYθ θ ξθ θ ξθ θ ξθ θ ξ  

( ) ( )1 1

2 2 2 2 1 1
ˆ

+
− −′ ′= − −X Σ X X Σ X UYθ θ ξθ θ ξθ θ ξθ θ ξ  

2 1
î i i

ic
τ ξ ξ′= , 1, , .i q= …  

The E (expectation) step of the EM algorithm replaces the unknown quantities iξ  with 

their expected values conditioned on the known values. 

Since 

2

1 1 2 2

2 2
,

0
i

i i

i i i ci

N
τ

τ τξ

  +   
             

Ψ UX X

U I

Y
∼

θ θθ θθ θθ θ
, thus 

( ) ( )2 1

1 1 2 2| ,i i iE ξ τ −′= − −U Ψ X XY Y θ θθ θθ θθ θ  

( ) 2 4 1|
ii i c i i iCov ξ τ τ −′= −I U Ψ UY  
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( ) ( )1

1 1 2 2|E
−′= − −TUΨ X XY Yξ θ θξ θ θξ θ θξ θ θ  

Since ( ) ( )( ) ( ) ( )( )E E E tr Cov′′ = +A A Ay y y y y  and ( )tr′ ′=y y yy , 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ){ } ( )

( )( )

4 1 1 2 4 1

1 1 2 2 1 1 2 2

4 1 1 2 4 1

1 1 2 2 1 1 2 2

2 4 1 1 1

1 1 2 2 1 1 2 2

| | | |

i

i i i i i

i i i i c i i i

i i i i i i i i

i i i i

E E E tr Cov

tr

tr c tr

c tr

ξ ξ ξ ξ ξ

τ τ τ

τ τ τ

τ τ

− − −

− − −

− − −

′′ = +

′ ′ ′= − − − − + −

′′ ′= − − − − + −

 ′′= + − − − − −


X X Ψ U U Ψ X X I U Ψ U

U Ψ X X X X Ψ U U Ψ U

U Ψ X X X X Ψ Ψ

Y Y Y Y

Y Y

Y Y

Y Y

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ .i

 
  

U

 

( ) ( )( )

( ) ( ) ( )( )
( ) ( )( ) ( )( ){ }
( ) ( )

1
1 1 1

1 1 1 1 2 2 1 1 2 2

1 11 1

1 1 1 2 2 1 1 2 2

1 11 1 1 1

1 1 1 1 2 2 1 1 1 2 2

1 11 1 1

1 1 1 1 2 2 1 1

ˆ
−

− − −

− −− −

− −− − − −

− −− − −

′ ′ ′= − − − −

′ ′ ′ ′= − − + − −

′ ′ ′ ′ ′ ′= − − + − + − −

′ ′ ′ ′ ′= − + + −

X Σ X X Σ X UTUΨ X X

X Σ X X Σ X UTU UTU Σ X X

X Σ X X Σ X Σ X X Σ UTU Σ Σ UTU Σ X X

X Σ X X Σ X Σ X X UTU Σ X

Y Y

Y Y

Y Y

Y Y

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θ θ θθ θ θθ θ θθ θ θ

θ θ θθ θ θθ θ θθ θ θ

θθθθ ( ){ 1 2 2
− Xθ θθ θθ θθ θ

 

( )( ) ( )( )}
( ) ( ){ ( )}

( ) { } ( ) ( )

( ) ( )

11

1 1 1 2 2

1
1 1 1 1 1

1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2

1 1
1 1 1 1

1 1 1 1 1 1 1 1 1 1 2 2

1
1 1

1 1 1 1 1 1 2 2 .

−−

−
− − − − −

− −
− − − −

−
− −

′ ′ ′− + + − −

′ ′ ′ ′ ′= − + − − − − −

′ ′ ′ ′= + − −

′ ′= + − −

X Σ UTU Σ UTU Σ X X

X Σ X X Σ X Σ X X Ψ X X X Σ X X

X Σ X X Σ X X Σ X X Ψ X X

X Σ X X Ψ X X

Y

Y Y Y

Y

Y

θ θθ θθ θθ θ

θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ

θ θ θθ θ θθ θ θθ θ θ

θ θ θθ θ θθ θ θθ θ θ

 

( ) ( )( ) ( )

( ) }

4 1 1
2( ) 2 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 2 2 1 1 2 2

1
( 1)

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ                             ,   1, , ,

r r r r r r ri
i i i

i

r

i

tr
c

i q

τ
τ τ

− −
− − − − − −

−
−

  ′
′= + − − − − 


− =


U Ψ X X X X Ψ

Ψ U

Y Y

…

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

 

Thus 

( ) ( ) ( )
11

( ) ( 1) 1 ( 1) ( 1) ( 1)

1 1 1 1 1 1 1 2 2
ˆ ˆ ˆ ˆ ˆr r r r r

−−
− − − − −′ ′= + − −X Σ X X Ψ X XYθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,  

( ) ( ) ( )
11

( ) ( 1) 1 ( 1) ( 1) ( 1)

2 2 2 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆr r r r r

−−
− − − − −′ ′= + − −X Σ X X Ψ X XYθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,  
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( ) ( )( ) ( )

( ) }

4 1 1
2( ) 2 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 2 2 1 1 2 2

1
( 1)

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ                             ,   1, , ,

r r r r r r ri
i i i

i

r

i

tr
c

i q

τ
τ τ

− −
− − − − − −

−
−

  ′
′= + − − − − 


− =


U Ψ X X X X Ψ

Ψ U

Y Y

…

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

  

where ( 1) ( 1)ˆ ˆr r− − ′= +Ψ UT U Σ  and ( )
1

( 1) ( 1)2 ( 1)2

1
ˆ : :

q

r r r

c q cdiag τ τ− − −=Τ I I… . 

□ 

Proof of Theorem 3.3: 

Under the regularity conditions R1 to R4, from Theorem 10.2.3 in Rao and Kleffe 

(1988) we deduce that the MINQUE φ̂φφφ  is consistent for φφφφ . Appealing to Noether’s 

conditions (R5 and R6) we deduce the asymptotic normality of ˆAθθθθ  from the discussion 

in Chapter 10.7 in Rao and Kleffe (1988). 

