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ABSTRACT 
 

RUPNINDER SANDHU: Hypermethylator Phenotype in Human Breast Cancer: Therapeutic 
Target and Mechanism of DNMT3b Regulation  

(Under the direction of William B Coleman, Ph.D.) 
 
 

 A subset of primary breast cancers and breast cancer cell lines express a 

hypermethylation defect characterized by DNMT hyperactivity and DNMT3b 

overexpression. The objectives of this project were (i) to determine if targeting the 

methylome enhances the sensitivity of breast cancer cells to chemotherapy, and (ii) to 

elucidate the molecular mechanism governing the DNMT3b-mediated hypermethylation 

defect in breast cancer.  To address the first objective, hypermethylator breast cancer cell 

lines were treated with demethylating agent (5-aza-2’-deoxycytidine) and/or were subjected 

to RNAi-mediated DNMT3b knockdown (KD), and then tested for sensitivity to doxorubicin 

hydrochloride, paclitaxel, and 5-fluorouracil. The results show that pharmacologic 

demethylating pretreatment sensitizes hypermethylator breast cancer cells to cell killing by 

cytotoxic drugs, and provide proof-of-concept that direct targeting of DNMT3b also 

improves cell kill by these drugs. These findings suggest that targeting the methylome 

improves chemotherapeutic efficacy of cytotoxic drugs against hypermethylator breast 

cancer cells as a function of dose and duration of exposure to demethylating treatment. To 

address the second objective, the expression of microRNAs (miRs) that regulate or are 

predicted to regulate DNMT3b were examined in hypermethylator or non-hypermethylator 

breast cancer cell lines and in primary breast cancers. Hypermethylator cell lines express 
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diminished levels of regulatory miRs compared to non-hypermethylator cell lines. 

Mechanistic studies were conducted to establish the role of miR expression in the 

hypermethylation defect. Antagomir-mediated knockdown of regulatory miRs in non-

hypermethylator cell lines resulted in increased DNMT3b mRNA and forced re-expression of 

regulatory miRs reduced DNMT3b mRNA in hypermethylator cell lines. In primary breast 

cancers, miR expression patterns revealed two distinct subsets among the basal-like subtype. 

Most hypermethylator basal-like cancers exhibit diminished expression of regulatory miRs. 

These findings strongly suggest that diminished expression of multiple regulatory miRs 

contributes to DNMT3b overexpression. Together, these results support the conclusion that 

the molecular mechanism governing the DNMT3b-mediated hypermethylation defect in 

breast cancer cells is the loss of post-transcriptional regulation of DNMT3b by regulatory 

miRs, and that combined epigenetic and cytotoxic treatment will improve the efficacy of 

breast cancer chemotherapy.  
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INTRODUCTION 

 

Breast Cancer Statistics 

 Breast cancer is a disease that is diverse in natural history, response to treatment, and 

patient outcomes.  It remains the most common non-cutaneous female malignancy with an 

estimated 209,060  new cases in 2010 in the United States [1].  Breast cancer-associated 

mortality is second only to lung cancer in the United States among women, with an estimated 

40,230 deaths in 2010 [1].  Breast cancer is also the most commonly diagnosed female 

malignancy worldwide. According to the American Cancer Society (www.cancer.org), 

approximately 1.2 million women worldwide are diagnosed with breast cancer each year. 

The lifetime probability of developing breast cancer in developed countries is 1 in 8 women 

[1]. The incidence of breast cancer as well as the associated mortality rate increases with age 

(Figure 1.1). Women above age 40 accounted for 95% of new cases and 97% of deaths 

associated with breast cancer from 2002-2006 (www.cancer.org). The highest incidence rate 

of 441.9 cases per 100,000 women is observed in women between 75-79 years of age and the 

lowest incidence of 1.4 cases per 100,000 women is observed in women from 20-24 years-

old (www.cancer.org). Reduction in incidence rates observed among women over 80 years of 

age may be an indication of lower rates of screening, cancers detected before 80 years (by 

mammography), and incomplete detection (www.cancer.org). From 2003-2007, the age-

adjusted death rate associated with breast cancer was 24.0 per 100,000 women per year and 

the median age at death due to breast cancer was 68 years of age (www.cancer.org). 1% of 

http://www.cancer.org/
http://www.cancer.org/
http://www.cancer.org/
http://www.cancer.org/
http://www.cancer.org/
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these deaths occurred in women below the age of 34 years.  There was an increase in deaths 

with age from age 35 onwards; women between 35 and 44 years of age accounted for 6% of 

the breast cancer deaths, women between 45 and 54 years of age accounted for 15% of the 

deaths and the 20.8% of breast cancer associated deaths were seen in women with ages 

between 55 and 64.  Likewise, women with ages between 65 and 74 accounted for 19.7% of 

the deaths, women with ages between 75 and 84 accounted for 22.6%; and women above 85 

years of age accounted for 15.1% of the breast cancer associated deaths (www.cancer.org). 

 Race/ethnicity plays a major role in the development of breast cancer. In the United 

States, the incidence rate of breast cancer is highest among Caucasian women above the age 

of 45 years. Below age 45, African-American women have the highest incidence of breast 

cancer. Figure 1.2 Incidence of breast cancer among other racial/ethnic groups is lower than 

the incidence among Caucasian and African-American women.  The overall age-adjusted 

incidence rate based on 2004-2008 SEER data was 124 per 100,000 women per year (Table 

1.1). African-American women also have the highest mortality rate associated with breast 

cancer at every age in comparison with Caucasian women and women of other 

races/ethnicities (Table 1.2).  

 Since the late 1980s, there has been significant reduction in deaths related to breast 

cancer. This decline occurred partly due to the advancements in the therapy and partly due to 

improved screening and early diagnosis. Widely implemented screening programs (including 

self-examination and screening mammography) have not only affected the survival rates but 

have also shifted the cancer profile characteristics detected today increasingly towards 

smaller tumors. These gains have resulted in a current overall 5-year survival rate of 89% 

(www.cancer.org). The five-year relative survival by race is 90% for Caucasian women and 

http://www.cancer.org/
http://www.cancer.org/
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77% for African-American women (www.cancer.org). As with other cancers, detection at 

early stage is associated with better prognosis in breast cancer (Table 1.3). Paradoxically, 

improved screening technology (such as digital mammography) and its increasingly 

widespread use may partially account for the rise in breast cancer rates over the last 25 years, 

although the precise cause for the increasing incidence remains unknown. In the United 

States, breast cancer incidence rates increased sharply in the 1980s and continued to rise, 

although less rapidly, in the 1990s. Since 1999, incidence rates have declined by 

approximately 2% per year. In addition to the contribution of screening mammography to 

effective resulting in increased detection of breast cancers too small to be detected by 

palpation, the increase in incidence is also attributed to changes in reproductive patterns, like 

having fewer children and delayed age of childbearing, which are well known risk factors of 

breast cancer. Increase in breast cancer incidence in the late 1990s could also be related to 

increases in obesity and post-menopausal hormonal replacement therapy. The recent decline 

in breast cancer has been attributed to decreased utilization of hormone replacement therapy, 

as well as decrease in mammography prevalence [2-6]. 

 

Risk Factors for Breast Cancer 

 A number of etiological factors contribute to the risk of breast cancer. Established 

risk factors for breast cancer include (i) reproductive/hormonal factors like early menarche, 

late menopause, nulliparity, and late first full-term pregnancy, (ii) lifestyle factors like 

obesity and alcohol consumption, (iii) genetic factors like family history, mutations in 

BRCA1/2 genes, previous history of breast cancer, and (iv) high mammographic breast 

density [7-14]. Factors that may contribute to breast cancer risk include (a) 

http://www.cancer.org/
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reproductive/hormonal factors like hormonal replacement therapy, and recent use of oral 

contraceptives, (b) lifestyle factors like smoking, diet, physical activity, breast feeding, and 

NSAID use, and (c) other factors like exposure to ionizing radiation. [14]. Although age and 

sex are considered the chief risk factors for breast cancer development, it is important to note 

that it is the combination of numerous factors that drives the initiation, development, and 

progression of breast cancers. Most of these risk factors increase the likelihood that a woman 

will develop breast cancer. However, having one or more of these risk factors does not confer 

100% chance that breast cancer will ever develop. 

 

Reproductive Factors 

Based on epidemiologic studies, a number of factors determining life-time exposure 

to estrogen have been established as risk factors for breast cancer. These factors are 

associated with reproductive history and include ages at menarche, parity, first birth, and 

menopause, as well as factors like infertility and nulliparity [7, 15]. The first recognition of 

the importance of life-time estrogen exposure included the observation of relatively higher 

incidence rates of breast cancer among nuns compared to the women who bore children [16]. 

The fact that more than two-thirds of breast cancers are stimulated by estrogen at some point 

during the course of cancer progression makes the association between estrogen exposure 

and breast cancer risk very important [7].  

 

Obesity 

Obesity is an independent risk factor for breast cancer development in post-

menopausal women [7, 14, 17, 18]. A pooled analysis showed an inverse relationship 



5 

 

between the baseline weight and body mass index (BMI) and breast cancer in pre-

menopausal women and a positive relationship in post-menopausal women [17]. The effects 

of weight gain during particular periods of lifetime on breast cancer risk have been 

investigated in numerous studies. Different studies have shown that weight gain during 

reproductive years increases the risk of postmenopausal breast cancer [19-21]. The effects of 

weight gain/excess weight during childhood on breast cancer risk are not very clear. A study 

by Berkey et al showed that higher childhood BMI was associated with reduced risk of pre-

menopausal breast cancer, but increasing BMI between 10 and 20 years of age did not reduce 

the risk of pre-menopausal or post-menopausal breast cancer [7, 22]. Other studies have 

shown a protective effect of excess weight in early years on risk of breast cancer [7, 23]. This 

protective effect was more pronounced and consistent in women who remained overweight in 

adult life ruling out the protective role of subsequent weight loss. The proposed mechanisms 

for this linkage include association of a longer period of anovulatory cycles after menarche in 

women with lasting obesity and the increased intake of substances that are ‘protective’ 

against the early events of breast carcinogenesis. Some studies found an independent 

association between the risk of breast cancer and presence of central adiposity, independent 

of BMI [24, 25]. However, other studies found no such association [26]. It has been 

suggested that adult obesity increases the risk of breast cancer by increasing the circulating 

levels of estrogen. Increased aromatase activity in adipose tissue and decrease in 

concentration of sex hormone binding globulin leads to an increase in the bioavailable 

estrogen, leading to increased breast cancer risk [7]. Obesity affects not only the risk factors 

for breast cancer, but also the disease prognosis through numerous pathways, including 

associated adverse disease features and morbidities that can hinder the treatment [17]. 
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Breast Density  

 Dense breast tissue seen on mammography and characterized by increase in stromal 

fibrosis and epithelial proliferation increases the risk for breast cancer [7]. After adjusting for 

known risk factors for breast cancer, case-control and cohort studies have shown an increased 

risk associated with high density mammographic parenchymal patterns compared with low 

density patterns [27-29]. The biological basis underlying this association is unclear. 

However, the attributable risk for breast cancer was estimated to be 30% for women with 

50% or greater breast density [27]. 

 

Diet and Physical Activity 

 In developed countries, factors in addition to reproductive factors and breast density 

may contribute to the high incidence of breast cancer. These include a high fat diet [30], low 

levels of physical activity, and obesity [31, 32]. Other factors like smoking [33] and alcohol 

consumption [34] may also play a role in determining the risk for breast cancer. High intake 

of fruits and vegetables has been linked to low incidence of cancer overall, but the 

association for decreasing the risk of breast cancer remains inconclusive [35].  Contradictory 

reports exist regarding the relationship between cigarette smoking and breast cancer [33, 36]. 

Studies that followed the immigration of Asian women (typically with low incidence of 

breast cancer) to Western countries provided evidence for the role of a Western diet in risk 

for breast cancer development. The first generation women of Asian-descent born in Western 

countries have breast cancer rates similar to those of Caucasians [37]. The Asian-American 

women born in the West have a 60% increase in breast cancer risk compared to Asian-
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Americans born in the East [37]. In another study, it was observed that Chinese women who 

ate a more traditional Eastern diet (high in vegetables) had half the risk of developing breast 

cancer compared to Chinese women who ate a more Westernized diet (high in meat, white 

bread, milk, etc.) [38].    

 

Genetic Factors 

 It is now well established that genetic factors play a strong role in the development of 

breast cancer. An affected first-degree relative (such as a mother, sister, or daughter) confers 

a two-fold to four-fold increased risk of developing breast cancer [7]. Genetic variations 

linked with increased breast cancer risk are classified as high-penetrance mutations, moderate 

penetrance variants, and low-penetrance polymorphisms [39]. High-penetrance mutations are 

associated with very high risk (relative risk with presence of these mutations – 5 to >20 fold) 

but are rare in the population, account for a relatively small percentage (about 20-25%) of the 

familial risk [39, 40]. The studies in 1990s discovering the association of BRCA1 and BRCA2 

with breast cancer significantly advanced the field of genetic susceptibility to breast cancer 

development. These linkage studies led to the seminal discovery that mutations in tumor 

suppressor genes, BRCA1 and BRCA2, confer a high risk of breast cancer. Breast cancer was 

linked to BRCA1 in 52% and to BRCA2 in 32% of the families with multiple cases of breast 

cancer. Likewise, in families with breast and ovarian cancers, linkage was established to 

BRCA1 in 84% and to BRCA2 in 14% of families [41, 42]. In addition to BRCA1 and/or 

BRCA2, other high-penetrance mutations have been identified, mostly as part of heritable 

cancer syndromes, including PTEN mutations in Cowden syndrome [43], TP53 mutations 
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found in Li-Fraumeni cancer syndrome [44, 45], and STK11/LKB1 mutations in Peutz-Jegher 

syndrome [46]. 

The moderate penetrance variants include the genes associated with moderate risk, 

and because of the relative low frequency of this class of genetic variants, their familial risk 

is estimated to be less than 3% [39]. These variants mainly affect the genes that are involved 

in DNA repair mechanisms including CHEK2 [47], PALB2 [48], BRIP1 [49], ATM [50], and 

MRE11 [51]. The low-penetrance polymorphisms are common and are associated with small 

increases in risk (relative risk <1.5 fold). It is believed that most otherwise unexplained 

familial risk maybe due to a polygenic mechanism involving multiple low-penetrance 

polymorphisms [39, 52]. Candidate gene studies and genome wide association studies have 

identified numerous breast cancer susceptibility loci. In some cases, these loci contain or are 

proximal to known genes like FGFR2, TOX3, MAP3K1, LSP1 [53] and RAD51L1 [54], in 

other cases these loci map to regions lacking gene density like 8q24 [53] and 2q35 [55, 56]. 

Using a statistical model, the low-penetrance polymorphisms detected so far are estimated to 

account for ~10% of familial risk, suggesting that many other variants remains to be detected 

[39]. 

 

Breast Cancer: A Heterogeneous Entity (Molecular Subtypes) 

  Breast cancer is not a single disease. Rather, breast cancer represents a diverse 

spectrum of diseases that includes several distinct biological entities and subtypes. These 

subtypes are associated with specific morphological characteristics and different clinical 

outcomes [57-65]. The molecular signatures of these breast cancer subtypes reflect not only 

the distinct biological features of these malignant neoplasms, but also predict their clinical 
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behavior and responses to chemotherapy [66-69], with certain subtypes having better 

outcomes than others. To some extent, the observed variation in disease outcome among 

breast cancer patients reflects the successful identification of therapeutic targets for some 

subtypes and the development of effective targeted therapies. The diverse spectrum of breast 

cancer includes a number of morphologic subtypes. Invasive ductal carcinoma is the most 

common morphological subtype, representing 80% of the invasive breast cancers. Invasive 

lobular carcinoma is the next most common subtype, representing approximately 10% of 

invasive breast cancers. The less common subtypes of the invasive breast cancers include 

mucinous, cribriform, micropapillary, papillary, tubular, medullary, metaplastic, and 

inflammatory carcinomas. Representative examples of invasive ductal carcinomas are shown 

in Figure 1.3. 

  Routine subclassification of invasive ductal carcinomas is accomplished by 

immunostaining tumor tissues for estrogen receptor (ER), progesterone receptor (PR), human 

epidermal growth receptors (HER1 and HER2), and various cytokeratins.  The differential 

expression of ER, PR, and HER2 in different subtypes of breast cancer based upon 

immunohistochemical staining is shown in Figure 1.3. The differential expression of these 

protein biomarkers is used as an immunohistochemical surrogate for gene expression 

analysis to determine molecular subtype.  Approximately 70-75% of invasive breast cancers 

express the estrogen receptor (ER+). Collectively, the ER+ malignant neoplasms are 

classified as luminal cancers. These cancers are further subclassified into luminal A and 

luminal B subtypes based on their HER2 status and proliferation rate.  The majority of ER+ 

tumors also express PR. The presence of normal PR levels suggests an intact ER signal 

transduction pathway in the breast cancer cells, and PR expression typically follows the ER 
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expression pattern. The ER- breast cancers are subclassified as HER2+ or basal-like based on 

the HER2 overexpression/gene amplification, basal cytokeratin expression, and EGFR 

(HER1) expression. An immunohistochemical staining proxy based on 5 biomarkers 

classifies breast cancers into the major subtypes (shown schematically in Figure 1.4): (i) 

Estrogen receptor positive cancers (ER+) are subclassified into luminal A (ER+,  PR+, 

HER2-) and luminal B (ER+, PR+, HER2+), (ii) Estrogen receptor-negative cancers (ER-) 

are subclassified into triple-negative breast cancer (ER-, PR-, HER2-), and human epidermal 

growth factor receptor 2-positive (ER-, PR-, HER2+), and (iii) unclassified cancers (negative 

for all 5 markers) [58-60, 70]. Basal-like breast cancers are distinguished from other triple-

negative breast cancers (ER-, PR-, HER2-) by expression of cytokeratin 5/6 and/or EGFR. 

There is no international consensus on the criteria used to define cancers as basal-like in 

formalin-fixed, paraffin-embedded tissues. Therefore, the term basal-like is not yet routinely 

used in clinical practice.  Rather, the basal-like breast cancers are contained in the triple-

negative classification. 

   Breast cancers, like most epithelial cancers, are associated with better treatment and 

survival outcomes when diagnosed at an early stage. However, outcomes of early stage 

breast cancers differ depending upon the molecular subtype (Figure 1.5). In general, with 

stage matched breast cancers, the ER+ breast cancer subtypes (luminal A and luminal B) 

exhibit a good prognosis and excellent long-term survival (approximately 80-85% 5-year 

survival), while the ER- subtypes (HER2-positive and basal-like) are difficult to treat and 

associated with poor prognosis (approximately 50-60% 5-year survival).  The ability of 

patients with ER+ breast cancers to survive their disease reflects the availability of effective 

targeted therapy in the form of anti-estrogen treatment (e.g., tamoxifen).  However, among 
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the ER+ breast cancers, the luminal B neoplasms are associated with a significantly worse 

prognosis than luminal A subtype [60] (Figure 1.5). This difference in outcome is partly due 

to variations in response of ER+ subtypes (luminal A and luminal B) to anti-estrogenic 

treatment [71]. Targeted therapy of HER2 overexpressing breast cancers, [luminal B or 

HER2-positive (ER-) neoplasms] with trastuzumab (Herceptin), either concurrent or 

sequential with adjuvant chemotherapy, has improved survival for these breast cancer 

subtypes [72].  

  Basal-like breast cancers are characterized by autonomy of growth that is independent 

of expression of hormone receptors. Since these cancers lack the appropriate targets for the 

drugs like tamoxifen (targeting ER) and trastuzumab (targeting HER2), patients with these 

cancers do not derive benefit from these drugs. Basal-like breast cancers are associated with 

overall poor prognosis and shorter long-term survival.  The poor clinical outcomes associated 

with basal-like breast cancer reflect the fact that these cancers are refractory to chemotherapy 

or recur following therapy. Lack of identification of ‘druggable’ targets in basal-like breast 

cancers and poor prognosis makes the identification of molecular signatures and therapeutic 

targets in these cancers to be of utmost significance. No widely available targeted therapies 

for this breast cancer subtype have been developed to date, although phase II studies of 

PARP inhibitors have shown promising results [73].   

 

    DNA Methylation Machinery Abnormalities in Breast Cancer   

  With the emergence of evidence demonstrating that genome modifications that do not 

alter DNA sequence make a substantial contribution to the regulation of gene expression, 

epigenetics has emerged as important mechanism contributing to the process of 
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carcinogenesis [74-76]. In contrast to genetic changes like deletions, translocations, and 

amplifications, epigenetic changes related to DNA methylation, genomic imprinting, and 

histone modifications are frequent, as well as reversible [77].  DNA methylation of CpG 

dinucleotides represents an epigenetic event of major importance in cancer induction and 

progression. A number of genes contain CpG-rich regions, known as CpG islands (defined as 

≥200 bp with ≥50% G+C content and ≥0.6 CpGs observed/CpGs expected) [78], in their 

promoter sequences proximal to the transcriptional start sites. CpG islands in regulatory 

regions of expressed genes are typically unmethylated, while transcriptionally silent genes 

are often associated with methylated CpG islands [76]. Alterations in methylation, both 

global hypomethylation and gene-specific hypermethylation are associated with neoplastic 

transformation [79-82]. Genome-wide demethylation may be associated with aberrant 

expression of some genes that could contribute to neoplastic transformation, tumorigenesis, 

or cancer progression [83, 84]. Also, demethylation can contribute to chromosomal 

instability by destabilizing pericentromeric regions of certain chromosomes [84-86]. 

Methylation-dependent gene silencing is a normal mechanism for regulation of gene 

expression [87]. However, in cancer cells methylation-dependent epigenetic gene silencing 

represents a mutation-independent mechanism of inactivation of tumor suppressor genes 

[88], genes associated with DNA repair or apoptosis. Recently, it was shown that genes 

lacking typical CpG islands are also susceptible to methylation-dependent silencing, 

indicating that methylation-dependent gene silencing is not limited to methylation events at 

cytosines within CpG islands [89]. This relationship between DNA methylation and gene 

silencing suggests that changes in normal methylation patterns can result in altered gene 

expression.  A significant number of genes that are involved in the hallmarks of cancer [90] 
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are subject to methylation-dependent silencing [91]. Epigenetic gene inactivation being at 

least as frequent, if not more so, than mutation in carcinogenesis [92-94], represents a 

fundamental aspect of cancer and plays a key role in neoplastic transformation and 

progression. 

   DNA methylation results from covalent addition of a methyl group from an S-

adenosyl-methionine donor to 5-position of cytosine in a CpG dinucleotide. This transfer is 

catalyzed by DNA methyltransferases with somewhat distinctive roles. To date, four human 

DNA methyltransferases have been identified: DNMT1, DNMT2, DNMT3a, and DNMT3b. 

