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Abstract
Suja Thomas: Mathematical Models for Evolution of Genome Structure.

(Under the direction of Todd J. Vision.)

The structure of a genome can be characterized by its gene content. Evolution of genome

structure in closely related species can be studied by examining their synteny or conserved

gene order and content. A variety of evolutionary rearrangements like polyploidy, inversions,

transpositions, translocations, gene duplication and gene loss degrade synteny over time. In

this dissertation, I approach the problem of understanding synteny in genomes and how far

back its evolutionary history can be traced in multiple ways. First, I present a probabilistic

model of the rearrangements gene loss and transposition (gain) and apply it to the problem of

estimating the relative contribution of these rearrangements within a set of syntenic genome

segments. This model can be used to predict gene content in syntenic regions of unsequenced

genomes. Next, I use optimization methods to recover syntenic segments between genomes

based on reconstructions of their parent ancestry. I examine how these reconstructions can be

used as input to programs that identify syntenic regions in genomes to reveal more synteny

than was previously detected. I use simulations that incorporate each of the evolutionary

rearrangements described above to evaluate the models presented in this dissertation. Finally,

I apply these models to genomic data from yeast and flowering plants, two eukaryotic systems

that are known to have experienced polyploidy. This application is of particular relevance in

flowering plants, in which a lot of economically and scientifically important polyploid species

have incompletely sequenced genomes.
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Chapter 1

Introduction

The arrival of full genome sequencing in the early 21st century is perhaps the most

significant development in the field of genomics (3; 4). We can now obtain the DNA

sequences of different organisms and compare them with each other. The first few

eukaryotic genomes to be sequenced were those of the yeast Saccharomyces cerevisiae,

worm Caenorhabditis elegans, fruitfly Drosophila melanogaster and plant Arabidopsis

thaliana (5; 6; 7; 8). The first complete human genome was sequenced in 2001 (4).

Sequencing greatly enhanced building genetic maps of different organisms where

previously, molecular techniques like restriction fragment length polymorphism (RFLP)

were used in identifying and isolating genetic markers (9). Markers like these which

were produced in plants like tomato (10), corn and wheat (11; 12) are very useful to

breeders for agronomic cultivation purposes. As more markers were produced and more

sequences obtained, it became clear that many genetic markers were conserved amongst

species both in content and order, also known as synteny.

Genome sequences of closely related species do not share much similarity in entirety,

but their regions that encode for genes do. Only about 5% of the entire human DNA se-

quence is currently implicated in coding for a total of 24,800 verified proteins. Amongst

these, humans share 70-90% of their gene content with mice, and 95-98% with apes. For

a set of species that are so organismically and morphologically different from each other,



this may seem like an extraordinary amount of genic material to have in common. To

characterize this property and use it to predict protein-coding sequences, many sophisti-

cated models of sequence evolution were developed. They are reviewed comprehensively

in (13).

The structure of a genome can be characterized by its gene content. A comparison

of genome structure amongst different organisms can be done through a comparison

of their synteny. Evolutionary rearrangements degrade synteny over time. Modeling

the effects of rearrangements on synteny can inform us about the changes produced in

genome structure and age of preservation of synteny.

This dissertation contributes to the study of evolution of genome structure by ex-

amining it through synteny in genomes and our ability to detect how far back in time

we can trace it. This study is approached in the following ways. First, I define a prob-

abilistic model of the processes of gene loss and gene transposition or gain and apply

it to the problem of estimating their relative contribution to gene order within a set of

syntenic genomic regions. This model can be used to predict gene content in syntenic

regions of unsequenced genomes. Second, I apply optimization methods to reconstruct

the ancestral gene order of syntenic regions within genomes generated by simulations.

Third, I evaluate using the reconstructions along with an existing method used to iden-

tify pairwise synteny to see if there is a gain in synteny detection over using pairwise

and profile synteny detection methods on simulated as well as on plant genomic data.

In this chapter, I provide a brief biological background for understanding this work. I

also review the existing statistical and mathematical models for understanding different

aspects of genome structure evolution. I then discuss the importance of synteny. Finally,

I will introduce the questions that are studied in this dissertation and the motivation

for doing so.
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1.1 The Biology of Genome Structure Evolution

Synteny is preserved in mammalian genomes (14) since the last inferred common an-

cestor. Synteny is also shown to be highly preserved in yeasts (15). As the rates of

rearrangements that shuffle gene order in mammals are relatively low and their genes

are highly collinear in order, diagnosing synteny is relatively easy. Synteny between the

first sequenced flowering plant or angiosperm genomes Arabidopsis and rice was shown

in (16) and amongst the Arabidopsis, Carica and Populus genomes in (17). There is

also a high degree of synteny between the grass genomes of maize, sorghum, rice, sugar-

cane, foxtail millet, pearl millet, Triticeae and oats (18). However, in flowering plants or

angiosperms higher rates of rearrangement intervene in this preservation of collinearity

(19).

A variety of rearrangements create disruption in genomic synteny. In this disserta-

tion, I consider the following rearrangements: Whole Genome Duplication (WGD) or

polyploidy, dispersed single gene duplications, inversions, translocations, transpositions

and gene loss. In this section, I will review what is known about the impact of these

rearrangements on genome structure evolution.

Figure 1.1 is an illustration of how the different processes contribute to difference in

gene order from a starting ancestral state.

In 1970, Ohno proposed that gene duplication played a major role in evolution (20)

and suggested that the vertebrate genome is the result of one or more entire genome

duplications. Polyploidy or WGD has occurred many times in the eukaryotic lineage

(21; 22) with at least one inferred WGD event in the last common ancestor (23). The

first ancient WGD was shown for eukaryotes in yeast (24). It was shown in plants

(25; 26; 27), teleost fish (28) and in paramecium (29). It has been estimated that about

2-4 % of speciation events are associated with polyploidy in flowering plants (30). It

has been implicated in giving rise to species-rich groups in both plants and animals

(31; 21). There are many current-day polyploid species, particularly in plants with

3



Figure 1.1: Illustration of evolutionary rearrangement processes for a genome segment with
genes A, B, ..., G in the center of the figure. The rearrangements are denoted in colours
different from the original genome

estimates ranging from 30 to 70 % (32). However, only a few ancient polyploidy events

are thought to have survived (33).

Polyploidy has a big impact on gene order rearrangement because of the large num-

ber of genes that are duplicated during each event (34). It has been shown to precipitate

massive gene loss , which is a major contributor to divergence among descendant poly-

ploid genomes (35; 36). Asymmetric gene loss following polyploidy has been shown to

obscure synteny between genomes, making its detection difficult (25).

Gene duplication on a smaller scale also plays an important role in gene content

and order rearrangement (37). It can arise through tandem and segmental duplications

(during DNA replication and recombination for example).Transposition of duplicated

4



genes by transposable elements by transduplication or stimulation of intrachromosomal

recombination events (38; 39) can also interrupt gene order. 15-20% of the gene content

of Arabidopsis and rice consists of tandemly arrayed gene clusters (40).

Large-scale duplication generated by polyploidy and smaller-scale gene duplications

are not necessarily exclusive processes (37; 34). Transposition of genes by transposable

elements has been shown to coincide with polyploidy (41). These two kinds of duplica-

tion have different effects on synteny. A single-gene duplication might not occur within

the right regulatory context needed, or with all the required sequence required for its

correct expression. This will affect its probabilities of retention in the organism (42),

which in turn influences its contribution to synteny. With polyploidy however, the gene

and its entire context are duplicated.

Inversions and translocations that occur at the scale of chromosomes have been

known to occur in eukaryotes (43). Estimates from different organisms suggest that

chromosomal scale inversions can occur at different rates in different organisms (44;

45; 46). Larger scale inversions have a more immediate impact on gene order between

organisms. However, smaller-scale inversions that are only a few genes in length could

be happening at a much more rapid rate. Added up over a period of time, this could

produce considerable rearrangement over a larger size of the chromosomes that they

occur in (34). Such inversions have been thought to rearrange gene order in organisms

like yeast (47), but were considered to be rarer in plants (36). However, the cereal maize

has to shown to have experience a high rate of inversions in comparison with rice (46).

The impact of each of these rearrangement on gene order vary on many levels. They

occur with different rates within different lineages and in different organisms. A process

like polyploidy operating on a genome scale automatically has a larger impact on gene

order than a local inversion, for example. Rearrangements also do not occur indiscrim-

inately in genomes. It has been shown that functionally related genes are preferentially

retained over those that are not (48). In this dissertation, I account for these chro-

5



mosomal rearrangements and examine how informative they are in modeling synteny

evolution.

1.2 Mathematical Models of Genome Structure Evo-

lution

In this section, I review the history of mathematical models of genome structure evo-

lution, starting with models of sequence evolution and proceeding to models of gene

content and order evolution.

Prior to the new era of sequencing, there were a variety of models used in compar-

ative genomics. In 1936, Dobzhansky and Sturtevant first proposed to use the amount

of disorder between the gene order in two different genomes as an indicator of their

evolutionary distance (49; 50). As rearrangements were considered to be relatively rare,

the distance that minimized the disorder or was the most parsimonious was consid-

ered realistic. In fact, Sturtevant and Novitski stated that for numbers of loci greater

than 9, this problem was intractable (51; 49). The first studies that examined chromo-

somes using techniques such as chromosome banding or in-situ hybridization focused on

closely-related species, where the number of rearrangements were small (49). Established

combinatorial techniques were used to address this parsimony criterion.

Initially, differences in genome structure were studied by a variety of models that ex-

amined it through differences in nucleotide sequences. Jukes and Cantor (52) described

a model to describe changes from one nucleotide base to the other that was based on the

assumption that substitutions are equally probable and that the frequencies of all the

four bases in DNA are the same. This was followed by a variety of methods proposed

to to estimate phylogenetic trees from sequence data using a probabilistic model of evo-

lution and maximum likelihood (53), in contrast to the methods that traditionally used

parsimony to do so till then. Further significant developments in modeling sequence

6



evolution followed subsequently (54; 55; 56; 57; 58; 59; 60).

Many of these models were evaluated on mitochondrial DNA of organisms, as mito-

chondrial DNA is small, readily available and much less complicated in structure than

nuclear DNA. These models were used to characterize the variation in sequences and

also to align sequences pair-wise. Most models developed for sequence evolution and

alignment intrinsically assume that changes within sequences occur in a random fashion

and that the changes are stochastic in nature. As a result, a lot of the models also used

ideas and concepts from probability theory including Bayesian theory, Hidden Markov

Models and maximum likelihood. These models are used in many applications like gene

prediction, creating phylogenies and inferring rates of evolution in different organisms.

Apart from those methods that model sequence evolution, there are many methods

that model genome structure evolution through gene content. A variety of probabilistic

methods have been developed to create phylogenies from gene content. Steel and Huson

(61) developed a method that models the evolution in the size of the genome with gene

loss and horizontal transfer. Gu and Zhang (62) developed a model considering four

genomes at a time, with gene loss and duplication in a maximum likelihood framework.

Other methods construct phylogeny based on the difference in gene presence-absence

content in genomes. Some of these methods model the evolution of presence/absence of

genes on a phylogeny in a phyletic nature, while others use a continuous-time Markov

process (63). Another set of methods model coevolution of gene content (64). There are

also methods that use Bayesian theory with phylogenies to estimate ancestral sequence

character states.

With sequencing, the importance of rearrangements to gene order was realized. Many

methods have been proposed to measure the number of rearrangements. Palmer and

Herbon (65) noticed that the mitochondrial genomes of cabbage and turnip were ∼

99.9% identical in genic sequence, but very different in gene order. Watterson et al (66)

stated the problem of representing the relative positions of genes in different genomes as
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permutations of each other and solving the problem of transforming one into the other

with a series of inversions. Sankoff proposed the study of using edit distances to measure

gene order rearrangement as an alternative to studying genome divergence through

differences in sequence evolution (67). An edit distance between two strings of characters

is the number of operations required to transform one string into another. Following

this, Pevzner and Waterman reviewed a series of open combinatorial problems to address

gene order rearrangements as permutations (68). Sankoff first formulated the inversion

distance problem and provided lower and upper bounds for it as well (69). Hannehalli

and Pevzner (70) announced the solution to the problem of counting the minimum

number of circular inversions (for a circular genome) in polynomial time in 1995. A lot

of the initial studies with the inversion distance were performed on mitochondrial and

bacterial genomes, which are small, have a higher number of conserved gene content

and are circular in shape. Since then, a variety of solutions have been provided for

the inversion distance problem, including extensions to linear chromosomes, signed and

unsigned permutations (71).

Many other distances have been proposed as well. The breakpoint distance is an edit

distance which was first proposed by Sankoff et al (72). This distance is the number of

breakpoints or the number of adjacencies in one permutation that are not adjacencies

in the other. The authors developed a heuristic to compute the breakpoint distance for

genomes that have unequal gene content by calculating induced breakpoint distances

(defined in detail in Chapter 3). The authors applied this method to compute a phy-

logeny for protist genomes (73). The transposition distance was first introduced by

Bafna and Pevzner (74). This estimates the distance between two permutations as the

number of times a block of contiguous elements is displaced in transforming one to the

other. Several polynomial-time approximation algorithms and heuristic approaches have

been described to compute it. For multichromosomal genomes, a reciprocal translocation

distance was formulated by Kececioglu and Ravi (75), and Hannehalli (76) formulated it
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with polynomial complexity. The Double-Cut-and-Join or DCJ distance was proposed

by Yancopoulous et al (77) and is computed as the ways two breakpoints in gene or-

der created by rearrangements can be connected back again. This distance measure

models breakpoints that are created by inversions, transpositions, fissions, fusions and

translocations.

Genome-halving is an algorithm proposed by El-Mabrouk and Sankoff that computes

ancestral reconstructions for two genomes, one of which has undergone a WGD since its

divergence from the other. This method has been used in reconstructing the pre-WGD

ancestor of the yeasts S. cerevisiae and C.glabrata (78) and the pre-WGD ancestor of

Populus (79). DUPCAR (80) is a method for reconstructing contiguous ancestral regions

with duplications that was used to reconstruct the ancestral chromosome X of placental

mammals and the ancestral genome of Paramecium tetrauerila.

There are also a variety of programs that have been implemented to reconstruct

gene order. GRIMM (81) is a program that has been used to infer the number of

rearrangements between human and mouse. MGR (82) is an extension of GRIMM for

handling more than a pair of genomes and has been used to infer rearrangements in

sequenced mammalian genomes. GRAPPA (83) is a suite of programs that computes

several kinds of distances between genomes and computes phylogenetic trees from these

distances. It has been used to reconstruct phylogenies for chloroplast genomes and

recently, on bacterial genomes (84).

A common feature of all of these methods is that the distances are computed be-

tween genomes/segments of equal gene content. When these programs are applied to

genomic data sets like in a comparison between human, cat and mouse genomes (81),

reconstructions are provided for only the shared gene content between the genomes.

This omission of gene content might not affect how the distance between two genomes

are calculated with the methods used, but yields an incomplete reconstruction. Gene

duplication is also not modeled by these programs. Angiosperm have large multi-gene
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families (85). Genome-Halving considered only those sets of duplicates that have cor-

responding homologs in the reference non-WGD genome. These methods will not yield

complete reconstructions for polyploid genomes, as a consequence.

Many algorithms have been developed to detect synteny within and among genomes

have been developed for use in many systems. The program i-ADHoRe (86) detects

synteny through pairwise comparisons and uses these syntenic regions as profiles to

collect more regions of synteny. It was used to detect syntenic regions between the

Arabidopsis and rice genomes. FISH (87) is a statistical method that calculates the

probability of detecting syntenic clusters of given sizes in pairwise comparisons and was

used to detect syntenic regions within the Arabidopsis genome. CoGe (88) provides

an integrated Web-based system to find and align syntenic regions and was used to

visualize synteny among the Arabidopsis, Popular, Carica and grape genomes. CloseUp

(89) uses gene density parameters to identify pairwise synteny. These programs use

distance between homologous genes on syntenic segments and density of such genes

as parameters for searching for synteny. High fragmentation of synteny in a segment

through gene loss makes synteny detection in a pairwise comparison difficult.

1.3 Importance of Synteny

Synteny amongst different species allows for extrapolating information from one genome

to the other. Conserved order of shared genes in two genomes is a strong indicator of their

functional and evolutionary relationship. Syntenic genes are markers for homologous

regions within and between genomes. This is particularly useful in cases of synteny

between genomes that have been well-studied like the model plant rice which is smaller

relative to other grasses like barley, wheat and sugarcane that have intractable genomes

(90). Grass genome comparisons revealed a high degree of collinearity in gene order

and content which was easily visible when a set of conserved segments among them
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were assembled into a comparative map (11). If a gene of interest is located within a

syntenic region, its location can be narrowed down in the larger intractable genomes by

exploiting its collinearity with the smaller, better-sequenced genome and extrapolating

from the location of the gene in the smaller genome. The collinearity between the cereal

genomes has been maintained since their descent from a common ancestor around 50

million years ago. A similar comparison facilitated the discovery that some important

genes involved in domestication and other important traits like selection for large seeds

and flowering time that appeared to be at the same loci across multiple grass genomes

(12).

Rat, mouse, fruitfly and pufferfish gene models are used in characterizing gene models

in the human genome because of their synteny with the human genome. This has been

very useful in the field of human medicine and disease as illustrated by these examples

of studies in haemophilia, diabetes and cancer (91; 92; 93; 94; 95). Many agronomically

and scientifically important plants do not have complete gene maps as yet. There are a

handful of plant genomes for which there are genetic maps available. Comparative maps

utilizing synteny in plants with model genomes have been used in identifying candidate

genes in a variety of plants (96). Arabidopsis thaliana was the first plant to be sequenced

and comparison of its genome sequence to that of other plants enabled the study of many

important quantitative trait loci, especially those involved with disease resistance (97),

water-use efficiency(98) and heat resistance (99). Rice was the first cereal to be fully

sequenced. This has spurred a lot of research in science and industry to make strains

of rice that are genetically modified to increase production, resist parasites and grow in

nutrient-poor regions. The poplar genome was the first tree genome to be sequenced

and is a valuable model organisms for further studies on tree genomics.

