
GRAPHICAL MODELS FOR HIGH DIMENSIONAL GENOMIC DATA

Min Jin Ha

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Biostatistics.

Chapel Hill
2013

Approved by:

Dr. Wei Sun
Dr. Joseph G. Ibrahim
Dr. Fred A. Wright
Dr. Michael G. Hudgens
Dr. William Valdar



c© 2013

Min Jin Ha

ALL RIGHTS RESERVED

ii



Abstract

MIN JIN HA: Graphical Models for High Dimensional Genomic Data
(Under the direction of Dr. Wei Sun)

Graphical models study the relations among a set of random variables. In a graph, vertices

represent variables and edges capture relations among the variables. We have developed three

statistical methods for graphical model construction using high dimensional genomic data.

We first focus on estimating a high-dimensional partial correlation matrix. It is estimated

by ridge penalty followed by hypothesis testing. The null distribution of the test statistics

derived from penalized partial correlation estimates has not been established. We address

this challenge by estimating the null distribution from the empirical distribution of the test

statistics of all the penalized partial correlation estimates. The performance of our method

is systematically evaluated in simulation and application studies.

Next, we consider estimating Directed Acyclic Graph (DAG) models for multivariate

Gaussian random variables. The skeleton of a DAG is an undirected graphical model, which is

constructed by removing the directions of all the edges in the DAG. Given observational data,

not all the directions of the edges of a DAG are identifiable; however the skeleton of the DAG

is identifiable. We propose a novel method named PenPC to estimate the skeleton of a high

dimensional DAG by a two-step approach. We first estimate an undirected graph by selecting

the non-zero entries of the partial correlation matrix, then remove false connections in this

undirected graph to obtain the skeleton. We systematically study the asymptotic property of

PenPC on high dimensional problems. Both simulations and real data analysis suggest that

our method have substantially higher sensitivity and specificity to estimate network skeleton

than existing methods.
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To orient the edges in the skeleton of a DAG, we exploit interventional data on an addi-

tional set of variables. The variables are direct causes of some vertices in the DAG and enable

estimating directions of the edges in the skeleton. More specifically, given the skeleton of a

DAG, we calculate the posterior probabilities of edge directions using the additional set of

variables. We evaluate our method by simulations and an application where variables modeled

by a DAG are gene expression and the additional set variables are DNA polymorphisms.
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Chapter 1

Introduction

The relation of a set of random variables can be studied by graphical models, where

the vertices represent the variables and edges capture the relations among the variables

[Lauritzen, 1996]. A particular class of graphs, the directed acyclic graphs (DAGs)

(also known as Bayesian Network) have been well studied for its importance in causal

inference [Pearl, 2009]. In a DAG, all the edges are directed, and the direction of an

edge implies a direct causal relation. There is no loop in a DAG, which is necessary

to study causal relation [Spirtes et al., 2000]. Many methods have been developed

to estimate DAGs from observational or interventional data, however, it remains a

challenging problem in high dimensional setting where the number of variables can

be larger or much larger than the sample size. The problem of DAG estimation in

high-dimensional setting is the main focus of this dissertation.

Given observational data, a DAG is not identifiable, because conditional dependen-

cies derived from observational data only determine the skeleton and v-structures of the

graph [Pearl, 2009]. All the DAGs with the same skeleton and v-structures correspond

to the same probability distribution and they form an equivalence class, which can

be described by a completed partially directed acyclic graph (CPDAG) [Chickering,

2002]. Identification of v-structures after skeleton estimation only requires application

of a set of deterministic rules. Therefore the tasks of estimating a CPDAG reduced



to estimating the skeleton of a DAG. Given a CPDAG, we can use the intervention

calculus method developed by Maathuis et al. [2009] to infer causal effects.

We first focus on estimating partial correlation matrix which describes correlations

between variables given all the remaining variables. Under multivariate Gaussian as-

sumption, zero partial correlation implies independence of two variables given all the

other variables. A partial correlation graph can be constructed by connecting variables

with non-zero partial correlations. Suppose a DAG can model the relation of a set of

variables which follow a multivariate Gaussian distribution. Then the partial corre-

lation graph of these variables is closely related to the underlying DAG because the

former can be considered as a moral graph, which is obtained by connecting two par-

ents sharing a common child in the DAG and replacing all directed edges by undirected

edges. Under the multivariate Gaussian assumption, we propose a method to estimate

the skeleton of a DAG by estimating the corresponding sparse partial correlation matrix

in the first step and applying a series of partial correlation testings in the second step.

Finally, we consider to use external data of “surrogate experiments” to orient the DAG

skeleton Bareinboim and Pearl [2012]. In such surrogate experiments, interventions are

applied on an additional set of variables that are directed causes of the variables of

interest.

The remaining part of the dissertation is organized as follows. Chapter 2 includes

some definitions and notations for DAGs. In Chapter 3, we propose an estimation

method of sparse partial correlation matrix using ridge regression followed by thresh-

olding by hypothesis testing. In Chapter 4, we estimate the skeletons of high dimen-

sional DAGs by a two-step algorithm called PenPC. Finally in Chapter 5, we develop a

method to orient the edges in a DAG skeleton using interventional data in surrogate

experiments.
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Chapter 2

Preliminaries on Directed Acyclic Graphs (DAGs)

2.1 Assumptions

A directed graph denoted by G is a pair (V,E), where V = {1, . . . p} is a finite set

of vertices and E, the set of edges, is a subset of (V ×V )\{(a, a)|a ∈ V }. The edge set

E includes ordered pairs of distinct vertices and thus E includes no loops. A path of

length n from i to j is a sequence i = i0 → i1 → · · · → in = j of distinct vertices such

that (il−1, il) ∈ E for l = 1, ..., n. Given this path, il−1 is a parent of il, il is a child of

il−1, i0, i1, ..., il−1 are ancestors of il, and il+1, ..., in are descendants of il. The graph G

is called directed acyclic graph (DAG) if it contains no directed cyclic paths. Thus in

a DAG, there is no path initiated from vertex i reaches i itself. The adjacency set of

vertices of j, denoted by adj(j,G), are the vertices that are connected to j by an edge

of any directionality. A chain of length n from i to j is a sequence i = i0, i1, · · · , in = j

of distinct vertices such that il−1 → il or il → il−1 for l = 1, ..., n.

Consider a DAG G whose vertices correspond to random variables X1, . . . , Xp and

assume that

X = (X1, . . . , Xp)
T ∈ Rp ∼ PX with density fX . (2.1)

We say that the distribution PX is Markov to G if the joint density fX satisfies the



recursive factorization

f(x1, . . . , xp) =

p∏
i=1

f(xi|xpai), (2.2)

where pai is defined by the set of parents of a vertex i ∈ V in G. The factorization

naturally implies acyclic restriction of the graph structure. Equivalently PX is Markov

to G if every variable is conditionally independent of its non-descendants given its

parents.

The faithfulness assumption requires stronger relationship between distribution PX

and DAG G than the Markov property.

Definition 1. Let PX be Markov to G. < G, PX > satisfies the faithfulness condtiontion

if and only if every conditional independence relation true in PX is entailed by the

Markov property applied to G [Spirtes et al., 2000].

This means that if a distribution PX is faithful to DAG G, all conditional indepen-

dences can be read off from the DAG G using d-separation in the following definition

2.

Definition 2. (d-separation). A vertex set S block a chain p if either (i) p contains

at least one arrow-emitting vertex that is in S, or (ii) p contains at least one collision

vertex that is outside S and no descendant of the collision vertex belongs to S. If S

blocks all the chains from X to Y , it is said to “d-separate X and Y ” [Pearl, 2009].

The faithfulness assumption allows no extra conditional independence relations in

the distribution PX other than those which can be read from the DAG G using the d-

separation. The more detailed description can be found in the literature [Robins et al.,

2003]. Denote PX(G) as all distributions that are Markov to G. If G represents the data

generating machanism for PX , then PX is Markov to G, in other words PX ∈ PX(G).

Given PX ∈ PX(G), let T(PX) represent all independence relationships for variable X

under PX . We say that PX is faithful to G if T(PX) = ∩Q∈PX(G)T(Q).
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Not all the distributions can be faithfully represented by a DAG. If we assume that

X = (X1, ..., Xp)
T ∈ Rp follow multivariate normal distribution, the non-faithful ones

form a Lebesgue null set [Meek, 1995b] among all the multivariate normal distributions

associated with G.

2.2 Partial correlation graph as a moral graph of DAG

Consider an undirected graph C = (V, F ), where V = {1, . . . p} is a finite set

of vertices corresponding to random variables X = (X1, . . . Xp)
T with an unknown

covariance matrix Σ and F is a subset of (V ×V ) \ {(a, a)|a ∈ V } including unordered

pairs of distinct vertices. The distribution PX of X is said to factorize according to the

undirected graph C if the joint density fX satisfies

fX(x1, . . . , xp) =
∏
C∈C

fC(xC), (2.3)

where C is the set of cliques in C and fC is the joint density of variables XC = {Xi|i ∈

C ⊆ V } [Lauritzen, 1996]. The undirected graph which satisfies the factorization

property has Markov property: for any pair of vertices (i, j), (i, j) ∈ F if and only

if Xi and Xj are conditionally independent given all the remaining variables {Xk|k ∈

V \ {i, j}}. The graph satisfying this Markov property is called independence graph.

The partial correlation graph under the Gaussian assumption is independence graph

and is often called Gaussian graphical model (GGM). The covariance selection problem

Dempster [1972] is equivalent to the estimation of C because conditional independence

relations implied by the factorization on C can be identified by the zero structure of

the inverse covariance matrix denoted by Ω under the normality assumption.

For a DAG G = (V,E) we can define its moral graph for the same set of vertices

V as an undirected graph constructed by connecting parents with a common child
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and subsequently deleting directions on all edges [Lauritzen, 1996]. Assuming the

factorizations both on G and C, it is easily seen that the moral graph of G is C by

lemma 3.21 of [Lauritzen, 1996].

2.3 Identifiability of DAG

A DAG G is not identifiable from the distribution PX which is assumed to be Markov

to G because several different DAG’s may determine the same PX . In other words,

because several different DAGs may determine the same set of conditional independence

restrictions among a given set of random variables, the collection of all possible DAGs

for these variables naturally coalesces into one or more classes of Markov equivalent

DAGs, where all DAGs within a Markov class determine the same statistical model (the

same factorization) [Andersson et al., 1997]. The following theorem well characterizes

the Markov equivalence class.

Theorem 1. Two DAG’s are Markov equivalent if and only if they have the same

skeleton and the same v-structure [Andersson et al., 1997].

The skeleton of a DAG G is obtained by replacing all directed edges to undirected

edges: the skeleton is denoted by Gu = (V,Eu) where (i, j) ∈ Eu ⇔ (i, j) ∈ E or (j, i) ∈

E. The v-structure is an ordered triple of vertices (i, j, k) such that G contains the

directed edges (i, k) ∈ E and (j, k) ∈ E and i and j are not adjacent in G: in this

v-structure, the co-parents i and j share a common child k which is called a collision

vertex. The distribution PX is faithful to G if and only if (i) for any vertex pair (i, j)

in V , (i, j) ∈ Eu if and only if i and j are dependent conditional on every subset in

V \ {i, j} and (ii) in a v-structure i → k ← j, i and j are marginally independent or

conditionally independent given the parents of i and j, but i and j are dependent with

each other given every set that contain k (a collision vertex) or its descendants but not

i or j.
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A partially directed acyclic graph (PDAG) is a graph that contains both directed

and undirected edges and no directed cycle. The Markov equivalence class correspond-

ing to a DAG can be represented by a PDAG [Chickering, 2002]. Specifically, from

Theorem 1, a PDAG representing a Markov equivalence class is constructed by replac-

ing the undirected edges of the skeleton with directed edges for every edge participating

v-structures. Then the undirected edges of the PDAG can be maximally oriented while

keeping the v-structures and maintaining acyclic constraints. It is called completed

PDAG (CPDAG). The CPDAG corresponding to an equivalence class is the PDAG

consisting of directed edges which exist in every DAGs belonging to the equivalence

class and undirected edges for reversible edges in the equivalence class.
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Chapter 3

Partial Correlation Matrix Estimation Using Ridge Penalty Followed by
Hypothesis Testing

3.1 Introduction

The expression of multiple genes can be studied through a network perspective,

where the set of genes of interest are vertices and the relations among the genes are

undirected/directed edges. The gene coexpression network analysis is a popular ap-

proach to dissect gene expression regulation patterns and to detect functionally related

genes [Stuart et al., 2003; de Jong et al., 2012]. In this chapter we study the (undi-

rected) co-expression network of a group of genes constructed through their partial

correlation matrix, where the partial correlation of two genes is a measure of the linear

relationship of these two genes’ expression conditioning on the expression of all the

other genes.

We consider a p-dimensional random vector (i.e., the expression of p genes) X =

(X1, ..., Xp)
T ∈ Rp with an unknown covariance matrix Σ. Assuming that the co-

variance matrix Σ is positive definite, let Ω = [Ωab]p×p = Σ−1 be the inverse of the

covariance matrix. Ω is also called concentration matrix or precision matrix. The par-

tial correlations can be obtained by the off diagonal elements of the negative definite

matrix

R = [ρab]p×p = −scale(Ω), (3.1)



where the scale is an operator defined for a square matrix. Let diag(A) be a diagonal

matrix constructed by the diagonal elements of A, then

scale(A) = diag(A)−1/2Adiag(A)−1/2.

The derivation of equation (3.1) is presented in the Appendix I. The zero structure of

the partial correlation matrix of p random variables can be represented by an undirected

graph

G = (Γ,E),

where Γ = {1, · · · , p} is the set of vertices and E is a set of edges in Γ × Γ such

that any edge between vertices a and b belongs to E if and only if ρab 6= 0, i.e, the

two random variables Xa and Xb are conditionally correlated given all the remaining

variables XΓ\{a,b} = {Xk : k ∈ Γ \ {a, b}}. We refer to such an undirected graph G as a

partial correlation graph. Under multivariate Gaussian distribution assumption for X,

the zero off-diagonal entries of Ω or R occur if and only if the corresponding variables

are conditionally independent given the remaining variables.

Although many methods have been developed for partial correlation matrix esti-

mation in high dimensional problems where p > n, we find that a simple penalized

estimation using ridge penalty has favorable error properties. The advantage of this

ridge penalization approach has not been appreciated in the existing literature, partly

because it does not provide sparse estimates, i.e., none of the partial correlation is es-

timated exactly as 0. We propose a novel approach to threshold the ridge estimates to

decide which partial correlation estimates are not 0’s by hypothesis testing. The null

distribution of our test statistics is estimated from the observed test statistics to pro-

vide appropriate control of type I error. Finally we re-estimate the partial correlation

coefficients on the none-zero entries of the partial correlation matrix. Thresholding
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ridge estimates is desirable because it leads to parsimonious and more interpretable

partial correlation matrix estimate. Such thresholding often further reduces estimation

error, and provides a logical connection between estimation and testing.

Next we briefly review the existing works for estimating concentration matrix or

partial correlation matrix and related statistical inference. Assume X = (X1, ..., Xp)
T

follows multivariate Gaussian distribution, denoted by N(µ,Σ). Suppose there are n

independent samples of X. Let X be the p×n centered data matrix. Assuming µ = 0,

the log-likelihood of concentration matrix Ω is proportional to

l(Ω) = log |Ω| − tr(SΩ), (3.2)

where tr(·) is trace of a square matrix and S = XXT/n is the sample covariance

matrix. When n ≥ p, S is positive definite with probability 1 and S−1 is the maximum

likelihood estimate (MLE) of Ω [Lauritzen, 1996]. However, this approach fails when

p > n, and may perform poorly unless n is much larger than p. Therefore MLE with

certain constraints or penalized MLE are often used for high dimensional problems

when p is lager or much larger than n. Examples include covariance selection from

positive definite matrices [Dempster, 1972] or iterative partial maximization based on

deviance tests [Speed and Kiiveri, 1986]. More general linear restrictions on edges are

enabled by colored graph models [Højsgaard and Lauritzen, 2008]. Recently, many

penalized MLE of Ω have been proposed for high dimensional problems [Yuan and Lin,

2007; Rothman et al., 2008; Banerjee et al., 2008; Friedman et al., 2008; Fan et al.,

2009]. One of the most widely used methods is the graphic Lasso [Friedman et al.,

2008], which maximizes the following penalized log likelihood:

l(Ω) = log |Ω| − tr(SΩ)− κ
∑
a,b

|Ωab|, (3.3)
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where κ is a tuning parameter.

With a focus on determining the partial correlation graph, rather than precise es-

timation of the partial correlation coefficients, Meinshausen and Bühlmann [2006] pro-

posed a regression-based approach called neighborhood selection. The neighborhood for

each vertex was estimated by penalized regression of the corresponding variable versus

the remaining variables. Banerjee et al. [2008]; Friedman et al. [2008] showed that

estimating the penalized MLE (with L1 penalty) of Ω could be viewed as p-coupled

iterative versions of the p separate neighborhood selections. More recent methodology

developments related with neighborhood selection include Yuan [2010] and Zhou et al.

[2011].

Statistical inference of partial correlation estimates is another topic related with

our method development. Given a partial correlation estimate, denoted by ρ̂, one may

test H0 : ρ = 0 against HA : ρ 6= 0 using a test statistic constructed by Fisher’s

Z-transformation: ψ(ρ̂) = 0.5 log {(1 + ρ̂) / (1− ρ̂)}. Specifically, one may reject the

null hypothesis at level α if (n − p − 1)1/2|ψ(ρ̂)| > Φ−1(1 − α/2) for standard normal

c.d.f. Φ [Anderson, 2003]. However, this testing procedure assumes the sample size n

is substantially greater than p. For high dimensional problems with p > n, Schäfer and

Strimmer [2005] proposed to estimate partial correlation matrix using a combination

of Bootstrap aggregation and pseudoinverse. Then they made inference by assuming

their partial correlation estimates across all variables followed a mixture of null and

alternative distributions where the null was classical asymptotic distribution of partial

correlation [Hotelling, 1953] with unknown degree of freedom and the alternative was

uniform (-1,1). Magwene et al. [2004] and Wille et al. [2004] proposed to use low-order

partial correlations to avoid singularity problem when p > n. Subsequently, Wille

and Bühlmann [2006] discussed more formal statements on Gaussian graphical model

inference using low-order partial correlations. Castelo and Roverato [2006] generalized
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the 0-1 partial correlation graph to an arbitrary q ≤ p − 2 order partial correlation

graph.

The remaining parts of the chapter are organized as follows. We present our method

in Section 3.2, demonstrate the effectiveness of our method by simulations and real data

analysis in Section 3.3, and conclude this chapter by some discussions in Section 3.4.

