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ABSTRACT 

Kyle P. Messier 

Integration of a Contaminant Source Land Use Regression Model in the Bayesian Maximum 

Entropy Spatiotemporal Geostatistical Estimation of Groundwater Tetrachloroethylene Across 

North Carolina 

(Under the direction of Marc L. Serre) 

 

 

 The assessment of groundwater tetrachloroethylene (PCE or PERC) exposure across North 

Carolina is currently hindered due to limited statewide spatiotemporal contaminant maps. In this 

study we incorporate data from multiple sources to create estimation maps of groundwater PCE. 

A land use regression (LUR) mean trend model was developed as a function of exponentially 

decaying contribution from contaminant sources in North Carolina. This mean trend model was 

integrated in a Bayesian Maximum Entropy (BME) framework to produce informative 

space/time (S/T) maps. We compare our method with standard geostatistical methods (i.e. 

kriging and BME with constant mean trends) and find a 25 % reduction in cross-validation mean 



iv 
 

square error. Our results suggest that dry cleaning and hazardous waste generator sites influence 

groundwater at distances of 1 km and 800 m respectively. This work introduces a novel 

integrated LUR and BME approach which produces accurate visual representations of PCE 

exposure across North Carolina.  
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1. INTRODUCTION 
 

Tetrachloroethylene (PCE or PERC) is a chlorinated solvent that is commonly used for dry 

cleaning of fabrics and for metal degreasing operations[1], and “likely carcinogenic to humans” 

according to the United States Environmental Protection Agency (USEPA) [2]. PCE is 

associated with both acute and chronic human exposures which can likely lead to health effects 

including nausea, headache, and cancer of the liver, lungs, and kidney[1]. In addition, PCE is one 

of the most frequently detected volatile organic compounds in groundwater in the United States 

[3-5].  The USEPA delegates private well standards to the states; North Carolina uses a 

groundwater quality standard for PCE of 0.7 ppb [6], designed to protect the health of private 

well owners. In North Carolina, at least 1,500 sites are estimated to be contaminated with PCE or 

similar solvents [7].  

 The current groundwater PCE management program in North Carolina is divided 

between the Department of Environment and Natural Resources (NCDENR) and the Department 

of Health and Human Services (NCDHHS). While this program is sufficient for post-hoc case by 

case management, it is limited for statewide exposure assessment and lacks predictive 

capabilities. One approach for modeling large-scale environmental exposure, which combines 

Space/Time Random Field (S/TRF) theory and Bayesian Maximum Entropy (BME), has proven 

successful in the statistical space/time estimation in surface water [8] and in air quality[9]. 

Another approach for modeling environmental exposure is land use regression, which has also 

proven successful in the statistical estimation of air quality contaminants [10].  
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 A statewide groundwater PCE exposure assessment can help state agencies better protect 

public health; however, budget constraints, sparse data, and the extensive manpower required for 

well monitoring make statewide assessments difficult. In our study, we combine data from 

NCDENR, NCDHHS, and USGS to propose an integrated land use regression and BME 

approach, which leads to a cost-effective statewide PCE exposure assessment. To the authors’ 

knowledge, an approach has not been implemented for PCE estimation which combines land use 

regression with S/TRF theory and BME. 

 Space/time random field theory provides a framework to model the variability and 

uncertainty of environmental parameters (e.g. groundwater pollutants) across space and time in 

terms of a probability distribution function (PDF) [11]. Space/time BME is a modeling technique 

that allows one to incorporate general knowledge (e.g. covariance) and site-specific knowledge 

about the spatial process of interest to produce maps that represent the distribution of the 

parameter at any unsampled point of interest, resulting in informative maps of water quality [11]. 

Furthermore, the BME framework allows for the general knowledge to be informed by a 

physically meaningful mean trend, such as a land use regression model.   

