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ABSTRACT
DANIEL V. SAMAROV: The Analysis and Advanced Extensions of Canonical

Correlation Analysis

(Under the direction of J. S. Marron, Yufeng Liu and Alexander Tropsha)

Drug discovery is the process of identifying compounds which have potentially mean-

ingful biological activity. A problem that arises is that the number of compounds to

search over can be quite large, sometimes numbering in the millions, making experimen-

tal testing intractable. For this reason computational methods are employed to filter out

those compounds which do not exhibit strong biological activity. This filtering step, also

called virtual screening reduces the search space, allowing for the remaining compounds

to be experimentally tested.

In this dissertation I will provide an approach to the problem of virtual screening

based on Canonical Correlation Analysis (CCA) and several extensions which use kernel

and spectral learning ideas. Specifically these methods will be applied to the protein-

ligand matching problem.

Additionally, theoretical results analyzing the behavior of CCA in the High Dimension

Low Sample Size (HDLSS) setting will be provided.
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CHAPTER 1

Introduction

Recent advances in biology, genetics and chemistry have led to an influx in the amount

of information available on a wide variety of biological processes. A major issue facing

scientists is finding meaningful ways of utilizing this data to better understand the mech-

anisms of the diseases that affect humans. A key element in dealing with the challenges

involved in understanding and analyzing this type of information and the unique prob-

lems associated with them is the development of new statistical methodology.

Of interest to scientists is using the many different ways of measuring or viewing the

same (or similar) biological, genetic or chemical process in order to better understand

the key elements driving them. Consider the following example:

In the field of cheminformatics, drug discovery is a key step in the process of iden-

tifying compounds which may have potentially meaningful biological activity as related

to a particular disease process. The process of drug discovery typically begins with the

identification of a new or existing drug target, typically these targets are proteins. Pro-

teins are large organic compounds composed of amino acids and are the building blocks

from which all cells are built and are responsible for almost all cell function. The two

predominant families of target proteins in drug discovery are G-protein-coupled receptors

(GPCR) and protein kinases. About half of all known drugs work through GPCR’s.

GPCR’s belong to the family of transmembrane receptors, proteins that span the

cell membrane connecting the inside of the cell with the outside of the cell. These



transmembrane receptors bind extracellular signaling molecules, called ligands. Ligands

include other proteins and small peptides (short sequences of amino acids), as well as

derivatives of amino acids and fatty acids. Once bound these signaling molecules set off

a chain of intracellular signaling events. These signaling events are generally mediated

by protein kinases and lead to the alteration of some target proteins ultimately leading

to a change in cell behavior.

The reason GPCR’s and protein kinases are so important is that in both normal and

abnormal cell activity, they are used as lines of communication. In the event of abnormal

cell activity they are natural control points.

Consider the case where the target is a novel GPCR, ligands are then screened for

their ability to inhibit or stimulate that GPCR. A problem that arises is that the number

of compounds to search over can be quite large, sometimes numbering in the millions.

Subsequently, experimental verification of protein-ligand interaction can be extremely

time consuming and costly or in some cases simply not possible due to time and/or cost

constraints. For this reason computational methods are employed to filter out those

compounds that do not exhibit a strong relationship with a given receptor. This filtering

step reduces the search space allowing for the remaining compounds to be experimentally

tested.

A motivating example throughout this dissertation will be the prediction of protein-

ligand binding, utilizing descriptive variables associated with these compounds. These

descriptive variables, from here on referred to as descriptors, include information related

to the electronic attributes, hydrophobicity, and steric properties of the molecules. The

motivation for our model and its extensions will be based on the task of modeling these

relationships. This approach to the prediction of molecular function and interaction

is known as quantitative structure-activity relationship (QSAR) modeling. For a good

introduction and overview of the theory, practice and history of QSAR see Selassie (2003).

In this example the proteins and ligands are represented by a set of descriptors with

2



the number of descriptive variables typically ranging from 150 to as many as 800 or

more. The prediction problem can be generally stated as follows: for a set of n known

protein ligand pairs, with dX and dY descriptors, given a new protein we want to be

able to predict what ligand will bind to it. Let xi ∈ R
dX and yi ∈ R

dY , i = 1, . . . , n

denote a protein ligand pair. The sample of pairs is collected in matrices X ∈ R
n×dX and

Y ∈ R
n×dY with xi and yi as the descriptors for a row.

Our approach to this problem is based on the structural relationship between these

molecules. Specifically, that there is a strong (complementary) relationship in the stere-

ochemical layout (the relative spatial arrangement of atoms within a molecule) between

the protein and its ligand(s). Thus, if we can find a way to align the space of proteins

and ligands, then we may be able to exploit this structural relationship to predict which

pairs match up.

1.1 General Framework

Casting the protein-ligand matching problem into a general framework, following the

discussion of Bach and Jordan (2002) and Fukumizu et al. (2007), our example consists

of two multivariate random variables X and Y belonging to R
d. In the context of our

example these random variables correspond, respectively, to proteins and ligands. Lets

and ligands. Let fX ∈ HX and fY ∈ HY be mappings from R
dX and R

dY to R, where

HX and HY are spaces of functions. The type of functions we consider are, for example,

bilinear maps, fX(X) = 〈X,wX〉 and fY (Y ) = 〈Y,wY 〉. Define S : R × R → R to be

a function measuring the similarity between two random variables. An example of a

similarity measure is Pearson correlation. It is important to note that the notation S is

defined here in terms of the population random variables X and Y , as opposed to their

sample counterparts. When referring to the sample, i.e. empirical similarity measure we

will write Ŝ (so for example we would write ĉorr for sample correlation).

Returning to our example, we want to find functions fX and fY such that the similar-

3



ity between proteins and ligands is maximized, this leads to the following optimization

problem

ρH = max
fX∈HX ,fY ∈HY

S(fX(X), fY (Y )) (1.1)

where the subscript H = (HX ,HY ) denotes the spaces of functions over which the simi-

larity is being maximized.

The selection of a meaningful measure of similarity is context dependent. All similar-

ity measures have relevance in certain circumstances. Examples of similarity measures

include correlation, covariance, and mutual information. The one which we will focus on

is correlation.

Defining HX and HY to be the Hilbert spaces of bilinear maps taking the form

fX(X) = 〈X,wX〉 and fY (Y ) = 〈Y,wY 〉 respectively, the problem as stated in (1.1) then

becomes the well known Canonical Correlation Analysis (CCA) (Hotelling (1936)). The

optimization problem in (1.1) then takes the form

ρH = max
wX ,wY

corr(〈X,wX〉, 〈Y,wY 〉) = max
wX ,wY

cov(〈X,wX〉, 〈Y,wY 〉)√
var(〈X,wX〉)

√
var(〈Y,wY 〉)

(1.2)

The general framework of (1.1) will allow for a natural extension of linear CCA to kernel

CCA (KCCA) by defining HX and HY to be reproducing kernel Hilbert spaces (RKHS).

This will be discussed in further detail in Chapter 3.

CCA has a number of appealing properties, including

1. Extensions to kernel based methods, (i.e. Kernel CCA (KCCA)), discussed in Kuss

and Graepel (2003), Hardoon et al. (2004) and Bach and Jordan (2002).

2. An intuitive geometric interpretation to the cosine of the angle between two vectors,

discussed in Anderson (2003), with extensions to KCCA, discussed in Kuss and

Graepel (2003).

3. Connections to Mutual Information (MI) (Kullback (1997)). In the case when the
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data is known to be normally distributed this can be shown directly. A connection

between MI and KCCA is discussed in Bach and Jordan (2002).

4. An extension of CCA to more than two data sets is presented in Kettenring (1971).

5. Connection to linear discriminant analysis (LDA) (Bie (2005) and Hastie et al.

(1995))

An illustration of the protein-ligand matching problem may help in the understanding

of CCA and its application to this problem as well as its extension to other similar

problems.

1.2 Two Space Toy Example

Consider the protein-ligand matching problem as outlined above. For this toy example

we set n = 10 and d = 2. Suppose the descriptors for this toy example are Molecular

Weight (MW) and Surface Area (SA) of the molecule. Recall that each row of X(10×2)

and each row of Y(10×2) corresponds to an observation, a protein or a ligand respectively,

and the columns correspond to the descriptors MW and SA. The pairs are identified by a

unique label, corresponding to ID’s from the Protein Data Bank (PDB) (www.pdb.org).

Figure 1.1 shows the two toy data sets.

From Figure 1.1 it can be seen that the distribution of points in the two spaces are

quite similar in the sense that the location of corresponding points in the two spaces

are close. The points connected to 11gs (red) by dashed black lines are its three nearest

neighbors. The cyan points are neighbors shared in both spaces and the blue and purple

points are mismatched. Two of three neighbors are shared in common (in the Euclidean

sense).

Consider the case where the red point in ligand space is not observed and the task is

to predict its value. Using the average of the points in ligand space that correspond to

the nearest neighbors of the point 11gs in the protein space (points highlighted in cyan

5
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Figure 1.1: Toy example data. The points highlighted in red correspond to the protein
ligand pair 11gs, and the points connected to it by dashed black lines are its three nearest
neighbors in each space. The observations highlighted cyan are neighbors in both spaces,
and those highlighted in blue and purple are neighbors only in the protein, and ligand
spaces respectively. The green point Lnew in the ligand space corresponds to a simple
weighted average of the cyan points and the purple point; i.e. of the nearest neighbors of
11gs in the protein space.

and purple in ligand space) would yield a relatively poor prediction despite the strong

apparent similarity between the two distributions of points. This dissertation studies

more sophisticated approaches to exploiting this similarity.

In Section 1.1 the idea of similarity between two distributions was introduced. In

our current example the type of similarity measure that is needed is one that tells us

how well aligned the two spaces are. The functions fX and fY we consider will be ones

which place appropriate weights on the features (i.e. descriptors) that best align the two

distributions.

To motivate our approach and justify why CCA is an appropriate method to address

this problem we start by considering a simple example. Figure 1.2 shows four data
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sets, each consisting of two spaces, X and Y with dX = dY = 1 at different levels of

correlation. For each data set two quite different views are considered. The top row of

plots are conventional scatterplots of the data and the bottom set of plots are connectivity

plots which provide a different view of the association between pairs of points. In the

connectivity plots points are shown as the (green) segments connecting the x-coordinates

(blue points) and y-coordinates (red points). This view highlights the similarity of the

pairs.

As correlation increases (moving from the left panels to the right) the difference

between the values of the points in the X and Y space becomes smaller. This is reflected

in the top set of plots in Figure 1.2 as the observations tend to fall closer to the 45

degree line in the right hand panels. In the bottom set of plots the dashed green lines

become increasingly parallel to each other. Based on these observations maximizing

the correlation between the sets of points x and y is equivalent to maximizing their

coordinate-wise alignment.

Yet another way to interpret correlation is as the cosine of the angle between the

vectors x and y (Anderson (2003)), assuming they are mean centered. This relationship

is easy to verify. Using the idea of projections provides concreteness to the interpretation

of correlation as a measure of alignment. Define the projection coefficient p to be the

scalar such that the vector py is orthogonal to x− py; solving the following for p

0 = pyT (x− py) = p(yTx− pyTy),

we have that, p = yTx/yTy. Next decompose x as x = (x − py) + py, see Figure 1.3.

The absolute value of the cosine of the angle between x and y is the same as the length

of py divided by the length of x;

cos(θ) =
√

pyT (py)/xTx = xTy/
√

(xTx)(yTy) = ĉorr(x,y).
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Figure 1.2: Four bivariate toy data sets, with differing correlation. The top plots corre-
spond to the scatterplot view of data and the bottom plots are connectivity plots of the
data. The blue points, on the bottom set of plots, are the x coordinate values and the red
points are the corresponding y coordinate values. In the top set of plots as correlation
increases points begin falling closer to the 45 degree line. In the bottom set of plots the
dashed green lines become increasingly parallel to each other.

So in terms of (1.2) above, maximizing the correlation between x and y is equivalent

to minimizing the angle between them. As the angle goes to zero the closer each pair

of coordinates in both n vectors becomes (modulo a scale factor). This can be seen in

Figure 1.3 as the angle goes to zero x− py goes to zero.

With an intuitive grasp of the relationship between correlation and alignment we

return to the protein ligand example of Figure 1.1 at the beginning of this section. Solving

for wX and wY in (1.2), gives us the direction vectors shown in Figure 1.4 (details of

these derivations will be discussed in Chapter 2). What is important to notice is how

the distribution of points along the first (red) and second (green) canonical directions in

both protein and ligand space are quite similar. This is due to the property of alignment

that arises naturally from maximizing the correlation.
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Figure 1.3: An illustration of the relationship between correlation and angle between two
vectors. Note that we assume that the vectors have been mean centered.

Figure 1.5 shows the projections of the data onto the first two canonical vectors (note

that separate directions are found in protein and ligand space). We can see that with the

slight modification in alignment that has resulted from the CCA projections, the point

11gs now shares the same neighbors in both spaces. In particular note that now the

predicted value in the projected ligand space is much closer to the actual value (again

using the simple average).

This is a simplified example and in most cases the relationship between points in

different spaces may be far more complicated. In coming sections we begin with the

simplest case scenario, i.e. standard CCA and related methods. This is used as a start-

ing point to motivate and develop methodology and theory appropriate for increasingly

complex problems. Along the way we address the strong and weak points of these various

methods.

1.3 Benchmark Data Sets

Two virtual drug screens will be used as a benchmark for testing the methods devel-

oped in this dissertation:
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Figure 1.4: The direction vectors and the projected value of each point. The top row of
plots shows the first direction vector, in red, and the projections onto it. The bottom row
of plots show the second direction vector, in green, and the projection onto it.

1. A set of 800 chemically, and functionally diverse protein-ligand pairs obtained from

the PDBbind Database (Wang et al. (2004)). These compounds are described by

a set of 150 descriptors. We will refer to this data set as the RLP800 data.

2. The World Drug Index (WDI) (Daylight (2004)) database which contains approxi-

mately 54,000 drug candidates (ligands). Each compound in the WDI is described

by the same set of 150 descriptors as the RLP800 data.
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Figure 1.5: Projection of the data in Figure 1.1 onto the first and second canonical
vectors. In contrast to Figure 1.1 the point 11gs now shares the same neighbors in both
spaces and the predicted value in green is much closer to the actual value.

1.3.1 Ligand Prediction

Recall the example discussed in Section 1.2. In that example we first used CCA to

define a mapping between the space of receptors and the space of ligands by projecting

onto the first pX ≤ dX and pY ≤ dY directions (Figures 1.4 and 1.5). Let us define the

projected values of the observations in X and Y space onto their first pX and pY canonical

vectors as

xw
i,p =

(
w1

X , . . . ,wpX

X

)T
, xi ∈ R

pX , i = 1, . . . , n

yw
i,p =

(
w1

Y , . . . ,wpY

Y

)T
, yi ∈ R

pY , i = 1, . . . , n

The sample of pairs are collected in matrices Xw
p ∈ R

n×pX and Yw
p ∈ R

n×pY with xw
i,p

and yw
i,p as the observations for a row.
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The method of prediction and assessment of model performance used, in the context

of the protein-ligand matching problem, has similarities and differences with more tra-

ditional statistical definitions of these concepts. Prediction in this problem is similar to

traditional definitions in the following sense: given a new input, xnew, and it’s projection

onto the first pX canonical vectors in X space (call this projected value xw
new,p), we want

to predict the value of its unobserved pair, yw
new,p, in canonical correlation space.

There is an important distinction to draw here. Traditional methods of prediction

usually assume a direction of dependence between the variables to be predicted (the

dependent variables) and the variables predicting them (the independent variables), e.g.

as in regression. Here we are more interested in a symmetric, not causal, type of re-

lationship. This type of approach can be justified in the context of our, and similar

problems for the following reasons: In our problem the binding between a protein and its

ligand is inherently co-dependent. In similar problems, such as in information retrieval,

the relationship between the input object, say a document in English, and the output

object, the corresponding Japanese translation (Li and Shawe-Taylor (2006)) does not

inherently imply a dependence one way or the other. Rather what we are interested in

are the attributes that are held in common between them. There are also many examples

in the field of bioinformatics where it is of interest to understand how multiple sources

of information, for example gene expression and the corresponding metabolic pathway

along which these genes fall (Vert and Kanehisa (2002)), co-depend on one another.

The accuracy of our prediction is assessed here in terms of how close, in Euclidean

distance, our prediction, ŷw
new,p is to the actual value, yw

new,p. This is then compared

to the set of the distances from each observation, yw
i,p, i = 1, . . . , n to the actual value.

Predictive accuracy is measured by ranking these distances, from smallest to largest.

Defining ri to be the rank of our prediction of test ligand i, model performance is defined

12



as the average rank (over ligands) of our predictions,

r̄ =
1

nT

nT∑

i=1

ri, (1.3)

where nT is the number of test ligands.

The predicted value of yw
new,p is calculated as follows (note that this is a modification

of the LLE algorithm developed by Saul and Roweis (2003));

1. Compute the k neighbors of the data point xw
new,p (the projected value of xnew into

canonical correlation space). Define Nk(x) to be the k nearest neighbors of the

point x.

2. Compute weights βnew,j that best reconstruct the data point xw
new,p from its neigh-

bors, minimizing the cost:

L(βnew) =


xw

new,p −
∑

j:xj∈Nk(xw
new,p)

βnew,jx
w
j,p




2

,

subject to
∑

j:xj∈Nk(xw
new,p)

βnew,j = 1.

(1.4)

3. The new observation is then calculated as,

ŷw
new,p =

∑

j:xj∈Nk(xw
new,p)

βnew,jy
w
j,p. (1.5)

Recall that CCA finds directions which best align two spaces. Thus, assuming that

directions wi
X and wi

Y , i = 1, . . . , p, have been found such that the correlation between

spaces is strong, using the weights βnew,j found in X space should provide a reliable

estimate of yw
new,p.

The results of our methods will be compared against those presented in Oloff et al.

(2006). In their paper the RLP800 data was separated into 637 training points, used to

13



build the model, and 163 testing points, used to validate the predictive accuracy of the

model. Predictive accuracy is measured by the ranking scheme described above.

To further test the predictive accuracy of our model (again following Oloff et al.

(2006)) the WDI database is combined with the ligands from the RLP800 data set. The

same ranking process is repeated but the set of ligands has been expanded to include

both the WDI and RLP800 datasets.

1.3.2 Principal Component Analysis and Visualization

A parallel, but simpler tool which will prove useful in developing intuition about CCA

and its extensions is principal component analysis (PCA) (Muirhead (1982)). PCA is a

method used for analyzing and visualizing data. In contrast to our discussion thus far

PCA looks to find linear combinations of the descriptors in an individual space, either in

the space of proteins X or ligands Y, which maximizes the variance (1.6). For convenience

we focus on the space X as the same concepts hold for Y. This variance maximization

aspect of PCA can be formulated as

γX = max
vX

var(XvX),

subject to,

vT
XvX = 1.

(1.6)

The solution to (1.6) is found by defining λX to be the Lagrange multiplier, which gives

us the corresponding Lagrangian,

L(vX , λX) = vT
XΣXXvX −

λX

2
(vT

XvX − 1). (1.7)

Taking the derivative with respect to vX and setting equal to zero gives us

∂L(vX , λX)

∂vX

= ΣXXvX − λXvX = 0. (1.8)
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Multiplying the left hand side of (1.8) by vT
X yields

vT
XΣXXvX = var(XvX) = λX .

Thus λX = γX . Finally, rearranging terms in (1.8) gives us the eigen problem

ΣXXvX = γXvX . (1.9)

A new direction, v∗
X is found by repeating the process just described with the addi-

tional constraint that it be uncorrelated with vX . The problem in (1.6) is thus modified

to be,

γ∗
X = arg max

v∗
X

var(Xv∗
X),

subject to,

(v∗
X)Tv∗

X = 1

(v∗
X)TvX = 0,

cov(Xv∗
X , XvX) = 0. (1.10)

Using Lagrange multipliers λ∗
X and µX gives the Lagrangian,

L(v∗
X , λ∗

X , µX) = (v∗
X)T XT Xv∗

X −
λ∗

X

2
((v∗

X)Tv∗
X − 1) + µX(v∗

X)TvX . (1.11)

Taking the derivative of (1.11) with respect to v∗
X and setting equal to zero we have,

∂L(v∗
X , λ∗

X , µX)

∂v∗
X

= XT Xv∗
X − λ∗

Xv∗
X + µXvX = 0 (1.12)
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Multiplying the left hand side of (1.12) by vT
X gives us,

vT
XXT Xv∗

X − λ∗
XvT

Xv∗
X + µXvT

XvX = µX ,

which implies that µX = 0. Thus it can be seen that the eigenvalue γ∗
X and direction v∗

X

are the second eigenvalue and eigenvector of ΣXX . Additional linear combinations of X

which maximize the variance are found in a similar fashion with the constraints in (1.10)

being modified to include all previous directions.

A useful characteristic of PCA is that it allows us to visualize and gain insight into

how the data are distributed. This is especially useful when the data is in a higher

dimensional space. In Figures 1.6 and 1.7 we have plotted a scatterplot matrix showing

the joint structure in the first four principal components as well as the eigenvalues for

both proteins and ligands, respectively in the RLP800 training data set.

Figures 1.6 and 1.7 provide some insight into the distribution of the RLP800 data.

Consider the plots of the eigenvalues in the lower left hand corner of each figure; what

immediately stands out is the relatively small number of eigenvalues needed to explain a

large proportion of the variation in both protein and ligand space. Here the proportion

of variation measured by principal component i is given as

var(Xvi
X)∑

j var(Xvj
X)

=
γi

X∑
j γj

X

. (1.13)

This type of behavior can occur for a number of reasons, two of the more common ones

are scaling and strong correlation between descriptors (also known as multicollinearity).

Scaling can be an issue when the distribution of a descriptor has multiple modes, is skewed

and/or is (nearly) discrete. This may have the effect of biasing the principal component

vectors in the direction of these variables. In the presence of multicollinearity the PC

directions will be dominated by a few larger modes of variation with the remaining ones

being comparatively small. Multicollinearity will be discussed in more detail in Section
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2.3.

While PCA is useful for studying a single space we are interested in studying how

two spaces are related to one another. CCA is just such a tool.
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Figure 1.6: The plots in the upper right half of the figure are the projections of the
RLP800 receptor training data onto their first four principal components. The plots
along the diagonal show the distribution of the projected values with the red curve being
a kernel density estimate of the projections and the percentage in the upper right hand
corner the proportion of variation explained by that principal component. The plot on
the lower left side show the eigenvalues of all 150 principal components. The red curve
is the cumulative sum of the eigenvalues.
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Figure 1.7: Same layout as in Figure 1.6. but for the RLP800 ligand training data.
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CHAPTER 2

A mapping between spaces: Canonical Correlation
Analysis

CCA was first proposed in 1936 (Hotelling (1936)). Since then it has seen application

in a multitude of fields. In the prediction of protein-ligand binding the complexity of

the data necessitates a way to model the relationship between them. CCA provides a

natural framework for this type of analysis.

