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ABSTRACT 

 

Kyle P Messier: Spatiotemporal Geostatistical Methods for Exposure and Epidemiological 

Analyses of Groundwater Nitrate and Radon 

(Under the Direction of Marc L. Serre) 

 

 

Exposure assessment and dose-response characterization are critical steps in the risk 

assessment of an environmental contaminant with potential human health effects. There are 

many established methods to conduct exposure assessments and to characterize the dose-

response relationship between a contaminant of concern and a health outcome; however, many 

require extensive time and monetary resources that are becoming increasingly limited. 

Geostatistical methods are attractive approaches due to their cost-effective implementation and 

clear physical interpretations. Land use regression (LUR) is a type of geostatistical method that 

uses spatially-based explanatory variables to model outcomes using classical regression methods.  

Bayesian Maximum Entropy (BME) is a geostatistical framework for incorporating 

measurements as well as various knowledge bases in a logical and theoretically sound manner to 

produce estimates for variables of interest at unmonitored locations. This work advances these 

spatiotemporal geostatistical methods in the following three studies: 1) An exposure assessment 

of groundwater nitrate (𝑁𝑂3
−), a biological nutrient with natural and anthropogenic sources that 

in excess has deleterious effects on human and ecological health; 2) An exposure assessment of 

groundwater radon (
222𝑅𝑛), a naturally occurring gas with radioactively discharged alpha 

particles that are known human carcinogens; and 3) An epidemiological analysis of the 

association between groundwater  
222𝑅𝑛 exposure and lung and stomach cancer incidence.  

First, we develop a nonlinear LUR model and then integrate the model into the BME 

framework to produce the first space/time exposure estimates of groundwater 𝑁𝑂3
− 

concentrations across a large domain with a cross-validation 𝑟2of 0.74. Second, an exposure 

model for point-level groundwater
 222𝑅𝑛 is developed with anisotropic geological and uranium-
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based explanatory variables resulting in a cross-validation 𝑟2of 0.46. Lastly, we utilize the LUR-

BME exposure model for 
222𝑅𝑛 to investigate associations with lung and stomach cancer at 

multiple spatial scales. It is the first epidemiological analysis of the association between 

groundwater 
222𝑅𝑛 exposure and lung cancer, moreover with a significant and positive 

association; and the first to find a positive association between groundwater 
222𝑅𝑛 and stomach 

cancer. This body of research provides advances in exposure assessment and dose-response 

methodology and practical real-world examples that can be used as resources for future cost-

effective protection of public health. 
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INTRODUCTION 

In order to protect the public from harmful contaminants in the environment, public 

health scientists conduct risk assessments, which have four basic steps: 1) risk identification, 2) 

exposure assessment, 3) dose-response characterization, and 4) health-risk characterization. 

There are many established methods to conduct exposure assessments and to characterize the 

dose-response relationship between a contaminant of concern and a health outcome; however, 

many require extensive time and monetary resources that are becoming increasingly limited. 

Developing geostatistical methods that utilize publicly available data to conduct risk assessment 

steps not only further develop our understanding of the contaminant of concern and protect 

public health, but also increase the returns on public resources spent on environmental and public 

health monitoring. 

Understanding the risk of groundwater nitrate (𝑁𝑂3
−) and radon (

222𝑅𝑛) exposure is 

important because they are potential and known human carcinogens, respectively. The three 

studies in this work address the need for exposure assessment for groundwater  𝑁𝑂3
− and 

222𝑅𝑛 

and the dose-response characterization for 
222𝑅𝑛. The goals of this work are to further develop 

the spatiotemporal geostatistical methods that can utilize publicly available environmental and 

human health data, and to apply them to the novel assessment of groundwater 𝑁𝑂3
− and 

222𝑅𝑛 in 

North Carolina. 

Nitrate Background 

Nitrate (𝑁𝑂3
−) is a biological nutrient with natural and anthropogenic sources that in 

excess has deleterious effects on human and ecological health
1
. Nitrate is part of the complex 

global nitrogen cycle (Figure 0.1), with natural sources including biological nitrogen fixation in 

grasslands and forests, bacterially mediated nitrification, and mineralization of organic nitrogen. 

Human derived or anthropogenic sources contribute at least twice as much to the presence of 

reactive nitrogen including 𝑁𝑂3
− in the environment compared to natural sources, which is 

largely due to  agricultural development and the Haber-Bosch fertilizer synthesis process
2
. The 

broad categories of anthropogenic nitrate are agriculture fertilizer use, biological fixation of 
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cultivated crops, human and animal waste, combustion of fossil fuels including stationary and 

mobile sources, and other industrial processes.  

 

Figure 0.1. The nitrogen cycle. Figure verbatim from the Soil Water and Assessment Tool 

theoretical documentation, Neitsch et al. 2009 
3
.  

Exposure to 𝑁𝑂3
− can cause many deleterious health effects in humans. For instance, 

infants exposed to NO3- can develop methemoglobinemia, or blue baby syndrome
4
. This adverse 

endpoint is the basis of the 10 mg/L maximum contaminant level (MCL) in drinking water
5
. 

More recent studies have found associations between 𝑁𝑂3
− exposures at levels lower than the 

current MCL  and cancers including colon
6
, bladder

7
, and Non-Hodgkin’s Lymphoma

8
. 

Ecological effects resulting from excess 𝑁𝑂3
− in the environment include eutrophication of 

waterways, harmful algal blooms, and fish kills among others 
9–11

. 

Radon Background 

Radon (
222

Rn ) is a naturally occurring radioactive, inert, colorless, and odorless gas that 

is a daughter product of Uranium-238 and has a half-life of 3.83 days (Figure I2). 
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Figure 0.2. Uranium-238 decay series with Radon, the radionuclide of interest, highlighted in 

blue. The top row of each box is the element symbol and isotope number. The second row is the 

half-life time. Figure modified from Hall et al., 1985. Alpha decay is the release of 2 protons and 

two neutrons (a helium atom). Beta decay is the release of an electron and a proton changing to a 

neutron. y refers to years, d to days, m to minutes, and s to second.  

 

222𝑅𝑛 is found naturally in the soil, rocks, water, and air worldwide. 
222𝑅𝑛 and its daughter 

products or progeny produce ionizing radiation in the form of alpha and beta decay (Figure 0.2), 

which are known human carcinogens
12–14

.  Outdoor air 
222𝑅𝑛 levels are generally very low; 

however, when 
222𝑅𝑛 enters a residential home, its concentration can increase to levels that may 

lead to adverse health effects 
12

. Inhalation of indoor air contaminated with 
222𝑅𝑛 can lead to a 

significant increased risk of lung cancer morbidity in both never-smokers and smokers 
14–16

 . 

Exposure to 
222𝑅𝑛 is likely the second leading cause of lung cancer after smoking in the US

16–18
. 

Important routes of inhalation exposure result from 
222𝑅𝑛 gas directly escaping from soil and 

rock and accumulating in the indoor environment; however, 
222𝑅𝑛 can also degas from untreated 
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groundwater used for showering, dishwashing, and clothes washing resulting in exposures in 

direct vicinity to the breathing zone 
19,20

. 

Land Use Regression  

Land use regression (LUR) is a common statistical approach used for exposure 

assessments, which was introduced in the EU-funded SAVIAH (Small Area Variations in Air 

quality and Health) project in 1997
21

. Since LUR was introduced, over a hundred studies 

implemented LUR to assess exposure of air quality
22–24

 and water quality contaminants
25–28

.  

LUR uses spatially based explanatory variables to model outcomes using classical regression 

methods.  Examples of LUR explanatory variables include land use/land cover (LULC), altitude, 

river networks, road networks, and point source locations to name just a few. The major benefits 

of LUR include: 1) Simplicity as a regression-based approach; 2) The plethora of explanatory 

data sources with the increase of geographic information systems (GIS) and satellite databases; 

and 3) Physical interpretations of explanatory variables.  

A LUR follows a standard regression format as follows:  

 

   𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑙𝑋𝑖
𝑙

𝐿

𝑙=1

+ 휀𝑖 (0.1) 

where 𝑌𝑖 is the outcome or dependent variable of interest at data point 𝑖, 𝑋𝑖
𝑙 is explanatory or 

independent variable 𝑙 at point 𝑖, 𝛽𝑙 is the regression coefficient for variable 𝑋𝑙, 𝛽0 is the 

regression equation constant,  휀𝑖 is the error term for point 𝑖,  and the summation represents the 

ability to include multiple explanatory variables. The LUR implementation of the regression 

equation is aided by including a spatial and/or time parameter dependency as follows:  

 

𝑌𝑖(𝒔, 𝑡) = 𝛽0 + ∑ 𝛽𝑙𝑋𝑖
𝑙(𝒔, 𝑡)

𝐿

𝑙=1

+ 휀𝑖   (0.2) 

where 𝑌𝑖(𝒔, 𝑡) is the dependent variable for point 𝑖 at spatial location 𝒔 and temporal location 𝑡, 

and 𝑋𝑖
𝑙(𝒔, 𝑡) is explanatory variable 𝑙 at point 𝑖 at the same spatial location 𝒔 and temporal 

location 𝑡. Model coefficients are determined with same techniques available for ordinary linear 

regression such as ordinary least squares (OLS) and generalized least squares (GLS). In 

multivariable models, the final model may be selected with traditional statistical techniques such 

as forward selection, backwards selection, step-wise selection, lasso, and least angle regression; 
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or with techniques developed specifically for LUR such A Distance Decay Regression Selection 

Strategy
22

.  

Bayesian Maximum Entropy 

Bayesian Maximum Entropy (BME) is a modern spatiotemporal geostatistical framework 

for incorporating measurements as well as various knowledge bases in a logical and theoretically 

sound manner to produce estimates of variables of interest at unmonitored locations
29

.  BME 

therefore is an extremely valuable tool that can be used to produce information of chemical 

levels and disease rates through space and time by making efficient use of available monitoring 

resources. BME consists of three epistemological stages known as the prior, meta-prior, and 

posterior stages. 

It is important to first define the notation and some basic concepts for discussing these 

BME stages: The notation for a single random variable Z in capital letter, its realization, z, in 

lower case; and vectors and matrices in bold faces, e.g. 𝒁 = [𝑍1, … , 𝑍𝑛]𝑇 and 𝒛 = [𝑧1, … , 𝑧𝑛]𝑇.  

Let 𝜒(𝒑) be the space/time random field (S/TRF) describing the distribution of a variable of 

interest across space and time, where 𝒑 = (𝒔, 𝑡), 𝒔 is the space coordinate and 𝑡 is time. 

The prior stage (Figure I3, Panel A) consists of gathering information or knowledge about the 

space/time distribution of the variable of interest and compiling it into the general knowledge 

base,𝐺 − 𝐾𝐵. In the prior stage the 𝐺 − 𝐾𝐵 is mathematically a set of integral equations, which 

represent constraints on the space/time distribution of 𝝌𝑚𝑎𝑝: 

 𝐸[ℊ𝛼] = ∫ 𝑓𝜒(𝝌𝑚𝑎𝑝)𝓰𝜶( 𝝌𝑚𝑎𝑝 )𝑑𝝌𝑚𝑎𝑝 (0.3) 

where 𝛼 = 0,1, … , 𝑁𝑐 is the number of suitable constraint functions, 𝑓𝜒(𝝌𝑚𝑎𝑝) is the probability 

distribution function (PDF) of 𝝌𝑚𝑎𝑝 = [𝑥1, … , 𝑥𝑚𝑥𝑘]𝑇,  ℊ𝛼(𝝌𝑚𝑎𝑝) are known functions of 𝝌, 

and 𝐸[. ] is the expected value operator. Functions that describe the space/time distribution 

include the mean trend, covariance, higher-order moments such as the trivariance, regression 

equations, and stochastically represented mechanistic equations (i.e. physical laws). The prior 

PDF describing the space/time distribution of 𝝌𝑚𝑎𝑝 is given by:  

 

𝑓𝜒(𝝌𝑚𝑎𝑝) = exp ( 𝜇0 + ∑ 𝜇𝛼ℊ𝛼(𝜒𝑚𝑎𝑝) 

𝑁𝑐

𝛼=1

) (0.4) 
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where 𝜇𝛼 , (𝛼 = 0,1, … , 𝑁𝑐)  are Lagrange coefficients that are solved for via the system of 

𝑁𝑐 + 1 equations, with the first equation, ∫ 𝑓𝜒(𝝌𝑚𝑎𝑝) 𝑑𝝌𝑚𝑎𝑝 = 1, as the normalization 

constraint.   

In the meta-prior stage one gathers and organizes all of the information that can be 

explicitly incorporated into BME in the site-specific knowledge base, 𝑆 − 𝐾𝐵. This entails 

identifying hard data,  𝑆:  𝝌ℎ𝑎𝑟𝑑,  or data without measurement error (Figure 0.3, Panel B); soft 

data, 𝑆:  𝝌𝑠𝑜𝑓𝑡 , or data with measurement error that is expressed mathematically as a distribution 

function. Soft data can be data that has inherent error quantified in its measurements (Figure 0.3, 

Panel C) or data that is the result of a model prediction with confidence bounds (Figure 0.3, 

Panel D). An important part of BME is that the soft data can be represented with any 

distributional form, or is not limited to linear, normal/Gaussian distributions. For example, 

possible soft data distributions in addition to Gaussian are interval, truncated-Gaussian, or 

cumulative distribution function. This flexibility in distributions allow for more accurate 

modeling of environmental contaminants. In practice, the information in the meta-prior stage is 

often used in the prior stage to empirically derive the functions for the general knowledge base 

such as the mean trend and covariance.  

The posterior stage (Figure 0.3, Panel E) updates the prior PDF, 𝑓𝜒(𝝌𝑚𝑎𝑝) , with site-

specific knowledge from the meta-prior stage using Bayesian conditionalization, which is 

essentially the marginal PDF of 𝑓𝜒(𝝌𝑚𝑎𝑝) with respect to  𝝌𝑠𝑜𝑓𝑡  or  𝝌ℎ𝑎𝑟𝑑, depending on the 

scenario. Given the scenario of hard data and probabilistic soft data, the BME posterior PDF for 

a given estimation point 𝑥𝑘 is given by:  

 
𝑓𝑘(𝝌𝒌) = 𝐴−1 ∫ 𝑓𝜒(𝒙𝒉𝒂𝒓𝒅, 𝒙𝒔𝒐𝒇𝒕, 𝑥𝑘)𝑓𝜒(𝒙𝒔𝒐𝒇𝒕)𝑑𝝌𝑠𝑜𝑓𝑡

𝐷

 (0.5) 

where   

 
𝐴 = ∫ 𝑑𝜒𝑘

𝐷

∫ 𝑓𝐺(𝒙𝒔𝒐𝒇𝒕, 𝒙𝒉𝒂𝒓𝒅, 𝑥𝑘)𝑑𝝌𝑠𝑜𝑓𝑡
𝐷

 (0.6) 

is the normalization constraint, and ∫ (. )
𝐷

 is the integral over the domain of the soft data. 

When the general knowledge base consists of the mean trend and covariance only and the 

site-specific data contains only hard data or soft data with a Gaussian measurement error, then 

BME reduces to the Kriging estimator.  As BME currently stands in its numerical 

implementation, secondary information above the space/time distribution of 𝝌 is implemented 
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through the mean trend as opposed to additional ℊ𝛼 functions in the general knowledge base at 

the prior stage.  

 

Figure 0.3. An illustration of BME methodology (Revised from LoBuglio et al. 2007
30

). 
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Project Themes  

The goal of this work is to advance the spatiotemporal geostatistical methods that are 

utilized in exposure assessments and epidemiological studies; and to demonstrate methodological 

improvements in the modeling of groundwater 𝑁𝑂3
− and 

222𝑅𝑛 in North Carolina. 

Methodological themes that are present in this work include: 1) Land Use Regression model 

development for groundwater contaminants; 2) Implementation of space/time BME estimation 

for groundwater contaminants; 3) Integration of Land Use Regression models into the Bayesian 

Maximum Entropy framework; 4) Model selection procedures in large variable space problems; 

5) Quantitative comparisons of model results arising from differences in spatial scales of 

independent and dependent variables; and 6) Quantitative comparisons between the current state 

of science in exposure estimates and dose-response characterization and the novel developments 

from this work.  

Accurate and precise exposure assessments are important for both nitrate and radon due 

to their significant human and ecological health risks. Not only is a detailed mapping of 

groundwater nitrate important from a biogeochemical perspective
31

, but it also poses known and 

potential human health effects, including cancers
6,7

, that need quality exposure assessments for 

further study. Similarly, radon has known and potential human carcinogenetic effects. This 

dissertation addresses that need by providing a framework for more accurate exposure 

assessment, which is shown with two case studies of nitrate and radon. Additionally, it will be 

shown that the exposure assessments can then be utilized in an epidemiological analysis to help 

elucidate the association between exposures and a response, which in this case is radon and 

cancers of the stomach and lung. In short, this work comprises two exposure assessments and 

one dose-response characterization through an epidemiological analysis. 

Dissertation Organization  

This dissertation is organized into three chapters, with each chapter formatted as a 

publishable quality manuscript. First, a state-wide exposure assessment of the deleterious human 

and environmental contaminant of groundwater nitrate is conducted. A nonlinear LUR and 

geostatistical method is implemented, which incorporates information on nitrate sources, and 

attenuation and transport factors.  This manuscript was accepted into the journal Environmental 

Science and Technology in August of 2014. Second, similar to the nitrate exposure assessment, a 

linear LUR model is used to estimate groundwater radon state-wide; however, the LUR utilizes 
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information pertinent to radon including lithological and uranium data. This manuscript has been 

submitted to the journal Water. Third, the exposure assessment of groundwater radon is used in 

the dose-response characterization of groundwater radon to the health outcomes of stomach and 

lung cancer via an epidemiological analysis at the ecological and the address-level scales. We 

plan on submitting this manuscript to the journal International Journal of Epidemiology in the 

near future. 

Each chapter in this dissertation, including this introduction, has independent reference 

sections. Additionally there is an overall dissertation conclusion that summarizes all three 

chapter results, discusses the public health relevance of the overall work, and projects future 

research potential.  
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Abstract 

Nitrate (𝑁𝑂3
−) is a widespread contaminant of groundwater and surface water across the 

United States that has deleterious effects to human and ecological health. This study develops a 

model for predicting point-level groundwater 𝑁𝑂3
−at a state scale for monitoring wells and 

private wells of North Carolina. A land use regression (LUR) model selection procedure is 

developed for determining nonlinear model explanatory variables when they are known to be 

correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a 

LUR-BME model of spatial/temporal varying groundwater 𝑁𝑂3
− concentrations. LUR-BME 

results in a leave-one-out cross-validation 𝑟2 of 0.74 and 0.33 for monitoring and private wells, 

effectively predicting within spatial covariance ranges. Results show significant differences in 

the spatial distribution of groundwater 𝑁𝑂3
− contamination in monitoring versus private wells; 

high 𝑁𝑂3
− concentrations in the southeastern plains of North Carolina; and wastewater treatment 

residuals and swine confined animal feeding operations as local sources of 𝑁𝑂3
− in monitoring 

wells. Results are of interest to agencies that regulate drinking water sources or monitor health 

outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated 

into surface water models for more accurate management of non-point sources of nitrogen. 
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Introduction 

Nitrate (𝑁𝑂3
−) is a widespread contaminant of groundwater and surface water across the 

United States that has deleterious effects to human and ecological health
1,2

. The maximum 

contaminant level of 10 mg/L established by the U.S. Environmental Protection Agency was 

based on the prevention of methemoglobinemia in infants
3
; moreover, there is concern of many 

cancer types 
4–6

 and from lower concentration exposures
7
. Excessive 𝑁𝑂3

−inputs into the 

environment can result in adverse changes to ecosystems such as eutrophication and harmful 

algal blooms
8–10

.  

Protection of drinking water sources is mandated by the Safe Drinking Water Act; 

however, private well drinking water is unregulated in contrast to regulated public water 

systems
11

. In North Carolina where more than ¼ of the population relies on private wells for 

drinking water
12

, quantifying potential exposures is important to protect public health. 

Monitoring programs such as the US Geological Survey’s (USGS) National Water Quality 

Assessment (NAWQA) Program
13

 and the NC Division of Water Resources (NC DWR) ambient 

monitoring program
14

 are effective because they use consistent sampling and analytical methods, 

yet this water quality monitoring data is spatially and temporally sparse.  

Land use regression
15–21

(LUR) is a proven method that complements monitoring 

programs and provides effective means for water quality exposure assessments. Previous studies 

have related land use characteristics to 𝑁𝑂3
−contamination in surface waters 

22–25
 and 

groundwater. Additionally, regression-based methods have been implemented for estimating 

loading to surface waters
21,23,24

. In North Carolina, groundwater discharge to streams (baseflow) 

accounts for roughly two-thirds of annual streamflow in the Coastal Plains region of North 

Carolina
26

 and may be contributing excess nutrient loads in streams
27

; however, current surface 

water models do not directly account for this large source of 𝑁𝑂3
−from baseflow. 

For linear regression models, traditional statistical methods to select predictor variables 

include forward, backwards, and stepwise selection. These methods can lead to erroneous 

models with high multicollinearity when the candidate variables are related. However, for LUR 

model studies, model selection methods have been modified to accommodate the potential high 

multicollinearity from selection variables that differ only by a hyperparameter
16,19

. Additionally, 

lasso
28

 and elastic net
29

 regression are potential methods for selecting linear LUR models, but to 

the authors’ knowledge has not been employed for LUR model selection. For nonlinear 
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regression, methods for model selection based on a large candidate variable space include 

stepwise logistic regression
30,31

  and regression tree analysis which approximates nonlinear 

relationships 
32,33

; still for continuous variable outcomes with nonlinear models, less rigorous 

methods for model selection have been developed. The number of candidate variables is 

generally consolidated to a tractable number through expert knowledge or single variable 

regression, and then various combinations of models are tested until one finds the best model in 

terms of a validation statistic like 𝑅2 or Akaike Information Criterion (𝐴𝐼𝐶)
15,21,24

.   

The advanced geostatistical method of Bayesian Maximum Entropy (BME) has also been 

shown to successfully estimate groundwater quality contaminants
19,34

. An advantage of BME is 

its ability to quantify spatial and temporal variability which is then used in the estimation process 

at unmonitored locations. BME, like all geostatistical methods, is data driven and can only 

provide reliable estimates within the vicinity of measured values. However, BME utilizes 

Bayesian epistemic knowledge blending to combine multiple sources of data, which has been 

successfully demonstrated with incorporation of deterministic mean trend functions into BME 

for groundwater
19

. 

Local spatial and temporal variability have lead previous studies to reduce 

𝑁𝑂3
−variability with a combination of spatial smoothing and temporal averaging

15,35,36
. For 

instance, Nolan and Hitt spatially smoothed 𝑁𝑂3
−by taking watershed averages over their study 

time period, based on watersheds with an average size of approximately 2000 square-kilometers. 

They not only helped elucidate trends and potential explanatory variables, but they were able to 

explain a large percentage in the variability of spatially-smoothed 𝑁𝑂3
−with a 𝑟2of 0.80 for 

shallow aquifer 𝑁𝑂3
−and 0.77 for deep aquifer 𝑁𝑂3

−. However, this advantage of reducing 

groundwater 𝑁𝑂3
−variance is also a limitation because factors affecting spatially-smoothed and 

temporally averaged 𝑁𝑂3
−might not affect point-level 𝑁𝑂3

−, and vice-versa. Furthermore, since 

groundwater 𝑁𝑂3
−contains significant local variability, the need to provide local estimates of its 

variability naturally follows. Models developed for predicting spatially-smoothed and temporally 

averaged 𝑁𝑂3
−will likely not be successful in predicting observed, point-level 𝑁𝑂3

−.  