Synteny comparison between organisms is also very valuable in studying the evo-

lutionary causes for the difference in their genetic make-up and phenotype. The mon-

keyflower Mimulus is a model organism for the study of genetics and speciation and its
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whole genome sequence will facilitate comparative genetics in asterid eudicots. Its rela-

tively small genome of about 430 Mb facilitates the comparison of its genetic make-up

with those of other plants to address questions in plant ecological adaptation. The

mushroom Copriopsis cinerea is a model organism for multicellular development in

Agaricomycotina fungi for which a genome sequence is now available (100). Synteny

analyses between its genome and that of the another fungus Laccaria bicolor enabled

the authors of the study to study the presence of key genomic features in Agaricomy-

cotina genomes such as nitrogen metabolism, the cytoskeleton, metabolic regulation,

etc.

The relative order of genes in plants at informative positions in the angiosperm phy-

logenetic tree is also very informative in understanding the evolutionary rearrangements

in one plant relative to the other. Gene content and order of the plant genomes that

have been sequenced to date have been used to infer WGD events are unique to their

lineage as well as shared by groups of lineages. Traces of WGDs are detected when

multiple regions in one genome are homologous to that of a region in another genome.

For example, it is inferred that Arabidopsis experienced two-three recent WGD events

(25). Through genome comparisons, only one of the events is inferred to have been

shared by it and Populus, Vitis and Papaya (19). Maize is inferred to have undergone

a WGD event since its divergence from Sorghum, whereas the most recent duplication

in Sorghum is inferred to be shared with all other cereals (46). By comparing the dis-

ruption in collinearity in regions in one plant syntenic to another, rearrangements like

inversions and translocations etc. in one plant can be inferred with respect to another

(46; 11).

There are some features in plant genomes that make it hard to obtain genetic maps.

A lot of flowering plant species are polyploid and fragmentation in patterns of synteny

created by WGD events can confound correctly assigning a map location to a gene

product. A high rate of repeat elements in plants makes it hard to correctly create
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scaffolds in plants. 87% of the sequence in maize consists of repeat elements. There

is a remarkable degree of conserved synteny in the plant kingdom, but detecting it is

challenging due to the interference of one or many of the processes described above.

Unscrambling the puzzle of detecting synteny in the face of these rearrangements is a

very valuable tool. Leveraging what is currently known in model plants to those with

incomplete sequences is of huge relevance to the studies of evolution in plants, agriculture

and ecology.

1.4 Questions addressed in this dissertation

It is important to understand how synteny is maintained and to be able to diagnose

how far back in time it has been preserved. Consequences of polyploidy can obscure

synteny and it will be very useful to model synteny evolution in genomes, particularly in

systems that have experienced WGD events for which we do not have complete genetic

maps. Current probabilistic models of gene order and evolution do not model WGD

events. One objective of this dissertation is to evaluate models of gene loss and gain in

polyploid genomes and assess if it can enhance current gene prediction capabilities. I

address this in Chapter 2.

The gene order and content in the ancestor of closely related species would be more

similar to each of the species gene order and content than they are with each other.

Most reconstruction algorithms optimize gene order for genomes that share equal gene

content. How accurate these reconstructions are in the context of ancestral WGD events

and asymmetric gene loss has not been characterized to date. I test an algorithm that

assembles ancestors for genomic regions of unequal gene content in simulations that

model this context in Chapter 3. In Chapter 4, I use the information gained about

the reconstructions to assess the results of using reconstructions along with a synteny

analysis on genomic data of rice and Arabidopsis. I will evaluate the advantages of using
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this method over pair-wise synteny detection alone.
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Chapter 2

A Probabilistic Model of Gene Loss and

Gain after Whole Genome Duplication for

Predicting Gene Content in Syntenic

Segments

2.1 Abstract

Gene content among related genome segments diverges primarily through gene loss, par-

ticularly following Whole Genome Duplication (WGD) and through transposition. We

currently lack tools to quantify the relative importance of these factors and we have

limited power to predict what genes are present in related, but poorly characterized,

genomic regions. By modeling the process of gene content divergence among homoeolo-

gous chromosome segments, I aimed to both predict the content of unsequenced genome

regions and provide a statistical framework for studying the divergence process. I devel-

oped a probabilistic model of gene loss and gain among genome segments related by a

known phylogeny and in the presence of occasional genome duplication events. I found

it possible to resolve gene loss immediately following WGD from background gene loss,

under what is considered a biologically realistic process. However, I found that it was



not always possible to resolve gene gain accurately. The accuracy in estimating the two

gene loss rates and gene gain rate degrades with the amount of data that is missing

and with lesser number of segments in the data. I found that predictions of unobserved

genes are most enhanced with an increase in the number of genomic segments in the

data, rather than the number of genes in the data set and completeness of the segments.

I also tested the model on yeast genomic data and found that the predictive capabilities

of the model worked as observed in the simulations even though the model was not ex-

pected to accurately account for the underlying biological processes. Moreover I found

that the rate of loss following WGD is 4 times that of the background loss rate, and

11.5 times that of the gene gain rate.

2.2 Introduction

Closely related genomes share conserved gene content and order, or synteny. There is

evidence for this collinearity of order of conserved genes in flowering plants (101; 16),

animals (22; 102) and fungi (24). Synteny between genomes is used in comparative

mapping to leverage information from genomes that are fully-mapped in identifying

candidate genes in genomes that have intractable maps (11; 103). A variety of crops

have been estimated to have only 5% of their constituent genes mapped to correct

physical locations in their genomes (90; 104; 105). In particular, synteny has proved

to be useful in predicting genes where a phenotypic effect could be linked to a part of

an unsequenced genome, but the gene responsible for it could not be readily identified

(96; 97; 98; 99). This region of the genome could correspond to a number of unsequenced

genes; identifying the gene (or genes) responsible for the effect is as challenging as

sequencing all of them. Leveraging synteny to narrow down the candidates, therefore,

saves time and effort.

Synteny, however, is often obscured by a variety of evolutionary processes that cause
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related genomes to diverge away from each other (19). This furthers the challenge in

using it for comparative mapping. Signatures of these processes can be observed in

genome sequences as both differences in their nucleotide sequence level and in their

gene content. Gene loss is an example of such a process (106). Polyploidy, or WGD,

has occurred multiple times in the history of eukaryotes (21; 22) and is implicated in

immediately precipitating massive gene loss (25), a major contributor to divergence

in descendant polyploid genomes (35; 36). Multiple rounds of WGD can confound

the synteny that is descended from each WGD event. Asymmetric gene loss following

polyploidy has been shown to obscure synteny between genomes, making its detection

difficult (25). Chromosomal rearrangements like transposition, translocation, segmental

inversion and tandem duplication of genes also cause decay in synteny (39; 107).

Models of how these rearrangement processes affect gene content evolution could aid

us in estimating their relative contribution to discordance in synteny between related

genomic segments. Accurate models of these processes could unscramble obscured syn-

teny. This in turn can help in predicting the presence of genes in regions of completely

mapped genomes that are syntenic to regions in incompletely mapped genomes; partic-

ularly those descended from WGD events. Such models would also make it possible for

us to assess which process has a bigger impact on synteny evolution over the others. We

approach the task of building a probabilistic model of two particular rearrangements in

this article: gene loss and gene gain, or the transposition of a gene into a different part

of the genome. To investigate resolving rearrangements in the face of WGD, two kinds

of loss are considered: loss of those genes created immediately following WGD and a

background rate of gene loss.

There are many probabilistic models of gene loss and gain that model gene con-

tent amongst related species (108; 109). To model synteny evolution amongst related

genomes, we consider models in a phylogenetic context. A variety of models have been

proposed for gene gain or loss in a phylogenetic context (62; 110; 64; 60; 63; 111). Some
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of these methods model the evolution of presence/absence of genes on a phylogeny in

a phyletic nature (110; 62), while others use a continuous-time Markov process (63).

Some model gene duplication on a local basis (62) and others consider the expansion

and contraction of sizes of gene families (111). These models do not incorporate gene

content evolution under WGD events. The models proposed here differ from these in

simultaneously accounting for the two different gene loss processes (due to WGD and

background) and the gene gain process described above. I have addressed three ques-

tions in this chapter. First, whether these models can be used in predicting gene content

in unsequenced genomes. Second, how the amount of data in terms of number of genes

and genome segments affects our being able to do so. Third, whether and when the

distinction between these rates is possible.

2.3 The Models

Gene loss and gain were modeled as stochastic processes (112) using a Hidden Markov

Model (HMM) (59). The genes were assumed to evolve i.i.d with constant instanta-

neous rates of loss and gain. When loss due to WGD and otherwise is not resolved, a

background rate of αR was assumed. Else, I distinguished between the rate of gene loss

precipitated by WGD αD and the background rate of loss αS. Genes were ”gained” onto

a segment by being transposed there from elsewhere in the genome at a rate of β. Loss

and gain of an individual gene was assumed independent of the other genes present on

the segment. Figure 2.1 illustrates the processes being modeled and the input to the

model.

The input syntenic segments may be derived from one or more genomes and were

all assumed to be descended from the same ancestral segment. The completeness of

each segment represented the extent of our knowledge about their gene content, or an

estimate of the fraction of genes present on it, that have been sequenced and are known.
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Figure 2.1: An example phylogeny of four segments, with a depiction of their evolutionary his-
tory. Their ancestor genome segment with 4 genes a,b,c,d underwent a WGD event, following
which there was a speciation event. Gene e was gained onto the phylogeny after the speciation
event. The top two segments are completely sequenced, and so have c = 1, but the other two
segments are estimated to be 25% sequenced, and so have c = 0.25. The presence/absence
matrix M of the segments is not known to us, but what we can observe is the observation
matrix O. As c = 1 for the top two segments, the rows corresponding to them in both matrices
are equal; however, this is not the case for the lower two segments. a is unobserved because
absent, b is unobserved as it hasn’t been sequenced.

For example, a segment that is in a genome which has a high-quality genetic map like

the plant Arabidopsis had c = 1. The phylogeny of the segments was derived from the

phylogeny of the species they belong to.

The aim was to determine the probability that a gene not observed in an incompletely

characterized segment was truly absent from it or not. Formally, given O, I wanted to

obtain the estimate M̂ of the presence-absence matrix M , where Mij = 1 if gene i is

present on segment j, or 0 if it is absent, when j is an incomplete segment. Mij is

position probability matrix.

To obtain M̂ , I defined a hidden Markov model in which the hidden states are the
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presence or absence of genes at each node in the phylogeny. The emissions of these

states are whether gi is observed on the segment Gj (Oij = 1) or absent (Oij = 0.). A

gene present in Gj is observed with probability cj. The transitions along any branch of

the phylogeny are governed by the rates [αD, αS, β].

Table 2.1: Input parameters, Models, Ranges Tested

Input Parameter Description Model Range examined
αD Rate of loss following WGD MLG [0,1]
αS Background rate of loss MLG,LG,LO [0,1]
β Rate of gene gain LG, MLG [0,1]
T Topology MLG, LG, LO Symmetric, bifurcating
b Branch lengths ” Depth of tree = 1 unit
NS Number of syntenic segments ” 8,32
NG Number of genes ” 50,500

cj Completeness of segment j ” 1
4 and 3

4 of segments incomplete cj = 0.05
D : S Ratio of Duplication:Speciation nodes ” 1:1

I was interested in assessing whether resolving gene loss due to WGD as well as

gene transposition made for better predictions in comparison to when I could resolve

gene loss and gene transposition, or gene loss without transposition. To investigate the

relative contribution of these different loss and gain processes, I defined three models

in increasing order of rate complexity: LO (Loss Only) with only loss, LG (Loss Gain)

with loss and gain and MLG (Multiple Loss Gain) with background loss and loss due

to WGD, as well as gain.

The transitions between states for the models and their emissions are summarized

in Figure 2.2, and described in detail in section 2.4.

Bayesian estimates of the loss/gain rate parameters α̂D, α̂S and β̂ were used to

compute M̂ which contains the posterior probability of presence of each gene on each

genome segment.
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αS 

αD 

LO  LG 

P  A 

MLG 

P1  A1 

A2  P2 

β

αS 

αS  αD 

P1  A1 

A2  P2 

αS 

αS 

β

Figure 2.2: Building the HMMs for the 3 models: State Transitions for Loss Only (LO),
Loss-Gain (LG) and Multiple Loss-Gain (MLG), and the Emission Probabilities for each set
of states, determined by completeness of the segment j, cj .

2.4 Methods

2.4.1 Input to the Models

The models required as input a phylogeny (topology T , branch lengths b) of the NS

syntenic genome segments and a binary observation matrix O, that lists whether the

NG genes are observed. or not on the segments (Figure 2.1). For example, if gene gi

is observed present on segment Gj, then Oij = 1, else 0. The internal nodes of the

phylogeny are labelled as Duplication (D) or Speciation (S) nodes. The segments also
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have associated with them a vector of completeness c, where cj ∈ [0, 1], j ∈ [1...NS].

The completeness is the estimate of the the percentage of the genes that have been

identified in the genome the segment belongs in. For example, a high-quality finished

genome like Arabidopsis or S. Cerevisiae will have c = 1.

2.4.2 Simulation Studies

A symmetric, bifurcating tree topology was generated for NS segments and NG genes.

The labeling on the nodes was assigned an equal number of Duplication, D and Specia-

tion, S nodes, or with D : S = 1 with a Bernoulli process. Under the assumption that a

gene is equally likely to have been present or absent at the ancestor, or prior probability

of presence at the ancestor is 0.5, I modeled gain and loss as follows:

If a gene is present at the root node, for every internal node of the tree, gene loss is

investigated with an exponential distribution to see whether its daughter nodes lost or

retained genes, given the loss rate αD/ αS specified by the node label. Once lost, the

gene was not allowed to be gained again. If the gene was assigned absent at the root

node and if the model allowed gain, a transition from absent to present was investigated

on the branches. Once gained, the gene was then subject to the loss process described

above and gain on subsequently sampled branches was disallowed.

Data was simulated for the values of parameters in the specified ranges for each αD,

αS and β. The rates of loss (and gain) are instantaneous rates, and the units are per

gene per unit branch length. The depth of the trees are all unit branch length.

Summarized in Table 2.1 is a range of input parameters for which the model is tested.
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2.4.3 Probabilistic Models of Gene Evolution

LO (Loss Only) model

Under this model, I only consider the effects of gene loss. A gene is subject to a loss

at rate αR. An HMM is used to model the transition between the two states presence

P and absence A of the gene on the internal nodes of the phylogenetic tree. Transition

between the two states is governed by αR. At the leaves of the tree, hidden state P

emits 1 with probability cj and 0 with probability 1-cj, corresponding to its state on

segment Gj.

LG (Loss Gain) model

Under this model, I allowed gene gain due to transposition, in addition to gene loss

due to speciation. A gene could be lost with rate αR, and can also be gained uniquely

on the phylogeny (if absent previously) with rate β. I modeled 4 hidden states of the

gene at the internal nodes - presence at the root node P1, absence under the root node

A1. Similarly for the gene absent at the root node and gained subsequently, P2 and

A2. Under the assumption that presence at the root was equally likely, hidden states

P1 and P2 emit 1 with probability 0.5cj and 0 with probability 0.5(1− cj), and hidden

states A1 and A2 emit 0 with probability 0.5 each.

MLG (Multiple Loss Gain) model

Under this model, I differentiated between gene loss due to WGD and due to speciation,

in addition to gene gain. On the branches following a D node, αD was modeled and on

those following an S node, αS was modeled. Gain β was modeled as before. As for the

LG model, I modeled 4 hidden states of presence/absence of the gene at the internal

nodes, P1, A1, P2, A2. Loss was modeled due to either αD or αS, depending on the

label of the node being D or S, respectively.
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Probabilities of transition between states

I determined the probability that gi is present on Gj for every instance a gene was

’unobserved’, i.e Oij = 0 as follows. I used Felsenstein’s peeling algorithm (53) to

compute the ’forward’ and ’backward’ probabilities of observing the gene content.

The posterior probability that node n is in state K given the observed data can be

written as

p(πn = K|T,Oi, αD, αS, β, c) =
(DK(n)UK(n))

P (Oi|T, αD, αS, β, c)
(2.1)

where DK(n) and UK(n)are the downward (forward) and upward (backward) proba-

bility, respectively, that node n is in state K. Here, the observed data is specific to gene

gi, which is the ith column of Oij, Oi.

The downward and upward probabilities for the leaves of the tree were initialized as

follows: If n is a leaf with Oij = 1,

DP (n) = 1 (2.2)

and

DA(n) = 0 (2.3)

else if its observed value is 0

DP (n) = cj (2.4)

and

DA(n) = 1− cj (2.5)

Since the transitions from branch to branch are modeled by a continuous Markov process
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in time, the transition probability matrix Pr(t) is the solution to

Pr
′
(t) = ρPr(t) (2.6)

where t is the branch length and ρ is the rate matrix.

Shown below are the possible state transitions for the LO model:

 PP PA

AP AA


For the LO model ρ is

 −αR αR

0 0


for which P (t) is

 e−αRt 1− e−αRt

0 1


The LG and MLG model have the following different state transitions



P1P1 P1A1 P1P2 P1A2

A1P1 A1A1 A1P2 A1A2

P2P1 P2A1 P2P2 P2A2

A2P1 A2A1 A2P2 A2A2


ρ for the LG model is
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−αR αR 0 0

0 0 0 0

0 αR −αR 0

0 0 β −β


for which Pr(t) is



e−αRt 1− e−αRt 0 0

0 1 0 0

0 0 1− e−αRt e−αRt

0 h1 h2 e−βt


where

h1 =
e−αRtβ − αRe−βt + (αR − β)

αR − β
(2.7)

and

h2 = β

(
e−βt − e−αRt

)
αR − β

(2.8)

ρ, Pr(t) and equations 7 - 8 are the same as that for the MLG model except that

the loss rates are αS or αD depending on the branch label.

