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ABSTRACT 

 

KEVIN RICHARD BLAUTH: Fractalkine Induces the Expression of Intercellular 
Adhesion Molecule-1 on CD4+ T-lymphocytes: implications for the 

immunopathogenesis of Multiple Sclerosis 
(Under the direction of Silva Markovic-Plese) 

 

Fractalkine (CX3CL1) is a chemokine that has been shown to play roles in 

lymphocyte chemotaxis, inflammation, and neuroprotection in central nervous 

system (CNS) diseases.  Here we examined roles for CX3CL1 in CD4+ T-cell 

chemotaxis mediated via their upregulation of adhesion molecule expression as 

well as secretion of inflammatory cytokines involved in the pathogenesis of 

relapsing remitting multiple sclerosis (RRMS).  We found that CX3CL1 

concentrations are elevated in the cerebrospinal fluid (CSF) of RRMS patients, 

and that CX3CL1 increases mRNA expression of IFN-γ and TNF-α, and protein 

secretion of IFN-γ by CD4+ T-cells derived from RRMS patients but not those 

derived from healthy controls (HCs). We also show that blood-derived CD4+T-

cells express increased surface levels of CX3CL1 receptor (CX3CR1) and 

intercellular adhesion molecule (ICAM)-1 in RRMS patients in comparison to 

HCs.  Furthermore, the percentage of CX3CR1+ICAM-1+CD4+ T-cells are 

increased in the CSF of untreated RRMS patients in comparison to their 

peripheral blood samples, and CD4+ T-cells which migrate in-vitro toward a 

CX3CL1 gradient express higher levels of ICAM-1 than CD4+ T-cells that do not 

migrate. Furthermore, we demonstrated that CX3CL1 upregulates ICAM-1 
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expression on the surface of RRMS patient-derived but not HC derived CD4+ T-

cells.  Lastly, we show that CX3CL1 stimulates ICAM-1 expression on myelin-

antigen-specific CD4+ T-cell lines derived from RRMS and healthy donors. These 

results indicate that CX3CL1 may preferentially recruit CX3CR1+ICAM-1+CD4+ T-

cells into the CNS during RRMS development, and may activate CD4+ T-cells to 

express higher levels of ICAM-1, as well as the proinflammatory cytokines IFN-γ 

and TNF-α.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 MS Pathology 

 

The autoimmune response is proposed to play a role in the development 

of MS, whereby myelin-autoreactive CD4+ T helper (TH) cells are activated in 

peripheral circulation (Fig. 1.1 A) and migrate through the permeable blood-brain 

barrier (BBB) into the CNS [1-3] (Fig. 1.1 B).  It is still unclear what triggers CD4+ 

T-cell activation against CNS-specific myelin autoantigens—however, molecular 

mimicry by microbial or viral antigens is one of the proposed mechanism [4]. 

Once inside the CNS, CD4+ T-cells encounter antigen-presenting cells (APCs) 

such as microglia and dendritic cells (DCs) and are reactivated by abundant 

myelin-derived antigens [5-7].  This reactivation leads to the release of 

proinflammatory cytokines which stimulate microglia, increase BBB permeability, 

and induce leukocyte chemotaxis, allowing for rapid accumulation of 

proinflammatory CD4+ and CD8+ T-cells, B-cells, and macrophages in the CNS 

[8] (Fig. 1.1 C).  Following this influx of immune cells into the CNS, demyelinating 

lesions—the hallmark pathological feature of MS—are formed in the brain and 

spinal cord.  Lesions are characterized by myelin loss, axonal damage, and 

astrocytic proliferation [9] (Fig. 1.1 D).  MS typically takes a relapsing remitting 
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(RR) course, in which episodes of clinical disease activity (relapses) are followed 

by clinically silent periods (remissions).  Most patients (~85%) are initially 

diagnosed with RRMS, followed years later by secondary progressive (SP)MS, in 

which disability accumulates over time without periods of remission [10]. 

  

1.2 MS Research 

Early MS Research 

A milestone in the history of MS research was the discovery of myelin in 

1854, by Rudolf Virchow [11].  MS was identified in 1868 by Jean-Martin Charcot, 

who dissected the brain of a patient postmortem, and found lesions that he 

named sclerose en plaques[12].  Charcot’s classification of MS as a distinct 

nosological entity was a landmark achievement in the field of neurology [13-15].  

He was the first physician to correlate the clinical symptoms of MS with detailed 

pathological descriptions of CNS lesions [12, 14, 16]. It was not until 1928, 

however, that oligodendrocytes were identified by Hortega and Penfield as the 

cells responsible for myelination in the CNS [17].  A great body of work 

addressing proper fixation, sectioning, and staining brain tissue preceded this 

discovery: Hortega and Penfield’s work was built upon Golgi and Cajal’s efforts to 

allow for anatomical characterization of the CNS via novel staining and 

microscopy techniques.   

 

 



3 

 

MS disease subsets 

 The most common subset of MS is RRMS, which is a presenting form of 

disease in 75-80% of MS patients.  RRMS patients experience relapses, 

characterized by acute onset of neurological symptoms.  These periods are often 

accompanied by the presence of gadolinium-enhancing lesions, which denote 

BBB disruption.  MS relapses are manifested by symptoms including motor 

weakness, visual symptoms, sensory deficit, coordination difficulties, or vertigo.  

Relapses can last from days to months, and are abutted by periods of without 

neurological symptoms called remissions [10]. 

 Most RRMS patients eventually develop SPMS.  SPMS is characterized 

by progressive neurological impairment with no relapses and remissions, CNS 

atrophy, and less inflammation than is observed in RRMS.  Some MS patients 

exhibit a progressive disease course from the onset of the disease, with no 

relapses and remissions, and these patients are diagnosed with PPMS. It is 

unclear at this time whether these ―subsets‖ of MS are truly variations of the 

same disease, as they are presently classified, or if in fact these subsets 

represent distinct diseases with unique underlying causes.  To this point, 

neuromyelitis optica (NMO), which was until recently considered to be a subset of 

MS, is now recognized as a distinct CNS autoimmune disease in which 

aquaporin-4 water channels expressed on astrocytes are targeted by NMO IgG 

antibodies, ultimately leading to demyelination of the optic nerve and spinal cord 

[18]. 
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Environmental Studies 

It is broadly accepted that both environmental and genetic factors play 

roles in the pathogenesis of MS.  Epidemiological studies have verified that 

several environmental factors may trigger MS clinical presentation.  These 

include geographical latitude, vitamin D deficiency [19], smoking [20, 21], and 

perhaps CNS infection with viruses such as Epstein-Barr virus (EBV) [22, 23] or 

varicella-zoster virus (VZV) [24].  Environmental studies have broadly given 

credence to the hypothesis that MS is not only determined by a genetic 

susceptibility, but is a disease in which individuals of a genetically-susceptible 

background are exposed to environmental agents that instigate the pathogenesis 

of MS. The hygiene hypothesis is based on epidemiological evidence that higher 

incidence of autoimmune diseases in the developed world may be due to lower 

exposure rates to infection and better sanitation [25].  A reduced exposure to 

helminthes has been targeted by some researchers as a potential cause of MS 

development, because helminthes shift the immunological balance toward a more 

immunosuppressive state.  Specifically, helminthes may induce T-cell populations 

such as CD4+CD25+FoxP3+ T regulatory cells that prevent the development of 

autoreactive pathogenic T-cells such as Th17 cells and Th1 cells, and instead 

produce a Th2 response [26]. 
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MS Genetics 

Genetic factors clearly play a role in MS pathogenesis.  Clues of genetic 

susceptibility to MS include studies which show that people of Caucasian descent 

are at greater risk to develop MS than other groups [27], and that familial 

recurrence is common among MS sufferers [28].   More recently, large multi-

center collaborative studies revealed that the HLA class II extended haplotype 

HLA-DRB5*0101-HLADRB11501-HLA-DQA1*0102-HLA-DQB1*0602 confers the 

majority of genetic susceptibility to MS [29].  Other immunologically-related 

genetic targets have been identified as potentially related to MS susceptibility as 

well, including genetic variants of the gene icam1 [30], and immune targets such 

as IL2RA, IL7R and CD58 [29].  Two single nucleotide polymorphisms (SNPs) in 

CX3CL1 receptor (CX3CR1) have been shown to alter CX3CR1 expression 

levels and binding affinity for CX3CL1 [31, 32].  These SNPs are V249I and T280M.  

Combinations of the expression of these SNPs lead to four CX3CR1 haplotypes: 

V249T280, I249T280, I249M280, and V249M280 [33].  While MS susceptibility has not 

been found to be associated with expression of any of these haplotypes, severity 

of MS course has been found to be correlated with haplotype expression [34].  

I249T280 was found to be expressed in a significantly greater number of RRMS 

patients than in SPMS patients.   This suggests that RRMS patients who express 

this haplotype do not progress to SPMS as quickly as patients who express the 

other haplotypes, suggesting a potential protective effect for CX3CR1 haplotype 

I249T280 [34].  In summary, human genetic research has proven to be valuable in 

uncovering specific molecular targets which confer MS susceptibility and may be 

useful in the future for earlier and more accurate MS diagnosis. 
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Antigen-specific CD4+ T-cells. 

MS was first proposed to be a disease brought on by self-reactive CD4+ T-

cells due to experimental autoimmune encephalomyelitis (EAE) studies which 

showed that CNS demyelination in EAE can be induced by immunization with 

CNS myelin proteins. Myelin basic protein (MBP) and PLP are the most 

extensively studied CNS myelin proteins in the context of EAE, and reactivity to 

these antigens is proposed to be a component of MS immunopathogenesis as 

well [35, 36].  Autoreactive MBP and PLP-reactive T-cells are present in similar 

frequencies in patients and controls [1, 37, 38]. However, Zhang and colleagues 

showed that MBP- and PLP-reactive CD4+ T-cells derived from the CSF and 

blood of RRMS patients more frequently express IL-2R activation marker, so that 

their activation state and not their mere presence constitutes a hallmark of the 

autoimmune response in MS [39].  Taken together, these data suggest that while 

both HCs and MS patients have circulating myelin-protein autoreactive T-cells, in 

MS patients they have already been repeatedly activated by myelin protein 

antigens in-vivo. 

 

Immunological Studies 

A large body of data derived from human research points to an 

immunological basis of MS.  The immunological etiology of MS is closely tied to 

MS genetics, as the HLA class II haplotype associated with MS susceptibility 

codes for Major Histocompatibility Complex II (MHC II), a heterodimer expressed 

on lymphocytes, and APCs that present antigen to CD4+ T-cells to trigger 
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immune response [29].  While myelin-reactive T-cells are found in circulation of 

both MS patients and HCs, those derived from MS patients express activated 

phenotype, and do not require costimulatory CD28 signaling for recurrent 

activations [40, 41]. [39].  Importantly, myelin-reactive CD4+ and CD8+ T-cells 

from MS patients express a distinct inflammatory cytokine profile, expressing 

increased levels of IFN-γ [42].  Also, myelin oligodendrocyte glycoprotein 

MOG97-109 reactive CD4+ T-cells have been shown to be present in greater 

frequencies in the blood of MS patients compared to HCs [43]. 

 It is well-established that CD4+, CD8+ T-cells, B-cells and monocyte-

derived cells are implicated in the pathogenesis of MS [2, 44-47].  These cell 

subsets play role in the immunosurveillance of the CNS in health and disease, 

and in MS lesion formation [48] (Fig. 1.1).  In this study, we will evaluate these 

cell subsets derived from RRMS patients and HCs for differences in surface 

expression of chemokine receptors and adhesion molecules. The following is a 

brief overview regarding the role of these cell subsets in MS. 

CD4+ T-cells. Adoptive transfer of activated myelin-specific CD4+ T-cells 

into wild type mice induce EAE, suggesting that CD4+ T-cells are the prime 

pathogenic cells in EAE and MS [49, 50].  Specifically, TH1 and TH17 CD4+ T-cell 

subsets mediate disease development in multiple EAE models [51-53].  Genetic 

studies of MS have implicated CD4+ T-cells in the development of the disease: 

expression of DR2 HLA class II alleles which are involved in antigen presentation 

to CD4+ cells are associated with MS susceptibility [29, 54].  Therefore, the 

expression of proteins related to CD4+ T-cell migration into the CNS—chemokine 

receptors and adhesion molecules—are of great interest. 
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 CD8+ T-cells.  CD8+ T-cells’ role in MS pathogenesis have not been 

studied as thoroughly as the role of CD4+ T-cells.  However, MS genetic studies 

implicate CD8+ T-cells as the susceptibility for the disease is associated with the 

expression of MHC class I allele HLA-A*301, and upregulation of MHC class I 

molecules has been observed in MS lesions [55].  Clonally-expanded CD8+ T-

cells are present in the perivascular regions and at the lesion edge [44, 45].  

Furthermore, CD8+ T-cells are present in greater numbers in active MS lesions 

than CD4+ T-cells [44, 56].  Myelin-specific CD8+ T-cells have been derived from 

the blood of MS patients and HCs [57], and these cells have been shown to 

express IFN-γ and TNF-α, and have the ability to lyse oligodendrocytes in vitro 

[58]. 

CD19+ B-cells.  B-cell involvement in MS has been historically 

understudied, but has recently become a major focus in MS research.  As early 

as 1947, Kabat, et al., have suggested that myelin protein-specific antibodies 

may play role in human demyelinating disease [59].  Oligoclonal bands 

representing clonal IgG in the CSF of MS patients are considered a contributing 

finding for the diagnosis of MS [60], and several studies have demonstrated that 

antibodies are present in the demyelinated areas of the brain and in the CSF of 

MS patients [61, 62].  Autoantibodies against MOG, MBP, and proteolipid protein 

(PLP) have been identified in MS lesions, and proposed to contribute to MS 

pathogenesis [63-66].  These myelin-reactive autoantibodies are proposed to 

play a role in MS by several mechanisms, including antibody-dependent cellular 

cytotoxicity (ADCC) [67], opsonization and phagocytosis[63], complement 

activation of effector cells, or antibody-induced demyelination [68].  Heightened 

levels of complement deposition, which support the functions of pathogenic 
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antibodies, have also been observed in MS lesions. Rituximab, a monoclonal 

antibody against CD20 that specifically lyses B-cells, has been shown to reduce 

gadolinium-enhancing lesions and relapse rates at early time point, implicating 

the role of B-cells in the antigen presentation or the inflammatory response 

regulation, and not only antibody production [47]. Importantly, in an EAE model, 

B-cells were required to induce an immune response to CNS myelin proteins [69].  

B-cell migration across BBB endothelia has been shown to be dependent upon 

chemokines, including CCL2 [70]. 

 CD14+ monocytes.  Monocytes act as APCs in peripheral circulation and in 

the lymphoid organs, and also migrate into the CNS where they differentiate into 

DCs and macrophages [71].  In EAE, monocytes-derived macrophages 

participate in the disease pathogenesis by migrating across the BBB, and actively 

participate in demyelination by digesting the myelin sheath surrounding axons 

[72].  The ablation of monocyte recruitment into the CNS blocks lesion formation 

in EAE [73].  Notably, CCL2 blockade during EAE has been shown to block 

pathogenesis of the disease [74]. One feature that characterizes active MS 

lesions is the presence of macrophages containing myelin degradation products 

[75].  Monocyte-derived macrophages may also act as APCs in CNS lesions, 

expressing MHC class II molecules and presenting myelin-Ag products such as α 

B-crystallin that may reactivate infiltrating CD4+ T-cells [76]. 

 

Several other immune cell subsets also play roles in MS.  A brief 

description of two of these subsets is as follows: 
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Regulatory T cells. In 1977, Adda, et al. showed that ―suppressor cells‖ 

are increased in number during EAE recovery [77]. Since then, FoxP3+ 

Regulatory T cells (Tregs) have been shown to play role in MS. Tregs can restrict 

proliferation and cytokine production of immune cells including CD4+ T cells, 

CD8+ T cells, B cells, monocytes, macrophages, and DCs.  Tregs play an 

important role in the control of peripheral tolerance, and the breakdown of 

tolerance to self-reactive antigens may lead to autoimmune diseases such as MS 

[78].  Tolerance in MS may be broken by a reduction in total Treg numbers, by 

the existence of dysfunctional Tregs in individuals susceptible to MS, and 

inhibition of T-cell suppression by Tregs [79] [80].  Interestingly, Tregs have been 

found to be increased in numbers due to administration of immunomodulatory 

therapies IFN-β and glatiramer acetate, further suggesting a protective role for 

Tregs [81, 82]. 

Dendritic cells.  DCs are APCs that process and present antigens to T 

cells and secrete regulatory cytokines that are capable of inducing the activation 

and differentiation of naive and memory T cells.  Peripheral blood DCs have been 

shown to be able to migrate to the CNS [83], and DCs are also found in the CSF 

and lesions of MS patients [84-86].  In EAE, T cells and DCs interact in the CNS 

to drive disease pathogenesis [5, 87, 88].  Analyses of MS CNS tissue have 

shown that perivascular spaces on the border of active lesions contain a 

substantially greater DC content than NAWM [84].  This suggests that DCs may 

play a role in antigen presentation at the BBB, and therefore may play a primary 

role in MS pathogenesis.  Recent studies have also shown that DCs play 

important roles in secretion of proinflammatory cytokines that induce Th17 cell 
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differentiation [83]; this polarization can be blocked by IFN-β1a [89], as well as 

simvastatin [90]. 