However, DNMT2 was identified by sequence similarity alone and does not possess any 

recognized methyltransferase activity [95]. Functionally, two types of DNA 

methyltransferases are known to occur in vivo: (i) de novo methyltransferases that initially 

establish the methylation pattern of a given DNA segment, (ii) maintenance 

methyltransferases that ensure that the methylation patterns are faithfully copied to daughter 

strands. Typically, de novo methylation function is carried out by DNMT3a and DNMT3b, 

which are highly expressed during embryogenesis, but at lower levels in normal adult tissues 

[96]. Maintenance methylation is usually carried out by DNMT1 which is constitutively 

expressed in proliferating cells and has a significant preference for hemi-methylated 

substrates [97]. However, recent findings suggest that the roles of individual DNMTs are not 

clearly delineated and there is evidence of interplay and partial redundancy among these 

enzymes [97, 98]. For example, DNMT1 has been found to express de novo activity on 

unmethylated substrates which surpasses that of DNMT3a and DNMT3b [97]. Some studies 

suggest that DNMT3a and DNMT3b or DNMT1 and DNMT3b are jointly necessary for 

maintenance methylation of specific sequences [99-101].  
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  Numerous DNMT abnormalities have been associated with process of neoplastic 

transformation, carcinogenesis, and tumor progression.  Owing to the tissue-specific nature 

of findings related to DNMTs, many questions regarding the roles of individual DNMTs 

remain unanswered. Cancer cells, in general have higher methylation capabilities than 

normal cells, but the range of DNMT overexpression is quite wide, reflecting highly variable 

expression. The range of DNMT overexpression was shown to vary from 4-3000 fold in one 

study [102]. For example, in leiomyomas, DNMT3a and DNMT3b are decreased in 75% of 

the cases, in contrast to increased expression of DNMT1 in 50% of the cases [103]. Another 

study showed that ovarian cancer cell lines exhibit DNMT1 expression levels at three times 

normal, along with increased DNMT3b levels [104]. However, not all DNMTs are 

overexpressed in all cancer types. In another study comprised of colorectal, bladder, renal, 

and pancreatic cancers, a significant increase in the expression of DNMT3b was observed, 

but there was no overexpression of DNMT1 or DNMT3a [105]. This suggests that the type 

and extent of aberrant expression of different DNMTs in cancer cells is significantly 

determined by the tissue type. 

   Various studies based on the modulation of DNMT levels have been performed to 

dissect the roles of different DNMTs in the aberrant methylation seen frequently in different 

types of human cancer. Several studies found that inhibiting DNMT1 was sufficient to cause 

re-expression of methylation-silenced genes in bladder [106], lung [107], breast [107, 108], 

and colon [109] cancer cells. Other studies found that knocking down DNMT1 alone is not 

sufficient, and inhibiting DNMT3b in combination with DNMT1 is required for re-

expression of methylation-silenced tumor suppressor genes [110-112]. In a study in 

colorectal cancer cells, concomitant loss of both DNMT1 and DNMT3b, but not individual 



15 

 

loss, inhibited almost all methyltransferase activity [110], indicating that these enzymes act 

cooperatively. Additionally, DNMT3b was found to be overexpressed in a greater percentage 

of breast cancers than DNMT1 or DNMT3a, and was significantly related to more aggressive 

cancers and poorer prognosis in patients receiving adjuvant hormone therapy [113]. 

DNMT3b-overexpressing cancers demonstrated increased proliferation and were more likely 

to be ER-negative suggesting that overexpression of certain DNMTs may result in important 

differences in cancer biology. Overexpression of DNMT3b has been suggested to be 

involved in multistage carcinogenesis not only by affecting the expression of specific genes 

but also by inducing chromosomal instability [114]. The results of these studies largely 

depend on the cell type studied, method used to inhibit DNMT, methods used to detect 

methylation changes, and on the target genes examined for detecting methylation changes 

[115, 116]. 

   A number of different genes have been shown to be inactivated in breast cancer 

through methylation-dependent gene silencing, suggesting that epigenetic mechanisms play a 

major role in breast carcinogenesis [74]. These genes include but are not limited to cell cycle 

control genes (APC, RASSF1, RB, TFAP2A), tumor suppressor genes (CST6, BRCA1, 

PRDM2), metastasis-associated genes (CDH1, CEACAM6, LGALS3BP), steroid receptor 

genes (ESR1, PGR, RARα), and others [117-119].  For example, estrogen receptor (ESR1) is 

a steroid hormone receptor which activates transcription of cell growth genes. Loss of ESR1 

expression is associated with poor differentiation, insensitivity to hormonal therapy, and poor 

clinical outcome, and is an important prognostic factor in breast cancer [120]. A considerable 

percentage of breast cancers lack expression of the estrogen receptor (and other steroid 

receptors), but the loss of ESR1 expression is not always caused by deletion or mutation 
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[121]. Methylation-dependent silencing of the ESR1 gene is seen in as many as 46% of breast 

tumors [122, 123].  Adenomatous polyposis coli (APC) that exercises cell cycle control by 

regulating β-catenin-induced proliferation has been found to be methylated in 36-49% of 

primary breast tumors [124, 125] and the frequency of methylation seems to increase with 

tumor size and stage [126].  Therefore, APC methylation represents an independent marker 

of poor prognosis in breast cancer patients [127]. In addition, APC is often methylated 

concurrently with other biologically important genes such as RASSF1A [128]. Cystatin M 

(CST6) encodes a putative breast cancer suppressor gene and is silenced in many breast 

cancer cell lines and primary tumors through promoter hypermethylation [89, 129]. It has 

been shown that treatment with demethylating agents like 5-aza results in the re-expression 

of CST6 in breast cancer cell lines that normally lack expression of this gene [130]. E-

cadherin (CDH1) plays a vital role in the maintenance of cell-to-cell adhesion and 

suppression of metastasis [131]. The frequency of methylation for CDH1 is estimated to be 

between 53-72% for primary breast tumors and upto 90% for lymph node metastases making 

it one of the most commonly methylated genes in breast cancer [125, 132]. Methylation of 

CDH1 is an important marker for aggressive breast tumors as it is associated with a higher 

incidence of lymph node metastasis, poor differentiation, and decreased patient survival 

[133]. The vast number of genes reported to be silenced by methylation in breast cancer in 

association with the cellular activities in which they participate shows that methylation is 

likely to have a significant impact on clinical behavior in breast cancer.  

 

Hypermethylation Defect and Association with Basal-like Breast Cancer 
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  Some cancers exhibit aberrant concurrent hypermethylation of numerous genes, a 

phenomenon known as the CpG island methylator phenotype (CIMP). CIMP was first 

identified in colorectal carcinomas where it affects a distinct subset of tumors with high rates 

of concordant methylation of specific genes [134]. More recently, CIMP has been identified 

in other human cancers, including solid tumors like cancers of the ovary [135], bladder [136], 

prostate [136], lung [137, 138], stomach [139-142], liver [143], pancreas [144], esophagus 

[145], and kidney [146], neuroblastomas [147], as well as hematopoietic malignancies like 

leukemias and lymphomas [148, 149]. Despite the fact that many epigenetically-regulated 

genes are known to be directly silenced by DNA methylation in breast cancer, definitive 

evidence for a hypermethylation defect (similar to CIMP) among human breast cancers did 

not emerge until recently [150]. Previously, some investigators suggested that such a 

hypermethylation defect does not occur in breast cancer [151]. To characterize aberrant DNA 

methylation in human breast cancer, Roll et al examined the gene expression status of 64 

epigenetically-regulated genes in a panel of 16 breast cancer cell lines (BT-20, BT-549, 

HCC1937, HS578T, MCF-7, MDA-MB-231, MDA-MB-415, MDA-MB-435S, MDA-MB-

436, MDA-MB-453, MDA-MB-468, SK-BR-3, SUM102, SUM149, SUM185, and ZR-75-1) 

and the normal mammary epithelial cell line MCF12A. The genes were selected by including 

the genes aberrantly expressed in breast cancer and the genes known to be predictive of 

CIMP in other tumor systems. Unsupervised cluster analysis of gene expression patterns 

revealed two distinct groups of breast cancer cell lines that possess distinct methylation 

signatures: (i) hypermethylator cell lines, and (ii) non-hypermethylator cell lines [150]. The 

hypermethylator cell lines include BT-549, HCC1937, HS578T, MDA-MB-231, MDA-MB-

435S, MDA-MB-436, MDA-MB-453 SUM102, SUM149, and SUM185 and the non-
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hypermethylator cell lines include BT-20, MCF-7, MDA-MB-415, MDA-MB-468, SK-BR-

3, and ZR-75-1 [150]. The hypermethylation defect observed is associated with a 

characteristic gene expression signature that reflects methylation-dependent loss of 

expression of a panel of epigenetic biomarker genes (including CDH1, CEACAM6, CST6, 

ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3) [150].  Hypermethylator cell lines also 

exhibit higher total DNMT activity levels than that of non-hypermethylator cell lines and 

non-neoplastic MCF12A cells. Quantitation of the relative DNMT1, DNMT3a, and 

DNMT3b protein levels between hypermethylator and non-hypermethylator cell lines 

revealed that average DNMT1 and DNMT3a protein levels for the hypermethylator cell lines 

and the non-hypermethylator cell lines were indistinguishable from those of MCF12A.  In 

striking contrast to DNMT1 and DNMT3a, the average DNMT3b protein levels for the 

hypermethylator cell lines were much higher than those of the non-hypermethylator cell 

lines. In addition, a strong association between DNMT activity and DNMT3b protein levels 

was also observed. This hypermethylation defect that characterizes a subset of breast cancer 

cell lines reflects concurrent epigenetic silencing of methylation-sensitive genes secondary to 

overexpression of DNMT3b and DNA methyltransferase hyperactivity [150].   

  To determine if a similar hypermethylation defect could be detected in primary 

sporadic invasive breast cancers, microarray-based expression data from the UNC 

Microarray Database was examined.  An unsupervised cluster analysis of 90 tumors in one 

dataset from UNC revealed three major clusters. One of these clusters was composed of 21 

tumors (23%) that expressed a hypermethylation signature identified by low expression of 

seven or more genes out of the nine genes analyzed. Within this cluster, 100% (21/21) of the 

tumors were of the basal-like subtype and included 88% (21/24) of all basal-like tumors 
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within the dataset. The second cluster consisted of 51 tumors and was composed primarily of 

luminal A and luminal B breast cancers (65% and 29%), with one basal-like and two Her2+ 

cancers within this cluster. The third cluster consisted of 19 cancers with 84% (16/19) of 

these classified as Her2+ along with one luminal B and two basal-like cancers. These results 

suggest that expression of the hypermethylation defect may be associated with the basal-like 

subtype of breast cancer. In order to validate this suggestion, multiple datasets were 

analyzed, consisting of an expanded dataset from UNC containing 272 cancers (Figure 1.6), 

and datasets obtained from Hess et al [152] consisting of 133 primary breast cancers, Wang 

et al consisting of 295 primary breast cancers [153], and van de Vijver et al. composed of 

246 primary breast cancers [63]. The details of these analyses are summarized in Table 1.4 

and all these results were in concordance with the initial results from UNC dataset. In total, 

946 primary breast cancers were examined to explore the possibility that the hypermethylator 

signature is expressed by primary breast cancers in vivo. Among the tumors analyzed, 23% 

(220/946) exhibited the hypermethylation signature based on the rule (defined as having 

seven or more target genes with expression levels below the median). Among these 

hypermethylator cancers, 79% (174/220) were basal-like and out of all the basal-like cancers 

examined, 63% (174/277) were also hypermethylators. These findings suggest significant 

correspondence between expression of the hypermethylator defect and the basal-like subtype 

of breast cancers. 

 

 Basal-like Breast Cancer  

 Discovery of Basal–like Breast Cancers 



20 

 

  The basal breast cancer subtype was first described in studies based on 

immunohistochemistry [154-157]. These cancers are designated basal-like because they 

exhibit some cellular characteristics associated with the basal myoepithelial cell layer, such 

as expression of cytokeratins 5/6, 14, or 17, vimentin, and laminin, but these tumors are not 

derived only from myoepithelial cells [158-160].  The basal-like breast cancer subtype was 

rediscovered following the application of microarray-based gene expression profiling to 

breast cancer classification [57-61, 63, 64]. That the basal-like breast cancers were identified 

independently by two different methodologies indicates strongly that these cancers represent 

a distinct biological entity. Basal-like breast cancers are best classified through gene 

expression profiling [57-61, 63, 64]. However, in routine clinical practice, 

immunohistochemistry has become the surrogate for the gene expression analysis for 

diagnosis of basal-like breast cancers (Figure 1.3). Correctly classifying these cancers 

significantly impacts clinical decisions and research efforts. In the clinic, there is a need to 

correctly identify breast cancer subtypes for prognostication purposes in relation to 

individual patients and for decision-making related to appropriate treatment course. On the 

other hand, in the research environment, correct breast cancer subclassification is essential to 

ensure that investigations expand our understanding of the biological basis for the behavior 

and characteristics of these cancers. 

 

 Association with Risk Factors 

   The development of basal-like breast cancer is associated with distinct risk factors, 

including early-onset menarche, younger age at first full-term pregnancy, high parity 

combined with lack of breast feeding, and abdominal adiposity (based upon waist-hip ratio) 
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[161].  These breast cancers are over-represented among patients of certain age and ethnic 

groups, and are frequently associated with certain genetic mutations.  Specifically, basal-like 

breast cancer is over-represented among premenopausal African-American women [66].  

However, these cancers can and do affect women of every age and ethnic group [161].  The 

differences in distribution of basal-like breast cancer by age and race can be partially 

attributed to variations in the distribution of the risk factors described and to other risk 

factors (e.g., use of lactation suppressants and overexpression of leptin receptor) [161].  In 

addition, basal-like breast cancer occurs more frequently among hereditary breast cancer 

patients that harbor germ-line BRCA1 mutation [162]. Foulkes et al. showed that 17/72 

triple-negative breast cancers harbored a BRCA1 mutation and 88% (15/17) of these 

expressed the basal-like phenotype [163]. Likewise, Sorlie et al. observed that 100% (18/18) 

of breast cancers from patients carrying BRCA1 mutations clustered within the basal-like 

subgroup [60]. However, the other molecular subtypes of breast cancer can be associated 

with BRCA1 mutations as well.    

 

 Morphological Features 

  Morphologically, basal-like breast cancers are characterized by the presence of 

central necrotic zones, pushing borders, and conspicuous lymphocytic infiltrate [164-168]. 

The presence of metaplastic elements [59, 166-168] and medullary⁄atypical medullary 

features [167-169] are more prevalent in basal-like breast carcinomas than in other types of 

breast cancer.  Recent studies have shown that more than 90% of metaplastic breast 

carcinomas [59], as well as the majority of medullary carcinomas [169, 170], exhibit a basal-

like phenotype.  Basal-like breast cancers are aggressive, with the high rates of cellular 
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proliferation, high histological grade, and extremely poor clinical outcomes [59, 60]. These 

factors combine to account for the disproportionate contribution of basal-like breast cancer to 

breast cancer mortality. It has been suggested that the high level of cellular proliferation 

observed in these neoplasms might account for the over-representation of basal-like breast 

cancers among the so-called interval breast cancers (the cancers arising between annual 

mammograms). 

 

 Clinical Behavior of Basal-Like Breast Cancers 

  Currently, there is no consensus on the immunohistochemical criteria for the 

diagnostic classification of basal-like breast cancers.  Studies have shown that the profile 

constructed using ER-/PR-, HER2-, CK5/6+, and/or EGFR+  is 100% specific but only 55% 

to 76% sensitive [171]. Breast cancers that are ER-/PR-/HER2- are broadly classified as 

triple-negative neoplasms (Figure 1.3). The triple-negative breast cancers include most (or 

all) basal-like breast cancers [172]. Interpreting the percentage of positive cells and intensity 

of immunohistochemical staining is subjective. Variability in immunostaining techniques and 

procedures is a concern as well. Hence, standardization and/or automation of 

immunostaining procedures and interpretation to remove technical and subjective variation 

will benefit this analysis in the clinical laboratory.  The low sensitivity associated with 

classification of basal-like breast cancers using immunohistochemical staining may indicate 

that these cancers are much more heterogeneous than previously thought.  Gene expression 

profiling-based molecular classification of breast cancers predicts the general clinical 

behavior of breast cancers corresponding to the different molecular subtypes. Microarray 

studies show that the basal-like breast cancers express a common gene expression signature 
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and these cancers are associated with an extremely bad prognosis [59].  Among the patient 

cohort examined in the initial study of this type, 100% of the patients with basal-like subtype 

succumbed to their disease within four years of diagnosis [59].  Basal-like breast cancers 

respond to preoperative (neoadjuvant) chemotherapy [173, 174]. However, despite the 

observation of pathologic complete response in many patients, these individuals exhibit poor 

long-term survival. The poor survival outcomes among these patients despite response to 

chemotherapy may be related to a higher likelihood of relapse in individuals where 

pathologic complete response was not achieved [174]. 

   The malignant neoplasms that constitute the basal-like breast cancer subtype are not 

biologically homogeneous. For example, in one study, unsupervised hierarchical clustering 

within 43 cytokeratin-14 positive (basal-like phenotype) tumors revealed four clusters, and 

one of these displayed a worse prognosis than other three, strongly suggesting intra-subtype 

heterogeneity [175]. Variable prognosis within the basal-like subtype has also been reported 

by other groups [176, 177]. Rakha et al. divided the basal-like breast cancers into those with 

a “dominant basal pattern” (>50% of cells are positive for cytokeratin 5/6 and 14) and the 

remaining “basal” cancers (<50% of cells are positive for cytokeratin 5/6 and 14) [176].  

These subsets of basal-like breast cancers demonstrated differences in grade, presence of 

pushing margins, local spread, and long-term outcomes (disease-free survival and overall 

survival) [176].  Likewise, Laakso et al. distinguished “basal” (uniformly positive for 

cytokeratins 5 and 14) and “basoluminal” (heterogeneously positive for cytokeratin 

expression) subtypes of basal-like breast cancers, and showed that these subsets of basal-like 

cancers differ with respect to tumor size, proliferation index, expression of other markers 

(like vimentin), and recurrence-free survival [177].  These observations underscore the 



24 

 

necessity to further define biological subsets of basal-like breast cancer (particularly in terms 

of clinical behavior).  The pattern of metastatic spread among basal-like breast cancers has 

been suggested to be different compared to other breast cancer subtypes. The basal-like 

breast cancers have a tendency to disseminate through hematogenous routes, involving brain 

(resulting in higher rate of cerebral metastasis) and lung, and are less likely to spread to 

lymph nodes, liver, or bones [164, 178-180].  In general, cancer prognosis is linked to 

various clinical parameters, including tumor size, tumor grade, lymph node status, and the 

presence of distant metastasis.  However, among basal-like breast cancers, prognosis has 

been shown to be less dependent on tumor size, tumor grade, and lymph node status 

reflecting the deviant nature of these cancers. Expression of basal markers like cytokeratins 

5/6 was associated with poor outcome and proved to be a prognostic factor independent of 

the usual clinical parameters  [181].  These observations highlight the requirement to 

examine further the transcriptome of basal-like breast cancers in order to uncover the 

molecular basis for the biological behavior of subsets of these cancers [181]. 

 

  Prognosis 

   Neoplasms representing different subsets of basal-like breast cancers may have the 

same clinical stage based on traditional classification criteria and may be histologically and 

morphologically similar, yet their biological (clinical) behavior may be remarkably different.  

Survival rates associated with basal-like breast cancers are dismal. Numerous studies have 

shown that patients with basal-like breast cancer exhibit significantly shorter overall survival 

(OS) and disease-free survival (DFS), and have high rates of tumor recurrence, highlighting 

the aggressive course of these cancers. A retrospective study of 49 basal-like and 49 grade 
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and age-matched non basal-like tumors [182] showed that patients with basal-like breast 

cancers were associated with significantly shorter disease-free and overall survival, and a 

higher recurrence rate. Another study based upon a cohort of 930 breast cancer patients 

showed that expression of basal cytokeratins (indicative of basal-like phenotype) was 

associated with poor progression-free survival and poor overall survival [171]. Analysis of 

496 primary breast cancers from the Carolina Breast Cancer Study showed that progression-

free survival differed by breast cancer subtype and survival time is significantly shortened in 

basal-like and HER2+ subtypes [66]. These studies are consistent with similar observations 

of poor prognosis in basal-like cancers made by numerous other groups before and after these 

aforementioned studies [59-61, 69, 181, 183, 184].  In the absence of molecular targets (like 

ER or HER2), options for basal-like breast cancer therapy are limited to aggressive cytotoxic 

chemotherapy. However, cytotoxic chemotherapy (whether neoadjuvant or adjuvant) has 

proven largely ineffective in the treatment of basal-like breast cancer based on OS among 

these patients. The general failure of chemotherapy in the treatment of basal-like breast 

cancer may be related to the lack of targeted approaches and/or our current inability to 

stratify patients according to their likelihood of response to specific drugs or treatment 

modalities. 

 

Post-transcriptional Regulation of DNMT3b by MicroRNAs 

DNMT3b is constitutively expressed by all mammalian cell types, but is often 

overexpressed in cancer [105, 113, 185, 186]. However, unlike other genes that are 

overexpressed in cancer, the mechanisms accounting for increased DNMT3b levels 

infrequently involves gene mutation and/or gene amplification [187]. Likewise, increased 



26 

 

DNMT3b transcription due to increased trans-activation does not commonly occur in cancer 

[187]. Rather, it is now recognized that DNMT3b is subject to post-transcriptional regulation 

by microRNAs (miRs), which are small endogenous non-coding RNAs (19-25 nucleotide 

long) that have emerged as key players in regulation of gene expression [188]. miRs were 

discovered approximately 20 years ago when investigators determined that the traditionally 

non-functional areas of the genome had gene regulatory capabilities and were later termed 

microRNAs [189-191]. The post-transcriptional regulation by miRs occurs through 

sequence-specific targeting of mRNAs as a result of recognition of complementary sites, 

most often in the 3’ untranslated region (UTR) of the target mRNA, producing either 

translational repression or degradation of the target mRNA [189, 192-195]. Less frequently, 

miRs have also been documented to target 5’UTRs and coding regions of mRNAs [196-198]. 

Recently, it has been shown that miRs can also target proteins where a novel function of 

miRs called ‘decoy activity’ was reported. It was shown that miR-328 regulates RNA-

binding protein by interacting with a ribonucleoprotein, hnRNP-E2 [199]. miRs are 

expressed in a tissue-specific manner and have been implicated in the regulation of several 

biological processes, including cellular proliferation, differentiation, apoptosis, and 

development [200-203]. More than 30% of the human transcriptome is estimated to be 

targeted by microRNAs [191]. A single miR can target multiple mRNAs and a single mRNA 

can be targeted by multiple miRs. A single miR or a group of miRs can therefore regulate 

pathways that are essential to biological/pathological processes like angiogenesis, survival 

and growth that can directly affect cancer cell behavior. Some miRs also participate in or 

trigger feedback or feedforward loops by cooperating with their target genes, further 

complicating the network of gene-regulation [204, 205]. More than 1000 miRs have been 
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identified in human genome, although it is predicted that many more may exist that are yet 

unidentified [206]. 

miR biogenesis is a complex system that involves multiple steps and several 

enzymes. Within the nucleus, a long transcript known as pri-miRNA is first transcribed by 

RNA polymerase II [188, 207]. Pri-miRNA is cleaved by RNAse III endonuclease Drosha to 

a smaller hair pin, precursor miRNA (pre-miRNA) approximately 70 nucleotides long [208, 

209]. RNAse Drosha belongs to a family of double stranded RNA specific ribonucleases and 

acts in combination with its partner, DGCR8, forming the processing complex called the 

Microprocessor [210, 211]. The pre-miRNA is transported out of the nucleus into the 

cytoplasm by the nuclear export protein, Exportin 5 [212]. Pre-miRNA in the cytoplasm is 

subsequently cleaved by another RNAse III enzyme Dicer that acts in conjunction with 

RNA-binding protein, TRBP, to yield double stranded miR molecule approximately 22 

nucleotides in length [191, 213]. This double stranded molecule consists of mature 

miRNA/miRNA nucleotide duplex that is separated into two single-stranded molecules; the 

mature miR gets incorporated into the RNA-induced Silencing Complex (RISC) and the 

other strand undergoes degradation [188, 214]. The ‘seed’ region comprised of nucleotides 2-

7 of the mature miR sequence specifies the target mRNA that the miR will bind to and is 

critical in determining the effect in terms of degradation of mRNA or inhibition of translation 

[188, 191].  