2.4.4 Computing the likelihood of observing O given the rate

parameters

The probability that the daughter node n is in state W given that its parent node m is

in state K is calculated as

Pr(πn = W/πm = K|T,Oi, αD, αS, β, C) =
(DW (n)UK(m))

P (Oi|T, αD, αS, β, C)
(2.9)

The log-likelihood to be maximized over all nodes n, over all genes i, over all possible
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internal states K

LOi,T,αD,αS ,β,C =
∑
i

∑
n

∑
k

log(Pr(πn = W/πm = K|T,Oi, αD, αS, β, c)) (2.10)

Note: This log-likelihood is derived using the MLG model. For the LO and LG

models, the likelihood depends on αR and (αR,β), respectively.

2.5 Parameter Estimation

2.5.1 Markov Chain Monte Carlo analysis of αD, αS and β

α̂R, α̂D, α̂S and β̂ are used to estimate the Presence/Absence matrix of the models

which is the posterior probability of presence of each gene on each genome segment.

I used Bayesian inference to estimate α̂D, α̂S and β̂ and used the log-likelihood

distribution as the target distribution for inference. I used a prior distribution on the

rates to obtain an initial value for αD, αS, and β. This was done by doing a coarse grid

search on the initial likelihood surface with initial proposed rates and adding a random

perturbation to the maximum obtained to preclude starting off with a value that biases

the algorithm to either stay near the maximum or stray too far from it. A standard

normal distribution is used as the proposal distribution for the chain, centered around

the current values of the rate parameters, and the Metropolis-Hastings ratio to compute

the acceptance probability of the proposed move (as reviewed in (113)).

The proposals for each of the rate parameters were done in sequence, with the rates

that are not under proposal at their current values.

A pilot sample was run to determine burn-in, number of iterations for the MCMC

chain, and the values in the chain that are to be sampled to estimate the posterior

cumulative distribution function of the q-quantile to within +/- The chain was run till

convergence was determined. To determine convergence, the average standard deviation
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of the split frequencies was measured for convergence to a steady value after burn-in.

The posterior distribution was examined to make sure that the within-variance of the

values of the chain and in-between variance of the runs were within expected values,

with the Gelman-Rubin criterion (as reviewed in (113)). The rate estimates were then

computed as the mean of the sampled posterior distributions.

2.5.2 Tests of Sensitivity and Specificity in Predicting Unob-

served Genes.

With the simulated data, I estimated the accuracy with which the presence of unobserved

genes are predicted.

Sets of presence-absence matrices M are generated for specified αD,αS,β, for given

NS and NG. A specified percentage of segments (25 or 75 %) are randomly assigned

to be incomplete, and assigned cj = 0.05. Associated columns in the presence/absence

matrices M are masked to be ’unobserved’ (i.e. 1 was changed to 0 in corresponding

segment column for 95% of the values) and sent as input to the models, as a new

input observation matrix O. With the rates estimated from these new matrices, the

posterior probability of presence of the unobserved genes in O are computed. Based

on their corresponding values in O and for specified probability cut-offs of presence of

Pr(presence of unobserved gene) = [0.01,0.99], I calculated the true positive TP, false

negative FN, true negative TN and false positive FP rates of presence.

The sensitivity is defined as

Sensitivity =
TP

TP + FN
(2.11)

and specificity is defined as

Specificity =
TN

TN + FP
(2.12)
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2.5.3 The Yeast Data Set

Genome structure evolution is more biologically complex than what is modeled in the

simulations. I tested the LO, LG and MLG models on genomic data simulated to be

incomplete, to measure the accuracy of predictions of presence of unobserved genes.

The gene content of 11 yeast species and the synteny observed between them as used

in (1) was used to test the models. This data set was chosen in particular because five of

these species showed evidence of a WGD event. The species used were S. cerevisiae, V.

polyspora, N. castelli, S. bayanus, C. glabrata, K. waltii, L. thermotolerans, L. kluyveri,

E. gossypii, K. lactis , and Z. rouxii.

Figure 2.3: Phylogeny of the 11 yeast species showing the WGD event and position of
the inferred ancestor. (Adapted from (1))

The authors reconstructed the pre-WGD ancestor that was dated to exist just before

the WGD event, a 100 million years ago. This reconstruction contained the 8 inferred

ancestral chromosomes, along with their gene content and order. From the 5 post-WGD

yeast species, 2 inferred regions or ’tracks’ each map to an ancestral chromosome re-

construction. An ordered list of the ancestral chromosomal gene content reconstruction,

along with a list of the orthologs that correspond to these reconstructions in each of the

11 species (2 each for the 5 post-WGD species) was used here to test the model.
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Presence/absence matrices were constructed as follows:

Each ancestral chromosome reconstruction and its associated orthologs were consid-

ered to form a ’multiplicon’ of syntenic segments, with 16 (6 + 5x2) segments in each

multiplicon. The segments from contemporary genomes contain presence/absence infor-

mation for each of the Nk reconstructed ancestral genes on the k chromosomes (k ∈ 1...

8) and also include ’singleton’ genes from the genomic segments defined by the ortholog

genes to the ancestral segment.

For each of the contemporary segments, if an ortholog to a gene in ancestral chro-

mosome is present, 1 was entered into its position in the observation matrix, otherwise

0. If there were genes in between two recorded orthologs to ancestral genes that are

not present in the ancestral chromosome, the observation matrix was re-sized to ac-

commodate entries for them if they were within the threshold of what constitutes a

neighbourhood of genes that display segmental homology.

To determine whether the run of genes in between two orthologs to ancestral genes

belong in a syntenic segment, it must be determined how many singleton genes can be

found in between two orthologs in a syntenic segment.

I used a parameter defined in (87) to do so. Here, a simple null model for homologies

amongst genes in the absence of synteny was used to define what constitutes a neigh-

bourhood of genes that significantly displays segmental homology. If hj is Wj/(WTWj),

Wj is the number of orthologs in genome Gj j ∈ 1...11 to the ancestral reconstruction,

WT is the total number of ancestral genes (here, 4703) and Wj is the total number of

genes listed for genome Gj,

κ defined as:

κ ≤ 0.5 + [
log(1− T )

log(1− h)
] + 0.25 (2.13)

is the threshold number of singleton genes that are determined significant in between

two orthologous genes.

T is the probability cut-off at which a run of singletons was decided to be significant
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or not.

All 16 constructed genomic segments (2 each from the 5 post-WGD species, 1 each

from the 6 pre-WGD species) and the list of genes that constitute them defined the

observation matrix. If 2 segments shared the same singleton gene, only one instance of

that gene was recorded for the observation matrix, i.e the gene did not form 2 separate

’gain-like’ columns.

Phylogeny: Topology, Branch Lengths

The phylogeny of the 16 segments for each multiplicon was inferred from that used in

(1), using their placement of the WGD event. The branch-lengths were obtained from

(114).

Completeness

I estimated the completeness of the 11 yeast genomes in this data set. S.Cerevisiae

is the most completely sequenced annotated fungal genome to date. The definition

of completeness here is an estimate of how many of the protein-coding genes in the

contemporary genomes have been identified up to date. Even though the sequencing

of more and more genomes sheds light on the presence of more genes than previously

identified in S. Cerevisiae (115) I considered its genome completely or a 100% sequenced

in this regard.

To obtain a relative estimate of how completely sequenced the other genomes are in

relation to that of S. Cerevisiae, I considered those genes in the ancestral reconstruction

for which S. Cerevisiae has orthologs. I then calculated the percentage of genes for which

the other contemporary genomes have orthologs to this gene set and designated this

percentage to be my estimate of how completely each yeast genome has been sequenced.
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Table 2.2: Completeness estimates for the yeast data

Organism Estimate
S. cerevisiae 1.0
V. polyspora 0.96
N. castelli 0.97
S. bayanus 0.91
C. glabrata 0.97
K. waltii 0.94
L. thermotolerans 0.96
L. kluyveri 0.96
E. gossypii 0.94
K. lactis 0.96
Z. rouxii 0.97

Results

2.5.4 Simulation Tests

In order to determine how gene predictions and rate estimates were affected by the

amount of data in the observation matrix, the following were varied in the simulations:

1. Number of genes NG

2. Number of segments NS

3. The fraction of incomplete segments

When incomplete, segments were incomplete at cj = 0.05.

We can expect to find data sets with a minimum of 8 syntenic segments in a multipli-

con from the angiosperms (eg. Arabidopsis with 2 suspected WGD events (116; 25; 26),

rice with 1 suspected WGD event (16), etc), and in yeast (24); hence the lower value

of 8 for NS. An NG of 50 is similarly an estimated lower bound for the number of

genes we can expect to see in such multiplicons (117). To test the limits of the model

and its predictive abilities, I assigned a very low level of completeness to a genomic
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segment when incomplete at 0.05, or that only 5% of the total genes in the genome

have been assigned to physical map locations. This is the estimate to which a variety

of agronomically important crop plants have been sequenced. To assess prediction for

mostly complete to very incomplete data, I considered data sets with 25% - 75% of the

genomic segments incomplete. In the models, the deepest branch in the phylogeny is of

unit branch length.

I assessed the accuracy with which [α̂D,α̂S,β̂] and M̂ could be estimated using sim-

ulated data. The data was simulated using the MLG model as described in section

2.4.

Figure 2.4 below shows [α̂D,α̂S,β̂] estimated for αD ranging from 0.1 to 1, αS =

0.25,β = 0.25, NG = 50, NS = 32 and an equal number of D and S nodes for complete

data.

With 100% complete data, [αD,αS] were accurately estimated in the range of [0.1, 1]

for the values of NS and NG specified; hence I performed the simulations with the

parameters in this range. Low rates of gain were recovered accurately. I found that

β was consistently underestimated for the values simulated in the range [0, 0.2], even

though I tested it over a range of [0.1, 1] (not shown in the figure 2.4). This was not

unexpected, as the model does not disallow gain occurring more than once per lineage.

I then compared the models on different parameter regimes by observing trends in

the rate estimates and analyzing the Receiver-Operator Characteristic (ROC) curves for

the gene content predictions. The base parameter values for these simulations were NS

= 8, NG = 50, cj = 0.05 for 25% of the segments.

Varying the number of genes, NG

To assess the variation in prediction as a function of NG, I tested the model on sets of

simulated data for which NG was either low at 50 or ten times higher at 500. In Figure

2.5, I have shown the fit of the LO, LG and MLG models for NS=8 and 32. I found
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Figure 2.4: α̂D,α̂S,β̂ plotted for when αD is varied from [0.1,1], αS = 0.1, β = 0.2. NG

= 50, NS = 32, all the segments are complete, i.e cj = 1 for all of them, in a and b.

that there was no noticeable difference in the gene predictions using 50 or 500 genes for

8 segments.

Table 2.3: Rate Estimates in varying NG

True and Estimated Rates
Model NG αR αD αS β

True 0.4 0.1 0.2
LO 50 0.41 - - -
LO 500 0.42 - - -
LG 50 0.21 - - 0.56
LG 500 0.17 - - 0.47

MLG 50 - 0.27 0.12 0.56
MLG 500 - 0.25 0.07 0.48

At 50 genes, a sensitivity of 0.8 and higher is attained only for values of specificity

of 0.6 and lower. With 500 genes however a high sensitivity (0.9 and higher) is attained

at specificity values of 0.8 and lower. For values of specificity 0.9 and higher, the MLG

model had a 50% higher sensitivity than the LG or LO model. For all models, however,

the rate estimates were inaccurate. β was over-estimated to be more than twice as much

of its real value for both the models. αR was estimated to be twice as much as αS with
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Figure 2.5: 8 segments, 25% incomplete data for the MLG (squares), LG (circles) and
LO (triangles) models, with 50 (open) and 500 genes (filled).

the LG model and four times as much with the LO model. For the MLG model, αD

was under-estimated by as much as 50% of the true simulated value of 0.4, while αS

estimated to within 20% of its true value of 0.1.

Varying the number of segments, NS

To examine the effect of number of segments on gene predictions, I considered simula-

tions with 8 and 4 times as much segments, with NG fixed at 50, 25% of the segments
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incomplete. In Figure 2.6, I have shown the fit of the LO, LG and MLG models for

NS=8 and 32. I found that there was a sharp increase in accuracy of gene predictions

with more segments in the data set.
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Figure 2.6: ROCs for MLG (squares), LG (circles), and LO (triangles) for 8 (open) vs
32 (filled) segments.

With 32 segments, a high level of sensitivity (0.9 and higher) was achieved for a

specificity as high as 0.9. All predictions were made at very high values of specificity

ranging from [0.8,1]. Again, there seemed to be no clear difference in using one model

over the other, for either 8 or 32 segments. The MLG model had the highest sensitivity
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Table 2.4: Rate Estimates in varying NS

True and Estimated Rates
Model NS αR αD αS β

True 0.4 0.1 0.2
LO 8 0.41 - - -
LO 32 0.47 - - -
LG 8 0.21 - - 0.59
LG 32 0.24 - - 0.17

MLG 8 - 0.27 0.12 0.56
MLG 32 - 0.38 0.07 0.17

among the three models for very high specificity [0.9,1]. In this case much more accurate

estimates of the true rate parameters were obtained with the MLG model. Interestingly

β was more accurately estimated when NS = 32 with the LG and MLG models.

Varying completeness of the segments, cj

I considered data sets where most (25%) of the segments were complete and where most

(75%) were incomplete.

In Figure 2.7, I have shown the fit of the LG and MLG models for cj = 0.05 for

either 25% or 75% of the segments. This range represents the range of completeness

found in genomic data, like that of many flowering plants. NS = 32. I found that though

not as stark as for variation in NS, there is an increase in accuracy of gene predictions

the more complete segments there are in the data set.

When 25% of the segments are incomplete, the highest sensitivity obtained was 0.9

for a specificity of 0.8. For high values of specificity ∈ [0.8,1] the predictions made

when 25% of the data is incomplete was 50% higher that those made when 75% of the

segments are incomplete. As for the previous two cases, there was no clear trend among

the models for each case, though it was interesting to note that the LG model had a

steeper ROC curve than the other two models. Also interestingly enough, there was no
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Figure 2.7: ROCs for MLG (squares), LG (circles), and LO (triangles) for segments
that are 75% (open) vs 25% (filled) incomplete

appreciable difference in the estimates of αR, αD and αS for the three models, while

there was a 50% difference in the β estimates.

2.5.5 Genomic Data

Tests on yeast data

I tested the models on yeast data to assess how the predictions of unobserved genes

varied when genomic data was simulated to be incomplete.
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Table 2.5: Rate Estimates for varying cj

True and Estimated Rates
Model % Incomplete αR αD αS β

True 0.4 0.1 0.2
LO 25 0.47 - - -
LO 75 0.46 - - -
LG 25 0.24 - - 0.17
LG 75 0.22 - - 0.28

MLG 25 - 0.38 0.07 0.17
MLG 75 - 0.39 0.065 0.27

The 8 reconstructed ancestral chromosomes described in (1) led to the design of 8

multiplicons (as described in 2.4) with gene lists ranging from 579 - 1198 in number.

Table 2.6: Sizes of the Multiplicons

# Ancestral Inferred
1 536 814
2 670 906
3 581 881
4 389 579
5 719 984
6 381 577
7 548 738
8 879 1198

The MLG and LG model were applied to each of the multiplicons and the rates

inferred are summarized in Table 2.7. The value of αD inferred is ∼ 4 times the value

of αS, and ∼ 11.4 times the value of β with the MLG model. The rates of αS and β

estimated from the LG model are very similar to that estimated by the MLG model.

The authors of (1) inferred 124 gene gains in S. Cerevisae, which corresponds to a

rate of 0.0378 per gene per unit time (124/0.5859/5601) for comparison to β inferred for

the MLG and LG models. They also inferred the ancestral gene set to have 4703 genes

in total. The most complete genome S. Cerevisiae has 5158 orthologs to this ancestral
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Table 2.7: Estimated rates from yeast data

Model αR αD αS β
LO 0.803 ± 0.0375 - - -
LG 0.53 ± 0.029 - - 0.172 ± 0.0042

MLG - 1.93 ± 0.689 0.49 ± 0.042 0.168 ± 0.0049

gene set, with which we inferred that 4248 genes (4703 x 2 - 5158) were lost in total.

Hence, a measure of αS for the LG model is ∼ 0.771 which is 1.5 times that estimated

by the MLG and LG models.

Incompleteness and gene prediction

Incomplete observation matrices were generated from the complete observation matrices

constructed from the 8 multiplicons. I applied the LO, LG and MLG models to estimate

rates and predict the presence of unobserved genes.

Figure 2.8 summarizes the trends observed in the rates estimated. For the MLG

model, while αD and β were both over-estimated at roughly greater than 5 and 4 times

as more of the segments in the data set were incomplete, the opposite trend was observed

for αS. With the LG model estimates, both αS and β are over-estimated by ∼ 1.5 and

3 times greater with highly incomplete data.

Shown in Figure 2.9 is an example ROC curve of the predictions obtained. These

curves are predictions of simulated incompleteness of the multiplicon defined by the

ancestral chromosome 6 reconstruction.

The probability cut-off used to generate this figure was in the range of [0.1,0.9].

With 25% of the segments incomplete at 5% incompleteness, a sensitivity of 0.8 and

higher was obtained for values of specificity of 0.8 and lower, for both the LG and MLG

models, similar to what was observed for the simulations involving NS = 32 segments

and NG = 50 genes with 25% of the segments incomplete. These values of sensitivity and

specificity began to degrade for a probability cut-off of ∼ 0.4. When 75% of the segments
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Figure 2.8: Estimated rates for all multiplicons: a. αD b. αS and c. β with all segments
complete(blue),1/4 incomplete at 5% (circles) and 1/4 incomplete at 5% (squares). The
three panels of the first row order are the MLG estimates of αD, αS and β, respectively.
The second row shows the LG estimates of αS and β.

were incomplete, this sensitivity dropped to 0.6 for the same range of specificity. The

LG model made slightly stronger predictions than the MLG model in this instance.

Simulations based on Yeast data multiplicon sizes

While there can be no direct measure of αD from the yeast data set, an approximate

measure of αS and β was inferred from the loss and gain events in the lineage leading to S.