 

Biomarker Identification Studies 

Early diagnosis and treatment may improve clinical outcome for MS 

patients [91].  However, there is currently no single test which can diagnose MS, 

so in many MS patients the initiation of disease-modifying treatments is delayed 

[92].  CSF samples are typically available at the time of MS diagnosis, and 

therefore MS disease activity biomarkers in the CSF would be of great benefit for 

the improvement of diagnostic accuracy and the timely initiation of the treatment 

of MS.  Several potential biomarkers have been identified which may aid in the 

diagnosis of MS, or prognosis to determine MS disease course.  Potential CSF 

biomarkers include adhesion molecules such as soluble Vascular Adhesion 

Molecule-1 (sVCAM-1) [93-95], sICAM-1 [96], and Neural Cell Adhesion Molecule 

(NCAM) [94, 95], as well as chemokines such as CXCL9, CXCL10, CXCL13, 

CCL5 [97, 98]. 

 

CSF-derived Cell Analysis in MS 

T-cells are the predominant lymphocyte subset derived from MS CSF [99-

101].     A greater percentage of CSF-derived T-cells are activated in comparison 

to the blood-derived T-cells, particularly during relapses of the disease [102].  

The analysis of chemokine receptor surface levels on the CSF-derived CD4+ T-
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cells has revealed that several chemokine receptors (CCR5, CXCR3) are 

upregulated significantly on these cells, correlating with upregulation of these 

receptors on lesion-derived CD4+ T-cells [98]. 

 

Animal Models of MS  

Animal models of MS have served as tools to understand the genetic and 

molecular mechanisms of MS pathology and have been instrumental in 

developing several effective MS therapies.  Three animal models have been 

widely used to study MS: EAE, chemically-induced demyelination such as 

cuprizone-induced demyelination, and virally-induced chronic demyelination.  In 

the following subsections, we will briefly discuss each MS animal model and its 

contribution to our understanding of MS. 

 

EAE 

Thomas Rivers characterized EAE in 1933 [103].  It was not until a decade 

later, however, that it was observed that the neurological damage induced in EAE 

is pathologically similar to human CNS demyelinating disorders [104].  In classic 

EAE, a mouse or other mammalian recipient is immunized with CNS myelin 

antigen, or disease is elicited via passive transfer of encephalitogenic T-cells [59, 

105].  In these models, a TH1 cell-mediated immune response at the spinal cord 

and brain leads to CNS demyelination [104].  This myelin damage results in 

clinical manifestations similar to those seen in MS, such as sensory deficits, 

motor weakness, visual loss or coordination deficits [35].  Research in EAE has 
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led to a wealth of data pertaining to MS, and insights attained from these models 

have led to the development of disease-modifying therapies for MS [106, 107].  

Largely due to research in EAE animal models, the immune-initiated disease 

hypothesis of MS has been favored by the majority of MS researchers.  In this 

model, myelin autoreactive T-cells enter the CNS and induce focal inflammatory 

demyelination of the brain and spinal cord, causing acute and chronic disability in 

MS patients.  EAE has several drawbacks, however.  First, in B6 mice, EAE 

affects the lumbar spinal cord, while the brain is predominantly affected in MS 

[108].  Second, EAE does not recreate the MS pathological profile in its entirety; 

for instance, classic EAE does not mirror B-cell autoantibody production 

adequately [109].  Third, Lastly, therapies that have been shown to be effective 

for the treatment of EAE have often not been shown to be effective for the 

treatment of MS [110]. 

Additional findings from the EAE model show that adhesion molecules 

such as ICAM-1 are upregulated on the luminal side of endothelial cells of the 

BBB [111, 112], and facilitate autoreactive cell entry into the CNS (Fig. 1.1 B).  

ICAM-1 expression on T-cells is also critical for EAE development [111], and 

CX3CR1 has been shown to be critical for the transmigration of NK-cells into the 

CNS during EAE [113]. 

 

The Cuprizone intoxication Model of Demyelination and Remyelination 

Several models of demyelination utilize a drug or toxin to induce 

demyelination.  These models include lysolecithin injections, which induce 

demyelination via activation of phospholipase A2 [114], ethidium bromide 
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injections into the spinal cord [115], and introduction of cuprizone in the diet 

[116].  Of these models, cuprizone-induced demyelination is the most widely 

used toxin-induced demyelination model in MS research.  In the late 1960s, 

studies by William Carlton established that ingestion of the copper chelator 

cuprizone has neurotoxic effects [117, 118].  It was later found that mature 

oligodendrocytes are particularly susceptible for apoptosis in the presence of 

cuprizone, while other cell types are not affected [119].  Samuel Ludwin then 

characterized cuprizone-induced demyelination in the superior cerebellar 

peduncle, finding that axons remained undamaged while demyelination and later 

oligodendrocyte death occurred [120].  After removal of cuprizone from the diet, 

remyelination was found to progress quickly, remyelinating axons to roughly half 

the thickness of undamaged myelinated fibers [120].  Ludwin then studied the 

source of remyelinating oligodendrocytes during remyelination, finding that 

immature, proliferating oligodendrocytes differentiated into mature 

oligodendrocytes, which were ultimately responsible for remyelination of 

cuprizone-demyelinated axons [121]. 

Demyelination by cuprizone represents an attractive model to study 

demyelination and remyelination because cuprizone-induced demyelination holds 

to a predictable time course in which complete demyelination of several brain 

regions, including the corpus callosum and cerebellar peduncle, occurs over 

several weeks of cuprizone ingestion [122].  If this period of damage is followed 

by removal of cuprizone from the diet, subsequent robust remyelination is 

consistently observed [119, 122].  The extent of demyelination, remyelination, 

and infiltration of damaged areas by macrophages and migroglia can be scored 

by Luxol-Fast blue (LFB) staining for myelin and Periodic Acid Schiff (PAS) 
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staining for macrophages and microglia [123].  One drawback of the cuprizone 

model is that it does not feature infiltration of peripheral immune cells that is a 

part of MS pathogenesis.  However, the cuprizone model of demyelination has 

been optimized in several strains of mice, including C57/B6, as this background 

features an abundance of transgenic and knockout lines pertinent to MS 

pathogenesis [116].  Because of the reproducibility of this model, it is useful tool 

to study the effects of therapies to suppress demyelination, and is especially 

valuable in evaluating therapies that may enhance remyelination [124].  In recent 

years, the cuprizone model of demyelination has been utilized to uncover the 

importance of insulin-like growth factor-1 (IGF-1) in protection of mature 

oligodendrocytes from apoptosis during demyelination [125], whose upregulation 

may be induced in microglia, macrophages, and astrocytes by IL-1β in to promote 

remyelination [126].  This model has also been utilized to uncover roles for 

chemokines such as MIP-1α in recruitment of microglia to areas of damage and 

upregulation of TNF-α during demyelination [124], as well as a previously 

unknown role for TNF-α interactions with TNFR2 in oligodendroctye regeneration 

after a demyelinating event [127]. 

 

 

Virus-induced Demyelination 

Potential roles for viruses in MS have historically been studied and 

intensely debated.  Many researchers currently believe that MS may be virally-

induced, perhaps via molecular mimicry, leading to an autoimmune response to 

CNS myelin proteins in genetically-susceptible individuals.  Others believe that a 

single, yet-unidentified virus may be responsible for MS pathology, evidenced by 
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the persistent presence of oligoclonal banding in CSF derived from MS patients 

[128].  Several viral models of demyelination have been developed; the most 

commonly used is Theiler’s murine encephalomyelitis virus (TMEV).  TMEV 

presents a model which recapitulates several features of MS: (1) presence of 

CNS lesions, (2) the triggering of an autoimmune response via the CNS viral 

infection (3) the presence of inflammatory cells in and around lesions during 

myelin destruction, and (4) several features of MRI results in mice that are similar 

to human MS MRIs, including the presence of brain, brainstem, and spinal cord 

lesions, and T2 hyperintense spinal cord lesions [129].  

Mechanisms of Myelin destruction and lesion formation 

 Four distinct patterns of lesions have been identified in CNS tissue derived 

from MS patients biopsies by Lucchinetti, et al.  The four distinct patterns of 

lesions are as follows [130]: 

Pattern I: The lesion infiltrate is composed predominately of CD3+ T-

lymphocytes and macrophages.  Demyelination is found in a perivenous pattern, 

and there is a sharp distinction between the lesion edge and neighboring tissue.  

Oligodendrocytes are present in higher numbers than in lesion patterns III and IV. 

Pattern II: Similar to pattern I, pattern II lesions are largely composed of 

CD3+ T-lymphocytes and macrophages.  However, pattern II lesions also feature 

high levels of IgG, and complement C9neo antigen.  Ig reactivity in pattern II 

lesions was associated with degenerating myelin at the active plaque edge and 

with degenerating myelin products within lesional macrophages.  A perivenous 

pattern of demyelination is noted, and there is a sharp distinction between the 

lesion edge and neighboring tissue.  Oligodendrocytes are present in similar 
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numbers to pattern I lesions, and higher numbers than in lesion patterns III and 

IV. The presence of shadow plaques indicates that some remyelination has 

occurred. 

Pattern III: The infiltrate in these lesions is composed of CD3+ T-

lymphocytes and macrophages.  The edge between the lesion and surrounding 

tissue is not sharply defined, but rather is ill-defined, and in about one-third of 

pattern III lesions, a concentric shape is observed.  Importantly, oligodendrocyte 

dystrophy was observed throughout this lesion type as measured by loss of 

myelin-associated glycoprotein (MAG) and by oligodendrocyte apoptosis.  The 

oligodendrocyte destruction in this lesion pattern was similar to that seen in toxin- 

or virus-induced animal models of MS. 

Pattern IV: Macrophages compose a larger proportion of total infiltrate in 

this subset, while a significant CD3+ T-lymphocyte presence is also observed.  

Oligodendrocyte cell death was observed in a small ring of periplaque white 

matter as measured by DNA fragmentation: no shadow plaques were observed, 

and remyelination appeared to be absent. Similar to pattern III, the 

oligodendrocyte destruction in this lesion pattern was similar to that seen in toxin- 

or virus-induced animal models of MS.  This lesion subset was found exclusively 

in patients with PPMS.  

 Interestingly, these four lesion pattern subsets were found to be 

homogeneous within an individual patient [130].  However, these findings are still 

somewhat controversial because another group has found that all acute MS 

lesions display complement activation and oligodendrocyte apoptosis, while 

subacute lesions derived from the same patients display complement activation 
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but no signs of oligodendrocyte apoptosis [131].  This was interpreted as 

evidence that oligodendrocyte apoptosis is a hallmark of the earliest stage of MS 

lesion formation [131]. 

 Henderson, et al., attempted to address mechanisms of myelin destruction 

in MS by analyzing immune cell infiltrate in active lesions derived from patients 

with early MS [84].  This group found that the normal appearing white matter 

(NAWM) surrounding newly formed lesions contained an abundance of activated 

microglia that expressed CD45 and MHC Class II compared with lower numbers 

of microglia in NAWM that was not near lesion tissue [84].  NAWM also contained 

astrocytes, neurons, and oligodendrocytes that expressed IgG.  Prephagocytic 

tissue (defined in this study as still-intact tissue exhibiting signs of impending 

myelin damage) directly adjacent to actively demyelinating lesions was found to 

contain damaged and apoptotic oligodendrocytes, and only a slight increase in T 

cells compared to NAWM [84].  In phagocytic lesion tissue, IgG+ phagocytic MHC 

Class II-negative microglia containing myelin products were found in abundance 

compared to in NAWM.  This group speculated that microglia in phagocytic lesion 

tissue may expand active MS lesions by secreting molecules toxic to 

oligodendrocytes, or that active lesions may expand due to hypoxic stress in 

oligodendrocytes.  Interestingly, CD4- and CD8+ T-cells were not found at greatly 

heightened levels in phagocytic tissue, but were found in high levels in 

perivascular prephagocytic tissue [84].  In recently demyelinated tissue, 

demyelinated axons were found in close proximity to IgG+ activated microglia 

and macrophages.  CD4- and CD8+ T-cells, B-cells, and IgG-producing plasma 

cells were found in this tissue in greater numbers than in phagocytic tissue, and 

regenerating oligodendrocytes were also observed [84]. 
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1.3 The Role of CX3CL1 and CX3CR1 in CNS Inflammatory Diseases 

Chemokines facilitate the chemotaxis of proinflammatory leukocytes 

toward areas of inflammation and activate adhesion molecules to bind their 

receptors, enabling cell migration and transmigration [132, 133].  In experiments 

relevant to the study of MS, several groups have characterized various 

chemokine and chemokine receptor knockout mice, allowing analysis of 

chemokine function in vivo [113, 134, 135].  A broad conclusion drawn from these 

studies is that chemokines direct migration and extravasation of leukocytes into 

the CNS during inflammation.  Experiments utilizing EAE have shown that robust 

upregulation of a variety of chemokines and chemokine receptors occurs in 

concert with disability accumulation and demyelination [72], and chemokines and 

chemokine receptors have been shown to be critical for EAE development [136].  

Because of convincing temporal and spatial correlations between chemokine 

expression and CNS leukocyte infiltrate in EAE, chemokines have become a 

major focus of MS research [72, 137, 138]. 

Chemokines and chemokine receptors play multiple roles MS.  Levels of 

several chemokines, including CXCL9, CXCL10, CXCL13, CCL5, and CX3CL1 

are enhanced in the CSF of MS patients during acute attacks of inflammatory 

demyelination in comparison to the CSF derived from healthy controls (HCs) or 

neurological disease controls [97, 98, 139].  A higher percentage of CSF-derived 

leukocytes express chemokine receptors, including CCR5, CXCR3, and CCR7 

during acute MS exacerbations, suggesting functional significance of elevated 

chemokine levels observed in the CSF [98, 100, 140].  Robust expression of 

multiple chemokine receptors has been observed on the surface of leukocytes in 

the demyelinating lesions of RRMS patients, suggesting that chemokine 
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receptors may allow inflammatory cells to hone to lesions [139, 141, 142].  

Expression of CX3CR1 has been observed on the surface of leukocytes in the 

demyelinating lesions of relapsing remitting (RR) MS patients, indicating that 

CX3CR1 may guide inflammatory cells to lesions [139]. 

In 1997, Bazan and colleagues identified CX3CL1, noting that unlike all 

other known chemokines, the sequence for CX3CL1 does not terminate at the 

end of the chemokine domain (76 aa).  Rather, the CX3CL1 chemokine domain is 

connected to a mucin stalk (241 aa), followed by a transmembrane domain (18 

aa) and an intracellular domain (37 aa) [143].  This group found that, when 

expressed in HEK293 cells, soluble CX3CL1 is shed as a 95 KDa glycoprotein 

[143].  Later, Pan and colleagues noted that CX3CL1 mRNA is expressed 

predominantly in the healthy murine brain [144].  Later in 1997, Imai and 

colleagues identified CX3CR1, a high affinity functional CX3CL1 receptor that 

was shown to mediate cell adhesion and transendothelial migration of T-cells and 

monocytes [145].  CX3CR1 had been previously identified as ―orphan‖ receptor 

chemokine β receptor-like 1 (CMKBRL1) by Combadiere and colleagues [146].  

CX3CR1 is a seven-transmembrane, G-Protein-coupled receptor [145]. 

CX3CL1 is the only member of the δ-chemokine family, distinguished from 

other members of the chemokine superfamily by 1) a distinct structural motif in 

the N-terminus [143] and 2) duality as a membrane-bound form, in which it acts 

as an adhesion molecule, and a soluble form, in which it mediates immune cell 

migration.  Membrane-bound CX3CL1 is cleaved constitutively by disintegrin and 

metalloproteinase domain-containing protein 10 (ADAM10) to produce baseline 

levels of soluble CX3CL1 (Table 1.1).  During inflammation, activated cells 
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produce disintegrin and metallopeptidase domain-containing protein 17 

(ADAM17) to enhance the production of soluble CX3CL1 [147-149] (Table 1.1).  

The cleavage of CX3CL1 by these two matrix metallaproteinases (MMPs) is 

intriguing for several reasons.  First, the ADAM 10—ADAM 17 system of 

cleavage of membrane-bound CX3CL1 allows for immediate soluble CX3CL1 

production in response to an inflammatory extracellular microenvironment.  

Second, MMPs have recently come into focus as potential therapeutic targets in 

neuroinflammatory diseases such as MS [150], and ADAM17 and ADAM10 levels 

have specifically been shown to be upregulated in chronic active MS lesions 

[151].  Last, ADAM17 is known to cleave several cytokine receptors and 

membrane-bound adhesion molecules, which are intricately involved in 

neuroinflammation, such as IL-6R, TNF-α, and ICAM-1 [152-155]. 

