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ABSTRACT 

ROBERT JOSEPH SOTO: In Vivo Analytical Performance Assessment of  

Nitric Oxide-Releasing Glucose Biosensors 

(Under the direction of Mark H. Schoenfisch) 

The utility of implantable glucose biosensors as continuous glucose monitoring 

technologies is limited by poor in vivo accuracy, resulting primarily from the foreign body 

response (FBR). Polymeric membranes capable of releasing nitric oxide (NO)—an endogenous 

gas and key mediator of inflammation and angiogenesis—have been shown to mitigate the FBR 

and thus hold promise for improving in vivo glucose sensor function. Herein, the effect of a 

reduced FBR on in vivo glucose sensor function was studied using NO-releasing membranes. 

To address the low NO storage of silica nanoparticles, a new particle system (mesoporous 

silica) was synthesized for use in glucose sensor membranes. Briefly, an interfacial ion exchange 

reaction was developed and used to chemically modify mesoporous silica nanoparticles with NO 

donors. The resulting materials were capable of large NO storage (0.8–2.4 µmol mg
-1

) and 

tunable NO-release kinetics (NO-release durations 2–40 h). The NO-releasing nanoparticles 

were employed as dopants within polyurethane materials and adapted as coatings for 

amperometric glucose biosensors.    

The in vivo analytical performance of the NO-releasing glucose biosensors was evaluated 

in a pre-clinical swine model. Two separate NO-releasing sensors were designed to release 

similar amounts of NO (~3.1 µmol cm
-2

) for 16.0 h (short) or 3.1 d (extended) durations. 

Relative to controls, both NO-releasing sensors exhibited improved accuracy during the acute (3 
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d) implantation period. Sensors capable of ~3 d NO release were also characterized by a shorter 

response time (<4.2 min) to changing blood glucose levels than burst NO-releasing and control 

sensors (>5.8 min) at 3, 7, and 10 d.  

 The NO-releasing sensor membranes were also used to study the FBR in a 

streptozotocin-induced diabetic swine model. Histopathological evaluation of tissue surrounding 

control (i.e., non-NO-releasing) materials revealed a more severe inflammatory response, 

reduced collagen deposition, and inhibited angiogenesis associated with diabetes. Materials 

capable of ~7–14 d NO release were uniquely capable of mitigating inflammation and increasing 

blood vessel formation at the implant-tissue interface (relative to 2–3 d NO release). The ~7–14 

d NO-releasing membranes also reduced collagen deposition in healthy pigs, but did not produce 

an effect in the diabetic animal model.     
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CHAPTER 1. IN VIVO GLUCOSE BIOSENSORS: ROLE OF BIOCOMPATIBILITY 

ON ANALYTICAL PERFORMANCE
1
 

1.1 Diabetes and blood glucose management 

Diabetes mellitus is a group of metabolic disorders affecting an estimated 21.9 million 

people in the United States.
1
 Both subclasses of diabetes (e.g., type I/II) result in impaired 

production of (or resistance to) insulin, a peptide hormone produced by beta cells in the pancreas 

that aids in distribution of glucose from blood into tissue cells. A common condition associated 

with diabetes is persistent hyperglycemia (elevated blood glucose, >130 mg dL
-1

)
2
 which, if left 

unmanaged, is responsible for long-term health complications (e.g., retinal failure, kidney 

disease).
1
 Diabetics thus must routinely self-monitor blood glucose (BG) levels and take 

appropriate therapeutic action (e.g., administer insulin) to avoid hyperglycemia.  

Handheld glucometers have proven to be indispensable technologies for personal blood 

glucose monitoring. Such devices, requiring only ~10 µL blood for accurate glucose 

determination, provide diabetics with the ability to track trends in blood glucose levels and 

appropriately adjust insulin, diet, and exercise regimens.
3
 Landmark studies have shown that 

rigorous BG management with glucometer technologies reduce both the morbidity and mortality 

rates of complications associated with persistent hyperglycemia.
4-6

 Despite the obvious benefits 

                                                           
1
This chapter was adapted in part from articles that have either been submitted for publication or 

have already been published. The original citations are as follows: (1) Soto, R. J.; Hall, J. R.; 

Taylor, J. B.; Brown, M. D.; Schoenfisch, M. H. “In vivo chemical sensors: Role of 

biocompatibility on performance and utility” submitted. (2) Soto, R. J.; Schoenfisch, M. H. 

“Preclinical performance evaluation of percutaneous glucose biosensors: Experimental 

considerations and recommendations” Journal of Diabetes Science and Technology 2015, 9, 

978–984. 
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associated with the use of glucometers, BG sampling requires patients to pierce their finger with 

a lance to obtain blood. The discomfort accompanying blood sampling leads to poor patient 

compliance and infrequent measurement.
7
 Unfortunately, the routine use of glucometers also 

results in increased propensity for hypoglycemia (i.e., blood glucose <70 mg dL
-1

), as 

glucometers provide only static glucose measurements—such devices are incapable of detecting 

brief, potentially life-threatening hypoglycemic events.
4-6

 Although useful for BG monitoring, 

glucometers alone do not provide the necessary level of diabetes management. 

An implantable glucose biosensor that facilitates continuous glucose monitoring (CGM) 

would be able to achieve meaningful reductions in average blood glucose levels, simultaneously 

enabling reliable detection of hypoglycemia. To date, the most successful CGM technologies are 

semi-implantable (i.e., percutaneous) sensors that measure glucose in interstitial fluid, allowing 

the sensor to be implanted by the user. Several previous studies have shown that intensive 

glucose monitoring using such devices lowers glycated hemoglobin (HbA1c) levels (an indicator 

of average BG concentrations) by 0.5–2.0%.
8-10

 Importantly, the frequency of hypoglycemia is 

also reduced compared to patients who self-monitor with portable glucometers.
10-11

 Although 

these studies
8-11

 exemplified the capabilities of glucose monitoring systems, poor analytical 

performance and limited in vivo lifetime (<7 d) due to the foreign body response (FBR) hinder 

their widespread use. This introductory chapter serves to highlight the current technologies 

available for in vivo glucose measurement. A mechanistic groundwork relating issues in the 

analytical performance of glucose sensors to key events in the FBR is also developed. 
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1.2 Analytical technologies for in vivo glucose measurement 

Accurate glucose measurement requires that the employed analytical method distinguishes 

glucose from other, structurally similar, natural monosaccharides. The most successful strategies 

rely on glucose-specific recognition elements (e.g., enzymes,
12-14

 boronic acid derivatives
15

) that 

serve as glucose concentration transducers.
16-17

 Electrochemical and optical methods are widely 

utilized for in vivo glucose detection.  

1.2.1. Electrochemical glucose detection 

 Electrochemical glucose sensors represent the most successful technologies to date for 

glucose measurement.
3
 The vast majority of electrochemical assays for glucose (both in vivo and 

ex vivo) rely on glucose-selective enzyme transducers, such as glucose oxidase (GOx) or glucose 

dehydrogenase (GDH).
3,16-17

 Glucose oxidase is preferred because the enzyme is regenerated by 

oxygen following reaction with glucose. In contrast, GDH requires low-abundance electron 

acceptors (e.g., pyrroloquinoline quinone) as co-substrates.
3
 In addition, the specificity of GOx 

(derived from the fungus Aspergillus Niger) for glucose is more than three hundred-fold greater 

than other, structurally similar monosaccharides (e.g., galactose).
13

 

GOx − FAD + Glucose → GOx − FADH2 + Gluconolactone               (1.1) 

GOx − FADH2 + O2 → GOx − FAD + H2O2                              (1.2) 

H2O2 → O2 + 2H+ + 2e−                                      (1.3) 

The reaction between GOx and glucose yields the reduced form of the active enzyme 

center (–FADH2; Equation 1.1). Subsequent reaction with O2 (the co-substrate for GOx) 

regenerates the enzyme redox co-factor and produces hydrogen peroxide (Equation 1.2).
7,18

 

Three general glucose detection schemes have been employed based on these reactions: direct 

electron transfer from GOx, O2 reduction, and hydrogen peroxide oxidation (Equation 1.3). 
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Amperometry is the preferred detection method due to simpler potentiostat hardware, data 

analysis, and power requirements.
19-31

 Of note, low-power instruments for voltammetric glucose 

measurement were recently described.
32

 

Direct electron transfer from GOx to the electrode surface was initially suggested by 

Heller.
33-34

 However, the enzyme redox center (FAD) is significantly removed (tens of Å) from 

the outer enzyme surface, precluding efficient electron tunneling.
35

 Degani et al. proposed that 

“electrically wiring” the enzyme to the electrode surface would overcome the large energetic 

barrier to electron tunneling.
33

 This concept was realized by using redox mediators (e.g., 

[Os(N,N’-dialkylated-2,2’-biimidazole)3]
2+/3+

) to covalently link GOx to both gold and platinum 

electrodes.
33

 Mao et al. reported another approach for glucose detection based on GOx 

immobilization in redox hydrogels.
36

 Both methods reduced the electrode potential required for 

electron tunneling (-0.1 V vs silver-silver chloride (Ag|AgCl), 3 M KCl).
36-37

 A clear advantage 

of the lower applied voltage is minimal interference from endogenous electroactive species (e.g., 

ascorbate). However, the use of heavy metals (e.g., ruthenium, osmium) raises concern regarding 

toxicity in vivo should such metals leach from the device surface.
38

 

  Updike and Hicks originally proposed a method for indirect glucose measurement, 

relying on measurement of O2 consumed in the reaction with GOx (Equation 1.2).
39

 

Amperometric oxygen reduction on a GOx-modified platinum electrode (-0.6 V vs. Ag|AgCl) is 

preferred for glucose detection.
7,12

 Unfortunately, fluctuations in tissue oxygen levels can cause 

sensor drift.
40

 A second platinum working electrode is often employed to determine background 

oxygen levels—in this configuration, the glucose concentration is proportional to the difference 

in currents measured at the GOx-modified and bare electrodes. Gough and coworkers developed 

a fully-subcutaneous glucose sensor based on differential oxygen detection at an array of 
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platinum microdisk electrodes.
19

 At least one sensor from an initial pilot study in pigs remained 

functional for more than a year in vivo. Unfortunately, the accuracy of the device was not 

assessed in this work. Additionally, the large size of the sensor (3.5 × 1.5 cm) and the need for 

surgical implantation/removal are shortcomings of this design. 

 Measurement of hydrogen peroxide production by GOx is the most practical and widely 

used method for electrochemical glucose measurement in vivo (Equation 1.3). This sensor 

configuration requires a single working electrode and a combined pseudo-reference/counter 

electrode. The miniaturized “needle-type” glucose sensor (~1 mm diameter) was first described 

by Shichiri et al. in 1982 (Figure 1.1).
41

 More recently, the size of the sensor was reduced to 

<300 µm, facilitating self-implantation using similar gauge needles to those used for regular 

insulin injection.
29

 The primary design consideration associated with hydrogen peroxide-

detecting sensor designs is limited availability of the GOx co-substrate, oxygen. Tissue oxygen 

concentrations are ~15-fold lower than analogous glucose levels (4–6 mM).
17,42

 As a result, 

GOx-reaction kinetics (i.e., the rate of hydrogen peroxide production) are oxygen-limited.
43

 The 

oxygen dependence manifests as a non-linear sensor response over physiological glucose 

concentrations (1–18 mM).
29

 This obstacle is generally overcome by application of an outer 

permselective polymer layer that differentially reduces glucose and oxygen diffusion to the 

immobilized enzyme.
7,44

 Appropriate choice of the polymer identity and membrane thickness 

ensures that glucose and oxygen concentrations at the enzyme layer are stoichiometrically 

balanced, thus extending the sensor linear dynamic range. The additional polymer membrane 

also renders the sensor response reliant on glucose flux rather than GOx reaction kinetics. In 

turn, dependence of the sensor signal on pH and temperature is reduced.
17
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Figure 1.1. Schematic design for the “needle-type” glucose biosensor. 

The sensor relies on differential glucose and oxygen diffusion through 

an external flux-limiting layer. The glucose then reacts with 

immobilized glucose oxidase and, upon regeneration of the enzyme by 

oxygen, yields hydrogen peroxide. Peroxide is detected at the 

underlying working electrode (generally a platinum/iridium alloy). The 

working electrode is electrically isolated from the integrated Ag|AgCl 

by an insulating layer of polytetrafluoroethylene (PTFE).  
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The primary disadvantage associated with hydrogen peroxide oxidation is the high 

required working potentials (+0.6 V vs. Ag|AgCl on platinum) at which other, endogenous redox 

species (e.g., ascorbate) may also be oxidized.
7
 The issue of glucose selectivity has been largely 

overcome by deposition of additional polymeric layers that obstruct the fluxes of interferents to 

the sensor surface. For example, cellulose acetate membranes impede ascorbate diffusion via 

anionic repulsion.
45-46

 Electropolymerized films of m-phenylenediamine and phenol have been 

used to impart selectivity for hydrogen peroxide over larger interferents via size-exclusion.
47-50

 

1.2.2. Optical glucose detection 

Optical approaches to in vivo glucose measurement have also been described, most of 

which are luminescence-based.
15,51-56

 Optical detection schemes display several inherent 

advantages over electrochemical sensors, including high glucose sensitivity and the possibility of 

ratiometric detection to offset in vivo signal drift.
51

 Several non-luminescence analytical 

measurement schemes have been reported (e.g., photoacoustic spectroscopy, optical coherence 

tomography).
38

 Glucose detection in subcutaneous tissue can be accomplished directly via visible 

wavelength fluorescence (excitation 308 nm, emission 340–400 nm).
57

 However, this method is 

nonspecific for glucose. Glucose-specific recognition elements (e.g., proteins, boronic acid 

derivatives) have been used to improve glucose specificity for fluorescence sensors. Such 

measurement schemes rely on changes in fluorescence emission or lifetime of a luminescent 

indicator upon interaction of the recognition element with glucose (typically a binding event). 

Mansouri et al. immobilized Concanavalin A (a glucose-binding lectin) onto the inner surface of 

an implantable hollow dialysis fiber.
54

 Glucose was measured via a competitive binding strategy 

using fluorescein isothiocyanate-labeled dextran as the competing ligand. In another approach, 

Colvin et al. designed a long-term implantable glucose sensor based glucose binding to a 
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fluorescent boronic acid derivative that was immobilized in a porous 

polyhydroxyethylmethacrylate hydrogel.
53

  

Most glucose binding elements (e.g., Concanavalin A, boronic acid derivatives) do not 

bind glucose specifically, but are also able to interact with other, structurally similar 

monosaccharides. For instance, many boronic acid derivatives form strong complexes with 

galactose and fructose.
58

 As a result, luminescence-based glucose sensors are susceptible to 

interference from other saccharides. A recently reported luminescence glucose sensor made use 

of GOx as the recognition element to circumvent the issue of poor glucose selectivity.
55-56

 The 

enzyme was co-immobilized in a poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogel 

with a palladium (II) benzoporphyrin phosphor. This species undergoes luminescence quenching 

by oxygen. The phosphor is interrogated at 630 nm with changes in local oxygen (via glucose 

reaction with GOx) altering the phosphorescence lifetime (measured at ~810 nm).
56

  

1.2.3. Commercial glucose monitoring technologies 

Only two subcutaneous glucose sensors were listed as approved for human use by the 

U.S. Food and Drug Administration in 2014: Medtronic’s Enlite CGM, Dexcom’s G5 sensor. 

Both devices are percutaneous needle-type sensors utilizing hydrogen peroxide oxidation for 

glucose measurement.
3,59-60

 The larger, bulkier electrical components (i.e., potentiostat and 

radiofrequency data transmitter) are worn externally.
3
 A third system (Abbott’s Navigator) also 

resembles the needle-type sensor in physical construction but instead relies on redox mediators 

to shuttle electrons from GOx to the working electrode.
3,33-34,36-37

 The Abbott Navigator CGM is 

approved for human use in Europe but was discontinued in the U.S. due to issues related to 

supply and distribution of the CGM components. All three systems (i.e., the Enlite, G5, and 

Navigator) are associated with error rates of approximately 15% (mean absolute relative 
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deviation) and are approved for a maximum of 7 d use.
60

 

Other, non-invasive CGMs were previously commercialized (i.e., iontophoresis, 

impedance spectroscopy) but were discontinued due to performance issues.
61-63

 For example, a 

non-implantable sensor based on impedance spectroscopic measurements was approved in 

Europe in 2003.
7,62

 The device interrogated subcutaneous tissue beneath the sensor using 1–200 

kHz electromagnetic waves. Glucose levels were measured indirectly by correlation to 

impedance measurements via principal component analysis.
62-63

 However, this method proved 

unreliable due to the non-specific nature of glucose detection. In addition, changes in skin 

dielectric properties due to water content and disease state negatively impacted sensor 

accuracy.
61

  

1.3. Foreign body response  

A number of miniaturized electrochemical and optical probes meet strict benchtop 

analytical performance merits required for CGM devices. Unfortunately, sensor function is 

impeded partially or completely in vivo due to an implant-initiated foreign body response 

(FBR).
7,44,64-70

 This response includes infiltration of the wound (sensor) site by inflammatory 

cells and the associated wound healing response. Indeed, the FBR may culminate in either 

persistent inflammation or isolation by a collagenous foreign body capsule, both of which are 

aberrations in the normal wound healing response (Figure 1.2). A consistent outcome associated 

with the FBR is poor sensor accuracy and a limited useable lifetime.
7
 In the following sections, 

key inflammatory and tissue reconstruction events during the FBR are considered with respect to 

their impact on the function of implanted glucose sensors.  
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Figure 1.2. Foreign body response to implanted glucose sensors. A classical FBR culminates 

in the persistence of inflammatory cells (e.g., macrophages, multinucleated giant cells) 

around the sensor surface for days to weeks. Ultimately, the sensor is sequestered from the 

surrounding tissue by a dense, avascular collagen capsule. Reprinted with permission from 

Chemical Reviews, 2013, 113, Nichols, S.P.; Koh, A.; Storm, W. L.; Shin, J. H.; Schoenfisch, 

M. H. “Biocompatible materials for continuous glucose monitoring devices” pages 2528–

2549, Copyright 2013 American Chemical Society. 
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1.3.1. Foreign body response and glucose sensor analytical performance 

The FBR is initiated upon sensor implantation and damaging of vascularized tissue. 

Rapid accumulation of serum proteins on the sensor surface occurs within seconds of the initial 

insult—a process termed “protein biofouling.” Protein biofouling is believed to be partially 

irreversible.
71-72

 The concentration of surface-bound proteins in the thin adsorption layer may 

exceed their bulk (solution) concentration, with an adhered protein layer density (typical values 

of ~1 g protein cm
-3

) on some classic polymeric surfaces (e.g., polyurethane) approaching that of 

pure protein (~1.4 g cm
-3

).
72

 A well-known consequence of the accrued protein layer to 

electrochemical glucose sensors is a loss in analytical sensitivity by up to 40–80%.
73

 Mechanistic 

studies of protein adhesion on biomaterial surfaces indicate that small (<15 kDa) fragments of 

serum albumin and other large proteins are the primary adsorbed biomolecules.
74

 The initial 

protein biofouling process is heterogeneous. As a result, the specific identities and dynamics of 

these adherent proteins remain poorly understood. Nevertheless, the composition of the adsorbed 

protein layer is still considered to at least partially govern the pathology of the implant wound 

site during subsequent inflammatory phases.
64

  

As a result of sensor implantation, platelets aggregate at damaged blood vessel sites to 

facilitate fibrin clot formation and deter blood loss.
75

 Through the release of growth factors (e.g., 

platelet-derived growth factor, transforming growth factor-β), platelets initiate the accompanying 

wound healing/inflammatory responses by recruiting circulating cells to the damaged blood 

vessels.
75

 Klueh et al. demonstrated that microhemorrhages, formed via local bleeding at the 

implant site, resulted in inaccurate glucose biosensor performance.
76

 The underlying mechanism 

of the decreased sensor sensitivity and periods of signal dropout was attributed to glucose and 

oxygen consumption by erythrocytes around the sensor. Novak and coworkers disputed this 
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result, clarifying that decreased sensor output is more likely the result of excess glucose 

metabolism by leukocytes (macrophages). Normal macrophage glucose metabolism (normalized 

per cell) is >50-fold greater than for erythrocytes.
71

 Importantly, Klueh et al.
76

 and Novak et al.
71

 

agreed that microhemorrhages, which may form intermittently as a result of sensor 

micromotion,
77-78

 lead to the observed sensor signal dropout.   

Acute inflammation occurs as the initial FBR event during the first several days of 

implantation, following initial biofouling and provisional matrix formation.
64

 Mast cells and 

neutrophils (phagocytic cells) infiltrate the implant site in an attempt to clear the foreign object.
79

 

The neutrophilic response is short-lived (24–48 h) but can be quite severe, contingent upon the 

degree of initial tissue trauma. In one study, Wang and coworkers implanted silicon chips in the 

subcutaneous tissue of Sprague-Dawley rats using different-sized needles (18, 16, and 14 gauge) 

and evaluated the FBR at durations between 3 and 30 d using standard tissue histological 

methods.
80

 Implantation of the silicon substrates using a larger needle size (i.e., initial trauma) 

lead to a more severe 3 d inflammatory response. However, the authors did not observe a 

significant effect of needle size on the severity of the chronic inflammatory response (>7 d). 

If neutrophils are unable to remove the intruding object, the resident mast cells undergo 

release of cellular vesicles containing histamine and various cytokines/chemokines, including 

interleukins (IL-4 and IL-13),
64

 macrophage inflammatory protein 1α,
81

 and monocyte 

chemoattractant protein 1.
81

 Through this degranulation process, mast cells are largely able to 

orchestrate the recruitment, differentiation, and phenotypes of other inflammatory cells (i.e., 

monocytes/macrophages), and thus hold considerable sway over the FBR and associated sensor 

performance. Klueh et al. reported on the performance of glucose sensors implanted for 28 d in 

mast cell-sufficient and -deficient mouse models.
82

 Periods of sensor inaccuracy and signal 
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dropout were frequently observed in the mast cell-sufficient model, whereas glucose sensors in 

the mast cell-deficient animals were more consistently able to track physiological glucose 

fluctuations. Histological analysis of the tissue surrounding the implanted sensors revealed a 

lessened inflammatory response and minimal collagen encapsulation around the implants in the 

deficient model at 1–4 wk. A separate report by Egozi and coworkers indicated that the 

neutrophilic response in a mast cell-deficient mouse model (WBB6F1 Kit
w
/Kit

w-v
) was reduced 

compared to analogous WBB6F1 wild-type mice.
83

 Of note, mast cells are also capable of 

stimulating fibrocyte translocation from blood vessels to the wound site, with potential 

implications for subsequent collagen deposition and isolation of the sensor from the native 

tissue.
84

 Indeed, Avula et al. showed that collagen deposition was reduced at subcutaneous 

polyester implants in a mast cell-deficient mouse model (sash model) relative to control mice.
85

  

Chronic inflammation and foreign body reactions characterize the host response at >5 d 

post-implantation.
64

 This period in the FBR strongly correlates with episodes of poor glucose 

sensor performance due to macrophage infiltration. Until recently, the relationships between 

macrophage functional polarization (phenotype), glucose metabolism, and in vivo glucose sensor 

performance were neglected and poorly understood. Macrophages have traditionally been 

classified as either pro-inflammatory (M1) or anti-inflammatory (M2, with subclasses M2a, 

M2b, and M2c), although it is now recognized that macrophages retain sufficient phenotypic 

plasticity to exist in a number of intermediate states between these two extremes.
86-87

 Pro-

inflammatory macrophages drive the chronic inflammatory response by secretion of pro-

inflammatory cytokines and chemokines (e.g., IL-1β, IL-6, IL-12, tumor necrosis factor-α).
88

 

They also produce a host of reactive oxygen (e.g., hydrogen peroxide, superoxide) and nitrogen 

(nitric oxide, peroxynitrite, nitrosonium) species (ROS and RNS) via respiratory bursts in the  
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A B 

Figure 1.3. (A) Model of macrophage biofouling layer separating the surface of Minimed 

glucose sensors from the surrounding cell culture solution and (B) decrease in glucose sensor 

current response (I) normalized to the baseline sensor current (I0) elicited by macrophages 

under different stimulating conditions. Macrophages were either unstimulated, induced into a 

pro-inflammatory state using phorbol myristate or lipopolysaccharide, or polarized to an anti-

inflammatory phenotype with genistein. Reprinted from Biomaterials, 2014, 35, Novak, M. T.; 

Yuan, F.; Reichert, W. M. “Macrophage embedded fibrin gels: An in vitro platform for 

assessing inflammation effects on implantable glucose sensors” pages 9563–9572, Copyright 

2014, with permission from Elsevier. 



15 
 

attempt to destroy the foreign object.
16-17,42,89-91

 The local pH can drop to acidic values (~4.0) as 

a result of macrophage phagocytic activity and exocytosis of acidic phagolysosomes.
42,64

 In this 

respect, GOx activity and associated sensor response are negatively impacted. Excessive 

macrophage metabolic activity (M1 phenotype) creates glucose and oxygen depletion zones in 

the direct vicinity of the implant.
71,89,92-93

 Klueh et al. reported that large, local macrophage 

presence at implanted glucose biosensors lead to prolonged (>10 h) periods of signal dropout in 

mouse implant models.
94

 The same authors produced macrophage deficient or depleted mouse 

models (through selective in-breeding and gene transfection methods, respectively) and 

demonstrated improved in vivo glucose sensor accuracy and signal stability (i.e., no signal 

dropout). To more directly examine macrophage metabolism in the context of implantable 

glucose sensors, Novak and coworkers immobilized RAW 264.7 murine macrophages in a fibrin 

gel surrounding commercial Medtronic glucose sensors (Figure 1.3A).
93

 A pronounced decrease 

in the sensor signal over the 24 h testing period was attributed to macrophage glucose 

consumption (Figure 1.3B). The magnitude of this signal decrease was found to be dependent on 

macrophage phenotypic state; macrophages polarized toward a pro-inflammatory phenotype 

elicited a larger decrease in the sensor signal (20% of the original glucose signal) than anti-

inflammatory macrophages (~80%, similar to gels that did not contain cells). The comparatively 

large metabolic demands of pro-inflammatory macrophages appear to pose a significant obstacle 

to accurate in vivo glucose sensing. In addition to creating substantial glucose and oxygen 

concentration gradients surrounding the sensors, it has been speculated that the analyte levels at 

the sensor surface do not accurately reflect the true (bulk) analyte concentrations.
95

 In contrast, 

M2 macrophages are characterized by reduced phagocytic capability and glucose/oxygen 

metabolism,
96

 although it is important to note that even macrophages that fall within the M2 
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designation vary widely in terms of their roles in the FBR.
97

 Given that macrophages are 

primarily responsible for the chronic inflammatory response, macrophage phenotype may be a 

more reliable indicator of FBR severity than local macrophage densities. Both classically (M1) 

and alternatively activated (M2/pro-wound healing) macrophages are recognized to stimulate 

fibroblast activity (i.e., collagen deposition).
98

 In particular, expression of transforming growth 

factor-β by macrophages and FBGCs influences myofibroblast collagen synthesis and 

deposition.
99

 An important distinction between the two traditional subclasses of macrophages is 

that M1 macrophages are considered anti-angiogenic. In contrast, M2a and M2c macrophages, 

stimulated via IL-4/IL-13 or IL-10/glucocorticoids/secosteroids respectively, are pro-

angiogenic.
100-101

  

Macrophages readily adhere to many foreign surfaces through interactions between β1/β2 

integrins and surface-bound protein fragments (e.g., Fg fragments) and may remain at the site of 

an implanted material for months.
102

 Failure to initiate or maintain proper adhesion to foreign 

objects triggers frustrated phagocytosis and fusion into foreign body giant cells, which is likely 

an attempt to escape apoptosis after surface detachment.
103

 These polynuclear cells are 

characterized with substantial pro-inflammatory character compared to mononuclear 

macrophages. Giant cell formation further exacerbates local analyte depletion and increases 

ROS/RNS production with great propensity to damage sensor components and coatings.
104-105

 

For example, polyetherurethanes—materials that are traditionally used as glucose sensor 

coatings—are susceptible to stress-cracking and delamination as a result of these intense foreign 

body reactions,
104-106

 both of which are widely accepted mechanisms for in vivo sensor failure.
104

  

If unable to digest the implant, macrophages and foreign body giant cells direct the 

subsequent wound healing/proliferative phases and associated collagen deposition by secreting 
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growth and angiogenic factors.
75

 Collagen deposition, while essential to tissue reconstruction, 

sequesters the implant from native tissue.
67

 It has been recognized since the 1990’s that the 

prototypical foreign body capsule poses a significant diffusion barrier to glucose.
107-109

 More 

recent work using a refined two compartment model for glucose transport dynamics showed that 

the presence of a dense collagen capsule does not overwhelmingly alter glucose concentrations at 

the sensor surface (vs. bulk concentrations).
92

 Rather, the foreign body capsule increases the 

tortuosity of the glucose diffusion path from the vasculature to the sensor surface, creating a 

pronounced lag (on the order of 20–30 minutes) between glucose concentrations at the sensing 

surface and corresponding plasma levels. Further compounding this issue, the fibrous capsule 

surrounding the implant is quite avascular,
110

 preventing efficient glucose delivery to regions 

inside the collagen capsule.
111

 Kumosa et al. observed that oxygen levels in the tissue 

surrounding fully subcutaneous O2 sensors also decrease over the first several weeks of 

implantation,
20,95

 which may further alter glucose sensor response due to limited O2 (the co-

substrate for GOx) availability. Of note, the decreased oxygen levels are more likely due to 

inflammatory cell metabolism and poor vascularization than obstructed diffusion through the 

capsule. Notwithstanding, the general consequence of both capsule characteristics (avascularity 

and collagen density) is that in vivo glucose sensors will ultimately fail for long-term sensing 

applications (i.e., >7 d) due to inadequate analyte permeability and temporal lag to changing 

analyte concentrations.
112

  

1.3.2. Foreign body response deficiencies associated with diabetes 

Although the timeline and specific progression of biochemical events in the FBR have 

been studied, the impact of diabetes on the FBR remains poorly understood. Qualitatively, 

external diabetic wounds (e.g., foot ulcers) are characterized by decreased growth factor 
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production, cellular recruitment, and angiogenesis.
113

 Deficient inflammation/wound healing 

observations are generally extrapolated to include analogous phases in the FBR (i.e., in the 

presence of a glucose sensor), yet few studies have actually carried out experiments needed to 

validate these assumptions. This void is partially due to difficulties in producing diabetic animal 

models that accurately recapitulate FBR in diabetic humans. Animal models of type II diabetes 

are especially challenging to create, as the disease classification actually encompasses a 

heterogeneous group of disorders that share the common trait of insulin resistance.
114

 

Nevertheless, several useful models of type I diabetes have been developed that rely on 

deficiency/depletion of insulin-producing pancreatic β-cells.
114-115

 For example, the non-obese 

and biobreeding rat models rely on selective inbreeding of diabetic rats. However, larger animal 

models of diabetes have not been produced through inbreeding. Chemical induction of diabetes 

has been accomplished by administration of β-cell toxins, such as streptozotocin (STZ), that 

cause acute β-cell destruction and rapid onset of hyperglycemia. Such methods reliably induce 

diabetes in both small (e.g., rats, mice) and large animal models (pigs and baboons).
114-116

   

Several deficiencies in the FBR have been reported for STZ-induced diabetic animals 

(relative to wild-type models). For example, Wang and coworkers observed fewer inflammatory 

cells at subcutaneously-implanted silicon chips in STZ-treated Sprague-Dawley rats (versus 

healthy controls) over an initial 1 wk implant period.
117

 The inflammatory response was similar 

in both animal models after 14 d, suggesting that diabetes only delayed the inflammatory 

response. Unfortunately, other key parameters such as collagen deposition and angiogenesis 

were not evaluated in this work. Soccarrás et al. assessed the FBR to polyetherurethane sponge 

materials after 10 d implantation in a STZ-treated Wistar rat model.
118

 Compared to analogous 

wild-type rats, tissues in the diabetic rats had fewer inflammatory cells and lower amounts of 
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collagen. Despite the reduced inflammatory response, tissue concentrations of the pro-

inflammatory cytokines MCP-1 and TNF-α were greater in the diabetic rats (~850 and 0.28 pg 

per gram of wet tissue, respectively) than in controls (~450 and 0.12 pg g
-1

, respectively). In 

addition, the authors observed reduced expression of CD-31 (an endothelial cell cluster of 

differentiation marker), indicating inhibited angiogenesis. In agreement with Wang et al.,
117

 

Soccarrás et al. also suggested that diabetes delayed the inflammatory response.
118

  

 The above studies demonstrated the ability to intentionally recreate several diabetes-

associated deficiencies (i.e., inflammation and wound healing) in experimental rat models. 

However, the physiological relevance of the smaller animal models (i.e., rats and mice) to human 

tissue is still questionable.
119

 Indeed, significant differences in subcutaneous tissue physiology 

exist between humans and mice/rats. Wisniewski et al. quantified the concentrations of glucose, 

lactate, pyruvate, glycerol, and urea in both human and rat tissue for 8 d using microdialysis and 

found that absolute analyte concentrations and temporal variations were markedly different 

between species.
120

 In humans, microdialysis glucose recovery increased and eventually 

stabilized after 4 d, while the glucose recovery for probes implanted in rats steadily decreased for 

the entire 8 d implantation period. This data indicated a dramatic difference in tissue glucose 

transport dynamics that the authors attributed in part to the greater proportion of adipose tissue 

present in human subcutaneous space—more adipose tissue inherently leads to a less severe 

FBR. The use of larger animal models that more accurately represent human tissue physiology 

has been proposed in order to obtain translatable sensor performance data. Whereas the rat 

subcutis is more collagenous, swine in particular possess a tendency to develop significant 

amounts of adipose tissue.
121

 The cutaneous blood supply, dermal thickness, and timeline of 

wound healing biochemical events in pigs are also more comparable to humans, suggesting 
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excellent utility as a FBR model.
121

  

1.4. Material strategies to mitigate the foreign body response 

Strategies to improve the function of implantable glucose sensors are largely directed at 

mitigating or avoiding key events in the FBR.
122-123

 Classically, the FBR has been studied as a 

function of implant surface chemistry.
64,69,102-105,124-127

 A simple but useful biocompatibility 

principle that was established early on is that hydrophobic surfaces, such as polystyrene, 

generally promote a more severe FBR (i.e., greater degrees of macrophage adhesion and 

frustrated phagocytosis) than hydrophilic surfaces (e.g., polyacrylamide).
69,103

 However, 

increased production of pro-inflammatory cytokines was routinely observed on hydrophilic 

surfaces and was speculated to offset the benefits of any reduced cellular response. As such, 

proper choice of implant materials/composition alone has not mitigated the FBR to an extent that 

would benefit the analytical performance of in vivo glucose sensors. The most successful recent 

tissue biocompatibility strategies, discussed below, aim to simultaneously reduce inflammation 

and guide appropriate wound healing around the implanted sensor.  