□ 
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APPENDIX C 

Complete simulation results 

Table 7.1.  Abbreviations for tests 

Test abbreviation Test 

Hm1 Homoscedastic unrestricted F-test 

Hm2 Homoscedastic unrestricted F-test (linear regression) 

Hm3 Homoscedastic LR parametric bootstrap 

Hm4 Homoscedastic parametric bootstrap F-test 

Hm5 Homoscedastic parametric bootstrap F-test (linear regression) 

Hm6 Homoscedastic LR non-parametric bootstrap 

Hm7 Homoscedastic non-parametric bootstrap F-test 

Hm8 Homoscedastic non-parametric bootstrap F-test (linear regression) 

Hm9 Homoscedastic asymptotic LR test  

Hm10 Homoscedastic MINQUE-based Williams non-parametric bootstrap 

Ht1 Heteroscedastic unrestricted F-test 

Ht2 Heteroscedastic unrestricted F-test (linear regression) 

Ht3 Heteroscedastic LR parametric bootstrap 

Ht4 Heteroscedastic parametric bootstrap F-test 

Ht5 Heteroscedastic parametric bootstrap F-test (linear regression) 

Ht6 Heteroscedastic LR non-parametric bootstrap 

Ht7 Heteroscedastic non-parametric bootstrap F-test 

Ht8 Heteroscedastic non-parametric bootstrap F-test (linear regression) 

Ht9 Heteroscedastic asymptotic LR test  

Ht10 Heteroscedastic MINQUE-based Williams non-parametric bootstrap 

 

Table 7.2.  Type I errors for homoscedastic normally distributed data (section 4.1.2). 

p subj 
2τ  Hm6 Hm9 Hm10 Ht6 Ht9 Ht10 

3 10 1 0.04 0.01 0.04 0.05 0.03 0.05 

3 50 1 0.04 0.01 0.03 0.04 0.01 0.03 

3 10 0.2 0.04 0.02 0.04 0.05 0.05 0.04 

3 10 2 0.04 0.01 0.04 0.05 0.04 0.05 

3 50 2 0.04 0.01 0.03 0.04 0.01 0.03 

5 10 1 0.04 0.01 0.05 0.05 0.02 0.03 

5 10 0.2 0.05 0.02 0.05 0.04 0.02 0.04 

5 10 2 0.05 0.01 0.05 0.05 0.02 0.04 
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Table 7.3.  Power for homoscedastic normally distributed data (section 4.1.2). 

p subj 1θθθθ  2τ  Hm6 Hm9 Hm10 Ht6 Ht9 Ht10 

3 10 0 0.00 1.25        1 0.90 0.83 0.88 0.81 0.82 0.84 

3 10 0 1.26 1.26        1 0.89 0.85 0.89 0.82 0.82 0.84 

3 50 0 0.55 0.55        1 0.90 0.84 0.90 0.89 0.85 0.89 

3 10 0 0.73 1.45        1 0.90 0.87 0.92 0.86 0.86 0.89 

5 10 0 0.00 0.00 0.00 1.27      1 0.89 0.70 0.90 0.78 0.65 0.86 

5 10 0 1.24 1.24 1.24 1.24      1 0.89 0.71 0.90 0.74 0.58 0.86 

5 10 0 0.37 0.74 1.11 1.48      1 0.94 0.80 0.94 0.88 0.80 0.90 

5 10 0 0.81 0.81 0.81 1.62      1 0.92 0.76 0.95 0.83 0.74 0.93 

10 10 0 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1 0.94 0.51 0.96 0.75 0.24 0.92 

10 10 0 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.72 1 0.95 0.51 0.97 0.84 0.40 0.95 

 

Table 7.4.  Type I errors for heteroscedastic normally distributed data (section 4.1.3). 

p subj 
2σσσσ  

2τ  Ht6 Ht9 Ht10 Hm6 Hm9 Hm10 

3 10 0.1 0.10 2.37   1 0.04 0.04 0.03 0.07 0.06 0.07 

3 10 0.1 0.20 0.20   1 0.03 0.03 0.04 0.04 0.02 0.03 

3 10 0.1 0.09 0.36   1 0.04 0.03 0.03 0.05 0.04 0.05 

3 50 0.1 0.10 0.01   1 0.04 0.01 0.03 0.03 0.02 0.03 

3 50 0.1 0.02 0.02   1 0.03 0.02 0.04 0.06 0.03 0.06 

5 10 0.1 0.10 0.10 0.10 0.16 1 0.05 0.01 0.04 0.04 0.01 0.05 

5 10 0.1 0.20 0.20 0.20 0.20 1 0.05 0.01 0.04 0.02 0.00 0.04 

5 10 0.1 0.11 0.44 0.99 1.76 1 0.04 0.01 0.04 0.07 0.03 0.07 

5 10 0.1 0.11 0.11 0.11 0.45 1 0.05 0.02 0.05 0.07 0.02 0.08 

 

Table 7.5.  Power for heteroscedastic normally distributed data (section 4.1.3). 

p subj 1θθθθ  2τ  Ht6 Ht9 Ht10 Hm6 Hm9 Hm10 

3 10 0 0.00 1.54   1 0.80 0.82 0.88 0.95 0.93 0.95 

3 10 0 0.45 0.45   1 0.84 0.81 0.82 0.83 0.75 0.83 

3 10 0 0.30 0.60   1 0.84 0.82 0.80 0.86 0.79 0.87 

3 50 0 0.00 0.10   1 0.81 0.70 0.74 0.68 0.54 0.69 

3 50 0 0.15 0.15   1 0.90 0.86 0.92 0.95 0.92 0.95 

3 50 0 0.08 0.16   1 0.97 0.95 0.93 0.96 0.92 0.97 

5 10 0 0.00 0.00 0.00 0.40 1 0.66 0.42 0.78 0.86 0.67 0.87 

5 10 0 0.45 0.45 0.45 0.45 1 0.83 0.68 0.81 0.83 0.55 0.85 

5 10 0 0.33 0.66 1.00 1.33 1 0.98 0.96 0.88 0.96 0.87 0.96 

5 10 0 0.34 0.34 0.34 0.67 1 0.81 0.71 0.82 0.89 0.73 0.91 
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Table 7.6.  Type I errors for normally distributed data with an unspecified covariance 

matrix (defined in section 4.1.4, scale matrices (1), (2) are taken from page 63, 

method = Ht10). 