 This research proposes an approach within the space/time epistemic BME framework in 

conjunction with a land use regression model based on pollution sources. Specifically, instead of 

using constant global or local constant mean trend models, we define a mean trend model that is 

based on land use regression principles. We use groundwater quality data from multiple publicly 

available data sources encompassing the full range of site types: (i) monitoring wells near known 

contaminated sites, (ii) private wells, and (iii) ambient monitoring wells. We also incorporate 

contaminant source variables for the land use regression model as explanatory variables for PCE 

concentration. This approach was used to assess groundwater PCE concentration across the state 
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and predict potential undiscovered areas of contamination. The presented work includes (i) a 

land use regression mean trend that accounts for the effect of contaminant sources on 

groundwater PCE concentration; (ii) BME integration of the developed land use model and 

general and site specific knowledge bases about concentration residuals that yield informative 

space/time maps describing the distribution of groundwater PCE across North Carolina; and (iii) 

a cross-validation model comparison against geostatistical methods with constant mean trends. 

Finally, we conclude on the policy relevance of this work for groundwater PCE exposure.   

2.  MATERIALS & METHODS 
 

2.1 Tetrachloroethylene Data Sources 
 

Data on groundwater PCE were compiled from three sources, which are detailed as follows: 

 

1. DSCA EDD Monitoring Wells 

 

North Carolina monitors PCE through the Dry Cleaning and Solvent Cleanup Act (DSCA) 

section of the N.C. Division of Waste Management, which was established to help fund cleanup 

of PCE contamination[12]. DSCA maintains contracts with private companies to construct 

monitoring wells, which in turn provide DSCA with an electronic data deliverable (EDD) that 

contains the locations of PCE concentrations in monitoring wells. There are approximately 207 

DSCA sites distributed across the state, but EDD’s are not available for all the sites yet. For this 

study, we have data from 48 DSCA monitoring sites, collected from 1999-2010, resulting in 641 

monitoring wells with 709 space/time samples. It should be noted that the DSCA monitoring 
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sites are spatially clustered since all of the monitoring wells around a known polluted site are 

approximately within a square kilometer area.  

2. DHHS Geocoded Private Wells 

 

The North Carolina Department of Health and Human Services collects organic VOC data from 

North Carolina homeowners. Prior to 2007 the data collected were from homeowners who 

voluntarily had their well tested. Starting in 2007 all new wells built were required by law to be 

tested [13]. The data are analyzed at the Department of Public Health State Lab, where a paper 

report for each well is created and stored. There is no standard for providing GPS coordinates in 

the report; however, the well address is provided. Consequently, we digitized the paper reports 

by hand and then applied a geocoding scheme to obtain geographic coordinates. Using the 

address locator tool of ArcGIS ™, data were assigned coordinates in a multi-stage process using 

a North Carolina point reference file (courtesy of NCDHHS Spatial Analysis Group), followed 

by a North Carolina Department of Transportation line reference, then with a U.S. street address 

line reference file (Tele Atlas Dynamap Transportation, 2003). The locational error of geocoded 

addresses with a match score (A number between 0 and 100 that represents the overall accuracy 

of the address located datum.) of 70 and above have previously been shown to not be 

significantly different than those with a 100 match score using these reference files, therefore all 

geocoded addresses with a match score of 70 and above were included in the dataset[14]. The 

address geocoding resulted in 2,411 geocoded wells with 2,874 space/time samples from the 

years 2003-2010 that were previously unavailable.  

3. USGS National Water Information Systems Wells 
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We downloaded all of the PCE well data available from the USGS NWIS website 

(http://nwis.waterdata.usgs.gov). We obtained 71 monitoring wells with 94 space/time samples 

from 2001-2010 distributed across the state.  

The dataset post-processing is housed in an electronic database which contains the 

following fields: PCE value (ppb), longitude and latitude (North American Datum 83), data 

source (figure S1), site ID for EDD data, well ID (a unique identifier for every well; ID’s given 

by an organization are maintained), sample date, and sample detection limit. Our blending of 

data sources resulted in 3,123 unique wells with 3,650 space/time samples. 

2.2 Land Use Regression Model 
 

2.2.1 Dependent Variable 

 

The global mean trend of groundwater PCE was estimated by a land use regression model, where 

the dependent variable is the log-transformed PCE concentration obtained above. By taking the 

log-transformation we reduce the skewness from 21.34 to 2.62. Our PCE monitoring data 

contained below detect data; therefore a method to account for samples without detectable PCE 

was necessary. There are a variety of acceptable methods to handle left-censored below detect 

environmental data, including assigning the below detect a value of half the detection limit [8] or 

performing the analysis based on detection frequency [4]. In this study we model the probability 

distribution function (PDF) of log-PCE using a Gaussian distribution with a mean  and variance 

2
 such that the cumulative distribution function (CDF) at the detection limit and the 95

th
 

percentile produce values equal to the percent of samples below detect and the 95
th

 percentile of 

the sampled values, respectively. A full numerical description for the technique is described in 

the supplementary material. Once the full PDF of log-PCE is obtained, we assign below detect 
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data to the mean of the truncated normal (Gaussian) distribution, truncated at the detection limit 

(Figure 1).  

