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ABSTRACT 

 
AMBER FRICK: Cellular Genomics Approaches to Defining Susceptibility and Resistance to 

Chemotherapeutic Toxicity in Immune Cells 
(Under the direction of Timothy Wiltshire) 

 
While the role of the immune system in cancer development is known, its role in 

response to chemotherapeutic agents remains elusive. Interpatient variability in immune and 

chemotherapeutic cytotoxic responses is likely due to complex genetic differences. Through the 

use of a panel of genetically diverse mouse inbred strains, we developed a drug screening 

platform aimed at examining novel mechanisms underlying these chemotherapeutic cytotoxic 

responses on immune cells. Drug effects were investigated by comparing more selective 

chemotherapeutic agents such as BEZ235 and selumetinib against conventional cytotoxic agents, 

including doxorubicin and idarubicin.  

Phenotypes were quantified using flow cytometry, yielding interstrain variation for 

measured endpoints in different immune cells. Our flow cytometry assay produced nearly 16,000 

data points that were used to generate dose response curves. The more targeted agents, BEZ-235 

and selumetinib, were less toxic to immune cells than the anthracycline agents. Also, heritability 

for the viability of immune cells was higher for anthracyclines than the novel agents, making 

them ideal for genetic analysis. 

Using genome-wide association studies, we identified loci that contributed to the 

sensitivity of doxorubicin and idarubicin in immune cells. We identified 8 QTL containing 25 

potential candidate genes. Of particular interest, App, encoding for amyloid beta precursor 
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protein, was identified under a peak on chromosome 16 (p = 5.01x10-8) in T-cells exposed to 

idarubicin. Dose response curves verified that T-cells in App knockout mice were more sensitive 

to idarubicin than those of C57BL/6J control mice (p = 0.01). 

Using a cellular screening approach, we identified and subsequently validated a gene 

candidate encoding for amyloid beta precursor protein in T-cells exposed to idarubicin. The 

literature has suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; 

the overexpression of App enhances resistance, while the knockdown of this gene is deleterious 

to cell viability. In the future, we aim to perform mechanistic studies in primary and 

immortalized immune cells, validate additional candidate genes, and, ultimately, to translate our 

findings to in vivo and human studies. 
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CHAPTER 11: THE IMMUNE SYSTEM AND ANTICANCER THERAPY: 

REMARKABLE ALLIES 
 
1.1. Summary 

 
The immune system has a crucial role in modulating tumor progression and response to 

therapy. For instance, the composition of intratumor immune infiltrates and polymorphisms in 

immunomodulating genes have been correlated with therapeutic outcomes. Furthermore, many 

cytotoxic and targeted anticancer agents indirectly modulate the immune system to result in 

therapeutic response. Given the pertinent role of the immune system in cancer pathophysiology, 

progression, and therapy management, we developed a novel approach that would allow for 

identification of genetic pathways that are involved in immune cytotoxic response. The evidence 

for the role of genetics in immune system and anticancer response are supported by studies that 

demonstrated heritability of cell-mediated immune response and function, interpatient variability 

in response to chemotherapeutic agents, identification of genetic variants that influence 

anticancer response and outcome, and heritable variants associated with cancer disease and 

progression. While current immunochemotherapeutic research has focused on boosting the 

antitumor immune response, we have approached the preservation of the immune system from an 

additional angle. Due to limitations in human studies, an in vitro toxicogenomic screen was 

developed to examine murine interstrain variability to anticancer agents in normal immune cells. 

Following additional analyses of this interstrain variation, genetic factors responsible for toxic 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Part 1.5 of this chapter is adapted from publications in Pharmacogenomics: Methods and 
Protocols (2013) and Frontiers in Genetics (2014). 
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responses to chemotherapeutics in the normal immune system were identified. These genetic 

biomarkers could potentially identify patients who are likely to progress in their disease or have 

a favorable outcome with chemotherapy and immunomodulators. 

1.2. The Role of the Immune System in Cancer 

In 2000, Hanahan and Weinberg revolutionized the field of cancer biology and anticancer 

drug therapeutics with their report on the six hallmarks of cancer.1 All of these hallmarks result 

from underlying genome instability: sustained proliferative signaling, evasion of growth 

suppressors, resistance to cell death, activation of replicative immortality, induction of 

angiogenesis, and cell invasion and metastasis. Since their initial report, two more emerging 

hallmarks related to the tumor microenvironment have been added: deregulation of cellular 

energetics and avoidance of immune-driven cancer cell destruction. The latter hallmark, evasion 

of immune driven attack and elimination by immune cells, along with previous knowledge 

regarding the role of the immune system in chemotherapeutic response, highlight the important 

role of the immune system in antagonizing tumor development and progression as well as 

modulating drug response to anticancer agents.2  In immunocompromised individuals (eg, 

patients with HIV or post-solid organ transplant), there is an increase in certain cancers, 

particularly those that are virally induced.3 Developing tumors commonly avoid immune 

surveillance by inducing an immunosuppressive tumor microenvironment with regulatory T-

cells, myeloid-derived suppressor cells (MDSCs), alternatively activated macrophages, and 

tolerant dendritic cells. Also, cancer cells paralyze infiltrating cytotoxic CD8+ T-cells and 

natural killer cells by secreting TNF-β and other immunosuppressive factors.4 Thus, the 

induction, potency, and persistence of the patient’s functional immune system is critical to 

combating tumor advancement.5 This observation extends to mice genetically engineered to be 
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immunodeficient. Tumors are more frequent or more invasive in immunodeficient mice 

compared to controls, especially those lacking functional CD8+ T-cells, CD4+ Th1 cells, or 

natural killer cells. Thus, both the innate and adaptive immune systems affect tumor growth and 

surveillance in both human and animal mouse models of disease.2,6,7 

 Cancer is no longer viewed as a cell-intrinsic genetic disease, but is now well recognized 

as a disease with multiple etiologies resulting from a number of aberrant processes. As one of the 

hallmarks of cancer cells includes evasion of  immunosurveillance, development of anticancer 

drugs that not only elicit cytotoxic response but also modulate immune cytotoxicity pathways 

provides a promising mechanism for combating cancer. The drug’s dual action against cancer 

cells could lead to reduction in the dose needed to produce an anticancer effect and thus 

minimize unwarranted exposure to chemotherapy agents.2,8,9 

1.3. The Role of the Immune System in Chemotherapeutic Response 

In the 1890’s, Coley, the father of immunotherapy and a bone surgeon at Memorial 

Hospital in New York, noticed that cancer patients who developed bacterial infections following 

surgery had better outcomes. He attributed these outcomes to stimulation of the immune system 

due to foreign pathogens. At first, he injected live bacteria into patients, but due to potential 

serious or fatal consequences, he eventually used attenuated bacteria. Coley’s toxins were 

developed by pharmaceutical companies in the United States and used in patients up to the early 

1950’s, after which cytotoxic chemotherapeutics became common.10 In the early years of 

cytotoxic anticancer chemotherapy, conventional anticancer agents (eg, DNA-damaging 

chemicals, anthracyclines, antimetabolites, and mitotic spindle poisons) were selected based on 

their ability to kill highly proliferating cells.1 Because of this characteristic, these agents caused 

severe side effects, including myelosuppression, mucositis, and alopecia.8  
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Even with the introduction of imatinib and subsequent targeted agents, cytotoxic 

chemotherapy acts as a mainstay in several anticancer regimens. Beyond cytotoxicity, many 

agents stimulate the innate and adaptive immune systems, some of which even cause long-term 

memory T-cell responses leading to tumor eradication. The interaction between tumor cells and 

the microenvironment, including immune cells, is crucial during the genesis and progression of 

cancer and exposure to anticancer chemotherapeutics.8,11 

The generation of an efficacious clinical antitumor response depends upon the successful 

initiation of several immune processes. In this regard, the adaptive immune system has been 

described as an ideal anticancer agent with features including diversity, specificity, and memory. 

Additionally, monitoring immune parameters may prove useful in correlating specific immune 

responses to patient outcomes and specific treatments.5 These parameters may include a range of 

biomarkers including gene and protein expression, circulating factors, and immune cell 

response.12 For instance, patients with denser T-cell, B-cell, and macrophage infiltrates in a 

variety of tumors have better clinical responses to traditional, cytotoxic chemotherapy compared 

to patients with smaller infiltrates.8 The therapeutic effect of anthracyclines relies heavily on 

immune mechanisms. Doxorubicin promotes immunogenic cell death by releasing molecules 

such as calreticulin, which subsequently primes T-cells to modulate an antitumor Th1 phenotype, 

enhances the proliferation of tumor antigen specific CD8+ T-cells in tumor draining lymph 

nodes, and promotes tumor infiltration by stimulating IL-17-secreting γζ T-cells and IFNγ-

secreting CD8+T-cells.13,14 Another anthracycline, daunorubicin, exacerbates antigen expression 

by cancer cells to promote IL-2 and IFNγ synthesis by local T-cells.15 Carboplatin and cisplatin 

inhibit PD-L2 expression, and cisplatin also increases the permeability of tumor cells to 

granzyme B.16,17 Cyclophosphamide, though immunosuppressive at high doses, induces 
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immunogenic death of cancer cells, increases HLA class I expression on cancer cells, inhibits 

Treg cells and MDSCs, restores T-cell and NK cell functions, stimulates the expansion of 

dendritic cells, and inhibits IL-4, IL-10, and IL-13 production at lower doses.18-23 Similarly, 

mitoxantrone and oxaliplatin induce immunogenic cancer cell death. Gemcitabine increases 

HLA class I expression, enhances tumor antigen cross-presentation, and selectively kills 

MDSCs.18,24-27 In patients who are unable to elicit an immune response following traditional 

cytotoxic chemotherapy, the use of immunomodulatory drugs has been suggested, which 

indicates optimal tumor therapies may be those that achieve synergy with cytotoxicity and 

immunomodulation.28,29 Therefore, assessing the functionality of the immune system is crucial 

for clinical responses to cytotoxic chemotherapy.30 

Targeted agents are more specific than conventional cytotoxic drugs, but are not fully 

devoid of adverse effects. In addition, the therapeutic efficacy of several targeted agents appears 

to partially rely on off-target mechanisms, including some that are mediated by the immune 

system. For instance, bevacizumab depletes circulating Treg cells, repletes B- and T-cell 

compartments, favors the differentiation of dendritic cells, and facilitates tumor infiltration by 

lymphocytes.31-33 Recent advances in immune-based therapeutic approaches have focused on 

boosting the adaptive antitumor immune response via various targeted approaches, including 

vaccination, adoptive T-cell therapy, anti-tumor antibodies, and the advent of immune 

checkpoint blockade agents.34,35 Immune checkpoint blockades have been successfully targeted 

with anti-CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4), anti-PD-1 (programmed cell 

death protein 1), and anti-PD-L1 (programmed cell death receptor ligand 1) inhibitors to result in 

durable antitumor immune responses.36-38 
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Oncologists have become increasingly interested in personalized medicine, and this has 

led to the identification and clinical exploitation of several biomarkers. Biomarkers for immune 

cell activity against cancer can be grouped into local or systemic indicators, reflecting the effect 

of immune cells against cancer or the generation of an antitumor humoral or cellular response by 

the host immune system. Local biomarkers can only be assessed at tumor sites, while systemic 

indicators have the potential advantage of easier assessment (ie, laboratory tests using a 

peripheral blood draw).8 In addition, high levels of circulating antibodies against various 

antigens (eg, antibodies targeting carcinoembryonic antigen, anaplastic lymphoma kinase, zinc-

binding α2-glycoprotein1, and mucin 1 in patients with colorectal cancer, anaplastic large cell 

lymphoma, lung adenocarcinoma, and pancreatic cancer, respectively) often correlate with 

improved survival.39-42 

Systemic biomarkers, such as single nucleotide polymorphisms (SNPs) in genes coding 

for modulators of innate or adaptive immunity, can reveal if the host immune system has the 

ability to respond to malignancies or chemotherapeutics. For instance, SNPs in genes encoding 

interleukin 2 (IL-2), IL-8, IL-12B, and IL-1 predicted survival in a 278 patients with follicular 

lymphoma.43 In patients with renal cell carcinoma, a heterozygous IL4 genotype – 589T/C-

33T/C was considered an independent prognostic risk factor.44 SNPs influencing IL-16, IL-19, 

LILRA4 (leukocyte immunoglobulin-like receptor subfamily A member 4) on dendritic cells, 

KLRC4 (NK cell lectin-like receptor subfamily C member 4), and CD5 (a marker of T- and B-

cells) have prognostic value in patients with chronic lymphocytic leukemia.45 A SNP at position 

3,790 in the 3’ untranslated region of the gene NKp30 (activating NK receptor p30) predisposes 

patients to an immunosuppressive isoform of the receptor, which reduces survival in patients 

with gastrointestinal stromal tumors independent of KIT mutation status that are treated with 
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imatinib.46 Polymorphisms in Fcγ receptors on immune cells affect the response of several 

neoplasms to monoclonal antibodies. Fcγ receptors on tumor-associated lymphocytes promote 

cancer cell death in response to the activation of death receptors by monoclonal antibodies.47-49 

Thus, pharmacogenomics has a sizeable role in the immune response to anticancer agents. 

Previous studies have noted intersubject variability in chemotherapy-induced cytotoxic 

responses involving the immune system.50-52 The role of pharmacogenomics in cytotoxicity of 

the innate immune system has perhaps been more rigorously studied because complications such 

as neutropenia may result, which could lead to potentially serious consequences such as infection 

or dose reduction. For instance, fluorouracil and mercaptopurine may cause more severe 

neutropenia in individuals with genetic polymorphisms in dihydropyrimidine dehydrogenase or 

inosine triphosphate pyrophosphatase, respectively.53,54 However, not much is known regarding 

the genetic pathways influencing the pharmacogenomics of cytotoxicity of anticancer agents 

within the adaptive immune system. 

1.4. Clinical Trials with Immunochemotherapy 

Galluzzi et al.8 noted that three aspects were crucial for the design and clinical 

implementation of efficient immunochemotherapy regimens: stimulation of long-term protective 

T-cell responses, patient selection, and therapeutic regimens. The effects of chemotherapy on the 

immunosuppression of Treg cells and MDSCs are transient, while immunogenic cell death 

inducers and vaccination protocols generate long-lasting effector memory CD8+ T cells, which 

persist for years and have the potential to prevent cancer relapse.55  

In terms of patient selection, the interaction of dying cancer cells with the host immune 

system determines the success of immunochemotherapy. There are at least three conditions 

necessary for immunogenic cell death:56 the exposure of the endoplasmic reticulum chaperone 
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protein calreticulin at the surface of dying cells to enhance the uptake of tumor antigens by 

dendritic cells,57 the release of the non-histone chromatin-binding nuclear protein high-mobility 

group protein B1 (HMGB1) to stimulate antigen processing and presentation to T cells,58 and the 

secretion of ATP for the activation of the inflammasome and the production of pro-inflammatory 

cytokines.29 Therefore, the use of genetic biomarkers is a useful tool in identifying patients who 

could mount a favorable immune response following the administration of anticancer agents.8 

Finally, the dosage, order, and interaction potential of chemotherapeutic regimens must 

be considered in the clinical setting.17,59,60-62 For instance, glucocorticoids are potent 

immunosuppressors,63 while histamine blockers enhance anticancer immune functions.64 Thus, 

the order of administration may have a profound effect on the response to anticancer regimens. 

Additionally, the type of anticancer therapy given will affect the type and extent of immune 

system stimulation. 

 The development of anticancer drugs has been based upon preclinical investigations that 

focus on eliciting specific and nonspecific cytotoxic responses. This approach is not without 

complications as it results in the development of anticancer agents that have deleterious effects 

on healthy normal cells. Thus, a preclinical approach for assessment of anticancer agents that 

could both elicit cytotoxicity and modulate the immune system is warranted. This strategic 

approach focuses on enhancing drug efficacy by providing a dual, synergistic mechanism for 

killing cancer cells without exposing patients to unnecessary risks from increased drug exposure.  
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1.5. In Vitro Toxicogenomic Screen to Identify Genetic Mechanisms Underlying Immune 

Cytotoxicity Pathways 

1.5.1. Genetic Mapping Analysis 

The resilience of normal immune cells following exposure to toxic drugs is difficult to 

assess in humans, necessitating the use of an in vitro model system. Drug response and toxicity 

are complex, highly variable traits that are partly attributed to heredity and genetic diversity.65 

Experiments using model organisms can complement human genomic studies with unique 

advantages, including circumventing issues in clinical trials due to administration of toxic or 

narrow therapeutic index drugs, allowing for risky or invasive procedures, controlling 

environmental factors that influence drug response such as diet, and reducing experimental 

cost.66 As we do not often have prior knowledge regarding which genes may influence drug 

response, hypothesis-free, genome wide association (GWA) analysis is a useful tool for 

identification of genetic loci significantly linked with drug response known as quantitative trait 

loci (QTL). 

Many inbred mouse strains have been well characterized in terms of genotype and 

phenotype, providing effective tools for GWA studies (GWAS). The mouse genome can also be 

easily manipulated, making mice robust models to identify and validate genes underlying toxic 

and variable drug response.67 The improved precision in QTL mapping analysis makes the 

identification of QTG possible. Using this approach, Guo and colleagues were able to detect the 

Cyp2c29 gene, a murine homolog of human CYP2C9, as partially responsible for mediating 

warfarin metabolism in mice.68 In another study, Harrill et al. found a strong association between 

a genomic region that includes Cd44 genotype and acetaminophen-induced liver injury in the 

mouse. The authors subsequently performed a candidate gene study in humans and found an 



! 10 

association between CD44 genetic variants and susceptibility to acetaminophen toxicity.69 

Genotype–phenotype association mapping algorithms like Efficient Mixed Model Association 

(EMMA) (http://mouse. cs.ucla.edu/emma)70 and SNPster (http://snpster.gnf.org)71,72 have been 

used successfully to identify QTLs. In our study, both EMMA and SNPster were used to identify 

QTLs associated with immune-mediated anticancer response. A graphical representation of 

GWA analysis resulting in QTL identification is presented in Figure 1.1. 

