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ABSTRACT 

Josiah M. Rich: Evaluating Flexure of the Mandible on Opening as Captured by Intraoral 
Scanners (Under the direction of Tung Nguyen) 

 Aims: The mandible flexes on opening, constricting the width in the transverse 

dimension.  Digital intraoral scanners require the patients’ mandible to approach maximum 

opening during capture.  This study compares positional changes of teeth as captured by 

intraoral scans, alginate impressions, and Cone Beam Computed Tomography (CBCT).  

Methods: Thirty subjects had alginate impressions, intraoral scans and CBCT scans taken. 

Digital surface models (STL) were generated for each method, superimposed and total mean 

surface errors of the teeth were calculated.  Results: The mean error was greatest at the molars. 

Error of open alginate to CBCT scan was 0.440mm±0.146, closed alginate to CBCT was 

0.428mm±0.124, and intraoral scan to CBCT was 0.337mm±0.154 all at the molar region.  

Intraoral scans captured less mandibular flexure than alginate impressions and can be used for 

any purpose previously done with alginate.
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A REVIEW OF THE LITERATURE 

Flexure of Bones 

 Osseous structures in the body are not fully rigid and can behave dynamically under 

certain conditions that require limited flexure. Bone density has been shown to be affected by 

genetic as well as environmental factors (diet and skeletal loading).[1] Specific to skeletal 

loading, it has long been recognized that exercise which increases loading has effects on size, 

shape, mechanical strength, and bone density.[2] Although there is a limit to how much flexure 

can occur in human cortical bone before fatigue,[3] it is recognized that high strain rates with 

high peak forces increase bone formation more than a large number of low-force repetitions.[4] 

Frost hypothesized that under repetitive, dynamic flexural strain, lamellar bone surfaces drift in 

the concave-tending direction, leading to adaptation in shape to better handle the flexure.[5] 

Flexure of the Mandible 

 The mandible is a unique bone in that each of the bilateral craniomandibular articulations 

can operate independently, though movement on one side affects the other due to the symphysis 

traversing the midline. The complex nature of this ginglymoarthrodial joint (it can hinge as well 

as glide) make it an area interest to dentists, orthodontist, prosthodontist and radiologists.[6]  

There is marked variation in size and shape of the condyle and ramus of the mandible due to 

variation in development, as well as compensatory remodeling to adapt to malocclusion, trauma, 
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or other developmental anomalies.[7] The mandible has been described as horse shoe, or ‘U’ 

shape and can be considered a curved beam with either unilateral or bilateral forces acting on it.

[8] The temporomandibular joint is loaded more heavily during jaw opening than closing.[9] The 

pair of lateral pterygoid muscles are primarily responsible for the opening and protrusive 

movement of the mandible. When the mouth opens, these pterygoid muscles pull the  head and 

neck of the condyle medially, causing flexure to the mandible. Secondary muscles responsible 

for medial force on the condyle include the mylohyoid, platysa and superior constrictor muscles.

[8] 

 Fischman used photographic comparison to explain that the contraction of lateral 

pterygoid muscles results in a sagittal movement of the posterior segments, presumably by 

flexure near the symphysis of the mandible.[10] The magnitude of flexure varies greatly between 

individuals and in many is so minimal that it is often overlooked as having no clinical 

significance.[8] Hylander suggested that one pattern of jaw deformation in the mandible was 

symphyseal bending connected with medial convergence on opening.[8, 11-13] He also 

suggested at least four unique patterns of flexure for the mandible on opening and mastication, of 

which he postulated that medial flexure on opening had the highest magnitude.[11] This medial 

mandibular flexure appears to be minimal when there is no protrusive movement and opening is 

less than 20mm.[12] There appears to be great variation in the amount of medial flexure of the 

mandible on opening, though a stronger musculature has been associated with larger flexure of 

the mandible.[8] It has been hypothesized that over time the degree of flexure can lead to 

morphological changes to the bone that can be used to indicate gender.[14] Anthropologists and 

forensic scientists find this particularly interesting, though there is a wide range of variation in 

!2



the amount of flexure, and investigators are not in agreement over the strength of correlation 

between the degree of flexure and gender of the subject.[14-18] 

 As early as 1996, anthropologists in South Africa were using the mandibular ramus 

flexure as a morphologic indicator of sexual dimorphism, with a reported predictive accuracy of 

99%.[14] However, anthropologists from Kansas seeking to replicate the study found accuracy 

for males to be only 91.3% and 56.4% for females.[15]  Several years later, researchers using 

panoramic radiographs to assess flexure of the posterior border of the mandibular ramus were in 

agreement only 64-73% of the time and concluded that this was not a reliable indicator of 

gender.[19] Koreans using 3D mandible models and discriminant analysis for multiple variables, 

found that multivariate analysis could predict sex determination with accuracy as high as 88.8% 

and was acceptable for use in forensic science and law.[17] In an all-female study, measurements 

on thirty-five lead to a conclusion that the mandibular arch width decreases at the most open 

position compared with rest position, though no statistically significant differences were seen.