 2.2.2 Known and Potential Sources of PCE 

PCE almost always occurs because of anthropogenic causes[1, 15], thus we constructed the 

independent variable based on the locations of sites that are known or potential sources of PCE.  

The location and associated information for land use variables were obtained from NC Division 

of Waste Management GIS personnel [15] and from NC Onemap [16], a public online database 

for GIS data. We incorporate the following land use variables into our contaminant source 

database: dry cleaners including DSCA and non-DSCA sites; Resource Conservation and 

Recovery Act (RCRA) hazardous waste generator sites; Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA or Superfund) sites; National Pollutant 

Discharge Elimination System (NPDES) sites; septage land application sites/ septage detention 

or treatment facility sites (Septage); brownfield sites; landfills (current and pre-regulatory); and 

manufacturing gas plants (MGP) sites.  

2.2.3 Independent Variables Based on Contamination Sources 

 

As mentioned above the occurrence of PCE in groundwater is mainly associated with 

anthropogenic sources. It is generally believed that major types of sources include dry cleaners, 

hazardous waste generators and Superfund sites, but other types of sources cannot be discounted 

[1]. For each type of pollution source l, (e.g. l=dry cleaners) we construct an explanatory variable 

calculated as the cumulative exponentially decaying contribution from each polluted site of that 

type , which can be expressed as  
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where   
   

 is the contamination contribution at well i from source l, Dij is the distance between 

well i and polluted site j,  n is the total number of polluted sites of type l, and al is the 

exponential decay range defining the pollution length-scale of that type of pollution source.  The 

exponential operator in the model ensures concentration decreases quickly as the distance 

increases from the contaminant source. The cumulative aspect of the model accounts for the 

density of contaminant sources.  

2.2.4 Contaminant Source Land Use Regression Model 

 

The dependency of groundwater PCE log-concentration,    with different types of known 

sources can be expressed for sample i as  

            
   
     

   
       

   
                                                             

where     is the log-PCE concentration estimate for sample i,   
   

 through   
   

 are explanatory 

variables representing the cumulative exponentially decaying contribution from different types of 

contaminant sources,          are linear regression coefficients, and    is an error term. This 

model allows investigation into the effects of various types of contaminant sources as well as the 

value for the decay range, al, associated with each type of source, which describes the distance 

corresponding to a 95 percent reduction in log-PCE. First, we investigate the effect of each decay 

range individually by constructing a series of univariate models for each pollution type l, and 

exploring how the univariate coefficient of determination r
2
 changes as a function of each decay 

range al. Then we explore the interaction of decay ranges by examining how r
2
 changes in the 

multivariate model (Eq. 2) as a function of various combinations of decay ranges. We ultimately 

choose the multivariate regression model with maximum r
2
 obtained with physically meaningful 

(i.e. positively valued) and statistically significant regression coefficients. The decay ranges and 
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corresponding regression coefficients    , …,     obtained for that model can then be used to 

construct the land use regression model       of log-PCE concentration at any spatial location 

s=(s1,s2) as  

                
           

             
                                                                

where        , …,         are the cumulative exponentially decaying contribution from each 

type of pollution sources calculated for the spatial location s. .  

