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ABSTRACT

RYAN DOUGLAS MILLS: Scale of pluton/wall rock interaction near May

Lake, Yosemite National Park, California, USA

(Under the direction of Dr. Allen F. Glazner and Dr. Drew S. Coleman)

The western outer granodiorite of the Tuolumne Intrusive Suite intruded a variety
of metasedimentary wall rocks at 93.1 £ 0.1 Ma. The May Lake metamorphic screen
(4500 x 550 m) is a remnant of the chemically diverse metasedimentary host rocks. Their
chemical contrast with the invading pluton provides an excellent location to study
pluton/wall rock interactions.

Outside the screen, visible wall-rock xenoliths (mostly pelitic quartzite) are
predominantly located in an elongate horizon surrounded by a hybridized fine-grained
granodiorite. Initial Sr and Nd isotopic ratios of the hybridized granodiorite indicate
incorporation of crustal material. Major- and trace-element geochemical data indicate
contamination of the granodiorite with pelitic metasedimentary rocks occurred in two
modes, selective assimilation of 1) a high-K partial-melt derived from pelitic quartzite,
and 2) a low-K partial-melt derived from pelitic quartzite. However, there is little
evidence for contamination of granodiorite beyond the immediate vicinity of wall rock

inclusions.
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Introduction

Assimilation of wall rock material is commonly invoked as a cause of large-scale
chemical heterogeneity in igneous rocks (McBirney et al. 1987; Clarke et al. 1998;
Barnes et al. 2005; Dungan 2005) and as a space-creating mechanism for plutons in the
upper crust via stoping and disaggregation (Paterson et al. 1996). Assimilation is an
umbrella term that encapsulates both bulk incorporation of wall rock (bulk assimilation)
and incorporation of partial melts of wall rocks, leaving behind a restitic residue
(selective assimilation). These end-member mechanisms of assimilation produce different
trends of chemical hybridization in plutons. Studies have defined hybridized aureoles or
zones in plutons (Barnes et al. 2004; Saito et al. 2007), but few detailed, meter-scale
geochemical studies have identified the assimilated material and quantified the spatial
extent of contamination.

Wall rock xenoliths are rare in most plutons (typically <<1% of overall volume;
Glazner and Bartley 2006); thus for incorporation of wall rocks to be a significant mass-
transfer process, assimilation of crustal material must be pervasive. Because bulk
assimilation of wall rocks is a thermodynamically unrealistic mechanism for pluton
emplacement (Bowen 1928; Glazner 2007), Beard et al. (2005) suggested that plutons
may dissolve and disperse up to 50% of their total mass during ascent and emplacement
via a process known as reactive bulk assimilation, but they did not address the exact
thermal budget involved in such a process. However, the chemical results of such a

process would be identical to bulk assimilation.



Assimilation is detectable because it drives the composition of the magma toward
the contaminant. If the contaminant is similar in composition to the magma, then little
change results. If it is another igneous rock, then the contaminated magma will have an
igneous composition as well. But if the contaminant is a non-igneous rock, then the
contaminated magma will likely lie off of the well-defined igneous trend in
compositional space (Fig. 1). In addition, whole-rock radiogenic isotopic analysis can
detect assimilation if the contaminant is isotopically distinct.

This study examines chemical and physical interactions between a pluton and its
wall rocks in order to place realistic limits on assimilation processes. We focus on the
contact between granodiorite and metamorphic wall rocks at May Lake in Yosemite
National Park, California (Figs. 2 and 3), where there are abundant glaciated outcrops,
great lithologic diversity of metasedimentary rocks in the wall rock screen, and
significant chemical and isotopic contrasts between the pluton and the metasedimentary

rocks.
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Fig.1. Selected major-element variation diagrams of plutonic rocks (Bateman et al. 1988,
Gray 2003) and a variety of metasedimentary rocks (Clarke 1908, this study). The basalt
and rhyolite fields show the end-member compositions of igneous rocks. Straight lines
indicate mixing paths of the basalt with quartzite or marble.
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Fig. 3. Geologic map of the May Lake Metamorphic Screen (after Taylor 2003).



Geologic Background

The Tuolumne Intrusive Suite (Fig. 2) is a concentrically zoned set of plutons
located in the Sierra Nevada batholith of California. The suite, which grades from a
granodiorite/ tonalite at the margin to granodiorite in intermediate zones and granite
porphyry at the core, was emplaced between 93.5 - 85.4 m.y. ago (Coleman et al. 2004).
From margin to core 87Sr/86Sr(i) values rise from 0.7058 to 0.7066 and eNd;, values vary
from -3 to -6, with the most significant isotopic changes occurring near the margins of the
suite (Kistler et al. 1986; Gray 2003).