Figure 1.1. Quantitative trait loci (QTL) analysis to identify putative genetic regions. 
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1.5.2. Assessment of Cytotoxic Response in Immune Cells 

 The use of in vitro cell-based assays for pharmacogenomics studies provides 

unprecedented opportunities for researchers to assess molecular response to drugs. In comparison 

to in vivo models, cell-based assays have higher assay versatility and scalability. In vitro cell-

based assays can be conducted in a high-throughput fashion, allowing for multiple endpoints to 

be measured simultaneously. Importantly, large cell-based in vitro screens can be performed for 

comparison of intraindividual cellular responses to drugs and toxins, thereby making 

identification of drug response QTG feasible.73 Ideally, we can measure multiple drug response 

phenotypes in vitro or in vivo across a panel of inbred mouse strains to identify genes underlying 

variable responses to drugs. Findings from mouse studies and high-throughput mouse cell-based 

screens can help identify which genetic variants determine positive, negative, or nonresponse to 

pharmacologic agents, which can then be used to develop and design subsequent clinical trials. 

Conventional cytotoxicity assays typically have lower assay sensitivity and limited ability 

to model complex toxicity pathways because traditional cytotoxicity assays only measure a 

single endpoint and evaluate cytotoxic responses that occur in later stages of cell death.74,75 

Alternatively, high-throughput, high-content cell-based screening (HCS) can simultaneously 

measure large numbers of phenotypic endpoints in the same cell, thus facilitating detection of 

mechanisms underlying toxic drug response.76 One methodology that can be used for measuring 

dynamic cellular processes, particularly with nonadherent cells, is flow cytometry, which 

combines light scatter, excitation, and fluorochrome emission to generate multiparameter data 

from particles and cells.77  

Cytotoxicity studies using cells derived from inbred mouse strains have been 

performed,78 but they are not typically performed in a high-content manner. Therefore, new 
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approaches to toxicity testing have incorporated high-throughput screening across a broad-range 

of in vitro assays to identify potential key events in response to chemical or drug treatment. Our 

lab previously demonstrated that genetically characterized primary cell lines from multiple 

inbred mouse strains can be utilized within in vitro toxicogenomic assays. As a demonstration of 

this approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally 

validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all 

chemicals identified a number of over-connected nodes that may serve as core regulatory points 

in toxicity pathways. Because this study used mouse embryonic fibroblasts (MEFs), this in vitro 

toxicogenomic screen was further developed in this study to test for particular drug response by 

cell types (eg, splenocytes), which would provide an innovative means for assessing specific 

drug responses on a particular system (eg, immune system) and for evaluating toxicities of 

particular classes of compounds (eg, cytotoxic and targeted anticancer agents).79 A detailed 

description of the in vitro toxicogenomic screen is provided in Chapter 2. 

1.6. Purpose of Study 

The role of the immune system in cancer development and progression as well as in 

anticancer drug response have been well recognized, further providing a new avenue for 

developing drugs that both mediate cytotoxicity and stimulate immune response. Studies aimed 

at identifying biomarkers that are involved in immune-cytotoxicity pathways are needed to 

advance the development and use of drugs with dual action or bidirectional effects on these 

pathways. GWA analysis provides a hypothesis-free approach for investigating this anticancer-

immune interaction, resulting in the identification of genetic biomarkers that could be useful for 

drug development or clinical application. Animal mouse studies offer several advantages over 

human studies in identifying genes associated with anticancer drug responses, and these 
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advantages include the ability to control for dietary and environmental effects as well as the use 

of mouse populations with well-characterized and well-maintained genetic and genomic 

structure. Notably, inbred mouse strains have been previously used to model the wide genetic 

and phenotypic variability found in human populations,80,81 enabling high-throughput screens 

that capture a broad range of response variance.  

In vitro toxicogenomic screens allow investigation of immune-cytotoxicity pathways on a 

cellular level. Unlike human cancer cell lines, murine immune cells provide a suitable approach 

for studying the interaction between anticancer drugs and the immune system under normal 

conditions. In addition, the capacity to identify genes that modify the response to chemicals at a 

cellular level can provide insights into human toxicity mechanisms. Lastly, in vitro 

toxicogenomic studies can provide useful information during the drug development and clinical 

trial phases, and this information can be used to identify compounds that are likely to be 

effective in producing immune cytotoxic effects as well as target patient populations who are 

likely to respond or less likely to display toxicity with the novel agent. This approach minimizes 

drug exposure to patients who are less likely to benefit from the new drug. Additionally, 

conducting clinical trials in a targeted patient population can make research efforts more cost-

effective. Fewer patients may be required to observe an effect, which will reduce cost and 

shorten the time required to complete the study.73   

1.7. Specific Aims 

It has been predicted that the future of cancer treatment will involve precision medicine 

approaches combining targeted therapy or chemotherapies with immunomodulation.82 This study 

was conducted to develop an in vitro toxicogenomic screen that would facilitate identification of 

genetic biomarkers that are involved in immune cytotoxicity pathways.  
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Our overall hypothesis is that we will identify genes and genetic pathways underlying the 

variable toxicity responses of normal immune function cells (i.e., B-cells, T-cells, monocytes, 

and granulocytes) to anticancer agents. Our hypothesis will be addressed by the following 

specific aims: 

Aim 1. Develop a multiplexed assay set for measuring toxicity responses to anti-lymphoma 

agents in immune function cells (ie, B-cells, T-cells, monocytes, and granulocytes). 

Hypothesis: We will develop a robust, replicable, multiplexed assay that can accurately describe 

toxicity response using flow cytometry. 

Objective: To develop a standardized flow cytometry assay for the detection of immune 

function cells (ie, B-cells, T-cells, monocytes, and granulocytes) derived from isogenic mice 

strains with the quantification of various cellular health parameters (eg, caspase activity, 

mitochondrial health, and cellular viability).  

Rationale: Recent evidence indicates the host immune system contributes to therapeutic 

outcomes of anticancer agents.8 Evaluating toxic effects on normal immune cells will 

innovatively elucidate the role of immune cells in mediating anticancer response. Therefore, we 

aim to investigate the toxic effects of chemotherapeutics on immune cells using a high-

throughput flow cytometry screen with genetically well-defined cells from inbred mouse strains. 

Flow cytometry combines light scattering, excitation, and fluorochrome emission to generate 

multiparameter data from heterogeneous cell populations. The effects of chemotherapeutics on 

specific immune cell populations will be quantified by interrogating multiple cellular parameters 

(e.g., caspase activity, mitochondrial health, and cellular viability). 
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Aim 2. Measure the toxic cellular assay endpoints on immune function cells from a set of 

thirty-five divergent inbred mouse strains. 

Hypothesis: Using this diverse genetic background, we will observe a differential response to 

cytotoxic drugs. From this data, we can identify variable interstrain sensitivity along a spectrum 

of cytotoxicity to these compounds. Significant, differential interstrain differences will occur in 

cell viability, mitochondrial membrane potential (MMP), and caspase activity among different 

immune cell types following administration of anti-lymphoma medications. These data will be 

used as quantitative traits for genome wide association analyses.  

Objective: To collect phenotypes for genetic analysis and to identify variable interstrain 

sensitivity along a spectrum of cytotoxicity to anti-lymphoma compounds.  

Rationale: The use of animal models to investigate pharmacologic responses has been 

widespread. However, there are few examples of genome wide association studies for 

pharmacogenetic studies.68,69 This deficiency is largely due to the lack of an appropriate model 

system and suitable tools to analyze the model. We have championed the use of inbred mouse 

strains and developed methodological approaches to make this process a viable approach. The 

inbred mouse strains (thirty-five strains) provide adequate power for genome wide analysis, 

which is why the preliminary data from this aim will be used to identify genetic loci that underlie 

toxicity phenotypes. 

Aim 3. Using genome wide association studies, we will identify loci that contribute to the 

sensitivity of the described anti-lymphoma agents. 

Hypothesis: Using the data from specific aim 2, we can identify genetic loci that contribute to 

differences in cytotoxicity response. From these genomic regions, we will prioritize candidate 

genes for further study. 
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Objective: To identify and validate genetic determinants of toxicological insult on immune cells.  

Rationale: Splenocytes are derived from mice in the Jackson Laboratory Mouse Diversity Panel 

(MDP). Association mapping in this fixed and inbred population utilizes existing dense maps of 

SNP genotype information, providing precision (greater than 1 to 2 Mb) in localizing QTL. 
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CHAPTER 22: IMMUNE CELL-BASED SCREENING ASSAY FOR RESPONSE TO 
ANTI-CANCER AGENTS: APPLICATIONS IN PHARMACOGENOMICS 

 
2.1. Overview 
 
Background: Interpatient variability in immune and chemotherapeutic cytotoxic responses is 

likely due to complex genetic differences and is difficult to ascertain in humans. Through the use 

of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform 

aimed at examining interstrain differences in viability on normal, noncancerous immune cells 

following chemotherapeutic cytotoxic insult. Drug effects were investigated by comparing 

selective chemotherapeutic agents, such as BEZ-235 and selumetinib, against conventional 

cytotoxic agents targeting multiple pathways, including doxorubicin and idarubicin.  

Methods: Splenocytes were isolated from 36 isogenic strains of mice using standard procedures. 

Of note, the splenocytes were not stimulated to avoid attributing responses to pathways involved 

with cellular stimulation rather than toxicity. Cells were incubated with compounds on a 9‐point 

logarithmic dosing scale ranging from 15 nM to 100 µM (37°C, 5% CO2). At 4 h post‐treatment, 

cells were labeled with antibodies and physiological indicator dyes and fixed with 4% 

paraformaldehyde. Cellular phenotypes (eg, viability) were collected and analyzed using flow 

cytometry. Dose‐response curves with response normalized to the zero dose as a function of log 

concentration were generated using GraphPad Prism 6.  

                                                        

2 This chapter is published in The Journal of Pharmacogenomics and Personalized Medicine 
(2014). 
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Results: Phenotypes were quantified using flow cytometry, yielding interstrain variation for 

measured endpoints in different immune cells. The flow cytometry assays produced over 16,000 

data points that were used to generate dose-response curves. The more targeted agents, BEZ-235 

and selumetinib, were less toxic to immune cells than the anthracycline agents. The calculated 

heritability for the viability of immune cells was higher with anthracyclines than the novel 

agents, making them better suited for downstream genetic analysis. 

Conclusions: Using this approach, we identified cell lines of variable sensitivity to 

chemotherapeutic agents and aimed to identify robust, replicable endpoints of cellular response 

to drugs that provide the starting point for identifying candidate genes and cellular toxicity 

pathways for future validation in human studies.  

Keywords: immunomodulation, cytotoxicity, chemotherapy, precision medicine 

2.2. Introduction 

While the role of the immune system in cancer development is well established, its role in 

response to chemotherapeutic agents remains more elusive. Recent studies have demonstrated 

that several cytotoxic chemotherapeutics work in concert with the immune system.1 These 

immunomodulatory effects may occur through direct action on tumor cells or on cells of the 

immune system.2,3 For example, anthracyclines and oxaliplatin generate immunogenic responses 

via induction of calreticulin on tumor cells, an action necessary for the therapeutic efficacy of 

these agents.4,5 Additionally, docetaxel has been reported to modulate CD4+, CD8+, CD19+, 

natural killer T-cells, and T-regulatory populations in nontumor-bearing mice.6,7 This 

immunomodulation acts synergistically with chemotherapeutic cytotoxic effects and has been 

shown to improve outcomes following treatment.8-10 For instance, increased amounts of pre-

treatment tumor infiltrating lymphocytes and post-treatment immune activation have been linked 
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to better outcomes in patients with breast and colorectal cancer.11 In patients who are unable to 

elicit an immune response following traditional cytotoxic chemotherapy, the use of 

immunomodulatory drugs has been suggested. Thus, optimal tumor therapies may be those that 

achieve synergy with cytotoxicity and immunomodulation.6,12  

Previous studies have noted intersubject variability in immune and chemotherapy-

induced cytotoxic responses, partly due to genetic differences.13-15 The role of 

pharmacogenomics in cytotoxicity of the innate immune system has perhaps been more 

rigorously studied because complications such as neutropenia may result, leading to potentially 

deadly consequences such as infection or dose reduction. For instance, fluorouracil and 

mercaptopurine may cause more severe neutropenia in individuals with genetic polymorphisms 

in dihydropyrimidine dehydrogenase or inosine triphosphate pyrophosphatase, respectively.16,17 

However, the role of pharmacogenomics in cytotoxicity of the adaptive immune system requires 

further investigation, as both synergy and drug-induced toxicities have been observed with 

regards to the effects of chemotherapy agents on the immune system.  

The effects of chemotherapy agents in the normal immune system are hard to quantify in 

humans. We therefore developed a drug-screening platform using genetically diverse inbred 

mouse strains to examine novel mechanisms underlying interstrain, chemotherapy-induced 

cytotoxic responses on functional immune cells. Murine splenocytes were isolated from a panel 

of genetically diverse mouse inbred strains, in which genotypes have been well characterized. 

This in vitro mouse model has the additional benefits of maintaining tight experimental control 

while circumventing the use of cytotoxic agents in humans and enabling an interrogation of the 

genetic components of cytotoxicity in the context of a normal functioning immune system.18,19 In 

the present study, cellular health phenotypes (ie, viability, caspase-3/7 activation, and 
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mitochondrial health) were quantified from these primary mouse splenocytes using flow 

cytometry, yielding interstrain variation for measured endpoints in different immune cells (ie, T-

cells, B-cells, monocytes, and granulocytes). Effects were investigated by comparing more 

selective chemotherapeutic agents, including a dual PI3K/mTOR inhibitor and a MEK inhibitor, 

against conventional cytotoxic, immunomodulatory anthracycline agents, including doxorubicin 

and idarubicin. BEZ-235 and selumetinib are currently in clinical trials,20 and dual PI3K/mTOR 

and MEK inhibition provides broad antitumor activity in mouse models.21 These drugs have the 

potential to be used in regimens including doxorubicin and idarubicin for the treatment of solid 

and hematological tumors,20 and these targeted agents have been reported to have potential 

immunomodulatory effects. For instance, selumetinib has been shown to inhibit the release of 

cytokines, including IL-1, IL-6 and TNF,22 and BEZ-235 is under investigation for enhancing the 

immune response to vaccination per the WHO International Clinical Trials Registry Platform23. 

In clinical trials, these drugs have greatly reduced side effects (eg, rash, fatigue, diarrhea, and 

peripheral edema) in comparison to traditional cytotoxic agents.24,25 By using these phenotypes, 

genes and genetic pathways that underlie or modulate the variable toxicity responses of 

functional immune cells to chemotherapeutics can potentially be identified.  

2.3. Material and Methods 

2.3.1. Animals 

Thirty-six male inbred mouse strains (129S1/SvImJ, 129X1/SvJ, A/J, AKR/J, 

BALB/cByJ, BTBR T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J, C57BR/cdJ, 

C58/J, CBA/J, CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HiJ, LG/J, LP/J, MA/MyJ, NOD/LtJ, 

NON/LtJ, NZB/BINJ, NZO/HiLtJ, NZW/LacJ, PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ, RIIIS/J, 

SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ), aged 10-12 weeks, were obtained from The 
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Jackson Laboratory (Bar Harbor, ME). This panel of isogenic mice was chosen based on priority 

strains from the Mouse Diversity Panel (MDP) panel.26 Four mice were used per strain. Male 

mice were housed four per cage in polycarbonate cages on a 12 h light/dark cycle (lights on at 

0700 hours) with access to food and water ad libitum. All procedures were approved by the 

Institutional Animal Care and Use Committee and followed the guidelines set forth by the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals.  

2.3.2. Tissue Preparation 

Following cervical dislocation, spleens were excised from the mice, and cells obtained 

from tissues were dissociated into a single-cell suspension by mechanical means (ie, 

homogenized in phosphate-buffered saline (PBS, Cellgro, Manassas, VA) with 1% v/v fetal 

bovine serum (FBS, Gibco, Grand Island, NY) using frosted glass slides (Thermo Fisher 

Scientific, Pittsburgh, PA) in a tissue culture dish (TPP, Trasadingen, Switzerland)). Cells were 

transferred from the tissue culture dish to a 5 mL polystyrene round-bottom tube (BD 

Biosciences, San Jose, CA), centrifuged at 400xg for 5 min, resuspended in ACK lysing solution 

(Gibco, Grand Island, NY) to avoid red blood cell interference during flow cytometry, and 

incubated for 10 min at room temperature in the dark. Cells were centrifuged at 400xg for 5 min 

and resuspended in RPMI-1640 buffer (Cellgro, Manassas, VA) supplemented with 10% v/v 

FBS, 0.1% v/v 2-mercaptoethanol (MP Biomedicals, Santa Ana, CA), 1% v/v sodium pyruvate 

(Cellgro, Manassas, VA), 1% v/v non-essential amino acids (Cellgro, Manassas, VA), and 1% 

penicillin G/streptomycin solution (Cellgro, Manassas, VA). Cells were aliquoted into 96-well, 

round-bottom plates (Globe Scientific Inc., Paramus, NJ.) at a density of 100,000 cells per mL.  
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2.3.3. Drug Treatment 

Cells in 100 µL supplemented media per well were incubated at 37oC and 5% CO2 with 

doxorubicin (Sigma-Aldrich, Milwaukee, WI), idarubicin (Sigma-Aldrich, Milwaukee, WI), 

BEZ-235 (provided by Novartis, Inc.), or selumetinib (ChemieTek, Indianapolis, IN). Each 

compound was plated using a 9-point logarithmic concentration scale ranging from 15 nM to 100 

µM. Stock solutions of doxorubicin and idarubicin (10 mM) were prepared in water, while stock 

solutions of BEZ-235 and selumetinib (25 mM and 75 mM respectively) were prepared in 100% 

DMSO (Sigma-Aldrich, Milwaukee, WI). Subsequent dilutions and controls were prepared to 

account for the inclusion of water or DMSO in the stock solution. 