1.4.1. Zwitterionic polymers 

The initial event experienced by an in vivo glucose sensor is the adhesion of serum 

proteins to the sensor surface. In addition to reducing glucose sensor sensitivity,
73

 proteins and 

protein fragments that accumulate on the sensor serve as anchors for cell attachment during the 

ensuing inflammatory phases.
64

 Strategies that prevent, or at least mitigate, protein adsorption 

have thus been postulated to improve the overall host response by reducing cellular adhesion. 

Certain neutral hydrophilic polymers, namely poly(ethylene glycol) (PEG), poly(ethylene oxide) 

(PEO), and polyamides, have long been recognized for their resistance protein adsorption 

relative to other polymeric materials.
128-130

 Among these materials, PEG has been the most 
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frequently investigated due to ease of synthesis and low-fouling characteristics—however, in 

vivo degradation/oxidation has limited its usefulness for in vivo glucose sensing.
131

  

The use of zwitterionic polymers (notably those prepared from monomer units of 

carboxybetaine, sulfobetaine, and phosphobetaine) has received greater attention recently, as 

these polymers have been shown to both adsorb only trace quantities of protein (<10 ng cm
-2

 in 

blood plasma).
128-130,132

 Zwitterionic polymer surfaces are characterized with a strongly-

associated water layer, stabilized by ionic and hydrogen-bonding interactions between the 

electrically charged polymer head groups and water molecules in solution.
96,133-135

 In turn, the 

surface hydration layer presents an energetic barrier to biomolecule adhesion. Recent evidence 

suggests that zwitterionic polymeric biomaterials reduce the FBR by mitigating the extent of 

initial protein biofouling. In an initial study, Zhang and co-workers implanted cross-linked 

poly(carboxy betaine)methacrylate (pCBMA) and poly(hydroxyl-2-ethyl)methacrylate 

(pHEMA) hydrogels in mice.
136

 The zwitterionic pCBMA materials elicited reduced collagen 

encapsulation and greater blood vessel densities at 4 and 12 wk post-implantation relative to the 

neutrally-charged pHEMA hydrogels. Macrophages surrounding the implants at 4 wk were 

characterized using immunofluorescence to assess phenotypic state. In general, the macrophages 

surrounding the pHEMA hydrogels expressed greater levels of classical markers of inflammatory 

activity (iNOS, tumor necrosis factor-α, IL-12), whereas the cells surrounding the pCBMA 

implants expressed greater levels of pro-wound healing and anti-inflammatory markers (arginase 

and IL-10). Of note, the favorable FBR observed for these materials appeared to be sensitive to 

the CBMA content of the hydrogels. Previous studies by the same group indicated that hydrogels 

formed from copolymers of CBMA and HEMA (~80 mol% CBMA) elicited a similar FBR 

relative to pHEMA hydrogels in terms of collagen and inflammatory cell densities.
137

 Despite 
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reduced FBR via pCBMA materials, no reports to date have studied the utility of such 

biomaterials for improving in vivo glucose sensor performance. 

1.4.2. Porous and nanopatterned coating materials 

As most surface chemical approaches do not appreciably influence the FBR, researchers 

have investigated the influence of porosity and surface topography on cellular behavior.
138

 The 

most successful illustrations of this approach are porous coatings that have been known to reduce 

the FBR to implants for more than two decades. Brauker et al. published a seminal report 

describing the FBR to several commercial polymers (cellulose, polytetrafluoroethylene, and 

acrylic copolymer) with pore sizes in the range of 0.02–15 µm.
139

 Vascular structures were 

consistently observed at large-pore (>0.8 µm) materials that enabled cellular infiltration, 

irrespective of the chemical composition of the membranes. Neovascularity was enhanced by a 

factor of 80–100 for polytetrafluoroethylene membranes with a nominal pore size of ~5 µm 

versus membranes with sub-cellular pore sizes (0.02 µm). Subsequent investigations by 

Sharkawy and coworkers began to elucidate the mechanisms through which porosity and 

improved FBR outcomes could impact the performance of in vivo glucose sensors.
107-109

  In the 

first of these studies, stainless steel cage implants were coated with either nonporous or porous 

(60 and 350 µm pores) poly(vinyl alcohol) (PVA) and implanted in rat subcutaneous tissue for 

tissue histology assessment after 3 and 12 wk.
107

 Whereas a thick, dense, avascular collagen 

capsule was observed immediately proximal to the nonporous PVA implants, both porous PVA 

coatings increased angiogenesis and decreased collagen density. Carefully removed tissue 

samples adjacent to the implants were used to study fluorescein diffusion through the collagen 

capsule (as a surrogate for glucose). The measured effective diffusion coefficient (Deff) for 

fluorescein through the capsule surrounding nonporous PVA implants was lower (1.11×10
-6

 cm
2
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s
-1

) than in subcutaneous tissue alone (2.35×10
-6

 cm
2
 s

-1
). In contrast, tissues surrounding the 60 

and 350 µm porous PVA implants had diffusion coefficients that were more in line with native 

tissue (2.19×10
-6

 and 1.87×10
-6

 cm
2
 s

-1
, respectively) because of the reduced collagen density. In 

a follow-up study, tissue response times to changing plasma concentrations of a fluorescent 

tracer analyte (lissamine-rhodamine) were examined in capsular tissue surrounding the PVA-

coated implants.
108

 As expected, the tissue surrounding 60 µm porous PVA-coated implants 

responded more quickly to changes in tracer concentrations than in capsules surrounding 

nonporous PVA materials (~12 and 34 minutes, respectively), implicating neovascularization as 

an additional key parameter in tissue analyte transport.  

Koschwanez and coworkers examined the effects of porosity on the FBR using 

commercial (Medtronic) glucose sensors.
140-141

 Sensors were modified with porous poly(L-

lactide) (PLLA) coatings (~30 µm average pore sizes) produced via a salt-leaching method. 

Histological evaluation of the tissue surrounding the porous implants after 2 wk implantation in 

rats revealed increased blood vessel formation in the vicinity of the implant relative to the tissue 

adjacent to nonporous control materials (221 and 152 vessels mm
-2

, respectively).
141

 Greater total 

collagen was measured at the porous coatings versus controls (53 and 25%, respectively) as well, 

although the collagen inside the pores was less dense. The authors initiated in vivo sensor 

analytical performance evaluation studies as a function of coating porosity but did not observe 

significant differences between porous versus nonporous PLLA-coated sensors. They 

hypothesized that micromotion of the percutaneous sensors may have been a convoluting 

variable responsible for this result. Alternatively, the increased total amounts of collagen at the 

porous PLLA-coated sensors may have offset the beneficial effects of increased angiogenesis. 
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A B C 

Figure 1.4. The cellular and collagen composition of the foreign body reaction to solid and 

porous implants is pore-size dependent. Representative Masson’s Trichrome 

photomicrographs show histological responses based on pore size. Collagen is shown in blue, 

cellular cytoplasm in red, and cell nuclei in black. (A) non-porous implants have a dense FBC 

at the implant edge, (B) 34 µm porous scaffolds have highly cellular infiltrate, and (C) 160 

µm porous scaffolds have a cellular infiltrate that is much richer in collagen than 34 µm 

scaffolds. Reprinted from Annals of Biomedical Engineering, “Porous implants modulate 

healing and induce shifts in local macrophage polarization in the foreign body reaction,” 42, 

1508–1516 by Sussman, E. M.; Halpin, M. C.; Muster, J.; Moon, R. T.; Ratner, B. D. 

Copyright Annals of Biomedical Engineering 2013, with permission of Springer. 
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The underlying biological mechanisms and optimal porosity levels were not 

systematically studied by Koschwanez et al.
140-141

 due to pore size heterogeneity resulting from 

the salt-leaching process. Materials with spherical, uniform pore sizes—produced by sphere 

templating methods—have since been used to study the FBR.
142-144

 Sussman and coworkers used 

monodisperse ~34 and 160 µm diameter poly(methyl methacrylate) beads as templates for 

pHEMA hydrogel fabrication.
144

 After bead removal in a subsequent Soxhlet extraction step, the 

resulting porous pHEMA hydrogels were used to examine a potential relationship between pore 

size and FBR severity in mice. As shown in Figure 1.4, the inability of cells to migrate into the 

nonporous pHEMA coatings resulted in dense collagen deposition immediately adjacent to the 

material-tissue interface (Figure 1.4A). In contrast, minimal collagen encapsulation and 

angiogenesis were hallmarks of the tissue reactions at pHEMA implants with pore sizes on the 

order of cellular dimensions (~34 µm; Figure 1.4B). Large-pore materials (~160 µm) invoked a 

more classical FBR, with heavy collagen deposition inside the pores (Figure 1.4C). Other studies 

by Ratner and coworkers have established favorable FBR outcomes for porous materials with 

pore sizes on the order of cellular dimensions (~10–20 µm for most leukocytes) irrespective of 

the identity of the polymer.
145

 The prevailing hypothesis is that the inability of phagocytic cells 

(i.e., macrophages) to spread on the material directs them to a more reconstructive M2 

phenotype.
145-146

 Of note, FBR-mitigating pore sizes reported by Brauker et al.,
139

 Sharkawy et 

al.,
107-109

 and Koschwanez et al.
140-141

 are similar to the optimal pore sizes reported by Ratner’s 

group.  

Although the porous materials described above unequivocally influence the FBR, work to 

develop porous sensor membranes for implantable chemical sensors has been scarce, likely due 

to difficulties associated with thin coating deposition on the sensors and/or potential sensor-
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material incompatibilities (e.g., high temperatures associated with Soxhlet extraction and GOx 

instability). Electrospinning of polymer solutions represents an alternative approach to 

fabricating porous sensor membranes. The process of forming nanofibrous polymer mats by 

electrospinning is straightforward, requiring readily available experimental components (i.e., a 

syringe pump, high voltage power supply, and metal object to serve as a grounded collector).
147

 

The electrospinning process is typically carried out by applying a high voltage (>5 kV) to a 

polymer solution droplet at the tip of a metal needle. Repulsive electrostatic forces within the 

droplet exceed attractive surface tension forces, resulting in the formation of a Taylor cone. The 

polymer solution stream accelerates toward electrical ground and, upon solvent loss during 

flight, solidifies into nanofibers that accumulate on the grounded metal collector.
147-148

 Although 

the polymer fibers formed by this method are generally polydisperse with respect to fiber 

diameter, both the fiber size (0.01–10 µm) and porosity of the resulting fiber mats (30–95%) can 

be controlled by appropriate selection of solution composition (e.g., polymer concentration, 

polymer identity, conductivity, viscosity) and electrospinning parameters (e.g., voltage, tip-to-

collector distance, collector geometry, humidity).
147-148

  

Analogous to the porous materials produced by salt-leaching and sphere-templating 

methods, electrospun fiber mats are also associated with a reduced FBR.
149

 Optimal tissue 

responses have proven to be dependent on a number of material parameters of the fibers, 

including polymer identity and fiber/pore size. Garg and coworkers recently studied how the 

pore size of electrospun polydioxanone fibers impacted the phenotypes of primary mouse 

macrophages.
150

 Macrophages cultured on electrospun fiber mats with ~15 µm pores expressed 

2–3 fold greater levels of the M2 (anti-inflammatory) marker arginase relative to the 

macrophages on fibers with smaller pores (~1 µm). In contrast, expression of iNOS, a classic 
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pro-inflammatory marker, was elevated for macrophages seeded on the 1 µm pore size fiber mats 

versus macrophages on the larger pore size material. The authors also examined the ability of the 

polydioxanone fiber mats to influence the phenotypes of macrophages that were pre-polarized to 

either M1 or M2 states by stimulation with interferon-γ or a cocktail of IL-4/IL-13, respectively. 

Although the initial macrophage phenotype did impact arginase/iNOS expression, fibers with 15 

µm pores consistently yielded macrophages with reduced pro-inflammatory character (i.e., 

greater arginase/iNOS ratios).
150

 Based on these results, pore sizes on the order of cellular 

dimensions (2–20 µm) appear to mitigate the FBR by forcing macrophages and other 

inflammatory cells to adopt more reconstructive phenotypes.
151

 

Initial work indicates that the orientation of electrospun fibers also appears to be a strong 

determinant of the FBR. Cao et al. reported that aligned electrospun poly(caprolactone) fibers 

(~300–500 nm diameter) facilitated greater in vivo cell migration into the fibers compared to 

randomly oriented fibers in a rat subcutaneous FBR model. Tissue surrounding the aligned fibers 

consistently exhibited lower grades of inflammation at 1–4 wk post-implantation compared to 

the tissue at random nanofiber scaffolds. Irrespective of fiber alignment, both types of fibers 

elicited a 75–90% decrease in collagen capsule thickness (compared to polymeric films) after 4 

wk implantation.
152

  

The electrospinning process is amenable to modifying electrochemical glucose 

biosensors.
22,153

 Wang et al. coated epoxy polyurethane fiber mats onto miniaturized glucose 

sensors using a modified electrospinning setup in which the sensor was fixed onto a rotating 

mandrel that served as the grounded electrospinning collector.
153

 The sensors retained suitable 

glucose sensitivity and linear dynamic range (2–30 mM) at coating thicknesses of ~40–50 µm. 

Although the authors demonstrated the ability to successfully modify glucose sensors with 



28 
 

electrospun fibers, potential benefits to in vivo glucose sensor analytical performance have not 

been reported.  

1.4.3. Release of tyrosine kinase inhibitors 

Tyrosine kinases are a class of enzymes involved in phosphorylation and signal 

transduction for many biochemical cascades. For instance, the tyrosine kinase KIT (also 

identified as CD117) serves as a binding receptor for stem cell factor (SCF), an important mast 

cell growth factor and activator.
154

 Inhibition of the SCF-KIT pathway limits production of 

histamine and the pro-inflammatory cytokine IL-4 by mast cells, suggesting suppressed 

degranulation.
155

 As outlined in Section 3, mast cells play a crucial role in determining the 

chronic inflammatory response to implanted sensors.
156

 Of note, Klueh et al. examined the roles 

mast cells in the FBR using a mast cell-deficient mouse model (WBB6F1 KIT
w
/KIT

w-v
) 

produced by selective mutation to the gene encoding KIT.
82

 The mast cell-deficient mice 

consequently produced a milder FBR relative to wild-type mice.  

As mast-cell deficiency has been shown to improve the accuracy of in vivo glucose 

sensors,
156

 the release of mast cell inhibitors from the surface of glucose sensors may represent a 

promising approach for improving in vivo sensor analytical performance. Grainger and 

coworkers have begun to study the impact of the KIT inhibitor masitinib on tissue 

biocompatibility.
85,157-158

 Avula et al. synthesized masitinib-releasing poly(lactic-co-glycolic 

acid) (PLGA) microspheres using an oil-in-water/solvent evaporation method.
158

 The PLGA 

microspheres were doped into poly(ethylene glycol)/poly(ethylene oxide) membranes and shown 

to release ~11.2 µg masitinib at near-constant rates for up to 30 d.
85,157-158

 Such polymers 

reduced collagen deposition at the subcutaneous implants by 75–90% in wild-type mice. Of note, 

the masitinib release did not reduce collagen encapsulation in mast cell-deficient mice, 
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demonstrating masitinib selectivity toward mast cells.
85,158

 In a separate study, Avula et al. 

fabricated electrochemical glucose sensors using the masitinib-releasing coatings. 
157

 The signal 

stability of the masitinib-releasing glucose sensors was enhanced versus controls over a 21 d 

implantation period in mice. Although these results are initially encouraging, the authors did not 

assess the accuracy of the sensors. In addition, optimal rates and amounts of masitinib (in 

relation to sensor performance) remain unclear. 

1.4.4. Dexamethasone release 

Dexamethasone (DX), a synthetic anti-inflammatory glucocorticoid hormone, was one of 

the initial release agents used to potentially improve the performance of implantable glucose 

sensors.
7
 Dexamethasone is a potent agonist for the cytosol-localized glucorticoid receptor that, 

upon DX binding, translocates to the cell nucleus and achieves its anti-inflammatory effects in 

part through transactivation/transrepression of key chemokines and cytokines (e.g., IL-1, nuclear 

factor ĸB, activating protein-1).
159-160

 Although the mechanisms of DX’s anti-inflammatory 

action have not been fully elucidated, DX is also known to subdue production of other pro-

inflammatory mediators (e.g., tumor necrosis factor-α, IL-6) through other, indirect pathways.
161

  

A significant concern associated with DX release is systemic immune suppression. Hori 

et al. implanted DX-loaded sponges in the subcutaneous tissue of rats and observed indicators of 

a compromised immune system (i.e., thymus and spleen weight loss) at daily doses of 5–50 µg 

DX per implant, even though the DX was administered locally.
161

 Of note, DX doses lower than 

0.5 µg per day did not elicit noticeable immunosuppression. Several years following this report, 

Ward and coworkers investigated the required DX release amounts and rates for achieving 

localized anti-inflammatory action without causing immune suppression in Yucatan-minipigs.
162

 

Mock sensors were coupled to an osmotic pump that delivered DX/saline to the subcutaneously-
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implanted sensor at pre-determined doses (0.7, 0.28, 0.168, 0.1, or 0.05 mg kg
-1

 over 28 d). 

Doses <0.1 mg kg
-1

 did not incite systemic immune suppression, as illustrated by serum cortisol 

levels that were similar to those before DX administration. In contrast, DX doses exceeding 0.1 

mg kg
-1

 produced a noticeable decrease in cortisol concentrations. Based on histological analysis 

of tissues surrounding the implants, it was concluded that the lower DX doses were still 

sufficient to reduce granulocyte densities at 28 d post-implantation, although the macrophage 

response was only lessened at DX doses greater than 0.1 mg kg
-1

.  

It is clear from the investigation by Ward et al. that achieving localized anti-inflammatory 

effects without causing systemic immune suppression requires slow, precisely-controlled DX 

release.
162

 Patil et al. developed DX-loaded PLGA microspheres capable of slow hydrolysis in 

physiological buffer, enabling DX release.
163

 The PLGA microspheres were immobilized in 

poly(vinyl alcohol) hydrogels that were shown to release ~4 µg DX per implant over 28 d. These 

hydrogels were then implanted into the subcutaneous space of rats for histopathological FBR 

evaluation. Regardless of the implant time (1–28 d), the authors reported reduced inflammatory 

cell densities at the DX-releasing hydrogels relative to control gels.  

An additional concern that is routinely observed in tissue studies of DX-releasing 

materials involves inhibited angiogenesis.
164-166

 Proposed strategies for overcoming DX-induced 

ischemia have revolved around the concurrent release of endogenous angiogenic stimulators, 

including vascular endothelial growth factor (VEGF)
164,167-168

 and platelet-derived growth factor 

(PDGF).
168

 However, growth factor release strategies are not straightforward due to issues with 

stability and controlled delivery.
169

 Price and coworkers suggested the use of L-3,4-

dihydroxyphenylalanine (L-DOPA) as a more reliable alternative to either VEGF or PDGF.
169

 

Using a chlorioallantoic membrane model, the authors demonstrated that DX that was released 
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from a hydrogel inhibited angiogenesis, but simultaneous delivery of DX and L-DOPA increased 

the formation of blood vessel sprouts relative to controls (i.e., hydrogels that did not contain DX 

or L-DOPA). While initial results appear promising, achieving optimal delivery rates of both 

species from sensor coatings remains an arduous task.  

Despite the promising histological and immunohistochemical data involving DX-release 

strategies, few reports have demonstrated improvements to glucose sensor analytical 

performance. Klueh et al. implanted electrochemical glucose sensors into the subcutis of mice 

and evaluated the influence of daily intraperitoneal DX injections (1, 6, or 10 mg kg
-1

) on sensor 

performance.
170

 The glucose sensitivity of control sensors degraded rapidly almost immediately 

after implantation (<1 nA mM
-1

), with total loss of the glucose response of the sensor within ~24 

h. DX treatment helped maintain glucose sensitivity for up to 7 d (3–20 nA mM
-1

). Histological 

analysis of tissue samples from the implant site confirmed that a reduced inflammatory response 

was at least partially responsible for the improved sensor function. The promising sensor 

performance data notwithstanding, systemic DX administration in this manner is not a viable 

approach for improving device function outside of the research setting.  

1.4.5. Nitric oxide release 

Nitric oxide (NO), an endogenously-produced, reactive diatomic gas, is involved in 

hemostasis,
171

 angiogenesis,
172

 inflammation,
90,173-174

 neurotransmission,
175

 and wound 

healing.
176-177

 The biosynthesis of NO occurs through the metabolism of L-arginine to L-citrulline 

via one of three isoforms of nitric oxide synthase (NOS): endothelial NOS (eNOS), inducible 

NOS (iNOS), and neuronal NOS (nNOS).
178

 The eNOS and nNOS isoforms are generally 

categorized as lower NO production enzymes (compared to iNOS), requiring elevated 

concentrations of Ca
2+

 (>70–100 nM) that facilitate binding of the enzymatic co-factor 
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calmodulin.
179

 As such, both eNOS and nNOS transiently produce ~nM concentrations of NO 

(bursts of several minutes in duration) for homeostatic processes such as blood pressure 

regulation and neurotransmission.
178

 The endothial NOS isoform is expressed by endothelial 

cells and platelets, whereas nNOS is expressed in the brain and skeletal muscle.
180

 The third 

isoform, iNOS, is not constitutively expressed in tissue but rather produced by immune cells 

(e.g., macrophages, mast cells) in response to various stimulating factors, including 

lipopolysaccharides, interferon-γ, and nuclear factor ĸB.
181-182

 Calmodulin binding for iNOS is 

less sensitive to intracellular Ca
2+

 levels and occurs at normal resting cell Ca
2+

 levels (70–100 

nM).
179,181

 Thus, iNOS activity is largely independent of intracellular calcium and is capable of 

continuous, high-output (~µM) NO production, primarily as a defense against foreign 

pathogens.
181

  

Although NO has traditionally been viewed as an antimicrobial molecule with respect to 

its function in the FBR,
90

 evidence suggests that NO may also regulate the recruitment of cells to 

the implant site during the acute inflammatory response.
176

 The mechanisms for NO’s 

involvement in chemotaxis are not fully understood. However, NO is known to alter expression 

of key inflammatory cell mediators and growth factors, including tumor necrosis factor-α,
183-184

 

chemokine (C-C motif) ligand 2,
183

 RANTES,
185

 IL-1β,
183,186

 and IL-6.
184

 On the other hand, the 

involvement of NO as an angiogenic agent during tissue reconstruction has been well-studied. 

Angiogenesis during the reconstructive end-stages of the FBR requires NO derived from 

eNOS.
172

 Angiogenic factors, such as VEGF and transforming growth factor β, stimulate NO 

production.
187-188

 Nitric oxide may also upregulate VEGF via a positive feedback loop.
189
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1.4.5A. Nitric oxide-release strategies 

 The anti-inflammatory and pro-angiogenic capacities of NO indicate that NO-releasing 

materials may prove useful for mitigating the FBR and improving the analytical performance of 

tissue-implanted glucose sensors. However, localized NO delivery from in vivo sensors is not 

straightforward due to NO’s reactive nature and short lifetime in vivo. The most successful NO-

release strategies have relied on the use of NO donors (e.g., N-diazeniumdiolates or S-

nitrosothiols) as dopant molecules within polymeric sensor coatings (Figure 1.5). The NO donors 

are purposefully selected for their ability to undergo chemical breakdown reactions via specific 

physiochemical triggers with ensuing NO release. N-diazeniumdiolates, formed by the base-

catalyzed reaction of secondary amines with gaseous NO, degrade upon protonation of the amine 

coordinating the NO donor to yield two moles of NO and the regenerated parent amine. The rates 

of NO production in physiological buffer are predictable and dependent on solution pH, 

temperature, and the chemical structure of the precursor amine.
190

 The tunable decomposition 

rates render N-diazeniumdiolates the most frequently investigated class of NO donors for 

applications in NO release. S-nitrosothiols (RSNOs), an alternative NO donor, are readily 

synthesized by reaction of thiols with nitrosating reagents (e.g., acidified sodium nitrite). A 

number of endogenous RSNOs (e.g., S-nitrosoglutathione) serve as NO transporters that augment 

NO’s in vivo lifetime.
191-192

 Light (330–350 and 550–600 nm for primary RSNOs) and thermal 

irradiation both serve as RSNO decomposition triggers, causing homolytic cleavage of the S–N 

bond to yield NO and thiyl radicals.
192

 Several transition metal ions (Cu
+
, Ag

+
, and Hg

2+
) 

undergo irreversible catalytic redox reactions with RSNOs to generate NO.
193

 S-nitrosothiol 

decomposition and concomitant NO release in vivo occurs primarily through thermal methods.  
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Figure 1.5. Common NO donors and schematic representation of NO-doped polymer 

membranes that have been utilized for in vivo glucose sensors.  
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Small molecule NO donors have been extensively utilized as dopants in sensor 

membranes for improving the in vivo analytical performance of ion, oxygen, glucose, and lactate 

sensors.
194-198

 Early work relied on small molecule N-diazeniumdiolates (e.g., (Z)-1-[N-methyl-

N-[6-(N-methylammoniohexyl)amino]]diazen-1-ium-1,2-diolate)
196

 to prevent platelet adhesion 

and thrombus formation on intravascular sensors. The success of these initial biocompatibility 

reports notwithstanding, NO donor leaching from the sensor membranes was identified as a 

concern for reasons including undesirable formation of toxic N-nitrosamine species on the parent 

amines.
199

 In recent reports by the Meyerhoff research group, a more lipophilic NO donor (N-

diazeniumdiolate-modified N,N’-dibutylhexanediamine) has been utilized to limit NO donor 

leaching from NO-releasing polymer membranes.
197,200

 A number of macromolecular NO-release 

scaffolds have also been developed to avoid concerns over N-nitrosamine mutagenicity, 

including silica xerogels,
201-202

 gold
203-204

 and silica nanoparticles,
192,205-206

 organic 

dendrimers,
207-208

 and liposomes.
209

 In particular, silica materials (i.e., xerogels and 

nanoparticles) have proven useful because they are functionalized through straightforward silane 

chemistries to store and release NO.
192,205,210-211

 A diverse selection of secondary amine- and 

thiol-containing organosilanes are available, allowing for tunable NO-release kinetics based on 

the chemical structure of the silane reagent (Figure 1.6). For example, the N-diazeniumdiolate 

form of N-(6-aminohexyl)aminomethyltrimethoxysilane (Figure 1.6A) decomposes rapidly (NO-

release half-life ~3 min) in phosphate buffered saline (PBS; pH 7.4, 37 
o
C).

212
 In contrast, the N-

diazeniumdiolate modification on N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (Figure 

1.6C) is stabilized by the peripheral primary ammonium ion, leading to more extended NO 

release (NO-release half-life ~120 min in PBS).
201,212
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A B 

C D 

Figure 1.6. Chemical structures of select NO-donor modified organosilane precursors. The 

sodium-stabilized salts of N-diazeniumdiolate-modified silanes are shown for (A) N-(6-

aminohexyl)aminomethyltrimethoxysilane, (B) N-[4-[2-(trimethoxysilyl)ethyl]benzyl] 

ethylenediamine, and (C) N-(2-aminoethyl)aminopropyltrimethoxysilane. (D) is the S-

nitrosothiol-modified form of 3-mercaptopropyltrimethoxysilane. 
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 Shin et al. initially developed NO-releasing silica xerogels for use as glucose biosensor 

coatings.
23

 However, the N-diazeniumdiolate formation reaction necessitated exposure of the 

underlying glucose oxidase layer to high pressures of NO, resulting in enzyme deactivation. To 

avoid compromising the stability of the enzyme, Koh et al. synthesized smaller NO-releasing 

silica nanoparticles (with diameters in the range of 100 nm–1 µm) for use as polyurethane (PU) 

sensor membrane dopants.
21-23

 The authors demonstrated control over membrane NO-release 

kinetics based on either the type of NO-releasing silica particle or the identity of the 

polyurethane. Glucose sensor analytical performance (i.e., sensitivity and linear dynamic range) 

was also dependent on polyurethane identity (i.e., water uptake) and membrane thickness. 

Despite promising initial results, later research indicated that the particles were prone to leaching 

from the sensor membranes
205,213

 with the potential to aggravate the FBR.
206,214-215

   

1.4.5B. Subcutaneous tissue biocompatibility of nitric oxide-releasing materials 

Hetrick and coworkers were the first to establish the viability of NO release as a strategy 

for mitigating the FBR using NO-releasing silica xerogels.
216

 A co-condensation reaction was 

initially carried out between isobutyltrimethoxysilane and N-(6-

aminohexyl)aminopropyltrimethoxysilane to form the silica xerogel. The secondary amines 

within the xerogel were subsequently reacted with NO to form N-diazeniumdiolate NO donors. 

The tissue biocompatibility of these coatings was then evaluated in the subcutaneous space of a 

rodent model. After 3 and 6 wk implantation periods, tissue histology indicated that the NO-

releasing xerogels, which released 1.35 µmol NO cm
-2

 over 72 h, decreased inflammatory cell 

density and collagen capsule thickness/density immediately adjacent to the implants (Figure 1.7). 

Quantitative immunohistochemistry for CD-31 (an endothelial cell adhesion molecule) revealed 

greater vascularization (angiogenesis) at both 1 and 3 wk for the NO-releasing substrates relative  
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A B 

C D 

Figure 1.7. Photomicrographs of  tissue slices stained with 

(A, B) Masson’s Trichrome or (C, D) hematoxylin and 

eosin at (A, C) control and (B, D) NO-releasing xerogels. 

The tissue samples stained with Masson’s Trichrome (A, 

B) show reduced collagen deposition (blue-stained fibers) 

at NO-releasing implants after 6 wk. Nitric oxide release 

also reduced inflammation after 3 wk, as evidenced by the 

reduced number of purple-colored inflammatory cell 

nuclei in the hematoxylin and eosin stained tissue sections 

(C, D). Reprinted with permission from Biomaterials, 

2007, 28, Hetrick, E. M.; Prichard, H. L.; Klitzman, B.; 

Schoenfisch, M. H. “Reduced foreign body response at 

nitric oxide-releasing subcutaneous implants,” pages 

4571–4580. Copyright 2007 Elsevier. 
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to controls. However, this work did not identify optimal NO-release payloads or kinetics.  

In subsequent work, Nichols et al. evaluated the severity of the FBR in a swine model as 

a function of NO-release kinetics.
217

 Silica particles modified with either N-diazeniumdiolate or 

S-nitrosothiol NO donors
218

 were employed as polyurethane dopant molecules to fabricate NO-

releasing polymer coatings. The resulting polyurethane/silica composites were diverse with 

respect to their NO-release kinetics, releasing 2.7–9.3 µmol NO cm
-2

 for 1–14 d durations 

depending on the type of silica nanoparticle dopant. Materials capable of releasing NO for at 

least 2 d both decreased inflammation over the first wk post-implantation and lead to reduced 

collagen capsule thickness at 3 and 6 wk. In contrast, more rapid NO-releasing materials (~24 h 

NO-release durations) did not decrease inflammation and were observed to increase collagen 

density relative to control materials. Although the anti-inflammatory effects of NO were 

localized to the tissue immediately surrounding the implants, these results indicate the need for 

precise control of NO-release kinetics for achieving the optimal tissue response.  

A critical, yet frequently overlooked aspect of biocompatibility is whether reductions in the 

FBR actually translate to improved sensor performance. With knowledge that NO mitigates the 

FBR, Nichols et al. evaluated the glucose recovery of NO-releasing microdialysis probes in a rat 

model as a measure of subcutaneous tissue mass transfer resistance.
219

 An NO-saturated buffer 

solution (1.9 mM NO) was used as the probe perfusate to achieve approximately constant NO 

release (~162 pmol cm
-2

 s
-1

 for 8 h daily) from the microdialysis probes via retrodialysis over a 2 

wk implantation period. Although the glucose recovery of NO-releasing and control probes 

remained constant during the first 6 d of implantation (~15–25% glucose recovery), only the 

NO-releasing probes maintained adequate recovery values over the entire 14 d implantation  
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A B 

D C 

E 

Figure 1.8. Photomicrographs of (A, C) Masson’s trichrome or (B, D) hematoxylin & eosin 

stained tissues surrounding (A, B) NO-releasing and (C, D) control microdialysis probes after 

14 d implantation in Sprague-Dawley rats. The photomicrographs in (A,C) stain blue for 

collagen fibers and those in (B, D) stain cell nuclei purple.  The graph in (E) presents the 

glucose recovery of (red, triangle) NO-releasing and (black, inverted triangle) control 

microdialysis probes as a function of implantation time. Reprinted with permission from 

Analytical Chemistry, 2011, 83, Nichols, S. P.; Le, N. N.; Klitzman, B.; Schoenfisch, M. H. 

“Increased in vivo glucose recovery via nitric oxide release,” pages 1180–1184. Copyright 

2011 American Chemical Society. 
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period (Figure 1.8E). After 8 d, control probe glucose recovery was approximately half that of 

the NO-releasing probes and further diminished to <5% after 10 d. Tissue histology analysis 

revealed that the NO-releasing probes induced lower degrees of inflammation and collagen 

encapsulation than the control probes (Figures 1.8A–D), indicating that the superior glucose 

recovery for the NO-releasing probes was due in part to a reduced FBR. Based on the favorable 

improvements to subcutaneous glucose transport, the authors suggested potential benefits of NO 

release to subcutaneous glucose sensor performance. 