 More than half of human miR genes have been identified in fragile sites and are 

hence susceptible to alterations like deletion, translocation and amplification. Dysregulation 

of miRs has been shown to play oncogenic as well as tumor suppressor roles depending on 

the disease/pathway involved and the tissue affected [191].  Altered miR expression is 
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associated with several types of human cancer, including breast cancer [215-218]. The 

deregulated pattern of expression of miRs between normal and cancerous tissues in breast 

cancer has been extensively studied. The expression patterns of different miRs have been 

correlated with tumor stage, estrogen and progesterone receptor expression, proliferation 

index, vascular invasion, epithelial to mesenchymal transition, metastasis and 

neovascularization [216, 219-221].  miR-155, miR-21, miR-17-922, miR-182, miR-200, and 

miR-9 have been shown to be overexpressed in multiple studies in breast cancer; likewise let-

7, miR-143/145, miR-10b, miR-125b, and miR-126 have been shown to be downregulated 

[188, 191, 205, 214, 216, 219, 222]. Circulating miRs are also being explored as noninvasive 

biomarkers for the purposes of diagnosis as well as surveillance of disease status in breast 

cancer as well as other malignancies.   

Recent studies have identified miRs as both regulators of DNA methyltransferase 

(DNMT) expression and targets of aberrant DNA methylation in various tissue types. The 

miR-29 family (miR-29a, miR-29b, and miR-29c) directly targets DNMT3a and DNMT3b in 

lung cancer [223] and acute myeloid leukemia [224]. Likewise, the miR-148 family (miR-

148a and miR-148b) regulates DNMT3b in cell lines of multiple origin, including the MCF-7 

breast cancer cell line [225]. There is evidence that miRs not only regulate epigenetic 

machinery but are also epigenetically regulated themselves. In human bladder cancer, miR-

127 is silenced by promoter hypermethylation [226]. In similar fashion, miR-148a is 

epigenetically silenced in human cancer cell lines established from lymph node metastasis 

from colon, melanoma, and head and neck, suggesting that epigenetic loss of miR-148 is 

associated with progressive changes such as development of metastatic potential [217]. All of 
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these observations indicate direct interactions as well as cross-talk between the DNA 

methylation machinery and miRs. 

 

Objective of This Dissertation Research  

The objective of this project was to understand and characterize the contribution of 

DNMT3b to the biology and clinical outcome of basal-like breast cancers and to elucidate the 

role of microRNAs in dysregulation of DNMT3b expression among these breast cancers. To 

address our objective, we employed an experimental model of human basal-like breast cancer 

that is based on (i) well characterized hypermethylator cell lines that exhibit DNMT3b 

hyperactivity, and (ii) primary human breast cancers of known molecular classification. In 

this study, we analyzed the combination of epigenetic treatment and chemotherapy in three 

hypermethylator breast cancer cell lines. The purpose was to evaluate the effectiveness of 

targeting the DNA methylation machinery to modify the sensitivity of breast cancer cells to 

cytotoxic drugs. Epigenetic treatment was accomplished through (i) pharmacologic inhibition 

of DNA methyltransferase activity using 5-aza-2’-deoxycytidine (5-aza), and (ii) targeted 

inhibition of overexpressed DNMT3b using RNAi-mediated DNMT3b knockdown (KD). 

The results show that 5-aza pretreatment sensitizes hypermethylator breast cancer cells to cell 

killing by cytotoxic drugs, and that the improved chemotherapeutic efficacy is a function of 

dose and duration of exposure to 5-aza. We also observed an increase in the effectiveness of 

chemotherapeutic drugs after targeted inhibition of DNMT3b. These results demonstrate that 

DNMT3b is an excellent target for development of rational therapeutic approaches for 

hypermethylator breast cancers (such as basal-like breast cancers). We provide proof-of-

concept that targeting DNMT3b in hypermethylator breast cancer cells sensitizes them to cell 
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killing by cytotoxic drugs and that this strategy can be exploited to improve the efficacy of 

breast cancer chemotherapy.  

We analyzed breast cancer cell lines for differential expression of regulatory miRs to 

determine if loss of miR-mediated post-transcriptional regulation of DNMT3b represents the 

molecular mechanism that governs the overexpression of DNMT3b that drives the 

hypermethylation defect in breast cancer. The results show that multiple miRs (miR-29c, 

miR-148a, miR-148b, miR-26a, miR-26b, and miR-203) post-transcriptionally regulate 

DNMT3b in combination and loss of expression of these regulatory miRs contributes to 

DNMT3b overexpression in hypermethylator cell lines. We observed that enforced 

expression of regulatory miRs results in reduced DNMT3b mRNA levels in hypermethylator 

breast cancer cell lines, and that down-regulation of regulatory miRs results in increased 

DNMT3b mRNA levels in non-hypermethylator breast cancer cell lines. These observations 

combine to suggest that the loss of multiple regulatory miRs that post-transcriptionally 

regulate DNMT3b levels represents the molecular mechanism governing the DNMT3b-

mediated hypermethylation defect in breast cancer cell lines. In addition, we examined the 

expression of microRNAs (miRs) that regulate DNMT3b in primary breast cancers and 

normal mammoplasty tissues to determine the mechanism governing DNMT3b 

overexpression in the hypermethylation defect. Examination of methylation-sensitive gene 

expression in primary breast cancers showed that majority of basal-like tumors express the 

hypermethylation defect as compared to other molecular subtypes of breast cancer. 

Significantly reduced expression of miR-29c distinguished basal-like cancers from other 

subtypes. miR expression patterns revealed two groups among the basal-like breast cancers 

corresponding to diminished expression and normal levels of expression. Our results suggest 
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strongly that (i) reduced expression of miR-29c is characteristic of basal-like breast cancers, 

(ii) two subgroups of basal-like breast cancers can be identified based on miR expression and 

methylation-sensitive gene expression, and (iii) the subgroup of basal-like breast cancers 

with reduced expression of multiple regulatory miRs express the hypermethylation defect. 

We provide proof-of-concept that targeting DNMT3b in hypermethylator breast cancer cells 

sensitizes them to cell killing by cytotoxic drugs and that this strategy can be exploited to 

improve the efficacy of breast cancer chemotherapy. Our results strongly support the 

suggestion that loss of miR expression may account for the DNMT3b-mediated 

hypermethylation defect among basal-like breast cancers and this significant molecular 

alteration present during the process of breast carcinogenesis can be targeted to significantly 

alter the prognosis of breast cancer. 
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Table 1.1. Breast Cancer Incidence for American Women, By Ethnicity (Age-Adjusted 

Incidence Rate From 2004-2008). These data were adapted from the SEER Cancer Statistics 

Review (www.seer.cancer.gov). 

Race/Ethnicity 
Incidence 

(per 100,000 women) 

All Ethnicities 124.0 

Caucasian/White 127.3 

African-American 119.9 

Asian/Pacific Islander 93.7 

American Indian/Alaskan Native 77.9 

Hispanic 78.1 

 

 

 

 

 

 

 

 

http://www.seer.cancer.gov/
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Table 1.2.  Breast Cancer Mortality for American Women, By Ethnicity (Age-Adjusted 

Mortality Rate From 2003-2007). These data were adapted from the SEER Cancer Statistics 

Review (www.seer.cancer.gov). 

 

Race/Ethnicity 
Mortality 

(per 100,000 women) 

All Ethnicities 24.0 

Caucasian/White 23.4 

African-American 32.4 

Asian/Pacific Islander 12.2 

American Indian/Alaskan Native 17.6 

Hispanic 15.3 

 

 

 

 

 

 

  

http://www.seer.cancer.gov/
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Table 1.3. Stage Distribution and 5-year Relative Survival By Stage at Diagnosis for  

Females, All Races, 2001-2007. These data were adapted from the SEER Cancer Statistics 

Review (www.seer.cancer.gov). 

 

Stage at Diagnosis 
Stage  

Distribution 
(%) 

5-year  
Relative Survival 

(%) 

Localized  
(confined to primary site) 60 98.6 

Regional 
 (spread to regional lymph nodes) 33 83.8 

Distant 
 (cancer has metastasized) 5 23.4 

Unknown 
 (unstaged) 2 52.4 

 
 

  

http://www.seer.cancer.gov/
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 Table 1.4. Association of Hypermethylation Defect with Basal-like Breast Cancer.  
 

Dataset 
Number 

of 
Cancers 

Hypermethylator 
Cancers (%) 

Molecular Subtypes 
Among 

Hypermethylator 
Cancers 

% of Basal-like 
that are 

Hypermethylator

Expanded 
UNC1 272 

80/272  

(29%) 

65/80 (81%) Basal 

1/80 (1%) LB 

1/80 (1%) HER2+ 

13/80 (16%) CL 

65/103  

(63%) 

Hess et al. 
[152] 133 

33/133  

(25%) 

26/33 (79%) Basal 

4/33 (12%) HER2+ 

2/33 (6%) LA/B 

1/33 (3%) NL 

26/32 

 (81%) 

Wang et al. 
[153] 295 

59/295  

(20%) 

44/59 (75%) Basal 

12/59 (20%) LA/B 

3/59 (5%) HER2+ 

44/76  

(58%) 

Van de 
Vijver et al. 

[63] 
246 

48/246  

(20%) 

39/48 (81%) Basal 

7/48 (15%) LA/B 

2/48 (4%) HER2+ 

39/66  

(59%) 

Total 946 
220/946  

(23%) 

174/220(79%) Basal 

22/220 (10%) LA/B 

6/220 (3%) HER2+ 

14/220 (6%) other 

174/277  

(63%) 

 
Subtypes abbreviated as follows: luminal A (LA), luminal B (LB), claudin-low (CL), 

normal-like (NL), HER2 overexpressing (HER2+), and Basal-like (Basal) 

1 https://genome.unc.edu/   

https://genome.unc.edu/
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Figure 1.1 Age-Specific SEER Incidence Rates by Cancer Site All Ages, All Races Female; 

1992-2008. The graph showing incidence rate per 100,000 women at different age intervals 

below 1 year to 85+ years of age from 1992-2008. These observations were made based on 

SEER Cancer Statistics Review (www.seer.cancer.gov). 

  

http://www.seer.cancer.gov/
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Figure 1.2. Age-Specific SEER Incidence Rates by Race and Sex (Female), All Ages, 1992-

2008. The graph shows age-specific incidence rate per 100,000 women of different races 

from 1992-2008. These data were adopted from the SEER Cancer Statistics Review 

(www.seer.cancer.gov). The red line indicates the incidence in Caucasian females, the blue 

line indicates the incidence in African-American females, the green line indicates the 

incidence in Asian/Pacific Islander females, the purple line indicates the incidence in 

American Indian/AK Native females, and the yellow line indicates the incidence in Hispanic 

females. 

 

  

http://www.seer.cancer.gov/
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Figure 1.3. Differential Expression of Estrogen Receptor (ER), Progesterone Receptor (PR), 

and Human Epidermal Growth Receptor 2, (HER2) Among Different Subtypes of Breast 

Cancer. Breast cancer is classified into various subtypes based on differential 

immunohistochemical staining for ER (Panels B, F, J, and N show immunostaining for ER 

and the results, ER+ or ER-, are indicated), PR (Panels C, G, K, and O show immunostaining 

for PR and the results, PR+ or PR-, are indicated), HER2 (Panels D, H, L, and P show 

immunostaining for HER2 and the results, HER2+ indicative of HER2 amplification or 

HER2-, are indicated), HER1 (not shown), and cytokeratins (not shown). Panels A-D, 

luminal A breast cancer; Panels E-H, luminal B breast cancer; Panels I-L, HER2+ breast 

cancer; Panels M-P, basal-like breast cancer. Panels A, E, I, and M show H&E staining for 

each breast cancer subtype.  
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Figure 1.4.  Molecular Subtypes of Breast Cancer. The blue and pink rectangles group the 

subtypes based on the expression of ER/PR, positive in the blue (Luminal A and Luminal B) 

and negative (HER2+ and Basal-like) in the pink. The central grey rectangle (with black 

outline) indicates the presence of HER2 amplification in Luminal B and HER2+ subtypes. 
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Figure 1.5. Survival Plot of 294 Breast Cancer Patients. A Kaplan-Meier survival plot of 

overall survival corresponding to 294 breast cancers from the publicly available UNC 

database is shown grouped by molecular subtype. The plot was generated by Dr. Joel S. 

Parker (UNC Lineberger Cancer Center, UNC Chapel Hill). The p-value was calculated 

using the Log-rank test. Details of these 294 samples along with clinical annotation can be 

found at https://genome.unc.edu/pubsup/breastGEO/.  

  

https://genome.unc.edu/pubsup/breastGEO/
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Figure 1.6. Microarray Analysis of 272 Primary Breast Tumors from Expanded UNC 

Database Suggests a Linkage Between Basal Breast Tumors and the Hypermethylator 

Phenotype. Supervised analysis of microarray expression data from the Expanded UNC 

microarray database. Gene expression patterns for individual tumors were analyzed to 

determine the expression of hypermethylation defect. Cancers with ≥7 genes below the 

median expression level were classified as hypermethylators. Microarray data mining 

analysis was performed by Dr. Wendell Jones (Expression Analysis, Durham, NC). Red 

indicates high level expression, green indicates low level expression, and black indicates 

normal expression levels for the genes of interest. The hypermethylator cluster is highlighted 

with a red rectangle. This cluster demonstrates concurrent downregulation of genes indicative 

of the hypermethylation defect and is predominately (81%) composed of basal-like cancers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

MATERIALS AND METHODS 
 

 
Methods Related to Chemotherapy Experiments 

Hypermethylator Breast Cancer Cell Lines and Cell Culture Conditions 

 Human breast cancer cell lines BT549 (ATCC# HTB122), Hs578T (HTN126), and 

MDA-MB-453 (HTB131) were obtained from the Tissue Culture Core Facility of the UNC 

Lineberger Comprehensive Cancer Center (Chapel Hill, NC). These cell lines exhibit high 

levels of total DNA methyltransferase (DNMT) activity, overexpression of DNMT3b, and 

concurrent silencing of multiple methylation-sensitive genes (including CEACAM6, CST6, 

ESR1 and SCNN1A) [150].  Breast cancer cell lines were grown in medium recommended by 

the ATCC (http://www.atcc.org/). Hs578T and MDA-MB-453 cells (and derivative cell 

lines) were cultured in Dulbecco’s modified Eagle’s medium, supplemented with 4 mM L-

glutamine, 10 μg/ml insulin (Gibco/Invitrogen Life Technologies Grand Island NY), 10% 

fetal bovine serum (Hyclone, Logan, UT), and 1% Antibiotic-Antimycotic (Gibco/Invitrogen 

Life Technologies). BT549 cells (and derivative cell lines) were cultured in RPMI-1640 

medium (Gibco/Invitrogen Life Technologies) containing 10% fetal bovine serum (Hyclone), 

and 1% Antibiotic-Antimycotic (Gibco/Invitrogen Life Technologies). Growth medium was 

refreshed three times weekly unless otherwise specified for demethylating and/or cytotoxicity 

assays. Cells were maintained at 37ºC and 5% CO2. 

 

Generation of DNMT3b KD and Scrambled Control Cell Lines 
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  Expression vectors for DNMT3b shRNA and scrambled control were used to target 

the overexpressed DNMT3b protein associated with the hypermethylation defect in human 

breast cancer cell lines [150]. These expression vectors were a kind gift from the laboratory 

of Dr. P.P. Jagodzinski (Poznan University of Medical Sciences, Poznan, Poland) and their 

construction has been described [227]. Briefly, the expression vectors were constructed in 

pLVTHM transfer plasmids with a DNMT3b-specific oligonucleotide (5’-CGC GTC CCC 

AGA TGA CGG ATG CCT AGA Att caa gag aCT CTA GGC ATC CGT CAT CTT TTT 

TGG AAA T-3’) or a scrambled control oligonucleotide (5’-GAT CCC GGA CAA GGG 

TCC TGA TCG TTt tca aga gaA ACG ATC AGG ACC CTT GTC CTT TTT TGG-3’) 

[227]. The resulting pLVTHMDNMT3b and pLVTHMSCRAM vectors express the targeting or 

control oligonucleotides from the H1 promoter, and each vector contains the green 

fluorescence protein (GFP) gene enabling the monitoring of transfection efficiency and 

plasmid retention in transfected cells. Breast cancer cells were grown in a six-well 

polystyrene plate to 60-70% confluency in 2.5 ml of complete growth medium for 

pLVTHMDNMT3b and pLVTHMSCRAM transfection with 2.5µg plasmid DNA using TransIT-

LT1 Transfection reagent (Mirus, Madison, WI) according to manufacturer’s protocol. After 

48 hours the presence of GFP+ cells was assessed in the knockdown and scrambled control 

transfected cells. Selection of positively transfected cells was accomplished using expression 

of GFP as a selectable marker. Transfected cell lines (DNMT3b KD and scrambled control) 

were subjected to flow sorting under sterile conditions at the UNC Flow Cytometry Core 

Facility (Chapel Hill, NC) to select for pure populations of GFP+ cells. Post-sort analysis of 

isolated cell populations indicated that 95-98% of cells were strongly GFP+. GFP expression 
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in the post-sort populations was monitored weekly by fluorescence microscopy to ensure the 

continual presence of the transfected plasmids. 

 

Demethylating Treatment of Breast Cancer Cell Lines with 5-Aza-2’-Deoxycytidine  

 5-aza-2’-deoxycytidine (5-aza, Cat # A3656, Sigma-Aldrich, St Louis, MO) was 

employed as a demethylating agent. Stock solutions of 5-aza (5 mM) were prepared in 

dimethyl sulfoxide (Cat # D2650, Sigma Chemical Company).  Founder populations of 

breast cancer cells were propagated in freshly made growth medium (described above) 

containing 250 nM, or 500 nM 5-aza for 3 days or 7 days, with re-feeding of fresh medium 

containing the drug each day. Re-feeding of cultures every day eliminates concerns about the 

half-life of 5-aza in culture medium, and insures a constant exposure to the drug.  Control 

populations of cells (no drug exposure) were maintained in parallel to treated cultures. Low 

concentrations of 5-aza (≤500nM) were used to avoid cytotoxicity, which can be observed at 

higher doses [89]. No evidence of 5-aza-related cytotoxicity was noted in this study. At the 

conclusion of the demethylating pretreatment, cells were trypsinized, counted, and plated in 

24-well plates at a concentration of 50,000 cells per well for subsequent exposure to 

cytotoxic drugs. 

 

Chemotherapeutic Drugs  

 Chemosensitivity assays were carried out using three chemotherapeutic drugs: 

Doxorubicin (Adriamycin; CAS 23214-92-8), Paclitaxel (Taxol; CAS 33069-62-4), and 5-

Fluorouracil (Adrucil; CAS 51-21-8). The drugs were obtained from Sigma-Aldrich 

(Doxorubicin, Cat # 44583; Paclitaxel, Cat # T7191; 5-Fluorouracil, Cat # F6627). The stock 
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solution of Doxorubicin (DOX; 20 µM) was prepared in sterile water, and stock solutions of 

Paclitaxel (PAX; 11.71 mM) and 5-Fluorouracil (5-FU; 100 mM) were made in dimethyl 

sulfoxide.  Stock solutions were stored as recommended by the manufacturer.  

 

Cytotoxicity Assays  

 MDA-MB-453, BT549, and Hs578T cells, their derivative cell lines (transfected with 

pLVTHMDNMT3b or pLVTHMSCRAM) and cells after demethylating treatment were analyzed 

for sensitivity to DOX, PAX, and 5-FU. Cells were trypsinized, counted, and plated in 24-

well plates at a concentration of 50,000 cells per well. After 24 hours, cells were exposed to 

fresh medium containing a range of doses of chemotherapeutic drugs for 72 hours (DOX, 0-1 

µM; PAX, 0-5 nM; 5-FU, 0-6 mM). At the end of the treatment period, the MTT assay was 

used to quantitate residual viable cells. The stock solution (5 mg/ml) of MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (Cat # M5655, Sigma-Aldrich) was 

made in Dulbecco’s Phosphate Buffered Saline (Cat # 14190, Gibco/Invitrogen Life 

Technologies). The drug containing medium was replaced with a 10% solution of MTT in 

complete growth medium and cells were incubated at 37º C with 5% CO2 for four hours. The 

resulting pigment was solubilized with 0.1 N HCl in isopropanol and absorbance readings 

were taken at 570 nm (minus background absorbance at 690 nm). All the assays were 

performed in triplicate. The result of each treatment was expressed as a percentage of viable 

cells remaining relative to untreated control cells.  

 

Determination of Chemotherapeutic Drug Efficacy 
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 The half maximal inhibitory concentration (IC50) for each drug was estimated using 

GraphPad Prism Version 5.00 (GraphPad Software, San Diego, CA) [228].  Data points were 

fitted to sigmoidal dose-response curve with variable slope using Y= 100/[1+10^{(LogIC50-

X)*HillSlope)}]  where X is the logarithm of concentration and Y is the response (GraphPad 

Prism Version 5.00). All IC50 values expressed in this study reflect 72 hrs of drug treatment. 

 

DNMT3b Protein Analysis by Western Blotting  

 Cultured cells (corresponding to MDA-MB-453, Hs578T or BT549 breast cancer 

cells) and their derivative cell lines (transfected with pLVTHMDNMT3b or pLVTHMSCRAM) 

were lysed in 1x phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 8 mM 

Na2PO4, 2 mM KH2PO4, pH 7.4) containing 0.1 mM phenylmethanesulphonylfluoride 

(PMSF), 1 µg/ml pepstain A, 1 µg/ml leupeptin, 1 µg/ml aprotinin, 1 mM β-glycerol 

phosphate, 1 mM sodium orthovanadate, and 0.1% Triton X-100. Cell lysates were utilized 

for western analysis using standard methods. Protein concentrations were determined using 

the Bradford assay (BIO-RAD Quick Start Bradford, Cat. # 500-0205). Protein lysates (20 – 

40 µg) were resolved on 8% SDS-PAGE gels, followed by transfer onto polyvinylidene 

difluoride (PVDF) membranes (Cat. #162-0184, BIO-RAD Sequi-Blot PVDF, 0.2 µM pore 

size, Millipore; Billerica, MA).  PVDF membranes were blocked for 30 minutes in TBST (10 

mM Tris-Cl, pH 7.6, 150 nM NaCl, 1% Tween-20) containing 5% milk, and then incubated 

with either anti-DNMT3b mouse monoclonal antibody (Cat # IMG-184A Imgenex, San 

Diego, CA) diluted 1:5000 or anti-actin rabbit polyclonal antibody diluted 1:10,000 (Cat # 

sc-1616 Santa Cruz Biotechnology, Santa Cruz, CA) overnight in TBST containing 1% milk.  