2.3.4. Cell Labeling 

At 4 hours post-treatment, cells were washed in wash buffer (PBS with 1% v/v FBS) and 

incubated for 30 min at 37oC and 5% CO2 with the following physiological indicator dyes: 125 

nM Mitotracker® Deep Red (Invitrogen, Carlsbad, CA) for mitochondrial heath, 3.75 µM 

CellEvent™ Caspase-3/7 Green Detection Reagent (Invitrogen, Carlsbad, CA) for caspase-3/7 

activation, and 3.75 µL (0.19 µg) 7-AAD (BD Biosciences, San Jose, CA) per 100 µL well for 

viability. The Mitotracker® Deep Red is a mitochondrion-selective stain that is concentrated by 

active mitochondria and well retained during cell fixation and permeabilization due to a mildly 

thiol-reactive chloromethyl moiety. The CellEvent™ Caspase-3/7 Green Detection Reagent 

consists of a four amino acid peptide (DEVD) conjugated to a nucleic acid binding dye that is 

nonfluorescent until the peptide is cleaved by caspase-3/7. 7-AAD is a fluorescent intercalator 

that undergoes a spectral shift when associated with DNA.27 Cells were centrifuged at 400xg for 

5 min, washed, and incubated at 4°C with cell indicator antibodies, including 0.05 µg V500 

Syrian hamster anti-mouse CD-3e (BD Biosciences, San Jose, CA) per 100 µL well for T-cells, 



 30 

0.1 µg APC-H7 rat anti-mouse CD-19 (BD Biosciences, San Jose, CA) per 100 µL well for B-

cells, 0.1 µg V450 rat anti-mouse CD-11b (BD Biosciences, San Jose, CA) per 100 µL well for 

monocytes, and 0.1 µg PE-Cy7 rat anti-mouse Ly-6G (BD Biosciences, San Jose, CA) per 100 

µL well for granulocytes. These antibodies detect immune function cells in the spleen, and they 

can also be used to detect cells of interest in additional tissues such as bone marrow or peripheral 

blood. Cells were centrifuged at 400xg for 5 min, washed, and fixed with 4% paraformaldehyde 

(Thermo Fisher Scientific, Pittsburgh, PA) for 15 min at room temperature.  

2.3.5. Flow Cytometry 

Samples were analyzed on a BD FACSCanto II flow cytometer (BD Biosciences, San 

Jose, CA) equipped with three lasers (405 nm, 488 nm, and 640 nm). For each sample, 10,000 

events were collected with the flow cytometer. Data were analyzed with FlowJo version X 

(TreeStar, Ashland, OR). The cellular populations of interest were well discriminated by forward 

scatter (FSC) and side scatter (SSC) properties. An unstained control was used to determine the 

threshold for samples positive for particular markers, facilitating gating as appropriate. After 

detection of the immune cell populations of interest (ie, B-cells, T-cells, monocytes, and 

granulocytes), the cells positive for Mitotracker® Deep Red, activated caspase-3/7, or 7-AAD in 

each subpopulation were determined.  

2.3.6. Statistical Analysis 

Dose-response curves with response normalized to the zero dose as a function of log 

concentration were generated using GraphPad Prism 6 (La Jolla, CA). All graphed results were 

expressed as mean ± standard error of the mean (SEM). IC50 values, slope coefficients, and area 

under the curve values were obtained using a four-parameter logistical model (ie, Hill equation) 

per NIH guidance28 and Pharsight® WinNonlin™ 5.2 (Mountain View, CA). The Hill equation 
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is f(x)=Max-((Max-Min)/(1+(x/IC50)γ)), where Max is the maximum asymptote, Min is the 

minimum asymptote, γ is the Hill slope, and x is the drug concentration.29 Additional statistical 

analyses, including Pearson correlations, were performed with SAS (Cary, NC) with p < 0.05 

considered to be statistically significant. Pearson correlations were performed to determine the 

relatedness between phenotypes rather than individual strains30,31 and the relatedness between  

 

Figure 2.1. Assay methodology overview.  

Notes: Spleens were isolated from inbred mice (A), and a single-cell splenocyte suspension was 

generated (B). Splenocytes were sequentially incubated with drugs, cellular health indicator 

dyes, and cell surface marker antibodies (C, listed in Table 2.1). The cells were fixed and 

analyzed using flow cytometry (D), and dose response curves were generated from flow 

cytometry data. (E). 
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metrics.32 Heritability or the percent of variability likely due to genetics was calculated 

comparing intra- and interstrain variation in percent viability. The proportion of phenotype 

variation attributable to genetics was estimated with broad-sense heritability. Intrastrain 

correlations were estimated by r1=(MSB-MSW)/[MSB+(n-1)MSW], where r1 is the intrastrain 

correlation estimate, MSB is the mean square of the between-strain comparison, MSW is the mean 

square of the within-strain correlation, and n is the number of animals per strain.33 

2.4. Results 

An overview of the assay methodology is presented in Figure 2.1, including spleen 

isolation (Figure 2.1A), spleen homogenization (Figure 2.1B), incubation with drugs and 

multiplexed assay conditions (Figure 2.1C), flow cytometry (Figure 2.1D), and generation of 

dose response curves (Figure 2.1E). Splenocytes were isolated and cultured using standard 

methods. However, the assay was optimized in terms of culture conditions and media to best 

maintain cellular health under normal conditions. For instance, splenocyte and immune 

subpopulation viability was compared following incubation in supplemented DMEM, IMDM, 

and RPMI media. In particular, B-cell sensitivity limited the drug incubation time to 4 hours 

within the assay (data not shown). Splenocytes were not stimulated to avoid confounding cellular 

differentiation responses with toxicity responses, as phenotypic and genetic responses associated 

with chemotherapy-induced toxicity could otherwise be attributed to cellular stimulation. The 

cell-type composition of cultured cell populations potentially differs from cells freshly isolated 

and immediately analyzed via flow cytometry. However, analysis shows that our cultured assays 

are consistent in composition with freshly isolated splenocytes and cellular subpopulations (ie, 

B-cells, monocytes, and granulocytes) when compared to murine spleen cell composition in the  
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Mouse Phenome Database (MPD:Jaxpheno6, Supplementary Figure 2.1) using t-tests with p < 

0.05 considered statistically significant.34 Our data are also deposited in the Mouse Phenome 

Database at the Jackson Laboratory (MPD:Wiltshire4).35 

Table 2.1. Multiparameter flow cytometry assay. 

 

We developed a multiplexed flow cytometry assay (Table 2.1) to measure the health of 

multiple immune cell populations following exposure to anticancer agents. Further refined cell 

subpopulations can be examined in additional screens. The commercial availability of cellular 

health indicator dyes limited the fluorescent channels accessible for antibody-conjugated 

fluorochromes. Thus, the brightest fluorochromes were reserved for antibodies targeting less 

prevalent cell surface markers. Dyes were selected based on the ability to be fixed and their 

representation of various cellular health parameters important in early and late apoptosis and 

necrosis.27 Dyes and antibody-conjugated fluorochromes were titrated and compensated during 

flow cytometry analysis to reduce spectral overlap.36,37 Generous gates were applied to the plots 

405 450 PacBlue V450 rat anti-mouse CD11b Monocytes

405 500 AmCyan V500 Syrian hamster anti-mouse 
CD3e T-cells

488 530 FITC CellEvent™ Caspase-3/7 green 
detection reagent Caspase-3/7 activation

488 570 PE Anthracycline autofluorescence Anthracycline uptake

488 695 PerCPCy5.5 7-AAD Viability

488 785 PE-Cy7 PE-Cy7 rat anti-mouse Ly-6G Granulocytes

635 660 APC Mitotracker® Deep Red Mitochondrial health

635 785 APC-Cy7 APC-H7 rat anti-mouse CD19 B-cells

Excitation 
Wavelength (nm)

Emission 
Wavelength (nm) Cell Surface Marker or Dye Parameter InvestigatedFluorochrome 

Channel
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to capture phenotypes from less viable cells following exposure to various concentrations of anti-

lymphoma compounds. The gating strategy is presented in Figure 2.2 with the following 

populations represented: splenocytes (Figure 2.2A), CD19+ B-cells (Figure 2.2B), CD3e+ T-

cells (Figure 2.2C), CD11b+ monocytes (Figure 2.2D), Ly-6G+ granulocytes (Figure 2.2E), 

viable cells (Figure 2.2F), caspase-3/7 positive cells (Figure 2.2G), Mitotracker® Deep Red 

positive cells (Figure 2.2H), and, when applicable, anthracycline positive cells (Figure 2.2I). 

 Dose-response curves of the percent viability of splenocyte cell subpopulations exposed 

to chemotherapeutic drugs from nine of thirty-six total strains are represented in Figure 2.3. 

These nine strains were chosen to enhance clarity of visualization and to display diversity across 

the various phenotypes. Dose response curves were generated for these strains across all 

phenotypes. T-cells, B-cells, monocytes, and granulocytes respectively exposed to doxorubicin 

(Figure 2.3A-D), idarubicin (Figure 2.3E-H), BEZ-235 (Figure 2.3I-L), and selumetinib (Figure 

2.3M-P) are represented. Corresponding phenotypes for all thirty-six strains are represented in 

Supplementary Figure 2.2A-P. Over 16,000 viability measurements were collected for T-cells, 

B-cells, and monocytes exposed to different concentrations of these targeted and cytotoxic anti-

cancer agents. Heritability results were also calculated for viability at individual drug 

concentrations (Supplementary Table 2.1). As shown in Figure 2.3, all splenocyte immune cell 

subpopulations were less sensitive to the more selective mTOR/PI3K and MEK inhibitors than 

the anthracyclines. Interestingly, B-cells appear to be most sensitive to the effects of all 

anticancer agents, while T-cells appear to be the least sensitive. For example, a paired t-test 

indicated that T-cells were less sensitive than B-cells to idarubicin (p < 0.0001). T-cells appeared 

least sensitive to doxorubicin compared to other cell populations, with few strains reaching the  
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Figure 2.2. Flow cytometry gating strategy.  

Notes: The population of splenocytes (A) was derived from SSC and FSC.  Subpopulations of 

interest derived from A included CD19+ B-cells (B), CD3e+ T-cells (C), CD11b+ monocytes 

(D), and Ly-6G+ granulocytes (E). Viability (F), caspase-3/7 activation (G), mitochondrial 

health (H), and, when applicable, anthracycline uptake (I) were subsequently gated from B-E 

subpopulations. 
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Figure 2.3. Interstrain variation of viability across immune cell types and anti-cancer drugs.  

Notes: Dose response curves depict cell populations (columns, ie, T-cells, B-cells, monocytes, 

and granulocytes) exposed to anti-cancer drugs (rows, ie, doxorubicin, idarubicin, BEZ-235, and 

selumetinib). Nine strains are included: A/J , C57BLKS/J , CBA/J , DBA/2J , 

FVB/NJ , LP/J , NOD/LtJ , NZB/BINJ , and PWK/PhJ .  

 

IC50 at the highest concentration of 100 µM, a concentration that is higher than physiological 

Cmax values in humans. Furthermore, T-cells appear less sensitive and less variable to BEZ-235 

and selumetinib than other cell populations with larger error bars for individual viability points 

for B-cells, monocytes, and granulocytes than T-cells in Figure 2.3 and Supplemental Figure 2.2 

(of note, the scale of the axes is the same across all phenotypes). Also, viability does not  
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Figure 2.4. Replicability of dose response curves.  

Notes: Four sensitive and four less sensitive strains were chosen for replication in a repeat 

experiment. The results for the most heritable viability phenotypes are presented: T-cells 

exposed to idarubicin (A) and B-cells exposed to doxorubicin (B). Eight strains are included: 

129S1SvlmJ , BALB/cByJ , C57BLKS/J , CBA/J , KK/HiJ , LG/J , 

NZO/HiLtJ , and SEA/GnJ . 

 

decrease with increasing drug concentration. To demonstrate the replicability of the results we 

selected a set of eight strains for confirmation experiments. The repeatability of this experiment 

is shown in Figure 2.4 using the most heritable phenotypes: T-cells exposed to idarubicin (Figure 

2.4A) and B-cells exposed to doxorubicin (Figure 2.4B). In the second replicated experiment, 

interstrain variability to the anti-cancer agents was maintained, and the strain order for sensitivity  



 38 

Figure 2.5. Interstrain phenotype comparisons for log10(IC50(nM)).  

Notes: Log10(IC50(nM)) values across strains and heritability are displayed for T-cells exposed to 

idarubicin (A), B-cells exposed to doxorubicin (B), B-cells exposed to idarubicin (C), monocytes 

exposed to doxorubicin (D), and monocytes exposed to idarubicin (E). Strains are arranged from 

least sensitive to most sensitive along the x-axis.  

 

was similar though not identical to the first experiment. For instance, the p values for the 

Wilcoxon rank sum tests were > 0.05 for these most heritable phenotypes, providing no 

compelling evidence that the replicate IC50 values from these eight strains differ from those of 

the original assay, although the small sample size provides reduced power to detect a 

difference.38 Also, the Spearman correlation of IC50 values for T-cells exposed to idarubicin was 

0.75 (p = 0.03) between the original and replicated mouse strains when the most variable strain 

129S1/SvlmJ was removed. Although the strain order for drug sensitivity is unique between the 
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anti-cancer agents and cell type, several strains repeatedly appear to be more sensitive (eg, 

C57BLKS/J and DBA/2J) or less sensitive (eg, BALB/cByJ, KK/HiJ, and WSB/EiJ) to the 

cytotoxic effects of the different anthracycline agents across cell type (Figure 2.5: T-cells 

exposed to idarubicin (Figure 2.5A), B-cells exposed to doxorubicin (Figure 2.5B), B-cells 

exposed to idarubicin (Figure 2.5C), monocytes exposed to doxorubicin (Figure 2.5D), and 

monocytes exposed to idarubicin (Figure 2.5E)).  

Table 2.2. Phenotype correlations for log10(IC50(nM)) values across strains. 

 T-cells 
exposed to 
idarubicin 

B-cells 
exposed to 

doxorubicin 

B-cells 
exposed to 
idarubicin 

Monocytes 
exposed to 

doxorubicin 

Monocytes 
exposed to 
idarubicin 

T-cells 
exposed to 
idarubicin 

- 
0.573 
p = 0.0004 

0.698 
p = 3.2x10-6 

0.468 
p = 0.0053 

0.835 
p = 1.5x10-9 

B-cells 
exposed to 

doxorubicin 
- - 

0.771 
p = 9.6x10-8 

0.703 
p = 5.2x10-5 

0.534 
p = 0.0016 

B-cells 
exposed to 
idarubicin 

- - - 
0.585 
p = 0.00028 

0.630 
p = 8.4x10-5 

Monocytes 
exposed to 

doxorubicin 
- - - - 

0.672 
p = 2.5x10-5 

Monocytes 
exposed to 
idarubicin 

- - - - - 

 

The interstrain variability within dose-response curves exposed to anthracyclines is more 

ideal for genetic analysis, and this is echoed in heritability calculations and differential log10 

(IC50) values as shown in Figure 2.5. The relatively high heritability of the viability of T-cells 

exposed to idarubicin (90.5%) and B-cells exposed to doxorubicin (81.6%) makes these 

phenotypes most suitable to carry forward in future genetic studies. Pearson correlations in IC50 

values between T-cells exposed to idarubicin, B-cells exposed to doxorubicin, B-cells exposed to 
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idarubicin, monocytes exposed to doxorubicin, and monocytes exposed to idarubicin were 

statistically significant, indicating correlative effects of the different anthracycline agents on the 

immune cells (Table 2.2). 

Because IC50 values were not always achieved in this screen, area under the curve (AUC) 

values (Supplementary Figure 2.3: T-cells exposed to selumetinib (Supplementary Figure 2.3A), 

T-cells exposed to BEZ-235 (Supplementary Figure 2.3B), T-cells exposed to doxorubicin 

(Supplementary Figure 2.3C), T-cells exposed to idarubicin (Supplementary Figure 2.3D), B-

cells exposed to selumetinib (Supplementary Figure 2.3E), B-cells exposed to BEZ-235 

(Supplementary Figure 2.3F), B-cells exposed to doxorubicin (Supplementary Figure 2.3G), B-

cells exposed to idarubicin (Supplementary Figure 2.3H), monocytes exposed to selumetinib 

(Supplementary Figure 2.3I), monocytes exposed to BEZ-235 (Supplementary Figure 2.3J), 

monocytes exposed to doxorubicin (Supplementary Figure 2.3K), and monocytes exposed to 

idarubicin (Supplementary Figure 2.3L)) and slope coefficients (Supplementary Figure 2.4: T-

cells exposed to idarubicin (Supplementary Figure 2.4A), B-cells exposed to doxorubicin 

(Supplementary Figure 2.4B), B-cells exposed to idarubicin (Supplementary Figure 2.4C), 

monocytes exposed to doxorubicin (Supplementary Figure 2.4D), and monocytes exposed to 

idarubicin (Supplementary Figure 2.4E)) were calculated for comparison when appropriate. The 

Pearson correlations of AUC to IC50 values when available were significant: T-cells exposed to 

idarubicin, 0.89 (p < 0.0001); B-cells exposed to doxorubicin, 0.98 (p < 0.0001); B-cells exposed 

to idarubicin, 0.89 (p  < 0.0001); monocytes exposed to doxorubicin, 0.96 (p  < 0.0001); and 

monocytes exposed to idarubicin, 0.99 (p < 0.0001). However, heritability was comparatively  
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reduced for AUC. In contrast, slope coefficients varied greatly from IC50 values. Also, the results 

of the Pearson’s correlation test for AUC (Supplementary Table 2.2) and slope coefficients 

(Supplementary Table 2.3) suggest reduced correlative anthracycline effects in these parameters. 

2.5. Discussion 

It has been predicted that the future of cancer treatment will involve precision medicine 

approaches combining targeted therapy or chemotherapies with immunomodulation.39 There is 

particular interest in the adaptive immune system as an additional “drug” in chemotherapeutic 

regimens due to its essential role in recognizing and eliminating tumor cells. However, tumor 

cells can adapt to evade immune surveillance, a characteristic acknowledged as an emerging 

hallmark of cancer.40 The importance of the adaptive immune system in cancer and treatment is 

reflected in recent therapeutic advances targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4) 

and the programmed death 1 (PD-1) receptor and its ligands (PD-L1/2). These antibody 

therapeutics essentially reverse tumor inhibition of the adaptive immune system, leading to more 

favorable clinical outcomes.41 

Although eliciting the adaptive immune response may be an effective means to recognize 

and eliminate tumor cells, this strategy may also present a risk as the immune-adjuvant effects of 

many cytotoxic compounds rely on antigen-presenting cells processing tumor antigens for T-cell 

recognition.2 For example, the anthracyclines are involved in immunomodulation by inducing 

calreticulin on tumor cells.42 Thus, the success of cytotoxic chemotherapy may depend on a 

delicate balance between preservation of the immune system and tumor cell death. Here, we used 

a wide concentration range for our compounds, a typical approach within toxicological studies 

and multiplexed drug screens in order to generate dose response curves. For instance, a 

simulation of doxorubicin concentrations in women with breast cancer at the end of a 60 mg/m2 
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intravenous infusion (0.66 h) calculated a plasma Cmax of approximately 1.3 µM in women with a 

BMI < 25.43 Following a 48 h infusion of 70 mg/m2 idarubicin for consolidation therapy for 

metastatic breast cancer, the plasma Cmax was approximately 0.3 µM.44 Clinical trials to 

determine the pharmacokinetics of BEZ-235 and selumetinib are underway. However, at a dose 

of 50 mg/kg in PC3M tumor-bearing nude mice, the plasma Cmax of BEZ-235 was 

approximately 1.68 µM at 0.5 h and 0.03 µM at 24 h.45 Cell-based studies, including our assay, 

allow for greater resolution of drug response across a spectrum of concentrations rather than 

limited concentrations traditionally used in toxicology studies.28 In this assay, we are able to 

differentiate the variable cytotoxic response of different immune cells to anti-cancer agents, 

which will likely have applications in drug development and clinical settings. We identified 

strains with cell types universally more (eg, C57BLKS/J and DBA/2J) or less (eg, BALB/cByJ, 

KK/HiJ, and WSB/EiJ) sensitive to the cytotoxic effects of the anthracyclines. These strains may 

be useful for testing additional drugs in the future to gauge their toxicity on the immune system. 