Only one prior investigation has examined the potential benefits of NO release to the 

analytical performance of in vivo glucose biosensors.
198

 Gifford et al. functionalized 

percutaneous, needle-type electrochemical glucose biosensors to release NO by doping N-

diazeniumdiolate-modified N,N’-dibutylhexanediamine into polyurethane/polydimethylsiloxane 

glucose sensor membranes.
198

 The NO-releasing sensors and analogous controls were implanted 

in the subcutis of rats for performance evaluations up to 48 h in duration. The NO-releasing 

sensors better maintained glucose sensitivity throughout implantation (~12% sensitivity decrease 

over 48 h) than did control sensors (32% decrease). On the day of implantation, 99.7% of blood 

glucose determinations made by the NO-releasing sensors were reported to be clinically 

acceptable by Clarke Error Grid analysis of the sensor data in comparison to paired reference 

measurements (i.e., a handheld glucometer). In contrast, fewer measurements by control sensors 

met the criteria for a clinically acceptable measurement (96.3%). However, the clinical accuracy 

of NO-releasing sensors after 48 h was similar to controls. Histological analysis of tissues 

surrounding the sensors indicated reduced inflammatory response for the NO-releasing sensors at 

24 h but not at 48 h, highlighting a potential source for decreased NO-releasing sensor 

performance. The authors hypothesized that the NO release, limited to only 18 h in duration, was 
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insufficient to improve sensor performance beyond 24 h. Based on the tissue histology studies by 

Hetrick
216

 and Nichols,
217

 more extended NO release is likely required to improve in vivo 

glucose sensor analytical performance for longer durations.  

1.5. Summary of dissertation research 

The focus of this dissertation research was to develop an understanding of the 

relationships between the foreign body response and the in vivo analytical performance of NO-

releasing electrochemical glucose biosensors. Specifically, I sought to translate the NO-releasing 

silica-based polyurethane sensor membranes to an implantable sensor design for an evaluation of 

in vivo sensor function. Sensor performance was evaluated as a function of NO-release kinetics 

using a porcine FBR model. At the same time, the tissue responses to subcutaneously-implanted 

polyurethanes were assessed in both healthy and diabetic swine models to generate new 

information on how diabetes and NO impact the FBR. My research aims were to: 

(1) evaluate the role of a reduced FBR to NO-releasing glucose sensors on in vivo 

sensor analytical performance in a pre-clinical swine model; 

(2) develop silica nanoparticles with large NO storage and tunable NO-release 

kinetics for use as dopants in glucose sensor membranes; 

(3) systematically develop NO-releasing polyurethanes, adapting the resulting 

membranes to serve as coatings for electrochemical glucose biosensors; 

(4) assess the FBR to subcutaneous implants as a function of disease state (i.e., 

healthy versus diabetic) and NO-release kinetics. 

This introductory chapter established a theoretical framework relating key events in the 

FBR to in vivo glucose sensor analytical performance. Additional impetus for studying the FBR 

in a diabetic animal model was also provided. This introduction served to highlight design flaws 



43 
 

associated with the NO-releasing polymers (e.g., silica particle leaching) that may counteract the 

benefits of NO release directed at reducing the FBR. In Chapter 2, the in vivo analytical 

performance of electrochemical glucose biosensors in a pre-clinical swine model is described as 

a function of NO-release kinetics. In Chapter 3, the synthesis of N-diazeniumdiolate-modified 

mesoporous silica particles via an interfacial ion exchange reaction is shown to enable superior 

NO storage and tunable NO-release kinetics. A systematic evaluation of NO-releasing 

polyurethane/silica membranes is described in Chapter 4 in pursuit of a high-performance, NO-

releasing glucose sensor with non-leaching constituent silica. The NO-releasing silica 

nanoparticles that were developed in Chapter 3 were then utilized to study the FBR to NO-

releasing glucose biosensors side-by-side in healthy and diabetic swine. This work is described 

in Chapter 5. An overall summary of this research is provided in Chapter 6, along with 

suggestions for future work to aid in translation of this technology to future use in humans.   
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CHAPTER 2. IN VIVO ANALYTICAL PERFORMANCE OF NITRIC OXIDE-

RELEASING GLUCOSE BIOSENSORS
2
 

 

2.1. Introduction 

Despite the obvious benefits of continuous glucose monitoring (CGM) for the 

management of diabetes, the utility of in vivo amperometric glucose biosensors is limited to <1 

week due to poor analytical performance, resulting primarily from the foreign body response 

(FBR).
1-2

 Insertion of the sensor damages vascularized tissue and results in a cascade of 

inflammatory events, many of which negatively impact glucose measurements.
3
 For example, the 

resulting passive adsorption of biomolecules (mainly <15 kDa protein fragments) to the sensor 

surface initiates an inflammatory response and is responsible for a dramatic decrease in sensor 

sensitivity (~50%) following sensor implantation.
3-6

 Increased metabolic activity of 

inflammatory cells (i.e., macrophages and foreign body giant cells) at the sensor-tissue interface 

results in inordinate consumption of glucose and oxygen, decreasing their local concentrations 

and attenuating sensor performance.
7
 The hallmark of the FBR is the formation of a thick, 

avascular collagen capsule surrounding the sensor, isolating it from the surrounding tissue and 

obstructing mass transport of interstitial glucose to the sensor.
3
 Indeed, the FBR increases sensor 

response time, decreases sensitivity, and often results in device failure.  

Efforts to improve the analytical performance of in vivo biosensors have largely focused 

on chemical or physical modifications to the outermost, tissue-contacting membrane to mitigate 

                                                           
2
This chapter was adapted from an article that previously appeared in Analytical Chemistry. The 

original citation is as follows: Soto, R. J.; Privett, B. J.; Schoenfisch, M. H. “In vivo analytical 

performance of nitric oxide-releasing glucose biosensors” Analytical Chemistry 2014, 86, 7141–

7149. 
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the FBR.
8
 Examples of such strategies include biomimicry (e.g., the attachment of phospholipids 

to coating surfaces),
9
 employing naturally-derived materials as coatings,

10
 utilizing membranes 

that reduce cell adhesion,
11

 encouraging tissue ingrowth into porous coatings,
12-13

 and 

modulating cell behavior through coating topography.
14

 The active release of anti-inflammatory 

or pro-angiogenic bioactive agents such as dexamethasone (DX) and vascular endothelial growth 

factor (VEGF) has also been proposed as a viable option for improving glucose sensor 

function.
15-16

 However, in addition to the immune suppression associated with DX
17

 and pro-

inflammatory roles of VEGF,
18

 controlled release of these molecules from sensor coatings 

remains a major hurdle.  

The release of nitric oxide (NO)—an endogenous molecule with multiple roles in 

inflammation, wound healing, and angiogenesis—from polymeric coatings has shown ability to 

minimize the FBR.
1,19-21

 Hetrick et al. examined the FBR to subcutaneously implanted NO-

releasing xerogels coated on silicone elastomers in a murine model.
22

 Nitric oxide-releasing 

implants, which generated ~1.35 µmol cm
-2

 NO over 72 h at fluxes >1 pmol cm
-2

 s
-1

, elicited 

only a mild FBR with reduced fibrous encapsulation (>25%) after 3 and 6 wk compared to tissue 

near control implants. Concomitant with a reduced FBR, blood vessel density in the tissue 

surrounding the NO-releasing implants was greater (~50%) than that observed surrounding 

control implants. Nichols et al. assessed glucose recovery as a function of NO release 

percutaneously implanted microdialysis probes.
23

 A constant NO flux (162 pmol cm
-2

 s
-1

, 4.6 

µmol cm
-2

 NO daily) was achieved from microdialysis probes by using a saturated NO solution 

as the perfusate. While glucose recovery from control probes was severely diminished beyond 7 

d, NO-releasing microdialysis probes exhibited near constant glucose recovery throughout the 

study. These results were correlated to tissue histology observations. Indeed, histological 
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analysis of the tissue surrounding NO-releasing probes at 14 d revealed lower inflammatory cell 

counts and a thinner collagen capsule versus probes that did not release NO. The lessened FBR 

and increased glucose recovery suggest that NO release lowered tissue impedance to glucose 

transport. In a separate study, Nichols and coworkers investigated the effects of NO-release 

kinetics on the FBR to subcutaneous NO-releasing wire implants (i.e., mock glucose sensors) in 

a porcine model.
24

 Decreased collagen capsule thickness (>50%) was observed for substrates that 

released NO for extended durations (i.e., >3 d) versus implants that did not release NO. In 

contrast, substrates with shorter NO-release durations (12–24 h) were characterized by greater 

collagen density at the implant-tissue interface compared to the materials which released NO for 

extended durations. Collectively, this body of work highlights the dramatic effect of NO-release 

kinetics on the FBR and the potential to impact the analytical performance of in vivo glucose 

biosensors. 

Despite extensive characterization of the host response to NO-releasing implants, the 

interplay between reduced FBR and actual sensor performance remains a critical void. To date, 

only one study has evaluated the in vivo performance of a NO-releasing glucose sensor. Gifford 

et al. reported improved clinical accuracy for NO-releasing needle-type glucose biosensors 

implanted in rats for 3 d.
25

 However, the NO release from the sensors was limited to 16 h and 

deterioration of sensor performance by day 3 was observed.
26

 Histological analysis of the 

surrounding tissues revealed suppressed inflammation at NO-releasing sensors on day 1 versus 

controls, but no benefits following depletion of the NO reservoir.  Clearly, the role of NO release 

on sensor analytical performance should be studied in greater detail.  

As the severity of the FBR to NO-releasing implants is dependent on release properties, 

we sought to investigate these effects on the performance of percutaneously implanted glucose 
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biosensors. Given previous findings, it is hypothesized that by extending NO-release duration, 

sensor merits (i.e., accuracy, sensitivity, response time) may be maintained for longer 

implantation periods (>7 d). Herein, we report on the analytical performance of NO-releasing 

needle-type glucose biosensors in swine as a function of NO-release duration. 

2.2. Experimental section 

2.2.1. Materials 

 Glucose oxidase (GOx; type VII from Aspergillus niger, >100,000 units g
-1

), D-(+)-

glucose anhydrous, acetaminophen (AP), L-ascorbic acid (AA), urea (UA), phenol, and sodium 

methoxide (5.4 M in methanol) were purchased from Sigma (St. Louis, MO.). Tetrahydrofuran 

(THF), ethanol (EtOH), aqueous ammonium hydroxide (30 wt%), and all salts were purchased 

from Fisher Scientific (St. Louis, MO.). Tetraethyl orthosilicate (TEOS), (3-

mercaptopropyl)trimethoxysilane (MPTMS), and (3-methylaminopropyl)trimethoxysilane 

(MAP) were purchased from Gelest (Tullytown, PA). Methyltrimethoxysilane (MTMOS) and 

diethylenetriaminepentaacetic acid (DTPA) was purchased from Fluka (Buchs, Switzerland). 

Cetyltrimethylammonium bromide (CTAB) was purchased from Acros Organics (Geel, 

Belgium). Hydrothane (AL-25-80A) polyurethane (HPU) was a gift from AdvanSource 

Biomaterials (Wilmington, MA). Tecoflex (SG-85A) polyurethane (TPU) was a gift from 

Lubrizol (Cleveland, OH). Steel wire (356 µm dia.) was purchased from McMaster-Carr 

(Atlanta, GA). Argon, nitrogen, oxygen, and nitric oxide calibration gas (25.87 ppm in nitrogen) 

were purchased from Airgas National Welders (Raleigh, NC). Nitric oxide gas was purchased 

from Praxair (Danbury, CT). Water was purified to a resistivity of 18.2 MΩ·cm and a total 

organic content of <6 ppb using a Millipore Milli-Q UV gradient A10 system (Bedford, MA). 

All other chemicals were reagent grade and used as received.  
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2.2.2. Synthesis of nitric oxide-releasing silica nanoparticles 

 Synthesis of the NO-releasing silica nanoparticles was carried out as described 

previously.
27

 The MPTMS particles were synthesized via a co-condensation approach by adding 

a pre-mixed solution of MPTMS (2.27 mmol) and TEOS (0.76 mmol) at 0.5 mL min
-1

 to a 

stirred solution of EtOH (16.3 mL), H2O (1.4 mL), and 29 wt% aqueous NH3 (11.0 mL). The 

resulting solution was stirred for 2 h at room temperature. The MPTMS particles were collected 

by centrifugation (4500×g, 10 min), washed twice with EtOH to remove ammonia and unreacted 

silane precursors, and dried under reduced pressure. S-nitrosation of the thiol-containing 

nanoparticles was accomplished by reaction with acidified sodium nitrite. The particles (~120 

mg) were suspended in a stirred mixture of MeOH (4 mL), 5 M HCl (2 mL), and 2.3 M aqueous 

sodium nitrite (2 mL) with DTPA (500 µM) added to chelate trace copper ions. The reaction was 

carried out on ice and in the dark for 2 h. The NO-releasing particles were collected by 

centrifugation (4500×g, 4 
o
C, 10 min) and washed with cold 500 µM aqueous DTPA (1×) 

followed by cold MeOH (2×). The particles were dried under reduced pressure for 1 h and used 

immediately thereafter.  

The MAP particles were prepared by grafting the aminosilane (MAP) to the surface of 

mesoporous silica nanoparticles (MSNs). The MSNs were first synthesized using CTAB as a 

surfactant template. Tetraethylorthosilicate (6.25 mmol) was added as a bolus to a stirred 

solution of EtOH (175 mL), H2O (162 mL), 29 wt% aqueous NH3 (11.8 mL), and the surfactant 

CTAB (0.77 mmol). The resulting solution was stirred for 2 h. The mesoporous silica particles 

were collected by centrifugation (4500×g, 10 min) and washed once with EtOH. The surfactant 

was removed by agitating the particles in 35 mL 10 vol% ethanolic HCl in an ultrasonicator bath. 

After repeating this wash procedure three times, the particles were again purified with EtOH and 
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dried under vacuum. Secondary amines were introduced into the silica scaffold by reacting 50 

mg particles with MAP (0.50 mmol) and pyridine (0.60 mmol) in toluene (20 mL) at 90 
o
C for 

18 h. The particles were again collected by centrifugation, washed twice with EtOH, and dried 

under vacuum. Subsequently, N-diazeniumdiolate NO donors were formed on the secondary 

amines. The MAP-modified MSNs (~15 mg) were suspended in 9:1 DMF:MeOH at 5 mg mL
-1

 

in a glass vial and dispersed by ultrasonication for 20 min. A base catalyst for the N-

diazeniumdiolate formation reaction (NaOMe, 5.4 M in MeOH; 9.0 µmol per mg MSN) was 

added to the solution. The MSN-containing vials were equipped with stir bars, placed in a 

stainless steel reaction bottle (Parr Instrument Co.; Moline, IL), and connected to an in-house 

NO reactor. The Parr bottle was flushed six times (three rapid, three 10 min) with 8 bar Ar gas to 

remove atmospheric oxygen and minimize the formation of NO byproducts. The vessel was 

subsequently pressurized with 10 bar NO gas and allowed to react for 72 h. Of note, the NO gas 

used for N-diazeniumdiolate formation was purified over solid potassium hydroxide for at least 4 

h prior to reaction. The Parr bottle was vented after 72 h and the vessel flushed with Ar six more 

times to remove unreacted NO. The particles were collected by centrifugation (4500×g, 4 
o
C, 15 

min), washed three times with EtOH, and dried under reduced pressure for 1–2 h. The resulting 

N-diazeniumdiolate-modified particles were stored in a vacuum-sealed Mylar bag at -20 
o
C until 

further use.     

2.2.3. Preparation of nitric oxide-releasing mock sensors 

 Steel wire was cut in 7 cm pieces and cleaned by sonication in EtOH for 10 min. Polymer 

solutions containing the macromolecular NO-release scaffolds were prepared by dispersing MAP 

or MPTMS particles (72 and 48 mg mL
-1

, respectively) in an 80 mg mL
-1

 solution of 1:1 (by 

mass) HPU/TPU in 1:1 (v/v) EtOH:THF. Wire substrates were modified by dip coating (5 mm s
-
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1
 with a 5-s hold time) four times into the particle-containing PU solution using a DipMaster

TM
 

50 dip coater (Chemat Technology, Inc.; Northridge, CA) with 30 min drying periods under 

ambient conditions between dips. A final TPU topcoat was applied by dip coating into a 40 mg 

mL
-1

 TPU solution in THF.  

2.2.4. Characterization of nitric oxide-releasing substrates 

 Nitric oxide release from the steel wire substrates was measured in real time using a 

Sievers 280i chemiluminescence NO analyzer (NOA; Boulder, CO). Generation of NO from PU 

films was detected indirectly by the formation of a chemiluminescent product (NO2
*
) upon 

reaction of NO with ozone. The NOA was calibrated using an atmospheric gas sample passed 

through a Sievers NO zero filter (0 ppb) and 25.9 ppm NO in N2. Substrates were immersed in 

deoxygenated phosphate buffered saline (PBS; 0.01 M, pH 7.4) at 37 
o
C. The liberated NO from 

PU films was carried to the NOA by a stream of nitrogen gas, bubbled into solution at a 

volumetric flow rate of 75 mL min
-1

. For films containing S-nitrosothiol NO donors (i.e., 

MPTMS particles), the sample flask was shielded from light and 500 µM DTPA was added to 

the PBS buffer to chelate trace copper. Data output from the NOA was collected every 1 s, 

allowing for near real-time monitoring of NO generated from the films. 

The stability of silica particles in PU films was assessed using inductively coupled 

plasma optical emission spectrometry (ICP-OES). Modified wire substrates were immersed in 

PBS buffer and incubated at 37
 o

C for 10 d. The degree of particle leaching into soak solutions 

was determined by monitoring the silicon emission intensity at 251.611 nm using a Prodigy high 

dispersion ICP-OES instrument (Teledyne Leeman Labs; Hudson, NH).   
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2.2.5. Fabrication and in vitro performance of nitric oxide-releasing glucose sensors 

 Bare needle-type glucose sensors (Pinnacle Technology, Inc., Lawrence, KS), composed 

of an integrated silver/silver chloride (Ag|AgCl) pseudo-reference electrode wound around a 

90:10 platinum:iridium (Pt/Ir) working electrode (176 µm dia., ~1 mm length), were 

functionalized by the successive deposition of a polyphenol selectivity layer, a GOx enzyme 

layer, a NO-releasing flux-limiting membrane, and a polyurethane topcoat, as described 

previously.
28-30

 Bare sensors were first cleaned by sonication in EtOH. Electropolymerization of 

phenol onto the working electrode was carried out via chronocoulometry (+900 mV vs. 

Ag|AgCl, 15 min) in a stirred solution of deoxygenated PBS buffer containing 40 mM phenol. 

The total charge passed was measured to be –1.64±0.18×10
-3

 C cm
-2

. Following 

electrodeposition of the inner-most polyphenol layer, sensors were sterilized in CIDEX PLUS® 

28 Day Solution per the manufacturer’s instructions and rinsed with sterile water. All subsequent 

fabrication steps were carried out in a sterile laminar flow hood. Glucose oxidase was 

immobilized on the sensing surface by encapsulating the GOx in a MTMOS xerogel membrane. 

A GOx-containing sol was prepared by mixing 50 μL 120 mg mL
-1

 GOx in H2O with 125 μL 

20% v/v MTMOS in EtOH. The addition of water to the alcohol/silane mixture initiates the 

condensation of the silane monomers to form a polymerized silica xerogel that entraps GOx. 

Sensors were dip-coated 15 times (5-s still time with 10-s drying periods) into the resulting sol 

and allowed to dry for 30 min. Following deposition of the selectivity and enzyme layers, 

sensors were coated with a PU diffusion-limiting/NO-releasing layer by dip-coating into a 

particle-containing PU solution. A TPU topcoat was then applied as an additional layer. Control 

sensors were coated using PU solutions containing MAP or MPTMS nanoparticles (72 and 48 

mg mL
-1

, respectively) that were not functionalized with N-diazeniumdiolate or S-nitrosothiol 
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NO donors.  

2.2.6. In vivo protocol for assessing glucose biosensor analytical performance 

The animal protocol used in this study was IACUC approved. The in vivo performance of 

glucose biosensors was evaluated in ten Yorkshire-type piglets weighing approximately 7–15 kg. 

Pigs were initially anesthetized using Telazol (2–6 mg kg
-1

 intramuscular) and anesthesia was 

maintained using isoflurane (2–3% v/v balance oxygen gas) during sensor implantation. Six 

sensors (three NO-releasing, three control) were implanted in pairs (one NO-releasing, one 

control, spaced 3 cm apart) by cannulation (22-gauge needle) into the subcutaneous space using 

aseptic technique. Sensors were positioned approximately 4 cm lateral and perpendicular to the 

spine and 12–30 cm caudal to the scapulae. Dermabond
TM

 was used to secure the sensor at the 

entry wound. The sensors were further secured using Prolene 3-0 sutures, gauze, and Opsite®. 

Sensor pairs were connected to battery-operated wireless bipotentiostats (model 8100 K-5, 

Pinnacle Technology, Inc.; Lawrence, KS) to allow free motion of the animal while applying a 

constant +600 mV (vs. Ag|AgCl) to the working electrode. The bipotentiostats transmitted 

current measurements wirelessly via an integrated RF transmitter to a nearby receiver. Data was 

collected in real time using Sirenia acquisition software (Pinnacle Technology, Inc.; Lawrence, 

KS).  

Biosensor performance was evaluated at 0, 1, 3, 7, and 10 d post-implantation. A 

peripherally-inserted central catheter was placed in an external jugular vein for blood draws. 

Reference blood glucose (BG) concentrations were measured every 10 min for 6–8 h using a 

One Touch® Ultra glucometer (LifeScan, Inc.; Milpitas, CA) for comparison to sensor data. 

During glucose sensor evaluation, pigs were fasted and sedated with propofol (2 mg kg
-1

 h
-1

) 

administered through a catheter in a peripheral ear vein. Once on the day of implantation and 



75 
 

three times daily thereafter, the swine were challenged with an intravenous glucose tolerance test 

(IVGTT; 0.7 g kg
-1

, 50 wt% dextrose, 1–1.5 h duration), administered over 30 s through the 

peripheral catheter, to assess the ability of glucose sensors to track changing blood glucose 

concentrations. On day 10, pigs were euthanized and the sensors removed from the surrounding 

tissue. Post-explantation, sensors were imaged using environmental scanning electron 

microscopy (ESEM; FEI Quanta 200 Field Emission Gun; Hillsboro, OR).  

2.2.7. Data analysis  

Sensor current traces were filtered and analyzed using custom MATLAB scripts 

(Mathworks, Inc.; Natick, MA). A finite impulse response (FIR) filter was used to attenuate large 

noise spikes caused by pig motion and potentiostat RF transmitter dropout.
31

 A one-minute 

median filter was used to further smooth the data before pairing sensor current traces with 

reference measurements. Glucose sensors were calibrated with respect to reference BG 

measurements once per day using a two-point retrospective calibration.
32-33

 One point for 

calibration was taken at a stable glucose baseline (i.e., prior to the first IVGTT), while the second 

point was taken at a stable point after the first dextrose administration with at least a 15 mg dL
-1

 

difference between BG concentrations. The slope of a linear trend line connecting these two 

points was taken as the apparent in vivo biosensor sensitivity on each day, expressed as mean 

values ± standard deviation. The method of Poincaré was used to approximate the time delay at 

which the correlation between the reference and calibrated sensor signals was greatest, using R
2
 

as the agreement criterion.
34-35

 This delay was determined at ~5 min and used to correct sensor 

data on each day for the physiological time lag characteristic of glucose mass transfer from blood 

to tissue.
36

 After sensor implantation, the “run-in” time (i.e., the time required for sensors to 

achieve a stable background current) was estimated by determining the period over which two 
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consecutive sensor measurements agreed with their respective reference measurements within 

20%.  

Sensor performance was determined using numerical and clinical accuracy metrics. The 

mean absolute relative deviation (MARD) for a data set collected by a single sensor (~25–35 

measurements) was used to characterize sensor numerical accuracy at each time point.
37

 Sensor 

MARD was calculated using Equation 1, where CGM and BG are the blood glucose values 

determined by the sensor and reference glucometer, respectively. 

                                                              MARD = Mean (
|CGM−BG|

BG
∗ 100)                                  (1)  

Additionally, the International Standards Organization (ISO) criteria for glucose monitor 

performance was used to assess sensor numerical accuracy by separately calculating the 

percentage of glucose measurements determined by sensors that were within (1) ±15 mg dL
-1

 of 

the paired reference determination when BG was <70 mg dL
-1

 and (2) ±20% of the paired 

reference determination when BG was >70 mg dL
-1

.
37

 Sensor clinical accuracy was determined 

using Clarke error grid analysis (EGA) by quantifying the percentage of blood glucose 

determinations falling in zones A and B of the error grid.
38

 Cross-correlation of the reference 

signals and raw sensor current traces was used to estimate sensor lag time, with possible lag 

times restricted to >100 s.
39-40

 Values for MARD and lag time are expressed as mean values ± 

standard error of the mean. Differences in median values for sensor MARD, lag time, and 

sensitivity between NO-releasing and control sensors were analyzed using a two-tailed non-

parametric Mann-Whitney U test.
41

  

2.3. Results and discussion 

Nitric oxide-releasing polyurethanes were selected as sensor coatings for evaluating the 

effect of NO-release duration on in vivo glucose biosensor performance. Total NO payloads 
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sufficient for minimizing inflammation (i.e., >1 μmol cm
-2

)
22

 with varied NO-release durations 

(<1 h to >14 d) were achieved by tuning the PU properties (i.e., water uptake) and NO donor 

type.
29

 We have shown previously that sensor response is not negatively affected by NO release 

from PU coatings at a working electrode potential of +600 mV vs. Ag|AgCl.
29

 The versatile NO-

release kinetics and compatibility with amperometric glucose sensing make NO-releasing 

polyurethanes an ideal platform for assessing the effects of NO release on in vivo glucose 

biosensor performance.  

2.3.1. In vitro characterization of nitric oxide-releasing glucose biosensors 

 Wire substrates, selected to mimic the geometry and size of a needle-type glucose sensor, 

were modified with NO-releasing PU coatings via a dip-coating procedure. A hydrophobic TPU 

topcoat was employed to both minimize any leaching of the macromolecular NO donors and 

eliminate the surface roughness introduced by nanoparticle dopants. Undoubtedly, the physical 

properties (i.e., roughness) of an implant surface will affect the FBR.
14,42

 The stability of the 

nanoparticle-doped PU coatings in PBS was investigated over 10 d by analyzing the silicon 

content of soak solutions using ICP-OES. While silica is considered non-toxic,
22,43

 the resulting 

changes in coating structure or potential tissue inflammation may affect the performance of 

glucose sensors in vivo. For coatings doped with NO-releasing MPTMS-RSNO particles as well 

as controls, leaching of silica particles from the PU matrix was undetectable (<2%). Slight 

leaching (10.8±2.9% of the total incorporated silica) was observed from coatings containing NO-

releasing MAP/NO particles. Interestingly, the majority of the observed leaching occurred during 

the first 4 h, suggesting some instability associated with encapsulating the charged N-

diazeniumdiolate NO donor moieties within the polyurethane coating (data not shown).  
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Table 2.1. Size and nitric oxide-release characterization for MAP/NO and MPTMS-

RSNO silica nanoparticle dopants. 

Nanoparticle NO Donor [NO]T (µmol mg
-1

)
a 

Particle Diameter (nm)
b 

MAP 2.03±0.20 820±80 

MPTMS 3.36±0.62 620±80 
a
Total NO storage

 b
Nanoparticle diameter estimated via scanning electron microscopy 
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The effect of NO-release duration on in vivo sensor performance was studied using two 

different macromolecular NO release systems: N-diazeniumdiolate NO donors and S-nitrosothiol  

modified silica nanoparticles (MAP/NO and MPTMS-RSNO, respectively). Briefly, N-

diazeniumdiolate NO donors undergo proton-initiated decomposition in aqueous environments to 

generate NO.
44

 Conversely, NO release from S-nitrosothiols may be triggered using light or 

Cu(I), but also decompose sluggishly through thermal mechanisms in vivo.
27,45

 To simulate in 

vivo conditions, NO release from PU films was measured in PBS at 37 
o
C. For MPTMS-RSNO 

coatings, thermal decomposition of the S-nitrosothiol moieties was achieved using a light-

shielded sample flask and the addition of DTPA to chelate trace copper. Particle characterization 

is presented in Table 2.1. By appropriate selection of the nanoparticle dopant concentration (72 

and 48 mg mL
-1

 for MAP/NO and MPTMS-RSNO particles, respectively) we attained similar 

total NO payloads (~3.1 µmol cm
-2

) for both coating formulations (Table 2.2). Of note, NO 

payloads from these coatings were more than two times greater than the xerogel coatings utilized 

by Hetrick et al. (~1.35 μmol cm
-2

) and similar in magnitude to those employed by Nichols et al. 

(2.7–9.3 µmol cm
-2

)—both of which proved effective at reducing the FBR to subcutaneous 

implants.
22,24

 

Upon immersion in PBS, MAP/NO films exhibited a large initial NO flux 

([NO]max=685.8 pmol cm
-2

 s
-1

) and released 99% of their total NO payload within ~16 h, with no 

additional NO release measurable beyond 24 h (Table 2.2). The NO-release duration (16 h) was 

similar to that reported to improve glucose sensor accuracy by Gifford and coworkers (12–18 

h).
25

 Similarly, MPTMS-RSNO films showed a large initial NO flux ([NO]max=551.4 pmol cm
-2

 

s
-1

), with a rapid decrease to ~14.0 pmol cm
-2

 s
-1 

at 14 h. In contrast to the MAP/NO films, 

MPTMS-RSNO coatings required ~3.1 d to release 99% of their total NO payload, with NO  
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Figure 2.1. Amperometric glucose response for NO-

releasing PU-coated (MPTMS-RSNO) needle type sensor 

after pre-conditioning in PBS.  
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Table 2.2. Nitric oxide release from polyurethane coatings doped 

with NO-releasing MPTMS-RSNO and MAP/NO nanoparticles. 

NO-Release Merits MPTMS-RSNO MAP/NO 

[NO]
max

 (pmol cm
-2

 s
-1

)
a
 551.4±130.0 685.8±11.4 

t
max

 (min)
b 

1.68±0.20 23.80±7.17 

t
1/2

 (h)
c 

6.29±2.07 0.93±0.17 

[NO]
8h  

(pmol cm
-2

 s
-1

) 14.0±3.9 13.0±3.2 

[NO]
12h 

(pmol cm
-2

 s
-1

) 9.8±3.8 3.7±1.5 

[NO]
24h 

(pmol cm
-2

 s
-1

) 3.3±0.2 0
d 

[NO]
48h 

(pmol cm
-2

 s
-1

) 1.0 ±0.1 0
d 

[NO]
72h 

(pmol cm
-2

 s
-1

) 0.5±0.0 0
d 

[NO]
168h 

(pmol cm
-2

 s
-1

) 0.5±0.0 0
d 

[NO]T (μmol cm
-2

)
e 

3.14±0.26
f 

3.11±0.27 

t
d 

(h)
g 

74.6±16.6 16.0±4.4 
 aMaximum instantaneous NO concentration. 

b
Time required to reach maximum 

NO flux.
 d

Half-life for NO-release from PU films.
 d

Nitric oxide release was 

below the limit of detection of the NOA. 
e
Total amount of NO released.

 

f
Measured by irradiation of the sample flask with 200 W light. 

g
Determined at 

the time at which 99% of the total NO was released. 
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Table 2.3. Glucose sensor analytical performance in phosphate buffered saline at 37 
o
C. 

Performance 

Merit 
Day

a MAP 

Control 
MAP/NO 

MPTMS 

Control 

MPTMS-

RSNO 

Sensitivity (nA 

mM
-1

) 

0 2.3±0.2 2.3±0.1 2.1±0.4 2.2±0.7 

1 2.2±1.0 2.4±1.8 2.7±0.1 2.1±0.9 

3 1.3±0.3 1.5±1.3 2.2±1.0 2.0±1.4 

7 1.6±0.1 1.8±1.1 2.0±0.5 1.8±0.3 

10 1.4±1.0 1.9±1.5 1.3±0.3 1.4±0.8 

Response Time (s) 0 28±18 13±9 36±12 40±27 
a
Time elapsed after immersing the sensors in PBS. 
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release (0.5 pmol cm
-2

 s
-1

) still measurable at ~7 d. Even such low levels of NO are 

physiologically relevant, as vascular endothelial cells release NO at 1–7 pmol cm
-2

 s
-1

 to prevent 

platelet activation.
26,46

 Additionally, similar NO fluxes (1.5–30 pmol cm
-2

 s
-1

) inhibit in vitro 

bacterial adhesion to surfaces.
47-48

 As expected, NO release from the outer glucose sensor 

membrane did not impact biosensor response. After an initial hydration period of 3–4 h, the 

glucose sensitivities of NO-releasing and control sensors were comparable and remained 

constant (1.3–2.3 nA mM
-1

) over 10 d in PBS at 37
 o

C for all membrane formulations (Table 

2.3). In the absence of pre-conditioning, sensors exhibited poorer dynamic range and longer 

response times to changes in glucose concentration during the first several hours of testing (data 

not shown). Both NO-releasing and control sensors exhibited acceptable response times (<40 s) 

to an increase in glucose concentration of 5.6 mM. All sensors responded linearly to glucose 

between 1–12 mM after pre-conditioning in PBS (Figure 2.1). Furthermore, the amperometric 

selectivity coefficients for glucose over acetaminophen, ascorbic acid, and urea were 0.82, 0.49, 

and 0.03, respectively for blank sensors (i.e., sensors that were coated solely with polyurethane). 

As expected, selectivity for glucose was sufficient.   

2.3.2. In vivo biosensor run-in time, glucose sensitivity, and Clarke error grid 

Following implantation, both NO-releasing and control biosensors displayed a run-in 

period during which the sensor response converged to a steady baseline signal (Figure 2.2A). 

While Gifford et al. reported a reduced run-in time for NO-releasing sensors versus control 

sensors in rodents,
25

 we did not observe differences in run-in time between NO-releasing sensors 

and controls—all four sensor configurations required ~3–6 h to achieve a steady background 

current. The source of this discrepancy is unclear, but a number of variables (e.g., different 

animal model, implant method, and extended sensor hydration time) may have contributed to this  
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Figure 2.2. Representative current trace for glucose biosensor following implantation (A) and 

distribution of estimated run-in times for NO-releasing and control sensors (B). Error bars 

indicate the total spread of data and boxes represent data points that lie in the center quartiles 

(25–75%). 
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result. The potential analytical performance benefits of NO-releasing amperometric glucose 

biosensors were evaluated in a healthy swine model. The use of digital noise filters was required 

to achieve stable current traces due to swine motion and intermittent potentiostat RF transmitter 

dropout. The filtering algorithms were restricted to those compatible with real-time continuous 

glucose monitoring.
31

 As expected, the FIR and median filters sufficiently improved signal 

quality without introducing an undesirable artificial time delay (>20%) between sensor and 

reference signals. Subsequently, sensors were calibrated by comparison to corresponding 

reference blood glucose measurements using a two-point retrospective calibration. A one-point 

calibration (which assumes a negligible background current) has been suggested to be superior to 

a two-point calibration.
32

 However, the in vivo background in our study was substantial (6–10 

nA) compared to the in vitro baseline (1–3 nA), necessitating the use of a two-point calibration. 