The May Lake metamorphic screen consists of metasedimentary rocks in contact
with the western border phases of the Tuolumne Intrusive Suite (here referred to as
granodiorite of Glen Aulin, Kga) for approximately 4 km (Figs. 2 and 3). The screen,
mapped in detail by Rose (1957) and Taylor (2003), consists of quartzite, pelitic
quartzite, marble, and calc-silicate rocks that are correlated with late Proterozoic units of
the Mojave Desert region (Schweickert and Lahren 1991). Lahren et al. (1990) proposed
that this assemblage of rocks originated far to the south and was transported ~400 km
north along the proposed Mojave-Snow Lake fault.

Light gray to white quartzite makes up a majority of exposed metamorphic rocks
in the screen and is primarily recrystallized quartz (85 — 95%; Rose 1957) with minor
biotite and potassium feldspar. Pelitic quartzite is a foliated rock with layers of relatively
pure quartzite and pelitic hornfels; layer thickness typically ranges from millimeters to

meters. Biotite and muscovite define a foliation in the pelitic layers and plagioclase and



potassium feldspar are the other main components. Minor phases in the pelitic quartzite
include andalusite, sillimanite, and orthopyroxene (Taylor 2003). In addition, several
accessory minerals are present including apatite, zircon, monazite, and opaque minerals
(Rose 1957).

The two other main metasedimentary rock types in the screen are calcareous and
are present as boudins inside the quartzites. The calc-silicate rock unit is an equigranular
mixture of diopside, actinolite, calcite and quartz (Taylor 2003). The marble unit is
coarse-grained calcite with minor diopside and actinolite (Taylor 2003). All
metasedimentary rock units show evidence for pre- and syn-emplacement deformation
including several episodes of folding and boudinage (Taylor 2003; Coleman et al. 2005).

The outer unit of the Tuolumne Intrusive Suite is referred to collectively as the
granodiorite of Kuna Crest (Kk), but along the western edge of the suite near May Lake,
the unit is specifically referred to as the tonalite of Glen Aulin (Kga). Because these rocks
plot predominantly in the granodiorite field on a QAP ternary diagram (Fig. 3) the
terminology used here will be granodiorite of Glen Aulin (Kga). The granodiorite is
equigranular with equant biotite defining a subtle planar fabric. Hornblende and opaque
minerals are the other major mafic phases and minor sericitation of potassium feldspar is
present. Plagioclase and potassium feldspar (Anss.ss and Orgy; Gray 2003), along with

quartz, are the main felsic constituents.
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Fig. 4. Modal Quartz-Plagioclase-Potassium Feldspar compositions of plutonic rock,
partial melt (Holtz and Johannes 1991; Patifio-Douce and Johnston 1991; Montel and
Vielzeuf 1997; Patifio-Douce and Harris 1998) and leucosome geochemistry (Bea et al.
1994; Whitney and Irving 1994; Carrington and Watt 1995; Symmes and Ferry 1995;
Zeng et al. 2005a) determined using CIPW norm algorithm. Albite compositions only

contribute to the plagioclase component. Rock type classifications are after La Maitre
(2002).



Methods

Sampling strategy

Sampling was focused largely within 10 meters of the contact between the May
Lake screen and the granodiorite of Glen Aulin in order to understand the scale of
pluton/wall rock interactions. Previously analyzed samples of the granodiorite away from
the contact were also used to define the background chemistry of the unit. Samples of
each wall rock unit were collected for analysis as potential pluton contaminants. A
variety of granodiorite samples was collected from within 10 meters of the contact, and 2
line traverses extending perpendicular from the contact were sampled to establish the

length scale of contamination.

Xenolith mapping

Two representative areas (Fig. 2) were established for detailed mapping of
xenoliths in the granodiorite: one inside a particularly xenolith-rich horizon, and the other
in an area with a typically low density of xenoliths. A Nikon total station was used to
map the location of all visible xenoliths in the areas larger than 1 cm in longest
dimension. The long and short axis dimensions and rock type were noted for each

xenolith within the areas.



Geochemistry

Samples were ground to a powder using a steel jaw crusher and a ceramic
shatterbox. Powders were then shipped to Activation Labratories (Ontario, Canada), for
major- and trace-element analyses. Samples were dissolved by lithium
metaborate/tetraborate fusion. Major-elements and Sc, Be, V, Sr, Zr, and Ba were

analyzed by ICP-OES and all other trace-elements were analyzed by ICP-MS.