2.1 Linear Case

Consider the framework laid out in Section 1.1. Let ΣXX = cov(X,X), ΣY Y =

cov(Y, Y ) and ΣXY = cov(X,Y ) denote the population covariances and SXX = ĉov(X,X),

SYY = ĉov(Y,Y) and SXY = ĉov(X,Y) the sample covariances.

Since correlation is scale invariant we can make an arbitrary normalization of wX and

wY . With this in mind we have the constraint

cov(〈X,wX〉, 〈X,wX〉) = cov(〈Y,wY 〉, 〈Y,wY 〉) = 1 (2.1)

Using this constraint the optimization problem in (1.2) can be written as

ρH = max
wX ,wY

corr(〈X,wX〉, 〈Y,wY 〉) = wT
XΣXY wY ,

subject to

wT
XΣXXwX = wT

Y ΣY Y wY = 1.

(2.2)



Using Lagrange multipliers ρX and ρY the corresponding Lagrangian is

L(wX ,wY , ρX , ρY ) = wT
XΣXY wY −

ρX

2
(wT

XΣXXwX − 1)− ρY

2
(wT

Y ΣY Y wY − 1). (2.3)

Taking the derivative of (2.3) with respect to wX and wY and setting equal to zero we

have

∂L(wX ,wY , ρX , ρY )

∂wX

= ΣXY wY − ρXΣXXwX = 0, (2.4)

∂L(wX ,wY , ρX , ρY )

∂wY

= ΣY XwX − ρY ΣY Y wY = 0. (2.5)

Multiplying the left hand sides of Equations (2.4) and (2.5) by, respectively, wT
X and wT

Y

and then subtracting the resulting equations from each other gives us

wT
XΣXY wY − ρXwT

XΣXXwX −wT
Y ΣY XwX + ρY wT

Y ΣY Y wY

= ρY wT
Y ΣY Y wY − ρXwT

XΣXXwX = 0,

from which it follows that

ρX = ρY = corr(〈X,wX〉, 〈Y,wY 〉) = ρH.

Assuming ΣY Y is invertible we have

wY =
Σ−1

Y Y ΣY XwX

ρH
. (2.6)

Similarly we have,

wX =
Σ−1

XXΣXY wY

ρH
. (2.7)

Substituting (2.6) into (2.4) and rearranging terms gives the generalized eigenvalue prob-

lem,

ΣXY Σ−1
Y Y ΣY XwX = ρ2

HΣXXwX , (2.8)
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similar calculations lead to

ΣY XΣ−1
XXΣY XwY = ρ2

HΣY Y wY . (2.9)

Equivalently using Equations (2.4) and (2.5) the generalized eigenvalue problem can be

rewritten as,




0 ΣXY

ΣY X 0







wX

wY


 = ρH




ΣXX 0

0 ΣY Y







wX

wY


 . (2.10)

We now discuss how to find second and subsequent linear combinations of X and Y . The

objective is to find maximally correlated linear combinations of X, say Xw∗
X and Y , say

Y w∗
Y which are uncorrelated with XwX and Y wY from (2.2). The optimization problem

thus written as,

ρH = max
w∗

X
,w∗

Y

corr(〈X,w∗
X〉, 〈Y,w∗

Y 〉) = (w∗
X)T ΣXY w∗

Y ,

subject to

(w∗
X)T ΣXXw∗

X = (w∗
Y )T ΣY Y w∗

Y = 1

wT
XΣXXw∗

X = wT
Y ΣY Y w∗

Y = 0

wT
XΣXY w∗

Y = wT
Y ΣY Xw∗

X = 0.

(2.11)

Using Lagrange multipliers ρ∗
X , ρ∗

Y , µX and µY gives the Lagrangian,

L(w∗
X ,w∗

Y , ρ∗
X , ρ∗

Y , µX , µY ) = (w∗
X)T ΣXY w∗

Y −
ρ∗

X

2
((w∗

X)T ΣXXw∗
X − 1)

− ρ∗
Y

2
((w∗

Y )T ΣY Y w∗
Y − 1) + µXwT

XΣXXw∗
X + µY wT

Y ΣY Y w∗
Y . (2.12)

Taking the derivative of (2.12) with respect w∗
X and w∗

Y and setting equal to zero we
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have,

∂L(w∗
X ,w∗

Y , ρ∗
X , ρ∗

Y , µX , µY )

∂w∗
X

= ΣXY w∗
Y − ρ∗

XΣXXw∗
X + µXΣXXwX = 0, (2.13)

∂L(w∗
X ,w∗

Y , ρ∗
X , ρ∗

Y , µX , µY )

∂w∗
Y

= ΣY Xw∗
X − ρ∗

Y ΣY Y w∗
Y + µY ΣY Y wY = 0. (2.14)

Multiplying the left hand side of (2.13) and (2.14) by wT
X and wT

Y respectively gives us

0 = µXwT
XΣXXwX = µX ,

0 = µY wT
Y ΣY Y wY = µY .

With µX = µY = 0 it can be seen that the canonical vectors w∗
X and w∗

Y are the

second set of eigenvectors from the generalized eigenvalue problem in (2.8) and (2.9).

The extension to additional linear combinations of X and Y follows along the same lines

as just described with the constraints in (2.11) being modified to include orthogonality

to all previous linear combinations of X and Y .

Remark 2.1.1. Eigen analyses have ambiguous polarity in the sense that they are only

determined up to a factor of ±1. This ambiguous polarity is resolved in a way that gives

comparable results across similar data analyses by employing the following convention:

The main idea is that the directions the eigenvectors follow, in each space, will always

place the largest, in absolute value, projected value across both spaces on the positive

(right hand) side of the axis. In other words let X, Y, wX and wY be as defined

previously. Define the scores ai
X = xT

i wX and ai
Y = yT

i wY to be the projected values of

the ith observation onto its canonical vector. Let a
(n)
X and a

(n)
Y be the largest score, in

absolute value, across all ak
X and ak

Y , k = 1, . . . , n, respectively. Then,

ai
X = sign(max{a(n)

X , a
(n)
Y }) · ai

X ,

ai
Y = sign(max{a(n)

X , a
(n)
Y }) · ai

Y .

(2.15)

23



In the event of a tie in the scores a
(n)
X and a

(n)
Y the sign is taken to be +1. This transfor-

mation of the data does not change the relationship of the projections between spaces.

This can be seen by noting that the values of the signs by which we are multiplying the

projections in both spaces will always be the same. Thus the correlation between the

projections will remain unchanged.

An example of linear CCA was presented in Section 1.2. In the following section we

present several toy examples illustrating where linear CCA performs well and also where

it does not perform well.

2.2 Properties of CCA

CCA is invariant with respect to several common linear transformations. This point

is illustrated in Figure 2.1. Plots (b), (c) and (d) in Figure 2.1 depict different transfor-

mations, orthonormal, scale and location, respectively of the data shown in Figure 2.1

(a) (not shown in the plots are the canonical correlations, 1 and 0.996 which are the same

for all four groups of plots). These properties are straightforward to verify. Let X, Y ,

wX and wY be defined as above. To ease calculation we also assume that X and Y have

mean zero.

1. Orthonormal: Define QX ∈ R
dX×dX and QY ∈ R

dY ×dY to be orthonormal matrices.

I.e.:

(a) QT
XQX = QXQT

X = IdX
,

(b) QT
Y QY = QY QT

Y = IdY

Define the orthonormal transformations X∗ = XQX and Y ∗ = Y QY . Define E[·]

to be the expected value. Using the result found in (2.8) we have

E[(X∗)T Y ∗](E[(Y ∗)T Y ∗])−1E[(Y ∗)T X∗]w∗
X = (ρ∗)2E[(X∗)T X∗]w∗

X . (2.16)
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Substituting in for X∗ and Y ∗ gives us,

QT
XE[XT Y ]QY (QT

Y E[Y T Y ]QY )−1QT
Y E[Y T X]QXw∗

X = (ρ∗)2QT
XE[XT X]QXw∗

X .

(2.17)

Next we use properties (a) and (b) defined above. Multiplying the left hand side

of the previous equation by QX and setting w′
X = QXw∗

X gives us,

ΣXY Σ−1
Y Y ΣY Xw′

X = (ρ∗)2ΣXXw′
X . (2.18)

From this it can be seen that the resulting generalized eigenvalue and eigenvector

from (2.18) will be the same as those found in (2.8).

Figure 2.1(b) illustrates CCA’s invariance to orthonormal transformations. In the

X space the data has been rotated 30◦ counterclockwise and in the Y space the data

has been rotated 75◦ clockwise (these rotations satisfy the properties (a) and (b)).

The resulting projected values remain unchanged as do the canonical correlation

values.

2. Scale: We use the results from CCA’s invariance to orthonormal transformations

to show its scale invariance. This follows immediately by substituting in scalars a

and b for the orthonormal matrices QX and QY in (2.17) which then leads to the

same result as in (2.18).

An illustration of CCA’s scale invariance is presented in Figure 2.1 (c). The pro-

jected values and canonical correlations are identical to those in Figure 2.1 (a).

3. Translation: Define cx ∈ R
d
X and cy ∈ R

d
Y to be vectors of constants, and 1n ∈ R

n

to be a vector of ones then

corr(〈X + 1cT
x ,wX〉, 〈Y + 1cT

y ,wX〉)

= wT
XE[(X + 1cT

x − E[X + 1cT
x ])T (Y + 1cT

y − E[Y + 1cT
y ])]wY
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= wT
XE[XT Y ]wY

= corr(〈X,wX〉, 〈Y,wY 〉).

Figure 2.1(d) provides an illustration of CCA’s invariance to translation. Looking

at the projected values and canonical correlations they are identical to those found

in (a).

2.3 Regularized Canonical Correlation Analysis

There are many cases, particularly in biological problems where the data being an-

alyzed have a large number of covariates (descriptors) as compared to the number of

observations. This can lead to situations where there are potentially many highly corre-

lated covariates, this type of behavior is referred to as multicollinearity. An approach to

control the effects of multicollinearity is to add a penalty term which controls the vari-

ability of the eigenvectors of the sample covariance matrices within the X and Y spaces.

There is a close relationship between variability in the eigenvectors and multicollinearity

(which we discuss in greater detail below).

Recall that the eigenvalues and eigenvectors found from the eigen decomposition of the

sample covariance matrix SXX (and SY Y ) are also the solution to the PCA optimization

problem discussed in Section 1.3.2.

An important aspect of PCA is that it gives us insight into the structure of the

data. In particular it can alert us to the presence of multicollinearity. Consider a set

of n observations each of which has d variables (descriptors). If there exists strong

multicollinearity amongst the variables then a subset p(< d) of the eigenvalues will have

relatively large values and the remaining d− p eigenvalues will have comparatively small

values. This type of behavior in the eigenvalues can create numeric instabilities in the

sample covariance matrices. Recall from equations (2.6) and (2.7) that the canonical
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vectors wX and wY can be written as,

wX =
S−1

XXSXY wY

ρH
,

wY =
S−1

Y Y SY XwX

ρH
.

The effect of this instability on the canonical vectors can be seen by noting that their

solutions depend on the inverse of the covariance matrices SXX and SY Y . An immediate

consequence of this is that when the sample eigenvalues act as just mentioned it can be

seen from (2.19) that small eigenvalues (near zero) will tend to inflate the elements of

these matrices,

S−1
XX = VXD−1

X VT
X ,

S−1
Y Y = VY D−1

Y VT
Y .

(2.19)

Here VX = (v1
X , . . . ,vdX

X ) and VY = (v1
Y , . . . ,vdY

Y ) are the matrices of eigenvectors

(i.e. principal component direction vectors) of the sample covariance matrices SXX and

SY Y . The matrices D−1
X and D−1

Y have elements 1
γi

X

, i = 1, . . . , dX and 1
γi

Y

, i = 1, . . . , dY

along their diagonals, where γi
X and γi

Y are the eigenvalues of their respective covariance

matrices.

The large sample to sample variation in the canonical vectors can be understood by

noting that even slight perturbations in the smallest eigenvalues of the sample covari-

ance can lead to drastically different results in the inverse of the covariance matrices and

therefore in the canonical vectors. The affect of this instability is illustrated in Figure 2.2

which shows an example of canonical vectors in X space. The data has been generated

such that the first and third variables are strongly correlated. The black lines show the

first canonical direction vector found from ten random samplings from this distribution.

The red dashed line is the theoretical direction derived from the true variance and co-

variance matrices. As can be seen there is a large amount of variation from sample to
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sample and a significant deviation from the theoretical direction.

The impact of this variation is felt the strongest when projecting new data onto

one of these directions. For example, suppose new observations are generated from a

distribution similar to that just described with the difference lying in a slight perturbation

of the covariance matrix in the X space. These new observations are then projected onto

the canonical vectors shown in Figure 2.2.

Ideally the projected values of the new data would vary only slightly from one set

of directions to the next. Figure 2.3 shows a plot of each pair of projected values (the

projection of the new data discussed above onto each of the directions shown in Figure

2.2) against one another. The observations within each of these plots should, if the

directions were well behaved, fall on or near the 45◦ line (shown in red). However, due

to the large amount of variation in the canonical vectors the resulting projections are

highly variable.

One possible approach to dealing with this problem is to control how variable we

allow the canonical direction vectors to be. One such penalty would be a modification of

the constraint in (2.1) where an L2 constraint on the L2 length of the canonical vectors

wX and wY (Vinod (1976)) is added. This new constraint (2.20) now penalizes for how

variable we allow the directions in any one space to be,

cov(〈X,wX〉, 〈X,wX〉) + κX〈wX ,wX〉 = cov(〈Y,wY 〉, 〈Y,wY 〉) + κY 〈wY ,wY 〉 = 1.

(2.20)

Solving (2.2) but with new constraints (2.20) is done in a similar fashion to standard

CCA. Using Lagrange multipliers ρX and ρY we have the following modified Lagrangian

as compared to (2.3),

L(wX ,wY , ρX , ρY ) = wT
XΣXY wY −

ρX

2
(wT

XΣXXwX + κXwT
XwX − 1)

− ρY

2
(wT

Y ΣY Y wY + κY wT
Y wY − 1).

(2.21)

28



Taking the derivative with respect to wX and wY and setting equal to zero gives

∂L(wX ,wY , ρX , ρY )

∂wX

= ΣXY wY − ρX(ΣXXwX + κXwX) = 0, (2.22)

∂L(wX ,wY , ρX , ρY )

∂wY

= ΣY XwX − ρY (ΣY Y wY + κY wY ) = 0. (2.23)

Multiplying the left hand sides of Equations (2.22) and (2.23) by, respectively, wT
X and

wT
Y and then subtracting the resulting equations from each other gives us

wT
XΣXY wY − ρX(wT

XΣXXwX + wT
XwX)−wT

Y ΣY XwX + ρY (wT
Y ΣY Y wY + wT

Y wY )

= ρY (wT
Y ΣY Y wY + wT

Y wY )− ρX(wT
XΣXXwX + wT

XwX) = 0,

from which it follows that

ρX = ρY = corr(〈X,wX〉, 〈Y,wY 〉) = ρH.

Assuming ΣY Y + κY IdY
is invertible we have

wY =
(ΣY Y + κY IdY

)−1ΣY XwX

ρH
.

Substituting into (2.22) and rearranging terms gives the generalized eigenvalue problem,

ΣXY (ΣY Y + κY IdY
)−1ΣY XwX = ρ2

H(ΣXX + κXIdX
)wX , (2.24)

similar calculations lead to

ΣY X(ΣXX + κXIdX
)−1ΣY XwY = ρ2

H(ΣY Y + κY IdY
)wY . (2.25)

Equivalently using Equations (2.22) and (2.23) the generalized eigen problem can be
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rewritten as,




0 ΣXY

ΣY X 0







wX

wY


 = ρH




ΣXX + κXIdX
0

0 ΣY Y + κY IdY







wX

wY


 . (2.26)

Subsequent calculations to find new directions are similar to those discussed for the

un-penalized case. In addition the same invariance properties that were discussed for

standard CCA hold for this regularized variant of CCA (RCCA).

Consider again the example presented at the beginning of this section. Figure 2.4

shows a plot of the canonical direction vectors found from using RCCA with a value of

0.1 for the regularization parameter κX . In contrast to Figure 2.2, the canonical direction

vectors are quite similar from one sample to the next. The dashed red line is once again

the theoretical direction.

Figure 2.5 is the same plot as Figure 2.3 but with the new data being projected onto

the direction vectors shown in Figure 2.4. As can be seen the projected values are quite

similar from one set of directions to the next.

In the context of the protein-ligand matching problem consistent behavior of the

canonical vectors is critical. Because the primary object of interest is the prediction of

new protein-ligand pairs it is important that the directions that are found are not overly

dependent on the training sample. As is illustrated in Figure 2.3 if measures are not

taken to control the variability of the canonical vectors the projected values and any

prediction based on them become unreliable.

2.4 A Toy Example

Linear CCA, in both its standard and regularized form, encounters greater challenges

when the relationship between distributions of points is more complex, for example if

some type of non-linearity is introduced. In the same framework as the example presented

in Section 1.2 we consider a new toy data set shown in Figure 2.6, with a much more
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complex relationship between proteins and ligands. Recall the task is the following: given

a new observation in the space of proteins can we accurately predict the corresponding

point in the space of ligands.

The data in the space of proteins falls into three distinct groups and the data in the

space of ligands falls into two distinct groups. This scenario is relevant in the context of

our example for the following reason: a single protein can bind many different ligands,

based on the conformation, i.e. steric layout, of the binding site. Thus in the context

of our example the three different clusters could be thought of as representing three

different proteins. The slight perturbation in each group is attributed to the change in

conformation of the binding sites of each protein to allow the binding of different ligands.

The two groups in the space of ligands could be thought of as representing ligands

corresponding to proteins, larger macro molecules or shorter sequences of peptides, small

molecules.

The data has been generated such that those points which fall into the same group in

both protein and ligand space are highly correlated. The result is that the global structure

of the data is non-linear in the following sense: the underlying correlation structure of

protein ligand pairs is localized, as a result this relationship cannot be captured by a

simple (global) linear combination of the descriptors.

Observations in Figure 2.7 are highlighted according to whether they fall into the same

cluster in both spaces. This plot helps illustrate just how different the neighborhood

structures are in protein space versus ligand space. Consider, for example, the point

labeled 1a7t (cyan). Its neighbors in protein space are all different from the corresponding

point in ligand space.

In addition to the failure of the simple nearest neighbor method, as shown in Figure

2.6, linear CCA is also challenged by this new toy example. Since both CCA and RCCA

essentially provide identical results in this example only the results from CCA are pre-

sented. In contrast to Figure 1.4 in Section 1.2 the distribution of points along the first
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canonical directions, shown in red in the top row of plots in Figure 2.8, do not show a

strong alignment of points between spaces. The same is true for the second canonical

direction, shown in green in the bottom set of plots. The canonical correlation values,

0.46 and 0.34 confirm our visual assessment.

Looking at the projections onto the first two canonical vectors shown in Figure 2.9 we

can see little if any change has been made to the structure of the data in protein space,

relative to the raw data shown in Figure 2.6. In ligand space the directions found appear

to have made the prediction of Lnew worse.

In Chapter 3 a variant of CCA will be discussed which can capture this non-linear

relationship between spaces.

2.5 Connection Between Linear Discriminant Anal-

ysis and CCA

A question of interest in many problems is the classification of a set of observations

into one of several distinct categories. This is one example of supervised learning, see

Duda et al. (2000) for an overview of the large literature on this topic. In contrast to

supervised learning is clustering, a specific area of unsupervised learning. In clustering

the categories are unknown and the task is to determine what “natural” groupings can

be found in the data. Linear Discriminant Analysis (LDA) (Fisher (1936)) is a standard

tool used in classification. In Section 2.5.1 we outline LDA and in Section 2.5.2 we show

LDA in terms of CCA.

2.5.1 Linear Discriminant Analysis

Consider the k class (i.e. k category) discrimination problem. Suppose we have a set

of n observation-label pairs, (xi,yi) ∈ R
d × {0, 1}k, i = 1, . . . , n. Let Cj, j = 1, . . . , k

be the collection of points xi which belong to class j. To fit this problem into a similar

context as the protein-ligand example of Section 1.2 we consider the following variation:
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let the observations xi be a collection of drug descriptors (i.e. ligands) and yi be the

labels representing whether a drug is active or inactive. Define X ∈ R
n×d to be a matrix

whose rows are the observations xi. Define Y ∈ R
n×k to be the label matrix whose ijth

entry is defined as yij = I{xj∈Ci}, where I is the indicator function. One way to think of

LDA is that it looks to find a vector of weights, wX , associated with the columns of X,

such that the linear combination, XwX maximizes the ratio of its between-class variance

to its within-class variance, defined in (2.30) and (2.29). To ease notation we assume

that X has been mean centered.

Define nj =
∑

i yij = |Cj|, where |Cj| denotes the cardinality of Cj, to be the number

of observations in class j and let mj in (2.27) be defined as the mean of the observations

that belong to class j,

mj =
1

nj

∑

i:xi∈Cj

xi. (2.27)

Define the total sum of squares to be

ST =
k∑

i=1

∑

j:xj∈Ci

xjx
T
j = (n− 1)SXX , (2.28)

where SXX is the sample covariance matrix, discussed in Section 2.1. The total sum of

squares, ST can be decomposed into the sum of the within-class sum of squares,

SW =
k∑

i=1

∑

j:xj∈Ci

(xj −mi)(xj −mi)
T , (2.29)

and between-class sum of squares

SB =
k∑

i=1

nimim
T
i . (2.30)

Specifically,

ST = SW + SB. (2.31)
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With these definitions we can now state the LDA optimization problem,

w∗
X = arg max

wX

wT
XSBwX ,

subject to,

wT
XSWwX = 1.

(2.32)

Using the Lagrange multiplier λ gives the corresponding Lagrangian

L(wX , λ) = wT
XSBwX − λ(wT

XSWwX − 1). (2.33)

Taking the derivative of (2.33) with respect to wX and setting equal to zero gives us,

∂L(wX , λ)

∂wX

= SBwX − λSWwX = 0,

which yields the following generalized eigenvalue problem,

SBwX = λSWwX . (2.34)

Points are then projected onto the resulting eigenvectors wX giving x∗
i = xT

i wX . An

observation x∗
i is assigned to a class based on which class center m∗

j = mT
j wX , j = 1 . . . , k

is nearest,

arg minj||x∗
i −m∗

j ||2 (2.35)

We show that for the two class problem a simple closed form solution exists for the

direction wX .

Theorem 2.5.1. Given the optimization problem in (2.32) when the number of classes

k is equal to 2 then

w∗
X =

1√
λ∗

S−1
W (m1 −m2), (2.36)
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where λ∗ = nλ
n1n2

.

Proof. First we observe that when the number of classes is equal to two the between-class

sum of squares can be expressed as

SB =
n1n2

n
(m1 −m2)(m1 −m2)

T .