3.2 Method

3.2.1 Estimation of partial correlation matrix using ridge penalty

We assume the p × n data matrix X has been centered so that S = XXT/n is

the sample covariance matrix. Then a straightforward estimate of (the off-diagonal

elements of) a partial correlation matrix can be obtained from

R̂ = −scale(S−1).

However, when n < p, S is not invertible. To solve the singularity problem of inverting

a sample covariance matrix, we add a positive constant to the diagonal elements of the

sample covariance matrix:

R̂(λ) = −scale
(
(S + λIp)

−1
)
, (3.4)

where λ ≥ 0 and Ip is a p×p identity matrix. We call S+(λ) = (S+λIp)
−1 as the ridge

inverse in the analogy to ridge regression [Hoerl and Kennard, 1970]. The modified

sample covariance matrix S + λIp guarantees full rank for any λ > 0, and has been

used as an initial covariance matrix estimate in the coordinate descent algorithms in

Banerjee et al. [2008]; Friedman et al. [2008].

Next we show that as λ varies from 0 to ∞, R̂(λ) varies from a scaled generalized
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inverse to an identity matrix. Let X/
√
n = UDVT be a singular value decomposition

with rank(X) = k ≤ min(n, p), where U and V are, respectively p × p and n × n

orthogonal matrices, D is p × n diagonal matrix with its first k nonzero diagonal

elements d1, . . . , dk and all other elements being zero. Since S+(λ) = U(D+λIp)
−1UT,

it is obvious that

scale
(
S+(λ)

)
→ scale(S−) as λ→ 0, (3.5)

where S− is Moore-Penrose generalized (MPG) inverse of S if k < p [Schott, 2005]. By

the invariance of the scale operator under scalar product,

scale
(
S+(λ)

)
= scale

(
λS+(λ)

)
→ Ip as λ→∞. (3.6)

Since the estimates of regression coefficients using MPG inverse is minimum L2 solution

(proposition 1 of Lv and Fan [2009]), S+(λ) goes to k rank ridge inverse when λ goes to

0 by (3.5). From (3.6) the partial correlation matrix shrinks toward the identity matrix

as λ goes to infinity.

S+(λ) can also be understood as the inverse of a shrinkage estimate of the covariance

matrix [Schäfer et al., 2005] since we can rewrite S+(λ) as

cS+(λ) = ((1− λ′)S + λ′Ip)
−1
, (3.7)

where λ′ = λ/(1 + λ) and c = (1 + λ).

We choose the tuning parameter λ in the ridge inverse by its equivalence relationship

with p separate ridge regressions. Given λ, for any a ∈ Γ, the ridge coefficients are

β̂a(λ) = arg min
β∈Rp−1

1

n
(Xa −X−aβ)T(Xa −X−aβ) + λβTβ,

where Xa is an n× 1 vector for n measurements of variable Xa, X−a is an n× (p− 1)
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matrix for n measurements of the remaining p− 1 variables X−a. Given the following

decomposition of the sample covariance matrix S with respect to variables (Xa, X−a),

S =

 Sa,a Sa,−a

S−a,a S−a,−a

 ,

β̂a(λ) has a closed-form solution

β̂a(λ) = (S−a,−a + λIp−1)−1S−a,a.

Now we show that estimating the off-diagonal elements of R̂(λ) is the same as estimat-

ing regression coefficients using p separate ridge regressions. Let

W = S+(λ) =

Sa,a + λ Sa,−a

S−a,a S−a,−a + λIp−1


−1

=

Wa,a Wa,−a

W−a,a W−a,−a

 .

From the inverse formula for block matrices,

W−a,a = −Wa,a(S−a,−a + λIp−1)−1S−a,a = −Wa,aβ̂
a(λ).

Therefore the estimation of partial correlation matrix is equivalent to estimating the

regression coefficients p separate ridge regressions. To choose the tuning parameter λ,

we minimize 10-fold cross validation estimates of the total prediction errors of the p

ridge regressions.

3.2.2 Thresholding

We propose a hypothesis testing approach to threshold the off-diagonal elements

of the ridge estimates R̂(λ) = [ρ̂λab]p×p. We use Fisher’s Z-transformation of partial
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correlations as our test statistics, denoted by {ψ(ρ̂λab) : a ∈ Γ, b ∈ Γ, and a 6= b}. By

taking advantage of the sparsity of the high dimensional partial correlation matrix,

we estimate the null distribution of our test statistics from data using Efron’s central

matching method. Although our testing approach can apply to a variety of partial

correlation estimates, we develop it here for the ridge inverse estimate.

Following Efron [2004], we assume the observed test statistics follow a mixture

distribution

f(ψ) = (1− η)f0(ψ) + ηfa(ψ), (3.8)

where the null distribution f0(ψ) is a normal distribution N(µ0, σ
2
0), the alternative

distribution fa(ψ) is left un-specified, and η is the proportion of the observations arising

from the non-null distribution. We also assume that a large proportion of the observed

ψ values are from the null distribution, i.e. η ≈ 0. This assumption reflects the belief

that the partial correlation matrix is sparse. Then the central part of the marginal

distribution of ψ is mostly occupied by the observations from the null distribution and

only the tail areas of the marginal distribution are affected by the small proportion

of non-null observations. Therefore using Efron’s central matching method, we can

estimate the null distribution (i.e., estimate µ0 and σ0) by matching the marginal

distribution and the null distribution at the center part of the distributions. Specifically,

assuming f(ψ) = f0(ψ) around ψ = 0 gives

log f(ψ) = −1

2

(ψ − µ0

σ0

)2

+ C (3.9)

for a constant C.

We estimate the density f(ψ) using polynomial poisson regression. The range of

the p(p − 1)/2 observed ψ values is partitioned into K equal intervals with interval

k having mid point xk and sk observed ψ values. sk’s (k=1,...,K) are assumed to be
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independently distributed following Poisson distributions with mean νk’s. We fit a q

degree polynomial Poisson regression on νk,

log(νk) = log
(
f(xk)/c

)
=

q∑
j=1

θj(xk)
j, (3.10)

for k = 1, ..., K and a normalizing constant c making the marginal density f(ψ) inte-

grated to 1. The estimates of {θj : j = 1, . . . , q} are used to estimate log
(
f̂(ψ)/c

)
=∑q

j=1 θ̂jψ
j. Then using equation (3.9), we can obtain the estimates of µ0 and σ0:

µ̂0 = arg max
{
f̂(ψ)

}
, σ̂0 =

[
− d2

dψ2
log f̂(ψ)

]− 1
2

ψ=µ̂0

. (3.11)

The degree of polynomial regression, q, is a nuisance parameter. Based on the sparsity

assumption that most p-values arise from the null, we choose the q so that the p-values

are most uniformly distributed. The empirical distribution function of the p-values,

{π(q)
ab |a 6= b ∈ Γ} given q, is

Fq(π) =
2

p(p− 1)

∑
a,b∈Γ,a6=b

I(π
(q)
ab ≤ π). (3.12)

We suggest to estimate q by

q̂ = arg min
q

[
sup

0<π<1
|Fq(π)− F0(π)|

]
, (3.13)

where F0(π) is uniform distribution between 0 and 1, and Dq = sup0<π<1 |Fq(π)−F0(π)|

is a distance measure used in Kolmogorov-Smirnov statistic. Figure 3.1 displays the

average and one standard deviation of Dq values over 100 simulation data sets for

p = 500, n = 30 and η = 0 or η = 0.0003, which corresponds to 38 non-zero partial

correlations. Adding 38 nonzero partial correlations to the null needs 3 or 4 higher
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polynomial order on average to estimate the null distribution.

3.2.3 Re-estimation of partial correlation coefficients

Given the zero structure estimated in the previous step, we re-estimate the partial

correlation coefficients at the non-zero entries of the partial correlation matrix. Suppose

that the covariance matrix Σ and the concentration matrix Ω are partitioned according

to random variables (Xa, X−a) and the blocks are denoted by Σa,a, Σ−a,a, Σa,−a, Σ−a,−a

and Ωa,a, Ω−a,a, Ωa,−a, Ω−a,−a. Consider the best linear predictor of Xa by XT
−aβ

a for

any a ∈ Γ. Let εa = Xa − XT
−aβ

a. It is easy to show that βa = Σ−1
−a,−aΣ−a,a and

Var(Xa − XT
−aβ

a) = Var(εa) = Σa,a − Σa,−aΣ
−1
−a,−aΣ−a,a. From inverse formula for

block matrix and Ω = Σ−1,

Ωa,a = (Var(εa))
−1, Ω−a,a = −(Var(εa))

−1βa. (3.14)

From Ê(λ, α) estimated in the thresholding step, we know all the variables adjacent to

a ∈ Γ, denoted by n̂ea. Based on the sparsity assumption, we assume |n̂ea| < n, then

we can have the following refined estimates of the concentration matrix:

Ω̃aa = (n− |n̂ea|)/‖Xa −X ˆneaβ̂
a,n̂ea‖2

2, Ω̃−aa = −Ω̃aaβ̂
a,n̂ea , (3.15)

where β̂a,n̂ea =
(
Xn̂eaX

T
n̂ea

)−
Xn̂eaXa, Xn̂ea is |n̂ea| × n submatrix of X corresponding

to n̂ea, and (·)− is the k = min(n, | ˆnea|) rank ridge inverse using MPG inverse. Since

this solution is not symmetric in general, we set the final estimates of the off-diagonal

elements of Ω as

Ω̂a,b = Ω̂b,a = sign(β̂a,n̂eab )

√
Ω̃a,bΩ̃b,a for a 6= b, (3.16)
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and the partial correlation coefficients estimates from −scale(Ω̂).

3.3 Results

3.3.1 Simulation I

We first use a simple simulation to demonstrate that the p-values calculated using

central matching method follow the expected uniform distribution under null, while

the p-values calculated using asymptotic distribution can lead to inflated type I error.

We simulated data from multivariate Gaussian distribution N(0, Ip×p) with p = 100

and n = 1000 or 110. All pairwise partial correlations were calculated by inverting

the sample correlation matrix, and then the test statistics were calculated by Fisher’s

Z transformation of the partial correlations. The p-values of the test statistics were

calculated using theoretical null distribution N(0, 1/n− p− 1), and the empirical null

distribution estimated by central matching method. As shown in the qq-plots of Fig-

ure 3.2, when p = 100 and n = 1000, p-values calculated using either the theoretical null

distribution or the empirical null distribution followed the expected uniform distribu-

tion. However when the sample size was decreased to n = 110, the p-values calculated

from the empirical null distribution were still uniformly distributed but the p-values

calculated from the theoretical null distribution were severely inflated.

3.3.2 Simulation II

We consider random networks where both the network structure and the partial

correlation coefficients are random. The only restriction is that the partial correlation

matrix is diagonally dominant, so that R is a strictly negative definite matrix. The

simulation datasets were generated following similar approach of Schäfer and Strimmer

[2005]. We simulated a p×n data matrix X composed of n independent random samples

from p dimensional multivariate Gaussian distribution Np(0,Σ), where Σ is determined
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by a simulated concentration matrix Ω. We initialized Ω by a p × p matrix with all

elements being 0’s. Given η, the proportion of non-null edges among all the p(p− 1)/2

edges, we randomly selected 100η% of the off-diagonal elements of Ω and filled in values

from uniform distribution on [-1,1]. To ensure that Ω is a positive definite matrix, the

diagonal elements of Ω were filled by column-wise sums of absolute values plus a small

constant. Finally Σ was calculated by scale(Ω−1).

Let |E| be the number of edges in set E. Our simulation settings are

1. p = 50, n = 100, and |E| = 45, 55, 65, 75

2. p = 200, n = 100, and |E| = 160, 200, 220, 240.

We evaluated the accuracy of partial correlation graph using ROC curve, and the

accuracy of partial correlation coefficient estimates using sum squared error (SSE).

Given the set of vertices Γ = {1, 2, ..., p}, The SSE was calculated as

L(R, R̂) =
∑
a6=b∈Γ

(ρ̂ab − ρab)2, (3.17)

where R̂ = [ρ̂ab]p×p was the estimates of R. For either the ROC curve of the SSE

value, the mean values calculated from 100 replicates of each simulation setting were

reported.

We compared our method with one of the most widely used method for partial

correlation matrix estimation, the Graphical Lasso (Glasso) [Friedman et al., 2008].

For our method, we used 10-fold cross-validation to choose the value of ridge parameter

λ. After estimating the edge set denoted by Ê(λ, α) using ridge parameter λ and the

p-value thresholding level α, we re-estimated the nonzero partial correlations under

the sparsity implied by Ê(λ, α). The results of all simulation settings are displayed in

Figure 3.3-Figure 3.10. For example, Figure 3.3 and Figure 3.7 show the ROC curves

in panel (a) and the SSE curves in panel (b) across various threshold values α for our
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method and across different values of the tuning parameter κ of the Glasso. In the

ROC curves for both high and low dimension cases, our method has uniformly better

sensitivity and and specificity than the Glasso in estimating the network structure. The

SSE curves show that our method attains lower SSE value than the Glasso around the

true sparsity level.

3.3.3 Application

We applied our method to estimate the partial correlation graph of the expres-

sion of 6178 genes from yeast cell cycle data [Spellman et al., 1998]. The gene ex-

pression data were downloaded from http://genome-www.stanford.edu/cellcycle/

data/rawdata/. After removing the samples with more than 20% missing values, 75

samples remained for further analysis. We imputed the remaining missing values of

the expression data using nearest neighbor averaging. Then the expression data of

each sample were normalized by quantile normalization. In this analysis we did not

account for the time-dependent nature of the data and treated the expression of each

gene across 75 samples as independent observations.

Denote the observed gene expression data as a matrix X of dimension 6178 × 75.

Each gene is a variable, and thus Γ is {1, ..., 6178}. We first grouped the 6178 genes into

h clusters. Let Ci be the genes belonging to the i-th cluster, then
∑h

i=1 |Ci| = 6178.

We separately constructed the partial correlation graph within each cluster. The graph

of ith cluster is denoted by GCi
= (Ci, ECi

) for i = 1, . . . , h. We assumed the genes

from different clusters were independent, so that the edge set E of the whole graph was

estimated by Ê =
⋃h
i=1 ÊCi

. Specifically, we clustered the 6178 genes using hierarchical

clustering with Ward’s minimum variance method and the distance between two genes

a and b was defined as 1− |ρ̂ab|∅| where ρ̂ab|∅ denoted marginal Pearson correlation. We

chose the number of clusters to be 25 based on the gap statistic [Tibshirani et al., 2001].
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Cluster sizes varied from 32 to 1370, with 25 percentile, median, and 75 percentile being

139, 194, and 254, respectively. Among all the 19,080,753 gene pairs of the 6178 genes,

1,556,154 belonged to the same cluster, and hence could be connected based on the

partial correlation graph estimates.

We compared the performance of our method with the Glasso [Friedman et al.,

2008]. We chose the tuning parameter κ of Glasso based on the extended Bayesian

information criterion (BIC) [Foygel and Drton, 2010]:

BICγ(κ) = − log |Ω̂(κ)|+ tr(Ω̂(κ)S) +
1

n
|Ê(κ)| log n+

4

n
|Ê(κ)|γ log p, (3.18)

where Ω̂(κ) was the estimate of the inverse covariance matrix using Glasso with tuning

parameter κ, Ê(κ) was the edge set obtained from Ω̂(κ), and γ ∈ [0, 1] is a tuning

parameter of the extended BIC. If γ = 0, the classical BIC used in Yuan and Lin

[2007] was recovered. Given a fixed γ value, we applied Glasso with tuning parameter

selected by the extended BIC (3.18) to construct the partial correlation graphs for all

25 clusters. An exception is that for two clusters with low dimension such that p < n/2,

we always used the classical BIC by setting γ = 0. Different choices of γ led to the

different model selection results.

The estimates of partial correlation graphs were evaluated by comparing the edge

set Ê with yeast protein-protein interaction database at http://thebiogrid.org/

download.php. Table 3.1 displays the number of directed edges, the number of undi-

rected edges (after omitting the directions), and the number of vertices in each of 20

protein-protein interaction dataset. We considered two genes connected if they belonged

to the same cluster and the corresponding proteins had interaction according to at least

one of the protein-protein interaction datasets. Among 1,556,154 gene pairs belonging

to the same cluster, 9,382 were connected and 1,546,772 were not connected. Given this

imperfect, but biologically meaningful definition of true/false connections, we evaluated
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our method and Glasso by ROC curves. The ROC curve of our method was generated

across different p-value cutoffs α and the ROC curve of the Glasso was generated across

different γ values in the extended BIC. Our method had uniformly higher sensitivity

and specificity than the Glasso (Figure 3.11) to predict protein-protein interactions in

the database.

3.4 Discussion

We have described a new framework for estimation and statistical inference of par-

tial correlation matrix. Both simulation and real data analysis have demonstrated the

effectiveness of our method. For real data analysis where p is much larger than n,

we cluster the genes and then estimate partial correlation matrix within each cluster.