Isotope geochemistry

Whole-rock powder was dissolved and cations were separated for isotopic
analysis following methods outlined by Miller et al. (1995). Strontium and Nd isotopic
abundances were obtained on a VG Sector 54 thermal ionization mass spectrometer at the
University of North Carolina at Chapel Hill. Strontium isotopic ratios were normalized to
86S1/*8Sr = 0.1194 and referenced to *’Sr/**Sr = 0.710269 (NBS 987, n = 4); Nd isotopic
ratios were normalized to "**Nd/"**Nd = 0.7219 and referenced to "*Nd/'*Nd = 0.512117
(JNdi-metal, n = 4). Isotope dilution using spikes was not performed because Rb, Sr, Sm
and Nd concentrations were obtained via ICP-MS. 87Sr/865r(i) and eNd indicate values
corrected to 93.1 Ma, the crystallization age of the granodiorite (Coleman et al. 2004).
Epsilon values for Nd were calculated using 143Nd/mNd(CHUR, 0 Ma) = 0.512638 and

TS m/'"*Nd(CHUR, 0 Ma) =0.1967.

Heavy mineral separates
100 g blocks of 3 samples (ML051.02, ML051.03, & ML061.63) were reduced to

sand size using a Bico disc mill. Highly magnetic minerals were removed from the

10



samples with a hand magnet. Remaining minerals were passed through methelyne iodide
with a density of 3.32 g/cm3 to segregate dense minerals. Heavy mineral separates were
mounted in epoxy, polished, and identified using energy-dispersive x-ray analysis on a

Leica SEM with special attention to rare earth element- (REE) and Th-bearing phases.
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Results

Field relationships

The May Lake screen is approximately 4500 meters in length and 550 meters in
width. Each of the four major metasedimentary rock units is locally in contact with the
granodiorite but only pelitic quartzite, the only foliated metasedimentary unit, displays
evidence of concordant dike injections resulting in isolation of metasedimentary blocks
(Fig. 4a).

Xenoliths in the granodiorite around May Lake occur predominantly in a tabular
zone. The zone is approximately 1100 meters long and 200 meters wide and strikes
subparallel to the contact of the screen and granodiorite. Xenoliths in the zone range in
size from a few square centimeters to a single, large block, 140 meters by 240 meters,
near the contact (Taylor 2003). Hybridized, fine-grained granodiorite surrounds most
xenoliths in the tabular xenolith zone (Fig. 4b) and the hybridized granodiorite has a
lower abundance of mafic minerals than the typical granodiorite. Xenoliths found in the
hybridized zone are chiefly pelitic quartzite and show more ductile deformation than
xenoliths outside of the zone. Granodiorite immediately surrounding the xenolith zone
has modally layered bands defined by mafic minerals parallel to the edge of the zone
(Fig. 4c). In contrast, xenolith-free zones of the granodiorite have little to no modal
layering.

Mapping of xenoliths in the xenolith horizon illustrates the contrast between the

horizon and surrounding granodiorite. Mapping area #1 (Fig. 3, Fig. 5) consisted of a 40



D

Fig. 5. Field photographs of interactions between plutonic rocks and metamorphic wall
rocks. Photograph A shows a concordant intrusion of hybridized granodiorite in the
pelitic quartzite. Photograph B shows a pelitic quartzite xenolith surrounded by a
leucocratic rind. Photograph C shows a contact between granodiorite and a large block of
mixed metasedimentary rock type. Modal layering in the granodiorite is prominent
parallel to the block contact. Photograph D shows a concordant intrusion of granodiorite
in foliated metavolcanic rocks on the eastern side of the suite.
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Fig. 6. Representation of xenoliths mapped in zone 1. Circles are proportional to xenolith
area, elliptical area calculated from long and short axis field measurements.
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meter x 20 meter area of excellent exposure chosen to encompass the xenolith-rich
horizon. The xenolith-rich horizon is approximately 10-15 m thick and is surrounded by
typical xenolith-poor granodiorite. Although xenoliths account for ~2.5% of the 800 m’
area surveyed, within the xenolith-rich horizon in this mapping area, xenoliths make up
10.5% by area, illustrating the subjectivity of quantifying xenolith abundances. In the
second mapping area (Fig. 3), adjacent to the contact with calc-silicate rocks, xenoliths
make up 0.005% of the 1050 m> area, with all xenoliths occurring within 10 m of the

contact.

Major- and trace-element geochemistry

Major and trace-element data are presented in Table 1. Plutonic rock samples with
Sr and Nd isotopic ratios within the range of values from previously reported standard
Kga samples (Kistler 1986; Gray 2003) are denoted “granodiorite.” Plutonic rock
samples with 87Sr/86Sr(i) values higher than standard Kga and €Nd, values more negative
than standard Kga are denoted “hybridized granodiorite.”

Among granodiorite samples all major-element concentrations (Fig. 7) negatively
correlate with Si0, (55-68 wt. %) except K,O, which correlates positively, and Na,O,
which shows no correlation. Rubidium, Ba, and Zr correlate positively with SiO,,
whereas Sr, Zn, V, and Sc negatively correlate. Rare-earth element concentrations for
granodiorite normalized to chondrite show slight light rare earth element (LREE)
enrichment with values averaging ~100 times chondrite for La (Fig. 8). A few samples
show minor positive and negative Eu anomalies, but as a whole, the granodiorite has only

minor Eu anomalies.