Cerevisiae. Using the same phylogeny obtained for the NS = 16 yeast genome segments

and node labels, simulations were performed using the values of NG corresponding to

the 8 multiplicon sizes to compare the estimates on simulations the size of the yeast

data. The simulations were performed with the LG model, with αYS = 0.77, and βY =

0.038 (the superscript ’Y’ to denote that these parameters were inferred from the yeast

data set). I estimated the rates with the MLG and LG models.

The variance in α̂D was much higher than that of the other two parameters. αS

was under-estimated and β was over-estimated by 4-5 times as much over βY used in

the simulations. The values of α̂D observed in the individual iterations ranged from
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Figure 2.9: ROC curves as estimated for multiplicon 6, with curves for the 1/4 (25%)
incomplete data in filled, 3/4(75%) in open shapes. Pr(An unobserved gene is present)
= [0.1,0.9].
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Table 2.8: Estimated rates from simulated data with yeast multiplicon sizes

Model αR αD αS β
LG 0.67 ±0.039 - - 0.19 ± 0.004

MLG - 1.93 ± 0.689 0.49 ± 0.042 0.17 ± 0.005

[0.47,1.19].

2.6 Discussion

I have demonstrated that with this simple probabilistic model of gene loss and gain it is

possible to predict gene content in syntenic regions of incompletely sequenced genomes

with reasonable accuracy. I find that a non-trivial amount of data is needed. Of the

factors examined, including the number of genes, segments and completeness of the data

set, the largest increase in accuracy of prediction came with an increase in the number

of segments. Differentiating between αS and αD did not make a profound difference in

predictions when sensitivity was high, though the MLG model consistently had higher

values of sensitivity than the LG model for high values of specificity.

From the simulations, I have demonstrated that parameters for background loss and

loss following WGD and transposition can be differentiated, even for the lower limits of

NG = 50 and NS = 8 tested. αD was set to be 4 times as high as αS. For the MLG

model, I found that αD is consistently under-estimated, particularly in the presence

of highly incomplete data. The limit of accurately estimating αD and αS is in the

number of segments in the data set, as the estimates improved from NS = 8 to 32

with a corresponding decrease in error of estimate from 37.5% to 2.5% of the simulated

value. I also found that β is best estimated for values in the range [0,0.2]. As there is no

distinction between loss due to speciation and duplication, for the LO model, I expected

αR to be estimated at a value higher than αD and αS and at a value intermediate them
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with the LG model. I found that with the LO model, αR was estimated at values 2..5 -

17% higher than αD, while it was estimated at a value between αD and αS for the LG

model. I observed that αD, αS and β are best resolved at the larger limit of the data

tested in the simulations (NS = 32, NG = 500, 25% segments complete).

With our current understanding of how various rearrangement processes impact

genome structure evolution (34), I also wanted to assess the accuracy of the predic-

tions made on biological data with WGD events. The size of the data set of the 11 yeast

species studied in (1) was comparable to the ranges of NS and NG that I tested in my

simulations. The numbers of genes in the multiplicons inferred from the reconstructions

were much larger: 579 - 1198 as compared to the 50-500 that I tested. The 16 segments

in the yeast multiplicons were at a value intermediate in the range of 8 and 32 that we

tested.

The predictions made by both LG and MLG models were as good - and even better -

than expected from the simulation tests. Unlike in the simulations, where there were as

many duplication nodes as speciation nodes, there was only one duplication node and 14

speciation nodes in the yeast data set, as there was only one WGD event. As observed

in the simulations, differentiating between αD and αS did not influence the predictions.

It helped to account for elevated loss under WGD, in all of the multiplicons, except

for one of them. While α̂D from 7 out of the 8 multiplicons were estimated within

one standard deviation around the mean, α̂D from multiplicon 7 was estimated at two

standard deviations away from the mean and was also very close to α̂S = 0.57, from

which an elevation in loss immediately following WGD cannot be inferred in regions

syntenic to ancestral chromosome 7. The unusual pattern of retention in this multiplicon

could arise from strongly linked functional properties of the genes descended from this

chromosome (48; 118).

To examine whether the rate estimates were in a reasonable range, I simulated data

sets for the sizes of the multiplicons inferred from the reconstructions under the LG
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model (as I could not readily infer the number of genes lost immediately following WGD).

α̂S from these simulations was close in value to that used for the simulations (αYS ). β̂ was

not, but it was close to the estimates obtained from the yeast multiplicons themselves.

The model is not sensitive to values of β that are an order of magnitude smaller than

the loss rates. The authors in (1) parsimoniously reconstructed the ancestor of the 11

yeast species considered here. What I estimate here with my models are instantaneous

rates of loss and gain per gene per unit branch length (in these simulations ∼ 170

million years). With the MLG model, I estimate that αD was ∼ 5 times higher than αS

following WGD. The authors of (1) estimated a total of 4248 gene losses and 127 gene

gain events in the lineage leading to S. Cerevisiae using their ancestral reconstruction.

Using the rates of αR and β for the LG model, I estimate a smaller ∼ 2700 loss and

much higher ∼ 948 gain events. With the MLG model, I estimate 2733 loss events

and 925 gain events. For the LO model, I estimate 4425 loss events, which is much

closer in magnitude to that estimated by (1) than for the other models. The LO model

that does not account for gene gain at all has the closest estimates of loss events to

that inferred by (1). As the Bayesian rate estimates account for all possible events

of loss and gain along the different branches of the phylogeny, they are expected to

be different from the parsimonious estimates described in (1). This suggests that the

gene content and order observed among the 11 yeast species considered here could have

been generated by a lower instantaneous rate of loss and much higher rate of gene

transposition, not detected by parsimony. The authors only included genes in their

ancestral reconstruction for which they were able to resolve its location at the time of

the WGD event in the yeast lineage. This excluded gene content in subtelomeric regions.

The excluded gene content could contribute to the difference in the events estimated.

Some of the genes in the ancestral gene set considered here might have been absent

at the ancestor and transposed into a set of the lineages at some internal node that

descended from the ancestor and therefore incorrectly inferred to have been present at
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the ancestor. I also noted that the sizes of the multiplicons generated by the MLG

model with the ancestral set of 4703 genes on 8 chromosomes inferred by (1) were ∼

1.5 times larger than those observed in the data set. This difference in size can arise

both through different in rate estimates as well as a difference in prior probability of

presence of the genes in the ancestor, which I consider here to be 0.5. This suggests

that a different ancestral gene content size and different prior probabilities of presence

also factor into the difference seen in the numbers of estimated gain and loss events. In

terms of the relative frequencies of the rate estimates, for the MLG model, αD was ∼

10 times of β which is higher than the magnitude of 2 times that we simulated (0.4/0.2)

and ∼ 5 times that of αD, comparable to what I simulated (4 times - 0.4/0.1). For

the LG model, αR was ∼ 4 times higher that of β. This suggests that irreversible gene

transposition could be occurring at much higher frequencies than normally suspected

(39).

The accuracy of these predictions are contingent on assumptions of an error-free

phylogeny of the participant genome segments and estimates of how far they have been

sequenced, which are clearly not realistic (53). The rates are assumed to be homogenous

along the branches and there is evidence for this not being the case (115). Therefore

my estimates represent the average effect of different episodes of loss following WGD.

Rates of loss are also known to be different for different classes of gene families (48). The

current framework of the model allows for extensions to fit and test variation in the rates

used, to investigate if better differentiation between rates is possible and/or make more

accurate gene content predictions. One way of doing so would be implementing different

functions for the rates (57) and specifying branch- and gene-specific distributions of

rates. These extensions to the models may provide insight into the evolution of syntenic

gene content after WGD.
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Chapter 3

Reconstruction of Ancestral Gene Content

and Order of Syntenic Genomic Segments

3.1 Abstract

Gene order and content between closely related species diverge through chromosomal

rearrangements like gene loss, gene duplication, inversions, transpositions and translo-

cations. Extensive research has been done on computing the distance between genome

segments to their ancestor when they share equal gene content under rearrangements

that preserve gene content like inversions, translocations and transpositions. Such dis-

tances are not expected to adequately model the divergence between species that expe-

rience episodes of polyploidy and the increased gene loss that follows after. eAssembler

is a heuristic algorithm that reconstructs ancestral gene order and content for genomic

segments of unequal gene content. In this chapter, I evaluate the accuracy with which

eAssembler reconstructs ancestral gene order and content for genomic segments sim-

ulated under a model of evolutionary rearrangements that include polyploidy, gene

loss, dispersed gene duplication, inversions, translocations and transpositions. I use

the breakpoint, inversion and DCJ distances within eAssembler to measure the merits

of one distance over the other for a variety of rearrangement regimes. I also propose

values for the input parameters to eAssembler to guide statistically significant clusters



of segments for reconstructions. I find that the accuracy of reconstruction is affected by

the distance measure used in eAssembler and the evolutionary regime simulated.

3.2 Introduction

Decoding the evolution from ancestral genomes to current-day genomes presents many

challenges. Fossils have been used in uncovering the hidden steps in evolution. Fossils

are not available for all taxa and different methods have been developed to infer ancestral

character states on ancestral nodes in the eukaryotic phylogeny. Some of these meth-

ods, particularly the earlier ones, used maximum parsimony to infer ancestral character

states, with both heuristic and probabilistic models (119; 120). Maximum likelihood

methods have also been developed (121) to reconstruct ancestral states.

In the last two decades, the comparison of sequences of whole genomes enabled the

inference of their most recent common ancestor or MRCA in ways that were not available

before. A lot of the first comparisons were performed with mitochondrial, plastid and

prokaryotic genomes which are an order of 5 - 10 times smaller than nuclear genomes and

have simpler structures. Genomes were represented by their constituent markers with

a beads-on-a-string model. These markers were usually genes. More comparisons are

done with the gene content of the genomes, rather than their entire nucleotide sequences

(122).

Some of the challenges in using the nuclear genomes of species for comparison are

the difficulties in sequencing them and from unequal copies of genes across species for

comparison. We have complete genome sequences for only 38 eukaryotic genomes today

and there is a dearth of phylogenetically informative species genomes that remain to

be sequenced fully. Many of these are commercially and scientifically important plant

genomes like wheat, barley, sugarcane, etc. (9).

Genomes of many species have partially conserved synteny, or conserved gene con-
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tent and gene order. Synteny is sometimes highly preserved and easily visible between

close relatives (1). It can be very hard to detect in species that have experienced a lot of

disruptive evolutionary rearrangements and subsequent divergence, as is the case in dis-

tantly related flowering plants (21). Synteny that is conserved in spite of rearrangements

can be detected by a variety of methods, experimental and computational. Synteny is

leveraged in many applications in comparative mapping and a very useful example is

determining the genetic maps of intractable genomes using those of fully sequenced

model organism genomes (21). In flowering plants, multiple instances of polyploidy cou-

pled with massive gene loss produce unequal gene content across and within the species

genomes. At least three suspected rounds of polyploidy in the Arabidopsis lineage has

resulted in many duplicated chromosomal segments (123; 26). Small scale duplications

can also produce synteny. Distinguishing between long preserved regions of ancestral

synteny and duplications on a smaller scale is made difficult by fragmentation of gene

order. These ancestral patterns of synteny are often not readily identifiable by ad hoc

methods.

If we were able to observe the common ancestor of two contemporary genomes, each

of these genomes would clearly be more similar to their ancestor than they are to each

other. In fact, the gene order and content of the extant genomes can potentially be

more easily resolved in comparison with the MRCA ancestral gene content and order.

Particularly in organisms that have undergone multiple rounds of polyploidy, synteny

between regions that correspond to older duplications are harder to detect than between

regions derived from younger duplications. If we assume that the genes observed in a

set of regions did exist in the ancestor that pre-dated the duplication events, then an

accurate reconstruction of the ancestor could help connect the hidden synteny between

the regions derived from different duplication ages. Blanc et. al used an ancestral recon-

struction in guiding their search for synteny in the Arabidopsis genome, and discovered

68 more pairs of syntenic segments in the genome in this fashion (124). In a more re-
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cent example, Gordon et. al manually assembled the MRCA of 11 yeast species, five of

which had undergone a WGD. With this reconstruction, they both validated existing

evolutionary hypotheses and tested some new ones. In this case, however, they had the

advantage of having the complete whole genome sequences of the species they used in

their study. An accurate reconstruction of the ancestor of related genomes could uncover

much more of the synteny than is currently observed.

There are several methods that have been developed for the reconstruction of an-

cestral gene order and content for genomes that have equal gene content. Equal gene

content automatically precludes gene loss and duplications - two major disrupters of syn-

teny. Due to this preclusion alone, there is a known inaccuracy in these reconstructions.

Reconstructions are used most often to estimate rearrangement rates in the evolutionary

path leading to contemporary genomes, as well as to estimate the correct phylogeny of

related species. When the gene content being compared is equal, the gene orders are

considered as permutations of each other and of the ancestral genome. The first method

that was developed for reconstructions was the reversal or inversion distance method

by Hahhenhalli and Pevzner (70). The distance between two contemporary genomes

was computed as the number of reversals it would take to transform one genome to the

other. To obtain an ancestral reconstruction, this method was extended to compute

the ancestor for which the distance between the ancestral reconstruction and the extant

genomes was minimized (71; 83).

Another heuristic for computing the distance between genomes is to count the num-

ber of rearrangements between the two, or the number of breakpoints. The breakpoint

distance was first proposed by Sankoff and colleagues (72) and applied to the task of

reconstructing the mammalian ancestral genome. The inversion distance models rear-

rangements as inversions, while the breakpoint distance does not discriminate between

them. A third distance measure that has been widely used is the double cut and join

distance method (77) proposed by Yancopoulos et al. This method invokes the various
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rearrangements that produce two cuts and a subsequent join in gene order, such as

transpositions, fusions, fissions, inversions and translocations. It was been widely used

and extended (125; 126).

Many extensions of these distance methods have been proposed to deal with unequal

gene content between genomes. This would mean the inclusion of insertion, deletion

(loss) and duplication of individual genes, or whole stretches of genes. Two approaches

to deal with unequal strings have been proposed: the block-edit model, and match-and-

prune model (49). The match-and-prune model transforms strings into permutations

and then minimizes the distance between them or maximizes the similarity between

them. The block-edit model is based on counting the number of operations needed to

transform one string into another. The DCJ with deletions, insertions, etc. would be

an example of the match-and-prune model.

There are a few algorithms that have been developed for reconstructing ancestors for

genomes of unequal content, like eAssembler (2), DUPCAR (80) and Genome-Halving

(127). The program eAssembler reconstructs ancestors of syntenic genome segments

(identified by a synteny-finding program like FISH (87)), by reconstructing the break-

point median or ancestor (72) for segments that are clustered together if they share

a minimum of Υ genes in common and are at a breakpoint distance of no more than

τ genes away from the reconstruction. The program DUPCAR looks at gene family

phylogeny reconciliations to infer a segment/species phylogeny for the input genomic

segments/genomes, and reconstructs the ancestor at every node of the reconciled phy-

logeny. In the Genome-Halving context, under the assumption that one species in the

input data is a polyploid descendant of the common ancestor and the other is a non-

polyploid descendant, the non-polyploid genome is used as a ‘guide‘ to reconstruct the

ancestor of the two species. DUPCAR reconciles orthologous gene families into ances-

tral regions on a gene family basis and does not implicitly model the context of syntenic

regions. As Genome-Halving does not incorporate gene content not present in both the
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polyploid and non-polyploid daughter genomes used to reconstruct the pre-polyploid

ancestor, the reconstruction is incomplete with respect to the synteny of the ancestral

gene order.

Reconstructions of ancestors of contemporary genomes could be more accurate if the

evolutionary history within their entire gene content is used. This could be especially

true in identifying synteny among genomes that are descendants of multiple polyploidy

events. eAssembler is a computationally fast method that provides reconstructions for

clustered segments with unequal gene content. It takes advantage of the overlap among

syntenic genomic segments to assemble ancestral segments, that contain more distinct

genes than any single segment in the cluster. An illustration of how the algorithm

assembles reconstructions is shown in in Figure 3.1.

eAssembler has some limitations. The breakpoint distance with which the recon-

structions or medians are currently computed is known to be non-discriminatory to

evolutionary rearrangements that create breakpoints in synteny. Moreover, the param-

eters of Υ and τ that are used for clustering segments are currently arbitrarily decided.

Distance measures like the inversion and DCJ measures (70; 128) are known to be

superior distance measures for reconstructions, in some specific evolutionary contexts

(71; 125).

In this chapter, I test two proposed improvements to ancestral reconstruction in

the eAssembler algorithm. The first improvement is to evaluate how the choice of

distance measure in eAssembler affects the accuracy of reconstructions. The second

improvement is to use genome-derived values for the clustering parameters τand Υ, to

identify segments that are significantly syntenic over those that might be seen by chance

in the genome. I use simulated data to test whether the use of one or both of these

alterations actually improve the accuracy of reconstructions, as unlike for biological

genomic data, we have the luxury of knowing the exact simulated evolutionary history

of simulated genomic segments.
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Figure 3.1: An illustration of the eAssembler algorithm, adapted from (2). Six segments are
shown at top, each with four to six genes. Genes shared among segments are labeled with
identical numbers. The bottom half of the figure shows four iterations of the agglomerative
clustering process, with the corresponding medians in each step, and the breakpoint distance
of each assembled segment to the median. In this example, the medians satisfy the assembly
parameters of at least three shared genes and a maximum breakpoint distance of three from
the median (τ = 3, Υ = 3).
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Table 3.1: Parameters and Definitions

Input Parameter Description
τ Minimum number of genes to be shared between clusters
Υ Maximum allowed distance between cluster segments and median
B Set of input segments to eAssembler

3.3 Methods

3.3.1 Methods

The original eAssembler algorithm as described in (2) is implemented here in MATLAB,

with some modifications. Briefly, the objective of the program is to reconstruct medians

for all the segments assembled into clusters. For each cluster, the segments in the cluster

share at least τ genes in common and are at a distance of no more than Υ from the

reconstructed ancestor of the cluster. The input to eAssembler is a list of genomic

segments or ordered list of genes that are identified to be syntenic by programs like

FISH (87) and i-ADHoRe (86) and clustering parameters τ and Υ.