This is based on an reasonable assumption that the partial correlation matrix of gene

expression has a block diagonal structure. We used the hierarchical clustering to group

genes. There are many other clustering method available Monti et al. [2003]; Zhang

et al. [2005], though a careful study of which clustering method can better identify the

block diagonal structure is beyond the scope of this chapter. Our method does not

require multivariate Gaussian distribution assumption. However, without this assump-

tion, partial correlation being zero may not imply the two variables are independent

with each other.
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3.5 Tables and figures

Table 3.1: Summary of the protein-protein interaction database
ID Experiment system (type) no. of directed edges no. of undirected edges no. of vertices
1 Affinity Capture-MS (physical) 72767 42538 4613
2 Affinity Capture-Western (physical) 13105 7795 2727
3 Dosage Rescue (genetic) 4812 4022 2161
4 Reconstituted Complex (physical) 5110 3946 1988
5 Synthetic Lethality (genetic) 13870 10965 2915
6 Two-hybrid (physical) 13986 10827 3392
7 Biochemical Activity (physical) 5703 5220 1946
8 Co-crystal Structure (physical) 387 337 421
9 FRET (physical) 142 119 117
10 Protein-peptide (physical) 673 643 353
11 Co-localization (physical) 527 484 441
12 Affinity Capture-RNA (physical) 5895 5888 3702
13 Protein-RNA (physical) 408 399 377
14 PCA (physical) 5117 4845 1663
15 Co-purification (physical) 1675 1309 933
16 Co-fractionation (physical) 777 725 663
17 Dosage Lethality (genetic) 971 945 786
18 Phenotypic Enhancement (genetic) 6449 4803 2153
19 Phenotypic Suppression (genetic) 5287 3965 1729
20 Synthetic Haploinsufficiency (genetic) 262 262 262
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Figure 3.1: The degree of polynomials q versus the average Kolmogorov-Smirnov dis-
tance Dq with one standard deviation from 100 replications for (p = 500, n = 30, η = 0)
and (p = 500, n = 30, η = 0.0003) using ridge inverse with λ = 1e−08.
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Figure 3.2: QQ-plots for p-values calculated using theoretical null distribution (black)
or null distribution estimated by central matching method (green) against the expected
uniform distribution on [0,1]. (a) p = 100 and n = 1000, (b) p = 100 and n = 110. The
dotted lines are the 90% confidence limits of the expected values.
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Figure 3.3: The ROC curve and SSE curve for n = 100, p = 50, and |E| = 45. (a)
ROC curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE).
The horizontal black line is log(SSE) values when a p × p identity matrix is used and
the vertical black line indicates the sparsity of the true network.
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Figure 3.4: ROC curve and SSE curve for n = 100, p = 50, and |E| = 55. (a) ROC
curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE). The
horizontal black line is log(SSE) values when a p × p identity matrix is used and the
vertical black line indicates the sparsity of the true network.
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Figure 3.5: ROC curve and SSE curve for n = 100, p = 50, and |E| = 65. (a) ROC
curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE). The
horizontal black line is log(SSE) values when a p × p identity matrix is used and the
vertical black line indicates the sparsity of the true network.
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Figure 3.6: ROC curve and SSE curve for n = 100, p = 50, and |E| = 75. (a) ROC
curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE). The
horizontal black line is log(SSE) values when a p × p identity matrix is used and the
vertical black line indicates the sparsity of the true network.
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Figure 3.7: The ROC curve and SSE curve for n = 100, p = 200, and |E| = 160. (a)
ROC curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE).
The horizontal black line is log(SSE) values when a p × p identity matrix is used and
the vertical black line indicates the sparsity of the true network.
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Figure 3.8: ROC curve and SSE curve for n = 100, p = 200, and |E| = 200. (a) ROC
curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE). The
horizontal black line is log(SSE) values when a p × p identity matrix is used and the
vertical black line indicates the sparsity of the true network.
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Figure 3.9: ROC curve and SSE curve for n = 100, p = 200, and |E| = 220. (a) ROC
curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE). The
horizontal black line is log(SSE) values when a p × p identity matrix is used and the
vertical black line indicates the sparsity of the true network.
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Figure 3.10: ROC curve and SSE curve for n = 100, p = 200, and |E| = 240. (a) ROC
curve: 1-specificity versus sensitivity. (b) SSE curve: sparsity versus log(SSE). The
horizontal black line is log(SSE) values when a p × p identity matrix is used and the
vertical black line indicates the sparsity of the true network.
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Figure 3.11: Comparing our method (Ridge+thresholding) with Glasso in terms partial
correlation graph estimation by ROC curves, while the underlying true connections are
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Chapter 4

PenPC: A Two-step Approach to Estimate the Skeletons of High
Dimensional Directed Acyclic Graphs

4.1 Introduction

The relation of a set of random variables can be studied by graphical models, where

vertices represent the variables and edges capture the relations among the variables

[Lauritzen, 1996]. A particular class of graphs, the directed acyclic graphs (DAGs)

(also known as Bayesian Network) have been well studied for its importance in causal

inference [Pearl, 2009]. For example, in genomic studies, DAGs have been employed

to study gene expression regulation [Friedman, 2004; Sachs et al., 2005; Zhang et al.,

2010; Bonn et al., 2012]. In a DAG, all the edges are directed, and the direction of an

edge implies a direct causal relation. There is no loop in a DAG, which is necessary to

study causal relation [Spirtes et al., 2000]. When we remove the directions of all the

edges in a DAG, the resulting undirected graph is the skeleton of the DAG.

Estimation of the skeleton of a DAG is of great importance. First, it is a crucial

step towards estimation of the underlying DAG. Second, in many real data analyses

where only observational data (instead of interventional data) are available, the DAG

is not identifiable but the skeleton can be estimated; and previous studies have shown

that causal effects can be assessed from the skeleton of a DAG [Maathuis et al., 2009,



2010]. Several methods have been developed to estimate DAGs or their skeletons [Heck-

erman et al., 1995; Spirtes et al., 2000; Chickering, 2003; Kalisch and Bühlmann, 2007],

however most of them are only computationally feasible when the number of variables

p is smaller or comparable to sample size n, with the exception of the PC-algorithm

(named after its authors, Peter and Clark). Kalisch and Bühlmann [2007] proved that

under some regularity conditions, the PC-algorithm consistently estimates the skeleton

of sparse DAG for high-dimensional problems where p = O(nr) for r > 0. In this

chapter, we proposed a new method named PenPC to address this challenging skele-

ton estimation problem. We proved the estimation consistency of PenPC under weaker

regularity conditions for high dimensional settings of p = O(nr) or p = O (exp{na}).

As verified by both simulation and real data analysis, PenPC provides more accurate

estimates of the skeletons than the PC-algorithm.

The remaining parts of this chapter is organized as follows. In section 4.2, we

give a brief review of Gaussian Graphical Models (GGMs), DAGs, and the conceptual

advantage of our PenPC algorithm. Details of the PenPC algorithm is introduced in

section 4.3 and its theoretical properties are presented in section 4.4. In section 4.5,

we compare the performances of the PenPC and the PC algorithms by simulations. In

section 4.6, we further evaluate the PenPC and the PC algorithms in real data analysis

where causal effects estimated from observational data can be assessed by interventional

data. In section 4.7, we observe order-dependency of PenPC algorithm and introduce

order-independent PenPC. Finally, we conclude in section 4.8.

4.2 Review of Gaussian Graphical Models and DAGs

4.2.1 Gaussian Graphical Models (GGMs)

We consider a p-dimensional random vector X = (X1, ..., Xp)
T ∈ Rp following a

multivariate normal distribution Np(µ,Σ) with unknown mean values µ and a p × p
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non-singular covariance matrix Σ. Let Ω = [ωij]p×p = Σ−1 be the concentration matrix

or precision matrix. Under multivariate normal assumption, ωij = 0 if and only if Xi

is independent with Xj given all other p − 2 variables. Therefore Ω is also known as

partial covariance matrix. Let n be the sample size and denote the n×p observed data

matrix by X = (x1, ...,xp). Recently, a significant amount of works have been devoted

to the estimation of Σ [Bickel and Levina, 2008; Levina et al., 2008; Rothman et al.,

2008, 2009; Lam and Fan, 2009; Cai and Liu, 2011] or Ω [Yuan and Lin, 2007; Rothman

et al., 2008; Banerjee et al., 2008; Friedman et al., 2008; Fan et al., 2009; Yuan, 2010]

from the observed data matrix X in high dimensional problems where p is much larger

than n, see [Pourahmadi, 2011] for a recent review.

In this chapter, we are particularly interested in the identification of the non-zero

entries of Ω, known as the covariance selection problem [Dempster, 1972]. It has been

recognized that covariance selection and the estimation of concentration matrix are

different problems [Meinshausen and Bühlmann, 2006; Yuan, 2010]. For example, the

neighborhood selection method [Meinshausen and Bühlmann, 2006], which separately

selects the neighbors of each vertex by a penalized regression with p − 1 covariates,

consistently estimates the nonzero elements of Ω, but only provides an approximate,

instead of exact Penalized Maximum Likelihood Estimate (PMLE) of Ω [Friedman

et al., 2008].

Assuming that the variables of interest X = (X1, ..., Xp)
T follow multivariate normal

distribution, this covariance selection problem is equivalent to constructing a Gaussian

Graphic Model (GGM). A GGM of X is an undirected graph C = (V, F ) where V

contains p vertices correspond to X1, ..., Xp, and F contains all the undirected edges

i− j denoted by (i, j) ∈ F . There is an edge between vertices i and j if and only if Xi

is dependent with Xj given all the other p − 2 random variables, which is equivalent

to ωij 6= 0 in the concentration matrix Ω. A Gaussian Graphic Model is different from
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the skeleton of a DAG because of v-structures. In a v-structure X → W ← Z, X and

Z are marginally independent or conditionally independent given the parents of X and

Z, but given every set that contain W (a collision vertex) but not X or Z, X and Z

are dependent with each other. For example, consider a sprinkler which is scheduled

to spray at certain time every day. Either rain or the sprinkler may lead to the wet

grass. Given the event that the grass is wet, there is a negative correlation between the

event “sprinkler being on” and the event of rain [Pearl, 2009]. Other examples include

the DAGs shown in Figure 4.1(a-d), where X and Z are not connected in skeleton, but

they are connected in the corresponding Gaussian Graphic Models. Instances of the

covariance and concentration matrices of the GGM in Figure 4.1(a) are shown in the

Appendix II. The true network skeleton that there is no edge between X and Z can be

identified by examining marginal correlations or conditional correlations. For example,

X ⊥ Z in Figure 4.1(a), X ⊥ Z|Y in Figure 4.1(b), X ⊥ Z|(Y, U) in Figure 4.1(c), and

X ⊥ Z|Y in Figure 4.1(d).

When the p variables are ordered by the underlying DAG’s topology, such as

Xi ⊥ {Xi+1, ..., Xp} | {X1, ..., Xi−1} for i = 2, ..., p − 1, the problem of skeleton es-

timation is greatly simplified because a regression of Xi versus X1, ..., Xi−1 can be

used to identify the true skeleton. Such a multiple regression won’t be confused by

v-structures because a common child of vertexes Xi and Xj will never appear as a co-

variate of the regression models using Xi or Xj as the response variable. In fact, Shojaie

and Michailidis [2010] have shown that when the p variables are ordered by network

topology, a neighborhood selection using the predecessors of each variable yields the

exact PMLE of the concentration matrix rather than an approximation. However, in

high-dimensional real data analysis problems, the topology order is rarely available.

Throughout this chapter, we assume such an topology order is unknown.
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4.2.2 Directed Acyclic Graph (DAGs)

A DAG of random variables X1, ..., Xp is a directed graph with no cycle (or loop).

Specifically, a DAG can be denoted by G = (V,E), where V contains p vertices 1, 2, ...., p

that correspond to X1, ..., Xp, and E contains all the directed edges. In a DAG, a path

of length n from i to j is a sequence i = i0 → i1 → · · · → in = j of distinct vertices

such that (il−1, il) ∈ E for l = 1, ..., n. Given this path, il−1 is a parent of il, il is a child

of il−1, i0, i1, ..., il−1 are ancestors of il, and il+1, ..., in are descendants of il. In a DAG,

there is no path initiated from vertex i reaches i itself. This restriction of no cycle is

necessary for causal inference. The adjacency set of vertices of j, denoted by adj(j,G),

are the vertices that are connected to j by an edge of any directionality.

A chain of length n from i to j is a sequence i = i0, i1, · · · , in = j of distinct vertices

such that il−1 → il or il → il−1 for l = 1, ..., n. A DAG can graphically represent the

conditional independence relationships among p variables by the following d-separation

concept. A vertex set S block a chain p if either (i) p contains at least one arrow-

emitting vertex that is in S, or (ii) p contains at least one collision vertex that is

outside S and has no descendant of the collision vertex in S. If S blocks all the chains

from X to Y , it is said to “d-separate X and Y ” [Pearl, 2009].

Not all the distributions can be faithfully represented by a DAG. A probability dis-

tribution P is faithful with respect to a DAG G if the conditional independence of P is

equivalent to d-separation in G. In this chapter, we assume that X = (X1, ..., Xp)
T ∈ Rp

follow multivariate normal distribution. Among all the multivariate normal distribu-

tions associated with G, the non-faithful ones form a Lebesgue null set [Meek, 1995b].

In the following discussions, we assume the faithfulness of the distributions.

A DAG is not identifiable from observational data, because conditional dependen-

cies only determine the skeleton and v-structures of the graph [Pearl, 2009]. All the

DAGs with the same skeleton and v-structures correspond to the same probability
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distribution and they form an equivalence class, which can be described by a com-

pleted partially directed acyclic graph (CPDAG) [Chickering, 2002]. Identification of

v-structures (hence a CPDAG), after skeleton estimation, only requires application of

a set of deterministic rules, which is described in the Appendix II. Given a CPDAG,

we can use the intervention calculus method developed by [Maathuis et al., 2009] to

infer causal effects.

4.2.3 Constraint based approaches

In this section we will review constraint based methods to estimate the Markov

equivalence class of a DAG. Under faithfulness assumption, the Inductive Causation

(IC) algorithm aims at estimating the CPDAG of a DAG and the algorithm consists of

three steps: (1) estimation of the skeleton by a set of conditional independence tests, (2)

v-structure identification, and (3) completion of the PDAG obtained from (1) and (2)

[Pearl, 2009]. The resulting graph is CPDAG which represents the Markov equivalence

class of a DAG G. After estimating skeletons using conditional independence tests, the

steps (2) and (3) proceed by applying several deterministic rules described in [Pearl,

2009; Spirtes et al., 2000; Meek, 1995a; Chickering, 2002; Dor and Tarsi, 1992]. The

estimation accuracy mostly depends on the first step, the sekeleton estimation.

Spirtes et al. [2000] describes various algorithms to estimate the skeleton. SGS algo-

rithm starts from a complete undirected graph where any pair of vertices are connected

then thins the graph by removing the edges i− j such that Yi and Yj are conditionally

independent given any subset in V \ {i, j}. PC algorithm thins the correlation graph

by removing edges with first order conditional independence relations, thins again with

second order conditional independence relations, and so on. The SGS algorithm relies

on higher order conditional independence testings even for sparse graphs while for the

PC algorithm, the set of variables conditioned on requires only be a subset of the set of
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variables adjacent to one or the other variables tested. Subsequently, IG algorithm first

estimate the undirected independence graph which is GGM under Gaussian assump-

tion, then SGS algorithm is applied in each clique to exclude the false connections.

As a variation of the IG algorithm, Spirtes et al. [2000] also suggested to apply PC

algorithm in the second step.

In a high dimensional and sparse setting, Kalisch and Bühlmann [2007] proved

uniform consistency of PC-algorithm when p = O(na) for a > 0. Specifically, each

test of conditional independence has certain probability of making a mistake, and they

showed that under some regularity and sparsity conditions, the summation of these

mistaken probabilities goes to 0. Using stability selection, Stekhoven et al. [2012] shows

the improvement of IDA method in Maathuis et al. [2009] which provides estimated

lower bounds of total causal effects based on the estimated CPDAG from PC-algotirhm.

Colombo and Maathuis [2012] improved PC-algorithm by solving the order dependency

from which the resulting skeleton depends on the variable ordering of the input data.

It is called PC-stable algorithm.

Our PenPC algorithm has two steps. It first adapts neighborhood selection method

to estimate zero structure of the concentration matrix, which gives a GGM under

multivariate normal distribution assumption, and then apply a modified PC-stable

algorithm on the estimated GGM to remove false positive edges that connect the parents

of a common child due to v-structures. Our two step approach has the same spirit as

the IG algorithm and Schmidt et al. [2007] used the neighborhood selection approach to

estimate topological ordering. We employ the log penalty (pλ,τ (|b|) = λ log(|b|+τ)), one

of the folded concave penalties [Fan and Lv, 2011], for neighborhood selection, which

significantly improves the accuracy of resulting GGM. In the second step of removing

false positives, because we only aim to identify a particular class of false positives due

to v-structures, the number of tests, hence the cumulative mistaken probabilities, are
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significantly reduced. After adding up the uncertainty of neighborhood selection in

the first step and the cumulative mistaken probabilities in the second step, we can still

obtain consistent estimate of the skeleton while allowing p = O (nr) or p = O (exp{na}).

Previous works on network skeleton estimation have assumed traditional random graph

model where all the vertexes have the same expected number of connections [Kalisch

and Bühlmann, 2007]. However, many real networks are scale-free graphs where a few

vertexes may have much larger number of connections than the other vertices. We

show both theoretically and empirically that PenPC algorithm performs well for such

scale-free DAGs.

4.3 Methods

Let V = {1, . . . , p} be the vertex indices. Our PenPC algorithm proceeds in two

steps: (1) estimation of a GGM CG = (V, FG) by neighborhood selection, and (2)

application of a modified PC algorithm to remove false connections.

Step 1. (Neighborhood Selection) We first select the neighborhood of vertex

i by a penalized regression with Xi as response variable and all the other variables

corresponding to vertices V \ {i} as covariates:

b̂i = arg min
bi∈Rp−1

1

2
(xi −X−ibi)T(xi −X−ibi) + n

∑
j 6=i

pθ(|bi,j|) (4.1)

where xi is n× 1 vector for n measurements of variable Xi, X−i is n× (p− 1) matrix

for n measurements of the remaining p− 1 covariates, bi = (bi,1, ..., bi,i−1, bi,i+1, ..., bi,p)
T

and pθ(|bi,j|) denotes a penalty function with tuning parameters θ. We consider a class

of folded concave penalty functions satisfying the following condition:

Condition 1: Penalty function pθ(t) is increasing and concave in t ∈ [0,∞)

given θ and has continuous derivative p′θ(t) with p′θ(0+) > 0.
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This is a generalization of the Condition 1 in [Fan and Lv, 2011] for any dimensionality

of θ. The penalty pθ at v = (v1, ..., vr)
T ∈ Rr with ‖v‖0 = r has nonnegative local

concavity κ(pθ; v) ≥ 0 where

κ(pθ; v) = lim
ε→0+

max
1≤j≤r

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−p
′
θ(t2)− p′θ(t1)

t2 − t1
, (4.2)

and ‖ · ‖0 is the L0 norm of a vector [Fan and Lv, 2011]. Specifically, we employed the

log penalty (pλ,τ (|b|) = λ log(|b|+ τ)) in this chapter. After p penalized regressions for

each of the p variables, we construct the GGM as follows. Start with a graph with only

p vertices but no edge, and add an edge between vertices i and j if b̂ij 6= 0 or b̂ji 6= 0,

where i, j ∈ V and i 6= j.

Step 2. (Modified PC-algorithm) We apply a modified PC algorithm to remove

the false edges due to co-parent relationships. Denote adj(i, CG) as the adjacent vertices

of i in the GGM CG = (V, FG). Let adj(i, j, CG) = adj(i, CG)
⋂
adj(j, CG). The subgraph

of CG on the set of vertices S ⊆ V is denoted by CG(S). Let Con(v, CG(S)) for v ∈ S be

the set of vertices connected to v by any length of chains in CG(S), including v itself.

For a pair of vertices i and j connected in CG, we test whether they are independent

conditioning on each set in

Πi,j ≡
{[

adj(i, CG)
⋃

adj(j, CG)
]
\ Γ : Γ ⊆ Γi,j

}
\ {i, j}, (4.3)

where \ indicates set difference and

Γi,j =

 ⋃
v∈adj(i,j,CG)

Con
(
v, CG(V \ {i, j})

)⋂[
adj(i, CG)

⋃
adj(j, CG)

]
.