The objectives of this study are to: 1) Develop  a novel nonlinear regression model for 

spatial point-level and time-averaged groundwater 𝑁𝑂3
−concentrations in monitoring and private 

wells of North Carolina, 2) Produce the first space/time estimates of groundwater 𝑁𝑂3
− 

concentrations across a large study domain by integrating LUR models into the BME framework, 
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and 3) Compare space/time 𝑁𝑂3
− concentration models to the current standard of spatially 

averaged 𝑁𝑂3
− concentration models Two nonlinear models, whose form is adopted from Nolan 

and Hitt
15

 with components that represent 𝑁𝑂3
−sources, attenuation, and transport, are created 

and selected with a new model selection framework for nonlinear regression models with 

correlated explanatory variables. We then integrate the LUR models into the BME framework to 

model space/time point-level 𝑁𝑂3
−. Results are of interest to agencies that regulate drinking 

water sources or that monitor health outcomes from ingestion of drinking water. Additionally, 

the results can provide guidance on factors affecting the point-level variability of groundwater 

𝑁𝑂3
−and new resources for more accurate management of 𝑁𝑂3

− loads. 

Methods 

Nitrate Data 

𝑁𝑂3
−data across North Carolina are obtained from three data sources (Figure S1.1), 

which are detailed as follows: 

North Carolina Division of Water Resources (NC-DWR) collects data near select 

permitted, dedicated Wastewater Treatment Residual (WTR) application fields via monitoring 

wells. The second source is USGS data obtained through the National Water Information System 

(NWIS).  Well depth information is not linked directly to each monitoring well, although a 

subset of well depth information is available. Based on the subset with depth information, they 

have a mean depth of 33 feet with a standard deviation of 32 feet. Together, the NCDWR and 

USGS data represent shallow aquifer monitoring wells (n= 12,322), which hereafter will be 

referred to as “Monitoring Well data.”  

The last dataset of groundwater 𝑁𝑂3
−comes from private well data collected by the North 

Carolina Department of Health and Human Services (NC-DHHS).  Groundwater 𝑁𝑂3
−was 

obtained and address geocoded using the same process outlined in Messier et al.
19

. Well depth 

information is not linked to water quality measurements, but a separate database on private well 

construction contains well depths. The mean depth is 95 feet with a standard deviation of 109 ft. 

This data will hereafter be referred to as “Private Well data” and this data is assumed to represent 

a deeper aquifer model of groundwater 𝑁𝑂3
− (n=22,067).  

The median 𝑁𝑂3
− concentrations for the NC-DWR, USGS, and private well data are 1.30, 

0.10, and 0.62 mg/L respectively. The means are 4.61, 6.14, and 1.66 mg/L respectively. The 



18 
 

percent observed above the detection limit is 79.7, 61.4, and 30.6 respectively. Additional basic 

statistics for the dataset are available in the supporting information (Table S1.1). 

Spatial and Temporal Observation Scales 

In this work we develop models for 𝑁𝑂3
−at three observation scales. The finer scale 

corresponds to the space/time point-level 𝑁𝑂3
−data, i.e. 𝑁𝑂3

−data as it is sampled. An 

intermediate observation scale corresponds to the time-averaged data, whereby 𝑁𝑂3
−at each well 

is averaged. The time-averaged data provides point-level spatial resolution, but no time 

variability. Finally, the coarser resolution observation scale corresponds to the spatially-

smoothed/time-averaged data, which was obtained by spatially smoothing the time-averaged data 

using a 25 km exponential kernel function. We choose 25 km as it is approximately the average 

size of watersheds in many NAWQA groundwater studies
15,37

. While previous works over large 

study domains have developed models for spatially-smoothed/time average 𝑁𝑂3
−data, very few 

models, if any, have been developed for point-level 𝑁𝑂3
−data over large study domains. Our 

work therefore fills that knowledge gap. 

Maximum Likelihood Estimation of Nitrate Distributions 

Our notation for variables denotes a single random variable Z in capital letter, its 

realization, z, in lower case; and vectors and matrices in bold faces, e.g. 𝒁 = [𝑍1, … , 𝑍𝑛]𝑇 

and 𝒛 = [𝑧1, … , 𝑧𝑛]𝑇.   

Due to the high percentage of nondetect (left-censored) data in both the monitoring well 

and private well databases, a maximum likelihood estimation (MLE) is used for the estimation of 

monitoring well and private well distribution parameters
38

, which is assumed to follow a 

lognormal distribution. MLE can directly account for the nondetect values by modifying the 

likelihood equation, with the censored observations given by the cumulative distribution function 

(CDF) evaluated at the detection limit. The MLE equation then becomes
38

:  

 

ℒ(𝒛|𝜇, 𝜎) = { ∏ 𝑓𝜇,𝜎(𝑧𝑖)

𝑧𝑖|𝑧𝑖≥𝑡𝑖

} ∗ { ∏ 𝐹𝜇,𝜎(𝑡𝑖)

𝑧𝑖|𝑧𝑖≤𝑡𝑖

} (1.7) 

where 𝑓𝜇,𝜎(𝑧𝑖) denotes the normal probability distribution function (PDF) of log-transformed 

(natural log) point-level 𝑁𝑂3
−, 𝑧𝑖, with mean and standard deviation parameters 𝜇 and 𝜎, 

and 𝐹𝜇,𝜎(𝑡𝑖) denotes the CDF of the distribution taken at the log of the detection limit 𝑡𝑖. The 

estimated distributions are used to quantify the extent of contamination in monitoring and private 
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wells and to handle nondetect data. For the regression analysis, the log- 𝑁𝑂3
−concentration of a 

measurement below detection limit 𝑡𝑖 is assigned a value equal to the mean of the normal 

distribution N(𝜇,𝜎) truncated above log(𝑡𝑖), whereas the geostatistical analysis can handle the 

full truncated normal distribution
19

.  

Spatial Explanatory Variables 

Spatial explanatory variables representing possible groundwater 𝑁𝑂3
−sources, 

attenuation, and transport factors were constructed prior to model development. Potential 

variables are summarized below with details available in the supporting information (Table 

S1.2).  

All of the explanatory variables have an inherent spatial distance parameter such as 

circular buffer radius or exponential decay range, which hereinafter is referred to as the 

hyperparameter. Each variable is calculated with multiple hyperparameter values since optimal 

distance is unknown a priori. In the final model selection process, a maximum of one 

hyperparameter value is allowed to be selected from each variable to avoid multicollinearity and 

effectively optimize the hyperparameter. The following variables adopted from Nolan and Hitt
15

 

are 𝑁𝑂3
−sources calculated as Kg − NO3

−/yr/ha within a circular buffer: Sources include farm 

fertilizer, non-farm fertilizer, manure, and 𝑁𝑂3
−atmospheric deposition. Each National 

Landcover Database (NLCD) category is calculated as a percent within a circular buffer. On-site 

wastewater treatment plant variables, septic density and average nitrate loading, are created 

following the methods of Pradhan et al.
39

 The following point sources are calculated as the sum 

of exponentially decaying contribution
19

: Wastewater treatment residual field application sites 

(WTR), swine confined animal feeding operations (CAFOs), poultry CAFOs, cattle farms, and 

wastewater treatment plants (WWTP). Mean slope in degrees and topographic wetness index
40

 

(TWI) are calculated within circular buffers. Water withdrawals in cubic meters per second are 

calculated using USGS water use estimates
12

. Lastly, population density is calculated within 

circular buffers from US Census block data assuming an even distribution of population per 

census block.  

Nonlinear Regression Model Selection 

In order to develop a LUR model for 𝑁𝑂3
−we adopt a similar nonlinear multivariable 

model implemented by Groundwater Vulnerability Assessment(GWAVA)
15

 which is also similar 

to the surface water counterpart Spatially Referenced Regression On Watershed Attributes 



20 
 

(SPARROW) 
21,23,24

. We partition explanatory variables into source, attenuation, and transport 

terms. Following Nolan and Hitt
15

, the nonlinear multivariable model is constructed as follows:  

 

zi = 𝛽0 + {∑ 𝛽𝑘𝑌𝑖
(𝑘)

(𝜆𝑘)

𝐾

𝑘=1

} exp {∑ −𝛾𝑙𝑌𝑖
(𝑙)(𝜆𝑙)

𝐿

𝑙=1

} exp { ∑ 𝛿𝑚𝑌𝑖
(𝑚)(𝜆𝑚)

𝑀

𝑚=1

}

+ 휀𝑖 

(1.8) 

where zi is the log–transform of 𝑁𝑂3
−concentration at point i, 𝛽0 is the intercept, 𝑌𝑖

(𝑘)(𝜆𝑘) is the 

k-th source predictor variable at point i with hyperparameter value k, 𝛽𝑘  is its source regression 

coefficient, 𝑌𝑖
(𝑙)(𝜆𝑙) is the l-th attenuation predictor variable at point i with hyperparameter value 

𝜆𝑙, 𝛾𝑙is its attenuation regression coefficient, 𝑌𝑖
(𝑚)

(𝜆𝑚) is the m-th transport predictor variable 

with hyperparameter value 𝜆𝑚, 𝛿𝑚 is its transport regression coefficient, and i is an error term. 

The model contains an additive, linear submodel for sources, and multiplicative exponential 

terms for the attenuation and transport variables that act directly on the source terms 
15

. For 

example 𝑌𝑖
(𝑘)

(𝜆𝑘) may be equal to a land cover variable or a point source variable. The 

attenuation variables,𝑌𝑖
(𝑙)

, physically represent areas that are associated with removing 𝑁𝑂3
−from 

groundwater such as wetlands and histosol soil. The transport variables, 𝑌𝑖
(𝑚)(𝜆𝑚), may be equal 

to any variable that effects the movement of 𝑁𝑂3
−in the groundwater such as the soil 

permeability and average slope. The attenuation variable coefficients,𝛾𝑙, are constrained to be 

negative allowing them to only decrease 𝑁𝑂3
− concentrations, while the transport variable 

coefficients,𝛿𝑚, are unconstrained allowing variables to increase or decrease 

𝑁𝑂3
−concentrations.   

We developed a nonlinear model regression model selection technique that 

accommodates variables that differ only by a hyperparameter and can be adapted for various 

nonlinear model forms. Our model selection procedure is essentially a nonlinear extension of A 

Distance Decay REgression  Selection Strategy (ADDRESS)
16

, since to the authors’ knowledge 

there is not a regression selection strategy for nonlinear LUR. We implement Constrained 

Forward Nonlinear Regression with Hyperparameter Optimization (CFN-RHO) whose simple 

algorithm is as follows (Figure S1.2):   

1) Initialization: Linear regression on all candidate variables to obtain the initial values for the 

nonlinear model fitting.  
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2) Candidate Variables: In the first iteration, the candidate variables consist of the source 

variables only. In the second iteration, candidate variables consist of attenuation and transport 

variables only. This is done so as to obtain an initial model with at least one source and one 

attenuation or transport variable. In every iteration afterwards the candidate variables can be any 

variable.  

3) Nonlinear Regression: Nonlinear regression is performed by adding each candidate variable to 

the current model one at a time. Note that candidate variables are added according to their 

predetermined place in the nonlinear model (i.e. Source variables are in a linear submodel; 

Attenuation and transport in the exponential submodel.).   

4) Variable Selection: The variable that results in the highest R-Squared (lowest AIC is also an 

option) while constrained to maintaining all variables in the model statistically significant (p-

value < 0.05), is selected and added to the model. R-Squared ties beyond the thousandth decimal 

place are settled by the lowest p-value. 

5) Hyperparameter Optimization: The rest of the candidate variables that differ from the selected 

variable by only a hyperparameter are removed from the candidate variable pool, effectively 

optimizing the hyperparameter value.  

6) Selection Criteria: The new model must increase R-Squared over user-defined selection 

criteria such as a one percent increase. If the model passes the selection criteria, then the iterative 

process continues to step 2. If it does not, then the algorithm ends with the final model being the 

i-th minus one model since the last variable did not pass the selection criteria.  

BME Estimation Framework for Space/Time Mapping Analysis  

To improve estimation accuracy, we integrate the time-averaged LUR results into the 

Bayesian Maximum Entropy (BME) method of modern spatiotemporal geostatistics
41,42

. BME is 

a space/time geostatistical estimation framework grounded in epistemic principles that reduces to 

the space/time simple, ordinary, and universal Kriging methods as its linear limiting case when 

considering a limited, Gaussian, knowledge base, while also allowing the flexibility to process a 

wide variety of additional knowledge bases (physical laws, empirical relationships, non-Gaussian 

distributions, hard and soft data, etc.). We only provide the fundamental BME equations for 

mapping 𝑁𝑂3
−; the reader is referred to other works for more detailed derivations of BME 

equations
41,43

 and LUR integration into BME
19

.
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Let 𝑍(𝒑)be the space/time random field (S/TRF) describing the distribution of 

groundwater log- 𝑁𝑂3
−across space and time, where 𝒑 = (𝒔, 𝑡), 𝒔 is the space coordinate and 𝑡 is 

time. The knowledge available is organized in the general knowledge base (G-KB) about the 

space/time trend and variability (e.g. mean, covariance) of 𝑁𝑂3
−across the study domain, and the 

site-specific knowledge base (S-KB) corresponding to the hard and soft data 𝒛𝒅 available at a set 

of specific space/time points 𝒑𝑑.  

First, we define the transformation of log- 𝑁𝑂3
−data 𝒛𝒅at locations 𝒑𝒅 as  

 𝒙𝒉 = 𝒛𝒉 − 𝑜𝑍(𝒑𝒉) (1.9) 

where 𝑜𝑍(𝒑𝒉) may be any deterministic offset that can be mathematically calculated at any 

space/time coordinate 𝒑.  We then define 𝑋(𝒑) as a homogeneous/stationary S/TRF representing 

the variability and uncertainty with the transformed data 𝒙𝒅, i.e. such that 𝒙𝒅 is a realization of 

𝑋(𝒑). Finally we let 𝑍(𝒑) = 𝑋(𝒑) + 𝑜𝑧(𝒑) be the S/TRF representing groundwater log- 𝑁𝑂3
−. In 

this study, we consider two choices for 𝑜𝑧(𝒑): (1) a constant value determined by the MLE mean 

resulting in a purely BME model, and (2) the LUR estimate 𝑳𝒛(𝒑𝒉)  from CFN-RHO resulting in 

a LUR-BME model. 

The G-KB for the S/TRF 𝑋(𝒑) describes its local space/time trends and dependencies. In 

this work, the general knowledge consists of the space/time mean trend function 𝑚𝑥(𝒑) =

𝐸[𝑋(𝒑)], and the covariance function 𝐶𝑋(𝒑, 𝒑′)=𝐸[[𝑋(𝒑) −  𝑚𝑥(𝒑)][X(𝐩′) − 𝑚𝒙(𝒑′)]] of the 

S/TRF 𝑋(𝒑). The S-KB consists of hard data and soft data; with hard data, 𝒙𝒉 = 𝒛𝒉 − 𝑳𝒛(𝒑𝒉), 

for data points where 𝒛𝒉 is observed over the detection limit and soft data, 𝑿𝒔, is at locations 

𝒑𝒔where 𝑁𝑂3
−is observed below the detection limit. Following Messier et al 

19
, the BME soft 

data for log- 𝑁𝑂3
−is modeled as a Gaussian distribution truncated above the log of the detection 

limit.  

The overall knowledge bases considered consist of 𝐺 = {𝑚𝑥(𝒑), 𝐶𝑋(𝒑, 𝒑′)}, and 𝑆 =

{𝑓𝑠(. ), 𝑿𝒉}. In this case the BME set of equations reduces to  

 
𝑓𝐾(𝑥𝑘) = 𝐴−1 ∫ 𝑑𝒙𝒔𝑓𝐺(𝒙𝒉, 𝒙𝒔, 𝑥𝑘)𝑓𝑆(𝒙𝒔)  

 

(1.10

) 

where 𝑓𝐾(𝑥𝑘) is the BME posterior PDF for the offset-removed log 𝑁𝑂3
−(𝑥𝑘) at some 

unmonitored estimation point 𝒑𝑘, 𝑓𝐺(𝒙𝒉, 𝒙𝒔, 𝑥𝑘) is the (maximum entropy) multivariate Gaussian 

PDF for (𝒙𝒉, 𝒙𝒔, 𝑥𝑘) with mean and variance-covariance given by G-KB, 𝑓𝑆(𝒙𝒔) is the truncated 
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Gaussian PDF of 𝑿𝒔, and 𝐴−1is a normalization constant. After the BME analysis is conducted, 

𝑜𝑍(𝒑) is added back to obtain log- 𝑁𝑂3
−concentrations.  

Validation Statistics 

The robustness of CFN-RHO is tested with a 10-fold cross-validation procedure. In 10-

fold cross-validation data is randomly partitioned into 10 equal size subsamples. A single 

subsample is retained as the validation data for testing the model, and the remaining 9 

subsamples are used as training data.  Each of the 10 subsamples is used exactly once as the 

validation data. Similar variable selections (which may differ only by hyperparameter) for 

subsamples demonstrate model selection robustness.  

Models are compared with a leave one-out cross-validation (LOOCV) mean squared error (MSE) 

and R-Squared. Spatially-smoothed/time-averaged 𝑁𝑂3
− and time-averaged 𝑁𝑂3

− models are also 

tested on how well they predict at the smaller observation scales. In LOOCV, each log-

 𝑁𝑂3
−value 𝑍𝑗 is removed one at a time, and re-estimated using the given model based only on 

the remaining data. Let 𝑍∗(𝑘)be the re- estimate for method k, then 𝑀𝑆𝐸(𝑘) =
1

𝑛
∑ (𝑍𝑗

∗(𝑘)
−𝑛

𝑗=1

𝑍𝑗)
2

 and the cross-validation R-Squared is 𝑅2(𝒁, 𝒁∗(𝑘)). 

Results 

Nitrate Concentrations 

The MLE of the statewide monitoring concentrations resulted in a geometric mean and 

standard deviation of the lognormal distribution of 0.62 and 14 mg/L, respectively (Figure S1.3). 

MLE for private wells resulted in a geometric mean and standard deviation of 0.45 and 5.1 mg/L 

(Figure S1.3). 

Spatially-smoothed/Time-averaged Nitrate  

The 25 km spatially-smoothed/time-averaged 𝑁𝑂3
− LUR model cross-validation results 

(Table 1.1) in a 𝑟2 of 0.69 and 0.68 for monitoring and private wells, respectively, which is of 

similar magnitude to current literature
15

. However, as expected, the LUR model calibrated for 

spatially-smoothed /time-averaged 𝑁𝑂3
−underperforms and does progressively worse (top row, 

moving left to right on Table 1.1) as it predicts time-averaged 𝑁𝑂3
−and point-level 𝑁𝑂3

− with 

lower 𝑟2 and higher RMSE. The variables selected for this model via CFN-RHO are available in 

the supporting information (Table S1.3).  
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10-fold cross-validation of spatially-smoothed/time-averaged 𝑁𝑂3
− LUR models was done to 

demonstrate the stability of CFN-RHO (Table S1.4, S1.5). All variables were selected 7 and 10 

out of 10 iterations for the monitoring and private well models, respectively. 

 

Table 1.1. Leave-one-out cross-validation statistics comparing for four estimation methods that 

predict spatial/temporally averaged 𝑵𝑶𝟑
−concentrations, temporal averaged 𝑵𝑶𝟑

−concentrations, 

and point-level observed 𝑵𝑶𝟑
−concentrations. Note that methods were used to predict at scales 

more refined or equal to its calibration scale. MW = Monitoring Well model. PW= Private Well 

model. n = number of observations at that scale. Time averaging results in fewer observations. 

RMSE = Root Mean Squared Error. Units of 𝑵𝑶𝟑
− concentration = mg/L. 

  Predicted Value 

Method  Spatially-

smoothed/Time-

averaged 𝑁𝑂3
− 

 

Time-averaged 

𝑁𝑂3
− 

Point-Level 𝑁𝑂3
− 

 MW 

(n=951

)   

PW 

(n=18,664

) 

MW 

(n=951

) 

PW 

(n=18,664

) 

MW 

(n=12,300

) 

PW 

(n=22,062

) 

Spatially-

smoothed/Time

-averaged LUR 

𝑟2 0.69 0.68 0.27 0.08 0.15 0.08 

RMS

E 

0.895 0.293 2.23 1.19 2.40 1.27 

Time-averaged 

LUR 

𝑟2  0.37 0.09 0.23 0.09 

RMS

E 

 2.08 1.19 2.28 1.27 

Space/Time 

BME 

𝑟2  0.70 0.25 

RMS

E 

 1.39 1.23 

Space/Time 

LUR-BME 

𝑟2  0.74 0.33 

RMS

E 

 1.27 1.08 
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Time-averaged Nitrate 

The LUR variables selected through CFN-RHO for time-averaged 𝑁𝑂3
−observed at 

monitoring wells and private wells are shown in Table 1.2. The LUR calibrated to predict time-

averaged 𝑁𝑂3
−obtains a 𝑟2 of 0.37 and 0.09 for monitoring wells and private wells, respectively 

(Table 1.1, second row). Moreover, the LUR model predicts point-level 𝑁𝑂3
−with a 𝑟2 of 0.23 

and 0.09 for monitoring and private well respectively. LUR maps are available in supporting 

information (Figure S1.4). 

 

Table 1.2. Nonlinear regression model variables selected via CFN-RHO and parameter estimates 

for time-averaged  𝑵𝑶𝟑
− monitoring (left) and private well (right) models. All variables are 

significant with p-value < 0.025. Variables units: a- Kg- 𝑵𝑶𝟑
−/yr/ha, b- Dimensionless, c- 100 

pigs, d- percent, e- degrees (-) Not a variable in the model. 

 

 Monitoring Well Private Well 

Variable Variable 

Range 

Coefficient 

Estimate 

Standard 

Error 

Variable 

Range 

Coefficient 

Estimate 

Standard 

Error 

Constant n/a -3.71 0.191 n/a -1.570 0.0382 

                             Source Variables 

Manure
a 250 m 0.0759 0.0317 - - - 

Wastewater 

Treatment 

Residuals 

(WTR)
b 

5 km 0.245 0.0274 - - - 

Farm 

Fertilizer
a 

250 m 0.132 0.0193 250 m 0.0432 0.0025 

Swine 

CAFO’s
c 

2 km 0.117 0.0218 - - - 

Swine 

Lagoons
b 

- - - 6 km 0.1079 0.0146 

Developed 

Low
d 

250 m 0.112 0.0214 - - - 

Developed - - - 100 m 0.0112 7.08e-4 
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(All 

combined)
d 

Atmospheric 

Deposition
a 

250 m 0.477 0.129 25 km 2.94e-11 2.53e-10 

                          Attenuation and Transport Variables 

Forest (All 

combined)
d 

2 km -0.0064 0.00281 - - - 

Deciduous 

Forest
d 

- - - 4 km -0.0151 0.00127 

Herbaceous 

Wetlands
d 

5 km -0.531 0.079 - - - 

Histosol
d 25 km -0.0427 0.0111 25 km -0.106 0.0126 

Hydrologic 

Soil Group 

D
d 

- - - 500 m -0.012 0.0010 

Slope
e 25 km -0.074 0.0261 - - - 

 

10-fold cross-validation of time-averaged 𝑁𝑂3
− LUR models was conducted (Table S1.6, 

S1.7). All variables selected from the monitoring well model are selected in at least 6 iterations 

of the ten-fold cross-validation runs. The majority of variables in the private well model were 

also stable; however swine lagoons and deciduous forest were only selected 2 and 0 out of 10 

times. In both models, when a variable is not selected in the 10-fold cross validation it is likely 

due to other variables that capture similar source, attenuation, or transport processes (i.e. Forest 

instead of Deciduous, Swine CAFO’s instead of Swine Lagoons).  

Point-Level Nitrate  

We modeled the space/time covariance of the LUR offset removed log- 𝑁𝑂3
− S/TRF, 

𝑋(𝒑), using a two-component, space/time non-separable, exponential covariance model 

following Messier et al
19

:  

 
𝐶𝑋(𝑟, 𝜏) = 𝑐1 exp (−

3𝑟

𝑎𝑟1

) exp (−
3𝜏

𝑎𝜏1

) + 𝑐2 exp (−
3𝑟

𝑎𝑟2

) exp (−
3𝜏

𝑎𝜏2

) 
(1.11

) 
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where 𝑐1 = 0.67 (𝑙𝑜𝑔 − 𝑚𝑔/𝐿)2 , 𝑎𝑟1
= 93 𝑚 ,𝑎𝜏1

= 15 𝑑𝑎𝑦𝑠, 𝑐2 = 3.6 (𝑚𝑔/𝐿)2, 𝑎𝑟2
=

1750 𝑚, 𝑎𝜏2
= 15840 𝑑𝑎𝑦𝑠 for monitoring wells (Figure S1.5) and a one-component, 

space/time exponential covariance model for private well where 𝑐1 = 0.76 (𝑙𝑜𝑔 − 𝑚𝑔/𝐿)2 , 

𝑎𝑟1
= 1181 𝑚 ,𝑎𝜏1

= 8640 𝑑𝑎𝑦𝑠 (Figure S1.6).  