Other researchers have also reported disparities between in vitro and in vivo sensor baseline 

currents.
49

 Despite minimizing the artificial delay caused by filtering, a physiological lag 

between the sensor signal and reference BG measurements was still observed. This delay arises 

from the slow mass transfer of glucose from the vasculature to the tissue and ultimately the 

sensor.
34-36

 An analysis of sensor performance on day 0 via the method of Poincaré
35

 indicated a 

~5-min lag between the reference signal and calibrated sensor signal. This lag time was thus 

accounted for in all remaining data sets (days 1, 3, 7, and 10) by shifting the reference signal in 

time relative to the sensor signal.  

The clinical accuracies of NO-releasing and control in vivo glucose biosensors were first 

assessed via the Clarke error grid.
38

 The percentage of BG measurements falling in zones A and  
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Table 2.4. Clinical performance and apparent in vivo sensitivity of glucose biosensors. 

Day 
  

  

MAP 

Control  
MAP/NO 

MPTMS 

Control 

MPTMS-

RSNO 

0 

% Points in Zones A/B  89.6 87.6 91.0 94.7 

N
a 

 183 105 311 321 

Sensitivity (nA mM
-1

)  0.90±0.87 0.72±0.40 0.74±0.47 0.60±0.30  

1 

% Points in Zones A/B  78.6 86.2 90.6 89.1 

N
a 

 168 174 224 347 

Sensitivity (nA mM
-1

) 0.14±0.09  0.59±0.54
b 

0.29±0.18 0.39±0.17  

3 

% Points in Zones A/B  84.8 92.0 81.7 83.9 

N
a 

 169 173 180 124 

Sensitivity (nA mM
-1

) 0.18±0.04  0.59±0.40
b 

0.24±0.16 0.49±0.18 

7 

% Points in Zones A/B  93.2 94.2 88.3 88.1 

N
a 

115  87 157 69 

Sensitivity (nA mM
-1

) 0.23±0.15  0.39±0.26 0.20±0.07 0.45±0.19 

10 

% Points in Zones A/B 84.8 81.4 91.8 84.9 

N
a 

138 97 135 66 

Sensitivity (nA mM
-1

) 0.16±0.06 0.20±0.13 0.09±0.02 1.3±1.1 
a
Total number of measurements.  

b
Significantly different at p<0.05. 
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Figure 2.3. Clarke error grid for MPTMS-RSNO 

biosensors on day 0. While daily IVGTT provided 

excursions into the hyperglycemic range, the majority of 

glucose determinations (~70%) were made in the 50–100 

mg dL
-1

 range. Zones labeled A and B represent clinically 

acceptable blood glucose measurements, while zones C, D, 
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B (clinically accurate and clinically benign determinations, respectively) of the error grid are 

shown in Table 2.4. On the day of implantation (day 0), the MAP/NO-based sensors performed 

slightly worse than control sensors, with a 2% difference in the percentage of determinations in 

zones A and B. However, the performance of MAP/NO sensors on days 1 and 3 was superior to 

controls, with >7% difference in the percentage of clinically accurate and acceptable 

determinations. Concomitant with improved clinical performance, sensors that rapidly released 

NO were characterized as having greater glucose sensitivity on days 1 and 3 (0.59 nA mM
-1

 on 

both days) versus controls (0.14 and 0.18 nA mM
-1

, respectively). However, the MAP/NO 

sensors exhibited similar clinical accuracy and glucose sensitivity to control sensors at implant 

periods beyond three days (i.e., days 7 and 10), suggesting that sensor performance is only 

improved during periods of active NO release. The trends in sensor clinical performance and 

glucose sensitivity correlate well with the NO-release kinetics from the sensors, with clear 

benefits to sensor performance early during in vivo use (i.e., days 1 and 3) but no improvements 

after the NO supply was exhausted. Nichols et al. showed that the FBR >1 wk post-implantation 

was unaffected for implants that released NO for <24 h. As such, inflammation may be the 

primary culprit for decreased sensor performance beyond 3 d.
24

 The MPTMS-RSNO based 

sensors exhibited similar clinical accuracy to MPTMS control sensors throughout the 10 d in 

vivo study. The sensitivity of the MPTMS-RSNO sensors to glucose appeared greater than 

controls at 1–3 d post-implantation, but these differences were not significant (p>0.05). This 

result may be due to the low, sustained NO fluxes released from sensors when compared to the 

MAP/NO-based sensors (Table 2.2).  

Of importance, the majority (~70%) of BG determinations were obtained in the 50–100 

mg dL
-1

 range, as shown in the representative Clarke error grid analysis in Figure 2.3. In addition 
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to the similarities between swine and humans (e.g., skin, vasculature, subcutaneous tissue 

composition) which render the pig an appropriate model for evaluating in vivo biosensors, 

baseline blood glucose concentrations obtained in this study were comparable to human 

euglycemic levels.
25,49-51

 As maintenance of euglycemia increases the propensity of diabetic 

individuals to enter the hypoglycemic BG range,
52

 the Clarke error grid presents austere 

requirements for sensor accuracy in this region. Thus, the error grid analysis presented herein is 

at BG levels clinically and physiologically pertinent to humans.   

2.3.3. Biosensor numerical accuracy and adherence to ISO criteria 

To evaluate in vivo biosensor performance in more detail, the sensor numerical accuracy 

was represented using the MARD of each sensor from corresponding reference values.
37

 While 

the Clarke error grid measures sensor accuracy based on the clinical implications of a given BG 

measurement, the MARD represents a statistical entity that exemplifies the average percent 

deviation of the sensor from a reference. Additionally, ISO criteria for in vivo glucose biosensor 

performance was considered as a metric for numerical accuracy because it can be used to assess 

sensor accuracy in both hypoglycemic (<70 mg dL
-1

) and euglycemic/hyperglycemic (>70 mg 

dL
-1

) BG ranges separately.
37

 A comparison of the numerical accuracies for control and NO-

releasing sensors is shown in Figure 2.4. As anticipated, the analytical performance of MAP/NO-

based sensors on days 1 and 3 was superior to control (MAP) sensors. The improvements in 

numerical accuracy agree with the increased clinical accuracy and greater glucose sensitivity for 

the more rapid NO-releasing sensors. Furthermore, the performance of the MAP/NO-based 

sensors worsened beyond 3 d implantation. The desirably lower MARD for rapid NO-releasing 

glucose sensors is attributed to the improved accuracy in both the hypoglycemic and 

euglycemic/hyperglycemic ranges, as shown in Table 2.5. Indeed, >55% of the total BG  
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Table 2.5. ISO criteria for NO-releasing and control sensors. 

Day 
MAP 

Control (%) 
MAP/NO (%) 

MPTMS 

Control (%) 

MPTMS- 

RSNO (%) 

0 58.0
a
/50.0

b 
51.9/61.5 55.7/60.0 60.2/67.0 

1 37.9/39.2 55.6/56.7 45.9/59.7 55.5/59.4 

3 52.9/47.7 65.6/57.3 39.5/57.3 58.5/74.7 

7 62.5/62.7 42.1/57.8 35.5/45.2 42.1/52.0 

10 55.6/54.9 30.6/45.9 15.0/34.8 63.6/45.5 
a
Calculated as the percentage of determinations within 15 mg dL

-1
 of the reference measurement when 

BG<70 mg dL
-1

. 
b
Calculated as the percentage of determinations within 20% of the reference measurement 

when BG>70 mg dL
-1

. 
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determinations obtained by MAP/NO-based sensors agreed well with corresponding reference 

measurements in both BG ranges on days 1 and 3. Unexpectedly, the MARD for control (MAP) 

sensors was lowest at 7 d implantation (21.9 ± 13.1%). Despite the inconsistent numerical 

accuracy for control sensors, the analytical performance was comparable to NO-releasing sensors 

at both 7 and 10 d.  

Although the clinical accuracy of the MPTMS-RSNO based sensors was comparable to 

controls, the numerical accuracy of NO-releasing sensors remained constant (MARD range 

22.2–26.0 %) throughout the experiment. Furthermore, the sensors that released NO for extended 

durations exhibited a significantly lower MARD on days 1 and 3 (26.0 and 23.9%, respectively) 

versus controls (34.3 and 38.8%, respectively). We attribute the good agreement between 

MPTMS-RSNO sensors and reference measurements to the increased accuracy of the NO-

releasing biosensors in both the hypoglycemic and euglycemic/hyperglycemic BG ranges. The 

percentage of determinations for MPTMS-RSNO based sensors that adhered to ISO criteria was 

typically >50% throughout implantation, while control sensor performance worsened with 

implant duration, particularly in the hypoglycemic range. The stable biosensor response provided 

by the sustained NO-releasing sensor membranes highlights the utility of having more extended 

NO release for continuous glucose monitoring. 

 Of importance, the NO-release kinetics also correlated with the magnitude of the 

improvement in numerical accuracy for NO-releasing sensors versus controls. For example, 

MAP/NO-based sensors showed vastly decreased MARD versus control (MAP) sensors on day 1 

(22.0 and 47.3%, respectively), whereas sensors with longer NO-release durations (MPTMS-

RSNO) exhibited more modest improvements relative to controls (28.4 and 34.3%, respectively). 

However, the differences in the MARD between MAP/NO and MPTMS-RSNO sensors on days 
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1 and 3 were not statistically significant (p>0.05). The enhanced numerical accuracy afforded by 

rapid NO-release from sensor membranes indicates a possible advantage to greater NO fluxes, as 

MAP/NO-based sensors delivered ~3.1 µmol cm
-2

 NO in <24 h. Although MPTMS-RSNO 

sensors had a near constant MARD throughout the experiment duration, the improvements in 

numerical accuracy provided by lower, more sustained NO release may not have been large 

enough to result in improved clinical performance. Collectively, these results suggest that sensor 

performance benefits to a greater extent with prolonged NO release and that these gains are 

dependent on the fluxes at which NO is liberated. 

2.3.4. Biosensor lag time 

 While poor glucose sensitivity often contributes to undesirable sensor performance in 

vivo, diminished accuracy also results from sluggish response of the sensor to changes in BG 

levels.
53

 In addition to an inherent blood-tissue glucose lag, progression of the FBR increases the 

difficulty of glucose diffusion to the sensor. Distinct properties of the collagen capsule (i.e., 

thickness, density, and avascularity) produced upon resolution of the foreign body response have 

been shown to affect the transport properties of small molecules from the vasculature to the 

tissue.
12-13,54

 Even in the absence of a mature fibrotic capsule, biofouling and inflammation at the 

sensor-tissue interface may create a diffusion barrier to glucose.
55

 As amperometric glucose 

biosensors are diffusion-limited with respect to glucose, a longer response time may hinder the 

competence of the sensor to track rapid changes in BG levels, resulting in decreased accuracy. 

Since tissue surrounding NO-releasing implants exhibits less inflammation,
22-24

 reduced collagen 

encapsulation,
22,24

 and low impedance to glucose transport,
23

 NO-releasing sensors may show 

more rapid response to changes in BG. While time-shifting methods (i.e., Poincaré dynamical 

analysis) have been used to correct CGM data for time-lag effects,
34-35

 calibration of the sensor  
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Figure 2.5. Estimation of sensor lag time via cross-

correlation. MPTMS-RSNO biosensors (blue inverted 

triangle) exhibited significantly reduced lag times on days 3, 

7, and 10 versus MAP/NO sensors (red circle), and MAP 

and MPTMS controls (black square and green triangle, 

respectively). Asterisks denote significant differences 

(p<0.05) in the median values for lag time between the 

MPTMS-RSNO sensors and all other sensor types. 
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Figure 2.6. Representative post-explantation scanning electron micrographs of 

glucose biosensor working electrode surfaces exhibiting (A) membrane cracking 

and (B) partial coating delamination. 

A B 
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signal may corrupt a comparison of sensor lag times. Cross-correlation of the raw sensor signals 

and paired reference signals were thus used to estimate sensor delay, avoiding the requirement 

for sensor calibration.
39-40

   

Initially (i.e., 0–1 d implant period), NO release had little effect on sensor lag times 

(Figure 2.5). However, NO release did impact sensor lag times on days 3, 7, and 10. The 

MPTMS-RSNO based sensors resulted in significantly faster response to changing glucose 

concentrations during the IVGTT (<4.2 min) compared with both control (MPTMS) and 

MAP/NO-based sensors (>5.8 min). As well, the response time of the MAP/NO-based sensors 

worsened with implantation time analogous to control sensors, suggesting that the benefit of 

reduced response time is only attained when sensors are still releasing NO. Despite similar NO 

payloads, the difference in lag time between the two types of NO-releasing sensors was 

somewhat expected. Nichols et al. demonstrated a reduced FBR to materials capable of >2 d NO 

release at both 3 and 7 d post-implantation.
24

 In contrast, shorter NO-release durations (<24 h) 

did not produce an observable effect. In a separate study, sustained NO release from 

percutaneously implanted microdialysis probes reduced tissue impedance to glucose transport,
23

 

which may explain the reduced sensor lag time observed in the present study.  

2.3.5. Post-explantation analysis 

Approximately 40% of implanted NO-releasing and control sensors functioned beyond 3 

d, indicating a limitation in this study. Following sensor explantation, the sensors were imaged 

via environmental scanning electron microscopy to investigate the implant surfaces and perhaps 

understand the potential sources of sensor failure. Representative scanning electron micrographs 

(SEMs) of the surface of the sensors are shown in Figure 2.6. Electrical failure and membrane 

delamination/cracking were identified as causes of in vivo sensor failure, with contributions from 
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both the FBR and mechanical stresses to the percutaneous sensor.
49

 Koschwanez et al. previously 

reported that micromotion and the associated stress for percutaneous implants yielded 

unanticipated results for studies evaluating glucose sensor coatings.
56

 Indeed, the significant 

mechanical stress to percutaneous implants convolutes the interpretation of sensor failure. 

Nonetheless, percutaneous glucose sensors remain the most realistic method for implementing 

continuous glucose monitoring due to their low cost and facile implantation, and serve as a 

suitable model for evaluating candidate biomaterials.
49,57

 Furthermore, NO has been shown to 

provide benefits to percutaneous implants even in the presence of such physical factors.
23

   

2.4. Conclusions 

 Nitric oxide was shown to clearly enhance the analytical performance of in vivo glucose 

biosensors, with the associated benefits being dependent on the NO-release kinetics from the 

outer sensor membranes. Both rapid and extended NO-releasing sensors exhibited improved 

numerical accuracy versus controls. Rapid NO release from sensors resulted in positive 

differences in both clinical accuracy and glucose sensitivity, while sustained NO-release from 

MPTMS-RSNO biosensors provided constant numerical accuracy over the entire 10 d implant 

period. The MPTMS-RSNO sensors were characterized by a quicker response to the IVGTT than 

both the MPTMS control and MAP-based sensors, which we attribute to the generation of NO. It 

is hypothesized that shorter lag times for the MPTMS-RSNO sensors are the result of improved 

glucose transport from the tissue surrounding the implants. The predictable performance of 

MPTMS-RSNO glucose biosensors suggests that materials that are capable of releasing large NO 

payloads for even longer durations (i.e., several weeks) represent the ultimate NO-release 

strategy for long-term glucose sensing technologies (i.e., months), rather than the short term (i.e., 

~10 d) period that was the focus of this study. However, the effects of NO on diabetic tissue may 
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be dissimilar. Indeed, diabetic tissue is characterized by numerous deficiencies including altered 

wound repair,
58-59

 lessened inflammation and pro-inflammatory cytokine production at wound 

sites,
59

 disrupted blood flow,
60

 and susceptibility to infection.
61

 Work characterizing the response 

of diabetic tissue to implantation has been limited thus far. The disparities between diabetic and 

healthy tissue motivate the need for understanding the diabetic response to sensor implantation 

and warrant a careful investigation of the role of NO on the diabetic FBR.   
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CHAPTER 3. FUNCTIONALIZED MESOPOROUS SILICA VIA AN AMINOSILANE-

SURFACTANT ION EXCHANGE REACTION: CONTROLLED SCAFFOLD DESIGN 

AND NITRIC OXIDE RELEASE
3
  

3.1. Introduction 

Nitric oxide (NO), an endogenous diatomic free radical, mediates multiple physiological 

processes including angiogenesis,
1
 blood pressure regulation,

2
 wound healing,

3-4
 and the immune 

response.
5-6

 In vivo, nitric oxide synthase (NOS) enzymes generate NO at concentrations (nM–

µM) and kinetics dependent on the enzyme location and purpose.
3
 For example, low 

concentrations of NO generated via calcium-dependent endothelial and neuronal NOS regulate 

neovascularization
1
 and serve roles in neurotransmission.

7
 Activation of the inducible NOS 

isoform by immunological stimuli (e.g., lipopolysaccharide, interferon-γ) causes sustained NO 

release at high concentrations to eradicate foreign pathogens as part of the innate immune 

response.
5-6

 The multifaceted roles of endogenous NO are attributable to precise spatiotemporal 

NO release by cells expressing the NOS enzymes. In addition, NO’s short biological lifetime 

(seconds) restricts its action to <0.5 mm from the point of generation.
8
  

Due to NO’s overwhelming presence in physiology, the administration of exogenous NO 

gas represents a potential therapy for many diseases.
9
 A significant body of research has focused 

on the development of donors that store and release NO under specific chemical conditions in 

order to address the concentration-dependent behavior of NO and avoid challenges associated 

                                                           
3
This chapter was adapted from an article that previously appeared in ACS Applied Materials and 

Interfaces. The original citation is as follows: Soto, R. J.; Yang, L.; Schoenfisch, M. H. 

“Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: 

Controlled scaffold design and nitric oxide release,” ACS Applied Materials and. Interfaces 

2016, 8, 2220–2231. 



106 
 

with the administration of NO directly, such as the need for a pressurized gas cylinder and NO’s 

rapid reaction in biological media.
9
 In particular, N-diazeniumdiolate NO donors, formed by the 

reaction of gaseous NO with secondary amines, spontaneously release NO in physiological 

buffer upon reaction with hydronium ions. This class of molecules has accordingly received 

attention for biological applications because the breakdown of the NO donor and concomitant 

NO release occurs at rates dependent on pH, temperature, and the chemical structure of the 

precursor molecule used for N-diazeniumdiolate formation. 

The potential utility of the N-diazeniumdiolate functional group originally inspired 

research on low molecular weight NO donors.
10-11

 Unfortunately, limited NO capacity and 

duration generally preclude the use of these small molecule NO donors for therapeutic 

applications. To enhance NO storage and exert additional control over NO release, much work 

has focused on the synthesis of N-diazeniumdiolate-modified macromolecular NO-delivery 

scaffolds, including chitosan oligosaccharides,
12

 dendrimers,
13-15

 gold clusters,
16-17

 and silica 

nanoparticles.
18-25

 With respect to silica, surface grafting,
21,26

 co-condensation,
20,27

 and water-in-

oil microemulsion
19

 methods have been used to prepare N-diazeniumdiolate-functionalized 

particles. Silica is attractive as an NO-release scaffold as it is well tolerated (non-toxic) and 

readily implemented as a drug delivery vehicle.
11,19,26

 For example, NO donor-modified silica 

particles have served as reinforcing fillers for NO-releasing polymeric coatings (i.e., for in vivo 

sensors) to promote angiogenesis and wound healing.
28-29

 Such materials have also proven 

effective as antimicrobial abrasives that may be integrated with oral hygiene technologies.
18,27

  

Despite their value as potential therapeutics, current strategies for synthesizing NO-

releasing silica nanoparticles remain limited by challenges associated with altering the physical 

properties of the particles and the NO release independent of one another. The use of 
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mesoporous silica represents an attractive macromolecular scaffold for enhancing NO storage 

and release because of the inherently greater and modifiable surface area (500–1,200 m
2
 g

-1
) 

relative to previous nonporous silica systems.
19-21,23,25-27

 Control over pore formation and the 

silica mesophase is achieved via the synthesis of the nanoparticles around an ordered surfactant 

aggregate, generally an alkyltrimethylammonium salt, that serves as the structure-directing agent 

(SDA).
30-31

 Covalent attachment of secondary-amine containing silanes (i.e., NO donor 

precursors) to mesoporous silica is carried out by direct incorporation of the aminosilane into the 

particle backbone via co-condensation
32-34

 or post-synthetically through surface grafting.
35-37

 In 

the co-condensation approach, coulombic repulsion between the cationic surfactant molecules 

and the protonated backbone amines destabilizes the template, resulting in materials with 

irregular morphology, even at low aminosilane concentrations.
32,38

 Post-synthetic surface 

grafting (after extracting the SDA) is generally the preferred method for functionalizing 

mesoporous silica, albeit at the cost of a multi-step workflow and loss of control over the amount 

of aminosilane incorporated. Moreover, the grafting process requires a nonpolar aprotic solvent 

to avoid irreversible water-induced particle agglomeration,
25

 often resulting in heterogeneous 

amine distribution and batch-to-batch irreproducibility.
37

 

Ion exchange between cationic organosilanes and common alkyltrimethylammonium 

SDAs represents a new MSN functionalization approach. To date, this strategy has been limited 

to post-synthetic modification in organic solvents, raising concerns regarding synthesis 

irreproducibility similar to surface grafting. Herein, we report aminosilane ion exchange with 

cetyltrimethylammonium bromide (CTAB) in the aqueous particle sol. Initially, we prepare a 

diverse selection of monodisperse amine-functionalized mesoporous silica nanoparticles 

(MSNs). The surface- and pore-bound secondary amines are then converted to N-
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diazeniumdiolate moieties to yield the NO-releasing MSNs. Using the aqueous ion exchange 

approach, we demonstrate autonomous control over particle size and NO-release capabilities 

(i.e., NO-release rates and total NO storage), representing a significant advantage over 

conventional co-condensation and grafting methods. The relationship between NO-release 

kinetics and particle mesophase ordering is also elucidated via detailed physicochemical analysis 

of the MSNs.  

3.2. Experimental section 

3.2.1. Materials 

Tetraethylorthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES), 3-

mercaptopropyltrimethoxysilane (MPTMS), 3-(trimethoxysilylpropyl)diethylenetriamine (DET), 

N-methylaminopropyltrimethoxysilane (MAP), N-(6-aminohexyl)aminopropyltrimethoxysilane 

(AHAP), and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAP), and 

isobutyltrimethoxysilane (BTMS) were purchased from Gelest (Morrisville, PA) and stored 

under nitrogen atmosphere. Sodium methoxide (NaOMe; 5.4 M in methanol), anhydrous N,N-

dimethylformamide (DMF), anhydrous methanol (MeOH), ethanol (EtOH), aqueous ammonium 

hydroxide (30 wt%; NH4OH), concentrated hydrochloric acid (HCl) and all salts were purchased 

from Fisher Scientific (Fair Lawn, NJ). Cetyltrimethylammonium bromide was purchased from 

Sigma (St. Louis, MO). Nitrogen (N2), argon (Ar), and nitric oxide (NO) calibration (25.87 ppm 

in nitrogen) gases were purchased from Airgas National Welders (Raleigh, NC). Pure NO gas 

was purchased from Praxair (Danbury, CT). Water was purified to a resistivity of 18.2 MΩ·cm 

and a total organic content of <10 ppb using a Millipore Milli-Q UV Gradient A10 system 

(Bedford, MA). Unless specified, all chemicals were used as received without further 

purification.  



109 
 

3.2.2. Mesoporous silica nanoparticle synthesis 

Particle synthesis was achieved by addition of tetraethylorthosilicate as a bolus to a 

stirred solution of water, EtOH, NH4OH, and CTAB, allowing the reaction to proceed for 2 h. 

For synthesis of the 30, 150, and 450 nm diameter particles, 2.500 mL TEOS in EtOH (0.88, 

1.06, and 1.33 M, respectively) was added to the reaction mixture, whereas 1.395 mL 

concentrated TEOS was used for the synthesis of the larger 1100 nm particles. Synthesis 

conditions for the MSNs are provided in Table 3.1. In all cases, reaction solutions appeared 

turbid within 15 min of silane introduction. Following particle formation, additional organosilane 

(AEAP, AHAP, APTES, BTMS, MAP, MPTMS, or DET) was introduced directly to the 

colloidal sol dropwise for 5 min using a Kent Scientific Genie Plus syringe pump (Torrington, 

CT). The reaction was then aged overnight (~18 h) with stirring. Unless specified, an optimized 

TEOS:organosilane molar ratio of 1.56:1.00 was used. Following functionalization, particles 

were collected by centrifugation (6540g, 4 
o
C, 15 min), washed three times with EtOH, and dried 

under vacuum. For both the 30 and 150 nm particles, EtOH (one volume per two volumes of the 

reaction mixture) was added to the sol to induce particle flocculation during the collection 

procedure and improve the overall yield. Bare MSNs were synthesized and collected similarly 

but without the organosilane functionalization step.  

 Following MSN synthesis, residual CTAB was removed by ion exchange with 

hydrochloric acid (HCl). Particles (~200 mg) were suspended in 30 mL 10 vol% HCl in EtOH, 

agitated in an ultrasonicator bath for 30 min, and collected by centrifugation (6540g, 4 
o
C, 15 

min). This process was repeated three times to ensure complete CTAB removal, followed by two 

additional EtOH washes. The particles were dried under vacuum to yield the surfactant-free 

nanoparticles. Typical yields for the amine-modified 30, 150, 450, and 1100 nm MSNs were 
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150, 175, 275, and 650 mg, respectively.  

3.2.3. Nanoparticle characterization  

Particle morphology was characterized using an FEI Helios 600 Nanolab scanning 

electron microscope (SEM; Hillsboro, OR) and a JEOL 2010F transmission electron microscope 

(TEM; Peabody, MA). Particles were suspended in MeOH at 1 mg mL
-1

 via brief agitation with 

an ultrasonicator. Subsequently, 5 µL of the resulting dispersion was cast onto a Formvar-coated 

copper grid (Ted Pella, Inc.; Redding, CA) and analyzed using TEM. For SEM analysis, samples 

were dispersed instead on one-sided copper adhesive substrates and coated with a ~3 nm gold 

layer to improve sample conductivity. The geometric size distribution of the particles was 

estimated from the electron micrographs using ImageJ software (Bethesda, MD). The solution-

phase behavior of the nanoparticles in water was investigated using dynamic light scattering 

(Malvern Zetasizer Nano-ZS; Westborough, MA) to determine MSN hydrodynamic diameter (Z-

average size) and polydispersity index. Aqueous colloidal nanoparticle suspensions were 

prepared by dispersing particles at a concentration of 0.5 mg mL
-1

 via probe sonication at 7 W 

for 45 s using a Misonix S-4000 ultrasonicator (Farmingdale, NY). Nitrogen sorption isotherms 

were collected on a Micromeritics Tristar II 3020 surface area and porosity analyzer (Norcross, 

GA). Samples were dried under a stream of N2 gas at 110 
o
C overnight and then degassed for 2 h 

prior to analysis. Brunauer-Emmett-Teller (BET) analysis of physisorption data was used to 

calculate MSN specific surface area for p/p
0
 values of 0.05–0.20. Pore size analysis using the 

adsorption branch of the sorption isotherm (0.05<p/p
0
<0.60) was accomplished using the Barrett-

Joyner-Halenda (BJH) method. Data obtained at relative pressures >0.60 p/p
0
 were not 

considered for pore size determination as nitrogen capillary condensation occurred in the inter-

particle volumes for the 30 nm and 150 nm particles, inflating the calculated pore width. Pore 
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structure/ordering information was obtained by small-angle X-ray scattering analysis of the dry 

MSN powder. The Cu Kα line (1.54 Å) was used as the source radiation and scattering profiles 

were collected on a SAXSLab Ganesha point collimated pinhole system equipped with a 

moveable Dectris Pilatus 300K 2-dimensional single-photon-counting detector (Northampton, 

MA). Scattering vector (q) calibration was accomplished using the 1
st
-order ring for silver 

behenate, and data was collected for q-values of 0.005–0.724 Å
-1

. Covalent incorporation of 

aminosilanes into the MSN backbone was confirmed via solid-state cross-polarization/magic 

angle spinning (CP/MAS) 
29

Si nuclear magnetic resonance spectroscopy using a Bruker DMX 

360 wide-bore spectrometer at a resonance frequency of 71.548 Hz. Samples were carefully 

ground in a mortar and pestle, packed into a 4 mm ZrO2 rotor, and spun at 10 kHz. All chemical 

shifts were determined relative to an external tetramethylsilane standard. Elemental analysis was 

used to quantify the nitrogen weight percent of particles before and after functionalization with 

secondary amine-containing silanes using a Perkin Elmer 2400 CHNS/O analyzer (Waltham, 

MA) operated in CHN mode.  

3.2.4. N-diazeniumdiolate modification and nitric oxide release measurements 

The aminosilane-modified MSNs (~15 mg) were suspended in 9:1 DMF:MeOH at 5 mg 

mL
-1

 in a glass vial and dispersed by ultrasonication for 20 min. After forming a homogeneous 

particle dispersion, NaOMe (5.4 M in MeOH; 9.0 µmol per mg MSN) was added to the solution 

and mixed. The MSN-containing vials were equipped with stir bars, placed in a stainless steel 

reaction bottle (Parr Instrument Co.; Moline, IL), and connected to an in-house NO reactor. The 

Parr bottle was flushed six times (three rapid, three 10 min) with 8 bar Ar gas to remove 

atmospheric oxygen and minimize the formation of NO byproducts. The vessel was subsequently 

pressurized with 10 bar NO gas and the reaction proceeded for 72 h. Of note, the NO gas used 
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for N-diazeniumdiolate formation was purified over solid potassium hydroxide for at least 4 h 

prior to reaction. After 72 h, the Parr bottle was vented and the vessel was flushed six more times 

(three short, three 10 min) to remove unreacted NO. The particles were again collected by 

centrifugation (6540g, 4 
o
C, 15 min), washed three times with EtOH, and dried under vacuum for 

1–2 h. The resulting N-diazeniumdiolate-modified particles were stored in a vacuum-sealed 

Mylar bag at -20 
o
C until further use.     

 Nitric oxide release measurements were carried out using a Sievers 280i NO analyzer 

(Boulder, CO). Generation of NO from the proton-labile N-diazeniumdiolate NO donors was 

detected indirectly via chemiluminescence from excited state nitrogen dioxide formed upon the 

reaction of NO with ozone. The NOA was calibrated using a two-point linear calibration; air 

passed through a Sievers NO zero filter served as the blank value and 25.87 ppm NO in N2 was 

used as the second calibration point. Particles (~1 mg) were added to the NOA sample flask 

containing 30 mL deoxygenated phosphate buffered saline (PBS, 0.010 M, pH 7.41) at 37 
o
C. A 

stream of N2 gas (80 mL min
-1

) was continuously bubbled through solution to carry liberated NO 

to the analyzer. Supplemental nitrogen flow was provided to the flask to match the instrument 

collection rate of 200 mL min
-1

. Instantaneous NO concentrations were determined at a sampling 

frequency of 1 Hz, providing near real-time NO release measurements. The NO measurements 

were terminated when NO release from the particles was below 10 ppb mg
-1

.  

3.2.5. Statistical analysis 

One-way Analysis of Variance was used for multiple comparisons of MSN 

physicochemical properties (e.g., surface area, pore size, NO-release total amounts and kinetics) 

with provided p-values. Individual comparisons were carried out using a two-tailed Student’s t-

test with α=0.05 considered as the threshold for statistical significance. All results presented 
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represent data from three or more separate synthesis experiments. 

3.3. Results and discussion 

The synthesis of NO-releasing nanoparticles has been previously reported,
18-27

 but 

without autonomous control over particle size, NO-release kinetics, and NO storage. Generally, 

total NO storage for silica-based materials is limited to <0.40 µmol mg
-1

 due to low aminosilane 

incorporation. Limited NO storage often is further compounded by a lack of morphological 

control and poor synthesis yields. Mesoporous silica was thus selected as a new scaffold in an 

attempt to exert greater control over particle NO-release properties. Mesoporous silica 

nanoparticles were prepared via a supramolecular liquid-crystal templating approach. Cationic, 

amphiphilic CTAB aggregates were used as the structure-directing agent for particle synthesis.
31

 

The synthesis of four different sized MSNs was achieved using TEOS as the backbone silane by 

altering the reaction temperature and reactant concentrations (Table 3.1). Surfactant was 

removed by ion exchange in ethanolic HCl to yield the bare mesoporous scaffold. While other 

methods (e.g., calcination) have been used for CTAB removal, irreversible particle 

agglomeration often results.
39-40

 Surfactant removal from the MSNs after agitation in HCl was 

evaluated using elemental analysis. The measured nitrogen wt% for the bare particles was <0.2% 

in all cases (indicating complete CTAB removal), with the exception of the 150 nm system 

(~1.11%). The significant nitrogen content was attributed to trapped ammonia, since the low 

carbon content (5.48±1.00%) did not reflect the presence of CTAB (~80.3% carbon by mass). 

Indeed, the 150 nm particles had a propensity to aggregate and did not disperse into solution 

during the washing and CTAB removal processes, whereas all three remaining particle systems  
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Figure 3.1. Nitrogen adsorption 

and desorption isotherms for bare 

(A) 1100; (B) 450; (C) 150; and 

(D) 30 nm MSNs. The estimated 

pore width distributions calculated 

via BJH analysis of the adsorption 

branch are presented in (E) for the 

(i) 1100, (ii) 450, (iii) 150, and (iv) 

30 nm particles.   
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(e.g., 30, 450, and 1100 nm) readily suspended with sonication. The heterogeneity of these wash 

steps is likely at fault for residual nitrogen content in the 150 nm MSNs. 