 

2.3 Bayesian Maximum Entropy Estimation Framework for Space/Time 

Mapping Analysis 
 

In this study we use the BME method of modern spatiotemporal geostatistics [17,21] to estimate 

the concentration of groundwater PCE across space and time. BMElib [18,11] , a powerful 

MATLAB numerical toolbox of modern spatiotemporal geostatistics implementing the BME 

theory , was used to create space/time maps of PCE concentration across North Carolina. This 

framework has been successfully applied to groundwater [19,20] and environmental 

contaminants[8, 9, 21]. As shown in these studies, BME is a space/time geostatistical estimation  

framework grounded in epistemic principles that reduces to the space/time simple, ordinary, and 

universal kriging methods as its linear limiting case when considering a limited, Gaussian, 

knowledge base , while also allowing the flexibility to process a wide variety of additional 

knowledge bases (physical laws, empirical relationships, non-Gaussian distributions, hard and 

soft data, etc.) that are beyond the reach of the kriging methods of linear geostatistics. We only 

provide the fundamental BME equations for mapping PCE; the reader is referred to other works 

for more detailed derivations of these equations [ 17,18,22,11]. 
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 The theory of space/time random field (S/TRF) is used to model the variability and 

uncertainty associated with the distribution of PCE concentration across space and time. Our 

notation for variables will consist of denoting a single random variable Z in capital letter, it 

realization, z, in lower case; and vectors and matrices in bold faces, e.g.            
  

and            
 . Let      be the S/TRF describing the distribution of PCE concentration 

across space and time, and let              be its log-transform, where        , s is the 

space coordinate and t is time. The log-transformed residual S/TRF is defined as  

                                                                                                                             

where       is a global geographical trend that can be modeled using various models. In this 

work, we first use a constant global geographical trend, and we then compare that approach with 

using            , which allows to integrate the land use model in the geostatistical 

estimation analysis. Equation (4) then expresses that the S/TRF      models the space/time 

variability and uncertainty associated with the difference between the S/TRF      and its global 

geographical trend model.  

 The knowledge available is organized in the general knowledge base (G-KB) about the 

S/TRF      (e.g. describing its space/time variability, mean, covariance, etc.) and the site-

specific knowledge base (S-KB) corresponding to the hard and soft data available at a set of 

specific space/time points   . The BME fundamental set of equations for modeling the S/TRF 

     is [22, 23,21] 

 
                 

       

         
                

                                                                                        

where x is a vector of log-transform residual PCE concentrations at mapping points p consisting 

of the union of the data points    and the estimation point   , g is a vector of functions selected 
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such that their expected values E[g] is known from the G-KB,       is a PDF characterizing the 

knowledge and uncertainty associated with the S-KB, A is a normalization constant, and    is the 

BME posterior probability density function describing residual PCE concentration at the 

estimation point   , where the subscript K= G U S means that    is based on the blending of the 

G- and S-KB.  

 The G-KB for the S/TRF      describes its local space/time trends and dependencies. In 

this work, the general knowledge consists of the space/time mean trend function       

       , and the covariance function       
  =                   

       
  ]] of the 

S/TRF     . . 

 A key conceptual difference in this work and that of classical geostatistical estimation 

techniques is how we treat the below detect data to obtain S-KB. In the classical kriging case, and 

to calculate       
  , we harden the below detect to the truncated Gaussian mean as explained 

earlier. On the other hand in the BME approach we are able to rigorously account for the 

measurement uncertainty associated with any below detect by selecting a PDF           that 

takes the full shape of the Gaussian distribution of PCE concentrations truncated above the 

detection limit (figure 1), which for sample i is given by    

                  
 

 
  

       

 
    

    

 
                                                              

for xsoft<bi and 0 otherwise, where ϕ is the standard normal PDF, Φ is its CDF, µ and σ are the 

mean and standard deviation of PCE estimated from left censored PCE data (see Fig. 1), 

bi=log(DLi)-mZ(si) , DLi is the detection limit for sample i, and mZ(si) is its global geographical 

trend value ( Eq. 4).  It follows that the site-specific knowledge consists of the hard data points, 

     , that is points measured above their detection limit, and soft data points,      , that is 
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points measured below their detection limit. The overall knowledge bases considered consist of 

G =              
    , and S =              . In this case the BME fundamental set of 

equations reduces to  

         
                                                                                                       

where    (x) =   
      is the Gaussian PDF for   obtained from the G-KB,   is a realization of  , 

     is the truncated Gaussian PDF of       and A is a normalization constant. 