For notational purposes we rewrite the generalized eigenvalue problem in (2.34) as

S∗
BwX = λ∗SWwX , (2.37)

where S∗
B = (m1 −m2)(m1 −m2)

T . From the generalized eigenvalue problem in (2.37)

and using the constraints in the optimization problem (2.32) we have

λ∗ = wT
XS∗

BwX

= wT
X(m1 −m2)(m1 −m2)

TwX

=
1√
λ∗

(m1 −m2)
TS−1

W (m1 −m2)(m1 −m2)
T 1√

λ∗
S−1

W (m1 −m2).

Rearranging terms gives us

λ∗ = (m1 −m2)
TS−1

W (m1 −m2). (2.38)

Next, starting with the left hand side of (2.37) and substituting in for wX and S∗
B, we

have

S∗
BwX =

1√
λ∗

(m1 −m2)(m1 −m2)
TS−1

W (m1 −m2)

=
√

λ∗(m1 −m2)
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Now looking at the right hand side of (2.37) we have

λ∗SWwX = λ∗ 1√
λ∗

SWS−1
W (m1 −m2)

=
√

λ∗(m1 −m2).

Thus we have shown that the left and right sides of (2.37) are equal. Also note that

conditions in (2.32) are satisfied

wT
XSWwX =

1

λ∗ (m1 −m2)
TS−1

W SWS−1
W (m1 −m2)

=
(m1 −m2)

TS−1
W (m1 −m2)

(m1 −m2)TS−1
W (m1 −m2)

= 1.

From this we can see that (2.36) is an eigenvector of the generalized eigenvalue problem

in (2.34). In order to show that this is in fact the leading eigenvector note that because

the rank of the between-class scatter matrix is 1 there are at most 1 non-zero eigenvalues

in the generalized eigenvalue problem (2.37). However, from (2.38) it is clear that λ∗

and therefore λ will be strictly positive so long as m1 6= m2 and SW is non-singular.

Therefore we have that (2.36) is the leading eigenvector of (2.34).

2.5.2 LDA Solved by CCA

In this section we derive the connection between LDA and CCA. It will be shown

that the generalized eigen problem in (2.4), is essentially the same, modulo a scalar, as

the generalized eigen problem in (2.34). Letting Y be defined as in Section 2.5.1 (the
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matrix of class labels), we have,

Y =




1n1
0 · · · 0

0 1n2
· · · 0

...
...

. . .
...

0 0 · · · 1nk




.

From this it is easy to see that,

SY X = YTX =




n1m
T
1

n2m
T
2

...

nkm
T
k




.

It follows that

S−1
Y Y = (YTY)−1 =




1
n1

0 · · · 0

0 1
n2
· · · 0

...
...

. . .
...

0 0 · · · 1
nk




.

Using these results we have

SXY S−1
Y Y SY X =

k∑

i=1

nimim
T
i = SB (2.39)

Starting with

SXY S−1
Y Y SY XwX = ρ2

HSXXwX ,

and using (2.28) and (2.39) this can be rewritten as,

SBwX = ρ2
HSTwX .
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Finally using (2.31) and rearranging terms gives us,

SBwX =
ρ2
H

1− ρ2
H
SWwX . (2.40)

This is identical to (2.34) but with λ =
ρ2
H

1−ρ2
H

.

This relationship will prove useful later in developing intuition and theory about CCA

and its ability to find and understand the co-dependence of subpopulation’s between

spaces.

2.6 CCA Performance on Real Data

We now apply the methods described in this chapter on the RLP800 and WDI data

sets described previously. Figure 2.10 is a scatterplot matrix showing the projection of

the training (black) and testing (red) data onto the first three canonical vectors. Figure

2.11 is a plot of all the canonical correlations and density plots of the canonical directions

themselves.

Regularized CCA was used, with parameters κX = κY = 0.1, the number of di-

mensions projected onto was pX = pY = 100 and the number of neighbors used in

the prediction was 60. These parameters were selected via a simple cross validation

scheme using a randomly selected subset of 537 and 100 points from the training data

as “training” and “testing” sets. Values for the tuning parameters were found by search-

ing over values of κX = κY = {0.1, 1, 10, 20}, pX = pY = {25, 50, 75, 100, 125} and

k = {5, 10, 20, 40, 60, 80}, the final set of parameters were selected based on which pro-

duced the lowest average rank (see Section 1.3.1 for details), which in this case was

approximately 8.5.

Figure 2.11 shows the distribution of each of the first three canonical variates (left) as

well as the canonical correlations for each of the 150 variates (right). As can be seen the

leading canonical correlations are fairly large indicating that a strong relationship exists
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between spaces.

Figure 2.12 is a scatterplot matrix of the first three pairs of canonical variates in pro-

tein and ligand space respectively with one test point highlighted (red) and its predicted

value (green, ligand space only). As can be seen the prediction is fairly accurate.

Figure 2.13 is a histogram of the ranks associated with our prediction using regularized

CCA. The average rank in this case was approximately 10, indicated by the vertical red

line. This is a significant improvement over the current methodology implemented in

Oloff et al. (2006), where the average rank was 18.1 (vertical green line).

Figure 2.14 shows the results from prediction on the WDI data set. The mean pre-

dicted rank using CCA is approximately 67 (green line), the previous method yielded a

mean result of 310 (red line).
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Figure 2.1: Four groups of four plots, each group consists of a plot of the X and Y raw
data spaces (top left and right) and the projections of these spaces onto their respective
first and second canonical directions (bottom left and right). Group (a) shows the data
with no transformation. All subsequent groups have been transformed. In group (b) The
data in the X space have been rotated 30◦ counterclockwise and in the Y space the data
have been rotated 75◦ clockwise. In group (c) the points in the X space have been scaled
by 5

3
and in the space Y by 2

3
. In group (d) the means of the points have been shifted

such that the centers are now at
(
−3

4
, 1

2

)
and

(
3
4
,−1

4

)
. The point of all these illustrations

is that in all four groups of plots the bottom left and right plots, the projections into the
canonical correlation space, are all the same. This provides visual confirmation of CCA’s
invariance properties.
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Figure 2.2: A simulated example of the canonical vectors in X space in the presence of
strong multicollinearity between the first and third descriptors. The major issue here is
the large amount of variation in the canonical directions from one sample to the next
despite the fact that the data are drawn from the same distribution.
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Projected Values of New Data using LCCA
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Figure 2.3: Plot of the projected values of a new set of observations onto the canonical
direction vectors shown in Figure 2.2. Each panel shows the plot of one projection versus
another (only four projections are shown).
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Figure 2.4: This is a plot of the canonical direction vectors found from RCCA. The dashed
red line is the theoretical direction. In contrast to the direction found by linear CCA the
directions found by regularized CCA display little variation from one sample to the next
and lie near the theoretical direction.
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Projected Values of New Data using RCCA
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Figure 2.5: A plot of each pair of projected values of the new data onto each of the
direction vectors shown in Figure 2.4 against one another. As can be seen the projections
are all quite similar to one another, in contrast to standard CCA where there was a great
deal of variation from one set of directions to the next.
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Figure 2.6: New toy example data. The points highlighted in red correspond to the protein
ligand pair 1a1e, and the points connected to it by dashed black lines are its three nearest
neighbors in each space. The observations highlighted in blue and purple are neighbors
only in the protein and ligand spaces respectively. The green point Lnew in the ligand
space corresponds to a simple weighted average of the cyan point and the purple points,
i.e. of the nearest neighbors of 1a1e in the protein space.
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Figure 2.7: These plots depict the same data as in Figure 2.6 with points highlighted
according to whether they appear in the same cluster in both spaces. For example, consider
the green points, these observations appear in the same cluster in both protein and ligand
space. The data has been generated such that points that appear in the same cluster in
both spaces are highly correlated.
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Figure 2.8: The linear CCA direction vectors and the projected value of each point colored
as in Figure 2.7. On the first row of plots the first two panels show the first direction
vector and the projections onto it in protein and ligand space respectively. The last panel
on the top row of plots is a plot of the first canonical variate in protein space against
the first canonical vector in ligand space. If the directions we found were able to capture
the underlying relationship between the two spaces we would expect these points to fall
along the 45◦ line. The second row of plots shows the same set of plots as the top row of
plots but for the second canonical direction. A visual assessment of the projected values
of the observations in each space shows how different the distribution of points is along
the canonical vectors. This discrepancy is further highlighted by noting how different
the location of the colored points are along the canonical vectors. The implication of
this is that the correlation, i.e. alignment is not very good as reflected by the canonical
correlations of 0.46 and 0.34.
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Figure 2.9: CCA Projected space. In contrast to Figure 1.4, linear CCA appears to have
made the prediction worse.
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Figure 2.10: A plot of the canonical correlations from the RLP800 data set with the
training data shown in black and the test data shown in red. From a visual assessment
of the data it appears as though the two spaces are fairly well aligned.
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Figure 2.11: On the left are plots of the first three canonical variates in protein and ligand
space respectively. The red curves are the associated density estimates of the canonical
variates. This is meant to provide some insight into the distribution of the data within a
space as well as how well aligned points are between spaces. On the right is a plot of the
canonical correlations associated with each of the 150 canonical vectors.
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Figure 2.12: Similar to Figure 2.10 but with one of the test points highlighted as well
as its three nearest neighbors. The color scheme is similar to that of the toy examples
discussed earlier this section.
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Figure 2.13: A histogram showing the ranks resulting from prediction on the test data from
the RLP800 dataset. The vertical red line indicates the average rank (approximately 10)
using CCA and the vertical green line the method implemented in Oloff et al. (2006)
(approximately 18).
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Figure 2.14: Similar to the histogram above but using the WDI data. The mean rank using
CCA is approximately 67 while the previous method yielded a mean result of approximately
310
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CHAPTER 3

Kernel Methods

In Section 1.1 we introduced the concept of a similarity measure S and a pair of spaces

of functionsH = {HX ,HY } over which it was defined. In the context of standard CCA, S

is the correlation function and H contains the Hilbert spaces of functions containing the

bilinear maps fX(X) = 〈X,wX〉 and fY (Y ) = 〈Y,wY 〉. As we saw in Section 2.2 standard

CCA may encounter problems when the relationships between and within distributions

of points cannot be described by a simple linear combination of the descriptors. For this

reason it is useful to consider an alternative space of functions which is more appropriate

for learning these complex relationships. In the following sections examples and details

surrounding such a space of functions will be discussed.

In developing intuition and methodology related to kernel methods we follow the

discussion of Schölkopf and Smola (2002) (pp 25-60). From here on we will refer to the

spaces Y ∈ XX and X ∈ XY as the object space representations of the data. The spaces

XX and XY are nonempty sets from which the observations xi and yi are sampled. This

general definition of the object space is meant to emphasize the fact that the data can

be any of a number of different types. For example, we may be interested in using the

amino acid sequence of a protein in place of its descriptors in our analysis. However,

unless stated otherwise we only consider the object spaces in XX = R
dX and XY = R

dY .

The spaces HX and HY , containing the functions fX and fY discussed in Section 1.1

will be referred to as the feature spaces. The maps ΦX and ΦY define a mapping from



object space (the original protein and ligand space) into feature space,

ΦX : XX → HX ,

ΦY : XY → HY .

(3.1)

3.1 Example: Feature Maps

To illustrate the type of feature maps we may encounter consider the following toy

example: Recall the general framework of the examples discussed in Section 2 but rather

than having both protein and ligand space characterized by MW and SA, suppose that

the protein space has two descriptors, call them d1
X and d2

X and the ligand space has

two descriptors, call them d1
Y and d2

Y , shown in Figure 3.1. The observation highlighted

in red, 1a94, corresponds to a new protein whose corresponding ligand we are trying to

predict. The point highlighted in cyan is one of the 3-nearest neighbors of 1a94 in both

spaces. Those points highlighted in blue (and purple) are nearest neighbors in only the

protein (and ligand) spaces, respectively. The point Lnew in the ligand space, highlighted

in green is a simple average of the nearest neighbors of the point 1a94 in protein space.

Using Lnew as a prediction of the new ligand would not provide a particularly accurate

prediction.

As before we use CCA to try and find a linear combination of the descriptors which

best align the two spaces. Figure 3.2 is a plot of the projections onto the first and

second canonical variates in protein and ligand space. The color scheme is the same as

in Figure 3.1. As can be seen standard CCA does not seem to be able to find a good

alignment between the two spaces, which is confirmed by the low values of the canonical

correlations, 0.47 and 0.15 respectively for the first and second directions.

Suppose it is believed that some type of functional relationship exists between the

descriptors across spaces that is best characterized by looking at the second order poly-
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Figure 3.1: A plot of the data generated such that the underlying relationship between
points is non-linear. The observation highlighted in red, 1a94, is the new observations
which we are trying to predict. The points joined to it by dashed black lines are its nearest
neighbors. The points highlighted in cyan correspond to a point which is a nearest neighbor
of 1a94 in both spaces. Points highlighted in blue and purple correspond to points which
are only neighbors in either protein or ligand space respectively. The point labeled Lnew

in ligand space corresponds to a simple average of the points 1a08, 1a09 and 1a1b, i.e.
the nearest neighbors of the point 1a94 in protein space.

nomials of the descriptors within each space, that is,

ΦX : (d1
X , d2

X)→ ((d1
X)2, (d2

X)2, d1
Xd2

X),

ΦY : (d1
Y , d2

Y )→ ((d1
Y )2, (d2

Y )2, d1
Y d2

Y ).

(3.2)

Figures 3.3 and 3.4 are plots of proteins and ligands respectively embedded in this three

dimensional space. As can be seen there are now two neighbors shared in common

between spaces (colored in cyan). Furthermore the prediction of the new observation,

Lnew (in green) by a simple average of its three nearest neighbors in feature space is, by

comparison, much closer to the actual value than the corresponding prediction in object

space.
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Figure 3.2: A plot of the data projected onto the first two canonical vectors in both protein
and ligand spaces. The directions found by standard CCA do not provide a good alignment
between the two spaces.

As before CCA is used on this transformed data, now in feature space, to align the

space of proteins and ligands. Figures 3.5 and 3.6 show the plots of the projected data.

Note that now both the new protein and its ligand (highlighted in red) share the same

neighbors. The quality of the alignment is further confirmed by looking at the canonical

correlation values which are equal to 1 for each of the directions.

It is worth noting that, due to overfitting, the kernel canonical correlation values

can sometimes be artificially large due to strong correlation between features in kernel

space. The intuitive ideas are similar to those discussed for linear CCA in Section 2.3.

Regularization methods for helping to control these effects in the kernel case will be

discussed in Section 3.4.
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Figure 3.3: A plot of the protein data in kernel space. The color scheme is the same as
in Figure 3.1. Looking at Figure 3.4 the overall correspondence between points in protein
space and ligand space is much better than in the original (object) space.

3.2 Kernels

In contrast to the example just discussed, there are many cases where the types

of feature spaces best suited for describing the relationship between spaces cannot be
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Figure 3.4: A plot of the ligand data in kernel space. The color scheme is the same as in
Figure 3.1. As discussed in Figure 3.3 the correspondence between points in ligand and
protein space is much better than in the original object space. This improved mapping
will allow CCA to do a better job aligning the two spaces.

explicitly defined. Specifically, difficulties arise when the space of functions to which

ΦX and ΦY belong, define mappings into large or possibly infinite dimensions. However,

what is more important than explicitly defining these feature spaces is showing that such
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Figure 3.5: This is a plot of the projection of the data in protein feature space onto the
first, second and third canonical vectors. As can be seen not only does the new observation
1a94 (red) have the same 3 nearest neighbors in both protein and ligand space but the
prediction of the new ligand, Lnew highlighted in green below in Figure 3.6 is close to the
actual value of 1a94.

spaces exist and that a inner product can be defined in them. A space equipped with

a inner product allows us to understand how points are related to one another in that

space. Thus we want to show that given a similarity measure in object space, called a
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Figure 3.6: See Figure 3.5 for details.

kernel, under certain conditions this kernel also defines an inner product in feature space.

We give a few definitions associated with kernels, following the development of Schölkopf

and Smola (2002).
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Definition 3.2.1. (Gram Matrix) Given a function K : X 2 → R and observations

x1, . . . ,xn ∈ X , the n× n matrix K with elements

Kij := K(xi,xj) (3.3)

is called the Gram matrix (or kernel matrix) of K with respect to x1, . . . ,xn.

Definition 3.2.2. (Positive Definite Matrix) A real n× n matrix K satisfying

∑

i,j

cicjKij ≥ 0 (3.4)

for all ci ∈ R is called positive definite.

Definition 3.2.3. ((Positive Definite) Kernel) Let X be a nonempty set. A function K

on X × X which for all n ∈ N and all x1, . . . ,xn ∈ X gives rise to a positive definite

Gram matrix is called a positive definite (pd) kernel.

With these definitions in place recall the feature maps defined in (3.1) (we restrict our

discussion to the space X as the same holds for the space Y). Assuming KX is a real

valued positive definite kernel, replacing HX by R
XX := {f : XX → R} we have

ΦX :XX → R
XX ,

x 7→ KX(.,x).

(3.5)

Intuitively the function ΦX(x) can be thought of as a function measuring the similarity

between x and all points x′ ∈ XX . Here similarity is measured by the function KX(x′,x)

with

ΦX(x)(.) = KX(.,x). (3.6)

From these definitions it can be shown (Schölkopf and Smola (2002))

1. The image of ΦX can be represented as a vector space,
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2. a dot product can be defined in this vector space, and

3. this dot product satisfies K(x,x′) = 〈ΦX(x), ΦX(x′)〉.

In particular we have

〈KX(.,x), fX〉 = fX(x), (3.7)

and

〈KX(.,x), KX(.,x′)〉 = KX(x,x′). (3.8)

The kernel function KX as defined above is referred to as a reproducing kernel. The space

of functions to which the function KX , endowed with properties (3.7) and (3.8), belongs

is called a reproducing kernel Hilbert space (RKHS) which is defined as follows

Definition 3.2.4. Let X be a nonempty set and H a Hilbert space of functions f : H →

R. Then H is called a reproducing kernel Hilbert space endowed with the dot product 〈., .〉

if there exists a function K : X × X → R with the following properties,

1. K has the reproducing property

〈f,K(x, .)〉 = f(x), for all f ∈ H.

In particular,

〈K(.,x), K(.,x′)〉 = K(x,x′).

2. K spans H, H = span{K(x, .)|x ∈ X}, where X denotes the completion of the set

X.

Furthermore it can be shown that a RKHS uniquely determines the kernel K. With

these definitions in place we can now define kernel CCA (KCCA).
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3.3 Kernel CCA

The objective of standard CCA is now restated as follows (following the discussion of

Hardoon et al. (2004),

ρH = max
wX ,wY

corr(〈ΦX ,wX〉, 〈ΦY ,wY 〉)

= max
wX ,wY

cov(〈ΦX ,wX〉, 〈ΦY ,wY 〉)√
var(〈ΦX ,wX〉)

√
var(〈ΦY ,wY 〉)

.
(3.9)

Now note that because wX (and wY ) lie in the span of ΦX (and ΦY ) these can be

re-expressed by the linear transformations

wX = ΦXαX ,

wY = ΦY αY .

Plugging this into (3.9) gives us

ρH = max
αX ,αY

cov(〈ΦX , ΦT
XαX〉, 〈ΦY , ΦT

Y αY 〉)√
var(〈ΦX , ΦT

XαX〉)
√

var(〈ΦY , ΦT
Y αY 〉)

= max
αX ,αY

cov(KXαX ,KY αY )√
var(KXαX)

√
var(KY αY )

.

(3.10)

Following the same intuition as discussed in Section 2.1 we impose the constraints

αT
XK2

XαX = 1,

αT
Y K2

Y αY = 1.

The optimization problem thus becomes

ρH = max
αX ,αY

corr(〈KX , αX〉, 〈KY , αY 〉) = αT
XKXKY αY ,

subject to,

αT
XK2

XαX = αT
Y K2

Y αY = 1.

(3.11)
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The corresponding Lagrangian of (3.11) is

L(ρX , ρY , αX , αY ) = αT
XKXKY αY −

ρX

2
(αT

XK2
XαX − 1)− ρY

2
(αT

Y K2
Y αY − 1).

Taking the derivatives with respect to αX and αY gives us

∂L

∂αX

= KXKY αY − ρXK2
XαX = 0, (3.12)

∂L

∂αY

= KY KXαX − ρY K2
Y αY = 0. (3.13)

Multiplying (3.12) by αT
X and (3.13) by αT

Y and subtracting the two gives us,

0 = αT
XKXKY αY − ρXαT

XK2
XαX − αT

Y KY KXαX + ρY αT
Y K2

Y αY

= ρY αT
Y K2

Y αY − ρXαT
XK2

XαX .

Using the constraints in (3.11) we then have that ρX = ρY . Setting ρX = ρY = ρH and

assuming that the matrices KX and KY are invertible, we have

αX =
K−1

X K−1
X KXKY αY

ρH

=
K−1

X KY αY

ρH
.

(3.14)

Similarly,

αY =
K−1

Y KXαX

ρH
. (3.15)

Next substituting (3.15) into (3.12) gives us

KXKY K−1
Y KXαX − ρ2

HKXKXαX = 0,
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leading the generalized eigen problem

IαX = ρ2
HαX . (3.16)

From the solution in (3.16) it can be seen that the eigenvalues for each of the correspond-

ing eigenvectors will be equal to 1. Furthermore the corresponding eigenvectors will be

equal to the unit vector ei for αi
X and will be equal to 1

ρH
K−1

Y KXei for αi
Y , i = 1, . . . , n.

This will be true so long as the kernel matrices KX and KY are invertible.

As was the case with linear CCA we need to control how flexible we allow the directions

to be. In the following section we discuss a regularized variant of KCCA which allows us

to find non-trivial directions and relationships between spaces.

3.4 Regularized KCCA

Two standard regularization techniques used with KCCA are

αT
XK2

XαX + κXαT
XαX = 1,

αT
Y K2

Y αY + κY αT
Y αY = 1,

(3.17)

discussed in Kuss and Graepel (2003), and

αT
XK2

XαX + αT
XKXαX = 1,

αT
Y K2

Y αY + αT
Y KY αY = 1.

(3.18)

discussed in Hardoon et al. (2004). We focus on (3.17) since its behavior, generally

speaking, is similar to (3.18), but looks, and as a result has a more intuitively appealing
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connection to standard CCA. The optimization problem in (3.11) is rewritten as,

ρH = max
αX ,αY

corr(〈KX , αX〉, 〈KY , αY 〉) = αT
XKXKY αY ,

subject to

αT
XK2

XαX + κXαT
XαX = αT

Y K2
Y αY + κY αT

Y αY = 1.

(3.19)

The corresponding Lagrangian is

L(ρX , ρY , αX , αY ) = αT
XKXKY αY −

ρX

2
(αT

XK2
XαX+

κXαT
XαX − 1)− ρY

2
(αT

Y K2
Y αY κY αT

Y αY − 1).