[16] A unique study from India found significant correlation between median mandibular flexure 

on mouth opening and face type.[18] Subjects with brachyfacial type showed more median 

mandibular flexure than those with dolichofacial type. Additionally, subjects with lower gonial 

angle, smaller symphysis, and larger mandibular length seem to display more mandibular 

flexure.[8] 

 Despite the controversy surrounding the amount of flexure and whether it is correlated to 

face type or gender, medial mandibular flexure exists and has been known to cause problems if 

ignored when doing dental work in the mandible. Nowhere is there more concern about the 
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magnitude and side effects of transverse flexure of the mandible than in the prosthodontic 

literature. 

Impact of Mandibular Flexure in Prosthodontic Rehabilitation  

 Full-mouth prosthodontic rehabilitation often requires long-span fixed prosthesis, which 

are commonly attached to implants.  These fixed prosthesis are made out of porcelain, acrylic, or 

zirconia for their strength and esthetic properties, and can be thought of as completely rigid 

structures. Young’s modulus of elasticity of cortical bone (10-20 GPa) compared with tetragonal 

zirconia polycrystals (210 GPa) and grade IV titanium used for implants or implant connectors 

(100 GPa) shows that these restorative materials are five to ten times more rigid than the 

supporting cortical bone.[13] Unlike the periodontal ligament (PDL) of teeth, osseointegrated 

implants are fused directly to the bone and do not have any ligament that can be compressed to 

allow for temporary flexure. If the mandible flexes, but the mandibular prosthesis cannot, it puts 

the strain of flexure on the bone-implant junction and can lead to failure over time, or migrate 

through the bone and exit the cortical plate. It has been shown that frameworks made from more 

elastic materials (such as palladium-gold) are much better at reducing stress at the terminal 

implant, though these materials are more costly and have other esthetic compromises.[8] 

 For as long as implants have been used in dentistry, the causes of implant failure have 

been studied. Bending moments of force have been considered undesirable as they place force in 

a suboptimal direction and can lead to abutment breakage or implant screw loosening.[20] 

Mandibular flexure of the bone caused by opening can lead to stress on fully implant borne  

prosthetic components, one study showing a relative displacement of 420µm and a force of 16 N 
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between implants.[21] Over time, this amount of force predisposes the patient to implant and/or 

prosthesis failure. This problem is not limited to full arch reconstruction. Unilateral loading also 

shows strain on the bone-implants interface as the mandible flexes.[22] 

 Many problems relating to prosthetic rehabilitation have been linked to medial 

mandibular flexure, including distortion of full arch impressions, poor fit of fixed and removable 

prothesis, pain during function, fracture of implant components, loosening of cemented 

prothesis, and resorption around implants.[23] Implant-to-natural-tooth fixed partial dentures 

show other problems. Many natural tooth abutments in implant-to-natural-tooth fixed protheses 

show intrusion over time, which may be attributed to mandibular flexion and torsion.[24] Factors 

contributing to the degree of flexure have been suggested in the literature and include age, bone 

density, muscle strength, structure of the cancellous bone, and shape of the mandible.[23]  

 Several recommendations have been made to reduce the impact of medial mandibular 

flexure. Related to prosthesis design, many clinicians agree that a split prosthesis design is 

preferable to a full arch, rigid connector.[8, 13, 23, 25, 26] These split-framework designs are 

suggested to restore more natural functional condition to the mandible, although there are limited 

long term follow up studies to confirm this.[8, 26] The number of implants and material used for 

the superstructure supported by the implants can pathologically limit the natural flexure of the 

mandible during function.[25] Other recommendations include non-rigid connectors and distal 

cantilevers.[13, 23, 25] Overdentures that used a flexible rubber “O’ring” showed reduced stress 

on the implant and prosthetic components, which lead to a higher success rate after 10 years than 

a rigid bar.[25]  
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 Despite all the research that has been done, consensus is that mandibular flexure on the 

implant-bone interface is not fully understood and more research is needed.[22] While 

complication with full arch rehabilitation involving implants can occur due to mandibular 

flexure, it is nearly impossible to predict for which patients this will occur to an extent that it is 

problematic. In a study involving 129 patients and 766 implants who underwent full mouth/full 

arch rehabilitation using the All-on-Four™ protocol, there were no implant failures at 200 days 

in the mandible, and only 4 implant failures in the maxilla (100% and 99.1% success rates, 

respectively).[27] Though this study does not provide long term clinical outcomes, it shows high 

success rates initially even with rigid, full arch, implant supported prosthesis. It is notable that 

the All-on-Four™ protocol advocates for placing the most posterior implant no further than the 

mental foramina, which helps reduce the amount of flexure experienced by the splinted implants.