Subsequently, membranes were washed with TBST 3 times for 5 minutes, and then incubated 
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with a sheep anti-mouse (1:5000, Cat # NA931 GE Healthcare; Piscataway, NJ) or donkey 

anti-rabbit (1:10,000, Cat # NA934 GE Healthcare; Piscataway, NJ) horseradish peroxidase-

conjugated secondary antibody in TBST containing 1% milk for 1 hour at room temperature.  

The membranes were washed with TBST 3 times for 10 minutes each, and bound primary 

antibody was detected using ECL-Plus substrate (GE Healthcare; Piscataway, NJ).Western 

blots were quantitated using the image analysis tools contained in Adobe Photoshop 6.0. The 

absolute intensity of individual protein bands was calculated from measures of total pixel 

count and mean pixel density. Levels of DNMT3b protein were expressed relative to actin. 

 

Expression Analysis of Methylation-Sensitive Genes 

  RNA was prepared from breast cancer cell lines, their transfected derivative cell lines 

(carrying pLVTHMDNMT3b or pLVTHMSCRAM), and cells following demethylating treatment 

(7 days treatment with 250 nM or 500 nM 5-aza).  Total RNA was isolated utilizing the 

method of Chomczynski  and  Sacchi [229], modified  to  utilize  TRIzol  Reagent  

(Invitrogen  Life  Technologies,  Carlsbad,  CA), according  to  the  manufacturer's  protocol. 

Nucleic acid samples were DNAse (Cat # M610A; Promega, Madison, WI) treated (0.02 

U/µl at 37ºC for 30 minutes), and purified using the Qiagen RNeasy mini-kit (Cat # 74104; 

Qiagen, Valencia, CA). Isolated RNA was quantified after extraction using a Nanodrop 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE). 

 Gene expression analysis was accomplished by real-time PCR utilizing an ABI 7500 

Real Time PCR System (Applied Biosystems, Foster City, CA). Total RNA samples (2 μg) 

were reversed transcribed using the High Capacity cDNA Reverse Transcription Kit (Part # 

4368814 Applied Biosystems) according to the manufacturer's protocol. Real-time primers 
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and probes for CEACAM6 (Hs00366002_m1), CST6 (Hs00154599_m1), ESR1 

(Hs00174860_m1), SCNN1A (Hs00168906_m1), and β-actin (Hs99999903_m1) were 

purchased from Applied Biosystems.  All real-time PCR reactions were performed in 

triplicate using TaqMan Universal PCR Master Mix (Cat # 4324018, Applied Biosystems) in 

20 µl volume (10 µl Taqman Universal PCR Master Mix, 1.0 µl TaqMan Real-time primers 

and probes, and 9 µl cDNA and nuclease-free water) and the following amplification 

conditions: 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. 

Gene expression levels were normalized using β-actin for each cell line and differences in 

gene expression were determined using the comparative Ct method described in the ABI 

Prism 7700 User Bulletin #2 (Applied Biosystems).  

 

Methylation-Specific PCR Analysis 

  Genomic DNA from 2x106 cultured cells was isolated using the Puregene DNA 

Purification Kit (Gentra Systems, Minneapolis, PA).  Bisulfite modification of genomic DNA 

was performed using a procedure adapted from Grunau et al [230]. Genomic DNA (3 μg) 

was digested with one unit of Xho I (New England Biolabs, Beverly, MA) overnight in 12 μl 

total volume and heat inactivated at 65°C for 20 minutes; 5 μl of digest was subjected to 

bisulfite modification. Briefly, approximately 1 μg of DNA in 45 μl of distilled water was 

denatured by adding 5 μl 3 M NaOH and incubating for 20 minutes at 42°C, followed by 

addition of 450 μl of sodium bisulfite solution (saturated sodium bisulfite, 10 mM 

hydroquinone, pH 5.0) and incubation at 55°C for 4 hours. Bisulfite-modified DNA (500 μl) 

was purified using the Wizard DNA Clean-Up kit (Promega, Madison, WI), reconstituted 

with 50 μl of 1 mM Tris-Cl (pH 8.0) and desulfonated by addition of 5.5 μl 3 M NaOH and 
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incubation at 37°C for 20 minutes. The solution was neutralized by adding 40 μl 7.5 M 

ammonium acetate and precipitated with 100% ethanol at -20°C for at least 30 minutes. The 

DNA pellet was washed with 70% ethanol, dried briefly, and resuspended in 20 μl 1 mM 

Tris-Cl (pH 8.0). Bisulfite-converted DNA was used to conduct methylation-specific PCR 

(MSP) using primers that were previously described or designed using Primer3 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and directed to specific segments of the 

promoter regions and exon 1 of CST6 [129, 150], ESR1 [150, 231], and SCNNIA. The MSP 

primer sequences and thermocycling conditions for CST6, ESR1, and SCNNIA genes are 

given in Table 2.1. PCR products were fractionated on 2% agarose gels and visualized by 

ethidium bromide staining.  

 

 Statistical Analysis 

 The values for the mean and standard error of the mean (S.E.M.) were calculated 

using the statistical function of Microsoft Excel 2007.  Statistical significance was 

determined using an unpaired t-test.  Error bars depicted in bar graphs and/or indicated in 

tables represent S.E.M. of three independent experiments.   

 
Methods Related to MicroRNA Experiments in Breast Cancer Cell Lines and Primary 
Breast Cancers 
 
Cell Lines and Growth Conditions 

Human  breast  cancer  cell  lines  BT20  (ATCC#  HTB19),  BT549  (HTB122),  

Hs578T (HTB126), MCF7 (HTB22), MDA-MB-231 (HTB26), MDA-MB-415 (HTB128), 

MDA-MB-435S (HTB129), MDA-MB-436 (HTB130), MDA-MB-453 (HTB131), MDA-

MB-468  (HTB132),  SKBR3  (HTB30),  and  ZR-75-1  (CRL-1500)  were  obtained  from  
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the Tissue Culture  Core  Facility  of  the  University  of  North  Carolina  Lineberger 

Comprehensive Cancer Center  (Chapel Hill, NC). Human breast cancer cell lines SUM102, 

SUM149, and SUM185 were a gift from the laboratories of Dr. Carolyn I. Sartor 

(Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC) and Dr. 

Stephen Ethier (Department of Pathology, Wayne State University School of Medicine, 

Detroit, MI). Human breast cancer cell line HCC1937 (CRL-2336) was a gift from the 

laboratory of Dr. William K. Kaufmann (Department of Pathology and Laboratory Medicine, 

UNC School of Medicine, Chapel Hill, NC). The normal breast epithelial cell line MCF12A 

(CRL-10782) was obtained from the ATCC (American Type Culture Collection, 

(http://www.atcc.org/). Cell lines were propagated in growth medium recommended by the 

ATCC, except for SUM102, SUM149, and SUM185 cells which were cultured in 1:1 

mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 (DMEM/F12, 

Gibco/Invitrogen Life Technologies, Carlsbad,  CA) medium supplemented with 10% horse 

serum (Gibco/Invitrogen Life Technologies), and 1% Antibiotic-Antimycotic 

(Gibco/Invitrogen Life Technologies). Growth medium was refreshed three times weekly 

unless otherwise specified for antagomir and pre-miR transfections. Cells were maintained at 

37°C and 5% CO2 (except for MDA-MB-468 which was propagated in 100% atmospheric 

air). 

 

Human Breast Tissue: Primary Breast Cancers and Normal Mammoplasty Tissue 

70 paraffin-embedded human primary breast tumors and 18 normal mammoplasty 

tissues were obtained from the paraffin archives of the UNC Lineberger Comprehensive 

Cancer Center at the University of North Carolina (Chapel Hill, NC) with the assistance of 

http://www.atcc.org/
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Dr. Chad A. Livasy (Carolinas Medical Center, Charlotte, NC). The primary breast cancers 

included 36 luminal A, 13 luminal B, 5 HER2+, and 16 basal-like tumors. Determination of 

molecular subtype was accomplished by immunohistochemistry for ER, PR, HER2, CK5/6, 

and EGFR. Protection of patient privacy and handling of specimens followed strict policies 

of the Institutional Review Board of the University of North Carolina. 

 

RNA Extraction from Cell Lines for Gene Expression Analysis 

Total RNA for gene expression analysis and miR expression analysis was isolated 

from breast cancer cell lines, MCF12A (normal mammary epithelial cell line), and 

transfected cell lines (antagomir or pre-miR transfected) utilizing the method of 

Chomczynski and Sacchi [229] modified  for  TRIzol  Reagent  (Invitrogen  Life  

Technologies,  Carlsbad,  CA), according  to  the  manufacturer's  protocol. Nucleic acid 

samples were DNAse (Cat # M610A; Promega, Madison, WI) treated (0.02U/µl at 37ºC for 

30 minutes), and purified using the Qiagen RNeasy mini-kit (Cat # 74104; Qiagen, Valencia, 

CA). Isolated RNA was quantified after extraction using a Nanodrop Spectrophotometer 

(NanoDrop Technologies, Wilmington, DE).  

 

RNA Isolation for Real Time Analysis from Tumors and Normal Mammoplasty 

Sections 

The paraffin blocks were blinded (in terms of molecular subtypes) before selection 

for analysis and up to 35 mg of unsectioned core samples were obtained from the 

Translational Pathology Laboratory Core Facility at Department of Pathology and Laboratory 

Medicine, UNC  School of Medicine, Chapel Hill. H&E slides from all the paraffin blocks 
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were initially analyzed to select the areas of the blocks to be cored. This selection for the 

cancer blocks ensured that the cores consisted of cancer tissue, similarly for normal breast 

tissue blocks, it ensured that the cores consisted of normal breast epithelium (and not 

stroma/fat). Total RNA was isolated from breast cancers and normal breast epithelium using 

Recover All™ Total Nucleic Acid Isolation Kit for FFPE according to the manufacturer’s 

instructions (Part # 1975, Applied Biosystems).  The cores were crushed and ground in liquid 

nitrogen, and then deparaffinized using a series of washes with slide brite (instead of xylene) 

and ethanol. Pulverized tissues were suspended in 1ml of slide brite, vortexed briefly to mix 

and heated for 3 min at 50°C to melt the paraffin. The samples were centrifuged to pellet the 

tissue; slide brite was removed without disturbing the pellet and the pellet was subjected to 

two washes with 100% ethanol. After discarding the ethanol after second wash, the samples 

were subjected to additional centrifugation to get rid of any additional ethanol. The pellet 

was air-dried before digesting it in digestion buffer and protease at 50°C for three hours. 

Isolation additive was added to the samples before vortexing and mixing with 100% ethanol. 

The samples were loaded on to filter cartridges placed in collection tubes and centrifuged to 

pass the mixture through the filter. The flow through was discarded. Wash 1 and wash 2/3 

provided in the kit were used to wash through the filter. The filter assembly was centrifuged 

for additional 30 seconds to remove residual fluid from the filter. DNAse mix (10X DNAse 

buffer, DNAse, and nuclease-free water) was added to the center of each filter cartridge and 

incubated for 30 min at room temperature followed by one wash with wash 1 and two washes 

with wash 2/3. The filter assembly was centrifuged at 10,000 g for an additional minute to 

remove residual fluid from the filter. The elution solution was pre-heated to 95°C and added 

to the center of the filter. After letting it sit for at least one minute, the RNA was eluted in 
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fresh collection tube by centrifuging at maximum speed for one minute. The elution steps 

were repeated one more time to maximize the yield. Nucleic acid samples were purified 

using the Qiagen RNeasy mini-kit (Cat # 74104; Qiagen, Valencia, CA). Isolated RNA was 

quantified after extraction using a Nanodrop Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE).  

 

MicroRNA Expression Analysis 

We identified candidate miRs as potential regulators of DNMT3b using the 

computational tools of target prediction programs and resources from publicly available 

databases, including Miranda  (http://www.microRNA.org/), TargetScan 

(http://www.targetscan.org/vert_42/), miRGen 

(http://www.diana.pcbi.upenn.edu/miRGen/v3/miRGen.html), PicTar (http://pictar.mdc-

berlin.de/), and miRBase (http://microrna.sanger.ac.uk/sequences/) computing for target 

predictions based on searches using Gene symbol DNMT3b (Entrez Gene ID 1789 and 

Ensembl Gene ID ENSG00000088305). Based on high stringency in-silico selection criteria 

that included PicTar score (indicative of HMM maximum likelihood fit), highly conserved 

miRs, and good mirSVR scores (indicative of seed-site pairing, site context, free-energy, and 

conservation), we identified 25 additional miRs that potentially target DNMT3b (Figure 

2.1). We prioritized the candidate miRs based on the available literature and/or their 

recognition as potential candidates by multiple target prediction programs (Figure 2.1). miRs 

that were differentially expressed among breast cancer cells in primary tumors [216] and cell 

lines [232] were considered for further analysis. Based upon this computational analysis, we 

http://www.microrna.org/
http://www.targetscan.org/vert_42/
http://www.diana.pcbi.upenn.edu/miRGen/v3/miRGen.html
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/
http://microrna.sanger.ac.uk/sequences/
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selected nine miRs for examination: miR-29a, miR-29b, miR-29c, miR-148a, miR-148b, 

miR-26a, miR-26b, miR-203, and miR-222 (Figure 2.1). 

miR expression analysis was accomplished by real-time PCR utilizing an ABI 7500 

Real Time PCR System (Applied Biosystems) according to TaqMan miRNA assay protocol 

(Applied Biosystems). Total RNA samples (10 ng) were reverse transcribed using the 

TaqMan MiRNA Reverse Transcription Kit (Part # 4366596 Applied Biosystems) and 

TaqMan miRNA specific primers (Applied Biosystems) according to the manufacturer's 

protocol. Real-time primers and probes for miR-29a (Assay ID 000412), miR-29b (Assay ID 

000413), miR-29c (Assay ID 000415), miR-148a (Assay ID 000470), miR-148b (Assay ID 

000471), miR-26a (Assay ID 000405), miR-26b (Assay ID 000407), miR-203 (Assay ID 

000507), miR-222 (Assay ID 002276), and RNU66 (Assay ID 001002) were purchased from 

Applied Biosystems. These assays specifically detect mature miRNAs (not pre-miRNAs). All 

real-time PCR reactions were performed in triplicate using TaqMan Universal PCR Master 

Mix (Cat # 4324018, Applied Biosystems) in 20 µl volume containing 10 µl TaqMan 

Universal PCR Master Mix, 1 μl of primers and probe mix of the miR-specific TaqMan 

MicroRNA Assay (Applied Biosystems), 1.33 μl of RT product, and 7.67 μl of nuclease free 

water and the following amplification conditions: 95°C for 10 minutes, 40 cycles of 95°C for 

15 seconds and 60°C for 1 minute. Relative expression levels for each miR were calculated 

based upon the expression of RNU66 and differences in gene expression were determined 

relative to MCF-12A using the comparative Ct method described in the ABI Prism 7700 User 

Bulletin #2 (Applied Biosystems). 

 

Gene Expression Analysis 
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Gene expression analysis was accomplished by real-time PCR utilizing an ABI 7500 

Real Time PCR System (Applied Biosystems). Total RNA samples (2 μg) were reverse 

transcribed using the High Capacity cDNA Reverse Transcription Kit (Part # 4368814 

Applied Biosystems) according to the manufacturer's protocol. Real-time primers and probes 

for CEACAM6 (Hs00366002_m1), CDH1 (Hs00170423_m1), CST6 (Hs00154599_m1), 

DNMT3b (Hs00171876_m1), ESR1 (Hs00174860_m1), GNA11 (Hs01588833_m1), MUC1 

(Hs00159357_m1), MYB (Hs00920554_m1), SCNN1A (Hs00168906_m1), TFF3 

(Hs00173625_m1), and β-actin (Hs99999903_m1) were purchased from Applied 

Biosystems.  All real-time PCR reactions were performed in triplicate using TaqMan 

Universal PCR Master Mix (Cat # 4324018, Applied Biosystems) in 20 µl volume (10 µl 

TaqMan Universal PCR Master Mix, 1.0 µl TaqMan Real-time primers and probes, and 9 µl 

cDNA and nuclease-free water) and the following amplification conditions: 95°C for 

10 minutes, 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Relative expression 

levels for each gene were calculated based upon the expression of  β-actin for each cell line 

and differences in gene expression were determined relative to MCF-12A  in the breast 

cancer cell lines and to normal breast  tissue from reduction mammoplasties for primary 

tumors using the comparative Ct method described in the ABI Prism 7700 User Bulletin #2 

(Applied Biosystems). 

 

DNMT3b Protein Expression in Breast Cancer Cell Lines 

  Cultured breast cancer cell lines, MCF12A (normal mammary epithelial cell line), 

and transfected cell lines (antagomir or pre-miR transfected) were lysed in phosphate 

buffered saline (137 mM NaCl, 2.7 mM KCl, 8 mM Na2PO4, 2 mM KH2PO4, pH 7.4) 
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containing 0.1 mM phenylmethanesulphonylfluoride, 1 µg/ml pepstain A, 1 µg/ml leupeptin, 

1 µg/ml aprotinin, 1 mM β-glycerol phosphate, 1 mM sodium orthovanadate, and 0.1% 

Triton X-100. Cell lysates were utilized for western analysis using standard methods as 

described above in the methods related to chemotherapy experiments.   

 

Breast Cancer Cell Line Transfection with Pre-miRs 

Hypermethylator cell lines Hs578T, HCC1937, and SUM185 were selected for pre-

miR transfection with miR-148b, miR-26b, and miR-29c. These cell lines exhibit DNMT 

hyperactivity, express DNMT3b at high levels [150], and have negligible levels of expression 

of miR-26b, miR-29c, and miR-148b. All pre-miR transfections were performed in triplicate. 

Pre-miR miRNA precursors (miR-148b, PM10264; miR-26b, PM12899; and miR-29c, 

PM10518) and standard control oligomers were obtained from Applied Biosystems. For 

optimization purposes, the Pre-miR miRNA Precursor Starter Kit (Applied Biosystems) was 

utilized for the reverse transfection procedure according to manufacturer’s protocol using 

siPORT NeoFX Transfection Agent (Part # AM4510, Applied Biosystems). Four 

concentrations of transfection reagent (9µl, 12 µl, 15 µl, and 18 µl) were tested to obtain 

optimum conditions for pre-miR transfections for each cell line. Transfection reagent was 

diluted to 300 µl with opti-MEM (Gibco/Invitrogen Life Technologies), incubated for 10 

minutes at room temperature, 24 µl of 6.25 nM of Pre-miR hsa-miR-1 miRNA precursor or 

Pre-miR negative control #1 was diluted to 300 µl with opti-MEM for final concentration of 

50 nM and gently mixed with diluted transfection agent before incubating for 10 minutes at 

room temperature. The transfection complexes were dispensed into 6-well culture plates, and 

nontransfected controls were set up in parallel. 2.4 x 105 cells were transferred in 2.4 ml of 
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growth medium per well and incubated at recommended growth conditions. After 24 hrs, the 

culture medium was replaced with fresh normal growth medium. Two days after transfection, 

total RNA was extracted from transfected and control cells. The expression level of PTK9 

mRNA (target of Pre-miR miR-1 miRNA precursor) was assessed by real-time PCR 

(Hs00702289_s1, Applied Biosystems) according to the manufacturer’s instructions. Optimal 

transfection was observed with 12 µl transfection reagent in each cell line, producing 75-90% 

reduction of PTK9 mRNA after transfection with Pre-miR miR-1. Hs578T, SUM185, and 

HCC1937 cells were transfected with pre-miR precursors for miR-148b, miR-26b, and miR-

29c employing the optimized conditions. After 48 hours, total RNA was harvested for real-

time PCR analysis for miR and gene expression analyses. In addition, transfected and control 

cells were lysed for western blot analysis (as described above). 

 

Breast Cancer Cell Line Transfection with Antagomirs 

Non-hypermethylator cell lines BT20, MDA-MB-415, and MDA-MB-468 were 

selected for antagomir transfection with miR-148b, miR-26b, and miR-29c. These cell lines 

have lower DNMT activity, express DNMT3b at low levels [150], and normal levels of 

expression of miR-26b, miR-29c, and miR-148b. All antagomir transfections were performed 

in triplicate. Antagomirs (miR-148b, AM10264; miR-26b, AM12899; and miR-29c, 

AM10518) and standard control oligomers were obtained from Applied Biosystems. For 

optimization of transfection conditions, the reverse transfection procedure was performed 

using four concentrations of transfection reagent (9µl, 12 µl, 15 µl, and 18 µl), as described 

for pre-miR transfections. Transfection reagent was diluted to 300 µl with opti-MEM 

(Gibco/Invitrogen Life Technologies), incubated for 10 minutes at room temperature, 24 µl 
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of 6.25 nM of Anti-miR let-7c miRNA inhibitor positive control or Anti-miR negative 

control #1 was diluted to 300 µl with opti-MEM for final concentration of 50 nM and gently 

mixed with diluted transfection agent before incubating for 10 minutes at room temperature. 

Levels of HMGA2 mRNA (target of Anti-miR let-7c miRNA inhibitor positive control) were 

assessed by real-time PCR (Hs00171569_m1, Applied Biosystems) after RNA extraction. 

Optimal transfection was observed with 12 µl transfection reagent in each cell line, 

producing 1.8-fold to 2.4-fold increases in HMGA2 mRNA after transfection with Anti-miR 

let-7c miRNA inhibitor. BT20, MDA-MB-415, and MDA-MB-468 cells were transfected 

with antagomirs for miR-148b, miR-26b, and miR-29c and after 48 hours, total RNA was 

harvested for real-time PCR analysis for miR and gene expression analyses. In addition, 

transfected and control cells were lysed for western blot analysis (as described above). 

 

Statistical Analysis 

The values for the mean and standard error of the mean (S.E.M.) were calculated 

using the statistical function of Microsoft Excel 2007.  Statistical significance was 

determined using an unpaired t-test (two-tailed).  Error bars depicted in bar graphs represent 

S.E.M. of 3-6 independent experiments.   

  



Table 2.1. Methylation-Specific PCR Primer Sequences and Thermocycling Conditions For 
CST6, ESR1 and SCNNIA Genes 

  

Gene Methylated Unmethylated Product 
Size 

PCR 
Conditions 

CST6 
 

F: TCGAGTTTCGTTTTAGTTTTAGGTC 
 
R: CATAACCGTCAATACCGTCG 

F :TGAGTTTTGTTTTAGTTTTAGGTT 
 
R: CCATAACCATCAATACCATCAA 

135 

 
U:TM = 55º 

38 cycles 
M:TM = 60º 

38 cycles 
 

ESR1 
 

F: GATACGGTTTGTATTTTGTTCGC 
 
R: CGAACGATTCAAAAACTCCAACT 

F : GGATATGGTTTGTATTTGGTTTGT 
 
R: ACAAACAATTCAAAAACTCCAACT 

123 

 
TM = 58º 
35 cycles 

 

SCNN1A 
 

 
F: TTTTTTAGTTTTTTTGTTTGTTTGC 
 
R: CTCACTATCGCGAAAACGAC 
 

 
F : TTAGTTTTTTTGTTTGTTTGTGT 
 
R: AAAATCAAAACCAAAAATTTTCCA 

127 TM = 55º 
38 cycles 
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miRs identified as potential candidates for regulating DNMT3b using 
computational tools and resources  (miRBase, miRGen, Pic Tar, TargetScan 
4.2 and miRanda) – 19b, 26a, 26b, 188, 203, 221, 222, 326, 330‐5p, 370, 
379, 409, 429, 519, 561, 590, 598, 618, 635, 682, 715, 765, 883b, 933, 

1253 (n=25)

miRs  that have not been analyzed 
in breast cancer or any other cancer, 
were excluded from analysis (n=13)

miRs identified by multiple 
algorithms – 26a, 26b, 203, 221, 
222, 326, 330‐5p, 370 (n=8)

miRs with differential 
expression among 
breast cancer cell

lines ‐
26a, 26b,
203, 222
(n=4)

miRs  examined: 26a, 
26b, 29a, 29b, 29c, 
148a, 148b, 203, and 

222 (n=9) 

miRs known to target  
DNMT3bmRNA: 29a, 

29b 29c, 148a and 148b  
(n=5)

66 
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Figure 2.1. miR Regulators of  DNMT3b mRNA. Schematic illustrating the selection and 

prioritization of miR regulators of DNMT3b for analysis. Several target prediction programs 

were utilized to predict miR interactions with DNMT3b. Criteria for filtering potential 

candidates are described in the schematic. In addition to selection of candidate miR 

regulators, known regulators of DNMT3b were identified from the literature. This selection 

strategy yielded nine miRs for examination: miR-29a, miR-29b, miR-29c, miR-148a, miR-

148b, miR-26a, miR-26b, miR-203, and miR-222.  