Scale matrix p c df Type I error 

(1) 3 10 4 0.07 

(1) 3 10 7 0.08 

(1) 3 10 10 0.07 

(1) 3 10 13 0.07 

(1) 3 50 5 0.07 

(1) 3 50 7 0.07 

(1) 3 50 10 0.07 

(1) 3 50 13 0.06 

(1) 3 10 53 0.06 

(1) 3 10 103 0.06 

(1) 3 50 53 0.06 

(1) 3 50 103 0.06 

(2) 3 10 4 0.07 

(2) 3 10 7 0.05 

(2) 3 10 10 0.07 

(2) 3 10 13 0.07 

(2) 3 50 5 0.06 

(2) 3 50 7 0.06 

(2) 3 50 10 0.05 

(2) 3 50 13 0.05 

 

Table 7.7.  Power for normally distributed data with an unspecified covariance matrix  

(defined in section 4.1.4, scale matrices (1), (2) are taken from page 63, method = Ht10). 

Scale 

matrix p c 1θθθθ
 df Power 

(1) 3 10 0.000 0.000 1.540   13 0.62 

(1) 5 10 0.000 0.332 0.664 0.996 1.328 10 0.93 

(2) 3 10 0.000 0.000 1.540   13 0.59 

(2) 5 10 0.000 0.332 0.664 0.996 1.328 10 0.89 
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Table 7.8.  Type I errors for normally distributed data with the auto-correlation 

covariance matrix (defined in section 4.1.4, method = Ht10). 

ρ  p c Type I error 

0.2 3 10 0.05 

0.2 3 50 0.05 

0.2 5 10 0.03 

0.2 5 50 0.06 

0.4 3 10 0.05 

0.4 3 50 0.06 

0.4 5 10 0.03 

0.4 5 50 0.06 

0.6 3 10 0.05 

0.6 3 50 0.06 

0.6 5 10 0.04 

0.6 5 50 0.07 

0.9 3 10 0.05 

0.9 3 50 0.06 

0.9 5 10 0.05 

0.9 5 50 0.08 

 

Table 7.9.  Power for normally distributed data with the auto-correlation covariance 

matrix (defined in section 4.1.4, method = Ht10). 

ρ  p c 1θθθθ
 Power 

0.2 3 10 0.00 0.00 1.00   0.73 

0.2 3 10 0.00 1.00 1.00   0.70 

0.2 3 10 0.00 0.50 1.00   0.66 

0.2 3 50 0.00 0.00 0.45   0.78 

0.2 3 50 0.00 0.50 0.50   0.86 

0.2 5 10 0.00 0.00 0.00 0.00 1.00 0.77 

0.2 5 10 0.00 1.00 1.00 1.00 1.00 0.70 

0.2 5 10 0.00 0.30 0.60 0.90 1.20 0.82 

0.2 5 50 0.00 0.00 0.00 0.00 0.50 0.90 

0.2 5 50 0.00 0.50 0.50 0.50 0.50 0.89 

0.2 5 50 0.00 0.15 0.30 0.45 0.60 0.95 

0.2 5 50 0.00 0.30 0.30 0.30 0.60 0.93 

0.6 3 10 0.00 0.00 0.70   0.62 

0.6 3 10 0.00 0.80 0.80   0.71 

0.6 3 10 0.00 0.40 0.80   0.66 

0.6 3 50 0.00 0.00 0.35   0.77 

0.6 3 50 0.00 0.35 0.35   0.77 

0.6 3 50 0.00 0.20 0.40   0.81 

0.6 5 10 0.00 0.00 0.00 0.00 0.90 0.74 

0.6 5 10 0.00 0.80 0.80 0.80 0.80 0.63 

0.6 5 10 0.00 0.25 0.50 0.75 1.00 0.71 

0.6 5 50 0.00 0.00 0.00 0.00 0.50 0.95 

0.6 5 50 0.00 0.50 0.50 0.50 0.50 0.92 

0.6 5 50 0.00 0.30 0.30 0.30 0.60 0.94 
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Table 7.10.  Type I errors for homoscedastic log-normally distributed data (section 

4.2.1.2). 

p subj Hm6 Hm9 Hm10 Ht6 Ht9 Ht10 

3 10 0.04 0.02 0.03 0.06 0.03 0.05 

3 50 0.04 0.02 0.04 0.07 0.02 0.06 

3 10 0.04 0.03 0.04 0.06 0.05 0.06 

3 10 0.04 0.02 0.04 0.06 0.04 0.05 

5 10 0.05 0.01 0.05 0.08 0.02 0.04 

 

Table 7.11.  Power for homoscedastic log-normally distributed data (section 4.2.1.2). 

p subj 1θθθθ  2τ  Hm6 Hm9 Hm10 Ht6 Ht9 Ht10 

3 10 0 0.00 1.90        1 0.78 0.71 0.76 0.76 0.83 0.74 

3 50 0 0.00 0.80        1 0.72 0.61 0.73 0.83 0.76 0.73 

3 10 0 2.00 2.00        1 0.78 0.74 0.78 0.67 0.74 0.75 

3 50 0 0.80 0.80        1 0.76 0.68 0.77 0.73 0.65 0.71 

3 10 0 1.00 2.00        1 0.74 0.69 0.75 0.69 0.74 0.73 

3 50 0 0.50 1.00        1 0.81 0.75 0.82 0.78 0.77 0.77 

5 50 0 0.70 0.70 0.70 0.70      1 0.65 0.32 0.68 0.53 0.35 0.63 

5 50 0 0.70 0.70 0.70 1.40      1 0.92 0.75 0.92 0.89 0.82 0.89 

10 10 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.80 1 0.73 0.22 0.76 0.74 0.37 0.73 