[8] 

 It is nearly unanimously agreed upon that impressions should be taken as close to 

physiological rest position as possible.[10, 13, 23] All impressions require some degree of mouth 

opening, but this should be limited as much as possible. If the impression is captured when the 

mouth is open wide, the dental units will be positioned more lingually than when at rest.[8] The 

material used for these impressions can also influence the accuracy of capturing the geometry 

and morphology of the hard and soft tissues of the mandible as well as the dental units.  

Traditional Dental Impression Materials 

 For decades alginate (irreversible hydrocolloid) impression material was considered to 

have as much dimensional accuracy as any other material on the market at the time, and as such 
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was the most ubiquitous material used in dentistry to create casts of oral hard and soft tissue.[28] 

Though considered highly technique sensitive, alginate impressions were used for the most 

detailed of prosthetic procedures.[28, 29] Polyvinyl siloxane (PVS) materials later surged in 

popularity for their long term dimensional stability (no time limit between taking the impression 

and pouring the cast), low and high viscosity options, and greater accuracy, though working time 

was less and interaction with latex rendered the materials useless.[30, 31] PVS became the 

material of choice for most impressions related to restorative dentistry. Though newer ‘extended-

pour’ alginate materials provided more dimensional stability prior to being poured,[32, 33] 

alginate materials were known to have less accuracy and stability, which only got worse with 

increased storage time of the powder.[34] Nevertheless, for the purpose of full arch initial and 

final records in orthodontics, the properties of alginate impressions remained fully acceptable.

[32] 

Digital Intraoral Scanners  

 As technology has sought to replace analog artifacts with their digital equivalents over 

the past few decades, dentistry undergone a similar evolution that has replaced many traditional 

methods and materials with new workflows and armamentarium for a computer driven era.  

Specifically, intraoral scanners have developed to be accurate enough for many prosthetic and 

restorative dental procedures.[35, 36]  While traditional PVS or alginate impressions are still 

widely used due to familiarly, less expensive short-term economics and some limitations of the 

digital intraoral scanners, there is no question dentistry will move toward using intraoral scanners 

with more frequency in the future.  
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 While these intraoral scanners are gaining popularity, the literature to validate their 

accuracy or reliability is both limited and dated.[37] Manufacturers of these products claim the 

intraoral scanners will ‘streamline’ efficiency in the practice[38] and that the technology is so 

accurate it will improve the fit of appliances.[39] The reality, however is that technology is 

changing so fast that by the time studies are done to validate manufacturer’s claims, the unit has 

been replaced by a newer model and the original is no longer even available for purchase.[38] 

Studies have been done using techniques to fabricate digital models from either 3D scan of 

plaster models, or 3D radiographic scans of impressions.[40, 41] Using a bench-top scanner to 

digitize plaster models showed reliability similar to traditional stone models that were poured 

soon after being taken.[42] One study displayed less variability in virtual measurements on 

digital models than the corresponding measurements on plaster.[32] Cone-beam computed 

tomography (CBCT) scans of alginate impressions and intraoral scans were used to create digital 

models and compared against traditional stone models. Findings indicate that tooth-width 

measurements did not differ significantly between the three methods.[41] One novel approach 

captured a PVS inter-occlusal record to get a more detailed model of the occlusal surfaces of 

teeth and a record of the biting relationship between arches, and was then scanned using a bench-

top scanner. When compared to the control of stone models acquired using alginate, the 

difference was less than 0.1mm, showing high accuracy and efficient capture time, though the 

technique still required impression material intraorally.[43] 

 Intraoral scanners use proprietary software specific to each company to acquire and 

generate the 3D models.[44] Scanning accuracy can be affected by the level of diffuse or 

specular reflection of the surface material.[43] In vitro comparison of four popular intraoral 
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scanners available in 2014 showed significant differences between coating and non-coating 

systems, as well as errors and deviations specific to parallel confocal microscopy and laser 

triangulation techniques respectively.[44] Using intraoral scanners to scan models extra orally 

has historically shown higher accuracy than using those same scanners intraorally, likely due to 

some of the challenges (saliva, tongue, limited space) of the oral environment.[40]  

 Full arch intraoral scans present some unique challenges. Unlike traditional alginate or 