A list of all the parameters used in this chapter is defined in table 3.1.

The Sankoff median (72) is used in eAssembler. In summary, a gene g ∈ G =
⋃
gi,

i ∈ 1...n, where G is the union of all the genes in the n segments in cluster C. At each

iteration of the computation, the gene ĝ ∈ Ĝ that minimizes the cost function ψ(M) is

inserted, where Ĝ is G \ M , the set of all genes in G that are not in median M . These

iterations are continued until Ĝ is empty or all the markers have been inserted into M .

If more than one choice of g ∈ Ĝ satisfies the optimization criteria, one of the choices is

randomly picked.

The cost function ψ(M) that is minimized is

ψ(M) =
i=n∑
i=1

d(Si,M) (3.1)
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Input : Segments Si, i ∈ 1...N , τ ,Υ
Output : M clusters and reconstructions
Initialize: Clusters Ci = Si i ∈ [1,N]
J = Join({C})
while J 6= ∅ do
{ Ca, Cb } = max(Join{C})
Mab = Median(CaCb)
if d(s,M) ≤ Υ ∀ s ∈ Ca ∪ Cb then

clustered = 1
Merge Ca and Cb

end ifJ = Join({C})
end while
if clustered =1 then

for Ci ∈ 1...M do
R = Ci \ M
if R 6= ∅ then

Insert all g ∈ R in M
end if

end for
end if

where Si are the n segments in cluster C, and d is the distance between the median

reconstruction M and Si.

If there are multiple candidate clusters that can be joined during the cluster joining

process, one of the candidates is randomly chosen for joining. During the cluster joining

process, a reduced median is computed. The reduced median is reconstructed with only

those genes that are shared by at least a pair of segments in the cluster, i.e. genes g ∈

∩i=ni=1si ∀ si ∈ C. This reduction is made possible since breakpoints can only be inferred

in shared content from one sequence relative to the other. It also reduces the time to

compute the median as was demonstrated in the original implementation of eAssembler

(2), as the number of genes that are to be inserted is reduced. The remaining genes are

inserted into the median after the cluster joining process.

One important feature of eAssembler is that the medians are larger than the segments

they are built from and can be used to cluster additional segments that did not have

sufficient overlap of genes to be joined by themselves.
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When there are instances of duplicated genes within a segment, the gene (and its

position in the segment) selected for insertion into the median is chosen randomly from

the set of duplicated genes in the segment.

The original implementation of eAssembler used only the breakpoint distance. The

two alternative distance measures that are incorporated into eAssembler in this chapter

are the Double-Cut-and-Join or DCJ distance, and the inversion distance. The break-

point distance between two segments of genes is the count of the number of adjacent

genes within one segment that are not adjacent in the other, or the number of break-

points between the two. The inversion distance is the minimum number of inversions

of sub-segments of different length within one genome segment required to transform it

into the other. The DCJ distance accounts for the number of ways two cuts of breaks in

the sequence of genes in one segment can be joined by translocations, fissions, fusions,

transpositions and segment interchange to transform into the other segment. For the

DCJ distance, translocation and segment interchange have a weight of 2 units, whereas

the other operations have unit weight. I have implemented the breakpoint distance algo-

rithm in MATLAB for this chapter Both the DCJ and inversion distance measures have

been adapted from the program GRAPPA (83). Both the inversion and DCJ distances

have been adapted for use in eAssembler by the Tang lab in the University of South

Carolina, from the GRAPPA program suite (83).

Rather than set τ and Υ arbitrarily, the properties of the dataset can be used to

decide parameter thresholds to reduce false positives for a given null model of the dis-

tribution of homologies among genes in the input genome data. Based on the work of

(129), optimal values of τ can be computed for two segments of a given length, for the

given genomes and their associated gene families.

Equations 3.2, 3.3 and 3.4 define the probability of a seeing a gene cluster in a

genomic region of size r genes under the hypothesis of random gene order using the

number of shared gene families m as a statistic. An assumption is made that all gene
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families in the genome are of the same size φ and further that the average length of the

genomes is n. Using these assumptions, the authors showed that using φ=2 for genomes

of size ≤ 25000 genes fit power-law based gene cluster probabilities (129).

φ is set to be 2. I then calculate the probability of seeing m homologous matches

in a pair of genomic segments of size r as q(m). Here, r is the average size of genomic

segment from the input data.

q(m) =
r∑

k=m

[(
n

k

)
p1(k)

k∑
l=m

(
k

l

)
p2(l|k)

]
(3.2)
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n

r

))−1

(−1)k
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φ

[
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(
k

u

)(
u.φ

r

)]
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p2(l|k) =

((
n− r
r

))−1∑
z

(−1)l
l∑
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φ

[
(−1)u

(
l

u

)(
u.φ
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)](
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z

)
(3.4)

Hence, for a given significance threshold α and segment size r, m can be selected

such that q(m) ≤ α. This value of m will then be suggested as the optimal value for τ

for the assembly process.

For the breakpoint and inversion distances, it is possible to calculate the expected

distance between two random permutations. From (130), I estimate that under the hy-

pothesis of random gene order, for genomes of length n, the expectation of a breakpoint

distance d can be derived from

n− d = O

(
log(n)

2

)
(3.5)

and from (131), I estimate that the expectation of the reversal distance d between two

random permutation of length n (same hypothesis)

n+ 1− 1

2
log(n)− 3

2
+O

(
1

n

)
≤ E[d] ≤ n+ 1− n+ 1

2n
log(n+ 1) +O

(
1

n

)
(3.6)
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Therefore, once an optimal value of τ is calculated, by setting n = τ , the expected

distance that would be observed under a random distribution of matches amongst the

genomes (and within them) and their segments. This defines a lower threshold for what

value of Υ should be used in the assembly process. For all the experiments described in

this chapter, I used the expected inversion distance as a proxy for the expected DCJ

distance.

In addition to the median computation method described above, an alternative

method for computing the median is used here. The method optimizes the many ways

of determining the sequence of inversions to transform one permutation into another

(71). I modified the framework of eAssembler for this comparison as follows. At initial

clustering steps, if a pair of segments are grouped into a cluster, the cluster is replaced

by the computed median of shared gene content. At subsequent clustering steps, each

cluster therefore consists of a single median segment that represents all median recon-

structions upto that step. The coverage of genes in this median is therefore only as high

as the gene content shared by all the segments that have participated in the clustering

steps leading to the final median reconstruction. Hereafter, I will refer to this alternative

median as the optimal inversion median.

3.3.2 Genome Data Simulator

To test the reconstructions of eAssembler , I designed a forward genome evolution simula-

tor in MATLAB for data that models rearrangements scenarios similar to those inferred

from biological data.

Simulations are initiated with a unichromosomal genome containing AG genes. A

segment phylogeny is then simulated under given speciation and polyploidy rates. The

depth of the phylogeny is set to be of unit length, which corresponds to approximately

150 million years, or the root of the angiosperm phylogeny. Inversions, translocations,

dispersed gene duplications and gene losses are then simulated as stochastic processes

58



Table 3.2: Parameter Rates used for testing the three distance measures in eAssembler

Parameter Description Dimension Range Default
AG Ancestral genome size Number of genes 50,500 50
λs Speciation per unit time [0.5,1.5] 1.2
λp Polyploidy per unit time [0.5,1] 0.5
λi Inversion per unit time [0.5,2] 0.5
λt Translocation per unit time [0.5,2] 0.5
λd Dispersed Duplication per gene per unit time [0.5,2] 0.5
λl Gene Loss per gene per unit time [0.5,2] 0.5

occurring along the branches of the phylogenetic tree. A dispersed gene duplication

is the duplication of a single gene and transposition of its duplicate elsewhere in the

genome. Whereas translocations and inversions are modeled as processes that apply to

the entire genome per unit time, the dispersed duplication and gene loss parameters are

modeled as processes per unit gene per unit time.

These processes are formally defined as follows.

For G, a list of N genes g1, g2, ...gN :

An inversion between the i and jth genes where 1≤ i≤ j≤ results in g1..gjgj−1..gi+1gi..gN .

A loss of the ith gene where 1≤ i ≤ n results in g1..gi−1gi+ 1..gN .

A translocation of length l starting at the ith gene to a location starting at the kth

gene where 1 ≤ i ≤ N and 1≤ k ≤ N results in g1..gk−1gkgigi+1..gLgk+1..gN .

Dispersed duplication of gene i to a location next to the kth gene results in g1..gi...gkgigk+1...gN .

The dispersed gene duplications serve to create a ‘cloud’ of homology within the data

that can lead to false positive homologies relative to homologies generated by polyploidy

events. I am particularly interested in regimes of the data that have properties similar to

that observed in angiosperms. To test reconstructions for this chapter, I took a reduced

set of those parameter regimes (which are detailed in chapter 4). They are summarized

in Table 3.2, along with their default values in simulations.

59



For both inversions and translocations, a single chromosome is selected for rearrange-

ment. A inversion with a length that has a lower bound of 1
5

to an upper bound of 1
2

the total length of the chromosome is generated.

In this framework, each of the processes are assumed to operate independent of each

other. The events are simulated as Poisson processes.

A phylogeny was simulated with a Yule process using speciation rate λS (132). If the

number of nodes generated was v, the number of WGD nodes to be assigned was cal-

culated as λpv. Candidates for the WGD labels were selected uniformly randomly from

the set of v available nodes. The root node had AG genes at time T=0. The simulation

was initiated at the root node and continued along each branch of the phylogeny. If the

parent node of a branch had a WGD label, the genome was duplicated before any of

the other processes are simulated. A Gillespie process (133) was used to stochastically

simulate rearrangements. The simulation ends at time T = 1.

A typical simulation result for the default parameter regimes used here resulted in

a phylogeny of 4 genomes, with at least two of the genomes having experienced WGD

events. At least one genome per simulation underwent 2 rounds of polyploidy on average.

As a result, the resultant genomes had anywhere from 1 - 4 chromosomes, resulting in

a total number of 7 - 9 chromosomal segments in the data set.

For this chapter, my objective was to simulate genomic segments that are all derived

from one ancestral segment of size AG with the processes listed above and measure the

quality of reconstructions obtained under the regimes tested.

3.3.3 Measures of Performance

The quality of the reconstructions was assessed by three metrics: Coverage, Normal-

ized Induced distances and Quality of Reconstruction. Coverage measured what

proportion of the genes seen in contemporary genomes were present in the reconstruc-

tion and was calculated as the ratio of the distinct genes of all reconstructed segments
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to the number of genes in the original genome. For a segment, the Normalized Induced

Distance (e.g. breakpoint distance) is the distance between the reconstruction and the

true gene order, and is defined as the ratio of its distance to its length in genes. Hence, a

lower NI distance indicates a more accurate construction, as does a higher value of cov-

erage. I compute the NI distance using all three distance measures; NB with breakpoint,

ND with DCJ and NI with inversion.

Quality of Reconstruction QR is defined as the ratio of coverage to NI distance. The

higher the value of this ratio, the higher the quality of the reconstruction.

The coverage and the three normalized induced distance measures for eAssembler

were compared for data sets of evolutionary regimes where one process is at a higher

rate in comparison with the others (e.g.. frequency of inversion higher than that of gene

loss, transposition and translocation, etc.) to examine the potential advantage of using

one distance measure over the other. This was used to evaluate the relative performance

of one distance measure over the other for a particular evolutionary regime.

Coverage and normalized induced distances were measured from each reconstruction

to the starting ancestral segments in the simulations. For the tables in the results, QR

for the breakpoint reconstruction was calculated as coverage/NB, for the inversion as

coverage/NI and for the DCJ as coverage/ND. For the optimized inversion median, QR

was calculated as coverage/NI.

3.4 Results

To test the reconstructions obtained from my modified version of eAssembler with each

of the breakpoint, inversion and DCJ distances, I simulated data sets under a set of

different parameter regimes. The chromosomal segments of the genomes at the end of

the simulation were sent as input to eAssembler.

I simulated a regime EQ where all the parameters are at their default frequencies. I
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also simulated a regime HI where the frequency of inversion is set to its high value, i.e.

λi = 2 with the other parameters at their default frequencies and a regime HL where

the frequency of loss is set to its high value, i.e. λl = 2, with the other parameters at

their default frequencies. I used these three regimes to infer the relative contribution of

inversions and gene loss over other rearrangements to accuracy in the reconstructions.

3.4.1 Clustering parameters τ and Υ

I wanted to measure whether the proposals for clustering parameters that I have de-

scribed in equations 3.2 - 3.4 yield reconstructions with optimal coverage and Normalized

Induced Distance. To test this, I used simulations to measure coverage and ND obtained

for a range of values of τ and Υ for the different regimes. The data sets were generated

with a starting AG = 50. The lengths of the chromosomal segments obtained varied

from a minimum of 11 genes to a maximum of 30 genes and had an average length of

16 genes. The proposed value for τ and Υ is calculated for the average size of genomic

segment. I therefore looked at the range of τ and Υ values calculated for ranges of

segment length between the minimum and maximum value.

The values of τ derived were m = τ = 3.5 and 15 for which the corresponding Υ

values were 2, 4 and 13 for the breakpoint and inversion distances at a level of significance

α of 0.0001. τ = 5 and Υ = 4 correspond to the average length of segment of 16 genes.

I added in an additional intermediate value of τ = 10 for which Υ =9.

The coverage and ND obtained with the breakpoint and inversion reconstructions

for all combinations of τ and Υ used on data sets from the EQ and HI regime are

shown in Figure 3.2. Panels A, B, E and F in the left of the figure correspond to the

EQ regime and panels C, D, G and H correspond to the HI regime. Panels A, E, C

and G were generated using the breakpoint reconstruction and panels B, D, F and H

were generated using the inversion reconstruction. The first row of panels A, B, C and

D show the coverage over the τ -Υ grid while the second row below with E, F, G and H
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show the corresponding ND. Five sets of simulation replicates were used to derive the

results in this figure.

Figure 3.2: Values of coverage and ND for Υ = 2,4,9,13 and τ=3,5,10,15 for two evolutionary
regimes. Figures A,B,E and F correspond to the equal frequency regime, while C,D,G and H
correspond to a high inversion regime.

The most optimal values are those that yield the highest coverage for the lowest

ND. The proposed value of τ = 4 has the lowest ND at Υ = 4 for all the panels

except F corresponding to the inversion reconstruction in the EQ regime. The coverage

obtained for this set of τ and Υ was within a 25% neighbourhood of the highest coverage

observed. The trends for coverage and ND were similar for the breakpoint and inversion

reconstructions for the EQ regime. For the HI regime, the breakpoint reconstruction

yielded the lower ND.

As the proposed values for τ and Υ yield reconstructions with high coverage and low

ND, I used this method in the rest of the experiments described in this chapter.
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3.4.2 Measuring Reconstruction Quality

I tested the difference in accuracy of the ancestral reconstruction under different the

evolutionary regimes EQ, HI and HL with different distance measures in the median

computation of eAssembler. (τ , Υ) were calculated as described in the Methods 2.4

to be (5,4) for the breakpoint reconstruction and (5,5) for the inversion and DCJ re-

constructions. Each of the measures are summarized from the results of 10 simulation

sets.

Table 3.3 summarizes the different performance measures for the EQ, HI and HL

regimes with AG = 50 for all of them except for HL, where AG = 500.

Table 3.3: Comparison of the different distance measures in eAssembler for EQ, HI and
HL regimes

Measure Reconstruction
Breakpoint Inversion DCJ

EQ

Coverage 0.64 ± 0.024 0.59 ± 0.037 0.65 ± 0.039
NB 0.50 ± 0.061 0.46 ± 0.068 0.50 ± 0.074

NI 0.58 ± 0.063 0.55 ± 0.042 0.59 ± 0.037
ND 0.55 ± 0.065 0.59 ± 0.042 0.55 ± 0.039
QR 1.28 1.07 1.18

HI

Coverage 0.65 ± 0.025 0.62 ± 0.016 0.601 ± 0.02
NB 0.51 ± 0.046 0.49 ± 0.047 0.45 ± 0.044
NI 0.68 ± 0.045 0.59 ± 0.027 0.59 ± 0.018
ND 0.65 ± 0.025 0.56 ± 0.028 0.56 ± 0.017
QR 1.27 1.05 1.07

HL

Coverage 0.17 ± 0.039 0.15 ± 0.033 0.17 ± 0.041
NB 0.46 ± 0.069 0.48 ± 0.07 0.42 ± 0.082
NI 0.61 ± 0.078 0.56 ± 0.051 0.51 ± 0.065
ND 0.58 ± 0.087 0.52 ± 0.062 0.47 ± 0.073
QR 0.29 0.27 0.36
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When all rearrangements are simulated in equal frequency with each other in the

EQ regime, there is no expectation for which distance method is the better one to

use for reconstructions. Here I found that the DCJ and breakpoint method have higher

coverage than the inversion method. The inversion method has lower normalized induced

distances than the other two methods except in the case of ND, where the DCJ has the

lowest value. The breakpoint reconstruction had the highest QR for this regime.

Rows 5 - 10 in Table 3.3 summarizes the performance measures for the high inversion

HI regime, with AG = 50. The DCJ reconstruction produced the lowest normalized

induced distances NB, NI and ND, though the mean NI and ND values the same for

both the DCJ and inversion reconstructions. The breakpoint reconstruction yields the

highest coverage and measure for QR.

Rows 11 - 15 in Table 3.3 summarize the performance measures for the HL regime

with AG = 500. The mean coverage for all methods for this regime is ∼ 4 times lower

in magnitude than for the EQ or HI regimes. The DCJ and breakpoint reconstruction

had the same mean coverages which are higher than the mean coverage for the inversion

reconstruction. The DCJ reconstruction has the lowest values for normalized induced

distances NI, NB and ND in all cases and has a quality of reconstruction about 25%

times higher than that of the inversion and breakpoint reconstructions.

In order to test the difference in changing the way the median computation itself is

performed, I compared the Sankoff median computation method (with the breakpoint,

inversion and DCJ distances) with the optimized inversion median for the EQ, HI and

HL regimes.

