
PIE - The Protein Inference Engine

Stuart R. Jefferys

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Curriculum of Genetics and Molecular Biology.

Chapel Hill
2011

Approved by:

Morgan C. Giddings

Xian Chen

Jeffrey A. Frelinger

Shawn Gomez

William F. Marzluff

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210597655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2011

Stuart R. Jefferys

ALL RIGHTS RESERVED

Some portions previously published, used by kind permission:

c© 2011 Springer Science+Business Media, LLC

c© 2011 Bioinformatics

ii

Abstract

STUART R. JEFFERYS: PIE - The Protein Inference Engine.
(Under the direction of Morgan C. Giddings.)

Posttranslational modifications are vital to protein function but are hard to

study, especially since several modification isoforms may be present simultaneously.

Mass spectrometers are a great tool for investigating modified proteins, but the data

they generate are often incomplete, ambiguous, and difficult to interpret. Combin-

ing data from multiple experimental techniques provides complementary informa-

tion. Having both top-down (intact protein mass data) and bottom-up (peptide

data) is especially valuable. In the context of background knowledge, combined

data is used by human experts to interpret what modifications are present and

where they are located. However, this process is arduous and for high-throughput

applications needs to be automated.

To explore a data integration methodology based on Markov chain Monte Carlo

and simulated annealing, I developed the PIE (Protein Inference Engine). This java

application integrates information using a modular approach which allows different

types of data to be considered simultaneously and for new data types to be added

as needed.

Validation of the PIE was carried out using two realistically imperfect theoretical

data sets. The first, based on the L7/L12 ribosomal protein, tested the limits of PIEs

performance as intact mass accuracy and peptide coverage decreases. The second

set, based on a mix of two modification variants of the H23c Histone protein, tested

PIEs ability to handle isoform mixtures and up to eight simultaneous modifications.

iii

The PIE was then applied to analysis of experimental data from an investigation

of the modification state of the L7/L12 ribosomal protein. This data consisted of

a set of peptides identified as associated with some L7/L12 modification variant

and nine intact masses measurements identified as an L7/ L12 modification variant.

From this data, PIE was able to make consistent predictions, comparable to expert

manual interpretation.

Software, source code, user manuals, and demo projects replicating the analy-

ses described in the following can be downloaded from http://pie.giddingslab.

org/.

iv

To Sara, for putting up with all my rantings.

v

Acknowledgments

Without the help and support of colleagues and friends, PIE would never have come

to be. I would like to thank the current and former members of the Giddings lab:

Morgan Giddings, for the opportunity to work on such a great project, and for

the crazy notion that I should try integrating proteomics data using McMC; Mark

Holmes for building Proclame, the fuzzy logic based top-down proteomics program

I worked on during my initial rotation in Dr Giddings lab which convinced me there

was cool stuff to do there; Kevin Ramkissoon, Hsun-Cheng Su, and Eric Hamlett

for helping me understanding the practical side of proteomics and for providing the

data analyzed herein; Dennis Crenshaw, Chris Maier, Jameson Miller, and Suzy

Vasa for a great deal of good programming advice and geek talk; Jainab Khatun,

Dongmei Yang, and Brian Risk for many side adventures and their kind ear when

nothing was working; and Ashley Lundqvist, for helping to keep the train on the

tracks.

I would also like to thank the Genetics and Molecular Biology Curriculum

(GMB) and Bioinformatics and Computational Biology (BCB): Bob Duronio, for

his support and commitment to the students of GMB; Cara Marlow, and Sausuty

Hemereck for hiding the most difficult part of graduate school from me—the ad-

ministration and paperwork; and Alex Tropsha for championing the cause of Bioin-

formaticsat UNC.

Of course, I owe a debt of gratitude to the members of my committee: Jeff

vi

Frelinger, Xian Chen, Shawn Gomez, Bill Marzluff and Morgan Giddings (chair). I

would also like to thank many of my fellow students who helped both directly and

indirectly, especially by providing good excuses to go have a beer up at Top of the

Hill: Kate Arrildt, Matthew Berginski, Kwangbom Choi, Damien Croteau-Chonka,

John Didion, Jeremy Simon, Jennifer Staab and everyone else. Also important to

the success of this project were the many friends who were there when things were

hard: Sean Korb, David Nolin, Jenn Skahen, Jason Sullivan, Andrew Sparling and

especially Sara Wrenn.

Last but certainly not least I am grateful to the NIH and to UNC’s GMB and

BCB programs for the funding that supported me, as well as Joe van Gogh and

Caffe Driade, for providing the coffee that did likewise.

vii

Preface

The base algorithm used in this work, Markov chain Monte Carlo or McMC (Metropo-

lis, 1953), dates back to the earliest years of computers, it was developed on a large

tube-based computer called MANIAC and remains an important way to sample

from very complex distributions. The seemingly minor change of adding a cooling

strategy changes the algorithm significantly, into simulated annealing or SA (Kirk-

patrick, 1983), which allows optimization over very complex functions. One of the

main features of McMC/SA is that they are very resistant to complexity scaling,

and can be used to find answers to large problems that few other methods can

address and that no method can solve. Many of these problems are combinatoric

in nature. A trivially small but still surprisingly challenging example is given by an

online cartoon: http://xkcd.com/287/. I won’t give away the answer, but I was

able to adapt PIE to solve it with about thirty minutes work.

As with any significant effort, many people have had a hand in helping me create

PIE and deserve a big share of the credit—some of the most valiant are mentioned

in the Acknowledgements. However, as the final arbiter of what went into this

written work, all the blame for any errors belongs to me.

Portions of this work have been published previously. The paper that should be

referenced for theoretical and validation details is:

viii

Jefferys, S. R. and Giddings, M. C. (2011) Baking a mass-spectrometry

data PIE with McMC and simulated annealing: Predicting protein post-

translational modifications from integrated top-down and bottom-up

data. Bioinformatics. 27, 844-852.

The paper provides a much more concise summary of the methodology of PIE.

Most of chapter 4 (Results) and the first and last parts of chapter 5 (Discussion)

are similar or identical to contents in this paper, along with figures 3, 4, 5, and 6

and all of the tables. Some copyrights are held by the publishers, Oxford University

Press—used by agreement.

Additionally, a more task-oriented tutorial has been published as chapter in a

book on comparative proteomics:

Jefferys, S. R. and Giddings, M. C. (2011) Automated data integration

and determination of posttranslational modications with the protein in-

ference engine. Wu, C.H. and Chen, C. (eds) In Bioinformatics for

Comparative Proteomics. Chapter 17, 255-290. Springer. Heidelberg,

Ger.

The book chapter provides a more concise view of the details of the PIE software

described in this thesis. The middle part of chapter 5 (Discussion), Appendix C,

(User Manual), and much of Appendix D (Tutorial Walkthrough), is similar or

identical to material from the book chapter, along with figures 1,2, 7, 8, and 9.

Some copyrights are held by Springer/Kluwer Academic Publishers—used with the

kind permission of Springer Science and Business Media.

Besides the explicit elements, other parts of these two previous works are woven

together and expanded on throughout this thesis.

ix

Table of Contents

List of Tables . xv

List of Figures . xvi

List of Abbreviations . xvii

List of Symbols . xix

1 Introduction . 1

1.1 Understanding Proteins Requires Studying Protein PTMs 1

1.2 The Challenges of Identifying PTMs 3

1.3 Bottom-Up, Top-Down, and Combined MS Methods 5

1.4 PIE Automates Data Integration for TDBU-MS, and More 10

2 Theory . 11

2.1 Finding the Solutions to Problems 11

2.2 The Problem of Determining Protein PTMs Given Data 12

2.2.1 Defining the solution space G 13

2.2.2 Finding argmaxg(S) using McMC 16

2.2.3 The data D . 18

2.2.4 The scoring function S(G|D) 19

x

3 Methods . 20

3.1 PIE Implementation . 20

3.2 Scoring Modules . 22

3.2.1 Intact mass model S1 . 23

3.2.2 MS/MS sequence model S2 23

3.2.3 Peptide mass model S3 . 24

3.2.4 Adduct frequency model S4 25

3.2.5 Adduct location model S5 26

3.2.6 Modification count model S6 27

3.2.7 N-term cleavage model S7 28

3.2.8 C-term cleavage model S8 29

3.2.9 Rules model S9 . 29

3.3 Using PIE to Analyze Data . 30

3.3.1 Setup . 31

3.3.2 Setting up the parameter file 37

3.3.3 PIE’s output . 39

3.4 Determining the Convergence Length 40

3.5 Obtaining a Complete PTM Answer Profile 41

3.6 Interpreting the Answer Profile . 42

4 Results . 44

4.1 Validation Using L7/L12 Theoretical Data 44

4.2 Analysis of H23C Theoretical Data 46

4.3 Analysis of L7/L12 Ribosomal Extracts 47

5 Discussion . 50

5.1 Discussion of Results . 50

xi

5.1.1 Model and data accuracy . 52

5.2 Using the PIE to Solve More Complex Problems 54

5.2.1 Specifying the target modification set 56

5.2.2 Evaluating a peptide data set 57

5.2.3 Using domain-specific prior information 57

5.2.4 Setting the number of modifications 58

5.2.5 The need for an accurate convergence parameter 59

5.2.6 Identical candidates vs. identical scoring candidates 60

5.2.7 The uninformative prior Result 60

5.2.8 Supporting R scripts . 61

5.3 Conclusion . 61

A FAQ . 62

A.1 What is PIE? . 62

A.2 What will PIE tell me? . 62

A.3 What kind of data can PIE use? . 63

A.4 I have some data about PTMs. Can PIE help me? 64

A.4.1 Do you have MS data? . 65

A.4.2 Is the sequence of the underlying protein known? 65

A.4.3 Is your peptide data targeted? 65

A.4.4 Can you specify a discrete list of all modifications? 66

A.4.5 Does the protein analyzed have any sequence mutations? . . 66

A.4.6 Do you have enough data to determine an answer? 67

A.4.7 Congratulations! . 67

A.5 I want to use PIE! What do I do, specifically? 68

A.6 Now that I have run PIE, what do the answers mean? 68

A.7 If PIE didn’t provide good answers, what do I do now? 68

xii

B Installing and Running PIE . 69

B.1 Pre-requisites for PIE . 69

B.2 The PIE Distribution . 69

B.3 Installing and Running the PIE Directly from the Jar File 70

B.4 Installing the PIE as a Unix Command-line Application 70

C PIE User Manual . 73

C.1 Overview . 73

C.2 Core PIE Data Files Reference . 76

C.2.1 Overview . 76

C.2.2 The proteinFastaFile . 77

C.2.3 The aaDataFile . 79

C.2.4 The molDataFile . 81

C.2.5 The modDataFile . 82

C.3 PIE Configuration File Reference 84

C.3.1 Overview . 84

C.3.2 Configuration file properties 85

C.3.3 Configuration file section: Data and data models 87

C.3.4 Configuration file section: McMC configuration 94

C.3.5 Configuration file section: Run and reporting 97

C.4 Scoring Module Reference . 100

C.4.1 Overview . 100

C.4.2 The intactScoring module 103

C.4.3 The intactScoring module data file 104

C.4.4 The fragmentScoring module 106

C.4.5 The fragmentScoring Module Data File 109

C.4.6 The localizedFragmentScoring module 112

xiii

C.4.7 The localizedFragmentScoring Module Data File 113

C.4.8 The modTypeScoring module 115

C.4.9 The modTypeScoring module data file 116

C.4.10 The modLocationScoring module 117

C.4.11 The modLocationScoring module data file 118

C.4.12 The modCountScoring module 120

C.4.13 The cleavageScoring module 121

C.4.14 The ruleScoring module . 122

C.5 Output Files Reference . 124

C.5.1 Overview . 124

C.5.2 The summaryFile . 125

C.5.3 The detailFile . 127

C.5.4 The logFile . 130

D Tutorial Walk Through . 131

D.1 Overview . 131

D.2 Setup . 133

D.3 Convergence . 142

D.4 Profile . 146

D.5 Interpretation . 149

Bibliography . 169

xiv

List of Tables

1 Summary of Scoring Functions . 165

2 Analysis of L7/L12 Theoretical Data 166

3 Analysis of H23C Theoretical Data 167

4 Analysis of L7/L12 Experimental Data 168

xv

List of Figures

1 Intact Mass Shifts Due to PTMs . 155

2 Tandem Mass Spectrometry (MS/MS) Locates PTMs 156

3 Solution Space Representation . 157

4 H23C Theoretical Peptide Data . 158

5 E. Coli L7/L12 Peptide Data . 158

6 Convergence and Profile Sampling, L7/L12 220-1H 159

7 L16 Theoretical Data . 161

8 L16 Convergence . 162

9 L16 Answer Profile . 163

xvi

List of Abbreviations

AA amino acid

Acet an acetylation adduct

Asn asparagine

Asp aspartic acid

BU-MS bottom up mass spectrometry

Da Dalton

E. Coli bacterium Escherichia coli; where it matters, strain K12

e.g. exempli gratia (for example, including)

H23c canonical human histone protein 2.3c

i.e. id est (that is; in other words)

k kilo, applied as prefix to mean multiply 1,000

L7L12 large ribosomal protein 7/12 from E. coli, strain K12

Met methionine

Meth a methylation adduct

MS mass spectrometry

MS/MS tandem mass spectrometry

McMC Markov chain Monte Carlo

PCR polymerase chain reaction

Phos a phosphorylation adduct

PIE protein inference engine

ppm parts per million

PTM posttranslational modification

SA simulated annealing

xvii

Ser serine

Thr threonine

TD-MS top down mass spectrometry

TDBU-MS top down/bottom up mass spectrometry

xviii

List of Symbols

D collection of all data used that informs on a proteins PTMs

G solution space of all guesses, each a modified protein isomer

g singe guess; one specific protein modification isomer

i a variable that iterates, usually from 1 to n

Mt theoretical mass calculated from molecular composition

Me experimental mass measured by mass spectrometry

E error window

n count of something

m count of modifications

R the score ratio for two modification isomers

S the score of a guess

S() a scoring function

xix

Chapter 1

Introduction

1.1 Understanding Proteins Requires Studying

Protein PTMs

Proteins are the main agents of function in a cell and underlie many of the processes

that sustain life. They catalyze cellular reactions, transmit and amplify signals in

kinase networks, coordinate cellular processes and act as scaffolds to provide cellular

structure. Proteins are woven together in a cell to create a complex and dynamic

system. One key aspect of that system is the modulation of protein behavior by

chemical changes made co- or post-translationally (Seo, 2004; Walsh, 2005). Some

of these chemical changes alter the sequence of a protein after its production by the

ribosome, removing a number of amino acids from one or both ends. Other changes

involve chemical adducts, functional groups that are added to or subtracted from

proteins–often by other catalytic proteins that are themselves modified. While

modification can occur during translation, all modifications hereafter are referred

to as post-translational modifications, or PTMs.

A cell needs to modify proteins with posttranslational adducts for the same

reason that an automobile needs gears: without them the operational range of a

protein engine is severely limited. If cells relied on fixed proteins, biological reaction

times would be on the order of minutes and proteins would be limited to only the 21

functional groups provided by tRNA-delivered amino acids. Cells use 300+ known

PTM adducts (Creasy and Cottrell, 2004) to allow dynamic functional shifting,

providing for rapid and flexible responses to changing local conditions. When PTM

regulation breaks down, it is much like a broken transmission in a car–proteins

become nonfunctional (Banerjee and Gerondakis, 2007; Minamoto et al., 2001; Shi,

2007). Teasing apart where PTMs occur, when they are used, and how they are

modulated is of great interest in biological and biomedical research.

PTMs can alter a protein’s function in a variety of ways, such as changing

protein-protein interactions and blocking binding sites (Gundry 2007), or adding

or removing parts of the protein that specify its destination in the cell. For ex-

ample, in bacteria like Escherichia coli (E. coli), swimming toward food is directed

by a chemotactic circuit that senses nutrients in the environment. The process is

controlled by a regulator circuit that is modulated by methylation and demethy-

lation, where modification of residues on receptor proteins change their sensitivity

to ligands in the environment. This circuit is also modulated by soluble proteins

like CheY and CheA which become phosphorylated in response to changing nutri-

ent conditions. The downstream result of these modifications are changes in the

behavior of flagellar motors, affecting swimming (Kollmann 2005; Kentner 2006).

Without PTMs, an organism would be dramatically limited in its ability to respond

quickly to changing environmental conditions.

PTMs also play critical roles in human health and disease. Methylation and

acetylation of the histone proteins around which DNA is wound control which genes

are expressed and when. Misregulation of histone modification can be extremely

deleterious (Shi 2007). Many oncogenic processes involve misregulation of kinases

and kinase pathways, including p53 (Minamoto et al., 2001). Immune responses are

2

also frequently modulated by PTMs through toll-like receptor pathways (Banerjee

and Gerondakis, 2007). The details of if, when and how proteins are modified is

central to uncovering how disease processes work and determining potential thera-

peutic actions.

Given the important role of PTMs, a key goal of proteomics research has been to

develop approaches and methods that can maintain fragile PTMs during handling,

then tease apart the subtle signals that indicate the location and type of PTMs

on proteins (Mann, 2003; Thingholm, 2009; Durbin, 2010). Although considerable

progress has been made, there remain substantial hurdles to realization of a fully

automated approach to identifying PTMs.

1.2 The Challenges of Identifying PTMs

Proteins exhibit diverse chemical properties, and PTMs further increase that di-

versity. This is useful biologically, but it makes the development of techniques

to analyze proteins challenging. Studying PTMs requires examining proteins, but

without amplification techniques like the polymerase chain reaction (PCR), pro-

teomics methods are significantly more difficult and indirect than genomic methods.

Mass spectrometry (MS) is one of the only methods that has been developed which

can universally analyze most proteins to identify their chemical composition in their

in vivo form (Domon, 2006).

MS measures molecular masses, and this allows us to obtain information about

the molecular composition of proteins. To distinguish between a protein containing

the amino acid asparagine (Asn), which weighs in at 114.1038 atomic mass units

(often referred to as Daltons or Da), versus one containing aspartic acid (Asp),

weighing 115.0886 Da, one might use the information that protein X weighs 0.9 Da

3

more than protein Y to infer that protein A has an Asp where protein B has an

Asn. Similarly, when a protein is modified by the addition of chemical groups such

as methyl (adding 14.0269 Da) or phosphoryl (adding 79.9799 Da), one can use the

change in mass to infer the presence of the modifications. This is illustrated in Fig.

1, “Intact Mass Shifts Due to PTMs”.

With the advent of new instrumentation such as orbitrap mass analyzers (Perry

et al., 2008) combined with the continued maturation of established techniques like

electrospray ionization (Maxwell and Chen, 2008), many mass spectrometers are

capable of accuracy better than 10 parts per million (ppm). That means a 50,000

Da protein (50 kDa) can be measured within ±0.25 Da, easily enough to use a

mass shift to differentiate between many distinct modification states (isoforms) of

a protein.

However, in practice PTM analysis is not simple. Even putting aside sample

preparations issues (Fang et al., 2010), analytical difficulties remain, including:

• Achieving sufficient accuracy to determine PTMs for large proteins. In many

cases, the accuracy of a mass measurement is relative to the size of the protein

(as in 10 ppm). For larger proteins, the error is proportionally larger.

• Working with obstinate, insoluble proteins. Intact proteins are often quite

hard to manipulate prior to and during mass spectrometry. Some dislike

staying in solution, and even when they can be kept in solution, they may

not ionize or fly well in the mass spectrometer (Albrethsen 2007; Mirzaei and

Regnier, 2006).

• Multiple combinations of PTMs can give the same or nearly the same mass

shift. Often, more than one modification is present, and the mass of three

methyl additions fall very close in mass to a single acetyl addition (within

4

0.0434 Da). Different modifications or modifications sets with the same mass

are said to be isobaric.

• Determining precise positioning of PTMs. Measuring the mass of the whole

protein to determine what modifications are present does not tell us where

any of the modifications are located, and a different location of the same

modifications can mean the difference between up and down regulation (Shi,

2007).

Several approaches have been devised that address these challenges, including

bottom-up, top-down, and combined methods.

1.3 Bottom-Up, Top-Down, and Combined MS

Methods

Due to the many challenges of PTM analysis, two different methodologies have been

developed, top-down mass spectrometry (TD-MS) and bottom-up mass spectrome-

try (BU-MS). Neither are fully satisfactory although BU-MS methods are perhaps

easier or at least cheaper, and have come to dominate the literature. A summary of

TD-MS and BU-MS methods that focuses on their drawbacks follows; more com-

prehensive reviews are easily found in the literature (e.g. Bogdanov and Smith,

2005; Domon and Aebersold, 2006; Yates et al., 2009).

Bottom-up MS uses a divide-and-conquer strategy that reduces proteins to con-

stituent, short peptides that are more readily analyzed. The procedure begins by

digesting a protein into peptides, generally with an enzyme such as trypsin that

cleaves at predictable sites. These peptides are then separated based on distinct

chromatographic and/or chemical properties and analyzed by MS to infer PTMs.

Bottom-up analysis simplifies the analysis of PTMs by producing smaller, more

5

accurately measurable peptides and by decoupling modifications that fall on differ-

ent peptides. However, although reduced in scope, the basic problem of determining

modification locations and resolving isobaric masses remains at the individual pep-

tide level. To overcome this, another round of divide-and-conquer can be applied,

breaking a peptide into a set of constituent fragments. Given enough fragments, the

amino acid sequence of the peptide can be reconstructed. This process requires two

successive mass analysis steps (ones to select a peptide mass, another to fragment

and analyze the peptide), hence the name tandem mass spectrometry or MS/MS.

The resulting tandem spectra can be used to precisely locate a PTM on a given

residue in the peptide, since it will cause a discernible shift at that site. This is

shown in Fig. 2, “Tandem Mass Spectrometry (MS/MS) Locates PTMs”. With

appropriate software, the peptide mass and/or its MS/MS spectrum can be used to

determine what kind of PTM was present, and often, which specific residue it was

present on.

To interpret bottom up data, most software relies on alignment algorithms to

compare experimentally acquired peptide and MS/MS spectra against a database

of known spectra. Interpreting the difference allows identification of PTMs. Exam-

ples of this type of software include cross-correlation (Yates et al., 1995), Mascot

(Perkins et al., 1999), TANDEM (Craig and Beavis, 2004), and InsPecT (Tanner

et al,. 2005). More recent work tackles the problem head on, performing de novo

interpretation of MS/MS spectra, e.g. Spectral Dictionary (Kim et al., 2009) or an

Integer programming based algorithm, PILOT PTM (Baliban et al., 2010).

Although bottom-up analysis with MS/MS is quite a powerful technique, it is

not a complete solution. Two of the most significant problems involve decoupling

of PTMs by the protein digestion step and the inability to detect all or even the

majority of resulting peptide fragments.

6

If there are multiple PTM isoforms of a protein present before digestion, de-

termining which PTM goes where can be difficult once the protein is digested.

Cleavage into peptides can decouple PTMs if they reside on separate peptides. For

example, if a protein has two phosphorylation sites, each on a separate peptide, it

is not possible using a bottom-up strategy to tell the difference between a sample

containing a mix of an unmodified and a doubly modified isoform variant, versus

a sample containing a mix of two singly phosphorylated isoforms (each phosphory-

lated at one of the two sites). The digestion step used by the bottom-up approach

converts either protein mix into identical peptide sets, each containing a modified

and an unmodified version of each phosphorylation site.

Another challenge with the bottom-up MS/MS approach is the high frequency

of missing peptides. Full protein coverage requires identification of a complete set

overlapping or abutting peptides. This is almost never achieved due to various fac-

tors including peptide concentration, solubility, and MS ionization characteristics.

If a peptide is not observed, all information regarding its PTMs is lost.

Even when peptides are detected, it may not be possible to investigate the

MS/MS spectra for all peptides. It can also be difficult to definitively identify the

site and type of PTM within an MS/MS fragmentation spectrum. Although there

are significant success stories involving bottom-up methods, the difficulties have left

room for developing a separate approach, top-down MS.

Top down MS starts with loading the full intact protein directly onto the mass

measurement, and then take it a few steps further by fragmenting the intact protein

within the mass spectrometer by one of a variety of methods, then measuring the

pieces. This is also a divide-and-conquer approach, and in some cases, the pieces

may themselves be isolated and further fragmented, leading to a process of MS(n),

where n reflects the number of successive fragmentation steps (e.g. Zubarev et al.,

7

2002; Kelleher et al, 1999). For proteins whose solubility and size allow loading and

detection by MS/MS, top-down mass spectrometry has great potential as a faster

and more complete way of analyzing PTMs on proteins.

However, TD-MS faces its own challenges, such as the difficulty of isolating and

analyzing intact proteins, and the difficulty of interpreting the complex top-down

spectra (Siuti and Kelleher 2007). The top-down method is typically performed us-

ing electrospray ionization as the ion source, which produces ion species in multiple

charge states. The process of deconvoluting the multiple species and their multiple

charge states is a long standing problem and is difficult to solve (Ferrige et al.,

1992). PTMs complicate this further.

TDBU-MS seeks to combine TD-MS and BU-MS methods to address their sep-

arate failings and obtain a more complete analysis. Recent work by multiple groups

has seen a variety of hybrid approaches (Yu et al., 2005; VerBerkmoes et al., 2002;

Strader et al., 2004). With a combined TDBU-MS strategy, bottom-up data con-

tributes definitive protein identities, along with a partial map of specific modifica-

tion sites and types, while the top-down data provides insight on the overall state

of the protein (e.g. is there one phosphorylation or two at any given time on the

protein?). As TD-MS data provides constraints on the possible total number of

modifications, adding it to BU-MS data helps resolve the PTM decoupling and

missing peptide problems.

But TDBU-MS has its problems too: integrating the data from disparate mass

spectrometry experiments and approaches into a cohesive picture of the protein’s

original state. This is not a trivial problem. The experiences of colleagues trying to

put together intact mass, peptide, and MS/MS data for a study of ribosome mod-

ification (Kevin Rankisoom - unpublished data) revealed the difficulty of manual

integration.

8

Due to incomplete bottom-up information and multiple equivalent isobaric PTM

configurations, there are many possible interpretations for any data set. Each mea-

surement holds a piece of information about the protein’s state, but it is usually

incomplete. And worse, sometimes data conflicts with itself. For example, if two

isoforms of a protein are present, one with a methylated residue and one without,

some bottom up peptides covering the methylation site indicate the presence of a

methylation, other peptides covering the same site suggest it is unmodified.

Nevertheless, with substantial human effort it is often possible to produce a

clear, good answer. Generally these answers are not absolute, but an expert can

usually provide a concordant argument for their choices. This kind of reasoning is

difficult to turn into an effective and practical computer algorithm. Yet the flood

of new mass spectrometry data does not allow for human experts to examine every

output, necessitating computational tools that make the process significantly more

efficient.

Because the data integration problem is so great, recent effort has focused on

solving this problem. While various scripts have been created to search constrained

subsets of modification possibilities, tools to aid in the automation of this process

are just now starting to emerge, such as PTMSearchPlus (Kertesz et al., 2009),

which performs bounded search constrained by the statistics of the most likely

numbers of modifications to occur, and (Durbin, 2010), where bottom up and top

down data were combined using a pipeline composed of multiple steps, including

the ability to identify the location of 3 or so important modifications. Though these

approaches provide integrated solutions utilizing a pre-specified set of data types,

adding additional data not part of the original design or pipeline is difficult. The

basic challenge of integrating arbitrary data in a way that minimizes hard bounds

regarding the PTM scenarios that can be considered is a difficult problem. A human

9

expert uses many other data sources (expressed as prior knowledge) in determining

a final solution, and has the capability to consider novel situations, outside of the

bounds of a constrained search. It is this task PIE (Jefferys and Giddings, 2011b)

was created to address.

1.4 PIE Automates Data Integration for

TDBU-MS, and More

The PIE is designed to rapidly and automatically integrate disparate types of pro-

teomic measurements into a conclusive picture of the modification state of the pro-

tein. It is highly modular, with each module allowing it to incorporate a distinct

type of information. Presently there are modules that use TD-MS data (in the form

of intact mass measurements), BU-MS peptide, and MS/MS data. It also has multi-

ple modules incorporating a wide variety of prior-type data such as residue-specific

probabilities of various modification types and expert knowledge from specialized

PTM site predictions programs like SignalP (Bendtsen et al., 2004), TermiNator

(Frottin et al., 2006), NetPhos (Blom et al., 1999), and Sulfinator (Monigatti et

al., 2002). PIE can readily accommodate conflicting information; if after weighing

all the data there is not enough information to select a single best solution (e.g.

there are multiple isobaric isoforms), the program will output multiple high-scoring

solutions. By using multiple types of data and overlapping constraints, PIE finds

consistent answers even when peptides are missing and will identify and localize

modification to regions of the protein not covered by peptide data if such an assign-

ment is supported by intact mass and prior data. Furthermore, information about

why PIE has come to the answers it has is available, it the form of how PIE weights

each type of data in support or disagreement with each answer given.

10

Chapter 2

Theory

2.1 Finding the Solutions to Problems

Inspiration for PIE’s solution to the data integration problem comes from Plato’s

allegory of the cave (Plato, 1968). As cave-dwellers, humans are forever barred from

direct experience of the real world, limited to watching only the shadows of a true

outside reality that is projected onto the cave walls. It is only possible to imagine

what truth actually is using the shadows observed. Making inferences based on

shadows is all that can be done, and guesses about the underlying, unobservable

reality (that can be used to reproduce observable shadows) are the only truth.

Applied to the context of a protein and its PTMs, the shadows are the data revealed

through the light of experiments such as TD-MS and BU-MS. PIE is trying to

guess the specific pattern of PTMs that is most probably the underlying truth that

resulted in the data shadows observed.