 
  



 

 

RESULTS 
 

 
Results Related to Chemotherapy Experiments 

Chemosensitivity of Wild-Type Breast Cancer Cell Lines 

 The IC50 for DOX, PAX, and 5-FU have been reported for the breast cancer cell lines 

used in this study [233-235]. However, these IC50 values vary widely from laboratory to 

laboratory and with specific experimental conditions. Hence, we ascertained the IC50 for the 

drugs of interest and in the selected cell lines for the employed experimental conditions to 

establish a solid baseline for comparison. We found the MDA-MB-453 cells to be most 

sensitive to these chemotherapeutic drugs and the Hs578T cells to be most resistant (Table 

3.1). In response to DOX, MDA-MB-453 and BT549 cells exhibited similar levels of 

sensitivity, whereas Hs578T cells were relatively more resistant, displaying >2-fold higher 

IC50 compared to the other cell lines (2.7-fold greater than MDA-MB-453, 2.3-fold greater 

than BT549). Hs578T and BT549 were more resistant to PAX than MDA-MB-453 cells (IC50 

5.2-fold and 4-fold higher than MDA-MB-453). Hs578T cells displayed a 1.3-fold higher 

IC50 in response to PAX compared to BT549 cells. In response to 5-FU, BT549 and Hs578T 

cells display similar levels of resistance with 1.4-fold and 1.5-fold higher IC50 compared to 

MDA-MB-453 cells, respectively. 

 

Demethylating Treatment Sensitizes Hypermethylator Breast Cancer Cells to 

Chemotherapeutic Drugs 
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 Hypermethylator breast cancer cell lines are characterized by high rates of concurrent 

methylation-dependent silencing of multiple methylation-sensitive genes (including 

CEACAM6, CST6, ESR1, and SCNN1A) [150]. Expression of epigenetically-regulated genes 

following demethylating treatment with 5-aza was monitored to ensure that the conditions 

employed produced a biological effect. We observed re-expression of CEACAM6, CST6, 

ESR1, and SCNN1A in all three cell lines following 250 nM and 500 nM 5-aza exposure for 7 

days. The re-expression of these methylation-sensitive genes was robust and statistically 

significant for all four genes in all cell lines with 500 nM 5-aza exposure. In contrast, 250 

nM 5-aza exposure resulted in a more modest, yet statistically significant re-expression of all 

genes in Hs578T cells and statistically significant re-expression of all genes except 

CEACAM6 in MDA-MB-453 and BT549 cells. Following 250 nM 5-aza exposure, the 

MDA-MB-453 cells showed the greatest increase in CST6 expression (8-fold) followed by 

ESR1 (7.9-fold), SCNNIA (2.9-fold), and CEACAM6 (2.2-fold) (Figure 3.1a). In BT549 

cells, we observed the highest increase in SCNN1A expression (139-fold), followed by 

CEACAM6 (23-fold), CST6 (16-fold), and ESR1 (4-fold) (Figure 3.1a). Hs578T cells 

showed the greatest increase in expression of SCNN1A (118-fold) followed by ESR1 (70-

fold), CST6 (54-fold), and CEACAM6 (23-fold) (Figure 3.1a). Following 500 nM 5-aza 

exposure, the MDA-MB-453 cells demonstrated highest increase in CST6 expression (1610-

fold) followed by CEACAM6 (210-fold), SCNNIA (186-fold), and ESR1 (168-fold) (Figure 

3.1b). In BT549 cells, we observed the highest increase in SCNN1A expression (1370-fold) 

followed by CEACAM6 (559-fold), CST6 (77-fold), and ESR1 (34-fold) (Figure 3.1b). 

Hs578T cells exhibited highest increase in expression of CST6 (1099-fold) followed by 

SCNN1A (800-fold), ESR1 (488-fold) and CEACAM6 (449-fold) (Figure 3.1b). These results 
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demonstrate that the conditions for demethylating treatment utilized produced significant 

alterations in gene expression profile, including re-expression of these methylation-sensitive 

genes in hypermethylator cells. 

 Following pretreatment of the breast cancer cell lines with 5-aza, we observed no 

discernible changes in cell morphology or cell proliferation rate compared to the untreated 

controls. While pretreatment with 5-aza clearly produced alterations in gene expression, no 

evidence of 5-aza related toxicity was observed in this study (with either 250 nM or 500 nM 

5-aza). To determine if demethylating treatment sensitizes hypermethylator cells to cytotoxic 

chemotherapy, we compared cell kill after 5-aza pretreatment to that in control cells. The 

results show that 5-aza pretreatment sensitizes the hypermethylator breast cancer cells to 

DOX, PAX, and 5-FU, and that the improved sensitivity is a function of dose and duration of 

exposure to 5-aza. Pretreatment of cells with 250 nM 5-aza or 500 nM 5-aza for 3 days did 

not increase the sensitivity of breast cancer cells to DOX. Likewise, pretreatment with 250 

nM 5-aza for 7 days did not increase sensitivity of MDA-MB-453 and Hs578T cells to any of 

the drugs evaluated (Table 3.1). However, 7 days pretreatment with 250 nM 5-aza sensitized 

BT549 cells, reducing the IC50 for DOX by 32% (Figure 3.2a), for PAX by 24%, and for 5-

FU by 46% (Table 3.1).  In contrast, pretreatment with 500 nM 5-aza for 7 days significantly 

improved the sensitivity of each breast cancer cell line to DOX, PAX, and 5-FU 

(representative dose-response curves are shown in Figure 3.2). Increased sensitivity 

following pretreatment with 500 nM 5-aza observed with each cell line (and 250 nM 5-aza in 

BT549) was detected at all the employed doses of three drugs (Table 3.1). MDA-MB-453 

cells showed reduction in IC50 for DOX (0.086 µM to 0.034 µM; 60% reduction), PAX 

(0.497 nM to 0.311 nM; 37%), and 5-FU (0.817 mM to 0.065 mM; 90%); BT549 cells 
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demonstrated reduction in IC50 for DOX (0.099 µM to 0.052 µM; 47% reduction), PAX 

(1.974 nM to 1.015 nM; 48%), and 5-FU (1.183 mM to 0.472 mM; 60%); Hs578T cells also 

exhibited a reduction in IC50 for DOX (0.230 µM to 0.110 µM; 52% reduction, PAX (2.605 

nM to 1.466 nM; 43%), and 5-FU (1.211 mM to 0.0.371 mM; 69%). The greatest reduction 

in IC50 (reflecting greatest improvement of sensitivity, with 5-aza treatment) was observed 

with 5-FU (60-92%), followed by DOX (47-60%), and PAX (37-48%) (Table 3.1).  

 Increased drug sensitivity following pretreatment with 250 nM 5-aza was observed 

only in BT549 cells. This responsiveness appears to correlate with the levels of DNMT3b 

expressed in BT549 cells compared to MDA-MB-453 and Hs578T cells. Previous studies 

established that among these breast cancer cell lines, MDA-MB-453 cells exhibit the highest 

levels of DNMT3b protein and BT549 cells express the lowest levels [150]. These 

observations suggest that 250 nM 5-aza was sufficient to target the comparatively lower 

levels of DNMT3b seen in BT549 cells (Figure 3.2a), but was insufficient to exert 

significant effects in MDA-MB-453 and Hs578T cells with higher DNMT3b levels (Figure 

3.2b-c; Table 3.1).  

 

DNMT3b Knockdown Sensitizes Hypermethylator Breast Cancer Cell Lines to 

Chemotherapeutic Drugs 

 DNMT3b protein levels in wild-type breast cancer cell lines and transfected cell lines 

(transfected with pLVTHMDNMT3b or pLVTHMSCRAM) were evaluated by western blot 

analyses. Significant levels of DNMT3b protein were detected for each of the wild-type 

breast cancer cell lines (Figure 3.3a). MDA-MB-453 cell lines expressed the highest levels 

of DNMT3b protein followed by Hs578T cells, and BT549 cells expressed lowest levels of 
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DNMT3b protein (Figure 3.3b). Transfection with pLVTHMSCRAM had no effect on 

DNMT3b expression levels, in contrast, each of the DNMT3b KD cell lines demonstrated 

significant alteration of DNMT3b protein levels, reflecting >90% knockdown (Figure 3.3c). 

Subsequently, wild-type breast cancer cell lines, scrambled controls, and DNMT3b KD cells 

were examined for expression of methylation-sensitive genes (CEACAM6, CST6, ESR, and 

SCNN1A). Gene expression levels for each of these genes were low in the wild-type breast 

cancer cell lines and in scrambled-control cell lines. However, each of these methylation-

sensitive genes was found to be re-expressed in DNMT3b KD cell lines (Figure 3.4). The 

MDA-MB-453 DNMT3b KD cells had statistically significant re-expression of SCNN1A (6-

fold), and ESR1 (6-fold) (Figure 3.4a). In BT549 DNMT3b KD cells, we observed 

statistically significant re-expression of CST6 (13-fold), ESR1 (6-fold), and SCNN1A (4-fold) 

(Figure 3.4b). Hs578T DNMT3b KD cells exhibited statistically significant re-expression of 

CST6 (310-fold), ESR1 (261-fold), SCNN1A (30-fold), and CEACAM6 (17-fold) (Figure 

3.4c). Methylation-specific PCR analysis showed changes in the methylation status of select 

methylation-sensitive genes after knocking down expression of DNMT3b. We observed that 

MDA-MB-453 cells contain only methylated alleles for CST6, ESR1, and SCNN1A (Figure 

3.5), whereas MDA-MB-453 cells after DNMT3b knockdown contain both methylated and 

unmethylated alleles (Figure 3.5). Comparable results were seen in Hs578T cells and 

Hs578T cells after DNMT3b knockdown (Figure 3.5). BT549 cells and BT549 cells after 

DNMT3b knockdown showed similar results for CST6 (Figure 3.5) and ESR1. These 

observations combine to suggest that DNMT3b KD in these breast cancer cell lines partially 

or completely corrects the hypermethylation defect resulting in alteration of gene-specific 

promoter methylation and re-expression of methylation-sensitive genes. 
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 To evaluate the effects of DNMT3b KD on the sensitivity of breast cancer cells to 

standard drug regimens, we compared the response to chemotherapeutics in wild-type 

hypermethylator breast tumor cells to the response in cells after RNAi-mediated knockdown 

of DNMT3b (Figure 3.6). Scrambled control cell lines exhibited IC50 values for each of the 

drugs tested that were comparable to values for the wild-type breast cancer cell lines (Table 

3.1). In MDA-MB-453 DNMT3b KD cells, we observed 44% reduction in DOX IC50 (0.086 

µM to 0.048 µM), 24% reduction for PAX (0.497 nM to 0.376 nM) (Figure 3.6b), and 82% 

reduction for 5-FU (0.817 mM to 0.145 mM) (Table 3.1). In BT549 DNMT3b KD cells, we 

observed 13% reduction in DOX IC50 (0.099 µM to 0.086 µM) (Figure 3.6a), 16% reduction 

for PAX (1.974 nM to 1.660 nM), and 33% reduction for 5-FU (1.183 mM to 0.791 mM) 

(Table 3.1). Hs578T DNMT3b KD cells exhibited 32% reduction in IC50 for DOX (0.230 

µM to 0.155 µM), 29% reduction for PAX (2.605 nM to 1.839 nM), and 53% reduction for 

5-FU (1.211 mM to 0.562 mM) (Table 3.1, Figure 3.6c). Overall, the greatest reduction in 

IC50 was observed with 5-FU (33-82%), followed by DOX (13-44%), and PAX (16-29%) 

(Table 3.1). These results demonstrate that knocking down DNMT3b in hypermethylator 

breast cancer cells increases the effectiveness of chemotherapeutic drugs.  

 

5-Aza Enhances Chemosensitivity in Breast Cancer Cell Lines After DNMT3b 

Knockdown 

 To analyze the combined effects of DNMT3b KD and demethylating treatment, we 

subjected the DNMT3b KD cell lines to 250 nM and 500 nM 5-aza for 7 days and then 

evaluated cell kill after exposure to chemotherapeutic drugs (Figure 3.7). We observed 

increased sensitivity of DNMT3b KD cells to DOX, PAX, 5-FU following 500 nM 5-aza 
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pretreatment for 7 days (Table 3.1). However, 250 nM 5-aza pretreatment for 7 days led to 

increased sensitivity to chemotherapeutics only in BT549 DNMT3b KD cells (Table 3.1, 

Figure 3.7a). MDA-MB-453 DNMT3b KD and Hs578T DNMT3b KD cells exhibited 

comparable IC50s with/without pre-treatment with 250 nM 5-aza for 7 days. In MDA-MB-453 

DNMT3b KD cells, we observed 59% reduction in DOX IC50 (0.086 µM to 0.035 µM), 37% 

reduction for PAX (0.497 nM to 0.313 nM), and 92% reduction for 5-FU (0.817 mM to 

0.067 mM) (Figure 3.7c) post-5-aza exposure (Table 3.1). In BT549 DNMT3b KD cells, we 

observed 32% reduction for DOX IC50 (0.065 µM to 0.086 µM), 23% reduction in PAX 

(1.974 nM to 1.527 nM), and 46% reduction for 5-FU (1.183 mM to 0.632 mM) after 250 

nM 5-aza exposure for 7 days. However, with 500 nM 5-aza exposure for 7 days, BT549 

DNMT3b KD cells demonstrated 45% reduction in DOX IC50 (0.099 µM to 0.054 µM) 

(Figure 3.7a), 45% reduction for PAX (1.974 nM to 1.082 nM), and 60% reduction for 5-FU 

(1.183 mM to 0.470 mM) (Table 3.1). In Hs578T DNMT3b KD cells, there was a 51% 

reduction in IC50 for DOX (0.230 µM to 0.111 µM), 53% reduction for PAX (2.605 nM to 

0.573 nM) (Figure 3.7b), and 70% reduction for 5-FU (1.211 mM to 0.359 mM) drugs after 

500 nM 5-aza pre-treatment (Table 3.1). These results demonstrate that pre-treatment of 

DNMT3b KD breast cancer cells with demethylating agents increases the effectiveness of 

chemotherapeutic drugs. Interestingly, the increased sensitivity observed after knocking 

down DNMT3b in these cell lines and further treating them with 500 nM 5-aza (and 250 nM 

5-aza in BT549 cells) was comparable to the increased sensitivity seen in wild-type cells 

after demethylating treatment alone (representative examples are shown in Figure 3.8). This 

effect may reflect the targeting of other DNA methyltransferases (DNMT1 and/or DNMT3a) 
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by 5-aza. In addition, this effect could be related to 5-aza-mediated inhibition of residual 

DNMT3b activity.  

 
Results Related to MicroRNA Experiments in Breast Cancer Cell Lines 

Hypermethylator Breast Cancer Cell Lines Express Diminished Levels of Regulatory 

miRs 

  Previous investigations identified a hypermethylation defect in a subset of breast 

cancer cell lines [150]. Hypermethylator cell lines display DNMT hyperactivity and 

overexpression of DNMT3b, in contrast to non-hypermethylator cell lines [150]. In this 

study, we investigated possible molecular mechanisms governing DNMT3b overexpression 

in hypermethylator cell lines, with a focus on miR-mediated regulation of DNMT3b. Hence, 

we examined the levels of expression of select miRs that are known or predicted to regulate 

DNMT3b (miR-26a, miR-26b, miR-29a, miR-29b, miR-29c, miR-148a, miR-148b, miR-203, 

and miR-222) among breast cancer cell lines that differentially express DNMT3b. Ten of 

these cell lines express the hypermethylation defect (BT-549, HS578T, HCC1937, MDA-

MB-231, MDA-MB-435S, MDA-MB-436, MDA-MB-453, SUM102, SUM149, and 

SUM185) and six are non-hypermethylators (BT-20, MCF-7, MDA-MB-415, MDA-MB-

468, SK-BR-3, and ZR-75-1) ([150, 236] and unpublished observations). Differential levels 

of miR expression were observed for six of the nine miRs evaluated, including miR-26a, 

miR-26b, miR-29c, miR-148a, miR-148b, and miR-203 (Figure 3.9). While there was 

variability in expression among the miRs examined, in general the hypermethylator cell lines 

expressed diminished levels compared to the non- hypermethylator cell lines (Figure 3.10a-

f). miR-29a, miR-29b, and miR-222 did not display the pattern of expression observed with 

the majority of miRs. miR-29a and miR-29b were expressed at similar levels among breast 
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cancer cell lines irrespective of their methylation status. The lack of differential expression of 

these miRs is evident from a comparison of average levels in hypermethylator and non-

hypermethylator cell lines (Figure 3.9). In contrast to the pattern observed with other miRs, 

the average expression of miR-222 among hypermethylator cell lines was higher than in non-

hypermethylator cell lines. This is consistent with the suggestion that miR-222 functions as 

an oncogenic miR [237, 238]. 

The average expression of miR-148a, miR-148b, miR-26a, and miR-26b among 

hypermethylator cell lines was significantly diminished compared to the average expression 

of these miRs among non-hypermethylator cell lines (p<0.05) (Figure 3.9). 10/10 (100%) of 

hypermethylator cell lines expressed low levels of miR-148b, and 5/6 (83%) of non-

hypermethylator cell lines express higher levels of miR-148b (except BT20; Figure 3.10c).  

Likewise, miR-148a is expressed at low levels in 9/10 (90%) of hypermethylator cell lines 

(except MDA-MB-453) and the majority of non-hypermethylator cell lines (5/6, 83%) 

express miR-148a at higher levels (except MCF7; Figure 3.10b).  8/10 (80%) of 

hypermethylator cell lines display low levels of miR-26a expression (except Hs578T and 

MDA-MB-453), whereas all non-hypermethylator cell lines (6/6, 100%) express higher 

levels of miR-26a (Figure 3.10d). Similarly, 9/10 (90%) hypermethylator cell lines express 

low levels of miR-26b (except MDA-MB-453), and 5/6 (83%) of non-hypermethylator cell 

lines express higher levels of miR-26b (except BT20; Figure 3.10e). Differences in average 

expression of miR-29c and miR-203 in hypermethylator cell lines versus non-

hypermethylator cell lines were not statistically significant (Figure 3.9), although there was a 

distinct trend towards lower expression in the hypermethylator cell lines (p=0.15 and 

p=0.19). 6/10 (60%) of hypermethylator cell lines expressed low levels of miR-29c (except 
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MDA-MB-231, MDA-MB-436, MDA-MB-453, and BT549) and 5/6 (83%) of non-

hypermethylator cell lines demonstrated higher levels of miR-29c (except MCF7; Figure 

3.10a). The expression of miR-203 was low in both hypermethylator and non-

hypermethylator cell lines, but with differential expression levels (Figure 3.10f). 7/10 (70%) 

of hypermethylator cell lines expressed miR-203 at low or undetectable levels (except MDA-

MB-453, SUM149, and HCC1937), while 5/6 (83%) of non-hypermethylator cell lines 

expressed miR-203 at easily detectable levels (except SK-BR-3).   

 

Diminished Expression of miR-29c, miR-148a, miR-148b, miR-26a, miR-26b, and miR-

203 Predict Hypermethylator Status Among Breast Cancer Cell Lines 

  We observed differential expression of miR-26a, miR-26b, miR-29c, miR-148a, miR-

148b, and miR-203 among breast cancer cell lines with strong trends towards diminished 

expression in hypermethylators compared to non-hypermethylator cell lines (Figure 3.9). To 

evaluate the value of individual miR expression levels in the prediction of the methylation 

status of a given breast cancer cell line, a Bayesian analysis was performed. Threshold values 

were determined for each of the differentially expressed miRs using correct assignments 

(CA) as a guiding principle. These threshold values are indicated in Figure 3.10a-f. The 

expression levels of five miRs emerged as excellent individual predictors of methylator status 

among breast cancer cell lines: miR-148b (CA=94%), miR-26b (CA=94%), miR-148a (CA= 

88%), miR-26a (CA=88%), and miR-203 (CA=81%) (Table 3.2). These miRs individually 

displayed excellent sensitivity (range: 80-100%) and specificity (range: 83-100%), as well as 

excellent positive predictive value (PPV range: 89-100%) and negative predictive value 

(NPV range: 71-100%) (Table 3.2).  The best threshold value for miR-29c produced 
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CA=69% (sensitivity=60%, specificity=83%, PPV=86%, and NPV=56%) (Table 3.2). The 

remaining miRs displayed poor predictive value for determination of methylation status of 

breast cancer cell lines (Table 3.2).  

 

miR Expression Patterns and miR Scores for Hypermethylator and Non-

Hypermethylator Breast Cancer Cell Lines 

  Six regulatory miRs were chosen for further analysis based on excellent 

characteristics related to prediction of methylation status (CA, sensitivity, specificity, PPV, 

and NPV) among hypermethylator and non-hypermethylator breast cancer cell lines, 

including miR-29c, miR-148a, miR-148b, miR-26a, miR-26b, and miR-203. miR scores 

were generated for each breast cancer cell line, reflecting the number of miRs with 

diminished expression. Hypermethylator breast cancer cell lines frequently express 

diminished levels of this panel of miRs. 9/10 (90%) of hypermethylator cell lines express >5 

miRs at diminished levels (Figure 3.11a), resulting in higher miR scores. The exception to 

this is MDA-MB-453, which expresses low levels of miR-148b only (Figure 3.10c). Hence, 

MDA-MB-453 has a low miR score reflecting higher levels of expression of the majority of 

miRs examined (Figure 3.11a). Three hypermethylator cell lines (MDA-MB-435s, SUM102, 

and SUM185) express diminished levels of all six miRs examined (Figure 3.11a). In contrast 

to the hypermethylator cell lines, non-hypermethylator cell lines typically express the 

majority of this panel of miRs at higher levels. 5/6 (83%) of non-hypermethylator cell lines 

express ≥5 miRs at higher levels (Figure 3.11b), resulting in lower miR scores. The 

exception was MCF7, which expresses low levels of miR-29c and miR-148a (Figure 3.10a-

b). Three non-hypermethylator cell lines (MDA-MB-415, MDA-MB-468, and ZR-75-1) 
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expressed higher levels of all six miRs in this panel (Figure 3.11b). Hypermethylator breast 

cancer cell lines exhibit an average miR score of 4.9 ± 0.46, whereas, non-hypermethylator 

cell lines exhibit an average miR score of 0.67 ± 0.33 (p<0.0001).  