Shown below in 3.4 are the results for the comparison of the two median computation

methods on the HI regime, with AG = 500.

With the optimized inversion median, the coverage obtained was lower than that

for the other reconstructions. This is not unexpected, as the inversion median is only

computed for segments that have the same gene content. However, the normalized
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Table 3.4: Comparing different median computations

Breakpoint Inversion DCJ Optimal Inversion
High Inversion

Coverage 0.65 ± 0.025 0.62 ± 0.016 0.601 ± 0.02 0.56 ± 0.044
NB 0.51 ± 0.046 0.49 ± 0.047 0.45 ± 0.044 0.42 ± 0.073
NI 0.68 ± 0.045 0.59 ± 0.027 0.59 ± 0.018 0.52 ± 0.059
ND 0.65 ± 0.025 0.56 ± 0.028 0.56 ± 0.017 0.48 ± 0.06
QR 1.27 1.05 1.07 1.07

induced distances were the lowest for this method, suggesting that the accuracy of the

reconstruction is higher than that of the other methods.

3.5 Discussion

Through these simulation studies I have shown that for the evolutionary regimes that

include genome structure rearrangements like WGD, gene loss, inversion and transposi-

tion, using different distance methods in eAssembler produces differences in the quality

of reconstruction. The DCJ reconstruction had the lowest normalized induced distances

from the ancestor for both the high loss HL and high inversion HI regimes. For the

EQ regime, the inversion reconstruction had the lower normalized induced DCJ and

inversion distances. The breakpoint reconstructions had the highest mean coverages for

all the regimes although the DCJ reconstruction mean coverage was ∼ 1% higher for the

EQ regime and the same for the HL regime. For regimes that have high gene loss, the

DCJ distance method yields the most accurate reconstructions in eAssembler. For the

other two regimes, different distance measures produced the more desirable measures of

reconstruction.

I found that the proposed value for clustering parameters τ and Υ adapted from (129;

131; 130) yield higher quality reconstructions with high coverage for lower NI distances.

The choice for τ adapted from (129) identifies the number of gene homologies that are

shared between two genomic regions of the same size r that are spatially significant.
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This choice is better than an arbitrary choice for τ .

Different reconstruction methods are optimal for different rearrangement regimes.

For regimes that have predominantly inversion rearrangements, the breakpoint method

provides the best reconstructions. This is relevant in systems like the cereals, where

maize is inferred to have undergone many rearrangements since its divergence from rice,

for example (46; 134). Polyploidy events are known to precipitate massive gene loss

(35; 36; 25), particularly in angiosperm regimes. The DCJ method provided the best

reconstruction among the three methods and can be used for reconstructing ancestral

gene order and content in such lineages; for example, the angiosperm ancestor prior to

the divergence between the monocots and eudicots. These lineages are known to have

undergone several rounds of polyploidy (21), gene loss (25), inversions (134; 135; 45),

translocations (45) and dispersed duplications (112). In a yeast pre-WGD ancestral

reconstruction study (1), 73 inversions and 66 reciprocal translocations, 4248 gene loss

and 124 gene gain events were inferred in the lineage leading to S. Cerevisiae from the

inferred pre-WGD ancestor (1). Apart from the gain parameters, the inferred yeast

genome rearrangement parameters are comparable to those used in the HL regime.

Therefore, a DCJ distance method can be used to provide a reconstruction of the pre-

WGD ancestor of the 11 yeast genomes used in the (1) study.

The yeast genomes have rates of rearrangements comparable to those of the an-

giosperm lineages The breakpoint distance has been previously shown to provide re-

constructions that are inferior to those computed with the inversion or even the DCJ

distance (71; 125). The data sets the authors tested the inversion and DCJ methods

on in (71; 125) modeled inversions and transpositions but did not account for gene loss

or duplication. Most other genome rearrangement simulations (80; 136; 71; 125) have a

framework where either an evolutionary tree is present, with a fixed number of events

to be simulated on each edge of the tree, or a regime where the objective is to maximize

the number of rearrangements in order to use unique breakpoints, and/or to achieve a
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reduced genome size (here also an evolutionary tree is present). The distance measures

described in this chapter have been tested on simulated data that incorporates all of

these rearrangements, as well as polyploidy and gene loss. The conclusion that the

breakpoint distance is inferior in performance to the DCJ or inversion distance cannot

be drawn by looking at the coverage of reconstructions for the three different methods in

the HI and EQ regimes. The DCJ distance accommodates many of the rearrangements

that were used for the simulations in this chapter and is considered more realistic. The

fact that it was not always better in both coverage and normalized induced distances

of the reconstructions than the breakpoint distance method is a little unexpected. This

might not be as surprising since each of the rearrangements are given equal weight in

the DCJ operations, which can be considered analogous to the fact that the breakpoint

distance does not discriminate between which rearrangements cause the breakpoints in

synteny that it accounts for. In the case of the HI evolutionary regime with high gene

loss rate, the breakpoint distance reconstructions are less accurate than those of the

other two distances. This is significant as a high rate of gene loss has been inferred to

have occurred in angiosperm genomic data.

Recent studies (137) have used measures like genomic distance (analogous to nor-

malized induced distances), breakpoint re-use rate and dispersion of sets of alternate

solutions (dispersion in degeneracy) to evaluate the genome-halving technique for an-

cestral reconstruction. In the introduction to this chapter, I mention the issue of using

even those genes that do not have homologs in any other genomic region. In this con-

text, a method like eAssembler can be expected to have a much higher coverage of

the genes present in extant syntenic genomic segments in the ancestor. The authors

in (137) argue that the non-inclusion of such ’singleton’ genes do not deteriorate their

reconstructions. However, the simulations from which the authors measured their re-

constructions modeled inversions and translocations and did not include rearrangements

like gene loss, which degrade gene content. From the simulations in this chapter, high
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coverage does not necessarily always result in high normalized induced distances, im-

plying that the inclusion of singleton genes does not necessarily deteriorate the quality

of reconstructions.

There are many opportunities for future work. The current median computation

method can definitely be improved in a variety of ways. The heuristic method of inserting

the gene that minimizes the distance function at each iterative step in computing the

median is a local optimization function, and need not necessarily be the global optimal

solution. Moreover, there are a lot of degeneracies in the choice of gene to insert at

every iteration. There might be a more principled way of addressing the degeneracies

over the current method of randomly picking a gene from the degenerate set. Rather

than picking just one, a few could be picked at every clustering step to fork different

median computation processes. These could be interrogated for a few more iterations

till one choice optimizes the distance function better than the rest. If there is no optimal

choice over the other within a few iterations, one of the processes could be chosen to

continue. This kind of choice is relevant to the computational cost of the algorithm; the

number of decisions to be made increases with the number of genes to be included in

the reconstruction.

A different median computation method like the inversion method tested in this

chapter can also be more useful in the context of reconstruction. However, the inversion

method would have to be modified to accommodate segments of unequal gene content,

which is an ongoing research problem. There are many proposals for DCJ-based methods

that can accommodate segments of unequal content (128), but none that have been

published for use as yet.

Though I have used biologically derived rearrangement rates in my simulations, they

still cannot account for the all of the rearrangements that constitute genomic data. The

authors in (137) suggest that differences between evolutionary rates amongst different

genomes, for example, could affect the reconstructions. eAssembler could be modified
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in a future version to account for clustering parameters for genomic segments specific to

the properties of the genomes they are derived from. A guide segment phylogeny could

also contribute to the clustering process, in which the clustering parameters would be

derived for the node of the phylogeny clustering is performed at. For instance, the

deeper the node is in the phylogeny, the more stringent the clustering parameters are

as the segments are expected to be less diverged from each other at these nodes.

A more effective proposal for deriving τ could be to derive it for every pair of genomic

segments/medians at every clustering stage. That way it would be derived from the

genomic properties of the segments, instead of using a single universal value averaging

the properties of all segments input to eAssembler. This might significantly increase the

computation time of the algorithm. However, it can potentially help in reducing the

degeneracies in the choice of the medians at every clustering step, particularly as the

parameters can be expected to be more stringent at internal clustering steps.
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Chapter 4

Segmental Homology Identification using

Ancestral Reconstruction of Gene Content

and Order with Synteny detection

programs

4.1 Abstract

Identification of syntenic regions between closely related genomes is important in study-

ing their genome structure evolution. There are a variety of methods that identify

synteny through pairwise genome comparisons and detect profiles of synteny amongst

genomes through multiple pairwise comparisons. Genomes that have undergone poly-

ploidy and subsequent rearrangements like gene loss experience extensive degradation in

their synteny. Pairwise comparisons might not able to detect synteny in these genomes.

These genomes are expected to share more synteny with their ancestor than they do with

each other. In this chapter, I compare the differences in accuracy of synteny measured

by using the reconstruction of syntenic genome segments that are detected pairwise

computed by the program eAssembler and the multi-segmental synteny detected by the

synteny-detection program i-ADHoRe. I evaluate these programs with simulated data



sets that model inferred angiosperm rates of polyploidy, gene loss, inversions, translo-

cations and transpositions. I also apply this method to reconstructing the ancestor of

the angiosperm Arabidopsis and using it in a synteny analysis with the angiosperm rice

genome.

4.2 Introduction

Closely related species share similar gene order and content, or synteny, in their genomes.

With comparative mapping (138; 139), we can identify genomic regions that are homol-

ogous within and between genomes. Syntenic segments are descended from a single

common ancestor and the present day order of genes suggests the order that existed in

the ancestral genes. Recognizing genomic regions that are syntenic amongst species has

been very useful in uncovering candidate genes in incompletely characterized genomes

(138). Synteny is rarely conserved perfectly between species, especially when they are

highly divergent. A variety of evolutionary processes contribute to disruption in synteny,

namely inversion, transposition, translocation (reciprocal and otherwise), gene loss and

gene duplication (individual, segmental and whole genome). Ad hoc methods for identi-

fying syntenic regions (18) in the face of these rearrangements, particularly Polyploidy

or Whole Genome Duplication (WGD) and the massive gene loss that usually follows are

challenging problem. Computational methods have been designed to enhance our ability

to identify syntenic segments. Some methods (13; 140) align DNA sequences to detect

homologous regions. Homology detection at the nucleotide level becomes difficult with

large sequence divergence. Other methods compare genetic or physical maps of genomes

and genome segments and provide the advantage of being able to detect homology even

between very divergent genome sequences. FISH, i-ADHoRe and CloseUp are examples

of such methods (86; 87; 89).
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FISH (87) and i-ADHoRe (86) both use Gene Homology Matrices or GHMs (141))

in their synteny analysis. A GHM is an information matrix where the rows and columns

correspond to the positions of genes in their genomic sequences. A cell in the matrix

contains a non-zero value if the genes corresponding to the row and column positions

are homologous to each other or not. i-ADHoRe clusters points of homology in the

GHM by minimizing a distance function that returns lower distances for points that

cluster diagonally. The program detects all possible pairwise segments of synteny that

are identified to be statistically significant with an input maximum distance between

two points in a cluster and a distance-defined threshold. It uses these pairwise segments

as profiles with which to collect additional syntenic segments. FISH (87) utilizes a

GHM with a different distance function and null distribution to identify statistically

significant clusters. The orientation of the points in the clusters do not influence the

scoring function for both these methods. FISH detects syntenic segment pairs and does

not build multi-segmental homology profiles like i-ADHoRe. CloseUp (89) identifies

synteny based on parameters of proximity between genes homologous to others and

their density within clusters that are identified. Clusters identified are evaluated for

significance with Monte Carlo tests.

All of these algorithms start searches for synteny through pairwise comparisons.

In searching for synteny pairwise, the most preserved synteny is likely the kind that

is easiest detected. Particularly in a genome that has experienced several rounds of

WGD, high gene loss and other rearrangements can lead to the fractionation of segment

synteny. It is therefore very useful to compare multiple related genomes simultaneously

for synteny. This is especially relevant when at least one of the genomes is considered to

closely reflect a pre-WGD ancestral state in comparison to other post-WGD genomes,

as in the case of the Vitis genome in comparison with other sequenced angiosperms

like Arabidopsis (142). The Arabidopsis genome is inferred to have undergone at least

two rounds of WGDs (26; 25). The advantage that comes out of multiple genome
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comparisons with Arabidopsis, Carica, Populus and Vitis is illustrated in (143). In (86),

the authors used i-ADHoRe to detect syntenic blocks in an Arabidopsis-rice genome

comparison. They detected 23.8% of the genome in duplicated blocks than the 20.9 %

they had found previously. They found that they were able to detect a 38.3% percent

of the Arabidopsis genome in higher levels of synteny that in pervious analyses (16) as

well. They did not, however, detect more syntenic regions in rice with this approach

than they had in a previous study (117) where they inferred syntenic region pairs within

a genome by using their separate synteny to a region from another genome.

A collection of syntenic segments, or a multiplicon, is illustrated in Figure 4.1. A

multiplicon defines a unit of segmental homology. It is a collection of two or more seg-

ments (or contiguous intervals) within an ordered set of genes, or features (not spanning

concatenation junctions). Those features that are homologous to a feature on at least

one other segment within a multiplicon are the anchors of that multiplicon. Anchors can

connect two or more segments at a time in a multiplicon. Segments within multiplicons

begin and end with anchors at either end. Their intervals are defined by the position

of the anchors with the lowest and highest index within that segment. i-ADHoRe de-

fines levels for multiplicons as the number of genomic segments that they contain. For

example, a multiplicon with 2 genomic segments is a level 2 multiplicon.

From Figure 4.1, without being able to see the evolutionary history of the genomes

A, B and C, it would be hard to infer their inherited synteny, given their very limited

shared gene content and order. Identifying pairs of syntenic segments with more than two

anchors also would recover the multiplicon. However the synteny is evident among the

four segments collectively. The synteny between them is also very clear when compared

with the ancestor of these genomes. Therefore, synteny might be more clearly identified

by looking at more than just a pair of genomic segments where anchors are sparse after

large scale gene loss due to polyploidy. We can see that the resulting segments have

very few genes in common - in fact, the common intersection of the segment genes is 0.
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Figure 4.1: An Illustration of the difference between pairwise and multiway synteny detection.
An ancestral genome segment with 10 genes is inherited by three extant species, one of which
has undergone polyploidization. In addition, the segments have independently undergone
single-gene duplications, transpositions, inversions, and many individual gene losses. The
’true’ multiplicon contains two segments from genome B and one each from genomes A and
C. All possible pairwise segmental homologs are shown in the lower left. Only one pair shares
three anchors (indicated by blue lines), and, if that were the significance threshold in a pairwise
comparison, only that one pair would be detected. However, in the lower right it can be seen
that each segment has at least three anchors within the multiplicon as a whole. In the middle
lower half of the Figure, each of the segments has high synteny with the ancestor. Pairwise
synteny comparisons would not detect this multiplicon as a whole.
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In all the programs mentioned above, a particular definition of synteny is assumed;

either in terms of the genes shared in common between genomic segments, or the density

between homologous genes on a segment. It is currently a challenge to be able to derive

appropriate parameters for these two criteria, without knowledge of the rearrangement

rates associated with the evolutionary process, or the length of the state of the ancestral

and intermediary genomes. Different values for these parameters can yield different

estimates of synteny amongst segments - ranging from inaccurate to over-estimates of

synteny, to accurate, but overly stringent estimates of synteny.

In chapter 3, I evaluated eAssembler as a program to reconstruct gene order and

content of syntenic genome segments and pointed out that the reconstructed ancestor

is much more similar to its descendant genomes than they are to each other. In this

chapter, I examine whether the reconstructions of syntenic genomic segments can iden-

tify more synteny that is sparse due to polyploidy and gene loss than through pairwise

comparisons. I use eAssembler to reconstruct the ancestor of pairwise syntenic seg-

ments immediately prior to the WGD events that the segments are derived from. As

the reconstruction has the union of all the genes in the segments, it can be used to

cluster together segments fragmented by loss that do not share many genes in common.

I also compared the depth of synteny identified using this approach with the multi-level

synteny identified by i-ADHoRe to see if there was any increase in synteny detection.

There is no way to determine the ancestral gene order and content in the absence

of a fossil DNA record. Therefore, I test the reconstruction and synteny identified with

simulated genomic data as described in Chapter 3. The simulator has the advantage of

being able to track the multiplicon through time. I measure the accuracy with which

the synteny-detection programs identify the multiplicon before and after the use of the

reconstruction programs. I use different evolutionary regimes to explore the effects of

different rearrangement parameters on synteny detection.

I have also tested this approach on the genomic data sets of the plants Arabidopsis
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Table 4.1: Parameter rates used in the simulations

Parameter Description Dimensions Range Default
AG Ancestral genome size Number of genes 50,500 50
λs Speciation number of events per unit time [0.5,1.5] 1.2
λp Polyploidy number of events per unit time [0.5,1.5] 0.5
λi Inversion calculated in a few ways [30 ,750] 120
λt Translocation number of events per unit time [0.5,2] 0.5
λd Dispersed Duplication duplication per gene per unit time [0.5,2] 0.5
λl Gene Loss loss per gene per unit time [0.5,2] 0.5

and rice. When i-ADHoRe was used previously on the combined data sets of Arabidopsis

and rice an increase in synteny between and within the two genomes as well as in its

levels was discovered. I compare the two approaches to see if using a reconstruction of

a genome prior to its polyploidy events can uncover more synteny with a genome not

inferred to have experienced those events and gain evidence for more ploidies in the

other.

4.3 Methods

4.3.1 Multiplicon generation with Simulated Data

A multiplicon, as illustrated in (Figure 4.1), is a collection of two or more segments (as

defined previously in the Methods section in Chapter 2). The ideal multiplicon is that

in which the segments are descended from a common ancestral segment.

The simulator described in the previous chapter is run with a set of parameters

(defined in chapter 3) summarized in the table below.