The surface areas and pore sizes of the unmodified MSNs were calculated from the 

affiliated nitrogen sorption isotherms (Figure 3.1). Each of the physisorption isotherms exhibited 

steep inflections at ~0.2–0.4 p/p
0
 and >0.8 p/p

0 
corresponding to capillary condensation of 

nitrogen in the particle mesopores and inter-particle volumes, respectively.
41

 All isotherms were 

classified as Type IV isotherms without hysteresis according to the conventions adopted by the 

International Union of Pure and Applied Chemistry (IUPAC).
42

 Nitrogen gas 

adsorption/desorption on CTAB-templated mesoporous silica has consistently yielded similar 

results.
43

 Importantly, MSN surface areas calculated using the Brunauer-Emmett-Teller (BET) 

method exceeded 1000 m
2
 g

-1
 in all cases (Table 3.1) regardless of particle size. Average pore 

sizes were evaluated using Barrett-Joyner-Halenda (BJH) analysis of a portion of the nitrogen 

adsorption branch (Figure 3.1E) and yielded calculated pore widths in the range of 19.5–23.6 Å, 

which are comparable to those reported in the literature.
32,44-45

 

The particles were modified with secondary amines by direct organosilane addition to the 

reaction solution following completion of the particle synthesis reaction (<2 h as determined by 

dynamic light scattering). Residual surfactant SDA was removed in a subsequent step, similar to 

unmodified particles. The aminosilane N-(2-aminoethyl)-3-aminopropyltrimethoxysilane 

(AEAP) was selected to optimize this process, initially using the largest (1100 nm) particles. As 

expected, lower specific surface areas were observed due to increased particle aminosilane 

content (Table 3.2). Pore size analysis of the nitrogen adsorption isotherms indicated a clear 

decrease in mesopore volume with increasing AEAP concentration, while the pore width 

remained invariable (p>0.50). The gas sorption isotherm abruptly transitioned from a type IV to  
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Table 3.2. Characterization of AEAP-modified 1100 nm mesoporous silica 

particles as a function of reaction aminosilane concentration.
a
 

[AEAP] 

(mM) 

Specific 

Surface Area 

(m
2
 g

-1
)
b 

Cumulative 

Pore Volume 

(cm
3
 g

-1
)
c 

Average Pore 

Width (Å)
c 

Nitrogen 

wt%
d 

0 1200±70 0.47±0.09 19.5±0.3 <0.01 

1.4 790±60 0.13±0.02 19.4±0.7 2.41±0.25 

2.9 520±130 0.05±0.01 20.0±0.7 3.38±0.41 

5.7 5±1 0.01±0.00 20.7±2.0 4.38±0.33 

11.5 3±1 0.00±0.00 N.D.
e 

4.87±0.04 
a
Error bars represent standard deviation for n>3 separate syntheses.

 b
Determined by BET 

analysis of the nitrogen sorption isotherms (0.05<p/p
0
<0.20). 

c
Calculated via BJH analysis 

of the nitrogen adsorption isotherm (p/p
0
<0.60). 

d
Nitrogen wt% measured by elemental 

analysis. 
e
Pore width could not be calculated from the adsorption isotherm. 
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a type I isotherm at AEAP concentrations at or exceeding 5.7 mM, consistent with bound organic 

groups on the silica network (Figure 3.2).
46

  

 Solid-state cross-polarization (
1
H/

29
Si)/magic angle spinning (CP/MAS) nuclear 

magnetic resonance spectroscopy (NMR) confirmed covalent incorporation of AEAP into the 

inorganic TEOS backbone (Figure 3.3).
47

 The Q-band peaks at -94, -103, and -112 ppm were 

assigned to backbone Si atoms present as geminal silanol (Q2), lone silanol (Q3), and siloxane 

(Q4) species, respectively. The T-band, indicative of the bound organosilane (AEAP), consisted 

of peaks at -60 and -69 ppm that were assigned to T2 and cross-linked T3 species, respectively. 

The intensity of the T-band increased with aminosilane concentration, corresponding to 

progressively greater amine incorporation in the final product. However, quantitative CP/MAS 

NMR analysis was not pursued due to signal intensity dependence on the location of 
1
H atoms 

relative to 
29

Si. Interestingly, we noted a considerable amount of cross-linked (T3) surface-bound 

aminosilanes that was attributed to the large water concentration (>20 M) in the reaction mixture, 

driving condensation between aminosilanes.
47

 For comparison, MCM-41 materials produced 

through post-synthetic surface grafting in anhydrous solvents are primarily bidentate T2 species 

and exhibit limited cross-linking (T3).
48

  

While CP/MAS 
29

Si NMR confirmed covalent aminosilane incorporation, elemental 

analysis was used as an adjunct experiment to quantitatively assess amine incorporation. As 

expected, nitrogen content increased with the overall reaction aminosilane concentration. At the 

highest AEAP concentration tested (11.5 mM; Table 3.2), a maximum nitrogen content of 4.87 

wt%, was measured. Taken together, the nitrogen sorption, NMR, and elemental analysis 

experiments indicated covalent incorporation of AEAP and suggested mesopore infiltration at 

aminosilane concentrations <11.5 mM. Powder small-angle X-ray scattering (SAXS) was used to  
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(iii) 2.9; (iv) 5.7; and (v) 11.5 mM. 

i 

ii 

iii 

iv  

v
T2 

T3 Q2 

Q3 

Q4 



121 
 

  

0.1 0.2 0.3 0.4 0.5 0.6 0.7

q (Å
-1
)

 D
et

ec
to

r 
R

es
p

o
n

se

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

q (Å
-1
)

 D
et

ec
to

r 
R

es
p
o
n
se

100 

110 
200 

A B 

Figure 3.4. Small-angle X-ray scattering profiles for 1100 nm MSNs at AEAP 

reaction concentrations of (i) 0, (ii) 1.4, (iii) 2.9, (iv) 5.7, and (v) 11.5 mM. The 

scattering profile is presented in (A) and an enlarged view of the 110/200 scattering 

lines is displayed in (B). 

v 

iv 

iii 

ii 

i 

v 

iv 

iii 

ii 

i 



122 
 

  

Figure 3.5. Transmission electron micrographs of (A) 

1100; (B) 450; (C) 150; and (D) 30 nm AEAP-

modified mesoporous silica nanoparticles. 

A B

DC
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Figure 3.6. Scanning electron micrographs of 1100 nm AEAP-modified particles with 

reactant AEAP concentrations of (A) 11.5 mM and (B) 14.3 mM. Although the particles 

in (A) exhibited smooth morphology, undesirable particle agglomeration occurred at 

higher AEAP concentrations (B). 

A B 
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gain insight into potential alterations to MSN pore structure as a function of reaction AEAP 

concentration (Figure 3.4).
49

 The SAXS profile for the bare 1100 nm MSNs (Figure 3.4A(i)) 

exhibited an intense scattering peak at 0.170 Å
-1

 (2θ=2.41 
o
; hkl 100) and two weaker, larger-

angle peaks in the scattering profile were assigned to the 110 (0.292 Å
-1

) and 210 (0.339 Å
-1

) 

reflections indexed on a hexagonal lattice (lattice constant a=43.1±1.5 Å). While the absence of 

higher-order peaks indicated only modest mesoscopic ordering, the scattering profile consisted of 

the prominent structural lines for MCM-41-type (hexagonal) silica.
31,50-52

 Broadening of the 100 

reflection (Figure 3.4A) and the gradual disappearance of the 110/200 scattering peaks (Figure 

3.4B) was observed for the amine-modified MSNs (relative to the bare particles), representing a 

loss of long-range ordering with increasing AEAP concentration. These results further verify 

aminosilane localization within the pores. Importantly, the particles retained excellent sphericity 

and monodispersity (Figure 3.5A) upon amine modification as indicated by transmission electron 

microscopy (TEM), even at the highest AEAP concentration presented in Table 3.2 (11.5 mM). 

Undesirable particle agglomeration was routinely noted at greater AEAP concentrations (>14.3 

mM). Inter-particle bridging was occurring at these higher concentrations, revealing a practical 

maximum in the attainable aminosilane incorporation (Figure 3.6).  

Based on the results for the 1100 nm particles, the optimal TEOS:aminosilane molar ratio 

of 1.56:1.00 (corresponding to 11.5 mM AEAP in Table 2) was used to synthesize smaller AEAP 

particles. Regardless of the intended size, this approach resulted in well-defined nanomaterials 

(Figure 3.5B–D). Dynamic light scattering (DLS) analysis of aqueous MSN dispersions (Table 

3.3) supported TEM observations. The low observed polydispersity indices (PDIs; 0.12, 0.02, 

and 0.04 for the 30, 150, and 450 nm particles, respectively) affirmed narrow particle size 

distributions. The DLS/TEM data also verified covalent bonding of aminosilanes to the particle  
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Table 3.3. Physicochemical characterization of AEAP-functionalized MSNs of varying size.
a 

Geometric 

Diameter 

(nm)
b 

Z-average 

Size (nm)
c PDI

c 

 

Nitrogen 

wt%
d 

Specific Surface 

Area (m
2
 g

-1
)
e Pore Width (Å)

f 

36±8 74±6 0.12±0.06 4.65±0.19 210±40 25.1±1.1 

149±13 223±17 0.02±0.01 5.91±0.13 69±13 24.8±0.6 

450±50 564±66 0.04±0.02 5.07±0.10 68±20 21.5±0.8 

1110±210 n/a
g 

n/a
g 

4.87±0.04 3±1 n/a
h 

a
Error bars represent standard deviation for n>3 separate syntheses. 

b
Estimated using electron micrographs. 

c
Measured via dynamic light scattering. 

d
Nitrogen wt% measured by elemental analysis. 

e
Determined by BET 

analysis of the nitrogen sorption isotherms (0.05<p/p
0
<0.20). 

f
Calculated via BJH analysis of the nitrogen 

adsorption isotherm (p/p
0
<0.60). 

g
Particle sedimentation interfered with DLS measurement. 

h
Pore width could 

not be calculated from the adsorption isotherm. 
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Figure 3.7. Solid-state CP/MAS 
29

Si NMR spectra of (i) 

1100; (ii) 450; (iii) 150; and (iv) 30 nm AEAP-modified 

particles.  
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surface, rather than the formation of discrete entities and likely large agglomerates. Elemental 

analysis (Table 3.3) and CP/MAS NMR (Figure 3.7) confirmed aminosilane incorporation, with 

significant measured nitrogen content (>4.50 %N) for each particle system.  

3.3.1. Nitric oxide release 

Different sized AEAP-modified particles were functionalized with N-diazeniumdiolate 

moieties by reaction with NO gas at high pressure in the presence of sodium methoxide. Nitric 

oxide release was evaluated in real-time via chemiluminescent analysis of the NO-releasing 

particles in physiological buffer (PBS, pH 7.4) at 37
 o

C (Table 3.4). Upon immersion into 

aqueous solution the AEAP/NO MSNs released large instantaneous NO fluxes corresponding to 

reaction of the proton-labile N-diazeniumdiolate with water to generate NO.
53-54

 Despite large 

total NO storage (>0.8 µmol mg
-1

) for all four particle systems, total NO storage (p<0.01), NO-

release half-lives (p<0.01), and release durations (p=0.02) were unexpectedly diverse. The 1100 

nm particles exhibited large NO storage (1.41 µmol mg
-1

) and rapid release (t1/2=25.6 min). 

Similarly, the 30 nm AEAP/NO particles released their total NO payload rapidly (t1/2=27.4 min) 

but stored only a fraction of the NO measured for the 1100 nm particles ([NO]t=0.88 µmol mg
-1

).  

While the 450 nm MSNs were characterized with low NO storage (0.82 µmol mg
-1

), they 

were associated with the longest NO-release half-life (88.2 min). Relative to the 1100 nm 

AEAP/NO particles, the 150 nm MSNs exhibited comparable NO storage (1.30 µmol mg
-1

) and 

intermediate NO-release rates (t1/2=41.9 min). The difference in NO-release kinetics between 

particle systems was not anticipated, as all particles were functionalized with the same N-

diazeniumdiolate precursor (AEAP). To shed further light on these effects, total NO release from 

the AEAP/NO particles were compared to the degree of nitrogen incorporation measured by  
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Table 3.4. Chemiluminescent NO release measurements in physiological buffer (PBS, pH 

7.4, 37 
o
C) from AEAP/NO MSNs of varying size.

a
 

Particle 

Size (nm) 

[NO]max  

(ppm mg
-1

)
b
 

t1/2
 
(min)

c
  td (h) [NO]t (µmol mg

-1
) 

NO Donor 

Formation 

Efficiency (%)
 

30 18.7±2.2 27.4±8.9 12.2±3.0 0.88±0.05 26.6±1.8 

150 22.6±4.4 40.7±11.0 16.7±1.4 1.30±0.11 30.9±2.7 

450 6.6±1.8 88.2±10.5 14.0±0.3 0.82±0.08 22.8±2.3 

1100 32.8±9.8 25.6±5.0 11.1±0.7 1.41±0.19
 

40.7±5.2 
a
Error bars represent standard deviation for n>3 separate syntheses.

 b
Maximum instantaneous NO concentration. 

c
Half-life of NO release. 

d
NO-release duration; time required for NO concentrations to reach < 10 ppb mg

-1
. 

e
Total NO release. 

f
Calculated using total NO release and nitrogen wt% determined by elemental analysis 

(Table 3.3). 
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elemental analysis (Table 3.3) to determine N-diazeniumdiolate formation efficiencies. As 

expected based on the NO release data, the 1100 nm MSNs exhibited the greatest NO donor 

formation efficiency (40.7%), far greater than that reported by Carpenter et al. (<27%).
19

 The NO 

donor formation efficiencies for the other three particle sizes were calculated at 23–31%.  

The wide range of NO-release kinetics (half-lives 27–88 min) and NO donor formation 

efficiencies (23–41%) suggested additional factors were controlling the NO release. One possible 

influence to NO-release kinetics is particle size and the position of the N-diazeniumdiolates 

within the pore network, which may affect NO donor accessibility by water and thus impact NO-

release kinetics. However, aminosilane (N-diazeniumdiolate) location alone does not alone 

account for the differences in NO-release kinetics. For example, the largest particles, which 

could have NO donors buried as far as 0.5 µm from their external surface, also had the shortest 

NO-release half-life (t1/2=25.6 min) and duration (td=11.1 h). We hypothesized that the structure 

and ordering of the particle pore network may also affect NO-release kinetics and partially 

account for these variations, particularly since a link between mesoscopic ordering and diffusion-

based drug release has been demonstrated previously.
55

 For example, decreased organization 

may impede sodium methoxide access to pore-bound secondary amines, hindering N-

diazeniumdiolate formation. As an extension of the same logic, altered water diffusion into the 

pores would give rise to differences in NO-release kinetics between AEAP/NO MSNs of 

different size.  

Small-angle X-ray scattering was used to assess pore ordering of the bare and amine-

modified MSNs (Figure 3.8). As determined previously, the SAXS profile for the 1100 nm 

MSNs corresponded to a hexagonal lattice with modest ordering. In contrast to the observed 

MCM-41 structure for the largest particles, the scattering profile for the 30 nm MSNs alluded to 
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an alternative mixed pore structure. Analysis of the smallest particles revealed three scattering 

peaks at 0.155 Å
-1

, 0.301 Å
-1

, and 0.552 Å
-1

, which represented an intermediate to typical 

hexagonal and lamellar (layered) pore ordering.
51-52

 The appearance of the high angle reflection 

(0.552 Å
-1

) was evidence for a significant degree of pore ordering; this peak is seldom observed 

for intermediate products. The electron micrographs for the 30 nm MSNs (Figure 4D) were in 

good agreement with the scattering data and provided further confirmation of a mixed pore 

structure. X-ray scattering patterns obtained for the 150 and 450 nm particles were representative 

of a greater degree of pore disorder. Only a broad peak centered at ~0.32 Å
-1

 was observed in 

both scattering profiles (in addition to the 100 line at ~0.17–0.19 Å
-1

). The absence of an 

additional reflection confirmed mesophase irregularity for these particles. In fact, the scattering 

profiles for the 150 and 450 nm particles were characteristic of mesopore arrangements between 

hexagonal and lamellar structures.
31

 While pore disorder was not as extensive for the 150 nm 

particles, the skewed peak at ~0.18 Å
-1

 for 450 nm MSNs suggested a more heterogeneous pore 

structure. In fact, the irregular peak shape was likely the superimposition of two separate low 

order reflections. Of note, the X-ray scattering data for the amine-functionalized particles 1100 

nm particles pointed to a slight loss in long-range ordering (Figure 5A) due to pore filling by 

AEAP.
56-57

 Only broad reflections were evident in the scattering profiles for the 30, 150, and 450 

nm AEAP-modified MSNs, indicating that aminosilane modification impacted the pore 

structures of these particle systems. Potential interference to pore structure determination by 

scattering contributions from the particles themselves (i.e., as monodisperse spheres) was 

unlikely, since the raw scattering profile did not display typical interference fringes in the 0.01–

0.1 Å
-1

 region. 
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Figure 3.8. Small-angle X-ray scattering profiles for (A) 1100; (B) 450; (C) 150; and 

(D) 30 nm (i) bare and (ii) AEAP-modified MSNs. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
et

ec
to

r 
R

es
p
o
n
se

q (Å
-1

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

 q (Å
-1

)

 D
et

ec
to

r 
R

es
p
o

n
se

0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
et

ec
to

r 
R

es
p
o
n
se

q (Å
-1

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

 q (Å
-1

)

 D
et

ec
to

r 
R

es
p

o
n

se

A B

C D

ii 

ii ii 

i 

ii 

i 

i 

i 



132 
 

Particle X-ray scattering data provided insight into the relationship between MSN pore 

structure and NO-release kinetics. The more ordered pore system (i.e., amine-modified 1100 nm 

particles) enables unrestricted pore access of sodium methoxide and water, resulting in large NO 

storage and rapid NO release, respectively. The 150 and 450 nm particles were capable of more 

sustained NO release, likely due to mesophase disruption with aminosilane addition. In contrast, 

the smallest 30 nm MSNs exhibited rapid NO release and lower NO storage (0.88 µmol mg
-1

) 

despite collapse of the pore system. In this case, location of the N-diazeniumdiolates within the 

pore network and water access to the NO donors may more significantly affect NO release than 

particle mesoporosity.   

3.3.2. Organosilane modification  

While aminosilanes are highly reactive with the silanol groups that populate the surface 

of silica nanoparticles, they also readily undergo hydrolysis and auto-condensation in aqueous 

conditions to form new, discrete entities. For this reason, addition of organosilane directly to the 

colloidal sol (i.e., particle reaction mixture) generally yields amorphous materials with 

heterogeneous functional group distribution. Post-synthetic grafting approaches thus require 

active steps for water removal from the reaction mixture to avoid undesirable particle 

agglomeration.
38

 In addition to anhydrous conditions, efficient particle modification is contingent 

upon successful removal of the pore-resident surfactant prior to reaction with aminosilanes, as 

the positively charged template molecule stabilizes the anionic surface silanols and may impede 

diffusion of external species into the pores.
58-59

 De Juan and co-workers previously exploited the 

stability of the surfactant CTAB template for selective derivatization of the outer and inner 

mesoporous silica surfaces using a step-by-step functionalization approach.
60

 In our study, the 

large degree of particle functionalization suggested that the aminosilanes likely displaced CTAB  
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Figure 3.9. Proposed mechanism for MSN functionalization with aminosilanes. Positively 

charged aminosilanes undergo ion exchange with the template surfactant to stabilize anionic 

silanol species anchored to the mesopore walls. 
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A B C

Figure 3.10. Transmission electron micrographs of 150 nm MSNs 

modified with (A) APTES; (B) BTMS; and (C) MPTMS. Particles 

in (A) exhibit smooth morphology, while agglomeration is 

observed in (B) and (C). 
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Table 3.5. Elemental analysis of 150 nm APTES, BTMS, and MPTMS particles. 

Silane Modification Carbon wt% Hydrogen wt% Nitrogen wt% 

APTES 13.21 4.08 4.49 

BTMS 23.16 4.79 0.16 

MPTMS 25.58 4.84 0.88 
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before undergoing auto-condensation. We rationalized that this phenomenon might be due to an 

ion-exchange process between the surfactant and protonated aminosilanes (Figure 3.9). Both Dai 

et al.
61

 and Bourlinos et al.
62

 have described ion exchange between cationic species (metal ions 

and aminosilanes, respectively) and the CTAB template as a method for particle modification. In 

both cases the uncalcined (i.e., CTAB-containing) silica was modified in a separate reaction 

rather than a one-step procedure.  

We sought to verify that only MSN modification with cationic species would retain 

particle morphology. Using the 150 nm particle system, the MSNs were functionalized with 

either isobutyl(trimethoxy)silane (BTMS) or (3-mercaptopropyl)trimethoxysilane (MPTMS) at 

concentrations equal to those employed for the 150 nm AEAP particles. As the colloidal sol is 

formed under basic conditions, the BTMS alkyl groups remain neutral whereas a significant 

fraction of the MPTMS side chains would exist as the anionic thiolate species (pKa~10),
63-64

 in 

both cases preventing ion exchange. 3-aminopropyltriethoxysilane (APTES) was used as a 

positive control, as APTES is similar in size to BTMS and MPTMS but should undergo efficient 

ion exchange with CTAB due to the presence of a basic primary amine.  

The morphology of the 150 nm APTES, BTMS, and MPTMS particles was examined 

using transmission electron microscopy (Figure 3.10). As expected, 150 nm particles 

functionalized with APTES exhibited uniform morphology and excellent sphericity, consistent 

with the 150 nm AEAP MSNs. Evaluation of aqueous APTES particle suspensions by DLS 

indicated that the monodispersity of the particles (PDI=0.03±0.02) was preserved upon 

aminosilane modification. In contrast, undesirable silane bridging and particle agglomeration 

were evident in electron micrographs of the MPTMS- and BTMS-modified particles. A 

significant increase in the carbon wt% (measured by elemental analysis; Table 3.5) for all 
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particle systems indicated that the silanes were incorporated into the final product. The 

morphological differences between particles observed using TEM were due to reaction with 

organosilanes. While this data does not exclude the possibility of alternative reaction 

mechanisms, the particle analyses presented provide clear support of ion exchange reactions 

between cationic organosilanes and CTAB.  

3.3.3. Aminosilane modification and nitric oxide-release kinetics 

As the structure of the precursor amine for N-diazeniumdiolate formation influences NO-

release kinetics from both small molecules
11

 and nonporous silica particles,
27

 we sought to alter 

the NO-release kinetics from the MSNs using different organosilanes. The 30 nm particle system 

was systematically modified with several aminosilanes, including AHAP, DET, and MAP. The 

characterization of the precursor- and NO donor-modified MSNs is provided in Table 3.6. Both 

the geometric size (~35–43 nm) and PDI (<0.20) of the particles remained approximately 

constant (p>0.5), indicating that the small particle size and monodispersity were conserved 

during the chemical modification procedure regardless of aminosilane type. The measured 

hydrodynamic diameter (Z-average size) of each particle system (75–130 nm) was dependent on 

the composition of the aminosilane, but agreed well with the corresponding geometric sizes. 

Nitrogen content for each MSN system varied expectedly based on the elemental composition of 

the aminosilane reactant. Particles functionalized with the monoamine MAP incorporated the 

least amount of nitrogen (3.26%), while the nitrogen wt% was greatest for the triamine DET 

modification (5.60%). Intermediate nitrogen content was measured for MSNs with attached 

AHAP (4.18%) and AEAP (4.65%), which are diaminosilanes of differing carbon content.  

 The large degree of aminosilane incorporation translated to excellent particle NO 

storage, exceeding 1.00 µmol mg
-1

 for all particle systems tested except AEAP/NO. Lower total  
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Figure 3.11. Real-time NO-release profiles for 30 nm (i) MAP/NO, 

(ii) AHAP/NO, (iii) AEAP/NO, and (iv) DET/NO particles after ~10 

min in PBS (pH 7.4) at 37 
o
C. 
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NO storage for AEAP/NO was expected based on previous results, as intramolecular hydrogen 

bonding between the side chain amines hinders N-diazeniumdiolate formation.
11,65

 While these 

interactions are also possible for DET, the presence of two secondary amines resulted in greater 

NO storage. As anticipated, the MSN NO-release kinetics were markedly different between the 

four particle systems (p<0.01). The MAP/NO and AHAP/NO particles were characterized with 

rapid initial NO release (t1/2 of 2.2 and 4.7 min, respectively), while the NO release for the 

AEAP/NO and DET/NO particles was more sustained (t1/2 of 27.4 and 47.0 min, respectively) as 

a result of N-diazeniumdiolate charge stabilization by neighboring protonated amines (Table 3.6; 

Figure 3.11).
11,65

 The NO-release durations covered ~2–33 h, rendering these particles especially 

useful as NO-delivery vehicles where tuning NO-release kinetics is critical to efficacy.
9
 

It should be noted that others have reported macromolecular NO donor scaffolds with 

total NO release values exceeding ~1.5 µmol mg
-1

. For example, several porous metal organic 

frameworks (MOFs) have been developed which with NO storage approaching 1–7 µmol mg
-1

 

through direct adsorption of NO gas.
66

 However, NO release from MOFs is generally rapid, a 

feature that restricts their utility to applications in which the NO donor scaffold is in contact with 

humidified gas. Both dendrimers
67

 and silica particles
24

 modified with S-nitrosothiol (RSNO) 

NO donors also exhibit large NO payloads (2 and 4 µmol mg
-1

, respectively) with NO-release 

durations exceeding two days in deoxygenated PBS buffer. Unfortunately, RSNOs are unstable 

NO donors, readily decomposing to yield NO under multiple triggers (e.g., light, heat, reaction 

with Cu
+
 ions or ascorbate).

68
 In contrast, N-diazeniumdiolate NO donors alleviate the issue of 

uncontrolled decomposition, liberating NO at rates dependent on both the structure of the 

aminosilane and the solution pH. While poor NO storage and difficult synthetic procedures have 

traditionally excluded N-diazeniumdiolate-modified macromolecular NO donors from 
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therapeutic evaluation, the preparation of NO-releasing mesoporous silica particles was achieved 

in high yields via ion exchange reactions. Excellent NO storage and diverse NO-release kinetics 

from the MSNs were obtained by simply changing the aminosilane without further synthetic 

optimization, representing a significant improvement to N-diazeniumdiolate-based NO-delivery 

vehicles.  

3.4. Conclusions 

Nitric oxide-releasing mesoporous silica nanoparticles with a range of sizes (30, 150, 

450, and 1100 nm) were successfully prepared using a straightforward aminosilane-CTAB ion 

exchange approach. The resulting MSNs were well-defined and exhibited a large degree of 

surface modification, which translated to competitive NO storage with other macromolecular NO 

donors (e.g., MOFs, RSNOs). Particle NO storage and release kinetics were dependent on both 

the structure of the pores and the identity of the precursor aminosilane. This report details the 

dependence of NO-release kinetics on the architectural properties of mesoporous silica. Further 

understanding of the intricate relationships between pore ordering and NO-release kinetics 

remains an exciting area of research, as controlled mesophase structure would also provide an 

additional degree of control in macromolecular NO donor design. Moreover, the ability to easily 

modify the MSNs with different aminosilanes enabled tuning of NO-release kinetics without 

sacrificing control over either total NO storage or particle size.  
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CHAPTER 4. DESIGN CONSIDERATIONS FOR SILICA PARTICLE-DOPED NITRIC 

OXIDE-RELEASING POLYURETHANE GLUCOSE BIOSENSOR MEMBRANES
4
 

 
4.1. Introduction 

Effective diabetes management relies on accurate blood glucose (BG) measurement to 

maintain target levels of glycemia.
1-3

 Self-monitoring of capillary BG levels has traditionally 

been carried out using portable glucometers. Although glucometers are generally accurate and 

reliable, poor patient compliance and infrequent sampling lead to inconsistent BG control.
4
 

Severe hyperglycemia or brief and potentially life-threatening hypoglycemic events frequently 

go undetected as a result. Implantable electrochemical continuous glucose monitors (CGMs) that 

measure glucose in interstitial fluid have received significant focus with the goal of alleviating 

the sampling issues associated with discrete BG measurement.
5-6

 Such devices facilitate 

identification of temporal BG fluctuations and, based on these trends, may be used to predict 

glycemia in the immediate future (i.e., as a hypoglycemic alarm).   

Despite the availability of implantable glucose biosensors for human use, CGM devices 

have not been widely adopted due to performance issues and difficulty of use (e.g., frequent 

calibration, false hypoglycemic alarms).
4
 Poor sensor accuracy is due in part to the foreign body 

response (FBR), a cascade of intense inflammatory/wound healing reactions that transpire at the 

surface of the implanted CGM.
4,7-10

 Initial blood protein adhesion reduces sensor sensitivity by 

                                                           
4
This chapter was adapted from an article that was submitted for publication. The original 

citation is as follows: Soto, R. J.; Schofield, J. B.; Walter, S. E.; Malone-Povolny, M. J.; 

Schoenfisch, M. H. “Design considerations for silica particle-doped nitric oxide-releasing 

polyurethane glucose biosensor membranes,” submitted. 
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40–80% and this protein layer mediates later inflammatory cell attachment.
11

 Influx of 

inflammatory cells occurs after tissue injury and has been identified as a contributing factor to 

erratic sensor response during the first several days of implantation.
8
 Eventually, the sensor is 

sequestered from native tissue by fibroblast construction of a collagenous foreign body capsule 

that obstructs glucose transport to the device, resulting in sensor failure.  

The performance of implanted glucose sensors is inherently linked with FBR severity.
12

 

A general belief is that in vivo sensors may benefit from reduced inflammation and increased 

neovascularization. A widely investigated approach for mitigating the FBR employ hydrophilic 

coatings (e.g., hydrogels,
13

 zwitterionic polymers
14-16

) to reduce protein and concomitant cell 

adhesion. The release of bioactive molecules (e.g., Dexamethasone
17-19

 and vascular endothelial 

growth factor
19

) from sensors have also been studied as methods for more directly influencing 

key inflammatory and wound healing events. Our laboratory has focused on the release of nitric 

oxide (NO), an endogenous radical gas with integral roles in angiogenesis and the wound 

healing.
20-22

 Indeed, NO-releasing polymers have been shown to reduce FBR-related 

inflammation and collagen encapsulation.
23-25

 In concert with tissue response studies, in vivo 

glucose biosensors coated with similar NO-releasing polymers have improved short-term (1–3 d) 

sensor accuracy.
26-27

 

Due to NO’s reactive nature, a significant body of literature has focused on suitable NO 

storage and release strategies. The most successful work to date (based on total NO storage and 

NO-release durations) has relied on incorporating NO-releasing molecules (NO donors) into 

polymeric sensor coatings (i.e., polyurethanes).
28-30

 The NO-release properties (i.e., storage and 

kinetics) can be straightforwardly controlled by altering the identity/type of both the NO donor 

and polymer matrix. For example, NO-releasing silica nanoparticles (SNPs) have been used to 
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prepare NO-releasing polyurethane (PU) sensor membranes because of their large NO storage 

and controllable NO-release kinetics.
28,31-35

 However, a key design challenge associated with 

many NO-releasing polymers is undesirable leaching of the entrapped NO donors.
27-30,36

 

Although silica is considered inert,
37

 NO donor modifications to SNPs may alter their association 

with mammalian cells, thereby increasing cytotoxicity.
38

 Leaching of constituent silica may also 

exacerbate local foreign body reactions, as the SNPs may be phagocytosed by macrophages and 

increase production of pro-inflammatory cytokines (e.g., tumor necrosis factor α, interleukin 

1β).
39-40

 

Herein, we report on the design of functional NO-releasing polyurethane glucose 

biosensor membranes with favorable partitioning of the NO donor-modified silica particles into 

the polymer matrix. The physicochemical properties of both the dopant SNPs (e.g., NO donor 

identity, extent of modification) and the PU matrix (water uptake) were examined for potential 

influence to particle leaching and NO-release properties of the membranes. The most promising 

membranes were employed to fabricate glucose biosensors with appropriate analytical 

performance and NO-release durations of up to 7 d.  

4.2. Experimental section 

4.2.1. Materials 

Tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS), 3-

mercaptopropyltrimethoxysilane (MPTMS), N-methylaminopropyltrimethoxysilane (MAP), N-

(6-aminohexyl)-aminopropyltrimethoxysilane (AHAP), and 3-

(trimethoxysilylpropyl)diethylenetriamine (DET) were purchased from Gelest (Morrisville, PA). 

Sodium methoxide (NaOMe; 5.4 M in methanol), anhydrous N,N-dimethylformamide (DMF), 

anhydrous methanol (MeOH), anhydrous tetrahydrofuran (THF), 200 proof ethanol (EtOH), 
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aqueous ammonium hydroxide (NH4OH; 29.42 wt% ammonia), concentrated hydrochloric acid 

(HCl), toluene, cetyltrimethylammonium bromide (CTAB) and all salts were purchased from 

Fisher Scientific (Fair Lawn, NJ). Of note, toluene was dried/stored over molecular sieves. 

Methyltrimethoxysilane (MTMOS) and glucose oxidase (Type VII lyophilized powder, > 

100,000 U g
-1

) from Aspergillus niger were purchased from Sigma (St. Louis, MO). Nitrogen 

(N2), argon (Ar), and nitric oxide calibration (25.87 ppm in N2) gases were purchased from 

Airgas National Welders (Raleigh, NC). Pure NO gas was purchased from Praxair (Danbury, 

CT). Silver wire (127 µm dia.) and PFA-coated 90:10 platinum:iridium (Pt:Ir) wire (127 µm bare 

dia.) were purchased from A-M Systems (Sequim, WA). Soft stainless steel wire (356 µm dia.) 

was purchased from McMaster-Carr (Atlanta, GA). Polyurethanes HP-93A-100, PC-3585A, SG-

85A, and TT-2072D-B20 were received from Lubrizol (Cleveland, OH). Hydrothane 

polyurethane AL-25-80A was obtained from AdvanSource Biomaterials (Wilmington, MA). 

Water was purified to a resistivity of 18.2 MΩ cm and a total organic content of <6 ppb using a 

Millipore Reference water purification system. 

4.2.2. Synthesis of N-diazeniumdiolate-modified silica nanoparticles 

Secondary amine-modified nanoparticles were first synthesized by variants of the Stöber 

method. Ultimately, secondary amines introduced to the SNPs were converted to N-

diazeniumdiolate NO donors by reaction with NO gas. Mesoporous silica nanoparticles of 

different sizes (~150, 450, and 800 nm) were synthesized via a previously published 

aminosilane-surfactant ion exchange approach.
32

 Briefly, bare mesoporous silica was synthesized 

by addition of TEOS to a stirred solution of water, ethanol, ammonia, and CTAB (the template 

surfactant). After forming the SNPs (2 h following TEOS addition), the particles were reacted  
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Table 4.1. Reaction parameters for synthesis of amine-modified mesoporous SNPs. 