Taking the derivative with respect to αX and αY and setting equal to zero we have

∂L

∂αX

= KXKY αY − ρX(K2
XαX + κXαX) = 0, (3.20)

∂L

∂αY

= KY KXαX − ρY (K2
Y αY + κY αY ) = 0. (3.21)

Multiplying (3.20) by αT
X and (3.21) by αT

Y and subtracting the two gives us,

0 = αT
XKXKY αY − ρXαT

X(K2
X + κXI)αX − αT

Y KY KXαX + ρY αT
Y (K2

Y + κY I)αY +

= ρY − ρX ,

where the last equality holds by the constraints in (3.19). We then have that ρX = ρY .

Setting ρX = ρY = ρH and assuming that the matrices K2
X + κXI and K2

Y + κY I are

invertible, we find

αX =
(K2

X + κXI)−1KXKY αY

ρH
. (3.22)

Similarly we have,

αY =
(K2

Y + κY I)−1KY KXαX

ρH
. (3.23)

66



Next substituting (3.23) into (3.20) gives us the generalized eigen problem

KXKY (K2
Y + κY I)−1KY KXαX = ρ2

H(K2
X + κXI)αX .

This can also be expressed as




0 KXKY

KY KX 0







αX

αY




= ρH




K2
X + κXI 0

0 K2
Y + κY I







αX

αY


 .

(3.24)

In a similar fashion to linear CCA subsequent canonical correlations and vectors are found

by solving for the remaining eigenvalue eigenvector pairs of the generalized eigenvalue

problem in (3.24).

3.5 A Simultaneous Formulation of KCCA

An alternative formulation of the KCCA problem which will be of use later in Chap-

ter 4 combines the successive subproblems described previously in Section 3.4 into one

problem. The formulation of the simultaneous optimization problem is

ρH = arg max
(α1

X
,α1

Y
),...,(αn

Y
,αn

Y
)

n∑

i=1

(αi
X)TKXKY αi

Y

subject to,

(αi
X)T (KX + κIn)αj

X =





1 if i 6= j,

0 otherwise,

(αi
Y )T (KY + κIn)αj

Y =





1 if i 6= j,

0 otherwise.

(αi
X)TKXKY αj

Y = 0,∀i 6= j, (3.25)
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i, j = 1, . . . , n. (3.26)

The corresponding Lagrangian can be written as

L((α1
X , α1

Y ), . . . , (αn
X , αn

Y ), {ρij
X}ni,j=1, {ρij

X}ni,j=1)

=
n∑

i=1

(αi
X)TKXKY αi

Y −
1

2

n∑

i,j=1

ρij
X(αi

X)T (K2
X + κIn)αj

X −
1

2

n∑

i,j=1

ρij
Y (αi

Y )T (K2
Y + κIn)αj

Y ,

(3.27)

where {ρij
X}ni,j=1 and {ρij

X}ni,j=1 are Lagrange multipliers.

Theorem 3.5.1. The optimization problem in (3.25) can be restated as

ρH = arg max
AX ,AY

Tr(AT
XKXKY AY )

subject to,

AT
X(K2

X + κIn)AX = In

AT
T (K2

Y + κIn)AY = In

(αi
X)TKXKY αj

Y = 0,∀i 6= j, (3.28)

where Tr denotes the matrix trace and AX = (α1
X , . . . , αn

X) and AY = (α1
Y , . . . , αn

Y ) are

the n× n matrices of canonical vectors.

Proof. Let RX = {ρij
X}ni,j=1 and RY = {ρij

Y }ni,j=1 be the n × n matrices of Lagrange

multipliers, note that these matrices are symmetric. The Lagrangian in (3.27) can be

written as

L(AX ,AY ,RX ,RY )

= Tr(AT
XKXKY AY )− 1

2
Tr(AT

X(K2
X + κIn)AXRX)− 1

2
Tr(AT

Y (K2
Y + κIn)AY RY ).

(3.29)
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In solving the Lagrangian in (3.29) we use the following identities related to the deriva-

tives of the trace function

∂

∂X
Tr(XTA) = A, (3.30)

and

∂

∂X
Tr(XTBXC) = BXC + BTXCT . (3.31)

Taking the derivative of (3.29) with respect to AX and AY and setting equal zero gives

us

∂L

∂AX

= KXKY AY − (K2
X + κIn)AXRX = 0,

∂L

∂AY

= KY KXAX − (K2
Y + κIn)AY RY = 0. (3.32)

Multiplying these by AT
X and AT

Y respectively, using the constraints in (3.28) and rear-

ranging terms gives us

RX = AT
XKXKY AY ,

RY = AT
Y KY KXAX .

But note that

AT
XKXKY AY = AT

Y KY KXAX = diag
(
{(αi

X)TKXKY αi
Y }ni=1

)
,

therefore

RX = RY = R =




(α1
X)TKXKY α1

Y 0 · · · 0

0 (α2
X)TKXKY α2

Y · · · 0

...
...

. . .
...

0 0 · · · (αn
X)TKXKY αn

Y



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=




ρ1
H 0 · · · 0

0 ρ2
H · · · 0

...
...

. . .
...

0 0 · · · ρn
H




.

Next solving for AX and AY above we have

AX = (K2
X + κIn)−1KXKY AY R−1,

AY = (K2
Y + κIn)−1KY KXAXR−1, (3.33)

which are the same as the solutions we found for αi
X and αi

Y in Section 3.4. Plugging in

the solution for AY into the first equation in (3.32) and rearranging terms gives us

KXKY (K2
Y + κIn)−1KY KXAX = (K2

X + κIn)AXR2.

Let BX = (K2
X + κIn)

1

2AX then

KXKY (K2
Y +κIn)−1KY KX(K2

X+κIn)
1

2 (K2
X+κIn)−

1

2AX = (K2
X+κIn)

1

2 (K2
X+κIn)

1

2AXR2.

Rearranging terms gives us

(K2
X + κIn)−

1

2KXKY (K2
Y + κIn)−1KY KX(K2

X + κIn)−
1

2BX = BXR2. (3.34)

Let MXY = (K2
X +κIn)−

1

2KXKY (K2
Y +κIn)−

1

2 . Suppose BX are the eigenvectors of the

matrix MXY MT
XY and ΛX the corresponding eigenvalues, then

MXY MT
XY = BXΛXBT

X ,
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Plugging this into (3.34) we have

MXY MT
XY BX = BXΛXBT

XBX

= BXΛX

= BXR2.

Left multiplying both sides by BT
X shows us that ΛX = R2. From this we can see that

the matrices R and BX must be the singular values and left singular vectors of MXY .

Similar calculations show us that BY are the right singular vectors of MXY . This is in

agreement with our calculations from Section 3.4.

3.6 Kernel Centering

In order to maintain our understanding of KCCA as maximizing correlation in feature

space we need to ensure that the data is centered in feature space. The following

calculation shows how this can be done. Let Φ̄ = 1
n
JΦ where J is an n × n matrix of

ones, then

(Φ− Φ̄)(Φ− Φ̄)T = ΦΦT − ΦΦ̄T − Φ̄ΦT + Φ̄Φ̄T

= K− 1

n
JK− 1

n
KJ +

1

n2
JKJ

=

(
I− 1

n
J

)
K

(
I− 1

n
J

)
(3.35)

Unless stated otherwise we assume throughout that the kernel matrices are centered.

3.7 Toy Example: Non-standard data

We saw in Section 3.1 that KCCA was able to overcome some of the obstacles en-

countered by standard CCA. Where KCCA begins to encounter problems is when the

distribution of points within a space is non-standard and/or heterogeneous. To illus-
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trate this consider the example shown in Figure 3.7, as with the protein-ligand matching

problem there is a one-to-one correspondence between points in the two spaces.
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Figure 3.7: A toy example illustrating the cases when the distribution of points within a
space is non-standard and heterogeneous.

The underlying structure between these spaces is illustrated in Figure 3.8. The top

row of plots tells us about how the distribution of points on the right (cluster space)

relates to the distribution of points on the left (smiley face space). The bottom set of

plots tells us about how the distribution of points on the left is related to distribution of

points on the right.

If we were to look at the two spaces as marginal distributions, there is a distinct

impression of the three clusters in the left, and two in the right. However, the joint

distribution has six distinct groups. Looking at the plots on the left in Figure 3.8 each of

the three clusters is in fact composed of two subclusters. Likewise each of the two clusters

in the plots on the right are composed of three subclusters. Ideally the projections onto

the KCCA directions would identify each of these six groups, shown in Figure 3.9.

Using an RBF kernel with σ = 1/2 we look at the first 5 canonical directions. Ideally

what we would see is a separation of each of the groups as well as a strong alignment

between each of the spaces. What we find looking at Figure 3.10, a scatter plot matrix

of the first five canonical directions, is that while the leading correlations are large (0.98,

0.97, 0.95, 0.80, 0.75), we are not able to find the structure in the data we were looking

for, i.e. separating out the six groups (with each of the colors corresponding to one of
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Figure 3.8: These plots highlight how the distribution of points in one space is related
to the distribution of points in the other. Looking at the plots on the left in Figure 3.8
each of the three clusters is in fact composed of two subclusters. Likewise each of the two
clusters in the plots on the right are composed of three subclusters.
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Figure 3.9: In this plot each of the six underlying subgroups shown in Figure 3.8 is
highlighted.

the six groups). Note that only the projections in the smiley face space are shown since

the cluster space projections look essentially the same.

In the context of the protein-ligand matching problem this type of situation presents

a potential problem. Suppose a new point, say in the space with the smiley face, is

projected into KCCA space. As can be seen in Figure 3.10 there is a great deal of

overlap between each of the six subgroups in the projected space. In particular note that
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 Variables 4 vs. 5

Figure 3.10: Scatterplot matrix of the first five KCCA direction vectors for the data shown
in Figure 3.7. Each of the colors in this plot corresponds to one of the six underlying
subpopulation in the data (see Figure 3.8 for details).

each of the overlapped groups is composed of, respectively, the left eye, right eye and

mouth. The reason this type of behavior presents a problem is that each of the eyes

and the mouth are actually composed of two different subpopulations where each of the

populations correspond to very different groups in the space with the two clusters. So

while we may be able to accurately predict the location of a new point in KCCA space

the interpretation of its surrounding neighbors may not be so meaningful.

3.8 KCCA Performance on Real Data

As in Section 2.6 we apply the methods described in this chapter on the RLP800 and

WDI data sets described in Section 1.3. The kernel used in our analysis is the radial

basis function (RBF)

K(xi,xj) = exp

{
− 1

2σ2
||xi − xj||2

}
. (3.36)

Regularized KCCA was used with tuning parameters selected via a cross validation
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scheme similar to that described in Section 2.6, the difference being the addition of the

bandwidth parameter σ, whose with candidate values are {0.5, 1, 2, 5, 10}. The resulting

set of parameter values were σ = 2, κX = κY = 0.01, the number of dimensions projected

onto was pX = pY = 400 and the number of neighbors used in the prediction was 60.

Figure 3.11 shows the distribution of each of the first three kernel canonical variates

(left) as well as the canonical correlations for each of the 400 variates (right). As can be

seen the leading canonical correlations are fairly large indicating that a strong relationship

exists between spaces.
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Figure 3.11: On the left are plots of the first three canonical variates in protein and ligand
space respectively. The red curves are the associated density estimates of the canonical
variates. This is meant to provide some insight into the distribution of the data within a
space as well as how well aligned points are between spaces. On the right is a plot of the
canonical correlations associated with each of the 637 canonical vectors.

Figure 3.12 is a scatterplot matrix showing the projections of the training (black) and

testing (red) points from the RLP800 data onto the first three canonical vectors. From a

visual assessment of the data it appears as though both the training and testing points

in each of the two spaces is fairly well aligned.
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 KCV 2 vs. 3

Figure 3.12: A plot of the kernel canonical correlations from the RLP800 data set with
the training data shown in black and the test data shown in red. From a visual assessment
of the data it appears as though the two spaces are fairly well aligned.

Figure 3.13 is similar to Figure 3.12 but with one test point highlighted (red), in both

protein and ligand space, and its predicted value (green), in ligand space only. As can

be seen the prediction is fairly accurate.

Figure 3.14 is a histogram of the ranks associated with our prediction using regularized

KCCA. The average rank in this case was approximately 7.1, indicated by the vertical red

line. For the purposes of comparison the average rank from linear RCCA (approximately

10) and the previous approach used in Oloff et al. (2006) (approximately 18.1) is also

shown (blue and green respectively).

Figure 3.15 similarly summarizes the results from prediction on the WDI data set.

The mean predicted rank using KCCA is approximately 56 (red line), using CCA it is

approximately 67 (blue line) and using the previous method is approximately 310 (green

line).
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 KCV 2 vs. 3

Figure 3.13: Similar to Figure 3.12 but with one of the test points highlighted and only its
three nearest neighbors. The color scheme is similar to that of the previous toy examples
discussed in the linear case.
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Figure 3.14: A histogram showing the large improvement in rank resulting from KCCA
prediction on the test data from the RLP800 dataset. The vertical red line indicates the
average rank (approximately 7.1) using KCCA, the blue line shows the average rank using
CCA (approximately 10) and the vertical green line the method implemented in Oloff et al.
(2006) (approximately 18.1).
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Figure 3.15: Similar to the histogram above but using the WDI data. The mean rank
using KCCA is approximately 56, RCCA is approximately 67 and the previous method is
approximately 310.
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CHAPTER 4

Indefinite KCCA

A potential shortcoming of standard KCCA, that was illustrated in the example

presented in Figure 3.7, is that standard positive definite kernels can be limited in their

ability to capture non-standard heterogeneous behavior in the data. A general class of

kernels which is better suited to handle this type of behavior takes the form

K(xi,xj) =





w(xi,xj) if xj ∈ N(xi),

0 otherwise.
(4.1)

Here N(x) denotes some neighborhood of the observation x, such as a k(∈ Z+) or ǫ(> 0)-

neighborhood. Kernels of this form restrict attention to the local structure of the data

and allow for a flexible definition of similarity. The problem encountered with this class

of kernels is that they are frequently indefinite (see the discussion following Definition

4.1.1). Recalling our discussion from Section 3.2 one of the requirements on the function

K is that it should be positive semi-definite. As a result of the indefiniteness many of

the properties and optimality guarantees no longer hold.

Indefinite kernels have recently gained increased interest (Ong et al. (2004), Haasdonk

(2005), Chen and Ye (2008), Luss and d’Aspremont (2008)), where rather than defining K

to be a function defined in a RKHS K is defined in an space characterized by an indefinite

inner product called a Krein space. In Section 4.1 we provide an overview of some of the

definitions and theoretical results about Krein spaces (following the discussion of Ong



et al. (2004)). In Section 4.2 we formulate the IKCCA problem. In Section 4.3 we provide

an overview of spectral clustering and in Section 4.4 we show a connection between

IKCCA and LDA when a variant of the Normalized Graph Laplacian (NGL) kernel is

used. In Section 4.5 we apply IKCCA to the non-standard data example introduced

in Section 3.7. Finally in Section 4.6 we apply IKCCA to the protein-ligand matching

problem.

4.1 Krein Spaces

In this section we provide some definitions and theorems as they relate to Krein spaces

and connect these ideas to the IKCCA problem (more details can be found in Ong et al.

(2004)).

Definition 4.1.1. (Inner Product) Let K be a vector space on the scalar field. An inner

product 〈., .〉K on K is a bilinear form where for all f, g, h ∈ K, α ∈ R

〈f, g〉K = 〈g, f〉K

〈αf + g, h〉K = α〈f, h〉K + 〈g, g〉K

〈f, g〉K = 0 for all g ∈ K implies ⇒ f = 0.

The importance of K being a vector space on a scalar field is that it allows for a flexible

definition of an inner product (i.e. the scalar in one of the dimensions could be complex

or negative as we will see below). An inner product is said to be positive if for all f ∈ K,

〈f, f〉K ≥ 0. It is called a negative inner product, if for all f ∈ K, 〈f, f〉K ≤ 0. An inner

product is called indefinite if it is neither strictly positive nor strictly negative.

Definition 4.1.2. (Krein Space) An inner product space (K, 〈., .〉K) is a Krein space if

there exist two Hilbert spaces H+, H− spanning K such that

1. All f ∈ K can be decomposed into f = f+ + f−, where f+ ∈ H+ and f− ∈ H−.

2. ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+
− 〈f−, g−〉H−
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Definition 4.1.3. (Associated Hilbert Space) Let K be a Krein space with decomposition

into Hilbert spaces H+ and H−. Then we denote by K̄ the associated Hilbert space defined

by

K̄ = H+ ⊕H− hence 〈f, g〉K̄ = 〈f+, g+〉H+
+ 〈f−, g−〉H−

.

Likewise we can introduce the symbol ⊖ to indicate that

K = H+ ⊖H− hence 〈f, g〉K = 〈f+, g+〉H+
− 〈f−, g−〉H−

.

The strong topology on K is defined as the Hilbert topology of K̄. The topology does

not depend on the decomposition chosen. Clearly |〈f, f〉|K ≤ ||f ||K̄ for all f ∈ K. Note

that we only have equality when 〈f−, g−〉H−
= 0, this, however, does not imply that the

inner product, i.e. the kernel, is positive.

Let X be a non-empty set from which the data, x is sampled. Assuming K is an

indefinite kernel and K ⊂ R
X := {f : X → R} we have

Φ :X → R
X

x 7→ K(.,x) = f(x).

Definition 4.1.4. (Reproducing Kernel Krein Space) Let X be a nonempty set, H+ and

H− are RKHS (with kernels K+ and K−) and K = H+ ⊖H− a Krein space of functions

f : K → R endowed with its strong topology K̄. Then K is called a reproducing kernel

Krein space (Alpay (2001), Chapter 7) endowed with an inner product 〈., .〉K if Φ is

continuous on K and K : X × X → R with the following properties

1.

〈f,K(x, .)〉K = f(x) for all f ∈ K.

In particular

〈K(x, .), K(x′, .)〉K = K(x,x′).
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2. K = K+ −K−.

To illustrate how Krein spaces and indefinite inner products arise in the context of

our problem consider the following. Suppose we have a symmetric kernel function K

which is indefinite. The implication of this is that the resulting kernel matrix K =

{Kij}ni=1 is indefinite and that it therefore contains positive and negative eigenvalues.

Let K = UΛUT be the eigendecomposition of K, where U are the eigenvectors and Λ is

the diagonal matrix of eigenvalues starting with the p positive eigenvalues, followed by

the q negative ones and the n− p− q ≥ 1 eigenvalues equal to 0. To see how K can be

interpreted as a matrix composed of inner products in this indefinite inner product space

consider the following representation of its eigendecomposition

K = U|Λ| 12 diag(1p,−1q,0n−p−q)|Λ|
1

2UT .

Let M = diag(1p,−1q) and Φ be equal to the first p + q columns of U|Λ| 12 . Define the

ith row of Φ be equal to

Φi = (φi,1, . . . , φi,p︸ ︷︷ ︸
=Φ+

i

, φi,p+1, . . . , φi,p+q︸ ︷︷ ︸
=Φ−

i

).

We then have a kernel matrix composed of elements

Kij = ΦT
i MΦj

= (Φ+
i )T Φ+

j − (Φ−
i )T Φ−

j

= 〈Φi, Φj〉H+
− 〈Φi, Φj〉H−

= 〈Φi, Φj〉K.

Many of the properties that hold for reproducing kernel Hilbert spaces also hold for re-

producing kernel Krein spaces. The key difference is that rather than minimizing (max-
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imizing) a regularized risk functional the problem becomes that of finding a stationary

point of a similar risk functional. In the statement of the optimization problem in Theo-

rem 4.1.5, when we write “stabilize” it is meant to emphasize the fact that the solutions

we are finding are not necessarily global or local minima and maxima (the solution could

be a saddle point), but are stationary points.

Theorem 4.1.5. (Ong et al. (2004)) Let K be a RKKS with kernel K. Denote by

L{f,X} a continuous convex loss functional depending on f ∈ K only via its evaluation

f(xi) with xi ∈ X , let Ω(〈f, f〉K) be a continuous stabilizer with strictly monotonic

Ω : R → R and let C{f,X} be a continuous functional imposing a set of constraints on

f , that is C : K ×Xm → R
n. Then if the optimization problem

stabilize L{f,X}+ Ω(〈f, f〉K)

subject to C{f,X} ≤ d

(4.2)

has a stationary point f ∗, it admits the expansion

f ∗ =
∑

i

αiK(xi, ·) where xi ∈ X and αi ∈ R. (4.3)

4.2 IKCCA

The results of Section 4.1 provide some insight into the challenges that arise from

dealing with indefinite kernels. In particular the results of Theorem 4.1.5 point to the

fact that the solution that we find may not be globally, or even locally optimal (as it

may be a saddle point). The “stabilization” problem stated in (4.2) of Theorem 4.1.5

motivated the form of the Indefinite KCCA (IKCCA) problem we present in this section.

In particular, the addition of the stabilizing function, Ω on the indefinite inner product,

〈f, f〉K led us (in addition to results and discussion from Luss and d’Aspremont (2008))

to consider introducing a constraint on the behavior on the indefinite kernels matrix
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itself.

In the following let || · ||F denote the Frobenius norm. Define M � 0 to mean that

the matrix M is positive semi-definite and let λX , λY ∈ R
+ ∪ ∞ be tuning parameters

(discussed in more detail later this section). Here K0
X and K0

Y are the (potentially)

indefinite kernels and KX and KY will be the positive semi-definite approximations of

these kernels. With these notations in mind we now define the IKCCA optimization

problem,

ρH = max
AX ,AY

min
KX ,KY

Tr(AT
XKXKY AY ) + λX ||KX −K0

X ||2F + λY ||KY −K0
Y ||2F ,

subject to,

AT
XK2

XAX + κAT
XAX = In,

AT
Y K2

Y AY + κAT
Y AY = In,

(αi
X)TKXKY αj

Y = 0, for i 6= j, i, j = 1, . . . , n,

KX � 0,

KY � 0, (4.4)

where, AX = (α1
X , . . . , αn

X) and AY = (α1
Y , . . . , αn

Y ). Note that the this optimization

problem and the KCCA optimization problem (see (3.28) in Section 3.5 for details) are

only equivalent when the kernel matrices K0
X and K0

Y are positive semi-definite, as will

be shown in the proof of Theorem 4.2.2.

Theorem 4.2.1. Letting λX , λY → ∞, the optimization problem in (4.4) is concave in

αi
X and αi

Y , i = 1, . . . , n and convex in KX and KY .

Proof. We begin by showing that the loss function

Tr(AT
XKXKY AY ) (4.5)
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is concave in αi
X and αi

Y , i = 1, . . . , n. Note that (4.5) can be expressed as

Tr(AT
XKXKY AY ) =

n∑

i=1

αiT
X KXKY αi

Y .

It can be seen from this representation that if αiT
X KXKY αi

Y is concave in αi
X and αi

Y

for all i = 1, . . . , n then (4.5) will also be concave. For the remainder of the proof we

suppress the superscript i.

Suppose that KX , KY � 0. Recall that the solution for αX in the KCCA optimization

problem in (3.19) is

αX =
1

ρH
(K2

X + κIn)−1KXKY αY .

Plugging this in we have

αT
XKXKY αY =

1

ρH
αT

Y KY KX(K2
X + κIn)−1KY αY .