15
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Fig. 7. Selected major- and trace-element variation diagrams of: 1) plutonic and
metamorphic rocks near May Lake, 2) experimental partial melting data (Holtz and
Johannes 1991; Patino-Douce and Johnston 1991; Montel and Vielzeuf 1997; Patifio-
Douce and Harris 1998), 3) leucosome geochemistry (Bea et al. 1994; Whitney and
Irving 1994; Carrington and Watt 1995; Symmes and Ferry 1995; Zeng et al. 2005a), and
4) plutonic rock geochemistry of Tuolumne Intrusive Suite (Bateman et al. 1988, Gray
2003).
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Most hybridized granodiorite samples have higher concentrations of SiO; (62-78
wt. %) than granodiorite samples and diverge into two groups when correlated with K,O.
Group A (hereafter referred to as high-K) has a positive correlation between SiO, and
K,0, following the trend of the entire Tuolumne Intrusive Suite. Group B (hereafter
referred to as low-K) has a negative correlation between SiO, and K,O, and K,0O
concentrations are predominantly <2 wt. % for rocks in this group. Barium concentrations
(Fig. 7e) differ between groups, with high-K samples having high Ba concentrations
(~1000 ppm) and low-K samples having lower Ba concentrations (<400 ppm). Low-K
samples can have higher LREE concentrations (Figs.8, 9) than high-K and granodiorite
samples. Several of the hybridized samples have large Eu anomalies, some positive and
some negative, but there is no correlation between the groups defined by K,O
concentrations and the sign or intensity of Eu anomalies.

Metasedimentary rocks found in the screen span a large range of major-element
compositions. The quartzite has measured SiO, values between 88-95 wt. % with
variable amounts of Al,O3; and K;O making up most of the remainder. Outcrops of the
quartzite are massive with weak foliation, in contrast to the well-foliated pelitic quartzite.
The composition of the pelitic quartzite varies depending on the relative abundance of silt
to sand layers in the protolith, with SiO, ranging from 67-81 wt. %. The calc-silicate
rock unit has SiO, concentrations around 50 wt. % and 6-9 wt. % MgO. The marble

varies in purity, but both analyzed samples have ~48 wt. % unnormalized CaO.
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Fig. 9. Trace-element variation diagram displaying averages of the low-K,O hybrids and
high-K,0 hybrids normalized relative to the average of the normal granodiorite. The two
groups of hybrids exhibit major differences for trace-elements such as Ba, Th, and all
REE. Concentrations of hybridized trace-elements approach the normal granodiorite with
decreasing levels of contamination.
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Sr and Nd isotope geochemistry

Whole-rock Nd and Sr isotope ratios are presented in Table 2. 87Sr/86Sr(i) and
eNd, are corrected to the crystallization age of the granodiorite of Glen Aulin (93.1 Ma).
Granodiorite away from the screen exhibits a range of eNd, from -3.43 to -3.78 and
87S1/*Srg) from 0.705795 to 0.705935 (Kistler 1986; Gray 2003; this study). Hybridized
granodiorite ranges in eNd(, from -3.54 to -10.46 and 87Sr/86Sr(i) from 0.706105 to
0.714147, and eNd, and 87Sr/86Sr(i) correlate throughout the hybridized granodiorite
samples (Fig. 10). All granodiorite samples with hybridized compositions were collected
within 2 meters of wall rock material and all samples farther from the wall rocks show no
isotopic variation from the granodiorite. Plots of distance from wall rock vs. isotopic
ratios (Fig. 11) show the dramatic decrease in isotopic heterogeneity as distance from
wall rock increases. A plot of eNd) versus K>O (Fig. 12) clearly differentiates the two
contamination trends in the hybridized granodiorite samples, with one contaminant
having high K>O (~5 wt. %) and the other contaminant having low K,O (<1 wt. %).

The potential contaminants all have more radiogenic Sr isotopic ratios and less
radiogenic Nd isotopic ratios than the granodiorite, with eNd ranging from -7.92 to
-23.65 for both types of quartzites, and approximately equal to -18 for calc-silicate rocks,
and -16 for marbles. The variability in isotopic ratios and daughter isotope whole-rock
concentrations produces a great variety of potential mixing trends between the

granodiorite and varied metasedimentary wall rocks.
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Fig. 10. Plot of ¢Nd, against 87Sr/86Sr(i), both corrected to 93.1 Ma. Wall rocks span a
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distinct chemical compositions while €Nd, stays relatively constant, because these
melting reactions do not significantly fractionate Sm from Nd.
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Trace mineralogy

Semi-quantitative observations of heavy mineral separates are summarized in
Table 3. Monazite is the only observed phase in the pelitic quartzite sample (ML051.03)
with stoichiometric concentrations of LREE and Th. Allanite is the only observed phase
with stoichiometric concentrations of LREE in the plutonic rock samples and
uranothorite is the only observed phase with stoichiometric concentrations of Th in the
plutonic rock samples. However, the relative abundances of allanite and thorite are higher
in the hybridized sample (ML051.02) than they are in the granodiorite sample
(MLO061.63). Although monazite, allanite, and uranothorite have the highest
concentrations of LREE and Th, the remaining minerals of the rock house the majority of

these elements.