One thing that is not made clear in the allegory is how to go about guessing

at reality. Trying to pick a wining lottery ticket requires guessing a number that

will either win or loose, and if the game is fair, there is no way to determine ahead

of time which guesses are more likely to win. Usually, however, knowing that

one guess produces a given set of results helps determine what else will happen.

Trying to guess a number between 1 and 1000 is easy given feedback that a guess

is too high, to low, or correct. If the first guess g1 is n/2 (with n = the largest

possible guess), and each successive guess gi is changed by ±(gi−1)/2, with gi−1 the

previous guess. It only takes about log2(n) guesses to get the right answer. This

is at most 11 guesses for n = 1000. Not only is feedback necessary, there must

be a relationship between between possible results. In order to use a guess and

refine solution method rather than trial and error, their must be structure in the

way possible guesses are organized. If the possible guesses were randomly jumbled

together instead of being aligned in monotonic increasing order from 1 to 1000 a

trial and error lottery would be the only way to get to an answer. In the cave,

there must be a way to structure different guesses about reality such that similar

guesses have similar shadows. Usually, this means arranging the collection of all

possible guesses into a “space”, where distances between solutions can be defined

and nearby answers are similar.

2.2 The Problem of Determining Protein PTMs

Given Data

PIE is really just a sophisticated version of guess what modified protein I’m thinking

of. A collection of data, D, reflects observations about the PTM state of a protein.

Another collection, G, represents all guesses that might be made about the under-

lying truth–the protein’s PTM configuration. The goal is then to identify the guess

g ∈ G most consistent with the data. Evaluating candidates for the best guess is

done using a scoring function S(G|D). This assigns to each guess g a score based

on the available data. In this formulation truth is then the highest scoring guess:

12

Best guess for truth = argmaxG(S(G|D)) (2.1)

To apply this description of PTM inference and build a guess and refine predic-

tion engine for PTMs, four components are needed: A space of solutions or guesses

G, a bunch of data D, a scoring function from S onto D, and a method for finding

the maximum scoring g ∈ G. The rest of this section describes the requirements for

these components.

2.2.1 Defining the solution space G

The number of possible guesses in set G is rather large. For just 10 different adduct

modification and a short protein of 100 residues, G contains a googol (10100) possible

answers, each a different modification state. This is much, much larger that the age

of the universe, which is only around 1030 picoseconds! (Bolte and Hogan, 2002).

It is well and truly impossible to check each possible scenario to find the best one.

In order to use a guess and refine solution method rather than trial and error, G

must be organized into a multi-dimensional space where similarity is defined using

an abstract model of a modified protein.

For a protein of length n, each amino acid has a position from 1 to n and

can have one of m + 1 adduct modifications. The plus one allows for the null

modification, indicating an unmodified amino acid. Additionally, left (n-terminal)

and right (c-terminal) cleavage positions are specified as the first and last amino

acid not cleaved. This creates a solution space of n + 2 dimensions, where each

dimension has as discrete values corresponding to each possible modification type.

The search space is visualized in Fig. 3, “Solution Space Representation”. In this

solution space, a segmented line from left to right represents a modified version of

13

the protein. The same line is always the same modifications, PTM patterns that

are similar result in similar lines, and PTM patterns that are very different result

in different lines. This solution space G allows a rough continuity and distance

definition for the scoring function S() over G; PTM isoforms that are close together

are similar and hence have similar goodness. Together G and S() will create a

functional landscape to hunt around in for the best scoring guess.

One aspect of the cave allegory that may not be obvious is the complete reliance

on the imagination of the cave dwellers to be able to guess at the truth. Anything

that can not be conceived will never be guessed, regardless of the data. Once

imagined and played with, theories like the conservation of energy or evolution

by natural selection become second nature and are taught in high-school or earlier.

But for centuries they remained undiscovered. Human creativity in imagining truth

given only shadows is part of why the cave analogy seems so apt.

Unfortunately, computers are very bad at creative reasoning. They are inca-

pable of rising above the specific bounds set for a problem, and PIE is no different.

This search space G defines the only kind of answer PIE can come up with. It is

surprisingly creative within these bounds, in some cases coming up with unexpected

correct answers, but the solution space imposes several constraints on the kinds of

problems that can be addressed with PIE.

• The underlying canonical protein sequence must be known.

• PIE works with one protein at a time, and all experimental data to be used

must be associated with that protein.

• The list of adduct modifications to consider must be known. Only data about

fixed modifications can thus be processed, variable glycosylation or lipid mod-

ifications are not allowed for.

14

• Each adduct modification is independently assigned to one amino acid. Cor-

relation between modifications must be provided as explicit additional data.

• Each amino acid of the protein is allowed only one adduct modification. Rep-

resenting more than one modification on an amino acid requires using a single

adduct that stands in for a modification combination like dimethylation or

trimethylation.

These constraints are acceptable for some kinds of problems, but not for others.

Chapter 4 gives the results obtained using PIE to address one such problem, and

Chapter 5 discusses these more fully. However, these constraints result only from

the choices made to construct G. The process of guess and refine applies to problem

of selecting a good G as well; the first guess can be refined and then used in other

versions or implementations of PIE targeted at different problems. Although the

G described above represents a minimal description of a modified protein, it is

easy to add complexity. For instance, a model that also allowed each AA to vary

over the 20 amino acids would partially abrogate the first constraint, but would

double the number of dimensions in the solution space. Greatly expanding the list

of modifications to include all possible mutations (like Ser ⇒ Thr), would likewise

address the first constraint at the cost of increasing the size of the search space.

The search space G is already huge, and with every dimension added or increased

significantly in size, it becomes harder to search, taking longer and requiring more

data to search successfully. Using a minimal G allows the simplest search that works

with the least data.

15

2.2.2 Finding argmaxg(S) using McMC

The ultimate goal is to find the truth, the modified protein variant underlying the

data. Given the solution space G, some data D, and an as yet undefined function

S(G|D), to find the truth requires finding argmaxg S(g|D). Metropolis Markov

chain Monte Carlo (McMC) (Metropolis et al., 1953), is a heuristic method for

sampling from a solution space such as G using a guided random walk. The walk

is guided by a ratio R computed using the scoring function S() applied to two

neighboring points in G: gc, the currently point, and gp, a neighboring solution

selected and proposed randomly as a possible next step.

R =
S(gc|D)

S(gp|D)
(2.2)

If the new guess gp has a higher score than gc (when R >= 1), then gp is made

the new current point, the next step in the guided walk. If gp is a worse guess

(when R < 1) a step to gp is made only with probability R. If gp is not made the

next current point, then g remains the current point gc (with probability 1 − R).

Walks start at a randomly chosen point in G and consist of step after step taken

by repeating this propose–evaluate–step cycle over and over. After some time, the

walk is stopped and the current point is reported. If the walk is long enough, and

the space walked over is reasonable, each point will be sampled from the landscape

exactly as often as its normalized probability:

P (g) =
S(g|D)∑
i S(gi|D)

(2.3)

From the perspective of trying to identify the the modifications that are most

consistent with the data (the ones S() gives the highest score too), the walk spends

the most time on the mountains, the highest scoring (best) points in the space but

16

will occasionally traverse the valleys to avoid being stuck at a local maxima.

Unfortunately, the near infinite number of low scoring solutions drown out the

few high scoring ones, such that the best solution is reported infrequently if at all.

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a modified version of McMC

that focuses the random walk so that it only reports the best answers, converting

it from a sampling algorithm into an optimization algorithm. Simulated annealing

modifies the McMC walk when R < 1 by scaling R by a coefficient that decreases

gradually with each step, so that near the end of the run the coefficient approaches

zero. This has the effect of gradually bounding the McMC walk, preventing it from

crossing ever shallower valleys, until at the end it can only go uphill.

If run long enough, SA will always converge to the highest scoring answer, but it

is difficult to determine in advance how long that will take. One way to address this

is to run the algorithm repeatedly to sample from the space of solutions, providing an

empirical distribution showing the frequency with which a given answer is obtained.

If run long enough, every answer will be the same, the maximum answer. As this

run-length is approached, the maxima will be found more and more frequently. To

be efficient, a specific convergence recipe is used when running PIE to determine

the best answer; see Section 3.4, Determining the Convergence Length for details.

A subtle detail of the cave allegory that may not be appreciated is the inherent

fuzziness of answers. Although the highest scoring answer is the best guess at truth

(given the data and scoring models), there may be other guesses that score nearly

as well. If the data provided is not perfect and complete, all truths within some

range of scores are essentially indistinguishable given the data available, so picking

one of them is incorrect. Furthermore, the truth may not be a pure single point in

the solution space, but may represent one or more points simultaneously.

Repeated sampling of sub-optimal answers addresses these issues by providing

17

a way to distinguish between data that supports a single answer and data that

consistently supports several different solutions. Sampling sub-optimal answers is

performed by PIE through SA walk at run lengths that finds the best score only

sometimes; when it does not, a sub-optimal answer is reported. This does require

knowing what the optimal answer is, so that must be determined first. Due to the

simulated annealing algorithm driving the walk, the sub-optimal answers are still

high-scoring answers. The longer the run-time, the more optimal the sub-optimal

answers will be. To be efficient, a specific profile recipe is used when running PIE

to profile sub-optimal answers; see 3.5, Obtaining a Complete PTM Answer Profile,

for more details.

2.2.3 The data D

In order to specify a flexible scoring function compatible with McMC search, a

function with the following properties is required: it must be defined and non-

negative for all possible guesses, it must model the relationship between data and

guesses such that better supported guesses have higher scores, and the ratio between

the scores of any two guesses should reflect the relative support for those guesses

given the data.

To be flexible, the data D is assumed to consist of some varying combination

of up to k different data types. D = {d1} ∪ {d2} ∪ . . . ∪ {dk}. Each type is a

cohesive collection of data describing a protein’s modifications. For example, d1

might be an intact mass measurement, d2 a set of peptide masses, d3 a set of

MS/MS derived sequence data, d4 a summary of how common or rare different

modifications are, etc. Defining the complete joint probability distribution P (G|D)

for even simple data sets is difficult, and it is certainly incompatible with the desire

to allow easy extension of PIE to include additional data types. This requires

18

the simplifying assumption that each data type is independent. As with Naive

Bayesian classifiers, the error this introduces at least partially cancel thought the

use of multiple data types. (Zhang, 2004). In other words, rather than squeezing

ever drop of information out of a small amount of data, a lot of data is used, albeit

more wastefully. Independence allows expressing P (G|D) as the product of the

individual probabilities for each data type:

P (G|D) = P1(G|d1) · P2(G|d2) · . . . · Pk(G|dk). (2.4)

2.2.4 The scoring function S(G|D)

During its search, McMC only evaluates answers by the ratios of their probabilities,

not their absolute probability of occurrence. This allows us to take a substantial

shortcut by representing prior data types through a non-normalized scoring func-

tion. Expressed for a single guess g ∈ G this is:

S(g|D) = S1(g|d1) · S2(g|d2) · . . . · Sk(g|dk). (2.5)

The requirements for each factor in this scoring function are the same as those

first outlined, but applied to each type separately. Arbitrary new data types can

be added in the future by developing and adding new scoring terms that meets

these requirements. The data types and associated scoring terms provided by PIE

are summarized in Table 1, “Summary of Scoring Functions”, and in the following

chapter on methods. More detailed is provided in C.4, Scoring Module Reference.

19

Chapter 3

Methods

3.1 PIE Implementation

This section describes in detail the implementation of the methodology outlined in

the introduction.

PIE is written in Java 1.5. Data interpretation and scoring are modularized with

each type of data evaluated by a separate scoring module. This provides flexibility

to add new data types in the future through additional modules. All complex

input data is read from simple table-like delimited text files; output is similarly

presented. Rather than complicated command-line parameters, control information

(along with some simple input data) is provided via a standard java properties file.

The program can be download from http://pie.giddingslab.org/.

PIE takes as input some data D, a collection of information gathered in mass

spectrometry experiments (intact mass, tandem MS/MS, etc) along with various

types of prior data and expected distributions. Also included is the target protein

sequence, composed of n amino acids a1 . . . an. The sequence of the protein must be

specified by the user. Protein identity and sequence is readily determined by one

of many algorithms that can match MS/MS data to a protein sequence database

(Perkins et al., 1999; Wisz et al., 2004)). PIE finds the guess g, some modification

isomer of the target protein, that has the highest-scoring fit given the data D.

Each guess at a protein variant g is composed of a set of modifications modi,

with i corresponding to the amino acid position in the protein. The most frequent

modification is then none. A guess g also has two cleavage position indicators for

potential n- or c- terminal cleavages, one at position 1 ≤ termn ≤ n and one at

position termn ≤ termc ≤ n. (See Fig. 3, “Solution Space Representation”).

The McMC walk will proceed stepwise through the space of guesses G by propos-

ing PTM changes to the current guess g, distributed as follows: 40% of proposals

will set the modification at a randomly selected position to null; 10% of proposals

will change a randomly selected position to a non-null adduct; 20% of proposals

will swap the modifications at two randomly selected positions; and 30% of the

proposals will change the c-terminal or n-terminal cleavage marker by ±1 (7.5% for

each possible change). Using a multi-jump approach for improved crossing of wide

valleys (Gilks, 1996), more than one change may be applied before scoring, where

the probability of n changes is n/2 (e.g. The probability of 2 changes is 0.25).

The algorithm applies the proposals in a random walk across guesses g starting

from an unmodified version of the protein (all modifications are none). The first

2000 steps proceed without scoring to provide a random starting point. For each

step beyond 2000 up to a specified number of steps (the run-length), the scoring

function S(g) will be used to calculate the ratio R between the score of the current

protein guess S(gc) and the score of the guess after one proposed step, S(gp);R =

S(gc)/S(gp).

If R ≥ 1, the new guess gp is kept and becomes the current guess gc for the

next step. Otherwise, if R < 1, gp may still be kept as the next step gc, but only

with probability R · z. If the proposal is rejected then the next step remains as

21

the current g. The factor z is the simulated annealing factor, which starts at 1

but is reduced at each step linearly by 1/run-length at each step. Decreasing the

probability of accepting guesses is referred to as “cooling”. Other cooling strategies

are possible (Nourani and Andresen, 1998).

The run length and the number of guesses to provide using that length are

provided to PIE along with other parameters in the properties file. PIE will run

and generate the number of answers specified. For each answer described, PIE will

report the total score for that guess and the partial scores for each data type scoring

module.

3.2 Scoring Modules

Each data type is modeled by a separate scoring module. Scoring modules are not

normalized, and are treated independently. Calculations are optimized for speed

rather than for detailed modeling accuracy, as greater flexibility is obtained by using

several small fast modules vs one big slow one. Either average or mono-isotopic

mass can be used, most abundant isotopic mass measurements are approximated

by average mass. Scoring is always against a modified variant of a single known

protein, with one modification (usually null) per amino acid. Only modifications

for which data has been provided will be considered.

Besides experimental data types, prior-type models are defined that score guesses

g against data D consisting of averaged expectations or beliefs about modified

proteins. Several of these functions use parameters. Where parameter values are

not directly suggested by the data (such as the error parameter in the intact mass),

values are selected that reflect the intent of the model to differentiate two adjacent

answers, using 0.9 as little but noticeably different, and 0.5 as significantly different.

22

These were not formally determined by a variation of parameters approach, although

multiple runs of PIE have been performed to test the behavior of each model. Using

0.5 means one such measured difference halves the score. Using 0.9 means 7 such

differences are needed (0.97 = 0.48).

3.2.1 Intact mass model S1

S1 scores a guess g using data D1, consisting of an experimentally determined intact

mass Me (known to be a variant of the protein target) and the estimated absolute

mass error of the instrument, E. To evaluate a guess g, its total theoretical mass

Mt is calculated and used for comparison to Me in a center and spread model:

S1(g,D1) =
1

|Me −Mt|+ E
(3.1)

This is defined and greater than 0 for all g, provided guesses alway have at least

one AA (true as implemented) and E > 0 (Validated on input). The best score is

obtained when the guess and intact mass are equal, but gets progressively worse the

more the guess and experimental data differ, dropping to half its maximum value

at a difference equal to E.

3.2.2 MS/MS sequence model S2

S2 scores g against D2, peptide sequence data where i = 1 . . . n peptides have been

experimentally detected and for which sequence and potential modifications have

been determined, e.g. by programs such as FindMod (Wilkins et al., 1999). To

evaluate a guess, the alignment to the target protein, the number of amino acids

(AAi), and the number of modifications (mi) that match identically between the

23

aligned peptide i, and the guess are used in an exponential model:

S2(g,D2) =
∏
i

(2 · AAi · 2 ·mi + 1) (3.2)

The one is added to avoid singularities when a guess matches no AA or modifica-

tion for any peptide, required to makie S2 > 0 for all guesses. It is a negligible part

of the score of even short peptides (23 · 23 = 64). Any small number would suffice.

The more sequence data that matches, the better the score, with a maximum being

any guess that matches all peptide data. The base of 2 is chosen so that for each AA

and each modification that does not match between sequence data and the guess,

the score is halved.

3.2.3 Peptide mass model S3

S3 scores g using D3, peptide mass data. D3 consists of n peptides that have been

experimentally detected and matched by their experimental masses Me,i to a region

of the target protein, e.g. by a software such as Mascot (Perkins et al., 1999) or

GFS (Wisz et al., 2004). Matching takes place within some estimated absolute mass

error of the instrument, E. Each peptide i has a mass Me,i and an alignment to the

target protein. To evaluate g, the theoretical mass of the matching region, Mt,i, is

calculated. Each peptide is scored independently and then combined:

S3(g,D3) =
∏
i

1

|Me,i −Mt,i|+ E
(3.3)

This is the same as the intact mass model (3.2.1), except each peptide is mea-

sured separately and combined into a whole. It meets the requirements for a scoring

function in the same way as the intact mass module does.

Two other scoring models that were considered. A summation model added

24

together terms for each peptide using the exact mass of the matching peptide pre-

dicted Mm,i weighted by some transform Ti of the match score returned by the

matching program for that peptide. Mm,i is used instead of the experimentally

measured mass as error should already be accounted for in the match score.

S(g,D) =
∑
i

Ti
|Mm,i −Mt,i|+ E

This proved unsatisfactory in testing, possibly because the match scores for

modified peptides are generally lower than unmodified ones, resulting in a bias

against modified peptides. Another scoring model attempted to use an exponential

model based on error counting, similar to that used in the MS/MS sequence model

(3.2.2), except counting modifications as matching at all positions each peptide

covers. A summation based version of this model worked poorly, possibly due to

scaling issues caused by mixing power-based scoring for each peptide term with

a total score that balances combinations of peptides as a linear combination. A

product based error-counting model was not attempted as the mass-based product

model provided a simpler solution. However, problems with this model still remain;

Chapter 4, Results, and Chapter 5, Discussion address in more details what PIE

gets wrong.

3.2.4 Adduct frequency model S4

S4 scores g against the prior knowledge that some modifications are more common

than others. Data on the relative frequency of various (non-null) adducts was taken

from (Lee et al., 2006), which is in the form of counts, cmod of modification type mod,

found when scanning protein databases such as uniProt (http://www.uniprot.

org). Due to the large difference between the probabilities of common modifications

25

like phosphorylation and rare modifications like selenocystine, log scaling is used.

To evaluate a guess, each position i that has a non-null modification (of type mod),

is given a relative frequency fmod,i = log(cmod,i)/ log(max(cmod,i)), while fmod,i = 1

for non-modified positions. These fmod,i are then multiplied to give a total likelihood

score for the observed modification set. To improve the independence of this scoring

function from the Modification count model (3.2.6), the likelihood score for each

modification i is further scaled from [0 . . . 1] to the range [0.9 . . . 1], using α = 0.9,

a parameter related to how often modifications are expected on average.

S4(g,D4, α = 0.9) =
∏
i

fmod,i · (1− α) + α, where

fmod,i =
log(cmod,i)

log(max(cmod,i))

(3.4)

S4 > 0 for all guesses, and the more the modifications on a guess match the

frequency with which modifications are found that average, the better it will score.

Even the most unlikely one only reduces the score by 0.9 (the scaling factor α). But

comparing any two modification sets with the same number of modifications, the

one consisting of all phosphorylations (the most common mod) will score highest

and the one with all selenocystines (the least common mod) will score the lowest.

3.2.5 Adduct location model S5

S5 is similar to S4, it scores g against the prior knowledge that the probability of

a given amino acid having a given adduct varies. Data on the relative frequency

of amino acid preferences for non-null adducts were taken from (Lee et al., 2006)

, in the form of a matrix of counts, cmod,aa, of each modification type mod and

each amino acid aa. Due to the large variability in counts, log scaling is used–

26

as in S4. To evaluate g, each position i with a non-null modification, mod (on

the amino acid aa at that position) is assigned a relative frequency fmod,aa,i =

log(cmod,aa,i)/(log max(cmod,aa,i)), where fmod,aa,i = 1 for unmodified positions. The

fmod,aa,i are multiplied to give a total likelihood score for the observed modification

set. As in S4, a scaling parameter 0 < α < 1 is used.

S5(g,D5, α = 0.5) =
∏
i

fmod,aa,i · (1− α) + α, where

fmod,aa,i =
log(cmod,aa,i)

log(max(cmod,aa,i))

(3.5)

This is the same model as in S4, and is likewise defined everywhere. However,

here the frequency of counts is normalized relative to the most-likely amino acid, so

every modification has at least one relatively high-scoring location to put it. This

reduces the coupling to the total number of amino acids, so a scaling factor α of 0.5

is chosen to indicate that putting an amino acid on the worst choice, rather than

the best choice represents an error and reduces the score by 1/2. An additional

impossible factor is used to indicate a modification is placed on a modification it

should never be found on, 0.001 is used, as actual zeros are singular points. This is

approximately equal to 10 other 1/2 scale errors. Theoretically PIE can still suggest

such answers, but only when no other better answers can be found.

3.2.6 Modification count model S6

S6 scores g against the belief that a protein is probably unmodified, but a moderate

number of modifications are reasonable. This is a center and spread model, similar

to the intact mass model (3.2.1). Center ce is the number of adducts expected, ct

is the number in g, and the spread ±E gives the expected range.

27

S6(g,D) =
1

|ce − ct|+ E
(3.6)

This works the same as S1; all guesses where the number of non-null modifica-

tions is within the range ce±E having a score between the max (if it has exactly ce

modifications) and 1/2 the max (if it has ce + E modifications, for instance). The

parameter E should be set based on the expected rate of modification given the

target (i.e. larger for histones), but in the absence of data, a moderate modification

rate (say 1 in 10 to 1 in 20 AA) can be used to estimate E and the modification

rate can be set to 0, to encourage PIE to find simpler (fewer modifications) answers

with higher priority.

3.2.7 N-term cleavage model S7

S7 constrains cleavages. It tests g against the belief that the most common state for

a modified protein is uncleaved, that N-terminal loss is the next most common (e.g.

Met loss), and longer cleavages are exponentially less common This is a geometric

model based on the number of amino acids (n) cleaved from the n-terminus of g.

S7(g, a = 0.9, b = 0.8) = a · bn−1 (3.7)

S7 > 0 for all guesses n 6= 0, and is defined as 1 for n=0. It decreases in

score such that cleavage of more than 3 AA reduce the score by about half. Better

cleavage models are easy to imagine, but as a simple constraint allowing for limited

n-terminal cleavage, it works well enough. The switch from 0.9 to 0.8 is used to

differentiate the common 1-AA cleavage (Met loss) from less common additional

cleavages.

28

3.2.8 C-term cleavage model S8

As S7 Except this scores cleavages from the C-terminus, and there is no difference

between cleavage of the first and following AAs.

S8(g, a = 0.8, b = 0.8) = a · bn−1 (3.8)

3.2.9 Rules model S9

S9 scores g against beliefs expressed as simple rules. For all guesses meeting a rule

criteria, a constant factor R is applied for each of n instances of some defined pattern

in g. The total factor for one such rule R is then Rn. Multiple (i) such rules can

be applied, with the total score based on the product R1 ·R2 . . . Ri.

S9(g,D9) =
∏
i

Ri
ni (3.9)

. Two rules are implemented:

Amidation and deamidation pair penalty, R1

R1 penalizes each pair of amidation and deamidation by a factor of 0.5.

R1 = 0.5n, where

n = count of amidation/deamidation pairs

(3.10)

A complete m×m map of mutual modifications scores could be added as its own

scoring module, but amidation and deamidation are arguably the most important

pair for PIE since they are a net 0 D mass change and will escape constraints by

29

intact or peptide experimental mass data. The 0.5 scales belief that even one such

pair counts as a mistake.

N-terminal acetylation bonus, R2

R2 doubles the probability of acetylation on an N-terminus even if the residue at

that site would not ordinarily be acetylated.

R2 = 1 if n-termini is un-acetylated;

= 2 if n-termini is acetylated

(3.11)

Again, a complete position-based distribution for each modifications could be

added as its own scoring module, but n-terminal acetylation is one of the most

important position-specific modifications. The factor of 2 scaling is equivalent to

the belief that if there is one or more acetylation, but none are on the n-terminus,

this is a m̈istaké’. A good compromise would be to split the mod x aa into three

different modules, one each for n-terminal aa, c-terminal aa, and internal aa. But

this data was not readily available, so the simple rule R2 was used.

3.3 Using PIE to Analyze Data

Together the nine scoring modules allow PIE to consider a wide variety of data and

find the optimal modifications that account for that data.

Using PIE to analyze a data set and determine what modification variants of a

protein the data requires four steps: setup, convergence, profiling, and interpreta-

tion. During setup, data to be integrated by the PIE are collected and formatted,

and a parameter file controlling how PIE runs is configured. During convergence,

30

multiple small runs are performed using differing search path lengths. These are

used to estimate convergence rates and to find the highest scoring answer. During

the profile phase, a large run-set is generated at a run-length that results in conver-

gence only some of the time. This profile is a distribution of best and nearly best

answers and provides information such as whether one or multiple isoforms may

be present, how good the data was in total, and how valuable each data set was

individually. Interpreting this profile is the final step.

3.3.1 Setup

Setting up a PIE run involves collecting and editing data files needed as input to

pie as well as setting key = VALUE parameters in the configuration file. The PIE has

a modular design, allowing it to integrate multiple data types, depending on what

scoring modules are used (e.g. Intact-mass, peptide MS/MS, prior knowledge, etc).

The configuration file tells PIE what scoring modules to use and where to find the

data, but it also contains sections to provide basic molecular data, parameters to

the underlying MCMC statistical engine, and a section specifying what results PIE

should generate and how to report them.

What is know about a protein and its modifications determines the modules

that will be used to incorporate that data into a scoring landscape. If good data

are available–data that provide a complete and consistent picture of a protein and

its modifications–the PIE will be able to find unique high scoring answers for the

modification state of the protein. If insufficient data are available, or the data sets

contain convoluted or contradictory information, the PIE will likely still provide

useful knowledge by characterizing the modification scenarios that are supported,

to what degree they are supported, and how each data type individually contributes

to that support.

31

Scoring modules

The scoring modules are each referenced by name in the parameters file, and have

a boolean parameter that turns them on or off. If a module is turned on, then

all parameters needed by that scoring module must also be provided. Details are

provided in appendix C, PIE User Manual, but the scoring modules available are

described above. First, however, PIE needs to know a little chemistry.

Molecule data

The PIE needs to know the sequence of the protein whose modifications are being

studied as well as the masses for amino acids, adduct modifications, and small

molecules like water. The mass files are table-based file, each row in these files

represents a different molecule, and each column describes some basic property

of that molecule such as a (globally) unique name, aliases, and the average and

monoisotopic masses.

The adduct modification file provides mass data for the functional groups that

may bond with a protein creating PTMs. The data in this file was taken from

Proclame (Holmes 2004), but is also available from sites like http://www.unimod.

org/ (Creasy 2004). In addition to the mass of the modification, the mass value

accounts for any molecular gains or losses during binding. For example in a typical

methyl group addition, the methyl itself is 16.04 Da, however, both the protein and

the methyl must loose a hydrogen (1.01 Da) to allow covalent bond formation, so

the net addition is 16.04− 2.02 = 14.02 Da. Adducts with multiple binding modes

may need to be listed multiple times.

The list of adduct modifications is also used to define the set of modifications the

PIE will search for, and so may need to be edited to add modifications of interest, or

32

remove extraneous ones. The PIE uses modification-specific priors, which describe

the general likelihood of seeing each modification type, and these need to be provided

for new modifications as descried in the prior data section below. The number and

masses of the modifications selected have consequences for the accuracy and running

time for the PIE. The discussion section addresses specifying a modification set in

more detail.

The PIE reads protein sequence information from the targets.fasta file. Un-

like most other data files which are table based, this file is in standard FASTA file

format (http://www.ncbi.nlm.nih.gov/blast/fasta). PIE identifies a protein

by name from the definition line, the text up to the first space or the end of the

line, whichever comes first. Data for multiple protein sequences can be specified at

once in a single FASTA file, but only one protein at a time can be used by PIE

for PTM identification in the current version. Each of the experimental data files

contains a column that references a protein name, binding each row to a specific

protein. The protein name must be identical (case sensitive) across all uses. This is

a planned extension point, and in future it is possible that every data module will

allow specifying the protein name it uses separately.

Experimental data

Experimental data is the main source of information used by the PIE to select and

localize modifications on proteins. Pie currently supports three types of experimen-

tal data: an accurate intact mass, a set of peptides matched to the target protein

via a program like GFS (Wisz 2004) or MASCOT (Perkins 1999), and a set of

sequenced peptides or fragments with exact modification positioning information

such as can be provided by MS/MS experiments (Searle 2005). Each experimental

data type has its own scoring module and data file.