The LUR-BME model, which integrates the time-averaged LUR as the offset best 

predicts space/time point-level 𝑁𝑂3
−concentrations with a 𝑟2 of 0.74 and 0.33 (Table 1.1) for 

monitoring and private wells, respectively. However, the LUR-BME predictions have a large 

variance at locations farther than the covariance model spatial range. Figure 1.1 maps the point-

level 𝑁𝑂3
−concentrations estimated by LUR-BME for one day during the study period for both 

monitoring and private well models. These are the first results to show that there is a four-fold 

improvement in predicting point-level 𝑁𝑂3
−when the LUR-BME method is used in comparison 

to previous studies that use models for spatially-smoothed/time-averaged 𝑁𝑂3
−, and five percent 

improvement in 𝑟2when integrating a LUR model into the BME framework, over purely BME. 

A link to a movie of LUR-BME maps is available in supporting information.   
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Figure 1.4. Comparison of LUR-BME results between the monitoring well (left of gray bar) 

model and private well (right of gray bar) model 𝑵𝑶𝟑
−concentrations. The extent rectangles 

shows zoomed in portions of the state and are identical areas for both models. Extent (B) shows 

geometric mean predictions and then geometric standard deviation. 
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Discussion 

Groundwater Nitrate Maps 

This study presents a LUR model for point-level 𝑁𝑂3
−in North Carolina that elucidates 

processes affecting its local variability, and then utilizes the strengths of BME to create the first 

LUR-BME model of groundwater nitrate’s spatial/temporal distribution including prediction 

uncertainty. The first major finding is the LUR-BME model for monitoring wells, assumed to 

represent surficial aquifers, (Figure 1.1, Movie S1) shows groundwater 𝑁𝑂3
−that is highly 

variable with many areas predicted above the current standard of 10 mg/L.  

Contrarily, the private well results (Figure 1.1) depict widespread, low-level 𝑁𝑂3
− 

concentrations, which is consistent with the current physical understanding in which sources tend 

to pollute the surficial aquifer, but then transport over time to the deeper drinking-water supply 

aquifers where concentrations are lower. This finding is significant because of the studies 

demonstrating potential significant health effects at concentrations as low as 2.5 mg/L
4–7

. 

Additionally, concentrations of 𝑁𝑂3
−could impact ecological function since there are potential 

large reserves in deeper aquifers that can discharge to surface waters.
27

. The standard deviation 

maps (Figure 1.1) demonstrate the importance of NC-DWR and USGS monitoring wells and 

private well testing because areas within the spatial covariance range are well characterized, 

whereas those outside are less reliable.   

The second major finding is the LUR-BME maps (Figure 1.1) show that groundwater 

𝑁𝑂3
−in monitoring wells is elevated in the southeastern plains of North Carolina (Figure S1.7) 

due to the larger amount of 𝑁𝑂3
−sources and the lack of subsurface attenuation factors (Movie 

S2) that are present in the coastal plain region. This corroborates the findings of Nolan and 

Hitt
15

, which also show spatially-smoothed/time-averaged 𝑁𝑂3
−to be the highest in the 

southeastern plains of North Carolina. This expands that finding with point-level results showing 

significant point-level variability within regional trends. Additional concerns arise since 

groundwater flow of the southeastern plains contributes significantly to surface water flow
27

. Our 

LUR-BME model can be used with surface water models to quantify the effect of groundwater 

𝑁𝑂3
−contributing to surface water contamination.  

The use of the methods in this study provide estimates at a finer resolution and down to 

smaller 𝑁𝑂3
−values than Nolan and Hitt

15
, resulting in new findings. Nolan and Hitt

15
 generally 

show greater concentrations than  the LUR-BME model potentially due to their model using 
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significantly less training data and averaging 𝑁𝑂3
−over watersheds. Our LUR-BME models 

benefit from the large amount of monitoring (n=12,322) and private well (n=22,067) data, 

whereas they used 2,306 and 2,490 across the US for their shallow and drinking water models, 

respectively.  

LUR-BME benefits from the exactitude property of BME, thus our model results are in 

100% agreement at monitoring locations. Contrarily, when our observed data is compared with 

Nolan and Hitt
15

 by grouping results according to the bins of figure 1.1, Nolan and Hitt
15

 over-

predicts 48% and 59% of the time for monitoring and private wells, respectively (Figure 

S1.8,S1.9).  As a result of the finer resolution of our maps and their improved ability to predict 

low level 𝑁𝑂3
−, our results lead to a significant new finding about the extent of areas with low 

level contamination. Our results show private well concentrations are greater than 0.25 mg/L 

while monitoring well concentrations are less than 0.25 mg/L in 30.6 percent of North Carolina’s 

area, compared to 2.6 percent for Nolan and Hitt
15

 (Table S1.8,S1.9). Likewise, our results show 

monitoring and private wells are both above or below 0.25 mg/L at the same location in 68 

percent of North Carolina, compared to 91 percent for Nolan and Hitt
15

. Hence whereas Nolan 

and Hitt
15

 results suggest the geographical extent of the low level contamination of drinking 

water aquifer is limited to that of the shallow aquifer, which is consistent with downward 

transport of 𝑁𝑂3
−contamination, our LUR-BME models shows that in fact the geographical 

extent of the contamination of the drinking water extends over a much larger area than that of the 

shallow aquifer. This major new finding provides new evidence indicating that in addition to 

downward transport, there is also a significant outward transport of groundwater 𝑁𝑂3
−in the 

drinking water aquifer to areas outside the range of sources. This is especially significant 

because it indicates that the deeper aquifers are acting as a reservoir that is not only deeper, but 

also wider than the reservoir formed by the shallow aquifers. 

LUR Variable Interpretations 

Variables selected through CFN-RHO show processes influencing monitoring well and 

private well 𝑁𝑂3
−concentrations. Interpretations of regression sources parameters are based on 

the nonlinear model formulation: Since 𝑁𝑂3
−was log-transformed and the nonlinear model has 

multiplicative interaction, the percent increase of the geometric mean of 𝑁𝑂3
−is the exponential 

of the source coefficient multiplied by the result of the attenuation and transport terms held to 

their mean value. For instance, in the monitoring well model, the percent increase in the 
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geometric mean of 𝑁𝑂3
−in mg/L for every 1 kg/yr/ha of farm fertilizer is exp(0. 132 ∗ 0.456) =

1.06 = 5% where 0.456 is the exponential of the mean attenuation and transport variables 

multiplied by their coefficients. For the private well model, the percent increase in the geometric 

mean of 𝑁𝑂3
−for every 1 kg/yr/ha of farm fertilizer is exp(0.0432 ∗ 0.4636) = 1.02 = 2%. 

Every other source coefficient interpretation for time-averaged 𝑁𝑂3
−is provided in the supporting 

information.  

Comparing variables selected between the spatially-smoothed/time-averaged 𝑁𝑂3
−LUR 

and the time-averaged 𝑁𝑂3
− LUR help elucidate effects the spatial scale has on groundwater 

𝑁𝑂3
− concentrations. The variable hyperparameters selected by CFN-RHO help elucidate 

potential scales at which the variables affect groundwater 𝑁𝑂3
−concentrations. For example, the 

short buffer range of developed low likely captures the small size of single-family housing yards 

and their associated fertilizer applications. The monitoring well model WTR has an exponential 

decay range of 5 km. A possible explanation of this medium range is due to the volatization of 

𝑁𝑂3
−into the air, which can then be transported over longer distances than subsurface transport 

mechanisms alone. Long buffer ranges for attenuation and transport variables such as percent 

histosol soil and mean slope represent variables with larger, regional scale effects. 

The third major finding is that both wastewater treatment residuals (WTR) and swine 

CAFOs were selected as local sources of groundwater 𝑁𝑂3
−contamination, which to our 

knowledge have not yet been previously identified as sources in multivariable models that 

included regional sources. To help aide state-wide policy decisions concerning regional versus 

local sources, Figure 1.2 shows the elasticity of LUR predicted sources in monitoring wells, or 

the percent change in the geometric mean of groundwater 𝑁𝑂3
−within an area in response to the 

percent decrease in a LUR model source given all other sources remain at current levels. Farm 

fertilizer and atmospheric deposition result in the greatest decrease in groundwater 𝑁𝑂3
−state-

wide (Figure 1.2A). Reducing WTR (Figure 1.2B) and swine CAFOs (Figure 1.2C) within 1 

kilometer of the source leads to significant reductions in groundwater 𝑁𝑂3
−in the local area 

surrounding the sources, demonstrating the importance of sources on local area 𝑁𝑂3
−variability.  
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Figure 1.5. Elasticity curves for monitoring well sources. Y-axis is the percent decrease in a 

source and the X-axis is the percent decrease in geometric mean, for (A) State-Wide, (B) Within 

1-km of Wastewater Treatment Residuals, and (C) Within 1-km of swine CAFO’s. 

Recommendations and Limitations 

This work represents the first step in the development of modeling observed 𝑁𝑂3
−over 

large domains without averaging. In previous studies, spatial averaging is utilized because it 

provides results at the domain (State, Regional, or National) desired for policy making decisions 

and sheds light on processes influencing groundwater 𝑁𝑂3
−. We demonstrated that a LUR at the 

point-level in space is currently limited in terms of model predictive capability but when 

integrated into the BME framework, the improved model can estimate within the spatial 
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covariance range similar to LUR models for spatially-smoothed/time-averaged groundwater 

𝑁𝑂3
−concentrations. Potential explanatory variables that can explain the remaining variability in 

the point-level LUR will need primary data collection. For instance, we found WTR to be a 

significant variable even though we just used location of fields. If records of timing and amounts 

of WTR applications were improved, then the temporal variability in monitoring wells near 

WTR application fields could be improved
44

. Similarly, a parcel-level query of farm fertilizer 

application practices could distinguish farms that use 𝑁𝑂3
−fertilizers efficiently versus farms that 

apply excessively or with poor timing. For private wells, the short spatial auto-correlation range 

may be due to differences in effectiveness of on-site wastewater treatment systems or residential 

fertilizer use. Additionally, we note that candidate variables not selected via CFN-RHO does not 

necessarily indicate they have no effect on groundwater 𝑁𝑂3
−concentrations in surficial or 

confined drinking-water aquifers of North Carolina. Many factors both statistically and 

physically can affect the selection such as correlation between candidate variables and local 

hydrogeology conditions being overwhelmed by larger scale trends.  This study lacked well 

depth for the majority of monitoring and private wells. The monitoring and private well models 

clearly demonstrate a difference in concentrations based on depth, so well depth could quantify 

this more explicitly as opposed to categorically as done by this study. Furthermore, pumping rate 

information was not available for the private well data set thus the effect of local pumping could 

not be quantified. The USGS water use report
12

 has information on domestic-use water 

withdrawals; however, it is at the county-scale, based on county populations, and cannot be 

down-scaled like the agricultural water withdrawals variable, thus it was not included as a 

candidate variable. Additionally, the detection limit of 1 mg/L for the private well data is high 

and lowering that detection limit would improve the ability of the model to delineate areas with 

low level contamination that may act as reservoir to surface water 𝑁𝑂3
−recharge. The high 

detection limit is also potentially responsible for the lower 𝑟2in the private well LUR model for 

time-averaged nitrate because it results in a low dependent variable variance. Predictions of the 

private well LUR model for time-averaged nitrate are likely biased towards the detection limit; 

however, the LUR-BME model for private well models likely avoids this bias due to the 

exactitude property along with the good spatial coverage of private well data across North 

Carolina. Moreover, greater uncertainty in attenuation processes in deeper aquifers is likely 

contributing to the lower 𝑟2. 
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In conclusion, a LUR model with a novel model selection procedure can elucidate 

important predictors of point-level groundwater 𝑁𝑂3
−in North Carolina monitoring and private 

wells. The methods are translatable to other study areas in the United States. LUR-BME models 

can be used to predict spatial/temporal varying groundwater 𝑁𝑂3
−and provide uncertainty 

assessments. Further research should integrate groundwater 𝑁𝑂3
−results into surface water 

models to determine the extent of groundwater’s contribution to surface water contamination. 

Lastly, results will be useful in identifying localities of elevated 𝑁𝑂3
− for increased monitoring. 
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Spatial Explanatory Variables  

1) Nitrate Mass in Fertilizer, Manure, and Atmospheric Deposition.  Estimates of nitrate were 

based on USGS estimates of nitrate mass in farm fertilizer, non-farm fertilizer, manure, and 

atmospheric deposition. The estimates are based on county-level estimates compiled from 

fertilizer sales, census of agriculture, and population estimates following the methods outlined in 

Ruddy et al.
1
, and employed by Hoos and McMahon

2
 for the analysis of nitrogen loads in 

streams using spatially referenced regression on watershed attributes (SPARROW).  

Nitrate mass estimates in kilograms per year per county  was obtained from Ruddy et al
1
 and 

averaged over all of the available years to obtain an average mass per year per county estimate. 

Similar to Hoos and McMahon
2
, in order to more accurately represent the spatial distribution of 

the county-level data, nitrate farm fertilizer and manure estimates were distributed to only 

agricultural land according to the 2006 National Land Cover Database 
3
. The non-farm fertilizer 

was distributed to the developed, forest, shrub, and grassland land cover classes. The 

atmospheric deposition was distributed evenly across each county. The total amount of nitrate 

mass per area for each county was divided by the number of 30-meter cells within each county 

that was portioned mass estimates resulting in variables that represent the average amount of 

nitrate mass input (from the respective source) per year per square-meter, which is then 

multiplied by 900 square-meters to obtain nitrate mass per year. Following the creation of nitrate 

mass variables, we calculate the mean nitrate mass per year per hectare from each source 

(l=Farm Mass, Non-Farm Mass, Manure, or Atmospheric deposition) as:   

 
𝑁𝑀𝑖

(𝑙)(𝜆𝑙) =
1

𝜋𝜆2
∑ 𝑀𝑗

(𝑙) 
𝑛𝑖(𝜆𝑙)

𝑗=1
 

(S1.12

) 

where )()(

l

l

iNM   is the mean nitrate mass per year per hectare of type (l) within a radius l of 

nitrate point i, )(l

jM  is the estimated nitrate mass (kg/year) of type l for the j
th 

pixel described 

above surrounding nitrate point i , 𝜋𝜆2 is the area of the circular buffer, and )( lin   is the number 

of pixels within the circular buffer of radius l around nitrate point i. Area units are converted 

from square meters to hectares, which is more common in the agricultural field. 

2) Point Source Variables. Following Messier et al.
4
, we calculate the sum of exponentially 

decaying contribution from various potential nitrate point sources including wastewater 
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treatment residuals (WTR) application fields
5
, swine farms, swine waste lagoons, cattle farms, 

chicken farms, and wastewater treatment plants (WWTP).  Equation 2 shows the general form of 

the point source variables,  

 

𝑃𝑆𝑖
(𝑙)(𝜆𝑙) = ∑ 𝐶0𝑗

(𝑙)
exp (−3 ∗

𝐷𝑖𝑗

𝜆𝑙
) 

𝑛𝑙

𝑗=1

 

 

(S1.1

3) 

where )()(

l

l

iPS   is the sum of exponentially decaying contribution from point sources type (𝑙) at 

nitrate point i, ln  is the total number of point sources of type (l), ijD  is the distance between the 

j-th point source of type (l) and the nitrate point i,  𝐶0𝑗 is a proxy for the initial nitrate 

concentration at the point source if available, or equal to 1 otherwise, and l  is the exponential 

decay range corresponding to the distance it takes for nitrate released by source of type (l) to be 

reduced by 95%. WWTP initial values are based on the design capacity of the plant; cattle, 

chicken, and swine farms are weighted based on the number of animals; and the other point 

source variables do not have information available to provide reasonable estimates of the initial 

concentration.  

3) On-Site Wastewater Treatment. On-site wastewater treatment, or septic tanks, variables are 

created following the methods of Pradhan et al
6
 with adjustments for our variables’ circular 

buffers as opposed to watershed polygons. The 1990 US census was the last census to collect 

information on the method of wastewater treatment used in residential homes, which was 

obtained at the census block group level as the number of septic or other on-site wastewater 

treatment systems (i.e. latrine, straight pipe) per census block group. We calculated the estimated 

septic system density as follows:  

 

𝑆𝐷𝑖(𝜆) =
∑ 𝜉𝑗

(𝜆)𝑛𝑖(𝜆)

𝑗=1

𝜋𝜆2
 

(S1.1

4) 

where  𝑆𝐷𝑖(𝜆) is the septic system density (#/mi
2
) around nitrate point i within circular buffer 𝜆, 

𝑛𝑖(𝜆) is the total number of census block groups within circular buffer 𝜆, 𝜉𝑗
(𝜆)

 is the number of 

septic systems in the overlapping area between census block j and the circle created by radius  𝜆 
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assuming a constant density of septic tanks in each census block, and 𝜋𝜆2 equals the area of the 

circular buffer created with radius 𝜆.  

The average nitrate loading from septic system is 

 
𝑆𝑁𝑖(𝜆) = ∑ 𝑃𝐷𝑗 ∗ 𝑎𝑗𝜆 ∗ 𝑝𝑗 ∗ 10  

𝑛𝑖(𝜆)

𝑗=1
 

 

(S1.1

5) 

where 𝑆𝑁𝑖(𝜆) is the septic nitrate (lb/yr) around nitrate point i circular buffer 𝜆, 𝑛𝑖(𝜆) is the total 

number of census block groups within circular buffer 𝜆, 𝑃𝐷𝑗 is the population density 

(people/mi
2
) in census block group j, 𝑎𝑗𝜆 is the area of overlap between census block group j and 

𝜆, 𝑝𝑗 is the proportion of people (dimensionless) in census block j that are on septic systems, and 

the result is multiplied by 10 lb/person-year based on the worst case-scenario that the amount of 

nitrate septic influent is estimated at 10 pounds per person per year 
6
.  

4) Population density. Population density represents a surrogate variable associated with non-

farm nitrate inputs and is calculated for each circular buffer using the 2000 census population 

data at the block level and assumes population is evenly distributed over each block.   

5) National Land Cover Database. We construct explanatory variables based on the National 

Land Cover Database (NLCD) satellite imagery file that characterizes land cover types at 30 

meter resolution. We create variables for every NLCD land cover type and aggregated land cover 

type that represent attenuation variables including deciduous forest, evergreen forest, mixed 

forest, herbaceous wetlands, and woody wetlands . For a NLCD variable (l) of interest we 

calculate  

 
𝐿𝐶𝑖

(𝑙)(𝜆𝑙) =
1

𝑛𝑖(𝜆𝑙)
∑ 𝐼𝑗

(𝑙)
𝑛𝑖(𝜆𝑙)

𝑗=1
 

 

(S1.1

6) 

where )()(

l

l

iLC   is the percent of land cover of type (l) within a radius l of nitrate point i, )(l

jI  is 

an indicator variable equal to 1 if the j
th 

pixel surrounding nitrate point i is of type l, and zero 

otherwise, and )( lin   is the number of pixels within the circular buffer of radius l around 

nitrate point i. 
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6) Slope and Topographic Wetness Index. Slope and Topographic Wetness Index (TWI) 
7
 are 

variables that represent possible attenuation and transport variables and are calculated from a 

digital elevation raster. Slope is calculated as the average gradient between adjacent cells within 

a circular buffer centered on each well. TWI expresses the potential wetness in soils due to 

topography and is commonly used in watershed scale hydrological models 
7,8

 and as a predictor 

variable for groundwater contaminants 
9
. The mean TWI within a circular buffer is calculated as  

 

𝑇𝑊𝐼𝑖(𝜆) =
1

𝑛𝑖(𝜆)
 ∑ ln(

𝐹𝐴𝑗

tan(𝛽𝑗)
)  

𝑛𝑖(𝜆)

𝑗=1

 

 

(S1.1

7) 

where 𝐹𝐴𝑗 is the j-th flow accumulation calculated from a D8 flow algorithm, and 𝛽𝑗 is the j-th 

pixel slope, and 𝑛𝑖  (𝜆)is the number of pixels that are within radius 𝜆 around nitrate point i. 

7) Soil variables. Soil based variables are calculated as the average of the given soil 

characteristic within a circular buffer. We use the multilayer soil characteristics dataset for the 

conterminous United States (CONUS-SOIL), which contains soil estimates of pH, permeability, 

hydrologic soil groups, available water capacity, and depth to bedrock 
10

. Data on histosol soil 

type, a soil group that contains large amounts of organic matter in the upper profile, was obtained 

directly from the supporting information of Nolan and Hitt
11

.  

8) USGS withdrawals. Similar to Nolan and Hitt
11

, we calculate the average water withdrawals 

from groundwater, surface water, and the sum of groundwater and surface water. Water 

withdrawal rates per county 
12

 are distributed evenly over each county, which is then used to 

calculate the average water withdrawal within a circular buffer.  

Model Coefficient Interpretations 

Interpretations of regression sources parameters are based on the nonlinear model 

formulation: Since nitrate was log-transformed and the nonlinear model has multiplicative 

interaction, the percent increase of the geometric mean of nitrate is the exponential of the source 

coefficient multiplied by the result of the attenuation and transport terms held to their mean 

value. Below is the derivation of this interpretation:  
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In matrix format, let us write an equation for the log of the nitrate with the equation form 

in this paper, with the attenuation and transport term simplified into one exponential term. 

𝐿𝑛 (𝑁) = 𝑋𝛽 exp(𝑍𝛾)   

For simplicity, let’s reduce it to one source and one attenuation/transport variable. 

𝐿𝑛 (𝑁) = 𝛽1𝑋1 exp(𝛾1𝑍1)   

Let us write another equation that represents a one unit increase in source 𝑋1. 

𝐿𝑛 (𝑁2) = 𝛽1(𝑋1 + 1)exp (𝛾1𝑍1) 

For clarity, rename 𝑁 = 𝑁1 and evaluate the attenuation/transport term at the mean 

values, leading to a constant value. We have two equations:  

{
𝐿𝑛 (𝑁1) =  𝛽1𝑋1𝐾

𝐿𝑛 (𝑁2) = 𝛽1(𝑋1 + 1)𝐾
 

Subtract the equations and simplify 

𝐿𝑛(𝑁1) − 𝐿𝑛(𝑁2) = −𝛽1𝐾 

−𝐵1𝐾 = 𝐿𝑛 (
𝑁1

𝑁2
) 

𝛽1𝐾 = 𝐿𝑛 (
𝑁2

𝑁1
) 

exp(𝛽1𝐾) = 𝑁2/𝑁1 

Using the derived formula the model source interpretations for the monitoring well model 

are as follows:  

1) The percent increase in the geometric mean of nitrate in mg/L for every 1 kg/yr/ha of farm 

manure while other sources and attenuation/transport is constant is exp(0. 0759 ∗ 0.456) =

1.04 = 4%. 

2) The percent increase in the geometric mean of nitrate in mg/L for every 1 unit of wastewater 

treatment residuals while other sources and attenuation/transport is constant is exp(0. 245 ∗

0.456) = 1.12 = 12%. 
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3) The percent increase in the geometric mean of nitrate in mg/L for every 1 kg/yr/ha of farm 

fertilizer while other sources and attenuation/transport is constant is exp(0. 132 ∗ 0.456) =

1.06 = 6%. 

4) The percent increase in the geometric mean of nitrate in mg/L for every 100 pigs in swine 

CAFO’s while other sources and attenuation/transport is constant is exp(0. 117 ∗ 0.456) =

1.06 = 6%. 