Note that Πi,j is a collection of sets. Each set belonging to Πi,j corresponds to a

subset of Γi,j. We test the conditional independence of Xi and Xj given K ∈ Πi,j using
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Fisher transformation of partial correlation. Specifically, denote the partial correlation

between Xi and Xj given K ∈ Πi,j by ρi,j|K. With the significance level α, we reject the

null hypothesis H0 : ρi,j|K = 0 against the alternative hypothesis Ha : ρi,j|K 6= 0 for K ∈

Πi,j if
√
n− |K| − 3ẑi,j|K > Φ−1(1−α/2), where ẑi,j|K = 0.5 log((1 + ρ̂i,j|K)/(1− ρ̂i,j|K))

and Φ(·) is the cdf of N(0, 1).

The details of the step 2 of PenPC algorithm is described in the Supplementary

Materials, Section 5.6. Here we give a brief description of its rationale. If two vertices i

and j are not connected in the skeleton, but connected in the GGM, it must be due to

a v-structure (see Lemma 2 of Section 4). Then i and j are independent or conditional

independent if the conditional set includes all the adjacent vertices of i or j but excludes

the common children of i and j plus all descendants of the common children. Therefore

all the common children of i and j and those descendants must be included in Γi,j. For

example to test X and Y in Figure 4.1 (d) Γi,j must include the common children W

and its descendants U and V . See Lemma 3 of Section 4.4.1 for a rigorous description.

The final output of PenPC algorithm is the estimated skeleton and separation sets

S(i, j) for all (i, j). The separate sets are needed for causal effect estimation. If vertices

i and j are not connected in the GGM (then they won’t be connected in the skeleton),

their separation set is V \ {i, j}. If i and j are connected in both the GGM and

the skeleton, there is no separation set. If i and j are connected in the GGM, but

not the skeleton, the separation set S(i, j) is a set belongs to Πi,j, such that the test

i ⊥ j | S(i, j) gives affirmative conclusion. Given the skeleton and the separation sets,

causal effects can be assessed using function idaFast of R package pcalg [Kalisch et al.,

2012].

44



4.4 Theoretical Properties

4.4.1 Fixed Graphs

We denote the L2 and L∞ norm of a matrix or a vector by ‖ · ‖2 and ‖ · ‖∞.

The L2 norm of a square matrix is the maximum eigenvalue of the matrix. The L∞

norm of a matrix is the maximum of the L1 norm of each row. The L∞ norm of a

vector is the maximum of the absolute values of its elements. In this section we study

high dimensional behavior where p grows as a function of sample size n. Thus denote

Gn = (Vn, En) and CGn = (Vn, Fn) with |Vn| = pn as a DAG and the GGM specified by

the moral graph of Gn, respectively. We also denote the skeleton of Gn by Gun = (Vn, E
u
n)

where (a, b) ∈ Eu
n ⇔ (a, b) ∈ En or (b, a) ∈ En. The following conditions are needed

for the consistency of the PenPC algorithm.

(A1) The distribution of the X ∈ Rpn is multivariate Gaussian and is faithful to the

DAG Gn for all n, where pn ≤ O (exp{na}) with a ∈ [0, 1). Recall that the n× pn

observed data matrix is denoted by X = (x1, ...,xpn). Without loss of generality,

we assume each column xj (1 ≤ j ≤ pn) has been standardized to have mean 0

and xT
j xj = n.

(A2) Let qn be the maximum degree of CGn , i.e., qn = max1≤j≤pn |adj(j, CGn)|. Suppose

qn ≤ O(nb) for some 0 ≤ b < 1. By the following Lemma 2, max1≤j≤pn |adj(j,Gn)| ≤

max1≤j≤pn |adj(j, CGn)| = qn.

(A3) Denote the partial correlations between Xi and Xj given a set of variables {Xr :

r ∈ K} for some set K ⊆ Vn \ {i, j} by ρi,j|K. The absolute values of ρi,j|K’s are

bounded from below and above:

inf
i,j,K

{∣∣ρi,j|K∣∣ : ρi,j|K 6= 0
}
≥ cn, and sup

n,i,j,K

∣∣ρi,j|K∣∣ ≤M < 1,
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where cn = O(n−d1) for some 0 < d1 < 1/2.

(A4) For any vertex i, denote the observed data of the variables within and outside

of adj(i, CGn) (but not including xi) by Xi1 and Xi2, respectively. Dependence

among adj(i, CGn) is restricted such that for any i, ‖(XT
i1Xi1)−1‖∞ = O(n−1+s0),

where 0 ≤ s0 < (1− a)/2.

(A5) Let δn = (1/2) infi,j {|bi,j| : bi,j 6= 0}, where δn ≥ O(n−d2) for some 0 < d2 <

(1− a)/2− s0. The dependence between Xi1 and Xi2 is restricted by

∥∥XT
i2Xi1(XT

i1Xi1)−1
∥∥
∞ ≤ min(Kp′θ(0+)/p′θ(δn), O(nb)),

for 0 < K < 1 and b in (A2).

(A6) p′θ(δn) � n−d2−s0 , p′θ(0+) � n−1/2+a/2+b
√

log n, and maxi∈Vn‖(XT
i1Xi1)−1‖2 ≤

1/(nκ0) where κ0 = maxi maxβ∈Ni
κ(pθ,β1) with κ(pθ, ·) defined in (4.2) and Ni

defined in equation (S5.18) of the Supplementary Materials.

We adapt (A1)-(A3) from [Kalisch and Bühlmann, 2007] to prove uniform con-

sistency of step 2 of PenPC algorithm from known CGn . However (A1) allows higher

dimensionality pn in the exponential order of n. The sparseness assumption (A2)

will be replaced by tighter assumptions for two specific random graph models later.

Assumption (A4)-(A6) are needed to achieve the uniform oracle property of the non-

concave penalized regressions. Thus, they ensure that the step 1 of PenPC can recover

the graphical structure of partial correlation matrix. The following Lemma 1 claims

that the support of the regression coefficients is the same as that of the concentration

matrix. Therefore, we can use the regression model to detect the support the partial

correlation matrix CGn . Denote X−i as a pn − 1 dimension random vector when Xi

is excluded from X. Σab and Ωab are the sub-matrices of Σ and Ω corresponding to
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random vectors Xa and Xb for a, b ⊆ Vn.

Lemma 1. Suppose X = (X1, ..., Xp)
T ∼ Np(µ,Σ) and Ω = Σ−1. Then

Xi = XT
−ibi + εi,

where bi = −σ2
iΩ−i,i, and εi ∼ N(0, σ2

i ), with σ2
i = Σii −Σi,−i(Σ−i,−i)

−1Σ−i,i.

The proof of Lemma 1 is in the Appendix II which is similar to [Lauritzen, 1996].

Consider the neighborhood selection problem for one of the variables versus all the

other variables. Let Si = supp(bi) be the support of the true regression coefficient bi

with the size |Si| = si. From Lemma 1, the degree of vertex i in CGn is si. Recall

that in assumption (A4) Xi1 and Xi2 are denoted by the observed data of the variables

corresponding to Si ⊆ Vn \ {i} and its complement, Sci = Vn \ (Si
⋃
{i}). Similarly bi1

and b̂i1 are respectively the sub-vectors of bi and b̂i formed by Si.

Theorem 2. Given Assumptions (A1), (A4)-(A6), with probability at least 1−C exp{na−

na log(n)} for a constant 0 < C < ∞, there exists a local minimizer b̂i = (b̂i1, b̂i2)T

that satisfies the following conditions: for any i = 1, . . . , pn,

(a) Sparsity: P(b̂i2 = 0)→ 1.

(b) L∞ loss: ‖b̂i1 − bi1‖∞ = o(n−d2), where d2 is defined in (A5).

The proof is in the Appendix II. Under assumption (A1), the dimensionality pn is

allowed to grow up to exponentially fast with sample size n. The value of d2 can be as

large as 1/2 depending on the lower bound of nonzero partial correlation signals (given

all the other pn − 2 variables).

Corollary 1 is a simple extension from Theorem 2. It characterizes the uniform

oracle property for pn penalized regression models which estimate the GGM CGn . De-

note ĈGn(θ) as the estimate of CGn by the neighborhood selection, where θ are tuning
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parameters of the penalty function.

Corollary 1. Given Assumption (A1), (A4)-(A6),

P(ĈGn(θ) = CGn) ≥ 1− C exp{2na − na log(n)}

for a constant 0 < C <∞.

Lemma 2. Assume (A1). The set of edges Fn of CGn includes all edges Eu
n of Gun plus

co-parent relationship in Gn.

This lemma 2 is proved in Lemma 3.21 of Lauritzen [1996] when recursive factor-

ization of the joint distribution of X is assumed according to the directed graph Gn.

Lemma 3. Assume (A1). If (i, j) ∈ Fn of CGn but (i, j) /∈ Eu
n of Gun, the conditioning

set Πi,j in (4.3) includes at least one set which d-separates vertices i and j in G.

Lemma 2 and Lemma 3 provide the theoretical justifications for using GGM as

a starting point of our modified PC-algorithm. The proofs are in the Appendix II.

Lemma 2 shows that if we have a perfect estimation of the partial covariance matrix,

we can recover all the edges in the skeleton with no false negatives, but some false

positives: the co-parent relationships. Lemma 3 presents that we can remove false

positive connection between i and j due to co-parent relationship by examining partial

correlation conditioning on some set in Πi,j.

Next we discuss the theoretical property of a modified PC algorithm (step 2 of

the PenPC algorithm presented in section 3) given a perfect estimation of GGM. Later

we will show that the summation of mistaken probabilities of GGM estimation and

skeleton estimation given GGM goes to 0 as n→∞.

Theorem 3. Let Ĝun(αn) be the estimates of Gun from the second step of the PenPC

algorithm, given a perfect estimation of GGM. Assume (A1)-(A3) with 0 < d1 <

48



min ((1− a)/2, (1− b)/2). There exists an αn → 0, such that

P
[
Ĝun(αn) = Gun

]
= 1−O

(
exp{−Cn1−2d1}

)
→ 1,

where 0 < C < ∞ is a constant, and αn is the p-value threshold for testing whether a

partial correlation is 0.

The proof is in the Appendix II. Similar theorem has been proved in [Kalisch and

Bühlmann, 2007] with pn at polynomial order of n. By exploiting accuracy estimation

of GGM, we extend the theorem to pn = O (exp{na}) case. Corollary 2 provides

the combined error of step 1 and step 2 of PenPC algorithm as a simple extension of

Corollary 1 and Theorem 3.

Corollary 2. Let Ĝun(θ, αn) be the estimates of Gun from the two step approach PenPC

algorithm. Assume (A1)-(A6) with 0 < d1 < min ((1− a)/2, (1− b)/2). There exists

an αn → 0, such that

P
[
Ĝun(θ, αn) = Gun

]
= 1−O

(
exp{−Cn1−2d1}

)
→ 1,

where 0 < C <∞ is a constant.

4.4.2 Random Graphs

Under certain conditions, the theoretical results could also be extended to two

commonly used models for random graphs: Erdős and Rényi (ER) Model [Erdős and

Rényi, 1960] and Barabási and Albert (BA) Model [Barabási and Albert, 1999]. In

general, assumption (A2) no longer holds for random graphs. However, based on the

proof in the Appendix II, it is easy to see that assumption (A2) can be relaxed to (A2’).
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(A2’) Let qn = max1≤j≤pn |adj(j, CGn)|. Assume

P{qn ≤ O(nb)} = 1, for some 0 ≤ b < 1.

It is then suffices to show assumption (A2’) holds. We also discuss the value of b in

the assumption, which will affect the minimum effect size of partial correlations in

assumption (A3) and the convergence probability in Theorem 2 and Corollary 1.

Erdős and Rényi (ER) Model

The ER model constructs a graph G(pn, pE) of pn vertices by connecting vertices

randomly. Each edge is included in the graph with probability pE independent from

all other edges. By law of large numbers, such vertex is almost surely connected to

(pn− 1)pE edges. Let Mn be the maximal degree of the graph. Erdős and Rényi [1960]

proved the following results about Mn.

Lemma 4. In the graph G(pn, pE) following the ER model, the maximal degree Mn

almost surely converges to mn, where

mn =


O(log pn), if pnpE < 1,

p
2/3
n , if pnpE = 1,

O(pn), if limpn→∞ pnpE = c > 1.

When pn = O{exp(na)}, by Lemma 4, assumption (A2’) holds immediately if pnpE < 1

and b ≥ a. When pnpE ≥ 1, our proof cannot handle the general case pn = O{exp(na)}.

However, when the number of vertices is of the polynomial order of n, assumption (A2’)

may still hold. In particular, suppose pn = O(nr). When pnpE < 1, assumption (A2’)

holds for any b ∈ [0, 1). When pnpE = 1, assumption (A2’) holds if b ≥ 2r/3. When
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pnpE → c > 1, assumption (A2’) holds if r < 1 and b ≥ r.

Barabási and Albert (BA) Model

The BA model is used to generate scale free graphs whose degree distribution fol-

lows a power law: P(ν) = γ0ν
−γ1 , with a normalizing constant γ0 and a exponent γ1.

Specifically, BA model generates a graph by adding vertices into the graph over time

and when each new vertex is introduced into the graph, it is connected with larger

probability to the existing vertices with larger number of connections. Since the distri-

bution does not depend on the size of the network (or time), the graph organizes itself

into a scale free state [Barabási and Albert, 1999]. Móri [2005] showed that Mn almost

surely converges to O(p1/2). Thus, assumption (A2’) holds for the case pn = O(nr)

with b ≤ r/2.

4.5 Simulation Studies

We evaluate the performance of the PenPC-algorithm and the PC-algorithm in terms

of sensitivity and specificity of skeleton estimation using DAGs simulated by the ER

model or the BA model. Following Kalisch and Bühlmann [2007], we simulate DAGs

of p vertices by the ER model as follows. First we assume the p vertices are ordered so

that if i < j, vertex i can only be the parent rather than child of vertex j. Then for any

vertex pair (i, j) where i < j, we add an edge i → j with probability pE. For the BA

model, the DAGs are simulated following Barabási and Albert [1999]. We start with

a vertex with no edge in the beginning. Then a new vertex is added in each step and

directed edges are added so that they start from the new vertex and point to some of

the existing vertices. Specifically, in the (t+1)-th step, the new vertex is connected to a

existing vertex repeatedly e times and the probability to connect to vertex 1 ≤ i ≤ t is

νti/
∑

j ν
t
j where νti = |adj(i,Gt)|, and Gt is the DAG at the t-th step, right before adding
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the new vertex. After p time steps, we have a DAG denoted by G = (V,E) with |V | = p

and |E| ≤ (p − 1)e. The inequality for |E| is from the possibility that the new vertex

is connected to the same old vertex when e > 1. Figure 4.2 displays the distribution

of the degrees ν from simulated DAGs under ER model (p = 1000 and pE = 2/p) and

BA model (p = 1000 and e = 1). The probability of finding a highly connected vertex

decreases exponentially with ν for the graphs generated by the ER model (left panel).

However, for the graph generated by the BA model, highly connected vertices with

large ν have relatively large chance of occurring (right panel). The subplot of right

panel displays a linear relation between degree and degree probability in log-log scale,

which confirms the scale-free property of the graph generated by the BA model. The

BA model with e = 2 is displayed in Figure 4.3.

After constructing the DAGs, the observed data were simulated by structure equa-

tion under normal assumption. For example, let xj be the n observed values for vari-

able Xj, and denote the parents of Xj by paj, then xj =
∑

k∈paj
bjkxk + εj, where

εj ∼ N (0, σ2In×n). In our simulations, all bjk’s and σ2 are set to be 1. Our simulation

settings are displayed in Table 4.1. For either ER or BA model, we consider low dimen-

sion setting where p = 11, n = 100 and high-dimension settings where p = 100, n = 30

and p = 1000, n = 300 with various sparsity levels determined by PE for ER model

and e for BA model. The results for all the simulation results are displayed in Figure

4.4-Figure 4.17. There are three tuning parameters in PenPC: λ and τ for the penalty

function and α, which is the p-value cutoff used by the PC algorithm or our modified

PC algorithm to declare conditional independence. We choose λ and τ by extended BIC

[Chen and Chen, 2008], and examine the results of PC or PenPC across various values

of α. For example, in the upper panels of Figure 4.10, we show the performances of

three methods: PC (PC-algorithm), Pen (penalized regression only), and PenPC when

α = 0.01 and the skeleton is simulated by the ER model. Specifically, Figure 4.10
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(a-b) show that penalized regression identified more true positives than PC, but also

introduce more false positives, while PenPC algorithm significantly reduces the number

of false positives, though some true positives are also removed. At the end, the PenPC

has the lowest number of false positives plus false negatives, as measured by Hamming

distance (HD) (Figure 4.10(c)). Figures 4.10(d-f) show that across various cutoff values

of α, PenPC consistently has better performance than the PC algorithm. Finally, Figure

4.10(g) shows the ROC curves for the PenPC and the PC algorithms, which illustrate

that PenPC has better sensitivity and specificity than the PC algorithm regardless of

the cutoff α. Similar conclusions can be drawn for the simulation results of BA models.

4.6 Application

We evaluated the performance of the PenPC algorithm using a gene expression

dataset of S.cerevisiae where both observational and interventional data are available

[Hughes et al., 2000]. The complete data were downloaded from http://hugheslab.

ccbr.utoronto.ca/supplementary-data/rii/. After data processing following Maathuis

et al. [2010], we obtained the final data sets of the expression of 5,361 genes for 63 control

experiments (observational data) and 234 single-gene deletion mutants (interventional

data). More precisely, in each deletion mutant, expression of one gene is either knocked

out or knocked down. Both data sets were standardized such that expression for each

gene had mean 0 and standard deviation 1. Assume the dependence of the 5361 genes’

expression can be modeled by a DAG, denoted by G = (V,E), where V = {1, ..., 5361}

and E contains all the edges in this DAG. The purpose of our study is to estimate the

skeleton of this DAG using the observational data (n=63), and then to evaluate the ac-

curacy of skeleton estimates by comparing the causal effects estimated from the skeleton

and the interventional effects estimated from the interventional data. Intuitively, more

accurate skeleton estimate leads to better consistency between causal effects estimates
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and interventional effects.

The interventional effects are defined as follows. Let c(i) be the vertex that was

deleted in the i-th mutation strain, and let c = {c(i), i = 1, ..., 234}. Let A =

{aij}234×5361 be the 234× 5361 interventional data matrix, where aij is the (standard-

ized) expression of the jth gene in the i-th mutation strain. Using the interventional

data A, we define the interventional effect of c(i)→ j for c(i) 6= j as

|ai,j −mean(a−i,j)|/|ai,c(i) −mean(a−i,c(i))|, (4.4)

where mean(a−i,j) is the mean expression of gene j across all the conditions rather

than the i-th mutation strain. We refer to |ai,j −mean(a−i,j)| as (absolute) expression

change of gene j upon perturbation of gene c(i), denoted by δi,j. The interventional

effect of gene c(i) on gene j is defined by the ratio of δi,j over δi,c(i). Figure 5 (a-b)

show the distributions of the standardized expression and log10 interventional effects.