10 10 0 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1 0.69 0.13 0.77 0.44 0.26 0.71 

10 10 0 0.31 0.62 0.93 1.24 1.55 1.86 2.17 2.48 2.79 1 0.96 0.79 0.94 0.97 0.97 0.83 

10 10 0 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 2.60 1 0.83 0.29 0.85 0.74 0.49 0.79 

 

Table 7.12.  Type I errors for heteroscedastic log-normally distributed data (section 

4.2.1.3). 

p subj 
2σσσσ  

2τ  Ht6 Ht9 Ht10 Hm6 Hm9 Hm10 

3 10 0.10 0.10 0.04   1 0.03 0.02 0.03 0.02 0.01 0.02 

3 10 0.10 0.20 0.20   1 0.04 0.03 0.05 0.05 0.03 0.05 

3 10 0.10 0.01 0.04   1 0.03 0.03 0.03 0.04 0.03 0.04 

3 50 0.10 0.02 0.02   1 0.01 0.01 0.01 0.01 0.00 0.00 

3 50 0.10 0.01 0.03   1 0.02 0.01 0.01 0.02 0.01 0.01 

5 10 0.10 0.10 0.10 0.10 0.16 1 0.06 0.02 0.04 0.07 0.02 0.07 

5 10 0.10 0.04 0.04 0.04 0.04 1 0.04 0.02 0.03 0.05 0.01 0.05 

5 10 0.10 0.01 0.04 0.09 0.16 1 0.06 0.02 0.05 0.10 0.04 0.11 

5 10 0.10 0.01 0.01 0.01 0.04 1 0.04 0.03 0.03 0.06 0.03 0.07 
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Table 7.13.  Power for heteroscedastic log-normally distributed data (section 4.2.1.3). 

p nsubj 1θθθθ  2τ  Ht6 Ht9 Ht10 Hm6 Hm9 Hm10 

3 10 0 0.00 1.54   1 0.84 0.90 0.98 0.98 0.94 0.97 

3 10 0 0.45 0.45   1 0.83 0.81 0.85 0.86 0.77 0.85 

3 10 0 0.30 0.60   1 0.88 0.85 0.90 0.94 0.88 0.95 

3 50 0 0.00 0.20   1 0.97 0.92 0.88 0.93 0.85 0.93 

3 50 0 0.15 0.15   1 0.66 0.57 0.68 0.73 0.67 0.73 

3 50 0 0.08 0.16   1 0.92 0.89 0.69 0.81 0.69 0.80 

5 10 0 0.00 0.00 0.00 0.40 1 0.70 0.44 0.77 0.86 0.65 0.87 

5 10 0 0.45 0.45 0.45 0.45 1 0.80 0.66 0.83 0.84 0.54 0.86 

5 10 0 0.10 0.20 0.30 0.40 1 0.90 0.79 0.75 0.94 0.79 0.91 

5 10 0 0.34 0.34 0.34 0.67 1 0.84 0.72 0.94 0.96 0.84 0.97 

5 50 0 0.00 0.00 0.00 0.20 1 1.00 0.97 0.96 0.95 0.73 0.95 

5 50 0 0.20 0.20 0.20 0.20 1 0.84 0.66 0.92 0.96 0.87 0.96 

5 50 0 0.08 0.08 0.08 0.16 1 0.91 0.87 0.74 0.93 0.73 0.94 

 

Table 7.14.  Type I errors for the mixture of two normally distributed random variables   

(defined in section 4.2.2, method = Ht10). 

π  s p c Type I error 

0.2 1 3 10 0.06 

0.2 1 3 50 0.04 

0.2 1 5 10 0.03 

0.2 1 5 50 0.05 

0.2 5 3 10 0.06 

0.2 5 3 50 0.04 

0.2 5 5 10 0.04 

0.2 5 5 50 0.06 

0.4 1 3 10 0.06 

0.4 1 3 50 0.05 

0.4 1 5 10 0.04 

0.4 5 3 10 0.05 

0.4 5 3 50 0.04 

0.4 5 5 10 0.04 

0.4 5 5 50 0.05 

0.6 1 3 10 0.05 

0.6 1 3 50 0.05 

0.6 1 5 10 0.04 

0.6 5 3 10 0.06 

0.6 5 5 10 0.04 

0.9 1 3 10 0.05 

0.9 1 3 50 0.05 

0.9 1 5 10 0.05 

0.9 1 5 50 0.05 

0.9 5 3 10 0.05 

0.9 5 3 50 0.05 

0.9 5 5 10 0.05 
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Table 7.15.  Power for the mixture of two normally distributed random variables (defined 

in section 4.2.2, method = Ht10). 

π  s p c 1θθθθ  Power 

0.2 1 3 10 0.00 0.00 1.54   0.99 

0.2 1 5 10 0.00 0.33 0.66 1.00 1.33 0.95 

0.6 1 3 10 0.00 0.00 1.54   1.00 

0.6 1 3 10 0.00 0.45 0.45   0.52 

0.6 1 3 10 0.00 0.30 0.60   0.69 

0.6 1 5 10 0.00 0.45 0.45 0.45 0.45 0.51 

0.6 1 5 10 0.00 0.33 0.66 1.00 1.33 1.00 

0.6 1 5 10 0.00 0.34 0.34 0.34 0.67 0.73 

 

Table 7.16.  Type I errors when random errors follow gamma distribution (defined in 

section 4.2.3, method = Ht10). 

α  β  p c Type I error 

2 0.5 3 10 0.05 

2 0.5 3 50 0.04 

2 0.5 5 10 0.05 

2 0.5 5 50 0.04 

2 2 3 10 0.05 

2 2 3 50 0.05 

2 2 5 10 0.06 

4 0.5 3 10 0.05 

4 0.5 3 50 0.05 

4 0.5 5 10 0.04 

4 2 3 10 0.05 

4 2 3 50 0.06 

4 2 5 10 0.06 

 

Table 7.17.  Power when random errors follow gamma distribution(defined in section 

4.2.3, method = Ht10). 