 

miR Score Correlates With Gene Expression Score and Promoter Methylation Score    

A linear correlation analysis was performed to determine if miR score significantly 

associates with methylation score and expression score for each breast cancer cell line. 

Methylation score and expression score reflect the combined relative promoter methylation 

status and the combined relative gene expression status for methylation-sensitive biomarker 

genes associated with the hypermethylation defect (CEACAM6, CDH1, CST6, ESR1, 

GNA11, MUC1, MYB, TFF3, and SCNNIA) [150]. A strong inverse correlation (r=-0.66, 

p=0.0056) was observed between miR score and gene expression score (Figure 3.12a). 

Breast cancer cell lines that exhibit diminished expression of multiple regulatory miRs (high 

miR score) tend to express low levels of methylation-sensitive genes (gene expression score) 

and cell lines that express higher levels of regulatory miRs (low miR score) tend to express 

methylation-sensitive genes at higher levels (Figure 3.12a). A strong correlation (r=0.72, 

p=0.002) was observed between miR score and methylation score (Figure 3.12b).  Breast 

cancer cell lines that exhibit diminished expression of multiple regulatory miRs (high miR 

score) exhibit higher methylation scores and cell lines that express higher levels of regulatory 

miRs (low miR score) tend to have lower methylation scores (Figure 3.12b). Previous 

studies demonstrated significant relationships between overexpression of DNMT3b and gene 

expression scores and methylation scores for methylation-sensitive genes [150].  The current 

results strongly support the suggestion that loss of miR expression may account for the 
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DNMT3b-mediated hypermethylation defect among breast cancer cell lines that is 

characterized by methylation-dependent loss expression of methylation-sensitive biomarker 

genes. 

 

Co-regulation of miR Expression in Breast Cancer Cell Lines 

  To determine if miRs that regulate DNMT3b are independently regulated or co-

regulated at the level of expression, a linear correlation analysis was performed to examine 

patterns of miR expression among hypermethylator and non-hypermethylator breast cancer 

cell lines. Statistically significant linear relationships were observed between the levels of 

expression of several miRs (Figure 3.13a-f): miR-26a and miR-26b (r=0.92, p<0.0001), 

miR-148a and miR-26a (r=0.88, p<0.0001), miR-148a and miR-26b (r=0.85, p<0.0001), 

miR-29c and miR-148a (r=0.81, p=0.0002), miR-148a and miR-148b (r=0.83, p<0.0001), 

and miR-29c and miR-148b (r=0.92, p<0.0001). In addition, significant linear relationships 

were observed for expression of miR-26a and miR-203 (r=0.71, p=0.0019), miR26b and 

miR-203 (r=0.68, p=0.038), miR-26a and miR-29c (r=0.60, p=0.014), miR-148a and miR-

203 (r=0.60, p=0.014), and miR-26b and miR-148b (r=0.5, p=0.04).  No significant linear 

relationships were observed for expression of miR-26b and miR-29c, miR-148c and miR-

203, or miR-29c and miR-203. Combined, these observations suggest that several miRs that 

function in the regulation of DNMT3b are co-regulated. 

 

Changes in miR Expression Levels in Hypermethylator and Non-Hypermethylator 

Breast Cancer Cell Lines after Pre-miR and Antagomir Transfection  
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To determine the mechanistic role of specific miRs in the dysregulation of DNMT3b 

among breast cancer cell lines, the complementary approach of modulating miR levels by 

transfection of pre-miR precursors (to enforce miR expression in cells lacking a given miR) 

or transfection of antagomirs (to knock down miR expression in cells that express normal 

levels of a given miR) was employed. Transfection of hypermethylator cell lines Hs578T, 

HCC1937, and SUM185 with pre-miR precursors for miR-148b, miR-26b, and miR-29c 

resulted in restoration of expression of these miRs (Figure 3.14a-c). Following pre-miR 

transfection, Hs578T cells displayed 210-fold, 160-fold, and 240-fold increased levels of 

miR-148b, miR-26b, and miR-29c (Figure 3.14a).  Likewise, pre-miR transfection produced 

430-fold, 2,100-fold, and 580-fold increases in miR-148b, miR-26b, and miR-29c levels in 

HCC1937 cells (Figure 3.14b), and 54,000-fold, 4,700-fold, and 2,200-fold increases in 

miR-148b, miR-26b, and miR-29c levels in SUM185 cells (Figure 3.14c). Non-target 

control pre-miR precursors did not produce any significant increase in miR-148b, miR-26b, 

and miR-29c levels in any of these cell lines (Figure 3.14a-c). 

Transfection of non-hypermethylator cell lines BT20, MDA-MB-415, and MDA-MB-

468 with antagomirs directed against miR-148b, miR-26b, and miR-29c resulted in a 

significant knockdown of miR-148b, miR-26b, and miR-29c levels (Figure 3.15a-c). 

Antagomir transfection of BT20 cells resulted in reduction of miR-148b, miR-26b, and miR-

29c levels by 76%, 69%, and 73%, respectively (Figure 3.15a). Likewise, antagomir 

transfection of MDA-MB-415 cells produced 76%, 49%, and 48% reductions in miR-148b, 

miR-26b, and miR-29c levels (Figure 3.15b), and antagomir transfection of MDA-MB-468 

cells resulted in 72%, 69%, and 35% reduction in miR-148b, miR-26b, and miR-29c levels 
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(Figure 3.15c).  Non-target control antagomirs did not produce significant alterations in the 

level of miR-148b, miR-26b, and miR-29c in any of these cell lines (Figure 3.15a-c). 

 

Perturbation of Regulatory miR Expression Alters DNMT3b Levels in 

Hypermethylator and Non-Hypermethylator Breast Cancer Cell Lines 

Enforced expression of miR-148b, miR-26b, and miR-29c in hypermethylator cell 

lines Hs578T, HCC1937, and SUM185 resulted in statistically significant reduction in 

DNMT3b expression levels (Figure 3.16). In Hs578T cells, miR-29c expression reduced 

DNMT3b levels by 73%, and expression of miR-148b and miR-26b produced 62% reduction 

in DNMT3b levels (Figure 3.16). Similar results were obtained in HCC1937 cells with 58%-

64% reductions of DNMT3b levels in response to enforced expression of miR-148b, miR-

26b, and miR-29c (Figure 3.16). The most dramatic effect of enforced pre-miR expression 

on DNMT3b levels was observed in SUM185 cells.  Expression of miR-29c in SUM185 cells 

resulted in an 88% decrease in DNMT3b mRNA (Figure 3.16).  Likewise, expression of 

miR-148b and miR-26b in SUM185 cells produced 80% and 82% reduction in DNMT3b 

levels (Figure 3.16). Transfection of non-target control pre-miR precursors did not produce 

any significant change in DNMT3b levels in Hs578T, HCC1937, and SUM185 cells (Figure 

3.16). Western analysis of cell lysates from Hs578T, HCC1937, and SUM185 cells following 

pre-miR transfection failed to detect significant alterations in DNMT3b protein levels, 

probably due to the transient nature of this assay system. Likewise, assessment of 

methylation-sensitive gene expression (for CEACAM6, CST6, and SCNN1A) in Hs578T cells 

after enforced expression of miR-148b, miR-26b, and miR-29c did not reveal changes in 
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levels of expression compared to control cells, consistent with the lack of change in 

DNMT3b protein levels.  

Antagomir-mediated knockdown of miR-148b, miR-26b, and miR-29c in non-

hypermethylator cell lines MDA-MB-468, MDA-MB-415, and BT20 resulted in statistically 

significant increases in DNMT3b expression levels (Figure 3.17). The most dramatic effects 

were observed in MDA-MB-468 cells, where miR-148b knockdown produced a 3.2-fold 

increase in DNMT3b mRNA, whereas knockdown of miR-26b and miR-29c resulted in 2-

fold and 2.6-fold increases in DNMT3b levels, respectively (Figure 3.17). Comparable 

increases in DNMT3b expression levels (1.8-fold to 2-fold) were observed in BT20 cells 

following knockdown of miR-148b, miR-26b, and miR-29c (Figure 3.17).  More modest 

increases of DNMT3b levels (1.2-fold to 1.4-fold) were observed in MDA-MB-415 cells after 

knockdown of miR-148b, miR-26b, and miR-29c; though modest, these alterations were 

statistically significant.  Transfection of non-target control antagomirs did not produce any 

significant change in DNMT3b levels in these cell lines (Figure 3.17). Similar to the results 

obtained with pre-miR-transfected hypermethylator cell lines, western analysis of cell lysates 

from MDA-MB-468, MDA-MB-415, and BT20 cells following antagomir transfection failed 

to detect significant alterations in DNMT3b protein levels. Further, assessment of 

methylation-sensitive gene expression (for CEACAM6, CST6, and SCNN1A) in MDA-MB-

468 cells after antagomir-mediated knockdown of miR-148b, miR-26b, and miR-29c did not 

reveal changes in levels of expression compared to control cells, consistent with the lack of 

change in DNMT3b protein levels in this short-term assay system. 

 

Results  Related to MicroRNA Analysis in Primary Breast Cancers 
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Hypermethylator Breast Cancer Cells Express Diminished Levels of Regulatory miRs 

We utilized a cohort of 70 primary human breast cancers of known molecular subtype 

(36 luminal A, 13 luminal B, 5 Her2+, 16 basal-like) and 18 normal mammoplasty tissues to 

analyze expression of microRNAs that contribute to regulation of DNMT3b (miR-26a, miR-

26b, miR-29a, miR-29b, miR-29c, miR-148a, miR-148b, miR-203, and miR-222). Average 

miR expression in each of the intrinsic subtypes of breast cancer is shown in the Table 3.3. 

Significantly reduced average expression of miR-29c distinguished basal-like breast cancers 

from other molecular subtypes (Table 3.3). The average expression of miR-26a was also 

reduced in basal-like breast cancers compared to its expression in other subtypes of primary 

breast cancers, but the difference was not statistically significant (Table 3.3).  

The methylation status of a subset of 33 cancers (6 luminal A, 6 luminal B, 5 HER2+, 

and 16 basal-like cancers) was established through examination of methylation-sensitive 

biomarker gene expression. Individual cancers were classified as hypermethylators when 

their expression signature reflected diminished levels of ≥ 7 biomarker genes. Among this 

cohort of 33 cancers, 12 (36%) were classified as hypermethylators (Figure 3.18). 9/12 

(75%) hypermethylator cancers corresponded to basal-like molecular subtype, and this 

hypermethylator group contains 56% (9/16) of all basal-like cancers examined (Figure 3.19). 

The remaining hypermethylator cancers corresponded to the luminal A (n=1), luminal B 

(n=1), and HER2+ (n=1) subtypes. This finding is consistent with the observation of a large 

degree of correspondence and overlap between basal-like cancers and hypermethylator breast 

cancers. The miR expression status within this subset of 33 cancers is shown in Figure 3.20.    

We compared the expression patterns of the miRs between the two subsets of basal-

like breast cancers; hypermethylators (n=9, 56%) and non-hypermethylators (n=7, 44%). 
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While there was variability in expression among the miRs examined, in general the 

hypermethylator cancers expressed diminished levels of regulatory miRs compared to the 

non-hypermethylator cancers (Figure 3.19). miR-29c did not display the pattern of 

expression observed with the majority of miRs. Since loss of miR-29c differentiated the 

basal-like cancers from other subtypes of breast cancers, the absence of differential 

expression among the basal-like cancers suggests that loss of miR-29c to be a feature of this 

molecular subtype, irrespective of the methylator status. 

The average expression of miR-29a and miR-26a among hypermethylator basal-like 

cancers was significantly diminished compared to the average expression of these miRs 

among non-hypermethylator basal-like cancers (p<0.05) (Figure 3.21). Differences in 

average expression of miR-29b and miR-26b in hypermethylator cancers versus non-

hypermethylator cancers were not statistically significant (Figure 3.21), although there was a 

distinct trend towards lower expression in the hypermethylator tumors (p=0.11 and p=0.08). 

9/9 (100%) hypermethylator cancers expressed low levels of miR-29b, miR-26a, and miR-

26b, and 8/9 (89%) of these expressed low levels of miR-29a (Figure 3.22a-d). However, 

among non-hypermethylator cancers, miR-29a and miR-26a were normally expressed in 4/7 

(57%) cancers, and miR-29b and miR-26b were expressed at normal levels in 3/7 (43%) non-

hypermethylator cancers (Figure 3.22a-d). Interestingly, the three non-hypermethylator 

cancers with low levels of expression of miR-29a exhibited low levels of expression of miR-

26a, miR-29b, and miR-26b. In addition, these three cancers express low levels of miR-148b 

and miR-203. miR-29c is expressed at normal levels in 3/7 (43%) non-hypermethylator 

cancers. However, the 4 non-hypermethylator cancers with diminished miR-29c do not 

include all three cancers that lost the expression of multiple miRs (Figure 3.22e). Among 
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hypermethylator cancers, 6/9 (67%) expressed low levels of miR-29c (Figure 3.22e). 7/9 

(78%) and 8/9 (89%) cancers had diminished levels of expression of miR-148a and miR-

148b respectively (Figure 3.22f-g). These miRs were expressed at normal levels in 5/7 (71%, 

miR-148a) and 4/7 (57%, miR-148b) non-hypermethylator cancers (Figure 3.22f-g). 7/9 

(78%) hypermethylator cancers expressed miR-203 at low levels, while 3/7 (43%) non-

hypermethylator cancers expressed miR-203 at easily detectable levels (Figure 3.22h).  miR-

222 was expressed at low levels in 5/9 (56%) hypermethylator cancers. 6/7 (87%) non-

hypermethylator cancers expressed miR-222 at normal levels (Figure 3.22i). 

 

Diminished Expression of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a, and miR-

148b Predict Hypermethylator Status Among Breast Cancers 

We observed differential expression of miR-29a, miR-29b, miR-26a, miR-26b, miR-

148a, and miR-148b among basal-like breast cancers with strong trends towards diminished 

expression in hypermethylators compared to non-hypermethylator cancers. To assess the 

value of individual miR expression levels in the prediction of the methylation status of a 

certain tumor, a Bayesian analysis was performed. Correct assignments (CA) were used as a 

guiding principle to determine the threshold values for each of the differentially expressed 

miRs indicated in Figure 3.22. The expression level of miR-26a (CA=81%) emerged as the 

best individual predictor of methylator status among basal-like breast cancers, followed by 

miR-29a (CA=75%), miR-29b (CA=75%), miR-26b (CA=75%), miR-148a (CA=75%), and 

miR-148b (CA=75%). These miRs individually displayed excellent sensitivity (range: 78-

100%) and negative predictive value (NPV range: 71-100%), as well as good specificity 

(range: 43-71%) and positive predictive value (PPV range: 69-78%).  The remaining miRs 
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displayed poor predictive value for determination of methylation status among breast cancers 

(CA=63%-69) (Table 3.4).  

 

miR Scores Correlate With Methylation-sensitive Gene Expression Scores Among 

Primary Breast Cancers 

 miR scores were generated for each breast cancer, reflecting the number of miRs 

with diminished expression. Hypermethylator basal-like breast cancers frequently express 

diminished levels of this panel of miRs. 8/9 (89%) hypermethylator basal-like cancers 

express >6 regulatory miRs at diminished levels (Figure 3.23), resulting in higher miR 

scores. Three hypermethylator cancers express diminished levels of all nine miRs examined 

(Figure 3.23). In contrast to the hypermethylator cancers, non-hypermethylator basal-like 

breast cancers typically express the majority of these regulatory miRs at higher levels. 4/7 

(57%) non-hypermethylator cancers express >7 miRs at higher levels (Figure 3.23), resulting 

in lower miR scores. Hypermethylator basal-like cancers exhibit an average miR score of 7.6 

± 0.5, whereas, non-hypermethylator basal-like cancers exhibit an average miR score of 4 ± 

1.3 (p=0.039).  

A linear correlation analysis was performed to determine if miR scores significantly 

correlate with the expression score among basal-like breast cancers. The expression score 

reflects the combined relative gene expression status for methylation-sensitive biomarker 

genes associated with the hypermethylation defect (CEACAM6, CDH1, CST6, ESR1, 

GNA11, MUC1, MYB, TFF3, and SCNNIA) [150]. A strong inverse correlation (r=-0.67, 

p=0.003) was observed between miR score and gene expression score (Figure 3.24). The 

cancers that exhibit diminished expression of multiple regulatory miRs (high miR score) tend 
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to express low levels of methylation-sensitive genes (gene expression score) and cancers that 

express higher levels of regulatory miRs (low miR score) tend to express methylation-

sensitive genes at higher levels (Figure 3.24). Previous studies demonstrated significant 

relationships between overexpression of DNMT3b and gene expression scores for 

methylation-sensitive genes [150].  miR expression patterns revealed two groups among 

basal-like breast cancers corresponding to low expression (n=11) and high expression (n=5) 

(Figure 3.25). The subset of basal-like breast cancers with reduced expression overlaps 

considerably with the hypermethylator subset of basal-like breast cancers. 8/9 

hypermethylators correspond to the low expression group. These results strongly support the 

suggestion that loss of miR expression may account for the expression of hypermethylation 

defect that is characterized by DNMT3b-overexpression.  
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Table 3.2. Bayesian Analyses Show That Loss of miR Expression is Associated with 

Expression of Hypermethylation Defect in Breast Cancer Cell Lines. Threshold values for 

Bayesian analysis are as follows: miR-29a, 1.0; miR-29b, 0.15; miR-29c, 0.62; miR-148a, 

2.8, miR-148b, 6.0; miR-26a, 4.0; miR-26b, 3.63; miR-203, 0.2; and miR-222, 2.0. 

  

 
 Sensitivity Specificity 

Positive 
Predictive 

Value 

Negative 
Predictive 

Value 

Correct 
Assignment 

miR-29a 60% 66% 75% 50% 63% 

miR-29b 60% 66% 75% 50% 63% 

miR-29c 60% 83% 86% 56% 69% 

miR-148a 90% 83% 90% 83% 88% 

miR-148b 100% 83% 91% 100% 94% 

miR-26a 80% 100% 100% 75% 88% 

miR-26b 90% 100% 100% 86% 94% 

miR-203 80% 83% 89% 71% 81% 

miR-222 30% 17% 38% 13% 25% 

90 
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Table 3.3. Average miR Expression Among the Molecular Subtypes of Breast Cancer. The 

table shows the average expression (relative to the expression in normal breast tissue ± SEM) 

of the regulatory miRs in each of the intrinsic subtypes of breast cancer. 

 Luminal A (n=36) Luminal B (n=13) HER2+(n=5) Basal-like (n=16) 

miR-29a 2.37±0.33 2.44±0.58 2.02±0.46 2.22±0.64 

miR-29b 7.39±1.24 7.95±1.62 4.85±1.46 8.93±2.72 

miR-29c 5.74±1.07 8.48±3.37 3.22±0.67 1.89±0.38 

miR-148a 3.56±0.50 3.41±0.86 2.77±0.60 3.66±0.81 

miR-148b 4.13±0.58 4.29±0.63 3.01±0.73 3.74±1.09 

miR-26a 1.77±0.19 1.69±0.33 1.35±0.48 1.13±0.38 

miR-26b 2.63±0.34 3.02±0.53 1.61±0.49 2.11±0.72 

miR-203 3.67±0.78 11.75±3.34 18.65±9.56 17.70±7.29 

miR-222 1.36±0.43 1.34±0.32 2.35±1.01 1.70±0.54 
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Table 3.4. Bayesian Analyses Show That Loss of miR Expression is Associated with 

Expression of Hypermethylation Defect in Primary Cancers. Threshold values for Bayesian 

analysis are as follows: miR-29a, 2.40; miR-29b, 14.00; miR-29c, 2.60; miR-148a, 2.70; 

miR-148b, 3.50; miR-26a, 1.30; miR-26b, 4.00; miR-203, 10.00; and miR-222, 0.76. 