5) The percent increase in the geometric mean of nitrate in mg/L for every 1 percent increase in 

developed low land while other sources and attenuation/transport is constant is exp(0. 112 ∗

0.456) = 1.05 = 5%. 

6) The percent increase in the geometric mean of nitrate in mg/L for every 1 kg/yr/ha of nitrate in 

atmospheric deposition while other sources and attenuation/transport is constant is exp(0. 447 ∗

0.456) = 1.23 = 23%. 

For private wells:  

1) The percent increase in the geometric mean of nitrate in mg/L for every 1 kg/yr/ha of farm 

fertilizer is while other sources and attenuation/transport is constant exp(0. 0432 ∗ 0.4636) =

1.02 = 2%. 

2) The percent increase in the geometric mean of nitrate in mg/L for every 10 percent increase in 

developed land while other sources and attenuation/transport is constant is exp(0. 0112 ∗

0.4636 ∗ 10) = 1.05 = 5%. 

3) The percent increase in the geometric mean of nitrate in mg/L for every 1 unit  of swine 

lagoons while other sources and attenuation/transport is constant is exp(0. 1079 ∗ 0.4636) =

1.05 = 5%. 

4) The percent increase in the geometric mean of nitrate in mg/L for every 100 kg/yr/ha of nitrate 

in atmospheric deposition while other sources and attenuation/transport is constant is exp(2.9𝑒 −

11 ∗ 0.4636 ∗ 100) = 1.02 = 0.0000000014% . This seemingly negligible increase is due to 

the fact that the hyperparameter is 25km, thus the increase in atmospheric deposition in widely 

distributed. 



46 
 

Tables 

Table S1.3. Groundwater Nitrate Data Source Basic Information. 

Data 

Source 

Media

n (mg/L) 

Mean 

(mg/L) 

Unique 

Wells 

Space/Ti

me Samples 

Year 

Range 

Percen

t Detected 

NC-

DWR 

1.30 4.61 366 11,004 1980-

2011 

79.7 

USGS 0.10 6.14 585 1,318 1990-

2012 

61.4 

Privat

e Well 

0.62 1.66 18,664 22,067 1990-

2011 

30.6 

 

Table S1.4. Spatial explanatory variable model category. The candidate variables are listed 

according to their category in the groundwater 𝑵𝑶𝟑
−model. Details on how each variable 

calculated is presented in the previous section of the supporting information. 

 Sources Attenuation Transport 

Variable Names  Farm Fertilizer; 

Non-Farm Fertilizer; 

Manure; Nitrate 

Atmospheric 

Deposition; Points 

Source: WWTP, 

Cattle Farms, Poultry 

Farms, Swine Farms, 

Swine Lagoons, 

Waste Treatment 

Residuals (WTR); 

On-Site Wastewater 

Treatment input; On-

Site Wastewater 

treatment density; 

National 

Landcover Database: 

Deciduous, 

Evergreen, Mixed 

Forest, Forest All, 

Grassland, Woody 

Wetlands, Herbaceous 

Wetlands, Wetlands 

All; Histosol Soils 

Soil Permeability; 

Depth to Bedrock; 

pH; Hydrologic Soil 

Groups: A,B,C,D; 

Available Water 

Capacity; Water 

Withdrawals: 

Groundwater, Surface 

Water, Total; 

Topographic Wetness 

Index; Mean Slope 
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National Landcover 

Database: Developed 

Open, Developed 

Low, Developed 

Medium, Developed 

High, Developed All, 

Pasture/Hay, Crops, 

Agriculture combined 

 

Table S1.5. Nonlinear regression model variables selected via CFN-RHO and parameter 

estimates for spatially-smoothed/time-averaged  𝑵𝑶𝟑
− monitoring (left) and private well (right) 

models. All variables are significant with p-value < 0.025. Variables units: a- Kg- 𝑵𝑶𝟑
−/yr/ha, b- 

Dimensionless, c- 100 pigs, d- percent, e-cubic meters per second. (-) Not a variable in the 

model. 

 25 KM Spatially Smoothed/Temporally Averaged Nitrate 

Monitoring Well Private Well 

Variable Variable Range Coefficient 

Estimate 

Standard Error Variable Range Coefficient 

Estimate 

Standard Error 

Constant n/a -3.71 0.191 n/a -1.570 0.0382 

 Source Variables 

Wastewater 

Treatement 

Residuals 

(WTR)
b
 

40 km 0.0235 0.0056 - - - 

Farm 

Fertilizer
a
 

25 km 4.67e-9 8.0e-10 25 km 7.2e-10 3.5e-11 

Swine 

Lagoons
b
 

- - - 35 km 0.0385 0.0016 

Atmospheri

c 

25 km 3.07e-8 4.8e-9 25 km 8.49e-9 1.4e-10 
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Table S1.6. The number of times each variable in the full spatially-smoothed/time-averaged LUR 

model for monitoring wells was selected in the ten-fold cross-validation runs. 

Variable  Number out of 10 the variable was  

picked in 10 fold cross-validation 

Farm Mass 10 

NADP 7 

WWTP 9 

Deposition
a
 

Wastewater 

Treatment 

Plant 

25 km 0.0132 0.0003 - - - 

 Attenuation and Transport Variables 

Deciduous 

Forest
d
 

25 km -0.0416 0.0026 25 km -0.0312 5.5e-4 

Mixed 

Forest 

- - - 25 km -0.0395 0.0021 

Herbaceous 

Wetlands
d
 

25 km -0.7042 0.0649 25 km -0.1757 0.0112 

Histosol
d
 25 km -0.0482 0.0076 25 km -0.0924 0.0037 

Hydrologic 

Soil Group 

D
d
 

25 km -0.013 0.0019 25 km -0.0271 5.7e-4 

Hydrologic 

Soil Group 

C
d
 

25 km -0.0123 0.0027 - - - 

GWW
e
 - - - 25 km -1.8014 0.0448 
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WTR 10 

Deciduous 10 

Herbaceous Wetlands 10 

HSG-C 7 

HSG-D 8 

Histosols 10 

 

Table S1.7. The number of times each variable in the full spatially-smoothed/time-averaged LUR 

model for private wells was selected in the ten-fold cross-validation runs. 

Variable  Number out of 10 the variable was  

picked in 10 fold cross-validation 

Farm Mass 10 

Atmospheric Deposition 10 

Swine Lagoons 10 

HSG D 10 

Deciduous 10 

Herbaceous Wetlands 10 

GWW 10 

Histosol 10 
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Table S1.8. The number of times each variable in the full time-averaged LUR model for 

monitoring wells was selected in the ten-fold cross-validation runs. 

Variable  Number out of 10 the variable 

was picked in 10 fold cross-validation 

Manure  6 

WTR 10 

Farm Fertilizer 10 

Swine CAFO’s 10 

Developed  Low 7 

Atmospheric Deposition 7 

Forest 7 

Herbaceous Wetlands 10 

Histosol 8 

Slope 7 

 

Table S1.9. The number of times each variable in the full time-averaged LUR model for private 

wells was selected in the ten-fold cross-validation runs. 

Variable  Number out of 10 the variable 

was picked in 10 fold cross-validation 

Farm Fertilizer 10 
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Developed   10 

Swine Lagoons 2 

Atmospheric Deposition 7 

Histosol 7 

HSG D 10 

Deciduous 0 

Table S1.10. 2 x 2 table showing the percent of area in North Carolina as predicted by this 

study’s LUR-BME model to be (I) below 0.25 mg/L for both monitoring and private wells, (II) 

above 0.25 mg/L for monitoring wells and below 0.25 for private wells, (III) below 0.25 mg/L 

for monitoring wells and above 0.25 mg/L for private wells, and (IV) above 0.25 mg/L for both 

monitoring and private wells. 

 Monitoring Well 

<0.25 mg/L >=0.25 mg/L 

Private 

Well 

<0.25mg/L 

I 

43.2 

II 

1.4 

>=0.25mg/L 

III 

30.6 

IV 

24.8 
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Table S1.11. 2 x 2 table showing the percent of area in North Carolina as predicted by thi 

GWAVA models (Nolan and Hitt, 2006) to be (I) below 0.25 mg/L for both monitoring and 

private wells, (II) above 0.25 mg/L for monitoring wells and below 0.25 for private wells, (III) 

below 0.25 mg/L for monitoring wells and above 0.25 mg/L for private wells, and (IV) above 

0.25 mg/L for both monitoring and private wells. 

 Shallow Groundwater 

<0.25 mg/L >=0.25 mg/L 

Drinking 

Water  

<0.25mg/L 

I 

25.4 

II 

6.0 

>=0.25mg/L 

III 

2.6 

IV 

66.0 
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Figures  

 

Figure S1.6. North Carolina study area with private well and monitoring well nitrate databases. 

The convex hull of monitoring and private wells covers 88 and 99.5 percent of North Carolina, 

respectively.  A) Frequency histogram of the log-nitrate concentration for monitoring well data. 

B) Frequency histogram of the log-nitrate concentration for private well data. 
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Figure S1.7. Flow diagram of the constrained forward nonlinear and hyperparameter 

optimization model selection procedure. 
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Figure S1.8. Left) Histogram (blue) of monitoring well data only observed above the detection 

limit, log-transformed. The fitted normal distribution (red) based on the maximum likelihood 

estimation method accounting for nondetects and their detection limits. Right)  Histogram (blue) 

of private well data only observed above the detection limit, log-transformed. The fitted normal 

distribution accounting for nondetects (red). 
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Figure S1.9. Land Use Regression results from the Constrained Forward Nonlinear Regression 

and Hyperparameter Optimization procedure for the monitoring and private well models. There 

are significant areas of predicted nitrate above 10 mg/L in the southeastern plains region for the 

monitoring wells. This area also has relatively widespread contamination above 1 mg/L in the 

private wells. Prediction variance should be used in conjunction with results at unmonitored 

locations.   
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Figure S1.10. Monitoring well nitrate LUR residual experimental and modeled spatial (top) 

and temporal (bottom) covariance. The model is fit based on a least-squared fit with weights 

equal to the experimental covariance at the lag times the square root of the number of pairs used 

to calculate the covariance. 

 

Figure S1.11. Private well nitrate LUR residual experimental and modeled covariance. 
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Figure S1.12. Level III Ecoregions in North Carolina defined by the US Environmental 

Protection Agency. 
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Figure S1.13. Observed monitoring well nitrate from this study overlaid with the GWAVA-

SW model results. 
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Figure S1.14. Observed private well nitrate from this study overlaid with the GWAVA-DW 

model results. 

Movies 

Movie S1: A movie showing the LUR-BME estimates for multiple days across the study time 

period is available for viewing and download at 

http://www.unc.edu/depts/case/BMElab/studies/KM_NO3_NC/ 

Movie S2: A movie showing the explanatory variables for the monitoring well LUR model is 

available for viewing and download at 

http://www.unc.edu/depts/case/BMElab/studies/KM_NO3_NC/ 
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Abstract 

Radon (
222𝑅𝑛) is a naturally occurring chemically inert, colorless, and odorless 

radioactive gas produced from the decay of uranium (
238𝑈), which is found in rocks and soils 

worldwide. Exposure to 
222𝑅𝑛 is likely the second leading cause of lung cancer after cigarette 

smoking via inhalation; however, exposure through untreated groundwater is also a contributing 

factor to both inhalation and ingestion routes. A land use regression (LUR) model for 

groundwater 
222𝑅𝑛 with anisotropic geological and 

238𝑈 based explanatory variables is 

developed, which helps elucidate the factors contributing to elevated 
222𝑅𝑛 across North 

Carolina. The LUR is also integrated into the Bayesian Maximum Entropy (BME) geostatistical 

framework to produce a point-level LUR-BME model of groundwater 
222𝑅𝑛 across North 

Carolina including prediction uncertainty. The LUR-BME model of groundwater 
222𝑅𝑛 results in 

a leave-one out cross-validation 𝑟2 of 0.46 (Pearson correlation coefficient= 0.68), effectively 

predicting within the spatial covariance range. Results show 
222𝑅𝑛 concentration differences 

between Intrusive Felsic geological formations is likely due to sediment 
238𝑈 concentrations. 
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Introduction 

Radon (
222𝑅𝑛) is a naturally occurring chemically inert, colorless, and odorless 

radioactive gas 
1
 produced from the decay of uranium (

238𝑈), which is found in rocks and soils 

worldwide. Outdoor air 
222𝑅𝑛 levels are generally very low; however, when 

222𝑅𝑛 enters a 

residential home, its concentration can increase to levels that may lead to adverse health effects 
1
. 

There is vast literature supporting the conclusion that exposures via inhalation of indoor air 

contaminated with radon lead to a significant increased risk of lung cancer morbidity in both 

never-smokers and smokers 
2–7

 . Exposure to 
222𝑅𝑛 is likely the second leading cause of lung 

cancer after smoking in the US
4,8,9

. Important routes of inhalation exposure result from 
222𝑅𝑛 gas 

directly escaping from soil and rock and accumulating in the indoor environment; however, 

222𝑅𝑛 can also degas from untreated groundwater used for showering, dishwashing, and clothes 

washing resulting in exposures in direct vicinity to the breathing zone 
10,11

.  

222𝑅𝑛 in groundwater is not only a concern because of its contribution to indoor air 
222𝑅𝑛, 

but also due to the direct ingestion of drinking water with elevated 
222𝑅𝑛. There is evidence that 

exposure to 
222𝑅𝑛 through drinking water and indoor air can lead to stomach cancer 

8,12
; 

however, this human health endpoint is understudied compared to lung cancer and there is not a 

consensus among the literature 
4
. 

The association between groundwater 
222𝑅𝑛 and underlying geological formations has 

been shown in many previous studies. Brutsaert et al. (1981) found positive associations between 

222𝑅𝑛 and granites, metamorphic rocks, and other chemical parameters in Maine, USA through 

graphical and tabular comparison of measured values. Further solidifying this relationship, Yang 

et al. 
14

 showed increased risk for elevated 
222𝑅𝑛 within a 5 km distance to granitic intrusions in 

Maine, USA  using the non-parametric Kruskal-Wallis one-way analysis of variance (ANOVA).  

Likewise, associations between elevated 
222𝑅𝑛 and granites and granitic gneisses have been 

shown in North Carolina
8,15

. Prediction of groundwater 
222𝑅𝑛 on medium to large area scales 

(>10
0
 km) has been reasonably successful with Kriging models 

16
 and multivariate statistics 

17
; 

however they do not account for physical processes affecting its distribution such as 

geochemistry and geology interaction. 

Previous studies have also attempted to find associations and make predictions of 

groundwater 
222𝑅𝑛 based on 

238𝑈 and other hydrogeochemical parameters such as alkalinity and 

conductivity. Yang et al. 
14

 observed weak, but positive correlations at intermediate scales (10
0
-



65 
 

10
1
 km) between 

238𝑈 and 
222𝑅𝑛 in granitic bedrock aquifers of Maine, USA. Salih et al. 

18
 used 

Co-Kriging with 
238𝑈 as the secondary variable to map groundwater 

222𝑅𝑛 in southeast Sweden, 

which produced good predictions at unmonitored locations, but had weak correlation with 
238𝑈 

(R
2
 <0.1).  

About 25 percent of the Piedmont and mountains physiographic provinces of North 

Carolina are underlain with rocks commonly associated with elevated 
222𝑅𝑛 in water, namely 

felsic intrusive rocks such as granites and granitic gneisses. Through water sampling Campbell et 

al.(2011) have found 19 counties in North Carolina that are particularly susceptible to elevated 

radon in water. In this study, we use the samples from Campbell et al. (2011) plus geocoded 

samples from private well sources and USGS to model the groundwater 
222𝑅𝑛 concentrations 

across North Carolina.. 

Several counties in western North Carolina are classified as EPA Zone 1 counties, with 

predicted indoor air 
222𝑅𝑛 concentrations above the action level of 4 picocuries per liter (pCi/L). 

Over 90 percent of wells sampled in that region exceed the EPA’s proposed Maximum 

Contaminant Level of 300 pCi/L and a large number exceeded the alternate MCL of 4000 pCi/L 

8
. Since monitoring 

222𝑅𝑛 concentration is not mandatory for private well owners 
19

, elucidating 

the spatial distribution of radon across the state is indispensable to inform the public about 

exposure to waterborne 
222𝑅𝑛. Furthermore, since North Carolina has on average 1/3 of each 

county population relying on untreated groundwater as drinking water 
20

, quantifying potential 

exposures is important since the population potentially exposed in North Carolina significantly 

higher than the United States average.  

Land use regression (LUR)
21–26

 modeling is a proven method that complements 

monitoring programs and provides effective means for water quality exposure assessments. The 

Bayesian Maximum Entropy (BME) method of modern spatiotemporal geostatistics has also 

been shown to successfully estimate groundwater quality contaminants 
25,27,28

. An advantage of 

BME over purely spatial linear geostatistical approaches is its ability to quantify spatial and 

temporal variability which is then used in the estimation process at unmonitored locations. BME, 

like all geostatistical methods, is data driven and can only provide reliable estimates within the 

vicinity of measured values. However, BME utilizes Bayesian epistemic knowledge blending to 

combine multiple sources of data, which has been successfully demonstrated with incorporation 
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of deterministic mean trend functions, such as a LUR model, into BME for groundwater 

contaminants (Messier et al., 2014, 2012).  

The objectives of this study are to: 1) Develop a linear anisotropic LUR model for point-

level groundwater 
222𝑅𝑛 in North Carolina, 2) Integrate the LUR model into BME to produce the 

first model for point-level groundwater 
222𝑅𝑛 that fully quantifies its distribution with a mean or 

median and error variance, 3) Elucidate and develop hypotheses about geological and 

hydrogeochemical factors controlling its distribution. To these ends, we create groundwater 

222𝑅𝑛 explanatory variables based on the recent published geological and accompanying GIS 

information 
29

 and 
238𝑈 data 

30
.  Results are of interest to many parties including: 1) Agencies 

that regulate drinking-water sources or that monitor health outcomes from ingestion of drinking-

water, 2) Agencies that monitor 
222𝑅𝑛 and provide remediation options to homeowners with 

increased risk of elevated radon, and 3) Geologists and hydrogeologists interested in 

environmental and human health applications of geological surveys.  

Methods 

Radon Data Sources 

Groundwater 
222𝑅𝑛 data (Figure 2.1) are obtained from three data sources, which are 

detailed as follows: 

The North Carolina Department of Environment and Natural Resources (NC-DENR) 

Division of Water Resources (NC-DWR) has sampled and analyzed groundwater for 
222𝑅𝑛 

where levels are suspected to be elevated. This resulted in 655 samples of groundwater 
222𝑅𝑛 and 

their known spatial location. Samples were collected by NC DENR personnel from a plumbing 

fixture as close to the wellhead as possible, usually from the wellhead itself. The sample was 

collected after the pump had been operating for at least 20 minutes to ensure the water was not 

from a stagnant water column. Samples were collected using a special procedure to prevent 

aeration of the 
222𝑅𝑛. Specifically, 60 milliliter glass vials were carefully submerged, filled, and 

sealed inside a 2 liter plastic beaker that had been filled with well water under laminar flow. The 

samples were then put on ice to maintain a cool temperature and shipped to a certified laboratory 

overnight.  Most 
222𝑅𝑛samples were  analyzed using the analytical E-Perm ion electret de-

emanation procedure 
31

; a smaller number were analyzed using Standard Method 7500-Rn 

procedure 
32

.  
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Figure 2.15. Radon data source spatial distribution detailed by its source. The 3 physiographic 

provinces of North Carolina are detailed by color: Coastal Plain is Light Pink, Piedmont is green, 

and Blue Ridge is light blue. A) Frequency histogram of the radon data. Note its lognormal 

distribution.  

The second source is USGS data obtained through the National Water Information 

System (USGS), which yielded 297 groundwater unfiltered 
222𝑅𝑛 measurements (USGS 

parameter code  82303) .  Details of the USGS sampling procedure can be obtained through 

USGS directly. 

The last dataset of groundwater 
222𝑅𝑛comes from private well data collected by private 

companies and used with permission. These data were address geocoded using the same process 

as outlined in Messier et al. 
25

. The private company samples were analyzed using the Standard 

Method 7500-Rn procedure.  Private home owners receive kits provided by the companies 
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contracted to analyze the dissolved 
222𝑅𝑛 concentrations. The kits contain detailed instructions 

on how to sample, store, and ship according to EPA approved methods.  

Spatial Explanatory Variables 

Spatial explanatory variables representing the underlying geology are calculated prior to 

model development. For a given geology feature, the corresponding geological variable is 

calculated as the percentage of that geological feature within an elliptical buffer centered on each 

radon measurement. Each geological variable is characterized by a set of ellipse 

hyperparameters and its geological classification scale, as follow: 

i) Ellipse hyperparameters. The ellipse buffer used to calculate the percent of a given geological 

feature captures the anisotropy and spatial range of the corresponding geological formation of 

interest. A given ellipse is defined using a set 𝚲 = (𝜆1, 𝜆2, 𝜙) of three ellipse hyperpameters 

which are the major and minor ellipse buffer radii 𝜆1 and 𝜆2, respectively, and the angle 𝜙 of 

ellipse rotation with respect to the horizontal axis. Each variable is calculated with multiple 

hyperparameter values since these are unknown a priori. In the final model selection process a 

maximum of one ellipse hyperparameter set 𝚲 is allowed to be selected for each geological 

variable to avoid multicollinearity and effectively optimize the hyperparameters. The ellipse axis 

lengths included in this study are 1000, 2500, 5000, 75000, 10000meters. The ellipse angles of 

rotation included are 0, 45, 90, and 135 degrees.  

ii) Geological Classification Scale. Geological features are defined at 3 different geological 

spatial scales, which are natural to lithological descriptions of geology and allow the model to 

distinguish between large area and small area effects of geology on groundwater 
222𝑅𝑛. The most 

general and largest area scale is referred to as General Geological Descriptions (subsequently 

referred to as General) and this includes descriptions such as intrusive felsic, intrusive mafic, and 

orthogneiss. These large area scale features are subdivided into intermediate scale geologic 

descriptions  referred to as Lithotectonic Element (subsequently referred to as Element), which 

are themselves subdivided into the most detailed geologic descriptions referred to as Units. Maps 

of the geological classification at each scale are available in the supplemental data. These 

geological classifications are based on the underlying geology provided by Hibbard et al 
29

. The 

provided GIS attributes by Hibbard et al (2006) were enhanced with North Carolina-centric 

names based on North Carolina Geological Survey information for interpretability; however, the 

actual extent of each geological feature remains unchanged.    
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For a given ellipsoid and geological feature, we define the Geology Percent variable, as 

well as several corresponding Geology and Uranium variables, as follow:    

1) Geology Percent variable. The percent 𝐺(𝑙)(𝒔; 𝚲) of geological feature (l) within an ellipse 

(s,𝚲) centered at spatial location s and with hyperparameter set 𝚲 is calculated as: 

 

𝐺(𝑙)(𝒔; 𝚲) =
1

𝑛𝑖(𝚲)
 ∑ 𝐼𝑗

(𝑙)

𝑛𝑖(𝚲)

𝑗=1 

(𝒔; 𝚲) (2.18) 

 

where 𝐼𝑗
(𝑙)

 is an indicator representing the presence/absence of geological feature (l) at the j-th 

pixel in the ellipse, and 𝑛𝑖 is the total number of pixels within the ellipse. 

2) Geology and Uranium variables. For each stand-alone geological percent variable we define 

several corresponding geology and uranium variables that combine geological information with 

uranium information obtained from the National Uranium Resource Evaluation (NURE) 

Hydrogeochemical and Stream Sediment Reconnaissance 
30

 data. The geology and uranium 

variable 𝐻𝑖
(𝑙)(𝒔; 𝚲) is calculated for geological feature (l) within the ellipse (s,𝚲) as the product 

of the geological percent variable 𝐺𝑖
(𝑙)(𝒔; 𝚲) times the average uranium, or normalized uranium 

concentration, in that geological feature within the ellipse, i.e.   