PVS impressions which capture the full arch all at once, intraoral scanners slowly piece together 

each captured section. The proprietary additive algorithm is unique to each scanner and may vary 

in accuracy. This means that any small errors in tooth position that are captured on one side of 

the arch will be magnified as the algorithm continues to add to the errant captured area. In 

addition, any slight movement of dental units within the PDL space during capture can throw off 

the final rendered scan as well. The prosthodontic literature is aware of the added complexities in 

full arch scans compared with single unit scans. Four intraoral scanners were compared with a 

desktop scanner (reference) for full arch scans of 14 abutments, and concluded that inaccuracies 

of the scans may lead to inaccuracies of the final restorations.[45] The differences between scans 

were statistically significant and tended to show more inaccuracy in the horizontal plane further 

away from the point of the start of the scan.  This reinforces the hypothesis that small errors lead 

to bigger errors as more data is built further away from the starting point. Of note is that all scans 

were done bench-top, outside the mouth for this study.[45] In 2016 a similar study was done, 

once again using intraoral scanners on the bench-top, concluding that the accuracy of intraoral 

scanners was sufficient for prosthesis of up to 4 units in length, but not accurate enough for full 
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arch scans.[36] The limitations of full arch intraoral scans are compounded further when adding 

flexure of the mandibular bone to the equation.  

Intraoral Scanners and Flexure of the Mandible 

 It has been well established that the mandibular bone flexes in shape as muscles contract 

during protrusive movements and opening of the mouth.[8, 12, 13, 22] This change in shape of 

the jaws affects the position of teeth during opening and is of concern for rigid prosthesis designs 

for restorative treatments. Traditional impression materials (PVS and alginate) capturing the 

lower arch allow the mandible to be placed into or near physiologic rest position.  The technique 

of having the jaw as close to fully closed as possible, limited only by the impression material and 

the tray, has been recommended by many as a way to limit the amount of osseous flexure of the 

mandible that would be captured by the impression.[10, 13, 23] The literature is quite blunt that 

if an impression is taken with the lower jaw wide open, the lower teeth will be recorded in a 

position more lingually than when at rest.[8] Intraoral scanners have gained popularity as a 

replacement for traditional dental impressions and are capable of creating digital models of the 

dental arches without the use of alginate or PVS. These scanners, however, require the patient to 

have their mouth open reasonably wide, at least while teeth in the posterior region are being 

captured.   

 Intraoral scanning technology currently employed by all devices on the market in 2017 

make use of a wand that captures small areas of the dentition in three dimensions at a time.  The 

wand is moved around the mouth to capture all areas, and software stitches together the 3D 

snapshots of each area to make the digital model.  The algorithm responsible for this is 
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proprietary to each company and variations exist between techniques used. Current studies 

suggest significant error in full arch scans that limit their use for long span units of fixed 

prosthesis restorative work.[36, 45] By the nature of the software, any small errors lead to larger 

discrepancies as the software builds a three-dimensional model on any incorrect data it 

previously captured. This may or may not be clinically relevant.  Teeth can move temporarily 

within the periodontal ligament space as well, possibly leading to inaccuracies with how the final 

scan compares with the physical position of the teeth. As stated previously, the mandible flexes 

when the mouth is open wide. The size of the capture wand necessitates a wide open mouth to 

scan the posterior teeth.  This almost certainly means that these dental units will be captured by 

the scanner in their position of flexure within the mandible.  

Cone Beam Computed Tomography: the Gold Standard 

 Three dimensional radiographic imaging has been used in dentistry for numerous 

applications, and the reliability and accuracy of Cone Beam Computed Tomography (CBCT) has 

been validated.[46, 47] Unlike the spiral (or sometimes called helical) computed tomography 

used commonly in medicine, the cone beam is able to capture a larger volume of information 

with less radiation exposure to the patient.[48]  

 Cone beams have been used as a replacement for taking stone models of teeth with mixed 

success.  When using a machine with a voxel size of 280µm, investigators found no statistically 

differences comparing measurements on the CBCT volume and the physical teeth using calipers.

[49] However, when multiple measurements were added together, it was observed that the CBCT 

values were slight underestimates of the actual size of the dental units. A similar study validated 
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linear measurement accuracy on skulls compared with their CBCT measurements.[50] When 

compared with a coordinate measuring machine, CBCT volumes showed nearly perfect intra-

reliability correlation coefficient (though the voxel size of the machine used in the study was  

never reported).[51] Mean linear accuracy was less than 300µm for measurements of simulated 

osseous lesions tested with a unit capable of 200µm voxel size.[46]  