 
 

 
 Sensitivity Specificity 

Positive 
Predictive 

Value 

Negative 
Predictive 

Value 

Correct 
Assignment

miR-29a 89% 58% 73% 80% 75% 

miR-29b 100% 43% 69% 100% 75% 

miR-29c 67% 43% 60% 50% 63% 

miR-148a 78% 71% 78% 71% 75% 

miR-148b 89% 57% 73% 80% 75% 

miR-26a 100% 57% 75% 100% 81% 

miR-26b 100% 43% 69% 100% 75% 

miR-203 78% 43% 64% 60% 63% 

miR-222 56% 86% 83% 60% 69% 
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Figure 3.1. Re-expression of Methylation-Sensitive Genes in Hypermethylator Breast Cancer 

Cell Lines Following Demethylating Treatment. (a) MDA-MB-453, BT549, and Hs578T 

cells were treated with 250 nM 5-aza for 7 days and real-time PCR was performed for 

CEACAM6, CST6, ESR1, and SCNN1A. (b) MDA-MB-453, BT549, and Hs578T cells were 

treated with 500 nM 5-aza for 7 days and real-time PCR was performed for CEACAM6, 

CST6, ESR1, and SCNN1A. The bars represent the fold-change in levels of expression for 

each gene and cell line relative to the untreated control cells (where RQ = 1). NS = not 

statistically significant, *p<0.05, **p<0.005, ***p<0.0005.  
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Figure 3.2. Demethylating Treatment with 5-Aza Sensitizes Hypermethylator Breast Cancer 

Cells to Chemotherapy. The blue lines represent breast cancer cells with no pretreatment, red 

lines represent cells pretreated with 250 nM 5-aza for 7 days, and green lines represent cells 

pretreated with 500 nM 5-aza for 7 days. Changes in chemotherapeutic sensitivity are shown 

as percentage of viable cells remaining (relative to untreated control cells) after 72 hrs of 

drug exposure for the indicated doses. (a) BT549 breast cancer cells exhibit increased DOX 

efficacy after 250 nM and 500 nM 5-aza pretreatment. (b) MDA-MB-453 breast cancer cells 

exhibit increased PAX efficacy after 500 nM 5-aza pretreatment. (c) Hs578T breast cancer 

cells exhibit increased 5-FU efficacy after 500 nM 5-aza pretreatment.  
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Figure 3.3. RNAi-mediated Knockdown of DNMT3b Results in Reduction in DNMT3b 

Protein Levels in Hypermethylator Breast Cancer Cell Lines. (a) Western blot analysis of 

DNMT3b protein levels in MDA-MB-453, BT549, and Hs578T cells. Actin levels are shown 

as a loading control.  (b) Quantification of DNMT3b protein levels relative to actin. (c) 

Western blot analysis of DNMT3b protein levels in MDA-MB-453, BT549, and Hs578T 

cells after RNAi-mediated knockdown of DNMT3b. Western blot analysis was performed by 

Dr. Ashley G. Rivenbark (Department of Biochemistry and Biophysics, UNC). Actin levels 

are shown as a loading control.  NS = not statistically significant. 
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Figure 3.4. RNAi-mediated Knockdown of DNMT3b Results in Re-expression of 

Methylation-Sensitive Genes in Hypermethylator Breast Cancer Cell Lines. Hypermethylator 

breast cancer cells re-express methylation-sensitive DNMT3b target genes after DNMT3b 

KD.  The blue bars represent real-time PCR results for wild-type cells, the red bars represent 

the results in scram-transfected cells and green bars represent the results in DNMT3b KD 

cells compared to wild-type control cells (where RQ = 1). (a) MDA-MB-453 breast cancer 

cells re-express CEACAM6, CST6, ESR1, and SCNN1A after DNMT3b KD. (b) BT549 

breast cancer cells re-express CEACAM6, CST6, ESR1, and SCNN1A after DNMT3b KD. (c) 

Hs578T breast cancer cells re-express CEACAM6, CST6, ESR1, and SCNN1A after DNMT3b 

KD.  *p<0.05, **p<0.005, ***p<0.0005.  
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Figure 3.5. RNAi-mediated Knockdown of DNMT3b Results in Demethylation of 

Methylation-Sensitive Genes in Hypermethylator Breast Cancer Cell Lines. Representative 

agarose gels of methylation-specific PCR (MSP) products corresponding to CST6, ESR1, and 

SCNN1A are shown. M = methylated MSP product, U = unmethylated MSP product.  The 

abbreviations are as follows: Con = no DNA control, WT = wild-type, KD = DNMT3b 

knockdown. (a) Changes in methylation status of CST6 in MDA-MB-453, Hs578T, and 

BT549 cells after DNMT3b knockdown. (b) Changes in methylation status of ESR1 in 

MDA-MB-453 and Hs578T cells after DNMT3b knockdown. (c) Changes in methylation 

status of SCNN1A in MDA-MB-453 and Hs578T cells after DNMT3b knockdown. 
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Figure 3.6. Hypermethylator Breast Cancer Cell Lines Exhibit Increased Sensitivity to 

Chemotherapeutic Drugs after DNMT3b Knockdown. The blue lines represent wild-type 

breast cancer cells, red lines represent cells transfected with scrambled control vector, and 

green lines represent cells after DNMT3b knockdown. Changes in chemotherapeutic 

sensitivity are shown as percentage of viable cells remaining (relative to wild-type control 

cells) after 72 hrs of drug exposure for the indicated doses. (a) BT549 breast cancer cells 

show increased DOX efficacy after DNMT3b knockdown. (b) MDA-MB-453 breast cancer 

cells show increased PAX efficacy after DNMT3b knockdown. (c) Hs578T breast cancer 

cells show increased 5-FU efficacy after DNMT3b knockdown.  
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Figure 3.7. Demethylating Treatment With 5-Aza Sensitizes Hypermethylator Breast Cancer 

Cells to Chemotherapy after DNMT3b Knockdown. The blue lines represent DNMT3b KD 

breast cancer cells with no pretreatment, red lines represent DNMT3b KD cells pretreated 

with 250 nM 5-aza for 7 days, and green lines represent DNMT3b KD cells pretreated with 

500 nM 5-aza for 7 days. Changes in chemotherapeutic sensitivity are shown as percentage 

of viable cells remaining (relative to untreated DNMT3b KD control cells) after 72 hrs of 

drug exposure for the indicated doses. (a) BT549 DNMT3b KD breast cancer cells show 

increased DOX efficacy after 250 nM and 500 nM 5-aza pretreatment. (b) Hs578T DNMT3b 

KD breast cancer cells show increased PAX efficacy after 500 nM 5-aza pretreatment. (c) 

MDA-MB-453 DNMT3b KD breast cancer cells show increased 5-FU efficacy after 500 nM 

5-aza pretreatment.  
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Figure 3.8. Comparison of Sensitizing Effects of Demethylating Treatment, DNMT3b 

Knockdown, and Combined Demethylating Treatment and DNMT3b Knockdown in 

Hypermethylator Breast Cancer Cells to Chemotherapy. The dark blue lines represent breast 

cancer cells with no pretreatment, red lines represent wild-type cells pretreated with 250 nM 

5-aza for 7 days, green lines represent wild-type cells pretreated with 500 nM 5-aza for 7 

days, purple lines represent DNMT3b KD breast cancer cells with no pretreatment, light blue 

lines represent DNMT3b KD cells pretreated with 250 nM 5-aza for 7 days, and orange lines 

represent DNMT3b KD cells pretreated with 500 nM 5-aza for 7 days. Changes in 

chemotherapeutic sensitivity are shown as percentage of viable cells remaining (relative to 

untreated control cells) after 72 hrs of drug exposure for the indicated doses. (a) MDA-MB-

453 breast cancer cells show increased DOX efficacy. (b) BT549 breast cancer cells show 

increased PAX efficacy. (c) Hs578T breast cancer cells show increased 5-FU efficacy.  
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Figure 3.9.  Differential miR Expression Among Hypermethylator and Non-Hypermethylator 

Breast Cancer Cell Lines. Red bars represent average miR expression among 

hypermethylator cell lines (n=10), and green bars represent average miR expression among 

non-hypermethylator cell lines (n=6). Comparison of the observed expression levels between 

hypermethylator cell lines and non-hypermethylator cell lines was accomplished using an 

unpaired t-test (two-tailed) and corresponding p values are given (NS – not significant). 
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Figure 3.10.  miR Expression Among Hypermethylator and Non-Hypermethylator Breast 

Cancer Cell Lines. (a-f) Analysis of miR expression among hypermethylator and non-

hypermethylator breast cancer cell lines. Hypermethylator cell lines are represented by red 

bars and non-hypermethylator cell lines are represented by green bars. The orange dashed 

line represents the optimal threshold value determined by Bayesian analysis for correct 

assignments related to methylation status of individual cell lines. Each real-time assay was 

performed in triplicate and error bars represent S.E.M. MDA-MB-231, MDA-MB-415, 

MDA-MB-435s, MDA-MB-436, and MDA-MB-453 cell line are designated 231, 415, 435s, 

436, and 453, respectively; SUM102, SUM149, and SUM185 cell lines are represented as 

102, 149, and 185, respectively; and HCC1937 is labeled 1937. (a) miR-29c expression, (b) 

miR-148a expression, (c) miR-148b expression, (d) miR-26a expression, (e) miR-26b 

expression, (f) miR-203 expression. 
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Figure 3.11. miR Expression Patterns and miR Scores for Hypermethylator and Non-

Hypermethylator Breast Cancer Cell Lines. Red boxes indicate a measured level of 

expression for an individual miR that is below the threshold value established through 

Bayesian analysis, and white boxes indicate a measured level of expression of an individual 

miR that is above the threshold value established through Bayesian analysis. The numbers at 

the bottom of each column indicate the miR score which represents a measure of the number 

of miRs expressed at diminished levels in an individual cell line. (a)  miR expression patterns 

and miR scores for hypermethylator breast cancer cell lines. (b)  miR expression patterns and 

miR scores for non-hypermethylator breast cancer cell lines. 
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Figure 3.12. miR Expression Patterns Correlate with Methylation-Sensitive Gene 

Expression Status and Promoter Methylation Status Among Breast Cancer Cell Lines. 

Correlation of miR expression patterns (miR score) with gene expression levels (based on 

RT-PCR) and promoter methylation status (based on methylation-sensitive PCR) for 

methylation-sensitive genes among hypermethylator and non-hypermethylator breast cancer 

cell lines. Scores were calculated for differentially expressed miRs (miR-29c, miR-148a, 

miR-148b, miR-26a, miR-26b, and miR-203) and for well-characterized methylation 

sensitive genes (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3, and 

SCNNIA).  Methylation-sensitive gene expression scores and promoter methylation scores 

were taken from previous studies [150]. (a) Relationship between miR score and gene 

expression score among hypermethylator cell lines (red diamonds) and non-hypermethylator 

cell lines (green squares). (b)  Relationship between miR score and promoter methylation 

status among hypermethylator cell lines (red diamonds) and non-hypermethylator cell lines 

(green squares). 
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Figure 3.13. Co-regulation of miR Expression. Hypermethylator cell lines (red diamonds) 

and non-hypermethylator cell lines (green diamonds) demonstrate a statistically significant 

relationship between miR expression levels. The blue dashed line represents the linear 

regression trend line (p values are indicated). (a) Association of expression between miR-26a 

and miR-26b, (b) Association of expression between miR-148a and miR-26a, (c) Association 

of expression between miR-148a and miR-26b, (d) Association of expression between miR-

29c and miR-148a, (e) Association of expression between miR-148a and miR-148b, (f) 

Association of expression between miR-29c and miR-148b. 
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Figure 3.14. Changes in miR Expression Levels in Hypermethylator Breast Cancer Cell 

Lines After Pre-miR Transfection. Blue bars represent miR expression levels in untransfected 

control cells, red bars represent miR expression levels in cells transfected with non-target 

control oligomers, and green bars represent miR expression levels in cells after indicated pre-

miR transfections. (a) Hs578T breast cancer cells re-express miR-148b, miR-26b, and miR-

29c after pre-miR transfection. (b) HCC1937 breast cancer cells re-express miR-148b, miR-

26b, and miR-29c after pre-miR transfection. (c) SUM185 breast cancer cells re-express 

miR-148b, miR-26b, and miR-29c after pre-miR transfection. Each real-time assay was 

performed 3-6 times and error bars represent S.E.M. *p<0.05, **p<0.005, ***p<0.0005, 

compared to untransfected control cells (unpaired t-test). 
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Figure 3.15. Changes in miR Expression Levels in Non-Hypermethylator Breast Cancer Cell 

Lines after Antagomir Transfection. Blue bars represent miR expression levels in 

untransfected control cells, red bars represent miR expression levels in cells transfected with 

non-target control oligomers, and green bars represent miR expression levels in cells after 

indicated antagomir transfections. (a) BT20 breast cancer cells express diminished levels of 

miR-148b, miR-26b, and miR-29c after antagomir transfection. (b) MDA-MB-415 breast 

cancer cells express reduced levels of miR-148b, miR-26b, and miR-29c after antagomir 

transfection. (c) MDA-MB-468 breast cancer cells express reduced levels of miR-148b, miR-

26b, and miR-29c after antagomir transfection. Each real-time assay was performed 3-6 

times and error bars represent S.E.M. *p<0.05, **p<0.005, ***p<0.0005, compared to 

untransfected control cells (unpaired t-test). 
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Figure 3.16. Perturbation of Regulatory miR Expression affects DNMT3b Levels in 

Hypermethylator Cell Lines. Hypermethylator breast cancer cells (Hs578T, HCC1937, and 

SUM185) exhibit significant reduction in DNMT3b mRNA levels following pre-miR 

transfection for miR-148b, miR-26b, and miR-29c. Each real-time assay was performed 3-6 

times and error bars represent S.E.M. **p<0.005, ***p<0.0005, compared to untransfected 

control cells (unpaired t-test). 
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Figure 3.17. Perturbation of Regulatory miR Expression affects DNMT3b Levels in Non-

hypermethylator Cell Lines. Non-hypermethylator breast cancer cells (MDA-MB-468, MDA-

MB-415, and BT20) display significantly increased DNMT3b mRNA levels following 

transfection with antagomirs for miR-148b, miR-26b, and miR-29c. Each real-time assay was 

performed 3-6 times and error bars represent S.E.M. **p<0.005, ***p<0.0005, compared to 

untransfected control cells (unpaired t-test). 
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Figure 3.18. Gene Expression Patterns of Methylation-Sensitive Genes for Human Primary 

Breast Cancers. Red boxes indicate a measured level of expression for an individual gene 

that is below the median level of expression for the dataset, and white boxes indicate a 

measured level of expression of an individual gene that is above the median level of 

expression for the dataset. The numbers at the bottom of each column indicate the number of 

methylation sensitive genes expressed at diminished levels in an individual cancer. ‘B’ 

represents basal-like cancers, ‘H’ represents HER2+ cancers, LA represents luminal A 

cancers, and LB represents luminal B cancers. 
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Figure 3.19. Classification of Basal-like Breast Cancers into Hypermethylators and Non-

hypermethylators based on the Gene Expression Patterns of Methylation-Sensitive Genes. 

Red boxes indicate a measured level of expression for an individual gene that is below the 

median level of expression for the dataset, and white boxes indicate a measured level of 

expression of an individual gene that is above the median level of expression for the dataset. 

The numbers at the bottom of each column indicate the number of methylation sensitive 

genes expressed at diminished levels in an individual cancer.  
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Figure 3.20. miR Expression Patterns and miR Scores for Human Primary Breast Cancers. 

Red boxes indicate a level of expression for an individual miR below the median value, and 

white boxes indicate a level of expression of an individual miR that is above the median 

value for the dataset. The numbers at the bottom of each column indicate the miR score 

which represents a measure of the number of miRs expressed at diminished levels in an 

individual tumor. ‘B’ represents basal-like cancers, ‘H’ represents HER2+ cancers, LA 

represents luminal A cancers, and LB represents luminal B cancers. 
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Figure 3.21. Differential miR Expression in Hypermethylator and Non-Hypermethylator 

Basal-Like Breast Cancers. (A) Red bars represent average miR expression among 

hypermethylator cancers (n=9), and green bars represent average miR expression among non-

hypermethylator cancers (n=7). Comparison of the observed expression levels between 

hypermethylator cancers and non-hypermethylator cancers was accomplished using an 

unpaired t-test (two-tailed) and corresponding p values are given (NS - not significant). 
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 Figure 3.22. Analysis of miR Expression Among Hypermethylator and Non-Hypermethylator 

Basal-like Breast Cancers. Hypermethylator cancers are represented by red bars and non-

hypermethylator cancers are represented by green bars. The orange dashed line represents the 

optimal threshold value determined by Bayesian analysis for correct assignments related to 

methylation status of individual cell lines. Each real-time assay was performed in triplicate 

and error bars represent S.E.M. (a) miR-29a expression, (b) miR-26a expression, (c) miR-

29b expression, (d) miR-26b expression, (e) miR-29c expression, (f) miR-148a expression, 

(g) miR-148b expression, (h) miR-203 expression, and (i) miR-222 expression. 
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 Figure 3.23. miR Expression Patterns and miR Scores for Hypermethylator and Non-

Hypermethylator Basal-Like Breast Cancers. Red boxes indicate a measured level of 

expression for an individual miR that is below the threshold value established through 

Bayesian analysis, and white boxes indicate a measured level of expression of an individual 

miR that is above the threshold value established through Bayesian analysis. The numbers at 

the bottom of each column indicate the miR score which represents a measure of the number 

of miRs expressed at diminished levels in an individual breast cancer.  
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Figure 3.24. miR Expression Patterns Correlate with Promoter Methylation Status among 

Basal-Like Breast Cancers. Correlation of miR expression patterns (miR score) with gene 

expression levels (based on RT-PCR) for methylation-sensitive genes among 

hypermethylator and non-hypermethylator basal-like breast cancers. Hypermethylator 

cancers are represented as red diamonds and non-hypermethylator cancers are represented as 

green diamonds.  
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Figure 3.25. miR Expression Patterns Classify Basal-Like Breast Cancers into Low 

Expresser and High Expresser Subsets. Low-expresser subset had low levels of expression of 

at least 6/9 miRs of interest for an individual breast cancer. High expresser subset includes 

the cancers with normal/high expression of at least 4/9 miRs of interest. Red boxes indicate a 

measured level of expression for an individual miR that is below the threshold value 

established through Bayesian analysis, and white boxes indicate a measured level of 

expression of an individual miR that is above the threshold value established through 

Bayesian analysis. The numbers at the bottom of each column indicate the miR score which 

represents a measure of the number of miRs expressed at diminished levels in an individual 

breast cancer.   



 

 

DISCUSSION 

 

Enhancement of Chemotherapeutic Efficacy in Hypermethylator Breast Cancer Cells 

by Targeting The Epigenome 

 The initiation, development, and progression of breast cancer reflects a multistep 

process that involves genetic and epigenetic changes resulting in activation of oncogenes and 

inactivation of tumor suppressor genes [77, 239-241]. Frequently observed genetic 

abnormalities in breast cancer include large-scale chromosomal deletions, sequence 

mutations (frameshift and point mutations), copy-number changes (including gene 

amplifications), and gene rearrangements (translocations). The understanding of these 

specific genetic alterations in breast cancer led to the development of targeted therapeutic 

approaches. Identification of HER2 amplification as a treatment target in approximately 30% 

of breast cancers led to the development of human monoclonal antibody, Herceptin 

(trastuzumab) [242-246]. Treatment with Herceptin significantly improves outcomes in 

HER2-amplified breast cancer patients [72, 247-249]. In contrast to gain-of-function 

oncogenic mutations, correction of loss-of-function tumor suppressor gene mutations through 

gene therapy has been largely unsuccessful. Epigenetic alterations also make substantial 

contributions to the regulation of gene expression [88, 92, 93] and have been established as 

an important mechanism contributing to breast carcinogenesis. A number of genes have been 

shown to be inactivated in breast cancer through methylation-dependent gene silencing, 

including cell cycle control genes (APC, RASSF1, RB, TFAP2A), tumor suppressor genes 
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(CST6, BRCA1, PRDM2), metastasis-associated genes (CDH1, CEACAM6, LGALS3BP), 

steroid receptor genes (ESR1, PGR, RARα), and many others [119, 120, 150, 250, 251]. The 

number of genes silenced by methylation in breast cancer, in association with the cellular 

activities in which they participate, suggests strongly that aberrant DNA methylation 

contributes to the biological and clinical behaviors of breast cancer. Aberrant DNA 

methylation and epigenetic silencing of gene expression are now well recognized as frequent 

and reversible (unlike genetic mutation) hallmarks of cancer [74, 79, 80, 92, 252], leading 

numerous investigators to suggest that cancer should be treated with “epigenetic therapy” 

[253-257]. In contrast to gene therapy, epigenetic therapy (demethylating treatment) alters 

gene expression patterns in breast cancer without complications from enhanced immune 

response to therapeutic DNA. The reversibility of epigenetic alterations makes them 

excellent targets for improving breast cancer outcomes [239, 258]. In addition, by targeting 

faulty epigenetic modification patterns, one can concurrently target multiple genes. The goal 

of such therapy is to effect changes in gene expression, including re-expression of silenced 

genes (like tumor suppressor genes), that alter the clinical behavior of the tumor or response 

of the tumor to chemotherapy. 

  In the current investigation, we tested the hypothesis that epigenetic therapy using 

very low (non-cytotoxic) doses of 5-aza would sensitize hypermethylator breast cancer cell 

lines (MDA-MB-453, BT549, and Hs578T) to the cytotoxic effects of standard 

chemotherapeutic drugs. The results clearly show increased efficacy of chemotherapeutic 

drugs against these cell lines following epigenetic therapy and the increase in efficacy was a 

function of dose and duration of exposure to the demethylating drug. To provide further 

evidence that the improved efficacy was a consequence of modulating the DNA methylation 
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machinery, we knocked down DNMT3b, which drives expression of hypermethylation defect 

in breast cancer cells [150]. Targeted inhibition of DNMT3b produced trends of enhanced 

chemosensitivity in each cell line comparable to that observed with pharmacological 

inhibition utilizing 5-aza. We employed three different cell lines and three chemotherapeutic 

drugs to eliminate the possibility that the effects were cell line or drug-specific. 5-aza-2’-

deoxycytidine (Decitabine) is FDA approved for clinical use in patients with myelodysplastic 

syndromes [258-260]. Thus, the possible use of sensitizing doses of 5-aza in conjunction 

with established chemotherapeutic regimens is very exciting.  

  In previous studies, mining of microarray-based expression data identified the 

hypermethylation defect-associated gene expression signature in primary sporadic invasive 

breast cancers [150]. We observed strong correspondence between expression of the 

hypermethylation defect and the basal-like sub-group of breast cancers [150]. Many basal-

like breast cancers express a hypermethylation defect characterized by silencing of numerous 

genes associated with DNMT3b protein overexpression. This observation strongly suggests 

that the unique characteristics of basal-like breast cancers (poor clinical outcomes, variable 

response to chemotherapy, and recurrence following chemotherapy) may be a direct 

consequence of methylation-dependent gene silencing associated with DNMT3b 

overexpression. This fundamental observation related to the basal-like breast cancers 

identifies the DNA methylation machinery (and specifically DNMT3b) as a novel target for 

development of new treatment regimens for these deadly breast cancers. Neoplasms that 

express this hypermethylation defect may exhibit poor response to chemotherapeutic 

treatment if the targets of methylation-dependent gene silencing encode proteins that function 

in DNA repair, apoptosis, or other pathways required for drug response. Therefore, 
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demethylating treatment of basal-like breast cancers may sensitize these neoplasms to 

standard drug regimens, resulting in increased chemotherapeutic efficacy. Since these tumors 

lack the expression of hormone receptors and HER2 amplification, patients with these tumors 

do not derive benefit from targeted therapies like tamoxifen (targeting ER) and trastuzumab 

(targeting HER2). The poor long-term outcomes for basal-like breast cancers are likely due 

to high relapse rate [173, 174, 261, 262]. It has been shown that prognosis correlates with 

pathological complete response and that if initially patients do not achieve complete 

response, they are more likely to have an early relapse, frequently leading to death of the 

patient [173, 174]. Thus, enhancement in the efficacy of chemotherapeutics to achieve higher 

response rate by making these neoplasms more sensitive may lead to higher pathological 

complete response and consequently better long-term outcomes. Lack of identification of 

druggable targets in basal-like breast cancers, poor prognosis, and association of positive 

clinical outcome with pathological complete response in response to chemotherapy makes 

the assessment of new therapeutic strategies to be of utmost significance. The results of the 

current study suggest strongly that combined epigenetic and cytotoxic chemotherapy should 

be evaluated for treatment of basal-like breast cancer.  

   In these studies, we provide evidence that targeted and pharmacological inhibition of 

DNMT3b augments the efficacy of chemotherapeutic drugs. This observation has the 

potential of becoming a useful therapeutic modality. Increasing the efficacy can be employed 

to benefit the patients in at least two different ways. First, increasing the efficacy of a certain 

fixed dose may increase the benefits of chemotherapy without associated increases in toxic 

side-effects. Secondly, a lower dose of chemotherapeutic drug may be used to achieve a 

certain fixed therapeutic effect, but with diminished side effects. These studies provide proof-
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of-concept that sensitizing pretreatment followed by a standard chemotherapeutic regimen 

improves cell killing in breast cancer. Since cancer results from a combination of genetic and 

epigenetic alterations, it can be anticipated that a combination of epigenetic and 

genetic/chemotherapeutic therapy will be beneficial.  However, these results also suggest the 

combination therapy employing other cytotoxic drugs/classes e.g., cyclophosphamide, 

carboplatin, methotrexate may also sensitize the cancers to chemotherapy.  