33

Intact mass data obtained through high-resolution mass spectrometry such as

from an FTICR or orbitrap instrument is provided to the program through a data

file and evaluated using the IntactMassScoring data module. This provides the to-

tal experimental mass for the modified protein being analyzed and the approximate

mass error (in ppm or absolute mass units). Mass accuracy must be greater than

1/2 the mass of the lightest modification to prevent spurious modifications from

being suggested due to error alone. However, better accuracy is generally needed.

Low accuracy results do not provide sufficient constraints on total masses to limit

combinatoric answers, and require complete peptide coverage to offset. The more

accurate the intact mass, the more resolving power PIE will have when deciding

between nearly equivalent answers. For example, if greater than 0.03 Da accuracy

is available, PIE will be able to distinguish between trimethylation and acetylation

adducts. Only one intact mass measurement is used by the PIE for any analysis,

but multiple measurements can be present in one file as long as each has a different

protein target name.

The FragmentScoring data module and its data file processes information from

MS or MS/MS peptides that have been matched to the target protein via a program

like GFS (Wisz 2004) or MASCOT (Perkins 1999),. This module is designed to han-

dle peptides where only the presence/absence of a modification is known, but not its

specific location within the peptide. Such data might be produced by the matching

of peptide precursor masses (before fragmentation) to predicted peptides from the

sequence. While less informative than data with a localized modification, these are

nonetheless useful to the PIE, particularly for excluding PTMs from regions of the

protein where matching peptides indicate no modifications are present.

The data file contains columns that specify the protein a peptide matched to,

its alignment to the protein, and any (unlocalized) modifications associated with

34

the peptide. The scoring module tries to handle peptides that overlap and present

contradictory information about what modifications are present. It also assumes

that only partial coverage of the protein is available. Where peptides are available,

PIE will use them to guide choice and placement of modifications implied in top-

down data. Section 5.2.2, Evaluating a peptide data set, has more details..

The LocalizedFragmentScoring data module is designed to incorporate infor-

mation from peptides or fragments identified from MS/MS spectra where a specific

modification site is identified (or excluded). This module uses an input file con-

taining columns specifying the name of the protein, the sequence provided, where

that sequence aligns to the protein and the modifications present and their spe-

cific aa locations. This is very useful information, as it directly localizes a specific

modification to a specific amino acid, reducing the size of the puzzle PIE must solve.

Priors data

Experimental data is the best way to determine what modifications are present and

where they go on a protein, but real-world data are often incomplete and some-

times contradictory. When evaluating and interpreting less than perfect data, an

expert relies on prior knowledge and experience. The PIE uses prior data models to

accomplish a similar task. These models use input data such as the relative proba-

bilities of modifications taken over all proteins described in a resource like Uniprot

(http://www.uniprot.org/). Three prior models are available to provide infor-

mation about the expected distribution of adduct modifications, two prior models

describes cleavages, and one allows specific rule-based biases to be applied.

The two cleavage models are actually implemented by one cleavageScoring

module and is based on a simple open and continue model similar to sequence

alignment affine gap scoring (Gotoh 1982) with four terms (one pair for each end of

35

the protein) as parameters. No text file is needed. These parameters are provided

directly in the modifications file.

The three modification distribution models consist of the modCountScoring

module that applies a distribution of the expected number of modifications as well

as the modTypeScoring and the modLocationScoring modules which each use text

files based on database scanning to predict and localize modifications.

The modCountScoring module uses a simple center and error model. As with the

cleavageScoring module, no separate data file is needed, parameters are provided

in the run.properties file. If error value is small, then only modification scenarios

with about the number of modifications expected (the center) will be predicted. If

the error is large, then the center value is used as a guide, but easily ignored (See

5.2.4, Setting the number of modifications).

The modTypeScoring module uses a data file which contains a non-normalized

weighting of how often each possible modification is expected. The modLocation-

Scoring module uses a data file which is a table of weights, giving for each possible

modification and amino acid combination how often that specific modified amino

acid is expected. In order to allow for novel modifications, an additional (pseudo-

count) of 1 is added to all possible modification-amino acid pairings, even those

never previously found. To prevent any chance that a given pairing will be sug-

gested, a count value of -1 can be used. The default data in these files The default

values for the two database derived data files are taken from dbPTM (Lee 2006).

However, representing as it does data averaged over all proteins, the defaults will

need to be modified in many instances based on information about what is likely in

the usually restricted domains that apply to specific experiments (See 5.2.3, Using

domain specific prior information).

The rule based module, ruleScoring will be expanded in future to allow for

36

more convenient configuration, but currently allows setting parameters for two spe-

cific conditions: How likely n-terminal acetylation is, and how likely amidations

and deamidations occurring in the same candidate are. The purpose of this data

module is to include odd bits of prior belief that might apply in a given situation.

Template files are available in the distribution for all prior scoring functions

needing separate data files. Appendix D (Tutorial Walk Through) describes how to

copy and modify these files as needed for specific examples.

3.3.2 Setting up the parameter file

All runtime parameters for the PIE are provided through a configuration file, spec-

ified in a key = VALUE format. This configuration file is divided into three main

sections: the first is the scoring section with parameters needed to configure the data

and data models, a second section provides parameters to the underlying McMC

statistical engine, and the final section specifies what results to generate and how

to report them. Adjusting these parameters is required not just to tailor PIE for

specific analyses, but also to run PIE, as this file takes the place of command-line

options and parameters.

Data and data model parameters

The Data and Data Model Parameters section is subdivided into parts, one for

each scoring module available. These select and set the values for the scoring

modules described above, as well as identify the data files to read. Additionally,

parameters are set in the section to define the default directories in which the PIE

will look for its data files, including the basic molecular data files needed by PIE

and the information needed to describe the protein target.

37

Pie must be able to find the data it needs. This is done by specifying up to

three directories. Data files are loaded first from the defaultDataDir, then from

the experimentSetDataDir, then from the experimentDataDir. Any file found

in more than one directory will be loaded only from the last directory it is found

in. This is useful when investigating how modification scenarios change when most

of the data remains the same. The simplest configuration–used by default–is to

read all data from one directory (defaultDataDir), leaving the other directories

unspecified.

The names for each of the molecule information files and for the FASTA file

containing the target protein must be specified. Since files can contain data for

multiple proteins, the target protein name is needed as well.

McMC parameters

The defaults for the MCMC section do not generally need modifying and can re-

mained unchanged except for special fine-tuning.

Run and reporting parameters

The last section of the properties file contains the parameters used to tell the PIE

how to run and output results. A single run of the PIE usually consists of multiple

searches, controlled by setting a runCount value. During each search, the number of

steps used to find the best answer is controlled by a maxSteps parameter. Together

these two parameters are the main controls for running the PIE. Other than the

startSeed parameter, all other parameters in the section affect reporting only.

The startSeed parameter should usually be left at its default setting. Non-

zero values cause the PIE to behave deterministically and can be useful for testing.

38

Setting this specifies a fixed sequence of pseudo-random numbers to use as a source

of randomness by the PIE. The sequence used for any given run of PIE is available

in the log file PIE generates as it runs, and if startSeed is set to value from the

log file, results will be identical.

3.3.3 PIE’s output

The PIE generates two result files–one summary and one detailed–and a log file. By

default all results are generated into a directory created at runtime under the output

directory specified. The created directory will automatically be named after the

date and time the PIE was run, such as 2009 10 12 21 55 00 032. This prevents

accidentally writing over previous data. It is often a good idea to rename this

directory to something more meaningful.

Both the summary and detailed result files are tab-delimited text files, with a

header line identifying the contents of each column. The log file is simply a narrative

of what the PIE does as it happens. Names of the result files can be changed through

the obvious parameters, but since new output directories are create every time the

PIE runs, it is ok to leave the defaults.

The level of detail in the log file can be controlled by changing the logFilter-

Level. The default setting is generally adequate, recording an outline of what the

PIE does including copies of all non-data messages. However, setting the level from

INFO to DEBUG or DEBUG LOW will provide additional levels of detail in the log file.

The summary file will have a number of lines matching the runCount parameter,

one entry for each search. Each entry describes the best candidate found during a

search, the modification pattern most consistent with the data. The information

reported about each guess includes the the step on which the highest scoring answer

was found, its score, and the modifications predicted. It also contain a separate col-

39

umn for the score generated by each of the individual component scores, allowing for

detailed interpretation of results (see Section 3.6, Interpreting the Answer Profile).

The detail file reports the current state of the McMC search at given intervals

throughout the run, each time the search has taken the number of steps specified

by everyN. This output will be repeated for every one of the replicates specified by

runCount. Reported information is similar to the summary file, except it is only

the current state of the walk, not the best state so far.

The current state of the run will be echoed to the console at given intervals

throughout the run. This includes a state description each time the search has

taken the number of steps as specified by consoleUpdate. along with a messages

at the start and end of each replicate giving the time.

3.4 Determining the Convergence Length

Simulated annealing by MCMC is a stochastic search method. It finds global optima

based on a guided tour through a large set of candidate answers, but how long it

must walk around before being guided to the best scoring candidate is unknown

at the start. Quitting too early results in a less-then-best candidate. The average

search length needed to find the best candidate is the convergence length, and this

varies with the details of the scoring methods and data that makes up the landscape

walked over. Deciding how long to walk for is necessary, but calculating this directly

is theoretically difficult or impossible. Making things harder is the fact that more

than just the single, best scoring, optimum candidate is needed; the nearly-best,

sub-optimal candidates are needed too.

To obtain the needed convergence length an empirical approach based on a guess

and refine strategy is used. The recipe for determining convergence requires using

40

PIE in an manner similar to guessing a number given feedback that a guess is too

small or too large. Starting with an initial guess for a convergence length and

then running repeatedly, each time using the results of the latest run to modify the

convergence length on the next run allows determining the convergence rate. This

can be repeated to obtain any degree of accuracy, but to minimize computation the

target rate of convergence is 20% in a run of at least 10 samples (i.e. at least 2 with

the same highest scoring value). Since this can happen by chance, a confirmation

run of at least 10 samples at a longer run length with 3 or more of the same highest

scoring value is used to provided supporting evidence that the real highest scoring

answer has been found. Since every run starts from a random place, repeatedly

finding the same maximum answer is taken as evidence that the true best answer

has been found. If a new, higher scoring answer turns up, then estimation starts

over with the convergence length that produced the new guess.

This same procedure can be used to optimize other parameters–such as how

big to make each step. Although an exhaustive analysis has not been performed,

most of these other parameters seem to have relatively little effect, or change little

from run to run. The length of walk is by far the most important. Only after

the convergence length has been determined can a profile of candidate answers be

efficiently generated.

3.5 Obtaining a Complete PTM Answer Profile

Once the 20% convergence length estimate has been determined, it is easy to gen-

erate an answer profile to get an overview of the possibilities indicated by the data.

To do this, a large sample of answers is taken with PIE, 100 or more searches. Since

the chosen run length resulted in 2 of 10 results having the top-scoring value, about

41

20 of the profile searches are expected to result in the same high-scoring answer.

The other 80 or so represent a sampling of near-optimal answers. This distribu-

tion over near-optimal answers provides a great deal of information about the way

the data is structured and what kind of answer the best answer is. Sub-optimal

answers that score high relative to the best answer indicate answers with less but

significant support given the available data landscape. This includes answers that

might represent alternate isoforms or answers that, due to missing data or data

with insufficient resolving power, are indistinguishable.

3.6 Interpreting the Answer Profile

A step-by-step profile interpretation is included as Appendix D, Tutorial Walk

Through. Only a brief summary of the profile is presented here, covering three

separate ways to extract useful data from the profile.

A simple interpretation of the profile involves comparing the best and second

best scoring examples. If the ratio of the two scores is far from 1, only the single best

answer is highly supported. If the ratio is around 2:1, there is significant difference

in support between the two answers, but some support for other answers exists.

This is due to the built in “error at 1/2” scaling of each scoring module.

After the profile is sorted by total score and visualized, additional information is

provided by the consistency with which different modifications are predicted across

multiple guesses. If, for example, the same set of modifications and cleavages are

used for most of the high scoring answers, varying only in the location of adducts,

this is a good sign that these are the modifications present. Likewise, if a modifica-

tion position is conserved through multiple guesses, that indicates strong support

for that feature in the data.

42

Since each module’s score is reported in addition to the total score, looking

at the ratio of the component scores provides information as to which data types

are providing the most discriminating power between the two best answers. For

instance, if this is the peptide model, PIE is indicating that the second best scoring

answer disagrees with one or more peptides. If it is the modification location prior,

PIE is indicating that main difference between the two answers is that the better

guess puts modifications on AA that are less common on average. The entire profile

can also be sorted and visualized based on any of the component scores, showing

how the guesses as a whole are viewed in light of each data type separately. This

ability to investigate why PIE picked one answer over another is a valuable feature

and provides significant insight into the story the data is telling about a protein.

By providing a way to look beyond the best answer and examine how different

data types support and answer, and how each modification is supported provides a

great deal of information about the protein isoform or isoforms represented by the

data.

43

Chapter 4

Results

4.1 Validation Using L7/L12 Theoretical Data

PIE was first tested using synthetic data, based on experimental results from a

survey of E. coli ribosomal proteins (Kevin Rankisoom - unpublished data). Manual

interpretation of experimental data on the L7/L12 protein (Kevin Rankisoom -

unpublished data) suggested the presence of several isoforms, one of which had

three modifications: an N-terminal methionine loss, an N-terminal acetylation (on

2S), and a lysine methylation of (82K). Using a theoretical lysC enzyme digest from

PeptideCutter (Gasteiger et al., 2005) a complete, ideal set of experimental data

matching this isoform was generated, consisting of all bottom-up peptides, complete

tandem MS/MS sequence data, and exact top-down mass. Several data sets with

various levels of completeness and error were then produced from this ideal set by

removing peptides and MS/MS sequence, and by adding error into the intact mass.

An estimate for the intact mass accuracy is also needed; errors were chosen that are

near or possibly larger than the imposed error to show how PIE performs with less

than ideal data. Predictions obtained by PIE are presented in Table 4, “Analysis

of L7/L12 Experimental Data”.

To correctly characterize modification isoforms from typical proteomic experi-

ments requires obtaining enough data to determine what modifications are present

and where they are located. For this target isoform, just two peptides (with se-

quence) serves to identify the location of the acetyl and methyl adducts, and a

moderately accurate intact mass–within 0.5 Da of the actual value–provides evi-

dence that the only other modification is a loss of methionine. At the targets intact

mass of 12,220 Da, 0.5 Da is about 40 ppm. Any greater intact mass error would

support the addition of an amidation or deamidation modification (± 1 Da).

The program converged to the correct answer with a few minutes of run-time

for all theoretical L7/L12 data sets where there was enough data to localize the

modifications (sets 1, 2, 3). By using prior scoring modules, PIE was able to

obtain consistent answers even when either the intact mass (7 and 8) or the peptide

data (4,5,6,9, and 10) did not contain enough information, i.e. when the intact

mass error was large, or when MS/MS data or peptides are missing. This includes

leaving out all peptide and MS/MS data for one or more modified peptides. In

general, the lack of experimental localization information leads to multiple equal

scoring answers different only in the position of modifications, but prior scoring

modules help to order subsets by probability and rule out many unlikely answers

(i.e. a phosphorylated arginine), and in some cases obtain the correct localizations

(i.e. an n-terminal acetylation). For the remaining two data sets (11 and 12) the

error-adjusted intact mass was off by more than 40 ppm and no peptide data was

used. Here the answers obtained by the PIE unsurprisingly do not match those

expected for this target isoform, but instead are more consistent with the given

data; calculated intac masses for the guesses and within 10 ppm of the bad intact

mass provided as experimental data to PIE.

Each theoretical L7/L12 data set was profiled to characterize the quality of the

45

proposed answer. The top two answer and the ratio of their scores are given in

Table 2, “Analysis of L7/L12 Theoretical Data”. Score ratios are consistent with

the ability of PIE to provide greater discrimination between answers when more

data is provided. The highest ratios are obtained for data sets 1, 2, and 3, which

are the only ones containing all the minimum required information for complete

characterization of the isoform. For each of these, the second best answer scores

lower due to its contradiction of experimental data, as indicated in the why column

of the data table. This column also shows that, for the remaining data sets where

not enough experimental information is available, PIE is using prior expectations

to select the best answer, but this is accompanied by lower score ratios.

4.2 Analysis of H23C Theoretical Data

As a test of the PIEs ability to handle more complicated modifications patterns,

including conflicting peptide data, a synthetic data set based on two theoretical

isoforms of the human h23c histone protein was generated. This protein was chosen

because biologically it is highly modified and presents a much more complex tar-

get than L7/L12. Considering two different isoforms simultaneously allows testing

how PIE handles conflicting data. One virtual isoform, H5, was imagined with 2

methylations, 2 acetylations, 1 phosphorylation, and an N-term met loss. The other

virtual isoform, H7, was given two additional phosphorylations (See Fig. 4, “H23C

Theoretical Peptide Data”). From these two virtual isoforms, four artificial data

scenarios were created: one data set containing peptides, tandem sequence, and

intact mass consistent with H5, one set consistent with the additional phosphoryla-

tions present in H7, and the remaining two sets having combined bottom-up data

consistent with a mix of the two isoforms, but using either the H5 or the H7 intact

46

mass. This data and PIEs predictions are presented in Table 3, “Analysis of H23C

Theoretical Data”.

The program was run assuming each intact mass was in errors by +10 pp m

when measured by an imaginary instrument giving ± 20 ppm measurement error.

MS/MS and peptide data (including all modifications) was assumed to be present

covering 75% of the protein. For the combined peptide data sets, two regions of the

protein have both a correct and an incorrect peptide assigned to them, the incorrect

peptides originating from the other isoform. The PIE was able to correctly identify

all modifications and their positions for the H5 and H7 pure isoform data and for

the H5 mixed case; for the H7 mixed case it correctly identified all modifications,

misplacing just one of the phosphorylations with conflicting data. For the H5 mixed

case, this means PIE correctly identified and localized all modifications, and was

able to ignore peptide data indicating 2 additional phosphorylations that did not

apply to H5 isoform. For the H7 mixed case, this means PIE is reaching the limit of

its understanding of the data. To correctly place this modification, the PIE needs

additional information or modified scoring: See Chapter 5, Discussion, for more

information.

4.3 Analysis of L7/L12 Ribosomal Extracts

After validating the PIE on theoretical data, it was applied to data from the L7/L12

ribosomal extracts collected during an investigation of the role and extent of ribo-

somal PTMs in E. coli K-12 (Kevin Rankisoom - unpublished data). L7/L12 is

particularly complicated and was chosen because there are multiple isoforms simul-

taneously present in the sample, testing the PIEs ability to handle heterogeneity.

Results are presented in Table 4, “Analysis of L7/L12 Experimental Data”.

47

Top-down (intact mass) measurements were collected from several ribosomal

extracts analyzed on two different mass spectrometers: a Bruker BioTOF II time-

of-flight MS and a Fourier transform ion cyclotron resonance (FTICR) MS. Mass

resolution for the BioTOF typically runs around 20 ppm and for the FTICR around

1 ppm or better.

A total of nine intact masses were selected from the MS data as corresponding

to isoforms of L7/L12. The intact scoring model requires some estimate for the

accuracy of these masses, although a precise estimate is not needed. The expected

accuracy for the analyzing instruments is a much simpler and easier estimate, and

would also work, but the presence of internal standard analogs provides the oppor-

tunity for a second estimate. By calculating the mass error for all other apparently

unmodified ribosomal proteins identified in the extract, a better estimates is likely

obtained. Misidentification of one or more protein as unmodified is possible as these

are not true internal standards, but this only makes the error estimate more conser-

vative. The intact error windows used in Table 4, “Analysis of L7/L12 Experimental

Data” are those that would contain most data points, excluding outliers.

Corresponding bottom-up peptide data for L7/L12 were obtained from E. coli

K-12 ribosomal extracts by digestion with trypsin and analysis on a QSTAR MS/MS

Quadrupole time-of-flight. Eighteen unique peptides were identified by precursor

masses including six with adduct modifications. MS/MS sequence was obtained

for six peptides, including three of those with modifications (see Fig. 5, “E. Coli

L7/L12 Peptide Data”).

The PIE was applied to each of the nine intact mass targets, scoring the com-

bined intact mass and bottom-up experimental data along with all available prior

data models using default parameters. Fig. 6, “Convergence and Profile Sampling,

L7/L12 220-1H” show two of the run sets used to identify convergence for one of

48

the targets, as well as an answer profile. The PIE converged to a best prediction for

each of the nine targets, describing three different isoforms. The results, presented

in Table 4, “Analysis of L7/L12 Experimental Data”, were consistent with a man-

ual interpretation for eight of the nine intact targets. Three separate isoforms were

identified, 12,206, 12,175 and 12,220. These were each consistent with prior manual

analysis, including localization of one to three modifications and an n-terminal me-

thionine cleavage. One of the nine intact masses, putatively representing a fourth

isoform at 12,163 Da, was incorrectly predicted to be mono-methylated; manual

interpretation suggests this isoform is unmodified except for n-terminal methionine

loss.

Each of the nine targets was profiled along with the second best guess and the

relative score ratio for these top two guesses are included in the data table. The

answer profile in Fig. 6, “Convergence and Profile Sampling, L7/L12 220-1H” shows

the top 100 results for the 12,220-H1 isofrom. For this trimethylated prediction,

there is not enough data to localize two of the methyl adduct, so there are many

nearby answers differentiated only by placement of the modifications. When the

nearby best answers have similar scores, the score ratio is near 1, indicating multiple

answers are supported by the data.

49

Chapter 5

Discussion

5.1 Discussion of Results

To investigate the feasibility of McMC/SA based data integration with PIE, I sought

answers to questions such as: Could PIE avoid being lost in endless sea of equal-

mass answers, particularly given only incomplete data? Can PIE handle data sets

that have dependencies, errors or contradictions? Can it find answers in a reason-

able time? Can PIE be implemented using a modular approach so it can readily

accommodate additional data types in the future?

Data integration in proteomics is difficult because data is usually incomplete and

the solution space is large, especially when proteins have multiple modifications.

Given the results obtained with PIE, McMC and simulated annealing appears to be

a useful way to approach this problem. Other methods are possible, and predictions

for simply modified proteins, where data represents a single protein isoform with

only one or two modifications, is easy. For instance, an exhaustive exploration of a

constrained space, such as is done by PROCLAME (Holmes and Giddings, 2004) in

searching for top-down candidates could be extended to include simple peptide or

sequence data. However, the situation rapidly becomes complex with more than just

a couple of modifications. The combinatoric explosion of possible answers require

algorithms–like simulated annealing–that scale well. These are also the cases where

the most interpretive help is needed.

As originally envisioned, PIE was not intended to handle bottom-up data rep-

resenting multiple isoforms, but during testing and validation, it became apparent

that an intact mass alone (guided by simple priors) contained enough experimen-

tal information to identify a likely set of modifications (as in Table 2, “Analysis

of L7/L12 Theoretical Data”, data set 10). This suggested that bottom-up data

with peptides representing several isoforms simultaneously could be used, relying

on the intact mass to distinguishing the relevant peptides. PIE did surprisingly

well interpreting these more complex mixtures, even coming up with an answer not

previously considered during manual analysis.

Having multiple interpretations for the same data set makes mass spectrometer

data difficult to analyze. For example, the data for the L7/L12 isoform 12,206

supports either trimethylation or acetylation. Which is correct? Given the available

mass spectrometer data, it is impossible for human or software to tell; both isoforms

may be present. PIE’s strong support for only the trimethylation prediction results

from the multiple methylated peptides in the bottom-up data. It is interesting that

prior to using the PIE I had not previously considered trimethylation since manual

interpretation with an acetylation was so obvious. Unfortunately, without assuming

completeness, there is no reason to believe all the intact masses have been found,

and hence no reason to believe the dimethylated peptides (Fig. 5, “E. Coli L7/L12

Peptide Data”) have to belong to any of the intact mass isoforms. The only solution

to these issues is to acquire more data, but how and what data? This is essentially

a resource availability question, and depends on the specifics of the experiment and

data. If, for example, ultra-high mass accuracy instrumentation was available (i.e.

51

an FTICR-MS) it would be possible to resolve the ∼ 0.03 Da difference between a

trimethylation and an acetylation.

The lack of specificity in mass spectrometry data makes it critical for automated

analysis software to integrate a wide range of data. Without the flexibility to

incorporate new techniques, any such software will quickly become obsolete, whereas

software supporting a wide variety of data allows the experimenter to choose the

fastest, cheapest, and most accurate methods to produce data. Modularity is central

to the PIE, allowing simultaneous integration of a variety of both MS and non-MS

based data. New modules can be added with relative ease, and it is easy to run

what-if experiments including or excluding data.

One aspect of the way PIE uses bottom-up data is to specify what not to look

for. Modifications not detected in bottom-up data are less likely to be present. PIE

uses this negative information to apply Occam’s Razor and favor simpler answers.

For example, without peptide data, the intact data model causes PIE to add extra

amidations or deamidations (± 1 Da modifications) to better match any deviation

in intact mass greater than 0.5 Da, even if such deviation is due to measurement

error and not the presence of a modification (as in Table 2, “Analysis of L7/L12

Theoretical Data”, data set 12). Where bottom-up data was available and no such

modifications were seen, the chance that such a modification would be proposed

was reduced.

5.1.1 Model and data accuracy

Scoring is affected both by the accuracy and completeness of the available data as

well as the accuracy of the model. Prior modules are based on information obtained

from databases that suffer from ascertainment bias. The modifications present in

the PDB, for example, are not independently sampled from all proteins, but are

52

more like an applause meter, where more popular or interesting proteins and their

modifications are over-represented. Simple priors allow for fast calculation; given

the bias in the underlying data, additional effort to refine them to provide highly

accurate prior models seems at this time to be unproductive.

The intact mass model is dependent entirely on the accuracy of the measurement.

As shown in the results (i.e Table 2, “Analysis of L7/L12 Theoretical Data”, Sets

11 and 12), if the intact mass has enough error, PIE will find a consistent answer

that is also in error. Although PIE performed surprisingly well even with wide mass

tolerances, narrower error windows increase discriminating power.

The peptide model had difficulty dealing with isoform mixtures due to data

conflicts inherent in a bottom-up shotgun approach. Several models were tried

but no simple model allowed discrimination of multiple isoforms to my satisfaction.

The current mass-based model suffers from over-weighting peptides with the most

variants, allowing this to override other information. Compared to the consistent

trimethylated proposal obtained for the L7/L12 12,175 isoform, the methylation

proposed for the 12,163 variant is not supported by the intact mass. Here match-

ing to the intact mass data by the intact mass model is outweighed by stronger

matching to the peptide data as evaluated by the peptide model. This is due to the

large number of methylated peptides, and might be avoided with an improved scor-

ing model. Increasing accuracy in intact mass would also eventually reverse this,

producing the expected manual answer. Additional data on the relative abundance

of peptides could help identify the most prevalent isoform, but would decrease the

ability to identify all others. The underlying McMC and SA algorithms can opti-

mize continuous values as well as discrete ones, and it is possible that PIE could be

extended to include guesses with quantification estimates for an isoform.

PIE uses a score ratio derived from the answer profile in lieu of a formal error

53

model (e.g. there are no p-values). The answer profile samples directly from the

empirical distribution, with the ratio of any two scores giving the ratio of their

probabilities. It also represents how unique a given answer is. Given that the in-

complete and ambiguous nature of MS data supports multiple similar answers, it

is important to determine if other good answers are likely. It is not clear how to

generate a more meaningful error model. Bootstrapping can have difficulty with

extreme values (Kysely, 2009) and a pure McMC sampling (without the simulated

annealing optimizations) is computationally expensive. Additionally, these or sim-

ilar error models only provide probabilities or confidence intervals with respect to

the model used. The modular data framework used in the PIE is designed to allow

users to change models easily.

5.2 Using the PIE to Solve More Complex

Problems

The analyses presented are relatively straight forward applications of the PIE. Many

situations arise when doing proteomic analysis that do not look like these examples.

A few thoughts on possible techniques for using PIE in more complicated situations

are provided here.

What if the sample analyzed consists of a mixture of different proteins, not just

different isoforms? A separate run for each possible protein can be done. Although

scores are not comparable between runs with different data or protein targets, the

number of replicates of the highest scoring value and the ease with which conver-

gence is obtained can be used as a rough guide to the best targets, and bad choices

for proteins will likely result in the uninformative prior (unmodified protein).

What if there are many isoforms, or a large number of identical modifications

54

varying only by modification position? Nothing will help distinguish positions other

than position-specific data. This could be ms/ms data indicating amino acid specific

modification information, or a more accurate prior distribution, such as the variable

weighting of phosphorylation sites generated by Netphos (Blom et al., 1999).

What if the protein has long truncations due to signal peptide removal? Using a

data module that scores cleavages based on information from a program like SignalP

(Bendtsen et al., 2004) would improve results. It is also easy to run such a program

separately and try the predicted truncated protein as a target.

What if the protein contains point mutations? These can be considered modifi-

cations, although care must be used when cyclical modifications that result in a net

0 mass are possible, i.e if. K⇒ T, T⇒ S, and S⇒ K are all allowed, many isobaric

modification sets are possible (with 1, 2, 3, . . . , N sets of these three modifications).

What if a list of adduct modification names for the mass deltas is not available?

If bottom up data contains an identified peptide but with an un-identified mass

shift, this might be entered in the modification.txt file as an unknown adduct

..., with appropriate mass data. However, it is hard to provide the requisite prior

information for this modification relative to other modifications or target AAs.

What if adduct modifications are variable, such as polysaccharides or lipids? If

you can not easily list each individual specific mass for all the possible modifications,

the PIE can not currently predict these modifications. It might be possible to

extended PIE such that it could allow for variable modifications, such as by adding

or subtracting pieces of a modification instead of an entire modification at once.