 

CX3CL1 and its Downstream Signaling Pathways 

Molecular pathways downstream of CX3CL1 vary between different cell 

subsets.  In CD14+ monocytes, co-culture with CX3CL1-expressing human 

umbilical vein epithelial cells (HUVECs) leads to up-regulation of IL-6, CCL2, and 

MMP-9 [156].  In murine microglia, however, CX3CL1 suppresses production of 

IL-6, NO, and TNF-α, [157] (Table 1.1).  Application of CX3CL1 in-vitro 

suppresses neuronal cell death by activated microglia [157] (Table 1.1).  This 

discrepancy between molecular pathways induced by membrane-bound and 

soluble CX3CL1 may underlie distinct molecular actions by these two isoforms, or 

may indicate cell subtype specific actions of CX3CL1.  
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CX3CR1 Surface Expression is Modulated by Several Cytokines and 

Chemokines 

CX3CR1 expression is upregulated by several cytokines and chemokines, 

and it is dependent upon cell type.  IL-2 upregulates expression of CX3CR1 via 

NFAT2, while IL-15 down-regulates CX3CR1 expression via NFAT1 in peripheral 

blood mononuclear cells (PBMCs) [158] (Table 1.1).  In human monocytes, 

CCL2-CCR2 interactions were shown to stimulate surface expression of CX3CR1 

[159] (Table 1.1).  In a recent study involving human monocytes, IL-10 was 

shown to upregulate surface expression of CX3CR1 via phosphatidylinositol 3-

kinase (PI3K); conversely, IFN-γ decreased surface expression of CX3CR1 [160] 

(Table 1.1).  In contrast, in HUVECs, the effect of IFN-γ incubation was an 

increase in CX3CR1 expression [161] (Table 1.1).  Furthermore, sIL-6R signals 

through gp130 in HUVECs to inhibit the IL-1 or IFN-γ-induced CX3CR1 

expression [162] (Table 1.1).  These findings indicate that regulation of CX3CR1 

surface expression involves several cytokines and is dependent upon cell type.  

This specificity of CX3CR1 surface expression modulation per cell subset may 

provide a therapeutic opportunity to modify the expression of CX3CR1 on specific 

cell types.  

 

CX3CR1 and its Downstream Signaling Pathways 

CX3CR1 is a G-protein-coupled receptor that is responsible for 

intracellular signaling via several pathways.  Expression of CX3CR1 mRNA is 

down-regulated in response to Receptor Activator of Nuclear Factor Kappa B 
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Ligand (RANKL) in a monocyte-like cell line, inhibiting chemotaxis [163] (Table 

1.1).  In human pulmonary artery endothelial cells (HPAECs) and HUVECs, 

CX3CL1 signals through CX3CR1 to increase surface ICAM-1 via the JAK2-

STAT5 pathway, thereby promoting adhesion of neutrophils [164] (Table 1.1).  In 

rat hippocampal neurons expressing CX3CR1, application of CX3CL1 induces 

antiapoptotic pathways via PI3K-Akt pathway, resulting in neuroprotection [165].   

 

Potential Roles for CX3CL1-CX3CR1 in CNS Inflammatory Diseases 

In humans, membrane-bound CX3CL1 is highly expressed on neurons 

and at lower levels on microglia, macrophages, astrocytes, endothelial cells, and 

lymphocytes.  Within the CNS, neurons produce far more CX3CL1 than any other 

cell subset.  Furthermore, CX3CL1 has been shown to function as a 

neuroprotectant by inhibition of Fas-mediated microglial apoptosis [166].  In 

several mouse models of CNS disease, CX3CL1-CX3CR1 interaction has been 

shown to be critical for effective microglial responses to inflammatory and 

neurotoxic stimuli, and in the absence of CX3CR1, microglia undergo cell-

autonomous neurotoxicity [167].  In human mononuclear cells, CX3CR1 is 

expressed on monocytes, macrophages, microglia, CD4+ T-cells, CD8+ T-cells, 

DCs, and NK-cells [145, 168].  In monocytes, surface expression of CX3CR1 is 

increased by CCL2 via p38 MAPK, and this up-regulation enhances the binding 

of fractalkine to monocytes [159].   
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Neuroprotective Effects of CX3CL1-CX3CR1 Interaction may Contribute to the 

Attenuation of CNS Lesion Formation in MS 

CX3CR1 is expressed in astrocytes and microglia in MS lesions, as well 

as in astrocytes of the NAWM surrounding MS lesions [169].  CX3CR1 has been 

shown previously to be expressed on 8% of CD4+ T-cells derived from HCs [170], 

and Foussat and colleagues have reported that CX3CR1 expression is 

significantly higher in CD4+CD45RO+ memory T-cells in comparison to the naïve 

T-cells[170].  CX3CR1 surface expression is stimulated by CCL2 which induces 

surface expression of CX3CR1 in monocytes [159].  Chemotaxis assays 

performed in-vitro have demonstrated that a significantly greater percentage of 

CD4+CD45RO+ cells migrate toward CX3CL1 in comparison to the naïve T-

cells[170]. 

In EAE, CX3CL1 has been demonstrated to selectively recruit NK-cells 

into the CNS.  CX3CR1 KO mice, in which NK-cell migration is impaired, 

demonstrate increased EAE severity, lesion volume, and higher mortality [113], 

likely due to a regulatory role of NK-cells in CNS demyelinating disorders.  While 

a role for CX3CL1 in ICAM-1 up-regulation has not been studied in leukocytes, 

CX3CL1 has been shown to increase expression of ICAM-1 in vascular 

endothelial cells via CX3CR1 and Jak2-Stat5 signaling [164].  Levels of 

phosphorylated Jak2 and Stat5 were increased in sequential order within 30 

minutes of exposure to CX3CL1; an effect which was blocked by transfection of 

CX3CR1 siRNA [164].  This increase of ICAM-1 expression via CX3CL1-

CX3CR1 interactions resulted in firmer adhesion of neutrophils to endothelial 

cells [164]. 
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CX3CL1-CX3CR1 interactions are well-studied in regard to their functions 

in transendothelial migration. For transendothelial migration to occur, a leukocyte 

follows a series of steps: first, it tethers to the endothelial cell surface; then it rolls, 

and firmly adheres to the surface; lastly, it migrates between the tight junctions of 

the endothelial barrier [171].  CX3CL1 cleaved from the surface of BBB 

endothelial cells contributes to this process by attracting CX3CR1-expressing 

leukocytes [143, 145], and CX3CL1 expressed on the BBB cell surface may help 

mediate firm adhesion of leukocytes to endothelial cells [172].  However, it is 

unclear whether CX3CL1-CX3CR1 interactions are critical for the migration of 

immune cells into the CNS during MS lesion development. 

Recently Broux, et al., found that CX3CR1 is a marker for CD4+CD28- T-

cells, and that this cell subset is expanded in a subgroup of MS patients [139].  

Interestingly, this subset of cells expressed high levels of adhesion molecules 

such as LFA-1, ICAM-1, and VLA-4.  MS patients exhibited higher levels of 

ICAM-1 expression on CD4+CD28-CX3CR1+ T-cells than did HCs [139].  These 

cells were found to degranulate after anti-CD3 stimulation, and importantly, a 

small number of these cells degranulated after stimulation with MBP and MOG 

peptides [139].  Increased levels of CX3CL1 were found in CSF derived from MS 

patients compared to HCs, and CD4+CD28- cells were found to preferentially 

migrate toward CX3CL1 in-vitro.  Lastly, CD4+CX3CR1+ T-cells were 

accumulated in active MS lesions, and the apoptotic maker cleaved caspase-3 

was expressed by oligodendrocytes in close proximity to CD4+CX3CR1+ T-cells, 

indicating that these cells may play a role in MS pathology by destroying myelin-

forming oligodendrocytes[139].   
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CX3CL1-CX3CR1 interactions mediate leukocyte-endothelial cell adhesion 

[145], have roles in both inflammation and neuroprotection [157], are found to be 

expressed in neurons, astrocytes, macrophages, and endothelia in MS lesions 

[169], are responsible for immune cell trafficking into the CNS in EAE [113], and 

correlate with the disease activity in MS patients [173]. Therefore, CX3CL1-

CX3CR1 interactions should be considered important to our understanding of MS 

pathology.  Our studies address roles for CX3CL1 in the induction of the 

adhesion molecule ICAM-1 expression and of proinflammatory cytokines such as 

IFN-γ, TNF-α, and IL-17A secretion, and migration of CD4+ T-cells. 

 

1.4 ICAM-1 is an Adhesion Molecule Critical for Transmigration through 

BBB  

Adhesion molecules coordinate with chemokines to direct lymphocytes 

towards the sites of inflammation [174, 175].  Adhesion molecules are critical for 

lymphocyte adhesion to BBB endothelia, and transmigration of lymphocytes into 

the CNS during EAE [106, 111].  Expression of adhesion molecules on circulating 

lymphocytes has been correlated with T2 lesion load [176], suggesting that 

elevated expression of adhesion molecules may affect CNS tissue damage in 

MS.   

ICAM-1 is a transmembrane adhesion molecule that is expressed on 

endothelia and leukocytes [177, 178].  ICAM-1 expression is regulated by several 

cytokines. IFN-γ, IL-1, IL-4, IL-6, IFN-γ, and TNF-α, lymphotoxin and 

lipopolysaccharide (LPS) stimulate its expression [177, 179], while TGF-β and IL-

10 inhibit its surface expression in several cell subsets [180].  CX3CL1 has been 
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shown to stimulate ICAM-1 surface expression in vascular endothelia [164]; 

however, its role in the regulation of ICAM-1 expression in leukocytes has not 

been studied. In this study, we will address a role for CX3CL1 in ICAM-1 

induction. 

Under inflammatory conditions, expression of ICAM-1 is increased on BBB 

endothelial cells (ECs) and is associated with the disruption of tight junctions, 

increased EC permeability, and increased migration of T-lymphocytes across the 

BBB [181, 182].  Data from EAE, pathological examination of MS CNS tissue, 

and in-vitro transendothelial migration assays suggest that the expression of 

ICAM-1 on endothelial cells may contribute to the pathogenesis of MS by 

controlling inflammatory cell migration across the BBB via interaction with 

leukocyte-expressed lymphocyte function-associated protein 1 (LFA-1) [112, 183-

186]. In EAE, BBB endothelial ICAM-1 expression is increased during relapses 

and decreased during remission, consistent with the hypothesis that ICAM-1 

surface expression on BBB endothelia is critical for EAE lesion formation [187].  

CD4+ T-lymphocyte expression of ICAM-1 is also required for the development of 

EAE [111].  Interestingly, roles for T-lymphocytes’ ICAM-1 expression in MS is 

less well understood than the one of endothelial ICAM-1. CX3CL1 has been 

shown to stimulate ICAM-1 surface expression in vascular endothelia; however, 

its role in the regulation of leukocyte ICAM-1 expression has not been studied 

[164]. 

A recent study has highlighted the requirement of ICAM-1 expression on 

T-cells for the development of EAE [111].  ICAM-1 null mice, induced with EAE, 

had attenuated clinical symptoms accompanied by a reduction of CD4+ and CD8+ 
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T-cell infiltration into the CNS, decreased axonal degeneration, and 

demyelination throughout the spinal cord [111].  Furthermore, transfer of ICAM-1 

null MOG-sensitized T-cells into the wild type (WT) mice failed to induce EAE or 

facilitate the transmigration of T-cells into the CNS, suggesting that ICAM-1 

expression on T-cells is required for EAE CNS lesion development [111].  Finally, 

ICAM-1 expression on T-cells, but not APCs, was found to be critical for T-cell 

proliferation [111].  The absence of ICAM-1 also reduced splenic T-cell 

production of IFN-γ, TNF-α, IL-4, IL-10 and IL-12 following MOG restimulation, 

and reduced CSF-derived CD4+ and CD8+ T-cell production of IFN-γ [111]. 

 

sICAM-1 

sICAM-1 lacks the transmembrane and cytoplasmic regions of ICAM-1 

and is produced by many cell types, including endothelia and leukocytes.  

Astrocyte- and endothelia-derived ADAM-17 cleave ICAM-1 to produce sICAM-1 

[152, 153].  sICAM-1 binds competitively to ICAM-1 ligands including LFA-1, and 

therefore has a therapeutic potential in MS.  sICAM-1 may therefore play a role in 

reducing T-cell transmigration via competitive inhibition of LFA-1-surface ICAM-1 

interactions [188, 189].  Indeed, serum levels of sICAM-1 have been shown to be 

increased in response to rIFNβ-1 treatment, and this increase is correlated with 

decreased contrast-enhancing brain MS lesion load [190].  Interestingly, in-vitro 

application of sICAM-1 to activated lymphocytes blocks their adhesion to CNS-

derived endothelial cells, and this effect is abrogated in a dose-dependent 

manner upon application of anti-ICAM antibody [189].  These data imply that 
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sICAM-1 may inhibit neurological damage in RRMS by blocking lymphocyte BBB 

transmigration via interference with adhesion molecule-mediated cell adhesion. 

Data pertaining to roles for sICAM-1 in MS are mixed, but sICAM-1 may 

act by competitively binding LFA-1 to block LFA-1-ICAM-1 interactions, and 

therefore transmigration across the BBB, in MS.  sICAM-1 has been shown to 

interfere with the adhesion of PBMCs to cerebral endothelial cells in-vitro, 

suggesting that it competes with ICAM-1 for interaction with LFA-1 [189].  

Furthermore, sICAM-1 serum levels in MS patients have been shown to be 

increased by treatment with rIFNβ-1b, paralleling a period of improvement as 

measured by decreased frequency of relapses, disability levels, and gadolinium-

enhancing lesion load [190]. In this context, suppressed CSF sICAM-1 

expression in MS patients in our study may be interpreted as an indicator of an 

inflammatory response, therefore enabling greater migration of inflammatory 

leukocytes across the BBB. 

 

1.5 Proinflammatory Cytokines IFN-γ and TNF-α are Potential 

Therapeutic Targets in MS 

Cytokines are critically involved in immune responses, and can be divided 

into proinflammatory cytokines and antiinflammatory cytokines.  Many of the 

proinflammatory cytokines are thought to play roles in MS pathogenesis, 

including in peripheral activation of circulating immune cells, as well as direct 

damage to myelin. Proinflammatory cytokines include IFN-γ, TNF-α, IL-17A, IL-

17F, IL-12, and IL-23.  Antiinflammatory cytokines are generally thought to play 
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disease-attenuating roles in MS, and include IL-4, IL-10, and TGF-β.  Here we 

will focus on the proinflammatory cytokines IFN-γ and TNF-α. 

Administration of IFN-γ, once proposed as a potential MS therapeutic, is 

now known to cause exacerbations in MS patients [110], perhaps due to its roles 

in the generation of cytotoxic T-cells and prevention of remyelination [191, 192].  

TNF-α is also known to play role in MS pathology.  TNF-α expression is 

increased in the CSF and MS lesions [193, 194], and is critical for the initiation of 

tissue damage in EAE [195, 196].  These effects are blocked by anti-TNF-α 

antibodies [197].  However, TNF-α has also been shown to have 

immunosuppressive effects at later EAE time points [198].  IFN-γ and TNF-α 

have been shown to stimulate CX3CL1 expression and release by endothelial 

cells, and CX3CL1 expression is increased in the IFN-γ-mediated Th1 disease 

psoriasis [199].  Immobilized CX3CL1 and CX3CL1-transfected 293E cells induce 

IFN-γ expression in NK-cells [200]. These data suggest that CX3CL1, IFN-γ, and 

TNF-α may act in an inflammatory positive feedback loop during Th1-mediated 

diseases. 

Results from studies regarding involvement of IFN-γ and TNF-α in MS 

pathology have been mixed; while several studies have shown IFN-γ mRNA 

levels to be increased in PBMCs derived from MS patients, and IFN-γ protein 

levels in serum derived from MS patients is enriched, several other studies report 

no differential IFN-γ expression between patients and controls [201, 202].  TNF-α 

has also been studied with conflicting results.  TNF- αhas been shown to induce 

oligodendrocyte cell death [203].  Several groups have found PBMC TNF-α 

mRNA levels, serum TNF-α, and secretion of TNF-α by PBMCs to be increased 

in MS patients [201, 204, 205].  Unfortunately, though, TNF-α-blocking therapies 
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such as sTNF-α receptor Ig fusion protein or anti-TNF-α mAb were found to 

worsen MS exacerbations [206]. 