The default rates of speciation and polyploidy used yielded at least genome that had

experienced two rounds of WGDs, with a total of 7-9 chromosomal segments in the input

data set. As the simulations are generated from a unichromosomal ancestral genome,

there is only one resultant true multiplicon. The dispersed duplications are locally
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Table 4.2: i-ADHoRe input parameters

Parameter Description Default values
Gap size Maximum distance between 40

two anchor genes in a cluster
Cluster gap size Maximum distance between individual 50

elements in a cluster
Q-value Minimum r2 value a cluster 0.9

must have
Minimum number of anchors Minimum anchor genes that 4

a segment in a multiplicon should contain
Probability cut-off Maximum probability that a cluster 0.001

is generated by chance

generated random homologies that do not derive from the starting ancestor chromosome.

These segments are sent to the program i-ADHoRe along with a file that details all

the homologous pairs of genes in comparisons of the genomes pairwise. Unless otherwise

specified, i-ADHoRe is run with its default input parameters summarized in the table

4.2 below along with what they stand for.

The pairwise profile with which the multiplicons were detected were collected and

sent as input genomic segments to eAssembler with clustering parameters τ and Υ

calculated as described in Chapter 3 based on the average length of input segment r,

number of gene families nf in the simulated genomes and their lengths n. The resulting

reconstruction is added to the original syntenic segments and sent back again to i-

ADHoRe for synteny analysis. The accuracy with which the multiplicon is detected

both before and after using the reconstruction is measured in the following ways:

Counting by Anchors

Let AM denote the total number of anchors (matches) summed over all the intervals in

the true multiplicon. Dispersed duplications are matches which do not actually derive

from true synteny with the ancestral genome. I distinguish between anchors that are
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Figure 4.2: An example of counting anchors in 3 syntenic segments, with anchor genes
that derive from synteny (solid black lines) and from dispersed duplications (dashed
lines).

derived from true segmental homology as opposed to the ’noise’ dispersed duplications.

In every replicate, AP is the total number of anchors reported. From this, ATP is the

number of anchors reported that are actually anchors in the true multiplicon, AFP is

the number of anchors that are falsely reported as anchors (duplicative transposition

matches), ATN is the number of genes not reported as anchors (i.e singletons), and AFN

is the number of anchors not reported as anchors in the program results, but are anchors

in AM . Hence, AP = ATP + AFP . These counts are counted from each segment pair,

and are then summed over all segments reported by it i-ADHoRe.

Figure 4.2 summarized the categories of counts.
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Using these counts, we can measure

Precision =
ATP

ATP + AFP
(4.1)

Specificity =
ATP

ATP + AFP
(4.2)

Sensitivity =
ATN

AFP + ATN
(4.3)

Counting by Intervals

The intervals are counted in a similar fashion.

A true positive ITP is any subset of segment reported that corresponds to a segment

in the true multiplicon. A true negative ITN is any subset of segment not reported as

a syntenic segment that is not in the true multiplicon either. Similarly, a false positive

IFP is any subset of segment that is reported in a syntenic segment but is not present

in the true multiplicon, and a false negative IFN is any subset of the true multiplicon

that is not reported as a syntenic segment.

These counts are summed over all the segments reported, and as described above,

precision, sensitivity and specificity can be measured.

Figure 4.3 summarized the categories of counts.

Counting by Multiplicon Levels

The levels of multiplicons for segments identified within the genome are reported for each

experiment. If more levels of synteny are detected than with a pairwise comparison i-

ADHoRe is expected to report more multiplicons with levels higher than 2. For the

Arabidopsis-rice data, the percentage of the two genomes reported in multiplicons of

different levels is reported. This also enables comparison with the analysis done in

(86) for the Arabidopsis-rice synteny comparisons, with caveats about the sets that are

compared which are described below.
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Figure 4.3: An example of counting intervals in 3 syntenic segments, with anchor genes
that derive from synteny (solid black lines) and from dispersed duplications (dashed
lines).
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The quality of the reconstructions is measured again by Coverage and the three

normalized induced distances, NB, NI and ND, detailed in Chapter 3. Coverage is mea-

sured as the proportion of genes in the reconstruction that are present in the ancestor.

Normalized induced distances are measured as the distances between the ancestor and

reconstructions obtained divided by the length of the reconstruction. The normalized

induced distances calculated with the breakpoint, inversion and DCJ distances are NB,

NI and ND respectively.

4.3.2 Angiosperm Data Analysis

The lineage leading to Arabidopsis, a eudicot, is known to have undergone multiple

rounds of ancient WGD since the divergence of the monocots from the eudicots (25; 26).

It has also undergone many re-arrangements, especially massive gene loss (106; 39; 25;

135). Rice, a monocot, is inferred to have undergone one and maybe two lineage-specific

WGD events since the monocot-dicot divergence (117) and other re-arrangements as

well in comparison with other cereals and angiosperms (134; 46).

The plant data was downloaded from Phytozome, a resource that facilitates com-

parative genomic studies amongst green plants http://www.phytozome.net. Genes both

within and across genomes are clustered into families with a unique cluster family iden-

tifier based on the similarity metric between their associated peptides and evolutionary

hierarchy. The data set that the authors used in (86) in their i-ADHoRe analysis of rice

and Arabidopsis are different in the following ways. First, there have been changes in

the annotation of both genomes since this study was done in 2004. Second, Phytozome

has smaller gene families than the data set used by the authors and so the number of

large-family homologies are reduced in the rice and Arabidopsis data set used in this

chapter.

The positions of the genes on the chromosomes for each plant were downloaded from

Phytozome. The gene order and sequence for Arabidopsis was the TAIR release 9 data
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set, and for rice, the MSU Release 6.0. Homologies between rice and Arabidopsis genes

were inferred from their Phytozome cluster ids. The list of all the homologies within and

between Arabidopsis and rice was sent as input to i-ADHoRe along with the ordered

list of the genes on their chromosomes.

Genome structure rearrangement rates were reviewed in the literature to inform

parameters for the simulator are summarized in Table 4.3. As stated in chapter 3, the

unit time in the simulations is intended to be roughly equivalent to 150 mya.

The rearrangements for most of the parameters were inferred from studies that used

genetic linkage maps and in some cases, physical maps of the organisms studied. Com-

parative bayesian analyses with mapping data of the diploid A. lyrata with A. thaliana

and Capsella were used to parsimoniously infer 2 inversions specific to the A. thaliana

lineage (135). A physical map of Z. mays that covered 93.5 % of the genome and was

integrated to 86.1% of its genetic map was compared with the O. sativa (rice) genome

to infer 39 inversions in Z.mays since its divergence from O.sativa 50 mya ago (46). A

genetic map for Ae. tauschii was used in a chromosomal orthology an paralogy analy-

sis with O. sativa and S. bicolor to resolve rearrangements of which 27 inversions and

13 translocations were assigned to Ae. tauschii, 3 inversions and 5 translocations were

assigned to S. bicolor and 1 inversion and 1 translocation assigned to O. sativa (134).

Genetic linkage maps of H. annus, H. argophyllus and H. petiolaris were used to infer

2-4 inversions and 5 translocations relative to H. annus (45). The inversions in the

chromosomes of D. Melanogaster and their length distributions have been studied and

reported in (44).

For default rates in my simulations in this chapter, I used rates that were inferred

with the highest quality map data over the time period that closest matched the time

scale in my simulations. For inversions and translocations rates, this corresponds to the

rates inferred from rice, sorghum and maize from (46). Maere et al. (112) developed

an evolutionary model that simulations whole-genome and small-scale duplication and
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Table 4.3: Genome Rearrangement parameters

Rearrangement Rates Simulation Rate Organism Reference
Inversion 1/50 mya 3 O. sativa Luo et. al. (134)

3/50 mya 9 S. bicolor Luo et. al.(134)
2/5 mya 60 A. thaliana Yogeeswaran et. al. (135)
27/50 mya 81 A. tauschii Luo et. al. (134)
39/50 mya 117 Z. mays Wei et al. (46)

2−4
0.75−1.67 mya 295 - 817.5 H. annus Heesacker et al. (45)

10/1mya 1500 D. melanogaster Richards et al. (44)
Dispersed (0.03/0.1Ks) 1.5 A. thaliana Maere et al.. (112)
Duplication
Speciation 1.2 1.2 - Nee (144)
Polyploidy 2-4% of speciation events 0.02 angiopserms Otto & Whitton (30)

7% in ferns 0.04 ferns Otto & Whitton (30)
Translocations 8/50 mya 24 Z. mays (46)

5
1.67 mya 448.5 H. annus (45)

Loss [0.5-1] 0.7 A. thaliana Maere et al. (112; 115)

Table 4.4: Arabidopsis and rice genomes

Property Description
Arabidopsis rice

Number of chromosomes 5 12
Genome size 115 Mb 430 Mb
Number of genes (total) 27098 40557
Number of gene families 14109 26005

loss dynamics of genes, which they fit to the Arabidopsis genome. As the rate of gene

loss and single-gene duplication inferred from Arabidopsis data capture the dynamics of

WGD, gene loss and single-duplication in a system like which I model in my simulations,

I used their estimated rate loss for the whole genome which corresponds to 0.7 per gene

per unit time and duplication rate which corresponds to 1.5 per gene per unit time as

default parameters in my simulations. I used the other rates in Table 4.3 to estimate

upper and lower bounds for the rates.

The genomic properties of Arabidopsis and rice are summarized in Table 4.4.

i-ADHoRe was run on the genome data sets of Arabidopsis and rice separately, as

well as the combined Arabidopsis-rice data set with its default parameter settings. The

parts of the genome that were not assembled into syntenic blocks were collected for each

genome and for the combination separately and designated as ’orphan’ intervals.

The syntenic segment pairs that were used as profiles for each multiplicon identified
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from each run were sent as input to eAssembler with the breakpoint, inversion and DCJ

distances, with τ determined to be 13 genes for the Arabidopsis data set (Υ = 12) and

14 for the rice data set (Υ = 13). i-ADHoRe was run with the same input parameters

that was used in (86), which was a probability cut-off = 0.0001, a gap-size of 30 and a

q-value of 0.9.

The reconstructions obtained from each run from one genome were collected together

with its ’orphan’ intervals, and re-submitted to i-ADHoRe, along with the other (current-

day) genome. The idea behind this is that the reconstruction with the orphan intervals

represents an approximate gene content and order of the ancestor of the genome relative

to the ancestor at the time of divergence from the other genome. The results of the

second i-ADHoRe runs are then analyzed to see whether any of the ’orphan’ intervals of

the current-day genome have now been assembled into syntenic blocks. This would imply

that additional synteny has been identified. The percentage of genes in the genome now

present in syntenic blocks of different levels was examined for before and after these two

iterations of i-ADHoRe on the current-day genome data set. The amount of synteny

detected before and after was compared.

The analysis presented in this chapter was done with building reconstructions of the

Arabidopsis genome with eAssembler and the rice genome.

4.4 Results

I estimated if and by how much a reconstruction of ancestral gene order and content can

unravel more synteny in polyploid systems, when used with synteny detection programs.

I set up simulations with a unichromosome genome containing AG = 50 and 500

genes. A phylogeny was simulated with speciation rate λs = 1.2 and polyploidy rates

λp = 0.5 as described in Table 4.1. The syntenic blocks identified in the simulated

chromosomal segments were sent to eAssembler for reconstruction. Synteny analysis
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Figure 4.4: Variation in interval sensitivity vs specificity detected by i-ADHoRe alone
(open circles), and eAssembler-aided i-ADHore with breakpoint (filled diamonds), DCJ (filled
squares) and inversion (filled triangle) distances.

was performed again on the combined data set of the original chromosomal segments

and the reconstructions obtained.

To determine how the input parameters to i-ADHoRe affect the accuracy of synteny

identified in the input genomic segments, I measured the sensitivity and specificity in

synteny detection both before and after running i-ADHoRe with the different eAssembler

reconstructions. Hereafter, I refer to this procedure as ’before’ and ’after’ reconstruc-

tions. Shown here in Figure 4.4 is the variation in sensitivity and specificity for syntenic

intervals reported for an input probability cut-off from [0.00001, 0.1]. There is a greater

range in specificity values over sensitivity values. The turning point in the ROC curves

correspond to the probability cut-off of 0.001, with which i-ADHoRe was run for all the

experiments described here.

I measured synteny detection under four different parameter regimes, where I used

either default or high values for the parameters described in 2.4. The first regime HI

had a high inversion rate λi = 750 with the rest at default, the second regime HL had a
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Table 4.5: Accuracy in synteny analysis with and without reconstructions under the HI
regime

Before After
BP INV DCJ

Intervals
Sens 0.203 0.221 0.206 0.206
Spec 0.861 0.841 0.852 0.858
Prec 0.689 0.687 0.682 0.691

Anchors
Sens 0.378 0.367 0.258 0.388
Spec 0.899 0.499 0.667 0.501
Prec 0.181 0.155 0.251 0.256

Performance Measures
Coverage 0.186 0.172 0.185
NB 0.597 0.567 0.593
NI 0.762 0.805 0.808
ND 0.633 0.663 0.675
Multiplicon Counts
Level
2 7.8 2 3.1 3.1
3 - 4.1 4.3 4.4

high gene loss rate λl = 2 with the rest at default and the third regime HD had a high

rate of dispersed duplications λd = 2 with the rest set at default. In the fourth regime

AR I used the default parameters that I adapted for angiosperm rearrangement rates

[λi, λd, λl, λt] = [120, 1.5, 0.7, 1.5].

I report if any increase in the accuracy of synteny detection is observed when re-

constructions are used in synteny analysis (After) in comparison to when they are not

(Before).

Table 4.5 shows the results for the HI regime with high inversion rate. AG = 50 in

these simulations. Values reported in the table are summarized for 10 simulations.
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In terms of the intervals reported, there was no noticeable gain in accuracy with using

the reconstructions. The breakpoint reconstruction provided a slight gain in sensitivity

for intervals. Compared to the other methods, there was a ∼ 30% decrease in sensitivity

for anchors reported with the inversion reconstruction. The specificity in reporting

anchors dropped from 25% to 45% with reconstructions. There was a 38% increase in

the precision of reporting anchors with the inversion and DCJ reconstructions for this

regime, but there was a decrease observed with the breakpoint reconstruction.

Amongst the different reconstructions, the breakpoint and DCJ reconstructions had

a higher coverage than the inversion reconstruction. NI and ND were lowest for the

breakpoint and NB was lowest for the inversion reconstructions.

Prior to using the reconstructions, only level 2 multiplicons were detected. The

reconstructions enabled the detection of level 3 multiplicons within the original data

set.

Table 4.6 summarizes the HD regime simulations where AG = 50. Values reported

in this table are summarized for 10 simulations.

The sensitivity for all the methods in reporting intervals is very low. There is an

increase in sensitivity for both intervals and anchors with the reconstructions. The

breakpoint reconstruction yielded the highest sensitivity in reporting anchors. As was

observed for the HI regime, there is a decrease in specificity using the reconstructions.

However, while the decrease in specificity in intervals drops from ∼ 20-30% with recon-

structions, in reporting anchors there is only a ∼ 1% difference. There was no noticeable

change in precision in reporting intervals. In reporting precision for anchors however,

there was a 25-30 % decrease.

The breakpoint and inversion reconstructions had a higher coverage than that of

the DCJ. All three measures of NI, NB and ND were higher than that observed in the

HI regime. Of the three reconstructions, the inversion reconstruction had the highest

values of NI, NB and ND.
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Table 4.6: Accuracy in synteny analysis with and without reconstructions under the
HD regime

Before After
BP INV DCJ

Intervals
Sens 0.051 0.072 0.069 0.074
Spec 0.438 0.323 0.351 0.339
Prec 0.022 0.028 0.027 0.028

Anchors
Sens 0.311 0.378 0.327 0.325
Spec 0.817 0.816 0.807 0.806
Prec 0.249 0.186 0.174 0.183

Performance measures
Coverage 0.546 0.547 0.514
NB 0.873 0.881 0.863
NI 0.901 0.921 0.912
ND 0.861 0.879 0.867

Multiplicon Level
Counts
2 116.2 248.1 250.3 217.33
3 22.5 73 73.9 68.3
4 12.8 12.5 14.3 20.2
5 13.5 10.3 7.4 12.2
6 13.2 5.8 4.2 4.5
7 6.3 1.6 1.8 3.1
8 0.8 0.4 0.1 0.6
9 0.9 0.1 - 0.5
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Table 4.7: Accuracy in synteny analysis with and without reconstructions under the HL
regime

Before After
BP INV DCJ

Intervals
Sens 0.306 0.433 0.393 0.403
Spec 0.507 0.359 0.465 0.382
Prec 0.436 0.411 0.476 0.424

Anchors
Sens 0.235 0.292 0.302 0.302
Spec 0.895 0.796 0.836 0.801
Prec 0.689 0.579 0.671 0.632

Performance measures
Coverage 0.131 0.093 0.108
NB 0.869 0.854 0.865
NI 0.911 0.885 0.909
ND 0.889 0.891 0.861

Multiplicon Level
Counts
2 13 16.6 8.6 8.6
3 2.5 6 5 6
4 - 1 0.8 0.5
5 - 0.16 0.16 0.16

It is interesting to note that this regime had the highest level reported in its multi-

plicons for all methods.

There was an increase in levels 2, 3 and 4 observed in the multiplicons reported with

the breakpoint, inversion and distance methods, with the exception of the breakpoint

method for level 4. However, there was a decrease in levels 5-9 observed with the

reconstructions.

Table 4.7 shows the results of the HL regime with AG = 500. Values reported in

this table are summarized for 10 simulations.

As in the case of the HI and HD regimes, there was a gain in sensitivity for intervals
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and anchors with using reconstructions. The largest gain in sensitivity in intervals was

a ∼ 41% increase with the breakpoint reconstruction. In reporting anchors, there was

a ∼ 28% increase in sensitivity. There is a decrease in reporting specificity, from a

largest decrease of ∼ 29% in intervals to ∼ 11% in anchors. Precision for the breakpoint

reconstruction was the lowest reported for all four methods. In reporting intervals, there

was a ∼ 9% increase in precision with the inversion method.

The coverage with all three methods was very low for this regime and is the lowest

observed in all four regimes. The breakpoint method had the highest values of NB, NI

and ND observed. The inversion method had the lowest values of NB and NI and the

DCJ method had the lowest value of ND.