T-cells were generally less sensitive to the effects of the anthracyclines, perhaps indicating that 

they are a favorable target for immunomodulating drugs and adaptive immune system 

stimulation in anti-cancer drug regimens. B-cells, on the other hand, appear to be more sensitive 

at lower concentrations of the drugs than T-cells. Similar differences in adaptive immune cell 

sensitivities to chemotherapeutic agents have been previously reported in patients.46 Because our 

data corresponds to these findings, our screen across multiple strains of mice provides an 

interesting starting point as a model system for examining immune cell toxicity following 

exposure to anticancer agents. 
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A broad examination of chemotherapy-induced cytotoxic responses was elicited because 

the success of several chemotherapeutics requires interplay from a normal, functional immune 

system. Here, we focus on viability results obtained from broad splenic subpopulations of the 

adaptive immune system (ie, T- and B-cells) and monocytes exposed to various anti-cancer 

agents. In the spleen, B-cells promote both T-cell independent and dependent immune responses. 

The spleen redistributes T-cells to nonlymphoid tissue following antigen recognition. Splenic 

monocytes differentiate into macrophages and dendritic cells, which are antigen presenting cells 

and cellular components that act as liaisons between the innate and adaptive immune systems. 47 

Primary cells were also used in this study to innovatively examine the effects of anti-cancer 

agents on normal immune cells rather than cancerous or immortalized cells. The markers of 

caspase-3/7 activity and mitochondrial stress were not as mechanistically useful as viability. We 

could not detect interstrain differences in these parameters and large error indicated that our 

results were not very robustly replicable (data not shown). The viability parameter was most 

heritable, particularly among immune cells exposed to the anthracyclines, making viability the 

focus of our paper and future genetic analyses. Unfortunately, the lack of unique findings among 

our drugs and additional parameters at the doses used for our assay is a limitation of this 

screening process, where we focused on more generalized viability and mechanized endpoints. 

Ideally, this screening process should include biomarkers specific for drugs (eg, protein targets 

or gene expression changes) where we can identify change in response in a more concise 

approach. 

A general, replicable screening approach was used in mice to examine the effects of 

cytotoxic and targeted agents on the viability of normal immune cells. To be able to maximize 

the use of this data and identify genetic components of phenotype differences, genomewide 
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association analysis requires sufficient diversity of both genotype and phenotype among 

individuals in a mapping population, and both of these traits are reflected in this experiment. A 

panel of thirty-six strains from the Jackson Laboratory’s Mouse Phenome Database MDP was 

selected to model genetic diversity, while phenotypic diversity was measured using IC50 values 

for viability in immune cells exposed to anthracycline agents. Importantly, this assay also 

identified heritable drug response phenotypes (60.1% to 90.5% for IC50 phenotypes), making it 

suitable for pharmacogenomic screening of anticancer effects on immune cells. Remarkably, the 

heritability for the anthracyclines was unexpectedly high, as multifactorial pathways of action 

may dilute phenotypic association to genetic components. Phenotypes generated from this 

approach will be used in genome-wide association studies (GWAS) to generate candidate genes, 

which may identify individuals more susceptible to immune system toxicity.48 We have 

identified loci of significance from our approach, but the extension and validation of this work 

will be presented in a separate manuscript. Harrill et al. used a similar translational approach in a 

panel of inbred mouse strains to determine that acetaminophen-induced liver injury may be 

mediated by variation in immunogenic surface antigens affecting leukocyte signaling, 

particularly CD44.49 

However, a general screening approach using IC50 values for viability as a phenotypic 

endpoint is not always appropriate. In a large screen, defining the best parameter for 

measurement is often difficult due to dose-response curve fitting. Within this experiment, dose-

response curves for the PI3K/mTOR and MEK inhibitors did not achieve IC50 levels. Fallai-

Sichani et al. found that drugs targeting the Akt/PI3K/mTOR pathway also had shallow dose-

response curves in breast cancer cell lines due to significant cell-to-cell variability.50 Going 

forward, more specific assays may be incorporated into high-throughput screens to examine 
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pathways affected by these targeted agents, as more sensitive markers are needed to produce a 

larger phenotypic gradient between more and less sensitive strains. Additionally, the 

appropriateness of IC50 values as a summary variable of dose-response curves for genetic 

analysis has been contested.29,32,50-52 IC50 values, corresponding to the potency of a compound, 

are physiologically relevant. Nonetheless, biological and statistical assumptions are not always 

met, namely that differential response can be defined by one parameter from a complex non-

linear model. In this study, supplementary AUC values, regarded as a global measure of 

compound activity,32 and slope coefficients of curves were generated for comparison to IC50 

values. The correlations of AUC to IC50 values when available were significant, while slope 

coefficients varied greatly from IC50 values. When IC50 values are not achieved or non-linear 

curve fitting is not appropriate, AUC could perhaps be a surrogate for differential interstrain 

response. Furthermore, a combination of biological and pharmacokinetic and -dynamic endpoints 

may be used to better understand the cytotoxic response to anticancer agents. In the future, these 

and additional approaches can be tested for use in detecting genetic associations in in vitro 

genetic association studies. 

2.6. Conclusions 

A cellular genetics screening approach with robust, replicable, multiplexed assays was 

developed to accurately describe toxicity response in normal immune cells. In this study, 

phenotypes were quantified using flow cytometry, yielding interstrain variation for measured 

endpoints in different immune cells. The more targeted agents, BEZ-235 and selumetinib, were 

less toxic to normal immune cells than the anthracycline agents. Also, heritability for the 

viability of immune cells was higher for anthracyclines than the novel agents, making them ideal 

for genetic analysis. This assay provides a novel way of identifying mouse strains that will model 
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sensitivity or resistance to anthracyclines in normal immune cells. High heritability indicates a 

very strong genetic component of response to treatment, and the genetic determinants of 

response including candidate genes and cellular toxicity pathways can then be identified and 

provide hypotheses to test and validate in human studies. Ultimately, the hope is that we can 

identify biomarkers in patients with immune systems less impaired by chemotherapeutic agents. 
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Supplementary Table 2.1. Heritability (%) of viability (%) at specific drug doses (µM) among 

different phenotypes. 
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Supplementary Table 2.2. Phenotype correlations for area under the curve values across strains. 
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Supplementary Table 2.3. Phenotype correlations for slope coefficient values across strains. 

 T-cells 
exposed to 
idarubicin 

B-cells 
exposed to 

doxorubicin 

B-cells 
exposed to 
idarubicin 

Monocytes 
exposed to 

doxorubicin 

Monocytes 
exposed to 
idarubicin 

T-cells 
exposed to 
idarubicin 

- 
0.16 
p = 0.37 

0.11 
p = 0.53 

0.093 
p = 0.6 

0.11 
p = 0.55 

B-cells 
exposed to 

doxorubicin 
- - 

0.3 
p = 0.085 

0.16 
p = 0.37 

0.48 
p = 0.006 

B-cells 
exposed to 
idarubicin 

- - - 
-0.066 
p = 0.7 

0.33 
p = 0.055 

Monocytes 
exposed to 

doxorubicin 
- - - - 

0.57 
p = 0.001 

Monocytes 
exposed to 
idarubicin 

- - - - - 
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Supplementary Figure 2.1. Cellular subpopulations of freshly isolated splenocytes. 

Notes: Splenocytes were isolated from male C57BL/6J (n=4) mice. Our populations were 

comparable to murine spleen cell composition when available in the Mouse Phenome Database 

(B-cells, granulocytes, and monocytes p < 0.05 using t-tests).  
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Supplementary Figure 2.2. Interstrain variation of viability across immune cell types and anti-

cancer drugs.  

Notes: Dose response curves depict cell populations (columns, ie, T-cells, B-cells, monocytes, 

and granulocytes) exposed to anti-cancer drugs (rows, ie, doxorubicin, idarubicin, BEZ-235, and 

selumetinib). Thirty-six strains are included: 129S1/SvImJ, 129X1/SvJ, A/J, AKR/J, 

BALB/cByJ, BTBR T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J, C57BR/cdJ, 

C58/J, CBA/J, CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HiJ, LG/J, LP/J, MA/MyJ, NOD/LtJ, 

NON/LtJ, NZB/BINJ, NZO/HiLtJ, NZW/LacJ, PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ, RIIIS/J, 

SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ. 
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Supplementary Figure 2.3. Interstrain phenotype comparisons for area under the curve. 

Notes: Area under the curve values across strains, heritability, and correlation to log10(IC50(nM)) 

values, when relevant, are displayed for T-cells exposed to selumetinib (A), T-cells exposed to 

BEZ-235 (B), T-cells exposed to doxorubicin (C), T-cells exposed to idarubicin (D), B-cells 

exposed to selumetinib (E), B-cells exposed to BEZ-235 (F), B-cells exposed to doxorubicin 

(G), B-cells exposed to idarubicin (H), monocytes exposed to selumetinib (I), monocytes 

exposed to BEZ-235 (J), monocytes exposed to doxorubicin (K), and monocytes exposed to 

idarubicin (L). Strains are arranged from largest to smallest area under the curve (±SEM) along 

the x-axis. 
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Supplementary Figure 2.4. Interstrain phenotype comparisons for slope coefficients. 

Notes: Slope coefficients across strains and correlation to log10(IC50(nM)) values are displayed 

for T-cells exposed to idarubicin (A), B-cells exposed to doxorubicin (B), B-cells exposed to 

idarubicin (C), monocytes exposed to doxorubicin (D), and monocytes exposed to idarubicin 

(E). Strains are arranged from largest to smallest slope coefficient (±SEM) along the x-axis. 
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CHAPTER 33: IDENTIFYING GENETIC MARKERS FOR CYTOTOXIC RESPONSE 

TO ANTHRACYCLINES IN IMMUNE CELLS 
 
3.1. Overview 
 
Background: While the role of the immune system in cancer development is known, its role in 

response to chemotherapeutic agents remains elusive. Interpatient variability in immune and 

chemotherapeutic cytotoxic responses is likely due to complex genetic differences. Through the 

use of a panel of genetically diverse mouse inbred strains, we developed a drug screening 

platform aimed at examining genes underlying these chemotherapeutic cytotoxic responses on 

immune cells.  

Methods: Methods for our phenotypic screen are well described elsewhere. Briefly, splenocytes 

were isolated from 36 isogenic strains of mice using standard procedures. Cells were incubated 

with doxorubicin, idarubicin, BEZ235, or selumetinib on a 9-point logarithmic dosing scale 

ranging from 15 nM to 100 µM. At 4 hours post-treatment, cells were labeled with antibodies 

and physiological indicator dyes and were fixed prior to analysis by flow cytometry. Cellular 

phenotypes were collected using multiplexed flow cytometry assays and analyzed for variable 

phenotypic response. Dose response curves with response normalized to the zero dose as a 

function of log concentration were subsequently generated. Furthermore, two genome-wide 

association (GWA) algorithms were used to perform GWA mapping, providing precision in 

localizing quantitative trait loci (1 to 2 Mb). Potential candidate genes for validation studies were 

prioritized based on several criteria, including association scores (-log(p) scores), spleen 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 This chapter has been prepared for journal publication. 
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expression data, and biological relevance. This approach led to the selection of App for 

downstream validation studies. The role of App in immune-mediated cytotoxicity was 

investigated by comparing splenic T-cell response to idarubicin between App knockout and 

C57BL/6J mice. 

Results: Using GWA studies, we identified loci that contributed to the sensitivity of doxorubicin 

and idarubicin in immune cells. We identified four genome-wide significant quantitative trait 

loci (QTL) from three phenotypes. Of particular interest, a locus on chromosome 16 was 

significantly associated with cell viability following idarubicin administration (p = 5.01x10-8). 

from viability of T-cells exposed to idarubicin. Within this QTL lies App, which encodes 

amyloid beta precursor protein. Comparison of dose response curves verified that T-cells in App 

knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 

0.05). 

Conclusions:  Using a cellular screening approach, we identified and subsequently validated a 

gene involved in mediating T-cell response to idarubicin. Previous studies have suggested a role 

for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App 

enhances resistance, while the knockdown of this gene is deleterious to cell viability. In the 

future, we aim to perform mechanistic studies and to ultimately translate our findings to in vivo 

and human studies. 

3.2. Introduction 

 The role of the immune system in cancer development is well established with the 

evasion of immune elimination described as one of Hanahan and Weinberg’s hallmarks of 

cancer.1 Developing tumors commonly avoid immune surveillance by inducing an 

immunosuppressive tumor microenvironment with regulatory T-cells, myeloid-derived 
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suppressor cells, alternatively activated macrophages, and tolerant dendritic cells.2 Thus, the 

induction, potency, and persistence of the patient’s functional immune system is critical to 

combating tumor advancement.3   

The generation of an efficacious clinical antitumor response depends upon the successful 

initiation of several immune processes. In this regard, the adaptive immune system has been 

described as an ideal anticancer agent with features including diversity, specificity, and memory. 

Recent advances in immune-based therapeutic approaches have focused on boosting the adaptive 

antitumor immune response using various approaches, including vaccination, adoptive T-cell 

therapy, anti-tumor antibodies, and the advent of immune checkpoint blockade agents.4-8 

Clinically, monitoring T- and B-cell response may prove useful in correlating specific immune 

responses to patient outcomes.3 For instance, patients with denser T-cell infiltrates in a variety of 

cancer tumors have better clinical responses to traditional, cytotoxic chemotherapy compared to 

patients with smaller infiltrates.9 Some cytotoxic chemotherapeutics, such as anthracyclines, 

promote immunogenic cell death by releasing molecules such as calreticulin, which subsequently 

primes T-cells for modulation to an antitumor Th1 phenotype.10,11 Therefore, assessing the 

functionality of an immune system is crucial for evaluating clinical responses to cytotoxic 

chemotherapy.12 

Previous studies have noted intersubject variability in chemotherapy-induced cytotoxic 

responses within the immune system.13-15 Although several genes have been linked to the toxicity 

of anticancer chemotherapy on the innate immune system (ie, neutropenia), the role of 

pharmacogenomics in the cytotoxicity of the adaptive immune system requires further 

investigation. A model organism approach was used to evaluate pharmacotherapeutic response, 

as the effects of chemotherapy on the normal immune system are difficult to ascertain in humans. 
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We previously developed a cell-based screen using immune cells from 36 inbred mouse strains 

to measure phenotypic differences in immune cell sensitivity to anticancer therapeutics.16 We 

were able to robustly identify interstrain variation in T- and B-cell viability to cytotoxic 

anthracycline agents, doxorubicin and idarubicin. In this study, we examined the underlying 

genetic components that may be responsible for these differences. Following genome-wide 

association studies (GWAS), we identified a candidate gene, App (encoding amyloid beta 

precursor protein) that was further shown to be involved in mediating T-cell response to 

idarubicin.  