α  β  p c 1θθθθ  Power 

2 2 3 10 0.000 0.000 1.540   0.338 

4 0.5 3 10 0.000 0.000 1.540   0.936 

4 0.5 3 10 0.000 0.300 0.600   0.338 

4 0.5 5 10 0.000 0.332 0.664 0.996 1.328 0.840 

4 0.5 5 10 0.000 0.335 0.335 0.335 0.670 0.382 
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Table 7.18.  Type I errors for homoscedastic normally distributed data. 

p subj 
2τ  Hm1  Hm2 Hm3 Hm4 Hm5 Hm6 Hm7 Hm8 Hm9 

3 10 0.2 0.05 0.05 0.04 0.03 0.05 0.04 0.04 0.04 0.02 

3 10 1 0.05 0.05 0.03 0.03 0.05 0.04 0.03 0.05 0.01 

3 10 2 0.05 0.05 0.04 0.03 0.05 0.04 0.04 0.05 0.01 

3 30 0.2 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.07 0.04 

3 30 1 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.04 

3 30 2 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.04 

3 50 0.2 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.02 

3 50 1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.01 

3 50 2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.01 

5 10 0.2 0.06 0.07 0.05 0.04 0.07 0.05 0.05 0.06 0.02 

5 10 1 0.06 0.07 0.05 0.04 0.07 0.04 0.04 0.06 0.01 

5 10 2 0.06 0.07 0.05 0.04 0.07 0.05 0.04 0.06 0.01 

5 30 0.2 0.07 0.05 0.06 0.05 0.05 0.06 0.07 0.05 0.02 

5 30 1 0.07 0.05 0.06 0.05 0.05 0.06 0.07 0.05 0.02 

5 30 2 0.07 0.05 0.06 0.05 0.05 0.07 0.06 0.05 0.02 

5 50 0.2 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.05 0.01 

5 50 1 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.01 

5 50 2 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.01 

10 10 0.2 0.06 0.05 0.05 0.04 0.05 0.06 0.04 0.04 0.00 

10 10 1 0.06 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.00 

10 10 2 0.06 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.00 

10 30 0.2 0.04 0.06 0.06 0.03 0.06 0.06 0.04 0.05 0.00 

10 30 1 0.04 0.06 0.06 0.03 0.06 0.06 0.04 0.05 0.00 

10 30 2 0.04 0.06 0.06 0.03 0.06 0.06 0.04 0.06 0.00 

10 50 1 0.04 0.04 0.06 0.03 0.04 0.06 0.04 0.04 0.00 

10 50 0.21 0.04 0.04 0.06 0.03 0.04 0.06 0.04 0.04 0.00 

10 50 2 0.04 0.04 0.06 0.03 0.04 0.06 0.04 0.04 0.00 
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Table 7.19.  Power for homoscedastic normally distributed data. 

(a) p = 3 

p subj 1θθθθ  2τ  Hm1 Hm2 Hm3 Hm4 Hm5 Hm6 Hm7 Hm8 Hm9 

3 10 0.00 0.00 1.25 1 0.80 0.74 0.90 0.90 0.74 0.72 0.83 0.74 0.72 

3 10 0.00 0.00 1.24 0.2 0.80 0.75 0.90 0.89 0.74 0.72 0.86 0.74 0.72 

3 10 0.00 0.00 1.25 2 0.80 0.74 0.90 0.90 0.74 0.72 0.83 0.74 0.72 

3 10 0.00 1.26 1.26 1 0.80 0.74 0.89 0.89 0.76 0.72 0.85 0.76 0.70 

3 10 0.00 1.22 1.22 0.2 0.80 0.73 0.89 0.89 0.75 0.69 0.84 0.75 0.69 

3 10 0.00 1.26 1.26 2 0.80 0.73 0.89 0.89 0.76 0.72 0.85 0.77 0.70 

3 10 0.00 0.73 1.45 1 0.80 0.90 0.90 0.90 0.74 0.87 0.87 0.76 0.88 

3 10 0.00 0.71 1.42 0.2 0.80 0.90 0.90 0.90 0.74 0.89 0.88 0.74 0.89 

3 10 0.00 0.73 1.45 2 0.80 0.90 0.90 0.90 0.75 0.88 0.87 0.76 0.88 

3 30 0.00 0.00 0.69 1 0.80 0.76 0.89 0.89 0.78 0.77 0.83 0.78 0.76 

3 30 0.00 0.00 0.69 0.2 0.80 0.77 0.90 0.89 0.78 0.76 0.83 0.78 0.76 

3 30 0.00 0.00 0.69 2 0.80 0.76 0.90 0.89 0.79 0.77 0.83 0.79 0.77 

3 30 0.00 0.69 0.69 1 0.80 0.78 0.92 0.92 0.79 0.77 0.84 0.79 0.77 

3 30 0.00 0.69 0.69 0.2 0.80 0.77 0.92 0.91 0.79 0.77 0.84 0.79 0.76 

3 30 0.00 0.69 0.69 2 0.80 0.78 0.92 0.91 0.80 0.78 0.84 0.79 0.77 

3 30 0.00 0.40 0.80 1 0.80 0.89 0.91 0.91 0.80 0.88 0.85 0.80 0.88 

3 30 0.00 0.40 0.79 0.2 0.80 0.88 0.91 0.91 0.79 0.88 0.86 0.79 0.88 

3 30 0.00 0.40 0.80 2 0.80 0.89 0.91 0.91 0.80 0.88 0.85 0.80 0.88 

3 50 0.00 0.00 0.53 1 0.80 0.75 0.91 0.90 0.79 0.75 0.84 0.80 0.76 

3 50 0.00 0.00 0.53 0.2 0.80 0.75 0.92 0.90 0.79 0.75 0.84 0.81 0.76 

3 50 0.00 0.00 0.53 2 0.80 0.75 0.91 0.91 0.79 0.76 0.84 0.80 0.76 

3 50 0.00 0.55 0.55 1 0.80 0.78 0.90 0.90 0.79 0.79 0.84 0.80 0.79 

3 50 0.00 0.55 0.55 0.2 0.80 0.79 0.90 0.91 0.79 0.79 0.86 0.81 0.79 

3 50 0.00 0.55 0.55 2 0.80 0.78 0.90 0.90 0.80 0.79 0.84 0.80 0.79 

3 50 0.00 0.31 0.62 1 0.80 0.89 0.92 0.93 0.79 0.89 0.85 0.80 0.89 

3 50 0.00 0.31 0.62 0.2 0.80 0.89 0.93 0.93 0.80 0.89 0.87 0.80 0.89 

3 50 0.00 0.31 0.62 2 0.80 0.89 0.92 0.93 0.79 0.88 0.85 0.80 0.89 
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(b) p = 5 