What if there is no intact mass data? Intact mass data is an critical piece of

information. Without this, modifications will be lost in the gaps, the regions of the

protein not covered by peptide data, as there then no experimental data describing

them. It may be possible to run the PIE multiple times varying the numbers of

55

expected modifications parameter of the modCount data module. See 5.2.4, Setting

the number of modifications.

What if there is neither useful top down nor bottom up data? There is no experi-

mental evidence, and the PIE has nothing to work with. The PIE can only integrate

the data you give it. Without experimental evidence, only the uninformative prior

(unmodified protein) result is obtained.

5.2.1 Specifying the target modification set

The modification set considered by the PIE for a given run is provided in the

modifications.txt file. Not including a modification in the modification set is one

of the few actions that can cause correct answers to be excluded from the search

space considered by the PIE. To allow for novel solutions, it is best to leave the

list as long as possible, with two caveats. First, if the list gets too long, run-times

will be extended, and second, the answer space may become too diffuse. Even

though the PIE does not suffer from exponential explosion in computing time,

every modification specified does increases the number of steps needed to converge,

and hence increases the average running time. Adding a reasonable number of

modifications should not adversely affect performance; adding all the modifications

listed in dbPTM (Lee 2006) likely would.

Currently, adding a modification to the modifications.txt file also requires

adding associated data to the files used by the ModType and ModLocation prior

data modules as described in the Materials section.

56

5.2.2 Evaluating a peptide data set

MS/MS scoring data - usually but not necessarily from bottom-up style experiments

- provide a rich but mixed source of information about the location and type of a

protein’s PTMs. The PIE performs best when the MS/MS information is consis-

tent, but can handle inconstancies and errors in the data. However, there is no

one obvious way to interpret fragment data, and several scoring algorithms have

been tried. Different methodologies are currently implemented though the choice

of different scoring models, each with their own benefits and drawbacks (see C.2.5,

Scoring Module Descriptions, for more details). Currently the two best scoring

strategies are deltaMass and errorCounting, with the deltaMass model used by

default.

The deltaMass strategy is a mass-based evaluation model, similar to that used

for the intact mass, but covering only a fragment of the protein. This can be used

when only precursor masses or peptide mass fingerprint style data are present.

The errorCounting strategy looks for individual mis-matches within the mod-

ifications allowed for the aligned fragment. This does not use the mass of the frag-

ment, only its interpreted sequence and modification components from a program

that can localize the PTM (e.g. Findmod, (Wilkins 1999)).

5.2.3 Using domain-specific prior information

One of the design goals for the PIE is to allow easy incorporation of various types of

knowledge about a problem. Sometimes this knowledge is in the form of experience

about what the answers should and should not look like within the range of ex-

periments a user is familiar with. The PIE makes use of such information through

explicitly stated prior distribution of expected results. For example, the distri-

57

butions of expected modification types and locations is likely different in general

between histones, ribosomal proteins, membrane proteins, or signal transduction

proteins. Specific data sets can be acquired to accurately compute weightings in

specific circumstances, and then turned into a separate scoring module. One module

planned will apply a distribution for phosphorylation of eukaryotic proteins based

on the predictions of the program NetPhos (Blom 1999). This could be done for

other PTM prediction program. Although not a substitute for good experimental

data, this might allow the PIE to fill in gaps where MS data are missing.

Manually setting prior weightings allows the PIE to take advantage of domain

knowledge based bias even in the absence of complete or accurate data. This has the

added value of ensuring that any such bias is applied explicitly and consistently - if

phosphorylation is impossible, it can be removed from the list of modifications. To

ensure an n-terminal acetylation occurs, its weighting in the ruleScoring module

could be changed to a very large number.

The PIE could also be used to evaluate what if data scenarios, such as slowly

and repeatedly decreasing the likelihood of phosphorylation and running the PIE

to see how the predicted candidates change.

5.2.4 Setting the number of modifications

In the absence of other data, one reasonable prior for the number of modifications

would be to set the expected number of modifications to zero, and the allowed range

of modification numbers to the length of the protein. This guides selection of the

fewest modifications that are consistent with remaining data.

Without experimental intact mass data, integration of results becomes much

harder, and the PIE is forced to rely on this prior as the guide for predicting

modifications in regions of the protein not covered by peptide or fragment data.

58

However, it is still possible to explore the space of candidates consistent with the

peptide or fragment data by using a sequence of values for the number of expected

modifications and setting the allowed range of modifications very low (like 0.25).

The results from a sequence of the PIE runs, each at a different expected number of

modification, then summarize the supported isoforms assuming one modification,

then assuming two modifications, etc.

5.2.5 The need for an accurate convergence parameter

Long searches result in finding the best scoring answer almost all the time, and hence

provide high confidence that the correct answer has been discovered. However, large

overestimates for the needed walk length is not acceptable for generating answer

profiles. Besides the waste in computational effort, the landscape of the solution

space is never revealed and competing solutions are never seen. It may be the case

that there is only one best answer worth considering. But it may also be the case

that there are many scenarios of very similar scores, with close to equal support

given available data. If there are alternative modification scenarios that are almost

equally supported by a data set, these would not then be found if the run length is

too long. Also a problem is when if the data is too noisy, incomplete, or conflicting

to isolate one or more isoform with the best support, it is possible that one answer

is slightly elevated in score over others, and hence get reported as the best answer.

A measure of the quality of this answer is needed, and is provided by the “almost-

but-not-quite-best” answers as revealed by the profile obtained using an appropriate

search length.

59

5.2.6 Identical candidates vs. identical scoring candidates

To be clear, PIE is concerned with the score of guesses, not the actual guess itself.

Where modifications are not localized by available data, it is common to have sev-

eral different but identical scoring candidates. This is usually readily apparent in

the profile view. For example, if a protein had three equally valid serines that could

be phosphorylated and there are no evidence for which of the three is modified, all

of these are scored as equal best answers. All three different answers will be present

in the result, each with a different phosphorylated serines. When determining con-

vergence, this is unimportant. The score is the same for each and so this would

count as three replicates of the same best score and hence evidence for convergence.

5.2.7 The uninformative prior Result

It is possible that there may not be enough good data for PIE to find any meaningful

result. If experimental data is particularly uninformative, a prior only result may

be obtained. An answer based on the prior data instead of the experimental data is

uninformative because the same answer will always result, generally an unmodified

protein. For such results, convergence is usually obtained slowly, though this may

depend on the data provided. One way to check this is to run the PIE without

any experimental data, then compare the result to one with the experimental data

provided. If the answers are similar, this indicates that the experimental data are

not adding to the result, and hence are for some reason uninformative. The key

is then to determine what is missing so that additional experimental data can be

provided to provide a more informative answer.

60

5.2.8 Supporting R scripts

Several R-based analysis scripts are provided in the PIE distribution in the pie/R

directory. These can be used with the R statistical analysis software, available from

The R Foundation for Statistical Computing (http://www.R-project.org). The

profile graphs, Fig. 6, “Convergence and Profile Sampling, L7/L12 220-1H” and

Fig. 9, “L16 Answer Profile”, were generated with these scripts.

5.3 Conclusion

The current version of the PIE is only the first step in creating a tool that can

integrate MS data and predict PTMs, but already it shows great promise. Using

simulated annealing allows the PIE to explore the unfathomably large solution

space of all possible modifications of a protein, and find the consistent answers. It is

surprisingly robust, capable of decomposing an intact mass into a likely combination

of modifications, and with the addition of MS/MS data, even a complex mixture

of overlapping and conflicting peptides from several isoforms can be used to obtain

specific modifications localizations. The PIE provides a integrated approach for

combining top-down and bottom-up MS data in the context of prior knowledge to

automatically determine the PTMs associated with a protein. By starting with few

assumptions about the answer needed and using a flexible, modular framework that

lets the data provide the constraints, the PIE can be extended and improved as new

or better data and data models become available.

61

Appendix A

FAQ

A.1 What is PIE?

PIE is short for the Protein Inference Engine. It is designed to predict posttrans-

lational modifications by integrating a variety of data, but most significantly by

combining mass spectrometer data from top-down (intact mass) and bottom up

(peptide and MS/MS) experiments. It does this using a guess and refine methodol-

ogy based on Markov chain Monte Carlo and Simulated Annealing. Although the

methodology itself is very interesting process, it is not necessary to understand how

PIE works to use it. All thats needed is to select which data evaluation modules

you want PIE to use, format your data to be read by these modules, and set up one

or more configuration files.

A.2 What will PIE tell me?

After several steps, PIE will provide you with the best prediction it can find given

your data. This answer is a set of PTMs and their locations, including both adduct

modifications like phosphorylation or methylation as wells as n-terminal and c-

terminal truncations. It will also provide a list of nearly-best answers that, while

not the best, are still pretty good. Answers are ranked and have a relative quality

score, which helps determine how good the best answer is and whether it is unique

62

or if the data supports multiple answers. Additionally, PIE provides a detailed

explanation for its ranking and scoring decisions in the form of sub-scores for each

data type evaluated. These sub-scores help identify problem data and allow for

additional validation or interpretation of answers.

A.3 What kind of data can PIE use?

PIE can potentially use any kind of data describing the modifications of a protein,

but each type of data must have an associated scoring module that allows PIE to

evaluate and use the data. The most useful information is experimental data about

a specific protein being investigated and its PTMs, but PIE also uses background

data about proteins in general or for the specific domain of proteins being studied.

Data is usually input through a table-based text file or as a couple of parameters in

the configuration file. Each scoring module is specific to one type of data and, when

provided with a set of modifications (and their locations) on a protein, returns a

score that represents how well the data supports those modifications. To add a new

scoring module for a new data type requires adding or modifying a java class to

hold the new type of data, and adding a class that implements the scoring interface

as it applies to the new data type. Currently, PIE has support for the following

data types (See appendix C, PIE User Manual, for additional information):

Experimental MS data types

Intact mass: The total mass for a protein and its modifications.

Peptide mass: A list of masses for (potentially modified) peptides and how they

align to a protein.

63

Peptide sequence: A list of sequences aligned to a protein. If the sequence covers

a modified region of the protein, the modifications must be identified and

localized.

Background or prior data types

Adduct abundance: Some adducts are common, others are rare.

Adduct location: Every adduct has its own preferential AAs.

Adduct count: How many adducts are present, on average.

Cleavage length: How likely is 0, 1, or longer n-terminal and c-terminal cleavages.

Explicit data rules

N-terminal acetylation rule: Acetylation is often n-terminal, regardless of the

AA present at that terminus. How often this happens is important information

and helps with providing accurate results.

Amidation-deamidation pair rule: Amidation and demaidation are not often

found on the same protein, and pose special problems for PIE if they are

allowed. How often this happens is important both for accuracy and for

efficiency.

A.4 I have some data about PTMs. Can PIE

help me?

That depends on what data you have, and what you want to know. There is fairly

a long list of caveats and exceptions that follow, but PIE currently requires some

64

effort to use, and this list is intended to help you avoid wasting time. If you are

not sure, go ahead and try to use PIE. Even if today PIE can’t help you, it is

designed for easy extension in multiple ways, and almost all the limitations below

can theoretically be overcome, at least partially. We welcome comments on what

PIE could or could not do for you.

A.4.1 Do you have MS data?

If not, PIE may not be useful to you. It can combine the result from multiple

prediction tools, and if that is your intent, then great. But without experimental

data, it will difficult for you to evaluate if a result is biologically meaningful.

A.4.2 Is the sequence of the underlying protein known?

PIE requires that you break your data up into queries about 1 protein target at a

time, where the (canonical) sequence of the protein is known. If you are only looking

at results from a purified protein, great. If you have multiple protein targets, each

must be run separately, and on any given run of PIE you must tell it the one sequence

you are targeting on that run and give it the data that applies to that one protein

sequence only. PIE can handle data representing several different modification

isoforms, but only a limited number at once.

A.4.3 Is your peptide data targeted?

PIE requires that only a limit number of peptides not matching the isoform queried

be present. If you have peptide or MS/MS data collected from a small pool of

proteins, PIE may be able to work with that, but will evaluate the data in terms of

65

only one intact mass at a time. The more dilute the peptides from that target are,

the worse PIE will perform. PIE is intended to work with peptides pre-identified as

associated with a protein by some other software, such as GFS (Wisz et al, 2004)

or MASCOT (Perkins et al., 1999).

A.4.4 Can you specify a discrete list of all modifications?

All modifications that are possible must be in this list, and each may not span

amino acids. This means methylation and dimethylation both have to be specified,

and that modifications that span AAs (like cystine crosslinks) need special rules to

ensure they occur in sets. It also means that variable modifications like lipids and

sugars can not be analyzed for.

The shorter the list of modifications simultaneously searched for, the better.

Both performance and accuracy degrade as the number of potential adduct modi-

fications increase. In addition, each modification simultaneously searched for must

have all needed prior data specified to use an associated prior scoring distribution

(e.g. relative abundance or amino-acid preference).

A.4.5 Does the protein analyzed have any sequence
mutations?

The canonical sequence required by PIE must match that of the protein being

analyzed. N and C terminal deletions are handled separately, and are not considered

mutations. Insertions and deletions are generally not allowed, except possibly as

specific point mutations that can be considered as adducts.

Single specific point mutations (e.g. S ⇒ T) can be considered as an adduct

with an appropriate delta mass, massof(T)−massof(S). Point insertions can be

66

considered likewise as S ⇒ ST, and point deletions as S ⇒ null. This is somewhat

unsatisfactory, and problematic as any combination with an adduct also needs to

be included separately, (S⇒ T+phos, etc.). PIE has only been tested searching for

about 10 adducts. Including all 18 non-0 mass AA mutations X 10 possible adduct

modifications even for just one mutable AA transition adds 180 more to the adduct

list; this is currently too large a list to allow PIE to work efficiently.

A.4.6 Do you have enough data to determine an answer?

If you don’t have enough data to constrain the possible solutions and actually de-

termine an answer, PIE can’t help. But you don’t really need to answer this, PIE

makes the best of the data it has, and will produce blurry guesses even with weak

data. PIE will let you know how poor your data is by not finding answers, by report-

ing the “no answer” answer of “unmodified”, or by finding many indistinguishable

answers. If you can add more data, you can rerun PIE to refine answers.

A.4.7 Congratulations!

If you made it this far, then PIE can help you to quickly and automatically ana-

lyze your data. It will provide the most-likely modification pattern represented by

your data, including AA localized adducts, N-terminal cleavages, and C-terminal

cleavages. It will also provide a description of the ensemble of nearly-best answers,

allowing you to understand in a deep way just what it is that your data is telling

you about what modifications are present, which parts of the prediction are more

or less sound than others, and the relative contribution of each data type.

67

A.5 I want to use PIE! What do I do,

specifically?

Perhaps the best way, if you have never used PIE before, is to run one on the demo

projects distributed with PIE. See Appendix D, Tutorial Walk Through.

A.6 Now that I have run PIE, what do the

answers mean?

PIE provides both a best answer and a range of nearby answers to aid in the in-

terpretation of results. Appendix D, Tutorial Walk Through provides step-bystep

instructions on how to generate some results, and then describes how to interpre-

tation them.

A.7 If PIE didn’t provide good answers, what

do I do now?

PIE should have given you and indication as to why it could not find a good answer

using your data. This is one of its strengths, being able to provide reasons for its

answers. Perhaps you can do some manual data cleaning to help PIE focus on

the key elements, or perhaps you can collect more or better data. See section 5.2,

Applying PIE to More Complex Problems, for more details.

68

Appendix B

Installing and Running PIE

Version 0.3 of the PIE has been tested for installation and execution (with Java 5)

mainly on Apple OS X based systems, but it does run under Microsoft Windows as

well. The present version runs only from the command line.

B.1 Pre-requisites for PIE

The PIE has the following pre-requisites:

• Java 1.5 or greater (http://www.java.com/en/download/manual.jsp).

• A user with some familiarity with the command line and with the basic con-

cepts of mass spectrometry-based proteomics.

• A text editor to format input information.

• Some way to view and manipulate the results (e.g. R or Excel).

• That you agree to the non-commercial license PIE is offered under.

B.2 The PIE Distribution

The PIE can be downloaded from http://pie.giddingslab.org. It is distributed

as a compressed file. Download the latest version (highest numbered) file and

69

unpack it. The resulting folder/directory, named after the version (something like

pie-0.5.1), will contain the PIE application files (in the ./bin subdirectory),

template input files (./data), one or more sample runs including input data and

results (./demo), documentation (./doc), and some sample R scripts (./R).

B.3 Installing and Running the PIE Directly

from the Jar File

The PIE is written in Java and packaged in a jar (Java Archive) file, pie.jar,

located in the ./bin directory of the distribution. It is easy to run this on any system

at the command line using the generic java -jar command with two (or more)

arguments: the pie.jar file, which is the application, and one or more property

files containing all the necessary run parameters. These files include pointers to the

data files that the PIE will read and integrate. For example:

> java -jar /path/to/pie.jar /path/to/run.properties

The run.properties file can be obtained by modifying the template from the

distribution’s data directories, or from one of the demo directories. Further details

of the PIE’s operation are provided in the user manual (Appendix C).

B.4 Installing the PIE as a Unix Command-line

Application

Although not necessary to run the PIE, it is easy to install the PIE on a unix-

based operating system so that it can be run without needing to use java -jar for

every invocation. The pie.sh program in the ./bin directory of the distribution

is provided for this purpose. It is a simple shell file that wraps the java call and

70

uses an environmental variable to find PIE, and this allows PIE to be installed as

any other application on a unix system. Note, this file will not work in a Microsoft

Windows based environment.

One possible way to install the PIE as an application (assuming you have sys

admin access), is given below.

1. Move the unzipped PIE distribution folder somewhere useful, for example to

/usr/local and then in the /usr/bin directory, create a link (not an OS X

shortcut, those are different!) to bin/pie.sh within the distribution folder

in the bin, named something like pie to allow easy updating to new versions.

Due to the protections on these directories, you may need to authenticate:

> sudo mv pie-0.1.1 /usr/local/

> cd /usr/local

> sudo ln -s /usr/local/pie-0.1.1 /usr/local/pie

2. Create a link named PIE to the executable file /usr/local/pie/bin/pie.sh

in /usr/bin.:

> sudo ln -s /usr/local/pie/bin/ /usr/bin/pie

3. Add an environmental variable PIE HOME that points to where you put the PIE

directory link. It is simplest to put the following line in your ∼/.profile file

(create this file if it does not exist):

export PIE HOME=/usr/local/pie

4. To pick up this new environmental variable, you need to log out and back in

again, or source the profile directly:

71

> source ∼./profile

PIE can also be installed to run as pie for all users on a machine by adding

the PIE HOME variable to the machines root profile, and can be called from other

programs if the PIE HOME variable is set in the .bash rc file for the user or in the

machine level variant.

If there are problems using PIE HOME, the pie.sh file can be edited to look for

the PIE link wherever it lives.

You can now run PIE from the command line simply by using the command

pie and passing it the name of one or more configuration files.

> pie /path/to/run1.properties /path/to/run2.properties

72

Appendix C

PIE User Manual

This user manual describes version 0.3.5 of PIE.

C.1 Overview

This manual contains four sections. This first section outlines the organization of

the User Manual and describes the basics of how data gets into and out of the

PIE. The remaining four sections describe the molecular data files used to teach the

PIE chemistry, the properties file that controls how the PIE does everything, the

scoring modules used to evaluate data, and the output files that contain the PIE’s

predictions regarding the modification patterns it has inferred from the data. For

detailed tutorial walk through, see Appendix D.

PIE requires one or more configuration files, which take the place of complicated

command-line option sets. The configuration files are implemented as Java prop-

erties files, but are used simply to provide a set of key=value parameters to PIE.

Details are given in section C.3 on the configuration file, including a description of what

most parameters do. Some parameters provide the names and locations of the data files

to read in and the result files to write out. Other parameters provide information related

to scoring functions, and these are described with the specific scoring modules in section

C.4 to allow for a modular documentation style.

Most data files read by PIE are tab-delimited text files with rows of data organized

into columns, the first line giving the column names. Some data files are associated

with specific scoring modules. C.4, the section describing the scoring module, provides

73

information describing these file as well as the associated properties. Other files are core

data files used by PIE to load chemical data such as amino acid names and masses or

protein sequence. Section C.2, gives the specifics for these core data files.

PIE’s main output is a summary file containing the best scoring candidate from a

run set. The highest score representing the best guess (or guesses) found. There is also a

detail file that contains a sampling of guesses taken along the way as PIE searched for each

candidate. This is useful to see how PIE is thinking and to diagnose what went wrong. A

log file is also produced the generates a narrative of what PIE is doing It contains some

generically useful information as well, including the random seed used and the time PIE

is taking to find each candidate, which can be used to predict how long a run-set will take

to finish. Section C.5 describes the output files in detail.

The parameter and data files are read once when PIE starts up, and then are not

used again. However output files (summary, detail, and the log file) are each updated

repeatedly as PIE runs, so moving or locking an output files will cause PIE to fail.

Tab-delimited text file format

Almost all files read by PIE are tab-delimited text files with the first row of data inter-

preted as case-sensitive column names. These files work like a data tables or spreadsheets.

Each type of tab-delimited file will have a different set of required columns. Column order

is unimportant, extra columns (with unique headers) are ignored. Any row starting with

a # symbol is considered a comment line and is also ignored. Comments are valuable

as they allow a block of descriptive text to start files, and allow individual rows to be

commented out, easy switching data rows on or off and preserving the context for rows

that remain.

The header row must be the first non-blank, non-comment line in the file. If any

required column name is missing or repeated, PIE will exit with an error. Depending on

the file, PIE will also expect certain things from the data elements in a column, such as

74

being non-blank, or being a floating-point number. Failure to understand or read a data

element will also cause PIE to exit with an error. Details on what columns are required

or optional and on what is expected of data elements in each column is given with the

description of the associated file. Tabs are adjusted to make examples display nicely.

Specifying the filenames of data files

All data files are specified by key = fileName entries in the run.properties file. Data

files are always identified with a property key, and hence can be named anything. If

filename is a relative path, including just a file name, PIE will look sequentially through

up to three different base directories (the defaultDataDir, experimentSetDataDir, and

experimentDataDir) and then try the current run directory. The first file matching the

given filename will be used. If no such file is found, PIE will exit with an error. See

section C.3, PIE Configuration File Reference, for more information.

75

C.2 Core PIE Data Files Reference

C.2.1 Overview

Four core data files are always required by PIE regardless of the scoring modules used:

proteinFastaFile, aaDataFile, molDataFile, and modDataFile. The proteinFasta-

File file must always be specified, but a default version of the remaining three molecular

mass files are provided by default if not explicitly set. This section describes the four core

files.

76

C.2.2 The proteinFastaFile

PIE needs to know the name and sequence of the target protein. This must be provided

in a standard FASTA file identified by the filename property proteinFastaFile. Which

one of the (possibly many) sequences in that file is specified via the targetProteinName

property. This name is case sensitive. The first whitespace-terminated block of text on

each definition line is checked for a match, starting from the top of the file. The sequence

for the first protein with a matching definition line is read.

Parameters

proteinFastaFile = “file.fasta” The name of file providing protein sequence infor-

mation to PIE.

targetProteinName = “aProteinName” The name of protein sequence to read in from

the fasta file, case-sensitive and may contain no white space. For example:

proteinFastaFile = “This”

would match a protein with definition lines like

>This is a protein

> This is a protein

> This

but would not match

>this is a protein

>. This

>This.

>This1

77

Columns

This file has no columns, it does not use the tab-delimited file format of most PIE data files,

but instead is a standard FASTA file. FASTA files are ubiquitous, but a reference for the

basic format is http://www.ncbi.nlm.nih.gov/BLAST/fasta.shtml//. The sequence

following the selected definition line is read and will be used as the canonical target protein

sequence by PIE. Only the base 20 AAs single character representations are recognized,

case insensitively. Blanks and numbers within the sequence are ignored.

Example

An acceptable FASTA file specifying the sequence for three proteins, “L7/L12”, “L16”,

and “h23c”, might be:

>L7/L12

1 MSITKDQIIE AVAAMSVMDV VELISAMEEK FGVSAAAAVA VAAGPVEAAE EKTEFDVILK AAGANKVAVI

71 KAVRGATGLG LKEAKDLVES APAALKEGVS KDDAEALKKA LEEAGAEVEV K

>L16 gi|16131192|ref|NP_417772.1| 50S ribosomal subunit protein L16 [E. coli K12]

MLQPKRTKFR KMHKGRNRGL AQGTDVSFGS FGLKAVGRGR LTARQIEAAR RAMTRAVKRQ GKIWIRVFPD

KPITEKPLAV RMGKGKGNVE YWVALIQPGK VLYEMDGVPE ELAREAFKLA AAKLPIKTTF VTKTVM

>h32c

MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVRE

IAQDFKTDLRFQSSAVMALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA

78

C.2.3 The aaDataFile

PIE needs to know amino acid masses to calculate the theoretical weight of proteins. This

file provides the names and abbreviations as well as residue masses for the 20 standard

amino acids. Similar files are used to provide data on modification adducts and other

molecules. The values for the data in the default aaDataFile were obtained from http:

//proteome.gs.washington.edu/cgi-bin/aa_calc.pl.

Usually the default data file is fine and this does not need to be specified. If most of the

instances of an amino acid “X” are expected to be modified (e.g. it is a cystine derivative,

or isotopically labeled), it might be more efficient to specify a different default mass for

the affected amino acid in this file, and add the rare unmodified case, “unmodified-X”, to

the modDataFile.

Parameters

aaDataFile = “aa.txt”

Columns

Code: The one-letter code for an AA, a unique row id.

Abbreviation: The three-letter code for an AA, a unique row id.

Name: The full name for an AA, a unique row id.

MassAvg: The average mass of the AA residue.

MassMono: The monoisotopic mass of the AA residue.

MassMai: Unused The most-abundant isotopic mass for an AA residue.

79

Example

Code Abbreviation Name MassAvg MassMono MassMai

A Ala Alanine 71.07880 71.03711 71

R Arg Arginine 156.1876 156.10111 156

N Asn Asparagine 114.1039 114.04293 114

D Asp Aspartic acid 115.0886 115.02694 115

...

80

C.2.4 The molDataFile

PIE needs to know the mass for water to calculate the theoretical weight of proteins.

This file provides the name, abbreviation, and masses for water. Similar files are used to

provide data on modification adducts and AA residues. The values for the data in the

default file were obtained from http://www.unimod.org/.

The mass of water is added to the summed residue mass to obtain the unmodified pro-

tein mass for theoretical calculation. (H for the 5’ n-terminus, OH for the 3’ c-terminus).

Almost certainly the default molDataFile is fine and will not need to be specified. Al-

though not supported at the current time, this file is also the place where other non-protein

molecules might be defined, such as bound ligands, etc.

Parameters

molDataFile = “mol.txt”

Columns

Abbreviation: A short code for the molecule, a unique row id.

Name: The full name for the molecule, a unique row id.

MassAvg: The average mass of the molecule.

MassMono: The monoisotopic mass of the molecule.

MassMai: Unused The most-abundant isotopic mass for the molecule.

Example

Abbreviation Name MassAvg MassMono MassMai

H2O water 18.0153 18.010565 18

81

C.2.5 The modDataFile

PIE needs to know which modification adducts to look for and the mass changes they

induced when added to amino acids. Pie uses the amino acid residue mass plus the adduct

delta mass given here to calculate the theoretical mass of a modified AA residue in a

protein. Similar files are used to provide data on amino acid residues and other molecules.

The values for the data in the default file were obtained from http://www.unimod.org/.

As the modifications specified in this file are the only ones PIE will find, the more

modifications in this file, the more likely PIE will find the correct answer for your data.

However, the more modifications in this file, the longer (possibly much longer) PIE will

take to determine the answer. Each modification also requires significant additional infor-

mation to use basic prior scoring modules. It is up to the user to determine the optimum

list, as modifications common in one context may not be common in another.

The current implementation allows only a fixed delta mass for each specified adduct,

and requires a one to one correlation between adduct and AA. Variable modification

adducts such as sugars or lipids can only be searched for if a specific delta or small set

of specific deltas can be defined. Compound adducts like dimethylation must be listed as

a single entry, separate from monomethylation or trimethylation. For adducts that span

AA, the modification must be broken and each piece listed separately. This is simple only

for symmetrical adducts like cross-linked cystines. Unfortunately neither proximity nor

pairs (complete sets of adduct pieces) is checked for.

Parameters

modDataFile = “mod.txt”

82

Columns

Name: The unique full name for a modification.

Abbreviation: A unique short multi-letter code for a modification.

Code: A unique, case sensitive one letter code for a modifcation.

MassAvg: The change in the average mass due to the modification.

MassMono: The change in the monoisotopic mass due to the modification.

MassMai: Unused The change in the most-abundant isotopic mass due to the mod-

ification.

Example

Name Abbreviation Code DeltaAvg DeltaMono DeltaMA

Acetylation Acet A 42.0367 42.010565 42.0

Amidation Amid I -0.9848 -0.984016 -1.0

Deamidation Deam i 0.9848 0.984016 1.0

#Farnesylation Farn N 204.3511 204.187801 204.0

Methylation Meth M 14.0266 14.015650 14.0

Phosphorylation Phos P 79.9799 79.966331 80.0

83

C.3 PIE Configuration File Reference

C.3.1 Overview

The PIE requires a significant amount of effort to set-up and run. This is unavoidable

given the goal of integrating a wide variety of different kinds of data. Bulky data is

read from spreadsheet-like, tab delimited text files, but simple data along with all control

and configuration data is read from a configuration file. This file conforms to the Java

properties file specification (http://download.oracle.com/javase/6/docs/api/java/

util/Properties.html), and is given as an argument when running PIE. It contains

a number of key = value lines, each defining a property. The key is constant and

used by PIE, but the value associated with that key is set in this file and loaded at

runtime, allowing easy configuration of data and control information. The Java properties

specification allows for comments; anywhere a # character appears, it and the rest of the

line is considered a comment and is ignored.