Chemokine receptors that we analyzed on leukocyte subsets 

In recent years, several chemokine receptors and adhesion molecules 

such as CCR1, CCR4, CCR6, ICAM-1, and VLA-4 have been shown to play a 

role in the development of EAE, and blockade of these adhesion molecules and 

chemokine receptors via humanized monoclonal antibodies has led to the 

development of therapies that may decrease disease progression [111, 136, 138, 

207-209].  Here is a brief synopsis of what is known about each chemokine 

receptor and its relation to RRMS: 

CCR1. CCR1-/- mice exhibit reduced EAE symptoms, suggesting 

that CCR1 is critical for the development of neuroinflammation [209].  In humans, 

CCR1 is expressed on blood-derived T-cells and monocytes, and on CSF- and 

lesion-derived monocytes [46, 140, 210].  Its ligands are chemokines MIP-1α 

(CCL3), RANTES (CCL5), and MCP-3 (CCL7), CCL14 (HCC-1), CCL16 (HCC-4), 

and CCL23 (MPIF-1, CKβ8) (Table 1.2).  One study found that CCR1+ phagocytic 

cells accumulated in the perivascular areas of MS lesions [46], and that the 

CCR1 ligand CCL5’s concentration is elevated in CSF derived from RRMS 

patients [98].  Several groups have begun clinical trials using CCR1 small 

molecule antagonists as a treatment of RRMS and other inflammatory CNS 

disorders [211-213], but the data so far have been disappointing.  Oral CCR1 

antagonist BX471 was tested in clinical trials, with the primary endpoint of a 

number and volume of active Gd enhancing lesions on T1-weighted scans at 16 
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weeks after treatment onset in 105 MS patients [214].  No decrease in lesion 

formation was observed [214]. 

CCR2. CCR2 is expressed on monocytes, T-cells, B-cells, and DCs 

[215].  Its ligands include MCP-1 (CCL2), MCP-3 (CCL7), MCP-2 (CCL8), and 

HCC-4 (CCL16) [216] (Table 1.2).  Studies in EAE implicated that CCR2 plays a 

role in EAE induction and lesion formation [217].  CCR2 expression is increased 

in  RRMS lesion-derived  macrophages [142, 218], but T-cells and monocytes 

from RRMS patients have not shown differential expression of CCR2 compared 

to controls [219].  Migration of B-cells across the brain endothelial cells is 

dependent upon CCL2 [70]. 

CCR3. CCR3 is expressed on T-cells, B-cells, monocytes, 

eosinophils, and basophils.  CCR3 is a promiscuous chemokine receptor, which 

binds to RANTES (CCL5), MCP-3 (CCL7), MCP-2 (CCL8), Eotaxin-1 (CCL11), 

MCP-4 (CCL13), HCC-2 (CCL15), Eotaxin-2 (CCL24), Eotaxin-3 (CCL26), and 

MEC (CCL28) (Table 1.2).  CCR3 is expressed on macrophages in MS lesions, 

but has not been extensively studied in MS [218]. 

CCR5. CCR5 is expressed on multiple cell subsets, including T-

cells, B-cells, and monocytes.  Its ligands include MIP-1α (CCL3), LD78β 

(CCL3L1), RANTES (CCL5), and CCL14 (HCC-1) (Table 1.2).  Multiple lines of 

evidence point to the CCR5 involvement in the development of the inflammatory 

response in MS.  First, genetic evidence points to a pathological effect for CCR5.  

A cohort of individuals expresses the ―Δ32‖ CCR5 gene mutation, leading to the 

loss of functional expression of CCR5.  Interestingly, while Δ32 CCR5 

homozygotes are not protected from MS [220], Δ32 CCR5 heterozygotes with 
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RRMS experience significantly longer periods of remission than patients 

expressing functional CCR5 [221].  Second, several groups have shown 

increased CCR5 expression on blood-derived T-cells [98, 222], particularly during 

relapse [210], and CCR5+ T-cells were found to express higher levels of IFN-γ 

and TNF-α[223].  Last, CCR5+CD4+ T-cells and CCR5+CD8+ T-cells are also 

enriched in MS CSF compared to matched blood-derived cells, and cells derived 

from non-inflammatory neurological diseases (NINDs) controls and HCs.  CCR5 

is also expressed on macrophages and microglia [98].  Lastly, CCR5 is 

expressed on microglia and CD4+ T-cells in MS lesion tissue [218]. 

CCR6. CCR6 is expressed on T-cells, B-cells, and monocytes, and 

is the only receptor for CCL20 [224] (Table 1.2). With the recent discovery that 

CCR6 is a lineage marker for the TH17 CD4+ T-cell subset, CCR6 expression has 

become an attractive focus of research in EAE and MS for their potential roles in 

pathology, as well as the search for Th17-targeting therapeutics [135].  CCR6 is 

expressed at similar levels on T-cells derived from blood and CSF of MS patients, 

and is expressed at similar levels during inflammation and in non-inflammatory 

controls [140].  In our study we did not find CCL20 to be differentially expressed 

in the CSF derived from RRMS patients and HCs 

CX3CR1. CX3CR1 is the lone receptor that interacts with the 

chemokine CX3CR1 (Table 1.2).  Because we found increased CX3CL1 

concentrations in the CSF from untreated RRMS patients in comparison to HCs, 

we chose to evaluate the differential expression of CX3CR1 on MS-related 

immune cell subsets derived from untreated RRMS patients compared to HCs. 
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Adhesion molecules that we analyzed on leukocyte subsets 

Adhesion molecules are involved in the inflammatory cell migration across 

the endothelial barriers, and the blockade of interaction between adhesion 

molecules and their ligands have been used as a treatment approach in MS.  

Particularly, blockade of VLA-4 interaction with VCAM-1—involved in BBB 

transmigration by several leukocyte subsets—by the humanized anti-VLA-4 

monoclonal antibody natalizumab, has demonstrated clinical efficacy in reducing 

the number of exacerbations and decreasing CNS lesion load in RRMS patients 

[208, 225].  Because of the importance of adhesion molecules in MS 

pathogenesis, we measured the expression of three adhesion molecules, ICAM-

1, VLA-4 and LFA-1 on CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, and CD14+ 

monocytes in RRMS patients and HCs to address changes in adhesion molecule 

expression that may occur during MS and reflect changes in chemokines, 

cytokines, and chemokine receptor expression.  Following is a brief synopsis of 

what is known about each adhesion molecule and its relation to RRMS: 

VLA-4. VLA-4 is a ligand for VCAM-1, and its blockade via the 

monoclonal antibody natalizumab has proven to be an effective MS therapy due 

to attenuation of inflammatory cells migration through BBB [208, 225].  Because 

VLA-4 is proven to be critical for BBB transmigration and lesion formation, we 

decided to measure its expression levels on T-cells, B-cells, and monocytes. 

ICAM-1. ICAM-1 (a ligand for LFA-1) has been implicated in EAE and 

MS pathology, and became a major focus of our research when we found sICAM-

1 decreased levels in the CSF of untreated RRMS patients in comparison to HCs.  

We also noted that ICAM-1 expression on CD4+ and CD8+ T-cells is critical for 
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EAE induction [111], and that increased levels of CX3CL1 upregulate ICAM-1 via 

CX3CR1 [164].   We therefore hypothesized that in MS patients, in the presence 

of increased levels of CX3CL1, ICAM-1 would have increased expression on 

immune cell subsets in comparison to HCs. 

LFA-1. LFA-1 is an integrin that binds in trans with endothelial-

expressed ICAM-1 to allow migration of lymphocytes into the CNS for normal 

immunosurveillence and during neuroinflammation [225].  LFA-1 has recently 

been shown to require one of several bound chemokine receptors (CXCR4, 

CCR7, or CXCR3) so that it may bind ICAM-1 under shear stress conditions 

[175]. We hypothesized that LFA-1 may be expressed at increased levels on T-

cells, B-cells, or monocytes derived from untreated RRMS patients when 

compared to HCs. 

 

1.6 Rationale 

Initially, we focused on the expression of CX3CL1 in the CSF of MS 

patients. Using an inflammatory protein array approach, CX3CL1 was the only 

chemokine with increased expression in the CSF of MS patients in comparison to 

HCs. These results were confirmed and quantified by ELISA.  An increase in 

CX3CL1 concentrations has been shown to correlate with increased expression 

of CX3CR1 on circulating lymphocytes and monocytes during inflammatory 

disorders [226, 227].  Therefore, we asked, to what extent do increased CSF 

concentrations of CX3CL1 induce increased levels of CX3CR1 expression on 

lymphocytes and monocytes? We found that blood-derived CD4+ T-cells 



36 

 

selectively express increased surface levels of CX3CR1 in RRMS patients in 

comparison to HCs. 

Chemokines and chemokine receptors play a role in the regulation of 

surface expression of adhesion molecules in the inflammatory cells.  Therefore, 

we reasoned that since CX3CL1 levels are increased in MS CSF, and since 

CX3CR1 is up-regulated on CD4+ T-cells derived from MS blood, then the 

expression of adhesion molecules on CD4+ T-cells may be increased. We found 

that ICAM-1 surface expression is increased on CD4+ T-cells derived from MS 

patients in comparison to HCs, suggesting that CX3CL1-CX3CR1 signaling may 

lead to increased ICAM-1 expression on CD4+ T-cells. 

Next, we asked to what extent CX3CL1 increases gene expression and 

protein secretion of proinflammatory cytokines. We found that IFN-γ and TNF-α 

levels were significantly increased in CD4+ T-cells derived from RRMS patients 

cultured in the presence of CX3CL1.  However, this increase was not observed in 

CD4+ T-cells derived from HCs.  We also found that IL-17A gene expression was 

increased in CD4+ T-cells incubated in the presence of CX3CL1 when derived 

from RRMS patients compared to HCs.  However, the increase was not 

statistically significant.  To address whether increases in IFN-γ gene expression 

resulted in greater protein secretion of IFN-γ, we incubated CD4+ T-cells in the 

absence or presence of CX3CL1.  CD4+ T-cells derived from RRMS patients but 

not those derived from HCs secreted higher levels of IFN-γ compared to control 

cell cultures.  However, we found no changes in the secretion of IL-4, TNF-α, IL-

17A, or IL-17F.  



37 

 

Lymphocyte extravasation from the bloodstream into the CNS is a critical 

component of RRMS pathogenesis.  The molecular profile of lymphocytes found 

in the CSF of MS patients has been shown to mirror the molecular profile of 

lymphocytes which populate MS lesions [98].  Therefore, we reasoned that if 

CX3CR1 and ICAM-1 upregulation on CD4+ T-cells is critical during cell 

transmigration across the BBB, then CSF-derived CD4+ T-cells will express 

higher surface levels of CX3CR1 and ICAM-1 than matched blood-derived CD4+ 

T-cells. We found that CD4+ T-cells derived from the CSF of MS patients express 

significantly higher levels of CX3CR1 and ICAM-1 than the matched blood-

derived CD4+ T-cells. 

To further investigate the functional role of CX3CL1 in CD4+ T-cell 

migration, we performed CD4+ T-cell migration in-vitro assays directed toward 

CX3CL1, and found that CD4+ T-cells preferentially migrate toward CX3CL1 in a 

concentration-dependent manner, with 1 ng/mL concentration inducing a maximal 

migration.  We then examined if CD4+ T-cells that migrated toward CX3CL1 

gradient express higher levels of CX3CR1 and ICAM-1 than CD4+ T-cells which 

do not migrate toward CX3CL1. We found that CX3CR1 and ICAM-1 expression 

were higher on cells that migrated toward CX3CL1 compared to those which did 

not migrate against this chemokine gradient. 

These results suggested that CX3CL1-CX3CR1 interactions might play a 

role in the increased expression of ICAM-1 on CD4+ T-cells.  To determine if 

increased CX3CL1 levels led to the upregulation of ICAM-1, we incubated 

PBMCs in the presence of CX3CL1, and found that the percentage of ICAM-1+ 

CD4+ cells increased in MS patients but not in HCs. 
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In order to address the above findings in the context of myelin-specific 

immune response, relevant for this demyelinating disease, we co-incubated 

myelin-antigen specific CD4+ T-cell lines with APCs in the presence or absence 

of native myelin peptide and CX3CL1.  We found that ICAM-1 was selectively 

increased in the presence of both CX3CL1 and myelin peptide in myelin-reactive 

CD4+ T-cell lines.  This indicated that CX3CL1 in the presence of antigen 

increased ICAM-1 expression on the surface of activated myelin-reactive CD4+T-

cells to a greater degree than antigen or CX3CL1 alone.  Taken together, these 

data indicate that CX3CL1, CX3CR1, ICAM-1, IFN-γ and TNF-α interact to play 

previously undefined roles in the development of the inflammatory response in 

MS. 
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Figure 1.1 MS Pathogenesis 

 

Figure 1.1 Four steps of MS immunopathogenesis: 

A. Myelin-autoreactive CD4+Th cells are activated in peripheral circulation 

B. Activated CD4+T-cells migrate through permeable BBB  

C. CD4+T-cells encounter APCs (i.e. microglia and DCs), and are reactivated by 

myelin-derived antigens. Cytokine production increases, influx of inflammatory 

cells. 

D. Myelin destruction and axonal transection 
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Table 1.1. Cytokines and other proteins that interact with CX3CL1 and CX3CR1 

Proteins Cell subset Interaction Function Ref. 

IL-1/TNF-α 
HPAEC/ 

HUVEC 

IL-1 and TNF-α increase expression of 

fractalkine mRNA 

Fractalkine induction by 

proinflammatory cytokines 

[143] 

IL-2/NFAT2 PBMCs(h) 
IL-2 upregulates CX3CR1 via recruitment 

of NFAT2 to CX3CR1 promoter 

CX3CR1 induction by 

proinflammatory cytokines 

[158] 

sIL-6Rα HUVEC 
sIL-6R inhibits IL-1 or IFN-γ-induced 

expression of CX3CR1 via signaling 

through gp130. 

Decreases adhesion of 

mononuclear cells to 

endothelia 

[162] 

IL-10 Monocytes (h) 
IL-10 increases surface expression of 

CX3CR1 via PI3K 

Increased surface 

expression of CD11b, 

indicating monocyte 

activation 

[160] 

CXCL8/IL-12/ 

IL-15 
CD16

-
 NK cells 

Incubation with CXCL8, IL-12, and IL-15 

decrease expression of CX3CR1 
Production of fractalkine 

[228] 

IL-15 / NFAT1 PBMCs(h) 

IL-15 downregulates CX3CR1 

expression via recruitment of NFAT1 to 

CX3CR1 promoter 

Regulation of CX3CR1 

expression by cytokines 
[158] 

IFN-γ Monocytes (h) 
IFN-γ increases surface expression of 

CX3CR1 via PI3K. 

Regulation of CX3CR1 

expression by cytokines 
[160] 

IFN-γ HUVEC IFN-γ increases expression of CX3CR1. 
Increases adhesion of 

PBMCs to HUVECs  

[161] 

CCL2 Monocytes (h) 
CCL2-CCR2 interactions stimulate 

surface expression of CX3CR1 

expression via p38 MAPK 

Increases adhesion of 

monocytes to fractalkine 
[159] 

IL-6/CCL2/ 

MMP-9 
Monocytes 

CD16
+
 monocytes produce IL-6, CCL2, 

and MMP-9 after interacting with 

fractalkine-expressing HUVECs 

The supernatants from this 

culture induce neuronal cell 

death in-vitro 

[156] 

IL-6/NO/ 

TNF-α 

Murine 

microglia 

Fractalkine suppressed production of IL-

6, NO, and TNF-α  

Fractalkine suppressed 

neuronal cell death induced 

by activated microglia 

[157] 

ICAM-1 
HPAEC 

/HUVEC 

Fractalkine-CX3CR1 binding upregulates 

ICAM-1 expression via JAK2-STAT5 

pathway 

Promotion of neutrophils 

adhesion  
[164] 

Akt/PI3K/ 

NF-κB 

Hippocampal 

neurons (r) 

Upon exposure to fractalkine, CX3CR1-

expressing hippocampal neurons 

upregulate the expression of pro-survival 

proteins 

neuroprotection 
[165] 

CCL26 
L1.2 cells, 

HUVECs 
CCL26 binds to CX3CR1 

CCL26 induces Ca
++ 

mobilization, chemotaxis, 

and adhesion to L1.2 cells 

[229] 

RANKL/PI3K/ 

Akt 

RAW264.7 

(macrophage 

cell line, m) 

RANKL induces downregulation of 

CX3CR1 mRNA via PI3K/Akt pathway. 
Inhibition of chemotaxis 

[163] 

ADAM10 

ECV-304 

(urinary bladder 

carcinoma, h), 

fibroblasts (m) 

ADAM10 is required for the constitutive 

cleavage of fractalkine from the cell 

surface, producing fractalkine 

Production of fractalkine 
[230] 

ADAM17 
ECV-304, 

CHO, HUVEC 

ADAM17 is responsible for the inducible 

cleavage of fractalkine 
Production of fractalkine 

[147, 

149] 
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Table 1.2. Chemokines and chemokine receptors 

Receptor 
Chemokin

e 
Old nomenclature 

 

Receptor Chemokine 
Old 

nomenclature 

CC family 

 

CXC family 

CCR1 CCL3 MIP-1α 

 CXCR1 

CXCL1 GRO-α 

  CCL3L1 LD78β 

 

CXCL6 GCP-2 

  CCL5 RANTES 

 

CXCL8 IL-8 

  CCL7 MCP-3 

 

CXCR2 

CXCL1 GRO-α 

  CCL14 HCC-1 

 

CXCL2 GRO-β 

  CCL15 
HCC-2, Lkn-1, MIP-

1α 
 

CXCL3 GRO-γ 

  CCL16 HCC-4 

 

CXCL5 ENA-78 

  CCL23 MPIF-1, CKβ8 

 

CXCL6 GCP-2 

CCR2 CCL2 MCP-1 

 

CXCL7 NAP-2 

  CCL7 MCP-3 

 

CXCL8 IL-8 

  CCL8 MCP-2 

 

CXCR3 

CXCL4 PF4 

  CCL13 MCP-4 

 

CXCL9 Mig 

CCR3 CCL5 RANTES 

 

CXCL10 IP-10 

  CCL7 MCP-3 

 

CXCL11 I-TAC 

  CCL8 MCP-2 

 

CXCR4 CXCL12 SDF-1 

  CCL11 Eotaxin-1 

 

CXCR5 CXCL13 BLC/BCA-1 

  CCL13 MCP-4 

 

CXCR6 CXCL16   

  CCL15 
HCC-2, Lkn-1, MIP-

1Δ 
 

Unknown CXCL14 BRAK 

  CCL24 Eotaxin-2, MPIF-2 

 

  
 CX3C 
family 

  

  CCL28 MEC 

 

CX3CR1 CX3CL1 Fractalkine 

CCR4 CCL17 TARC 

 

C family 

  CCL22 MDC, STCP-1 

 

XCR1 XCL1 Lymphotactin 

CCR5 CCL3 MIP-1α 

 

XCR2 XCL2 SCM-1β 

  CCL3L1 LD78β 

    CCL4 MIP-1β 

 
Adapted from [231]. 