p subj 1θθθθ  2τ  Hm1 Hm2 Hm3 Hm4 Hm5 Hm6 Hm7 Hm8 Hm9 

5 10 0.00 0.00 0.00 0.00 1.27 1 0.80 0.63 0.89 0.75 0.62 0.89 0.76 0.64 0.70 

5 10 0.00 0.00 0.00 0.00 1.26 0.2 0.80 0.64 0.90 0.76 0.61 0.89 0.75 0.62 0.73 

5 10 0.00 0.00 0.00 0.00 1.27 2 0.80 0.63 0.89 0.75 0.62 0.90 0.76 0.63 0.70 

5 10 0.00 1.24 1.24 1.24 1.24 1 0.80 0.61 0.89 0.74 0.60 0.89 0.75 0.60 0.71 

5 10 0.00 1.24 1.24 1.24 1.24 0.2 0.80 0.61 0.89 0.74 0.61 0.91 0.74 0.60 0.73 

5 10 0.00 1.25 1.25 1.25 1.25 2 0.80 0.61 0.90 0.75 0.61 0.90 0.76 0.60 0.71 

5 10 0.00 0.37 0.74 1.11 1.48 1 0.80 0.95 0.95 0.76 0.95 0.94 0.77 0.95 0.80 

5 10 0.00 0.37 0.73 1.10 1.46 0.2 0.80 0.94 0.94 0.75 0.94 0.94 0.76 0.94 0.80 

5 10 0.00 0.37 0.74 1.11 1.48 2 0.80 0.95 0.95 0.76 0.95 0.94 0.76 0.95 0.80 

5 10 0.00 0.81 0.81 0.81 1.62 1 0.80 0.85 0.92 0.75 0.84 0.92 0.75 0.83 0.76 

5 10 0.00 0.80 0.80 0.80 1.60 0.2 0.80 0.85 0.92 0.74 0.83 0.92 0.75 0.81 0.77 

5 10 0.00 0.81 0.81 0.81 1.62 2 0.80 0.85 0.92 0.75 0.84 0.92 0.76 0.84 0.76 

5 30 0.00 0.00 0.00 0.00 0.70 1 0.80 0.67 0.93 0.79 0.67 0.92 0.79 0.67 0.74 

5 30 0.00 0.00 0.00 0.00 0.70 0.2 0.80 0.67 0.93 0.79 0.67 0.92 0.80 0.67 0.74 

5 30 0.00 0.00 0.00 0.00 0.70 2 0.80 0.67 0.93 0.79 0.67 0.93 0.79 0.67 0.74 

5 30 0.00 0.70 0.70 0.70 0.70 1 0.80 0.68 0.91 0.78 0.68 0.92 0.78 0.67 0.73 

5 30 0.00 0.70 0.70 0.70 0.70 0.2 0.80 0.68 0.91 0.78 0.68 0.91 0.78 0.67 0.74 

5 30 0.00 0.70 0.70 0.70 0.70 2 0.80 0.68 0.91 0.78 0.68 0.91 0.78 0.66 0.73 

5 30 0.00 0.20 0.40 0.60 0.80 1 0.80 0.93 0.95 0.77 0.93 0.95 0.78 0.93 0.81 

5 30 0.00 0.20 0.40 0.60 0.80 0.2 0.80 0.93 0.95 0.77 0.93 0.95 0.79 0.93 0.82 

5 30 0.00 0.20 0.40 0.60 0.80 2 0.80 0.93 0.95 0.77 0.93 0.95 0.78 0.93 0.81 

5 30 0.00 0.44 0.44 0.44 0.89 1 0.80 0.86 0.94 0.79 0.86 0.93 0.79 0.85 0.78 

5 30 0.00 0.44 0.44 0.44 0.89 0.2 0.80 0.86 0.94 0.79 0.86 0.93 0.79 0.86 0.79 

5 30 0.00 0.44 0.44 0.44 0.89 2 0.80 0.86 0.94 0.79 0.86 0.93 0.78 0.86 0.78 

5 50 0.00 0.00 0.00 0.00 0.54 1 0.80 0.67 0.91 0.78 0.67 0.92 0.78 0.67 0.73 

5 50 0.00 0.00 0.00 0.00 0.54 0.2 0.80 0.67 0.91 0.79 0.68 0.92 0.79 0.66 0.74 

5 50 0.00 0.00 0.00 0.00 0.54 2 0.80 0.67 0.91 0.78 0.67 0.91 0.78 0.67 0.73 

5 50 0.00 0.55 0.55 0.55 0.55 1 0.80 0.69 0.92 0.78 0.70 0.91 0.79 0.68 0.76 

5 50 0.00 0.55 0.55 0.55 0.55 0.2 0.80 0.69 0.92 0.78 0.70 0.91 0.79 0.68 0.76 

5 50 0.00 0.55 0.55 0.55 0.55 2 0.80 0.69 0.92 0.78 0.70 0.91 0.79 0.69 0.76 

5 50 0.00 0.15 0.30 0.46 0.61 1 0.80 0.93 0.93 0.79 0.93 0.94 0.79 0.92 0.79 

5 50 0.00 0.15 0.30 0.46 0.61 0.2 0.80 0.93 0.94 0.79 0.93 0.95 0.78 0.92 0.80 

5 50 0.00 0.15 0.30 0.46 0.61 2 0.80 0.93 0.93 0.79 0.93 0.95 0.80 0.93 0.79 

5 50 0.00 0.34 0.34 0.34 0.68 1 0.80 0.85 0.92 0.79 0.85 0.92 0.79 0.86 0.79 

5 50 0.00 0.34 0.34 0.34 0.68 0.2 0.80 0.85 0.92 0.79 0.85 0.92 0.79 0.85 0.80 

5 50 0.00 0.34 0.34 0.34 0.68 2 0.80 0.85 0.92 0.79 0.85 0.92 0.79 0.86 0.79 

 