3.3. Materials and Methods 

3.3.1. Phenotype Determination 

The methods and results of our drug-screening platform in normal, noncancerous, murine 

immune cells have been previously described.16 Briefly, splenocytes were collected from a panel 

of 36 inbred mouse strains (n = 4 per strain, 129S1/SvImJ, 129X1/SvJ, A/J, AKR/J, BALB/cByJ, 

BTBR T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J, C57BR/cdJ, C58/J, CBA/J, 

CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HiJ, LG/J, LP/J, MA/MyJ, NOD/LtJ, NON/LtJ, 

NZB/BINJ, NZO/HiLtJ, NZW/LacJ, PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ, RIIIS/J, SEA/GnJ, 

SJL/J, SM/J, SWR/J, and WSB/EiJ), aged 10-12 weeks, obtained from The Jackson Laboratory 

Mouse Diversity Panel (Bar Harbor, ME). Splenocytes were isolated using standard procedures 

and exposed to nine logarithmic concentrations of doxorubicin, idarubicin, BEZ-235, and 

selumetinib ranging from 15 nM to 100 µM. At 4 h post-treatment, cells were sequentially 

incubated (37°C, 5% CO2) with physiological indicator dyes (eg, 7-AAD, CellEvent™ Caspase-

3/7 Green Detection Reagent, and Mitotracker® Deep Red) and cell surface marker antibodies 

and then fixed with 4% paraformaldehyde. Samples were analyzed by flow cytometry using a 
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BD FACSCantoTM II flow cytometer and Flow Jo version X. Dose response curves with 

response normalized to the zero dose as a function of log concentration were generated. Viability 

measurements of B-cells and T-cells exposed to the anthracyclines provided the most heritable 

phenotypes in our screen and were reserved for QTL mapping.16 

3.3.2. Quantitative Trait Loci (QTL) Mapping 

GWAS were performed for IC50 values, AUC values, and individual drug concentrations 

that corresponded to cell viability for splenic B-cells and T-cells exposed to doxorubicin and 

idarubicin. SNPster and efficient mixed-model association (EMMA) algorithms, which are well 

described elsewhere, were used for QTL mapping.17,18 Briefly, SNPster performs QTL mapping 

analysis from an inferred haplotype structure determined by overlapping 3-SNP windows for 

each strain. Using one-way ANOVA, an F-statistic was calculated following association 

analyses of phenotypic values with haplotypes. p values are then estimated by bootstrapping 

phenotypic values 1x106 times, providing a maximum –log(p) score of 6.0.17 EMMA uses F-tests 

for single marker association mapping while accounting for population structure and genetic 

relatedness.18 SNP genotypes used for GWA were obtained from the Mouse Diversity Array set 

at the CGDSNPdb website (http://cgd.jax.org/cgsnpdb/).19 The SNP panel was trimmed for 

redundancy (SNPs showing identical haplotype pattern at a locus), missingness (genotyping call 

rates <95%), and non-informative nature (SNPs without variation amongst the 36 strains), 

leaving a panel of 356,596 SNPs. Manhattan plots were visualized using R version 3.1.0 and the 

UCSC Mouse Genome Browser on the Mouse July 2007 (NCBI37/mm9) Assembly 

(https://genome.ucsc.edu).20 The threshold of significance for QTL mapping was adjusted using 

the conservative Bonferroni correction. QTL were considered significant when -log(p) score was 

≥ 6.853. 
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3.3.3. Candidate Gene Selection 

QTL regions that overlapped using both association mapping algorithms, although both 

were not required to be genome-wide significant (-log(p) ≥ 6.853), were further selected for 

candidate gene selection. Candidate genes were prioritized based on the following: literature 

evidence for biological involvement with the immune system or anthracycline response, 

differential gene expression in spleens and immune cells, the correlation between phenotypic 

values and gene expression levels in spleens and immune cells, similarity in the haplotype 

structure between the QTL and the candidate gene, the presence of potentially deleterious non-

synonymous coding SNPs, and apoptotic or immune cell pathway involvement (Figure 3.1).21 

Candidate genes were only included if they were expressed in the spleen, the tissue originally 

assayed to produce our phenotypes of interest. Expression levels were measured in spleens and 

immune cells from inbred strains of mice using the Affymetrix Mouse Genome 2.0 Array (Santa 

Clara, CA). Genes were considered expressed if their expression level was greater than 50 for at 

least one of the strains following data processing with the gcRMA algorithm. Non-synonymous 

coding SNPs were obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). The 

likely effect of amino acid substitutions in protein sequences was determined using PROVEAN 

(Protein Variation Effect Analyzer) version 1.1.322 and PANTHER (Protein Analysis Through 

Evolutionary Relationships) version 9.0 software. 23,24 Using PROVEAN, a score of -2.5 

indicates a functional effect on the protein. For the PANTHER algorithm, a subSPEC 

(substitution position-specific evolutionary conservation) score of -3 corresponds to a 50% 

probability that a score is deleterious (Pdeleterious = 0.5). Chilibot25 (http://www.chilibot.net) was 

used to search the PubMed literature database for biological relevance of gene involvement 
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Figure 3.1. Candidate gene prioritization. 

 
 

in immune cells or anthracycline response. Ingenuity® Pathway Analysis was used to gauge the 

involvement of genes in apoptotic or various immune function pathways 

(http://www.ingenuity.com/). Haplotype structure for the interval and for specific genes was 

reviewed with the Mouse Phylogeny Viewer (https://msub.csbio.unc.edu/).26 

3.3.4. App Gene Validation 

Based on the criteria for candidate gene validation as described above, App was chosen 

for downstream validation studies. An in vitro knockout approach was used for validation of 

App. App knockout (B6.129S7-Apptm1Dbo/J, stock number: 004133) and C57BL/6J control (stock 

number: 000664) male mice aged 10-12 weeks were obtained from the Jackson Laboratory (Bar 
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Harbor, ME). Mice homozygous for the targeted allele are viable without blatant physical and 

behavioral abnormalities at birth other than a reduced body weight of 15-20% less than wildtype 

age-matched controls. At 14 weeks of age, an age beyond the range we included in our assay, the 

mice exhibit evidence of reactive gliosis with significantly reduced forearm grip strength and 

reduced locomotion.27 Mice were housed three per cage in polycarbonate cages on a 12 h 

light/dark cycle (lights on at 0700 hours) with access to food and water ad libitum. Following 

one week of habituation, splenic phenotypes from these knockout and control mice were 

generated as described above.16 All procedures were approved by the UNC Institutional Animal 

Care and Use Committee and followed the guidelines set forth by the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.  

3.3.5. Statistical Analyses  

After detecting immune cell populations of interest (ie, CD19+ B-cells, CD3e+ T-cells, 

and CD11b+ monocytes), cells positive for physiological indicator dyes in each subpopulation 

were gated. Dose response curves with response normalized to the zero dose as a function of log 

concentration were generated using GraphPad Prism 6 (La Jolla, CA) and the Hill equation: 

f(x)=Max-((Max-Min)/(1+(x/IC50)γ)), where Max is the maximum asymptote, Min is the 

minimum asymptote, γ is the Hill slope, and x is the drug concentration.28 Additional statistical 

analyses, including Pearson correlations, t-tests, and partial F-tests, were performed with SAS 

version 5.2 (Cary, NC) and GraphPad Prism 6 with p < 0.05 considered to be statistically 

significant. Pearson correlations were performed to determine the relatedness between metrics.29 

Dose response curves from knockout and control populations were compared using t-tests for 

IC50 and viability measurements. Finally, a partial F-test was used to determine if the data fitting 

would be best using one or two dose response curves.  
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Figure 3.2. Phenotypes for GWAS.  
 
Notes: Dose response curves reflecting interstrain variation in viability are shown for T-cells 

exposed to idarubicin (A), B-cells exposed to doxorubicin (B), and B-cells exposed to 

doxorubicin (C). Thirty-six strains are represented: 129S1/SvImJ, 129X1/SvJ, A/J, AKR/J, 

BALB/cByJ, BTBR T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J, C57BR/cdJ, 

C58/J, CBA/J, CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HiJ, LG/J, LP/J, MA/MyJ, NOD/LtJ, 

NON/LtJ, NZB/BINJ, NZO/HiLtJ, NZW/LacJ, PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ, RIIIS/J, 

SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ. Concentrations used to generate genomewide 

significant QTL (respectively 1, 0.3, and 3 µM) are enclosed with a black box. 
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3.4. Results 

Results from our initial phenotypic screen for downstream GWA analyses have been 

previously discussed.16 Although we measured multiple cell health parameters, the cell viability 

phenotype was most robust for GWAS. Figure 3.2 displays the interstrain phenotypic variation 

for the most heritable viability phenotypes: T-cells exposed to idarubicin (Figure 3.2A), B-cells 

exposed to doxorubicin (Figure 3.2B), and B-cells exposed to idarubicin (Figure 3.2C). Several 

strains repeatedly appear to be more sensitive (eg, C57BLKS/J and DBA/2J) or less sensitive 

(eg, BALB/cByJ, KK/HiJ, and WSB/EiJ) to the cytotoxic effects of the different anthracycline 

agents across cell type. The concentrations (respectively 1, 0.3, and 3 µM) contained in black 

boxes corresponded to the phenotypic values that generated genomewide significant QTL with 

respective heritability measurements of 87.5, 70.6, and 85%. The viability measurements at these 

concentrations significantly correlated with IC50 values obtained from our assay with respective 

Pearson correlations of 0.82489 (p < 0.0001), 0.85942 (p < 0.0001), and 0.92028 (p < 0.0001).  

Using a GWA approach, we identified four genomewide significant QTLs that 

overlapped using both SNPster and EMMA algorithms: chr16 84.7 Mb to 85.6 Mb for T-cells 

exposed to idarubicin (Figure 3.3A), chr6 146.5 Mb to 147.5 Mb for B-cells exposed to 

doxorubicin (Figure 3.3B), and chr7 151.4 Mb to 152.0 Mb and chr5 74.5 Mb to 74.9 Mb for B-

cells exposed to idarubicin (Figure 3.3C). Within these four QTL peaks, there were 25 genes that 

were further prioritized using the criteria described previously (Figure 3.1). Only 16 out of 25 

genes affiliated with genomewide significant peaks were expressed in the spleen (expression 

level > 50) and included for prioritization (Table 3.1).  

 The viability of splenic T-cells following idarubicin exposure is a robust phenotype 

exhibiting strong interstrain variability. This phenotype was strongly linked to a 0.9 Mb region 
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(84.7 Mb to 85.6 Mb) on chromosome 16 containing eight genes, six of which met criteria for 

candidate gene prioritization (Figure 3.4). Table 1 lists characteristics for all candidate genes 

across various dose-response phenotypes. Briefly, of the six genes, App was one of four (ie, 

Atp5j, Gabpa, and Mir155) that is involved in apoptosis and immune cell pathways via 

Ingenuity®. Per Chilibot, App is the only gene with a known relation to anthracyclines and one 

of two genes (ie, Mir155) that is related in the literature to the immune system. The haplotype 

structure of App, Gabpa, and Mrpl39 contained groupings of strains corresponding to sensitive 

and resistant phenotypes. App and Mrpl39 have potentially deleterious SNPs. App is also the 

only gene under this peak that is differentially expressed (≥2 fold difference in expression levels) 

across our selected inbred mouse strains in the spleen, CD4+ cells, CD4+ Th1 cells, and 

macrophages. For these reasons, App, encoding amyloid beta precursor protein, was chosen for 

validation.  

Figure 3.3. Manhattan plots for immune cell cytotoxicity to anthracycline agents. 
 
Notes: Manhattan plots were obtained from GWAS using EMMA and SNPster algorithms for T-

cells exposed to idarubicin (A), B-cells exposed to doxorubicin (B), and B-cells exposed to 

doxorubicin (C). Manhattan plots derived from EMMA are displayed above Manhattan plots 

from SNPster. The threshold of genomewide significance (-log(p) ≥ 6.853 following Bonferroni 

correction) is represented by the horizontal red line. The black boxes contain matching QTL 

peaks obtained with both EMMA and SNPster algorithms respectively on chromosomes 16 (A), 

6 (B) 5, and 7 (C). 



! 72 

 
  



! 73 

Figure 3.4. Genomic region associated with T-cell toxicity following idarubicin exposure. 
 
Notes: Potential candidate genes from the Reference Sequence database on chromosome 16 are 

displayed using Manhattan plots that were generated from both EMMA and SNPster algorithms. 

The candidate QTL within a 0.9 Mb region is visualized with the UCSC Genome Browser 

(http://genome.ucsc.edu) with the QTL region derived from EMMA displayed above the QTL 

region from SNPster.
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Figure 3.5. Haplotype structure of App. 

Notes:  The haplotype structure of the inbred mouse strains within App is shown. Strains are 

arranged in descending order of phenotype from most to least sensitive. The haplotype structure 

was visualized with the Mouse Phylogeny Viewer (https://msub.csbio.unc.edu/). Within App, 

non-synonymous coding SNPs are indicated by arrows. 

 

As shown in Figure 3.5, the haplotype structure of App illustrates the grouping of strains 

with a particular haplotype, which corresponds to sensitive and resistant phenotypes. 

Additionally, the gene does contain non-synonymous coding SNPs, which introduce the 

following amino acid sequence changes in the protein: D516E, A480V, D309E, and G221S. 

Using PROVEAN and PANTHER algorithms, A480V and D309E were classified as likely 

deleterious to App (Figure 3.6). Finally, based on literature review, although associated 
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mutations and differences in expression in App are typically linked to Alzheimer’s disease, there 

is a role for App in cytotoxicity involving chemotherapeutics.30,31  

Figure 3.6. App non-synonymous coding SNPs and associated protein structure. 

Notes: Non-synonymous coding SNPs within App from the Center for Genome Dynamics 

(http://cgd.jax.org/cgdsnpdb) and the likelihood of SNPs causing deleterious effects within the 

associated protein’s structure using PROVEAN and the PANTHER Classification System are 

displayed. Using PROVEAN, a score of -2.5 indicates a functional effect on the protein. For the 

PANTHER algorithm, a subSPEC (substitution position-specific evolutionary conservation) 

score of -3 corresponds to a 50% probability that a score is deleterious (Pdeleterious = 0.5). The 

structure of App is provided below with key domains and the sites of amino acid substitutions.

 

A gene validation study was performed using splenocytes from App knockout (B6.129S7-

Apptm1Dbo/J) and C57BL/6J control mice, subjected to the same conditions within our cellular 

screen. Without drug exposure, the relative splenic T-cell composition and viability of App 

knockout versus control mice were not statistically different using a t-test (p > 0.05, respectively 
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p = 0.344 and p = 0.386). However, T-cells from App knockout mice were less viable than that 

of the control mice following exposure to idarubicin (Figure 3.7). Given that the IC50 value for 

the control mice (3.48, 95% CI: 3.401-3.56) is significantly higher than the IC50 value for the 

App knockout mice (3.28, 95% CI: 3.18-3.38), this result suggests that susceptibility to 

idarubicin-induced cytotoxicity on T-cells is greater with the absence of App (p < 0.05). 

Additionally, the knockout of App was significantly associated with increased cell toxicity as 

observed by the shift to the left in the dose response curve from the control mice (partial F-test, p 

= 0.0056, Figure 3.7).  

Figure 3.7. In vitro validation of App in T-cell toxicity following idarubicin exposure.  

Notes: Dose response curves were generated following exposure of splenic T-cells from 

C57BL/6J control mice (N = 3) and App knockout mice (N = 3) to idarubicin. A significant shift 

to the left was observed in App knockout cells as calculated using a partial F test (p = 0.0056).  
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Table 3.1. Candidate genes from the phenotypic screen. 
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3.5. Discussion  

This investigation aimed to uncover genetic components of the normal immune system’s 

response to chemotherapeutic agents. The importance of this comes from studies that implicate 

the uncompromised immune system in the efficacy of chemotherapeutic treatments.1 Therefore 

we need to assess the resilience of immune function cells to potentially toxic drugs, including 

anticancer agents. As this investigation is difficult to conduct in human patients, we proposed a 

model system to examine cytotoxic responses in immune cells from inbred strains of mice!with 

the objective of identifying genetic biomarkers of immune cytotoxic response.16  

Recently, standardization of pharmacogenomic screening has come under intense 

scrutiny, necessitating improvements in the design, application, and implementation of robust 

assays for phenotypic measurement.32,33 For our GWAS, we examined IC50 values, AUC values, 

and individual viability concentrations (only GWAS for viability concentrations are shown). All 

three measurements used for GWAS present their own challenges and benefits. IC50 could not be 

estimated in some cases as necessary concentrations for 50% viability were outside of our 

selected, generic concentration range from 15 nM to 100 µM and far beyond physiological 

boundaries. While IC50 is a biologically relevant measurement if slopes are comparable, it can be 

regarded as a moving target and differs based on software and equations used to fit the dose 

response curve. AUC measures can always be estimated from the dose response curve and all 

points are used in data analysis. However, the appropriateness of this model in regards to its 

biology has been questioned. 29,34 The viability concentrations chosen were located on either side 

of the mean logarithmic IC50 for all strains and provided precise, replicable, and robust 

measurements and the necessary interstrain variation for GWAS. Therefore, the cell viability 

data from these viability concentrations provided genomewide significant QTL. 
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In this study, we uncovered four genome-wide significant QTL that were identified using 

the same phenotype and genotype data but using two different GWA algorithms (EMMA and 

SNPster). Because the two mapping approaches determine QTL using different methodologies, 

the use of both algorithms minimizes identification of false positive QTLs. Results from both 

analyses identified four loci containing twenty-five potential candidate genes. These candidate 

genes subsequently underwent careful inspection to examine as much available data that can be 

garnered to rank these genes and select the “most likely” candidate for validation.  

Here, we selected one gene for a validation study; App was initially validated in vitro 

using knockout and control mice. App knockout mice are commercially available and viable, and 

only with a concurrent knockout of Aplp2 (amyloid precursor-like protein 2) is this loss of 

function perinatally lethal. The downstream processing of App is fairly complex, and the role of 

domains in addition to the plaque forming β-APP, typically associated with Alzheimer’s disease, 

is under investigation. App consists of multiple domains (ie, A4, N-terminal heparin-binding, 

copper-binding, KU, E2, β-App, and amyloid C-terminal domains as shown in Figure 3.6) with 

numerous cleavage sites.35 Alzheimer’s disease has been suggested to result from an imbalance 

in the production and clearance of β-APP. However, additional theories have been proposed, 

suggesting β-APP is a marker of oxidation rather than a symptom of neurodegeneration.  

APP has been studied primarily in terms of Alzheimer’s disease, but knowledge of its 

biological function remains elusive. This gene is ubiquitously expressed, suggesting roles outside 

of various neuronal functions and diseases subsequent to aberrant processes that are typically 

associated with APP. The extracellular portion of the protein has been implicated in cell 

adhesion, signaling, and growth, and the intracellular portion has been associated with cell 

signaling and apoptosis.36,37 Overexpression of APP, particularly the soluble N-terminal 
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ectodomain (sAPP), has been linked to carcinogenesis, including cancers originating from the 

nasopharynx, oral cavity, lung, breast, thyroid, parathyroid, colon, testicles, and pancreas.38,39 

Ryan et al. exposed rat hippocampus slice cultures to sAPP, which elicited an inflammatory and 

immune gene response that was suggested to cause a neuroprotective environment. Apoptotic 

pathways were downregulated, while cell proliferation and survival pathways were 

upregulated.40 In addition, APP expression is indirectly linked to Ras/MAPK and PI3K/Akt 

pathways, which are often upregulated in various cancers.41 These findings suggest a potential 

role of App in cellular processes involved in cancer or in chemotherapy response. 