    CCL5 RANTES 

      CCL14 HCC-1 

    CCR6 CCL20 MIP-3α, exodus-1 

    CCR7 CCL19 MIP-3β, exodus-3 

      CCL21 SLC, exodus-2 

    CCR8 CCL1 I-309 

    CCR9 CCL25 TECK 

    
CCR10 

CCL27 CTACK, ILC 

    CCL28 MEC 

    
Unknown CCL18 

PARC, DC-CK1, 
AMAC1 

 
   



 

 

CHAPTER 2 

CX3CL1 increases Intercellular Adhesion Molecule-1 on CD4+ T 

Lymphocytes: Implications for the Immunopathogenesis of MS 

 

2.1 INTRODUCTION 

MS is an inflammatory, demyelinating CNS disease that is characterized 

by chemokine- and adhesion molecule-dependent infiltration of the CNS by 

activated, self-reactive CD4+ T-cells [1, 39, 139].   Membrane-bound CX3CL1 

functions as an adhesion molecule, and is expressed on CNS neurons and 

endothelium [144].  It is comprised of an N-terminal chemokine domain, attached 

to a mucin-like stalk, followed by transmembrane and intercellular domains [143].  

Inflammation and neuronal damage cause the chemokine domain to be cleaved 

by the metalloproteinase ADAM-17 [149, 232], which may contribute to increased 

CSF and serum levels of CX3CL1 in MS and other inflammatory diseases [226, 

227, 233].  Proinflammatory cytokines IFN-γ and TNF-α induce CX3CL1 

expression and release by endothelium, while anti-inflammatory cytokines IL-4 

and IL-13 inhibit CX3CL1 expression [199]. CX3CL1 expression is increased in 

the IFN-γ-mediated Th1 disease psoriasis, but not in Th2-dominated atopic 

dermatitis [199]. Immobilized CX3CL1 and CX3CL1-transfected 293E cells 

increase the IFN-γ expression in NK-cells [200].  Together, these data suggest 
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that CX3CL1 and IFN-γ may act in an inflammatory positive feedback loop during 

Th1-mediated diseases [199, 200]. CX3CR1 is a G-protein coupled receptor 

expressed by microglia, monocytes, NK-cells and T-cells [145, 170].  

CX3CR1+CD4+ T-cells are present in lesions derived from RRMS patients [139], 

indicating that CX3CL1 may recruit CX3CR1+CD4+ T-cells into CNS 

demyelinating lesions 

CX3CL1 stimulates ICAM-1 surface expression in vascular endothelia 

[164]; however, its role in the regulation of ICAM-1 expression in leukocytes is 

unknown.  ICAM-1 is an Ig-like, transmembrane cell adhesion molecule 

expressed on vascular endothelial cells, T-cells, B-cells and monocytes [177, 

178].  CD4+ T-cell expression of ICAM-1 is critical for the induction of the MS 

disease model EAE [111].  ICAM-1 is regulated by several cytokines: IFN-γ, TNF-

α, IL-1, IL-4, IL-6, lymphotoxin and LPS stimulate its expression [177, 179], while 

TGF-β and IL-10 inhibit it in several cell subsets [180].  Similar to membrane-

bound CX3CL1, ICAM-1 is cleaved by ADAM-17 during inflammation to produce 

sICAM-1 [153].  sICAM-1 binds competitively to the ICAM-1 ligand LFA-1, whose 

expression on lymphocytes is critical for their transmigration across the BBB 

[178].  Serum levels of sICAM-1 are increased during rIFNβ-1b treatment, and 

this increase correlates with a decrease in contrast-enhancing MS brain lesion 

load [190].  Therefore, circulating sICAM-1 may play a role in reducing T-cell BBB 

transmigration via competitive inhibition of LFA-1-ICAM-1 interactions [189]. 

We hypothesized that increased CX3CL1-CX3CR1 interactions induce 

ICAM-1 and IFN-γ expression in CD4+ T-cells, and that CX3CR1+ICAM-1+CD4+ 

T-cells are enriched in the CSF during RRMS. The present study has identified 
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an increase in CX3CL1, and a decrease in sICAM-1 in the CSF of RRMS patients 

in comparison to HCs, and has shown an increase in the percentage of 

CX3CR1+ICAM-1+CD4+ T-cells derived from CSF compared to blood of early 

untreated RRMS patients.  CX3CL1 induced an increased IFN-γ gene expression 

and protein secretion in RRMS-derived but not in HC-derived CD4+ T-cells.  

CX3CL1 was also found to increase ICAM-1 expression on the surface of RRMS-

patient-derived but not HC-derived CD4+ T-cells, and on stimulated myelin-

antigen-specific CD4+ T-cell lines.  These results indicate that CX3CL1 may play 

a pathological role in RRMS by enhancing migration of IFN-γ-secreting 

CX3CR1+ICAM-1+CD4+ T-cells into the CNS. 

 

2.2 MATERIALS AND METHODS 

2.2.1  Study Subjects 

48 RRMS patients (average age = 44 yrs. 5 mos., sex = 34 F / 14 M, race 

= 35 Caucasian, 13 African American, disease duration 3 yrs. 11 mo. and 38 HC 

patients (average age = 43 yrs. 4 mos., sex = 25 F / 13 M, race = 31 Caucausian, 

7 African American) were enrolled in this study after signing an institutional 

review board-approved consent form.  None of the RRMS patients had received 

immunomodulatory or immunosuppressive treatments prior to the CSF or blood 

sample collection. 
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2.2.2  CSF samples 

CSF samples were collected for the purposes of diagnosis and/or this 

study.  CSF sample was centrifuged for 6 minutes; supernatant was removed and 

stored at -80°C until protein measurements.   

 

2.2.3 CD4+ T-lymphocyte isolation 

PBMCs were obtained from blood samples by Ficoll-Paque gradient 

centrifugation.  Further isolation of CD4+ T-lymphocytes was performed by 

magnetic bead separation (Miltenyi biotech, Auburn, CA).  The negatively-

selected CD4+ T-lymphocytes were > 95% pure as demonstrated by FACS 

analysis. 

 

2.2.4  Protein Array 

Cytokine array C Series 1000 (RayBiotech, Inc., Norcross, GA) was used 

as described previously [234].  Briefly, membranes were blocked for 30 min. in 

blocking buffer.  They were then incubated in 1 mL CSF at room temperature for 

two hours.  After incubation, membranes were washed and incubated with the 

appropriate Biotin-conjugated antibodies for two hours.  Wash steps were 

repeated, 1:1000-diluted HRP-conjugated streptavidin was applied for two hours 

followed by wash steps.  Detection buffers were applied for two minutes, and 

membranes were exposed to HyBlot CL autoradiography film (Metuchen, NJ) for 

1 – 30 s.  Membranes were then scanned with an Epson America Expression 

1680 Scanner (Epson America Inc., Long Beach, CA). Meta Imaging Series 5.0 
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software (Molecular Devices, Downington, PA) was used to quantify signal 

intensities as previously described [89]. The lowest value on the membrane was 

considered the background, and was subtracted from all measured proteins.  For 

the purpose of comparisons between membranes, results were normalized as 

follows: the background measurement was subtracted from all measured 

proteins.  The results were normalized by dividing each protein value by the sum 

of optical density values for all proteins on the membrane.  The relative protein 

level results were expressed in arbitrary units (AUs) of the untreated RRMS CSF 

in comparison to HC CSF.Proportion of total signal. 

1. corrected density = average of background - raw density 

2. normalized density = LOG (100 / (highest corrected density - corrected density) 

/ highest corrected density x 100) 

3. Relative protein expression in arbitrary units (AU) = average of normalized 

density of duplicates / sum of normalized density of all protein spots in single 

membrane 

 

2.2.5  ELISA 

CSF and CD4+ T-lymphocyte supernatants (SNs) were collected as 

described above, and ELISAs for CX3CL1, sICAM-1 (R&D), IFN-γ  (BD 

Biosciences), and fibroblast growth factor 6 (FGF-6) (RayBiotech, Inc.) were 

performed as per manufacturer’s instructions. 
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2.2.6  Chemotaxis Assays 

Separated CD4+ and CD8+ T-cells were independently assessed via flow 

cytometry to assure a purity of >95%.  A transwell system with pore size 5 μm 

(Neuroprobe, Gaithersburg, MD, USA) was utilized for the chemotaxis assay.  In 

the lower compartment, the CX3CL1 chemokine domain (R&D) was added to the 

media in increasing concentrations (0, 0.1, 1.0, 10.0 ng/ml).  Each upper 

chamber was seeded with 5X105 CD4+ T-cells, and incubated for four hours at 

37°C/5% CO2.  The total number of cells that migrated into the lower 

compartment was counted, and chemotactic index was determined as described 

[139]: (number of cells migrated toward CX3CL1 / number of cells migrated in the 

absence of CX3CL1) 

 For analysis of migrated cells by flow cytometry, a longer migration 

protocol was used to increase total numbers migrated.  In this assay, isolated 

CD4+ T-cells migrated toward the optimal concentration of CX3CL1 (1 ng/mL) for 

18 hours, and then were immediately immunostained and analyzed via flow 

cytometry. 

 

2.2.7  Flow cytometry 

Four-color flow cytometry acquisition was performed using BD 

FACScalibur hardware and CellQuest Pro software (both BD Biosciences, San 

Jose, CA). Cells were gated on lymphocyte or monocyte population and cell 

subset using the following antibodies: CD4 PE-Cy5, CD8 PE-Cy5 or CD8 FITC, 

CD19 PE-Cy5, and CD14 PerCP-Cy5.5 (BD Biosciences).  At least 40,000 blood-
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derived lymphocytes or monocytes and up to 10000 CSF-derived mononuclear 

cells were analyzed per experiment.    Chemokine receptors were analyzed by 

staining with the following antibodies: APC-CCR1 (R&D, Minneapolis, MN), APC-

CCR2, PE-CCR3, FITC-CCR5, FITC-CCR6 (all BD Biosciences), and PE-

CX3CR1  (US Biologicals, Swampscott, MA).  Adhesion molecules were 

analyzed using the following antibodies: APC-VLA-4 (R&D), FITC-LFA-1, PE-

ICAM-1, and APC-ICAM-1 (all BD Biosciences). 

 Where indicated, in vitro-expanded myelin peptide-specific CD4+ T-cell 

lines were co-cultured with EBV-immortalized B-cells and stimulated with 

antigenic peptide (10 μg/ml MBP83-99, PLP180-199, or control influenza virus 

hemagglutinin (FluHA)306-318 peptide) in the absence or presence of CX3CL1 (1 

ng/ml) for 48 h prior to ICAM-1 cell surface expression measurement using flow 

cytometry. 

 

2.2.8  Quantitative RT-PCR 

Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA), and 

cDNA was synthesized using a High Capacity cDNA Archive Kit (Applied 

Biosystems, Branchburg, NJ).  The primers for IFN-γ, IL-17A and TNF-α were 

purchased from Applied Biosystems.  TaqMan Gene Expression Assay (Applied 

Biosystems) was used to measure gene expression via quantitative RT-PCR in 

duplicate.  All results are expressed as relative gene expression normalized 

against 18S mRNA expression. 
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2.2.9  Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software 

(Graphpad software, San Diego, CA).  Student’s t-tests were utilized to analyze 

comparisons between two groups.  Significance was achieved when p values 

were less than 0.05.  A repeated measures ANOVA was used for comparison 

analysis of multiple groups, followed by an appropriate posttests. 

 

2.3 RESULTS 

2.3.1  CX3CL1 Levels are Increased and sICAM are Decreased in CSF of 

RRMS Patients in Comparison to HCs 

An inflammatory protein profile of CSF derived from RRMS patients may 

provide clues that will lead to more accurate early diagnosis and treatments for 

RRMS. The protein array analysis that contained 120 cytokines, chemokines, 

neurotrophic factors, and adhesion molecules, was performed using the CSF of 

10 RRMS patients and 19 HCs.  

CX3CL1 was the only chemokine found to be increased in RRMS CSF vs. 

HC CSF (2.0-fold increase, p = 0.011) (Fig. 2.1A).  The complete set of array 

data are presented in Supplementary Fig. 1.  To confirm and quantify differences 

in CX3CL1 levels found in the cytokine array, CX3CL1 concentrations in the CSF 

from an independent cohort of 18 RRMS patients and 15 HCs were evaluated by 

ELISA.  This confirmed that CX3CL1 levels were higher in RRMS patients’ than 

HC CSF (Fig. 2.1B, 2.9-fold increase, p = 0.017). 
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sICAM-1 was found to be significantly decreased in the CSF derived from 

RRMS patients in comparison to HCs (Fig. 2.1C, 5.6 -fold decrease, p = 0.0046). 

sICAM-1 levels in the CSF were further quantified by ELISA.  sICAM-1 levels 

were confirmed to be lower in the CSF derived from 18 untreated RRMS patients 

in comparison to 15 HCs (Fig. 2.1D, 5.9-fold decrease, p = 0.0027). 

 

2.3.2  CX3CL1 Increases Gene Expression and Protein Secretion of 

Proinflammatory Cytokines in CD4+ T-cells Derived from RRMS Patients but 

not from HCs 

Because CX3CL1 has been shown to induce IFN-γ expression in NK-cells 

[200], we wondered if IFN-γ gene expression is also increased in CD4+ T-cells in 

the presence of CX3CL1. The levels of IFN-γ gene expression in CD4+ cells from 

7 RRMS patients and 6 HCs was analyzed after 6 h incubation in the absence or 

presence of CX3CL1.  IFN-γ gene expression was significantly increased in CD4+ 

T-cells derived from RRMS patients in comparison to HCs (Fig. 2.2A, 2.2-fold).  

CX3CL1 also induced higher gene expression of IFN-γ in CD4+ T-cells derived 

from RRMS patients compared to CD4+ T-cells derived from HCs(Fig. 2.2A, 4.7-

fold).No significant difference of IFN-γ gene expression was found between CD4+ 

T-cells from HCs, cultured in the absence or presence of CX3CL1 (Fig. 2.2A). 

CX3CL1 has been shown to induce TNF-α  during Th1-

mediated inflammation [199]. Therefore, we examined to what extent CX3CL1 

may upregulate TNF-α gene expression.  In CD4+ T-cells derived from 6 RRMS 

patients and 6 HCs, CX3CL1 significantly increased TNF-α gene expression in 

CD4+ T-cells from RRMS patients, but not from HCs (Fig. 2.2A, 2.1-fold).   CD4+ 
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T-cells from 6 RRMS patients  cultured with CX3CL1also showed higher IL-17A 

gene expression than CD4+ T-cells from 6 HCs, but this change did not reach 

significance (Fig. 2.2A, 2.7-fold). 

We asked whether the CX3CL1-induced increase in IFN-γ gene 

expression in RRMS patient-derived CD4+ T-cells led to an increased secretion of 

IFN-γ.  CD4+ T-cells derived from the blood of 6 RRMS patients and 6 HCS were 

incubated in 1 ng/ml CX3CL1 for 48 h, and supernatants were harvested to 

measure cytokine secretion using ELISA.  CX3CL1 increased IFN-γ secretion by 

CD4+ T-cells derived from RRMS patients but not from HCs (Fig. 2.2B, 12.5-fold).  