We applied both the PC algorithm and the PenPC algorithm to construct skeleton

using the observational data where n = 63 and p = 5361. Following Maathuis et al.

[2010], the conditional independence test p-value cutoff α, was chosen as 0.01. Then the

skeleton is extended to completed partially directed acyclic graph (CPDAG) following

the approach described in section 5.6. Then we applied intervention-calculus when the

DAG is absent (IDA) method [Maathuis et al., 2009] on the CPDAG to estimate causal

effect .

Figure 4.18 displays the scatter plot of the 234×5361−234 estimated causal effects

from PC and PenPC. We divided the genes into four regions based on whether the causal

effect estimates from the PC algorithm or the PenPC algorithm is larger than 0.8. As

shown in Figure 4.18(d), the genes in region R3, where both algorithms produce large

casual effect estimates, have the largest interventional effect, followed by regions R2

(PenPC produces large causal effect but PC does not), R3 (PC produces large causal
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effect but PenPC does not), and R1 (neither algorithms produces large causal effect

estimates). This order of R3, R2, R4, and R1 implies that many stronger causal effects

are captured by the PenPC algorithm but missed by the PC algorithm.

Assume the top m% of the interventional effects are true positives and all the other

interventional effects are false positives. We can calculate, among the top q estimated

causal effects, the number of false positives fp(m, q) and the number of true positives

tp(m, q). Figure 4.19 (a) displays the partial ROC curves by plotting fp(m = 10, q)

versus tp(m = 10, q) for q up to 5000. For the PC algorithm, the ROC curve is the

same as the curve of Figure 1-a in Maathuis et al. [2010]. PenPC algorithm dominates

PC algorithm in almost all regions except for the small regions with strong estimated

causal effects.

In order to investigate the performances for various m values, we approximate the

partial area under the ROC curve (pAUC) as

pAUC(m, q) =

∫ q

0

ROC(m, q′)dq′

where ROC(m, q′) is the ROC curve from fp(m, q′) and tp(m, q′). Figure 4.19 (b)

displays the partial AUC values according to m and it shows dominant performance of

the PenPC algorithm over the PC-algorithm for all m values except for regions where m

is very small. We notice that those top interventional effects often correspond to small

denominator values in the interventional effect definition: |ai,j −mean(a−i,j)|/|ai,c(i) −

mean(a−i,c(i))| (Figure 4.20). In other words, those top interventional effects are often

from those experiments where the targeted genes are only moderately knocked down.

Therefore, it is likely that the interventional effects were inflated.
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4.7 Order independent PenPC algorithm

PC algorithm is order-dependent because its output depends on the order in which

the variables are given. Colombo and Maathuis [2012] modified the PC algorithm so

that its result is order-invariant, and they named their new algorithm as the PC-stable

algorithm, which shows substantially improved performance than the PC algorithm

[Colombo and Maathuis, 2012]. Motivated by the PC-stable algorithm, we systemati-

cally investigate the order dependency of the PenPC algorithm. The order dependence

in the PenPC algorithm occurs in two places : (1) Step 1 of the PenPC which estimates

the Gaussian Graphical Model (GGM) (2) Step 2 of the PenPC which removes the

false connections between parents sharing at least one common child. Next we study

how much the order dependency in each step of the PenPC affects the final skeleton

estimation, using the yeast gene expression data presented in the application section.

Figure 4.21 displays the variability from 51 random permutations of the ordering

of the gene expression variables. For each permutation, we estimated a GGM using

the step 1 of the PenPC. Among all the pairs of the 5361 variables, 99.7% are perfectly

stable, i.e., they form edges or gaps across all 51 permutations. Among those perfectly

stable pairs, 7377 form edges (the completely blue columns in Figure 4.21(a)). For an

unstable pair of variables, which may form an edge or a gap across the permutations,

we define ekij = 1 if there is an edge between Xi and Xj in the kth permutation and

ekij = 0 otherwise. We define an instability measure

rij(1− rij)

where rij =
∑K

k=1 I(ekij = 1)/K for variable pair (Xi, Xj) across K permutations. Fig-

ure 4.21(b) displays the density curve of the total number of edges of the 51 estimated

GGMs and the red point indicates the number of edges when we use the original order.
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Figure 4.21(c) displays the density curve of instability values for unstable variable pairs

forming edges or gaps across permutations. Although the highest peak is around insta-

bility 0.025, significant amount of the unstable edges are near the maximum value 0.25.

The order dependency comes from coordinate descent algorithm because it partially

optimize the objective function w.r.t. each one of the coefficients.

We further examine the order dependency of step 2 of the PenPC algorithm. We

fix the GGM by estimating it from the original order. Therefore the observed order-

dependency is only due to step 2 of the PenPC algorithm. Figure 4.22 show the results

from 51 permutations of variable ordering for step 2 of PenPC. Comparing the instability

measures for step 1 and step 2 of the PenPC, we conclude that step 2 is the main source

of the order dependency.

To solve those two sources of the order-dependency, we introduce some modifica-

tions of the PenPC algorithm. For the penalized regression step, we order the covariates

by their (absolute) correlations with the response. For conditional independence testing

step, we use simple modification following Colombo and Maathuis [2012]. The algo-

rithm is shown in Figure 4.23. The modified parts are highlighted in blue. We refer to

the modified PenPC algorithm as order-independent PenPC algorithm.

In simulation studies, we compared the order-independent PenPC algorithm and

the PC-stable algorithm. We followed the same data generation procedure as for ER

model in the simulation section. Figure 4.25 shows the estimation performance of order

independent PenPC algorithm and PC-stable algorithm. The PC-stable algorithm for

n=50 shows similar results to Figure 4 of Colombo and Maathuis [2012]. Figure 4.25(a)

shows that the number of edges detected by PenPC increases slower less than that of

the PC-stable algorithm as α increases. The Hamming distance in the Figure 4.25(b)

indicates that the PC-stable algorithm adds significant amount of false positives and

false negatives as sample size increases especially for bigger α. The performance of
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PenPC is more stable and it outperforms the PC-stable algorithm for larger sample

sizes. We define the true discovery rate (TDR) as the proportion of edges in the

estimated skeleton that are also present in the true skeleton. For samples size larger

than 200, PenPC shows consistently better TDR than PC-stable algorithm for all α’s in

Figure 4.25(c). We evaluate the estimation accuracy of CPDAG by structural Hamming

distance (SHD), which counts the minimum number of edge insertions, deletions, or flips

that are needed in order to transform the estimated graph into the true one [Colombo

and Maathuis, 2012]. Since a CPDAG is estimated by applying a set of deterministic

rules to a skeleton, the estimation accuracy of a CPDAG is directly affected by the

estimation accuracy of the corresponding skeleton. Therefore, as expected, for larger

sample size, order-independent PenPC outperforms PC-stable algorithm in terms of

estimation accuracy of CPDAG (Figure 4.25(d)).

4.8 Conclusions

We propose a two-step approach, the PenPC algorithm, to estimate skeletons of high

dimensional DAGs. After estimating GGM in the first step, the skeleton estimation

problem boils down to finding co-parent relationships in the second step. We show that

the PenPC algorithm is asymptotically consistent for the skeleton of a high dimensional

DAG. For fixed graphs, the number of vertices pn could be exponential scale of the

sample size n. The results could be extended to random graphs. We considered two

commonly used random graph models and discussed in detail the conditions under

which the consistency properties hold. The simulation studies and real data analysis

show that the network skeletons estimated by PenPC are substantially more accurate

than those estimated by the PC algorithm. We implemented our method in an R

package PEN. In PenPC, the most demanding part of the computation is to estimate

GGM using p separate penalized regressions. For example, our real data analysis where
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p=5,361 and n=63 was performed on an 2.93 GHz Intel processor 12M L3 cache (model

X5670) and 48GB RAM running on Linux using 64bit R2.12.2. The step 1 in PenPC

algorithm took 30 seconds for one penalized regression using log-penalty with 100×10 2-

dimensional tuning parameter search so that it is about 5, 361×30 = 160, 830 seconds in

total to find neighborhoods for all vertices. However, the p separate penalized regression

is possible to be performed under parallel computing. The modified PC-algorithm (the

step 2 of the PenPC algorithm) is computationally much more efficient than the PC-

algorithm. In the real data analysis, we started from GGM with 16,006 edges, and it

took 342 seconds to run the modified PC-algorithm using function skeletonPEN in the

PEN package with α = 0.01. In contrast, the PC-algorithm took 6,719 seconds using

function skeleton in R/pcalg package with α = 0.01. Therefore PenPC algorithm has

computational advantage if one needs to evaluate the results across a large number

of αs. Furthermore, we notice that the computation time for PC algorithm increases

rapidly as sample size or significance level for partial correlation testings increase. For

example, for p = 5361 and α = 0.05, the computation times are about 2, 4, 11, 22,

54, and 81 hours for sample sizes n=50, 100, 200, 300, 400 and 500 respectively. In

contrast, the computational time for penalized regressions are almost invariant across

these sample sizes.
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4.9 Tables and figures

Table 4.1: Simulation Setting
p n pE (ER) e (BA)
11 100 0.2 1,2
100 30 0.02, 0.03, 0.04, 0.05 1,2
1000 300 0.002, 0.005, 0.01 1,2
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Figure 4.1: Four DAGs where X and Z are not connected in the skeleton, but are
connected in the corresponding GGMs.
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Figure 4.2: Histograms of the degree ν. (a) ER model with p = 1000 and pE = 2/p.
(b) BA model with p = 1000 and e = 1 and the log10 scale density of log10 ν in its
subplot.
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Figure 4.4: Performance of ER model (p = 11, n = 100, pE = 0.2). The upper panels
are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR)
(b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower
panels are average true positive rate (d), false positive rate (e), and Hamming distance
(f) from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the
grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.5: Performance of ER model (p = 100, n = 30, pE = 0.02). The upper panels
are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR)
(b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower
panels are average true positive rate (d), false positive rate (e), and Hamming distance
(f) from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the
grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.6: Performance of ER model (p = 100, n = 30, pE = 0.03). The upper panels
are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR)
(b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower
panels are average true positive rate (d), false positive rate (e), and Hamming distance
(f) from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the
grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.7: Performance of ER model (p = 100, n = 30, pE = 0.04). The upper panels
are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR)
(b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower
panels are average true positive rate (d), false positive rate (e), and Hamming distance
(f) from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the
grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.8: Performance of ER model (p = 100, n = 30, pE = 0.05). The upper panels
are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR)
(b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower
panels are average true positive rate (d), false positive rate (e), and Hamming distance
(f) from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the
grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.9: Performance of ER model (p = 1000, n = 300, pE = 0.002). The upper
panels are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate
(FPR) (b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The
lower panels are average true positive rate (d), false positive rate (e), and Hamming
distance (f) from 100 replications when the tuning parameter α is changed from 0 to
0.1 (the grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.10: Performance of ER model (p = 1000, n = 300, pE = 0.005). The upper
panels are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate
(FPR) (b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The
lower panels are average true positive rate (d), false positive rate (e), and Hamming
distance (f) from 100 replications when the tuning parameter α is changed from 0 to
0.1 (the grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.11: Performance of ER model (p = 1000, n = 300, pE = 0.01). The upper
panels are box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate
(FPR) (b) and hamming distance (HD) (c) from 100 replications at α = 0.01. The
lower panels are average true positive rate (d), false positive rate (e), and Hamming
distance (f) from 100 replications when the tuning parameter α is changed from 0 to
0.1 (the grey vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.12: Performance of BA model (p=11,n=100,e=1). The upper panels are box
plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR) (b) and
hamming distance (HD) (c) from 100 replications at α = 0.01. The lower panels are
average true positive rate (d), false positive rate (e), and Hamming distance (f) from
100 replications when the tuning parameter α is changed from 0 to 0.1 (the grey vertical
line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.13: Performance of BA model (p=11,n=100,e=2). The upper panels are box
plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR) (b) and
hamming distance (HD) (c) from 100 replications at α = 0.01. The lower panels are
average true positive rate (d), false positive rate (e), and Hamming distance (f) from
100 replications when the tuning parameter α is changed from 0 to 0.1 (the grey vertical
line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.14: Performance of BA model (p=100,n=30,e=1). The upper panels are box
plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR) (b) and
hamming distance (HD) (c) from 100 replications at α = 0.01. The lower panels are
average true positive rate (d), false positive rate (e), and Hamming distance (f) from
100 replications when the tuning parameter α is changed from 0 to 0.1 (the grey vertical
line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.15: Performance of BA model (p=100,n=30,e=2). The upper panels are box
plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR) (b) and
hamming distance (HD) (c) from 100 replications at α = 0.01. The lower panels are
average true positive rate (d), false positive rate (e), and Hamming distance (f) from
100 replications when the tuning parameter α is changed from 0 to 0.1 (the grey vertical
line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.16: Performance of BA model (p=1000,n=300,e=1). The upper panels are
box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR) (b)
and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower panels
are average true positive rate (d), false positive rate (e), and Hamming distance (f)
from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the grey
vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.17: Performance of BA model (p=1000,n=300,e=2). The upper panels are
box plots (in log10 scale) of true positive rate (TPR) (a), false positive rate (FPR) (b)
and hamming distance (HD) (c) from 100 replications at α = 0.01. The lower panels
are average true positive rate (d), false positive rate (e), and Hamming distance (f)
from 100 replications when the tuning parameter α is changed from 0 to 0.1 (the grey
vertical line are at α = 0.01). ROC curves are shown in panel (g).
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Figure 4.18: (a) The distribution of standardized gene expression of all the genes on all
conditions (grey filled boxes) and standardized gene expression when a gene is knock
down/knock out (black line boxes). (b) The density of log10 interventional effects. (c)
The estimated causal effects from PC and PenPC algorithms, where regions R1-R4 are
separated by horizontal/vertical lines at 0.8. (d) The distribution of log10 interventional
effects according to regions in (c).
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Figure 4.19: Performance of causal effects prediction. (a) The ROC (receiver operating
characteristic) curves of the PC and PenPC algorithms, assuming the top m=10% of
interventional effects are true positives. (b) The procedure (a) is repeated for m from
1 to 50 and the partial area under the ROC curve (pAUC) is plotted versus m values.
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Figure 4.20: The distribution of ”expression change upon perturbation” for all knock
down/knock out genes (light grey) and those producing top 1% of the interventional
effects
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Figure 4.21: (a) Edge occurrence (indicated by dark blue) in the estimated GGMs for
50 random permutations of variable orders, as well as the original order (shown as the
first permutation). The variable pairs along the x-axis are ordered by their frequencies
of being connected (by length 1 chain) across 51 permutations (from 51 to 1) and the
variable pairs that are not connected in any permutation are excluded. (b) The density
curve of the total number of edges in the estimated GGMs from 51 different variable
orders (black line) and the number of edges in the GGM with the original order (red
point). (c) The density curve of instability values for unstable variable pairs
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Figure 4.22: (a) Edge occurrence (indicated by dark blue) in the estimated skeletons
with α = 0.01 for 50 random permutations of variable orders, as well as the original
order (shown as the first permutation). Here the step 2 of the PenPC algorithm is
performed from the same GGM, which is estimated using the original ordering. The
variable pairs along the x-axis are ordered by the frequencies of being connected (by
length 1 chain) across 51 permutations (from 51 to 1) and the variable pairs that are
not connected in any permutation are excluded. (b) The density curve of total number
of edges in the estimated skeletons from 51 different variable orders (black line) and the
number of edges in the skeletons with the original order (red point). (c) The density
curve of instability values for unstable variable pairs.
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Input: GGM CG
Output: Skeleton Gu = (V,Eu) and separation set S(i, j) for edges (i, j) /∈ Eu but (i, j) ∈ FG

1. Set l=-1 and C = CG (F = FG)

2. For all (i, j) ∈ F ,

2.1 if Xi and Xj are marginally independent, then delete (i, j) from F

3. Repeat: l=l+1

3.1 C̃ = C

3.2 Repeat: Select an edge (i, j) ∈ F such that |Γ(C̃)i,j | ≥ l

3.1.1 Repeat: Select Γ ⊆ Γ(C̃)i,j with |Γ| = l

3.1.1.1 Set K = [adj(i, C̃) ∪ adj(j, C̃)]\[Γ
⋃
{i, j}]

3.1.1.2 If Xi and Xj are conditionally independent given {Xk : k ∈ K}, then
- Delete (i, j) from F
- Save K in separation set for i and j, S(i, j)

3.1.2 Until: The edge (i, j) is deleted from F or all |Γ| = l have been chosen

3.3 Until: All edges (i, j) ∈ F with |Γ(C̃)i,j | ≥ l are tested for all conditioning set Γ ⊆
Γ(C̃)i,j with |Γ| = l

4. Until: for each (i, j) ∈ F , |Γ(C̃)i,j | < l

Figure 4.23: Order-independent PenPC algorithm
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Figure 4.24: Estimation performance of order independent PenPC versus PC-stable
algorithm for different values of α and sample size n in the ER model with p = 1000
and pE = 0.002. The results are average from 100 randomly generated graphs. (a)
Number of edges of skeleton estimates. (b) Hamming distance. (c) True discovery rate.
(d) Structural Hamming distance.
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Figure 4.25: Estimation performance of order independent PenPC versus PC-stable
algorithm for different values of α and sample size n in the BA model with p = 1000
and pE = 0.002. The results are average from 100 randomly generated graphs. (a)
Number of edges of skeleton estimates. (b) Hamming distance. (c) True discovery rate.
(d) Structural Hamming distance.
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Chapter 5

Estimation of High Dimensional Directed Acyclic Graphs with Surrogate
Experiments

5.1 Introduction

Causal relationships among a set of random variables are represented by arrows in

a directed acyclic graph (DAG), where vertices denote the variables and directed edges

between some pairs of vertices constitute no directed cycle. Consider a DAG G = (V,E)

whose vertices V = {Y1, . . . , Yp} correspond to random variables Y1, . . . , Yp and the set

of edges E generate no directed cycle. We assume that Y = (Y1, . . . , Yp)
T ∈ Rp follows

Np(0,ΣY ) with density function fΣY
(·). The Markov properties determined by the

DAG G admit recursive factorization of the joint probability density functions of the

variables

fΣY
(y1, . . . , yp) =

p∏
i=1

fΣY
(yi|ypai), (5.1)

where pai indicates the parents of vertex Yi ∈ V . Because several different DAGs

may constitute the same set of conditional independence restrictions among the set of

variables (the same factorization), the collection of all possible DAGs having the same

statistical model is called a Markov equivalence class. Larger Markov equivalence class

produces more uncertainty in causal relations among a set of variables.