Using multiple configuration files

It is possible to use more than one file of properties when running the PIE; indeed this

is the recommended procedure. All files are combined in the order specified into a single

collection of properties. Using more than one file is useful for maintaining different sets of

defaults that vary in purpose or granularity. For example, it is possible to define one file

containing system level default properties for PIE, another containing default properties

for a given set of experiments, and a third containing only those properties changing for

a specific run of PIE The command line looks like:

> java -jar pie.jar base.properties exp.properties \

run.properties

The properties from each file are stacked one on top of the other. Where the same key

is present in more than one file, only the value from the latest file is kept. Usually files

84

are listed from the most global to the most local. Multiple configuration files provide a

flexible and efficient way to organize input, reducing the amount of setup effort required

by reusing previously configured information.

The minimal configuration file

To further reduce the complexity of setting up a run, most properties have reasonable

default values specified, but some must be specified. They are given the default value

“OVER RIDE”, which can be used in any configuration files as a signal that the associated

key must have a value specified by a configuration file loaded after it. The keys that must

be provided under all circumstances are:

targetProteinName = “OVER RIDE”

maxSteps = “OVER RIDE”

runCount = “OVER RIDE”

These parameters are described more fully in their respective sections, below.

Note: The configuration file keys and their default settings are one part of PIE where

significant changes are to be expected. A “What’s New” document included with future

releases of PIE will describe new, deprecated, or dropped keys, changes in how a key’s

value is interpreted, changes to default values, and any change to the set of required keys

C.3.2 Configuration file properties

Organization of the configuration file

The configuration file is separated in to three sections. The first, Data and data models

is concerned with input and configuring the scoring information. The second, McMC

Configuration, gives tuning parameters for the McMC and SA methods used to search

for answers. The third section, Run and Reporting, specifies runtime monitoring and

output. Generally, changes will be made infrequently if at all to the McMC Configuration

85

section while changes to the other two sections are needed with different experiment sets.

Some of the Run and Reporting parameters will change every run.

Filename parameters

Where parameters provide filenames, these can usually be absolute or relative. Any

relative filename, including just a plane filename with no path, will be searched for across

a specified set of directories starting with the current working directory.

86

C.3.3 Configuration file section: Data and data models

This section defines the directories PIE will search, the scoring modules PIE will use,

and the external data files that PIE will read. Each scoring module has a property

named like is‘scorer ’scoring that enables the module if set true and disables it if set

false. For scoring modules that requires external data there is also a property named

‘scorer ’DataFile. The currently available experimental scorers are: intact, fragment,

and localizedFragment, the prior-type scorers are modType, modLocation, modCount,

cleavage, and a special scoring module, rule.

Block: Data directories

The search path PIE uses to find data is composed of the local directory PIE was run in,

followed sequentially by the next three directories. PIE will stop searching with the first

file found. Default values are as shown, corresponding to the current directory (again),

the parent directory, and the parent’s parent directory.

defaultDataDir = “./”

The first directory on the data path, after the local directory. By default this is

also set to the local directory.

experimentSetDataDir = “../”

The second directory on the data search path. By default this is the parent of the

current directory.

experimentDataDir = “../../”

The second directory on the data search path. By default this is the parent of the

parent of the current directory, two levels up.

87

Block: Molecular data files

Pie requires the name and masses of various molecules and molecular pieces. These are

specified by four external data files.

molDataFile = “molecules.txt”

The file describing small molecules and their masses, including water.

aaDataFile = “aminoacids.txt”

The file describing amino acids and their masses.

modDataFile = “modifications.txt”

The file describing the modifications to search for, including the mass changes they

cause.

proteinFastaFile = “target.fasta”

A standard FASTA file giving protein sequences.

targetProteinName = “OVER RIDE”

The name of the protein (from the FASTA file) to use as a target.

The proteinFastaFile is the source of target protein sequence, as specified by the

targetProteinName and the modDataFile is also used as the list of modifications to

search for. For details on these data files see C.2, Core PIE Data Files Reference.

Block: Experimental data and scoring parameters

This block provides experimental data to PIE, configuring the three experimental data

scoring modules. Each of the three scoring modules–intact, localizedFragment, and

fragment, requires an external data file. The fragment scorer also takes several additional

parameters. If not using a particular type of data, the is‘scorer ’scoring parameter

should be set to false, and all parameters associated with that scorer are then ignored.

If a data type is evaluated, all associated parameters are required and will be validated,

88

especially filenames. If a file can not be found on the data path and is not provided

by default to PIE, it will cause and error. More details about the experimental scoring

modules are provided in the following section.

89

intact scorer (molecular mass data)

isIntactScoring = false

Use intact mass data? If true, reads the topDownDataFile.

topDownDataFile = “intact.txt”

The name of the data file containing the intact mass data.

fragmentLocation scorer (peptide sequence data)

isLocalizedFragmentScoring = false

Use peptide sequence data? If true, reads the localizedFragmentDataFile.

localizedFragmentDataFile = “localizedFragment.txt”

The name of the data file containing the peptide sequence data.

fragment scorer (peptide mass data)

isFragmentScoring = false

Use peptide mass data? If true, reads the fragmentDataFile and the following

parameters.

fragmentDataFile = “fragment.txt”

The name of the data file containing the peptide mass data.

fragmentScoringAlgorithm = “deltaProductMass”

The method used to score the provided data. The other option is errorCounting.

fragmentMassType = “AVG”

The method used for measuring the mass. May be “AVG” for average mass,

or“MONO” for monoisotopic mass. “MAIM” for most abundant isotopic mass

is not yet implemented.

90

noveltyFactor = 0.5

How much to penalize guesses that include modifications not supported by any

detected fragments. Default is to be conservative with guesses. setting to 0.9 makes

PIE more open to picking novel modifications. See C.4.8, The modTypeScoring

Module, for additional details.

Block: Prior data and scoring parameters

This block configures the scoring models based on prior type information. External data

files are required by the modLocation and modType scoring modules. The cleavage,

modCount and rule scoring modules require no external file, all data for these modules

are specified here as properties. As with the experimental scoring parameters, if a scoring

module is not used, parameters are ignored. Additional details on how PIE uses data are

provided in the section on scoring functions, C.4, below.

modType scorer (the relative frequency of modifications)

isModTypeScoring = true

Use data on how often a modification occurs? If true, reads the modTypeDataFile.

modTypeDataFile =“modType.txt” The name of the data file containing information

about the relative frequency of different adduct modifications.

modLocation scorer (a modification’s amino acid preference)

isModLocationScoring = true

Use data on the frequency distribution of a modification across the different amino

acids? If true, reads the modLocationDataFile.

modLocationDataFile = “modLocation.txt”

The name of the data file containing information about thefrequency distribution

of a modification across the different amino acids.

91

cleavage scorer (n-terminal and c-terminal truncation data)

isCleavageScoring = true

Use n-terminal and c-terminal cleavage? If true, reads the following parameters.

cLoss = 0.8

Penalty for loss of first AA from c-terminus.

cLossMore = 0.8

Additional penalty for eadd AA lost from the c-terminbal end, after the first.

nLoss = 0.9

Penalty for loss of first AA from n-terminus.

nLossMore = 0.8

Additional penalty for eadd AA lost from the n-terminbal end, after the first.

modCount scorer (how many modifications are expected)

isModCountScoring = true

Evaluate guesses based on the total number of modifications? If true, reads the

following parameters.

modRate = 0.0

The expected number of modification on average, the mean, average, or center.

modDelta = 10.0

Expected spread in the number of modifications. 50 % of the time, the number of

modifications should be within ± modDelta of the average modRate.

rule scorer (data for miscellaneous rules)

isRuleScoring = true

Use the various pattern rules? If true, reads the following parameter.

92

ruleParameters = ”amidDeam = 0.5, nTermAcet = 2.0, polyAmid = 0.5,

polyDeam = 0.5”

The value is itself a list of key=value pairs, separated by , (commas). Spaces are

ignored. Values are all real numbers. Keys are the names of rules, only those shown

above are allowed. See C.4, Scoring Module Reference, for additional details.

93

C.3.4 Configuration file section: McMC configuration

This section contains parameters that control the underlying McMC walk and SA opti-

mization process. It should not generally be necessary to modify values here. The given

parameters work well for proteins ∼100 AA in length that have relatively few modifica-

tions (cleavages or adducts).

Block: McMC proposal parameters

This block contains parameters that control the proposal distribution, determining where

to step to next in the protein search space (See Fig. 3, “Solution Space Representation”).

Relative to the current guess, the step could be: a modificationChange, with the new

guess different by one randomly selected adduct modification at some random position, a

modificationSwap, which exchanges the position of two randomly chosen modifications,

a cleaveNChange, which adds or subtracts one amino acid (and any associated adduct

modification) from the N terminus of the protein, and a cleaveCChange which does the

same but from the C terminus. In the descriptions below, changes that result in the same

guess are allowed, random means equally likely, and the total of all values must sum to 1.

The nullModProb is a parameter that affects how often, when doing a modification

change, that the change should be to a null modification (unmodified), and how often it

should be (each equally probably) one of the modifications listed in the modDataFile.

modificationChange = 0.5

Pick an amino acid at random and change the modification on it to a null modi-

fication with probably nullModProb, or to one of the non-null modifications, each

with probability 1/(1− nullModProb).

modificationSwap = 0.2

Pick two modifications at random and swap the modifications on them.

94

cleaveNChange = 0.15

Change the length of the modification by adding or subtracting one modification

(equally likely) from the n-terminal end. If can’t add, instead truncated down to 1

AA only; if can’t truncate, instead fill the n-terminal end back to uncleaved.

cleaveCChange = 0.15

As cleaveNChange, but adds/subtract from the c-terminal end instead.

nullModProb = 0.8

How often, if changing a modification, that the modification should be “null”.

Block: McMC walk parameters

This block controls the mode of operation for the sampler and associated properties.

Scoring is ignored for burnInSteps, allowing a more random starting point for the McMC

walk. If you have a protein with more than 100 AA or more than 10 modifications are

searched for, this value should be increased proportionally. If useAnnealing is set false,

PIE performs a pure Metropolis-McMCM (Metropolis et al., 1953) walk, although no

Hastings correction (Hastings, 1973) is applied to counter the nullModProb induced bias

towards a steady-state with the specified ratio of null (unmodified) amino acids.

By default PIE’s stopping condition is a fixed number of steps (maxSteps gt 0, see

below). If acceptableScore is gt 0, PIE will stop and report a guess as soon as its score

equals or exceeds the specified score. If maxNoImproveSteps is gt 0, PIE will stop after a

specified number of steps are taken without finding a better-scoring guess.

burnInSteps = 2000

Number of randomized proposal steps to take without evaluation (always accepted).

maxNoImproveSteps = 0

After this many steps without getting a better score, PIE will give up. The default,

0, means never give up.

95

acceptableScore = 0

Keep going until the specified score is equaled or exceeded. If too large, the score

can never be reached and PIE could run forever (see maxNoImproveSteps. The

default, 0 means pay no attention to the score.

useAnnealing = true

Use simulated annealing to find the best answer if true, otherwise do a (biased)

McMC sampling.

96

C.3.5 Configuration file section: Run and reporting

This section controls how PIE outputs results while it runs and when complete. Several

values have the default of “OVER RIDE”, indicating they must be set.

Block: McMC reporting parameters

This block controls final output location and format. The outputDir gives the directory to

write to. It must exist or the current directory is used. If isAutoOutputDir is true (the de-

fault) then a subdirectory will be created off of the specified output directory, with a name

corresponding to the time-stamp for the beginning of the PIE run. Three files are gener-

ated into the (time-stamp) output directory named as specified by summaryResultsFile,

detailedResultsFile, and logFile parameters. The summaryResultsFile reports de-

tails on the best guess obtained for each of runCount runs (runCount is described in the

next block, below). The detailedResultsFile gives results sampled at regular intervals

(everyN steps, also descried below) throughout the search, for each run. The logFile

provides details of what PIE is doing as it runs, including all input data, details of any er-

rors, and the random seed used by PIE. The logFilterLevel can be used to control how

much information is dumped to the log file. Details on this parameter and the contents

of the output files are described in C.5, Output File Reference.

outputDir = “./”

The directory to produce output into, by default the current directory.

isAutoOutputDir = true

Generate a new directory in the output directory for each run of PIE, named for

the date and time when PIE ran.

detailedResultsFile = “pieDetails.txt”

Name for the file where PIE outputs intermediate guesses proposed during each

sampling walk of a run. All samples are appended at the end of each walk.

97

summaryResultsFile = “pieSummary.txt”

Name for the file where PIE outputs the final, best scoring guess for each sampling

walk of a run. The best guess is appended at the end of each walk.

logFile = “pie.log”

Name for the log file where PIE will output errors, warnings, information, and

debug information, as selected by the logFilterLevel

logFilterLevel = “DEBUG LOW””

What information to output to the log. Allowed values are “ERROR”, “WARNING”,

“INFO”, “DEBUG”, and “DEBUG LOW”. Also contains the random seed used.

Block: Main runtime parameters

Generally, PIE runs several searches that each walk for maxSteps steps. runCount is

the number of separate sampling walks in a run. The best answer found for each walk

will be output to the summaryResultsFile. During each walk, the current state of the

walk will be output to the detailedResultsFile, everyN steps, and to the console every

consoleUpdate steps (summaryResultsFile and detailedResultsFile are discussed

above). The startSeed can be set to allow exact repeats of PIE, but by default is 0,

implying a random seed should be automatically generated and used. The actual seed

used can be obtained from the log file.

startSeed = 0

The random seed to use. If 0, generates a seed automatically.

startSeed = “50, -10, 64, 16, 23, 64, 80, -47”

An example of the format for the random seed, a comma-separated list of eight

signed one-byte numbers. Spaces are not significant.

98

everyN = “OVER RIDE”

Must be specified. How many steps to take between output of each intermediate

result of a walk. This is repeated for each walk in a run.

consoleUpdate = “OVER RIDE”

Must be specified. How many steps to take between each output to the console,

providing feedback on the current state of a run. Some runs can take hours, so this

is useful.

maxSteps = “OVER RIDE”

Terminates the run after this many steps. Must be specified. If zero, better have

set one of the other ways to end a run in the McMC Reporting Parameters block

described above.

runCount = “OVER RIDE”

How many sampling walks to take, the number of separate guesses to make in a

single run.

99

C.4 Scoring Module Reference

C.4.1 Overview

To evaluate how well a guess matches all available data, the PIE uses a scoring function

composed of multiple terms, where each term matches a guess to one kind of data. The

terms are then combined (multiplied together) to get the total score. Each kind of data is

treated independently, without regard for how well other terms match, and is implemented

as a different scoring module. This modular scoring system allows PIE to easily adapt

and include new kinds of data.

Each scoring module takes as input a specific kind of data Dk, and a guess g for

the modified protein that, possibly, best represent the data. It returns a score Sk that

represents how well the guess g matches the model for data set D. These scores are then

multiplied together to produce the total score S for a guess over the total data D.

S(g,D) =
∏
k

Sk(g,Dk). (C.1)

The cost/benefit of assuming independence between scoring terms

The PIE treats each kind of data separately and independently. As with naive Bayes

classifiers (Zhang, 2004), the modeling error this causes is a necessary trade-off to include

a variety of data sources easily. The assumption is each data set contains significant infor-

mation (orthogonal or independent relative to other sets), and so considering it increase

the net ability to find answers. Even if there is some non-obvious significant dependency

in one data set, it is only necessary to do well enough to get an answer.

100

Resource limits necessitate simple models

Each scoring module reads and interprets a set of data provided to PIE and returns,

for any possible guess, a score representing how well that guess matched the data set.

As such, each module represents a data model. providing an (un-normalized but finite)

density function over the range of all possible guesses. This function has a maximum

where the guess best matches the data, but also scores highly when guesses are nearly

correct. The number of times this model must be evaluated (on the order of 106 to

108 times), imposes a strong practical constraint favoring simpler models. As with the

assumption of independence, using multiple simple models allows the use of more data,

and the combined information from multiple data sources is assumed to make up for

information lost by simpler models.

Best vs. nearly best answers

One drawback of treating scoring independently is the difficulty in equating the meanind

of the difference in scores (e.g. between the best and a nearly best answer) in different

scoring models. This is addressed using a simple rule of thumb; each error should result

in a difference factor of 0.5. One error means a 50% confidence window on continuously

varying results, or a literal factor if counting discrete matches or mismatches.

Experimental vs. prior data

The PIE distinguishes between experimental data, which is data collected about the

specific protein, and prior data, which are summary statistics about how proteins are

modified in general, but may or may not apply well to the protein being studied.

101

Scoring modules descriptions

Currently PIE provides eight different scoring modules, three experimental and five prior.

Additional scoring modules are can be easily created, although significant Java program-

ming skill and some familiarity with the PIE program are necessary. A developers guide is

planned that will contain information to make the process of creating new scoring modules

easier.

All prior scoring modules are enabled by default, with reasonable default parameters.

Two of the prior scoring modules are dependent on the selection of modifications to search

for, but default scoring module data match with the default set of modifications to search

for.

All experimental modules are all turned off by default as they require user-specific

data, but the main use for PIE is to integrate experimental data, so usually one or more

of these should be enabled and configured.

Each scoring module is described separately, with sections detailing the scoring model,

configuration file properties, and the format of any associated data file. The scoring

model section describes how the data is evaluated, gives a mathematical description of the

model, and discusses how nearly best guesses are interpreted. For experimental models,

how errors in the data effect results are also described; for prior models the equivalent

information about what parameters do is provided. The configuration file section describes

each parameter that effects the scoring module, giving the default value and describing

interactions with other parameters. For scoring modules that need external data, a section

describing the associated tab-delimited data file format will be provided, along with a

sample file. The general format for data files is covered in the data file section (C.2).

102

C.4.2 The intactScoring module

A protein’s intact mass contains a significant amount of information about its PTMs,

wrapping up in one value information about what modifications are or are not present,

as well as where cleavages have occurred. If the intact mass Me of a modified isoform can

be determined experimentally, it can be used to evaluate the accuracy of a guess. The

greater the difference between the total theoretically calculated mass for a guess Mt, and

the measured Me, the worse the guess. The best guess will exactly match the experimental

value, but any guess that matches within experimental error E is still a good guess. The

scoring function used to model this is:

S =
1

|Me −Mt|+ E

where

Me = Experimental mass,

Mt = Theoretical mass,

E = Absolute experimental mass error.

(C.2)

The error E is often expressed relative to the experimental mass Me, i.e. in ppm, but

it is easily converted to an absolute mass error as needed for this formula:

Eabs =
Eppm ·Me

106
(C.3)

To allow for a unified interpretation of error across all scoring modules, a strict inter-

pretation of error would be the value giving the ±25% confidence widow for the measured

mass, i.e. that the experimental intact mass is within ±error of the true value 50% of

the time. Any reasonable estimate of the instrument error will allow PIE to use intact

mass to pick the best answers, but makes the comparison with nearly best answers more

qualitative in nature.

103

Parameters

isIntactScoring = false

Turns scoring by this module on (true) or off (false). By default intact scoring is

turned off as it requires experiment-specific data.

topDownDataFile = “intact.txt”

If using intactScoring, PIE needs a data file. By default the file “intact.txt”

will be searched for on the data path, but any name can be specified.

proteinName = “OVER RIDE”

The target protein not only selects the FASTA file sequence to use, but also selects

the line from the topDownDataFile that will be read and used as data for this

scoring module during a run.

C.4.3 The intactScoring module data file

This file provides data from intact mass experiments. Each line represents the intact mass

for a specific measurement or isoform, as identified by a unique Name (matched to the

proteinName parameter. Only one intact mass experiment can be considered at a time,

and PIE will use the row for the protein specified in the configuration file. PIE can use

either average (MassAvg) or monoisotopic mass (MassMono) measurements, support for a

most abundant isotopic mass measurement is not available at this time.

Columns

Name: The name of the protein isoform. May not contain any white-space, must

be unique within this file, and one name must match the proteinName

specified in the config file.

104

MassAvg: The experimentally determined average mass, or NaN. One, but only one,

of MassAvg, MassMono, and MassMai must be specified as a integer or

decimal number. The other two must be set to NaN.

MassMono: The experimentally determined monoisotopic mass, or NaN. See MassAvg,

above.

MassMai: Unused. The experimentally determined most-abundant isotopic mass,

or NaN. Unimplemented, currently should always be NaN.

Error: The instrument error, in either absolute (ABS) or relative PPM units. Must

be an integer or decimal value greater than 0.

ErrorModel: Units used the Error specified above, either ABS or PPM.

Example

Name MassAvg MassMono MassMai Error ErrorModel

L7-L12-A-ideal 12220.08 NaN NaN 0.1 ABS

L7-L12-A-good 12219.80 NaN NaN 20.0 PPM

L7-L12-A-min 12220.57 NaN NaN 50.0 PPM

L7-L12-A-high 12221.00 NaN NaN 100.0 PPM

L7-L12-A-low 12219.00 NaN NaN 100.0 PPM

105

C.4.4 The fragmentScoring module

Bottom-up experiments can provide the masses of peptides aligned to a region of a target

protein. Any adduct modifications are partially localized by the extent of the peptide,

although not to specific AAs. By matching experimental peptide masses to the associated

region of a guess, the quality of that guess can be evaluated. The more peptides that match

and the closer the mass of a given peptide to the matching region, the better the guess.

A perfect guess should match all peptides within experimental tolerances, although in

some cases there will be contradictory or erroneous data, described in more detail below.

Two different scoring functions can be used to model this, deltaMassScoring, which

uses scoring similar to the intact scoring module, and errorCounting, which uses scoring

similar to the localized fragment scoring module described in the following section.

PIE assumes all data it is presented with applies to the current prediction. It is

possible for matched peptide lists to contain peptides from multiple isoforms of the target

protein. The intact mass will help PIE select as a final answer one isoform compatible

with both intact and fragment data (indeed this is the main driving force for creating

PIE). However, if peptide data is lop-sided enough, data from this module can outweigh

the intact isoform data, causing it to be ignored. If this happens the data set should

be split with each set containing only one of the contradictory peptides, but all others.

Running PIE separately on each of these data sets should then provide at least one answer

consistent with the MS/MS and the intact mass. Note, if there are multiple points where

contradictory peptides are present, then this may need to be done repeatedly.

It is also possible that peptides are present that match no intact mass isoform detected.

Again, if enough of these peptides are present, they will distract PIE as it tries to match

them. This may be useful as an alternate answer, but if the intact mass can be trusted to

truly represent an isoform, another answer still exists. Again the solution is to split the

data, splitting on conflicting data or possibly on data supporting one PTM, and trying

again.

106

The deltaMassScoring algorithm

This algorithm bases the match scores for each peptide on the difference between masses of

a peptide and its associated region of the guess, similar to scoring by the intactScoring

module. A total score for all peptides is calculated by multiplying the individual peptide

match scores together.

S = nm ·
∏
i

1

(|Me,i −Mt,i|+ E)

where

i = iterator over all matched peptides;

Me,i = Experimental mass of peptide i;

Mt = Theoretical mass of guess region aligned to peptide i;

E = Experimental error;

n = novelty factor;

m = count of novel modifications.

(C.4)

Modification novelty is explicitly part of the model. If a guess contains modifications

that were not detected in bottom up experiments, the assumption is this is less likely to

be correct. This implements a type of “Occam’s razor” filtering, allowing PIE to prefer-

entially select simpler explanations. Setting n = 0.5 is recommended to allow a simplified

interpretation of an error, this is described below in the section on errorCounting.

Although the error E has a specific meaning (see the comment on error in C.4.2, The

intactScoring Module), it is currently assumed to be 1, and cannot be user modified.

107

The errorCounting algorithm

This algorithm bases match scores on the number of matched AA and matched modifi-

cations identified by an external program such as GFS (Wisz et al., 2004) or MASCOT

(Perkins et al., 1999). This is similar to the localizedFragmentScoring module.

S = nm ·
∏
i

1

2ai · 2mi + 1

where

n = novelty factor,

m = count of novel modifications,

i = iterator over all matched peptides,

ai = count of mismatched AA over aligned guess region for peptide i,

mi = count of mismatched modifications over aligned guess region for peptide i,

+1 = small shift to avoid singularities.

(C.5)

By using a factor of two for each match, the ratio of any two guesses different by 1

error, either an unmatched AA or an unmatched modification, is 0.5. This helps maintain

a quantitative interpretation nearly-best guesses relative to the best guess. The +1 only

significantly effects values with very few mismatches, although this does shift the meaning

of “error“ somewhat.

See the previous description of the deltaMassScoring algorithm for details on the

novelty factor.

Parameters

isFragmentScoring = false

Turns scoring by this module on (true) or off (false). By default the scoring of

108

peptides is turned off as it requires experiment-specific data.

fragmentDataFile = “fragment.txt”

If using fragmentScoring, PIE needs a data file. The file “fragment.txt” will be

searched for by default, but any name can be specified.

fragmentScoringAlgorithm = “deltaProductMass”

Specifies which basic scoring algorithm is used. Two options are currently sup-

ported: “deltaProductMass”, the default, which uses mass-difference based scor-

ing and “errorCounting”, which uses the putative sequence and modifications of

an identified peptide along with an accuracy measure to compute the score.

fragmentMassType = “AVG”

Declares the type of mass value used in the associated data file. The default is

“AVG” for average masses. “MONO” is also allowed, specifying that monoisotopic

mass values are given.

noveltyFactor = 0.5

Multiply the returned peptide score by this value for each modification that is of a

type not detected in the peptide data. If used with the default deltaProductMass

scoring algorithm, the modifications column of the associated data file will need to

contain accurate data. To turn off novelty scoring, set this to 1.0.

proteinName = “OVER RIDE”

The target protein not only selects the FASTA file sequence to use, but also selects

the line from the topDownDataFile that will be read and used as data for this

scoring module during a run.

C.4.5 The fragmentScoring Module Data File

This file provides data from experiments that measure and/or identity peptides, such as

bottom-up experiments. Each row in this file represents a peptide that has been associated

109

with a protein through some external matching process.

Columns

Protein: The name of the protein associated with this row. Only rows with a

protein name matching the target proteinName specified in the config

file will be used.

Start: The AA in the canonical sequence that the first AA of the peptide aligns

to, starting with the first AA of the protein as 0.

End: The AA in the canonical sequence that the last AA of the peptide aligns

to, starting with the first AA of the protein as 0.

Observed: Unused.

FragMass: The experimental neutral mass for the observed fragment, used by the

deltaProductMass algorithm. Ignored if using errorCounting.

TheoryMass: Unused.

AminoSequence: The sequence identified for a peptide. Used by the errorCounting al-

gorithm, ignored if using deltaProductMass.

ModList: Type and number of any non-null modification on the peptide. If more

than one of the same modification occurs in the same peptide the modifi-

cation will be preceded by a number and a space (like 2 phosphorylation).

If more than one type of modification occurs on the same peptide the dif-

ferent entries are separated by a comma and a space. Many peptides

will not have entries in this column. Used by the errorCounting algo-

rithm and by the novelty scoring component of the deltaProductMass

algorithm.

110

Score: Unused. A score specified by MS/MS software giving the quality of a

peptides data.

Example

Protein Start End Observed FragMass TheoryMass PpmErr Miss

L7-L12 2 5 0.0 471.5539 0.0 6 0 ...

L7-L12 6 30 0.0 2704.1820 0.0 5 0 ...

L7-L12 31 52 0.0 1997.2345 0.0 4 0 ...

L7-L12 53 60 0.0 946.1126 0.0 3 0 ...

L7-L12 61 66 0.0 512.5664 0.0 2 0 ...

L7-L12 67 71 0.0 510.6780 0.0 1 0 ...

L7-L12 72 74 0.0 326.3994 0.0 0 0 ...

L7-L12 75 82 0.0 711.8604 0.0 -6 0 ...

L7-L12 83 85 0.0 328.3678 0.0 -5 0 ...

L7-L12 86 96 0.0 1095.2619 0.0 -4 0 ...

L7-L12 97 101 0.0 500.5518 0.0 -3 0 ...

L7-L12 102 108 0.0 742.7846 0.0 -2 0 ...

L7-L12 109 109 0.0 128.1740 0.0 -1 0 ...

L7-L12 110 121 0.0 1226.3476 0.0 0 0 ...

(rows continued . . .)

AminoSequence ModList Score

... SITK Acetylation 1

... DQIIEAVAAMSVMDVVELISAMEEK 1

... FGVSAAAAVAVAAGPVEAAEEK 1

... TEFDVILK 1

... AAGANK 1

... VAVIK 1

... AVR 1

... GATGLGLK Methylation 1

... EAK 1

... DLVESAPAALK 1

... EGVSK 1

... DDAEALK 1

... K 1

... ALEEAGAEVEVK 1

111

C.4.6 The localizedFragmentScoring module

Tandem MS experiments provide detailed information that potentially provides localiza-

tion of modifications to specific AA. By matching the modifications and sequence of a

guess to those of an peptide experimentally sequenced and aligned to the base protein,

the quality of a guess can be evaluated. Much of the information is in terms of what amino

acids are not modified. The more amino acids and modifications that match between the

aligned MS/MS peptide and a guess, the better that guess should score. The best guess

should exactly match all experimental data, although in some cases there will be contra-

dictory data, described in more detail below. The scoring function used to model this is

a product over all peptides:

S =
∏
i

(2ai · 2mi + 1)

where

i = iterator over all matched peptides,

ai = count of matching AA for peptide i,

mi = count of matching modifications for peptide i,

+1 = small shift to avoid singularities.