Note that (K2
X + κIn)−1KX is symmetric, this can be seen by looking at its eigendecom-

position

(K2
X + κIn)−1KX

= VX




1
(λ1

X
)2+κ

0 · · · 0

0 1
(λ2

X
)2+κ

· · · 0

...
...

. . .
...

0 0 · · · 1
(λn

X
)2+κ




VT
XVX




λ1
X 0 · · · 0

0 λ2
X · · · 0

...
...

. . .
...

0 0 · · · λn
X




VT
X

= VX




λ1
X

(λ1
X

)2+κ
0 · · · 0

0
λ2

X

(λ2
X

)2+κ
· · · 0

...
...

. . .
...

0 0 · · · λn
X

(λn
X

)2+κ




VT
X ,

where VX are the eigenvectors and λi
X , i = 1, . . . , n are the eigenvalues of the matrix
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KX .

Now, if the kernel matrices KX and KY are positive definite then KY KX(K2
X +

κIn)−1KY must be positive definite. To see this, let c ∈ R
n be a vector of constants,

then

cTKY KX(K2
X + κIn)−1KY c

= (c∗)TKX(K2
X + κIn)−1c∗

≥ 0,

where c∗ = KY c. The last inequality holds since (K2
X + κIn)−1KX is positive definite.

Therefore, since the terms λX ||KX −K0
X ||2F and λY ||KY −K0

Y ||2F do not depend on AX

and AY , as will be shown in Theorem 4.2.2, the IKCCA loss function in (4.5) is concave,

as we wanted to show.

Using the fact that the square of the Frobenius norm is strictly convex (Boyd and

Vandeberghe (2004)) we then have that the inner minim

Putting this all together we have that the IKCCA problem is concave in αi
X and αi

Y ,

i = 1, . . . , n and it is convex in KX and KY , as we wanted to show.

Let (X)+ denote the positive part of the matrix X, i.e. (X)+ =
∑

i max(0, λi)viv
T
i ,

where λi and vi are ith eigenvalue-eigenvector pair of the matrix X. With this in mind

we following state theorem,

Theorem 4.2.2. Letting λX , λY →∞, and given the optimization problem in (4.4) the

optimal values for KX and KY are given by

KX = (K0
X)+,

KY = (K0
Y )+. (4.6)
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Before proving Theorem 4.2.2 we will need to make use of the following lemma. Let

M0 ∈ R
n×n be a known, square, not necessarily positive-definite matrix, and M ∈ R

n×n

a square, unknown matrix, then

Lemma 4.2.3. The solution to the following optimization problem,

arg min
M�0
||M−M0||2F ,

is

M = (M0)+ .

Proof. Let ΛM0
= diag(λ1

M0
, . . . , λn

M0
) and VM0

, i = 1, . . . , n denote the eigenvalues and

eigenvectors of M0. Note that for any real matrix A ∈ R
p×q and orthonormal basis

V ∈ R
q×q that

||A||2F = Tr(ATA)

= Tr(VATVTVAVT )

= ||VAVT ||2F .

Keeping this identity in mind the optimization problem in (4.2.3) can be restated as

arg min
M�0
||M−M0||2F

= arg min
M�0
||VT

M0
(M−M0)VM0

||2F

= arg min
M�0
||VT

M0
MVM0

−ΛM0
||2F .

Note that since ΛM0
is diagonal VT

M0
MVM0

should be diagonal in order to minimize the

Frobenius norm. This implies that VM0
must be the eigenvectors of M. Thus we can
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assume that the matrix M which minimizes the above problem has the form

M = VM0
ΛMVT

M0
,

where ΛM is a diagonal matrix with entries λi
M , i = 1, . . . , n. The problem then becomes

arg min
M�0
||ΛM −ΛM0

||2F = arg min
λi

M
≥0

n∑

i=1

(λi
M − λi

M0
)2.

Clearly the quantity which minimizes this is λi
M = max(0, λM0

). Thus we have that

M = (M0)+ as we wanted to show.

We now return to our proof of Theorem 4.2.2.

Proof. We begin by expanding out the terms in the objective function (4.4)

ρK = Tr(AT
XKXKY AY ) + λX ||KX −K0

X ||2F

+ λY ||KY −K0
Y ||2F

= Tr(AT
XKXKY AY ) + λXTr((KX −K0

X)T (KX −K0
X)) + λY Tr((KY −K0

Y )T (KY −K0
Y ))

= Tr(KY AY AT
XKX) + λXTr(KXKX − 2KXK0

X) + λY Tr(KY KY − 2KY K0
Y )

+ λXTr(K0
XK0

X) + λY Tr(K0
Y K0

Y ).

Letting C = λY Tr(KY KY − 2KY K0
Y ) + λY Tr(K0

Y K0
Y ) + λXTr(K0

XK0
X) and GY X =

KY AY AT
X we have

ρH = Tr(GY XKX + λXKXKX − 2λXK0
XKX) + C

= λXTr

([
KX − 2

(
1

2λX

GY X + K0
X

)]
KX

)
+ C.
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Adding and subtracting || 1
2λX

GY X + K0
X ||2F we have

ρK = λX

∣∣∣∣
∣∣∣∣KX −

(
1

2λX

GY X + K0
X

)∣∣∣∣
∣∣∣∣
2

F

−
∣∣∣∣
∣∣∣∣

1

2λX

GY X + K0
X

∣∣∣∣
∣∣∣∣
2

F

+ C.

Note that there is only one term involving KX . Thus the minim

min
KX

∣∣∣∣
∣∣∣∣KX −

(
1

2λX

GY X + K0
X

)∣∣∣∣
∣∣∣∣
2

F

subject to,

KX � 0. (4.7)

For the purpose of our application we only consider the case where λX → ∞, forcing

KX to be the closest proxy of the matrix K0
X . This then becomes the projection of the

matrix K0
X on the cone of positive semidefinite matrices (Luss and d’Aspremont (2008)).

The optimal solution to this problem is given by

KX = (K0
X)+,

as we wanted to show. Similar results hold for KY .

Note that it is equivalent to solve the IKCCA problem by solving the regularized

CCA optimization problem replacing the matrices X and Y with the matrices CX and

CY , respectively, where

CX = K0
XV+

X ,

CY = K0
Y V+

Y .

The matrices V+
X and V+

Y are the matrices of eigenvectors corresponding to the positive

eigenvalues in X and Y space respectively. A justification for this equivalency can be

found in Kuss and Graepel (2003).
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With this in mind, out-of-sample points x ∈ R
dX and y ∈ R

dY are projected onto

their first p canonical directions as follows: first compute their kernelization, using the

indefinite kernel functions K0
X and K0

Y

K0
X(x, .) = (K0

X(x,x1), . . . , K
0
X(x,xn))T ,

K0
Y (x, .) = (K0

Y (y,y1), . . . , K
0
Y (y,yn))T .

Next, K0
X and K0

Y are projected onto the matrices of eigenvectors V+
X and V+

Y , respec-

tively, giving us

KX(x) = K0
XV0

X ∈ R
pX ,

KY (y) = K0
Y V0

Y ∈ R
pY .

Here pX and pY correspond the the number of non-zero eigenvalues in X and Y space

respectively. Finally, the projections onto the canonical directions are given by

f(x) = 〈KX(x), αX〉 =

p∑

i=1

αi
XK(x)i,

f(y) = 〈KY (y), αY 〉 =

p∑

i=1

αi
Y K(y)i.

where the αi
X ’s and αi

Y ’s are the solutions from the IKCCA optimization problem in (4.4)

(also note that p ≤ min(pX , pY )).

In the following section we show that for the class of kernels in (4.1) an interesting

and intuitive connection can be made between IKCCA and LDA.

In particular we study a class of kernels related to the normalized graph Laplacian

(NGL) used in spectral clustering (Chung (1997), Shi and Malik (2000), Ng et al. (2002),

Belkin and Niyogi (2003), Bengio et al. (2004), v. Luxburg (2007), v. Luxburg et al.

(2008), Zelnik-Manor and Perona (2004)). In Section 4.3 we provide an overview of
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spectral clustering and some associated properties. Then in Section 4.4 we show the

connection between the NGL kernel for IKCCA and LDA.

4.3 Spectral Clustering

In this section we provide an overview of spectral clustering and its properties. Our

discussion follows that of v. Luxburg (2007).

The intuitive goal of clustering can be summarized as follows: given a set of n data

points, xi ∈ R
d, and some measure of similarity between them, wij the goal is to divide

the data points into several groups such that points in the same group are similar and

points in different groups are dissimilar. A convenient way of representing the data in

this context is in the form of a similarity graph G = (V,E), V = {v1, . . . , vn}, E = {wij}.

The vertices vi ∈ V in this graph are the points xi. Two vertices are connected if the

similarity, wij between the corresponding data points xi and xj is positive. The edge

between them is given the weight wij.

The similarity graph provides a natural framework for clustering evidenced by the

following restatement of the clustering problem: given the graph G the goal is to find a

partition such that the weights of the edges within a group are large (i.e. that points

which are similar to one another fall into the same cluster) and the weights of the edges

between groups is small (i.e. that points which are dissimilar to one another are in

different clusters). In the following section, we introduce some graph notation and briefly

describe the types of graphs we are going to study.

4.3.1 Graph Notation

Let G = (V,E) be an undirected graph with vertex set V = {v1, . . . , vn}. We assume

that the graph is weighted with non-negative edge weights wij(≥ 0) between vertices

vi and vj. The weighted adjacency matrix of a graph is a square, symmetric matrix

W = (wij)
n
i,j=1. If wij = 0 this means that vertices vi and vj are not connected. The
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degree of a vertex vi ∈ V is defined as

di =
n∑

j=1

wij.

Note that this sum runs over only those vertices which are adjacent to vi, and tells us

how well connected a vertex is. The degree matrix is defined as D = diag(d1, . . . , dn).

Given a subset of vertices A ⊂ V we define its compliment as Ā = V − A. Define the

indicator vector, fA = (f1, . . . , fn)T ∈ R
n as the vector with entries fi = 1 if vi ∈ A and

fi = 0 otherwise. Convenient shorthand is to write i ∈ A to mean the set of indices

{i|vi ∈ A}. The two ways in which we measure the size of a set A is

|A| := the number of vertices in A,

vol(A) :=
∑

i∈A

di. (4.8)

Intuitively we can think of |A| as measuring the size of A by the number of vertices it

contains and vol(A) as measuring the size of A by the weights of its edges.

A subset A ⊂ V is called connected if any two vertices A can be joined by a path such

that all intermediate points also lie in A. A subset A is called a connected component if

it is connected and if there are no connections between the vertices of A and Ā.

In conventional set theory A1, . . . , Ak form a partition when Ai∩Aj = Ø and ∪k
i=1Ai =

V . In graph theory there is a similar, stronger definition of a partition with the sets Ai,

i = 1, . . . , k defined as connected components explicitly constructed from the similarity

graph G.

4.3.2 Similarity Graphs

The goal in constructing a similarity graph, G, is to model the local distribution of

the data, vi, i = 1, . . . , n. Below we list some of the similarity graphs that are frequently

used in spectral clustering
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1. The ǫ-neighborhood graph: Here all points (i.e. vertices vi) which are in an ǫ-

neighborhood of one another are connected by an edge. The potential shortcoming

of this type of graph is that using a fixed ǫ may not capture the changes in the

local scale of the data.

2. The k-nearest neighbor graphs: Here we connect the point vj to the point vi if

vj is within the k-neighborhood of vi. However, care needs to be taken to avoid a

graph that is not symmetric. There are two ways in which this is typically handled;

the first is to put an edge between vi and vj if one is in the neighborhood of the

other. The second is to only put an edge between vi and vj if they are both in the

neighborhood of the other.

3. The Fully Connected Graph: Here all vertices in the graph are connected by

a positive weight. In order to model the local behavior of the data typically a

similarity function is used which can capture this type of information, e.g. the

Gaussian similarity function wij = exp
(
− ||xi−xj ||2

2σ2

)
.

4.3.3 Graph Laplacians

The main concept of spectral clustering revolves around the graph Laplacian matrix

and its various representations (see Chung (1997) for a more detailed discussion). Here

we provide an overview of some of the definitions and basic properties associated with

the graph Laplacian. In the following, since we are dealing with generalized eigenvalue

problems, when we speak of eigenvectors we do not assume that they have unit length.

Additionally we assume that eigenvalues are ordered increasingly and when we speak

of the first k eigenvectors we mean those eigenvectors associated with the k smallest

eigenvalues.
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The Unnormalized Graph Laplacian

The unnormalized graph Laplacian matrix is defined as

L = D−W.

Recall membership in the connected component A is captured by the indicator vector fA.

The quadratic form fTLf will play the role of cluster index in spectral clustering.

The following proposition summarizes most of the important facts needed (see Mohar

(1991) and Mohar and Juvan (1997) for further details)

Proposition 4.3.1. The matrix L satisfies the following properties

1. For every vector g ∈ R
n our cluster index can be computed as

gTLg =
1

2

n∑

i,j=1

wij(gi − gj)
2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant

vector 1 ∈ R
n.

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

For a proof see v. Luxburg (2007).

The unnormalized graph Laplacian and its eigenvalues and eigenvectors can be used to

describe many properties of graphs. The following proposition is particularly important

in spectral clustering:

Proposition 4.3.2. (Number of Connected Components) Let G be an undirected graph

with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the

number of connected components A1, . . . , An in the graph. The eigenspace of eigenvalue

0 is spanned by the indicator vectors fA1
, . . . , fAn

of those components.
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Remark 4.3.3. This proposition has been proven in v. Luxburg (2007). A similar proof

is given here to highlight the way in which the graph Laplacian’s eigenvectors behave as

indicator (i.e. label) vectors.

Proof. For a fully connected graph, i.e. k = 1, we know from Proposition 4.3.1 that

the smallest eigenvalue of L is λ1 = 0 and the corresponding eigenvector is the constant

vector 1n.

For k > 1, assume without loss of generality that the vertices are ordered according

to which connected component they belong to, the graph Laplacian then takes the block

diagonal form

L =




L1 0 · · · 0

0 L2 · · · 0

...
...

. . .
...

0 0 · · · Lk




.

The key observation to be made here is that each block Li, i = 1, . . . , k is itself a proper

graph Laplacian. Therefore each of these blocks must have 0 as an eigenvalue and the

constant vector 1ni
as an eigenvector, where ni is the number of vertices contained in

the ith connected component. Thus, the matrix L has as many eigenvalues 0 as there are

connected components, and the corresponding eigenvectors are the indicator vectors, fAi

of the connected components.

The Normalized Graph Laplacian

In this section we present some results on the normalized graph Laplacian. The nor-

malized graph Laplacian is of particular interest to us as it has been shown by v. Luxburg

et al. (2008) to have much stronger consistency properties, in terms of the convergence

of its sample eigenvalues and eigenvectors to their population counterparts, then its un-

normalized counterpart. For this reason in the discussion that follows we focus on the

normalized graph Laplacian.
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There are two closely related matrices which are referred to as normalized Graph

Laplacians in the literature, these are

Lsym := D− 1

2LD− 1

2 = In −D− 1

2WD− 1

2 ,

Lrw := D−1L = In −D−1W.

The first matrix is denoted as Lsym since it is symmetric. The second matrix is denoted

by Lrw since it is closely related to the transition matrix of a random walk. The transition

matrix in this case would be composed of transition probabilities of jumping in one step

from vertex i to vertex j which would be equal to pij :=
wij

di
.

Next we summarize some of the properties of these two matrices (see Chung (1997),

Mohar (1991) and Mohar and Juvan (1997), for further details). The key properties asso-

ciated with the normalized graph Laplacians are summarized below in Proposition 4.3.4.

These properties are similar to those presented in the unnormalized case (Proposition

4.3.1).

Proposition 4.3.4. (Properties of Lsym and Lrw) The normalized Laplacians satisfy the

following properties:

1. For every g ∈ R
n we have

gTLsymg =
1

2

n∑

i,j=1

wij

(
gi√
di

− gj√
dj

)2

.

2. λ is an eigenvalue of Lrw with eigenvector v if and only if λ is an eigenvalue of

Lsym with eigenvector w = D
1

2v.

3. λ is an eigenvalue of Lrw with eigenvector v if and only if λ and v solve the

generalized eigenvalue problem Lv = λDv.

4. 0 is an eigenvalue of Lrw with the constant vector 1n as an eigenvector. 0 is an

eigenvalue of Lsym with eigenvector D
1

21n.
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5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued eigen-

values 0 = λ1 ≤ . . . ≤ λn.

For a proof see v. Luxburg (2007).

The following proposition provides similar results to those discussed in Proposition

4.3.2 but for the normalized case.

Proposition 4.3.5. Let G be an undirected graph with non-negative weights. Then the

multiplicity k of the eigenvalue 0 of both Lsym and Lrw equals the number of connected

components A1, . . . , An in the graph. For Lsym the eigenspace of 0 is spanned by the

vectors D
1

2 fAi
. For Lrw the eigenspace of 0 is spanned by the indicator vectors fAi

.

Remark 4.3.6. Recall that in the protein-ligand matching problem we were primarily

interested in predicting the binding between as of yet unobserved proteins and ligands.

For this reason it is important that there be a direct way to compute the kernelization

for out-of-sample observations. Because of this we use the weighted adjacency matrix

K = D− 1

2WD− 1

2 , (4.9)

rather than the normalized graph Laplacian Lsym, as there is no direct extension of

the symmetric normalized graph Laplacian to out-of-sample observations. The lack of

a direct out-of-sample extension can be seen from the following: by definition the i, jth

element of the symmetric normalized graph Laplacian is

(Lsym)ij =





1− wii

di
if i = j, and di 6= 0,

− wij√
didj

if i and j are adjacent,

0 otherwise.

(4.10)

Thus, given a new observation, while it is possible to calculate its value in the last two

cases of (4.10), it is not possible to calculate its value in the first case.
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What is important to note is that we do not lose any relevant information by using

K instead of Lsym. The weighted adjacency matrix K has the same eigenvectors as Lsym

and its eigenvalues are equal to 1−λi, i = 1, . . . , n, where λi are the eigenvalues of Lsym.

In addition, the results stated in Proposition 4.3.5 still hold for K with the mod-

ification that the multiplicity of the eigenvalue 1 rather than 0 equals the number of

connected components. This can be seen by noting that since the smallest eigenvalue of

Lsym = In −K(� 0) is 0, the largest eigenvalue of K (corresponding to the number of

0’s in Lsym) must be 1.

We can also establish a lower bound on the eigenvalues of K, utilizing the following

inequality (
fi√
di

− fj√
dj

)2

≤ 2

(
f 2

i

di

+
f 2

j

dj

)
.

Keeping in mind that the eigenvectors f of Lsym have unit length (see Section 4.3.5) we

have

fTLsymf =
1

2

n∑

i,j=1

wij

(
fi√
di

− fj√
dj

)2

≤
n∑

i,j=1

wij

(
f 2

i

di

+
f 2

j

dj

)

=
n∑

i=1

f 2
i +

n∑

j=1

f 2
j

= 2.

Therefore the smallest possible eigenvalue of K is 1 − λmax = −1. The consequence of

this is that K is not strictly positive semi-definite, i.e. it may be indefinite. In order

to be able to meaningfully use the weighted adjacency matrix with KCCA, conditions

like those we discussed in Section 4.2, need to be introduced as otherwise there is no

guarantee that the solutions we find will be meaningful.

Remark 4.3.7. In the following sections we refer to the weighted adjacency matrix as the
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normalized graph Laplacian (NGL) kernel to emphasize its connection with the graph

Laplacian. In Sections 4.4.1 and 4.4.2 the properties of the graph Laplacian discussed in

Propositions 4.3.2 and 4.3.5 will be shown to connect IKCCA with LDA.

4.3.4 Spectral Clustering Algorithms

There are a number of spectral clustering algorithms used in practice. Here we state

one algorithm which is commonly used in conjunction with the normalized symmetric

graph Laplacian, Lsym. Most spectral clustering algorithms have a similar structure.

Normalized Spectral Clustering according to Ng, Jordan and Weiss (2002)
Input: Similarity measure wij, number of clusters k

• Construct a similarity graph by one of the ways
described in Section 4.3.2. Let W be its weighted
adjacency matrix.

• Compute the normalized graph Laplacian Lsym.

• Compute the first k eigenvectors v1, . . . ,vk of Lsym.

• Let V ∈ R
n×k be the matrix containing the vectors v1, . . . ,vk

as columns.

• Form the matrix U ∈ R
n×k from V by normalizing the row

sums to have norm 1, that is uij =
vij

(
∑k

m=1
v2

im)
1
2

.

• For i = 1, . . . , n, let yi ∈ R
k be the vector corresponding to

the i-th row of U.

• Cluster the points {yi}ni=1 with the k-means algorithm into
clusters C1, . . . , Ck.

Output: Clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci}.

A note on the normalization step in the above algorithm. Recall from Proposition 4.3.5

that the eigenvectors corresponding to the smallest eigenvalue of each of the connected

components of Lsym is equal to D
1

2 fAi
, where fAi

is the indicator vector of the ith connected
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component. The purpose behind normalizing by 1

(
∑k

m=1
v2

im)
1
2

is therefore to retrieve the

indicator vectors fAi
. In the more general setting where there is possible overlap between

groups the purpose is to approximate the indicator vectors as closely as possible. In both

cases this is meant to make the identification of the clusters in the k-means step easier.

4.3.5 Graph Cut Point of View

As stated at the beginning of this section, representing data in the form of a similarity

graph provides a powerful approach to clustering. From a graph theoretic standpoint the

clustering problem is typically formulated in terms of the graph partitioning problem.

The objective of the graph partitioning problem is to divide a graph into k disjoint parts

such that each of these parts is approximately equal in size and the sum of the edge

weights is minimized. In this section we will show how spectral clustering can be derived

as an approximate solution to the graph partitioning problem.

Given two disjoint subsets A,B ⊂ V define

cut(A,B) =
∑

i∈A,j∈B

wij.

Given the adjacency matrix W the most straightforward way to construct a partition

is to solve the mincut problem. This consists of finding a partition A1, . . . , Ak which

minimizes

cut(A1, . . . , Ak) :=
k∑

i=1

cut(Ai, Āi).

However, in practice this often does not lead to satisfactory partitions. The problem is

that frequently the solution of the mincut problem results in one vertex being separated

from the rest. This is of course not what we are usually interested in achieving. One way

to avoid this issue is formulate the problem in such a way that the sets A1, . . . , Ak are

“reasonably large”. The two most common objective functions which incorporate this

are the RatioCut (Shi and Malik (2000)) and the normalized cut Ncut (Shi and Malik
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(2000)). In RatioCut the size of a subset A is measured by the number of vertices, |A|,

while in the Ncut the size of a subset of A is measured by weights of its edges vol(A)

(defined in (4.8)). The definitions are

RatioCut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Āi)

|Ai|
,

Ncut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Āi)

vol(Ai)
.