We are particularly interested in gene regulatory networks, where a set of ver-

tices stand for genes that encode functional agents of the cell such as proteins and



edges depict causal relationships between sources and targets for gene activities [Vignes

et al., 2011]. Mendelian Randomization, i.e., the randomization of the alleles passing

to daughter cells during meiosis, provides a setting that is analogous to a randomized

experiment and admits causal inferences on gene expressions [Li et al., 2006]. The

early example of Katan [2004] where Mendelian randomization is used to infer causal

relations between phenotypes has been described in several review papers [Smith and

Ebrahim, 2003; Smith, 2007; Sheehan et al., 2008]. Consider assessing the causal effect

of serum cholesterol levels (X) on cancer (Y) (Figure 5.1). It is clear that the causal

effect is unidentifiable from the factorizations of the joint density under X → Y or

X ← Y , and it is infeasible in reality to control the serum cholesterol level by inter-

vention. Katan [2004] used apolipoprotein E (ApoE ) gene to identify that the relation

between low cholesterol levels and cancer is causal. Specifically, the ApoE gene can

be considered as the direct cause of the serum cholesterol level because it is known to

lower the cholesterol level. If cholesterol level was a causal factor for cancer, individuals

with the genotype of ApoE gene associated with lower cholesterol should be expected

to have higher cancer risk (Figure 5.1(a)). However if reverse causation is true and

no confounding factor exists, no association would be expected between ApoE geno-

type and cancer (Figure 5.1(b)). The former situation was observed which justifies the

causal relation that low cholesterol levels cause cancer.

In this chapter, we consider to use gene expression Quantitative Trait Loci (eQTLs),

which are the genetic variants that affect gene expression, to orient the network skeleton

of gene expression data. In eQTL studies, two types of data are collected from the same

set of subjects: gene expression and genotypes of DNA polymorphisms [Kruglyak and

Storey, 2009]. The Mendelian randomization of eQTL genotypes can be considered as

surrogate interventional experiment [Pearl, 2000; Bareinboim and Pearl, 2012]. The

utility of QTL or eQTL data in network analysis have been systematically assessed by
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previous works [Li et al., 2006; Zhu et al., 2007; Neto et al., 2008; Chen et al., 2007;

Millstein et al., 2009; Cai et al., 2013b].

5.2 Use QTL or eQTL data to infer phenotype networks

This section reviews approaches exploiting genetic variation to infer phenotype net-

works. Several methods have been developed for a special scenario, QTL-phenotype-

phenotype triads which are sets constituted by a QTL and two phenotypes mapping

to that QTL [Li et al., 2010]. Since a QTL can affect a trait directly, or indirectly

through another intermediary trait, likelihood based conditional independence tests

are widely used to distinguish causal, reactive, and independent relationships among

the QTL-phenotype-phenotype triads [Schadt et al., 2005]. Motivated by this approach,

Kulp and Jagalur [2006] allow for the interaction between genotype and phenotype to

identify Quantitative Trait Genes (QTG), and Sun et al. [2007] detect relationships

among QTG, transcription factor activity, and gene expression, and Chen et al. [2008]

uncovers the components of coexpression networks that respond to variations in DNA.

Zhu et al. [2007, 2008] construct Bayesian network by incorporating the eQTL data in

determination of direction priors.

Several recent publications pursue joint inference of network and genetic architecture

of the correlated phenotypes. Covariate-adjusted sparse precision matrices or condi-

tional Gaussian graphical models (GGM) were proposed by Yin and Li [2011, 2013]; Cai

et al. [2013a]. The QTLnet method [Neto et al., 2010] uses Bayesian model averaging

with a modified Metropolis-Hastings algorithm to estimate causal phenotype networks.

Hageman et al. [2011] propose a Bayesian methods where causal relationships between

variables are described with hierarchical regression models including QTLs.

Another approach is to employ structural equation models (SEM) that permit both

cyclic and acyclic graphs. Li et al. [2006] used score based model selection. Logsdon
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and Mezey [2010] fits p (the number of phenotypes) separate adaptive lasso regressions

for neighborhoods selection adjusting for the pre-selected eQTLs and then transform

the resulting undirected graph into a DAG or a directed cyclic graph (DCG) by re-

covery theorem they proposed. Cai et al. [2013b] extended the work of Logsdon and

Mezey [2010] by providing the adaptive Lasso the initial parameter estimates from the

penalized regression using Lasso penalty.

Despite the success of previous works, DAG estimation using high dimensional gene

expression data remains a very challenging question. We propose a new that to estimate

DAGs in two steps. We first estimate the network skeleton of a DAG (an undirected

graph after removing all edge directions of a DAG) using gene expression data and

then orient the network skeleton using eQTL data. The PC algorithm and related

methods are among the most popular methods for DAG skeleton estimation [Kalisch

and Bühlmann, 2007; Maathuis et al., 2009; Colombo and Maathuis, 2012]. We have

developed a new method named PenPC, which combines penalized regression with the

PC algorithm and shows substantial advantage than the PC algorithm when the sample

size is not too small. We will use the PC algorithm or the PenPC algorithm to construct

DAG skeleton. To orient the skeleton using eQTL data, we use a model an averaging

approach with some approximations to improve computational efficiency. In contrast

to the most existing methods that require at least one eQTL per gene to construct

DAG, our method allows a small proportion of genes having eQTL.

Gene expression abundance is traditionally measured by gene expression arrays.

Recently, RNA-seq data are replacing microarray to be the standard platform. We

have developed a statistical method that can identify eQTLs which have direct effects

on the expression of a gene [Sun, 2012]. Using RNA-seq, two types of expression data

are available. First, the expression of a gene can be estimated using the total number

of sequence reads mapped to that gene, known as the total read count (TReC). We
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assume properly normalized TReC data follow multivariate Gaussian distribution, and

we construct gene expression network with the TReC data. Second, RNA-seq data

also provide allele-specific gene expression (ASE) that is not available from microarray

gene expression data. The combination of TReC and ASE from RNA-seq data can

distinguish cis-eQTL and trans-eQTL [Sun, 2012; Sun and Hu, 2013]. Cis-eQTLs are

DNA variations of a gene that directly influence transcript levels of that gene in an

allele-specific manner. On the other hand, trans-eQTLs indirectly affect the expression

of a gene by modifying the activity of the factors that regulate the gene, which leads

to the same amount of expression changes for both alleles [Doss et al., 2005; Sun and

Hu, 2013]. In our analysis, we only use cis-acting eQTL so that each eQTL is a direct

cause of a gene.

5.3 Method

Recall that we seek to study the causal relations of p variables Y1, . . . , Yp by a

DAG G = (V,E) with vertices V = {Y1, . . . , Yp}. Let X be an additional set of

variables so that they are direct causes of the variables Y1, . . . , Yp and they are subject

to interventions. Let I ⊆ V be the set of vertices that are associated with at least one

variable in X. For example in eQTL studies, I is the set of vertices in gene expression

network with at least one eQTL. For any Yi ∈ I, X(i) = (X
(i)
1 , . . . , X

(i)
qi )T ∈ Rqi denotes

the qi variables which directly influence Yi (X i
j → Yi for all j = 1, . . . qi). Let n be

the sample size and denote the n × p observed data matrix of Y by Y = (y1, ...,yp).

Following the notations in Pearl [2000]; Bareinboim and Pearl [2012], we denote the

interventional values on variables X(i) by x̂(i) = (x̂
(i)
1 , . . . x̂

(i)
qi ). The sufficient conditions

for interventions on X(1), . . . , X(p) to be surrogate experiments require that for each

i ∈ V , X(i) has no direct effect of variables Yj for j ∈ V \ {i} [Pearl, 2000]. In this
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study, we adopt this assumption, which can be justified by the fact that we use cis-

acting eQTL. In this chapter we call the vertices in V = {Y1, ..., Yp} as observational

vertices and X
(i)
j for all j = 1, . . . , qi and all i = 1, ..., p as interventional vertices.

5.3.1 Estimation of Markov equivalence class

Using observational data, we can estimate the distribution of Y . The DAG G is

not identifiable from the distribution of Y , N (0,ΣY ) because several different DAGs

may determine the same factorization in equation (5.1). As previously mentioned in

Chapter 2, two DAGs are Markov equivalent if and only if they have the same skeleton

and the same v-structure [Andersson et al., 1997]. The skeleton of a DAG G is obtained

by replacing all directed edges to undirected edges. We denote the skeleton of G by

Gu = (V,Eu) where (Yi, Yj) ∈ Eu ⇔ (Yi, Yj) ∈ E or (Yj, Yi) ∈ E. A v-structure

is an ordered triplet of vertices (Yi, Yj, Yk) such that G contains the directed edges

(Yi, Yk) ∈ E and (Yj, Yk) ∈ E and Yi and Yj are not adjacent in G. In such a v-

structure, the co-parents Yi and Yj share a common child Yk which is called a collision

vertex. All the DAGs that are Markov equivalent form a Markov equivalence class,

which can be estimated from observation data.

Next we describe a few relevant concepts. The distribution of Y is faithful to G

if and only if (i) for any vertex pair (Yi, Yj) in V , (Yi, Yj) ∈ Eu if and only if Yi and

Yj are dependent conditional on every subsets in V \ {Yi, Yj} and (ii) in a v-structure

Yi → Yk ← Yj, Yi and Yj are marginally independent or conditionally independent

given the parents of Yi and Yj, but Yi and Yj are dependent given every set that con-

tains Yk or its descendants [Spirtes et al., 2000]. Given a Markov equivalence class,

a directed edge is compelled if this edge exists in every DAG in the equivalence class,

and it is reversible otherwise. The edges participating in v-structures of a DAG are

compelled edges. A partially directed acyclic graph (PDAG) is a graph that contains
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both directed and undirected edges with no directed cycle. A PDAG can used to rep-

resent a Markov equivalence class [Chickering, 2002]. The completed PDAG (CPDAG)

corresponding to a Markov equivalence class is the PDAG consisting of directed edges

for all compelled edge in the equivalence class, and undirected edges for all reversible

edges in the equivalence class [Chickering, 2002].

The Inductive Causation (IC) algorithm aims at estimating the CPDAG of a DAG

and the algorithm consists of three steps: (1) estimation of the skeleton Gu by a set

of conditional independence tests, (2) v-structure identification, and (3) completion of

the PDAG obtained from (1) and (2) [Pearl, 2009]. After estimating skeletons using

conditional independence tests, the v-structures are simply determined for any triples

such that (Yi, Yk, Yj) with (Yi, Yk) ∈ Eu, (Yk, Yj) ∈ Eu but (Yi, Yj) /∈ Eu by assigning

a v-structure Yi → Yk ← Yj if Yk is not included in the conditioning set which make

Yi and Yj independent. The completion in the step (3) of the IC algorithm is to

maximally orient the undirected edges as possible with restriction of no directed cycle.

This completion can be done by applying the rules suggested by Meek [1995a] and the

resulting PDAG is shown to be a CPDAG.

The skeleton estimation procedure of the IC algorithm is the part to which sta-

tistical methods can contribute. Spirtes et al. [2000] describe various algorithms to

estimate the skeleton. SGS (Spirtes-Glymour-Schein) algorithm starts from a complete

undirected graph where any pair of vertices are connected then thins the graph by

removing the edges such that Yi − Yj is removed if Yi and Yj are conditionally inde-

pendent given a subset S ⊆ V \ {Yi, Yj}. PC (Peter and Clark) algorithm thins the

complete graph by sequentially removing edges with marginal independence, 1st order

conditional independence, 2nd order conditional independence, and so on. The PC al-

gorithm can be computationally much more efficient than the SGS algorithm, especially

for sparse graphs. In the high dimensional and sparse setting, [Kalisch and Bühlmann,
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2007] proved consistency of PC-algorithm when the number of vertices grows in poly-

nomial order of the sample size. [Colombo and Maathuis, 2012] improved PC-algorithm

by solving order dependency in the sense that the resulting skeleton depends on the

variable ordering of the input data and the algorithm is called PC-stable algorithm.

Another method, the IG (Independence Graph) algorithm first estimates undirected

independence graph which includes all the edges in the skeleton plus edges between

co-parents sharing a child, and then SGS algorithm is applied in each clique to exclude

the co-parent relations. Our PenPC method is conceptually very similar to the IG al-

gorithm. The differences include that we use penalized regression to obtain the initial

undirected independence graph, and we use a modified PC-algorithm to remove the

edges due to co-parent relations.

5.3.2 Edge orientation given surrogate experiments

Given the external variables X(i) for all Yi ∈ I, the recursive factorization of the

joint probability density of the variables becomes

fΣY
(y1, . . . , yp) =

∏
Yi∈I

fΣY
(yi|ypai , x̂

(i))
∏

Yi∈V \I

fΣY
(yi|ypai) (5.2)

where x̂(i) includes qi fixed intervention values. Now we consider to orient the skeleton

Gu. Given any undirected edge in Gu, Yi − Yj, the hypothesis of interest is

Model 1: Yi → Yj vs. Model 2: Yj → Yi. (5.3)

Denote D as the data including Y and x̂(i) for all i = 1, . . . , p. Our interest is to

93



calculate the posterior probability of (Yi, Yj) ∈ E for any Yi and Yj in V

P (Yi → Yj|D) =

∑T
t=1 I (Yi → Yj ∈ Et|Gt,D)P(Gt|D)∑T

t=1 P(Gt|D)
(5.4)

=

∑T
t=1 I (Yi → Yj ∈ Et|Gt,D)P(D|Gt)∑T

t=1 P(D|Gt)
, (5.5)

where Gt = (V,Et) for t = 1, . . . T are all possible DAGs given the DAG skeleton. The

equation (5.5) is obtained by assuming all the Gt’s for all t = 1, . . . , T have the same

prior probability, which is reasonable since they all have the same number of edges.

Let patk be the set of parents of Yk in the graph Gt. We define the local likelihood of

Yk given its parents and corresponding interventional variables as

Ln(Yk|Ypatk , x̂
(k)) = exp

{
−n log σ2

k

2
−
‖yk − ypatk

βk − x̂(k)αk‖2

2σ2
k

}
, (5.6)

where yk is an n × 1 vector including observations of variable Yk, ypatk
is an n × |patk|

matrix including the observations of the parents of Yk in Gt, x̂(k) is an n × qk matrix

including the observations correspond to the interventional variables of Yk, βk is a

|patk| × 1 coefficient vector and αk is a qk × 1 coefficient vector. Then by the Markov

property, the edge direction posterior in equation (5.5) becomes

P (Yi → Yj|D) =

∑T
t=1 I(Yi → Yj ∈ Et)

∏p
k=1 Ln(Yk|Ypatk , x̂

(k))∏p
k=1 Ln(Yk|Ypatk , x̂

(k))
, (5.7)

where I(·) is an indicator function. If T = 2N where N is the number of undirected

edges in Gu is small, we can calculate the direction posterior probabilities in equation

(5.7) from all possible Gt’s.

The summation across all possible T DAGs in equation (5.7) is not computationally

feasible for a network skeleton with a large number of edges. Therefore, instead of
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evaluating all the possible DAGs within a module, we evaluate a large number of high-

likelihood DAGs, which are identified by the following approach. If two genes are

connected by an undirected edge and at least one of these two genes has an eQTL,

we refer to such undirected edges as starting edges. We identify high-likelihood DAGs

in two steps: (1) randomly assign the directions of all the starting edges based on

their posterior probabilities; and (2) iteratively update the direction of each edge by

assigning the direction with higher likelihood and acyclic constraints. The posterior

probability in step (1) is easy to calculate, since the relevant graph is simply X(i) →

Yi − Yj ← X(j). Step (2) is also computationally easy because we only consider the

local graph [X(i)
⋃
pai]→ Yi − Yj ← [X(j)

⋃
paj], where pai is the set of parents of Yi

identified by currently directed edges. We repeat steps (1) and (2) a number of times to

obtain T high-likelihood DAGs. Finally we assign the directions of all the edges using

equation (5.7) given a posterior probability cutoff. Choosing a posterior probability

cutoff is a relatively easy task because posterior probability can be interpreted as a

local False Discovery Rate (local FDR) and overall FDR is the summation of local

FDRs Efron and Tibshirani [2002].

Next we describe the details of our algorithm.

(1) randomly assign the directions of all the starting edges based on their

posterior probabilities. We assume the prior probabilities P(Yi → Yj) = P(Yj →

Yi) = 0.5 for any starting edge Yi − Yj in the skeleton, then

P(Yi → Yj|D) =
Ln(Yi → Yj|D)P(Yi → Yj)

Ln(Yi → Yj|D)P(Yi → Yj) + Ln(Yj → Yi|D)P(Yj → Yi)

=
Ln(Yj|Yi, x̂(j))Ln(Yi|x̂(i)))

Ln(Yj|Yi, x̂(j))Ln(Yi|x̂(i)) + Ln(Yi|Yj, x̂(i))Ln(Yj|x̂(j))
. (5.8)

By the definition of starting edges, at least one of Xi and Xj is not an empty set. For

each starting edge, we randomly generate edge direction according to this posterior

95



probability with acyclic constraint. The resulting graph is called an initial graph.

(2) iteratively update the direction of each edge by assigning the direction

with higher likelihood. Given the initial graph, we orient the edges as follows.

For each edge between variables Yi and Yj, we still assume the prior probabilities

P(Yi → Yj) = P(Yj → Yi) = 0.5. We abuse the notation a little bit to denote the

current working graph as Gt so that Gt is being updated in each step of our algorithm.

The posterior probability of P(Yi → Yj|D, Gt) is

Ln(Yj|Yi, Ypatj , x̂
(j))Ln(Yi|Ypati , x̂

(i)))

Ln(Yj|Yi, Ypatj , x̂
(j))Ln(Yi|Ypati x̂

(i)) + Ln(Yi|Ypati , Yj, x̂
(i))Ln(Yj|Ypatj , x̂

(j))
. (5.9)

Then we decide the direction of edge Yi − Yj with simple posterior comparison such

that Yi → Yj if P(Yi → Yj|D, Gt) > P(Yj → Yi|D, Gt) and Yj → Yi otherwise. The

remaining question is how to decide the orders to orient all the edges, which is described

in the following algorithm.

1. Randomly select a starting edge from the initial graph. Suppose this edge is Yi → Yj.

2. Set Ψ = {Yi} and Ψ0 as an empty set, where the former are the vertices to be

considered and the latter are the vertices that have been considered.

3. While (Ψ is not an empty set)

3.1. For all (Yk ∈ Ψ)

3.2.1 Construct Ψk, the vertices that are connected to Yk by undirected edges.

3.2.2 For all (Yl ∈ Ψk)

(1) Choose a direction Yk → Yl vs. Yl → Yk based on posterior probability.

(2) If the chosen direction lead to a directed cycle, then remove the direction

and keep an undirected edge Yk → Yl .

3.2 Set Ψ0 = Ψ0 ∪Ψ.
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3.3 Update Ψ = adj(Ψ, Gt) \ Ψ0 where adj(Ψ, Gt) is the set of vertices adjacent to

any vertices in Ψ.