 Examining teeth specifically, CBCT volumes at 200µm were compared with a MicroCT 

(bench top, spiral CT unit) capable of 7µm voxel resolution.[52] Results showed that the CBCT 

models of teeth were slightly larger than the MicroCT unit, which was attributed to increased 

voxel size of the CBCT unit. The investigators concluded that this may or may not be accurate 

enough, depending on the clinical situation. Accuracy of CBCT continues to be validated across 

multiple units between 200µm and 300µm voxel size, with correlation coefficients 0.995 to 1.0 

comparing cone beam measurements with digital caliper measurements.[47] At this point in time, 

CBCT remains the gold standard for virtually measuring areas that are not possible to physically 

measure.[46, 47, 52]  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EVALUATING FLEXURE OF THE MANDIBLE ON OPENING AS CAPTURED BY 
INTRAORAL SCANNERS 

Introduction 

 The mandible is a unique bone in that each of its bilateral craniomandibular articulations 

can operate relatively independently, with movement on one side of the jaw requiring only a 

minimal balancing movement on the contralateral side. Further, the mandible is an osseous 

structure capable flexure in response to muscle pull during function. Interestingly, the 

temporomandibular joint is loaded more heavily during jaw opening than closing from medial 

pull predominantly from the lateral pterygoid muscles, resulting in greater medial flexure of the 

bone during opening.[9] [8] 

 The magnitude of flexure varies greatly between individuals.[8] Hylander suggested the 

predominant pattern of jaw deformation was symphyseal bending and medial convergence on 

opening.[8, 11-13] This medial mandibular flexure appears to be minimal when there is no 

protrusive movement and when opening is less than 20mm.[12] Importantly, this type of flexure 

has been linked to complications of dental treatment, including fracture of fixed restorations in 

the mandible. 

 Full-mouth rehabilitation using long span fixed protheses of porcelain, acrylic, or 

zirconia have been reported to cause problems due to flexure of the mandible. Young’s modulus 

of elasticity of cortical bone (10-20 GPa), compared with tetragonal zirconia polycrystals (210 

GPa) and grade IV titanium used for implants or implant connectors (100 GPa), shows that these 
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restorative materials are five to ten times more rigid than the supporting cortical bone.[13] If the 

mandible flexes but the mandibular prosthesis cannot, it puts the strain of flexure on the bone-

abutment junction and can lead to failure over time. 

 It is nearly unanimously agreed upon that impressions should be taken as close to 

physiological rest position as possible to limit distortion caused by medial mandibular flexure.

[10, 13, 23] If an impression is captured when the mouth is open wide enough, the posterior 

dental units may be positioned more lingually than when at rest.[8] 

 For decades, alginate (irreversible hydrocolloid) impression materials were used 

ubiquitously in dentistry to create casts of oral hard and soft tissue.[28] Polyvinyl siloxane (PVS) 

materials later surged in popularity for their long term dimensional stability, variable viscosity 

options, and greater accuracy.[30, 31] PVS became the material of choice for most impressions 

related to restorative dentistry since alginate materials were known to have less accuracy and 

stability.[34] For the purpose of full arch initial and final records in orthodontics, however, the 

properties of alginate impressions have remained acceptable.[32] 

Cone Beam Computed Tomography (CBCT) has been validated in dentistry for both 

reliability and accuracy.[46, 47] When using a machine with a voxel size of 280µm, investigators 

found no statistically significant differences comparing measurements on the CBCT volume and 

the physical teeth using calipers.[49] When compared with a coordinate measuring machine, 

CBCT volumes showed nearly perfect intra-reliability correlation coefficient.[51] Accuracy of 

CBCT continues to be validated across multiple units between 200µm and 300µm voxel size, 

with correlation coefficients 0.995 to 1.0 comparing cone beam measurements with digital 

caliper measurements.[47] CBCT remains the gold standard for virtually measuring surfaces that 
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are not possible to physically measure, such the location of lower teeth in a fully closed, non-

flexing mandible.[46, 47, 52] 

 Over the past decade, intraoral scanners have developed to be accurate enough for many 

prosthetic and restorative dental procedures.[35, 36]  Though these intraoral scanners are gaining 

popularity, the literature to validate their accuracy or reliability is limited.[37]  Scanning 

accuracy can be affected by the level of diffuse or specular reflection of the surface material.[43] 

An in vitro comparison of four popular intraoral scanners available in 2014 showed significant 

differences between coating and non-coating systems, as well as errors and deviations specific to 

parallel confocal microscopy and laser triangulation techniques respectively.[44]  

 Full arch intraoral scans present some unique challenges. Unlike traditional alginate or 

PVS impressions which capture the full arch all at once, intraoral scanners slowly piece together 

each captured section. The proprietary additive algorithm unique to each scanner may vary in 

accuracy.[44] Small errors in tooth position that are captured on one side of the arch will be 

magnified as the algorithm continues to add to the distorted area. In 2016, a study concluded that 

the accuracy of intraoral scanners was sufficient for prosthesis of up to four units in length, but 

not accurate enough for full arch scans.[36]  

 This additive distortion effect might be amplified if an intraoral scanner requires the 

patient to have their mouth open reasonably wide and medial mandibular flexure results. 