 

 117 

(c) p = 10, part I 

p subj Design 1θθθθ  2τ  

10 10 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.28 1 

10 10 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.28 0.2 

10 10 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.28 2 

10 10 4 0.00 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1 

10 10 5 0.00 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 0.2 

10 10 6 0.00 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 2 

10 10 7 0.00 0.14 0.28 0.41 0.55 0.69 0.83 0.97 1.10 1.24 1 

10 10 8 0.00 0.14 0.28 0.41 0.55 0.69 0.83 0.97 1.10 1.24 0.2 

10 10 9 0.00 0.14 0.28 0.41 0.55 0.69 0.83 0.97 1.10 1.24 2 

10 10 10 0.00 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.72 1 

10 10 11 0.00 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.71 0.2 

10 10 12 0.00 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 1.72 2 

10 30 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 1 

10 30 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.2 

10 30 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 2 

10 30 16 0.00 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 1 

10 30 17 0.00 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.2 

10 30 18 0.00 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 2 

10 30 19 0.00 0.08 0.15 0.23 0.31 0.39 0.46 0.54 0.62 0.69 1 

10 30 20 0.00 0.08 0.15 0.23 0.31 0.39 0.46 0.54 0.62 0.69 0.2 

10 30 21 0.00 0.08 0.15 0.23 0.31 0.39 0.46 0.54 0.62 0.69 2 

10 30 22 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.99 1 

10 30 23 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.99 0.2 

10 30 24 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.99 2 

10 50 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 1 

10 50 26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.2 

10 50 27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 2 

10 50 28 0.00 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 1 

10 50 29 0.00 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.2 

10 50 30 0.00 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 2 

10 50 31 0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50 0.56 1 

10 50 32 0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50 0.56 0.2 

10 50 33 0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50 0.56 2 

10 50 34 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.79 1 

10 50 35 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.79 0.2 

10 50 36 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.79 2 
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(c) p = 10, part II 
groups subj Design Hm1 Hm2 Hm3 Hm4 Hm5 Hm6 Hm7 Hm8 Hm9 

10 10 1 0.80 0.48 0.95 0.70 0.48 0.94 0.70 0.49 0.46 

10 10 2 0.80 0.48 0.95 0.69 0.48 0.95 0.70 0.49 0.47 

10 10 3 0.80 0.48 0.95 0.69 0.48 0.95 0.70 0.49 0.46 

10 10 4 0.80 0.49 0.94 0.73 0.49 0.94 0.71 0.50 0.51 

10 10 5 0.80 0.49 0.94 0.74 0.49 0.94 0.73 0.49 0.53 

10 10 6 0.80 0.49 0.94 0.74 0.50 0.94 0.73 0.51 0.52 

10 10 7 0.80 0.97 0.98 0.75 0.97 0.99 0.74 0.97 0.70 

10 10 8 0.80 0.97 0.98 0.75 0.97 0.99 0.75 0.97 0.70 

10 10 9 0.80 0.97 0.98 0.75 0.97 0.98 0.74 0.97 0.70 

10 10 10 0.80 0.77 0.95 0.72 0.76 0.95 0.73 0.75 0.51 

10 10 11 0.80 0.76 0.94 0.72 0.76 0.95 0.72 0.76 0.52 

10 10 12 0.80 0.77 0.95 0.72 0.76 0.95 0.72 0.76 0.51 

10 30 13 0.80 0.53 0.93 0.77 0.52 0.94 0.78 0.53 0.54 

10 30 14 0.80 0.53 0.93 0.77 0.52 0.94 0.78 0.54 0.55 

10 30 15 0.80 0.53 0.93 0.77 0.52 0.94 0.77 0.53 0.54 

10 30 16 0.80 0.55 0.95 0.78 0.53 0.95 0.79 0.55 0.57 

10 30 17 0.80 0.54 0.95 0.78 0.52 0.95 0.77 0.55 0.57 

10 30 18 0.80 0.55 0.95 0.78 0.53 0.95 0.79 0.55 0.57 

10 30 19 0.80 0.97 0.98 0.78 0.98 0.98 0.78 0.97 0.69 

10 30 20 0.80 0.97 0.98 0.78 0.98 0.98 0.77 0.97 0.69 

10 30 21 0.80 0.97 0.98 0.78 0.98 0.98 0.78 0.97 0.69 

10 30 22 0.80 0.80 0.94 0.78 0.79 0.95 0.77 0.80 0.60 

10 30 23 0.80 0.80 0.94 0.78 0.79 0.94 0.79 0.80 0.60 

10 30 24 0.80 0.80 0.94 0.78 0.79 0.94 0.78 0.80 0.60 

10 50 25 0.86 0.62 0.96 0.84 0.63 0.95 0.84 0.60 0.54 

10 50 26 0.80 0.54 0.95 0.80 0.54 0.95 0.79 0.54 0.54 

10 50 27 0.80 0.54 0.95 0.80 0.54 0.95 0.80 0.53 0.54 

10 50 28 0.80 0.54 0.94 0.79 0.53 0.95 0.79 0.53 0.53 

10 50 29 0.80 0.54 0.94 0.79 0.53 0.95 0.78 0.54 0.53 

10 50 30 0.80 0.54 0.94 0.79 0.53 0.95 0.78 0.53 0.53 

10 50 31 0.79 0.98 0.99 0.80 0.97 0.98 0.79 0.98 0.72 

10 50 32 0.80 0.98 0.98 0.79 0.98 0.98 0.78 0.98 0.71 

10 50 33 0.79 0.98 0.99 0.80 0.97 0.98 0.80 0.98 0.72 

10 50 34 0.79 0.88 0.97 0.81 0.87 0.95 0.79 0.87 0.60 

10 50 35 0.80 0.80 0.95 0.79 0.79 0.96 0.79 0.79 0.60 

10 50 36 0.79 0.88 0.97 0.81 0.87 0.95 0.80 0.87 0.60 
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Table 7.20.  Type I errors for heteroscedastic normally distributed data 