We generate graphs Gt for t = 1, ..., T by repeating the above steps (1) and (2) T times.

5.4 Simulation

We simulate random DAGs following the ER model [Erdős and Rényi, 1960] with a

connection probability pE. Each DAG G has p = 1000 vertices for 1000 genes, among

which q genes have eQTLs. To simply the model, we assume each of these q gene has

one and only one eQTL. The the gene expression data are simulated as follows:

1. Construct a p×p matrix A = (aij) and a p×1 vector b = (bj) where all elements

are zero. The former are regression coefficients for gene-gene associations and the

latter are regression coefficients of eQTL effect sizes.

2. With probability pE, the lower triangle elements of A are replaced by indepen-

dent realizations of random variable 2Z, where Z ∼ Exp(5), and Exp(5) denotes

exponential distribution with parameter 5.

3. Simulate the genotype data xi for i = 1, . . . , p by a multinomial distribution

denoted by multinomial(n, (1− pm)2, 2pm(1− pm), p2
m), where pm is a predeter-

mined minor allele frequency, and Xi = 0, 1, or 2 with probabilities (1 − pm)2,

2pm(1− pm), and p2
m, respectively.

4. Randomly choose q elements of b, and fill in values by realizations of random

variable 2Z, where Z ∼ Exp(2), and Exp(2) denotes exponential distribution with

parameter 2.
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After obtaining a topological order of the set of vertices V using A, the column vectors

of n× p data matrix Y are generated by the equations:

yj =
∑
k∈paj

ajkyk + bjxj + εj

where n = 300, paj is determined by the simulated DAG, and εj ∼ N (0, In). We

simulate yj for j = 1, ..., p sequentially and the n elements of yj are scaled to have

variance 1 after simulating each yj.

In the simulation studies, we compare our method, which we refer to as siDAG,

with the QDG (QTL-directed dependency graph) method [Neto et al., 2008]. The

QDG method requires every gene in the DAG has at least one eQTL. Therefore to

evaluate QDG, we simulate eQTLs for all the p = 1000 genes. While to test our

method siDAG, we assume that a subset of the p genes have eQTL. Specifically, we

set q, the number of genes with eQTL, to be 10%, 50%, 80% or 100% of p. For both

QDG and siDAG, we start from the same skeleton obtained by the PC-stable algorithm

[Colombo and Maathuis, 2012] using α = 0.01 as the significance level for each partial

correlation testing. Figure 5.2 displays performances of skeleton estimation using PC-

stable algorithm. We calculated numbers of edges, numbers of true/false positives,

numbers of true/false negatives, and Hamming distance, which is the number of false

positives plus the number of false negatives. To evaluate the resulting partially directed

graphs from CPDAG (without using eQTL data), QDG and siDAG, we consider four

measures among true positives in the estimated skeleton, number of undirected edges

(UTP), number of correctly directed edges (TTP), number of incorrectly directed edges

(FTP). Additionally, we define a distance masure

Distance = 2 ∗ FTP + UTP.
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Figure 5.3 displays those four measures of resulting graphs obtained by PC, QDG and

siDAG for q = 100, 500, 800 and 1000. The QDG algorithm has two steps. It first

uses eQTLs to direct each edge in the skeleton and then iteratively refine the directions

of the edges. In Figure 5.3, “eQTL only” indicates the results of using the first step

of QDG or the first step of siDAG when all genes have eQTLs. The advantage of our

method siDAG is that it is applicable when only a subset of the genes have eQTLs. In

fact, the accuracy of DAG estimation is already much better than CPDAG (without

using eQTLs) when only 10% of the genes have eQTLs.

5.5 Application

Our method is applied to a breast cancer study. We use RNA-seq data from tumor

tissues for 550 female caucasian samples. After removing genes with low expression

across most samples, we end with 18,827 genes. The expression of each gene within

each sample is measured by total read count (TReC), and we use log transformed TReC,

logTReC, in this study. A 550×18,827 residual data is obtained after taking out the

linear effects of several important covariates, 75 percentile of logTReC (which captures

read depth), plate, institution, genotype PCs and expression PCs. Our goal is to esti-

mate a network among those 18,827 genes with the set of vertices V = {Y1, . . . , Y18827}.

The PC algorithm implemented in pcalg package of [Kalisch and Bühlmann, 2007] is

computationally too intensive to estimate a skeleton for our data with p = 18, 827 and

n = 550. Instead, we start from Gaussian graphical model (GGM) using neighborhood

selection [Meinshausen and Bühlmann, 2006] with log penalty. Using GGM in the PC

algorithm is one of the possible modifications described in Spirtes et al. [2000]. To

estimate a GGM, we have the following pre-screening process:

(1) Marginal correlations (r0) are tested for all pairs of vertices. A edge is kept if

the testing p-value is smaller than 10−5. Denote the neighborhood of vertex i as
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ne0(i).

(2) For any Yi ∈ V and Yj ∈ ne0(i), calculate 1st-order partial correlations (r1)

cor(Yi, Yj|Yk) for all Yk ∈ ne0(i) \ {Yj}. If the maximum p-value is less than 0.01,

set ne1(i) = ne0(i). Otherwise, set ne1(i) = ne0(i) \ {Yj}.

For any vertex Yi ∈ V , we select the neighborhood denoted by ne(i) using a penalized

regression with Yi as response variable and the variables in ne1(i), denoted by Yne1(i),

as covariates:

b̂i = arg min
bi∈R|ne1(i)|

1

2
(yi − Yne1(i)bi)

T(yi − Yne1(i)bi) + n
∑

j∈ne1(i)

pθ(|bi,j|), (5.10)

where yi is n×1 vector for n measurements of variable Yi, Yne1(i) is n×|ne1(i)|matrix for

n measurements of Yne1(i), bi ∈ Rne1(i) is the coefficient vector with elements {bij}j∈ne1(i)

and pθ(|bi,j|) denotes a penalty function with tuning parameters θ. After p penalized

regressions, we obtain a Gaussian graphical model estimates denoted by Ĝm = (V, Êm)

and the edge set Êm is estimated by

(Yi, Yj) ∈ Êm ⇔ Yi ∈ ne(j) and Yj ∈ ne(i).

Denote adj(Yi, G) as the set of adjacent vertices to Yi in a graph G. We run PC-

algorithm as follows:

(1) Set G = (V, F ) where F = Em.

(2) Repeat the following from k = 2 until k > maxi∈V adj(Yi, G)

- For any Yi ∈ V and any Yj ∈ adj(Yi, G), calculate k-order partial correlations

(rk), cor(Yi, Yj|YK) for all YK ⊆ adj(Yi, G) \ {Yj} and |YK| = k. If the maximum

p-value is greater than or equal to 0.01, remove Yj from adj(Yi, G).
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- Update F with

(Yi, Yj) ∈ F ⇔ Yi ∈ adj(Yj, G) and Yj ∈ adj(Yi, G).

Figure 5.4-(a) shows distribution of neighborhood sizes after pre-screening procedure.

From the marginal correlation screening, the sizes range from 4 to 11,984 and are

reduced to range from 1 to 1,689 after 1st-order partial correlation screening. The PC

algorithm proceeds until 11th-order partial correlation testing. Figure 5.4-(b) displays

the degree distribution for the estimated GGM and PC-algorithm after k = 2, 3, 4 and

11. From the GGM, the degree ranging from 3 to 23 and 48,891 edges are kept. From

the PC algorithm, the 11-order partial correlation testing gives degree ranging from

3 to 11 and 39,111 edges which is 0.02% of the all possible edges. After k = 11, the

PC-algorithm stop because there is no edge having degree greater than 11.

If the network skeleton form several disconnected component, we can run our siDAG

algorithm for each component separately. However, the estimated skeleton constructs a

huge connected component including 18,210 vertices. We consider community structure

of the skeleton. Community structure is the gathering of vertices into groups such that

there is a higher density of edges within groups than between them and modularity is

a division of a network into communities [Clauset et al., 2004]. After the analysis of

the community structure on the skeleton, we obtain 34 modules with more than two

vertices. All the other vertices are combined into another module. Figure 5.5 shows the

relationship between the number of vertices and the number of edges in each module.

The next step is to direct the edges in the skeleton estimates using cis-eQTLs for

6156 genes, where we keep the most significant cis-eQTL per gene. The cis-eQTLs are

identified by eQTL mapping using both Total Read Count (TReC) and allele-specific

expression (ASE) Sun [2012]. After applying our method, siDAG for each module
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skeleton, we have 23,370 directed edges and 522 undirected edges within modules. The

estimated FDR was 0.001. The example graphs around a few breast cancer related

genes such as ERBB2, ESR1, and FGFR2 are shown in Figures 5.6, 5.7, and 5.8,

respectively.

5.6 Conclusion

A DAG is used to represent causal relationships among a set of variables. We focus

on estimating a DAG that represents a set of random variables following multivari-

ate Gaussian distribution. Estimation of the DAG based on observational data is a

challenging problem because the conditional independence relations implied by the dis-

tribution satisfying Markov property may represent several DAGs. We have developed

a method to estimate the DAG when there is an additional set of variables, which are

subject to interventions and they are direct causes of the variables in the DAG. Simu-

lation studies demonstrate the satisfactory performances of our method. We apply our

method to construct a regulatory network from high dimensional gene expression data

where we use genotype data of DNA polymorphisms as surrogate interventional data.
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5.7 Figures

Figure 5.1: Example
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Figure 5.2: Performances of the estimated skeleton from PC-stable algorithm (p=1000,
n=300, pm = 0.3). Among 100 replications, 37 PDAGs (v-structures) were not extend-
able to a DAG. (a) Number of edges. (b) Number of true positives. (c) Number of false
negatives. (d) Number of true negatives. (e) Number of false positives. (f) Hamming
Distance.
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Figure 5.3: Performances of CPDAG, directions when only eQTLs are used to calculate
likelihoods, QDG, siDAG for q=100, 500, 800 and 1000 when p=1000, n=300, pm = 0.3
and pE = 0.002. Among true positive undirected edges in the skeleton estimates (a)
number of undirected edges. (b) number of correct direction (c) number of incorrect
directions. (d) Distance.
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Figure 5.4: (a) Distribution of neighborhood sizes after the pre-screening procedure.
(b) Distribution of degree during PC-algorithm
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Figure 5.5: A scatter plot of the number of vertices versus the number of edges in each
module
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Figure 5.6: DAG estimation around gene ERBB2, where light blue edges are un-directed
edges.
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Figure 5.7: DAG estimation around gene ESR1, where light blue edges are un-directed
edges.
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Figure 5.8: DAG estimation around gene FGFR2, where light blue edges are un-directed
edges.
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Appendix I

Supplementary materials for Chapter 3

Inverse covariance matrix and partial correlation matrix

Consider a p-dimensional random variable X = (X1, ..., Xp)
T, with mean zero and

p×p positive definite covariance matrix Σ. Writing Y = (Xa, Xb)
T and Z = XΓ\{a,b} =

{Xk : k ∈ Γ\{a, b}}. Suppose the random vector (Y, Z)T have covariance matrix Σ̃,

which is a permutation of the covariance matrix Σ. Let Ω̃ = Σ̃−1. Σ̃ and Ω̃ can be

partitioned as

Σ̃ =

ΣY Y ΣY Z

ΣZY ΣZZ

 , Ω̃ =

ΩY Y ΩY Z

ΩZY ΩZZ

 .

Given the formula for the inverse of a partitioned matrix,

A B

C D


−1

=

 E−1 −E−1G

−FE−1 D−1 + FE−1G

 ,

where E = A−BD−1C, F = D−1C, and G = BD−1, it is easy to show that

ΩY Y = (ΣY Y −ΣY ZΣ−1
ZZΣZY )−1. (5.11)

Now we show that −scale(ΩY Y ) is the partial correlation between Xa and Xb. The

best linear predictor of Y given Z is β̂T where β̂ is the solution of ΣZZβ̂ = ΣZY . The

partial covariance matrix of Y , which is defined as the covariance of the residuals, is

Cov(Y − β̂TZ) = ΣY Y − β̂TΣZZβ̂ = ΣY Y −ΣY ZΣ−ZZΣZY (5.12)

for any generalized inverse, Σ−ZZ that satisfies ΣZZ = ΣZZΣ−ZZΣZZ .
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Comparing equations (5.11) and (5.12), we have

Cov(y − β̂Z) = Ω−1
Y Y =

1

det(ΩY Y )

 Ωbb −Ωab

−Ωba Ωaa

 .

By normalizing the matrix, we get the partial correlation of Xa and Xb as

−Ωab√
Ωaa

√
Ωbb

.

which is off diagonal element of −scale(ΩY Y ). This result can be generalized to any

pair of nodes.
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Appendix II

Supplementary materials for Chapter 4

An example that neither covariance matrix nor concentration matrix cap-
tures the network skeleton

Consider a simple network of four nodes/variables X, Y , and Z and W , with the

underlying network structure X → W ← Z ← Y , and we assume there is no any other

(hidden) variables. For illustration purpose, we assume the observations of these four

random variables are generated through the following mechanism.

X = ε1, Y = ε2, Z = Y + ε3, and W = X + Z + ε4 (5.13)

where εj are i.i.d. N(0, 1) for 1 ≤ j ≤ 4. Denote the covariance matrix and partial

covariance matrix of this system as Σ and Ω, respectively. Note Ω = Σ−1, and (i, j)-th

entry of Ω indicates the covariance of the i-th and the j-th variables, conditioning on

all the other covariates in this system. Let the connection matrix (i.e., skeleton) of this

system be Ξ. Then we have:

Σ =



X Y Z W

X 1 0 0 1

Y 0 1 1 1

Z 0 1 2 2

W 1 1 2 4


, Ω =



X Y Z W

X 2 0 1 −1

Y 0 2 −1 0

Z 1 −1 2 −1

W −1 0 −1 1


, and Ξ =



X Y Z W

X 1 0 0 1

Y 0 1 1 0

Z 0 1 1 1

W 1 0 1 0


.

We see that neither Σ nor Ω gives us the correct connection matrix of network structure

X → W ← Z ← Y .

The details of the PenPC algorithm

In this section, we describe the step 2 of PenPC algorithm. For any undirected

graph C = (V, F ) we define some quantities. Denote adj(i,C) as the adjacent vertices
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of i in C. Let adj(i, j,C) = adj(i,C)
⋂
adj(j,C). The subgraph of C on the set of

vertices S ⊆ V is denoted by C(S). And Con(v,C(S)) for v ∈ S is defined by the set

of connected vertices to v by any length of chains in C(S) and includes v itself. For an

edge (i, j) ∈ F , Γ(C)i,j is defined by

Γ(C)i,j =

 ⋃
v∈adj(i,j,C)

Con
(
v,C(V \ {i, j})

)⋂[
adj(i,C)

⋃
adj(j,C)

]
.

Let CG = (V, FG) as the GGM in step 1 of PenPC algorithm described in section 4.3.

Input: GGM CG

Output: Skeleton Gu = (V,Eu) and separation set S(i, j) for edges (i, j) /∈ Eu but

(i, j) ∈ FG

1. Set l=-1 and C = CG (F = FG)

2. For all (i, j) ∈ F ,

2.1 if Xi and Xj are marginally independent, then delete (i, j) from F

3. Repeat: l=l+1

3.1 Repeat: Select an edge (i, j) ∈ F such that |Γ(C)i,j| ≥ l

3.1.1 Repeat: Select Γ ⊆ Γ(C)i,j with |Γ| = l

3.1.1.1 Set K = [adj(i,C) ∪ adj(j,C)]\[Γ
⋃
{i, j}]

3.1.1.2 If Xi and Xj are conditionally independent given {Xk : k ∈ K},

then

- Delete (i, j) from F

- Save K in separation set for i and j, S(i, j)
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3.1.2 Until: The edge (i, j) is deleted from F or all |Γ| = l have been chosen

3.2 Until: All edges (i, j) ∈ F with |Γ(C)i,j| ≥ l are tested for all conditioning

set Γ ⊆ Γ(C)i,j with |Γ| = l

4. Until: for each (i, j) ∈ F , |Γ(C)i,j| < l

The deterministic rules to extend a skeleton to a CPDAG

We describe the rules in [Kalisch and Bühlmann, 2007] and [Pearl, 2009]. Given the

skeleton Gu and the separation sets S(i, j) for all missing edges between nodes i and

j, the arrow orientation of the skeleton proceeds in two step: (1) determination of the

v-structure and (2) completion of the partially directed graph (PDAG) in (1).

step 1 For each pair of nonadjacent vertices i and j with common neighbor k, add arrow

heads pointing at k, i→ k ← j if k /∈ S(i, j).

step 2 In the PDAG from step 1, following four rules are repeatedly applied to obtain

maximally oriented pattern.

rule 1 Orient j − k into j → k whenever there is an arrow i→ j such that i and k

are nonadjacent.

rule 2 Orient i− j into i→ j whenever there is a path i→ k → j.

rule 3 Orient i−j into i→ j whenever there are two paths i−k1 → j and i−k2 → j

such that k1 and k2 are nonadjacent.

rule 4 Orient i − j into i → j whenever there are two paths i − k1 → k2 and

k1 → k2 → j such that k1 and k2 are nonadjacent.
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Supplementary Theoretical Results

Proof of Lemma 1

Proof. Without loss of generality, let i = 1. Partition the covariance matrix

Σ =

Σ11 Σ12

Σ21 Σ22

 ,

where Σ11 is a scaler and Σ22 is a (p− 1)× (p− 1) matrix.

It is easy to show that

X1 |X−1 ∼ N
(
XT
−1(Σ22)−1Σ21,Σ11 −Σ12(Σ−1

22 Σ21)
)
.

Therefore, bi = (Σ22)−1Σ21

On the other hand, by block matrix inversion formula,

Ω =

Σ11 Σ12

Σ21 Σ22


−1

=

 1
σ2
1

− 1
σ2
1
bT
i

− 1
σ2
1
bi (Σ22 − 1

Σ11
Σ12Σ21)−1

 ,

where σ2
1 = Σ11 −Σ12(Σ22)−1Σ21.

Lemma 5

The following lemma is needed for proof of Theorem 2. It provides a sufficient

condition for strict local minimizer b̂i of (4.1).

Lemma 5. Assume that pθ satisfies Condition 1. Define p̄(t) = sgn(t)p′θ(|t|), t ∈ R and

p̄(t) = (p̄(t1), . . . , p̄(tq)), t = (t1, . . . , tq)
T. Then b̂i ∈ Rpn−1 is a strict local minimizer
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of Q(bi) = 1
2
(xi −X−ibi)T(xi −X−ibi) + n

∑
j 6=i pθ(|bi,j|) if

XT
i1(xi −X−ib̂i) = np̄(b̂i1), (5.14)

‖XT
i2(xi −X−ib̂i)‖∞ < np′θ(0+), (5.15)

‖(XT
i1Xi1)−1‖2 ≤ 1/(nκ(p; b̂i1)) (5.16)

where κ(p; b̂i1) is defined in (4.2).