What both objective functions try to achieve is a balance in the clusters as measured

by the number of vertices or edge weights, respectively. Unfortunately, by having these

balancing conditions the mincut problem becomes NP hard (see Wagner and Wagner

(1993) for details). What we will see is that spectral clustering is a way to solve “relaxed”

versions of these problems. We focus here on the Ncut problem as this leads to the

normalized spectral clustering problem, which is what we are primarily interested in (see

v. Luxburg (2007) for a spectral clustering approach to the RatioCut problem).

Approximating Ncut

Following the discussion in v. Luxburg (2007), we begin with the case where the

number of clusters k is 2. Define the cluster indicator vector f by

fi =





√
vol(Ā)

vol(A)
if i ∈ A,

−
√

vol(A)

vol(Ā)
if i ∈ Ā.

(4.11)

One can check that (Df)T1n = 0, fTDf = vol(V ), and fTLf = 2vol(V )Ncut(A, Ā). With

this in mind an equivalent restatement of the Ncut problem is

min
A

fTLf

subject to,
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f as in (4.11) and DfT1n = 0, fTDf = vol(V ). (4.12)

This is an NP-hard discrete optimization problem (Wagner and Wagner (1993)) as the

entries f are only allowed to take one of two values. The obvious relaxation in this setting

is to remove the condition that the fi’s take one of two values and allow fi ∈ R. This

leads to the relaxed optimization problem

min
f

fTLf

subject to,

DfT1n = 0, fTDf = vol(V ).

Letting g = D
1

2 f we have

min
g

gTD− 1

2LD− 1

2g

subject to,

gTD
1

21n = 0, ||g||2 = vol(V ). (4.13)

This is exactly the spectral clustering problem for k = 2 using the symmetric normalized

graph Laplacian.

Generalizing to the case of k > 2 cluster, we begin by defining the indicator vectors

hi = (h1i, . . . , hni)
T , where

hij =





1√
vol(Ai)

if i ∈ Aj,

0 otherwise .

(4.14)

Letting H = (h1, . . . ,hk) ∈ R
n×k we have that HTH = Ik, hT

i Dhi = 1, and hT
i Lhi =
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2cut(Ai,Āi)

vol(Ai)
. We can then write the Ncut problem as

min
A1,...,Ak

Tr(HTLH) subject to HTDH = Ik.

As above, we relax the discreteness condition and substitute U = D
1

2H, which then gives

us

min
U

Tr
(
UTD− 1

2LD− 1

2U
)

subject to UTU = Ik.

The solution to the latter is simply the eigendecomposition of D− 1

2LD− 1

2 .

4.4 Connecting the NGL Kernel for IKCCA with

LDA

In the first part of this section we show that under some certain assumptions on the

distribution of the data, when the NGL kernel is used, IKCCA finds the same directions

as LDA. We also explore conditions under which the directions found by IKCCA deviate

from those found by LDA. At the end of this section we extend these results to the more

general setting by using the idea of “spectral relaxation” discussed in Section 4.3. The

purpose behind this discussion is to provide a more concrete foundation for understanding

how IKCCA behaves, when the NGL kernel is used.

4.4.1 IKCCA and LDA

We begin by describing the distribution of the data which we propose to study. We

consider two scenarios, the first is an IKCCA setting which corresponds to standard LDA

and the second scenario is the standard LDA setting.

1. As before we have a collection of pairs of observations xi ∈ R
dX and yi ∈ R

dY ,

i = 1, . . . , n which we will refer to as the data space and label space respectively.

The xi’s (data space) fall into two distinct groups, highlighted in red and green

and labeled by a “+” and “−” respectively in the left plot of Figure 4.4.1. The
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yi’s (label space) also fall into two groups centered at µ− = (µ1
−, . . . , µdY

− )T and

µ+ = (µ1
+, . . . , µdY

+ )T , shown in the right plot in Figure 4.4.1. The distribution

of points within each of these groups follows the uniform distribution on a sphere

with radius r. In the plot on the right in Figure 4.4.1 (label space) the means are

connected by a dashed black line, the corresponding distance between the means

is ∆ = ||µ+ − µ−||. The solid circles and lines correspond to the support type

and radius of the support, respectively of the two groups (“+” in red and “−” in

green). The dashed circles and connecting lines indicate the 2r-neighborhoods of

the two points in each group that are closest to the other group. Note that so long

as ∆ ≥ 6r there will be no overlap in any of the 2r-neighborhoods in each of the

spaces.

2. The distribution of the xi’s are the same as described above but now the yi’s are

label vectors, i.e. yi1 = 1 if xi ∈ C+ and 0 otherwise and yi2 = 1 if xi ∈ C− and 0

otherwise, where C+ and C− correspond to the + and − group in the data space

(note that xi can only belong to one class). See Section 2.5.1 for details.

Recall from our discussion in Section 4.3.3 that given an adjacency matrix W the NGL

kernel is defined as

K = D− 1

2WD− 1

2 ,

where the ijth element has the form

Kij =
wij√∑n

i′=1 wi′j

√∑n

j′=1 wij′

. (4.15)
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∆
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Figure 4.1: A plot of the data as described in Scenario 1. In the Label Space plot the
means are connected by a dashed black line, the corresponding distance between the means
is ∆ = ||µ+ − µ−||. The solid circles and lines correspond to the support type and radius
of the support, respectively of the two groups (“+” in red and “−” in green). The dashed
circles and connecting lines indicate the 2r-neighborhoods of the two points in each group
that are closest to the other group.

In this example we define the weights wij to be

wij =





1 if ||xi − xj|| ≤ 2r

0 otherwise.
(4.16)

Theorem 4.4.1. Given the distribution of the data as described in scenario (1) above

with n1 and n2 observations in groups “+” and “−” respectively (n = n1 + n2) and the

NGL kernel as represented in (4.15) and (4.16), if ∆ ≥ 6r then the directions found by

IKCCA are identical to those found by LDA (i.e. in Scenario (2) described above).

Note, in the following while the matrix X is assumed to be mean centered, we do not

mean center the kernel matrix KY . While we would normally center KY , our primary

interest in this example is to illustrate that the general behavior between IKCCA and

LDA is similar, this is achieved more directly and clearly if KY is not mean centered.
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Proof. We begin by writing down the exact form of the kernel matrix K0
Y (using the

notation from Section 4). The matrix of weights W0
Y = {wY

ij}ni,j=1 is

W0
Y =




1n1
1T

n1
0

0 1n2
1T

n2


 ,

where 1n = (1, 1, . . . , 1)T
(n×1). Next define

D0
Y = diag



{

n∑

j=1

wY
ij

}n

j=1


 = diag(n1, n1, . . . , n1︸ ︷︷ ︸

×n1

, n2, n2, . . . , n2︸ ︷︷ ︸
×n2

),

then

K0
Y = (D0

Y )−
1

2W0
Y (D0

Y )−
1

2 =




1
n1

1n1
1T

n1
0

0 1
n2

1n2
1T

n2


 .

The expression for the positive part of the matrix KY is

KY = (K0
Y )+ =




1√
n1

1n1
0

0 1√
n2

1n2







1 0

0 1







1√
n1

1T
n1

0

0 1√
n2

1T
n2


 = VY VT

Y ,

where VY =




1√
n1

1n1
0

0 1√
n2

1n2


. We know that only two of the eigenvalues are non-

zero since the rank of the matrix KY is 2. The IKCCA optimization problem is

ρK = arg max
wX ,αY

wT
XXTKY αY

= arg max
wX ,αY

wT
XXTVY VT

Y αY

= arg max
wX ,wY

wT
XXTVY wY

subject to,

wT
XXTXwX = wT

Y VT
Y VY wY = 1.

(4.17)
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Since our primary interest here is to show that the discriminant direction, wX , is the

same for IKCCA and LDA we solve for wY = VT
Y αY rather than αY . In some sense

this amounts to an inversion of the kernel trick. Note that our choice of VY in wY is

arbitrary since we could select any V1
Y and V2

Y , V1
Y 6= V2

Y such that

KY = V1
Y (V2

Y )T

holds. However, as we will see this does not affect our results. Let

Y =




1n1
0

0 1n2


 ,

which we will refer to as the label matrix. We then have that

KY = Y




1
n1

0

0 1
n2


YT .

Next define

V1
Y = Y




1
na

1

0

0 1
nb

2


 and V2

Y = Y




1
n1−a

1

0

0 1

n1−b
2


 ,

for any −∞ < a, b < ∞. From here on we replace KY αY in (4.17) by V1
Y (V2

Y )T αY =

V1
Y wY .

Recall from Section 2.1 that the optimization problem in (4.17) (solving for wX)

results in the following generalized eigenvalue problem

XTV1
Y ((V1

Y )TV1
Y )−1(V1

Y )TXwX = ρ2
HXTXwX . (4.18)

Note that the left hand side of (4.18) is in fact the between-class sum of squares matrix,
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SB, discussed in Section 2.5. In particular, note that

(V1
Y )TX =




n1−a
1 mT

1

n1−b
2 mT

2


 ,

and

((V1
Y )TV1

Y )−1 =




n2a
1 0

0 n2b
2


 .

Putting this all together we have that

XTV1
Y ((V1

Y )TV1
Y )−1(V1

Y )TX = n1m1m
T
1 + n2m2m

T
2 = SB.

Thus (4.18) becomes

SBwX = ρ2
KSTwX ,

where ST = SXX . From here the same calculations done in Section (2.5.2) show us that

the direction found by IKCCA is the same as that found by LDA when the label matrix

Y is explicitly known.

Next we consider the case where ∆ ≤ 6r. Intuitively, with all points sharing the same

neighborhood, i.e. the “+” and “−” populations are indistinguishable, the directions

found by IKCCA should not provide any information with regard to the separation of

these groups.

Theorem 4.4.2. Using the same framework as in Theorem 4.4.1 when ∆ ≤ 6r the

direction wX is the null vector, wX = (0, . . . , 0)T .

Proof. The NGL kernel matrix in this context is of the form

K0
Y =

1

n
1n1

T
n .
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The rank of this matrix is 1, thus there is at most 1 non-zero eigenvalue. The nearest

positive approximation of K0
Y is then

KX = (K0
X)+ =

(
1√
n
1n

)(
1√
n
1n

)T

= VY VT
Y .

Following the same steps as in Theorem 4.4.1 we have

VT
Y X =

√
nm = 0,

since X is assumed to be mean centered. The generalized eigenvalue problem then reduces

to

0 = λSTwX .

So long as ST = SXX is non-singular, the only possible solution is wX = (0, . . . , 0)T .

Using the NGL kernel, Theorems 4.4.1 and 4.4.2 provide some insight into the be-

havior of IKCCA. Under a similar framework these results extend naturally to the case

of more than two classes.

4.4.2 Spectral Relaxation

In this section we provide some discussion generalizing the results of Section 4.4.1.

Consider a data set consisting of n multivariate vector pairs

{(xi,yi)|xi ∈ R
dX ,yi ∈ R

dY },

with X = (x1, . . . ,xn)T and Y = (y1, . . . ,yn)T . Furthermore let us assume that the

observations yi fall into two distinct groups such that the NGL kernel representation of
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the matrix Y has the block diagonal form

KY =




KY 1 0

0 KY 2


 .

From Remark 4.3.6 following Proposition 4.3.5 we know that the number of connected

components is equal to the multiplicity of the eigenvalue 1. Suppose we modify the

IKCCA optimization problem in (4.1.5) to include the constraint

rank(KY ) = #{eig(K0
Y ) = 1}, (4.19)

where eig(X) denotes the spectrum (the set of ordered eigenvalues) of the matrix X

and K0
Y is as defined in Section 4.2. The result of this additional constraint is that

the best rank k (in this case 2) representation of the kernel matrix K0
Y will be selected

(see Lemma 4.2.3 in Section 4.2 for details). This corresponds to selecting the first k

eigenvalue-eigenvector pairs.

With this in mind we now show that the resulting IKCCA generalized eigenvalue

problem will look very similar to the LDA generalized eigenvalue problem. First, we

introduce some notation: let vy1 = (vy11, . . . , vy1n)T and vy2 = (vy21, . . . , vy2n)T be the

leading eigenvectors of KY 1 and KY 2 respectively. Define the n× 2 matrix

VY =




vy1 0

0 vy2


 ,

and let

NY = diag(
√

n1vy11, . . . ,
√

n1vy1n1︸ ︷︷ ︸
×n1

,
√

n2vy21, . . . ,
√

n2vy2n2︸ ︷︷ ︸
×n2

),

where n1 and n2 are the number of observations in each of the two groups in Y space.
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Let

C =




1
n1

Jn1
0

0 1
n2

Jn2


 ,

where Jn = 1n1
T
n .

Next we apply the NGL kernel to the yi’s and leave the xi’s unchanged. Setting

the regularization parameter κ = 0, we solve the IKCCA optimization problem with

the addition of the rank constraint in (4.19). After some calculations this leads to the

following generalized eigenvalue problem

XTVY VT
Y VY VT

Y XwX = ρ2
KXTXwX . (4.20)

Focusing on the left hand side of (4.20) we have

XTVY VT
Y VY VT

Y XwX

= XTNY N−1
Y VY VT

Y N−1
Y NY XwX

= X∗TCX∗

= S∗
BwX ,

where X∗ = NY X. Let x∗
i , denote the ith row of the matrix X∗.

The key observation to be made here is that the matrix S∗
B is closely related to the

between group sum of squares for the uncentered data matrix X∗. To see how S∗
B is

related to the between group sum of squares consider the following: let

m∗
1 = XTNY f1 = X∗T f1,

m∗
2 = XTNY f2 = X∗T f2, (4.21)
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where f1 = (f11, . . . , f1n)T and f2 = (f21, . . . , f2n)T , and

f1i =





1
n1

if yi is in cluster 1

0 otherwise.

f2i =





1
n2

if yi is in cluster 2

0 otherwise.

From (4.21) it can be seen that m∗
1 and m∗

2 are the group means of the x∗
i ’s corresponding

to either the first or second cluster in Y space. Letting m∗ be the overall mean of the

x∗
i ’s we have

S∗
B = n1m

∗
1m

∗T
1 + n2m

∗
2m

∗T
2

=
n1n2

n
(m∗

1 −m∗
2)(m

∗
1 −m∗

2)
T +

1

n
m∗m∗T . (4.22)

From (4.22) it can be seen that the only difference between S∗
B and the standard definition

of the between group sum of squares is the term 1
n
m∗m∗T . This additional term arises

as a result of the fact that the x∗
i ’s are not centered.

Returning to our earlier discussion, we can rewrite (4.20) as

S∗
BwX = ρ2

KSTwX , (4.23)

where ST = XTX is the total sum of squares, discussed in Section 2.5.2.

The generalized eigenvalue problem in (4.23) is closely related to the generalized

eigenvalue problem associated with the Maximum Data Piling (MDP) problem (Ahn and

Marron (2009)). In the MDP problem the eigenvector solving the generalized eigenvalue

problem

SBwMDP = λSTwMDP
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can be shown to be

wMDP ∝ S−1
T (m1 −m2).

If d < n then the MDP direction vector and the LDA direction vector are the same.

In the IKCCA problem, if we assume that 1
n
m∗m∗T in (4.22) is close to enough to zero

that it is negligible (see Remark 4.4.4 for a discussion of when this may be a reasonable

assumption). Then by similar methods used in proving Theorem 2.5.1 of Section 2.5 the

leading eigenvector can be shown to be

w∗
X =

1√
ρ∗
K
S−1

T (m∗
1 −m∗

2),

where ρ∗
K = nρK

n1n2
. From this it can be seen that the IKCCA direction vector w∗

X will tend

to behave quite similarly to the MDP direction vector wMDP .

Putting this all together, we can think of IKCCA, when the NGL kernel is used, as a

spectral relaxation of the LDA problem.

Remark 4.4.3. Intuitively the diagonal matrix NY should, in some sense, impose the

group structure of the points in Y space on the points in X space. The reason for this

is that the elements of NY , i.e. the eigenvectors vy1 and vy2, “code”, as was discussed

in Section 4.3, for the different groups. Thus, even if there is a different group structure

in X space, the directions found by IKCCA should tend to cluster points in X space

according to how they are distributed in Y space. Extending this line of reasoning one

step further, if the NGL kernel is also used in X space then the directions found should

incorporate group structure from both spaces. This phenomenon will be illustrated in

Section 4.5.

Remark 4.4.4. An interesting observation can be made about the behavior of 1
n
m∗m∗T
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as n→∞, that is

∣∣∣∣
∣∣∣∣
1

n
m∗m∗T

∣∣∣∣
∣∣∣∣
F

→ 0,

provided the distribution from which the xi’s are sampled has a finite second moment.

This can be shown as follows

∣∣∣∣
∣∣∣∣
1

n
m∗m∗T

∣∣∣∣
∣∣∣∣
2

F

=
1

n2
Tr(m∗m∗Tm∗m∗T )

=
1

n2
Tr(m∗Tm∗m∗Tm∗).

Taking a closer look at m∗Tm∗ we have

m∗Tm∗

=
d∑

i=1

(
1

n

[
n1∑

j=1

√
n1vy1jxji +

n∑

j=n1+1

√
n2vy2jxji

])2

≤ 1

n2

d∑

i=1

(
n1

n1∑

j=1

v2
y1j + n2

n∑

j=n1+1

v2
y2j

)(
n1∑

j=1

x2
ji +

n∑

j=n1+1

x2
ji

)

=
1

n

d∑

i=1

n∑

j=1

x2
ji,

by the Cauchy-Schwartz inequality. Recall that the terms vyij, i = 1, 2, j = 1, . . . , n

are the elements of the leading eigenvectors of KY 1 and KY 2 respectively, therefore
∑n1

i=1 v2
y1i =

∑n2

i=1 v2
y2i = 1. Since the xji’s are mean centered, as n → ∞, we have

by the central limit theorem that

1

n

d∑

i=1

n∑

j=1

x2
ji →

d∑

i=1

σ2
i , (4.24)

where the σi’s are the population standard deviations. Assuming that the xi’s have finite
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second moments then each of the σ2
i ’s in (4.24) will also be finite. Letting si =

∑n

j=1 x2
ji

and s = (s1, . . . , sd)
T , provided that d

n
→ 0 we then have that

1

n
||m∗m∗T ||F

≤ 1

n
||sT s||F

→ 0,

as we wanted to show. What we can infer from this is that in the limit as n → ∞

(subject to d
n
→ 0), provided the group structure of the yi’s is preserved, it is reasonable

to assume that 1
n
m∗m∗T is negligible.

4.5 Toy Example: Non-standard Data

We now return to the example in Section 3.7 using the NGL kernel (4.15) with weights

(4.25). From Figure 4.2 ti can be seen that we are now able to capture the underlying

structure of the data, identifying each of the six subpopulations.

wij =





exp
{
− 1

2σij
||xi − xj||2

}
if xj ∈ Nk(xi)

0 otherwise.
(4.25)

Here Nk(xi) is the symmetric k-neighborhood of the point xi (i.e. if xj ∈ Nk(xi) then

xi ∈ Nk(xj)).

Looking at plots of the first four eigenvectors (Figures 4.3 and 4.4) in both the smiley

face space and the cluster space we can see how the behavior of the eigenvectors causes

the segmentation of the data that we observe in Figure 4.2. First we discuss how these

figures are generated and then what it is they are telling us

1. Generating an equally spaced dimensional grid spanning the range of values in each

space.
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 Variables 4 vs. 5

Figure 4.2: Continuation from the example in Section 3.7. This is a scatterplot matrix
of the projections onto the first five IKCCA directions using the kernel in (4.15). Unlike
the projections shown in Figure 3.10 here we are able to separate out the six groups.

2. Calculating the kernel representation and projection of each grid point into IKCC

space.

3. Using the projected values to assign color intensities to each point in the grid of

each space (blue for negative values, red for positive values).

4. Plotting the grid and for each point using the colors calculated from the previous

step.

The important thing to note in both of these figures is the distribution of positive and

negative projected values, and how these are driving the segmentation which we observe

in Figure 4.2. For example in Figure 4.3 the first canonical variate segments out one of

the faces (red) from the other (blue).

4.6 Performance on Real Data

Using the same kernel as in (4.15) we now look at the performance of IKCCA in the

receptor ligand matching problem. Figure 4.5 shows the performance of our method which
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Figure 4.3: A plot of the first four indefinite kernel canonical direction vectors in the
smiley face space from the example in Section 3.7 using the kernel in (4.15). These plots
allow us to visualize how the canonical vectors separate out each of the clusters.
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Figure 4.4: A plot of the first four indefinite kernel canonical directions vectors in the
cluster space from the example in Section 3.7 using the kernel in (4.15).

has an average rank of approximately 4.5 (red vertical line) which is a large improvement

over the previously described methods. Here the orange line corresponds to the RBF

kernel (rank of 7.5), the blue line corresponds to standard CCA (rank of 10.1) and the
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green line corresponds to the performance of the method from Oloff et al. (2006) (rank

of 18.1).

RLP 800 Data Set

Rank

F
re

q
u
en

cy

0 5 10 15 20

0
10

20
30

40

Figure 4.5: The RLP 800 data set. The red line corresponds to IKCCA, the orange line
corresponds to KCCA, the blue line corresponds to CCA and the green line corresponds
to the method from Oloff et al. (2006).

Figure 4.6 shows the extension from the RLP 800 data to the WDI. Once again

our method, IKCCA, highlighted in red, has a much improved average performance,

approximately 30, over previous methods. Standard KCCA has an average performance

of 55, linear CCA has an average performance of 67, and the method from Oloff et al.

(2006) has an average performance of 310.
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Figure 4.6: The WDI data set. The red line corresponds to our method using IKCCA,
the orange line corresponds to KCCA, the blue line corresponds to CCA and the green
line corresponds to the method from Oloff et al. (2006).
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CHAPTER 5

HDLSS Asymptotics

A new challenge encountered in a large number of fields (including biology, signal

processing and image analysis) is the relatively large number of covariates as compared

to the number of observations. This is referred to as the high dimension low sample

size (HDLSS) problem, Hall et al. (2005), Ahn et al. (2007), Lee (2007). The HDLSS

problem has led to an interest in studying asymptotics from the standpoint of allowing

the number of dimensions, d, to grow.

Amongst the many subjects studied in multivariate asymptotics, a great deal of work

has focused on studying the eigenvalues and eigenvectors of sample covariance matrices,

i.e. PCA (Anderson (2003), Muirhead (1982)). Classical asymptotics deals with the case

where the sample size tends to infinity with the dimension fixed. In the case of the latter

most of these studies make use of the fact that the sample covariance matrix is a good

approximation of the population covariance. However, with d ≫ n this is usually no

longer the case.

In studies where d is allowed to go to infinity there are three scenarios which are

typically considered:

1. In the first case, which we refer to as the Low Dimension High Sample Size (LDHSS)

problem, d≪ n, both d and n go to infinity, and d
n
→ 0. These problems are similar

to conventional asymptotics where n→∞.

2. In this case sample size and dimensionality grow together, in the sense that d
n
→ c



for some constant c. Bai and Yin (1993), Paul (2005) and Johnstone and Lu (2004)

have studied this type of asymptotic behavior. Some work has been done which

looks at the case where d grows with some power of n. For example, Portnoy (1984)

and Portnoy (1988) study the case where d grows as
√

n. This type of scenario will

be referred to as High Dimension High Sample Size (HDHSS).