 In this study we average measurements by the year they were sampled; thus we model the 

yearly average of PCE concentrations. General and site-specific knowledge were processed as 

described above by use of BMElib to obtain BME estimates of log-transformed residual S/TRF 

      across North Carolina for each year of the study period. The BME estimate for a given 

year is a function of data collected in that year, as well as years prior to and after that year. The 

estimation error associated with BME estimate       is fully characterized by the BME 

posterior PDF. The expected value and corresponding estimation error variance of the 

corresponding PCE concentration estimate at that estimation point is obtained by adding the 

global geographical trend      , and back log-transforming the BME posterior PDF for      . 

This results in BME maps showing the space/time distribution of yearly PCE concentration 

across North Carolina.  

2.4 Cross-Validation  
 

Our approach has two distinct advantages over classical kriging techniques. First, we account for 

the full distribution of below detect by modeling it as truncated Gaussian soft data (eq. 6). 

Second, we use a land use model based on contaminant sources (eq. 3) to better inform the 
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estimation maps with a physically meaningful global geographical trend. Hence, we expect a 

gain of information in each step of our analysis. 

 In order to investigate the gain of information with each step of our approach, we 

calculate the mean square error (MSE) for some step (k) of the analysis as  

       
 

 
    

        
 

 

 

   

                                                                                                   

where n is the number of data points,     is the jth measured log-transformed yearly average PCE 

concentration, and   
    

 is its corresponding estimate at stage (k). At each stage   
  is estimated 

by removing    from the data and re-estimating it using other data points. The MSE provides a 

measure of model estimation standard deviation.  Using the cross-validation MSE we compare 

three estimation approaches consisting of (a) using a classical simple kriging technique where 

the global geographical trend is constant, i.e. mZ(s)=m, and where below detect data are hardened 

to the truncated Gaussian mean; (b) using a simple BME technique where mZ(s)=m and with 

truncated Gaussian soft below detect data; and (c) using a LUR/BME approach the same as (b) 

but setting the global geographical trend to the land use model, i.e. mZ(s)= LZ(s).  We let MSESK, 

MSEBME, and MSELUR be the mean square error for scenarios (a), (b), and (c), respectively. We 

define the percent change in mean square error PCMSE between two scenarios i and j as  

          
          

    
                                                                                    

Where i/j can be set to a/b or b/c. A negative PCMSE indicates a decrease in MSE, which 

corresponds to the percent improvement in estimation accuracy resulting from incorporating 

truncated Gaussian soft data and a contaminant source land use mean trend.  
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3. RESULTS AND DISCUSSION 
 

3.1 Descriptive Statistics  
 

We find the mean and standard deviation for groundwater log-PCE to be -3.47log-ppb and 

5.56log-ppb respectively. The minimum value was -7.4063log-ppb (exp(-7.4063) 0.0006ppb), 

which was calculated as the truncated mean from a below detect observation with a detection 

limit of -0.6931log-ppb ( 0.5ppb). The maximum observed value was 10.6213log-ppb ( 

 41,000ppb). We expect the population mean of groundwater PCE to be low since it is not a 

ubiquitous contaminant, which we see with a mean of -3.47log-ppb ( 0.031ppb) well below the 

North Carolina groundwater standard. The large standard deviation of 5.56log-ppb)) is most 

likely due to the large range of detected values, from -1.5log-ppb ( 0.22ppb) to 10.6213log-ppb 

( 41,000ppb). 

3.2 Contaminant Source Land Use Regression Model 
 

Contaminant source land use regression coefficients and statistics were calculated at regular 

intervals for the decay range in univariate and multivariate models (Eq. 3). We classify the 

explanatory variables according to their decay range r
2
 curves (i.e. plot of r

2
 versus the decay 

range) obtained for the univariate regression model (Figure 2). In the univariate case, the 

explanatory variables constructed from dry cleaners and RCRA sites explained the most 

variability in log-PCE concentration with    values reaching a maximum of 0.20 and 0.17, 

respectively, for decay ranges of 1.25km and 0.67km, respectively (Table 1). We therefore 

classify the dry cleaners and RCRA sites into Class 1 contaminant sites. Class 1 contaminant 

sites are ones corresponding to high   , positive    values and short decay ranges, all together 
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indicating they are actual local sources of groundwater PCE. We then classify within Class 2 

those contaminants sites corresponding to explanatory variables that explain between two and ten 

percent of the variability in log-PCE concentration, have positive    values, and have decay 

ranges of 10-60 km (Figure 2). Class 2 contaminant sites are not themselves direct, local sources 

of contamination, but represent surrogates for the presence of direct sources. We note that the 

Brownfield variable, a Class 2 variable, has a small first peak at a short range indicating the 

possibility that it is a local source of PCE, but the peak in    is not the absolute maximum and it 

has a lower value than our Class 1 variables. Lastly, Class 3 contaminant sites are ones that 

explain less than 2 % of the variability in log-PCE (Figure 2).  