It is a special case of Theorem 1 in [Fan and Lv, 2011], which provides more detail

discussion about the conditions so that we skip the proof.

Proof of Theorem 2

Proof. For any fixed i ∈ Vn, xi is a n× 1 response vector and X−i is a n× q covariate

matrix with q = pn − 1 corresponding to vertices Vn \ {i}. Let Si = supp(bi) to be the

support of the true regression coefficient bi with |Si| = si. Define ξi = (ξi1, ..., ξiq)
T =

XT
−i(xi −X−ibi) = XT

−iε where ε ∼ Nn(0, σ2
i In) for n × n identity matrix In. Let ξi1

and ξi2 to be the non-joint sub-vectors with indices partitioned by Si. Define the event

Ei =
{
‖ξi‖∞ ≤ σin

1/2+a/2
√

log(n)
}
. (5.17)

We first consider the property of penalized regression on Ei. Lemma 5 gives out sufficient

conditions of a local minimizer. We prove that within the hypercube

Ni = {β = (βT
1 ,β

T
2 )T ∈ Rq : ‖β1 − bi1‖∞ ≤ Cn−d2 , β2 = 0}, (5.18)

there is a solution b̂i that satisfy (5.14) (5.15) and (5.16). Equation (5.16) of Lemma 5

holds by Assumption (A6).

Step 1: Find a solution to (5.14) in Ni.
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We will prove that conditioning on Ei, there is a solution b̂i1 ∈ Rsi for equation (5.14)

of Lemma 5 which is equivalent to

b̂i1 = bi1 + (XT
i1Xi1)−1{XT

i1ε− np̄(b̂i1)}.

Suppose that β = (βT
1 ,β

T
2 )T ∈ Rq has the same partition as bi = (bT

i1, b
T
i2)T. Let ui =

(XT
i1Xi1)−1[XT

i1ε−np̄(β1)], and φ(β1) = β1−bi1−ui, where β1 = (β1,1, . . . , β1,si)
T ∈ Rsi

and bi1 = (bi1,1, . . . , bi1,si) ∈ Rsi . It suffies to show that there is a solution to φ(β1) = 0

in Ni. Suppose ‖ui‖∞ = o(n−d2). For sufficiently large n, if β1,j − bi1,j = Cn−d2 ,

φj(β1) ≥ Cn−d2 −‖ui‖∞ > 0. If β1,j − bi1,j = −Cn−d2 , φj(β1) ≤ −Cn−d2 + ‖ui‖∞ < 0.

By the continuity of function φ(β1) and Miranda’s existence theorem, there is a solution

for φ(β1) = 0 in Ni.

Now we prove ‖ui‖∞ = o(n−d2). For any β = (βT
1 ,β

T
2 )T ∈ Ni, |β1,j| ≥ |bi1,j| − δn

where δn defined in Assumption (A5), and thus

min
j=1,...,si

|β1,j| ≥ min
j=1,...,si

|bi1,j| − δn ≥ δn.

By monotonicity of p′θ(t) in Condition 1, ‖p̄θ(β1)‖∞ ≤ p′θ(δn). Therefore, on Ei,

‖XT
i1ε− np′θ(β1)‖∞ ≤ σin

1/2+a/2
√

log(n) + np′θ(δn),

Then by assumption (A4),

‖ui‖∞ ≤ σin
−1/2+a/2+s0

√
log(n) + ns0p′θ(δn)

By Assumption (A5), σin
−1/2+a/2+s0

√
log(n) = o(n−d2) and by Assumption (A6),

ns0p′θ(δn) = o(n−d2). Therefore, ‖ui‖∞ = o(n−d2). From this proof, we require the

penalty to be small enough p′θ(δn) = o(n−s0−d2).
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Step 2: Verify Condition (5.15) holds for b̂i.

For b̂i ∈ Ni satisfying the condition (5.14), we need to verify

‖XT
i2(xi −X−ib̂i)‖∞ < np′θ(0+)

on the event Ei. Note that

XT
i2(xi −X−ib̂i) = XT

i2(xi −X−ibi)−XT
i2(X−ib̂i −X−ibi) = ξi2 −XT

i2Xi1(b̂i1 − bi1).

By Condition 1, n‖p′θ(b̂i1)‖∞ ≤ np′θ(δn). From assumption (A5) and (A6) we know

that n‖XT
i2Xi1(XT

i1Xi1)‖∞p′θ(δn) ≤ Knp′θ(0+) and n1/2+a/2+b
√

log(n) = o(np′θ(0+)).

On Ei,

‖XT
i2(xi −X−ib̂i)‖∞

≤‖ξi2‖∞ + ‖XT
i2Xi1(b̂i1 − bi1)‖∞

≤σin1/2+a/2
√

log(n) + ‖XT
i2Xi1(XT

i1Xi1)−1‖∞
[
‖ξi1‖∞ + n‖p′θ(b̂i1)‖∞

]
≤o(np′θ(0+)) + σin

1/2+a/2+b
√

log(n) +Knp′θ(0+)

<np′θ(0+)

for sufficiently large n.

Step 3: Prove that P(Ei)→ 1.

Since ‖xi‖2 =
√
n, (
√
nσi)

−1ξij ∼ N(0, 1). Applying the upper bound for normal

distribution function,

P
(

ξij√
nσi

> z

)
<

1√
2π
z−1 exp{−z2/2}.
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We have

P(Ei) ≥ 1−
q∑
j=1

P
(
|ξij| > σin

1/2+a/2
√

log(n)
)

> 1−
q∑
j=1

√
2√

πna log(n)
exp{−na log(n)/2}

> 1− Cpn exp{−na log(n)/2}

> 1− C exp{na − na log(n)/2.

Proof of Corollary 1

Proof. Let E =
⋂pn
i=1 Ei where Ei defined in (5.17). Therefore P(E) ≥ 1 −

∑pn
i=1(1 −

P(Ei)) ≥ 1− C exp{2na − na log(n)/2} → 1 from the proof of Theorem 2.

Proof of Lemma 2

Proof. We need to show that (i, j) ∈ Fn ⇔ (i, j) ∈ Eu
n or at least one vertex k such

that i → k ← j. If (i, j) ∈ Eu
n, i and j are conditionally dependent given all subsets

of Vn \ {i, j}, hence (i, j) ∈ Fn. If i and j are common parents of a common child k, i

and j are conditionally dependent given Vn \ {i, j} since k ∈ Vn \ {i, j}. Conversely, if

(i, j) ∈ Fn, i and j are not separated by Vn \ {i, j}. By Definition 1 on d-separation, it

means (i, j) ∈ Eu
n or some of the chains between i and j are not d-separated by Vn\{i, j}.

The latter case means that at least one chain has a collider (or a v-structure). It is

easy to show if this chain includes any vertices other than the collider, it is d-separated

by Vn \ {i, j}. Therefore i and j co-parent at least one child.
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Proof of Lemma 3

Proof. Suppose that two vertices i and j are not connected in the skeleton Gun, but

connected in the GGM CGn . By Lemma 2, there exists at least one vertex k such that

i → k ← j. Let adjj(i, CGn) as adjacency vertices of i without j in CGn . Let chGn(i)

and deGn(i) be the sets of children and descendants of i in Gn. Let πi = adjj(i, CGn) \[⋃
v∈chGn (i)∩chGn (j) ({v}

⋃
deGn(v))

]
and πj = adji(j, CGn)\

[⋃
v∈chGn (i)∩chGn (j) ({v}

⋃
deGn(v))

]
.

We show that i and j are d-separated by πi
⋃
πj and πi

⋃
πj ∈ Πi,j.

In order to show that i ⊥⊥ j|πi
⋃
πj, we consider a sequence of vertices k1, . . . , km

for m ≥ 1 of chains such that

(Chain 1) i→ k1 − . . .− km ← j

(Chain 2) i→ k1 − . . .− km → j

(Chain 3) i← k1 − . . .− km ← j

(Chain 4) i← k1 − . . .− km → j.

Those four cases cover all possible chains connecting i and j for the adjacent vertices,

k1 and km. It suffices to show that πi
⋃
πj blocks all the four types of chains between

i and j. For the (Chain 2), a set including the arrow emitting vertex km d-separates

i and j by Definition 1 on d-separation. Since km ∈ adji(j, CGn) and km /∈ chGn(j)

because of no loop, km ∈ πi
⋃
πj. Similarly for the (Chain 3), since the arrow emitting

vertex k1 ∈ adjj(i, CGn) but k1 /∈ chGn(i), k1 ∈ πi
⋃
πj. The (Chain 4) also blocked by

either arrow-emitting vertices k1 or k2 included in πi
⋃
πj. In the (Chain 1), there must

be at least one collider. If m = 1, then km is a common child so that it is excluded from

πi
⋃
πj. If m = 2, the possible chains are i → k1 → k2 ← j or i → k1 ← k2 ← j and

both chains have one arrow emitting vertex, k1 or k2 in πi
⋃
πj. Now we suppose that

there are at least three vertices, m > 2. If at least one of k1 and km is not a collider,

there exists a arrow emitting vertex in πi
⋃
πj. If both k1 and km are colliders, the

(Chain 1) is i → k1 ← k2 − . . . − km−1 → km ← j. Since the arrow emitting vertices
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k2 and km−1 are not in chGn(i)
⋂
chGn(j) but in adjj(i, CGn)

⋃
adji(j, CGn), those are in

πi
⋃
πj. Therefore, πi

⋃
πj blocks all chains between i and j.

Next we need to prove πi
⋃
πj ∈ Πi,j. Let Vn,−i,−j = Vn \ {i, j}. Since πi

⋃
πj =[

adjj(i, CGn)
⋃
adji(j, CGn)

]
\
[⋃

v∈chGn (i)∩chGn (j) ({v}
⋃
deGn(v))

]
, it suffices to show that

⋃
v∈chGn (i)∩chGn (j)

(
{v}

⋃
deGn(v)

)
⊆

⋃
v∈adj(i,j,CGn )

Con
(
v, CGn(Vn,−i,−j)

)
. (5.19)

First, chGn(i)
⋂
chGn(j) ⊆ adj(i, j, CGn) because adj(i, j, CGn) contains all common

children as well as all common parents of i and j. Second, for a fixed vertex v ∈

adj(i, j, CGn), the set of vertices connected to v by any length of chains in the sub-

graph CGn(Vn,−i,−j) includes all the descendents of v if v is a common child of i and j.

Therefore the relationship (5.19) holds.

If we test i and j conditioning on each set in Πi,j made by excluding all sub-

sets of
⋃
v∈adj(i,j,CGn ) Con

(
v, CGn(Vn,−i,−j)

)
from the union of the two adjacent vertices,

adjj(i, CGn)
⋃
adji(j, CGn), we can always eliminate the edge (i, j) ∈ Fn of CGn being in

co-parent relationship in Gn.

Lemma 6

We state Lemma 6 which is used to prove Theorem 3. This lemma is essentially the

same as Lemma 3 in [Kalisch and Bühlmann, 2007]. The proof is therefore skipped.

Let νi = |adj(i, CGn)| for all i ∈ Vn.

Lemma 6. Let g(ρ) = 0.5 log((1 + ρ)/(1 − ρ)). Denote by ẑi,j|K = g
(
ρ̂i,j|K

)
and

by zi,j|K = g
(
ρi,j|K

)
where K ⊆ adj(i, CGn)

⋃
adj(j, CGn). Assume the distribution of

X = (X1, X2, ..., Xp)
T is multivariate Gaussian (the frist part of Assumption (A1)),

and supi,j,K
∣∣ρi,j|K∣∣ ≤ M < 1 (the second part of Assumption (A3)). Then, for any
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0 < γ < 2,

sup
i,j,K

P
(∣∣ẑi,j|K − zi,j|K∣∣ > γ

)
≤ O(n− νi − νj) [exp {−(C1 + C2)(n− νi − νj − 4)}] ,

where 0 < C1 <∞, and 0 < C2 <∞. More specifically,

C1 = log

[
4 + (γl)2

4− (γl)2

]
, C2 = log

[
16 + (1−M)2

16− (1−M)2

]
,

where l = 1− (1 +M)2/4.

Proof of Theorem 3

Proof of Theorem 3. For an edge (i, j) ∈ Fn of CGn , define K to be any set in Πi,j of

(4.3) with |K| < n − 3. Let νi = |adj(i, CGn)| for all i ∈ Vn. From Lemma 5 in the

Supplementary Materials, if γ → 0, C1 ∼ (γl)2/2 → 0. In contrast, C2 is a constant.

Therefore the term exp{−C2(n− νi − νj − 4)} is negligible, and thus

sup
i,j,K

P
(∣∣ẑi,j|K − zi,j|K∣∣ > γ

)
≤ O(n− νi − νj) exp

{
−(γl)2(n− νi − νj − 4)/2

}
≤ O(n− νi − νj) exp

{
−C3(n− νi − νj)γ2

}
,

where C3 is a constant.

Denote by Ei,j|K the event “an error occurred when testing partial correlation for

zero at nodes i, j with conditional set K”. An error can be a type I error or a type II

error, denoted by EI
i,j|K and EII

i,j|K, respectively. Therefore Ei,j|K = EI
i,j|K

⋃
EII
i,j|K, and

EI
i,j|K :

√
n− |K| − 3

∣∣ẑi,j|K∣∣ > Φ−1(1− α/2) and zi,j|K = 0,

EII
i,j|K :

√
n− |K| − 3

∣∣ẑi,j|K∣∣ ≤ Φ−1(1− α/2) and zi,j|K 6= 0.
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Choose α = αn = 2(1−Φ(
√
ncn/2)), where cn is defined in assumption (A3). Then

sup
i,j,K

P(EI
i,j|K) = sup

i,j,K
P
[∣∣ẑi,j|K − zi,j|K∣∣ >√n/(n− |K| − 3)cn/2

]
≤ O(n− νi − νj) exp

[
−C4(n− νi − νj)c2

n

]
,

for some constant C4. With the same choice of α,

sup
i,j,K

P(EII
i,j|K) = sup

i,j,K
P
[∣∣ẑi,j|K∣∣ ≤√n/(n− |K| − 3)cn/2

]
≤ sup

i,j,K
P
[∣∣ẑi,j|K − zi,j|K∣∣ > cn

(
1−

√
n/(n− |K| − 3)/2

)]
≤ O(n− νi − νj) exp

[
−C5(n− νi − νj)c2

n

]
,

for some constant C5.

P(an error occurs in the step 2 of PenPC algorithm)

≤
∑

(i,j)∈Fn

2νi+νjO((n− νi − νj)) exp{−C6(n− νi − νj)c2
n}

≤ O

 pn∑
i=1

∑
j∈adj(i,CGn )

n22qn exp
{
−C6(n− 2qn)c2

n

}
≤ O

[
npnqn exp

{
2qn − C6(n− 2qn)c2

n

}]
≤ O

[
npnqn exp

{
−C6n

1−2d1 + C7qn
}]

(5.20)

≤ O
[
nb+1 exp

{
−C6n

1−2d1 + na + C7n
b
}]

for a positive constant C6 and C7. This probability converges to zero as n→∞ when

0 < d1 < min
(

1−a
2
, 1−b

2

)
.
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Proof of Corollary 2

Proof. From Corollary 1 and Theorem 3,

P(an error occurs in the PenPC algorithm)

= P(ĈGn(θ) 6= CGn) + P(Ĝun(αn) 6= Gun)

= O (exp{2na − na log(n)}) +O
(
exp{−Cn1−2d1}

)
= O

(
exp{−Cn1−2d1}

)
for d1 < min((1− a)/2, (1− b)/2).
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N., Ghavi-Helm, Y., Wilczyński, B., Riddell, A., and Furlong, E. E. (2012). Tissue-
specific analysis of chromatin state identifies temporal signatures of enhancer activity
during embryonic development. Nature genetics, 44(2):148–156.

Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix esti-
mation. Journal of the American Statistical Association, 106(494):672–684.

Cai, T. T., Li, H., Liu, W., and Xie, J. (2013a). Covariate-adjusted precision matrix
estimation with an application in genetical genomics. Biometrika, 100(1):139–156.

Cai, X., Bazerque, J. A., and Giannakis, G. B. (2013b). Inference of gene regulatory
networks with sparse structural equation models exploiting genetic perturbations.
PLoS computational biology, 9(5):e1003068.

Castelo, R. and Roverato, A. (2006). A robust procedure for gaussian graphical model
search from microarray data with p larger than n. The Journal of Machine Learning
Research, 7:2621–2650.

Chen, J. and Chen, Z. (2008). Extended bayesian information criteria for model selec-
tion with large model spaces. Biometrika, 95(3):759–771.

Chen, L. S., Emmert-Streib, F., Storey, J. D., et al. (2007). Harnessing naturally
randomized transcription to infer regulatory relationships among genes. Genome
Biol, 8(10):R219.

126



Chen, Y., Zhu, J., Lum, P. Y., Yang, X., Pinto, S., MacNeil, D. J., Zhang, C., Lamb,
J., Edwards, S., Sieberts, S. K., et al. (2008). Variations in dna elucidate molecular
networks that cause disease. Nature, 452(7186):429–435.

Chickering, D. (2002). Learning equivalence classes of bayesian-network structures. The
Journal of Machine Learning Research, 2:445–498.

Chickering, D. (2003). Optimal structure identification with greedy search. The Journal
of Machine Learning Research, 3:507–554.

Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community structure in
very large networks. Physical review E, 70(6):066111.

Colombo, D. and Maathuis, M. (2012). A modification of the pc algorithm yielding
order-independent skeletons. arXiv preprint arXiv:1211.3295.

de Jong, S., Boks, M., Fuller, T., Strengman, E., Janson, E., de Kovel, C., Ori, A.,
Vi, N., Mulder, F., Blom, J., et al. (2012). A gene co-expression network in whole
blood of schizophrenia patients is independent of antipsychotic-use and enriched for
brain-expressed genes. PloS one, 7(6):e39498.

Dempster, A. (1972). Covariance selection. Biometrics, pages 157–175.

Dor, D. and Tarsi, M. (1992). A simple algorithm to construct a consistent extension of
a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory,
UCLA.

Doss, S., Schadt, E. E., Drake, T. A., and Lusis, A. J. (2005). Cis-acting expression
quantitative trait loci in mice. Genome research, 15(5):681–691.

Efron, B. (2004). Large-scale simultaneous hypothesis testing. Journal of the American
Statistical Association, 99(465):96–104.

Efron, B. and Tibshirani, R. (2002). Empirical bayes methods and false discovery rates
for microarrays. Genetic epidemiology, 23(1):70–86.
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Kalisch, M., Mächler, M., Colombo, D., Maathuis, M., and Bühlmann, P. (2012).
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