Mixing percentages

Weighted least-squares analysis of major-element concentrations was performed
to estimate percentages of the granodiorite component and the contaminant component in
the hybridized samples. Average major-element concentrations of Kga were used as one
end-member of mixing and averages of partial melting experimental data and leucosome
analyses (divided into low-K and high-K groups) were used as the other end-members of
mixing. The low-K,O contaminant was used for hybridized samples that have lower K,O
weight percents than the granodiorite and the high-K,O contaminant was used for
hybridized samples that have higher K,O weight percents than the granodiorite.

Calculations for individual hybridized samples produced mixing percentages ranging
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from 15% wall rock contaminated to ~100% wall rock contaminated (Fig. 13), with

highly contaminated samples occurring within 10 centimeters of the wall rock.
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Fig. 13. 87S1/*°Sr; values for average Kga and hybridized granodiorite samples plotted
against results from weighted least-squares mixing analysis of major-element chemistry.
Mixing hyperbolas for several wall rock partial melt scenarios are shown to illustrate: 1)
the variability in isotopic ratio of the quartzites in the screen (shown are 3 examples:
0.730, 0.715, and 0.765), and 2) the variability in mixing paths dependent on Sr
concentrations in the partial melts. Tick marks on the mixing paths represent 25%, 50%,
and 75%.
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Discussion

Xenoliths

Xenoliths observed in the granodiorite are overwhelmingly pelitic quartzite
(~90%, determined from xenolith mapping) and metamorphic residue interpreted as
restite from pelitic quartzite based on major- and trace-element geochemistry. However,
the metasedimentary screen contains only ~5 area % pelitic quartzite, the remaining ~95
area % consisting of massive wall rock units (quartzite, marble, calc-silicate rocks; Fig.
3) as estimated from Taylor’s (2003) map of the area. Thus, observed xenolith
abundances do not conform to wall rock abundances in the May Lake screen. Physical
properties of the wall rock such as foliation, and chemical properties such as mineral
fertility for partial melting, play an important role in determining what rock types the
magma body incorporated as xenoliths.

Incorporation of the pelitic quartzite into the magma occurred via brittle fracture
along foliated layers, by dehydration melting reactions in muscovite and biotite-rich
layers of the pelitic quartzite, or by a combination of the two processes. The pelitic
quartzite is the only foliated unit in the May Lake screen, but foliated metavolcanic rocks
in contact with the eastern margin of the Tuolumne Intrusive Suite experienced similar
separation and incorporation along metamorphic foliation (Fig. 5d).

Wall rock xenoliths are concentrated in a planar horizon (Fig. 3) oriented
subparallel to the contact between the screen and the pluton. Surrounding most xenoliths

in the horizon is a fine-grained, leucocratic, hybridized granodiorite that appears to be a



mixture of granodiorite and felsic material from the xenoliths (Fig. 5b). The hybridized
granodiorite is restricted to within a few meters of visible pelitic material. The horizon
suggests syn-emplacement disaggregation, dispersal, and partial melting of wall rock
blocks by pulses of magma that later hybridized.

Although the pelitic quartzites are chemically diverse, the sample taken from a
xenolith in the horizon (ML051.09) shows some evidence of being restitic material. Silica
content in the xenolith is significantly lower (59 wt. %) than the measured values from
the pelitic quartzite in the screen (67 and 81 wt. %). The Rb/Sr ratio is anomalously low
(0.09 vs. 0.56 and 4.1 in the screen), consistent with removal of incompatible elements
during partial melting. These observations are consistent with findings by Verplanck et
al. (1999) for restitic xenoliths of Precambrian granite wall rocks in the Organ Needle
Pluton, New Mexico, and by Preston et al. (1999) and their modeled chemical

composition for pelite restite after extraction of a rhyolitic partial melt.

Determining contaminants

The variability found in the hybridized granodiorite geochemical data, and
specifically the bimodal K,O trends (Figs. 7 and 12), suggest incorporation of a minimum
of two different contaminants. One contamination trend produced hybrid samples that
have a positive correlation between K,O and Si0O,. Bulk assimilation of the observed wall
rocks in the screen (marble, calc-silicate rocks, quartzite, and pelitic quartzite) cannot
produce the major-element variability seen in these high-K hybrids. All geochemical data
for these rocks suggest contamination by a rhyolitic partial melt derived from the wall

rocks. The second contamination trend has a negative correlation between K,O and SiO,.
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Major-element data for this trend fit either bulk assimilation of pure quartzite, or selective
assimilation of a low-K,O partial melt derived from the wall rocks.