 In the bivariate case, we did not see a significant increase (> 0.02) in    for all possible 

combinations except when Class 1 variables were combined. We found that when the dry 

cleaners and RCRA sites explanatory variables were combined there was a 0.02 increase in    to 

0.22 (Figure S2, Table S1). The resulting model has a high   , highly significant and positive 

coefficients, and accounts for the interaction between the two variables. When going from the 

univariate models to the bivariate model, the regression coefficients change from 3.83 to 3.07 

and 1.89 to 0.64 for dry cleaners and RCRA respectively, while the corresponding decay ranges 

change from 1.25km to 0.99km and 0.67km to 0.80km, respectively.  Multivariate models beyond 

two explanatory variables do not yield significantly higher   values, thus our land use regression 

modeling process stopped at the bivariate case. However, in other situations (i.e. different 

contaminant or different geographical location), multivariate models could provide additional 

information; therefore it is recommended that regression models should be calculated until there 

is no significant gain in percent of variance explained when adding variables.  
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 Distance decay range curves (Figure 2, Figure S2) have been shown in previous studies 

to identify the range of influence for contaminant sources [10]. For groundwater PCE, logistic 

regression analysis has shown moderate associations with RCRA and CERCLA sites within 1 

km [4]. This study is the first to quantify the distance of influence of PCE sources exhibit in 

North Carolina. Our findings suggest that the method outlined from equations 1-3, or similarly in 

Su et al. 2009, is a sound approach to identify ranges of influence for groundwater PCE. Based 

on our findings, we suggest that wells in North Carolina used for drinking water be set back 

farther than 1 km from a dry cleaner. This is a substantially larger distance than required by 

North Carolina code and generally farther than required by DSCA for known contaminated sites 

[24].  Our recommendation is substantially larger because (1) the reported dry cleaner locations 

may not always correspond to the exact location of the plume, (2) the zone of influence includes 

the main segment of the PCE plume and its 95 % removal distance at the edge of the plume, and 

(3) our maps are the average of the S/TRF realizations. Our results also highlight the cumulative 

effect of contaminant sources; hence density and distance of contaminant sources should be 

considered when establishing screening guidelines indicating which wells should be tested for 

PCE.  For instance, in Figure S4 areas with only one or two RCRA sites nearby are estimated 

below the groundwater standard; however, dense clusters of RCRA sites lead to high estimated 

concentrations that can exceed the standard.  

3.3 Space/Time Covariance Model 
 

Exploratory data analysis confirmed that when setting the global geographical trend       equal 

to the land use regression model       then the residual field      can reasonably be modeled 

as being homogeneous/stationary because       captures the main non-homonegeous trends in 
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PCE. As a result the covariance of      between points         and            can be 

modeled as being only a function of the spatial lag            and the temporal lag   

      . Using a numerical algorithm we developed to handle data unevenly distributed over 

space and time, we calculate experimental covariance values for      by finding pairs        of 

measurement events that are separated by various values of   in distance and   in time. We then 

used the experimental values to fit the nonseparable space/time covariance model  

                
  

   
      

  

   
         

  

   
      

  

   
                                           

where           
 ,          Km,       years,           

 ,       Km, and       

years. The covariance model (eq 10, figure S3) provides useful information about the variability 

of detrended PCE in the groundwater of North Carolina. We see a very short spatial covariance 

range of only 0.01 Km in the first covariance structure, which describes the large variability of 

PCE within a short distance of dry cleaning and RCRA point sources. We also see a long spatial 

range in the second covariance structure, which describes the larger geographical extant of areas 

with non-detected PCE concentrations. We see long ranges in both temporal covariance 

structures because PCE can persist in the groundwater or soil for many months or years with 

little biodegradation [1]. Our experimental covariance calculations (figure S3) suggest that it can 

persist for years at detectable levels. 