3. In this setting the sample size is fixed and the dimensionality is allowed to grow, in

the sense that d
n
→∞. In the case of n fixed and d→∞, Hall et al. (2005), explored

the geometric structure of HDLSS data. In Ahn et al. (2007) conditions were

found under which the first eigenvector of the sample covariance matrix converges

consistently to its population counterpart. In this paper the population covariance

matrix is structured such that the leading eigenvalue is considerably larger than

the remaining eigenvalues. They also show that when the population covariance

matrix does not have this extreme aspherical structure, the sample eigenvalues tend

to behave as though they are from a spherical Gaussian distribution.

An important distinction needs to be made here between the aforementioned works

and the work done in this dissertation. Here we turn our focus away from the eigen-

analysis of the covariance matrix of a single set of variables (i.e. PCA) to the SVD-

analysis of the correlation between two sets of variables, or the “cross-correlation” matrix.

Similar work was done in Lee (2007) where the behavior of the covariance between two

sets of variables was studied, also known as the “cross-covariance” matrix.

We also look to study the HDLSS problem in the context of KCCA where we show

that high dimensionality can potentially lead to spurious results if not handled in an

appropriate manner.

In Section 5.1 we begin with a review of previous work which primarily focuses on

the HDHSS and HDLSS asymptotic behavior of the eigenvalues and eigenvectors of the

sample covariance and cross-covariance matrices. Finally in Section 5.2 we turn our

attention to the asymptotic behavior of CCA in the HDLSS setting. In this section we
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discuss conditions under which we have consistent and strongly inconsistent convergence

in the sample canonical correlations and vectors. We also present conditions where we

have convergence in distribution in the canonical correlations.

5.1 Asymptotics of the Sample Covariance and Cross-

Covariance Matrices

5.1.1 Asymptotics of the Sample Covariance Matrices

Suppose we have the data matrix X = (x1, . . . ,xn)T ∈ R
n×d, where the xi’s are i.i.d.

observations with mean 0 and covariance Σ ∈ R
d×d. Define the sample covariance matrix

as

S =
1

n
XTX.

Let λ̂1, . . . , λ̂r be the eigenvalues of S where r = rank(S). Note that the data matrix X

has not been mean centered, this form is commonly used in studying high-dimensional

random matrices.

In the following sections we discuss some HDHSS and HDLSS asymptotic results

primarily related to the eigenvalues and eigenvectors of the sample covariance matrix S.

HDHSS Asymptotics

In this section we provide a summary of results analyzing the behavior of the sample

covariance matrix when both the sample size and the dimensions are allowed to go to

infinity so that d
n
→ γ ∈ (0, 1].

Spherical Distribution:

In this section we assume that the population covariance matrix Σ = Id. The empirical

distribution of eigenvalues, frequently referred to as the Empirical Spectral Distribution,
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is defined as

Fd(x) =
1

d
× { number of λ′

is ≤ x}, i = 1, . . . , d.

The limiting spectral distribution of Fd was first obtained by Marcenko and Pasture

(1967). Fd converges the Marc̆enko and Pasture distribution F with probability density

function

f(x) = F ′(x) =





(2πγx)−1
√

(x− a)(b− x) a < x < b

0 otherwise,

where a = (1−√γ)2 and b = (1+
√

γ)2. When γ > 1, this distribution has an additional

Dirac measure at x = 0 of mass 1 − 1
c
. The survey paper by Bai (1999) provides a

comprehensive review on the spectral distribution.

Up to now our results have focused on the asymptotic behavior of the distribution

of sample eigenvalues, λi, i = 1, . . . , n. We now turn our attention to the asymptotic

properties of each eigenvalue. Specifically we look at the behavior of the eigenvalues

lying around the edge of the support of the distribution F , i.e. the largest and smallest

eigenvalues.

Studies on the asymptotic behavior of the largest eigenvalue have been conducted by

Geman (1980), Yin et al. (1988), Silverstein (1989) and Johnstone (2001). Geman (1980)

show that for a spherical Gaussian distribution, the largest sample eigenvalue converges

to the edge of the support of F ,

λ̂1
a.s.→ (1 +

√
γ)2, (5.1)

where
a.s.→ denotes almost sure convergence. The smallest eigenvalue has also been studied

extensively (Bai and Yin (1993) and Silverstein (1985)). Analogous to the largest sample

eigenvalue, the smallest sample eigenvalue has been shown to converge to the lower edge
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of the support of F ,

λ̂min
a.s.→ (1−√γ)2. (5.2)

These results have been generalized to the non-Gaussian case by Yin et al. (1988) as-

suming finite fourth moments.

For the Gaussian case, Johnstone (2001) derived the limiting distribution of the largest

sample eigenvalue, λ̂1. Specifically he showed that if λ̂1 was centered by

µd = (
√

n− 1 +
√

d)2

and scaled by

σd = (
√

n− 1 +
√

d)

(
1√

n− 1
+

1√
d

) 1

3

,

then λ̂1 converges in distribution to the Tracy-Widom law of order 1 (Tracy and Widom

(1996)).

Spiked Data

In many real world applications the assumption that the data follow a spherical dis-

tribution may not be accurate. Among the various approaches to studying non-spherical

population models, the spiked population model, named by Johnstone (2001) is of par-

ticular interest. This is due in part to the observation that in many examples, such

as speech recognition (Johnstone (2001), Buja et al. (1995)), wireless communication

(Telatar (1999)), and statistical learning (Hoyle and Rattray (2004)) there are typically

a few “larger” sample eigenvalues which are distinct from the rest. The spiked population

model assumes that all but finitely many eigenvalues of the population covariance matrix
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are one. The population covariance matrix is assumed to take the form

Σ = diag(λ1, λ2, . . . , λM , 1, . . . , 1), (5.3)

where λ1 > λ2 > . . . > λM > 1. The almost sure convergence of the largest eigenvalues

in the spike population model was shown by Paul (2005) and Baik and Silverstein (2006).

Paul (2005) examines the behavior of the eigenvalues assuming that the data are normally

distributed and derives the asymptotic distribution of the largest eigenvalue and examines

the behavior of the corresponding eigenvector. Baik and Silverstein (2006) provide results

on the almost sure limits of the largest and smallest eigenvalues in both the real and

complex non-Gaussian cases.

Baik and Silverstein (2006) and Paul (2005) also observed that under the spiked

population model if λ1 < 1 +
√

γ then

λ̂1
a.s.→ (1 +

√
γ)2 (5.4)

and if λmin > 1−√γ then

λ̂min
a.s.→ (1−√γ)2, (5.5)

provided γ ∈ (0, 1). Note that here the limits in (5.4) and (5.5) are the same as the

corresponding quantities in (5.1) and (5.2). In other words, when the largest (or small-

est) population eigenvalue is not “different enough” from one, the corresponding sample

eigenvalue, asymptotically, will behave as though it came from a population character-

ized by an identity covariance. This behavior, referred to as “phase transition”, is an

important observation made in both works. A similar phenomenon is also observed in

the HDLSS setting (Ahn et al. (2007)).

The phase transition phenomenon is also observed in the sample eigenvectors (Paul
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(2005)). Define v1, . . . ,vd to be the eigenvectors of the population covariance Σ = Id,

and v̂1, . . . , v̂d the eigenvectors of the sample covariance matrix S. It was shown in Paul

(2005), that the following results hold when d
n
→ γ ∈ (0, 1):

If λi ≤ 1 +
√

γ then,

〈vi, v̂i〉 a.s.→ 0 as n→∞.

If λi > 1 +
√

γ and is of multiplicity one, then

|〈vi, v̂i〉| a.s.→
√(

1− γ

(λi − 1)2

)
/

(
1− γ

λi − 1

)
as n, d→∞. (5.6)

The implication of (5.6) is that if the leading population eigenvalue is not much

bigger than one than its corresponding eigenvector is strongly inconsistent to the

population eigenvector in the sense that the two vectors are orthogonal.

HDLSS Asymptotics

We now turn our attention to the case where the number of observations n is fixed

and d is allowed to go to infinity. In the following subsections we discuss the geometrical

representation of HDLSS data and the HDLSS asymptotics associated with the sample

covariance matrix.

Geometric Representation

The geometrical representation of HDLSS data was studied by Hall et al. (2005). Suppose

z1, . . . , zn are independent random variables drawn from the Gaussian distribution with

mean zero and covariance matrix Id. Since the sum of the squares of the entries of zi has

the Chi-square distribution with d degrees of freedom, it can be shown that

||zi − z′j|| = (2d)
1

2 + Op(1),
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as d→ ∞. What this tells us is that for large enough d a sample of n standard normal

random variables will tend to lie at the vertices of a regular n-simplex in R
d. Note that

the data vectors tend to have a deterministic distance apart. Hall et al. (2005) also

studied the geometric representation of HDLSS data in the context of classification. In

that study they obtained some insight into the limiting behavior of several classification

methods such as support vector machines (Cristianini and Shawe-Taylor (2000)) and

distance weighted discrimination (Marron et al. (2008)).

Dual Covariance Matrices

Let X = (x1, . . . ,xn)T where xi ∼ Nd(0, Σd), for d = 1, 2, . . .. The n × n dual sample

covariance matrix is defined as

SD =
1

n
XXT .

Ahn et al. (2007) studied conditions under which the dual sample covariance matrix

converges to the identity, In as d → ∞. These results were generalized to an arbitrary

distribution under some general assumptions on the moments of the data by Jung and

Marron (2009). In their analysis they also presented results on the consistency and strong

inconsistency of the sample eigenvectors.

In our discussion of the HDLSS asymptotics of CCA we provide a more detailed

discussion on the behavior of the dual sample covariance matrix which we refer to as the

kernel matrix (Section 5.2.6).

5.1.2 HDLSS Asymptotics of the Sample Cross-Covariance Ma-

trices

Consider a data set consisting of n paired multivariate vectors,

{(xi,yi)|xi ∈ R
dX ,yi ∈ R

dY , i = 1, . . . , n},
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where (xi,yi) ∼ N(0, Σ). Here 0 ∈ R
dX+dY and

Σ =




ΣXX ΣXY

ΣY X ΣY Y


 . (5.7)

Define X = (x1, . . . ,xn)T ∈ R
n×dX and Y = (y1, . . . ,yn)T ∈ R

n×dY and the correspond-

ing sample mean matrices as X̄ and Ȳ . Note from here on we assume that the data

matrices X and Y have been mean centered.

In Section 5.1.1 our discussion focused on the behavior of the eigenvalues and eigen-

vectors of the sample covariance matrix. In this section we turn our attention to the

sample cross-covariance matrix

SXY =
1

n
XTY.

In Lee (2007), under specific assumptions on the structure of the covariance matrix Σ,

the HDLSS asymptotics of the singular values and vectors of the sample cross-covariance

matrix were studied. In this study conditions were established showing convergence in

distribution of the largest sample singular value to a random quantity. In addition, con-

sistency and strong inconsistency results were established for the leading sample singular

vectors.

Remark 5.1.1. An important concept discussed in Lee (2007) is the construction of the

population covariance matrix Σ. Because Σ potentially contains off-diagonal terms (i.e.

ΣXY in (5.7)), greater care needs to be taken in order to ensure that it is positive semi-

definite. One way in which positive semi-definiteness can be guaranteed is to use the

so-called factor matrices which are defined as

F =




FXX FXY

FY X FY Y


 ,
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so that

Σ = F2.

Since F2 is positive semi-definite this ensures that Σ is positive semi-definite. The com-

ponents of F, i.e. FXX , FY Y and FXY are meant to capture the type of joint structure

which we would like to observe in Σ. This construction will be play a central role in our

discussion of CCA in the HDLSS setting.

5.2 HDLSS Asymptotics of CCA

In Section 5.1 our discussion primarily focused on studying the asymptotic behav-

ior of the sample covariance (SXX and SY Y ) and cross-covariance (SXY ) matrices and

their eigenvalues and eigenvectors. In the following section we move our attention to-

ward studying the population, sample and sample kernel cross-correlation matrices in the

HDLSS setting. In Sections 5.2.1, 5.2.2 and 5.2.3 we introduce the population, sample

and kernel sample cross-correlation matrices. In Sections 5.2.5 and 5.2.6 we study the

asymptotic behavior of the sample and sample kernel cross-correlation matrices, respec-

tively, in the HDLSS setting.

5.2.1 The Population Cross-Correlation Matrix

Recall from Section 2.1 that the canonical correlations and directions can be found

by solving the generalized eigenvalue problem

ΣXY Σ−1
Y Y ΣY XwX = ρ2

HΣXXwX .

An alternative representation of the above problem which is easier to study and allows us

to solve for the canonical correlations and vectors simultaneously is the cross-correlation

matrix which we now derive. Beginning with the generalized eigenvalue problem above
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we have

ΣXY Σ−1
Y Y ΣY XΣ

− 1

2

XX(Σ
1

2

XXwX) = ρ2
HΣ

1

2

XX(Σ
1

2

XXwX).

Letting w∗
X = Σ

1

2

XXwX and multiplying the left and right-hand sides by Σ
− 1

2

XX gives us

Σ
− 1

2

XXΣXY Σ−1
Y Y ΣY XΣ

− 1

2

XXw∗
X = ρ2

Hw∗
X .

The matrix RXY = Σ
− 1

2

XXΣXY Σ
− 1

2

Y Y , is commonly referred to as the population cross-

correlation matrix. Substituting in RXY we have

RXYRY Xw∗
X = ρ2

Hw∗
X .

Put in this form it can be seen that the SVD of the cross-correlation matrix provides

us with both the canonical correlation ρH and the scaled, canonical vectors w∗
X and w∗

Y

(in contrast to the unscaled canonical vectors wX and wY ). Both notions are useful for

understanding the theory developed in Section 5.2.5.

Finding the sample counterpart of the cross-correlation matrix is not as straightfor-

ward. Because of the fact that we have d ≫ n the covariance matrices SXX and SY Y

are singular and therefore cannot be directly inverted, we deal with this by using an

approach motivated by our previous discussion of regularized CCA as well as kernels and

the kernel trick.

5.2.2 The Sample Cross-Correlation Matrix

Recall that the Lagrangian of the regularized CCA problem (see (2.21) in Section 2.3)

is

L(ρX , ρY , ŵX , ŵY ) =
1

n
ŵT

XXTYŵY −
ρX

2
(
1

n
ŵT

XXTXŵX + κŵT
XŵX − 1)

− ρY

2
(
1

n
ŵT

Y YTYŵY + κŵT
Y ŵY − 1),
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where ρX and ρY are Lagrange multipliers and κ is the regularization parameter. The

hats are meant to denote the respective variables sample counterpart.

Recall from our discussion in Section 2.3 on RCCA that the solution to the above

optimization problem leads to the generalized eigenvalue problem

SXY (SY Y + κIn)−1SY XŵX = ρ2
H(SXX + κIn)ŵX .

In a similar fashion to our calculation of the population cross-correlation matrix we have

for the sample counterpart that

RXY RY Xŵ∗
X = ρ̂ŵ∗

X ,

where RXY = (SXX + κIn)−
1

2SXY (SY Y + κIn)−
1

2 is the sample cross-correlation matrix

and ŵ∗
X = (SXX + κIn)

1

2 ŵX and ŵ∗
Y = (SY Y + κIn)

1

2 ŵY are scaled sample canonical

vectors.

5.2.3 The Sample Kernel Cross-Correlation Matrix

Because we are letting the number of dimensions d go to infinity, rather than only

looking at the sample cross-correlation matrix it will also be useful to look at its kernelized

variant since n in this setting is fixed.

Recall that because ŵX and ŵY fall into the span of the column spaces of X and Y

respectively, they can be re-written as

ŵX = XT αX

ŵY = YT αY .
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The Lagrangian is thus modified to be

L(ρX , ρY , αX , αY ) = αT
X

1

n
XXTYYT αY −

ρX

2
(αT

X

1

n
XXTXXT αX + καT

XXXT αX − 1)

− ρY

2
(αT

Y

1

n
YYTYYT αY + καT

Y YYT αY − 1)

= αT
XKXKY αY −

ρX

2
(αT

XK2
XαX + καT

XKXαX − 1)

− ρY

2
(αT

Y K2
Y αY + καT

Y KT αY − 1),

where KX = 1
n
XXT and K = 1

n
YYT (in the HDLSS literature these matrices are

sometimes referred to as the dual sample covariance matrices). Note that this particular

representation of the Lagrangian corresponds to the regularized KCCA problem with

αT
X(K2

X + κKX)αX = 1 as the constraint rather than αT
X(K2

X + κIn)αX = 1 which was

discussed in Section 3.3. Continuing, we know that ρH = ρX = ρY and that the solutions

to αX and αY are

αX =
1

ρH
(K2

X + κIn)−1KY αY ,

αY =
1

ρH
(K2

Y + κIn)−1KXαX .

The derivative of the Lagrangian with respect to αX is

∂L

∂αX

= KXKY αY − ρH(KX + κIn)KXαX = 0.

Plugging the solution for αY into the above equation and re-arranging terms gives us

KXKY (KY + κIn)−1KXαX = ρ2
H(KX + κIn)KXαX

Letting α∗
X = K

1

2

X(KX + κIn)
1

2 αX and re-arranging terms we have

KXK
1

2

Y (KY + κIn)−1K
1

2

Y K
1

2

X(KX + κIn)−
1

2 α∗
X = ρ2

HK
1

2

X(KX + κIn)
1

2 α∗
X .
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Finally, multiplying both sides by (KX + κIn)−
1

2K
− 1

2

X gives us

(KX + κIn)−
1

2K
1

2

XK
1

2

Y (KY + κIn)−1K
1

2

Y K
1

2

X(KX + κIn)−
1

2 α∗
X = ρ2

Hα∗
X . (5.8)

Letting RK
Y X = (KY + κIn)−

1

2K
1

2

Y K
1

2

X(KX + κIn)−
1

2 , we can re-write (5.8) as

RK
XY RK

Y Xα∗
X = ρ2

Hα∗
X .

From this we can see that the SVD of RK
XY gives us the regularized canonical correlations

and scaled kernel canonical vectors. We will refer to this matrix as the sample kernel

cross-correlation matrix.

As we develop theoretical results for these various examples, in what follows we assume

that the regularization parameter κ appears in the asymptotic form

κ ∼ dγ,

in the sense that κ
dγ → c ∈ (0,∞) as d → ∞, where γ ≥ 0. The regularization pa-

rameter plays a critical role in the consistency and strong inconsistency of the canonical

correlations and vectors depending on the value of γ.

5.2.4 Population Models

In order to better understand the behavior of CCA in the HDLSS setting, we consider

several population models meant to capture a broad range of behaviors in the marginal

and joint distributions of the data. As in Lee (2007) we assume for the sake of notational

simplicity that d = dX = dY .

1. Uncorrelated Spiked Covariance Model (Model 1). The factor matrices (see

Section 5.1.2, Remark 5.1.1 for a discussion on factor matrices) are FXX = FY Y =

diag(dα, 1, . . . , 1) and FXY = diag(0, . . . , 0). This model is meant to study the
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behavior of CCA when there is no correlation between data sets.

2. Spiked Covariance/Cross-Covariance Model (Model 2). We consider two

parameterizations of this model (which give different results) that we will refer to

as S1 and S2. These models explore the effect of relative signal strength from the

spike in the covariance matrix relative to the spike in the cross-covariance matrix.

S1: FXX = FY Y = diag(dα, 1, . . . , 1) and FXY = diag(dαβ, 0, . . . , 0).

S2: FXX = FY Y = diag(dα + dβ, 1, . . . , 1) and FXY = diag(dβ, 0, . . . , 0).

3. Constant Covariance/Spiked Cross-Covariance Model (Model 3). FXX =

FXX = diag(1, . . . , 1) and FXY = diag(dα, 0, . . . , 0). This model explores the effect

of having a spike in only the cross-covariance matrix.

We now provide some details related to the eigenvalues, canonical correlations and canon-

ical vectors for each of these population models.

For the purposes of our calculations we re-express the (centered) data matrices X and

Y based on their joint distribution as

(
X Y

)
=

(
ZX ZY

)



FXX FXY

FY X FY Y


 =

(
ZXFXX + ZY FY X ZY FY Y + ZXFXY

)
,

where ZX = (zx1, . . . , zxd)(n×d) and ZY = (zy1, . . . , zyd)(n×d).

1. Model 1

X =

(
dαzi

x1 zi
x2 · · · zi

xd

)n

i=1

Y =

(
dαzi

y1 zi
y2 · · · zi

yd

)n

i=1

.

In this model we have that ΣXX = ΣY Y = diag(d2α, 1, . . . , 1) and ΣXY = 0. The

eigenvalues of ΣXX and ΣY Y are λ1
X = λ1

Y = d2α and λi
X = λi

Y = 1, i = 2, . . . , d.
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The corresponding cross-correlation matrix is

RXY = diag(0, . . . , 0).

Under this model framework the canonical correlations are all 0 and the scaled

canonical vectors are any orthonormal basis.

2. Model 2

S1:

X =

(
dαzi

x1 + dαβzi
y1 zi

x2 · · · zi
xd

)n

i=1

Y =

(
dαzi

y1 + dαβzi
x1 zi

y2 · · · zi
yd

)n

i=1

.

In this model we have ΣXX = ΣY Y = diag(d2α + d2αβ, 1, . . . , 1) and ΣXY =

diag(2dα(1+β), 0, . . . , 0). The eigenvalues of ΣXX and ΣY Y are λ1
X = λ1

Y =

d2α + d2αβ and λi
X = λi

Y = 1, i = 2, . . . , d. The corresponding population

cross-correlation matrix is

RXY = diag

(
2dα(1+β)

d2α + d2αβ
, 0, . . . , 0

)
.

This is the same population model that was used by Lee (2007). The leading

canonical correlation in this model converges to 1 if and only if β = 1 and

it converges to 0 otherwise. If the leading canonical correlation converges to

1 then the leading scaled canonical vectors are w∗1
X = w∗1

Y = (1, 0, . . . , 0)T

and the remaining scaled canonical vectors are any orthonormal basis which is

orthogonal to w∗1
X and w∗1

Y . If the leading canonical correlation converges to

0 then the canonical vectors in both the X and Y spaces are any orthonormal

basis.
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In some sense β can be thought of as controlling the strength of the signal

from the joint distribution relative to the marginal distributions. If β = 1 then

the signal from the joint distribution is as strong as the signal of the marginal

distributions. If β 6= 1 then, asymptotically, the signal of the joint distribution

is dominated by the signal from one or both of the marginal distributions.

S2:

X =

(
(dα + dβ)zi

x1 + dβzi
y1 zi

x2 · · · zi
xd

)n

i=1

Y =

(
(dα + dβ)zi

y1 + dβzi
x1 zi

y2 · · · zi
yd

)n

i=1

.