Particle 

Size (nm) 

Reagent/Solvent Volume (mL)  Aminosilane 

H2O Aq. NH4OH EtOH TEOS  Type Volume (mL) 

150 nm 107 2.6 41 0.554  DET3 0.520 

450 nm 95 2.6 53 0.698  DET3 0.654 

800 nm 162 11.8 175 1.395  DET3 1.310 

800 nm 162 11.8 175 1.395  AHAP3 1.342 

800 nm 162 11.8 175 1.395  MAP3 0.955 
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Figure 4.1. Proposed chemical structures of selected silanes modified with either N-

diazeniumdiolate (MAP, AHAP, DET) or S-nitrosothiol (MPTMS) NO donors.  

MAP/NO 

AHAP/NO 

DET/NO 

MPTMS-RSNO 
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overnight (~16 h) with secondary amine-containing organosilanes (either MAP, AHAP, or DET) 

by dropwise addition of the silane to the TEOS precursor solution. Reactant concentrations and 

chemical structures of the aminosilanes are provided in Table 4.1 and Figure 4.1, respectively. 

Particles were recovered by centrifugation and purified as described previously.
32

  

Bare (i.e., not functionalized with secondary amines) 150 nm mesoporous silica particles 

were synthesized according to the procedure above but were isolated/purified without further 

aminosilane ion exchange reaction. Nonporous ~150 nm silica particles were synthesized by 

adding 3.795 mL TEOS to a solution of EtOH (88.4 mL), water (1.10 mL), and aqueous NH4OH 

(6.8 mL). The solution was stirred for 2 h to allow for particle nucleation and growth. The 

particle sol was centrifuged (6540g, 10 min, 4 
o
C) and the resulting pellet washed thrice with 

ethanol to remove residual ammonia/TEOS. The bare silica particles were recovered by drying 

the particle pellet under vacuum. For both bare particle systems (i.e., 150 nm mesoporous and 

nonporous particles), amine modification was carried out under identical conditions using a 

surface grafting approach. The bare SiO2 particles (~200 mg) were exposed to ozone in a 

BioForce Tip Cleaner (Ames, IA) for 30 min to generate additional, modifiable surface silanols. 

Subsequently, the particles (100 mg) were reacted with DET3 (207 µL) and trimethylamine (50 

µL) for 14 h at 90 
o
C in toluene. The reaction was carried out under nitrogen atmosphere and 

with an attached reflux condenser. Similarly to the procedures above, the particles were isolated 

via centrifugation, washed with EtOH to remove solvent and unreacted reagents, and dried under 

vacuum to yield the amine-based particles.   

After amine functionalization, N-diazeniumdiolates were formed on the secondary 

amines by reaction with NO gas. The particles were dispersed via sonication at 5 mg mL
-1

 in a 

9:1 mixture of DMF:MeOH and 25 µL 5.4 M methanolic NaOMe added to catalyze N-
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diazeniumdiolate formation. Glass vials containing the particle dispersions were transferred to a 

stainless steel Parr bottle and connected to an in-house NO reactor. The Parr bottle was flushed 

with 8 bar Ar gas six times (three brief, three 10 min) to remove atmospheric oxygen and 

minimize formation of NO byproducts. The reaction vessel was then pressurized with 10 bar 

99.99% NO gas (purified over solid potassium hydroxide for at least 4 h) and the particle 

solutions stirred for 3 d. Subsequently, the NO gas was vented from the Parr bottle and the vessel 

was again flushed with Ar gas (6×). The N-diazeniumdiolate-modified particles were collected 

via centrifugation, washed three times with EtOH, and dried under vacuum. The resulting NO-

releasing particles were stored in a vacuum-sealed Mylar bag at -20 
o
C.  

4.2.3. Synthesis of S-nitrosothiol-modified silica nanoparticles 

Thiol-modified SNPs were synthesized by co-condensation of MPTMS with either TEOS 

or TMOS (tetraalkoxy backbone silanes).
34

 The particles were formed by dropwise addition (0.5 

mL min
-1

 using a syringe pump) of a silane mixture (MPTMS and the backbone silane) to stirred 

solutions of water, ethanol, and ammonia and allowed to react for 2 h. The MPTMS (i.e., 

alkanethiol) content of the product SNPs was controlled by altering the molar ratio of MPTMS to 

TEOS or TMOS in the silane precursor solution. Reactant and solvent amounts for each particle 

type are provided in Table 4.2. After particle formation, the particles were collected by 

centrifugation (6540g, 10 min, 4 
o
C), washed thrice with EtOH, and dried in vacuo. 

S-nitrosothiol (RSNO) formation was carried out under identical conditions for all thiol-

modified particle systems. Initially, 200 mg MPTMS-based particles were suspended in 4.00 mL 

MeOH via sonication and stirred. The mixture was acidified with the addition of excess HCl 

(2.00 mL 5 M HCl) and cooled on ice. Sodium nitrite (2.3 M in water; 2.00 mL) was added 

dropwise to the MPTMS particle solution and stirred on ice for 1 h in the dark. Of note, the  
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Table 4.2. Reaction parameters for synthesis of thiol-modified silica nanoparticles. 

Mol % 

MPTMS 

Reagent/Solvent Volume (mL)  Tetraalkoxysilane 

H2O Aq. NH4OH EtOH MPTMS  Type Volume (mL) 

25% 1.40 11.0 16.2 0.170  TMOS 0.404 

40% 1.40 11.0 16.2 0.271  TMOS 0.324 

75% 1.40 11.0 16.2 0.424  TEOS 0.169 

85% 8.9 11.0 8.8 0.476  TMOS 0.066 

85% 8.9 11.0 8.8 0.476  TEOS 0.099 
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sodium nitrite solution was supplemented with 500 µM diethylenetriaminepentaacetic acid 

(DTPA) to chelate trace metal ions in solution and prevent copper-mediated RSNO 

decomposition during the S-nitrosation reaction. The resulting pink RSNO-modified particles 

were collected by centrifugation (6540g, 10 min, 4 
o
C), washed thrice with cold MeOH, and 

dried under vacuum for 1 h. All experiments involving RSNO particles were carried out 

immediately following the S-nitrosation reaction. 

4.2.4. Preparation and evaluation of nitric oxide-releasing mock sensors 

Polyurethane (PU) solutions were prepared by adding 240 mg of the appropriate PU to 

2.25 mL THF. The PU was dissolved by sonicating at 60 
o
C. A separate dispersion of the NO-

releasing SNPs was prepared by sonication in THF. Aliquots of the particle dispersion were 

added to the PU solution after cooling to room temperature. Unless otherwise indicated, the PU 

concentration was 80 mg mL
-1

 and SNPs were incorporated at 20 wt% (20 mg mL
-1

) relative to 

the polymer for all experiments. 

Stainless steel wire (357 µm dia.) was selected as a coating substrate to mimic the size 

and geometry of functional, needle-type glucose sensors. Wires were first cleaned by sonication 

in EtOH, and then coated with the NO-releasing membranes by dip-coating into the PU/SNP 

solution. Each deposited layer was allowed to dry for ~20 s before additional coating. The 

number of coats was varied for each PU solution to provide uniform ~40–50 µm thick coatings, 

as determined by measurement with calipers and from the electron micrographs. Leaching of the 

SNPs was monitored over time via inductively coupled plasma optical emission spectrometry 

(ICP-OES) using a Prodigy high-dispersion ICP (Teledyne-Leeman Laboratiories; Hudson, NH). 

Coated substrates were immersed in PBS and incubated at 37 
o
C for 2 h–28 d. At pre-determined 

time points, the substrates were removed from solution and analyzed for silicon content. The 
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instrument was initially calibrated using sodium silicate standards (0.1–25 ppm in PBS; 251.611 

nm Si emission line) to verify linear response over anticipated particle concentrations. Individual 

standards for each particle system were prepared and used to determine particle leaching from 

corresponding membranes (Figure 4.2). Of importance, all buffers/solutions that were used for 

leaching measurements were prepared in polypropylene tubes because silicic acid leaches from 

glass storage vials. It was verified that neither the wire substrates nor the polypropylene 

incubation vessels contributed to detectable Si signal. 

4.2.5. Nitric oxide-release measurements 

Nitric oxide release was evaluated in real-time (1 Hz sampling frequency) using a Sievers 

280i chemiluminescent NO analyzer (NOA; Boulder, CO). The NOA was calibrated via a two-

point linear calibration, with 25.87 ppm NO (in N2) serving as the first calibration standard and 

air passed through an NO zero filter as the blank value. The NO-releasing material (either 1 mg 

of particles or a coated mock sensor) was added to deoxygenated phosphate buffered saline 

(PBS; 10 mM, pH 7.4) at 37 
o
C. In the case of RSNO-based materials, NO release was restricted 

to thermal mechanisms by addition of 500 µM DTPA to the PBS and by shielding the entire 

sample flask from light using aluminum foil. A stream of N2 gas was bubbled into solution at 80 

mL min
-1

 to carry the liberated NO to the NOA reaction cell. Supplemental N2 gas was provided 

to the reaction flask in order to match the instrument collection rate of 200 mL min
-1

. Nitric 

oxide was detected indirectly by reaction with ozone, which yields a chemiluminescent excited-

state nitrogen dioxide species. Measurements were terminated when NO release from the silica 

particles decreased below 10 ppb mg
-1

. For mock sensors coated with NO-releasing PU 

materials, NO release measurements were terminated when NO fluxes were below 0.8 pmol cm
-2

  



160 
 

  

0 5000 10000 15000 20000 25000 30000

0

1x10
6

2x10
6

3x10
6

4x10
6

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Sodium Silicate Concentration (ppb)

0 5000 10000 15000 20000 25000 30000
0

1x10
5

2x10
5

3x10
5

4x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

0 5000 10000 15000 20000 25000 30000
0

1x10
5

2x10
5

3x10
5

4x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

A B C

0 5000 10000 15000 20000 25000 30000
0

1x10
5

2x10
5

3x10
5

4x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

D

0 5000 10000 15000 20000 25000 30000
0

1x10
5

2x10
5

3x10
5

4x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

E

0 5000 10000 15000 20000 25000 30000
0

1x10
5

2x10
5

3x10
5

4x10
5

5x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

F

0 5000 10000 15000 20000 25000 30000
0

1x10
5

2x10
5

3x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

0 5000 10000 15000 20000 25000 30000
0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

G H

0 5000 10000 15000 20000 25000 30000

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

I

0 5000 10000 15000 20000 25000 30000
0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

0 5000 10000 15000 20000 25000 30000
0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

0 5000 10000 15000 20000 25000 30000

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

E
m

is
s
io

n
 I

n
te

n
s
it
y
 (

A
U

)

Particle Concentration (ppb)

J K L

Figure 4.2. Inductively coupled plasma optical emission spectrometer instrumental response 

to sodium silicate standard solutions (A) and silica particle standard solutions (B–L) prepared 

in pH 7.4 PBS. The graphs in B–L represent calibration curves for 800 nm AHAP (B), 800 

nm DET (C), 800 nm MAP (D), 450 nm DET (E), 150 nm DET (F), nonporous 150 nm DET 

(G), 150 nm DET functionalized via surface grafting (H), 25% MPTMS/TMOS (I), 40% 

MPTMS/TMOS (J), 75% MPTMS/TEOS (K), and 85% MPTMS/TEOS (L). 
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s
-1

 (instrument LOD at S/N ratio 6–10). Of note, NO-release properties for the NO donor-

modified SNPs are provided in Table 4.3. 

In cases where NO release from the PU membranes was below the NOA limit of 

detection, the Griess Assay was used to measure NO indirectly via its oxidative conversion to 

nitrite as previously described.
33

 Briefly, samples for NO measurement in PBS (50 µL) were 

mixed with 50 µL each of 0.1% w/v aq. N-(1-napthyl)ethylene diamine and 1% w/v 

sulfanilamide in 5% v/v aqueous phosphoric acid and incubated for 10 min to form an azo dye. 

Sample absorbance measurements were collected at 540 nm on a Labsystem MultiskanRC 

microplate spectrophotometer (Helsinki, Finland) and compared to a calibration curve generated 

from nitrite standards (2–100 µM) for quantitative NO determination. 

4.2.6. Design and analytical performance evaluation of miniaturized nitric oxide-releasing 

glucose biosensors 

First generation (i.e., peroxide-detecting) needle-type electrochemical glucose biosensors 

were fabricated and used for evaluation of the NO-releasing membranes.
41-42

 The bare sensors 

were constructed by winding a 127 µm silver/silver chloride (Ag|AgCl) reference electrode 

around a PFA-insulated 90:10 Pt:Ir wire (127 µm bare dia.). A ~2 mm length of Pt:Ir wire was 

exposed by removal of the PFA coating and served as the working electrode. Of note, all 

potentials defined hereafter are with respect to the integrated Ag|AgCl pseudo-reference 

electrode. 

The bare sensors were initially cleaned via cyclic voltammetry in 0.5 M sulfuric acid (-

0.25 to +1.20 V vs Ag|AgCl, 30 cycles, 0.1 V s
-1

) and then functionalized for glucose detection 

and NO release via a multilayer deposition approach. A polymerized m-phenylenediamine (m-

PD) membrane was first electrodeposited on the bare electrode surface as a size exclusion 
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membrane to improve selectivity for H2O2 oxidation.
43

 The electropolymerization process was 

carried out via cyclic voltammetry (0 to +1.0 V, 20 cycles, 0.1 V s
-1

) in a 100 mM m-PD solution 

prepared in deoxygenated PBS (pH 7.41). Next, GOx was immobilized on the working electrode 

by entrapment in a silica solution-gel (sol-gel).
44

 The GOx sol-gel precursor solution was 

prepared by mixing a solution of GOx in water (50 µL; 120 mg mL
-1

) with a mixture of EtOH 

(100 µL) and MTMOS (25 µL). The resulting solution was aged on a shaker for 10 min. The 

sensors were coated with the GOx/silica gel by dipcoating 15 times (5 s still time, 10 s 

intermittent dry periods) into the gel precursor solution. Last, the sensors were coated with either 

bare PU or the NO-releasing PU/SNP composites via a loop-casting protocol, which provided 

uniform coverage of the working and reference electrodes. A 6.5 µL droplet of the PU solution 

was deposited on a stainless steel wire loop (2 mm dia.) and the loop was passed over the 

working and reference electrodes. In the case of the NO-releasing membranes, subsequent layers 

were coated onto electrodes after brief (~5 min) dry times for a total of 7 PU/SNP depositions. 

The PU concentration used for the loop-casting procedure was varied for the unmodified PUs 

(20–80 mg mL
-1

) and was 50 mg mL
-1

 (in 3:1 THF:DMF) for the NO-releasing membranes. The 

particle concentration was varied in the PU solution at 6.3–50.0 mg mL
-1

. A PC-3585A outer 

layer (“topcoat”) was applied via loopcasting using a 30 mg mL
-1

 PU solution prepared in 3:1 

THF:DMF and allowed to dry for >1 h.  

In vitro sensor analytical performance was assessed in PBS (pH 7.4) or porcine serum 

under stirred conditions using a CH Instruments model 1030C multi-channel potentiostat 

(Austin, TX). Sensors were pre-conditioned by polarizing sensors in PBS (37 
o
C; +0.600 V vs. 

Ag|AgCl) until a stable background current was measured. Glucose was detected indirectly by 

amperometric oxidation of H2O2 at +0.60 V vs. Ag|AgCl. Sensor glucose response was  



164 
 

  

A  B

B 

C  

E  F  

Figure 4.3. Scanning electron micrographs of 800 nm (A) DET, (B) AHAP, and (C) 

MAP mesoporous SNPs. (D) and (E) are SEM micrographs for smaller DET-modified 

mesoporous particles (450 and 150 nm, respectively), and (F) are non-porous DET-

modified SNPs.  

D  
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Figure 4.4. Scanning electron micrographs of (A) 25% MPTMS/TMOS, (B) 40% 

MPTMS/TMOS, (C) 75% MPTMS/TEOS, (D) 85% MPTMS/TEOS, and (E) 85% 

MPTMS/TMOS particles.  

A  B  

C  D  E  
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calibrated by incrementally increasing the buffer glucose concentration from 1–30 mM. The 

sensor linear dynamic range (LDR) was determined as the maximum glucose concentration 

achieved with no saturation in glucose response (R
2
>0.99). Glucose sensitivities are reported as 

the slope of the linear trend line correlating the measured anodic current to glucose concentration 

over the linear response range (R
2
>0.99). Amperometric selectivity coefficients for glucose over 

common electroactive interfering species were calculated according to published methods.
33,42

   

4.2.7. Membrane and particle characterization 

 Morphology of the nanoparticles was evaluated using a FEI Helios 600 Nanolab scanning 

electron microscope (SEM; Hillsboro, OR). Scanning electron micrographs of the N-

diazeniumdiolate- and S-nitrosothiol-modified particles are provided in Figures 4.3 and 4.4, 

respectively. Sensor membranes were imaged using a FEI Quanta 200 environmental scanning 

electron microscope (Hillsboro, OR). Nitrogen sorption isotherms were used to evaluate SNP 

porosity and were collected on a Micromeritics Tristar II 3020 surface area and porosity analyzer 

(Norcross, GA). Samples were dried at 110 
o
C under N2 gas for 18 h and degassed for 2 h prior 

to analysis. Brunauer-Emmett-Teller (BET) analysis of the monolayer adsorption isotherm 

region (0.05<p/p
0
<0.20) was used for determination of specific surface area. 

4.3. Results and discussion 

Polyurethane (PU) materials have been utilized as glucose sensor membranes because 

they generally elicit only a mild FBR and, depending on their composition, have appropriate 

glucose/oxygen permeabilities necessary for fabricating glucose sensors.
45-46

 Unfortunately, the 

literature is not clear as to how glucose sensor analytical performance depends on PU 

composition and water uptake—important parameters that may also impact NO release and NO 

donor leaching. Initial experiments thus focused on identifying PUs that could be used to 
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fabricate functional electrochemical glucose sensors prior to modification with NO-releasing 

scaffolds. 

Glucose biosensors were systematically modified with glucose diffusion-limiting PU 

coatings via a loopcasting method. The analytical performance of the sensors was evaluated as a 

function of PU water uptake and the concentration of the PU loop-casting solution using four 

commercially-available PUs: HP-93A-100, AL-25-80A, SG-85A, and PC-3585A. Regardless of 

PU type, sensors that were prepared using low concentration PU solutions (20 and 35 mg mL
-1

) 

did not yield stable glucose response (data not shown), whereas 50 mg mL
-1

 PU solutions lead to 

more predictable sensor performance. The glucose sensitivities and linear ranges of the sensors 

were dependent on the PU water uptake (Table 4.4). For instance, sensors that were modified 

with the high-water uptake PU HP-93A-100 had large glucose sensitivity (38.2 nA mM
-1

 mm
-2

) 

but insufficient linear dynamic range (1–3 mM), indicating that the membrane did not serve as a 

substantial barrier to glucose diffusion. In contrast, more hydrophobic SG-85A and PC-3585A 

PUs (water uptake <0.2 mg per mg of PU) improved the linear glucose range of the sensors (1–

15 mM).  

The sensitivity of the glucose sensors steadily decreased during incubation in PBS, 

eventually stabilizing after ~7 d. The decrease in sensitivity was observed regardless of PU type 

and was consistent with sensors that were coated using 80 mg mL
-1

 PU solutions (Table 4.5). 

Although undesirable, slowly changing glucose sensitivity is a common occurrence noted in the 

literature for sensors coated with PU
41,43

 or poly(vinyl alcohol).
47

 Electrochemical glucose 

sensors generally require a 5–7 d pre-conditioning period for response stabilization as the 

polymer membranes undergo hydration and swelling.
41,43

 The four PU types that were utilized in 

this study were the deemed satisfactory for further development of NO-releasing membranes. 
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4.3.1. Polyurethane membranes incorporating N-diazeniumdiolate-modified silica particles 

Mesoporous SNPs were selected for developing NO-releasing PU membranes due to 

their favorable NO storage properties. The SNPs were synthesized using an approach that also 

allowed for the chemical structure of the amine modification and the size of the particles to be 

tuned independent of one another.
32

 In a subsequent chemical step, the secondary amines were 

easily reacted with NO gas to form N-diazeniumdiolate NO donors. Particles ~800 nm in 

diameter and modified with DET/NO (see Figure 4.1 for silane structures) were selected for 

initial because a preliminary study suggested that large (~1 µm) particles may be less prone to 

leaching than <300 nm SNPs.
28

  

Nitric oxide release from DET particle-doped PU membranes was measured in 

physiological buffer (pH 7.4 PBS at 37 
o
C) as a function of PU composition. Expectedly, PU 

membranes with moderate-to-high water uptake properties (HP-93A-100, AL-25-80A, and 1:1 

mixture of AL-25-80A :SG-85A) released large initial NO fluxes (124.0–311.5 pmol cm
-2

 s
-1

) 

due to more rapid N-diazeniumdiolate decomposition relative to membranes consisting of either 

SG-85A or PC-3585A (<20 pmol cm
-2

 s
-1

; Figure 4.5A). For instance, DET/NO embedded in 

HP-93A-100 PU (a hydrogel PU formulation with water uptake at ~150 wt% PU mass) released 

the largest NO fluxes (311.5 pmol cm
-2

 s
-1

, tmax=37.0 min) and maintained NO fluxes above 0.8 

pmol cm
-2

 s
-1

 (the detection limit of the NOA for this experiment) for only ~60 h. In contrast, 

composites that were prepared using the more hydrophobic PC-3585A PU (<2 wt% water 

uptake) released low, detectable NO fluxes (1–14 pmol cm
-2

 s
-1

) for 7 d. 

Leaching of the DET/NO particles from the PU composites was assessed by monitoring 

the silicon emission intensity via ICP-OES from membrane soak solutions (PBS at 37 
o
C) over 7 

d. All DET/NO-based membrane compositions exhibited detectable levels of leaching (8–42%  
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Figure 4.5. (A) Initial (20 h) NO release and (B) 1 wk particle leaching measurements for 

HP-93A-100 (black, square), AL-25-80A (red, circle), SG-85A (green, diamond), and PC-

3585A (gray, star) polyurethane materials. The blue (triangle) trace in both figures is a 1:1 

mixture of AL-25-80A:SG-85A. Inset in (A) shows low NO fluxes released from SG-85A 

and PC-3585A composites. All materials are doped with 20 wt% 800 nm DET/NO SNPs. 
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total mass of incorporated particles) over 1–3 d incubation in PBS, with no additional leaching 

beyond 3 d (Figure 4.5B). The degree of leaching correlated strongly with PU water uptake. The 

more hydrophobic polyurethanes PC-3585A and SG-85A (water uptake <0.2 mg/mg for both 

PUs) leached 14.2 and 8.5% the total encapsulated DET/NO SNPs (321 and 181 µg cm
-2

, 

respectively) over the 7 d soak period. Significantly greater particle leaching (39.6 and 42.4%) 

was measured for high water uptake HP-93A-100 and AL-25-80A PUs, respectively, 

corresponding to ~900 µg SNPs cm
-2

. 

Membranes prepared using similarly-sized (800 nm) particles with either MAP/NO or 

AHAP/NO N-diazeniumdiolate modifications (monoamine- and diamine-based NO donors, 

respectively) were used to elucidate the influence of aminosilane structure on particle leaching. 

Comparable 7 d leaching values were measured for AHAP/NO and DET/NO particles (43.8 and 

42.4%, respectively), whereas MAP/NO particles leached from the membranes completely 

(100.7%; Figure 4.6). Although the chemical structure of the aminosilane surface modifications 

likely impacted interactions between the particle surface and the encompassing PU matrix, it was 

noted that a greater degree of N-diazeniumdiolate modification (2.22 vs 1.30–1.61 µmol NO mg
-

1
) was a hallmark of the particle system (MAP/NO) with the greatest leaching propensity. 

 To further understand the particle leaching process, we evaluated DET/NO particle 

leaching over a range of particle sizes (150, 450, and 800 nm). The DET/NO system was 

selected because this modification led to lower values for leaching in all of the PUs that were 

tested (data not shown). Experiments were carried out in a moderately hydrophobic PU mixture 

(1:1) of AL-25-80A:SG-85A, as more hydrophilic PUs (e.g., HP-93A-100) yielded elevated 

leaching (~100%) for most of the particle types tested. In contrast with previous suggestions that 

larger particles are less prone to leaching,
28

 no clear relationship between particle size and the  
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Figure 4.6. Leaching measurements over 1 wk 

incubation in PBS at 37 
o
C for 800 nm particles 

modified with MAP/NO (black, square), 

AHAP/NO (red, circle), and DET/NO (blue, 

triangle). Particles were incorporated at 20 wt% 

(relative to PU mass) in AL-25-80A PU.   
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Figure 4.7. Leaching measurements over 1 wk 

incubation in PBS at 37 
o
C for 150 (black, square), 

450 (red, circle), and 800 nm (blue, triangle) 

DET/NO-modified SNPs. Particles were 

incorporated at 20 wt% (relative to PU mass) in a 

1:1 mixture of AL-25-80A:SG-85A PUs.  
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extent leaching was observed (Figure 4.7). Similar leaching values were measured after 7 d 

immersion in PBS for 150 nm (26.4%) and 800 nm (23.7%) DET/NO SNPs. The 450 nm 

particles were associated with the greatest particle leaching (40.0%) despite having the same 

DET/NO modification as the other two SNP systems. Of importance, the 450 nm particles had 

larger NO storage (2.41 µmol NO mg
-1

) relative to the 150 nm and 800 nm particle sizes (1.87 

and 1.61 µmol mg
-1

, respectively), again implicating the N-diazeniumdiolate modification as a 

potential factor in the leaching process. 

The relationship between N-diazeniumdiolate modification and particle leaching was 

more directly interrogated in two additional experiments using the same PU compositions (1:1 

AL-25-80A:SG-85A). First, non-NO-releasing 800 nm DET particles (i.e., DET particles that did 

not undergo the NO donor formation reaction) were doped into PU membranes and compared 

with analogous NO-releasing membranes. Leaching of the total incorporated silica was reduced 

to 13.4% at 1 wk compared with 26.6% for the NO-releasing membrane. Second, the role of N-

diazeniumdiolate density (i.e., total NO storage) on membrane stability was examined using two 

similarly-sized DET-modified SNPs with different NO storage capacity. Two separate bare SiO2 

particle types were synthesized with a nominal size of ~150 nm but distinct porosity (i.e., 

mesoporous or nonporous). After NO donor modification, the mesoporous and nonporous 

DET/NO particles stored 1.33 and 0.22 µmol NO mg
-1

, with comparable specific surface areas 

(21 and 19 m
2
 g

-1
, respectively). As anticipated, increased levels of particle leaching (17.6±0.2%) 

were measured for the NO-releasing SNPs that stored more NO versus 6.4±1.1% for the 

nonporous particles.  

Greater particle NO storage consistently correlated with increased leaching regardless of 

particle size, the chemical structure of the aminosilane precursor, or the water uptake of the 
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polyurethane matrix. These leaching data pointed to the high surface charge density of the 

particles being a key contributing factor to particle stability in the membranes. We rationalized 

that greater leaching may be due to favorable interactions of the SNPs with water. This assertion 

was confirmed by the obvious correlation between leaching and PU water uptake. However, N-

diazeniumdiolate modification was not the sole factor for particle leaching, as even amine-

modified (non-NO-releasing) particles leached from the PU. In total, it was concluded that ionic 

silanoates, ammonium groups, and N-diazeniumdiolates all contribute to the overall particle 

surface charge and associated leaching. In preliminary experiments, additional hydrophobic PU 

layers (e.g., PC-3585A, SG-85A) without NO-releasing particles were deposited on top of the 

NO-releasing PU coating to serve as a barrier to particle leaching. Although additional PU 

“topcoats” generally reduced the magnitude of particle leaching, they did not prevent leaching 

from any of the formulations tested. For example, leaching was reduced from 14.2 to 6.6% for 

PC-3585A membranes incorporating 800nm DET/NO SNPs upon modification with an SG-85A 

topcoat (i.e., by dipcoating into a 60 mg mL
-1

 PU solution). Leaching of N-diazeniumdiolate-

based SNPs was minimized in low-water uptake polyurethanes. When embedded in hydrophobic 

TT-2072D-B20 PU membranes, only ~4.7% of the incorporated 800 nm DET/NO particles were 

detected after one month soak periods. Unfortunately, these formulations were incompatible as 

functional sensor membranes due to poor glucose permeability. Even sensors with thin (<5 µm) 

coatings did not respond to physiological glucose concentrations (data not shown).  

4.3.2. Polyurethane membranes incorporating S-nitrosothiol-modified silica particles 

S-nitrosothiols (RSNOs) are neutral NO donors formed on thiols and, in this manner, are 

structurally distinct from zwitterionic N-diazeniumdiolates. We hypothesized that the neutral 

RSNO modification might reduce the tendency of the SNPs to leach from PU membranes by 
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eliminating charge contributions characteristic of cationic amines and zwitterionic N-

diazeniumdolates. Thiol-functionalized silica-based particles were prepared using a variant of the 

Stöber method by co-condensation of MPTMS (a mercaptosilane) with a backbone 

tetraalkoxysilane.
34

 S-nitrosothiol NO donors were subsequently formed on the primary thiols by 

reaction of the SNPs with acidified nitrite. Leaching measurements were initially carried out for 

a single SNP composition (75 mol% MPTMS balance TEOS) as a function of PU type, 

analogous to the study of the N-diazeniumdiolate-modified particles. The measured Si emission 

intensity after a 7 d membrane soak period (PBS at 37 
o
C) was below the ICP-OES method limit 

of detection for all PU compositions tested, corresponding to <0.6% (16.5 µg SNPs cm
-2

) of the 

total mass of SNPs incorporated in the membranes. 

To assess the role of MPTMS modification on particle leaching, SNPs of varying 

alkanethiol content (25, 40, 75, and 85% MPTMS; SEMs provided in Figure 4.4) were 

incorporated into HP-93A-100 films (for comparison to the 75% MPTMS system) and soaked in 

physiological buffer for 7 d (Table 4.6). Unexpectedly, the data revealed a clear dichotomy in 

leaching measurements for RSNO-modified SNPs. Particles with low alkanethiol content (i.e., 

25 and 40% MPTMS, with reported thiol content <3.0 % sulfur by mass)
34

 leached entirely from 

the HP-93A-100 membranes over 7 d (2.90 and 2.89 mg cm
2
, respectively), while reduced 

leaching (<0.024 mg cm
-2

, below ICP-OES LOD) was observed for membranes containing SNPs 

with greater MPTMS character (75 and 85% MPTMS; 15.2–20.6 wt% sulfur).
34

 The RSNO-

modified particles retain moderate, anionic zeta-potentials (due to acidic silanol groups) that did 

not vary appreciably with MPTMS content (-29.9, -30.8, and -31.2 mV for the 25, 40, and 75% 

MPTMS particles). Despite similar surface charges, only SNPs with >75% MPTMS content did 
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Table 4.6. Particle leaching measurements for HP-93A-100 membranes 

doped with RSNO-modified silica particles of varying MPTMS content.
a,b

 

mol% 

MPTMS 

Backbone 

Silane
 Size

c
 (nm) 

Leaching
d
 

mg cm
-2 

% 

25 TMOS 234±37 2.90±0.35 99.7±6.6 

40 TMOS 248±41 2.89±0.19 100.3±12.0 

75 TEOS 622±53 <0.016 <0.6 

85 TMOS 660±86 <0.024 <0.8 

85 TEOS 864±94 <0.024 <0.8 
a
Error bars represent standard deviation for n>3 separate samples.

 b
MPTMS-modified 

particles were doped into polyurethanes at concentrations of 20 wt%. 
c
Geometric size 

estimated from scanning electron micrographs of particles (n>100 individual particles). 
d
Determined by ICP-OES measurement [Si] in membrane soak solutions after 7 d 

incubation in PBS. 
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not leach appreciably from the HP-93A-100 PU, reinforcing the concept that the large degree of 

hydrophobic alkanethiol modification counteracts particle leaching. 

The leaching experiments above were carried out using membranes in which the total 

particle composition was 20 wt%. For N-diazeniumdiolate-doped materials, increasing the SNP 

mass contribution to >20 wt% generally resulted in a larger degree of particle leaching. For 

example, 800 nm DET/NO particles doped into SG-85A PU at 33.3 and 50.0 wt% leached 38.7 

and 76.8% of the encapsulated silica over a 1 wk period. In contrast, membranes that were 

prepared using 75% MPTMS/TEOS particles at the same concentrations (33.3 and 50.0 wt%) 

leached minimal amounts of silica when immersed in aqueous buffer. Even at the highest 

concentration tested (50.0 wt%), particle leaching was measured just above the instrument limit 

of detection at 28.1 µg cm
-2

, corresponding to <1 % of the silica doped into the PU membrane. 

4.3.3. Nitric oxide release from S-nitrosothiol-based polyurethane/silica membranes 

S-nitrosothiols decompose to yield NO through multiple mechanisms. Both light (330–

350 and 550–600 nm for primary RSNOs) and thermal irradiation cause homolytic scission of 

the S–N bond to yield NO and thiyl radicals. Subsequent reaction of the thiyl radical with a 

second RSNO can also trigger release, generating a disulfide and an additional mole of NO. S-

nitrosothiol NO donors may also undergo irreversible catalytic redox reactions with several 

transition metal ions (Cu
2+

, Ag
+
, and Hg

2+
).