 

𝐻(𝑙)(𝒔; 𝚲) = 𝐺(𝑙)(𝒔; 𝚲) (
1

𝑚𝑖(𝒔; 𝚲)
∑ 𝑈𝑗

(𝑙)(𝒔; 𝚲)

𝑚𝑖(𝒔;𝚲)

𝑗=1

) (2.19) 

where  𝑈𝑗
(𝑙)(𝒔; 𝚲) is the concentration of 

238𝑈 in the groundwater or stream sediment, or the 

238𝑈 concentration normalized by alkalinity, or 
238𝑈 normalized by conductivity, at the j-th grid 

cell in the ellipse (𝒔; 𝚲) that contains geology (l), and 𝑚𝑖(𝒔; 𝚲) is the number of raster data grid 

cells for geology (l) in the ellipse (𝒔; 𝚲) . 
238𝑈 normalized variables are included as potential 

variables because they help remove 
238𝑈 anomalies 

34,35
 and  stream sediment variables are 

included because 
238𝑈 solubility and groundwater flow makes it tend to accumulate near streams. 

The details of equations 2.1 and 2.2 are aided by figure 2.2, which shows an example of the 

denominator for an equation 1, 𝑛(𝚲), and a geological formation of interest, 𝑚(𝒔; 𝚲). 
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Figure 2.16. 𝒏(𝚲) is the number of cells in ellipse (𝒔; 𝚲) (Black line) located at s and with 

hyperparameters 𝚲, and 𝒎(𝒔, 𝚲) is the number of cells in the geology of interest (Red line) in the 

ellipse. In this example, the light blue represents the geological formation of interest, and  

𝒎(𝒔, 𝚲) corresponds to the area outlined in red. 

Land Use Regression and Model Selection 

We implement a linear land use regression (LUR) model for 
222𝑅𝑛 concentration as 

follows:  

 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑙𝑋𝑖
(𝑙)

(𝚲𝑙)

𝐿

𝑙=1

+ 휀𝑖 (2.20) 



71 
 

where Yi is the log–transform of 
222𝑅𝑛 concentration at point i, 𝑋𝑖

(𝑙)(𝚲𝑙) is the l-th source 

predictor variable at point i with hyperparameter set 𝚲l, 𝛽𝑙  is its source regression coefficient, and 

i is an error term.  

Variables are selected through a modified stepwise regression procedure for LUR models 

with multiple hyperparameter values called A Distance Decay Regression Selection Strategy 

(A.D.D.R.E.S.S.) 
22

. To be more physically meaningful, all variables are considered source terms 

and are constrained to be positive. This model formulation supports the hypothesis that regions 

of elevated 
222𝑅𝑛, or “hot spots”, are due to the underlying geology and 

238𝑈, and that while 

certain geological formations are associated with low 
222𝑅𝑛, geological formations do not 

physically decrease the amount of 
222𝑅𝑛. 

BME Estimation Framework for Space/Time Mapping Analysis  

To improve estimation accuracy, we integrate the time-averaged LUR results into the 

Bayesian Maximum Entropy (BME) method of modern spatiotemporal geostatistics 
36,37

. BME is 

a space/time geostatistical estimation framework grounded in epistemic principles that reduces to 

the space/time simple, ordinary, and universal Kriging methods as its linear limiting case when 

considering a limited, Gaussian, knowledge base, while also allowing the flexibility to process a 

wide variety of additional knowledge bases (physical laws, empirical relationships, non-Gaussian 

distributions, hard and soft data, etc.). We only provide the fundamental BME equations for 

mapping 
222𝑅𝑛. The reader is referred to other works for more detailed derivations of BME 

equations 
36,38

 and the LUR integration into BME 
25

.
 

Let 𝑍(𝒑) be the space/time random field (S/TRF) describing the distribution of 

groundwater log-
222𝑅𝑛 across space and time, where 𝒑 = (𝒔, 𝑡), 𝒔 is the space coordinate and 𝑡 is 

time. The knowledge available is organized in the general knowledge base (G-KB) about the 

space/time trend and variability (e.g. mean, covariance) of 
222𝑅𝑛 across the study domain, and 

the site-specific knowledge base (S-KB) corresponding to the hard and soft data 𝒛𝒅 available at a 

set of specific space/time points 𝒑𝑑. 
 

First, we define the transformation of log-
 222𝑅𝑛 data 𝒛𝒅at locations 𝒑𝒅 as  

 𝒙𝒉 = 𝒛𝒉 − 𝑜𝑍(𝒑𝒉)   (2.21) 

where 𝑜𝑍(𝒑𝒉) may be any deterministic offset that can be mathematically calculated at any 

space/time coordinate 𝒑.  We then define 𝑋(𝒑) as a homogeneous/stationary S/TRF representing 

the variability and uncertainty with the transformed data 𝒙𝒅, i.e. such that 𝒙𝒅 is a realization of 
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𝑋(𝒑). Finally we let 𝑍(𝒑) = 𝑋(𝒑) + 𝑜𝑧(𝒑) be the S/TRF representing groundwater log-
 222𝑅𝑛. 

In this study, we consider two choices for 𝑜𝑧(𝒑): (1) a constant value determined by the mean 

resulting in a purely BME model, and (2) the LUR estimate 𝑳𝒛(𝒑𝒉)  resulting in a LUR-BME 

model.  

The G-KB for the S/TRF 𝑋(𝒑) describes its local space/time trends and dependencies. In 

this work, the general knowledge consists of the space/time mean trend function 𝑚𝑥(𝒑) =

𝐸[𝑋(𝒑)], and the covariance function 𝐶𝑋(𝒑, 𝒑′)=𝐸[[𝑋(𝒑) −  𝑚𝑥(𝒑)][X(𝐩′) − 𝑚𝒙(𝒑′)]] of the 

S/TRF 𝑋(𝒑). We calculate isotropic and anisotropic experimental covariance values at four 

directions of azimuth (0, 45, 90, 135). Additionally, we divide the BME and LUR-BME analysis 

into 3 physiographic provinces  (Figure 2.1) of North Carolina based on geological properties: 

Blue Ridge, Piedmont, and Coastal Plain. The covariance is modeled by physiographic region if 

there are significant differences in model parameters between each region. Furthermore, the 

principal anisotropic axis is determined by examination of the experimental covariance plots and 

the major axis of an ellipse fit to a rose diagram: a plot of the spatial experimental covariance 

range as a function of the azimuth. For anisotropic models, the range of the covariance is always 

the range of the model along the principal axis and coordinates are converted from the 

anisotropic to isotropic case. 

S-KB consists of hard data and soft data; with hard data, 𝒙𝒉 = 𝒛𝒉 − 𝑳𝒛(𝒑𝒉), for data 

points where 𝒛𝒉 is observed over the detection limit and soft data, 𝑿𝒔, is at locations 𝒑𝒔where 

222𝑅𝑛 is observed below the detection limit. Following Messier et al 
25,28

, the BME soft data for 

log-
222𝑅𝑛 is modeled as a Gaussian distribution truncated above the log of the detection limit.  

The overall knowledge bases considered consist of 𝐺 = {𝑚𝑥(𝒑), 𝐶𝑋(𝒑, 𝒑′)}, and 𝑆 =

{𝑓𝑠(. ), 𝑿𝒉}. In this case the BME set of equations reduces to  

 
𝑓𝐾(𝑥𝑘) = 𝐴−1 ∫ 𝑑𝒙𝒔𝑓𝐺(𝒙𝒉, 𝒙𝒔, 𝑥𝑘)𝑓𝑆(𝒙𝒔)  (2.22) 

where 𝑓𝐾(𝑥𝑘) is the BME posterior PDF for the offset-removed log-
222𝑅𝑛(𝑥𝑘) at some 

unmonitored estimation point 𝒑𝑘, 𝑓𝐺(𝒙𝒉, 𝒙𝒔, 𝑥𝑘) is the (maximum entropy) multivariate Gaussian 

PDF for (𝒙𝒉, 𝒙𝒔, 𝑥𝑘) with mean and variance-covariance given by G-KB, 𝑓𝑆(𝒙𝒔) is the truncated 

Gaussian PDF of 𝑿𝒔, and 𝐴−1is a normalization constant. After the BME analysis is conducted, 

𝑜𝑍(𝒑) is added back to obtain log- 
222𝑅𝑛 concentrations.  
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Validation Statistics 

Results between LUR, BME, and LUR-BME are compared with a leave-one-out cross-

validation. In LOOCV, each log-
 222𝑅𝑛 value 𝑍𝑗 is removed one at a time, and re-estimated using 

the given model based only on the remaining data. We assess the accuracy and precision with the 

Root Mean Squared Error (RMSE), the precision with 𝑅2, and the bias of the estimated standard 

deviation with the Root Mean Squared Standardized Error (RMSS). Let 𝑍∗(𝑘)be the re- estimate 

for method k, then 𝑅𝑀𝑆𝐸(𝑘) = √1

𝑛
∑ (𝑍𝑗

∗(𝑘)
− 𝑍𝑗)

2

 𝑛
𝑗=1 , the cross-validation R-Squared is 

𝑅2(𝒁, 𝒁∗(𝑘)), and the 𝑅𝑀𝑆𝑆(𝑘) =  √1

𝑛
∑ (𝑍𝑗

∗(𝑘)
− 𝑍𝑗)

2

σ̂𝑗
∗(𝑘)

⁄𝑛
𝑗=1 , where σ̂𝑗

∗(𝑘)
 is the prediction 

standard error. RMSS should be close to one if the prediction standard errors are valid. 

Kruskal-Wallis Hypothesis Tests for LUR model results 

A major goal of this study is to help elucidate intra-geological differences that result in 

local groundwater 
222𝑅𝑛 variability; or to explain anomalies in which a general geological 

description is generally associated with elevated 
222𝑅𝑛, but contains an element or unit that is 

associated with low 
222𝑅𝑛. The geology and uranium based explanatory variables and the 

geological classification scales allow us to generate and test hypotheses from our LUR model 

results. To this end, we perform a Kruskal-Wallis non-parametric ANOVA test 
39

 on the  
238𝑈 or 

222𝑅𝑛 concentrations within geological formations that were selected to the final LUR model. For 

instance, if a general classification scale variable is selected with a geology and uranium based 

variable and there is a element or unit classification scale geological formation that is a subset of 

the general variable with low observed 
222𝑅𝑛 concentrations, then we can compare the 

distributions of the 
238𝑈 concentrations within the subset geological formation to the larger 

group, to statistically test if the 
238𝑈 is significantly higher in the larger group then the subset, 

thereby driving the larger group’s intra-geological 
222𝑅𝑛 variability. Similarly, we can compare 

222𝑅𝑛 distributions in geological formations and their subset formations if both were selected (i.e. 

Element vs. General), testing whether subset formations contribute 
222𝑅𝑛 concentrations to 

groundwater in the larger group to varying degrees. The Kruskal-Wallis does not make an 

assumption on the normality of the data, and the null hypothesis is that the two groups come 

from the same distribution with equal medians. 
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Results 

Land Use Regression 

The results including the geological scale, 
238𝑈  chemistry, ellipse size and angles, linear 

coefficients, and p-values of the LUR model selected by A.D.D.R.E.S.S. for groundwater 
222𝑅𝑛 

are summarized in table 2.1. With 15 explanatory variables selected plus an intercept, the model 

obtained a 𝑅2of 0.33 (Pearson correlation coefficient= 0.57). The LUR maps of predicted 
222𝑅𝑛 

median and variance are available in the supplemental material.  

Table 2.12. Land Use Regression model selected through A Distance Decay Regression 

Selection Strategy. 

Variable Geological 

Scale 

Chemistry/Percent Ellipse (major, minor, 

angle) 

Beta P-

Value 

Intercept - - - 6.0829 0 

Intrusive Felsic General Sediment Uranium 10km/10km/- 0.0470 0.0152 

Laurentian 

metasedimentary 

and volcanics 

Unit Sediment 

Uranium/Alkalinity 

5km/2km/135 0.2661 1.42e-

17 

Piedmont Zone 

Eastern Blue 

Ridge 

Element Percent 10km/7.5km/180 0.0092 1.59e-

20 

Grandfather 

Mountain 

Window 

Unit Sediment Uranium 10km/5km/45 0.5487 6.84e-

13 

Carolina Zone 

Raleigh Terrane 

Element Percent 10km/2.5km/135/135 0.0207 2.79e-

15 

Cherryville 

Pluton 

Unit Percent 7.5km/2.5km/90 0.0251 0.0018 

Milton Terrane Unit Groundwater 

Uranium/Conductivity 

7.5km/2.5km/180 0.6666 1.37e-

7 

Beech Pluton Unit Groundwater 

Uranium/Conductivity 

10km/1km/90 54.75 4.23e-

10 
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Deep River 

Basin 

Element Sediment Uranium/ 

Conductivity 

7.5km/2.5km/180 40.48 1.18e-

9 

Piedmont Zone 

Tugaloo 

Element Percent 7.5km/1km/135 0.0135 4.27e-

11 

Late Paleozoic 

Plutons 

Element Percent 5km/5km/- 0.0181 3.90e-

29 

Henderson 

Gneiss 

Unit Percent 10km/7.5km/135 0.0300 3.79e-

25 

Mecklenburg 

Pluton 

Unit Groundwater 

Uranium/Conductivity 

7.5km/2.5km/90 2.814 3.67e-

6 

Piedmont Zone 

Eastern Blue 

Ridge Plutons 

Element Percent 5km/2.5km/90 0.0089 3.73e-

6 

Piedmont Zone 

Cat Square 

Terrane Plutons 

Element Percent 7.5km/2.5km/180 0.0262 5.31e-

5 

Spatial Covariance Analysis 

The purely BME analysis, with an offset of the global log-
222𝑅𝑛 mean, was modeled 

using an anisotropic covariance model with an additive two exponential covariance model for the 

Blue Ridge and Piedmont physiographic regions and an isotropic additive two exponential 

covariance model for the coastal plains region. Significant differences between the sill (i.e. total 

variance) and covariance range were found between physiographic regions, which justifies using 

separate covariance models by region. Additionally, the covariance range differed significantly 

for the Blue Ridge and Piedmont regions. The model parameters shown below were fit with a 

least-squared approach:  

 
𝐶𝑋(𝑟) = 𝑐1 exp (−

3𝑟

𝑎𝑟1

) + 𝑐2 exp (−
3𝑟

𝑎𝑟2

)  

 

(2.23) 

where  the first component of the sill, 𝑐1= 1.31 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2 , 1.46 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2, and 1.52 

(𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2 for the blue ridge, piedmont, and coastal plain physiographic regions 

respectively; the first spatial covariance range, 𝑎𝑟1
 =  1,170 m, 767 m, and 1113 m for the three 
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physiographic regions respectively; the second component of the sill, 𝑐2 = 0.52 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2, 

0.70 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2, and 0.089 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2 for the three physiographic regions 

respectively; and the second spatial covariance range, 𝑎𝑟2
= 206 km, 77 km, and 2399 km 

respectively. The principal axes of anisotropy are 45 and 90 degrees for the Blue Ridge and 

piedmont physiographic regions respectively. The BME covariance model plots and rose 

diagrams are available in the supplemental material.    

The LUR-BME residual covariance lacks anisotropy in all 3 physiographic regions (See 

supplemental material), likely due to the elliptical based variables in the LUR model. The model 

parameters for the LUR-BME residual covariance are also fit with a least-squared approach and 

are detailed as follows: 𝑐1= 1.31 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2 , 1.37 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2, and 1.46 (𝑙𝑜𝑔 −

𝑝𝐶𝑖 𝐿⁄ )2 for the blue ridge, piedmont, and coastal plain physiographic regions respectively; the 

first spatial covariance range, 𝑎𝑟1
 =  881 m, 1,117 m, and 1113 m for the three physiographic 

regions respectively; the blue ridge physiographic is a one component exponential model; the 

second component of the sill, 𝑐2 = 0.11 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2 and 0.07 (𝑙𝑜𝑔 − 𝑝𝐶𝑖 𝐿⁄ )2 for the 

piedmont and coastal physiographic regions respectively; and the second spatial covariance 

range, 𝑎𝑟2
= 14.96 km and 14.98 km respectively. 

Land Use Regression – Bayesian Maximum Entropy  

The LUR model was integrated as the global offset to create a LUR-BME model, which 

resulted in a LOOCV 𝑅2 of 0.46  (Pearson correlation coefficient= 0.68), a 28 percent 

improvement over LUR, and a 4 percent improvement over BME, which obtained a 𝑅2 of 0.44 

(correlation=0.66).  Figure 2.3 maps the point-level groundwater  
222𝑅𝑛 median concentration 

and variance across North Carolina. The cross-validation results for the LUR, BME, and LUR-

BME models are summarized in table 2.2.  

Table 2.13. Leave-One-Out Cross-Validation statistics for the LUR, BME, and LUR-BME 

methods for estimation of point-level log- 222𝑹𝒏. Units for RMSE = (log-pCi/L); 𝑹𝟐, RMSS = 

unitless. 

Method RMSE 𝑹𝟐 RMSS 

LUR 1.20 0.33 0.82 

BME 1.01 0.44 1.22 

LUR-BME 0.99 0.46 1.20 
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Figure 2.17. A) LUR-BME radon predicted median across North Carolina. B) LUR-BME 

predicted variance binned according to 5 geometric intervals. Geometric intervals are roughly 

quintiles, but produce better visualization for non-normal distributions. 
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Kruskal-Wallis ANOVA  

The first variable selected in the final LUR model was the mean sediment 
238𝑈 within the 

Intrusive Felsic general geological formations, which contains many geological units known to 

have elevated groundwater 
222𝑅𝑛. However, the Greensboro Intrusive Suite is an Intrusive Felsic 

unit that has low groundwater  
222𝑅𝑛 levels. In order to explore why the Greensboro Intrusive 

Suite unit has different 
222𝑅𝑛 levels then its parent Intrusive Felsic formation, we performed a 

Kruskal-Wallis ANOVA test on the distributions of sediment 
238𝑈 within the Greensboro 

Intrusive Suite versus the rest of the Intrusive Felsic geology. The null hypothesis is rejected 

with a p-value of 0, demonstrating significant difference in the distribution of uranium 
238𝑈 

between the Greensboro Intrusive Suite and other Intrusive Felsic geologies.  

The unit scale Henderson Gneiss, also classified as Intrusive Felsic, was selected to the 

final LUR model as a percent geology variable. A Kruskal-Wallis ANOVA test of observed 

222𝑅𝑛 distributions within Henderson Gneiss versus other Intrusive Felsic was rejected with a p-

value of 1.7E-11, indicating an underlying higher distribution of 
222𝑅𝑛 within subcategories of 

Intrusive Felsic geology such as Henderson Gneiss.  

Discussion 

Groundwater Radon Maps 

This study presents a LUR model for point-level 
222𝑅𝑛 concentration across North 

Carolina that elucidates geological and chemical processes affecting its variability, and then 

utilizes the strengths of BME to create the first map of point-level  
222𝑅𝑛 concentrations and its 

prediction uncertainty. Several major findings can be deduced from the first point-level 

groundwater 
222𝑅𝑛 maps of concentration and uncertainty across North Carolina: First, several 

areas of high susceptibility to elevated 
222𝑅𝑛 as determined by others 

8,40
 are confirmed, 

including the areas underlain by Henderson Gneiss (Henderson County; Blue Ridge 

physiographic province) and Rolesville Batholith (Eastern Wake County; Piedmont 

physiographic province).  Second, the uncertainty is the highest in the Coastal Plain 

physiographic province due to the lack of data; however, there is no area with a predicted median 

above 3,000 pCi/L. While certainly useful, monitoring groundwater 
222𝑅𝑛 in the Coastal Plains 

physiographic province of North Carolina is not a high priority given the scarce state resources. 

Third, it would be prudent to allocate some of these scarce resources for increased monitoring in 

the Piedmont physiographic province in areas underlain by the Deep River basin element and 
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Late Paleozoic plutons (element) (see the Element map in supplementary materials). Our map is 

the first to predict (Figure 2.3A) elevated 
222𝑅𝑛 above 3,000 pCi/L almost ubiquitously across 

the Deep River basin and some areas above 10,000 pCi/L in Anson County due to its inclusion as 

an explanatory variable. However, these predictions have high uncertainty (Figure 2.3B) and are 

underlain with explanatory variables that greatly exceeded values used in the calibration of the 

model.  For instance, the maximum value of the Deep River basin variable (Conductivity 

normalized sediment 
238𝑈) used in calibration was 0.05 𝑝𝑝𝑏/(𝜇Ω/(𝑐𝑚  )) whereas the maximum 

value found in the extrapolation of the LUR model was 0.72 𝑝𝑝𝑏/(𝜇Ω/(𝑐𝑚  )). We limited the 

maximum value of explanatory variables in extrapolated regions to the maximum of the 

calibration range; nonetheless, high values are predicted due to the large value of its linear 

regression coefficient (Table 2.1). Fourth, our map predicts new areas in the Blue Ridge 

physiographic province with elevated groundwater
 222𝑅𝑛 including areas underlain by the Beech 

pluton (Unit) and Grandfather Mountain Window (Unit). The Beech pluton is also an Intrusive 

Felsic formation, which is known to be associated with elevated groundwater 
222𝑅𝑛; however, 

the likely reason both units were selected in the model was their vicinity to high monitoring 

values in areas outside their spatial range. The Beech pluton itself only has one monitoring value 

within its area; however multiple high values are directly north and hence the Beech pluton was 

selected as a long, thin ellipse with a 90 degree azimuth.  

LUR Model Interpretations 

Our LUR-BME model was the first geostatistical model to account for geometric 

anisotropy of a groundwater contaminant through a LUR model. Our LUR model can be thought 

of as a groundwater version of Saito and Goovaerts 
41

 Kriging model for cadmium in air using 

predominant wind direction as a LUR variable that accounts for geometric anisotropy.  

The LUR model not only sheds light on important variables in the control of groundwater 

222𝑅𝑛, but it also allows comparison and distinction between scales of geological formations. For 

instance, we found the general geological formations of Intrusive Felsic to be important via its 

inclusion in the final model; moreover, Henderson Gneiss, Cherryville pluton, and Beech pluton 

are more detailed geologic units that are also Intrusive Felsic and included in the final model. 

The linear, additive formulation of the LUR model allowed Intrusive Felsic to be included and 

provide a baseline for elevated 
222𝑅𝑛 levels across much of North Carolina, which is then refined 

by units with varying local effects based on their coefficient values.  Additionally, the element 
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scale variable Late Paleozoic plutons and Piedmont Zone Eastern Blue Ridge plutons were 

selected, which are also at least partly Intrusive Felsic. Lastly, the difference in scales allows for 

more significant extrapolation of potential elevated 
222𝑅𝑛 areas. As previously mentioned, Late 

Paleozoic plutons was selected, which contains the area of elevated 
222𝑅𝑛 in Eastern Wake 

County known as the Rolesville Batholith. If Rolesville Batholith was selected instead of Late 

Paleozoic plutons, then there would be less extrapolated high values; but given the selection of 

Late Paleozoic plutons, areas in Anson County and Northwestern Guilford County also have 

higher predicted values. This information can provide useful guidance on prioritizing areas for 

new monitoring.  

Hypothesized Controls of Radon Anomalies  

Our LUR model results help guide appropriate hypothesis tests to conduct about potential 

controls of radon anomalies. For instance, Campbell et al.
8
 and Vinson et al. 

40
 both noted 

positive associated between elevated 
222𝑅𝑛 and Intrusive Felsic formations; however, Campbell 

et al. notes the apparent anomaly of the Greensboro Intrusive Suite, which has low levels of 

groundwater 
222𝑅𝑛 despite being Intrusive Felsic. The Kruskal-Wallis ANOVA between 

sediment 
238𝑈 

was rejected, which means there is significant difference between the distributions 

of sediment 
238𝑈 within Intrusive Felsic formations with elevated 

222𝑅𝑛 and Intrusive Felsic 

formations with low 
222𝑅𝑛, leading us to hypothesize that intra-geological variability of 

groundwater radon in Intrusive Felsic formations is at least partially controlled by sediment 
238𝑈 

concentrations. This hypothesis is supported by Vinson et al. 
40

 from data in the Rolesville 

Batholith.  