Compared to a rest position, the mandibular teeth might be captured in a more lingually tipped 

position during the scan, and the intra- and interarch relationships of the teeth might be 

significantly inaccurate as recorded. 
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 To date, no data exist that evaluate the effect of mandibular flexure on the accuracy of 

full arch intraoral scanning technology. If the mouth opening required to capture an intraoral 

scan significantly decreases the accuracy of the scan that is captured, then diagnosis, treatment 

planning, post-treatment assessment and any lab work fabricated using such records might be 

compromised and lead to less optimal treatment outcomes in dentistry and orthodontics. 

 The current study undertook two aims: 1) Compare closed mouth alginate impressions 

with open mouth alginate impressions to determine whether the alginate material was sensitive 

enough to capture any additional flexure of the mandibular bone on opening rather than when 

closed, and 2) Compare flexure of the mandible as captured by alginate impressions (both open 

mouth and closed mouth) and intraoral scans with a CBCT volume of the teeth in the closed 

position.  

Methods 

 This study had Biomedical IRB approval from the University of North Carolina at Chapel 

Hill. Thirty consecutive participants (18 female, 12 male; average age 28.5y, range 22-38y) were 

recruited from the University of North Carolina School of Dentistry based on inclusion criteria of 

a full dentition and no history of trauma or orthognathic surgery to the mandible. Participants 

were excluded if they failed to meet inclusion criteria or reported any history of taking drugs 

known to significantly alter bone metabolism. 

 Participants had two alginate impressions taken of their mandibular arch (one with the 

mouth open as wide as possible, the other nearly fully closed, with the top teeth resting on the 

top of the impression tray) with Jeltrate Plus™ Fast Set alginate using perforated metal trays to 
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minimize distortion.  The impressions were immediately poured in microstone. The participants 

then had an intraoral scan taken of the lower arch.  The first 15 consecutive participants were 

scanned with the Lythos™  (Ormco™) scanner, and the second 15 consecutive participants were 

scanned with the Trios® (3Shape) scanner.  The Trios® was used instead of the Lythos™ for the 

second 15 subjects due to Ormco™ discontinuing the product during the investigation. Each 

participant had a CBCT volume taken using Sirona’s Orthophos XG in HD mode with a voxel 

size of 160 microns. The principle investigator took all impressions, poured all models, and 

captured all intraoral scans to limit variation in technique. All stone models were scanned with 

the Ortho Insight 3D® [53] bench top scanner to STL format. Dolphin Imaging Plus™ [54] was 

used to segment the CBCT scans to isolate the mandibular teeth and then to convert the grey 

scale voxels to a surface mesh that was exported to STL format.  Both the Lythos™ and Trios® 

softwares allowed for the export of digital scans to open source STL files that could be compared 

with the STL files acquired using CBCT.  

 The mesh surfaces of the four impression modalities (Open Alginate, Closed Alginate, 

Intraoral Scan, CBCT) were automatically registered sequentially in pairs for each participant 

using open source software Slicer 3D[55] based on Region of Interested based Surface 

Registration (ROI landmarks were buccal surfaces of canine and first molar crowns. In one case 

where a first molar had a metal crown, the second molar was used instead).  

 Error distances between surfaces of the teeth were measured using open source software 

3DMeshMetric[56]. Measurements were recorded at the area of greatest difference between the 

teeth in five specific areas: left molars, left premolars/canine, incisors, right canine/premolars, 
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right molars. The absolute value of each measurement was recorded so that displacement of the 

teeth, whether labial or lingual in direction, was captured accurately.  

 Comparisons were taken for the following four sets of 3D surface models: 1) Open 

Alginate compared with Closed Alginate impressions, 2) Open Alginate impression compared 

with CBCT, 3) Closed Alginate impression compared with CBCT, and 4) Intraoral Scanner 

compared with CBCT.  

 Normality of the data was confirmed using the Kolmogorov-Smirnov test. Consistency of 

mean measurements between the scans acquired using the Lythos™ and Trios® scanners was 

confirmed using Welch-Satterthwaite t-tests (P>0.09 for all comparisons). Accordingly, all 

measures acquired using the intraoral scanners were combined into one comprehensive group 

(“Intraoral Scanners”). Similarly, right and left measurements at each region were averaged, 

creating three areas of interest: incisors, canine/premolars, and molars.  