The low-K hybridized granodiorites have significant trace-element variability,
including large variations in Th and LREE. Two samples (ML051.02 and ML061.36)
have concentrations of Th and REE that are significantly higher than any granodiorite or
quartzite sample. For these samples, hybridization was not a result of bulk assimilation of
pure quartzite. The remaining low-K hybrids do not show this dramatic spike in Th or
LREE and thus bulk assimilation of pure quartzite is plausible according to chemical
analyses. However, if the low-K trend is produced from one distinct contamination
process, then the low-K hybrids with the largest chemical variability highlight the
assimilation process and the low-K hybrids with mild chemical variability exemplify the
same process cryptically. Overall, evidence for bulk assimilation of quartz is plausible in
a few mildly hybridized samples.

Because selective assimilation of partial melts derived from wall rocks is the
likely contaminant for both K,O trends of hybridization (high-K and low-K), it is
important to determine the parental wall rock for the melts. Partial melting generally
results in a liquid with different chemistry than the original solid. Because the pure
quartzite and marble units are essentially monomineralic rocks, they are extremely
limited in their ability to melt incongruently, and would only produce minimal volumes
of partial melt. This restricts potential fertile source rocks from the screen that could
produce partial melts to the pelitic quartzite and the calc-silicate rocks.

Experimental partial melting studies (e.g., Holtz and Johannes 1991; Patifio-

Douce and Johnston 1991; Montel and Vielzeuf 1997; Patino-Douce and Harris 1998)
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of melt generation in pelitic rocks combined with geochemical studies of migmatized
aureoles surrounding plutons (e.g., Bea et al. 1994; Whitney and Irving 1994; Carrington
and Watt 1995; Symmes and Ferry 1995; Zeng et al. 2005a) provide detailed information
on melting reactions that are likely to occur during contact metamorphism of pelitic
material, and the range of compositions that will be produced from these partial melting
reactions (Figs. 4 and 7). Experimental studies and leucosome analysis define a high-K,O
initial partial melt that is indistinguishable from peraluminous leucogranite compositions
(Montel and Vielzeuf 1997). In addition to the common high-K,O partial melt, melting
experiments frequently produce low-K,O glass compositions and migmatite studies in
contact aureoles have identified low-K,O leucosomes.

Variability in potassium relates to the activity of H,O. As the activity of H,O
increases, the melting temperature decreases and plagioclase and quartz are consumed in
greater proportion than muscovite because mica stability extends to lower temperatures
(Patifo-Douce and Harris 1998; Zeng et al. 2005a). Patifio-Douce and Harris (1998)
conducted fluid-present and fluid-absent melting experiments on pelitic material at 0.6,
0.8, and 1.0 GPa with temperatures between 700 to 800 °C. Their results define two
different melting reactions referred to below as MR-1 and MR-2. Stoichiometry in mass
units was determined by the change in phase abundances at conditions that just exceed

the muscovite-out boundary and the initial pelitic material.

22Ms + 7Pl +8Qtz — 25Melt +5Kfs +5Sil +2Bt (MR-1)

9Ms + I5P1 + 7Qtz +xH>0 — 31Melt (MR-2)

(Ms- muscovite, Pl- plagioclase, Qtz- quartz, Kfs- alkali feldspar, Sil- sillimanite, Bt- biotite)
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The fluid absent melting reaction (MR-1) produces a melt that has greater
concentrations of K,O than the fluid-fluxed melting reaction (MR-2). Leucosomes of
both varieties (high-K and low-K) occur within the same migmatite complexes (Zeng et
al. 2005a), suggesting that the activity of H,O can vary within short distances in contact
aureoles. This could be related to variability in H,O concentration, or to change in the
CO; proportion in the fluid. As the CO, component of a HO-CO, fluid increases, the
effectiveness of that fluid to suppress melting temperature is decreased (Ernst 1976). Free
CO, would be available due to degassing of CaCOs3 found in the marble and calc-silicate
rocks of the metamorphic screen.

Kga intruded at ~0.2 GPa and 720°C (Gray 2003), which is similar in temperature
but significantly different in pressure conditions than the experimental results. However,
these melting reactions are less sensitive to pressure changes than they are to temperature
changes, and minerals and melts in the experimental results show no direct chemical
correlation with pressure variations. In addition, leucosomes formed at pressures of 0.3 —
0.5 GPa and temperatures ~700°C in the southern Sierra Nevada (Zeng et al. 2005a) are
consistent with the chemical reactions above. Thus, melting reactions MR-1 and MR-2
are probable simplifications of the melting dynamics of the pelitic material in the May
Lake screen during emplacement of Kga.