(C.6)

By using a factor of two for each match, the ratio of any two guesses different by 1

error, either an unmatched AA or an unmatched modification, is 0.5. This helps maintain

a semi-quantitative interpretation nearly-best guesses relative to the best guess.

It is possible for MS/MS data to contain peptides from multiple isoforms of the target

protein. The same issue arrises in bottom-up peptide data.

112

Parameters

isLocalizedFragmentScoring = false

Turns scoring by this module on (true) or off (false). By default the scoring of

localized sequence fragments is turned off as it requirs experiment-specific data.

localizedFragmentDataFile = “localizedFragment.txt”

If using localizedFragmentScoring, must specify the data file. By default the file

“localizedFragment.txt” will be searched for, but any name can be specified.

proteinName = “OVER RIDE”

The target protein not only selects the FASTA file sequence to use, but also selects

the line from the localizedFragmentDataFile that will be read and used as data

for this scoring module during a run.

C.4.7 The localizedFragmentScoring Module Data File

This file provides data from experiments that localize a given modification to a specific

amino acid in the protein, or that identify a given amino acid as unmodified, such as

MS/MS experiments. Each row represents sequence and/or modification position infor-

mation from one peptide

Columns

fragmentNum: A continuous sequence of integers, starting with 1, for each fragment of

MS/MS data associated with a given protein. If more than one protein is

described in the same data set, this should start over from 1 with each.

Protein: The name of the protein associated with this peptide sequence. Only

rows with a protein name matching the target proteinName specified in

the config file will be used.

113

AminoSequence: The experimentally determined sequence for a peptide.

ModList: The location and type of any non-null modification on the peptide, start-

ing with the first AA of the peptide being 0. Must be within a pair of

parenthesis. If more than one modification occurs on the same peptide

they are listed sequentially, separated by a comma and then a space,

both within the parenthesis set. Most peptides will not have entries in

this column.

InitAligntPos: Which position in the canonical sequence the first AA of the peptide

aligns to, starting with the first AA in a protein numbered 0.

Score: Unused A score specified by MS/MS software giving the quality of a

peptides data.

Example

fragmentNum Protein AminoSequence ModList InitAlignPos Score

1 L7-L12 SITK (0|Acetylation) 1 1.0

2 L7-L12 SITK 1 1.0

3 L7-L12 DQIIEAVAAMSVMDVVELISAMEEK 5 1.0

4 L7-L12 FGVSAAAAVAVAAGPVEAAEEK 30 1.0

5 L7-L12 TEFDVILK 52 1.0

6 L7-L12 AAGANK 60 1.0

7 L7-L12 VAVIK 66 1.0

8 L7-L12 AVR 71 1.0

9 L7-L12 GATGLGLK (7|Methylation) 74 1.0

10 L7-L12 EAK 82 1.0

11 L7-L12 DLVESAPAALK 85 1.0

12 L7-L12 EGVSK 96 1.0

13 L7-L12 DDAEALK 101 1.0

14 L7-L12 K 108 1.0

15 L7-L12 ALEEAGAEVEVK 109 1.0

114

C.4.8 The modTypeScoring module

Some modifications are more common than others. This scoring module attempts to

evaluate how commonly found a given set of modifications is. Guesses containing modi-

fications that are rarer than average will score lower, guesses that contain modifications

that are more common than average will score higher. A perfect scoring guess will contain

only the most common modification pattern The scoring function used to model this is:

S =
∏
i

(f(mi) · (1− α) + α)

where:

i = iterator over all non-null adduct modification positions,

mi = modification type (non-null) at position i,

f(mi) = log10 normalized frequency of modificationm,

α = scaling factor = 0.9.

(C.7)

Exactly how different modifications are scaled relative to one another is important

only for comparing near-best guesses. There is no obvious guideline for what a mistake

should means in this context, especially since the relative probability of modification de-

pends on context (Archaea, prokaryote, or eukaryote? Membrane, cytoplasm or nuclear?)

Additionally, most sources for such information will suffer from ascertainment bias, con-

taining skewed distributions based on what was interesting or easy to study. With this in

mind, f(mi) flattens the true probability distribution by taking the log10 of the relative

frequency, and a scaling factor is applied such that the lowest value is α and the highest

value is 1.

115

Parameters

isModTypeScoring = true

Turns scoring by this module on (true) or off (false). By default scoring by modifi-

cation type is turned on, using the default properties as specified below.

modTypeDataFile = “modType.txt”

If using modTypeScoring, must specify a data file to read. By default the file

“modType.txt” will be searched for, but any name can be specified. This file must

contain an entry for each modification searched for, as listed in the “modData.txt”

file.

C.4.9 The modTypeScoring module data file

Columns

PTM Type: The full name of the modification the row provides data on. All modifi-

cations searched for, as defined by the modData file, must be listed.

Count: Counts the number of times this modification was found in the source

data set. A minimum of 1 count must be used.

Example

PTM Type Count

Acetylation 2071

Amidation 2150

Deamidation 38

Farnesylation 62

Formylation 32

Oxidation 1074

Methylation 746

Myristoylation 113

Palmitoylation 222

Phosphorylation 22500

Selenocysteine 2

116

C.4.10 The modLocationScoring module

Each modification has a different pattern of amino acid preference. Phosphorylations are

usually found on serine and threonine, for instance. This module represents the log-scaled

likelihood of a given modification being found on a given amino acid. The scoring function

used to model this is:

S =
∏
i

(f(ai,mi) · (1− α) + α)

where:

i = iterator over all non-null adduct modification positions,

ai = amino acid at position i,

mi = modification type (non-null) at position i,

f(ai,mi) = log10 normalized frequency of modification mi on amino acid ai,

α = scaling factor = 0.5.

(C.8)

The intent is for one error to equate to a significantly improbable amino acid location

set and a factor of two difference in score. This is very difficult to implement as the

total number of modifications affects the results, and what constitutes a significantly

improbable location set does not have any obvious context-independent definition.

Parameters

isModLocationScoring = true

Turns scoring by this module on (true) or off (false). By default scoring of a

modification’s amino acid preference is turned on, using the default properties as

specified below.

117

modLocationDataFile = “modLocation.txt” If using modLocationScoring, must spec-

ify a data file to read. By default the file “modLocation.txt” will be searched for,

but any name can be specified. This file must contain an entry for each modification

searched for, as listed in the “modData.txt” file.

C.4.11 The modLocationScoring module data file

This file provides data from database surveys or other sources that define the average

AA preference for each adduct modification Each row represents a modification and the

number of times (non-normalized) it was counted in a data set on each of the 20 standard

AAs. Data used in the default data file was taken from (Lee et al., 2006).

Columns

PTM Type: The full name of the modification the row provides data on. All modifi-

cations searched for, as defined by the modData file must be listed.

A, R, . . . , V: The counts for the number of times a modification was found in a data

set on the amino acid. A “-” is interpreted as 0. All positions will have

a number of pseudocounts (by default 1) added to them to allow for rare

modifications that might not have made the data set. If a modification

is truly not possible, then it should be flagged with -1 which will essen-

tially prevent PIE form allowing the specified modification/amino-acid

combination.

118

Example

PTM Type | A | R | N | D | C | G | E

Acetylation | 424 | 7 | - | 6 | 5 | 60 | 10 ...

Amidation | 431 | 52 | 106 | 3 | 73 | 127 | 11 ...

Deamidation | - | - | 30 | - | - | - | - ...

Farnesylation | - | - | - | - | 62 | - | - ...

Formylation | - | - | - | - | - | 1 | - ...

Oxidation | - | 2 | 11 | 10 | - | - | - ...

Methylation | 10 | 180 | 22 | - | 40 | - | 29 ...

Myristoylation | - | - | - | - | - | 108 | - ...

Palmitoylation | - | - | - | - | 210 | 1 | - ...

Phosphorylation | - | 0 | - | 19 | 3 | - | - ...

Selenocysteine | -1 | -1 | -1 | -1 | 2 | -1 | -1 ...

(rows continued . . .)

(PTM) | Q | H | I | L | K | M | F

... (Acet) | - | - | - | - | 792 | 240 | - ...

... (Amid) | 21 | 14 | 74 | 358 | 51 | 83 | 398 ...

... (Deam) | 8 | - | - | - | - | - | - ...

... (Farn) | - | - | - | - | - | - | - ...

... (Form) | - | - | - | - | 3 | 28 | - ...

... (Oxid) | - | - | - | - | 106 | - | - ...

... (Meth) | 22 | 14 | 0 | 7 | 407 | 4 | 6 ...

... (Myri) | - | - | - | - | 5 | - | - ...

... (Palm) | - | - | - | - | 9 | - | - ...

... (Phos) | - | 41 | - | - | - | - | - ...

... (Sele) | -1 | -1 | -1 | -1 | -1 | -1 | -1 ...

(rows continued . . .)

(PTM) | P | S | T | W | Y | V

... (Acet) | 14 | 432 | 64 | - | 2 | 15

... (Amid) | 49 | 37 | 38 | 33 | 72 | 119

... (Deam) | - | - | - | - | - | -

... (Farn) | - | - | - | - | - | -

... (Form) | - | - | - | - | - | -

... (Oxid) | 779 | 17 | 18 | 5 | 124 | 2

... (Meth) | 5 | - | - | - | 0 | -

... (Myri) | - | - | - | - | - | -

... (Palm) | - | 0 | 2 | - | - | -

... (Phos) | - | 16590 | 3472 | - | 2375 | -

... (Sele) | -1 | -1 | -1 | -1 | -1 | -1

119

C.4.12 The modCountScoring module

Some proteins are not modified, and many that are have only a few modifications. This

module implements the idea that the best guess will have some specified average number

of modifications, and all guesses with more or less modifications then that score worse.

The scoring function used to model this is similar to the intact experimental model:

S =
1

|Ae −At|+Aδ

where:

Ae = Expected count of modifications,

At = Theoretical count of modifications (from the guess),

Aδ = Expect ± count of modifications 50% of the time.

(C.9)

The intent is for a factor of two change to correspond to one error, equal to a deviation

from the expected number of modifications by more than a specified amount. With the

defaults set here, this is every 10 modifications.

Parameters

ismodCountScoring = true

Turns scoring by this module on (true) or off (false). By default scoring by total

number of modifications is turned on, using the default properties as specified below.

modRate = 0.0

How many adduct modifications are expected, on average. The default is zero,

which works well for many situations.

modDelta = 10.0

The one-sided 25% range in then number of modifications expected. Sets the dis-

tribution so that 50% of the time the number of modifications will be modrate ±

120

modDelta, bounded on the low end by 0. Using a value of 10 as a default allows for

a relatively large number of modifications, but not an unreasonable number.

C.4.13 The cleavageScoring module

In general most proteins have only a few cleaved amino acids, with zero cleavages being

the most common. Signal peptides are not considered, and are the subject of another

planned scoring module. Cleavages from each end are scored independently, then these

scores are multiplied together to obtain the total cleavage score for a guess. The scoring

function used to model cleavage from each end is the same:

S = a · bn−1

where:

a = Factor for first AA loss from this end,

b = Factor for each AA loss after first from this end),

n = Total number of AA cleaved from this end.

(C.10)

The intent is that an error, corresponding to a factor of two difference in score, this

should equate to some number of cleaved amino acids. Defaults give one error for every

three or so amino acids cleaved.

Parameters

isCleavageScoring = true

Turns scoring by this module on (true) or off (false). By default cleavage scoring

is turned on, using the default properties as specified below.

cLoss = 0.8

The factor a from above, for the c-terminal end.

121

cLossMore = 0.8

The factor b, from above, for the c-terminal end.

nLoss = 0.9

The factor a, from above, for the n-terminal end. The default is higher than for

c-terminal cleavages as n-terminal methionine cleavages are relatively common.

nLossMore = 0.8

The factor b, from above, for the n-terminal end.

C.4.14 The ruleScoring module

A rule identifies a pattern than might occur in the guess, and a factor that evaluates how

good the guess is in light of the number of times that pattern is detected. When a more

complete model does not yet exist or is difficult to create, low hanging fruit rules can be

use. For example rather than a conditional model for the probability of one modification

given others, rules for specific pairs or repeated occurrences of modifications can be used.

As implimented, this scoring function looks like:

S =
∏
i

Ri =
∏
i

aini

where:

i = iterator over each rule or pattern to score,

Ri = the ith rule,

ai = Factor applied for each application of a rule i.

ni = Number of times the rule i applies to a guess.

(C.11)

The intent is that each rule causes a factor of two change in the score between two

guesses when one error has occurred. Factors should be set accordingly.

122

Parameters

isRuleScoring = true

Turns scoring by this module on (true) or off (false). By default all rules are enabled

with default parameters.

RuleParameters = “amidDeam = 0.5, nTermAcet = 2.0, polyAmid = 0.5,

polyDeam = 0.5”

This parameter specifies the factor to be used for each rule, as a quoted block of

comma separated key = value pairs (may wrap lines). To turn off a rule, set it to a

factor of 1.0. Rather than specify each parameter separately, they are all specified

in a single list. The rules are:

amidDeam = 0.5

For every pair of amidation and deamidation modifications in the guess, mod-

ify its score by this value. By default treat each as an error.

polyAmid = 0.5

For every amidation beyond the first, treat this as an error.

polyAmid = 0.5

For every deamidation beyond the first, treat this as an error.

nTermAcet = 2.0

If there is an acetylation in the guess, and it is on the n-terminal amino acid,

treat this as correct (or rather an error if not put there).

123

C.5 Output Files Reference

C.5.1 Overview

Three output files are generated by PIE:

• summaryFile - The answers, the best scoring guess from each search in a run set.

• detailFile - Answers sampled regularly during each search in a run set.

• logFile - A file where PIE reports all kinds of status messages, usually of little user

interest, with the exception of the random seed that allows repeating runs exactly

and the time being taken for each run in a run-set.

Parameters

The following properties affect all output files:

Parameters

outputDir =“./”

The directory to produce output into, by default the current directory.

isAutoOutputDir = true

Generate a new directory in the output directory for each run of PIE, named for

the date and time when PIE ran.

124

C.5.2 The summaryFile

This file provides the answers, the best guesses obtained during a run by PIE. One line

in this file corresponds to one search for a best (highest scoring) guess. The number of

searches to make per run is specified by the runcount property.

Parameters

summaryResultsFile = “pieSummary.txt”

Name for the file where PIE outputs the final, best scoring guess for each sampling

walk of a run, appending guesses as they are obtained.

Columns

Steps: The total number of steps taken during the search, as set by the maxSteps

property

BestStep: The step number on which this guess was first seen.

BestScore: The score for this guess.

Best . . . Score: The component score for this guess. Each scoring module reports the

score it obtained for this guess in a column named for it. For exam-

ple, the column BestIntactMassScore contains the score returned by the

IntactMass module and evaluates the intact mass data against this guess.

CleavedLength: The total length of this guess, shorter than the length of the canonical

protein if there are any cleaved AAs.

RawLength: The length of the canonical protein, without any cleavages.

NTerm: The position of the N terminus of this guess, relative to the canonical

protein’s first AA, starting at 1.

125

CTerm: The position of the C terminus of this guess, relative to the canonical

protein’s first AA, starting from 1 .

TotalAverageMass: The average mass for this guess.

TotalMonoMass: The monoisotopic mass for this guess.

ModCount: The total number of adduct modifications. For each modification another

three columns will be reported, giving the ModPos, AA, and ModName

in that order.

ModPos: The position for a modification, relative to the canonical proteins first

AA, starting from 1. See also columns AA and ModName.

AA: The AA modified. See also columns ModPos and ModName.

ModName: The name of the modification. See also columns ModPos and AA.

Example

Steps BestStep BestScore BestIntactMassScore BestLocalizedFragmentScore

10000 1070 5.643437533751E70 47.12517580111 4.4171176619459E71

10000 4766 4.749163449850E67 40.94990681763 2.7606985387162E70

BestFragmentScore BestModLocationScore BestCleavageScore BestModCountScore

0.0038333049159276 1.0 0.9 0.8333333333333

3.2679504054652E-4 0.44302694950605 0.9 0.7142857142857

BestModTypeScore BestRuleScore CleavedLength RawLength NTerm CTerm

0.9430118309690 1.0 120 121 1 120

0.9027242997591 0.5 120 121 1 120

TotalAvgMass TotalMonoMass ModCount ModPos AA ModName

12220.088999999 12212.498369999 2 4 K Acetylation

12220.092199999 12212.509602999 4 4 K Acetylation

ModPos AA ModName ModPos AA ModName ModPos AA ModName

81 K Methylation

22 L Amidation 77 G Oxidation 79 G Amidation

126

C.5.3 The detailFile

This tab delimited file outputs the current working guess at specific intervals during the

search rather than the single best result found at the end. How often this is done is

determined by the everyN property. It has the same column format as the detail file,

except it does not report the individual module-based scores for a guess, and it does not

have column headers. This file can be used to observe how the McMC search converges

from an initial bad guess to a final good one. If PIE fails to converge for a given data set,

this file provides details to help diagnose the problem.

Note that PIE holds all these in memory until the summary guess is reached, so if too

many interim samples are taken, PIE may run out of memory.

Parameters

detailedResultsFile = “pieDetails.txt”

Name for the file where PIE outputs intermediate guesses proposed during each

sampling walk of a run, appending guesses at the end of a walk.

Columns

Column names are not provided in this file. Headers show in the example file are provided

to make description of the columns easier. Ellipses (. . .) indicate where lines from the

example file are not shown.

1. Steps: The total number of steps taken during the search, as set by the maxSteps

property.

2. BestScore: The score for this guess.

3. Len: The total length of this guess, shorter than the length of the canonical

protein if there are any cleaved AAs.

127

4. Raw: The length of the canonical protein, without any cleavages.

5. N: The position of the N terminus of this guess, relative to the canonical

protein’s first AA, starting at 1.

6. C: The position of the C terminus of this guess, relative to the canonical

protein’s first AA, starting from 1.

7. TotalAvgMass: The average mass for this guess.

8. TotalMonoMass: The monoisotopic mass for this guess.

9. ModCount: The total number of adduct modifications. For each adduct modification

another three columns will be reported (ModPos, AA, and ModName, in

that order).

10+ ModPos, AA, and ModName: The modification position (on the uncleaved protein),

the AA modified, and the adduct modification name, respectively.

Example

Steps BestScore Len Raw N C TotalAvgMass TotalMonoMass ModCount

0 6.198605E64 121 121 0 120 12295.2242999 12287.5126449 0

2500 3.608771E65 118 121 3 120 12216.2233999 12208.6013809 2

5000 3.608771E65 118 121 3 120 12216.2233999 12208.6013809 2

...

35000 2.681259E65 118 121 3 120 12216.2233999 12208.6013809 2

37500 6.284537E67 120 121 1 120 12220.0889999 12212.4983699 2

40000 1.111083E68 120 121 1 120 12220.0889999 12212.4983699 2

...

50000 1.111083E68 120 121 1 120 12220.0889999 12212.4983699 2

LAST 1.111083E68 120 121 1 120 12220.0889999 12212.4983699 2

0 6.198605E64 121 121 0 120 12295.2242999 12287.5126449 0

2500 2.234627E66 120 121 1 120 12206.0623999 12198.4827199 1

5000 2.234627E66 120 121 1 120 12206.0623999 12198.4827199 1

...

47500 4.310145E71 120 121 1 120 12220.0889999 12212.4983699 2

50000 4.310145E71 120 121 1 120 12220.0889999 12212.4983699 2

LAST 4.310145E71 120 121 1 120 12220.0889999 12212.4983699 2

128

(Steps) (ModCount) ModPos AA ModName ModPos AA ModName

0 0

2500 2 4 K Palmitoylation 80 L Methylation

5000 2 4 K Palmitoylation 78 L Methylation

...

35000 2 4 K Palmitoylation 74 G Methylation

37500 2 81 K Methylation 89 S Acetylation

40000 2 15 S Acetylation 81 K Methylation

...

50000 2 15 S Acetylation 81 K Methylation

LAST 2 15 S Acetylation 81 K Methylation

0 0

2500 1 2 I Acetylation

5000 1 2 I Acetylation

...

47500 2 1 S Acetylation 81 K Methylation

50000 2 1 S Acetylation 81 K Methylation

LAST 2 1 S Acetylation 81 K Methylation

129

C.5.4 The logFile

The logfile is where the PIE makes comments about what it is doing as it goes along.

Most of this information is of little use unless trying to debug problems. The main user

interest in the log-file is the random seed. This can be used to exactly regenerate results.

This file can also be used to verify that the correct input data was processed, or to check

which property settings were used after the fact. However, the format is unspecified and

may change completely. Currently an attempt is made to provide a label for each message

giving its priority, but this is not guaranteed.

Parameters

logFile = “pie.log”

Name for the log file where PIE will output errors, warnings, information, and

debug information, as selected by the logFilterLevel.

logFilterLevel = “DEBUG LOW”

What information to output to the log. Allowed values are “ERROR”, “WARN-

ING”, “INFO”, “DEBUG”, and “DEBUG LOW” Also contains the random seed

used.

startSeed = 0

The random seed to use, if 0, will generate one automatically.

startSeed = “50, -10, 64, 16, 23, 64, 80, -47”

An example of the format for the random seed, a comma-separated list of 8 signed

1-byte numbers. Spaces are not significant.

Example

The line reporting the random seed will look like:

[WARN] Using self-generated random seed: [67, 81, -116, 43, 94, -109, 15, -46]

130

Appendix D

Tutorial Walk Through

This tutorial uses version 0.3.5 of PIE.

D.1 Overview

To illustrate the use of the PIE, you and I will perform a step by step analysis of a synthetic

example of an isoform of the L16 ribosomal protein. This tutorial focuses on what to do

to use PIE to analyze data, leaving out much of the why. A more succinct description

is available as part of a book, Bioinformatics for Comparative Proteomics (Jefferys and

Giddings, 2011A). For more details on the rational behind different steps, see Chapter

3, Methods. I assume that you already have PIE installed, and that necessary data files

provided with the distribution (in the demo directory demo/L16) are available. PIE and

installation information can be download from http://pie.giddingslab.org/.

Running Pie take place in four phases, in summary the phases are:

Setup Data to be integrated is formatted and the configuration file PIE uses in lieu of

command line parameters is set up.

Convergence Several runs of differ lengths are used to find the highest scoring answer,

as well as estimate the relation between run length and the frequency with which

the best scoring answer is found by PIE.

Profiling Using the convergence information, a large run-set is generated to profile the

distribution of best and nearly best answers and their scores.

Interpretation Analysis of the profile provides relative information about how good the

best and near-best answers are and how good the different data sets are. This is

131

especially important when there are multiple isoforms or is some of the data is bad

or contradictory.

The remainder of this tutorial is separated into four sections, one for each phase. The

sections begin with a general description of the phase and its goals, and then a sequence

of numbered steps provide instructions to replicate an analysis of the modifications on a

theoretical L16 protein. I describe each default data file and configuration parameter in

terms of how it is used as I go. More comprehensive information on the these files and

parameters can be found in the users manual (Appendix C).

132

D.2 Setup

Setting up a the PIE run involves collecting and editing data files needed as input to

PIE, and then setting key=value parameters in the configuration file used to control

how pie runs. For the most part, this example will use pre-prepared data files provided

with the PIE distribution that already contain the necessary input information. Similarly

a template configuration file is available with most of the configuration parameters set

correctly.

1. Create an experiment directory to work in.

It is important to keep organized when running the PIE, since multiple input and

output files are involved. The simplest way to use PIE is to dump all needed files into the

same directory, and that is the example presented here. A hierarchical structure allowing

for data to be shared across multiple proteins is supported by PIE, and is more convenient

in more extensive analysis covering multiple proteins (e.g. see section 4.3, Analysis of

L7/L12 Ribosomal Extracts). For this example I assume a project investigating ribosomal

proteins from E. Coli K12, specifically the L16 protein, and even more specifically an

isomer with an intact mass of about 15,222 Da. I use only the last directory for data, but

create the full hierarchy anyway. The full path for the target directory should be the one

used on your system; on my system the directory I used is:

/Users/jefferys/ribosomeProject/L16/A-15222

2. Copy and edit the data files.

The molecule and template data files from the distribution pie/data/ directories need

to be copied to the experiment sub-directory and modified as needed.

2.1. Copy the “pie/data/molecule/...” files to “A-15222/”.

133

These files provide mass information to the PIE about component molecules (water,

amino acids, and modifications).

molecules.txt: No changes are needed.

aminoacids.txt: No changes are needed.

modifications.txt: This could be edited to change the searched for modifications, but the

default list is fine for this example. The list contains every modification

that PIE will consider.

2.2. Edit the copied “molecule/...” files.

No editing is needed.

2.3. Copy the “pie/data/prior/...” files to the directory “A-

15222/”.

These files provide data to pie to use when applying prior belief and average case

expectations.

modType.txt: This file is required by the modType data module. I will use the default

template file, except I will reduce the weight of phosphorylation by 10x,

from 22,500 to 2,250, to represent my belief that ribosomal proteins are

significantly less likely to have a phosphorylation than is typical for most

proteins. This is an example of using domain-specific information to

modify average expectation to match a more specialized context.

modLocation.txt: This file is required for the modLocation data module. If I knew more

about the kinds of enzymes that modify ribosomal proteins, I might use

such domain knowledge to adjust the background distribution to better

fit the narrower ribosome-specific context. However, for this example I

will use the defaults.

134

2.4. Edit the copied “prior/...” files.

Edit the copy of the modType.txt and reduce the weight for phosphorylation from

22500 to 2250. Be careful not to change anything else, especially the tab delimiter that

exists between “phosphorylation” and “22500”. Don’t use comma’s either!

2.5. Copy “pie/data/experimental...” files to “A-15222/”.

Since I have intact, peptide mass, and peptide sequence data, I will be using all

three experimental data scoring modules (IntactMassScoring, FragmentScoring, and

LocalizedFragmentScoring) and their data input files. The FASTA file containing the

canonical sequence for our protein is also provided in this step.

targets.fasta: PIE requires a FASTA file containing the sequence of the target protein.

My target protein, L16A-15222, is the name of an entry in the provided

targets.fasta file. I include this as an experimental data file and not a

molecule file, as it could change with every experiment. In future versions

of PIE, better protein naming options will be supported, but for now all

names in all files must match the protein name as given at the beginning

of a definition line in the fasta file.

intact.txt: This file gives the value I am using for an experimental intact mass,

15222.1977, and information about the error in the measurement, here

within ± 10 ppm.

fragments.txt: The peptide mass data would usually comes from a subset of trypsin di-

gest fragments attributed to a protein by precursor mass matching. For

this experiment I simulate moderate coverage of the target L16 isomer, in-

cluding peptides showing an oxidation adduct modification. (See Fig. 7,

“L16 Theoretical Data”) However, there is no coverage of the N-terminal

end, meaning there is no peptide information indicating the met trun-

135

cation or the acetylation, and I have also failed to detect a methylated

peptide. Indeed, only 1 of 4 modifications is present in this data.

localizedFragments.txt: Close analysis of putative MS/MS fragmentation data has been

used to provide protein sequence ladders. Such an examination has

pinned down the exact location of the oxidation modification. Non-

modified fragments specify regions where no modifications are expected.

Note that there is still no fragment data for the existence of the methy-

lation or acetylation adduct, nor for the n-terminal met truncation.

2.6. Edit the copied “experimental/...” files.

No editing is needed.

3. Copy and edit PIE’s configuration file.

PIE uses a configuration file to tell PIE everything it needs to know to run including

where to find that data, how to look for answers, and how to report the results. As a

result, only this file is needed as a parameter when running PIE, but making sure this file

has all the correct information is very important.

3.1. Copy “pie/data/default.properties” to “A-15222/”.

default.properties: This template properties file will need to be edited every time the PIE

is run. These changes are described in the next step

The parameters used in the file are discussed in more detail in the user manual (Ap-

pendix C). I will go through the file by sections, detailing the parameters and changes

relevant to this analysis of L16 data. The three sections are:

Data and data models: Defines what data types to use, how to score them, and where

to read data from.

136

McMC configuration: Used to set tuning parameters for defining how PIE does its

sampling. Normally default are fine.

Run and reporting: Determines how deep and how many separate searches PIE makes,

along with how to report results.

3.2. Edit the “Data and data models” section of the proper-

ties file.

3.2.1. Set up the “Data directories” subsection.

I have copied all the data into one directory, so I set the defaultDataDir parameter

to the full pathname for the directory, and leave the others at their default (unspecified)

values.

defaultDataDir = “/Users/jefferys/ribosomeProject/L16/A-15222”

Note: Make sure to replace “/Users/jefferys” with your own path.

3.2.2. Set up the “Molecular data” subsection.

For this example all three molecular data filenames are correct and can be left un-

changed, as “molecules.txt”, “aminoacids.txt”, and “modifications.txt”, the de-

fault names match the files set up above.

3.2.3. Set up the “Experimental data” subsection.

In general you can provide a copy of your target protein in a FASTA file named some-

thing other than “targets.fasta” by specifying the new file via the proteinFastaFile

parameter, but I will use the default.

The target protein name must be set to match one of the protein names given in

this FASTA file of targets. This example uses the protein sequence for L16-A, so the

targetProteinName parameter must be set to this value.

137

I am using all three experimental scoring modules (intact, fragment, and localized-

fragment scoring). Each will need to have their respective boolean flag set to true and

need to specify the name of the input file to read. The fragment scoring module requires

an additional parameter specifying the algorithm to use in scoring the data. See also 5.2.2

Evaluating a peptide data set

All of these values are correct by default for this experiment, so in summary the

changes are:

targetProteinName = “L16-A”

3.2.4. Set up the “Prior data” subsection.

I am using all five prior data scoring modules (mod count, mod type, mod location,

cleavage, and rule-based scoring). All five will need to have their respective boolean flag

set to true and two requiring input files (mod type and mod location). This is all correct

by default.