Recommendations and Limitations  

This study presents a novel method whose result is a point-level mapping with physical 

interpretations.  Human health related recommendations based on the results should however 

consider the limitations of the study.  The results of this study can be used as the exposure 

assessment in a retrospective epidemiological analysis as this represents the best estimate 

currently available for groundwater 
222𝑅𝑛 concentrations in North Carolina; but, there is the 

potential for exposure misclassification, especially in areas outside the spatial covariance range. 

However, LUR-BME also provides the benefit of an accurate quantification of uncertainty 

(RMSS=1.20) to use is a risk assessment framework.  



81 
 

Groundwater 
222𝑅𝑛 was observed at the point-level, the theoretical lower limit of the 

scale of our LUR-BME estimates; however, the geological information used in the study 
29

 was 

at the 1:1500,000 map scale, which results in a theoretical lower limit for detectable size of 1500 

meters and a raster grid cell size of 750 meters 
42

.  This along with the paucity of data limits 

drawing conclusions on the effects of geology at the local scale (10
1
 m). The LUR-BME method 

presented in this paper is however easily translatable to smaller areas. For instance, the USGS 

creates geological “Quadrangle” maps at the 1:24,000 map scale, which would allow scales 

larger than the average parcel to be resolved given sufficient monitoring data as well. We 

considered using the 1:24,000 quad maps for this study; however they do not cover the entire 

study domain, and the level of detail is too refined and results in a majority of zeroes or null 

explanatory variables.  Nonetheless, given sufficient groundwater 
222𝑅𝑛 samples in a local area, 

the quad maps could be used with our method to model point-level variability and elucidate local 

scale effects of geology. 

Groundwater 
222𝑅𝑛 has been shown to be positively correlated (𝑅2 = 0.37) with well and 

casing depth 
40

, but this information was only available for a small subset of our data (< 10%).  

Neither casing nor well depth were considered as potential explanatory variables; however, given 

that the geological information is also two dimensional, depth information would not elucidate 

additional geological controls. 

Conclusions 

A  LUR model with novel anisotropic explanatory variables can elucidate important 

predictors of point-level groundwater 
222𝑅𝑛 in North Carolina. The methods are translatable to 

other study areas in the United States and to different spatial scales. LUR-BME models can be 

used to predict spatial varying groundwater 
222𝑅𝑛 and provide uncertainty assessments. Kruskal-

Wallis ANOVA hypothesis tests help explain intra-geological differences of 
222𝑅𝑛 

concentrations due to the occurrence of 
238𝑈.

 
Further research on 

222𝑅𝑛 health effects such as 

retrospective epidemiological analyses can use our results as the exposure assessment. Lastly, 

results will be useful in identifying localities of elevated 
222𝑅𝑛 for increased monitoring and 

areas with little to no monitoring that need to be monitored due to their predicted potential for 

elevated groundwater 
222𝑅𝑛. 
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Maps of Hibbard Geology Data by Geological Scale 

Figures S2.1-S2.3 are maps of the Hibbard 
1
 geological data  within North Carolina and 

classified into three different geological scales. The maps are intended to show the differences in 

scale and a perspective of the data used. For detailed information on the geological data itself, we 

refer the reader to the referred publication: 

(1)  Hibbard, J.; van Stall, C.; Rankin, D.; Williams, H. Lithotectonic Map of Appalachian 

Orogen: Canada-United States of America; Geological Survey of Canada: Map 0206A; 

Map Scale 1:1 500 000, 2006.  

 

Figure S2.18. Hibbard 2006 geology data for North Carolina and surrounding 50 kilometers 

classified into general geological descriptions.  



88 
 

 

Figure S2.19. Hibbard 2006 geology data for North Carolina and surrounding 50 kilometers 

classified into an intermediate geological scale called Lithotectonic elements. 
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Figure S2.20A. Hibbard 2006 geology data for North Carolina and surrounding 50 kilometers 

classified into specific geological descriptions called Units. 
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Figure S2.3B. Legend of geological Unit names for figure S2.3A.  
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Land Use Regression (LUR) Maps 

 

Figure S2.4. The Land Use Regression (LUR) model predicted radon median. The LUR model 

was selected via the A.D.D.R.E.S.S. model selection procedure.  
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Bayesian Maximum Entropy (BME) covariance by physiographic region 

 

Figure S2.5. Observed radon experimental anisotropic covariance for the Blue Ridge 

physiographic region. Numbers represent the counter-clockwise angle from the horizontal 

horizon for the principal axis. There is clear anisotropy, especially starting at the 10 km spatial 

lag. 
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Figure S2.6. Observed radon experimental anisotropic covariance for the Piedmont 

physiographic region. Numbers represent the counter-clockwise angle from the horizontal 

horizon for the principal axis. There is clear anisotropy, especially starting at the 10 km spatial 

lag. 
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Figure S2.7. Observed radon experimental anisotropic covariance for the coastal plains 

physiographic region. Numbers represent the counter-clockwise angle from the horizontal 

horizon for the principal axis. There is no apparent difference in angle of anisotropy. 

 

BME rose diagrams 

Rose diagrams are created for both the observed radon and the LUR residual radon data. We 

show the diagrams for only the Blue Ridge and Piedmont physiographic regions because the 

coastal plains physiographic region has noisy results for experimental anisotropic covariance.  

Rose diagrams are created by plotting the experimental covariance value at a particular spatial 

lag for every given azimuth tested. Then when the results are plotted in polar coordinates and a 

circle or ellipse is fitted to the data. If an ellipse is fit to the data, then it indicates a major axis of 

geometric anisotropy. We chose to use the 16km spatial lag as the lag for the rose diagram 

calculations. Results are generally consistent regardless of the spatial lag chosen; however, some 

differences do occur due to variability in the data. Nonetheless, 16km spatial lag provides stable 

results. 
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Figure S2.8. A rose diagram for observed radon within the Blue Ridge physiographic region. The 

major axis of the ellipse is close to the 45 degree azimuth.  

 

Figure S9. A rose diagram for observed radon within the Piedmont physiographic region. The 

major axis is close to the 90 degree azimuth.  
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LUR-BME covariance by physiographic region 

 

Figure S2.210. Radon LUR residual experimental anisotropic covariance for the Blue Ridge 

physiographic region. Numbers represent the counter-clockwise angle from the horizontal 

horizon for the principal a
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xis. There is no 

apparent difference in angle of anisotropy. 

 

Figure S2.11. Radon LUR residual experimental anisotropic covariance for the Piedmont 

physiographic region. Numbers represent the counter-clockwise angle from the horizontal 

horizon for the principal axis. There is no apparent difference in angle of anisotropy. 
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Figure S2.12. Radon LUR residual experimental anisotropic covariance for the coastal plains 

physiographic region. Numbers represent the counter-clockwise angle from the horizontal 

horizon for the principal axis. There is no apparent difference in angle of anisotropy. 

  



99 
 

LUR-BME rose diagrams 

 

Figure S2.22. A rose diagram for radon LUR residual within the Blue Ridge physiographic 

region. An ellipse is not able to be fit to the data because of the lack of anisotropy. 

 

Figure S2.14. A rose diagram for radon LUR residual within the Piedmont physiographic region. 

An ellipse is not able to be fit to the data because of the lack of anisotropy 
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Abstract 

 Background: The risk of indoor air radon on lung cancer is well studied, but the risks of 

groundwater radon on both lung and stomach cancer are much less studied and with mixed 

results. 

Methods: Geomasked and geocoded stomach and lung cancer cases in North Carolina from 

1999-2009 were obtained from the North Carolina Central Cancer Registry. Models for the 

association with groundwater radon and multiple confounders were implemented at two scales: 

1) An ecological model of cancer incidence rates at the census-tract level, and 2) An individual-

level model estimating the odds that cancer cases belong to cancer clusters, consisting of a 

cluster analysis followed by logistic regression of case cluster membership . 

Results: At the ecological-level, we find groundwater radon to be a significant and positive risk 

factor for lung cancer (Incidence Rate Ratio =1.05, 95% CI=1.01-1.08, for a 1 log-pCi/L increase 

in census tract log-concentration), and positive but insignificant risk for stomach cancer (IRR 

=1.02, 95% CI=(0.97,1.08)). At the address level we find that groundwater radon exposure 

significantly increases the odds that cancer cases are members of cancer clusters for lung cancer 

(OR=1.32, 95% CI=1.28-1.36) and stomach cancer (OR=1.18, 95% CI=1.07-1.31) after 

controlling for confounding factors.   

Conclusion: Our study is the first epidemiological analysis finding a significant positive 

association between groundwater radon exposure and lung cancer incidence rates, and the first to 

find that groundwater radon increases the odds that both lung and stomach cancer cases are 

geographically clustered. The results corroborate previous biokinetic and mortality studies that 

groundwater radon is a significant environmental risk factor for lung and stomach cancer. 
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Key Messages:  

 The first epidemiology study of groundwater radon and lung cancer incidence  

 The first epidemiology study of groundwater radon and stomach cancer to find a positive and 

significant risk 

 Groundwater radon concentration is a significant risk factor associated with lung cancer 

incidence at the ecological and individual scale 

 Groundwater radon concentration is a significant risk factor associated with stomach cancer at 

the individual level 
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Introduction 

Radon is a naturally occurring radioactive gas and human carcinogen found in the 

groundwater drinking supply and indoor air across the world.  Countries with documented 

groundwater radon occurrence include The United States of America
1–3

, Finland
4
, Belgium

5
, 

Italy
6
, and many other European countries

7
. The carcinogenic risk associated with radon 

exposure is due to its radioactive decay and emission of high energy alpha decay particles (𝛼-

decay)
8,9

, thus when referring to Radon, it is generally understood to be Radon and its associated  

𝛼-decay.   

There is vast literature including multiple epidemiological analyses supporting the 

conclusion that exposures via inhalation of radon in indoor air lead to a significant increased risk 

of lung cancer morbidity in both never-smokers and smokers 
7,10–14

. Ingestion of radon is also 

thought to be associated with lung cancer; however, the literature for groundwater or drinking-

water route of exposure and lung cancer is limited to biokinetic models
8,15

 and one ecological 

epidemiology analysis of mortality
16

.   

Stomach cancer is likely to be the second major cancer risk from radon exposure after 

lung cancer 
8,9,11

; however, no study to date has both effectively and directly quantified this 

risk
11

. Previous studies have looked at stomach cancer and radon with mixed results.  A case-

cohort study of private well radon found a protective effect that was not statistically significant; 

however, it most likely suffered from a small cohort (n=371) and lack of confounders controlling 

for unmeasured protective effects 
4
. A county scale ecological analysis found a positive 

relationship between indoor air radon and stomach cancer mortality, however the study did not 

report the number of subjects or the confidence intervals
17

. Kendall and Smith
11

 hypothesized 

that the mixed results of stomach cancer studies is purely because there has not been a study with 

a highly exposed cohort of sufficient sample size. 

North Carolina contains geological features commonly associated with elevated radon 

and has many areas across the state with high concentration of radon in the groundwater
3
.  

Furthermore, state-wide lung cancer incidence rates are higher than the national average for 

2007-2011 (72.7 vs. 64.9 per 100,000 people) and near the national average for stomach cancer 

(6.7 vs 6.3 per 100,000 people)
18

.   

The objectives of our study are to: 1) Provide the first epidemiological analysis of 

groundwater radon exposure and lung cancer incidence and 2) Conduct the first epidemiological 
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analysis of groundwater radon and stomach cancer incidence with a large and exposed cohort. To 

this end, we develop two types of models for lung and stomach cancer in North Carolina across 

an eleven year period. The first type of model examines associations at an ecological scale, 

investigating the association of groundwater radon exposure and lung and stomach cancer 

incidence rates by census tract. To expand upon the ecological-level model, we develop a two-

stage cluster analysis and logistic regression framework that estimates the odds that cancer cases 

belong to cancer clusters, which allows for an assessment at the individual as opposed to 

ecological scale. This framework has been applied to evaluating the associations between H5N1 

avian bird flu and environmental factors
19,20

, Amyotrophic lateral sclerosis and lake water 

quality
21

, and tuberculosis and aboriginal ancestry
22

.  

Results will be of interest to cancer researchers across disciplines including toxicologist 

and epidemiologists, federal and state agencies monitoring public health such as the department 

of health and human services, and to the general public in order to become better educated on 

their potential risks associated with groundwater radon exposure. Furthermore, the results will 

provide the relative risk estimate needed to calculate the sample size for a large case-control 

study of radon and cancer outcomes, which will be significantly more expensive and time-

consuming than this study.  

Methods 

Study Population  

Geomasked address level stomach and lung incident cancer cases in North Carolina from 

1999-2009 were obtained from the North Carolina Central Cancer Registry (NCCCR) with a 

data use agreement. An Internal Review Board (IRB) assessment was obtained (UNC-IRB #12-

1761) for human subjects; however the only identifiable information is their location. 

Geomasked locations are moved slightly from true addresses using a donut geomask to protect 

privacy while preserving the sensitivity and specificity of detecting disease clusters
23,24

  

Attributes include race, age at diagnosis, gender (Table 1), and various notes including tobacco 

use history; however, those are reported in less than 10% of cases.  Stages of cancer were also 

not included. 
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Table 3.14. Basic information for the study population. Lung and stomach cancer cases from 

1999-2009 in North Carolina, United States.  

 Stomach Cancer Lung Cancer 

Male    

   White   

         < 65 814 10 080 

          ≥ 65 1 345 20 065 

   Black    

        < 65 423 3 099 

         ≥ 65 457 3 244 

    Other   

        < 65 55 217 

         ≥65 34 219 

Female    

   White   

         < 65 413 7 663 

          ≥ 65 960 15 083 

   Black    

        < 65 236 1 776 

         ≥ 65 401 2 006 

    Other   

        < 65 41 161 

         ≥ 65 39 191 

Total 5 218 63 804 

 

Exposure Data 

 

Groundwater radon concentration (log (𝑝𝐶𝑖/𝐿)) exposure is estimated from Messier et al. 

3
, which are address-level estimates of groundwater radon concentration based on the land use 

regression and Bayesian Maximum Entropy (LUR-BME) geostatistical model.  
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Statistical Analyses at Multiple Spatial Scales 

Associations between stomach and lung cancer are examined at two different spatial 

scales:   

First, incidence rates are examined at the census tract level using a negative binomial 

generalized linear model (GLM) with standard NB2 parameterization
25,26

. The NB2 model is a 

negative binomial regression model based on the Poisson-gamma mixture probability 

distribution function. The benefit of this parameterization is that it allows us to model Poisson 

heterogeneity, or more specifically in most cases, Poisson overdispersion due to excess zero 

counts 
25

. The model of stomach or lung cancer counts, 𝑦, is assumed to follow a negative 

binomial distribution such that 𝑦~𝑁𝐵2(𝜇, 𝛼), where 𝜇 is the mean, and 𝛼 is the negative 

binomial dispersion parameter.  For the NB2 parameterization the natural log is the link function 

and the exponential is the inverse-link, thus we model cancer counts as  

 ln(𝑌) =  𝛽0 +  𝛽1𝑍1 + ⋯ + 𝛽𝑛𝑍𝑛 + 휀 + 𝑜𝑓𝑓𝑠𝑒𝑡  (3.1) 

where 𝑌 is the number of stomach or lung cancer counts in a given census tract over the 11 years 

study period, 𝛽𝑛are linear coefficients for the census tract predictor variables 𝑍𝑛, 휀 is the error 

term, and offset is the population-year? offset, which is the natural log of the census tract 

population times the duration of the study period (11 years) with a coefficient constrained to 1 

resulting in an incidence rate interpretation of the model.    

The predictor variables include the exposure 𝑍1 of interest (the census tract average of 

groundwater radon log-concentration, log-pCi/L), and known confounding variables, 𝑍𝑙, l>1, 

which include indoor air radon exposure, smoking prevalence, public water supply status, 

residential tenure, age, gender, and race. Indoor air radon is considered by including the United 

States Environmental Protection Agency (USEPA) estimates of indoor air radon risk 
27

, which 

characterizes indoor air radon  risk by county with 3 levels (Supporting Information Figure 

S3.1): Low (Zone 3), medium (Zone 2), and high (Zone 1) risk. Details on the calculation of the 

other confounding variables are available in the supporting information. Incidence risk ratio 

(IRR), or the ratio of the probabilities of disease when a given predictor variable is increased by 

one unit, is obtained for each variable by exponentiating its coefficient (𝐼𝑅𝑅 =  𝑒𝛽). We create 

and compare models with increasing levels of controlling for confounding variables. First, a 

crude model or model with only groundwater radon is produced. Second, in the adjusted model 1 

we control for the effects of indoor air radon risk by including indoor air radon zones. Third, we 
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control for additional confounding factors including smoking, race, public water supply, and 

residential tenure in adjusted model 2. Lastly, we control for all confounders including gender 

and age with a stratified model.  

Second, to utilize the point level exposure information from the groundwater Rn 

estimates
3
 we conduct a logistic regression analysis on lung and stomach cancer cases that are 

assigned a 0/1 status based on their membership in a cluster 
19,21

. This approach allows address 

level exposure information to be utilized in case-only studies and where a case-crossover study 

design is not sensible. Cancer clusters are identified by calculating the Anselin Local Moran’s I 

on normalized excess case counts
21

 𝑐𝑖 = (𝑜𝑖 − 𝑒𝑖)/𝑒𝑖, where 𝑜𝑖 is the number of observed cancer 

cases per census tract and 𝑒𝑖is the expected number of cases calculated as the North Carolina 

state average for the study period and gender and age adjusted for each census tract.These cancer 

clusters delineate geographic regions associated with unknown elevated risk factors. To identify 

these risk factors, we assign each individual cancer cases with a 0/1 binary variable M indicating 

their membership  in cancer clusters. We model the probability that a lung or stomach cancer is a 

member of a cancer cluster using the logistic regression model 

 logit(𝑀) = 𝛽0 +  𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 + 휀                               

 
(3.2) 

where 𝑙𝑜𝑔𝑖𝑡(𝑀) is the logit link function that transforms the binary membership dependent 

variable M to the appropriate scale for estimation, 𝛽𝑛 are linear coefficients for the individual 

predictor variables 𝑋𝑛, and 휀 is the error term. We implement the logistic model using a GLM 

approach. Details of the logistic regression model are available in the supporting information.  

The variable 𝑋𝑛 of interest represents the groundwater radon log-concentration  log-pCi/L at the 

address of the cancer case, which we obtain via a spatial join from the estimated address-level 

groundwater radon estimates of Messier et al.
3
. The same confounding variables are included in 

the logistic model as in the NB2; however, differences due to the address-level information are 

present, which are explained in detail in the supporting information. The odds ratio (OR), or the 

ratio of the odds that a case is a member of a cluster when a given predictor variable is increased 

by one unit, is calculated for each variable by exponentiating the logistic regression model 

coefficient. Similarly to the NB2 model, we create and compare models with increasing levels of 

controlling for confounding variables; however, instead of stratification by gender and age, they 

are included as explanatory variables resulting in the full model. 
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Spatial auto-correlation of model residuals is assessed by examining a spatial covariance 

plot of the model Pearson residuals. If significant auto-correlation is present, which can 

potentially bias parameter and standard error estimates, then we implement a generalized 

estimating equation (GEE)
28–31

, which accounts for correlations between clusters and assumes no 

correlation within clusters. GLM’s are modeled using the COUNT package
25

 and GEE’s are 

modeled using the GEE package
32

 of the R statistical software. Spatial covariance of residuals 

are calculated using the BMElib
33

 numerical toolbox in MATLAB. The cluster analysis was 

performed using the Cluster and Outlier Analysis tool in ArcGIS 10.0
34

. 

Results 

Lung Cancer  

Results for the crude, adjusted 1, adjusted 2, and gender and age stratified lung cancer 

NB2 models are summarized in Table 3.2. The groundwater radon IRR for model adjusted 2 is 

positive and statistically significant (IRR =1.05, 95% CI=(1.01,1.08)). Residual spatial-

autocorrelation in the lung cancer NB2 model is considered insignificant based on the Pearson 

covariance plots (Supporting Information Figure S3.2). 

The state-wide observed incidence for lung cancer during the study period is 95.7 and 

52.8 cases per 100,000 person-years for males and females respectively. This rate was used as 

the expected incidence in the cluster analysis of normalized excess cancer cases, which resulted 

in 254 out of 1554 (16.3%) census tracts with higher than expected rates of lung cancer 

(Supporting Information Figure S3.3). A total of 13,414 (21%) cases occur within the clusters.  
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Table 3.15. Lung Cancer Negative Binomial regression results for groundwater radon 

concentration for multiple models. The crude model contains only groundwater radon. Adjusted 

model 1 contains groundwater radon and is controlled for indoor air zones. Adjusted Model 2 

contains model 1 plus all of the confounders except age and gender, which are smoking 

prevalence, residential tenure, percent public water, percent white race, and percent black race. 

The last model is stratified by gender and age. Results are expressed as IRR (95% Confidence 

Interval). ** Significant at 95% Confidence Interval. *Significant at 90% Confidence Interval. 

Groundwater radon unit = log-pCi/L averaged across census tracts. Indoor air radon zone is an 

ordinal variable with Rn Zone 3 as the reference level. Rn Zone 3 is the lowest risk of indoor air 

radon.  

 Crude Adjusted 1 Adjusted 

2 

Males Females 

Age 

<65 

Age  ≥ 

65 

Age 

<65 

Age  ≥ 65 

Interce

pt 

5.0e-4 

(4.0e-

4,7.0e-

4)** 

0.0006(0.0005,

0.0008)** 

8.9e-

5(6.0e-

5,1.3e-

4)** 

3.4e-5 

(2.1e-

5,5.7e

-5)** 

0.0014(

9.9e-

4,0.002

)** 

3.5e-5 

(2.1e-

5,5.8e-

5)** 

0.0008(0.0005

,0.001)** 

Ground

water 

Radon  

1.05 

(1.02,1.

08)** 

1.02(0.99,1.06) 1.05(1.01,

1.08)** 

1.01 

(0.97,

1.06) 

1.04 

(1.02,1.

07)** 

1.06 

(1.02,1.

11)** 

1.06 

(1.03,1.10)** 

Rn 

Zone 2 

 1.04(0.99,1.10) 0.94(0.89,

0.99)** 

0.97 

(0.90,

1.04) 

0.95 

(0.91,0.

99)** 

0.93 

(0.87,1.

00)* 

0.95 

(0.90,1.004)* 

Rn 

Zone 1 

 1.19(1.09,1.31)

** 

1.06(0.97,

1.15) 

1.01 

(0.90,

1.13) 

0.82 

(0.76,0.

88)** 

0.96 

(0.85,1.

07) 

0.89 

(0.82,0.97)** 

 

Table 3.3 summarizes the results of the crude, and confounder adjusted lung cancer 

logistic regression model for cluster membership. The fully adjusted address-level logistic GEE 

model  indicates that groundwater radon exposure is a significant risk factor for the cluster 

membership of lung cancer cases (OR=1.32, 95% CI=(1.28,1.36)). Results for the confounding 
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variables in both models are available in the supporting information (Supporting Information 

Tables S3.1, S3.2). Residual spatial-auto-correlation in the lung cancer logistic model is 

considered insignificant based on the Pearson covariance plots (Supporting Information Figure 

S3.2). 

 

Table 3.16. Lung cancer logistic GLM results representing the odds (OR, 95% Confidence 

Interval) a case is within the lung cancer cluster. The crude model contains only groundwater 

radon. Adjusted model 1 contains groundwater radon and is controlled for indoor air zones. 

Adjusted Model 2 contains model 1 plus all of the confounders except age and gender. The full 

model contains model 2 plus age and gender.  ** Significant at 95% Confidence Interval. * 

Significant at 90% Confidence Interval. Groundwater radon unit = log-pCi/L. . Indoor air radon 

zone is an ordinal variable with Rn Zone 3 as the reference level. Rn Zone 3 is the lowest risk of 

indoor air radon.  