Epidemiologically, an inverse comorbidity with cancer was found in two studies of 500 

patients with Alzheimer’s disease.42 This inverse correlation was hypothesized to be driven by 

molecular processes common to CNS disorders and cancer. Ibáñez et al. found a significant 

overlap between genes (eg, PIN1, Wnt pathway, p53 pathway, and pathways related to protein 

folding and folding degradation) upregulated in CNS disorders (ie, Alzheimer’s disease, 

Parkinson’s disease, and schizophrenia) and genes downregulated in cancer (ie, lung, prostate, 

and colorectal cancers) and vice versa. APP also appears to have a role in cytotoxic response to 

anticancer chemotherapeutics. A recent clinical observational study indicated that the risk of 

Alzheimer’s disease was reduced following the administration of anticancer chemotherapy,43 

suggesting upregulation of MDR transporters may enhance β-APP clearance. Additionally, in 

CHO cells, carmustine administration reduced β-APP and was suggested to cause altered 

intracellular trafficking and processing of APP with an increase in immature APP at the cell 

surface and sAPP levels.44 APP overexpressing cell lines have also been found to have a higher 

resistance to cytotoxicity; overexpression of wild-type APP in HEK cells resulted in a 

conformational change in p53 and a subsequent reduced sensitivity to doxorubicin.31 The link 
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between APP and p53 has been previously suggested, and APP has been proposed to activate 

gene transcription in a similar way as Notch, a protein with roles in cell differentiation, cell 

proliferation, neuronal function, and T-cell lineage commitment.37  

We have not investigated a mechanistic solution as to why a lack of App leads to 

enhanced toxicity to idarubicin. As discussed above, we can hypothesize that an increase in wild 

type APP and subsequent sAPP leads to a decrease in functional proteins within the p53 

pathway, which causes a downregulation in apoptotic processes, upregulation in cell survival, 

and subsequent resistance to toxic insults such as anticancer chemotherapy. This situation could 

present a clinical conundrum in how to treat patients with cancers overexpressing APP.45 Also, 

genomic differences in molecular machinery processing APP could add an additional layer of 

complexity. In this study, the expression of App in the spleen and other immune cells did not 

correlate with the strain order for sensitivity of T-cells to idarubicin. Thus, the effect of App on 

anticancer response is not likely driven by App expression in this study. An additional proof for 

the validation of App may include creating specific polymorphisms introducing the potentially 

deleterious nonsynonymous coding changes mentioned previously to see how the viability of T-

cells exposed to idarubicin is affected. Furthermore, we have additional candidate genes from 

our screen for future validation. Of particular interest, Ppfia1 and Ppfibp1 were found using the 

viability of B-cells exposed to doxorubicin and idarubicin, respectively. These genes encode 

liprin-alpha-1 and liprin-beta-1, members of the LAR protein tyrosine phosphatase-interacting 

protein family, which orchestrate cell-matrix interactions (http://omim.org/).46  
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3.6. Conclusions 

We have shown that we can identify genes implicated in the immune cell response to 

chemotherapeutic agents. Using a cellular screening approach, we identified and subsequently 

validated a gene involved in cytotoxic T-cell response to idarubicin. In the future, we aim to 

perform mechanistic studies, investigate additional candidate genes of interest, and to ultimately 

translate our findings to in vivo and human studies. 
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CHAPTER 4: IMMUNOPHENOTYPIC SCREEN FOR ANTICANCER DRUGS AND  
ASSOCIATED GENOMEWIDE ASSOCIATION STUDIES: THE SKY’S THE LIMIT 

 
4.1. Introduction  
 
 Complex interactions exist between the immune system and cancerous cells, and these 

interactions and the immunomodulation of tumors can be heavily influenced by the 

administration of anticancer chemotherapy.1 While potentially detrimental to the viability of 

normal cells, anticancer agents can induce an immune response that contributes to their efficacy.2 

We successfully developed a multiplexed assay for measuring toxicity responses to anticancer 

agents in murine immune cells.3 This assay generated thousands of data points, which were used 

to identify quantitative trait loci (QTL) and promising candidate genes using genomewide 

association studies (GWAS).  Furthermore, we completed the initial validation of a candidate 

gene (App) encoding for amyloid beta precursor protein in murine T-cells exposed to idarubicin. 

In this chapter, we examine additional phenotypes, GWAS, and candidate genes generated from 

this endeavor. Following the ramifications of our immunophenotypic assay and associated 

GWAS, we examine current limitations, areas for improvement, and potential future 

developments.  

4.2. Materials and Methods 

4.2.1. Phenotypes 

The methods and results of our drug-screening platform in normal, noncancerous, murine 

immune cells have been previously described.3 Briefly, splenocytes were collected from a panel 

of 36 inbred mouse strains (n = 4 per strain, 129S1/SvImJ, 129X1/SvJ, A/J, AKR/J, BALB/cByJ, 
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BTBR T+ Itpr3tf/J, BUB/BnJ, C3H/HeJ, C57BLKS/J, C57BL/6J, C57BR/cdJ, C58/J, CBA/J, 

CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HiJ, LG/J, LP/J, MA/MyJ, NOD/LtJ, NON/LtJ, 

NZB/BINJ, NZO/HiLtJ, NZW/LacJ, PERA/EiJ, PL/J, PWD/PhJ, PWK/PhJ, RIIIS/J, SEA/GnJ, 

SJL/J, SM/J, SWR/J, and WSB/EiJ), aged 10-12 weeks from The Jackson Laboratory Mouse 

Diversity Panel. Splenocytes were isolated using standard procedures and exposed to nine 

logarithmic concentrations of doxorubicin, idarubicin, BEZ-235, and selumetinib ranging from 

15 nM to 100 µM. At 4 h post-treatment, cells were sequentially incubated (37°C, 5% CO2) with 

physiological indicator dyes (eg, 7-AAD, CellEvent™ Caspase-3/7 Green Detection Reagent, 

and Mitotracker® Deep Red) and cell surface marker antibodies and then fixed with 4% 

paraformaldehyde. Samples were analyzed by flow cytometry using a BD FACSCanto II flow 

cytometer and Flow Jo version X. Dose-response curves with response normalized to the zero 

dose as a function of log concentration were generated. Viability measurements of B-cells, T-

cells, and monocytes exposed to the anthracyclines provided the most heritable phenotypes in 

our screen and were reserved for QTL mapping. 

4.2.2. Quantitative Trait Loci (QTL) Mapping 

Genome-wide association (GWA) studies were performed using IC50 values, AUC 

values, and individual drug concentrations that corresponded to cell viability for splenic B-cells 

and T-cells exposed to doxorubicin and idarubicin. SNPster and efficient mixed-model 

association (EMMA) algorithms, which are well described elsewhere, were used for QTL 

mapping. 4,5 Briefly, SNPster uses an inferred haplotype structure from overlapping 3-SNP 

windows for each strain. An F-statistic is calculated by comparing associated phenotype values 

to haplotypes using one-way ANOVA. p values are estimated by bootstrapping phenotypic 

values 1x106 times, providing a maximum -log(p) score of 6.0.4 EMMA uses F-tests for single 
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marker association mapping while accounting for population structure and genetic relatedness.5 

SNP genotypes used for GWA were obtained from the Mouse Diversity Array set at the 

CGDSNPdb website (http://cgd.jax.org/cgsnpdb/).6 The SNP panel was trimmed for redundancy 

(SNPs showing identical haplotype pattern at a locus), missingness (SNPs with few calls for all 

strains), and non-informative nature (SNPs without variation amongst the 36 strains), leaving a 

panel of 356,596 SNPs. Manhattan plots were visualized using R version 3.1.0 and the UCSC 

Mouse Genome Browser on the Mouse July 2007 (NCBI37/mm9) Assembly 

(https://genome.ucsc.edu). The threshold of significance for QTL mapping was adjusted using 

the conservative Bonferroni correction. QTL were considered significant when -log(p) ≥ 6.853. 

4.2.3. Candidate Gene Selection 

QTL regions that overlapped using both association mapping algorithms, although both 

were not required to be genome-wide significant (-log(p) ≥ 6.853), were further narrowed down 

for candidate gene selection. Candidate genes were prioritized based on the following: literature 

evidence for biological involvement with the immune system or anthracycline response, 

differential gene expression in spleens and immune cells, the correlation between phenotypic 

values and gene expression levels in spleens and immune cells, the presence of potentially 

deleterious non-synonymous coding SNPs, and apoptotic or immune cell pathway involvement.7 

Candidate genes were only included if they were expressed in the spleen, the tissue originally 

assayed to produce our phenotypes of interest. Expression levels were measured in spleens and 

immune cells from inbred strains of mice using the Affymetrix Mouse Genome 2.0 Array (Santa 

Clara, CA). Genes were considered expressed if their expression level was greater than 50 for at 

least one of the strains following data processing with the gcRMA algorithm. Nonsynonymous 

coding SNPs were obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). The 
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likely effect of amino acid substitutions in protein sequences was determined using PROVEAN 

(Protein Variation Effect Analyzer) version 1.1.3228 and PANTHER (Protein Analysis Through 

Evolutionary Relationships) version 9.0 software. 9,10 Using PROVEAN, a score of -2.5 indicates 

a functional effect on the protein. For the PANTHER algorithm, a subSPEC (substitution 

position-specific evolutionary conservation) score of -3 corresponds to a 50% probability that a 

score is deleterious (Pdeleterious = 0.5). Haplotype structure for the interval, and for specific genes 

was reviewed with the Mouse Phylogeny Viewer (https://msub.csbio.unc.edu/).11 

4.3. Results 

Optimization of a number of parameters was performed prior to initiation of our 

phenotypic screen. These included cell and drug selection, cell culture conditions (eg, cell 

density, growth medium, drug concentration range, controls), flow cytometry conditions (eg, 

optimal cell number measurement, detection of markers and cellular health parameters of 

interest, overlap and subsequent compensation of fluorochromes, and gating strategy), modeling 

and normalization of dose response curves, and statistics for drug sensitivity (data not shown for 

parameter optimization experiments). We examined cell viability (Figure 4.1), anthracycline 

uptake (Figure 4.2), caspase activity (Figure 4.3), and mitochondrial health (Figure 4.4) of 

immune cells following treatment with anthracyclines. Viability measurements had heritable, 

interstrain variability at physiological concentrations and IC50 values within our range of 

logarithmic concentrations. As expected, our more targeted agents, BEZ-235 and selumetinib, 

did not produce a detrimental effect on the viability of cells. Anthracycline uptake did not 

correlate directly with cell viability. In comparison to cell viability, the data for anthracycline 

uptake was more variable, limiting its use for GWAS (Figure 4.2). Caspase and mitochondrial 

health measurements did not act as expected, with a decrease in caspase activity, especially with 
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doxorubicin administration (Figure 4.3), and little to no reduction in mitochondrial health with 

increasing drug concentration (Figure 4.4). Thus, viability measurements of T-cells, B-cells, and 

monocytes following administration of doxorubicin and idarubicin were used as our phenotypes 

for GWAS.  

Figure 4.1. Interstrain variation of viability across immune cell types and anti-cancer drugs.  

Notes: Dose response curves depict cell populations (columns, ie, T-cells, B-cells, monocytes, 

and granulocytes) exposed to anti-cancer drugs (rows, ie, doxorubicin, idarubicin, BEZ-235, and 

selumetinib). Thirty-six strains are included. 
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Figure 4.2. Interstrain variation of anthracycline uptake across immune cell types and anti- 
 
cancer drugs.  
 
Notes: Dose response curves depict cell populations (columns, ie, T-cells, B-cells, monocytes, 

and granulocytes) exposed to anti-cancer drugs (rows, ie, doxorubicin and idarubicin). The dose 

response curves depict cells negative for anthracycline uptake as concentrations increase. Thirty-

six strains are included. 
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Figure 4.3. Interstrain variation of active caspase-3/7 across immune cell types and anti-cancer  
 
drugs.  

Notes: Dose response curves depict cell populations (columns, ie, T-cells, B-cells, monocytes, 

and granulocytes) exposed to anti-cancer drugs (rows, ie, doxorubicin. idarubicin). Thirty-six 

strains are included. 
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Figure 4.4. Interstrain variation of mitochondrial health across immune cell types and anti- 
 
cancer drugs.  

Notes: Dose response curves depict cell populations (columns, ie, T-cells, B-cells, monocytes, 

and granulocytes) exposed to anti-cancer drugs (rows, ie, doxorubicin. idarubicin). Thirty-six 

strains are included. 
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After performing GWAS with IC50 values, AUC values, and individual drug 

concentrations (Figures 4.5-4.10), we obtained eight genomewide significant QTL on the 

following chromosomes: chr6 for B-cells exposed to 0.3 µM doxorubicin (Figure 4.5B), chr5 for 

B-cells exposed to 1 µM doxorubicin (Figure 4.5C), chr14 for AUC values for B-cells exposed 

to idarubicin (Figure 4.6B), chr5 and chr 7 for B-cells exposed to 3 µM idarubicin (Figure 4.6D), 

chr 12 and chr 15 for T-cells exposed to 100 µM doxorubicin (Figure 4.9D), and chr 16 for T-

cells exposed to idarubicin (Figure 4.10C). The structure and size of each QTL derived from 

various drug concentrations and associated genes under each genomewide significant peak are in 

Figures 4.11-4.16. The haplotype structure of the following genes displayed grouping according 

to sensitive or resistant phenotypes: Arntl2, Ccdc91, Cdh11, Gm5887, Klhdc5, Mrps35, Ppfibp1, 

Rep15, and Stk38l for B-cells exposed to 0.3 µM doxorubicin (Figure 4.12); Arntl2, Ccdc91, 

Cdh11, Gm5887, Klhdc5, Mrps35, Ppfibp1, Rasl11b, Rep15, and Stkl38 for B-cells exposed to 1 

µM doxorubicin (Figure 4.13); Cttn, Fadd, and Ppfia1 for B-cells exposed to 3 µM idarubicin 

(Figure 4.14); Fam84b and Mycn for T-cells exposed to 100 µM doxorubicin (Figure 4.15); and 

App, Gabpa, and Jam2 for T-cells exposed to 1 µM idarubicin (Figure 4.16).  

Expression data for genes within putative peaks are presented in Tables 4.1-4.5. Only 25 

genes were expressed in the spleen (Ano1, App, Atp5j, Ccdc91, Ccdc99, Cdh11, Cttn, Cyyr1, 

Ddx1, Dhcr7, Dock2, Fadd, Fam84b, Gabpa, Klhdc5, Mir155, Mrpl39, Mrps35, Mycn, Nadsyn1, 

Nbas, Ppfia1, Ppfibp1, Rasl11b, Slit3, and Stk38l). The likelihood of nonsynonymous coding 

SNPs causing changes in the associated protein for the candidate gene is located in Table 4.6. 

A1bg, Ano1, Arntl2, Ccdc99, Cdh11, Cttn, Dock2, Jam2, Mycn, Nadsyn1, Ppfia1, Ppfibp1, and 

Rep15 have potential deleterious proteins when various nonsynonymous coding SNPs are 

introduced. 
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Figure 4.5. Manhattan plots generated for B-cells exposed to doxorubicin.  
 
Notes: Plots for IC50 values (A), AUC values (B), and viability at various doxorubicin 

concentrations (0.3, 1, and 3 µM, respectively C, D, and E) are shown. Plots generated from 

EMMA are above those plots generated from SNPster. Matching peaks are in black boxes with 

significant matching peaks bolded. 
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Figure 4.6. Manhattan plots generated for B-cells exposed to idarubicin.  
 
Notes: Plots for IC50 values (A), AUC values (B), and viability at various idarubicin 

concentrations (1 and 3 µM, respectively C and D) are shown. Plots generated from EMMA are 

above those plots generated from SNPster. Matching peaks are in black boxes with significant 

matching peaks bolded. 
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Figure 4.7. Manhattan plots generated for monocytes exposed to doxorubicin.  
 
Notes: Plots for IC50 values (A), AUC values (B), and viability at various doxorubicin 

concentrations (1, 3, and 10 µM, respectively C, D, and E) are shown. Plots generated from 

EMMA are above those plots generated from SNPster. Matching peaks are in black boxes with 

significant matching peaks bolded. 
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Figure 4.8. Manhattan plots generated for monocytes exposed to idarubicin.  
 
Notes: Plots for IC50 values (A), AUC values (B), and viability at various idarubicin 

concentrations (1 and 3 µM, respectively C and D) are shown. Plots generated from EMMA are 

above those plots generated from SNPster. Matching peaks are in black boxes with significant 

matching peaks bolded. 
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Figure 4.9. Manhattan plots generated for T-cells exposed to doxorubicin.  
 
Notes: Plots for IC50 values (A), AUC values (B), and viability at various doxorubicin 

concentrations (33 and 100 µM, respectively C and D) are shown. Plots generated from EMMA 

are above those plots generated from SNPster. Matching peaks are in black boxes with 

significant matching peaks bolded. 
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Figure 4.10. Manhattan plots generated for T-cells exposed to idarubicin.  
 
Notes: Plots for IC50 values (A), AUC values (B), and viability at various doxorubicin 

concentrations (1 and 3 µM, respectively C and D) are shown. Plots generated from EMMA are 

above those plots generated from SNPster. Matching peaks are in black boxes with significant 

matching peaks bolded. 
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Figure 4.11. Genomewide significant peaks and associated genes. 

Notes: Peaks of genomewide significance with underlying genes from GWAS using various 

phenotypes: B-cells exposed to doxorubicin (0.3 µM and 1 µM, respectively A and B), B-cells 

exposed to idarubicin (3 µM, C), T-cells exposed to doxorubicin (100 µM, D), and T-cells 

exposed to idarubicin (1 µM, E).
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Figure 4.12. Haplotype structure for genes found from B-cells exposed to doxorubicin (0.3 µM). 

Notes: Strains are arranged in descending order of phenotype from most to least sensitive. The 

haplotype structure was visualized with the Mouse Phylogeny Viewer 

(https://msub.csbio.unc.edu/).  
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Figure 4.13. Haplotype structure for genes found from B-cells exposed to doxorubicin (1 µM). 

Notes: Strains are arranged in descending order of phenotype from most to least sensitive. The 

haplotype structure was visualized with the Mouse Phylogeny Viewer 

(https://msub.csbio.unc.edu/).  
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Figure 4.14. Haplotype structure for genes found from B-cells exposed to idarubicin (3 µM). 

Notes: Strains are arranged in descending order of phenotype from most to least sensitive. The 

haplotype structure was visualized with the Mouse Phylogeny Viewer 

(https://msub.csbio.unc.edu/).  
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Figure 4.15. Haplotype structure for genes found from T-cells exposed to doxorubicin (100 µM). 

Notes: Strains are arranged in descending order of phenotype from most to least sensitive. The 

haplotype structure was visualized with the Mouse Phylogeny Viewer 

(https://msub.csbio.unc.edu/).  
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Figure 4.16. Haplotype structure for genes found from T-cells exposed to idarubicin (1 µM). 

Notes: Strains are arranged in descending order of phenotype from most to least sensitive. The 

haplotype structure was visualized with the Mouse Phylogeny Viewer 

(https://msub.csbio.unc.edu/).  

 

 

Table 4.1. Expression data for genes found from B-cells exposed to doxorubicin (0.3 µM).  