 One sample t-test was run on each data set. Mean difference between the two surfaces, 

standard deviation, and 95% confidence interval was calculated for each of the four comparisons 

(Open Alginate vs. Closed Alginate, Open Alginate vs. CBCT, Closed Alginate vs. CBCT, and 

Intraoral Scanner vs. CBCT). Repeated measures ANOVA was run to compare mean absolute 

difference across modality groups by tooth region, with a level of statistical significance set at 

P=0.05. 

Results 

 Mean differences in the records acquired using alginate, CBCT, and intraoral scanners are 

summarized in Tables 1-4. With the Bonferroni correction for multiple comparisons, critical level 
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of significance set to ≤0.004 showed all results to be statistically significant. The mean error 

difference between surfaces increased from the incisors to the molars for each of the four 

comparisons that were measured (Open Alginate vs. Closed Alginate, Open Alginate vs. CBCT, 

Closed Alginate vs. CBCT, and Intraoral Scanner vs. CBCT). The greatest mean difference 

between surfaces was at the molars for each comparison (Fig. 1). Comparing only the molar 

regions, the intraoral scan compared with CBCT showed the least difference, less than the open 

or closed alginate impressions when compared with the CBCT (Fig. 2).  

 Repeated measures ANOVA compared mean absolute difference across record modality 

group by tooth region. Statistically significant differences were found at the molar region when 

comparing the Intraoral Scanner to both the Open and Closed Alginate (P = 0.034 and 0.004, 

respectively). Statistical significance was found at the canine/premolar region only for the 

Intraoral Scanner when compared with Closed Alginate (P = 0.013). There were no statistical 

significance differences comparing any modality groups at the incisor regions.  

Discussion 

 The results comparing Open Alginate with Closed Alginate impressions confirm that 

more medial flexure of the mandible is captured with the mouth open wide. The discrepancy 

between the two models increased for more posterior regions, consistent with the pattern of 

medial mandibular flexure observed in the literature. The greatest discrepancy was at the molars 

(mean difference = 0.360mm, SD = 0.144mm, p≤0.001). While statistically significant, the 

clinical significance may be questioned.  Medial flexure occurs bilaterally, but this measurement 

is only on one side of the arch. When doubled (to account for both sides of the arch) the 
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difference is still less than 1mm. This number is only an average; many subjects had less flexure 

and many had more flexure . Without being able to predict who will exhibit significant flexure, 

the findings of this study suggest that all alginate impressions be taken in the Closed Mouth 

position, consistent with recommendations from the prosthodontic literature.  For the purpose of 

diagnostic models for orthodontics, >1mm of total transverse medial flexure in the posterior teeth 

is likely to have no clinical significance.  Even for fabrication of somewhat flexible appliances 

like clear aligners or Essix retainers, up to 1mm of flexure is clinically insignificant.  This 

flexure may be more problematic for rigid appliances, such as acrylic surgical splints, or Moore 

retainers. 

 The results comparing each impression modality with the mandible at rest (captured by 

the CBCT scan with no flexure) showed statistically significant discrepancies for all 

comparisons, in all regions. Data trends showed the amount of flexure to increase posteriorly in 

the arch for all modalities compared with the CBCT. This is in agreement with expectations of 

more lingually positioned teeth posteriorly due to medial mandibular flexure. Specifically, the 

molar region showed the greatest amount of error within the arch (Fig. 1). Comparing only the 

discrepancies measured at the molar region, the Open Alginate showed the most inaccuracy, 

while the Intraoral Scan showed the least (Fig. 2). The Intraoral Scans compared with the CBCT 

showed less inaccuracy than either Open or Closed Alginate impressions in all regions (Table 4). 

This suggests that the algorithm for scanning the teeth as it adds segments upon itself might 

adjust in such a way that the final model shows less mandibular flexure despite the patient’s 

mandible flexing during parts of the scan.  
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 Comparing mean absolute differences across groups showed clinically relevant results.  

Statistically there is no significant difference between alginate impressions and the intraoral 

scanners used in this study in the incisor region. Perhaps a larger sample size would elucidate 

why the only significant difference between modality groups at the premolars was between 

Intraoral Scanner and Closed Alginate impression. At the molar region the Intraoral Scanner 

captured less flexure than either Open Alginate or Closed Alginate.  This suggests that these 

intraoral scanners are at least no worse than the alginate impressions.  The amount of jaw 

opening (and subsequent medial mandibular flexure) may be less with intraoral scanners, making 

them at least statistically, if not clinically, more accurate than alginate impressions.   

 The current technique used to capture intraoral scans involves first scanning a ‘backbone’ 

- an initial pass that captures occlusal surfaces of posterior teeth and the lingual of the anterior 

teeth. Subsequent passes build additivity on this backbone. This technique may help limit the 

amount of medial mandibular flexure that is captured through intraoral scans.  