The remaining three scoring modules have no data file to read, but instead have

parameters that are configured as follows:

For the modCount model I only know of one possible modification, an oxidation. How-

ever the intact mass does not reflect such a simple answer, so I adjust the expected number

of modifications to 2.0. There is no need to be exact when setting this parameter as I

have good intact data (see also 5.2.4 Setting the number of modifications). Setting it

to 1.0, or 0.0 would still work, but as with any modeling process the more accurate and

consistent the data provided to the PIE, the better.

I have no reason to suspect a large number of modifications, so I set the range (via

modDelta) to 7.0, which allows 2.0 ± 7.0 modifications with reasonable probability,

when supported by other data. The choice for 7.0 as a range is based on the moderate

coverage of the peptide without other modifications, the small number of modifications

already seen, and a bias towards believing that if the protein has a large number of

modifications, I would know.

138

I have no information about cleavages to add to the cleavage scoring model, so I use

the default values. These are intended to open cleavage (cleave the first AA) at the n-

terminal end with moderate efficiency, to open the c-term end more rarely, and then to

follow through with additional cleavages moderately often from both ends if opened.

For the ruleScoring module, I also leave the rules as they are by default. I don’t

expect to have both amidation and deamidation modifications at the same time, and I

expect that if acetylation occurs, it is often found on the N-terminal amino acid.

In summary, the changes are:

modRate = 2.0

modDelta = 7.0

3.3. Edit the properties file “McMC configuration” section.

Seldom will any changes be necessary in this section. There is nothing to change in

this experiment, so I use only default values.

3.4. Edit the properties file “Run and reporting” section.

This sections is the most commonly edited portion of the parameters file. Since

obtaining a full answer profile from the PIE requires ensuring the length of a run is

sufficient to obtain convergence, several small profiles at different run lengths are generated

to determine this. After the optimal length is determined, the complete profile can then

be produced. This requires multiple runs of the PIE with different numbers of searches

and/or different run length. Each requires adjusting a couple of parameters in this section.

Besides the basic run parameters, this section also controls reporting details.

3.4.1. Set up the “Reporting parameters” subsection.

I set the top level outputDir to be the experiment directory. As autoOutputDir is

true—its default value—each PIE run will generate its own subdirectory in the experi-

ment directory.

139

I can leave the summary and detail output file names at their default values as there

is no chance of them over-writing previous results and I will also leave the log file at its

default setting, so the only change is:

outputDir = “setspace.sty/Users/jefferys/ribosomeProject/L16/A-15222”

Note: Again, make sure to change “/Users/Jefferys/ribosomeProject” to some-

thing that matches your configuration.

3.4.2. Set up the “Runtime parameters” subsection.

Given that the PIE takes several minutes or more to generate useful profiles, I start

instead with a short test run, designed to flush out any errors made during the process

of setting up a run. I set up a test run that will only take a few seconds and create a

profile with 2 entries (set by the runCount parameter), each of 10,000 steps (maxSteps

parameter). During this process, the PIE will output current status entries to the console

every 2,500 steps (consoleUpdate), and update the detail results file every 1,000 steps

(everyN), resulting in 4 console updates and 10 detail file entries for each of the two

runs. Summarized, the parameter settings required to do this are given below. Note: No

commas are allowed in values.

everyN = 1000

consoleUpdate = 2500

maxSteps = 10000

runCount = 2

140

4. Rename the properties file.

Since the PIE will run multiple times using different settings and each time need dif-

ferent properties file settings, it is useful to rename the control file to something describing

the run, such as “test-2atE4.properties”.

5. Perform a test sampling run with PIE.

From the experiment directory with the properties file and data run PIE. If you have

set up pie as an executable this will be:

pie ./test-2atE4.properties

otherwise this will be:

pie -jar /path/to/pie.jar ./test-2atE4.properties

If everything works correctly, the PIE will run for a few seconds, writing output to

the screen as it goes. Three output files will be created in a time-stamp directory inside

the experiment directory, named something like 2009_12_17__18_23_35_951.

The “pieSummary.txt” file should contain 2 lines, with a separate best... scoring

columns for the total score and for each data model used. Here, this is 1 total + 4 prior

+ 3 experimental = 8 columns. The “pieDetails.txt” file should contain 2 sets of 10

lines each. The “pie.log” file is useful if errors occur and the expected results are not

generated.

6. Rename the time-stamp directory.

Since this is a test run, and does not contain useful results, you could delete it. If you

wish to keep it, it is probably a good idea to rename the time-stamp directory to match

the properties file, to test-2atE4 to allow tracking what came from where.

141

D.3 Convergence

Simulated annealing by MCMC is a stochastic search method that finds global optima

based on a guided tour through a landscape of candidate answers. As a stochastic method,

how long the search for an answer takes varies. Once the PIE has been successfully

configured and the test run is successful, the next phase is to find the convergence length.

This involves making a small run containing about 10 replicates or so at one run length,

then making another run of 10 at a longer run lengths, and continuing until convergence

is apparent.

For example, if the PIE is run for 10 replicates and the highest scoring modification

scenario found is found multiple times (say 3 of the 10 replicates), this may be the best

answer. If another run with longer searches produces the same high-scoring scenario more

often then the previous run (e.g. 5 of 10 searches), this is reasonable evidence that the

best answer has been found.

In contrast, it may be that there is no consistency in the highest scoring results upon

the first run. This probably means longer runs are needed. With long enough runs a

best-scoring scenario should eventually emerge. The more steps it requires to find this

best scoring value, the weaker the data, However, there is a chance that if the data is

insufficient to resolve any answer and no best scoring answer is possible. This is often

indicated by the best scoring answer being the uninformative prior, usually a completely

unmodified protein. In contrast, if convergence is obtained quickly at low run lengths it

likely indicates that the data very strongly supports the resulting solution.

It is important to keep separate the two different ways I will use PIE: First to determine

convergence, and secondly to generate a profile of candidate answers. Hopefully the

determination of the convergence values will be automated in the future, but for now this

must be performed manually as described below. The following section will then describe

the profiling process.

142

1. Copy the properties file.

The properties file created during setup will be a template for each of several runs.

Copy it to a representative name, using the number or replicates and the length in the

filename is a good idea as it makes later reference easy. I will use “conv-10at1e5.

properties” to indicate 10 searches each 100,000 steps long.

2. Modify the run parameters in the new proper-

ties file.

I want to do 10 replicates of 100,000 steps, and need to set the appropriate parameters.

This also means setting two additional parameters that tells pie how often to check back

in during what might be a long run. These same four runtime properties will be adjusted

for each different convergence profile, and also for the final candidate solution profile.

RunCount gives the number of replicates, so I set it to 10, maxSteps is the number of

iterations, so I set it to 100,000 (no commas!), everyN determines how often interim results

are output to the details files, I want about ten so I set this to 10,000, and ConsoleUpdate

describes how frequently interim results are output to the console. Setting this to about

25,000 gives us output often enough to follow. In summary:

everyN = 10000

consoleUpdate = 25000

maxSteps = 100000

runCount = 10

3. Run PIE.

Run the PIE using the new properties file as the argument, and rename the output

directory when done to match the properties file. This is the same as steps 6 and 7 in the

setup section previously, except the correct properties file name should be used, and the

content of the output files will be different.

143

Running this convergence test make take up to several minutes on a computer system

circa 2011. A new time-stamp directory will created. Some data is output into this

directory as the PIE runs, and additional data is added at the end of the run. When

complete, the “pieSummary.txt” file will contain the best scoring answers from each of

the 10 runs.

The file format is a simple tab-delimited text file with a header row, so standard

spreadsheet programs can be used to import, view, and manipulate this file. (See also

5.2.8 Supporting R scripts). The bestScore column gives the total score of each run. I

check to see whether the highest score is repeated. If so, I am on my way to determining

the convergence length to use in the full analysis.

4. Execute a longer convergence run.

Repeat the previous two steps to generate a second convergence graph, but set pie

to use longer searches, something like 2 to 10 times the previous value. That entails

making a new copy of the properties file, renaming it to something like “conv-10at5e5.

properties”, and changing the run parameters to something like:

everyN = 50000

consoleUpdate = 25000

maxSteps = 500000

runCount = 10

As before, I run pie, rename the output directory to match the properties file, and

examine the “summary.txt” output file to look for repeated high score values in the

BestScore column.

5. Keep repeating until convergence is obtained.

Until I obtain two successive profiles where the maximum score is repeated, I will keep

increasing the maximum number of steps and generating new profiles. The amount to

144

increase the step size by matters only in the sense that I am trying to find the convergence

length in a small number of guesses without wasting too much time on large guesses.

If I make too large a jump, (indicated by going from one run showing little or minimal

convergence directly to one showing almost every search having the same maximum value,

I can always go back and try an intermediate guess for the number of steps needed.

Fig. 8, “L16 Convergence” shows the results from 3 convergence runs for the L16

target. As with any other stochastic process (such as measurement!), the results from

the PIE will differ in specifics even for identical input, but on average are consistent. My

initial run of 10 at 100,000 steps appears to show convergence, with 4 of the 10 runs having

the same high score. Since PIE is stochastic, it won’t generally get the same results on

repeated runs, so results will vary. I might have had 3, or 5, but probably not 0 or 10.

In the second run of 10 at 500,000 steps, only the top scoring candidate was found,

10 out of 10 times. This is really good evidence that this top scoring candidate really is

the best scoring candidate that could possibly be found.

However, For profiling I will need to know the convergence length that has about 2 of

the 10 searches finding this global best candidate (see also 5.2.4 The Need for an accurate

convergence parameter). I run another set of 10 at 50,000 steps (copying the parameters

file, renaming it, and adjusting the same 4 run parameters). This seems to be exactly the

correct number of steps, resulting in 2 of the 10 searches having the maximum value.

145

D.4 Profile

Once the convergence length estimate has been determined, it becomes possible to gen-

erate an answer profile. To do this requires simply running a set of 100 or so samples

at the 20% convergence rate determined above. About 20 of the profile searches should

result in the same high-scoring answer, while the other 80 or so represent a sampling of

near-optimal answers. The represented distribution over near-optimal answers provides a

great deal of information about the way the data is structured and what kind of answer

the best answer is. Sub-optimal answers that score high relative to the best answer in-

dicate answers with less but significant support, including answers that might represent

alternate isoforms or answers that can’t be distinguished due to missing data or data with

insufficient resolving power.

1. Set run parameters to create an answer profile.

Although the goal is different, the process is the same. As before I will create a copy

of a property file, name it something useful, such as “profile-100at5e4.properties”,

modify the run parameters, and then run the PIE. For this example, the “conv-10at5e4.

properties” file is already mostly correct, so I choose to copy that as a template. Then

only the runCount needs to be changed, from 10 to 100. The other values are already

correct:

everyN = 5000

consoleUpdate = 2500

maxSteps = 50000

runCount = 100

2. Determine if done, or need to try again.

146

Examine the “pieResults.txt” and determine if it is good enough: If the top few

candidates of interest are not found several times each, then the run length and/or number

of searches will need to be increased.

2.1. If the best scoring candidate is represented too many or

too few times, increase or decrease the run length and try

again.

The profile I generated using 50k steps does not provide enough replicates for top end,

indicating I underestimated the conversion length. Only 2 / 100 answers were the top-

scoring result. Why did it miss? As may often be the case when there are modifications

without supporting bottom up data, there are several very similar scoring candidates. The

scores are close enough that my original corse estimate for the convergence length did not

distinguish between them. This larger view indicates a longer search time is required to

improve the separation from other very nearly identical answers.

I repeat the previous step and generate another profile with 100 searches, using 100k

steps. As before I copy another profile, rename it, edit the run parameters, and run pie,

generating an output folder, which I then rename.

The results from this second profile run indicate 100K steps is a good run length to

use, and the results are pictured in Fig. 9, “L16 Answer Profile” Although I still have

only 10% of the answers in the top scoring set, this is 10 actual answers, so it is unlikely

that a better result has been missed by chance. The following nearly best answers are

also well separated, each presented in its own wide, equal-scoring block. This is sufficient

for the example, and I can interpret these results.

2.2. If the top candidate is represented a reasonable number

of times, but other similarly scoring candidates have only

1 or 2 replicates, increase the number of searches and try

again.

147

Creating a larger profile, say with 500 runs, increases the resolution. Providing more

more searches is like adding pixels to a picture, here widening every scoring band. It

may be possible to decrease the search length if running many extra searches. Deciding

what size profile to use with what length search in order to obtain appropriate coverage

of the near-optimal answers is a choice between deeper coverage of lower scoring answers

vs fast coverage of the top answers. Fortunately a wide range of values generates useful

results, so it is not critical to pick perfect values, just adequate ones. For profiles involving

several modifications, 100 searches works well. If there were 10 different modifications,

there would likely be more high-scoring combinations for the same level of coverage and

hence require more like 1000 searches to adequately sample from them all. The only cost of

picking bad values is wasted computational time. Given the L16 data and scoring modules

used, generating the answer profile shown in Fig. 9, “L16 Answer Profile” required about

15 minutes; generating a profile with more than 100 searches or more than 100,000 steps

per search takes proprtionally longer.

148

D.5 Interpretation

It has taken quite a bit of work to obtain the answer profile, so it is probably a good idea

to step back and check out what was done.

I collected several different kinds of experimental mass spectrometer data derived from

a (theoretical) variant of L16 ribosomal protein variant. To this collection of experimental

results, I added some general prior knowledge about modified proteins, such as which

modifications are more common. I also included information that applied to a specific

domain, by specifying a lower likelihood of phosphorylation than average due to the

protein being a ribosome component. I then dumped all that information into a directory

and used the PIE to put it all together and tell us about the modified protein variant or

variants described by this data.

To process and integrate data, I ran PIE in two different ways, first finding a con-

vergence length and then simply running pie with the correct length to find not only the

best answer—the modification pattern that is most consistent with the PIE-evaluated

data—but also the runner-up choices. Estimating the correct convergence length was not

completely successful using quick and short runs of 10 searches each, but after one round

of 100 searches, a useful value was produced. The second round of 100 searches using the

longer searches generated an answer profile with enough resolution to be interpretable.

This answer profile is presented in a compact form in Fig. 9, “L16 Answer Profile”.

Interpreting this information is the subject for the rest of this section.

1. What modifications are present in the highest

scoring candidate?

In this example, the highest scoring candidates present a set of 4 modifications—

one methylation, one oxidation, one acetylation, and a single n-terminal amino acid loss

(methionine). This accurately reflects the exact set of modifications expected from the

target, although I would not know that when analyzing actual samples.

149

2. Is there a consensus set of modifications present

in the runner up candidates

In this example, almost all the highest scoring candidates present the same common set

of 4 modificationsone methylation, one oxidation, one acetylation and a single n-terminal

amino acid loss (methionine).

The presence of these modifications are thus a highly supported predictions for the

protein variant. These modifications have been identified despite there being no specific

mention of a methylation or acetylation adduct anywhere in the experimental data. Fur-

thermore, the lack of any peptide information about the first 6 AA at the n-terminus

allows leaves the possibility of any length truncation from 0 to 6 amino acids. Such

truncations would all be equally and fully consistent with the experimental peptide data.

However, only the correct 1-AA length truncation is selected. Essentially this is due to

the PIE’s ability to access the large amount of information contained in an accurate intact

mass measurement, solving the combinatorics puzzle of what pieces might be put together

to get the given mass. It is also affected by the prior data that pushes guesses towards

fewer modifications and shorter truncations.

3. What if there are no consensus or competing

high-scoring modification sets?

Comparing the other scoring columns from the “pieSummary.txt” file helps determine

how well each type of data is supported.

There is one alternate candidate, found only once, that does not have these modifi-

cations but still scores relatively highly, with 2 Oxidations, 2 amidations, 1 acetylation,

and the same 1 AA n-terminal truncation. It is the highest scoring candidate that is not

near identical in score to the top-scoring candidates, being only about 80% as good. This

is still a pretty reasonable candidate, so I will need to look at the other scoring columns

to see why it scored less. For example, the intact scoring column has nearly identical

150

scores with the previous example. This previous candidate differs from this one by having

a methylation (14.0269 Da) instead of an oxidation (15.9994 Da) and two amidations

(-0.9847 Da each) for a net mass of 14.03 Da. This candidate is thus isobaric with the

better-scoring candidates, as it is different by only 0.0039 Da, about 0.2 ppm of the intact

mass, well within experimental error of 10 ppm.

The worst scoring component is the mod location score, indicating at least one of the

modifications in this lower scoring answer is placed on a less common than average choice.

This does not really affect a choice for this as a good modification data set, so we are left

with this as a reasonable candidate.

One low scoring result with a different set of modifications was commonly found: 1

formylation, 1 acetylation, and 1 n-term cleavage result. It is only about 7% as good as

the best one. Its main failing is it doesn’t contain an oxidation modification; this conflicts

with explicit MS/MS information. Some significant problem must be associated with

this and every other low scoring candidate, as that is what it means to be a low-scoring

candidate. Note that this is only relatively a bad candidate. It still matches top down data

very well, and doesn’t have 30 phosphorylations, etc. This is still one of best candidates

out of the enormous number of possible guesses, although its low score indicates it is,

relative to other best choices, not so good.

4. Determine if there is one candidate set only, or

multiple candidates.

If only one candidate set occurs though all high scoring answers, this is the only

candidate set. If there are other candidates besides the best with different modifications

that score relatively highly, this means their are either multiple candidates or different

isoforms.

In our example, we have two candidates that score well. Without knowing what

the target actually was, it is possible the answer to this example involved 2 amidations, 2

oxidations, and an acetylation rather than an oxidation, a methylation, and an acetylation.

151

Nothing in the data precludes this. Since the set without the amidations scores somewhat

higher, if I had to choose just one predictions, this would be it. But that is overly

simplistic. The real answer is that the data is suggestive but not conclusive and supports

two different alternate isoforms. I need to gather additional evidence, possibly carefully

looking for fragment data with amidations or methylations.

The new data could then be added and PIE rerun. If one candidate is supported over

the other, he new profile would then score all candidates differently, integrating this new

data. One of these two scenarios would then be elevated, the other reduced in score. Part

of the design goal for PIE is for it to be an active participant in the process of selecting

which experiments or additional data is necessary to nail down the exact modification

pattern for an example.

It is also possible that both isoforms are actually present. In this case additional

experiments to separate the isoforms could be used to verify that each is actually present.

5. Look at modifications with consensus positions.

In this example, all searches have the PIE placing the n-terminus of the protein after

the initial methionine, predicting a 1 AA truncation, and the c-terminus of the protein

after the last AA, predicting no n-terminal truncation. These are both correct given the

known L16 target. All top scoring answers also correctly specify an oxidation on 107-P

for all the answers scoring higher than 50

I only have one example including the amidations. If I believe this to be a viable

candidate, I need to run more PIE searches (larger profiles) to add resolution to the

bands in the middle of the graph. To keep this tutorial example simple, I will focus only

on the best scoring candidate.

6. Evaluate modifications without consensus posi-

tions.

Why would PIE fail to find a single best position for a modification? This may be

152

due to conflicting information from fragment data or missing information.

There is no clear consensus on where to place the methylation or acetylation modifi-

cations. Several different positions are suggested for each within all the candidates that

scored essentially 100%. If lack of consensus is due to conflicting fragment information,

this may be evidence for multiple positional isoforms. This is not the case in the example.

Since the target is known ahead of time, the acetylation is supposed to go on the

n-terminus (after truncation of the methionine), and the methylation is supposed to go

on 49-R, but unfortunately there is no data telling the PIE this. The intact mass data

is no help, as it only depends on what modifications there are, not where they go. The

MS/MS information contains data that the PIE can use to localize the oxidation, and

also constrains where not to put any other modifications. The fragment data is weaker

support, but still guides where not to put and not put modifications in general. However,

after taking all this into account there are still many places were the needed adduct

modifications could go, and no experimental evidence to chose any position preferentially.

PIE will try to fall back on prior data in this case, because sometimes this would make

all the difference. For example, if a selenocystine modification remained to be placed, and

there was only one cystine, then the prior data would pick the correct one. For acetylation

and methylation, the prior data is not so useful as there are many different amino acids

that might be modified that are present throughout the protein. For methylation the

prior data first selects lysines (K), and only when it can’t place modifications there will it

target arginines (R). For the acetylation, PIE tries to guide it to the n-terminus using the

rule-based prior that raises the score if it is placed there. Unfortunately the n-terminus

of this protein, after truncation of methionine is L. Based on the prior location data, this

will be nearly the last place the PIE would put an acetylation, first selecting K, then A

then S, etc. One can see this prior at work in Fig. 9, “L16 Answer Profile”, as different

amino acids are picked for methylation and acetylation, and since they both have the

same best choice for AA, it swaps the modification on alternate bands.

Enhancing the performance of priors by collecting more specific data on terminal

153

modifications is one possible way to improve the performance of the PIE in this kind

of situation, and PIE’s data scoring is modular to make just this kind of thing easy.

However priors will only ever help fill small gaps in knowledge. It is always the role of

the experimental data to do the heavy lifting.

7. I am done!

I now have a characterization of the post-translational modification pattern for this

protein. If the data had been clean and complete, I would have had a clean and complete

answer. Here my data was good but not sufficient to determine a single answer; I have a

good idea of what additional data will help the most, and I can go look for evidence of

methylation or amidation. After I get some new evidence, I can add it to the PIE and

try again.

154

Figure 1: Intact Mass Shifts Due to PTMs

33,304
Unmodified

CDK5
intact mass

CDK5: 33,304

33,384
Phosphorylated

CDK5
intact mass

Phosphorylation
+ 80

Δ mass = 80

Modification of a protein will influence its measured mass value. Here the mass of an
unmodified (CDK5) protein sequence is 33,304 Da. The mass of the modified protein is
33,384 Da. The difference, +80 Da, is easily discernible by many MS approaches as the
difference expected due to a phosphorylation modification. However, it could be due to
some other combination of modifications that add up to 80 Da.

155

Figure 2: Tandem Mass Spectrometry (MS/MS) Locates PTMs

In
te

ns
itiy

100 200 300 400 500 600 700
m/z (AMU)

y ions (H3O+)

K + Methyl
(141)

GAT
230.1

GATG
287.1

GATGLG
457.2

L
(113)

GATGLGL
570.3

G+A
(129)

L
(113)

T
(101)

GA
129.1

b ions (H+)

G
(57)

G
(57)

0.0
GATGLGLK*

712.4
GATGL
400.2

TGLGLK*
602.4

GLGLK*
501.3

LGLK*
444.3

ATGLGLK*
673.4

GLK*
331.2

LK*
274.2

G
(57)

G
(57)

K*
161.1

G
(57)

L
(113)

L
(113)

T
(101)

K + Methyl
(161)

A
(71)

0.0
GATGLGLK*

730.4

A representative MS/MS spectra for a peptide is shown. Ideally a single random
peptide-bond is broken in each peptide molecule. This gives two collection of fragments,
one of pieces from the n-terminus side of the break, the other from the C-terminus side.
Fragments of all possible substring lengths are generated: N-terminus fragments here are
V-, VK-, VKD*-, VKD*L-, etc; c-terminus fragments are R-, RV-, RVG-, RVGP-, etc.
Each fragment has a (different) mass, and together result in a sequence of peaks in the
spectra. The resulting ladders of mass peaks (one from each end of the peptide) match
to increasingly long fragments: 175.12 = R, 274.19 = R+V, 331.21 = R+V+G, etc.

As with intact masses, shifts caused by a modification will be detected. Here a β-
methylthiolation modification has occurred on the aspartic acid residue 3rd from the
N-terminal end. Instead of the expected mass of V+K+D, at 343, a peak at mass 389
was found. This represents VKD + 46, a mass shift which is attributed to the presence
of a β-methylthiolation modification on the D residue.

Unfortunately, interpretation of MS/MS spectra gets complicated. Peptides may be
broken in more than one place and at bonds besides those between amino acids, producing
distinct ion types. This, along with contaminants or heterogeneous spectra, often results
in extra peaks–those not labeled in the diagram. Some expected fragmentation sites may
not be seen at all, resulting in a single step of the sequence ladder spanning two or more
amino acids, such as occurs for VK in this example. If there are many modifications or the
specific sequence of the peptide is unknown, it can be difficult to interpret this spectra,
especially since modifications can add to the variability in fragmentation patterns.

156

Figure 3: Solution Space Representation

M S I T K D … L K E … G A E V E V K

None

Myris

Phosp

Acetyl

Formyl

Farn

Palm

Hydrox

Amin

Deamin

Seleno

Methyl

... ...

Every possible modified protein that PIE can propose as an answer can be visualized as
a jagged line from left to right on the graph shown. The horizontal axis is the canonical
protein sequence of the target investigated, here an abbreviated piece of the L7/L12
ribosomal protein. The vertical axis is the set of modifications searched for; the default 11
modifications are shown. Only answers constructed with modifications from this set will be
proposed by PIE. Additional or different modifications can be used, with a drop in speed
as the number increases. A different, unique line represents each possible modification
scenario, formed by connecting the points defined by each adduct modification on the
protein. In the example shown, most adducts are none (black points), but there is a (blue)
n-terminal acetylation and a (purple) internal K-methylation. To allow for cleavages, the
left and right ends of the line do not have to be a the first or the last AA of the protein,
An n-terminal methionine truncation is shown as the line starts on the 2nd AA, an
S (emphasized by a vertical gray block). This provides a simple way to visualize the
multidimensional solution space where points are answers. Points that are close together
in the solution space are represented here as segmented lines that are similar and represent
similar answers.

157

Figure 4: H23C Theoretical Peptide Data

10K-meth
5K-acet 11S-phos + 15K-acet

11S-phos + 12T-phos + 15K-acet

29S-phos,
24K-meth

H5
 (+H7)

The top white bar shows the theoretical peptide digest of H23C, blocks aligned below
indicate theoretical peptides provided to the PIE. Those with thick edges indicate MS/MS
sequence data was also provided. Grey boxes indicate unmodified peptides, other boxes
are colored based on the modifications as shown. Some regions of the protein have no
aligned peptide blocks, simulating missing peptides in the bottom-up data. The second
row of peptides are labeled (+H7) to indicate in the H7 bottom-up data set they replace
the matching unmodified peptides from the H5 bottom-up data set. Both modified and
unmodified peptides are present in the combined bottom-up data sets.

Figure 5: E. Coli L7/L12 Peptide Data

2S-Acetyl

82K-Methyl

methyl + methyl with MS/MS

As in Fig. 4, “H23C Theoretical Peptide Data”, the top white bar shows the theoretical
peptide digest, blocks aligned below indicate theoretical peptides. Those with thick edges
indicate MS/MS sequence data was provided. Grey boxes indicate unmodified peptides;
other boxes are colored based on the modifications as shown. All peptides were provided
to PIE, peptides are on separate lines only to show the overlapping and contradictory
nature of the data.

158

Figure 6: Convergence and Profile Sampling, L7/L12 220-1H

! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !

! !
! !

! !
! !
! !
! !

! !
! !
! !

! !
! !

! !
! !

! !
! !

! !
! !

! !
! !

! !! !
! ! ! !

! ! ! !
! ! !

! ! !
! ! !

! ! !
! ! !
! ! !

! ! !
! ! !
! ! !

! ! !
! ! !
! ! !

! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! ! !!

! !
! !
! !

! !
! !

! !
! !
! !

! !
! !

! !
! !

! !
! !

! ! !
! ! ! !

! ! !

L7/L12!12,220 Profile

2S-Acetyl

82K-Methyl

methyl + methyl with MS/MS

159

Each row represents a different guess proposed by PIE, with guesses in each figure
ordered by score from top (hi) to bottom (lo). The peptide data set is reproduced to
scale at the bottom of the figure. Colored dots represent modifications–methyl (blue),
acetyl (purple), formyl (green), hydroxyl (brown), and myristoyl (olive)–each aligned at
their proposed positions. Grey blocks at the left and right indicate n- or c- terminal
truncations. Guesses without horizontal grey lines indicate they have the exact same
score as the guess above, generating blocks of identically scoring guesses. The jagged
black line running roughly diagonally through the graph indicates the score for each row,
like a bar graph, except turned on its side with maximum value to the right. Scanning the
images by sliding a straight edge top to bottom or left to right provides an “animated”
display that helps interpret modification alignments.

Figure 6a. 10 Samples Taken After 50,000 Steps.

Although the highest score (guess) has been found twice, this is not clear evidence for
convergence, so a longer length run set is necessary.

FIgure 6b. 10 Samples Taken After 250,000 Steps.

The same highest score (guess) is found here as was found in the 50,000 step set, and
It is found many more times. This indicates convergence has probably been reached, and
this is likely the best answer given the data.

FIgure 6c. Profile of 100 Samples.

To look for alternate interpretations for the data, a profiles of guesses is sampled at
a step length providing 20% of the answers as the best scoring candidate, and 80% as
other sub-optimal guesses. Estimated from the convergence plots, Figure 6A shows this
to be 50,000 steps. By examining these nearby answers it is possible to see not just how
strongly a guess is supported, but how strongly different features of a guess are supported.
The best guess with its specifically localized acetylation and methylation is approximately
twice as good as the next bess guess (black scoring bar drops to half between them). All
high scoring guesses have a predicted n-terminal methionine loss and an 82K methyla-
tion, indicating no consistent predictions could be made that didnt include these features.
Most sub-optimal guesses have an acetylation. In the best scoring guess its localization
is on the new n-terminus, 2S. If not there, the second best scoring guess places it on a
lysine aligned with a missing peptide. Here the effect of the prior data module imple-
menting the AA preference of modifications can be seen, as lysine is the most commonly
acetylated modification, as well as the effect of the peptide data model, since peptides
provide information that any covered lysine is probably not modified. Unfortunately, no
other information is available to distinguish between these three positions, so there are
three different equally likely predictions made as the second best guess. Other less likely
answers include different positions for the acetyl modification, a tetra-methyl species, and
a dimethyl + formyl species. Two rare, bad guesses suggest methyl + acetyl + hydroxyl
+ myristoyl, along with a cleavage of 1 n-term and 2 c-term amino acids, but even these
rare guesses are in agreement with the intact mass data. They are approximately isobaric
to the best guess, but score much lower due to multiple conflicts with peptide, MS/MS,
and prior data modules.