CX3CL1 also induced a significantly greater increase in IFN-γ secretion in RRMS 

CD4+ T-cells compared to HCs (Fig. 2.2B, 5.1-fold). 

 

2.3.3  CX3CR1+CD4+ T-cells are Enriched in Blood Samples Derived from 

Untreated RRMS Patients in Comparison to HCs 

Cell surface expression of chemokine receptors is determined in part by 

the extracellular molecular environment [199].  Thus, we proposed that the 

expression of CX3CR1 and other chemokine receptors may be increased on the 

cell surfaces of circulating mononuclear cells in MS.  To evaluate differences in 

chemokine receptor expression on T-cells, B-cells, and monocytes that may 

correspond to increased levels of CX3CL1 in RRMS-derived CSF, flow cytometry 

analysis of the aforementioned cell subsets was performed to identify the 

percentage of each cell subset that had a surface expression of CX3CR1.  Other 

chemokine receptors that have been implicated in neuroinflammation were also 

analyzed (CCR1 [235], CCR2 [218], CCR3 [222], CCR5 [218], CCR6 [135]).  
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Among the six chemokine receptors analyzed on CD4+ T-cells derived from 8 

RRMS patients and 10 HCs, CX3CR1 was the only chemokine receptor that was 

expressed on a significantly higher percentage of CD4+ T-cells from RRMS 

patients in comparison to HCs (Fig 2.3A, 3.3-fold, p = 0.034).   

The same panel of chemokine receptors was analyzed on CD8+ T-cells 

derived from 8 RRMS patients and 10 HCs.  The only chemokine receptor that 

was expressed on a significantly higher (percentage of CD8+ T-cells from RRMS 

patients was CCR5 (Fig 2.3B, 2.0-fold, (p = 0.043).  Expression of these 

chemokine receptors was also evaluated on CD19+ B-cells from 8 RRMS patients 

and 8 HCs.  We found that the percentage of CCR2+ B-cells derived from RRMS 

patients was significantly lower than in HCs (Fig 2.3C, 3.0-fold, p = 0.037).  No 

differences in chemokine receptor expression were observed on CD14+ 

monocytes derived from 7 RRMS patients and 7 HCs (Fig. 2.3D). 

 

2.3.4 The Percentages of ICAM-1+CD4+ and ICAM-1+CD8+T-cells are 

increased in Blood Samples Derived from RRMS Patients in comparison to 

HCs  

Chemokines signal through chemokine receptors and upregulate surface 

expression of adhesion molecules [164].  Thus, we measured surface expression 

of three adhesion molecules that may be regulated by the interaction of 

chemokines and corresponding receptors, which play a role in the development 

of the inflammatory response in MS—ICAM-1 [164], VLA-4 [236], and LFA-1 

[175]—on CD4+, CD8+ T-cells, CD19+ B-cells, and CD14+ monocytes.   The 

percentages of ICAM-1+CD4+ T-cells (Fig. 2.4A) and ICAM-1+CD8+ T-cells (Fig. 
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2.4B) were increased in blood samples derived from 8 RRMS patients when 

compared to 10 HCs.  The percentage of CD4+ T-cells expressing ICAM-1 was 

2.5-fold higher (p = 0.0004) on CD4+ T-cells from RRMS patients in comparison 

to HCs (Fig. 2.4A).  The percentage of ICAM-1+CD8+T-cells was 1.5-fold higher 

in RRMS patients in comparison to HCs (Fig 2.4B. p = 0.016).  No differences in 

adhesion molecule expression between RRMS patients and HCs were observed 

on CD19+ B-cells (8 RRMS patients, 8 HCs) (Fig. 2.4C) or CD14+ monocytes (7 

RRMS patients, 7 HCs) (Fig. 2.4D).   

 

2.3.5 The Percentages of CX3CR1+ICAM-1+CD4+ T-lymphocytes are 

significantly increased in RRMS-derived CSF Compared to the 

Corresponding Blood Samples 

In order to determine whether CD4+ and CD8+ T-cells that have migrated 

into the CSF during RRMS have elevated levels of surface CX3CR1 and ICAM-1, 

flow cytometry studies were performed on PBMCs and corresponding CSF-

derived mononuclear cells from 9 RRMS patients at the time of establishing 

diagnosis.   

The percentage of CX3CR1+CD4+ T-cells was increased in the CSF 

derived from 9 RRMS patients in comparison to the corresponding blood samples 

(Fig. 2.5A, 4.0-fold, p = 0.00028).  CX3CR1 surface expression was measured 

also via mean fluorescence intensity (MFI) readings, and found that CX3CR1 MFI 

was significantly higher on 7 CSF sample-derived CD4+ T-cells than on 7 blood 

sample-derived CD4+ T-cells (Fig. 2.5A., 4.2-fold, p = 0.00082). 
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The percentage of ICAM-1-positive CD4+ T-cells derived from CSF was 

also significantly higher than ICAM-1+CD4+ T-cells derived from corresponding 

blood samples (Fig. 2.5A, 1.5-fold, p = 0.013).  MFI of ICAM-1 expression on 

CD4+ T-cells was significantly higher in CSF-derived CD4+ T-cells compared to 

blood (Fig. 2.5A, 2.1-fold, p = 0.006) indicating that ICAM-1 is up-regulated on 

CD4+ T-cells that have migrated into the CSF during RRMS.  Finally, we 

analyzed percentages of CX3CR1+CD4+ T-cells derived from CSF vs. blood that 

co-express ICAM-1, and found that a significantly greater proportion of 

CX3CR1+CD4+ T-cells express ICAM-1 in CSF-derived cells than on blood-

derived CX3CR1+CD4+ T-cells (Fig. 2.5A, p = 0.013). 

CD8+ T-cells derived from the CSF of RRMS patients did not exhibit 

significantly higher percentages of CX3CR1 or ICAM-1 than blood-derived CD8+ 

T-cells (Fig. 2.5B).  However, CX3CR1 MFI (5.4-fold, p = 0.021) on CD8+T-cells 

was significantly higher on CSF-derived CD8+ T-cells (Fig. 2.5B).  CSF-derived 

CX3CR1+ICAM-1+CD8+ T-cells were also not found to be present in higher 

percentages in CSF compared to blood samples (Fig. 2.5B).  

 

2.3.6  CD4+ T-cells Migrate Toward CX3CL1 in a Dose-dependent Manner 

We next utilized an in-vitro migration assay to test the hypothesis that 

CD4+ T-cells migrate toward CX3CL1 gradient.  In chemotaxis assays involving 

CD4+ and CD8+ T-cells derived from RRMS patients, we found that CD4+ but not 

CD8+ T-cells migrated in a concentration-dependent manner toward CX3CL1 

gradient with 1 ng/ml concentration inducing maximal cell migration (Fig. 2.6A). 
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 Because CX3CR1+ICAM-1+CD4+ T-cells are enriched in RRMS CSF 

compared to corresponding blood samples, we hypothesized that 

CX3CR1+ICAM-1+CD4+ T-cells may preferentially migrate toward CX3CL1 in-

vitro.  CD4+ T-cells derived from 4 RRMS patients and 4 HCs were used in the 

migration experiments toward optimal CX3CL1 concentration (1 ng/ml) for 18 h.  

After migration, CX3CR1 and ICAM-1 surface expression was determined in 

migrated and non-migrated cells using flow cytometry.  A significantly higher 

percentage of migrated CD4+ T-cells derived from RRMS patients (Fig. 2.6B, p = 

0.01) and HCs (Fig. 2.6B, p = 0.01) expressed ICAM-1 than non-migrated CD4+ 

T-cells.  A significantly higher percentage of migrated CX3CR1+CD4+T-cells 

derived from RRMS patients (Fig. 2.6B, p = 0.03) and HCs (p =0.03) expressed 

ICAM-1 than did non-migrated cells.  In addition, a significantly higher percentage 

of migrated CD4+ T-cells derived from RRMS patients expressed ICAM-1 than 

migrated CD4+ T-cells from HCs (p = 0.0078).  Combined data from 4 RRMS and 

4 HC assays indicated that a higher percentage of migrated CD4+ T-cells 

expressed ICAM-1 than non-migrated CD4+ T-cells (p= 0.000019). 

 

2.3.7  CX3CL1 Induces the Surface Expression of ICAM-1 on CD4+ T-

lymphocytes Derived from Blood of RRMS Patients but not of HCs 

High concentrations of CX3CL1 in the CSF and blood may be responsible 

for the increase in the percentage of CX3CR1+ and ICAM-1+ CD4+ T-cells found 

in RRMS.  To test if CX3CL1 up-regulates CX3CR1 and ICAM-1 in-vitro, we 

incubated freshly isolated PBMCs from 7 RRMS patients and 7 HCs in the 

absence or presence of 1 ng/ml CX3CL1.  A significantly higher percentage of 
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CD4+ T-cells derived from RRMS patients incubated with 1 ng/ml CX3CL1 

expressed ICAM-1 than in chemokine-free cultures, (Fig. 2.7, 1.8-fold).  CX3CL1 

did not induce up-regulation of ICAM-1 in CD4+ T-cells derived from HCs (Fig. 

2.7).  CD4+ T-cells derived from RRMS patients cultured in the presence of 

CX3CL1 expressed significantly higher levels of ICAM-1 than CD4+ T-cells 

derived from HCs. (Fig. 2.7, 2.5-fold).  CX3CL1 was not found to induce CX3CR1 

expression on CD4+ T-cells from RRMS patients and HCs. 

 

2.3.8  CX3CL1 Induces Expression of ICAM-1 on myelin-Ag-specific CD4+ T-

cells 

Myelin-autoreactive CD4+ T-cells play a role in the initiation and 

perpetuation of the inflammatory response in MS [3, 37].  To explore whether 

myelin-reactive CD4+ T-cells increase the expression of chemokine receptors and 

adhesion molecules in response to myelin peptide stimulation and CX3CL1, 3 

myelin-Ag specific CD4+ T-cell lines (1 PLP180-199-specific, 2 MBP83-99-specific 

lines) were activated in the absence or presence of CX3CL1, along with native 

antigenic peptide for 48 h, and surface chemokine receptors and adhesion 

molecules expression was measured by flow cytometry (Fig. 2.8A).In each myelin 

Ag-specific line, ICAM-1 expression as measured by MFI was found to be higher 

in Ag- and CX3CL1-stimulated CD4+ lymphocytes than in baseline conditions 

(Fig. 2.8A. representative histogram Fig. 8B).  The results demonstrate that 

CX3CL1 induces ICAM-1 surface expression on CD4+ T-cell in the presence Ag 

to a greater degree than in the presence of CX3CL1 or myelin Ag alone. 
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2.3.9 Supplementary text and figure description 

Supplementary Figure 2.1. Protein Arrays Demonstrate Differential 

Expression of Inflammatory Proteins in the CSF of RRMS Patients and HCs 

The prevailing approach to the simultaneous analysis of multiple protein 

expression levels is the two-dimensional polyacrylamide SDS page coupled with 

mass spectrometry [237].  However, the lack of quantitative measurements by 

this method limits its usefulness and broader application.  We approached the 

problem of biomarker identification by utilizing the RayBio Human Cytokine 

Antibody Array, a novel technology which was used to simultaneously analyze 

multiple protein levels in the CSF of RRMS patients and HCs.  120 cytokines, 

chemokines, growth factors and adhesion molecules were analyzed in the CSF of 

RRMS patients and HCs (Table S1).    

Of the 120 measured proteins, 13 were differentially expressed in CSF 

from  RRMS patients in comparison to HCs.  These proteins included four 

chemokines (CX3CL1, HCC-4, Eotaxin-2, GRO), 4 growth factors (FGF-6, PIGF, 

FGF-4, IGFBP-4) and 1 receptor tyrosine kinase that binds growth factors (Axl), 2 

cytokines (IL-3 and MIF), and 2 adhesion molecules (sICAM-1 and sICAM-3) 

(Fig. S1). 

 

Supplementary Figure 2.2. FGF-6 Levels are elevated in CSF of RRMS 

Patients in Comparison to HCs 

FGF-6 was the only growth factor found in the protein array to be 

increased in RRMS CSF vs. HC CSF (2.3-fold increase, p = 0.044) (Fig S2).  
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FGF-6 also showed the greatest fold change of the three proteins found to be 

increased in the CSF.  To confirm and quantify increased FGF-6 levels found in 

the cytokine array, FGF-6 concentrations were measured in the CSF from an 

independent cohort of 11 RRMS patients and 16 HCs using ELISA.  This 

confirmed that FGF-6 levels were higher in RRMS CSF than HC CSF (Fig. S2, 

3.7-fold increase, p = 0.0001). 

 

2.4 DISCUSSION 

In the present study we used protein array technology [234, 238, 239] to 

identify in an unbiased fashion a differential expression of cytokines, chemokines, 

and growth factors in the CSF from untreated RRMS patients in comparison to 

HCs (Fig. S1).  We found significantly elevated FGF-6, CX3CL1, and IL-3 levels 

in the CSF of untreated RRMS patients in comparison to HCs.  CX3CL1 was the 

only chemokine identified by protein array and confirmed by ELISA to be 

significantly increased in the CSF of RRMS patients in comparison to HCs, 

confirming previous studies [139, 233].  Elevated CX3CL1 levels in the CSF have 

recently been shown to attractCX3CR1+CD4+ T-cells into the CNS lesions of MS 

patients [139].  sICAM-1 was found by protein arrays and confirmed by ELISA to 

be decreased in the CSF of RRMS patients in comparison to HCs (Fig. 2.1C-D).  

sICAM-1 has been shown to interfere with the ICAM-1-LFA-1-mediated adhesion 

of PBMCs to cerebral endothelial cells in-vitro [189].  In this context, suppressed 

CSF sICAM-1 expression in MS patients may be interpreted as an indicator of an 

inflammatory mechanism in MS, by which decreased sICAM-1 enables 

transmigration of inflammatory leukocytes into the CNS. 
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The CX3CL1-induced increase in TNF-α and IFN-γ gene expression, and 

increased IFN-γ secretion in CD4+ T-cells derived from untreated RRMS patients 

but not HCs, suggests that increased CX3CL1 concentrations may play a role in 

the induction of proinflammatory cytokines in RRMS.  Fraticelli et al., has 

identified that CX3CL1 contributes to the Th1-cell migration, and amplification of 

polarized T-cell responses in Th1 mediated but not Th2 mediated disease [199]. 

Bullard et al., have recently found that CD4+ T-cells adoptively transferred 

from myelin MOG-immunized ICAM-1 null mice into wild type (WT) mice failed to 

induce EAE, providing evidence that ICAM-1 expression on T-cells is critical for 

EAE induction [111]. These result suggest that ICAM-1 expression on T-cells 

may be more critical for the development of MOG-induced EAE than ICAM-1 

expression on BBB endothelia and other ICAM-1-expressing cells [111].  The 

same group also reported that ICAM-1 expression on T-cells, but not on APCs, 

was critical for proliferation of MOG-sensitized T-cells.  This group has 

demonstrated that splenic ICAM-1 null T-cells secrete lower levels of pro-

inflammatory cytokines IFN-γ, IL-17, and TNF-α. Furthermore, they found that 

spinal cord T-cells from ICAM-1 null EAE mice produced lower levels of IFN-γ 

than from WT mice, indicating that ICAM-1 expression has a direct effect on 

proinflammatory cytokine production [111]. 

Recently, Broux et al. have found that CX3CR1 is a marker for CD4+CD28- 

T-cells, a cell subset that is expanded in MS patients [139].  This cell subset was 

characterized by increased expression of LFA-1, ICAM-1, and VLA-4 adhesion 

molecules in comparison to CD4+CD28+ T-cells.  In this study, MS patients 

exhibited higher levels of ICAM-1 on CD4+CD28-CX3CR1+ T-cells than healthy 

controls.  These cells were found to degranulate after anti-CD3 mAb stimulation, 
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and a small number of these cells degranulated after stimulation with myelin 

peptides MBP and MOG.  CD4+CD28- cells preferentially migrated toward 

CX3CL1 in-vitro [139].  Lastly, CD4+CX3CR1+ T-cells were found in active MS 

lesions, and the apoptotic maker cleaved caspase-3 was expressed by 

oligodendrocytes in close proximity to CD4+CX3CR1+ T-cells, indicating that 

these cells may contribute to the MS lesion formation by causing oligodendrocyte 

apoptosis [139].  Our finding that CX3CR1+CD4+ T-cells are enriched in the CSF 

derived from RRMS patients supports the above findings.  

Our finding that CX3CR1+ICAM-1+CD4+ T-cells are enriched in the CSF 

compared to the blood samples of RRMS patients, together with upregulation of 

ICAM-1 on CD4+ T-cells following their in-vitro migration against CX3CL1, 

indicates that CX3CR1 and ICAM-1 may play a role in the migration of CD4+ T-

cells through the BBB. Therefore, blockade of CX3CL1-CX3CR1 interaction may 

be a therapeutic approach in MS. 