p nsubj 
2σσσσ  Ht1 Ht2 Ht3 Ht4 Ht5 Ht6 Ht7 Ht8 Ht9 

3 10 0.10 0.10 2.37   0.07 0.08 0.04 0.04 0.05 0.04 0.03 0.03 0.04 

3 10 0.10 0.20 0.20   0.09 0.07 0.04 0.03 0.04 0.03 0.03 0.03 0.03 

3 10 0.10 0.09 0.36   0.09 0.09 0.04 0.03 0.05 0.04 0.03 0.04 0.03 

3 30 0.10 0.10 0.02   0.08 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.03 

3 30 0.10 0.04 0.04   0.08 0.07 0.07 0.06 0.06 0.07 0.07 0.06 0.05 

3 30 0.10 0.01 0.03   0.08 0.07 0.06 0.05 0.05 0.06 0.05 0.06 0.04 

3 50 0.10 0.10 0.01   0.04 0.05 0.04 0.03 0.05 0.04 0.03 0.05 0.01 

3 50 0.10 0.02 0.02   0.04 0.05 0.04 0.03 0.05 0.03 0.02 0.04 0.02 

3 50 0.10 0.01 0.03   0.04 0.04 0.05 0.03 0.04 0.05 0.04 0.04 0.03 

5 10 0.10 0.10 0.10 0.10 0.16 0.16 0.15 0.05 0.04 0.05 0.05 0.04 0.05 0.01 

5 10 0.10 0.20 0.20 0.20 0.20 0.16 0.14 0.06 0.05 0.05 0.05 0.03 0.05 0.01 

5 10 0.10 0.11 0.44 0.99 1.76 0.12 0.13 0.05 0.04 0.05 0.04 0.03 0.04 0.01 

5 10 0.10 0.11 0.11 0.11 0.45 0.15 0.14 0.06 0.04 0.06 0.05 0.04 0.05 0.02 

5 30 0.10 0.10 0.10 0.10 0.01 0.09 0.06 0.03 0.05 0.04 0.04 0.06 0.04 0.00 

5 30 0.10 0.03 0.03 0.03 0.03 0.09 0.06 0.06 0.05 0.04 0.06 0.06 0.04 0.02 

5 30 0.10 0.00 0.00 0.00 0.00 0.07 0.06 0.05 0.05 0.04 0.05 0.05 0.03 0.02 

5 30 0.10 0.01 0.01 0.01 0.05 0.07 0.06 0.05 0.05 0.04 0.05 0.05 0.04 0.02 

5 50 0.10 0.10 0.10 0.10 0.01 0.07 0.08 0.04 0.05 0.08 0.05 0.06 0.05 0.01 

 

Table 7.21.  Power for heteroscedastic normally distributed data. 

p nsubj 1θθθθ  Ht1 Ht2 Ht3 Ht4 Ht5 Ht6 Ht7 Ht8 Ht9 

3 10 0 0.00 1.54   0.79 0.15 0.82 0.67 0.11 0.80 0.59 0.09 0.82 

3 10 0 0.45 0.45   0.83 0.83 0.85 0.69 0.67 0.84 0.65 0.64 0.81 

3 10 0 0.30 0.60   0.77 0.85 0.83 0.64 0.72 0.84 0.60 0.71 0.82 

3 30 0 0.00 0.15   0.79 0.79 0.84 0.74 0.74 0.85 0.74 0.75 0.77 

3 30 0 0.20 0.20   0.80 0.67 0.90 0.77 0.63 0.90 0.76 0.61 0.84 

3 30 0 0.09 0.17   0.80 0.88 0.90 0.75 0.85 0.90 0.75 0.85 0.85 

3 50 0 0.00 0.10   0.73 0.79 0.81 0.70 0.77 0.81 0.70 0.77 0.70 

3 50 0 0.15 0.15   0.81 0.62 0.91 0.80 0.59 0.90 0.81 0.59 0.86 

3 50 0 0.08 0.16   0.92 0.97 0.97 0.91 0.96 0.97 0.92 0.96 0.95 

5 10 0 0.45 0.45 0.45 0.45 0.84 0.75 0.84 0.63 0.60 0.83 0.60 0.57 0.68 

5 10 0 0.33 0.66 1.00 1.33 0.96 0.99 0.98 0.90 0.97 0.98 0.84 0.96 0.96 

5 10 0 0.00 0.00 0.00 0.40 0.70 0.40 0.67 0.41 0.23 0.66 0.36 0.21 0.42 

5 10 0 0.34 0.34 0.34 0.67 0.81 0.79 0.83 0.60 0.63 0.81 0.55 0.61 0.71 

5 30 0 0.00 0.00 0.00 0.12 0.79 0.84 0.86 0.72 0.79 0.85 0.71 0.79 0.60 

5 30 0 0.18 0.18 0.18 0.18 0.71 0.32 0.80 0.61 0.28 0.80 0.63 0.28 0.61 

5 30 0 0.01 0.02 0.03 0.04 1.00 1.00 0.75 1.00 1.00 0.75 0.99 1.00 0.47 

5 30 0 0.11 0.11 0.11 0.21 0.79 0.58 0.90 0.70 0.53 0.90 0.70 0.51 0.74 

5 50 0 0.00 0.00 0.00 0.08 0.76 0.90 0.90 0.78 0.87 0.86 0.71 0.87 0.52 
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