The high concentrations of Th and LREE in some of the low-K hybrids could be
related to the high dissolution rate of monazite in MR-2 (Zeng et al. 2005b). Analysis of
heavy mineral separates (Table 3) suggests that monazite is the mineral with the largest
concentrations of Th and LREE in the pelitic quartzite. However, the granodiorite

mineral separates showed uranothorite and allanite with the largest concentrations of Th
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and LREE, with the hybrid sample from within 10 cm of the pelitic quartzite containing
more uranothorite and allanite than the uncontaminated granodiorite sample. It is
probable that the preferential incorporation of monazite into the low-K partial melt
increased the overall concentrations of LREE and Th in the adjacent hybridized magma,
resulting in greater abundances of uranothorite and allanite.

Chemical data suggest that both partial melts originated from the pelitic quartzite
unit in the May Lake screen. However, we have not ruled out the contribution of a calc-
silicate rock partial melt. Detailed chemical studies of mafic magmas in contact with
calcareous wall rocks show that basaltic magmas can initiate partial melting of the wall
rocks and selectively assimilate a calcium-rich liquid (Joesten 1977; Wenzel et al. 2002),
but, similar to our findings, the magma contamination is limited in extent (< 3 m; Joesten
1977), and restitic xenoliths are common (Preston et al. 1999). No calc-silicate rock
xenoliths had rinds indicative of partial melting like the pelitic quartzite xenoliths. And
although many of the hybridized samples are enriched in K,O and/or Na,O, none of the
hybridized samples are enriched in CaO relative to the granodiorite.

Bulk or selective assimilation of marble and calc-silicate rocks was not observed
in the plutons near May Lake and thus all incorporated calcareous material is visible as
xenoliths. However, because marble and calc-silicate rocks make up a small percentage
of the observed xenoliths near May Lake (<5%) and no large blocks of marble or calc-
silicate rocks are observed, it is likely that little calcareous wall rock material entered the
magma in any form. Because these calcareous rock types are common in the upper crust,
their lack of incorporation into magma bodies inhibits the process of large-scale

assimilation of metasedimentary sequences that contain marble or calc-silicate rock units.
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Reconciling chemical mixing percentages

Calculated mixing percentages, from selected major-elements, of the hybridized
samples cover a broad range of mixing between wall rock partial melt and magmatic
(Kga) melt (Fig. 13). Major-element concentrations for Kga and the two distinct partial
melts from pelitic quartzite have restricted variability and provide quantifiable mixing
proportions (Table 4). However, the calculated mixing percentages for the hybrid
samples have no single correlation with ¥'St/*°Sr) (Fig. 13) or éNd,,. The low correlation
between calculated mixing percentages and 87Sr/86$r(i) and eNd, relates to: 1) the high
isotopic variability of the quartzite samples (87Sr/86Sr(i) = (.7062 to 0.7741 and eNd) =
-5.1 to -23.7), 2) isotopic disequilibrium (Knesel and Davidson 1996; Zeng et al. 2005a)
during partial melting of the pelitic material and 3) modal segregation seen in the outer
portion of the pluton, which can disguise the original contamination by segregating
minerals, some with drastically different distribution coefficients for Sr and Nd, with Nd
especially affected by segregation of trace phases (Gromet and Silver 1983).

Mixing hyperbolas (Fig. 13) between Kga and different quartzite samples, with
reasonable Sr concentrations for the partial melts (Bea et al. 1994), illustrate the high
variability of 87Sr/865r(i) that should be expected during such partial melting/ mixing
processes. However, the mixing hyperbolas shown are non-quantifiable paths of mixing
because multiple mixing path solutions for each hybrid sample exist. Thus the major-

element mixing percentages give the more interpretable results of mixing.
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Limits of contamination in the Tuolumne Intrusive Suite

The length scale of contamination along the side of the suite near May Lake is
restricted to within 2 meters of wall rock material (Fig. 11). This thin rind of
contamination in the outer portion of the suite can be interpreted in two ways: 1)
contamination is localized at contacts between fertile wall rock and magma, and similar
roof contacts in the central portions of the suite are no longer preserved owing to erosion;
or 2) the identifiable chemical hybridization is only preserved at the outer contacts when
and where the magma system was thermally immature, and the inner units, over time,
homogenized their assimilated material such that remnants of that process are only
preserved in the overall isotopic gradation from margin to core in the Tuolumne Intrusive
Suite (Fig. 11).