While a role for CX3CL1 in ICAM-1 upregulation had not been previously 

studied in lymphocytes, CX3CL1 was reported to induce ICAM-1 expression in 

vascular endothelial cells via CX3CR1 and Jak2-Stat5 signaling[164].  We have 

demonstrated here for the first time that CX3CL1 increases ICAM-1 expression 

on CD4+ T-cells derived from RRMS patients. Furthermore, in myelin peptide-

specific CD4+ T-cell lines, CX3CL1 in addition to myelin peptide increased ICAM-

1 expression in comparison to the stimulation with myelin Ag or CX3CL1 alone.  

Future studies will focus on characterization of signaling pathways involved in the 

CX3CL1-induced increase in ICAM-1 expression in lymphocytes.  
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Targeting CX3CL1-CX3CR1 interactions is currently a potential 

therapeutic approach for several diseases [167, 240, 241].  In RRMS, it may be 

the case that the overarching role for CX3CL1-CX3CR1 interactions is that of 

recruitment of inflammatory cells into the CNS —however, it would still be 

important to demonstrate whether this recruitment mostly involves inflammatory 

lymphocyte subsets that exacerbate disease, or rather lymphocytes and NK-cells 

that have immunoregulatory effects.  Secondly, given the different roles of 

membrane bound and soluble CX3CL1, it will be important to uncover whether 

modulation of these distinct CX3CL1 molecules differentially affects the 

immunopathogenesis of MS.   
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Figure 2.1. CX3CL1 is increased in CSF and sICAM-1 is decreased in the CSF of RRMS patients in 

comparison to HCs. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1. CX3CL1 is increased and sICAM-1 is decreased in the CSF of 

RRMS patients in comparison to HCs. A. 10 RRMS and 19 HC CSF samples 

were tested for the expression of 120 cytokine, chemokine, and growth factor 

proteins using protein array. B. CX3CL1 protein levels were measured in 18 

RRMS and 15 HC CSF samples, using ELISA. C. Relative protein expression of 

sICAM-1 was determined in 10 RRMS and 19 HC CSF samples using protein 

array. D. sICAM-1 protein concentration was determined in 18 RRMS and 15 HC 

CSF samples using ELISA.  For the cytokine array, relative protein expression is 

expressed in arbitrary units (AU). AU = Average of Normalized Density of 

Duplicates / Sum of normalized density of all protein spots on a single membrane. 

Statistical analysis was performed using unpaired t-tests.  *p < 0.05 ** p < 0.01. 

 



63 

 

Figure 2.2.CX3CL1 induces gene expression of IFN-γ and TNF-, and protein secretion of IFN-γ 

by CD4+T-cells derived from RRMS patients. 

  

Figure 2.2. CX3CL1 induces gene expression of IFN-γ and TNF-

secretion of IFN-γ by CD4+T-cells derived from RRMS patients. A. 1 x 106CD4+ 

T cells isolated from 6 RRMS patients and 7 HCs were cultured in the absence or 

presence of 1 ng/ml CX3CL1 for 6 h. RNA was isolated and cDNA was 

synthesized. qRT-PCR was performed for indicated cytokines B. 1 x 106CD4+ T-

cells isolated from 6 untreated RRMS patients and 6 HCs were cultured in the 

absence or presence of 1 ng/ml CX3CL1 for 48 h. Supernatants were collected and 

ELISAs were performed for measurements of IFN-γ secretion. Statistical analysis 

was performed using ANOVA. * = p < 0.05. ** p< 0.01. 

 



64 

 

Figure 2.3. The percentage of CX3CR1+CD4+T-cells is increased in blood-derived CD4+ cells from 

RRMS patients in comparison to HCs. 
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Figure 2.3.The percentage of CX3CR1+CD4+ T cells is increased in blood 
samples from RRMS patients in comparison to HCs. PBMCs derived from 9 
RRMS patients and 10 HCs were stained with fluorescently-labeled A.CD4 (8 
RRMS, 10 HC), B.CD8 (8 RRMS, 10 HC), C.CD19 (8 RRMS, 8 HC) mAbs, and 
D.CD14 (7 RRMS and 7 HC) mAb for gating, and co-stained for CCR1, CCR2, 
CCR3, CCR5, CCR6, and CX3CR1. The results are expressed as a percentage of 
gated cells expressing the chemokine receptor of interest. Statistical analysis was 
performed using unpaired t-tests. * p< 0.05. 
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Figure 2.4. ICAM-1+CD4+ T and ICAM-1+CD8+T-cells are increased in blood derived from 

untreated RRMS patients compared with HC blood. 

Figure 2.4. The percentage of ICAM-1+CD4+ T and ICAM-1+CD8+ T cells is 

increased in blood samples from RRMS patients in comparison to HCs.  

PBMCs derived from 9 RRMS patients and 10 HCs were stained with 

fluorescently-labeled A.CD4 (8 RRMS, 10 HC), B.CD8 (8 RRMS, 10 HC), 

C.CD19 (8 RRMS, 8 HC) mAbs, and D.CD14 (7 RRMS and 7 HC) mAb for 

gating, and co-stained for ICAM, VLA-4, and LFA-1. The PBMCs were then 

analyzed for expression of these adhesion molecules via flow cytometry. 

Statistical analysis was performed using unpaired t-tests. * p< 0.05, ***p < 

0.001. 
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Figure 2.5.The percentage of CX3CR1+ICAM-1+CD4+ T lymphocytes is increased in RRMS 

patients-derived CSF in comparison to corresponding blood samples. 

 

 

 

  

Figure 2.5. The expression of CX3CR1 and ICAM-1 is increased in both 

CD4+ and CD8+ T cells from CSF in comparison to the corresponding 

blood samples from RRMS patients. A. Surface expression of CX3CR1 and 

ICAM-1 was measured on CD4+ T cells derived from the CSF and 

corresponding blood samples of 8 RRMS patients. B. Surface expression of 

CX3CR1 and ICAM-1 was measured on CD8+ T cells derived from the CSF 

and corresponding blood samples of 7 RRMS patients.  Samples in (A) and (B) 

were evaluated for percentage of cells expressing CX3CR1 and ICAM-1, and 

mean fluorescence intensity (MFI) was used to quantify the mean level of 

CX3CR1 and ICAM-1 surface expression per cell. Statistical analysis was 

performed using paired t-tests. p< 0.05, ** p < 0.01, ***p < 0.001. 

 

B. 

A. 
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Figure 2.6. ICAM-1 is expressed on a higher percentage of CD4+T-cells which have migrated 

toward CX3CL1 than on the non-migrated cells. 

  

Figure 2.6. ICAM-1 expression increases on CD4+ T-cells that migrate 
toward CX3CL1. A. CD4+ T-cells migrate in a dose-dependent fashion 
against the CX3CL1 gradient.A.CD4+ and CD8+ T-cells (5x105 per condition) 
derived from 4 RRMS patients were used for a migration experiments against 
ascending concentrations of CX3CL1 over 4 h in a chemotactic chamber.  Data 
are presented as chemotactic index (CI), calculated as total cells migrated toward 
CX3CL1 / total cells migrated in the absence of CX3CL1.  B. A higher percentage 
of migrated CD4+T-cells express ICAM-1 in comparison to non-migrated cells 
from both RRMS patients and HCs.  5x105 separated CD4+T-cells per experiment 
from 4 MS patients and 4 HCs were used in migration experiments against 1 
ng/ml of CX3CL1 for 18 h in a chemotactic chamber. ICAM-1 surface levels were 
assessed on CD4+ T-cells and CD4+CX3CR1+ T-cells via flow cytometry. 
Statistical analysis was performed using paired t-tests. * p< 0.05, ** p < 0.01, ***p 
< 0.001. 
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Figure 2.7.CX3CL1 induces ICAM-1 expression on CD4+ T-cells derived from RRMS patients. 
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Figure 2.7. CX3CL1 induces ICAM-1 expression on a higher percentage of 

CD4+T-lymphocytes derived from RRMS patients in comparison to HCs. 

1x106/ml PBMCs derived from 6 RRMS patients and 7 HCs were cultured in 

the absence or presence of 1 ng/ml CX3CL1 for 48 h, stained and analyzed via 

flow cytometry to determine the percentages of CD4+T-cells that express 

ICAM-1. Statistical analysis was performed using ANOVA. * = p < 0.05. ** = p 

< 0.01. *** = p < 0.001. 

 

 

B1. 

C. 
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Figure 2.8.CX3CL1 upregulates ICAM-1 on myelin-antigen-specific CD4+ T-cells. 

 

  

Figure 2.8.CX3CL1 upregulates ICAM-1 on myelin-antigen-

specific CD4+ T cells. Three myelin-peptide specific CD4+ T cell lines 

were co-cultured with EBV-transformed B cells in the absence or 

presence of CX3CL1, myelin peptide antigen (PLP 180-199 or MBP 83-99) 

or control FLU-HA 306-318 antigen (48 h). Cells were stained and 

analyzed via flow cytometry to determine the intensity of ICAM-1 

expression on CD4+T cells.  CD4+ T cells were co-incubated 1:1 with 

irradiated EBV-transformed B cells (48 h), immunostained and 

analyzed by flow cytometry. B. Representative histogram of one out of 

three experiments.  Statistical analysis was performed using ANOVA, 

* = p < 0.05. 



 

 

CHAPTER 3 

CONCLUSIONS AND FUTURE DIRECTION 

3.1 CONCLUSIONS 

Two of the most important goals of MS research are (1) the development 

of a diagnostic biomarker, and (2) the development of new therapeutics to more 

effectively treat MS.  

The founding goal of this study was to identify proteins in the CSF during 

the initial acute stage of RRMS that might serve as biomarkers of early 

inflammatory response in MS.  To meet this goal, we utilized recently-developed 

protein array technology to perform an unbiased screen of cytokine, chemokine, 

and neurotrophic factors in the CSF derived from patients with RRMS compared 

to HCs.  This allowed us to profile CSF inflammatory proteins in RRMS.  CX3CL1 

was the only chemokine found by protein array—and subsequently confirmed by 

ELISA in a separate cohort—to be significantly increased in the CSF of RRMS 

patients in comparison to HCs.  This indicated to us that CX3CL1 is constitutively 

produced in the CSF of healthy individuals, but this production increases during 

RRMS. 

While we found the increase of CX3CL1 in CSF to be interesting for the 

purposes of studying RRMS immunopathogenesis, it would be difficult to validate 
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CX3CL1 as a biomarker for RRMS for two reasons.  First, given that CX3CL1 is 

upregulated in other CNS inflammatory disorders [233], a finding of increased 

levels of CX3CL1 in the CSF of a single patient would not rule out the possibility 

of another inflammatory disease.  Second, while we found CX3CL1 to be 

increased significantly in the CSF of RRMS patients compared to HCs, a subset 

of RRMS patients expressed CX3CL1 at comparable levels to HCs.   Therefore, 

these constraints reflecting suboptimal specificity and sensitivity of CX3CL1, 

would make analysis of CSF levels of CX3CL1 alone an imperfect biomarker for 

RRMS.  However, it should be noted that CX3CL1 may have the potential to be 

analyzed for the purposes of diagnosis in a panel with other chemokines, 

cytokines, and adhesion molecules. 

Another relevant finding from the CSF cytokine array was that sICAM-1 

levels are diminished in the CSF derived from untreated RRMS patients 

compared to HCs.  This finding was confirmed by ELISA in a separate cohort of 

patients.  Because sICAM-1 competes with ICAM-1 to bind LFA-1, it has been 

speculated that it might play disease-attenuating role in MS [188-190].  sICAM-1 

binds LFA-1 on inflammatory lymphocytes, thus ablating LFA-1 interactions with 

BBB endothelial ICAM-1, and therefore may reduce lymphocyte migration into the 

CNS during MS [190].   

We found that CX3CR1 upregulates IFN-γ and TNF-α gene expression.  

We also found that CX3CL1 increases secretion of IFN-γ in CD4+ T-cells derived 

from RRMS patients but not HCs.  This suggests that increased CX3CL1 

concentrations play a role in the production of proinflammatory cytokines during 

RRMS.  This data is especially relevant in light of a study by Fraticelli and 

colleagues that has identified CX3CL1 as a contributor to Th1 polarization and 
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migration, and amplification of polarized T-cell responses in Th1-mediated but not 

Th2-mediated diseases [199].  Taken together, these data suggest that CX3CL1 

may be part of an inflammatory positive feedback loop with IFN-γ and TNF-αthat 

is prevalent during Th1-mediated diseases such as MS. 

We found that CX3CR1 is expressed on a greater percentage of CD4+ T-

cells derived from RRMS patients in comparison to HCs.  This led us to speculate 

that CX3CR1 may be upregulated due to increased concentrations of CX3CL1, 

which may represent an immunopathological aspect of the disease.  An 

upregulation of CX3CR1 on CD4+ T-cells during RRMS may increase migratory 

ability of these cells, and their BBB transmigration. 

We found that CCR5 is expressed on a greater percentage of CD8+ T-cells 

derived from RRMS patients compared to HCs.  CCR5 is a receptor for CCL3, 

CCL4, CCL5, CCL8, and CCL14, and has been previously implicated in MS 

pathogenesis [98].  Interestingly, Kivisakk, et al., recently showed that CCR5 is 

increased on blood-derived CD8+ T-cells after natalizumab treatment compared 

to untreated patients [107].  The authors conclude that the increase in percentage 

of CD8+ T-cells expressing CCR5 may be due to sequestration of activated cells 

in the blood due to blockade of BBB transmigration via natalizumab[107].  

Interestingly, Eikelenboom, et al., found that CCR5 expression on CD8+ T-cells is 

correlated with T2, but not T1 lesion load, in MS patients [176].  Our findings 

suggest that upregulation of CCR5 on CD8+T-cells may be one mechanism by 

which CD8+T-cells increase their ability to migrate toward the CNS during RRMS 

pathogenesis. 
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We found that a greater percentage of CD4+T-cells and CD8+T-cells 

derived from untreated RRMS patients express ICAM-1 compared to CD4+T-cells 

derived from HCs.  This increase in the percentage of T-cells that express ICAM-

1 during RRMS suggests that ICAM-1 may play a role in RRMS pathogenesis, 

perhaps by increasing the chemotactic ability of CD4+ and CD8+T-cells that 

migrate into the CNS to cause lesion formation and tissue damage.  In Bullard, et 

al., 2007, T lymphocyte adoptive transfer experiments from myelin 

oligodendrocyte glycoprotein (MOG)-sensitized ICAM-1 null mice into wild type 

(WT) mice failed to induce EAE, providing evidence that ICAM-1 expression on 

T-cells is critical for EAE pathogenesis.  The authors observed lower levels of 

clinical symptoms as well as a lower percentage of mice exhibiting any clinical 

signs of disease in ICAM-1 null T cell transfers > WT than in WT T cell transfers > 

ICAM-1 null mice or the WT > WT internal controls.  This implies that the 

expression of ICAM-1 on T-cells is more critical for the development of MOG-

induced EAE than the expression of ICAM-1 on BBB endothelia and all other 

ICAM-1-expressing cells [111]. 

We find that CX3CR1+ICAM-1+CD4+T-cells make up a significantly greater 

proportion of CD4+T-cells derived from the CSF than do CX3CR1+ICAM-

1+CD4+T-cells derived from the blood of RRMS patients.  This suggests that 

either this subset of CD4+T-cells migrates into the CNS more effectively during 

RRMS, or that CX3CR1 and ICAM-1 are upregulated on CD4+T-cells after 

migration into the CNS during RRMS pathogenesis.  In vivo migration assays 

uncovered that CX3CR1+ICAM-1+CD4+T-cells preferentially migrate toward 

CX3CL1.  
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Our study uncovers that upregulation of ICAM-1 via CX3CL1 occurs in 

CD4+ T lymphocytes, and is magnified in CD4+ T lymphocytes derived from 

RRMS patients or stimulated with either PLP or MBP peptide.  These data 

indicate that CX3CL1 induced upregulation of ICAM-1 on CD4+ T lymphocytes 

may represent a previously unrecognized aspect of RRMS pathology.  While a 

role for CX3CL1 in ICAM-1 upregulation had not previously been studied in 

leukocytes, CX3CL1 was shown to upregulate ICAM-1 in vascular endothelial 

cells via CX3CR1 and Jak2-Stat5 signaling[164].  Levels of phosphorylated Jak2 

and Stat5 were increased in sequential order within 30 minutes of exposure to 

CX3CL1; this effect was blocked by transfection of CX3CR1 siRNA [164].   

CX3CL1-CX3CR1 interactions play roles in several inflammatory diseases 

and animal disease models and are therefore currently the focus of attention as a 

potential therapeutic target for a number of illnesses [167, 240].  As roles for 

CX3CL1-CX3CR1 interactions in MS have not been comprehensively studied, it 

is difficult to predict how various types of modulation of this chemokine-receptor 

duo and the interacting network of related molecules may affect MS pathology.  It 

may be the case that the overarching role for CX3CL1-CX3CR1 interactions is 

simply that of recruitment of immune cells into the CNS during MS—however, if 

this is the case, it would still be important to uncover whether this recruitment 

mostly involves inflammatory leukocyte subsets that exacerbate disease 

condition, or rather leukocytes that function in immunosuppressive and 

neuroprotective roles.  Secondly, given the different role of membrane bound and 

soluble CX3CL1, it will be important to uncover whether upregulation and 

downregulation of these distinct chemokines have synergistic or opposing effects 
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on disease state.  Overall, a great deal of work is left unfinished regarding roles 

for CX3CL1-CX3CR1 in MS pathology. 