 The results comparing intraoral scan to CBCT with Alginate (open and closed) to CBCT 

suggest that intraoral scanners are more accurate than alginate impression and capture less 

mandibular flexure. These scanners can be used to capture full arch digital impressions for any 

procedure that previously was done with alginate impressions.  In orthodontics this includes 

initial records, progress records, final records, retainer impressions, and impressions for clear 

aligner therapy, like  Invisalign®.   

 There were several limitations of this study and sources of error. Though the CBCT was 

used as the “Gold standard” in this study and showed the least amount of mandibular flexure, 

these volumes are not without errors. Movement during CBCT scanning would create 
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inaccuracies. However, none of the scans in this study showed motion artifacts. Additionally, 

metal restorations could lead to voxel scattering which could distort the size and volume of the 

rendered teeth. In this study there was only one tooth with metallic restoration and registration 

was performed using the second molar in place of the first molar. The registration process could 

also introduce minor errors.  Though nearly fully automatic in the calculations to register the 

models together, it is based on specific Regions of Interest which are defined by the operator.  

Superimposition error was minimized by registering multiple surfaces that surround the border of 

the mandibular dental arch. The same operator registered all models to maintain consistency.  An 

additional limitation of the study is that results are specific to the scanners used in this study.  

With the many scanners on the market and propriety software for each, it is impossible to know 

if all scanners capture similarly, or would have similar results for the amount of medial 

mandibular flexure that is captured.  

 Future studies could validate the registration and measurement techniques using the 

maxillary arch which undergoes no flexure on opening. With more time and resources, it would 

be fascinating to compare alginate impressions and intraoral scans with full mouth PVS 

impressions to see how much medial mandibular flexure was captured a material with much 

higher accuracy and dimensional stability. Future studies could compare multiple scanners on the 

same individual to see where discrepancies lie. To gain further understanding of medial 

mandibular flexure, a similar study to this could be done on patients with implants, thus negating 

any flexure introduced or negated by the PDL.   

Conclusions 
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 The results from this study answered the primary aims. Mandibular arch alginate 

impressions should be taken with the mouth as nearly closed as possible to limit capturing tooth 

positioning errors caused by medial flexure of the mandible.  

 Current intraoral scanners capture less medial mandibular flexure than alginate 

impressions. These scanners appear to be fully acceptable for use in orthodontics when replacing 

any impression that previously was taken with alginate, and are statistically more accurate at the 

molar region than their alginate counterparts, though that statistical accuracy is likely not 

clinically significant except for full arch, fully rigid appliances or prostheses.  
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APPENDIX 1: TABLES AND FIGURES 

Table 1: Open Alginate Impression vs. Closed Alginate Impression  1

Table 2: Open Alginate Impression vs. CBCT  2

Table 3: Closed Alginate Impression vs. CBCT  3

Table 4: Intraoral Scanner vs. CBCT  4

O/C Alginate Mean Difference (mm) Standard Deviation 95% C.I. P value

Incisors: 0.128 0.057 0.105-0.147 <0.001

Canine/Premolars: 0.177 0.067 0.152-0.202 <0.001

Molars: 0.360 0.144 0.306-0.413 <0.001

OpenAlg vs CBCT Mean Difference (mm) Standard Deviation 95% C.I. P value

Incisors: 0.243 0.119 0.198-0.287 <0.001

Canine/Premolars: 0.318 0.089 0.285-0.351 <0.001

Molars: 0.440 0.146 0.385-0.494 <0.001

I/O scan vs CBCT Mean Difference (mm) Standard Deviation 95% C.I. P value

Incisors: 0.337 0.221 0.254-0.420 <0.001

Canine/Premolars: 0.351 0.110 0.310-0.392 <0.001

Molars: 0.428 0.124 0.382-0.475 <0.001

I/O scan vs CBCT Mean Difference (mm) Standard Deviation 95% C.I. P value

Incisors: 0.240 0.106 0.197-0.284 <0.001

Canine/Premolars: 0.263 0.105 0.220-0.306 <0.001

Molars: 0.337 0.154 0.274-0.401 <0.001

 One sample t-test, level of significance set to ≤0.0041

 One sample t-test, level of significance set to ≤0.0042

 One sample t-test, level of significance set to ≤0.0043

 One sample t-test, level of significance set to ≤0.0044
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Figure 1: Mean Difference at each Region grouped by Modality Comparison  5

Figure 2: Mean Difference at the Molar Region for each Modality Comparison6

 Error bars indicate 95% confidence interval5

 Error bars indicate 95% confidence interval6
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