 Crude Adjusted 1  Adjusted 2 Full 

Intercept 0.05 

(0.04,0.06)** 

0.05(0.04,0.06)** 0.005 

(0.004,0.007)** 

0.005(0.004,0.007)** 

Groundwater 

Radon 

1.30  

(1.27,1.33)**  

1.29(1.26,1.33)** 1.32 

(1.28,1.36)** 

1.32(1.28,1.36)** 

Rn Zone 2  0.74(0.70,0.77)** 0.69 

(0.65,0.72)** 

0.69(0.65,0.72)** 

Rn Zone 1  2.18(2.04,2.34)** 2.01 

(1.87,2.16)** 

2.00(1.87,2.15)** 

 

Stomach Cancer 

Groundwater radon IRR are generally positive, but insignificant in the crude, adjusted 1, 

adjusted 2 (IRR =1.02, 95% CI=(0.97,1.08)), and three out of four model stratifications each in 

the stomach cancer NB2 model. Full results are available in Supporting Information Table S3.3. 

The state-wide observed incidence for stomach cancer during the study period is 8.2 and 4.1 

cases per 100,000 person-years for males and females respectively. This rate was used as the 

expected incidence in the cluster analysis of normalized excess cancer cases, which resulted in 
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113 out of 1554 (12.8%) census tracts with higher than expected rates of stomach cancer 

(Supporting Information Figure S3). A total of 667 (12.8%) cases occur within the clusters.  

Table 3.4 shows the GLM and GEE results for the stomach cancer crude and adjusted logistic 

model. The GEE is the best model because the GLM showed significant residual spatial auto-

correlation; however, after implementing a GEE with a 3 by 3 exchangeable covariance 

structure
29

, spatial auto-correlation was significantly reduced (Supporting Figure S3.2). The 

logistic GEE model indicates that groundwater radon exposure is a significant risk factor for 

cluster membership of stomach cancer cases (OR=1.18, 95% CI=1.07-1.31 for the full GEE 

model). Results for the confounding variables are in Supporting Information Tables S3.4. 

Table 3.17. Stomach cancer logistic GLM and GEE results representing the odds (OR, 95% 

Confidence Interval) that a stomach cancer case falls within a local stomach cancer cluster. The 

crude model contains only groundwater radon. Adjusted model 1 contains groundwater radon 

and is controlled for indoor air zones. Adjusted Model 2 contains model 1 plus all of the 

confounders except age and gender. The full model contains model 2 plus age and gender.   ** 

Significant at 95% Confidence Interval. * Significant at 90% Confidence Interval. Groundwater 

radon unit = log-pCi/L. . Indoor air radon zone is an ordinal variable with Rn Zone 3 as the 

reference level. Rn Zone 3 is the lowest risk of indoor air radon.  

 GLM GEE 

 Crude Adjuste

d 1 

Adjust

ed 2 

Full Crude Adjusted 

1 

Adjust

ed 2 

Full 

Interce

pt 

0.03 

(0.01,0

.05)** 

0.03(0.0

1,0.06)*

* 

0.016 

(0.005,

0.05)** 

0.016(0.0

05,0.05)*

* 

0.009 

(0.002,

0.04)** 

0.02(0.00

5,0.09)** 

0.011 

(0.001,

0.09)** 

0.011(0.0

01,0.10)*

* 

Groun

dwater 

Radon 

1.29 

(1.18,1

.42)**  

1.29 

(1.15,1.4

4)** 

1.22 

(1.08,1.

36)**  

1.21(1.08,

1.36)** 

1.47 

(1.24,1.

75)** 

1.22(1.09

,1.38)** 

1.19 

(1.07,1.

32)** 

1.18(1.07,

1.31)** 

Rn 

Zone 2 

 1.09 

(0.89,1.3

3) 

1.36 

(1.09,1.

68)** 

1.36(1.09,

1.69)** 

 2.01(1.38

,2.93)** 

2.02 

(1.23,3.

31)** 

2.03(1.23,

3.35)** 



112 
 

Rn 

Zone 1 

 0.80 

(0.55,1.1

4) 

1.16 

(0.79,1.

68) 

1.15(0.78,

1.64) 

 3.56(1.88

,6.7)** 

3.12 

(1.37,7.

14)** 

3.12(1.37,

7.1)** 

 

Discussion 

We presented ecological census tract and case-only individual level models for lung and 

stomach cancer in North Carolina, United States. Our goal was to quantify the associations 

between groundwater radon exposure and lung and stomach cancer, while not only considering 

the effects of known confounders, but also the spatial scale of outcome and explanatory 

variables. There has been several studies supporting that air radon is a significant risk for lung 

cancer 
7,10–14

 but there has been only one epidemiology study of groundwater radon exposure and 

lung cancer, and it was an ecological study for mortality
16

 at the county level. There is general 

consensus on the biological and physical plausibility of groundwater radon leading to stomach 

cancer
8,9,15

; however, there has only been one epidemiology study with a small sample size and 

lack of confounders
4
 to directly measure this association, which showed an insignificant 

association. Our study is the first epidemiological analysis finding a significant positive 

association between groundwater radon exposure and lung cancer incidence rates, and the first to 

find that an increase of 1 log-pCi/L in groundwater radon log-concentration significantly 

increases the odds that both lung cancer cases (OR=1.32, 95% CI=1.28-1.36) and stomach 

cancer cases (OR=1.18, 95% CI=1.07-1.31) are geographically clustered after controlling for 

confounding factors.   

Groundwater radon is a source of indoor air radon due to radon’s transfer from water to 

air during showers
42

, laundry, and dishes
8
. We found groundwater radon concentrations to be a 

significant risk factor for lung cancer incidence rates consistently across all ecological NB2 

models (Table 3.2). The crude model results in an IRR of 1.05 (95% CI, 1.02-1.08); moreover, 

we obtain the same IRR in the adjusted model 2. We further investigate risks by stratifying by 

age and gender, which results in groundwater radon as a significant risk factor in three out of 

four groups, with females at a slightly larger risk. Our NB2 model results for lung cancer provide 

the first epidemiological evidence of effect modification of gender on the association between 

groundwater radon exposure and lung cancer incidence rates, which is shown with an IRR of 

1.06 for females in both age stratifications, and an IRR of 1.01 (95% CI, 0.97-1.06) and 1.04 
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(95% CI, 1.02-1.07) for males below 65 and 65 and above, respectively. Furthermore, this is 

consistent with lung cancer logistic GLM model, which finds that, everything else being the 

same, male lung cancer cases are at a reduced odds of being member of a lung cancer cluster 

compared to female lung cancer cases (Supporting Information Table S3.2) with an OR of 0.97. 

The effect of other confounding variables are generally consistent with the literature, and their 

interpretations are available in the supporting information. 

We also find groundwater radon concentration to be a significant risk factor for the crude 

(OR=1.30) and adjusted (OR=1.32) logistic GLM models for lung cancer, thus for every 2.7 

(natural or Euler’s e) times increase in groundwater radon concentration after controlling for all 

confounding factors, there is thirty-two percent increase in the odds that a lung cancer case is 

member of a cluster. Since we have a case-only study design, the OR does not have the usual 

interpretation of an increase or decrease in odds of disease given an exposure; however, it does 

maintain an interpretation that reflects the underlying risk. In this two-stage analysis procedure, 

the statistically significant clusters  delineate regions with underlying geographical risk factors 

for lung cancer, and the subsequent logistic regression analysis of case cluster membership 

indicates that increased groundwater concentration is one these risk factors since it has an OR 

significantly greater than one.. It follows that our logistic GLM result supplements our census-

tract ecological study in providing the first epidemiological evidence that groundwater radon 

concentrations results in an increased risk of lung cancer; and more importantly, the logistic 

model shows this based on a fine grained model of exposure that captures the variability of 

address-level groundwater radon within each census-tracts, which is important for radon since it 

is known to have significant local variability. Overall, our results for groundwater radon and lung 

cancer associations provide epidemiological evidence and support the National Research 

Council
8
 assessment of increased risk of lung cancer from groundwater radon exposure. 

Lung cancer from indoor air radon exposure is the most well-studied target organ and 

pathway combination for radon
7,8,12–14,35–37

. There is a general consensus that residential 

exposure from indoor air radon increases risk of lung cancer. This result was not seen in our 

ecological NB2 model, which showed indoor air radon exposure having mixed controlling 

effects (Table 3.2). Conversely, our logistic model shows a significant protective effect for 

individuals in indoor air zone 2 versus zone 3 (OR=0.69), and a significant risk for individuals in 

indoor air zone 1 versus zone 3 (OR=2.0). Previous studies report a linear effect with no-
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threshold(LNT) 
7,8,37

; however, there is evidence that the LNT model is inconsistent with 

experimental data and biological plausability
38–40

. Possible explanations for intermediate air 

radon in zone 2 having a protective effect and high air radon in zone 3 being a risk for lung 

cancer include the possibility that the air radon/lung cancer  dose-response is not LNT in 

combination with the fact that residents of indoor air zone 2 counties are more likely than zone 3 

(low expected air radon) counties to obtain residential protective measures against vapor 

intrusion thus explaining the protective result of indoor air radon in zone 2 counties compared to 

zone 3 counties.  

Results from the ecological NB2 models for stomach cancer are all mostly insignificant 

with five out of six IRR at least one or greater (Supporting Information Table S3.2). Contrarily, 

the address-level crude, adjusted, and full logistic models are significant. As previously 

mentioned, there is significant local variability in groundwater radon measurements that is likely 

diluted from areal averaging, and subsequently makes finding a significant effect in the 

ecological NB2 model more difficult. Additionally, the importance of accounting for residual 

spatial-autocorrelation is evidenced by the fact that there is a difference in groundwater radon 

OR between the adjusted logistic GLM and the adjusted logistic GEE for stomach cancer (Table 

3.4).  

The GEE model shows that groundwater radon exposure is a significant risk factor for 

stomach cancer with an 18% increased odds of stomach cancer membership in a cluster for every 

2.8 times increase in concentration while controlling for all confounding factors. Our results 

provide the first epidemiological evidence that groundwater radon is a significant environmental 

risk factor underlying stomach cancer clusters, which supports the National Research Council
8
 

that groundwater radon is a significant risk for stomach cancer, but disputes Auviven et al. 

finding of no significant effects of radon exposure to stomach cancer
4
.  Auviven et al. 

insignificant but protective findings for uranium also contradict the positive association 

Wilkinson et al.
41

 found between uranium deposits and stomach cancer incidence. Furthermore, 

Kjelberg and Wiseman
17

 found significant positive associations between indoor air radon and 

stomach cancer incidence.  

In the full GEE model, we find that the controlling effect of air radon is consistent with a 

linear increase in the air radon/stomach cancer dose-response with an OR of 2.03(1.23,3.35) for 

zone 2 and an OR of 3.12(1.37,7.1) for zone 1 (Table 3.4). In contrast to lung cancer, where we 



115 
 

saw air radon having protective effect in zone 2, we see that air radon is risk for stomach cancer 

in zone 2. Indoor air radon, originating from groundwater and subsurface vapor intrusion, is 

trapped by protective mucous and cilia in the pharynx and tracheobronchial tree. It is often 

subsequently cleared via mucociliary action and then swallowed. This explains the large enough 

dose to the stomach to see effects, but also how natural protective mechanisms help create a low 

dose to the lungs. It is also important from a regulatory and remediation standpoint because 

methods for controlling indoor air radon such active and passive soil depressurization
8,43

 may not 

work as effectively for eliminating the routes of exposure through groundwater.     

Our study provides epidemiological evidence for the association between groundwater 

radon and lung cancer incidence. Additionally, our results support the association between 

groundwater radon exposure and stomach cancer, which has been understudied and has mixed 

results. Limitations of the NB2 models are normal for ecological studies, which includes 

assigning exposures to an analysis unit area when it is known the exposure varies significantly at 

the individual level. The logistic models improved upon this; however, there were still some 

controlling ecological level variables assigned to individual cancer cases, plus the addition of 

overall model parameters with the cluster analysis step decreases model parsimony. Nonetheless, 

our study should provide not only evidence of the associations, but the results needed to calculate 

the sufficient sample size needed to design a larger, individual-level epidemiological analysis 

such as a retrospective case-control or a prospective case-cohort study. 

In summary, our study developed models for lung and stomach cancer associations with 

groundwater radon at the ecological scale with negative binomial regression and at the address-

level with logistic regression of case membership in cancer clusters. We find the first 

epidemiological evidence of the association between groundwater radon exposure and increased 

risk of lung cancer incidence while controlling for confounders at the ecological-level and 

increased risk of lung cancer at an address-level. This is also the first epidemiological analysis to 

find groundwater radon to be a significant environmental risk factor underlying stomach cancer.  
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Confounding independent variables 

The following independent confounding variables were used  

 US EPA Indoor Air Radon Zones
1
: County level indoor air radon zone designations were 

assigned to the census tracts. Zone 1 are counties the highest risk potential with predicted 

average indoor radon greater than 4 pCi/L; Zone 2 are moderate risk counties with 

average indoor radon between 2 and 4 pCi/L; and Zone 3 are low potential counties with 

average indoor radon less than 2 pCi/L. Variables are coded as an ordinal variable with 

Zone 3 as the reference level. 

 Smoking prevalence (% of population): Smoking is known to be associated with both 

lung and stomach cancer
2
. Since reliable smoking information for cases is not known, we 

utilize smoking prevalence estimates at the census tract level
3
 to account for cancer risks 

associated with smoking  

 Public water (% of population): Differences in water source based on public versus 

private supply are associated with diseases including acute gastrointestinal illnesses
4,5

 and 

potentially cancers due to disinfection byproducts
6
.  We use dasymetric mapping 

7
 to 

downscale county level estimates on population using public supplied water and domestic 

self-supplied water
8
 to create a variable that is the percent of a census tract population 

using public water. This variable captures the confounding effect that the usage of public 

water has on cancer risks. 

 Residential tenure (Years): The etiologically required time period to get cancer through a 

chronic environmental exposure is approximated at the census tract level with mean 

residential tenure. The American Community Survey, part of the US Census, obtains 

information on the average length a person has lived at that residence. For this study we 

calculated mean residential tenure as the difference between 2010 and the average year 

that residents moved into their current household, thus a larger value indicating less 

residential mobility. We use the residential tenure variable to capture the confounding 

effect that longer exposure has on cancer risks. 

 Age and gender are controlled through model stratification. Age is stratified at 65. Race 

is controlled by including percent white and percent black variables from the census in 

the model. 
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The same census level estimates of smoking prevalence
3
 and residential tenure used in the 

NB2 model are assigned to the cases for the logistic models. The cases’ public water supply 

status were assigned via a spatial join with a comprehensive public water service area polygon
9
, 

and modeled as a binary variable. Age and gender variables were created based on the case data 

and modeled as binary variables. Race was also based on the case data and modeled as a 

categorical variable. 

Logistic Regression Model 

We model the probability that a lung or stomach cancer will fall in a cancer cluster given 

a set of explanatory variables with a logistic regression model, or generalized linear model with 

binomial distribution assumption and logit function link. The basic form is as follows:  

ℊ(𝑌) = 𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝑛𝑋𝑛 + 휀 

Where ℊ(𝑌) is the logit link function that transforms the binary dependent data to the 

appropriate scale for estimation, 𝛽𝑛 are linear coefficients for the predictor variables, 𝑋𝑛 and 휀 is 

the error term. 

Model Coefficient Interpretations  

Model coefficient interpretations are provided for the Lung stratified NB2, Lung full 

GLM, and Stomach full GEE. The full tables including the confounding variable coefficients are 

in this supporting information. For the stratified NB2 models, the Males 64 and under 

stratification is provided since the other three stratifications have similar interpretations to their 

respective counterpart. 

Lung cancer full NB2:  

1) Males 64 and under have a one percent increase in lung cancer risk for every 2.7 times 

increase in groundwater radon concentration, with all other confounding variables held constant; 

however, it is an insignificant increase in risk. 

2) Males 64 and under in an indoor air radon zone 2 have a three percent decrease in lung cancer 

risk compared to those in indoor air radon zone 3, with all other confounding variables held 

constant; however, it is an insignificant decrease in risk.  

 3) Males 64 and under in an indoor air radon zone 1 have a 1 percent increase in lung cancer 

risk compared to those in indoor air radon zone 3, with all other confounding variables held 

constant; however, it is an insignificant increase in risk.  
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4) Males 64 and under have a greater than 100 times increase in lung cancer risk for every one 

percent increase in smoking prevalence within their census tract, with all other confounding 

variables held constant. 

5) Males 64 and under have a 1 percent increase in lung cancer risk for every additional year of 

residential tenure, with all other confounding variables held constant.  

6) Males 64 and under have a 3 percent decrease in lung cancer risk for every 10 percent increase 

in the population using public water supply, with all other confounding variables held constant. 

7) Males 64 and under  have a 23 percent increase in lung cancer risk for every 10 percent 

increase in Black race within their census tract, with all other confounding variables held 

constant.  

8) Males 64 and under  have a 12 percent increase in lung cancer risk for every 10 percent 

increase in White race within their census tract, with all other confounding variables held 

constant.  

Lung Cancer full logistic GLM: 

1) For every 2.7 times increase in groundwater radon concentration (pCi/L) there is a 32 percent 

increase in odds of having lung cancer within a lung cancer cluster, with all other confounding 

variables held constant.  

2) People in indoor air radon zone 2 have a 31 percent decrease in the odds of lung cancer case 

membership within a lung cancer cluster compared to those in indoor air radon zone 3, with all 

other confounding variables held constant. 

3) People in indoor air radon zone 1 have a 2 times increase in the odds of lung cancer case 

membership within a lung cancer cluster compared to those in indoor air radon zone 3, with all 

other confounding variables held constant. 

4) People of white race have a 2.75 times increase in the odds of having lung cancer within a 

lung cancer cluster compared to people of non-black or white race, with all other confounding 

variables held constant.  

5) People of black race have 2.36 times increase in the odds of having a lung cancer case within 

a lung cancer cluster compared to people of non-black or white race, with all other confounding 

variables held constant.   
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6) People on public water supply have a 63 percent increase in the odds of lung cancer case 

membership within a lung cancer cluster compared to people not on public water, with all other 

confounding variables held constant. 

7) For every additional year of residential tenure, there is a three percent increase in the odds of 

lung cancer case membership within a lung cancer cluster, with all other confounding variables 

held constant. 

8) For every one percent increase in a person’s census tract smoking prevalence, there is a 20 

times increase in the odds of lung cancer case membership within a lung cancer cluster, with all 

other confounding variables held constant. 

9) Males have a three percent decrease in the odds of having lung cancer within a lung cancer 

cluster compared to women, when all other confounding variables are held constant.  

10) People 65 and over have a six percent increase in the odds of having lung cancer within a 

lung cancer cluster compared to people under 65, when all other confounding variables are held 

constant.  

Stomach cancer logistic GEE: 

1) For every 2.7 times increase in groundwater radon concentration (pCi/L) there is an 18 percent 

increase in odds of stomach cancer case membership within a stomach cancer cluster, with all 

other confounding variables held constant.  

2) People in indoor air radon zone 2 have a 2.03 times increased odds of stomach cancer case 

membership within a stomach cancer cluster compared to those in indoor air radon zone 3, with 

all other confounding variables held constant. 

3) People in indoor air radon zone 1 have a 3.12 times increase odds of stomach cancer case 

membership within a lung cancer cluster compared to those in indoor air radon zone 3, with all 

other confounding variables held constant. 

4) People of white race have a 2.26 times increase in odds to have a stomach cancer case with a 

stomach cancer cluster compared to people of non-black or white race, with all other 

confounding variables held constant; however, it is an insignificant increase in risk. 

5) People of black race have a 3.6 times increase in odds to have a stomach cancer case with a 

stomach cancer cluster compared to people of non-black or white race, with all other 

confounding variables held constant.  
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6) People on public water supply have a 2.36 times increase odds of lung cancer case 

membership within a stomach cancer cluster compared to people not on public water, with all 

other confounding variables held constant. 

7) For every additional year of residential tenure, there is a seven percent increase in odds of 

stomach cancer case membership within a stomach cancer cluster, with all other confounding 

variables held constant. 

8) For every one percent increase in a person’s census tract smoking prevalence, there is a 99 

percent decrease in stomach cancer case membership within a stomach cancer cluster, with all 

other confounding variables held constant. 

9) Males are thirteen percent less odds than females to have a stomach cancer case within a 

stomach cancer cluster, when all other confounding variables are held constant.  

10) People 65 and over have a twenty-five percent increase in odds to have a stomach cancer 

case within a stomach cancer cluster, when all other confounding variables are held constant. 
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Figures 

 

Figure S3.23. Indoor Air Radon risk zones by county as designated by the US Environmental 

Protection Agency
1
. Zone 1 (Highest Potential) counties have a predicted average indoor radon 

screening level greater than 4 pCi/L. Zone 2 (Moderate Potential) counties have a predicted 

average indoor radon screening level between 2 and 4 pCi/L. Zone 3 (Low Potential) counties 

have a predicted average indoor radon screening level less than 2 pCi/L.  
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Figure S3.24. Pearson residual covariance plotted against spatial lags for all of the presented 

models. It is clear that the logistic GLM for stomach (red, diamond, solid line) cancer has 

significant spatial-autocorrelation in the residuals at short lags. A logistic GEE for stomach (red, 

square, dashed line) cancer is implemented which reduces residual spatial-autocorrelation to 

within the range of all other models.  
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Figure S3.25. Anselin Local Moran’s I clusters for excess, normalized A) Lung cancer, and B) 

Stomach cancer incidence calculated in ArcGIS 10.0. HH indicates statistically significant 

clusters of high values surrounding features of similar values. HL represents statistically 

significant clusters of high values surrounded by features with low values. LL represents 

statistically significant clusters of low values surrounded by low values. LH represents 

statistically significant low valued clusters next to other low values. Cases are assigned a 1 status 

if they within a census tract with value of HH or HL. All other cases are assigned a 0 status. Each 
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map has two inset maps of the Asheville (red border) and Raleigh (blue border) metropolitan 

areas.  

Tables  

Table S3.18. Lung cancer negative binomial regression models for groundwater radon and all 

confounding variables. The crude model contains only groundwater radon. Adjusted model 1 

contains groundwater radon and is controlled for indoor air zones. Adjusted Model 2 contains 

model 1 plus all of the confounders except age and gender. The last model is stratified by gender 

and age and controls for all factors in adjusted model 2.   ** = Significant at 95% Confidence 

Interval. * = Significant at 90% Confidence Interval. Units for groundwater radon are log-pCi/L. 

Units for the confounders are explained in previous text of the supporting information. 

 Crude Adjusted 1 Adjusted 

2 

Males Females 

Age 

<65 

Age  ≥ 

65 

Age 

<65 

Age  ≥ 65 

Interce

pt 

5.0e-4 

(4.0e-

4,7.0e-

4)** 

0.0006(0.0005

,0.0008)** 

8.9e-

5(6.0e-

5,1.3e-

4)** 

3.4e-5 

(2.1e-

5,5.7e-

5)** 

0.0014(9

.9e-

4,0.002)

** 

3.5e-5 

(2.1e-

5,5.8e-

5)** 

0.0008(0.000

5,0.001)** 

Ground

water 

Radon  

1.05 

(1.02,1.

08)** 

1.02(0.99,1.06

) 

1.05(1.01,

1.08)** 

1.01 

(0.97,1.

06) 

1.04 

(1.02,1.0

7)** 

1.06 

(1.02,1.

11)** 

1.06 

(1.03,1.10)** 

Rn 

Zone 2 

 1.04(0.99,1.10

) 

0.94(0.89,

0.99)** 

0.97 

(0.90,1.

04) 

0.95 

(0.91,0.9

9)** 

0.93 

(0.87,1.

00)* 

0.95 

(0.90,1.004)* 

Rn 

Zone 1 

 1.19(1.09,1.31

)** 

1.06(0.97,

1.15) 

1.01 

(0.90,1.

13) 

0.82 

(0.76,0.8

8)** 

0.96 

(0.85,1.

07) 

0.89 

(0.82,0.97)** 

Smokin

g 

  7.96 

(4.97,12.7

)** 

105.0 

(55.2,2

00)** 

48.3 

(32.2,72.

7)** 

51.6 

(27.7,9

6.4)** 

3.74 

(2.31,6.06)** 

Residen   1.01 1.02 0.98 0.994 0.96 
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tial  

Tenure 

(1.005,1.0

2)** 

(1.01,1.