Notes: QTL, -log(p) of the peak, gene symbol, expression probesets and fold difference in 

expression, expression range (minimum and maximum), and Pearson and Spearman correlations 

with p values respectively in the spleen, CD4+ T-cells, CD4+ Th1 cells, and macrophages are 

shown. Measurements in red and yellow are supportive for identification of candidate genes. 
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Expression data was marked in red if relative expression was > 100, if the fold expression 

difference in tissue was > 2, and if the p value for correlation was < 0.05 and in yellow if relative 

expression was > 50 and if the p value for correlation was ≤ 0.1. A1bg and Gm5887 did not have 

expression information available. 

 

 
 

Table 4.2. Expression data for genes found from B-cells exposed to doxorubicin (1 µM).  

Notes: QTL, -log(p) of the peak, gene symbol, expression probesets and fold difference in 

expression, expression range (minimum and maximum), and Pearson and Spearman correlations 

with p values respectively in the spleen, CD4+ T-cells, CD4+ Th1 cells, and macrophages are 

shown. Measurements in red and yellow are supportive for identification of candidate genes. 



!
125 

Expression data was marked in red if relative expression was > 100, if the fold expression 

difference in tissue was > 2, and if the p value for correlation was < 0.05 and in yellow if relative 

expression was > 50 and if the p value for correlation was ≤ 0.1. A1bg and Gm5887 did not have 

expression information available. 
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Table 4.3. Expression data for genes found from B-cells exposed to idarubicin (3 µM).  

Notes: QTL, -log(p) of the peak, gene symbol, expression probesets and fold difference in 

expression, expression range (minimum and maximum), and Pearson and Spearman correlations 

with p values respectively in the spleen, CD4+ T-cells, CD4+ Th1 cells, and macrophages are 

shown. Measurements in red and yellow are supportive for identification of candidate genes. 

Expression data was marked in red if relative expression was > 100, if the fold expression 

difference in tissue was > 2, and if the p value for correlation was < 0.05 and in yellow if relative 

expression was > 50 and if the p value for correlation was ≤ 0.1. A1bg and Gm5887 did not have 

expression information available. 
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Table 4.4. Expression data for genes found from T-cells exposed to doxorubicin (100 µM).  

Notes: QTL, -log(p) of the peak, gene symbol, expression probesets and fold difference in 

expression, expression range (minimum and maximum), and Pearson and Spearman correlations 

with p values respectively in the spleen, CD4+ T-cells, CD4+ Th1 cells, and macrophages are 

shown. Measurements in red and yellow are supportive for identification of candidate genes. 

Expression data was marked in red if relative expression was > 100, if the fold expression 

difference in tissue was > 2, and if the p value for correlation was < 0.05 and in yellow if relative 

expression was > 50 and if the p value for correlation was ≤ 0.1. A1bg and Gm5887 did not have 

expression information available. 
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Table 4.5. Expression data for genes found from T-cells exposed to idarubicin (1 µM).  

Notes: QTL, -log(p) of the peak, gene symbol, expression probesets and fold difference in 

expression, expression range (minimum and maximum), and Pearson and Spearman correlations 

with p values respectively in the spleen, CD4+ T-cells, CD4+ Th1 cells, and macrophages are 

shown. Measurements in red and yellow are supportive for identification of candidate genes. 

Expression data was marked in red if relative expression was > 100, if the fold expression 

difference in tissue was > 2, and if the p value for correlation was < 0.05 and in yellow if relative 

expression was > 50 and if the p value for correlation was ≤ 0.1. A1bg and Gm5887 did not have 

expression information available. 
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Table 4.6. Non-synonymous coding SNPs and deleterious protein effects. 

Notes: Non-synonymous coding SNPs within candidate genes from dbSNP 

(http://cgd.jax.org/cgdsnpdb) and the likelihood of SNPs causing deleterious effects within the 

associated protein’s structure using PROVEAN and the PANTHER Classification System are 

displayed. Using PROVEAN, a score of -2.5 indicates a functional effect on the protein. For the 

PANTHER algorithm, a subSPEC (substitution position-specific evolutionary conservation) 

score of -3 corresponds to a 50% probability that a score is deleterious (Pdeleterious = 0.5). MSA 

indicates the number of multiple sequence alignments. NIC (number of independent counts) is an 

estimate of observations used to calculate the amino acid probabilities. Pwt and Psubstituted refer to 

the respective probabilities of the wild type and substituted amino acids. Protein data was 

highlighted in red if the protein was likely deleterious using PROVEAN or had a PANTHER 

score ≤ -3. Protein data was highlighted in yellow if the PANTHER score was ≤ -2 but > -3. 

Ddx1, Klhcdc5, Stk38l, and Fadd did not have any nonsynonymous SNPs according to dbSNP. 
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Gene Position m38 Position 37 SNP ID Protein(Change PROVEAN(Score Prediction subPSEC P(deleterious MSA(position Pwt P(substituted NIC
A1bg Chr15:60917966 N/A rs48693526 V478I 70.35 Neutral 71.43788 0.17334 235 0.52709 0.12063 1.135
A1bg Chr15:60918013 N/A rs49948401 A462E 0.182 Neutral 70.19944 0.05729 215 0.04237 0.04011 1.135
A1bg Chr15:60918103 N/A rs51355219 H432R 0.602 Neutral 71.69215 0.21285 185 0.25985 0.04505 1.135
A1bg Chr15:60918898 N/A rs48955674 V410M 0.172 Neutral -2.20149 0.31035 163 0.35986 0.03507 1.135
A1bg Chr15:60919074 N/A rs47093613 R351L 74.447 Deleterious 71.36828 0.16359 102 0.15438 0.03873 1.135
A1bg Chr15:60920306 N/A rs47959112 R158W 73.491 Deleterious N/A NotALikely N/A N/A N/A N/A
Ano1 Chr7:144608007 Chr7:151793912 rs36458754 R731H 0.177 Neutral -2.04242 0.27736 419 0.06153 0.05095 7.131
Ano1 Chr7:144611382 Chr7:151797287 rs36562043 F643L -4.534 Deleterious -4.20396 0.76923 329 0.75598 0.06723 8.83
Ano1 Chr7:144655655 Chr7:151841560 rs252052521 H270Q 71.729 Neutral N/A NotALikely N/A N/A N/A N/A
App Chr16:84978200 Chr16:84978445 rs13464211 D516E 71.388 Neutral -2.55755 0.39116 593 0.68652 0.05813 1.461
App Chr16:85013650 Chr16:85013895 rs47322845 A480V -3.156 Deleterious -4.47146 0.81328 558 0.8039 0.01569 2.794
App Chr16:85030304 Chr16:85030549 rs47818164 D309E 71.501 Neutral -3.67619 0.66289 387 0.82081 0.03466 2.49
App Chr16:85079841 Chr16:85080086 rs46617381 G221S 1.273 Neutral -1.74936 0.22259 240 0.09802 0.49028 1.39
Arntl2 Chr6:146805555 Chr6:146754077 rs30804877 G9D 71.796 Neutral N/A NotALikely N/A N/A N/A N/A
Arntl2 Chr6:146809710 Chr6:146758232 rs36388854 L71M 71.818 Neutral -6.76861 0.97744 17 0.95987 0.00582 10.666
Arntl2 Chr6:146818831 Chr6:146767353 rs48247052 I164M 70.415 Neutral 70.8187 0.10144 110 0.17516 0.09798 1.353
Arntl2 Chr6:146820551 Chr6:146769073 rs29924777 Y207H 1.823 Neutral 71.37197 0.1641 157 0.06836 0.23377 1.323
Arntl2 Chr6:146820569 Chr6:146769091 rs30073811 M213V 0.02 Neutral 71.77854 0.22768 163 0.06965 0.37816 1.323
Arntl2 Chr6:146825200 Chr6:146773722 rs48852525 H423Q 1.018 Neutral 70.95932 0.115 371 0.04276 0.09101 1.323
Arntl2 Chr6:146825207 Chr6:146773729 rs49229642 G426S 70.328 Neutral 71.09659 0.12972 374 0.16176 0.40854 1.323
Arntl2 Chr6:146828173 Chr6:146776695 rs49176210 N494S 0.056 Neutral 70.97854 0.11697 440 0.33174 0.15034 1.323
Arntl2 Chr6:146829709 Chr6:146778231 rs49078756 P504L 0.858 Neutral 71.74257 0.22142 449 0.04365 0.22631 1.323
Arntl2 Chr6:146829729 Chr6:146778251 rs50619963 E511K 71.126 Neutral -2.76274 0.44096 456 0.61106 0.03705 1.323
Arntl2 Chr6:146829801 Chr6:146778323 rs50518043 G535S 0.325 Neutral 71.09659 0.12972 480 0.16176 0.40854 1.323
Arntl2 Chr6:146832558 Chr6:146781080 rs30954526 I551T 2.219 Neutral 71.33176 0.15866 496 0.1074 0.35267 1.323
Ccdc91 Chr6:147534127 Chr6:147482649 rs30017715 S70T 70.702 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc91 Chr6:147592082 Chr6:147540604 rs29923070 G324E 2.726 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc91 Chr6:147592148 Chr6:147540670 rs32279191 A346E 1.649 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc91 Chr6:147631671 Chr6:147580193 rs32283052 V439L 70.24 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc91 Chr6:147631677 Chr6:147580199 rs30120374 I441V 0.036 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc99 Chr11:34820955 Chr11:34634457 rs50113265 I323V 70.703 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc99 Chr11:34823362 Chr11:34636864 rs49954904 E167Q 1.55 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc99 Chr11:34823364 Chr11:34636866 rs47468580 L166H -4.05 Deleterious N/A NoAHit N/A N/A N/A N/A
Ccdc99 Chr11:34823386 Chr11:34636888 rs49718855 M159V 72.038 Neutral N/A NoAHit N/A N/A N/A N/A
Ccdc99 Chr11:34825433 Chr11:34638935 rs45977048 A88V 0.619 Neutral N/A NoAHit N/A N/A N/A N/A
Cdh11 Chr8:102634454 Chr8:105158354 rs30742273 V751M 71.693 Neutral -2.92587 0.48148 715 0.52586 0.02249 1.129
Cdh11 Chr8:102650627 Chr8:105174527 rs33464298 E462D -2.768 Deleterious -3.3989 0.59842 445 0.76818 0.03966 2.241
Cdh11 Chr8:102679663 Chr8:105203563 rs33142871 Q59H -4.349 Deleterious -5.5081 0.92471 57 0.82985 0.00538 2.967
Cttn Chr7:144438773 Chr7:151624678 rs36360222 Y475Ter -228.748 Deleterious N/A N/A N/A N/A N/A N/A
Cttn Chr7:144438853 Chr7:151624758 rs38335552 I449L 0.069 Neutral 70.43903 0.07169 363 0.08596 0.10378 1.303
Cttn Chr7:144457738 Chr7:151643643 rs37969206 H111Q -5.184 Deleterious -4.9827 0.87897 92 0.83538 0.00797 2.445
Cyyr1 Chr16:85544890 Chr16:85545135 rs244292017 H36R 2.188 Neutral 71.63027 0.20266 60 0.15576 0.04452 1.697
Dhcr7 Chr7:143837878 Chr7:151023783 rs248337659 A68V 0.938 Neutral 71.09814 0.1299 62 0.08831 0.28754 1.038
Dock2 Chr11:34402837 Chr11:34302837 rs26825963 I293L 71.522 Neutral 71.57243 0.19348 298 0.39477 0.12868 1.825
Dock2 Chr11:34403093 Chr11:34303093 rs26825961 G378H 76.445 Deleterious -2.85231 0.46315 382 0.23786 0.01807 1.784
Fam84b Chr15:60822984 Chr15:60654539 rs51533371 N304K 70.142 Neutral N/A Excluded N/A N/A N/A N/A
Gabpa Chr16:84860540 Chr16:84860785 rs50356497 I434M 70.382 Neutral 0.17154 0.04025 229 0.21354 0.03954 0.166
Gm5887 Chr6:147075128 N/A rs38169684 R330H 71.025 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075159 N/A rs30810127 M320V 0.038 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075176 N/A rs216702758 R314Q 70.038 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075228 N/A rs30902417 I297V 70.278 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075291 N/A rs30360873 W276R 0.496 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075340 N/A rs218917975 K259N 71.99 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075477 N/A rs37135391 M214V 70.01 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075503 N/A rs51447380 N205T 71.292 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075522 N/A rs38169236 L199I 70.14 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075590 N/A rs231086955 T176I 71.463 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075597 N/A rs243121057 A174P 0.41 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075612 N/A rs256627108 P169S 72.146 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075620 N/A rs108092497 R166H 1.225 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075623 N/A rs48099460 N165S 70.475 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075659 N/A rs224117204 S153T 70.455 Neutral N/A NoAHit N/A N/A N/A N/A
Gm5887 Chr6:147075710 N/A rs248552030 S136T 0.815 Neutral N/A NoAHit N/A N/A N/A N/A
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4.4 Discussion 
 
 Enhancing reproducibility is crucial to realizing the full potential of high content drug 

screening. A comparison between two large-scale pharmacogenomics high throughput studies 

(ie, the Cancer Genome Project and The Cancer Cell Line Encyclopedia) revealed high, 

moderate, and low concordance respectively between gene-expression, mutation, and drug 

sensitivity data. Although 15 drugs and 471 cancer cell lines were screened, the experimental 

procedures differed largely between the studies, particularly in the variability to drug response. 

This comparison illustrates the case for standardization in large pharmacogenomics studies and 

Gene Position m38 Position 37 SNP ID Protein(Change PROVEAN(Score Prediction subPSEC P(deleterious MSA(position Pwt P(substituted NIC
Jam2 Chr16:84809476 Chr16:84809721 rs48761727 K126T 1.144 Neutral 40.47282 0.07397 158 0.24269 0.17527 1.197

Jam2 Chr16:84813036 Chr16:84813281 rs48897005 N179D 40.443 Neutral -2.22155 0.31465 211 0.53496 0.04985 1.116

Jam2 Chr16:84816434 Chr16:84816679 rs50527301 G257S -4.376 Deleterious -5.1311 0.89389 295 0.9231 0.00967 3.131

Mrgprg Chr7:143764545 Chr7:150950450 rs236108013 S277A 0.016 Neutral 41.68909 0.21233 183 0.51317 0.08102 1.043

Mrpl39 Chr16:84720286 Chr16:84720531 rs47474189 E315A -3.243 Deleterious 41.60427 0.19849 246 0.27542 0.05017 1.084

Mrpl39 Chr16:84723911 Chr16:84724156 rs241825540 V280A 42.38 Neutral 41.82906 0.23669 211 0.29292 0.05546 1.429

Mrpl39 Chr16:84725178 Chr16:84725423 rs46790239 D235E 40.202 Neutral 40.80866 0.10053 166 0.21452 0.1538 1.6987

Mrpl39 Chr16:84730849 Chr16:84731094 rs52007053 V164L 40.745 Neutral 40.84692 0.10404 91 0.2165 0.14868 1.697

Mrpl39 Chr16:84732355 Chr16:84732600 rs6405201 K133T 41.468 Neutral 41.63027 0.20266 60 0.15576 0.04452 1.697

Mrps35 Chr6:147042826 Chr6:146991348 rs30016550 T11S 0.199 Neutral N/A NotHLikely N/A N/A N/A N/A

Mrps35 Chr6:147061446 Chr6:147009968 rs36949762 C216Y 5.521 Neutral -2.06881 0.28268 177 0.04767 0.28851 1.621

Mrps35 Chr6:147070737 Chr6:147019259 rs30419863 I293V 0.587 Neutral 40.98054 0.11718 297 0.13913 0.29457 1.377

Mrps35 Chr6:147070819 Chr6:147019341 rs36442894 A320V 40.931 Neutral 41.59875 0.19762 324 0.23669 0.03865 0.97

Mycn Chr12:12937225 Chr12:12944031 rs13481306 Q390H -4.474 Deleterious -5.84147 0.94488 439 0.86076 0.00441 3.383

Nadsyn1 Chr7:143795999 Chr7:150981904 rs6305405 F710I 0.53 Neutral N/A NotHLikely N/A N/A N/A N/A

Nadsyn1 Chr7:143797867 Chr7:150983772 rs36747124 Y676Ter -50.858 Deleterious N/A N/A N/A N/A N/A N/A

Nadsyn1 Chr7:143804088 Chr7:150989993 rs36612792 M461L 40.077 Neutral -2.21796 0.31388 457 0.03237 0.09167 3.852

Nadsyn1 Chr7:143806046 Chr7:150991951 rs225270992 D396E 40.2 Neutral 41.35852 0.16226 392 0.09915 0.11433 3.623

Nadsyn1 Chr7:143808020 Chr7:150993925 rs247321994 M321I 1.303 Neutral -2.44974 0.3658 317 0.03019 0.11009 3.887

Nadsyn1 Chr7:143811259 Chr7:150997164 rs251167215 D236E -3.823 Deleterious 41.45462 0.17575 232 0.32747 0.27136 3.887

Nadsyn1 Chr7:143811262 Chr7:150997167 rs223404618 C235Ter -1515.265 Deleterious N/A N/A N/A N/A N/A N/A

Nadsyn1 Chr7:143811294 Chr7:150997199 rs247805404 G225R -7.747 Deleterious -3.03034 0.50758 221 0.20188 0.02864 3.887

Nadsyn1 Chr7:143812600 Chr7:150998505 rs218798877 I186L 41.856 Neutral -2.34559 0.342 182 0.20358 0.06232 3.887

Nbas Chr12:13271165 Chr12:13277971 rs29179920 L39P 1.705 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13306959 Chr12:13313765 rs29204999 L313Q 2.081 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13310194 Chr12:13317000 rs29147607 G324S 2.923 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13379732 Chr12:13386538 rs46554776 S1073G 42.13 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13393456 Chr12:13400262 rs47580923 D1171N 42.076 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13413606 Chr12:13420412 rs49428474 V1298G 41.811 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13414916 Chr12:13421722 rs48052881 E1354A 0.185 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13432993 Chr12:13439799 rs48010999 A1424T 42.153 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13469874 Chr12:13476680 rs49148361 G1596S 1.25 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13558646 Chr12:13565452 rs48784396 R2141Q 42.355 Neutral N/A NoHHit N/A N/A N/A N/A

Nbas Chr12:13583399 Chr12:13590205 rs49695448 D2268E 40.922 Neutral N/A NoHHit N/A N/A N/A N/A

Ppfia1 Chr7:144485085 Chr7:151670990 rs13460346 L1061M 41.792 Neutral -3.70304 0.66886 1113 0.76163 0.0281 2.253