3.2 Future Directions 

 Several results generated by our findings in this dissertation compel us to 

further investigate roles for CX3CL1, CX3CR1, ICAM-1, and related molecules in 

MS immunopathogenesis.  The finding that CX3CL1 upregulates ICAM-1 on 

CD4+T-cells in the presence of PBMCs derived from untreated RRMS patients, 

paired with the finding that CX3CL1 upregulates ICAM-1 on myelin-Ag-specific 

CD4+T-cells in the presence of EBV-transformed B cells, presents the possibility 

that CX3CL1 upregulation of ICAM-1 requires other cell subsets for upregulation 

of ICAM-1 in CD4+ cells. Co-culture of isolated CD4+T-cells with candidate APCs 

such as monocytes and B cells in the absence or presence of CX3CL1, 

compared to isolated CD4+ T cell culture, followed by quantitation of surface 

ICAM-1 on CD4+T-cells via flow cytometry, will answer which cell subsets or 

secreted soluble factors are critical for CX3CL1-induced expression of ICAM-1 on 

CD4+T-cells. 

 It would be important to elucidate which intracellular pathway or pathways 

are responsible for the upregulation of ICAM-1 via CX3CL1.  CX3CL1 has been 

shown to upregulate ICAM-1 via signaling through CX3CR1 in HUVECs, which 

increases phosphorylation of JAK2 and STAT5 [164].  An intracellular pathway 

mediating ICAM-1 upregulation via CX3CL1 has not yet been identified in CD4+T-

cells.  If CX3CR1 is directly involved in the upregulation of ICAM-1 in CX3CL1-

stimulated CD4+T-cells, we would expect that transfection with CX3CR1-

interfering RNA, would decrease levels of ICAM-1 as measured by Western blot 
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or flow cytometry analysis.  To establish that JAK2 and STAT5 phosphorylation 

are necessary for fractalkine-induced ICAM-1 upregulation, we would expect that 

incubation with CX3CL1, followed by analysis of phosphorylated JAK2 and 

STAT5 via Western blot or flow cytometry, would show an increase in JAK2 and 

STAT5 phosphorylation, and that this increase would be ablated by JAK2 and 

STAT5 siRNA.   

 Our findings that IFN-γ and TNF-α transcripts, and IFN-γ protein secretion 

are increased in the presence of CX3CL1 in CD4+T-cells derived from RRMS 

patients but not HCs indicates that CX3CL1 may upregulate proinflammatory 

cytokines in CD4+T-cells during inflammation.  This data is interesting in the 

context of study by Fraticelli, et al., who showed that IFN-γ and TNF-α induce 

CX3CL1 expression and release by endothelium, and CX3CL1 expression is 

increased in the IFN- γ-mediated Th1 disease psoriasis, but is not upregulated in 

Th2-dominated atopic dermatitis.  In this context, upregulation of IFN-γ and TNF-

α via CX3CL1 in MS may represent an amplified Th1 response.  It would be 

interesting to test this hypothesis by incubating PBMC cultures with IFN-γ and 

TNF-α, followed by quantitation of CX3CL1 levels in the supernatant via ELISA. 

 Our finding that CX3CR1+ICAM-1+CD4+T-cells are both increased in 

percentage of cells and in per-cell expression of CX3CR1 and ICAM-1 in RRMS-

derived CSF compared to blood suggests that these cells may preferentially 

migrate into the CNS during RRMS.  To address this issue further, it would be 

informative to immunostain acute MS lesions for evidence that CX3CR1+ICAM-

1+CD4+T-cells are present at the site of tissue damage in MS.   
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We hypothesized that increased CX3CL1-CX3CR1 interactions upregulate 

ICAM-1 and IFN-γ in CD4+T-cells, and that CX3CR1+ICAM-1+CD4+T-cells are 

enriched in the CSF during RRMS. The present study has identified an increase 

in CX3CL1, and a decrease in sICAM-1 in the CSF of RRMS patients compared 

to HCs, and has shown an increase in the percentage of CX3CR1+ICAM-

1+CD4+T-cells derived from CSF compared to blood of early untreated RRMS 

patients.  CX3CL1 increased IFN-γ gene expression and protein secretion in 

RRMS-derived but not HC-derived CD4+T-cells.  CX3CL1 was found to 

upregulate ICAM-1 on the surface of RRMS-patient-derived but not HC-derived 

CD4+T-cells, and on stimulated myelin-antigen-specific CD4+ T cell lines.  These 

results indicate that CX3CL1 may play a pathological role in RRMS by enhancing 

migration of IFN-γ-secreting CX3CR1+ICAM-1+CD4+T-cells into the CNS. 
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Supplementary Text: Protein array analysis 

In our initial CSF screen, we identified 13 proteins which were differentially 

expressed between RRMS and HC CSF.  Interestingly, only three of these 13 

proteins were found to be expressed at higher levels in RRMS CSF; the 

remaining 10 were decreased.  The following is a brief description of each protein 

found to be increased or decreased in the CSF of untreated RRMS patients 

compared to HCs. 

Proteins increased in the CSF of untreated RRMS patients 

Trophic factor: FGF-6 

We found FGF-6 expression to be 2.3-fold higher in the CSF derived from 

RRMS patients compared to the CSF from HCs (p = 0.44 please check in figure 

p<0.05).  To our knowledge, FGF-6 has not been previously found to be 

expressed at elevated levels in the CSF of MS patients, nor has it been found to 

play a role in MS pathogenesis.  However, elevated levels of the closely-related 

growth factor FGF-2 have been found in the CSF of RRMS patients [242], and 

FGF-2 has been shown to have a potential neuroprotective role in active MS 

lesions [243].  Studies in mouse models of demyelination have suggested that 

FGF-2 may play a role in the remyelination that occurs in active lesions by 

directing oligodendrocyte stimulating[244]. 

Cytokine: IL-3 

We found IL-3 expression to be 1.8 fold higher in the CSF derived from 

RRMS patients when compared to the CSF derived from HCs (p = 0.005). IL-3 
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has previously been found to be upregulated in MS lesions [235]. Furthermore, 

IL-3 has been shown to induce activation of the JAK2-STAT5 pathway in 

microglia, leading to microglial proliferation, expression of CD40, and expression 

of MHCII [245].  Therefore, increased levels of IL-3 in the CSF may reflect 

microglial activation and antigen presentation during early MS.  Recently, a role 

for IL-3-stimulated plasmacytoid (p)DCs derived from RRMS patients were shown 

to exhibit delayed maturation and diminished secretion of IFN-α/β compared to 

pDCs derived from HCs.  This diminished pDC function in MS may have 

immunopathological consequences, as pDCs have immunoregulatory properties 

that may limit MS pathology by stimulation of regulatory T-cells[246].  As CX3CL1 

has been found to upregulate ICAM-1 via the JAK2-STAT5 pathway [164], it 

would be interesting to investigate whether upregulation of IL-3 can also be 

induced by CX3CL1 in microglia, pDCs, or other immune cell subsets. 

Chemokine: CX3CL1 

In this study, CX3CL1 was found to be expressed at significantly higher 

levels in the CSF of RRMS patients compared to HCs (2.0 fold increase, p = 

0.01).  These data confirm an earlier report that CX3CL1 expression is increased 

in CSF derived from patients with RRMS and other neuroinflammatory disorders 

[233].   
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Proteins decreased in the CSF of untreated RRMS patients 

Proinflammatory cytokine: MIF 

We found Macrophage migration inhibitory factor (MIF) to be 

downregulated 1.7 fold in the CSF of untreated RRMS patients compared to the 

CSF of HCs (p = 0.05).  MIF is a proinflammatory cytokine and inhibitor of 

macrophage trafficking that is secreted by macrophages and activated T-cells.  It 

has previously been shown to be expressed at elevated levels in the CSF of 

relapsing MS patients [208].  Recently, a small molecule inhibitor of MIF has 

been shown to reduce the clinical manifestations of EAE, as well as the total 

number of relapses, potentially by inhibiting lymphocyte migration into the CNS 

[247].  In this context, our finding that MIF is significantly decreased in early MS 

can be interpreted as an indication that that ability of MIF to inhibit macrophage 

migration is diminished in early RRMS, potentially suggesting that blockade of 

MIF early in RRMS could be one mechanism of pathogenesis by which 

macrophages are able to migrate more freely toward active lesions. 

Chemokines: HCC-4, Eotaxin-2 

HCC-4 is downregulated 1.9 -old in the CSF of untreated RRMS patients 

compared to the CSF of HCs (p = 0.020).   HCC-4 is a chemokine which binds to 

CCR1 and CCR2 on lymphocytes and monocytes.  HCC-4 has not previously 

been shown to play a role in MS.  However, CCR1 and CCR2 have both been 

implicated in EAE and MS. 

Eotaxin-2 is downregulated 2.1-fold in the CSF of RRMS patients 

compared to the CSF of HCs (p = 0.043).   Eotaxin-2 binds to CCR3 and has 
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traditionally been characterized as an eosinophil chemoattractant.  CCR3 is 

expressed on macrophages in MS lesions, but otherwise has not been studied in 

MS [218]. Eotaxin-2 was recently found to be expressed at significantly higher 

levels in NMO CSF compared to RRMS or PPMS CSF [248].   

We found growth-regulated oncogene (GRO) to be downregulated 4.4-fold 

in the CSF of untreated RRMS patients compared to the CSF of HCs (p = 0.016).   

GRO is a chemoattractive protein produced by astrocytes that binds CXCR2 on 

oligodendrocytes. Diminished GRO concentration indicates a suppression of 

oligodendrocyte progenitor cell (OPC) migration into demyelinated areas in EAE 

[249].  It is especially interesting that GRO is downregulated in early RRMS, 

because in the cuprizone model of demyelination and remyelination, NG2+ OPCs 

migrate into demyelinated corpus callosum as early as two weeks after first toxic 

insult  [250].  It is plausible that in early RRMS, downregulation of GRO may 

represent a mechanism of damage, or suppression of repair, as OPCs may be 

prohibited from localizing to lesions to remyelinate damaged axons.   

Trophic factors: PIGF, FGF-4, and IGFBP-4 

We found Placental Growth Factor (PIGF) to be downregulated 1.8 fold in 

the CSF of untreated RRMS patients compared to the CSF of HCs (p = 0.048).    

PIGF is a trophic factor and a member of the vascular endothelial growth factor 

(VEGF) family that is a ligand for two receptors: VEGFR-1 and neuropilins.  PIGF 

has generally been studied in the context of its roles in angiogenesis.  PIGF can 

be considered proinflammatory because it is a known chemoattractant of 

monocytes and a stimulator of proinflammatory cytokine secretion [251], but it 

also has known neurotrophic properties in several animal models of the central 
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nervous system disease [252].  Thus a reduction in PIGF expression in the CSF 

in RRMS can be interpreted as an inhibition of monocyte chemotaxis as well as 

inhibition of neuroprotection. 

We found fibroblast growth factor 4 (FGF-4) to be downregulated 3.0 fold 

in the CSF of untreated RRMS patients compared to the CSF of HCs (p = 0.039). 

While no information is currently available regarding potential roles for FGF-4 in 

MS, CSF derived from RRMS patients has been reported to contain increased 

levels of FGF-2 [242].  Furthermore, FGF-2 plays a potential neuroprotective role 

in active MS lesions, leading us to speculate that FGF-4 may play a similar role 

[243].  FGF-2 has also been shown in mice to direct oligodendrocyte 

differentiation in active lesions, thus playing a potential role in remyelination. 

[244].  Taken together, if FGF-4 functions in a similar manner as FGF-2, then the 

decrease in FGF-4 in CSF may be interpreted as contributing to a diminished 

capacity for remyelination.   

 Insulin-like growth factor-4 (IGFBP-4) is downregulated 6.8-fold in RRMS 

CSF compared to HC CSF (p = 0.02).  IGFBP-4 binds IGF-I to inhibit cellular 

growth, differentiation, and survival of brain-derived endothelia and other cell 

subsets.  To our knowledge, IGFBP-4 has not been studied in MS.  It is primarily 

known as an anti-angiogenic factor in glioblastomas and a promising therapy for 

glioblastoma[253].  In the context of IGFBP-4 primarily acting as an inhibitor of 

endothelial growth and survival, downregulation of IGFBP-4 in early MS CSF may 

allow the survival in endothelia of the BBB, and may therefore be interpreted as a 

part of a potential MS BBB repair mechanism. 
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Adhesion molecules: sICAM-1 and sICAM-3 

sICAM-1 is downregulated 5.6-fold in the CSF of untreated RRMS patients 

compared to the CSF of HCs (p = 0.005).  sICAM-1 lacks the transmembrane 

and cytoplasmic regions of ICAM-1 and is produced by many cell types, including 

endothelia and leukocytes.  sICAM-1 binds competitively to ICAM-1 ligands 

including LFA-1, and therefore has a therapeutic potential.  Interestingly, in vitro 

application of sICAM-1 to activated lymphocytes blocks their adhesion to CNS-

derived endothelial cells, and this effect is abrogated in a dose-dependent 

manner upon application of anti-ICAM antibody [189]. 

Soluble (s)ICAM-3 is downregulated 1.9-fold in the CSF of RRMS patients 

compared to the CSF of HCs (p = 0.018).  ICAM-3 is a ligand for LFA-1 that 

competes with ICAM-1 and ICAM-2.  ICAM-3 has been previously been shown to 

be upregulated in MS serum [254].  Kraus and colleagues found that the numbers 

of CD45RA+ICAM-3+ cells in the CSF of relapsing patients was higher than in 

patients in remission [255].  Since sICAM-3 most likely acts to competitively 

inhibit interactions between membrane bound ICAMs and LFA-1, sICAM-3 may 

be considered as an inhibitor of immune cell transmigration in MS.  Therefore, 

depressed levels of sICAM-3 may be interpreted as having a proinflammatory 

effect in MS and may therefore be considered a potential therapeutic target. 

Soluble Receptor Tyrosine Kinase: Axl 

Axl is downregulated 4.2 fold in the CSF of untreated RRMS patients 

compared to the CSF of HCs (p = 0.047).  Axl is one of the three receptor 

tyrosine kinases (Mertk and Tyro3) that constitute the TAM family of Tyrosine 
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kinases.  Axl binds to Growth arrest-specific protein 6 (Gas-6).  Weinger et al 

(2011) recently found that when Axl-/- mice were subjected to MOG-induced EAE, 

disease severity was greater than in WT mice, suggesting that Axl alleviates EAE 

progression [256].  We find Axl to be diminished in early MS, during the 

inflammatory stage of the disease, thus suggesting that decreased Axl 

expression may contribute to MS pathology.  In MS lesions, however, Axl has 

been shown to be upregulated, which seems to contradict our data [151].  

However, because we analyzed CSF in early MS, while Weinger and colleagues 

analyzed Axl expression in lesion tissue derived from chronic MS patients, it may 

be that while Axl expression is suppressed in the early, inflammatory stage of 

MS, it is upregulated at later time point in lesions as part of a repair mechanism.  

This discrepancy could be resolved by (a) immunostaining lesion tissue from MS 

patients near the time of diagnosis and (b) evaluating the CSF of MS patients 

later in disease. 
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Supplementary Figure S1. Protein array determined the differential expression of 

inflammatory proteins in the CSF of RRMS patients and HCs 

  

Figure S1. Differential expression of cytokines, chemokines, and growth 

factors in the CSF derived from RRMS patients compared to HCs. Ray 

Biotech cytokine array was utilized to reveal changes in CSF protein levels in 

RRMS patients compared to HCs.  10 RRMS CSF and 19 HC CSF samples 

were tested for expression of 120 cytokines, chemokines, and growth factors.  

Graph shows differential protein expression in the CSF from RRMS patients and 

HCs. Arbitrary units (AU) = Average of Normalized Density of Duplicates / Sum of 

normalized density of all protein spots in single membrane * p < 0.05. ** p < 0.01. 
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Supplementary figure 2. FGF-6 is elevated in CSF of RRMS patients in comparison to HCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure S2. FGF-6 is elevated in CSF of RRMS patients in 

comparison to HCs. A. 10 RRMS and 19 HC CSF samples were 

tested for the expression of 120 cytokine, chemokine, and growth 

factor proteins using protein array. B.FGF-6 protein levels were 

measured in 11 RRMS and 16 HC CSF samples, using ELISA.  For the 

cytokine array, relative protein expression is expressed in arbitrary 

units (AU). AU = Average of Normalized Density of Duplicates / Sum of 

normalized density of all protein spots on a single membrane. 

Statistical analysis was performed using unpaired t-tests.  ** = p < 0.01. 

*** = p < 0.001.  
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