In the multiplicons reported, there was a decrease in level 2 with using reconstruc-

tions, but an increase in level 3 multiplicons. Also, multiplicons of levels 4 and 5 which

were not observed with i-ADHoRe alone were observed with the reconstructions.

Table 4.8 shows the results for the AR regime. AG = 50 for this regime. Values

reported in the table are summarized for five simulations.

There was an increase in sensitivity for intervals and anchors with using reconstruc-

tions, except in the case of the DCJ reconstruction for intervals. The breakpoint recon-

struction had the highest values of sensitivity reported with an increase of 16% and 34%

for intervals and anchors respectively, over i-ADHoRe alone. Specificity decreased with

the reconstructions for both intervals and anchors. Among the specificity reported in

intervals and anchors with the reconstructions the DCJ reconstruction had the highest

values. Unlike in other regimes, the DCJ reconstruction yielded the highest precision in

reporting intervals and anchors.

The breakpoint reconstruction had the highest coverage for this regime and the

inversion reconstruction has the lowest values of NB, NI and ND.

In the levels of multiplicons reported, there was a decrease in level 2 multiplicons

detected with using reconstructions and an increase in level 3 multiplicons. Level 4
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Table 4.8: Accuracy in synteny analysis with and without reconstructions under the
simulated angiosperm data AR regime

Before After
BP INV DCJ

Intervals
Sens 0.567 0.658 0.629 0.535
Spec 0.513 0.412 0.449 0.511
Prec 0.194 0.188 0.191 0.245

Anchors
Sens 0.284 0.383 0.321 0.302
Spec 0.848 0.746 0.712 0.798
Prec 0.181 0.207 0.151 0.258

Performance Measures
Coverage 0.392 0.342 0.366
NB 0.843 0.798 0.841
NI 0.916 0.897 0.917
ND 0.859 0.831 0.861

Multiplicon Level
Counts
2 32 19 21 21
3 1.5 21 18 18
4 - 1 1 -
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Table 4.9: Percentage of the Arabidopsis and rice genome in multiplicons from various
synteny analyses

Arabidopsis rice
Multiplicon % segments anchors % segments anchors
Level genome genome
2 41 83 2250 16 93 2504

3 5 14 232 4 18 272
4 1.8 4 62 0.7 2 36
5 1.2 2 64 0.09 1 46

Combined
Arabidopsis rice

2 54 308 2989 37 328 3243
3 13 119 647 8.7 112 701
4 5.6 59 236 2.5 33 244
5 2.4 25 125 1.2 15 91
6 0.7 9 52 0.09 9 32

multiplicons were detected with the breakpoint and inversion reconstructions that were

not detected without reconstruction or for the DCJ reconstructions.

4.4.1 Angiosperm Data

I compared the synteny detected by using eAssembler reconstructions to that detected

by i-ADHoRe alone with data from the plants Arabidopsis and rice.

Previously, i-ADHoRe had been used to detect multiplicons of level up to 4 in rice,

and up to level 10 in Arabidopsis in a synteny analysis where it was used on each genome

separately. In a combined analysis with both genomes, rice segments were present in

multiplicons of level 5 and Arabidopsis in multiplicons of level 11 (86).

As the data set I used in this chapter is different from what was used in the previous

study, I repeated this analysis for the Arabidopsis, rice and combined Arabidopsis-rice

data sets.

Summarized in table 4.9 are the properties of the syntenic segments identified with

i-ADHoRe in Arabidopsis alone, rice alone and in Arabidopsis and rice combined.
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Table 4.10: Percentage of rice genome in multiplicons from various synteny analyses
Level Rice-Only Rice-Arabidopsis Breakpoint Inversion DCJ

2 16 37 34.17 33.12 34.64
3 4 8.7 5.9 6.4 5.92
4 0.7 1.2 0.91 0.85 0.85
5 0.09 0.09 0.58 0.58 0.59

Synteny analysis on Arabidopsis and rice individually yielded level 5 multiplicons.

Compared to the previous i-ADHoRe study where no level higher than 5 was found

in rice-only synteny, an additional level of 5 was found here in the rice-only synteny

analysis. 49% of the Arabidopsis genome was identified reported within multiplicons,

compared to the previous estimate of 82.9% (86). The estimate of 20.8% of rice in

multiplicons however is comparable to the previous estimate of 20.9% (86). This is

probably due to the different and more current annotation of the Arabidopsis and rice

genome data set used in this chapter as explained in the Methods.

Synteny analysis on the combined data set of Arabidopsis and rice identified many

more syntenic segments and anchors in both genomes than in the single-genome analyses.

The percentage of the genome assigned to multiplicons increased from 49% to 75.7% in

Arabidopsis and from 20.8% to 49.5% in rice. Additionally, 3 multiplicons of level 6

were identified in the combined Arabidopsis-rice analysis.

The syntenic segments identified by i-ADHoRe in the Arabidopsis-only comparison

were sent to eAssembler for reconstruction. The resulting reconstructions were combined

with the rice genomic data set and the regions in Arabidopsis that were not identified

in multiplicons with the i-ADHoRe Arabidopsis-only analysis. The syntenic segments

and anchors identified in rice with this iteration of i-ADHoRe were then compared to

the syntenic segments in rice identified in the rice-only and Arabidopsis-rice analysis.

The largest syntenic segment size in the Arabidopsis input data set to eAssembler

was 594 genes in length. The largest reconstructed segment in Arabidopsis was 756

genes in length for the breakpoint and 688 genes in length for the inversion and DCJ

94



Table 4.11: Comparisons of the percentage of the rice genome identified in multiplicons
in different synteny analyses

Reconstruction rice-only Combined
% genome % new % undetected % new % undetected

BP 27.3 2.79 - 0.61 2.7
INV 27.8 4.16 - 0.73 2.38
DCJ 27.6 3.98 - 0.78 2.61

reconstructions.

The differences in the multiplicons obtained in terms of intervals and anchors re-

ported are shown in Table 4.11. The first column is the percentage of the rice genome

detected in syntenic blocks. The % age of genes that are newly detected in syntenic

segments in comparison with the previous reports of rice-only and Arabidopsis-rice com-

bined data sets are shown here as are the % of genes that are not detected from these

previous reports. As all the intervals detected in the rice-only synteny analysis are

detected with the reconstruction analysis, the third column in Table 4.11 is empty.

Using the breakpoint, inversion and DCJ reconstructions, new syntenic segments

and anchors were found in rice when compared to what was found in the rice-only and

Arabidopsis-rice analysis. The percentage of the rice genome reported within syntenic

blocks ∼ 27 % is comparable for the three reconstructions and was higher than the

20.8% of the rice genome that was detected in the rice-only synteny analysis. Among

the different reconstructions, more of the rice genome was detected in syntenic blocks

with using the inversion reconstruction in comparison to the rice-only analysis. The

DCJ reconstruction synteny analysis detected a higher percentage of rice genome that

was not detected by the previous combined synteny analysis. ∼ 2.7% of the genome

that was found previously in the combined synteny analysis was not detected using the

reconstructions.

Table 4.12 shows the distributions of multiplicons of different levels identified within
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Table 4.12: Difference in Multiplicon Levels between the different synteny analyses

Experiment Multiplicon Levels
2 3 4 5

Rice-Only 93 18 2 1
Arabidopsis-rice 120 18 2 2
Breakpoint 278 87 15 5
Inversion 74 86 14 5
DCJ 80 89 14 5

the rice genome. Many more multiplicons were reported for levels 3, 4 and 5 with the

reconstruction that with either the rice-only or Arabidopsis-rice combined data sets.

No new levels of multiplicons were identified in this analysis from what was reported

before. It is important to recollect that these increases account for between 0.5% -

0.7% of new regions in the genome that are identified with the reconstructions. It is

interesting to note that there were 278 level 2 multiplicons reported with the breakpoint

reconstruction, more than 3.5 times that reported for the other reconstructions.

Within the orphan gene intervals of Arabidopsis, 0.7% of them were identified in

multiplicons with rice. In comparison with the combined Arabidopsis-rice synteny anal-

ysis, 4.83%, 4.69% and 4.81% of the Arabidopsis genome were additionally identified

with using the breakpoint, inversion and DCJ reconstructions.

4.5 Discussion

Using simulated data sets, I have demonstrated that use of eAssembler reconstructions

in conjunction with the synteny detection program i-ADHoRe can provide a gain in

sensitivity in identifying true multiplicons. With reconstructions, the sensitivity in re-

porting intervals was the highest for simulations of the angiosperm data regime and

lowest for the high dispersed duplication regime. Sensitivity reports were lower for the
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inversion regimes than for the high loss regimes. The sensitivity in reporting anchors

were comparable for all the regimes when reconstructions are used. There was an in-

crease in the level of multiplicons detected in all the simulation regimes, except for the

regime with high dispersed duplications. Dispersed duplications had the most adverse

impact on synteny detection with and without reconstruction, at λd = 2. Studies have

estimated that the rate of dispersed duplications in wheat range from 2.5 x 10−3 per

gene per Myr to 5.2 x 10−2 per gene per Myr. This corresponds to values of 0.375 - 7.8

in my simulations. Genomes like wheat, therefore, can be expected to show low synteny.

Among the other rearrangement processes, the high inversion rate affected synteny pre-

diction more than the high loss rate. The quality of reconstruction did not reflect the

accuracy of prediction of synteny. The highest coverage for the reconstructions was ob-

tained in the high dispersed duplication regimes and the lowest for the high loss regime.

The lowest normalized induced distances were observed for the high inversion regimes.

Within the combined reconstruction-synteny detection analysis, different reconstruc-

tion methods yield different estimates of synteny, as observed in the Results section. In

systems like those of the cereals, maize is inferred to have undergone a high number

of inversions since its divergence from rice (46; 134). The maize-rice comparison would

correspond to the HI regime tested here. Therefore, the DCJ method should be used

for the highest gains in synteny reported. A recent study has inferred a higher rate of

dispersed duplications within Arabidopsis than previously suspected (39). For a com-

parison of synteny within Arabidopsis, the breakpoint reconstruction-synteny method

should be used for the highest gains in synteny reporting, as inferred from the tests in

the HD regime. For a system that corresponds to the high loss regimes tested here, as

for the angiosperms (112) or the yeast genomes (1), there is no one method that can

be suggested for the highest yields for all measures of performance in synteny reports.

However, among them, the inversion method yielded the highest reports for specificity

and precision. From the results for the angiosperm regime simulations themselves, the
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DCJ method is expected to yield the highest reports of synteny in terms of specificity,

precision and quality of reconstruction when used within an angiosperm synteny anal-

ysis; for example, a comparison with rice, Arabidopsis, poplar, maize, grape, mimulus,

etc.

Using the reconstructions in synteny analysis increased the amount of synteny re-

ported in rice genomic data. Based on the simulations, the reconstruction of the Ara-

bidopsis ancestor was estimated to have a coverage of 34 - 40 % of the Arabidopsis

ancestor genes with an estimated normalized induced distance of 0.8 - 0.9 from it. In

comparison with the simulations, the increase of 0.61 - 0.78 % of the genome detected

in the synteny analysis with the reconstructions corresponds to a 16% and 34% increase

in sensitivity in reporting syntenic intervals and anchors, respectively. In contrast to

the simulations, no increase in levels of multiplicons reported were detected with re-

constructions for the rice genome. The increase in level 3, 4 and 5 multiplicons in rice

detected with the reconstruction synteny analysis in comparison to the combined rice-

Arabidopsis analysis and the additional presence of the previously ’orphan’ regions of

Arabidopsis might suggest additional evidence of an older duplication event in the rice

genome than previously inferred in (86). However, this increase corresponded to 0.7%

of the rice genome and ∼ 5% of the Arabidopsis genome, which cannot be considered

substantial evidence for an additional polyploidy event.

Most studies in synteny detection that reported increases with multi-genome com-

parisons (86; 28) report an increase in the number of genomic segments that are found to

be syntenic. The simulator used in this chapter incorporates key biological assumptions

and is useful in evaluating the accuracy of the synteny detected. Local and segmental

duplications occur at different rates in both vertebrate and angiosperm genomes (118).

Homology that issues from these duplication events can interrupt synteny from older

WGD events. Polyploidy, a parameter in this simulation, is usually not modeled in sim-

ulations that have been generated to test genome reconstruction algorithms and synteny
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detection programs. The impact of polyploidy and subsequent gene loss can be studied

from these simulations as I have demonstrated and is very important in understanding

angiosperm synteny. Evaluating the accuracy of synteny detection programs using these

simulations can help us in interpreting the homologies detected by these programs. For

the regimes tested in this chapter, the simulations were useful in assessing the accuracy

of i-ADHoRe and contribution of reconstructions in identifying true genomic synteny.

There are many directions for future work. Other processes that I have not incorpo-

rated into my simulator may impact conservation of synteny. Modeling lineage-specific

rates at different nodes in the phylogeny could model angiosperm data better. The

estimates I considered for inversion had a large range, varying from 3 per 150 million

years for rice to 817.5 per 150 million years for H. annus. The The model I developed in

Chapter 2 differentiated between the rate of gene loss following polyploidy and a back-

ground rate of loss. The simulations here can be modified to model different sets of rates

on branches with parent WGD labels. Rearrangements rates were inferred to increase

after WGD in teleost fish with additional variability in the rates across species (145).

Modeling different rates for different genomes after WGD in the simulations could better

describe the disruption of synteny post WGD. It is also not known how incompleteness

in genetic mapping of the genome might affect synteny analysis. Explicitly modeling

incomplete segments of synteny where anchor genes present are simulated to be absent

could uncover how obscured synteny is in current-day plant genomes.
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Chapter 5

Conclusions

In this dissertation, I set out to study the evolution of genome structure by modeling

how synteny is preserved in genomes and how far back we are able to detect it in time.

In particular, I examined synteny evolution in polyploid genomes.

In Chapter 2, I assessed the effects of two processes that contribute to synteny

rearrangement: gene loss (immediately following WGD and otherwise) and gene trans-

position. I developed probabilistic models that account for the effects of different sets

of these processes simultaneously. Using these models, for both simulated and genomic

data, I found that gene content within syntenic regions of unsequenced genomes can

be predicted with high accuracy for a non-trivial amount of input data. Of the factors

examined, the largest increase in accuracy of prediction came with an increase in the

number of input segments in the data set. Among the different models tested, accounting

for the two kinds of gene loss and gene transposition yielded gains in sensitivity of gene

content prediction for values of specificity that were higher than 0.8. For other ranges

of specificity and for different ranges of input data parameters tested, the differences in

predictions between models were not that profound.

With these models, I was able to model synteny evolution of gene content following

WGD events. Building on the assumptions made in these models can yield deeper

insight into the mechanisms by which different genome rearrangement processes impact



synteny. The framework of the model allows for adding more realistic components that

have been observed in genomic data, like rate variation among different lineages (115),

gene- and branch-specific distribution of rates (57), etc.

In Chapter 3, I evaluated the use of alternative distance measures in eAssembler (2),

a heuristic method that reconstructs ancestral gene order and content for syntenic ge-

nomic segments, particularly for segments derived from multiple rounds of WGD events.

Such reconstructions are useful in deducing the divergence in synteny between related

genomes. I also evaluated using data-derived clustering parameters for the algorithm

over user-defined ones. Alternative distance measures are thought to capture the di-

vergence between species by accounting for specific rearrangements than the distance

currently used in eAssembler. Using simulations that included all of the rearrangements

considered in this dissertation, I generated syntenic genomic segments for which I used

eAssembler using different distance measures to reconstruct the starting pre-WGD an-

cestral gene order and content. By measuring how close the reconstructions were to the

ancestral configurations used in the simulations, I found that different distance methods

produce differences in the quality of reconstruction. This implies that the use of dis-

tance measure for deriving reconstructions should be chosen based on the properties of

rearrangements within the underlying syntenic genomic regions. I also found that data-

derived clustering parameters yielded the highest quality reconstructions over arbitrary

choices for these parameters.

Reconstruction algorithms should closely account for the properties of the genomic

segments for which the reconstructions are to be assembled, as accounting for one or a

few rearrangements does not capture the effects of the underlying biological processes.

Tailoring the reconstruction to underlying genomic properties might prove to be compu-

tationally expensive; however, the costs in obtaining the reconstructions could be offset

by the accuracy in the reconstructions.

In Chapter 4, I evaluated the differences in accuracy of synteny detected in genomes
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that are descendants of WGD events between two approaches. The first approach is

through methods that detect profiles of synteny among multiple pairwise comparison

like in the program i-ADHoRe (86) and the second is through using the reconstructions

(using eAssembler (2)) of the ancestors of genomic segments that are identified as syn-

tenic through pairwise comparisons. I used simulated data that incorporated all of the

rearrangements considered in this dissertation to test these two approaches and also ap-

plied them to a set of angiosperm genomic data. I found that using the second approach,

i.e. using reconstructions, can provide a gain in identification of true genomic synteny.

The measures of accuracy of synteny varied depending on the regimes of rearrangements

tested, as in regimes that predominantly experienced dispersed gene duplications, for ex-

ample. The use of different distance methods in the reconstructions also contributed to

differences in the accuracy of synteny detected. On the angiosperm data set of rice and

Arabidopsis, the synteny detected by the two approaches were comparable to previously

reported measures of synteny (86). Both approaches led to identification of synteny

within the rice genome that was novel to each approach, but did not correspond to a

WGD event that had not been inferred in previous studies (86).

Using simulations that incorporate different rearrangements is very useful in evaluat-

ing different approaches to synteny detection, particularly incorporating WGD events.

Therefore, modeling additional rearrangements not accounted for in this dissertation

like inter-chromosomal inversions, for example, or more sophisticated modes of the re-

arrangements themselves, like lineage-specific gene loss, could help in better estimates

of the accuracy of synteny detected by the approaches considered in Chapter 4.

Through the studies in this dissertation, I have demonstrated that modeling the

complexities involved in synteny rearrangement can improve our understanding of the

evolution of genome structure. Extending these models and approaches outlined here by

incorporating more biologically realistic assumptions and sophisticated rate approxima-

tions, for example, in future research can further our understanding of the underlying
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mechanisms that shape genome structure.
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