3.4 Space/Time Bayesian Maximum Entropy Maps 
 

The general and site-specific knowledge was processed in BMElib to obtain the BME posterior 

PDF of PCE at any location and year of interest. The BME estimates can be used to construct 

maps describing the spatial distribution of groundwater PCE across North Carolina for a 

sampling year of interest. Figures 4a, 4b and 4c show maps of groundwater PCE concentrations 
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across North Carolina in 2009 estimated using methods a (kriging), b (BME) and c (LUR/BME) 

described earlier. Figure 4a, obtained using the Kriging approach, shows most areas well below 

the North Carolina groundwater standard, but it also shows small areas (i.e. in Guilford, Durham, 

Wake, etc. counties) above the standard. Figure 4b, obtained using BME, is similar to Figure 4a, 

but it provides a more detailed visualization of the groundwater PCE distribution for values 

below the detection limit. Finally figure 4C, obtained using the LUR/BME approach, is further 

improved with the incorporation of a meaningful global geographical mean trend based on the 

LUR model. This map estimates concentrations near or above the groundwater standard at places 

far from where any type of monitoring data exists. The map in Figure 4c can therefore be used to 

identify areas where contamination likely exists above the standard.   

3.5 Cross-Validation  
 

In this study, we present an integrated approach for modeling groundwater PCE at the statewide 

scale. We compare our integrated approach, which incorporates a contaminant source land use 

mean trend, with two geostatistical approaches that implement a constant global geographical 

trend. The cross-validation mean square errors for all three approaches are summarized in Table 

2. We find a 23.75 percent decrease in MSE when using the BME approach (b) accounting for 

the full truncated Gaussian distribution for the below detect data, compared with the kriging 

approach (a), which hardens the below detect values (Both use the same constant global 

geographical trend.). This MSE reduction demonstrates the advantage of using BME over 

kriging, which is explained by the fact that BME provides a rigorous non-Gaussian statistical 

representation of the possible values a below detect datum can take.  

 When using the LUR/BME approach, which incorporates the contaminant source land 

use global geographical trend in the estimation framework, we observe an additional 25.46 
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percent decrease in MSE compared to the BME approach with a constant mean trend. This 

demonstrates the benefit of integrating a physically meaningful land use regression geographical 

trend into geostatistical estimation techniques. 

3.6 Further Research  
 

We incorporate a meaningful land use model based on anthropogenic sources of PCE; however 

local and regional hydrogeologic features, soil sorption, and hydraulic gradients also play a role 

in the occurrence of groundwater contamination [4]. Future research could incorporate these 

features as explanatory variables in the land use regression. Since there is no limitation to the 

types of data BME can incorporate, other soft data could be included in the analysis. Such data 

might include modeled PCE based on the degradation by-products of PCE (TCE, DCE isomers, 

Vinyl Chloride). More epidemiologic studies are needed to assess the health impacts of PCE [2].  

BME methodology would allow one to account for uncertainties in data providing a more 

accurate assessment of exposure for use in such studies. 
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4. FIGURES 

 

 

 

Figure 1. PDF of log-PCE with mean and variance estimated from observed and left censored data (see supplementary 
information), showing a sample detection limit and corresponding truncated Gaussian mean  

 

Figure 2. r
2
 regression statistics as a function of the exponential decay range 
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Figure 3. Groundwater PCE estimates using (A) Kriging with hardened below detects, (B) BME with below detects treated as a 
truncated Gaussian PDF, and (c) BME with below detects treated as a truncated Gaussian PDF and a land use regression 
mean trend based on dry cleaners and RCRA sites 
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5. TABLES 
 

 

Table 1. Statistics for univariate land use regression models obtained for the decay range corresponding to the maximumr
2
 

value 

 Exponential decay 

range in Km 
r2

 P-value (F-Stat) Beta 1 (95% CI) 

Dry Cleaners 1.25 0.2 < 0.0001 (1147) 3.83 (3.61-4.05) 

RCRA 0.67 0.17 < 0.0001 (982.2) 1.89 (1.78-2.01) 

CERCLA 15.5 0.04 <0.0001 (197.9) 0.15 (0.13-0.17) 