48
 Although these RSNO decomposition pathways are 

well-known, in vivo NO release is triggered thermally or through thiyl-mediated mechanisms 

only, due to the absence of light and presence of only trace amounts of transition metal ions in 

physiologic fluids. As such, all NO release evaluations were carried out in a light-shielded 

sample flask and in PBS supplemented with DTPA (a metal chelator) to most accurately 

recapitulate physiologic conditions. 
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Table 4.7. Particle leaching and nitric oxide release measurements for PU membranes 

doped with 75 mol% MPTMS/TEOS particles.
a,b

 

PU Type 
[NO]max

c 

(pmol cm
-2

 s
-1

)
 

[NO]t
d
 

(µmol cm
-2

) 
t1/2

e
 (h)

 
td

f
 (h) Leaching

g 
(%) 

HP-93A-100 277±21 0.70±0.04 3.13±0.17 38.0±4.5 <0.6 

AL-25-80A 432±12 0.43±0.02 0.38±0.02 21.2±1.2 <0.6 

PC-3585A 301±16 0.48±0.09 0.30±0.03 8.3±1.1 <0.6 
a
Error bars represent standard deviation for n>3 separate samples.

 b
75% MPTMS/TEOS particles were doped 

into polyurethanes at concentrations of 20 wt%. 
c
Maximum initial NO surface flux. 

d
Total NO storage 

determined by integration of the NO-release profile measured via chemiluminescence. 
e
Half-life of NO 

release. 
f
Duration of NO release above 1 pmol cm

-2
 s

-1
. 

g
Determined by ICP-OES measurement [Si] in 

membrane soak solutions after 7 d incubation in PBS. 
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The NO release from 75% MPTMS-doped membranes varied considerably between the 

different PU compositions (Table 4.7). For example, membranes that were prepared using either 

AL-25-80A or PC-3585A released large initial NO fluxes (432 and 301 pmol cm
-2

 s
-1

, 

respectively) and exhausted their NO supply rapidly (half-life of NO release <0.5 h). The release 

of NO from both films was limited to 24 h. In contrast, 75% MPTMS-doped HP-93A-100 

membranes released NO more slowly (t1/2 3.13 h) for 38 h. The differences in NO-release 

kinetics was attributed to a cage effect that the polymer matrix imposes on immobilized 

RSNOs.
49

 The microenvironment surrounding the RSNO species dictates the rates of reversible 

RSNO decomposition (homolytic cleavage of the S–N bond) and recombination between the 

resulting thiyl radicals and NO.
49-50

 In aqueous solutions, NO readily escapes the surrounding 

solvent cage upon RSNO decomposition, thus mitigating recombination between the thiyl 

radicals and NO. Slower RSNO decomposition rates have been previously reported in polymer 

matrices (e.g., polyethylene glycol, Pluronic F127) that are capable of facilitating enhanced 

geminate recombination (related to a more viscous polymer microenvironment) relative to 

analogous recombination rates in solution.
51-52

 Following this rationale, NO was detected for 

extended periods of time for the most hydrophilic (i.e., greatest water uptake) HP-93A-100 

membrane, with successive decreases in NO-release half-lives/durations in PUs with lower water 

uptake (AL-25-80A and PC-3585A). The total NO storage (0.43–0.70 µmol NO cm
-2

) was 

roughly an order of magnitude lower than expected, indicating that the majority of the stored NO 

is either not released from the films or is being released at fluxes below the detection limit of the 

NO analyzer. Indeed, the membranes retain a characteristic pink hue upon removal from the NO 

analysis flask, confirming the presence of unreacted primary RSNOs.  
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4.3.4. Analytical performance of nitric oxide-releasing electrochemical glucose biosensors 

 Of the polyurethanes tested, HP-93A-100 was unique in that the RSNO particle-doped 

membranes had the longest NO-release durations and adequate water uptake (2.6 mg H2O per 

mg PU) to facilitate glucose partitioning into the PU. Functional glucose sensors were fabricated 

using HP-93A-100 doped with 75% MPTMS particles. The analytical performance of the 

sensors was not appreciably altered by the mass percentage of the particles in the final coating 

(11.1–50.0 wt% SNPs). Indeed, the sensitivity to glucose was in the range of 53–71 nA mM
-1

 

mm
-2

 regardless of the MPTMS particle content in the membrane. Particles were thus doped in 

the HP-93A-100 membranes at 33.3 wt% for further experiments to facilitate large NO storage 

(2.85±0.06 µmol cm
-2

). For all membrane formulations tested (11.1–50.0 wt% MPTMS), the 

linear glucose response range of the sensors proved inadequate (6 mM upper limit; Figure 4.8) 

and similar to sensors coated solely with HP-93A-100 (i.e., without particles). An inverse 

relationship between sensitivity and dynamic range is often noted upon enzyme saturation by 

glucose and insufficient oxygen (GOx co-substrate) concentrations. In order to extend the 

dynamic range of the sensors to capture physiological concentrations (1–15 mM),
41

 an additional 

external PC-3585A coat was applied to the sensor electrodes. This PC-3585A “topcoat” served 

to obstruct glucose diffusion to the immobilized enzyme, balancing the effective glucose and 

oxygen concentrations in the enzyme layer. As expected, the additional PU coat extended the 

glucose linear dynamic range to 30 mM but still allowed for a usable glucose sensitivity 

(2.89±1.65 nA mM
-1

 mm
-2

). 

The NO-releasing glucose sensors (33.3 wt% MPTMS balance HP-93A-100 with the PC-

3585A topcoat) released NO for at least 3 d, as determined via chemiluminescence (Figure 4.9). 

Release of low NO fluxes (0.8 pmol cm
-2

 s
-1

, below the NOA LOD) for an additional four days  
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Figure 4.8. Amperometric glucose response for sensors 

coated with 75% MPTMS/TEOS-doped HP-93A-100 at 33.3 

wt% SNP without (black trace) and with (red trace) an 

additional PC-3585A topcoat.  
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Figure 4.9. Nitric oxide release from HP-93A-100 membranes 

doped with 75 mol% MPTMS/TEOS particles (33.3 wt%) with 

an additional PC-3585A topcoat. Inset shows the low NO fluxes 

released from sensor membranes at durations beyond 24 h. 
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Figure 4.10. Amperometric response for sensors modified with both the 75% 

MPTMS/TEOS-doped HP-93A-100 (33.3 wt% SNP) NO-releasing layer and the 

PC-3585A topcoat. (A) background current response for control (dashed line) and 

NO-releasing sensors (solid line) upon immersion in PBS at 37 
o
C. (B) 

Electrooxidation of NO at the working electrode surface contributes to the sensor 

current response during the first ~6 h, achieving a stable background current after 8 

h polarization at +0.600 V vs Ag|AgCl.  
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was measured by the Griess assay,
53

 an indirect method for measuring NO that has been 

aerobically oxidized to nitrite. Sensors coated with the 33.3 wt% MPTMS/HP-93A-100 

membrane release NO for 7 d, a three-fold greater duration those used previously for an in vivo 

study of sensor performance (NO release at fluxes >0.8 pmol cm
-2

 s
-1

 for <48 h).
26,32

 As such, the 

NO-release properties (fluxes) of the sensors are in line with those expected to improve long-

term in vivo sensor function.
54

  

A pre-conditioning period in the sensing medium (e.g., PBS) was necessary for all 

sensors to initiate membrane hydration and for stabilization of the electrical double-layer 

charging current. For control sensors (i.e., sensors coated with non-NO-releasing particles), a 

minimum electrode polarization period of 4–5 h in PBS (37 
o
C) was sufficient, as evidenced by 

the low baseline current drift (<0.5 nA h
-1

; Figure 4.10B). For the NO-releasing sensors, an 

anodic current peak was observed in the background sensor response due to NO oxidation; a 

feature that was absent in the control sensor experiments (Figure 4.10A). The slight response of 

the sensor to NO was mitigated at the working potential of +0.600 V, as NO oxidation occurs 

more readily at higher electrode potentials (~+0.9 V versus +0.7 V for H2O2 on platinum 

surfaces).
33,55

 Indeed, stable current backgrounds (<0.4 nA h
-1

 I0) were achieved for the NO-

releasing sensors after 6–8 h. 

 Although the glucose sensitivity of the biosensors coated solely with PU gradually 

decreased during 7 d incubation in PBS (Tables 4.4 and 4.5), the sensitivity of the NO-releasing 

sensors increased during the same time frame (7 d), remaining constant thereafter (Figure 

4.11A). The selectivity coefficients of the NO-releasing sensor against acetaminophen, 

ascorbate, and nitrite on the first day of testing were 1.64±0.19, -0.29±0.23, and 0.56±0.18, 

respectively. This performance did not vary discernably throughout the incubation period (data  
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Figure 4.11. Amperometric glucose response of sensors coated with both the 75% 

MPTMS/TEOS-doped HP-93A-100 (33.3 wt% SNP) NO-releasing layer and the PC-3585A 

topcoat. (A) glucose sensitivity over 2 wk incubation in PBS at 37
 o

C. (B) glucose response 

calibration for NO-releasing sensors after 1 (black, square), 7 (red, circle), and 14 d (blue, 

triangle) PBS immersion periods. The glucose response is linear over 1–30 mM initially (1 d), 

with decreased upper limit (21 mM) after 1 wk.  

B A 



188 
 

  

A B 

Figure 4.12. Scanning electron micrographs of glucose biosensors coated with both 

the 75% MPTMS (33.3 wt%) HP-93A-100 NO-releasing layer and the PC-3585A 

topcoat. Cross-sections of the sensors (A) as prepared and (B) after 2 wk immersion 

in PBS revealed the particles aggregate over time. The scale bar in the electron 

micrographs represents 5 µm. 
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Figure 4.13. Calibrated glucose response of sensors coated with 

both the 75% MPTMS/TEOS-doped HP-93A-100 (33.3 wt% 

SNP) NO-releasing layer and the PC-3585A topcoat in PBS 

(black, square) and serum (red, circle) at 37 
o
C.  
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not shown), indicating that the relative permeabilities of both glucose and the interfering species 

remained constant. The gradual change in amperometric glucose response was also accompanied 

by enzyme saturation and reduced linear dynamic range (1–21 mM; Figure 4.11B), although the 

glucose response range still covered relevant physiological concentrations (1–18 mM). The 

rising glucose sensitivity is most likely associated with physical changes (e.g., swelling) to the 

permselective PU membrane. Electron microscopy revealed that, while the particles were 

homogeneously dispersed in the PU originally (Figure 4.12A), they sequestered into large 

aggregates after 2 wk incubation in buffer (Figure 4.12B). The induced particle aggregation may 

have been responsible for the increased glucose sensitivity. 

The glucose biosensors experienced a perceptible decrease in glucose sensitivity upon 

testing in porcine serum relative to PBS (3.82±2.22 and 5.62±2.73 nA mM
-1

 mm
-2

, respectively) 

due to impeded glucose permeability (Figure 4.13). This decreased sensitivity was accompanied 

by an extended upper limit of glucose quantification (>32 mM). The measured sensitivity values 

are comparable to other in vivo glucose sensors (2.5–7.5 nA mM
-1

 mm
-2

)
26-27

 with no further 

change in response through 6 h operation in serum (3.78±2.49 nA mM
-1

 mm
-2

).  

4.4. Conclusions 

 Nitric oxide release is a demonstrated strategy to improve both the biocompatibility and 

in vivo performance of glucose biosensors.
24-27

 Despite promising pre-clinical results, NO donor 

leaching and limited NO-release capacities may hinder implementation. The results presented 

herein indicate that the leaching of entrapped NO donors must be evaluated with due caution. 

Silica particles functionalized with N-diazeniumdiolate NO donors leach indiscriminately from 

many biomedical-grade polyurethanes barring the most hydrophobic materials. Unfortunately, 

such membranes were not compatible with electrochemical glucose biosensors due to 
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insufficient glucose permeability. The underpinnings of the leaching process involve the total 

particle surface electrical charge and surface hydrophobicity. Silica particles modified with 

neutral RSNO donors are more stable (i.e., minimal or no leaching) in a wide selection of 

polyurethanes, provided that the degree of organic modification is substantial (>75% MPTMS). 

Polyurethane membranes doped with MPTMS particles yielded glucose biosensors with 

attractive analytical performance merits and NO-release durations. The extended NO-releasing 

sensors developed here hold promise for mitigating the FBR and improving in vivo sensor 

functional lifetimes. Studies evaluating in vivo sensor performance using these sensors are 

currently underway. 
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CHAPTER 5. FOREIGN BODY RESPONSE TO NITRIC OXIDE-RELEASING 

SUBCUTANEOUS IMPLANTS IN A STREPTOZOTOCIN-INDUCED SWINE MODEL 

OF DIABETES 

5.1. Introduction 

 In vivo glucose biosensors have been developed as a technology for continuous glucose 

monitoring by patients afflicted with diabetes mellitus.
1
 Unfortunately, the in vivo analytical 

performance of such devices in subcutaneous tissue is compromised due to the foreign body 

response (FBR).
1-3

 Sensor insertion damages vascularized tissue, resulting in local bleeding and 

accumulation of proteins and protein fragments on the surface of the sensor.
4
 The adsorbed 

protein layer is responsible for an immediate decrease (40–80%)
5
 in glucose sensitivity and 

serves as an anchor for cell adhesion. Infiltration of the implant site by inflammatory cells (e.g., 

neutrophils, macrophages)
3
 during the ensuing inflammatory response further impacts in vivo 

sensor performance.
6-9

 For instance, pro-inflammatory macrophages have abnormally large 

metabolic demands and create glucose depletion zones in the sensor microenvironment.
7,9

 Failure 

to digest the sensor incites frustrated phagocytosis and macrophage fusion to form foreign body 

giant cells.
3
 Stress-cracking or delamination of sensor coatings by these polynuclear cells is a 

frequent cause of in vivo sensor failure.
10

 Even for materials that are relatively insusceptible to 

oxidative damage (e.g., polycarbonate urethanes),
11

 phagocytic activity by macrophages and 

giant cells may decrease the pH in the tissue surrounding the sensor (extreme pH values 3.6)
12

 

with the potential to interfere with the enzyme-based sensor response. Conclusion of the FBR is 

marked by the deposition of a dense, avascular collagen capsule around the implanted sensor. 

Capsule formation obstructs interstitial glucose transport and causes a pronounced temporal lag 
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in the sensor signal, thereby preventing the sensor from accurately tracking glucose 

concentrations.
8,13-14

 

 The analytical performance of in vivo glucose sensors is inherently linked with FBR 

severity.
15

 The FBR has classically been studied as a function of material surface chemistry,
16

 

but proper selection of coating materials alone has proven insufficient to improve glucose sensor 

function. The most promising biocompatibility strategies have instead aimed to reduce 

inflammation and simultaneously guide wound healing at the sensor tissue interface. 

Topographical cues (i.e., porosity),
17

 active release of anti-inflammatory agents (e.g., 

Dexamethasone),
18-19

 and delivery of angiogenic stimulators (vascular endothelial growth factor, 

platelet-derived growth factor)
20

 have all been investigated as approaches to reduce the FBR. Our 

laboratory has proposed the release of nitric oxide (NO) as a way to mitigate the FBR.
21-24

 Nitric 

oxide functions as an angiogenic agent by upregulating vascular endothelial growth factor 

(VEGF) production.
25-28

 Although the mechanisms of NO’s involvement in inflammation are still 

being investigated, NO is known to influence inflammatory cell recruitment and phenotypes by 

regulating key cytokines/chemokines involved in the FBR (e.g., tumor necrosis factor-α, 

macrophage chemoattractant protein-1, interleukin-1β).
29-32

   

 Prior research in our laboratory has shown that NO-releasing surfaces reduce the FBR 

and improve attributes of glucose sensor performance.
21-24,33

 Hetrick et al. first demonstrated the 

use of NO-releasing silica xerogels to mitigate FBR-related inflammation and collagen 

deposition in mouse subcutaneous tissue. Subsequent work by Nichols et al. revealed a 

dependence of the FBR on NO-release kinetics.
22

 Subcutaneous implants capable of extended 

NO release (>3 d) reduced inflammation and collagen deposition, whereas rapid release (<24 h) 

lead to increased collagen capsule formation. Two separate studies have confirmed the benefits 
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of NO release and a reduced FBR to in vivo glucose sensor accuracy.
24,33

 

Despite promising tissue histology and preclinical sensor performance data,
21-24,33

 these 

initial studies utilized healthy animal models that do not account for several known pathological 

deficiencies associated with diabetes. Diabetic wounds are generally characterized with 

inadequate wound repair,
34

 delayed inflammatory cell infiltration and cytokine production,
35

 and 

disrupted blood flow.
36

 Reduced angiogenesis and cytokine production is at least partially due to 

inhibited NO production.
37-38

 Although these disparities have been well-characterized in the 

context of wound healing, the effects of a foreign body (i.e., an implanted glucose sensor) on 

inflammation and tissue reconstruction have not been studied in great detail. As diabetes leads to 

impaired NO production in subcutaneous wounds, administration of exogenous NO (i.e., from 

NO-releasing polymers) represents a promising approach to counteracting the delayed wound 

healing and inflammation associated with diabetes. 

Herein, the tissue responses to control and NO-releasing polyurethane materials are 

evaluated in both healthy and diabetic porcine models to generate new information on how 

diabetes impacts FBR-related inflammation and collagen deposition. Polymers capable of 

tunable NO release were employed to assess the role of NO on the FBR in diabetic tissue. 

5.2. Experimental Section 

5.2.1. Materials 

 Tetraethylorthosilicate (TEOS), N-(3-trimethoxypropyl)diethylenetriamine (DET) and 3-

mercaptopropyltrimethoxysilane (MPTMS) were purchased from Gelest (Morrisville, PA) and 

stored under nitrogen. Aqueous ammonium hydroxide (NH4OH; 29.41 wt% ammonia), sodium 

methoxide (NaOMe; 5.4 M in methanol) ethanol (EtOH; 200 proof), hydrochloric acid (HCl), all 

salts, and anhydrous solvents N,N-dimethylformamide (DMF), tetrahydrofuran (THF), and 
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methanol (MeOH) were purchased from Fisher Scientific (Fair Lawn, NJ). 

Cetyltrimethylammonium bromide (CTAB) was purchased from Sigma (St Louis, MO). 

Nitrogen (N2), argon (Ar), and nitric oxide calibration (25.87 ppm in nitrogen) gases were 

purchased from Airgas National Welders (Raleigh, NC). Pure NO gas was purchased from 

Praxair (Danbury, CT). Soft stainless steel wire (356 µm dia.) was purchased from McMaster-

Carr (Atlanta, GA). Tecoflex SG-85A (TPU) and Tecothane TT-2072D-B20 (TT) polyurethanes 

(PUs) were received from Lubrizol (Cleveland, OH). Streptozotocin was purchased as a sterile 

powder from Teva and reconstituted in sterile saline at 100 mg mL
-1

. Water was purified to a 

resistivity of 18 MΩ cm and a total organic content of <6 ppb using a Millipore Reference water 

purification system.  

5.2.2. Synthesis of N-diazeniumdiolate-modified mesoporous silica nanoparticles 

 Mesoporous silica nanoparticles (MSNs) functionalized with N-diazeniumdiolate NO 

donors were prepared using a variant of the Stöber method, as reported previously.
39

 Bare 

mesoporous silica particles were first prepared by adding TEOS (1.395 mL) to a solution of 

water (162 mL), EtOH (175 mL), NH4OH (11.8 mL), and CTAB (280 mg). The silicate solution 

was allowed to stir for 2 h until MSN formation was complete, after which DET (1.31 mL) was 

added dropwise over 1 min to initiate cation exchange between CTAB and the aminosilanes. The 

reaction was stirred overnight (~18 h). Secondary amine-modified particles were subsequently 

collected via centrifugation (6540g, 4 
o
C, 5 min). Residual CTAB in the MSN mesopores was 

removed via ion exchange with H
+
 ions by agitating the particles in an ethanolic HCl solution 

(9:1 v/v EtOH:HCl; 3×20 min). The amine-modified MSNs were then washed with EtOH (2×) 

and dried under reduced pressure. 

 Secondary amines on the MSNs were converted to N-diazeniumdiolate NO donors by 
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reaction with gaseous NO. The DET particles were initially dispersed in 9:1 (v/v) DMF:MeOH 

at 5 mg mL
-1

 prior to adding 5.4 M methanolic NaOMe (5 µL per 3 mg MSN) as a catalyst for 

NO donor formation. Glass vials containing the particle solutions were equipped with stir bars, 

placed in a stainless-steel Parr hydrogenation vessel, and connected to an in-house NO reactor. 

The Parr bottle was flushed with Ar (3×short, 3×10 min) to remove oxygen from the reaction 

solution prior to pressurizing the vessel with pure (>99.5%) NO gas (10 bar) for 3 d. Of note, the 

NO gas was scrubbed over solid potassium hydroxide for at least 4 h prior to the N-

diazeniumdiolate formation reaction. After 3 d the NO gas was vented and the vessel again 

flushed with Ar. The NO donor-modified particles were collected via centrifugation, washed 

with EtOH (3×), and dried under reduced pressure. The resulting NO-releasing particles were 

stored in a vacuum-sealed Mylar bag at -20 
o
C until further use. Control (i.e., non-NO-releasing) 

DET MSNs were treated similarly with NaOMe but without the N-diazeniumdiolate formation 

process.  

5.2.3. Synthesis of S-nitrosothiol-modified mesoporous silica nanoparticles 

 Thiol-based MSNs were synthesized using a mercaptosilane/alkoxysilane co-

condensation method adapted from reported procedures for nonporous, thiol-modified 

particles.
40

 A silane precursor solution was initially prepared by mixing MPTMS (1.32 mL) and 

TEOS (1.19 mL) in a glass vial. The silane mixture (2.28 mL) was added to a stirring solution of 

water (210 mL), EtOH (84 mL), NH4OH (9.6 mL), and CTAB (240 mg). The reaction was 

allowed to proceed for 2 h. The thiol-modified particles were collected and purified using the 

same washing and CTAB removal steps described above for the DET MSNs. S-nitrosothiol 

(RSNO) NO donors were formed on the thiol groups in a subsequent nitrosation step. The 

MPTMS MSNs (200 mg) were dispersed in a mixture of MeOH (4.00 mL) and 5 M HCl (2.00 
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mL) and stirred on ice. A solution (2.00 mL) of sodium nitrite (2.27 M) and 

diethylenetriaminepentaacetic acid (DTPA; 500 µM) in water was added dropwise to particle 

dispersion and stirred on ice for 1 h. The MSNs were collected via centrifugation, washed with 

cold MeOH (3×), and dried under reduced pressure. The RSNO-modified particles were used 

immediately thereafter. 

5.2.4. Preparation of nitric oxide-releasing polyurethane membrane-coated implants 

 Nitric oxide-releasing polymeric membranes were fabricated by doping control or NO 

donor-modified MSNs into a biomedical-grade polyurethane, TT-2072D-B20 (TT). Polymer 

solutions were initially prepared by dissolving 360 mg polyurethane (PU) in THF (3.38 mL). The 

silica particles were dispersed in THF in a separate container, added to the PU solution, and 

vortexed. The final PU concentration was 80 mg mL
-1

 for all solutions. The final concentration 

of particles in the PU solution was 20 mg mL
-1

. In cases of dual RSNO and DET/NO particle 

incorporation, two separate particle dispersions were prepared and added to the PU. 

Stainless steel wire served as the substrate for depositing the NO-releasing PU 

composites due to similar geometry and size compared to needle-type glucose sensors (~350 

µm). The wire was initially cut into 7 cm pieces and sterilized in a steam autoclave. All 

subsequent coating procedures were carried out in a sterile biological safety cabinet. The wires 

were modified with the NO-releasing membranes via dipcoating into the PU/MSN solution and 

drying for 1 h. The total number of coats was 16.  A TPU topcoat (60 mg mL
-1

 in THF) was 

applied to all membranes to minimize leaching of the MSNs from the membranes. The external 

PU coat also served to ensure consistent surface chemistry across the different implants, as 

surface chemistry could represent a convoluting variable with respect to FBR severity. The 

coated portion of the wire was cut to a final length of 15 mm prior to coating the exposed ends 
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with the TPU topcoat solution. After drying (~1 h), the implants were housed individually in 

sterile microcentrifuge tubes and stored in a sterile vacuum-sealed Mylar bag at -80 
o
C until use. 

Control (i.e., non-NO-releasing) materials were prepared in an identical manner except that the 

particles were not functionalized to release NO. Of note, the control particles were washed 3× 

with sodium methoxide following the H
+
 ion exchange step of the MSN purification process in 

to remove ionically bound protons.  

5.2.5. Membrane characterization 

 Nitric oxide release from the PU membranes was measured using a Sievers 280i 

chemiluminescence NO analyzer (NOA; Boulder, CO). The NOA was calibrated immediately 

before all measurements using air passed through an NO–zero filter as the blank value and 25.87 

ppm NO (in nitrogen gas) as the second calibration standard. The NO-releasing membranes were 

immersed in phosphate buffered saline (PBS; 10 mM, pH 7.41) at 37 
o
C. For membranes that 

contained RSNO-modified particles, the NOA sample flask was shielded from light. In addition, 

500 µM DTPA was added to the PBS to chelate trace copper ions, thus restricting NO release to 

thermal mechanisms. The NO that was released from the materials was carried to the instrument 

by stream of nitrogen gas (80 mL min
-1

) bubbled through the PBS solution. Supplemental 

nitrogen gas flow was provided to the NOA to match the 200 mL min
-1

 gas flow input. Nitric 

oxide was detected indirectly by reaction with ozone, forming an excited-state nitrogen dioxide 

species. Chemiluminescence data was collected at a sampling frequency of 1 Hz, providing near 

real-time measurements of NO release from the PU membranes. Measurements were terminated 

when NO concentrations fell below the detection limit of the NOA (~6 ppb or 0.8 pmol cm
-2

 s
-1

).  

 Particle leaching from the membranes was assessed by soaking membranes in PBS for a 

pre-determined period of time (1–28 d) and measuring the silicon content of soak solutions via 
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inductively coupled plasma optical emission spectrometry (ICP-OES; Teledyne-Leeman Labs 

Prodigy high-dispersion ICP; Hudson, NH). The instrument was initially calibrated using sodium 

silicate standards in PBS (0.1–25 ppm; 251.611 nm Si emission line) to ensure linear response 

over the anticipated range of particle concentrations. Calibration curves were subsequently 

generated for each type of silica particle and compared to Si emission values from the membrane 

soak solutions for leaching determination. 

5.2.6. In vivo protocol 

 All procedures and protocols were in accordance with institutional guidelines and 

approved by the Institutional Animal Care and Use Committee at the University of North 

Carolina in Chapel Hill. Twelve mixed gender Yorkshire-type piglets weighing approximately 

12–17 kg were used for this study. Diabetes was induced in half of the piglets (three males and 

three females) by repeated intravascular administration of streptozotocin (25–50 mg kg
-1

, 4 doses 

over 4–6 d) until elevated post-prandial blood glucose values (171±50 mg dL
-1

, mean ± standard 

deviation) were consistently observed via ear prick glucose measurements. Pooled blood glucose 

values for controls (i.e., without STZ treatment) were 61±18 mg dL
-1

. The pigs were maintained 

for 2–6 days prior to implanting the mock sensors. On the day of implantation, the pigs were 

sedated with telazol. Anesthesia was maintained with isoflurane using an endotracheal tube. The 

mock sensors were implanted using aseptic technique by cannulation into the subcutaneous 

tissue using a 18 G catheter inserter and the entry wound marked with tattoo ink. The implants 

were organized into 6 groups of 4 implants (24 implants per animal) on either side of the spine to 

control for variability due to implant location. After a pre-determined period of time (3, 10, or 25 

d), the pigs were euthanized and the implants located using a portable X-ray imager. Tissue 

surrounding the mock sensors explanted en bloc for histopathological evaluation of the FBR. 
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After first removing the implants from the tissue samples, the tissues were fixed in 10 vol% 

buffered formalin. Thin sections (~5 µm) were stained with hematoxylin and eosin (H&E) or 

Masson’s Trichrome for visualization of inflammatory cells or collagen, respectively. 

Immunohistochemical analysis for cluster of differentiation marker 31 (CD31; an endothelial cell 

surface marker) was carried out after an antigen retrieval step using pig-reactive anti-CD31 

antibodies from Abcam (ab28364; 1:500 dilution).     

 The severity of the inflammatory response was assessed from photomicrographs of 

hematoxylin and eosin-stained tissue slices. The number of inflammatory cells (e.g., neutrophils, 

macrophages) within ~200 µm of the implant surface was counted by a blinded observer. 

Average numbers of inflammatory cells (ICs), normalized to the tissue area (i.e., IC densities), 

served as indicators of inflammatory response severity. Collagen deposition was quantified 

within 200 µm of the implant surface similarly to previous reports
21-22,41

 using Masson’s 

Trichrome-stained tissue sections. Portions of the photomicrographs that stained blue, originating 

from collagen fibers, were isolated using a color filter in photoshop and then inverted so that 

white pixels corresponded to collagen fibers. Regions 200×50 µm in size were then cropped 

from the image and saved as text images. A custom MATLAB script was used to determine a 

percent collagen density by comparing the number of white pixels to the total number of pixels 

in the image. Immunohistochemical staining for CD31 was employed to quantitatively evaluate 

angiogenesis by counting the total number of blood vessels, identified as open tubular brown 

structures, within 400 µm of the implant surface. 
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5.2.7. Statistical analysis 

 Inflammatory cell densities and collagen deposition data were tested for normality using 

a Shapiro-Wilk test. In all cases, the data were determined to be distributed normally at >99% 

confidence. Thus, the data were analyzed using a two-tailed student’s t-test with p-values <0.05 

considered statistically significant. For multiple comparisons, one-way Analysis of Variance was 

used followed by individual comparisons using a student’s t-test with an applied Bonferroni 

correction.   

5.3. Results and discussion 

5.3.1. Characterization of nitric oxide-releasing polyurethanes 

Polyurethane materials with diverse NO-release properties were fabricated by doping 

Tecothane (TT) PU membranes with a range of NO-releasing MSNs (Figure 5.1). The NO-

releasing polymers were coated onto steel wire substrates that mimicked the size and geometry 

of needle-type electrochemical glucose biosensors. The mock sensors were further modified with 

a TPU topcoat that normalized the surface chemistry of all implants. The NO-release kinetics 

from the membranes were manipulated intentionally by careful selection of the NO donor-

modified silica particle dopants. For example, the N-diazeniumdiolate NO donor moiety 

undergoes proton-initiated decomposition and releases NO at rates dependent on pH, 

temperature, and the chemical structure of the precursor amine.
42

 Incorporation of N-

diazeniumdiolate-modified DET particle into a hydrophobic aromatic Tecothane PU resulted in 

membranes (DET/NO) that released low NO fluxes (1–12 pmol cm
-2

 s
-1

) for ~13 d (Table 5.1).  

To study the influence of initial NO flux on the FBR, RSNO-modified MSNs were co-

incorporated with DET/NO particles in Tecothane PU. S-nitrosothiols undergo thermally-

initiated S–N bond cleavage in vivo. Membranes prepared exclusively with RSNO particles  
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Figure 5.1. Schematic of NO-releasing subcutaneous implants. The NO-

releasing silica nanoparticles were doped into TT polyurethane membranes. 

An external SG-85A PU coating was applied to limit particle leaching and 

ensure consistent surface chemistry for all implant types. The implants 

released NO upon decomposition of the NO donors in vivo by either reaction 

with protons (N-diazeniumdiolates) or through a thermal mechanism (S-

nitrosothiols). 

NO-Releasing Layer

Stainless Steel

NO

Silica Nanoparticle
External PU coating (SG-85A)

Nitric Oxide

N-diazeniumdiolate S-nitrosothiol (RSNO)
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DET/NO systems. The inset displays a magnified view of the initial NO-
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released large, maximum NO fluxes (630 pmol cm
-2

 s
-1

) and exhausted their NO supply within 

48 h (Table 5.1; Figure 5.2). Materials incorporating both types of NO donor-modified MSNs (at 

3:1 and 1:1 RSNO:DET mass ratios) released more intermediate NO fluxes initially (285 and 

200 pmol cm
-2

 s
-1

, respectively) and maintained NO release above >0.8 pmol cm
-2

 s
-1

 for longer 

durations (3 and 7 d, respectively) than the RSNO system alone. The four NO-releasing 

membranes that were chosen for evaluation (i.e., DET/NO, 3:1 RSNO:DET, 1:1 RSNO:DET, 

and RSNO) exhibit NO-release durations that align with the anticipated timelines of the acute 

and chronic inflammatory responses (~1–2 and 3–14 d, respectively).
3,43-44

  

 Although silica is generally tolerable in vivo,
45

 leaching of the silica particles from the 

PU membranes may exacerbate the FBR. For example, nano-sized silica particles may be 

phagocytosed by macrophages, increasing production of pro-inflammatory cytokines (e.g., 

interleukin-1β, tumor necrosis factor-α).
46-47

 Given the potential of silica to counteract NO’s 

ability to reduce the FBR, we assessed particle leaching from the MSN-doped membranes. 

Quantitative analysis of silicon concentrations in membrane soak solutions was carried out using 

ICP-OES. Even after incubation in PBS at 37 
o
C for 28 d, silica particle leaching from NO-

releasing and control membranes (i.e., particle-doped membranes that were not functionalized to 

release NO) was minimal (<5%). The materials were thus deemed suitable for further evaluation 

of the FBR. 

5.3.2. Inflammatory response 

A porcine model was selected for FBR evaluation due to similarities in subcutaneous 

tissue composition (i.e., proportion of adipose tissue and collagen content) between pigs and 

humans.
48-51

 Chemical induction of diabetes was carried out by administrating multiple doses of 

the pancreatic β-cell cytotoxin, streptozotocin (STZ), over a 10 d period preceding implantation  
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of the materials. Diabetes induction in the pigs was confirmed by greater post-prandial blood 

glucose values relative to untreated pigs (171±50 and 61±18 mg dL
-1

, respectively; Figure 5.3). 

Hyperglycemia was maintained for the entire study duration (i.e., 1 mo) using this protocol.  