 Our studies provide proof-of-principle for utilizing epigenetic therapy as a 

chemosensitizer in treatment of breast cancer. Nevertheless, further laboratory studies and 

clinical trials are needed to fully establish the therapeutic efficacy of agents that can modify 

DNA methylation. 5-aza-2’deoxycytidine and its parent compound, 5-azacytidine 

demonstrate demethylating activity [258, 263, 264] and have been widely used in cell culture 

models to reverse DNA hypermethylation leading to restoration of silenced gene expression 

[265, 266]. Being cytidine analogs, these agents become incorporated into DNA during DNA 

replication, are trapped and inactivated as covalent protein-DNA adducts. Sequestration of 

these agents leads to depletion of cellular DNA methyltransferase activity during DNA 

synthesis resulting in reduced methylation (demethylation) of newly synthesized DNA [265, 

267]. 5-aza-2’deoxycytidine exhibits favorable properties in comparison with 5-azacytidine 

that includes greater DNA methylation inhibition and greater anti-cancer activity at 

equivalent doses in experimental models [263] but the side effects and potential risks hinder 

its clinical application. These risks include effects relating to bone marrow suppression like 

neutropenia [268], mutagenesis [269], and tumorigenesis [270]. It is also highly cytotoxic at 

higher doses and has a short half-life owing to degradation by hydrolytic cleavage and 

deamination by cytidine deaminase. For 5-aza to progress as a chemosensitizer, these side 
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effects and toxicity issues have to be addressed. The neutropenia induced by demethylating 

agent could render a patient unfit for chemotherapy, contradicting the purpose of 

administering a demethylating agent. The experimental design utilizing low doses of 5-aza in 

our studies was employed to keep the toxic and cytotoxic effects to minimum. In fact, we did 

not see any cytotoxic effects with 5-aza in our cell culture model. Further studies need to be 

conducted focusing on pharmacodynamic endpoints like optimal biologic dose rather than 

maximal tolerated dose. 5-aza is not very stable and cannot be orally administered, therefore 

it may need to be given as daily treatments. The resulting frequent visits by the patient to 

hospital will impact quality of life and have cost implications in addition to patient 

inconvenience. Therefore, the nucleoside analogues that have longer half-life and/or can be 

orally administered may offer some advantages over 5-aza. A less toxic derivative of 5-

azacytidine, Zebularine has been recently developed [258, 267]. Zebularine can be given 

orally, but it has variable bioavailability resulting in significant demethylation relative to 

dose in mice [271] and relatively low demethylation in monkeys [272].   

 The nucleoside analogues require incorporation into DNA and are S-phase specific. 

Hence, the majority of cancer cells must pass through S-phase while the drug is present for it 

to effectively demethylate the DNA. The majority of toxic effects associated with these 

agents have been associated with the formation of covalent adducts between DNA and 

trapped DNA methyltransferases [258]. The inherent toxic effects of nucleoside analogues 

resulted in identification and development of non-nucleoside compounds that target DNA 

methyltransferases without getting incorporated into DNA and are mostly catalytic site 

inhibitors [267]. Since these substances directly block DNA methyltransferase activity, they 

do not display toxicity caused by the covalent trapping of the enzyme seen with nucleoside 
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analogues. One of these non-nucleoside compounds with DNMT inhibitor activity is 

epigallocatechin-3-gallate (EGCG), the main polyphenol compound in green tea [273]. 

EGCG inhibits DNA methyltransferase activity in human cancer cell lines by blocking the 

active site of human DNMT1 [274]. However, EGCG also generates significant amount of 

hydrogen peroxide resulting in toxicity due to the effects of hydrogen peroxide as an 

oxidizing agent [275].   Other compounds include the antiarrythmic drug procainamide and 

local anesthetic procaine that exhibit demethylating activity. Procainamide reverses 

hypermethylation in LNCaP (prostate cancer cell line) in vitro as well as in LNCaP xenograft 

tumors in vivo [276]. Procaine directly binds to CpG-rich sequences in DNA, inhibiting the 

interaction between DNA methyltransferases and their target CpGs [277]. However, Procaine 

exhibits demethylating activity at very high doses and the activity is highly variable across a 

panel of cell lines [258]. Since non-nucleoside analogues are not incorporated into DNA, it 

may suggest that these compounds are less toxic. However, it has been reported that non-

nucleoside DNMT inhibitors are not any less toxic than nucleoside inhibitors, but are also 

less potent and less effective as demethylating agents compared to nucleoside inhibitors 

[265]. Other approaches to target DNA methylation machinery include development of small 

molecule inhibitor to target DNA methyltransferases. RG108, a small molecule inhibitor of 

human DNA methyltransferases have been developed that blocks the active site of the 

enzymes and thus inhibits their catalytic activity [278]. The inhibitory mechanism of RG108 

is specific for DNA methyltransferases; therefore it targets DNMT1, DNMT3a, and 

DNMT3b. Hence, RG108 emerges as an attractive target for functioning as a lead compound 

for developing inhibitors specific to DNMT1, DNMT3a, and DNMT3b [258]. The current 

studies also clearly identify DNMT3b as a potential therapeutic target and our RNAi 
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experiments strongly suggests the potential value of development of true targeted therapy 

using a small molecule inhibitor of DNMT3b. Small molecule inhibitors may be orally 

available and express greater target specificity eliminating unwanted side effects associated 

with broad-spectrum DNMT inhibitors like 5-aza.  

 The observations made in our studies also suggest that this therapeutic strategy 

(combining epigenetic treatment with conventional chemotherapy) may find utility in 

malignancies from other tissue types with well-defined or not so well-defined methylator 

phenotypes.  In our studies, we employed a period of demethylation treatment and used this 

period as a window for sensitization to chemotherapy. Published investigations show reversal 

of resistance to chemotherapeutic drugs in human xenograft models as a result of 

pretreatment with low doses of 5-aza 6-12 days prior to administration of chemotherapeutic 

drugs [279]. This reversal was associated with epigenetic re-activation of pro-apoptotic genes 

[258, 279]. More interestingly, this effect was abrogated if 5-aza was given concurrently with 

the cytotoxic drugs or after the cytotoxic therapy [279]. In another example, a randomized 

phase II study of the combination of 5-aza and carboplatin in relapsed ovarian cancer is 

currently underway [267, 280]. Based on results of the phase I trial,  a dose/schedule for the  

phase II trial reflects demethylating treatment with 5-aza (day1) followed by carboplatin (day 

8) and the repetition of this cycle every 28 days is recommended [280].  These observations 

strongly support our conclusion that demethylating pre-treatment sensitizes cancer cells to 

chemotherapeutic drugs. While additional investigations are needed to fully comprehend the 

possibilities associated with targeting DNMT3b in basal-like breast cancer (and other 

cancers), this observation of increased sensitivity to chemotherapeutics as a result of 
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modulation of DNA methylation machinery (more specifically DNMT3b) may present new 

options and targets to develop new treatment strategies. 

 

Loss of Post-Transcriptional Regulation of DNMT3b by Regulatory miRs Drives The 

DNMT3b-mediated Hypermethylation Defect in Breast Cancer 

Epigenetic changes significantly contribute to the normal regulation of gene 

expression and when dysregulated can significantly contribute to carcinogenesis [75, 76]. 

Aberrant epigenetic silencing of tumor suppressor genes and other negative mediators of cell 

proliferation have been documented in the development and progression of breast cancer [74, 

118, 129]. The CpG island methylator phenotype (or CIMP) represents a major epigenetic 

mechanism of colorectal carcinogenesis that has also been recognized in cancers affecting 

other tissues [134, 140, 143]. We have identified a hypermethylation defect in a subset of 

human breast cancer cell lines and primary breast cancers that is characterized by DNMT 

hyperactivity, overexpression of DNMT3b, and concurrent methylation-dependent silencing 

of numerous genes (including CDH1, CEACAM6, CST6, ESR1, GNA11, MYB, MUC1, 

SCNN1A, and TFF) [150].  Mining of microarray-based expression data identified a strong 

cluster of primary breast cancers that display a gene expression signature associated with the 

hypermethylation defect [150]. A strong association was established between the expression 

of the hypermethylation defect signature and the basal-like molecular subtype of breast 

cancers [150]. Basal-like breast cancers are typically classified as triple-negative, reflecting 

lack expression of estrogen and progesterone receptors (ER-/PR-), and absence of HER2 

gene amplification (HER2-) [281, 282]. Hence, patients with basal-like breast cancer are not 

responsive to targeted therapies like tamoxifen (targets ER) and trastuzumab (targets HER2) 
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[244, 283]. The poor prognosis associated with basal-like breast cancer and lack of druggable 

targets makes the fundamental observation of the co-segregation of the hypermethylation 

defect with basal-like breast cancer to be of utmost significance. Our observations suggest 

strongly that the DNA methylation machinery (and specifically DNMT3b) represent 

new/novel molecular targets for development of new drugs and treatment strategies for basal-

like breast cancer. 

In these studies, our goal was to elucidate the molecular mechanism accounting for 

overexpression of DNMT3b in hypermethylator breast cancer cell lines and hypermethylator 

breast cancers. Recent studies link miRs to the post-transcriptional regulation of DNMT3b 

expression in various tissues. Loss of expression of members of miR-29 family and 

overexpression of DNMT3b has been shown in lung cancer [223] and acute myeloid 

leukemia [224]. Likewise, there  is evidence supporting the negative regulation of DNMT3b 

by miR-148a and miR-148b in cell lines of multiple origins [225]. The results of the present 

study strongly suggest that loss of regulatory miR expression contributes to DNMT3b 

overexpression that characterizes the hypermethylation defect seen in breast cancer. In the 

breast cancer cell line model, this evidence includes: (i) differential expression of regulatory 

miRs between hypermethylator and non-hypermethylator cell lines, (ii) significantly 

diminished expression of miR-29c, miR-148a, miR-148b, miR-26a, miR-26b, and miR-203 

among hypermethylator breast cancer cell lines, (iii) pre-miR-mediated re-expression of 

miR-148b, miR-26b, or miR-29c in hypermethylator breast cancer cell lines (Hs578T, 

HCC1937, and SUM185) produces reduced DNMT3b mRNA levels, and (iv) antagomir-

mediated knockdown of miR-148b, miR-26b, or miR-29c in non-hypermethylator breast 

cancer cell lines (MDA-MB-468, MDA-MB-415, and BT20) leads to increased DNMT3b 
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mRNA levels. In primary tumors, we observed that (a) significantly reduced expression of 

miR-29c distinguished basal-like cancers from other subtypes of the primary breast tumors, 

(b) miR expression patterns revealed two groups among the basal-like breast cancers 

corresponding to diminished expression and normal levels of expression, (c) 7/9 

hypermethylators among basal-like tumors correspond to the group that has diminished 

expression of regulatory miRs. These findings strongly suggest that: (i) post-transcriptional 

regulation of DNMT3b is combinatorial, involving multiple miR species, (ii) diminished 

expression of regulatory miRs contributes to DNMT3b overexpression, (iii) re-expression of 

regulatory miRs results in reduced DNMT3b mRNA levels in hypermethylator breast cancer 

cell lines, and (iv) down-regulation of regulatory miRs results in increased DNMT3b mRNA 

levels in non-hypermethylator breast cancer cell lines. The observed loss of regulatory miRs 

in expression of the pro-cancerogenic hypermethylation defect suggests that these miRs 

possess a tumor suppressor-like function in breast, similar to other tissues [223-225].  

miRs are predicted to post-transcriptionally regulate more that 60% of all protein-

encoding genes in mammals and contribute to almost every cellular process, normal and 

pathological [188]. miRs have been recently been established as key players in 

carcinogenesis, with functions that can be oncogenic or tumor suppressor-like [187]. Our 

results suggest loss of combinations of miR-29c, miR-148a, miR-148b, miR-26a, miR-26b, 

and miR-203 is associated with expression of the hypermethylation defect in breast cancer 

cell lines, consistent with the idea that these miRs function as negative mediators of the 

neoplastic phenotype. We have also observed a significant concordance between the 

hypermethylators among basal-like breast cancers and the group of primary cancers that has 

diminished expression of regulatory miRs. Diminished levels of these miRs have been 
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documented in various forms of cancer, supporting the suggestion that these miRs possess 

tumor suppressor-like function. miR-29a and miR-29b are shown to be down-regulated in 

chronic lymphocytic leukemia, acute myeloid leukemia, lung cancers, cholangiocarcinoma, 

and prostate cancer [223, 237, 284-287]. Reduced expression of miR-26a occurs in 

hepatocellular carcinoma, oral squamous cell carcinoma, bladder cancer, thyroid anaplastic 

carcinoma, Burkitt’s lymphoma, acute myeloid leukemia, papillary carcinoma, prostate 

cancer, and breast cancer [188, 288, 289]. miR-26b expression is diminished in Hodgkin’s 

lymphoma, oral squamous cell carcinoma, and prostate cancers [289]. miR-29c expression is 

depressed in nasopharyngeal carcinomas, bladder tumors, chronic lymphocytic leukemia, 

acute myeloid leukemia, lung cancers, cholangiocarcinoma, esophageal squamous cell 

carcinoma and pancreatic ductal adenocarcinoma [188, 284, 288-290]. miR-148a is down-

regulated in breast cancers, papillary thyroid carcinoma, pancreatic ductal adenocarcinoma, 

prostate cancer, colorectal adenocarcinoma [288, 289]. miR-148b is expressed at reduced 

levels in oral squamous cell carcinoma, papillary thyroid carcinoma, prostate cancer, 

colorectal adenocarcinoma, pancreatic ductal adenocarcinoma [289]. miR-203 levels are 

diminished in oral squamous cell carcinoma, chronic myeloid leukemia, hepatocellular 

adenomas, esophageal squamous cell carcinoma [288, 289]. These studies from the literature 

document loss or diminished expression of these regulatory miRs in various forms of cancer, 

including breast in some cases.  

   Several molecular mechanisms contribute to miR dysregulation in cancer, including 

genetic abnormalities (such as chromosomal rearrangement, deletion, amplification, or 

sequence mutations) and epigenetic changes (methylation-dependent silencing of miR 

expression or alterations in the miRNA biogenesis machinery) [188]. Numerous miR genes 
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(>50%) are positioned within or close to chromosomal fragile sites and other genomic 

regions associated with cancer [188]. Genetic alterations involving these chromosomal 

regions result in dramatic alteration of miR expression levels [188]. Likewise, numerous 

studies report promoter hypermethylation as an important mechanism leading to loss of miR 

expression in cancer [187]. Loss of miR-203 expression is associated with fragile site on 

chromosome 14q32 [291], as well as through promoter hypermethylation in hematopoietic 

malignancies [291, 292]. miR-148a and miR148b are also susceptible to methylation-

dependent silencing in cancer [187]. We found miR-203 to be significantly co-regulated with 

miR148a and miR-148b, suggesting the possibility of a common epigenetic mechanism 

accounting for their diminished expression in hypermethylator cell lines. These examples 

from the literature suggest that loss of regulatory miR expression leading to DNMT3b 

dysregulation could be the result of genetic or epigenetic mechanisms.  

Numerous studies have established that miRs exhibit a unique and different 

expression in cancer tissues compared to normal tissues suggesting that miRs have a role in 

defining the molecular and pathological profiles of cancers including breast cancer [214, 216, 

238]. miRs expression profiles have shown that miRs are more efficient in differentiating 

between normal and cancer tissues, and are better at classifying poorly differentiated tissues 

[188, 293]. miRs are relatively stable and are resistant to RNAse degradation, most likely due 

to their small size [294-296]. They are highly stable in tissue sections and can be isolated and 

quantified from FFPE tissues. In addition, investigations have found that real-time PCR data 

and microarray data obtained from routinely processed FFPE tissues and/or frozen for 10 

years were reliable, reproducible, and consistent with data from fresh frozen samples [297, 

298].  These features and observations make miRs excellent biomarkers for cancer detection 
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and classification in terms of tissue of origin, stage, and other pathological features. 

Furthermore, the techniques of miR detection are now sufficiently sensitive to analyze miRs 

in a few nanograms of total RNA making miRs even more attractive candidates as 

biomarkers. Our studies indicate that loss of regulatory miRs is associated with expression of 

hypermethylation defect. We also observed that there exists substantial overlap between the 

expression of hypermethylation defect and basal-like subtype of breast cancers. These 

observations suggest that miRs can be used as potential biomarkers for the detection of the 

subset of primary breast cancers that express the hypermethylation defect. We have also 

shown that use of epigenetic treatment to alter the methylation status of breast cancers makes 

these cancers more sensitive to standard chemotherapeutic treatment. In current studies, we 

observed changes in DNMT3b levels with transient transfection of breast cancer cell lines 

with pre-miRs or with antagomirs. These findings suggest that modulating (re-expressing) 

levels of miRNAs that are deregulated resulting in DNMT3b overexpression and expression 

of hypermethylation defect in breast cancer may be significant to the outcomes of these 

cancers. These regulatory miRs represent potentially useful therapeutic ‘agents’ to amend the 

methylation machinery in hypermethylator breast cancers. Pre-treatment with these miRs 

may sensitize hypermethylator cancers to standard chemotherapy similar to our findings that 

demonstrate sensitization of hypermethylator breast cancer following treatment with 5-aza 

and/or DNMT3b knockdown. Several methods exist that can be employed to increase the 

expression of the miRs whose loss is associated with expression of the hypermethylation 

defect. This can be achieved by introducing a short synthetic duplex RNA molecule that is 

loaded onto RISC or by viral or liposomal delivery methods aimed at inducing the expression 

of pre-miRs [214, 299, 300]. Synthetic miRNAs include siRNA-like oligonucleotides as well 
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as chemically modified oligonucleotides. Studies aimed at facilitating alterations in the levels 

of miRs have the advantage that a lot of fundamental work in the field of delivery of siRNA 

and antisense molecules can be directly exploited. Although siRNA delivery has paved the 

way for potential use of miRs as therapeutic agents, it has its own challenges, such as 

developing ways to steer delivery to cancer cells, (possibly by antibody-mediated targeting of 

cancer-specific antigens), short life of the oligonucleotides necessitating repetitive 

administration and so on [214]. Nevertheless, miRs exhibit great potential to contribute to the 

future management of breast cancers among other cancers.  

 

Targeting the Epigenome in Basal-like Breast Cancer: Implications and Potential 

Impact in Prevention and Treatment 

The natural history of breast cancer development has long been recognized to 

progress from atypical ductal hyperplasia to ductal carcinoma in situ (DCIS), and then 

evolution of this pre-invasive lesion into invasive breast cancer that can ultimately develop 

into metastatic disease [301].  All of these stages represent a complex and multidimensional 

process of initiation, development, and progression of breast cancer. Intervention at any of 

these stages has the potential to significantly disrupt the natural history of disease and affect 

the outcome. For example, DCIS represents a commonly diagnosed breast lesion that 

accounts for 25% of breast neoplasms diagnosed in the United States and ~55,000 new cases 

each year [1, 302].  It is by definition non-invasive, but can vary from low-grade (and not life 

threatening) to high-grade lesions that may contain invasive elements and represents a risk 

factor for development of invasive breast cancer [303].  Consistent with natural history of 

disease, the incidence of DCIS increases with age in parallel with the incidence of invasive 
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breast cancer and many invasive breast cancers are associated with adjacent DCIS lesions. In 

the last decade, invasive breast cancers have been characterized using gene expression 

analysis and classified into several molecular subtypes that have implications for treatment 

and long-term survival [7, 58, 59, 304, 305]. More recently, analyses of gene expression 

patterns in pre-invasive breast cancers has identified similar molecular subtypes [306-311]. 

There exists a strong correspondence between molecular subtypes of pre-invasive and 

invasive cancers and this overlap is supported by the observation of basal-like DCIS in 

patients with basal-like breast cancer [309]. Numerous lines of evidence also suggest that 

breast cancers may develop through field cancerization, including significant observations 

made in patients with pre-invasive breast neoplasms.  Several studies have noted that the 

width of the surgical margin is directly associated with the risk of local recurrence (or 

development of invasive breast cancer) following breast conserving surgery for DCIS [302, 

303]. Likewise, whole-breast radiation therapy has been shown to significantly reduce the 

risk of development of invasive breast cancer following breast conserving surgery for DCIS 

[302]. Molecular evidence for field cancerization in the breast includes the observation of 

both genetic and epigenetic alterations in otherwise normal appearing breast epithelium.  

Genomic instability in the form of allelic imbalances have been characterized in 

histologically normal breast tissue adjacent to invasive breast cancers, suggesting that these 

genetic alterations occur early in breast carcinogenesis [312]. Likewise, numerous epigenetic 

alterations have been identified in histologically normal breast epithelium adjacent to 

invasive breast cancers, including promoter methylation-dependent silencing of CDH1, 

RASSF1A, RARα, APC, and others [313-316]. Likewise, epigenetic silencing of various 

genes has been shown in pre-neoplastic (atypical ductular hyperplasia) and pre-invasive 
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DCIS lesions [128, 317]. Given the linkage between basal-like breast cancers and expression 

of the hypermethylation defect, loss of regulatory miR expression leading to DNMT3b 

overexpression may represent a very early and significant molecular alteration during the 

natural history of breast carcinogenesis.  This observation paves the way for the potential role 

of miRs as diagnostic markers for detecting hypermethylation in very early/pre-invasive 

breast cancers. The loss of regulatory miRs in pre-invasive lesions leading to the 

establishment of the hypermethylation defect (with DNMT3b overexpression) may suggest 

that these alterations determine the basal-like molecular subtype of breast cancer. On the 

other hand, loss of miRs that regulate DNMT3b detected at a relatively advanced stage of 

breast cancer indicate that these miRs drive the basal-like molecular subtype of breast cancer. 

Early detection of these lesions creates the potential to identify patients for epigenetic 

therapies.  Presence of epigenetic changes before cancer appears/becomes invasive not only 

highlights epigenetic changes as seminal events in breast cancer initiation but also represents 

a potential target for chemoprevention. Treatment with demethylating agents and/or 

DNMT3b small molecule inhibitor can potentially halt the progression of disease and 

positively influence the outcome. Though in its infancy, the emerging concept of circulatory 

miRs is a great area of interest. Once, the high risk patients are identified (and/or treated with 

epigenetic therapy), circulating miRs provide non-invasive biomarkers for surveillance to 

determine if there is a need for continuing the prophylactic treatment or not. Likewise, after 

treatment, miR expression patterns associated with DNMT3b overexpression and 

hypermethylation defect can be used as surrogate endpoints for prognostic purposes to detect 

relapse and to monitor disease activity and response to therapy. Once the dose and schedule 

of epigenetic treatments is optimized so as to minimize toxicity, there is a possibility of using 
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these agents as maintenance therapies to prevent relapse following chemotherapy or even 

radiotherapy.  

 Restoration of the regulatory miRs by themselves is another attractive approach to 

correct the miR dysregulation that results in DNMT3b overexpression and hypermethylation 

defect. The expression patterns as well as promoter methylation status of methylation-

sensitive genes that are established targets of DNMT3b can be used as endpoints to regulate 

the therapy aimed at re-expression of the regulatory miRs. However, development of the 

miRs as diagnostic, therapeutic, and prognostic targets comes with lots of challenges and 

obstacles. Development of in vivo organ-specific delivery systems is very important. Since, 

the miRs are functionally very different based on the target organ, it will be imperative to 

develop a tissue-specific delivery system to prevent off-target effects and toxicity. 

Chemotherapy continues to be the mainstay of treatment for most of the breast cancers, 

especially in basal-like breast cancers. It is now known that miRs regulate multiple biological 

processes, it is conceivable that re-expressing regulatory miRs may alter drug response in 

multiple ways and not just by altering the epigenetic signature. Therefore, further studies are 

required before miR biology can move to clinical application in cancer. The translation of the 

observations made in our studies from bench to bedside remains a work in progress. In 

addition, further independent studies of miRs and their role in establishing hypermethylation 

effects in breast cancer will be helpful to validate and identify the most relevant miRs for this 

purpose. To fully understand and characterize the linkage between miR dysregulation and 

DNMT3b overexpression, it is imperative that all human miRs are known, identified and 

characterized fully including the features like functional targets of miRs and the phenotypic 

changes associated with their manipulation. In addition, the standardization of techniques for 
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miR analysis is necessary. However, miRs have shown a great potential in a relatively short 

time since their discovery, and seem to provide a promising and exciting basis for future 

studies. 
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