NPDES 59.5 0.02 <0.0001 (111.7) 0.03 (0.02-0.04) 

Landfill 18.5 0.07 <0.0001 (337.7) 0.63 (0.56-0.69) 

Brownfield 26.0 0.03 <0.0001 (146.9) 0.12 (0.10-0.014) 

M.G.P. 19.5 0.08 <0.0001 (388.1) 2.99 (2.70-3.29) 

Septage 75.0 0.007 <0.0001 (30.98) 0.09 (0.05-0.12) 

 

Table 2. Cross-Validation Mean Square Error and Percent Change in Mean Square Error 

 Kriging BME BME with LUR  PC12 PC23 

MSE 22.98 17.52 13.06 -23.75 -25.46 
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6: Supporting Information 
 

 

Pages: 6 

Figures: 5 

Tables: 1 

This supporting information provides (a) a map of the data used for the analysis, (b) a representation of 

the land use regression model used, (c) a covariance model plot, (d) a map of the land use regression 

mean trend, (e) a summary statistics table of the land use model used, and (f) a detailed description of the 

method used to model the probability distribution function of log-PCE.  

 

In figure S1 below we show all 3 of the data sources used in the study. Data sources came from the North 

Carolina Department of Environment and Natural Resources (NCDENR) division of waste management 

(DWM) Dry Cleaning Solvent and Cleanup Act (DSCA) branch.  
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Figure S 1. Groundwater PCE data locations in North Carolina from three publicly available sources 

Figure S2 below is a colormap reprenstation of   as a function of both the exponential decay range of 

RCRA sites and Dry Cleaning sites. The    is represented by the varying colors and the axes represent the 

decay ranges. We select the regression model that corresponds to the decay ranges at the absolute 

maximum. 
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Figure S2. r2 as a function of decay range for dry cleaners and RCRA sites. The color scale corresponds to 

the respective r-squared value. 
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Figure S3 below shows the covariance model used for the LUR/BME maps shown in this paper. The 

model has a short range component and a long range component, and it does not contain a nugget effect. 

We use expert judgment to fit a model to the experimental covariance data, although a least-squared 

approach will be implemented prior to submission to a journal. 

 

Figure S 3.Experimental and Modeled covariance for land use mean trend removed PCE 
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Figure S4 below maps the global land use regression mean trend used in the LUR/BME analysis.  

 

Figure S 4. Land Use Regression Mean Trend based on cumulative exponentially decaying contamination 

from Dry Cleaners and RCRA sites. 
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The following analysis provides a quantification of the policy implications of the study. We calculate a 

probability of the LUR/BME estimate being in exceedance of the North Carolina groundwater standard of 

0.7 ppb. Figure S5 is a map displaying this probability across North Carolina.  

 

Figure S 5. The probability of the expected value of LUR/BME estimations will exceed the North Carolina 

groundwater standard of 0.7 ppb. It is calculated from the mean and variance of the LUR/BME posterior 

PDF. 
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Table S 1. Statistics for the bivariate regression model with Dry Cleaners and 

RCRA explanatory variables  
r2 Decay 

Range for 
Dry 
Cleaners 

Decay 
range for 
RCRA 

1 (95% 
CI). Slope 
for dry 
cleaners.  

 2 (95% 
CI). Slope 
for RCRA . 

p-value for 

1 

p-value for 

2 

0.22 0.99 Km 0.83 Km 3.07 (2.72-
3.42) 

0.64 (0.53-
0.74) 

<0.0001 <0.0001 

 

 

 

 

Estimating the PDF for PCE 

 

We assume  PCE to be a log-normal distributed environmental contaminant, so that the natural log of 

PCE concentration Z has a Gaussian PDF            with mean µ and variance σ
2
. Let n be the total 

number of PCE data, let p be the number of PCE data below the detection limit (DL), i.e. p is the number 

of left-censored data, and let Z0.95 be the 95 percentile of PCE data (which in this work is above the DL).   

We seek µ and σ
2 
such that 

   
             
  

  
    

             
     
  

     
   

We solve this problem numerically in the MATLAB computational platform by defining the following 

objective function 
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and using the MATLAB fmin routine that finds the values for the µ and    pair which minimize that  

objective function. 
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