Inflammatory cells (e.g., macrophages) are known to negatively impact glucose sensor 

performance, due in part to their large, localized glucose/oxygen consumption and ability to 

damage sensor components via respiratory bursts (i.e., release of reactive oxygen and nitrogen 

species).
7-8,10,12

 Elevated inflammatory cell presence is linked to poor sensor performance.
7-9

 As 

such, photomicrographs of hematoxylin and eosin-stained tissues were used to quantitatively 

assess the inflammatory response. The severity of the inflammatory response was determined at 

three different implantation periods (3, 10, and 25 d) and considered with respect to both NO and 

animal model disease state. The 3 d tissue response was localized to ~100 µm from the surface of 

the implants and consisted primarily of macrophages (based on nuclear morphologies observed 

in the hematoxylin and eosin stains; Figure 5.4). This initial time point represented onset of the 

chronic inflammatory response.
3
 Inflammatory cell densities adjacent to control (non-NO-

releasing) implants at 3 d were similar between the healthy and diabetic pigs (~3.3–3.9×10
3
 cells 

mm
-2

). The release of NO during this initial period in the FBR elicited a modest reduction in the 

inflammatory response (10–30%; Figure 5.5A). No differences in IC densities were observed 

between the NO-releasing implants (ANOVA p-value 0.457), indicating that the initial NO flux 

had no effect on the 3 d inflammatory response. Inflammation was mitigated to a greater degree 

by NO in the STZ-treated pigs, with 35–50% reductions in the number of ICs at NO-releasing 

implants relative to controls (Figure 5.5B). As was the case in the healthy swine model, NO-

release kinetics did not impact inflammation in the diabetic pigs at 3 d (ANOVA p-value 0.621). 
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Figure 5.4. Photomicrographs of hematoxylin and eosin-stained tissues adjacent to 

implanted PU materials at (A–D) 3; (E–H) 10; and (I–L) 25 d post-implantation. The number 

of dark purple inflammatory cell nuclei were quantitated as a measure of inflammation 

severity. The asterisk (*) in each image indicates the location of the implant. The scale bar at 

the bottom of the image represents a distance of 50 µm. 
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Figure 5.5. Inflammatory cell densities in the vicinity of subcutaneously-implanted mock 

sensors at (A, B) 3; (C, D) 10; and (E, F) 25 d post-implantation in (A, C, E) healthy and (B, 

D, F) STZ-treated pigs. Inflammatory cell counts are expressed as average densities 

(±standard error of the mean) within 200×100 µm areas of tissue immediately adjacent to the 

implants. Symbols above individual bars denote statistical significance between NO-releasing 

and either DET (*) or RSNO (#) control samples at p<0.05. Where appropriate, differences 

between individual NO-release systems are marked with a % symbol. Statistical testing was 

not carried out for the RSNO sample in graphs (B) and (E) due to insufficient sample size.  
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C D 



216 
 

A more severe inflammatory response was observed at RSNO and DET control implants 

after 10 d relative to the initial (3 d) time point (Figures 5.4E–H) regardless of disease state. For 

example, IC densities for the RSNO control materials in the healthy and STZ-treated animals 

were 6.0×10
3
 and 6.2×10

-3
 cells mm

-2
, respectively. A reduced inflammatory response was 

evident at all NO-releasing implants in both the healthy and STZ-treated pigs (Figures 5.5C and 

5.5D). Longer NO release from the DET/NO materials (i.e., 13 d NO-release duration) mitigated 

inflammation to a greater degree in the healthy swine model relative to the 2–3 d NO-release 

systems (ANOVA p=0.0037).
22

 However, there were no discernable differences arising from 

varying NO-release kinetics in the STZ-treated pig model (ANOVA p=0.364).  

Additional recruitment of ICs to the implant site ceased after 10 d in the healthy swine 

model, indicating resolution of the inflammatory response. Indeed, IC densities at 10 and 25 d 

post-implantation were similar for both sets of controls. In contrast, a more severe 25 d 

inflammatory response was observed in the STZ-treated pigs. Inflammatory cell densities at the 

DET controls nearly doubled after 25 d in comparison to the 10 d values (12.4×10
3
 and 6.4×10

3
 

cells mm
-2

, respectively; p=0.006). The inflammatory response for RSNO controls was similarly 

elevated (8.5×10
3 

and 6.2×10
3
 cells mm

-2
; p=0.031). This data disagrees with a previous study by 

Wang et al. that evaluated the FBR in STZ-induced diabetic rats to silicon substrates coated with 

poly(vinyl alcohol). The authors indicated that STZ treatment did not alter the degree of 

inflammation after a similar implant duration (28 d).
52

 This discrepancy most likely relates to the 

use of different animal models (i.e., porcine and rodent models). This difference 

notwithstanding, the persistent inflammation observed in the diabetic pigs was not surprising, as 

a delayed inflammatory response has been identified as at least partially responsible for the 

deficient wound healing associated with diabetes.
38
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The short-term NO-release systems (NO-release durations <2–3 d) were incapable of 

maintaining the low levels of inflammation observed at 10 d, eliciting a similar inflammatory 

response to controls at 25 d post-implantation (Figures 5.5E,F). In contrast, the more extended 

NO-release systems (i.e., DET/NO and 1:1 RSNO:DET) maintained low IC densities (2–5×10
3
 

cells mm
-2

) throughout implantation, highlighting an unequivocal benefit of 7–13 d NO release 

(relative to 2–3 d durations). However, the mechanisms through which the long-term NO release 

mitigates the chronic inflammatory response (i.e., at 25 d) remain unclear. A reduced 10 d 

inflammatory response was also evident for the 2–3 d NO-release systems. These observations 

are consistent with prior work by Hetrick et al.
21

 and Nichols et al.
22

 Nitric oxide mediates the 

production of several key chemokines/cytokines involved in the FBR, including tumor necrosis 

factor-α, macrophage chemoattractant-1, and interleukin-1β.
29-32

 In this regard, NO may delay 

the inflammatory response by interfering with inflammatory cell recruitment to the implant site.  

5.3.3. Collagen deposition 

The most often observed outcome in the FBR to indwelling glucose biosensors is the 

formation of a dense, collagenous tissue layer that segregates the sensor from the surrounding 

extracellular matrix.
8,13-14

 The collagen capsule is populated by metabolically active ICs and 

lacks the extensive vascular network of uninjured subcutaneous tissue. Collectively, the 

characteristic density and avascularity of the collagenous tissue renders the capsule remarkably 

impermeable to glucose transport. Consequences of poor glucose transport include attenuation of 

the glucose sensor signal and a pronounced temporal lag (20–30 min relative to blood), 

ultimately resulting in sensor failure.
8
  

To visualize and assess collagen deposition, tissue slices harvested from the regions 

surrounding the mock sensors were stained with Masson’s Trichrome. Photomicrographs of the  
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Figure 5.6. Photomicrographs of Masson’s Trichrome-stained tissues adjacent to implanted 

PU materials at (A–D) 3; (E–H) 10; and (I–L) 25 d post-implantation. Collagen density was 

analyzed in 200×50 µm areas immediately proximal to the implant surface and expressed as 

the % area occupied by blue collagen pixels. The asterisk (*) in each image indicates the 

location of the implant. The scale bar at the bottom of the image represents a distance of 50 

µm. 
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stained tissues were used to quantify collagen deposition proximal to the implant surface (within 

200 µm) as a percentage (density) of the total image area occupied by blue collagen pixels 

(Figure 5.6). Of note, collagen analysis was not carried out at 3 d as the collagen in the tissue 

samples was sparse (Figures 5.6A–D). By 10 d, a dense capsular layer (collagen densities ~20–

30%) had formed around most of the control and NO-releasing implants in the healthy pigs 

(Figures 5.6E–H and 5.7A). After 25 d, typical collagen densities had increased to ~30–50% 

(Figures 5.6E–L and 5.7B). The sustained NO-release system (DET/NO; 13 d NO release) 

mitigated capsule formation in healthy swine at both 10 and 25 d. Investigations by Hetrick et 

al.
21

 and Nichols et al.
22

 also demonstrated reduced collagen deposition at NO-releasing 

implants. However, the mechanisms through which NO is involved in capsule formation remain 

unclear. The apparent inhibition of collagen deposition may be due to NO’s involvement in the 

production of transforming growth factor β (TGF-β),
26

 a known stimulator of collagen 

production by fibroblasts.
53

 

Reduced collagen deposition was consistently observed for tissue samples in the STZ-

treated pigs relative to control swine. Typical % collagen values were in the range of 5.8–11.5% 

after 10 d for all samples in the STZ-treated model compared to 9.2–29.8% in the healthy pigs. 

Similar disparities in collagen deposition were also observed at 25 d (11.8–17.4% vs. 29.7–

50.0% for the STZ and control pigs, respectively). Prior research has also identified inhibited 

collagen deposition as a hallmark of the diabetic FBR,
54-55

 in agreement with our results. No 

discernable difference was noted in the % collagen values between any of the implants (control 

or NO-releasing) in the diabetic pigs at either 10 or 25 d (ANOVA p-values 0.80 and 0.87, 

respectively). Socarrás et al. observed lower levels of TGF-β as a result of diabetes in rat tissue  

surrounding implanted polyetherurethane sponges,
54

 which may account for the lack of an  
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Figure 5.7. Collagen densities in the tissue surrounding mock sensors at (A) 

10 and (B) 25 d post-implantation for healthy (red) and diabetic swine (black). 
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mean). Symbols above individual bars denote statistical significance between 
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observable effect of NO release on collagen deposition in the diabetic pig model. 

5.3.4. Angiogenesis 

 Glucose sensor implantation disrupts native tissue and destroys vascular structures in the 

immediate vicinity of the device. The sensor-tissue interface remains devoid of local vasculature 

as the sensor becomes progressively more isolated by inflammatory cells and collagen during the 

FBR. The lack of blood vessels at the implant site prevents consistent glucose transport to the 

sensor, reducing glucose concentrations at the implant surface and thereby contributing to erratic 

sensor response.
8,14,56-57

 Adequate vascularization has thus been suggested as a key requirement 

for ensuring consistent glucose sensor function.
8,14,56

  

The DET/NO and its analogous control (DET control) were selected for evaluation of 

blood vessel formation after 10 d of implantation due to the favorable reductions in collagen 

deposition and inflammation afforded by extended (13 d) NO release. Vessels in the vicinity of 

the implants were visualized by immunohistochemical tissue staining for the endothelial cell 

surface marker CD31. Representative photomicrographs of the tissue samples (counterstained 

with hematoxylin) are provided in Figure 5.8. Impaired angiogenesis is a known manifestation of 

diabetes in humans
58

 that has been recreated intentionally in STZ-induced diabetic rat models.
54

 

Blood vessel counts at control implants were compared between the healthy and diabetic pigs, 

revealing a potential difference that approached statistical significance (p=0.095). The tissue 

surrounding the DET/NO implants was consistently more vascularized relative to control 

materials (Figure 5.9), with 47.1 and 70.4% more blood capillaries adjacent to implants in the 

healthy and diabetic pigs, respectively. This result was somewhat expected, as NO derived from 

endothelial nitric oxide synthase is an essential component of angiogenesis during tissue 

remodeling.
28

 Several pro-angiogenic growth factors (e.g., VEGF) elicit NO production.
26,59

 In  
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Figure 5.8. Photomicrographs of anti-CD31 and hematoxylin stained tissues 

adjacent to (A, C) DET/NO and (B, D) DET control implants after 10 d in the 

(A, B) healthy and (C, D) diabetic pigs. Blood vessels were identified as open 

tubular brown structures. The asterisk (*) marks the implant location and the 

scale bar at the bottom left of each image represents 100 µm. 
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addition, NO has also been shown to stimulate VEGF expression.
25

 Hetrick et al. also reported 

increased blood vessel formation in healthy rats at materials that released a range of NO fluxes 

(1–110 pmol cm
-2

 s
-1

) for 3 d.
21

 This data indicates that lower NO fluxes (~1–12 pmol cm
-2

 s
-1

) 

are primarily responsible for enhanced angiogenesis.    

5.4. Conclusions 

Prior research has established the utility of polymeric NO release for reducing FBR-

related inflammation and collagen deposition.
21-23

 In turn, the analytical performance of in vivo 

glucose biosensors has been shown to be positively influenced.
24,33

 However, insufficient 

literature regarding the impact of diabetes on the FBR brings into question the relevance of this 

data. The research described herein represents a first step to understanding differences in the 

porcine FBR to subcutaneously-implanted polyurethane biomaterials arising from STZ-induced 

diabetes. In particular, a delayed—but more severe—inflammatory response was a unique 

feature in diabetic pigs. Nitric oxide release from the polyurethane materials mitigated the early 

inflammatory response (i.e., at 3 and 10 d) in both models, highlighting a key anti-inflammatory 

benefit associated with this strategy. However, only long-term NO-releasing implants (with 7 

and 13 d NO-release durations) maintained low degrees of inflammation at extended periods (25 

d), counteracting the severe inflammation observed in the diabetic swine. Sustained NO release 

stimulated angiogenesis at the implant-tissue interface in both the healthy and diabetic swine 

models. These data confirm that the anti-inflammatory and angiogenic properties of NO are 

preserved regardless of disease state. The sustained (13 d) NO-release system also mitigated 

collagen deposition in healthy pigs, confirming the benefits of extended NO-release kinetics. A 

key distinction of the FBR in the diabetic swine model was the lack of capsular tissue. As such, 

deposition was unaffected by NO. This apparent inhibition of collagen deposition in the diabetic 
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pigs serves to caution against extrapolating histological outcomes in healthy animal models to 

anticipated results in diabetic tissue.  
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CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS 

6.1. Summary of dissertation research 

Nitric oxide-releasing materials have been shown to mitigate FBR-associated 

inflammation and collagen deposition,
1-2

 both of which are key parameters that negatively 

impact the in vivo function of glucose biosensors.
3-6

 My research has focused broadly on how 

NO release might alter the analytical performance of such biosensors. In Chapter 2, the first 10-

day in vivo sensor performance studies are described. Two separate NO-releasing glucose 

sensors were shown to have improved accuracy and greater glucose sensitivity compared to 

analogous controls during an initial 3 d implantation period. An especially important outcome of 

this study was that sensors with short-term NO-release properties (~16 h NO-release durations) 

were unable to maintain acceptable accuracy after longer (>3 d) durations in vivo. In contrast, 

sensors that released NO for 3.1 d exhibited consistent MARD and lag times during the entire 10 

d implantation period, emphasizing the potential importance of long-term NO release. 

Collectively, this research validated that the reduced FBR to NO-releasing polymer coatings 

translates to perceptible improvements to in vivo glucose sensor analytical performance.  

Despite promising initial in vivo sensor data, many aspects of the NO-releasing glucose 

sensors demanded improvements, particularly with respect to the NO-releasing membrane 

technology. Critical shortcomings associated with the N-diazeniumdiolate-modified silica filler 

particles, including low NO storage (<0.6 µmol mg
-1

) and NO-release durations (<12 h),
7-11

 

ultimately limited NO release from glucose sensor membranes to a timeframe (~2–3 d) 
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insufficient for mitigating the long-term FBR. In Chapter 3, an interfacial ion exchange reaction 

between cationic aminosilanes and the quaternary-ammonium surfactant cetrimonium bromide 

was exploited to functionalize mesoporous silica with secondary amines for subsequent 

conversion to N-diazeniumdiolate NO donors. The resulting materials stored 2–5× more NO than 

previous silica particles.
7-11

 The ion exchange reaction approach was compatible with a diverse 

selection of particle sizes and aminosilane precursors, permitting exact control over physical 

morphology and NO-release kinetics. Particle systems based on the DET/NO modification were 

capable of ~40 h of continuous NO release and proved indispensable for the tissue 

biocompatibility studies described in Chapter 5. 

The approach developed in Chapter 3 for the synthesis of NO-releasing silica particles 

was adapted to the systematic study of particle leaching from PU membranes in Chapter 4. The 

use of low-water uptake PU membranes resulted in negligible particle leaching. However, the 

hydrophobic membranes were incompatible as glucose sensor membranes due to poor glucose 

permeability. Polyurethanes with greater water uptake facilitated improved glucose partitioning 

into the membranes, yet leached considerable levels of NO donor-modified silica. Careful study 

of more hydrophilic PU membranes revealed that the zwitterionic N-diazeniumdiolate moiety 

was largely responsible for particle leaching from glucose sensor coatings. The dependence of 

particle leaching on the extent of NO donor modification and PU water uptake indicated that the 

leaching process was mediated by membrane hydration. This assertion was further confirmed in 

subsequent leaching experiments using NO-releasing particles with electrically neutral S-

nitrosothiol NO donors. Particles with a substantial degree of alkanethiol modification (>75% 

relative to the backbone silane) did not leach from the membranes, regardless of polyurethane 

water uptake. These membranes were thus adapted to serve as the NO-releasing glucose 
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diffusion-limiting coating for subsequent, next-generation electrochemical glucose biosensors. 

The optimized sensors were capable of releasing NO for 7 d (i.e., 2–3× greater NO-release 

durations than previous systems) and retained suitable analytical performance merits required for 

in vivo glucose sensing. 

The N-diazeniumdiolate and S-nitrosothiol particles that were employed in Chapters 3 

and 4 were utilized to study the FBR in a streptozotocin-induced diabetic swine model. This 

work was described in Chapter 5. Induction of diabetes produced several key pathological 

differences in the FBR, including a more severe chronic inflammatory response, inhibited 

angiogenesis, and arrested collagen deposition. Materials capable of 7–13 d NO release reduced 

inflammation and increased blood vessel densities in the surrounding tissue, largely 

counteracting the FBR and wound-healing deficiencies associated with chemically-induced 

diabetes.  

6.2. Future directions 

6.2.1. Hydrophobic surface modification of N-diazeniumdiolate-based silica particles 

The utility of the the N-diazeniumdiolate-based particles (Chapter 3) as membrane 

dopants is restricted to low-water uptake polyurethanes (e.g., TT-2072D-B20, PC-3585A; water 

uptake <0.01 mg per mg of polyurethane), as the particles leached from more hydrophilic 

polymers. Based on the hydrogen bonding and coulombic interactions between the particle and 

water molecules promoting leaching, hydrophobic modifications to the particle may lessen this 

effect by interfering with the surface hydration layer. In a preliminary study, Carpenter et al. 

grafted alkyl chains to the surface of pre-formed silica particles modified with the aminosilane 

N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP).
12

 Following the alkyl chain 

modification step, the particles were reacted with NO to form N-diazeniumdiolate NO donors. 
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Ethyl and isobutyl chain-modified AHAP/NO particles leached up to 75% less from Tecoplast 

(TP-470) polyurethane materials than the corresponding particles without alkyl chains. 

Unfortunately, the already limited NO storage of the AHAP/NO particles (0.28 µmol mg
-1

) was 

further reduced by the alkyl chain modification process to values insufficient for use as sensor 

membrane dopants (<0.1 µmol mg
-1

).  The NO-releasing particles developed in Chapter 3 store 

3–8× more NO than the those described by Carpenter et al.,
12

 regardless of the aminosilane 

modification. Thus, these scaffolds are more likely to retain suitable NO storage after 

hydrophobic modification.  

The strategy employed by Carpenter et al.
12

 relied on reacting alkylsilanes with residual 

silanol groups on the surface of the AHAP-modified silica particles. However, the alkyl chain 

grafting procedure was not optimized. Reactant (i.e., silane) concentration, solvent system, and 

reaction temperature are all important parameters that should be studied for their impact to 

modification efficiency, NO-release kinetics, and leaching. The selection of hydrophobic silane 

modifications should also be expanded to include fluorosilanes of varying alkyl chain lengths 

and fluorine content. Ideally, these studies should be carried out using particles with a range of 

amine modifications (e.g., MAP, AHAP, DET, AEAP) as the extent of hydrophobic modification 

may depend on aminosilane identity. 

Surface analysis (i.e., X-ray photoelectron spectroscopy) and bulk chemical methods 

(e.g., elemental analysis, solid-state 
13

C/
19

F/
29

Si cross- or direct-polarization magic angle 

spinning nuclear magnetic resonance spectroscopy) should be utilized to confirm successful 

modification as a function of the silane identity and reaction conditions (e.g., solvent system). 

After verifying incorporation of the hydrophobic modifications, NO-release measurements and 

leaching assays should be carried out in a similar manner to the experiments outlined in Chapters 
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3 and 4. Special care should be taken to evaluate particle leaching with respect to PU identity and 

the mass of the particles incorporated into the membranes, as leaching is especially sensitive to 

both parameters.  

6.2.2. Improving the handling and storage stability of S-nitrosothiol-based particles 

The RSNO-based silica particles described in Chapter 4 (75% MPTMS/TEOS) were 

unique in that they did not leach from any of the polyurethane materials tested. Unfortunately, 

the primary S-nitrosothiol-based materials (i.e., S-nitrosothiols with an unsubstituted α-carbon) 

are susceptible to numerous degradation triggers during synthesis, necessitating careful handling. 

For example, special precaution was taken to avoid Cu
+
-mediated RSNO degradation by 

supplementing synthesis solvents with metal chelators.
13

 Similarly, RSNOs readily degrade upon 

exposure to visible/ultraviolet light or even during room temperature handling steps (thermal 

pathway), although decomposition was minimized by performing wash steps in the dark and at 

low temperatures (e.g., using -20 
o
C MeOH).

14
 However, even small amounts of NO generated 

during synthesis/handling (regardless of the mechanism) may react with atmospheric oxygen to 

form nitrogen trioxide, a RSNO-reactive chemical species that initiates rapid autocatalytic 

decomposition. S-nitrosothiol-based membranes/sensors must thus be stored cold (<-20 
o
C) and 

devoid of molecular oxygen.  

Future research efforts should thus strive to improve upon the handling/storage stability 

of RSNO-modified particles, while simultaneously maintaining suitable NO storage and low 

particle leaching. One potential strategy to produce more stable primary RSNO-based particles is 

to alter the particle porosity (i.e., mesoporous rather than nonporous) or the method of MPTMS 

(thiol) incorporation. Either of these methods could potentially alter transnitrosation reaction 

rates and RSNO “cage effects,” in turn affecting RSNO decomposition kinetics.
15-17

 Use of a 
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mesoporous silica scaffold may provide more versatility in terms of introducing thiol 

functionalities through either surface grafting or co-condensation strategies to achieve sufficient 

NO storage (>0.6 µmol mg
-1

). Thiol incorporation, as measured by an elemental analyzer, should 

be evaluated as a function of solvent choice, reaction temperature, and reagent concentrations. 

Furthermore, these parameters are likely to influence the spatial orientation of individual thiols 

over the silica scaffold (i.e., clustered groups versus homogeneously distributed), thereby 

affecting storage stability and NO-release kinetics of the particles.  

The chemical structure of the RSNO readily impacts storage and NO-release kinetics.
18

 

Primary RSNOs (e.g., the nitrosated form of MPTMS) degrade rapidly at room temperature or 

upon exposure to light.
18-19

 Both RSNO decomposition triggers provide sufficient energy for 

homolytic cleavage of the S–N bond, yielding NO and a thiyl radical. It is generally believed that 

dimerization between two thiyl radicals, forming a disulfide, is required to prevent 

recombination with NO.
18-21

 Tertiary RSNOs, characterized by a disubstituted α-carbon, are 

more stable than their primary RSNO counterparts. Bulky alkyl substitutions to the α-carbon 

increase the steric hindrance surrounding the sulfur atom, decreasing the likelihood of 

dimerization between thiyl radicals and thus promoting recombination with NO.
18,20-21

 

Bainbrigge et al.
20

 suggested that electron-donating groups at the α-carbon also decrease the 

lability of the S–N bond. The authors demonstrated that temperatures in excess of 148 
o
C were 

required to initiate breakdown of the tertiary RSNO S-nitroso-N-acetylpenicillamine (SNAP). 

Goudie et al. developed SNAP-doped polyurethane membranes that retained >90% NO after 6 

months storage at room temperature, confirming the stability of the tertiary RSNO.
22

  

Based on prior work,
18,20-23

 modification of silica particles with tertiary RSNOs 

represents an attractive option to improve the storage stability of these materials. Unfortunately,  
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Figure 6.1. Synthesis of N-acetylpenicillaminepropyltrimethoxysilane from penicillamine 

and 3-aminopropyltrimethoxysilane.  



239 
 

few mercaptosilanes are commercially available, necessitating the synthesis of new silanes 

intended for use as NO donors. Riccio and coworkers reported on the design of a tertiary thiol-

based mercaptosilane (N-acetylpenicillaminepropyltrimethoxysilane; NAPTMS) based on the 

reaction between N-acetyl penicillamine and 3-aminopropyltrimethoxysilane (Figure 6.1).
23

 This 

silane may be grafted to the surface of bare mesoporous silica or incorporated into the particle 

backbone via a co-condensation approach. However, a potential difficulty noted by Riccio et al.
23

 

is the relatively slow hydrolysis/co-condensation reactions between NAPTMS and typical 

backbone silanes (e.g., tetraethoxysilane, tetramethoxysilane, methyltrimethoxysilane). Particle 

synthesis strategies relying co-condensation will therefore likely fail to form monodisperse 

particles and/or result in low NAPTMS incorporation. Surface grafting of NAPTMS to bare 

mesoporous silica represents a more promising initial approach, but will require careful 

optimization of grafting conditions (e.g., solvent, base catalyst amounts, temperature) for 

reproducible modification. 

6.2.3. Molecular and cellular basis for the anti-inflammatory capacities of NO 

The NO-releasing materials evaluated in Chapter 5 proved useful for reducing FBR-

related inflammation in both healthy and diabetic swine. Although NO’s involvement in 

angiogenesis is well-understood, less is known about its anti-inflammatory properties. Nitric 

oxide has been implicated as a mediator of chemokine/cytokine production (e.g., tumor necrosis 

factor-α, macrophage chemoattractant protein-1, interleukin-1β).
24-25

 This evidence 

notwithstanding, the physiological basis for the reduced inflammation to NO-releasing materials 

remains inconclusive. Therefore, research that seeks to elucidate the molecular and cellular 

mechanisms behind NO’s anti-inflammatory capacities represents an important and exciting 

route of future study.  
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As outlined in Chapter 1, the phenotypes of inflammatory cells (e.g., mast cells, 

macrophages) appear to be strong determinants of FBR severity. Studies by Avula et al.
26-28

 and 

Klueh et al.
29

 highlighted the critical roles of tissue mast cells during the acute inflammatory 

response (1–3 d) in orchestrating infiltration of the implant by neutrophils/macrophages and, 

ultimately, collagen capsule formation. Macrophage functional polarization has also been 

identified as a key parameter in the chronic inflammatory response (>5 d) to in vivo glucose 

sensors.
30-39

 For example, pro-inflammatory macrophages consume large amounts of glucose and 

oxygen at the sensor surface, contributing to erratic glucose sensor response.
38

 Products of 

macrophage phagocytic activity may also reduce the local pH
40

 and damage sensor coatings.
41

 

Based on the reduced inflammatory response to NO-releasing polymers (described in Chapter 5), 

NO may influence mast cell and macrophage activity during the FBR. This hypothesis is in 

agreement with previous studies that implicated NO as a mediator of inflammatory cell 

chemotaxis.
24-25

  

Future work should use in vitro and in vivo models to evaluate inflammatory cell 

phenotypes after treatment with exogenous NO. Novak et al. designed an in vitro platform to 

examine macrophage glucose consumption in a glucose sensor FBR model.
38

 The authors 

immobilized RAW 264.7 murine macrophages in an extracellular matrix gel surrounding 

electrochemical glucose biosensors. Macrophages in the gel were polarized toward a pro-

inflammatory phenotype (by exposure to lipopolysaccharide) to increase glucose metabolism, 

eliciting a concomitant decrease in glucose concentrations detected by the sensor. The authors 

also showed that anti-inflammatory macrophages (stimulated with genistein) only produced a 

slight decrease in the sensor signal due to less overall glucose consumption. Although the assay 

relies on glucose metabolism as an indirect indicator of macrophage phenotype, such an 
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approach may be a useful starting point for determining if NO alters macrophage polarization. 

Macrophages self-regulate pro-inflammatory activity (e.g., expression of major 

histocompatibility complex class II, phagocytic activity) via generation of NO,
42-44

 suggesting 

that glucose metabolism may also be affected. The proposed studies should be carried out 

similarly to those described by Novak et al.
38

 using the NO-releasing sensor that was developed 

in Chapter 4. Alternatively, non-NO-releasing glucose sensors may be used for these studies, 

instead exposing macrophages to NO donors (e.g., SNAP, N-diazeniumdiolate-modified 

spermine) prior to or during the assay. Treatment with free NO donors (rather than using the NO-

releasing glucose sensors) allows for NO concentrations and NO-release kinetics to be 

straightforwardly controlled and evaluated as parameters in relation to macrophage polarization. 

Additionally, experiments involving macrophages that are “pre-polarized” to pro-inflammatory 

or anti-inflammatory states (i.e., with interferon-γ/lipopolysaccharide or interleukin-10, 

respectively) should be carried out to determine if NO may induce phenotypic switching.  

 Although in vitro studies may reveal mechanisms through which NO exerts its anti-

inflammatory effects, these experiments are limited to single-cell cultures and do not accurately 

recapitulate the inherent complexities of the FBR (e.g., multiple infiltrating cell types, cellular 

communication mechanisms). As such, positive or negative results that are obtained in benchtop 

studies will need to be validated in an appropriate animal model (i.e., diabetic swine). Similar to 

the work described in Chapter 5, immunohistochemical staining may be used to identify key cell 

surface markers and cytokines (e.g., tumor necrosis factor-α, interferon-γ, macrophage 

chemoattractant protein-1, and interleukin-10) at NO-releasing subcutaneous implants, although 

quantification via this approach will not be possible. Future studies should utilize implanted 

microdialysis probes for cytokine quantitation. Microdialysis probes are percutaneous implants 
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with diameters of approximately 200–300 µm and thus elicit a similar FBR to needle-type 

glucose sensors. Moreover, microdialysis allows for direct recovery of cytokines in the probe 

perfusate solution for offline quantification (e.g., via enzyme-linked immunosorbent assay). 

Microdialysis has been used successfully for monitoring cytokine production during the acute 

(1–3 d) inflammatory response and would be a useful tool to study potential cytokine regulation 

by NO. Nichols et al.
45

 demonstrated the ability to release near constant NO fluxes (~162 pmol 

cm
-2

 s
-1

) from microdialysis probes by using NO-saturated buffer as the perfusate solution. A 

similar design could be employed for cytokine recovery experiments. Nitric oxide fluxes from 

the microdialysis probes could be tuned by altering the NO concentration in the perfusate 

solution, thereby permitting the study cytokine levels in relation to NO levels generated from the 

probes. A caveat to this approach, however, is that cytokine quantitation via microdialysis cannot 

be relied upon after ~3 d, as inflammation and collagen deposition may alter cytokine diffusion 

in the immediate vicinity of the probe. A reduced FBR at the NO-releasing probes would thus 

confound any potential differences in cytokine production. Nevertheless, the proposed study 

would aid in identifying key mechanisms behind NO’s anti-FBR capabilities.   

6.2.4. In vivo glucose sensor analytical performance evaluation in diabetic swine 

Although NO release reduced inflammation and improved angiogenesis in diabetic swine 

(Chapter 5), collagen deposition appeared to be unaffected. As such, it is unclear if the in vivo 

glucose sensor performance benefits associated with NO release will be preserved in a diabetic 

animal model. These studies should be carried out similarly to the research described in Chapter 

2, instead utilizing streptozotocin-treated pigs as the diabetic animal model. The optimized 

glucose sensor membranes developed in Chapter 4 will ultimately prove useful for carrying out 

this research. 
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A critical experimental parameter that must be carefully considered prior to in vivo 

sensor testing is the method for blood glucose administration. Bolus glucose administration (0.7 

g kg
-1

), although reproducible and effective for achieving severe hyperglycemia, can be overly 

demanding as the sensor is challenged greater than normal glucose excursion rates (typical 

values 0–2 mg dL
-1

 min
-1

).
46

 Although the in vitro sensor response time may be sufficient for 

tracking rapid changes in glucose concentrations, the literature suggests the existence of a 

physiological glucose lag arising from passive transport from the vascular to the sensor site.
40

 A 

similar sensor lag (~3–11 min) was determined for the sensor systems that were studied in 

Chapter 2. As such, rapid glucose administration risks inflated sensor error calculation and 

masking of potential beneficial effects of NO (Figure 6.2). Intraperitoneal glucose injections are 

routinely used to manipulate BG levels in smaller animals (i.e., rats and mice) to circumvent 

difficulties in intravenous administration. Although larger glucose doses must be administered 

(1.5 g kg
-1

) to achieve hyperglycemia, the slower rate of glucose absorption may better 

approximate normal, gradual BG fluctuations in diabetic patients, thereby increasing the 

relevance of sensor accuracy data at the cost of reproducibility. Another potential route to 

gradual glucose administration is to deliver dilute glucose solutions via constant rate infusion 

using an intravascular catheter. Regardless of the glucose delivery method, the glucose dose 

must be determined carefully so that adequate amounts of data are obtained in both the 

euglycemic and hyperglycemic regime for proper sensor evaluation. Excursions into the 

hypoglycemic BG range via insulin administration would also provide valuable sensor 

performance data.  

A limitation of the research presented in Chapter 2 is that the tissues surrounding the 

percutaneous sensors were not examined using standard tissue histology. The previous  
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Figure 6.2. Graph depicting paired reference glucose measurements (red, squares) 

and corresponding implanted CGM trace (black line) after IV glucose 

administration in a swine model. While the direct measurement of glucose using a 

handheld glucometer indicated an increase in BG, the sensor was unable to 

accurately track rapid fluctuations in BG. The BG maximum detected by the 

continuous sensor was thus both delayed in time and attenuated in magnitude. 



245 
 

investigations by Hetrick et al.,
1
 Nichols et al.,

2
 and this dissertation research all utilized 

subcutaneous implants not subject to the tethering forces associated with percutaneous sensors. 

As such, it is possible that the tissue biocompatibility benefits of NO in the diabetic swine model 

may be counteracted by shear interactions related to sensor micromotion. Future in vivo sensor 

assessments should perform tissue histology at discrete timepoints and consider trends in sensor 

performance alongside quantitative collagen deposition and inflammation data.  

Finally, the few quantitative sensor evaluations described to date are limited in duration 

(<10 d).
47-48

 By comparison, the NO-releasing materials that were evaluated in Chapter 5 

exhibited low grades of inflammation and collagen deposition even after 25 d, suggesting 

potential benefit to in vivo sensor performance at implant periods beyond 10 d. Accordingly, 

future research should extend in vivo sensor evaluation to similar durations. Sensor data should 

be analyzed with respect to failure rates (i.e., survival analysis), in addition to standard numerical 

accuracy metrics (i.e., mean absolute relative deviation).  

6.3. Conclusions 

The FBR is the primary obstacle to reliable subcutaneous glucose sensing. The research 

described in this dissertation carried the concept of the NO-releasing glucose sensor from a 

laboratory curiosity to a formidable potential CGM technology. Initial evidence of a reduced 

FBR associated with NO-releasing polymers was shown to translate to greater in vivo glucose 

sensor accuracy. Membranes with suitable NO-release properties for mitigating the FBR and 

minimal particle leaching were adapted to prepare functional glucose biosensors. However, it 

was unclear if the same optimal NO-release kinetics would maintain desirable FBR qualities 

(i.e., low inflammation and collagen deposition) in diabetic tissue. Deficient wound healing and 

delayed inflammation are known qualities of diabetic wounds that also manifest in the presence 
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of an implantable glucose sensor, ultimately coalescing in an unfavorable in vivo sensing 

environment. Nitric oxide-releasing polymer membranes proved capable of counteracting the 

exacerbated FBR associated with diabetes and thus hold great promise as materials for in vivo 

glucose sensing.  
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