160

Figure 7: L16 Theoretical Data

Acetylation Methylation Oxidation

Sequenced Fragment Data
Fragment Data

Hypothetical L16-A

An artificial L16-A protein isoform is shown in green, with three adduct modifications
represented by triangles: Acetylation at 2-L (blue), Methylation at 49-R (purple), and
Oxidation at 107-P (red). There is also a 1 AA truncation at the n-terminus (grey block).
This mock target is the answer that the PIE is seeking from the data.

The two sets of bars above the target represent synthetic fragment (grey) and MS/MS
(black) data. The MS/MS data identifies AA 107-P as having an oxidation modification
(red line), and many others that are unmodified. The peptide data shows no modifications,
but does identify additional unmodified regions of the protein. Multiple overlapping
peptides with different match scores are represented; the darker the grey, the better the
match. Confidence increases (darker grey) when peptides overlap.

Although providing moderate coverage, the bottom-up data is significantly incomplete.
It lacks any indication of the acetylation or methylation modifications, and allows for
cleavage of up to 6 n-terminal AA before contradicting any peptide data. Using such
incomplete data allows showing both how PIE infers adduct modifications and terminal
cleavages from an intact mass, and how incomplete data sets can support multiple answers.

161

Figure 8: L16 Convergence

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PIE Convergence plot

Run Number

S
co
re

5.00e+04 1.00e+05 5.00e+05

Three separate runs were performed for the L16 protein target shown in Fig. 7, “L16
Theoretical Data”, each consisting of 10 searches but using different search lengths: 50,000
steps (solid) , 100,000 steps (dashed), and 500,000 steps (dotted). For each run, the 10
search results are ordered from lowest scoring to highest scoring and plotted on the graph
from left to right. The score axis has been normalized to the largest value found across
all runs. The initial 100k step run appears to show convergence, with 4 of the 10 runs
having the same high score. As with any other stochastic process (such as measurement!),
the results from the PIE will differ in specifics even for identical input, but on average
are consistent. The second run at 500k steps, presents only the top scoring candidate, 10
out of 10 times. Together these provide strong evidence that this top scoring candidate
really is the best candidate that can be found. A third run of 50K steps gets 2 out of 10
values converging to the same high scoring value, making 50K the approximate optimal
convergence length.

162

Figure 9: L16 Answer Profile

Acetylation Methylation Oxidation

Sequenced Fragment Data
Fragment Data

Hypothetical L16-A

Oxidation
Methylation
Acetylation
Formylation
Amidation

Score break

Equal scoring
prediction set

Line indicating total
score of each prediction
(high score to the right)

Be
tte

r P
re

di
ct

io
ns

W
or

se
 P

re
di

ct
io

ns

This answer profile represents the combined results from 100 searches, each 100k steps
long, for the L16-A target described in Fig. 7, “L16 Theoretical Data”. The 100 candi-
date results are stacked vertically, ordered from the lowest scoring (bottom) to highest
scoring (top). The horizontal axis represents the amino acid sequence of the protein from
n-terminus (left) to c-terminus (right), with only the adduct modifications shown (col-
ored dots positioned where predicted). Consensus modification positions are easily seen
as overlapping vertical columns of dots. The left side of the graph shows a grey bar indi-
cating the n-terminal truncation, predicted for every candidate. The relative score of each
candidate is indicated by where it crosses the dark-grey score line. This line begins ver-
tically on the right (at 100% relative score), transitions to a jagged horizontal line across
the middle, and then ends at the bottom left (about 5% relative score). The horizontal
light-grey lines delineate answer sets within which all answers have identical scores.

Most of the high-scoring sets have correctly identified the three adducts and the n-
terminal truncation, although there is one high scoring answer (about 85%) that suggests
there are two amidations and an extra oxidation instead of the methylation, a surprising
answer that can not be ruled out given the available data.

163

The position of the oxidation modification has also been correctly identified through-
out most high scoring candidates, aligning with the oxidation modification presented in
the sequenced fragment data. The positions for the methylation and acetylation modifi-
cation are not correctly aligned with the target, but are generally placed where they do
not conflict with the unmodified position data from the MS/MS and peptide data. More
data is needed to pin down the exact location of these modifications.

164

Table 1: Summary of Scoring Functions

Term Model Data Type Model Type

S1 Intact Mass Experimental 1/x

S2 Peptide Mass Experimental 1/x

S3 MS/MS Sequence Experimental an

S4 Adduct Frequency Prior
∏

i fi

S5 Adduct Location Prior
∏

i fi

S6 Adduct Count Prior 1/x

S7 N-Cleavage Prior an

S8 C-Cleavage Prior an

S9 Rules Prior
∏

i fi

165

T
a

b
le

2
:

A
n

a
ly

si
s

o
f

L
7

/
L

1
2

T
h

eo
re

ti
ca

l
D

a
ta

In
ta

ct
E

rr
or

P
ep

ti
d

es
C

ov
er

a
g
e

B
es

t
a
n

d
S

co
re

S
et

N
am

e
(p

p
m

)a
(p

p
m

)b
D

et
ec

te
d
c

p
ep

,
se

q
d

S
te

p
s

2
n

d
B

es
t

A
n

sw
er

se
le

n
g
th

R
a
ti

o
W

h
y
?f

A
ce

t-
2
S

,
M

et
h

-8
2
K

2
–
1
2
1

1
id

ea
l

+
0.

5
1

1
-1

4
1
0
0
%

,
1
0
0
%

5
0
k

A
ce

t-
2
S

,
M

et
h

-7
6
A

2
–
1
2
1

5
.7

2
m

s-
m

s
1

,
3,

5
,

A
ce

t-
2
S

,
M

et
h

-8
2
K

2
–
1
2
1

2
go

o
d

-2
3

20
8
,

1
2

,
14

5
0
%

,
2
5
%

2
5
k

A
ce

t-
2
S

,
M

et
h

-7
6
A

2
–
1
2
1

5
.7

2
m

s-
m

s
A

ce
t-

2
S

,
M

et
h

-8
2
K

2
–
1
2
1

3
m

in
+

40
50

1
,

8
1
0
%

,
1
0
%

2
5
k

A
ce

t-
1
M

,
2
S

,
1
6
S

,
M

et
h

-8
2
K

,
8
6
K

1
–
1
1
9

5
.3

3
in

ta
ct

n
o

A
ce

t-
2
S

,
M

et
h

-8
2
K

2
–
1
2
1

m
o
d

4
ta

n
d

em
+

40
50

1,
8

1
0
%

,
1
0
%

6
0
k

A
ce

t-
2
S

,
M

et
h

-7
6
A

2
–
1
2
1

1
.4

3
a
a

n
o

A
ce

t-
2
S

,
M

et
h

-8
2
K

2
–
1
2
1

m
o
d

5
ac

et
y
l

+
40

50
8

5
%

,
5
%

6
0
k

A
ce

t-
X

,
M

et
h

-8
2
K

,
K

,
K

,
K

2
–
1
2
1

1
.1

6
cn

t
n

o
A

ce
t-

2
S

,
M

et
h

-K
2
–
1
2
1

m
o
d

6
m

et
h
y
l

+
40

50
1

5
%

,
5
%

1
5
k

A
ce

t-
2
S

,
M

et
h

-E
2
–
1
2
1

1
.2

8
a
a

h
ig

h
A

ce
t-

2
S

,
M

et
h

-8
2
K

2
–
1
2
1

m
o
d

7
in

ta
ct

+
75

10
0

1
,

8
1
0
%

,
1
0
%

5
0
k

A
ce

t-
2
S

,
M

et
h

-7
6
A

2
–
1
2
1

1
.4

3
a
a

lo
w

A
ce

t-
2
S

,
M

et
h

-8
2
K

2
–
1
2
1

m
o
d

8
in

ta
ct

-9
0

10
0

1
,

8
1
0
%

,
1
0
%

3
5
k

A
ce

t-
2
S

,
M

et
h

-7
6
A

2
–
1
2
1

1
.4

3
a
a

n
o

3,
4
,

5
,

A
ce

t-
2
S

,
M

et
h

-K
2
–
1
2
1

m
o
d

9
m

o
d

-2
3

20
1
1
,

1
2

,
14

5
0
%

,
2
5
%

2
5
k

A
ce

t-
2
S

,
M

et
h

-7
6
A

2
–
1
2
1

1
.2

8
a
a

A
ce

t-
2
S

,
M

et
h

-K
2
–
1
2
1

m
o
d

10
in

ta
ct

-2
3

20
n

/a
n

/
a

2
5
0
k

A
ce

t-
2
S

,
M

et
h

-3
9
A

2
–
1
2
1

1
.4

3
a
a

h
i

A
ce

t-
2
S

,
M

et
h

-X
,

O
x
id

-P
,

A
m

id
-A

2
–
1
2
1

m
o
d

11
in

ta
ct

+
75

10
0

n
/a

n
/
a

3
5
0
k

A
ce

t-
2
S

,
M

et
h

-K
,
D

e
a
m

-6
5
N

2
–
1
2
1

1
.0

4
ty

p
e

lo
w

A
ce

t-
2
S

,
M

et
h

-K
,
A

m
id

-A
2
–
1
2
1

12
in

ta
ct

-9
0

10
0

n
/a

n
/
a

5
0
k

A
ce

t-
K

,
M

et
h

-K
,
A

m
id

-A
2
–
1
2
1

1
.9

1
ru

le
s

a
T

h
e

si
m

u
la

te
d

in
ta

ct
ex

p
er

im
en

ta
l

m
as

s,
re

la
ti

ve
to

th
e

th
eo

re
ti

ca
l

in
ta

ct
m

a
ss

.
b

T
h

e
si

m
u

la
te

d
in

st
ru

m
en

t
er

ro
r

w
in

d
ow

,
m

a
ss

m
ea

su
re

m
en

t
a
re

“
a
cc

u
ra

te
”

w
it

h
±

th
is

va
lu

e.
c

M
o
d

ifi
ed

P
ep

ti
d

es
:

1
h

as
an

n
-t

er
m

in
al

m
et

h
io

n
in

e
lo

ss
a
n

d
a
n

n
-t

er
m

in
a
l

a
ce

tl
y
a
ti

o
n

a
t

2
S

,
8

h
a
s

a
ly

si
n

e
m

et
h
y
la

ti
o
n

a
t

8
2
K

.
B

o
ld

p
ep

ti
d

es
h

av
e

se
q
u

en
ce

d
at

a.
d

P
ep

.
co

ve
ra

g
e

m
ea

n
s

h
a
s

m
a
tc

h
ed

p
ep

ti
d

e
to

re
g
io

n
.

S
eq

.
co

ve
ra

g
e

m
ea

n
s

h
a
s

M
S

/
M

S
se

q
u

en
ce

fo
r

m
at

ch
ed

p
ep

ti
d

e.
e

T
op

an
sw

er
sc

or
es

b
es

t.
B

o
ld

m
ea

n
s

d
iff

er
s

fr
o
m

ex
p

ec
te

d
.

A
ce

t
=

a
ce

ty
la

ti
o
n

,
M

et
(m

et
h
y
la

ti
o
n

),
O

x
id

(o
x
id

a
-

ti
on

),
A

m
id

(a
m

id
at

io
n

),
D

ea
m

(d
ea

m
id

at
io

n
).

M
o
d
ifi

ca
ti

o
n

s
w

it
h

o
u

t
p

o
si

ti
o
n

re
p

re
se

n
t

m
u

lt
ip

le
eq

u
a
l

sc
o
ri

n
g

a
n

sw
er

s
th

a
t

p
la

ci
n

g
a

m
o
d

ifi
ca

ti
on

at
d

iff
er

en
t

p
os

it
io

n
s.

f
T

h
e

sc
o
ri

n
g

m
o
d
u

le
co

n
tr

ib
u

ti
n

g
th

e
m

o
st

to
d

iff
er

en
ti

a
ti

n
g

th
e

to
p

tw
o

a
n

sw
er

s.

166

T
a

b
le

3
:

A
n

a
ly

si
s

o
f

H
2

3
C

T
h

eo
re

ti
ca

l
D

a
ta

In
ta

ct
E

rr
or

P
ep

ti
d

e
T

o
p

a
n

sw
er

a
n

d
S

co
re

S
et

(p
p

m
)a

(p
p

m
)b

S
et

S
te

p
s

2n
d

B
es

t
A

n
sw

er
sc

le
n

g
th

R
a
ti

o
W

h
y
?d

A
ce

t-
5
K

,
1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

2
-1

3
6

H
5

-1
0

20
H

5
se

t
25

0
A

ce
t-

2
A

,
1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

2
-1

3
6

2
.0

8
P

ep
ti

d
e

A
ce

t-
5
K

,
1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

,
1
2
T

,
2
9
S

2
-1

3
6

H
7

-1
0

20
H

7
se

t
37

5
A

ce
t-

5
K

,
1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

,
1
2
T

,
3
2

T
2
-1

3
6

4
.3

5
P

ep
ti

d
e

H
5-

A
ce

t-
5
K

,
1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

2
-1

3
6

b
ot

h
-1

0
20

H
5

+
H

7
75

A
ce

t-
2

A
,

1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

2
-1

3
6

2
.0

8
P

ep
ti

d
e

H
7-

A
ce

t-
5
K

,
1
5
K

,
M

et
h

-1
0
K

,
2
4
K

,
P

h
o
s-

1
1
S

,
2
9
S

,
S

2
-1

3
6

b
ot

h
-1

0
20

H
5

+
H

7
30

0
A

ce
t-

5
K

,
1
5
K

,
M

et
h

-1
0
K

,
K

,
K

,
K

,
P

h
o
s-

1
1
S

1
-1

3
6

1
.8

9
In

ta
ct

a
T

h
e

si
m

u
la

te
d

in
ta

ct
ex

p
er

im
en

ta
l

m
as

s,
re

la
ti

ve
to

th
e

th
eo

re
ti

ca
l

in
ta

ct
m

a
ss

.
b

T
h

e
si

m
u

la
te

d
in

st
ru

m
en

t
er

ro
r

w
in

d
ow

,
m

as
s

m
ea

su
re

m
en

t
ar

e
“a

cc
u

ra
te

”
w

it
h
±

th
is

va
lu

e.
c

T
o
p

a
n

sw
er

sc
o
re

s
b

es
t.

B
o
ld

m
ea

n
s

d
iff

er
s

fr
o
m

ex
p

ec
te

d
.

A
ce

t
=

ac
et

y
la

ti
on

,
M

et
(m

et
h
y
la

ti
on

),
O

x
id

(o
x
id

at
io

n
),

A
m

id
(a

m
id

a
ti

o
n

),
D

ea
m

(d
ea

m
id

a
ti

o
n

).
M

o
d

ifi
ca

ti
o
n

s
w

it
h
o
u

t
p

o
si

ti
o
n

re
p

re
se

n
t

m
u

lt
ip

le
eq

u
al

sc
or

in
g

an
sw

er
s

th
at

p
la

ci
n

g
a

m
o
d

ifi
ca

ti
o
n

a
t

d
iff

er
en

t
p

o
si

ti
o
n

s.
d

T
h

e
sc

or
in

g
m

o
d

u
le

co
n
tr

ib
u

ti
n

g
th

e
m

os
t

to
d

iff
er

en
ti

a
ti

n
g

th
e

to
p

tw
o

a
n

sw
er

s.

167

T
a

b
le

4
:

A
n

a
ly

si
s

o
f

L
7

/
L

1
2

E
xp

er
im

en
ta

l
D

a
ta

In
ta

ct
In

ta
ct

E
rr

or
M

an
u
al

B
es

t
A

n
sw

er
an

d
d
iff

er
en

ce
S
co

re
S
et

(p
p
m

)a
(p

p
m

)b
In

te
rp

re
ta

ti
on

cd
S
te

p
s

2n
d

B
es

t
A

n
sw

er
d

(p
p
m

)e
R

at
io

W
h
y
?f

A
ce

t-
2S

,
M

et
h
-8

2K
22

0-
2H

12
22

0.
3

50
A

ce
t-

2S
,

M
et

h
-8

2K
50

k
A

ce
t-

K
,

M
et

h
-8

2K
-1

7
1.

78
R

u
le

A
ce

t-
2S

,
M

et
h
-8

2K
22

0-
1H

12
22

0.
1

50
A

ce
t-

2S
,

M
et

h
-8

2K
50

k
A

ce
t-

K
,

M
et

h
-8

2K
-1

1.
78

R
u
le

M
et

h
-8

2K
,

K
,

K
20

7-
1L

12
20

6.
9

15
0

M
et

h
-8

2K
,

K
,

K
50

k
M

et
h
-8

2K
,
1
0
1

K
,

K
-6

5
1.

12
P

ep
ti

d
e

M
et

h
-8

2K
,

K
,

K
20

7-
2H

12
20

6.
8

50
M

et
h
-8

2K
,

K
,

K
50

k
M

et
h
-8

2K
,
1
0
1

K
,

K
-5

7
1.

12
P

ep
ti

d
e

M
et

h
-8

2K
,

K
,

K
20

7-
1H

12
20

6.
5

50
M

et
h
-8

2K
,

K
,

K
50

k
M

et
h
-8

2K
,
1
0
1

K
,

K
-3

2
1.

12
P

ep
ti

d
e

M
et

h
-8

2K
,

K
,

K
20

6-
0H

12
20

6.
1

50
M

et
h
-8

2K
,

K
,

K
50

k
M

et
h
-8

2K
,
1
0
1

K
,

K
+

0.
5

1.
12

P
ep

ti
d
e

M
et

h
-8

2K
,

K
,

K
20

5-
0L

12
20

5.
5

15
0

M
et

h
-8

2K
,

K
,

K
50

k
M

et
h
-8

2K
,
1
0
1

K
,

K
+

50
1.

12
P

ep
ti

d
e

M
et

h
-8

2K
,
K

,
K

17
5-

1M
12

17
4.

5
10

0
M

et
h
-8

2K
50

k
X

-1
2
0
V

,
1
2
1
K

,
A

m
id

-5
5
F

,
+

29
2

8.
96

P
ep

ti
d
e

M
et

h
-8

2K
,
1
1
8
M

M
y
r-

1
1
5
A

M
e
th

-8
2
K

16
3-

1M
12

16
2.

9
10

0
50

k
X

-2
S
,

M
e
th

-8
1
K

,
+

12
46

5.
56

M
S
/M

S
A

ce
t-

1
1
E

,
1
1
5
A

,
1
1
6
E

a
T

h
e

m
ea

su
re

d
in

ta
ct

ex
p

er
im

en
ta

l
m

as
s.

b
T

h
e

es
ti

m
at

ed
in

st
ru

m
en

t
er

ro
r

w
in

d
ow

,
m

as
s

m
ea

su
re

m
en

t
ar

e
as

su
m

ed
ac

cu
ra

te
w

it
h
±

th
is

va
lu

e.
c
M

an
u
al

in
te

rp
re

ta
ti

on
ta

ke
n

fr
om

in
ve

st
ig

at
io

n
of

m
o
d
ifi

ca
ti

on
is

of
or

m
s

of
al

l
ri

b
os

om
al

p
ro

te
in

s.
(R

am
k
is

o
on

,
u
n
p
u
b
li
sh

ed
d
at

a)
.

d
T

op
an

sw
er

sc
or

es
b

es
t.

B
ol

d
m

ea
n
s

d
iff

er
s

fr
om

ex
p

ec
te

d
.

X
(t

ru
n
ca

ti
on

),
A

ce
t

(a
ce

ty
la

ti
on

),
M

et
(m

et
h
y
la

ti
on

),
A

m
id

(a
m

id
at

io
n
),

M
y
r

(m
y
rs

to
la

ti
on

).
A

ll
in

cl
u
d
ed

X
-1

M
,

lo
ss

of
le

ad
in

g
m

et
h
io

n
in

e.
M

o
d
ifi

ca
ti

on
s

w
it

h
ou

t
p

os
it

io
n

re
p
re

se
n
t

m
u
lt

ip
le

eq
u
al

sc
or

in
g

w
it

h
gi

ve
n

m
o
d
ifi

ca
ti

on
at

d
iff

er
en

t
p

os
it

io
n
s.

e
D

iff
er

en
ce

b
et

w
ee

n
in

ta
ct

m
as

s
of

m
an

u
al

gu
es

s
an

d
to

p
P

IE
gu

es
s.

f
T

h
e

sc
or

in
g

m
o
d
u
le

co
n
tr

ib
u
ti

n
g

th
e

m
os

t
to

d
iff

er
en

ti
at

in
g

th
e

to
p

tw
o

an
sw

er
s.

168

Bibliography

Albrethsen, J. (2007). Reproducibility in protein profiling by MALDI-TOF mass spec-
trometry. Clin. Chem. 53, 852-858.

Banerjee, A. and Gerondakis, S. (2007) Coordinating TLR-activated signaling pathways
in cells of the immune system. Immunol Cell Biol, 85, 420-4.

Bendtsen, J. D. et al. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol
Biol, 340, 783-95.

Blom, N. et al. (1999) Sequence and structure-based prediction of eukaryotic protein
phosphorylation sites. J Mol Biol, 294, 1351-62.

Bogdanov, B. and Smith, R. D. (2005) Proteomics by FTICR mass spectrometry: top
down and bottom up. Mass Spectrom Rev, 24, 168-200.

Bolte, M. and Hogan, C. J. (2002) Conflict over the age of the Universe. Nature, 376,
399-402.

Brocchieri, L., and Karlin, S. (2005). Protein length in eukaryotic and prokaryotic pro-
teomes. Nucleic Acids Res. 33, 3390-3400.

Craig, R. and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass
spectra. Bioinformatics, 20, 1466-7.

Creasy, D. M. and Cottrell, J. S. (2004) Unimod: Protein modifications for mass spec-
trometry. Proteomics, 4, 1534-6.

Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science,
312, 212-7.

Durbin, K. R. et al. (2010) Intact mass detection, interpretation, and visualization to
automate Top-Down proteomics on a large scale. Proteomics, (in press).

Eng, J. K., McCormack, A. L., and Yates III, J. R. (1994). An approach to correlate
tandem mass spectra data of peptides with amino acid sequences in a protein database.
J. Am. Soc. Mass Spectrom. 5, 976-989.

Fang, Y. et al. (2010) Quantitative analysis of proteome coverage and recovery rates for
upstream fractionation methods in proteomics. J Proteome Res, 9, 1902-12.

Frottin, F., et al. (2006). The proteomics of N-terminal methionine cleavage. Molecular
Cell Proteomics. 51, 2336-2349.

169

Gasteiger, E. et al. (2005) Protein identification and analysis tools on the ExPASy server.
In Walker, J. M.(ed), The proteomics protocols handbook. Springer, Heidelberg, Ger.,
571–607.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. J. Mol.
Biol. 162, 705-708.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika. 57, 97-109.

Holmes, M. R. and Giddings, M. C. (2004) Prediction of posttranslational modifications
using intact-protein mass spectrometric data. Anal Chem, 76, 276-82.

Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. (2001). Bayesian infer-
ence of phylogeny and its impact on evolutionary biology. Science. 294, 2310-2314.

Jefferys, S. R. and Giddings, M. C. (2011) Automated data integration and determination
of posttranslational modications with the protein inference engine. Wu, C.H. and Chen,
C. (eds) In Bioinformatics for Comparative Proteomics. Springer. Heidelberg, Ger.

Jefferys, S. R. and Giddings, M. C. (2011) Baking a mass-spectrometry data PIE with
McMC and simulated annealing: predicting protein post-translational modifications from
integrated top-down and bottom-up data. Bioinformatics. 27, 844-852.

Kelleher, N. L., et al T. (1999). Localization of labile posttranslational modifications by
electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal. Chem. 71,
4250-4253.

Kentner, D., and Sourjik, V. (2006). Spatial organization of the bacterial chemotaxis
system. Curr. Opin. Microbiol. 9 619-624.

Kertesz, V. et al. (2009) PTMSearchPlus: software tool for automated protein identifi-
cation and post-translational modification characterization by integrating accurate intact
protein mass and bottom-up mass spectrometric data searches. Anal Chem, 81, 8387-95.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science. 220, 671-680.

Kollmann, M., et al (2005). Design principles of a bacterial signaling network. Nature.
438, 504-507.

Kysely, J. (2009) Coverage probability of bootstrap confidence intervals in heavy-tailed
frequency models, with application to precipitation data. Theor Appl Climatol, 101,
345-361.

Lee, T. Y., et al. (2006). dbPTM: an information repository of protein post-translational
modification. Nucleic Acids Res. 34, D622-D627.

170

Little, D. P., et al. (1994). Infrared multiphoton dissociation of large multiply charged
ions for biomolecule sequencing. Anal. Chem. 66, 2809-2815.

Mann, M. and Jensen, O. N. (2003). Proteomic analysis of post-translational modifica-
tions. Nat. Biotechnol. 21, 255-261.

Maxwell, E. J. and Chen, D. D. Y. (2008) Twenty years of interface development for
capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chim Acta, 627,
25-33.

Metropolis, N. et al. (1953) Equation of state calculations by fast computing machines.
J Chem Phys, 21, 1087-92.

Minamoto, T. et al. (2001) Distinct pattern of p53 phosphorylation in human tumors.
Oncogene, 20, 3341-7.

Mirzaei, H. and Regnier, F. (2006) Enhancing electrospray ionization efficiency of peptides
by derivatization. Anal Chem, 78, 4175-83.

Monigatti, F., Gasteiger, E., Bairoch, A., and Jung, E. (2002). The Sulfinator: predicting
tyrosine sulfation sites in protein sequences. Bioinformatics. 18, 769-770.

Perkins, D. N. et al. (1999) Probability-based protein identification by searching sequence
databases using mass spectrometry data. Electrophoresis, 20, 3551-67.

Perry, R. H. et al. (2008) Orbitrap mass spectrometry: instrumentation, ion motion and
applications. Mass Spectrom Rev, 27, 661-99.

Plato. (1968) The Republic of Plato.Basic Books, New York, NY.

Ramkisson, K., Su, H., Hamlet, E., Giddings, M. C. (Unpublished) Data from an in-
vestigation of E. coli ribosomal proteins and their PTMs by top-down and bottom-up
MS.

Searle, B. C, Dasari, S., Wilmarth, P. A., et l (2005). Identification of protein modi-
fications using MS/MS de novo sequencing and the OpenSea alignment algorithm. J.
Proteome Res. 4, 546-554.

Seo, J. and Lee, K. J. (2004). Post-translational modifications and their biological func-
tions: proteomic analysis and systematic approaches. J. Biochem. Mol. Biol. 37, 35-44.

Shi, Y. (2007) Histone lysine demethylases: emerging roles in development, physiology
and disease. Nat Rev Genet, 8, 829-33.

Siuti, N., and Kelleher, N. L. (2007). Decoding protein modifications using top-down
mass spectrometry. Nat. Methods. 4, 817-821.

Strader, M. B., Verberkmoes, N. C., Tabb, et al. (2004). Characterization of the 70S Ribo-
some from Rhodopseudomonas palustris using an integrated ”top-down” and ”bottom-up”
mass spectrometric approach. J. Proteome Res. 3, 965-978.

171

Tsur, D. et al. (2005) Identication of post-translational modications via blind search of
mass-spectra. Proc IEEE Comput Syst Bioinform Conf, 157-66.

VerBerkmoes, N. C., Bundy, J. L., Hauser, L., et al. (2002). Integrating ’top-down”
and ”bottom-up” mass spectrometric approaches for proteomic analysis of Shewanella
oneidensis. J. Proteome. Res. 1, 239-252.

Wilkins, M. R., Gasteiger, E., Gooley, A. A., et al. (1999). High-throughput mass
spectrometric discovery of protein post- translational modifications. J. Mol. Biol. 289,
645-657.

Walsh, C. T., Garneau-Tsodikova, S., and Gatto, G. J. (2005). Protein posttranslational
modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl.
44, 7342-7372.

Wisz, M. S, Suarez, M. K, Holmes, M. R, and Giddings, M. C. (2004). GFSWeb: a
web tool for genome-based identification of proteins from mass spectrometric samples. J.
Proteome Res. 3, 1292-1295.

Yates, 3rd, J. R. et al. (1995) Method to correlate tandem mass spectra of modified
peptides to amino acid sequences in the protein database. Anal Chem, 67, 1426-36.

Yates, 3rd , J. R. et al. (2009) Proteomics by mass spectrometry: approaches, advances,
and applications. Annu Rev Biomed Eng, 11, 49-79.

Yu, Y., Ji, H., Doudna, J. A., and Leary, J. A. (2005). Mass spectrometric analysis of
the human 40S ribosomal subunit: native and HCV IRES-bound complexes. Protein Sci.
14, 1438-1446.

Zhang, H. (2004) The Optimality of Naive Bayes. In Barr, V. and Markov, Z.(ed), Proc.
17th Internat. FLAIRS Conf.. Florida AI Research Society, FL, USA.

Zubarev, R. A., Haselmann, K. F., Budnik, B., et al (2002). Towards and understanding
of the mechanisms of electron-capture dissociation: a historical perspective and modern
ideas. Eur. J.. Mass. Spectrom. 8, 337-349.

172