03)** 

(0.97,0.9

9)** 

(0.987,

1.01) 

(0.956,0.97)*

* 

Public 

Water 

Use 

(per 

10%) 

  0.99 

(0.97,0.99

9)** 

0.97 

(0.96,0.

99)** 

1.01 

(0.99,1.0

2)* 

0.99 

(0.98,1.

01) 

1.03 

(1.02,1.05)** 

Black  

(per 

10%) 

  1.17 

(1.13,1.20

)** 

1.23 

(1.19,1.

28)** 

1.05 

(1.03,1.0

8)** 

1.12 

(1.08,1.

17)** 

1.03 

(0.99,1.07) 

White 

(per 

10%) 

  1.15 

(1.12,1.19

)** 

1.12 

(1.08,1.

16)** 

1.03 

(1.0004,

1.05)** 

1.10 

(1.06,1.

15)** 

1.08 

(1.02,1.12)** 
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Table S3.19. Lung cancer logistic GLM results representing the odds (OR, 95% Confidence 

Interval) a case is within the lung cancer cluster for groundwater radon and all confounding 

variables. The crude model contains only groundwater radon. Adjusted model 1 contains 

groundwater radon and is controlled for indoor air zones. Adjusted Model 2 contains model 1 

plus all of the confounders except age and gender. The full model contains model 2 plus age and 

gender.  ** = Significant at 95% Confidence Interval. * = Significant at 90% Confidence 

Interval. Units for groundwater radon are log-pCi/L. Units for the confounders are explained in 

previous text of the supporting information. 

 Crude Adjusted 1  Adjusted 2 Full 

Intercept 0.05 (0.04,0.06)** 0.05(0.04,0.06)** 0.005 

(0.004,0.007)** 

0.005(0.004,0.007)** 

Groundwater 

Radon 

1.30  

(1.27,1.33)**  

1.29(1.26,1.33)** 1.32 (1.28,1.36)** 1.32(1.28,1.36)** 

Rn Zone 2  0.74(0.70,0.77)** 0.69 (0.65,0.72)** 0.69(0.65,0.72)** 

Rn Zone 1  2.18(2.04,2.34)** 2.01 (1.87,2.16)** 2.00(1.87,2.15)** 

White   2.76 (2.17,3.59)** 2.75(2.15,3.56)** 

Black   2.35 (1.83,3.06)** 2.36(1.85,3.08)** 

Public Water 

Supply 

  1.64 (1.56,1.72)** 1.63(1.56,1.71)** 

Residential 

Tenure 

  1.03 (1.02,1.04)** 1.03(1.02,1.04)** 

Smoking   19.8 (12.0,32.7)** 20.92(12.7,34.55)** 

Male    0.97(0.93,1.01)* 

65 Over    1.06(1.02,1.11)** 
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Table S3.20. Stomach cancer negative binomial regression models for groundwater radon and all 

confounding variables. The crude model contains only groundwater radon. Adjusted model 1 

contains groundwater radon and is controlled for indoor air zones. Adjusted Model 2 contains 

model 1 plus all of the confounders except age and gender. The last model is stratified by gender 

and age and controls for all factors in adjusted model 2.   ** = Significant at 95% Confidence 

Interval. * = Significant at 90% Confidence Interval. Units for groundwater radon are log-pCi/L. 

Units for the confounders are explained in previous text of the supporting information. 

 Crude Adjusted 

1 

Adjusted 2 Males Females 

Age <65 Age  ≥ 65 Age <65 Age  ≥ 65 

Intercept 4.8e-5 

(3.6e-

5,6.5e-

5)** 

0.00005(3.

2e-5,6.4e-

5)** 

1.5e-5(7.9e-

6,3.0e-5)** 

2.1e-

5(6.1e-

6,6.8e-

5)** 

0.0001(3.9e-

5,3.2e-4)** 

1.1e-

5(2.8e-

5,2.5e-

6,4.6e-

5)** 

0.0001(3.6e-

5,3.9e-4)** 

Groundw

ater 

Radon  

1.03 

(0.99,1.

08) 

1.04(0.99,

1.10) 

1.02(0.97,1.

08) 

0.95 

(0.86,1.0

5) 

1.09(1.01,1.

18)** 

1.00(0.87,

1.13) 

1.01(0.91,1.

11) 

Rn Zone 

2 

 0.95(0.88,

1.04) 

1.0(0.92,1.0

9) 

1.06 

(0.90,1.2

4) 

0.89(0.78,1.

02)* 

1.07(0.87,

1.32) 

1.18(1.01,1.

39)** 

Rn Zone 

1 

 1.04(0.90,

1.19) 

1.12(0.97,1.

29) 

1.02 

(0.76,1.3

4) 

0.84(0.68,1.

03)* 

0.92(0.62,

1.34) 

1.07(0.82,1.

37) 

Smoking   1.13(0.52,2.

43) 

1.35 

(0.32,5.7

3) 

3.45 

(1.08,11.1)*

* 

7.95 

(1.25,50.9

8)** 

4.34 

(1.03,18.5)*

* 

Residenti

al  

Tenure 

  1.02(1.01,1.

03)** 

1.01 

(0.99,1.0

3) 

0.98 

(0.97,1.00)* 

1.01 

(0.98,1.04) 

0.97 

(0.95,0.999)

** 

Public 

Water 

Use 

  0.99(0.97,1.

01) 

0.98 

(0.95,1.0

2) 

1.00 

(0.97,1.02) 

1.02 

(0.98,1.07) 

1.05 

(1.01,1.09)*

* 
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(per 

10%) 

Black  

(per 

10%) 

  1.18(1.12,1.

25)** 

1.14 

(1.04,1.2

6)** 

1.12 

(1.03,1.23)*

* 

1.06 

(0.96,1.18) 

1.05 

(0,96,1.16) 

White 

(per 

10%) 

  1.11(1.06,1.

17)** 

1.07 

(0.98,1.1

7) 

1.0 

5(0.97,1.15) 

0.98 

(0.90,1.08) 

0.98 

(0.90,1.08) 

 

Table S3.21. Stomach cancer logistic GLM and GEE results representing the odds (OR, 95% 

Confidence Interval) that a stomach cancer case falls within a local stomach cancer cluster for 

groundwater radon and all confounding variables. The crude model contains only groundwater 

radon. Adjusted model 1 contains groundwater radon and is controlled for indoor air zones. 

Adjusted Model 2 contains model 1 plus all of the confounders except age and gender.  ** = 

Significant at 95% Confidence Interval. * = Significant at 90% Confidence Interval. Units for 

groundwater radon are log-pCi/L. Units for the confounders are explained in previous text of the 

supporting information. 

 GLM GEE 

 Crude Adjuste

d 1 

Adjust

ed 2 

Full Crude Adjusted 

1  

Adjust

ed 2 

Full 

Interce

pt 

0.03 

(0.01,0

.05)** 

0.03(0.0

1,0.06)*

* 

0.016 

(0.005,

0.05)** 

0.016(0.0

05,0.05)*

* 

0.009 

(0.002,

0.04)** 

0.02(0.00

5,0.09)** 

0.011 

(0.001,

0.09)** 

0.011(0.0

01,0.10)*

* 

Groun

dwater 

Radon 

1.29 

(1.18,1

.42)**  

1.29 

(1.15,1.4

4)** 

1.22 

(1.08,1.

36)**  

1.21(1.08,

1.36)** 

1.47 

(1.24,1.

75)** 

1.22(1.09

,1.38)** 

1.19 

(1.07,1.

32)** 

1.18(1.07,

1.31)** 

Rn 

Zone 2 

 1.09 

(0.89,1.3

3) 

1.36 

(1.09,1.

68)** 

1.36(1.09,

1.69)** 

 2.01(1.38

,2.93)** 

2.02 

(1.23,3.

31)** 

2.03(1.23,

3.35)** 

Rn 

Zone 1 

 0.80 

(0.55,1.1

1.16 

(0.79,1.

1.15(0.78,

1.64) 

 3.56(1.88

,6.7)** 

3.12 

(1.37,7.

3.12(1.37,

7.1)** 
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4) 68) 14)** 

White   2.29 

(1.22,4.

9)** 

2.19(1.17,

4.69)** 

  2.35 

(0.84,6.

6) 

2.26(0.81,

6.30) 

Black   3.69 

(1.96,7.

9)** 

3.60(1.91,

7.73)** 

  3.65 

(1.27,1

0.5)** 

3.57(1.24,

10.3)** 

Public 

Supply 

  2.28 

(1.84,2.

83)** 

2.25(1.82,

2.81)** 

  2.39 

(1.63,3.

49)** 

2.36(1.60,

3.47)** 

Reside

ntial 

Tenur

e 

  1.05 

(1.02,1.

08)** 

1.05(1.02,

1.08)** 

  1.07 

(1.04,1.

10)** 

1.07(1.04,

1.10)** 

Smoki

ng 

  0.01 

(0.001,

0.08)** 

0.01(0.00

1,0.08)** 

  0.01 

(0.001,

0.12)** 

0.01(0.00

1,0.12)** 

Male    0.89(0.75,

1.05) 

   0.87(0.80,

0.96)** 

65 

Over 

   1.26(1.05,

1.50)** 

   1.25(0.96,

1.62)* 

 

 

 

 

 

 

 

 



135 
 

REFERENCES 

(1)  US Environmental Protection Agency. EPA Map of Radon Zones 

http://www.epa.gov/radon/zonemap.html. 

(2)  The Health Consequences of Smoking — 50 Years of Progress, A Report of the Surgeon 

General; Atlanta, G.A., 2014. 

(3)  Ortega Hinojosa, A. M.; Davies, M. M.; Jarjour, S.; Burnett, R. T.; Mann, J. K.; Hughes, 

E.; Balmes, J. R.; Turner, M. C.; Jerrett, M. Developing small-area predictions for 

smoking and obesity prevalence in the United States for use in Environmental Public 

Health Tracking. Environ. Res. 2014, 134, 435–452. 

(4)  Blackburn, B. G.; Gunther, C. F.; Yoder, J. S.; Hill, V.; Calderon, R. L.; Chen, N.; Lee, S. 

H.; Levy, D. A.; Beach, M. J. Surveillance for waterborne-disease outbreaks associated 

with drinking water - United States, 2001-2002; 2004; Vol. 53, pp. 23–45. 

(5)  DeFelice, N.; Johnston, J. E.; Gibson, J. M. Burden of Acute Gastrointestinal Illness from 

Microbial Contaminants in North Carolina Community Water Systems. Environ. Sci. 

Technol. 

(6)  Villanueva, C. M.; Cantor, K. P.; Grimalt, J. O.; Malats, N.; Silverman, D.; Tardon, A.; 

Garcia-Closas, R.; Serra, C.; Carrato, A.; Castaño-Vinyals, G.; et al. Bladder cancer and 

exposure to water disinfection by-products through ingestion, bathing, showering, and 

swimming in pools. Am. J. Epidemiol. 2007, 165, 148–156. 

(7)  Sleeter, R.; Gould, M. Geographic Information System Software to Remodel Population 

Data Using Dasymetric Mapping Methods; Reston, Virginia, 2007. 

(8)  Kenny, J. F.; Barber, N. L.; Hutson, S. S.; Linsey, K. S.; Lovelace, J. K.; Maupin, M. A. 

Estimated Use of Water in the United States in 2005. USGS Circ. 1344 2005. 

(9)  NCGICC. ncONEmap www.nconemap.com (accessed Jan 3, 2012).  

 

 

 

 

 

 

 

 



136 
 

APPENDIX: CONCLUSIONS, PUBLIC HEALTH RELEVANCE, AND 

FUTURE RESEARCH 
 

Protecting public health is a paramount responsibility of environmental scientists and 

engineers. Through novel research scientists must develop and implement methods for risk 

assessments of contaminants harmful to human health. Land use regression (LUR) and Bayesian 

Maximum Entropy (BME) are both statistical modeling frameworks that can systematically and 

cost-effectively utilize publicly available datasets to in risk assessments. The work in these 

studies further developed these methods for exposure assessment and dose-response 

characterization of the deleterious human contaminants (𝑁𝑂3
−) and radon (

222𝑅𝑛).  

Understanding the risk of groundwater 𝑁𝑂3
− and 

222𝑅𝑛 exposure is important because 

they are potential and known human carcinogens, respectively. The three studies in this work 

addressed the need for exposure assessment for groundwater  𝑁𝑂3
− and 

222𝑅𝑛 and the dose-

response characterization for 
222𝑅𝑛. The methodological developments and major findings in 

each study are detailed below and summarized in Table 4.1.  

In chapter 1, Nitrate Variability in Groundwater of North Carolina using Monitoring and 

Private Well Data Models, we developed nonlinear LUR models for groundwater 𝑁𝑂3
− in 

shallow monitoring wells and deeper private wells. The nonlinear LUR models were novel 

because they were the first to quantify the spatial distribution of groundwater 𝑁𝑂3
− at a point-

level spatial scale across a large domain. Literature-based and new explanatory variables were 

created that represented 𝑁𝑂3
−sources, attenuation, and transport factors.  We developed a novel 

algorithm for selecting the best LUR model called Constrained Forward Nonlinear Regression 

and Hyperparameter Optimization (CFH-RHO) due to the nonlinear regression model in 

conjunction with the large amount of potential variables that were highly correlated.  The final 

model selected by CFN-RHO showed that both wastewater treatment residual (WTR), or human 

waste biosolids sprayed on agricultural fields, and swine confined animal feeding operations 

(CAFOs) were both local sources of groundwater 𝑁𝑂3
− contamination, which had not yet been 

previously identified as sources in multivariable models. We then integrated the LUR model in 

the BME framework to produce the first space/time point-level estimates of groundwater 𝑁𝑂3
− 

including uncertainty estimates. A major finding from this result includes showing that 

groundwater 𝑁𝑂3
− in shallow monitoring wells in North Carolina is highly variable with many 



137 
 

areas predicted above the current human health standard of 10 mg/L. Contrarily, deeper private 

well model results show widespread, but low-level 𝑁𝑂3
− contamination.  This finding is 

significant because of the human health implications, such as potential carcinogenic effects as 

low as 2.5 mg/L, but also for the ecological function as the deeper aquifer is potentially acting as 

a reserve of 𝑁𝑂3
− contamination to the surficial aquifer and surface waters.  Another major 

finding from the novel point-level space/time mapping of groundwater 𝑁𝑂3
− was the elevated 

levels in the southeastern plains region of North Carolina due to the large amount of sources and 

the lack of subsurface attenuation factors.  

In chapter 2, Estimation of Groundwater Radon in North Carolina using Land Use 

Regression and Bayesian Maximum Entropy, we developed an anisotropic geology-based LUR 

model for modeling spatial point-level groundwater 
222𝑅𝑛, which was then integrated into the 

BME framework to produce the first point-level estimates including uncertainty characterization 

of groundwater 
222𝑅𝑛 across North Carolina. Geology and uranium based explanatory variables 

were created from the most up-to-date published geology data and from the United States 

Geological Survey (USGS) National Uranium Reconnaissance Survey (NURE). Variables were 

created to account for the anisotropic nature of geology. Major findings include mapping several 

areas across North Carolina’s mountain and piedmont regions with elevated groundwater 
222𝑅𝑛 

due to the underlying geology and uranium. Moreover, we performed non-parametric hypothesis 

tests on sediment Uranium concentrations within different areas of geological formations found 

to be associated with elevated 
222𝑅𝑛 and discovered that significant differences in the 

distributions of the sediment Uranium that are potentially showing intra-geological differences of 

observed 
222𝑅𝑛.  

Table 4.22. Summary of dissertation results. 

Dissertation Chapter Methodological Developments Major Findings 
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1) Nitrate Variability in Groundwater 

of North Carolina using Monitoring 

and Private Well Data Models 

 Nonlinear land use regression 

model for groundwater nitrate at 

the spatial point-level 

 Large variable space model 

selection algorithm for correlated 

variables in nonlinear regression 

 Groundwater 𝑁𝑂3
− in monitoring 

wells that is highly variable with 

many areas predicted above the 

current standard of 10 mg/L 

 Groundwater 𝑁𝑂3
−in monitoring 

wells is elevated in the 

southeastern plains of North due 

to the larger amount of 

𝑁𝑂3
−sources and the lack of 

subsurface attenuation factors 

 Both wastewater treatment 

residuals (WTR) and swine 

CAFOs were selected as local 

sources of groundwater 

𝑁𝑂3
−contamination 

2) Estimation of Groundwater Radon 

in North Carolina using Land Use 

Regression and Bayesian Maximum 

Entropy  

  

 Accounting for geometric 

anisotropy through a land 

use regression model with 

ellipse based variables 

  

 Several areas across the 

mountains and piedmont of North 

Carolina with elevated 

groundwater 
222𝑅𝑛 related to 

underlying geologic lithotectonic 

elements and Uranium  

 Sediment Uranium is potentially 

a diagnostic for intra-geological 

differences in groundwater 
222𝑅𝑛. 

3) Lung and Stomach Cancer 

Associations with Groundwater 

Radon in North Carolina, United 

States at Multiple Spatial Scales 

  

 Case-only epidemiological 

analysis at the ecological and 

address-level scales 

 Groundwater 
222𝑅𝑛 is a 

significant risk factor for lung 

cancer at the ecological and 

address-level.  

 Groundwater 
222𝑅𝑛 increases the 

odds of stomach cancer case 

membership in a stomach cancer 

cluster (OR=1.18) and lung 

cancer in lung cancer cluster 

(OR=1.32), after controlling for 

confounding factors. 
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In chapter 3, Lung and Stomach Cancer Associations with Groundwater Radon in North 

Carolina, United States at Multiple Spatial Scales, we utilize the exposure assessment of 

groundwater 
222𝑅𝑛 from chapter 2 to measure the dose-response of groundwater 

222𝑅𝑛 for the 

health outcomes of lung and stomach cancer. We had address geocoded and geomasked lung and 

stomach cancer cases for an eleven year period in North Carolina. Utilizing only case data, we 

developed ecological models, which examine the association between cancer incidence rates and 

areal averaged groundwater 
222𝑅𝑛 . Additionally, to utilize the point-level exposure estimates 

from chapter 2, we implemented a two-stage cluster analysis and then logistic regression of cases 

based on their membership within the cluster. This study was the first epidemiological analysis 

of the association between groundwater radon exposure and lung cancer, and the first to find a 

positive association between groundwater radon and stomach cancer. In the ecological models, 

we found groundwater 
222𝑅𝑛 to be a significant risk for lung cancer incidence in crude, 

confounder adjusted, and stratified models.  In our address-level logistic regression model we 

found groundwater radon exposure to be a significant risk factor for stomach cancer (OR=1.18) 

and lung cancer (OR=1.32) after controlling for confounding factors.   

Public Health Relevance  

This body of research work provides advances in exposure assessment and dose-response 

methodology and practical real-world examples that can be used as resources for future 

protection of public health. The methods outlined in all three chapters utilize publicly available 

data that result in methodological developments and deliverable results in case-studies such as 

maps of predicted contaminant concentration. Environmental scientists, engineers, and 

regulatory agencies can all benefit from the methods demonstrated in this work while 

minimizing additional costs. Given that the methods are data-driven and that uncertainty is 

reduced in the neighborhood of monitoring locations, additional monitoring can result in more 

accurate exposure assessment implementing these methods; however, the uncertainty estimates 

provided in the exposure assessment can also help plan where additional monitoring efforts will 

have the largest marginal returns.  

The LUR-BME framework implemented for the exposure assessments of groundwater 

𝑁𝑂3
− and 

222𝑅𝑛 provide policy relevant information in two unique ways: First, the variables 

selected in the LUR provide information on environmental factors that are associated with the 

contaminants of concerns; and second, the maps of median concentration and error variance 
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provide evidence of the geographic distribution of high and low risk areas as they relate to the 

concentration and uncertainty of the contaminants.   

The exposure assessment for groundwater 𝑁𝑂3
− has impacts for both human and 

ecological health. Excessive 𝑁𝑂3
−inputs into the environment can result in adverse changes to 

ecosystems such as eutrophication and harmful algal blooms. Groundwater and surface water 

systems are highly interconnected domains of our environment. In chapter 2, we recommended 

that the groundwater 𝑁𝑂3
− be utilized as the source (or sink) in a model for surface water 𝑁𝑂3

− 

such as the Soil and Water Assessment Tool (SWAT). The LUR-BME results of shallow aquifer, 

monitoring well 𝑁𝑂3
− are available for distribution to researchers as input into their models. In 

fact, within a month of publication, we were contacted by a consulting firm and The Nature 

Conservancy asking us to provide the results, which they are implementing in a SWAT model 

for a major basin in North Carolina.  

The results of chapter 3, the epidemiological analysis of groundwater 
222𝑅𝑛 exposure and 

cancers of the lung and stomach, provide new and important information on the potential 

carcinogenic health effects of 
222𝑅𝑛 exposure. As previously mentioned, the general scientific 

consensus is that groundwater 
222𝑅𝑛 or drinking-water 

222𝑅𝑛 can cause stomach cancer; 

however, this was severely understudied as there was only one epidemiological analysis and it 

had insignificant results. Furthermore, the relationship between groundwater 
222𝑅𝑛 or drinking-

water 
222𝑅𝑛 was also understudied as there was no study on that route of exposure and lung 

cancer incidence. Therefore, our results provide the only direct estimates of the dose-response 

relationship that can be used in future risk assessments. The results can also be used to provide 

accurate sample size calculations for a more expensive and time consuming individual level 

epidemiological analysis such as a case-control study. Lastly, the results are also important from 

a regulatory and remediation standpoint because methods for controlling indoor air radon such 

active and passive soil depressurization
8,43

 may not work well for eliminating the routes of 

exposure through groundwater.    

Future Research  

The methodological developments and the major findings in this work provide a 

foundation for future exposure assessment and dose-response characterization; however, they 

also lead to more research questions and hypotheses. Examples of potential research questions 

based on the findings of these research studies are discussed below.  
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1) What variables if added to the groundwater 𝑁𝑂3
− models would increase its predictive 

ability? Results from chapter 1 show many significant explanatory variables in the LUR model; 

however, both models for monitoring and private wells have plenty of room for improvement. 

Records and timing of farm fertilizer applications including waste treatment residual applications 

could potentially resolve a significant amount of local scale spatial and temporal variability in 

groundwater 𝑁𝑂3
−. Additionally, information on private well pumping rates and decreasing the 

high detection limit of private well data could improve the private well model. All of these 

variables are possible; however, they would require primary data collection and a non-trivial 

upgrade in monitoring resources. 

2) Can the LUR-BME model for groundwater 𝑁𝑂3
− be integrated into a multimedia model for 

𝑁𝑂3
−? To further understand the impacts of legacy groundwater 𝑁𝑂3

− contamination on surface 

waters, a multimedia for 𝑁𝑂3
− could potentially be developed.  The results could be included as a 

source in the Soil Water and Assessment Tool (SWAT) or the Spatially Referenced Regression 

on Watersheds (SPARROW) models. Additionally, to further understand the whole cycle, 

community multiscale air quality (CMAQ) model output for atmospheric nitrogen could also be 

considered in future research.  

3) Does drinking-water radon cause an increase in the risk to develop lung or stomach cancer? 

While our study found significant and positive associations between groundwater 
222𝑅𝑛 and lung 

and stomach cancer, the study designs does not permit an interpretation about causality. To 

provide additional evidence towards a true causal relationship, a study would have to be 

designed with accurate spatial and temporal individual-level exposure information for a large 

cohort including cancers case and controls. A feasible study design would be a retrospective 

case-control study, whose sample size necessary to detect an effect can be calculated based on 

the results from our study.  More detailed monitoring data would likely be necessary for both 

groundwater and indoor 
222𝑅𝑛 in order to accurately distinguish their exposures. 

Lastly, the methods and results could be used in conjunction with population information 

to complete the process and produce the health-risk characterization. The benefit of our LUR-

BME approach is that the estimates are characterized by a complete probability distribution 

function, which is essential to providing the overall uncertainty of a health-risk characterization. 

Potential outcomes of a health-risk characterization are estimates of lifetime probability of an 
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individual getting cancer based on their geographical location and the accompanied 

environmental exposures.  

 

 

 

 

 