If selective assimilation of wall rock only occurred as a rind surrounding the suite,
establishing an upper limit on volume transferred from wall rock to pluton is possible.
We calculated the upper limit volume percent of both Kga and the entire suite that is wall
rock material by placing a 2 meter wide rind of 100% wall rock partial melt along the
outer contacts with wall rock. The ~60 km” Kga (western, outer unit only) would thus
have 0.2 area % wall rock contamination. Assuming a rectangular intrusion with roof and
floor contacts contributing the same 2 m rind of contamination, and a minimum pluton
thickness of 1 km (based on present relief of plutonic suite), selective assimilation could
contribute 0.6 volume % of Kga. For the entire Tuolumne Intrusive Suite, selective
assimilation could contribute 0.44 volume % of a 1 km thick suite. Thickening the suite
decreases the percentage with a 2 km thick suite having 0.24 volume % wall rock partial

melt, and a 5 km thick suite having 0.12 volume % wall rock partial melt.

34



If selective assimilation of wall rock was pervasive during emplacement of the
Tuolumne Intrusive Suite and the increasingly crustal isotopic ratios of inner units relate
to wall rock contamination, a much larger volume % wall rock partial melt is necessary in
the suite. Because the major-element variability of inner units is only consistent with Kga
and the high-K partial melts, there is no chemical evidence of assimilation of a low-K
partial melt in the interior of the suite. Because the high-K partial melt is chemically
indistinquishable from a rhyolitic melt, it is difficult to determine the origin of such a
felsic contribution to the suite. However, if in situ selective assimilation is the cause, one
would expect greater Sr and Nd isotopic variability in the interior of the suite due to: 1)
the wall rock dependence of partial melting, and 2) the high variability in Sr and Nd
isotopic ratios in the partial melts.

The systematic change in isotopic data across the entire suite (Gray 2003)
suggests the Sr and Nd isotopic variability is related to an earlier stage in magma
generation. A migration of the source magmatism under the Sierra Nevada batholith
during the emplacement of the inner units of the suite (Gray et al. 2008), which mimics
other concentrically zoned suites (e.g. Whitney Intrusive Suite; Coleman and Glazner

1997) seems a probable explanation.
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Conclusions

1) The predominant observable contaminant in the outer portion of the granodiorite of
Glen Aulin is pelitic quartzite, which is the only foliated metasedimentary rock unit in the
adjacent May Lake metamorphic screen. This rock type makes up approximately 90% of
observed xenoliths.

2) Xenoliths are exceedingly rare in the Tuolumne Intrusive Suite (<0.0001% by area;
Glazner and Bartley 2008 in press), but are found in some abundance (locally up to 10%
of selected 10x10 m area) in a xenolith-rich horizon subparallel to the contact. However,
outside of this horizon, xenoliths make up <<1% of the exposed area, even adjacent to the
contact with the metamorphic screen.

3) Major-element, trace-element, and radiogenic isotopic data suggest localized
contamination of the pluton within 2 m of the contact with wall rock material.

4) No significant bulk or selective assimilation of marble or calc-silicate rocks occurred
during emplacement of the granodiorite of Glen Aulin and such rocks make up only a
small fraction (<10%) of observed xenoliths.

5) The contamination path is bimodal, with some of the hybridized samples trending
toward high Si0; (~75 wt. %) and high K,O (~5 wt. %) and the rest trending toward high
Si0; (~75 wt. %) and low K,0 (< 1 wt. %).

6) Major-element and trace-element data suggest that bulk assimilation of wall rock was

insignificant during emplacement of the Tuolumne Intrusive Suite and the localized



contaminants are partial melts selectively assimilated from the pelitic quartzite (one with
high-K,0 and the other with low-K,0).

7) Geochemical trends of contamination in the hybridized samples are consistent with
data from leucosomes in migmatites which suggests that at least two main melting
reactions produce two chemically distinct partial melts, one high-K,0O and one low-K,O.
8) Assimilation of wall rock is not a significant space conserving mechanism for the
emplacement of the Tuolumne Intrusive Suite because of the spatially restricted

contamination of the plutonic rocks.
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TABLE 3 heavy mineral separates mineral data
pelitic  hybridized
quartzite granodiorite
MLO051.03 MLO051.02 MLO061.63

granodiorite

Monazite percent of heavy minerals ~10%

Uranothorite percent of heavy minerals ~3% <1%
Allanite percent of heavy minerals ~15% <1%
Ce in monazite (ppm) ~15

Th in monazite (ppm) ~3

Ce 1n allanite (ppm) ~18 <3
Th in uranothorite (ppm) ~27 18
Ce in whole-rock (ppm) 101 213 55

Th in whole-rock (ppm) 19 75 31
heavy minerals/total 0.05wt.% | 0.2 wt.% 0.4 wt.%

Heavy mineral separates contain minerals that passed through MET liquid with a density

of 3.2 g/em’. Mineral percentages were estimated by point counts of heavy mineral
mounts using energy dispersive spectrometry (EDS) on a SEM.
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