Ppfia1 Chr7:144491527 Chr7:151677432 rs13460345 H964Q -7.458 Deleterious -4.76699 0.85408 1031 0.81482 0.00909 2.253

Ppfia1 Chr7:144505104 Chr7:151691009 rs36657434 E678D -2.574 Deleterious -3.32141 0.57967 713 0.75816 0.0411 2.161

Ppfia1 Chr7:144508246 Chr7:151694151 rs36910001 S554R -3.295 Deleterious -2.81287 0.45335 567 0.5137 0.02299 1.045

Ppfibp1 Chr6:146952958 Chr6:146901480 rs30354215 D195H -3.147 Deleterious -2.64633 0.41249 204 0.17391 0.01871 1.985

Ppfibp1 Chr6:146952987 Chr6:146901509 rs36699780 V186C 42.316 Neutral -3.59349 0.64417 195 0.26403 0.01088 2.202

Ppfibp1 Chr6:146953047 Chr6:146901569 rs30425488 E166K -3.472 Deleterious -5.45037 0.92059 175 0.89398 0.00847 3.998

Ppfibp1 Chr6:146953394 Chr6:146901916 rs30219632 H50C -5.251 Deleterious -4.24942 0.7772 54 0.23371 0.00415 1.992

Ppfibp1 Chr6:147010034 Chr6:146958556 rs29834347 D400E 0.47 Neutral 41.0569 0.12531 403 0.0727 0.138 1.643

Pthlh Chr6:147256965 Chr6:147205487 rs47671093 P166T 0.66 Neutral 41.6337 0.20322 185 0.05093 0.35229 0.901

Rep15 Chr6:147032971 Chr6:146981493 rs30267061 Q103E 40.891 Neutral N/A NoHHit N/A N/A N/A N/A

Rep15 Chr6:147033094 Chr6:146981616 rs37277633 E144K -3.818 Deleterious N/A NoHHit N/A N/A N/A N/A

Rep15 Chr6:147033271 Chr6:146981793 rs30302844 I203V 40.176 Neutral N/A NoHHit N/A N/A N/A N/A

Rep15 Chr6:147033311 Chr6:146981833 rs37092403 R216K 1.624 Neutral N/A NoHHit N/A N/A N/A N/A

Shank2 Chr7:144410768 Chr7:151596673 rs36708307 D914E Unknown Neutral N/A NotHLikely N/A N/A N/A N/A

Slit3 Chr11:35700413 Chr11:35513915 rs26912296 V1351I 40.448 Neutral N/A NotHLikely N/A N/A N/A N/A
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the need to generate a robust phenotype.12,13 In our study, we examined the effects of anticancer 

drugs on the normal immune system with the goal to elucidate genetic reasons for differences in 

toxicity. We used a panel of inbred mouse strains that were well defined in terms of genotype 

within controlled experimental conditions. Additionally, we could generate a robust drug 

response phenotype in this panel, especially in terms of the viability of immune cells to 

anthracyclines, facilitating downstream GWAS.3 

  In this screen, some of our cellular health markers did not act as expected 

(Supplementary Figure 4.1). For instance, we expected an increase in caspase with increasing 

drug concentrations. However, caspase 3/7 activity decreased with increasing drug 

concentrations. Interestingly, caspases have roles outside of apoptotic activity. Recent research 

indicates that they have dynamic roles in compensatory proliferation of neighboring cells, 

determination of cell fate and differentiation, and actin cytoskeleton reorganization. For example, 

cell cycle regulators are substrates for caspase 3, which cleaves p27 to promote lymphoid cell 

proliferation.14 Examining additional caspases, such as caspase 2, 8, or 9 may provide additional 

information regarding caspase activity, facilitating better approximation of the method of cell 

death, as the decrease in caspase activity in our unstimulated splenocytes may be a nonapoptotic 

response to cytotoxic insult in lymphocytes or simply the result of a leaky cellular membrane due 

to necrotic cell death.  

Anthracyclines have also been reported to have differential cell death modalities on 

cultured cells depending on cell type, cell differentiation status, and experimental settings. In 

leukemia cell lines, but not healthy leukocytes, Ristic et al. found that doxorubicin and idarubicin 

induce mTOR dependent autophagy and apoptosis associated with oxidative stress, 

mitochondrial depolarization, and caspase activation.15 Timing and concentration are also critical 
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in anthracycline-induced apoptosis. In HL60 and Jurkat leukemia cell lines, doxorubicin caused 

an immediate loss of membrane integrity indicating necrosis, while other markers of apoptotic 

cell death (eg, DNA fragmentation, externalization of phosphatidylserine, caspase activation) 

occurred following a prolonged exposure (24h) to a low dose (up to 500 nM) of doxorubicin.16 

Cell death through necrosis following substantial concentrations of anthracyclines in our assay 

would explain a lack of caspase activation and change in mitochondrial health. Also, our assay 

was limited by the shortened time of exposure to drugs to preserve the integrity of unstimulated 

splenocytes, which may have affected our detection of certain cell health parameters, such as the 

stable mitochondrial health observed with increasing drug concentration. 

 We can examine a vast number of markers in the cell. For instance, Life Technologies’ 

The Molecular Probes® Handbook alone contains over 3,000 reagents and kits dedicated to 

examining nucleic acids, proteins, cell components, cell structure, and cell function.17 This 

flexibility and ever-evolving high-content screening platforms, such as the BD LSRII flow 

cytometer capable of simultaneously detecting 14 fluorochromes, makes the possibilities for 

custom cell-based screening assays tailored to drug, cell type, and parameters of interest nearly 

endless.18 In our screen, we examined generic markers of cell health. However, we can examine 

more specific markers, such as reactive oxygen species production for anthracyclines and 

mTOR/PI3K and MEK phosphorylation respectively for targeted agents BEZ-235 and 

selumetinib. We also examined broad classes of cell types (eg, CD3e+ T-cells, CD19+ B-cells, 

CD11b+ monocytes, and Ly-6G+ granulocytes). From the phenotypic measures in our screen, it 

appears that T- and B-cells provide us with the most robust phenotype. Thus, we can explore 

subpopulations of lymphocytes (eg, CD4+ and CD8+ T-cells) in additional assays to best 

understand the immune cell response following anticancer drug exposure. 
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 Using viability phenotypes derived from our assay (ie, T-cells, B-cells, and monocytes 

exposed to doxorubicin and idarubicin), we conducted GWAS and found seven genomewide 

significant peaks for viability at various drug concentrations and one genomewide significant 

peak for viability using AUC values (Figure 4.7). These peaks included numerous genes (ie, 35 

genes for viability at various drug concentrations) for potential validation.  Sixteen of these 

genes were of particular interest as candidate genes: Ano1, App, Atp5j, Ccdc91, Cttn, Cyyr1, 

Fadd, Gabpa, Klhdc5, Mir155, Mrpl39, Mrps35, Ppfia1, Ppfibp1, Rasl11b, and Stk38l. App, 

encoding amyloid precursor protein, was validated in an in vitro cellular assay for T-cells 

exposed to idarubicin. However, mechanistic studies and translational human studies have yet to 

be initiated.  

Of the remaining candidate genes, Ppfia1 and Ppfibp1 would be most likely pursued 

initially for additional validation studies. Ppfia1 and Ppfibp1 are related liprin proteins found on 

different chromosomes (5 and 6 respectively) and were significantly linked to differential 

viability phenotypes of B-cells exposed to both doxorubicin and idarubicin. Using the IC50 and 

AUC measurements from B-cells exposed to doxorubicin and idarubicin, these genes also appear 

to be involved, although they do not achieve genomewide significance. The proteins encoded by 

these genes interact with one another to regulate leukocyte common antigen-related proteins and 

have been shown to have a role in Drosophilia axon guidance and mouse mammary gland 

development and function. PPFIA1 encodes liprin α, which is involved in cell adhesion, integrin 

expression, and cell-matrix interactions. In human malignancies, including breast, esophageal 

squamous cell carcinoma, and head and neck cancers, a region of chromosome 11 containing 

FADD, TMEM16A, and PPFIA1 is upregulated, leading to tumor growth and enhanced cancer 

cell invasiveness.19 PPFIBP1’s role has been less investigated in comparison to PPFIA1. 
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PPFIBP1 encodes liprin-β, a protein that is predominantly localized to the plasma membrane in 

mammalian cells and has been identified as a potential regulator of lymphatic vessel 

integrity.20,21  

4.5 Conclusions 

In this chapter, we have analyzed the results of our immunophenotypic screen, associated 

GWAS, and candidate gene selection. Lessons and limitations from this process will translate 

into future improvements and developments. This project is also in an ideal position to be 

extended given the amount of potential candidate genes that were identified. Ultimately, this 

project may be translated to in vivo and human studies, leading to improvements in patient care. 

Supplementary Figure 4.1.  Anticipated versus actual screen results. 
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CHAPTER 5: FUTURE DIRECTIONS:  POWERFUL TOOLS FOR GENOMIC 

ENGINEERING 
 
5.1. Summary 
 

There is a synergistic interaction between the immune system and anticancer agents, and 

this interaction plays a critical role in modulating tumor progression and response to therapy. 

Therefore, an in vitro toxicogenomic screen was developed to identify genetic biomarkers 

underlying this process. In this study, we used a novel screen derived from genetically divergent 

murine immune cells to identify genes responsible for immune cell toxicity following 

anthracycline administration. Our results showed that cytotoxic responses of immune cells 

against multiple genetic backgrounds could be successfully measured (Chapter 2). Furthermore, 

we were able to conduct genome-wide association (GWA) analyses from the multiple drug 

response phenotypes that we collected (Chapters 3 and 4). Altogether, a putative gene was 

identified and validated through our screen. Additionally, we were able to delineate immune cell 

response against selective and nonselective anticancer agents as well as identify immune cells 

that were sensitive and resistant to anticancer-induced cytotoxic effects. Taken together, our 

screen provides an effective means by which we can screen for novel agents that would affect 

specific immune cell types (ie, T-cells vs. B-cells) as well as identify putative genetic biomarkers 

mediating cytotoxic response. 
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5.2. Assay Expansion  

Through the use of a panel of genetically diverse mouse inbred strains, we developed a 

drug screening platform aimed at examining genes underlying these chemotherapeutic cytotoxic 

responses on immune cells. The possibilities for assay improvement have been previously 

described in Chapter 2. With a vast availability of markers and kits to interrogate cell health, 

components, structure, and function in high-content screening platforms, nearly limitless options 

exist for the modification of out immunophenotypic screen. Below is a sample of directions that 

could be taken. 

Due to time and financial constraints, we focused on more general phenotypes such as 

cell viability. However, in the future, a more direct focus on assessing specific parameters of cell 

health or drug response is needed. Ideally, this screening process would include biomarkers 

specific for drugs (eg, protein targets or gene expression changes) or cell-specific response (eg, 

additional markers of apoptosis), which would allow us to identify change in response in a more 

concise approach.  

In this assay, we are able to differentiate variable cytotoxic response of different immune 

cells to anticancer agents using a wide range of concentrations (15 nM to 100 µM). The generic 

concentration selected did not produce IC50 values for all strains; therefore, an expansion of this 

concentration range or the use of a known cytotoxic concentration range would be useful in 

future experiments. 

There were three known markers of drug response that were calculated from dose-

response curves, namely AUC, IC50, and slope coefficients. These phenotypes were moderately 

correlated with each other. All three measurements used for GWA analysis present their own  
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challenges and benefits as discussed in Chapter 3 and were not the most suitable parameters for 

GWAS. Therefore, an addition of other more specific, biologically relevant drug response 

phenotypes (ie, PK/PD drug-receptor/transporter responses) is warranted in future studies. 

To improve the assay, we can also examine more specific markers for anthracycline and 

targeted agent exposure, such as reactive oxygen species production for anthracyclines and 

mTOR/PI3K and MEK phosphorylation respectively for targeted agents BEZ-235 and 

selumetinib. We also examined broad classes of cell types (eg, CD3e+ T-cells, CD19+ B-cells, 

CD11b+ monocytes, and Ly-6G+ granulocytes). Because T- and B-cells provide us with the 

most robust phenotype, we can explore subpopulations of lymphocytes (eg, CD4+ and CD8+ T-

cells) in additional assays to best understand the immune cell response following anticancer drug 

exposure.1 

Lastly, it is important to note that chemotherapy agents could both stimulate immune 

response while at the same time kill highly proliferating immune cells, leading to activation of 

the adaptive and humoral system for improved anticancer response and drug-induced toxicities 

(ie, neutropenia), respectively. Thus, an in vitro toxicogenomic screen able to delineate immune-

anticancer interaction that is specific to destruction of cancer cells, but not normal immune cells, 

is an important future direction for this project. 

5.3. GWAS and Candidate Gene Selection 

Using viability phenotypes derived from our assay (ie, T-cells, B-cells, and monocytes 

exposed to doxorubicin and idarubicin), we conducted GWAS and found seven genomewide 

significant peaks for viability at various drug concentrations and one genomewide significant 

peak for viability using AUC values. These peaks included numerous genes (ie, 35 genes for 

viability at various drug concentrations) for potential validation.  Sixteen of these genes were of 
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particular interest as candidate genes: Ano1, App, Atp5j, Ccdc91, Cttn, Cyyr1, Fadd, Gabpa, 

Klhdc5, Mir155, Mrpl39, Mrps35, Ppfia1, Ppfibp1, Rasl11b, and Stk38l. Additional studies 

validating the role of these genes in mediating cytotoxic responses in immune cells are 

warranted. 

App, encoding amyloid precursor protein, was validated in an in vitro cellular assay for 

T-cells exposed to idarubicin. However, mechanistic studies and translational human studies 

have yet to be initiated. As discussed above, we can hypothesize that an increase in wild type 

APP and subsequent sAPP leads to a decrease in functional proteins within the p53 pathway (in 

addition to the Wnt pathway and PIN1), which causes a downregulation in apoptotic processes, 

upregulation in cell survival, and subsequent resistance to toxic insults such as anticancer 

chemotherapy.2 We could assess the effects on p53 and additional related pathways while 

simultaneously adjusting App levels. However, it is challenging to ascertain how to treat patients 

with overexpressed APP.3 Also, genomic differences in molecular machinery processing APP 

could add an additional layer of complexity. In this study, the expression of App in the spleen 

and other immune cells did not correlate with the strain order for sensitivity of T-cells to 

idarubicin. Thus, the polymorphic differences in the gene likely contribute to differences seen in 

toxicity. An additional proof for the validation of App may include creating specific 

polymorphisms introducing the potentially deleterious nonsynonymous coding changes 

mentioned previously to see how the viability of T-cells exposed to idarubicin is affected. 

Additional candidate genes (eg, Ppfia1 and Ppfibp1) also exist for future validation.  

Furthermore, more sensitive genetic mouse models, such as the Collaborative Cross, will 

be readily available for GWAS in the near future. This resource better models the genetic 

heterogeneity observed in humans and will be useful in future toxicogenomic screens.4 
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5.4. Genomic Engineering 

One of the major limitations of gene validation is a paucity of mouse models for 

knockdown and expression of candidate genes. The International Knockout Mouse Consortium’s 

(IKMC) goal is to mutate all protein coding genes in the mouse using a combination of gene 

trapping and gene targeting in C57BL/6 mouse embryonic stem cells and subsequently generate 

phenotypes.5 However, this process has several challenges; the method is labor-intensive, time-

consuming, can affect development, and produces phenotypic effects that are not relevant or 

similar to the effects of the human ortholog genes.6,7 With the exception of mouse embronic stem 

cells, homologous recombination rates are too low in mammalian cells to be a practical 

approach.8 Our lab has altered the expression of genes in MEFs using electroporation with the 

introduction of siRNA or overexpression vectors. However, this approach introduces high cell 

death and requires substantial optimization.9 

Available tools for genomic engineering have been crude. However, the newest genome 

editing strategy, the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-

Cas9 nuclease) system in a recombinant adeno-associated viral vector, is unprecedented in its 

power and precision in altering the genome. CRISPR-Cas9 is a system used by bacteria as a form 

of adaptive immunity. When bacteria are infected with a virus, they retain a signature in their 

chromosomal DNA, which is transcribed and processed into short RNAs called crRNA. With a 

second transcript, tacrRNA, the crRNA guides the Cas9 to its target. Thus, Cas9 acts as a 

programmable enzyme, which can act as a repressor or activator of specific genes via 

modifications. This system has several benefits, including relative simplicity, multiplexing 

capability, cost reduction, and efficiency. In addition to enhancing food production, advancing 

drug discovery, modifying energy sources, and elucidating the multiple genetic alterations 
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underlying human disease, this system is providing an unparalleled opportunity to essentially 

modify the genetic code of virtually any organism. Developing a new mouse model for a disease 

involves multiple generations and can take well over a year, but with the CRISPR technique, a 

new mouse model could be ready for testing in a matter of weeks by manipulating the embryo 

and reimplanting it.8,10  

 Using this system, we can create a variety of knockout models and even overexpression 

models quickly, which will make testing of candidate genes found via GWAS possible in vivo. 

For this project, available tools largely limited validation of candidate genes. App has been 

largely studied in the realm of Alzheimer’s disease, making a knockout mouse model readily 

available for testing. However, knockout models for additional candidate genes, such as Ppfia1 

and Ppfibp1, are not available, necessitating more labor-intensive validation measures, such as 

optimization of an electroporation protocol, which would be difficult to achieve in sensitive 

immune system cells. Therefore, the CRISPR technique would allow us the extraordinary and 

immeasurable opportunity to explore pharmacogenomics findings derived from GWAS, and 

would hopefully expand our findings to human studies more efficiently. 

5.5. Conclusions 
 

Studies aimed at identifying biomarkers that are involved in immune cytotoxicity are 

needed to advance the development and most appropriate use of drugs, particularly anticancer 

agents. Through the use of the in vitro toxicogenomic screen developed in this study, we were 

able to identify genetic biomarkers that are involved in immune cytotoxicity in response to 

anticancer immunomodulatory drugs. Expansion of this cell-based drug screen through the use of 

additional phenotypic measures, including gene expression, PK/PD drug-receptor or drug-

transporter response, and specific protein markers of cell signaling or cytotoxicity, would 
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enhance the capability of this screen to identify genetic biomarkers that are critical for a 

particular drug response or specific aspect of immune cytotoxicity. Additionally, the availability 

of more sensitive genetic mouse models (ie, the Collaborative Cross) and more advanced 

genomic engineering techniques make downstream validation studies for our putative genes 

more feasible in future studies. 
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