In this model we have ΣXX = ΣY Y = diag((dα + dβ)2 + d2β, 1, . . . , 1) and

ΣXY = diag(2dβ(dα + dβ), 0, . . . , 0). The eigenvalues of ΣXX and ΣY Y are

λ1
X = λ1

Y = (dα +dβ)2 +d2β and λi
X = λi

Y = 1, i = 2, . . . , d. The corresponding

cross-correlation matrix is

RXY = diag

(
2dβ(dα + dβ)

(dα + dβ)2 + d2β
, 0, . . . , 0

)
.

Note that when α > β the leading population canonical correlation converges

to 0 and if β > α then this value converges to 1. If α = β then the canonical

correlation value is equal to 4
5
. In some sense α can be thought of as the noise

parameter and β the signal parameter, i.e. if there is more signal than noise,

as the dimensions go to infinity the signal can still be detected.

If β > α, i.e. the leading canonical correlation converges to 1, then w∗1
X =

w∗1
Y = (1, 0, . . . , 0)T and the remaining canonical vectors are any orthonormal

basis which is orthogonal to w∗1
X and w∗1

Y . Otherwise if α > β then the

canonical vectors are any orthonormal basis.
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3. Model 3

X =

(
zi

x1 + dαzi
y1 zi

x2 · · · zi
xd

)n

i=1

Y =

(
zi

y1 + dαzi
x1 zi

y2 · · · zi
yd

)n

i=1

.

In this model we have ΣXX = ΣY Y = diag(1+d2α, 1, . . . , 1) and ΣXY = diag(2dα, 0, . . . , 0).

The eigenvalues of ΣXX and ΣY Y are λ1
X = λ1

Y = 1 + d2α and λi
X = λi

Y = 2, . . . , d.

The associated cross-covariance matrix for this population model is

RXY = diag

(
2dα

1 + d2α
, 0, . . . , 0

)
.

The leading canonical correlation is equal to 1 only when α = 0, i.e. when there

is no spike present, and is 0 otherwise. If the leading canonical correlation is equal

to 1 then w∗1
X = w∗1

Y = (1, 0, . . . , 0)T and the remaining canonical vectors are any

orthonormal basis which is orthogonal to w∗1
X and w∗1

Y . If the leading canonical

correlation converges to 0 then the canonical vectors are any orthonormal basis.

Remark 5.2.1. We had also originally considered a “Spiked Covariance/Constant Cross-

Covariance Model”, where the factor matrices were structured as, FXX = FY Y =

diag(dα, 1, . . . , 1) and FXY = diag(1, . . . , 1). However, what we found was that this

resulted in exactly the same joint covariance matrix Σ as in Model 3. This happened

because the factor matrix F did not correspond to the matrix square root Σ
1

2 , which is

unique. This can be seen by the following: let

Σ = VΛVT ,

be the eigendecomposition of Σ. The matrix square root of Σ is defined as Σ
1

2 = VΛ
1

2VT ,

which, provided Σ is a positive semi-definite matrix, is unique.

138



Let B be any orthonormal basis, we then have that

Σ = VΛVT

= VΛ
1

2BVTVBTΛ
1

2VT

= FFT ,

where F = VΛ
1

2BVT . In general the matrix F will not be symmetric, however, if the

matrix B is a permutation matrix, then the rows of Λ
1

2 will be reordered and F will be

symmetric. The result is that without closer inspection the matrix F may appear to be

the matrix square root, while in reality it is not.

Consider the following: let F be the factor matrix associated with Model 3 and P a

permutation matrix, then there exists a permutation such that

Σ =




1 0 · · · 0 dα 0 · · · 0

0 1 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 0

dα 0 · · · 0 1 0 · · · 0

0 0 · · · 0 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1




PPT




1 0 · · · 0 dα 0 · · · 0

0 1 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 0

dα 0 · · · 0 1 0 · · · 0

0 0 · · · 0 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1




139



=




dα 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 0

1 0 · · · 0 dα 0 · · · 0

0 0 · · · 0 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1







dα 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 0

1 0 · · · 0 dα 0 · · · 0

0 0 · · · 0 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1




.

From this it can be seen that rearranging the rows of F does not effect the structure of

Σ. This is why the behavior of the Spiked Covariance/Constant Cross-Covariance Model

does not differ from Model 3.

5.2.5 Asymptotics of the Sample Cross-Correlation Matrix

In this section we study the HDLSS asymptotics of the sample canonical correlations

and vectors via the sample cross-correlation matrix discussed in Section 5.2.2. However,

before we begin looking at the sample cross-correlation matrix it is necessary to first

study the asymptotic behavior of the sample covariance and cross-covariance matrices,

SXX , SY Y and SXY as d → ∞. Lemma 5.2.2 provides some results about the sam-

ple covariance and cross-covariance matrices that will be needed in order to study the

asymptotic behavior of the sample cross-correlation matrix.

Let the ijth entry of SXX(d) be denoted by sij

xx(d) and the ijth entry of SXY (d) be

denoted by sij

xy(d), where d is the dimension of the matrix. Define λ1
X to be the leading

eigenvalue of the population covariance matrix ΣXX . The value of λ1
X will depend on the

population model (see Section 5.2.4 for details). Let

λ̃1
X = lim

d→∞

1

λ1
X

s11
xx,
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λ̃1
Y = lim

d→∞

1

λ1
X

s11
yy,

λ̃1
XY = lim

d→∞

1

λ1
X

s11
xy.

The values of λ̃1
X , λ̃1

Y and λ̃1
XY will depend on the population model. Note that λ̃1

X ,

λ̃1
Y and λ̃1

XY correspond to the limiting eigenvalues or singular value, respectively of the

matrices 1
λ1

X

SXX , 1
λ1

X

SY Y and 1
λ1

X

SXY . From here on we suppress the subscript (d).

In Lemma 5.2.2 we will show that

1

λ1
X

s11
xx

F→ λ̃1
X ,

1

λ1
X

s11
yy

F→ λ̃1
Y ,

1

λ1
X

s11
xy

F→ λ̃1
XY ,

1

λ1
X

sij
xx

p→ 0, i 6= j,

1

λ1
X

sij
yy

p→ 0, i 6= j,

1

λ1
X

sij
xy

p→ 0, i 6= j,

where
F→ denotes convergence in distribution and

p→ denotes convergence in probability.

Below we provide a summary of the values taken on by λ̃1
X , λ̃1

Y and λ̃1
XY for each of

the population models. Calculations showing the convergence to each of these quantities

is given in the proof of Lemma 5.2.2. An interesting point is that in those circumstances

where the population canonical correlation converges to 1 we have that λ̃1
X = λ̃1

Y = λ̃1
XY .

In contrast, when the population canonical correlation converges 0, these quantities are

not necessarily equal.

Model 1:

λ̃1
X =

1

n
zT

x1zx1,
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λ̃1
Y =

1

n
zT

y1zy1,

λ̃1
XY =

1

n
zT

x1zy1. (5.9)

Model 2:

1. S1: We have three cases here: β = 1, β > 1 and β < 1, we will refer to these

as S1 case I, S1 case II and S1 case III.

S1 case I:

λ̃1
X = λ̃1

Y = λ̃1
XY =

1

2n
(zx1 + zy1)

T (zx1 + zy1). (5.10)

S1 case II:

λ̃1
X =

1

n
zT

y1zy1,

λ̃1
Y =

1

n
zT

x1zx1,

λ̃1
XY =

1

n
zT

x1zy1. (5.11)

S1 case III:

λ̃1
X =

1

n
zT

x1zx1,

λ̃1
Y =

1

n
zT

y1zy1,

λ̃1
XY =

1

n
zT

x1zy1. (5.12)

2. S2: We have two cases here when α > β and when α < β, we will refer to

these as S2 case I and S2 case II.

S2 case I:

λ̃1
X =

1

n
zT

x1zx1,
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λ̃1
Y =

1

n
zT

y1zy1,

λ̃1
XY =

1

n
zT

x1zy1. (5.13)

S2 case II:

λ̃1
X = λ̃1

Y = λ̃1
XY =

1

2n
(zx1 + zy1)

T (zx1 + zy1). (5.14)

Model 3:

λ̃1
X =

1

n
zT

y1zy1,

λ̃1
Y =

1

n
zT

x1zx1,

λ̃1
XY =

1

n
zT

x1zy1. (5.15)

Lemma 5.2.2. Under the population models described in Section 5.2.4 we have the fol-

lowing behavior in the covariance and cross covariance matrices as d→∞

1.

1

λ1
X

SXX
F→ diag

(
λ̃1

X , 0, . . . , 0
)

, (5.16)

and similar results hold for SY Y . The value of λ̃1
X and λ̃1

Y will depend on the

population model.

2.

1

λ1
X

SXY
F→ diag

(
λ̃1

XY , 0, . . . , 0
)

, (5.17)

where the value of λ̃1
XY depends on the population model.

Before going into the proof of Lemma 5.2.2 we will need the following results

Proposition 5.2.3. Let u, w, z ∼ Nn(0, In), where u, w and z are independent of one

another, then

Cov(wTu, zTu) = n(n + 2), (5.18)
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Cov(wTw,wTz) = 3n(n + 4). (5.19)

Proof. We begin by showing the equality in (5.18),

Cov(wTu, zTu) = Cov(
n∑

i=1

wiui,
n∑

i=1

ziui)

=
n∑

i=1

Cov(wiui, ziui) + 2
∑

j<k

Cov(wjuj, zkuk)

=
n∑

i=1

(
E(wiziu

2
i )

2 − [E(wiziu
2
i )]

2
)

+ 2
n∑

j<k

(
E(wjujzkuk)

2 − [E(wjujzkuk)]
2
)

=
n∑

i=1

Ew2
i Ez2

i Eu4
i + 2

∑

j<k

Ew2
jEu2

jEz2
kEu2

k

= n(n + 2).

Next we show the equality in (5.19)

Cov(wTw,wTz) = Cov

(
n∑

i=1

w2
i ,

n∑

i=1

wizi

)

=
n∑

i=1

Cov(w2
i , wizi) + 2

∑

j<k

Cov(w2
j , wkzk)

=
n∑

i=1

(
E(w3

i zi)
2 −

[
E(w3

i zi)
]2)

+ 2
∑

j<k

(
E(w2

jwkzk)
2 −

[
E(w2

jwkzk)
]2)

=
n∑

i=1

Ew6
i Ez2

i + 2
∑

j<k

Ew4
jEw2

kEz2
k

= 3n(n + 4)

We are now ready to prove Lemma 5.2.2.

Proof. For each of the population models described in Section 5.2.4 we first show

1

λ1
X

SXX
F→ diag

(
λ̃1

X , 0, . . . , 0
)
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as d→∞ and then

1

λ1
X

SXY
F→ diag(λ̃1

XY , 0, . . . , 0),

as d→∞.

1. Model 1: Recall that in this population model we have no cross-covariance term

and the leading population canonical correlation is always equal to 0. Furthermore,

as we will see below, the limiting quantities λ̃1
X , λ̃1

Y and λ̃1
XY are equal to different

random variables. Under this model

X = (dαzx1, zx2, . . . , zxd)

Y = (dαzy1, zy2, . . . , zyd) ,

from which we have

s11
xx =

d2α

n
zT

x1zx1,

s1i
xx = si1

xx =
dα

n
zT

x1zxi, i = 2, . . . , d,

sij
xx = sji

xx =
1

n
zT

xizxj, i, j > 1

and

s11
xy =

d2α

n
zT

x1zy1,

s1i
xy =

dα

n
zT

x1zyi, i = 2, . . . , d,

si1
xy =

dα

n
zT

xizy1, i = 2, . . . , d,

sij
xy =

1

n
zT

xizyj, i, j > 1.
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We begin by looking at the behavior of the scaled covariance matrix 1
λ1

X

SXX . Re-

calling that λ1
X = d2α a direct calculation shows that

1

λ1
X

s11
xx =

1

d2α
d2αzT

x1zx1

= zT
x1zx1.

We now show that the remaining elements of 1
λ1

X

SXX converge to 0. We begin by

looking at 1
λ1

X

s1i
xx.

P

(∣∣∣∣
1

λ1
X

s1i
xx

∣∣∣∣ > τ

)
≤ Var(zT

x1zxi)

τ 2n2d2α

=
1

τ 2nd2α

→ 0.

Similar calculations show us that the remaining elements of the scaled covariance

matrix converge to 0. Putting this together we have

1

λ1
X

SXX
F→ diag(zT

x1zx1, 0, . . . , 0). (5.20)

Similar calculations give us

1

λ1
X

SY Y
F→ diag(zT

y1zy1, 0, . . . , 0). (5.21)

The behavior of the scaled cross-covariance matrix 1
λ1

X

SXY is quite similar to that

of the scaled covariance matrix. The leading term, 1
λ1

X

s11
xy can be calculated directly

as

1

λ1
X

s11
xy =

1

d2α
d2αzT

x1zy1
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= zT
x1zy1.

Similar calculations as in the case of the scaled covariance matrix show that the

remaining elements of 1
λ1

X

SXY converge to 0. Putting this together gives us

1

λ1
X

SXY
F→ diag(zT

x1zy1, 0, . . . , 0). (5.22)

Finally, from (5.20), (5.21) and (5.22) we have

λ̃1
X =

1

n
zT

x1zx1,

λ̃1
Y =

1

n
zT

y1zy1,

λ̃1
XY =

1

n
zT

x1zy1,

as in (5.9).

2. Model 2: Under this population model we have two scenarios which we consider,

models S1 and S2.

S1: Recall that under this population model the population canonical correla-

tion converges 1 only when β = 1 and converges to 0 otherwise. An interesting

observation is that when β = 1 we have that λ̃1
X = λ̃1

Y = λ̃1
XY . When β 6= 1

we see that these quantities all correspond to different random variables. In

this population model we have that

X =
(
dαzx1 + dαβzy1, zx2, . . . , zxd

)
,

Y =
(
dαzy1 + dαβzx1, zy2, . . . , zyd

)
.
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From which it can be seen that

s11
xx =

1

n
(dαzx1 + dαβzy1)

T (dαzx1 + dαβzy1),

s1i
xx = si1

xx =
1

n
(dαzx1 + dαβzy1)

Tzxi, i = 2, . . . , d,

sij
xx = sji

xx =
1

n
zT

xizxj,

and

s11
xy =

1

n
(dαzx1 + dαβzy1)

T (dαzy1 + dαβzx1),

s1i
xy =

1

n
(dαzx1 + dαβzy1)

Tzyi, i = 2, . . . , d,

si1
xy =

1

n
(dαzy1 + dαβzx1)

Tzxi, i = 2, . . . , d,

sij
xy =

1

n
zT

xizyj, i, j > 1.

Now we will show the convergence of the components of the covariance and

cross-covariance matrices to their respective quantities as d → ∞. We con-

sider three cases, β = 1, β < 1 and β > 1 (recall that λ1
X = d2α + d2αβ).

β = 1: In this case we can calculate directly the value of λ̃1
X = 1

2n
(zx1 +

zy1)
T (zx1 + zy1)

1

λ1
X

s11
xx =

1

n(d2α + d2αβ)
(dαzx1 + dαβzy1)

T (dαzx1 + dαβzy1)

=
1

2n
(zx1 + zy1)

T (zx1 + zy1)

F
=

χ2
n

n
,

where χ2
n denotes the Chi-squared distribution with n degrees of freedom.

Similar calculations give us λ̃1
Y = 1

2n
(zx1 + zy1)

T (zx1 + zy1).
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β < 1: Here we show that λ̃1
X = 1

n
zT

x1zx1 (similar calculations give us λ̃1
Y =

1
n
zT

y1zy1)

P

(∣∣∣∣
1

λ1
X

s11
xx −

zT
x1zx1

n

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

d2α + d2αβ
s11

xx −
zT

x1zx1

n

)

=
1

τ 2n2(d2α + d2αβ)2
Var(d2αzT

x1zx1 − (d2α + d2αβ)zT
x1zx1 + d2αβzT

y1zy1

+ 2dα(1+β)zT
x1zy1)

=
1

τ 2n2(d2α + d2αβ)2

[
d4αβVar(zT

x1zx1) + d4αβVar(zT
y1zy1) + 4d2α(1+β)Var(zT

x1zy1)

−4d2αβ+α(1+β)Cov(zT
x1zx1, z

T
x1zy1) + 4d2αβ+α(1+β)Cov(zT

y1zy1, z
T
x1zy1)

]

=
4(d4αβ + d2α(1+β))

τ 2n(d2α + d2αβ)2

→ 0.

Where we have convergence to 0 as the order of the terms in the numerator,

d4αβ and d2α(1+β) are less than d4α since β < 1.

β > 1: The calculation in this case is similar to when β < 1 but now λ̃1
X =

1
n
zT

y1zy1 and λ̃1
Y = 1

n
zT

x1zx1 Next we show that 1
λ1

X

s1i
xx → 0, i = 2, . . . , d.

P

(∣∣∣∣
1

λ1
X

s1i
xx

∣∣∣∣ > τ

)

≤ 1

τ 2(d2α + d2αβ)2
Var(s1i

xx)

=
1

τ 2(d2α + d2αβ)2
Var(dαzT

x1zxi + dαβzT
y1zxi)

=
1

τ 2(d2α + d2αβ)2

[
d2αVar(zT

x1zxi) + d2αβVar(zT
y1zxi)
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+2dα(1+β)Cov(zT
x1zxi, z

T
y1zxi)

]

=
1

τ 2n(d2α + d2αβ)
+

2(n + 2)

τ 2n(d
α
2
(3−β) + d

α
2
(3β−1))2

→ 0

Similar calculations give us 1
λ1

X

zT
xizxj → 0, as d → ∞ for i, j > 1. Putting

these results together we have

1

λ1
X

SXX
F→ diag(λ̃1

X , 0, . . . , 0),

where λ̃1
X depends on the value β.

Next we look at the behavior of the elements of SXY when β = 1 and when

β 6= 1.

β = 1: As was the case with the covariance matrix the cross-covariance matrix

can be calculated directly giving us λ̃1
XY = 1

2n
(zx1 + zy1)

T (zx1 + zy1)

1

λ1
X

s11
xy =

1

n(d2α + d2αβ)
(dαzx1 + dαβzy1)

T (dαzy1 + dαβzx1)

=
1

2n
(zx1 + zy1)

T (zx1 + zy1)

d
=

χ2
n

n
.

β 6= 1: When β 6= 1 we have that λ̃1
XY = 1

n
zT

x1zy1.

P

(∣∣∣∣
1

λ1
X

s11
xy −

zT
x1zy1

n

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

d2α + d2αβ
s11

xy −
zT

x1zy1

n

)

=
1

n2τ 2(d2α + d2αβ)2
Var(dα(1+β)zT

x1zx1 + dα(1+β)zT
y1zy1
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+ (d2α + d2αβ)zT
x1zy1 − (d2α + d2αβ)zT

x1zy1)

=
4nd2α(1+β)

n2τ 2(d2α + d2αβ)2

=
4

nτ 2(dα(1−β) + dα(β−1))2

→ 0

Similar calculations for β > 1 gives us λ̃1
XY = 1

n
zT

x1zy1. Next we show that

1
λ1

X

s1i
xy → 0,

P

(∣∣∣∣
1

λ1
X

s1i
xy

∣∣∣∣ > τ

)

≤ 1

(d2α + d2αβ)2
Var(s1i

xy)

=
1

τ 2n2(d2α + d2αβ)2
Var(dαzT

x1zyi + dαβzT
y1zyi)

=
1

τ 2n2(d2α + d2αβ)2

[
d2αVar(zT

x1zyi) + d2αβVar(zT
y1zyi)

+2dα(1+β)Cov(zT
x1zyi, z

T
y1zyi)

]

=
1

τ 2n(d2α + d2αβ)
+

2(n + 2)

τ 2n(d
α
2
(3−β) + d

α
2
(3β−1))2

→ 0.

Similar calculations are used to show that 1
λ1

X

si1
xy,

1
λ1

X

sij
xy → 0. From this we

see that

1

λ1
X

SXY
F→ diag(λ̃1

XY , 0, . . . , 0),

where the value of λ̃1
XY depends on the value of α and β. Summarizing the

results of Model 2 S1 we have

β = 1:

λ̃1
X = λ̃1

Y = λ̃1
XY =

1

2n
(zx1 + zy1)

T (zx1 + zy1).
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β > 1:

λ̃1
X =

1

n
zT

y1zy1,

λ̃1
Y =

1

n
zT

x1zx1,

λ̃1
XY =

1

n
zT

x1zy1.

β < 1:

λ̃1
X =

1

n
zT

x1zx1,

λ̃1
Y =

1

n
zT

y1zy1,

λ̃1
XY =

1

n
zT

x1zy1.

S2: Recall that in this population model we have that the populations canon-

ical correlation converges to 1 when α < β and it converges to 0 when α > β.

As was discussed in Model 2 S1 the values of λ̃1
X , λ̃1

Y and λ̃1
XY will be equal

or not depending on whether the population canonical correlation converges

to 1 or 0. In this population model we have that

X = ((dα + dβ)zx1 + dβzy1, zx2, . . . , zxd),

Y = ((dα + dβ)zy1 + dβzx1, zy2, . . . , zyd).

From which it can be seen that

s11
xx =

1

n
((dα + dβ)zx1 + dβzy1)

T ((dα + dβ)zx1 + dβzy1),

s1i
xx = si1

xx =
1

n
((dα + dβ)zx1 + dβzy1)

Tzxi, i = 2, . . . , d,

sij
xx = sji

xx =
1

n
zT

xizxj,
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and

s11
xy =

1

n
((dα + dβ)zx1 + dβzy1)

T ((dα + dβ)zy1 + dβzx1),

s1i
xy =

1

n
((dα + dβ)zx1 + dβzy1)

Tzyi, i = 2, . . . , d,

si1
xy =

1

n
((dα + dβ)zy1 + dβzx1)

Tzxi, i = 2, . . . , d,

sij
xy =

1

n
zT

xizyj, i, j > 1.

We begin by showing the convergence of 1
λ1

X

s11
xx for the case α > β and α < β

(recall that λ1
X = (dα + dβ)2 + d2β).

α > β: Here we show that λ̃1
X = 1

n
zT

x1zx1 (and λ̃1
Y = 1

n
zT

y1zy1).

P

(∣∣∣∣
1

λ1
X

s11
xx −

zT
x1zx1

n

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

(dα + dβ)2 + d2β
s11

xx −
zT

x1zx1

n

)

=
1

τ 2n2((dα + dβ)2 + d2β)2
Var((dα + dβ)2zT

x1zx1 + d2βzT
y1zy1

+ 2dβ(dα + dβ)zT
x1zy1 − ((dα + dβ)2 + d2β)zT

x1zx1)

=
1

τ 2n2((dα + dβ)2 + d2β)2

[
d4β(Var(zT

x1zx1) + Var(zT
y1zy1))

+4d2β(dα + dβ)2Var(zT
x1zy1)− 4d3β(dα + dβ)Cov(zT

x1zx1, z
T
x1zy1)

+4d3β(dα + dβ)Cov(zT
y1zy1, z

T
x1zy1)

]

=
4n(d4β + d2β(dα + dβ))

τ 2n2((dα + dβ)2 + d2β)2

=
4(d4(β−α) + d2(β−α)(1 + dβ−α)2)

τ 2n((1 + dβ−α)2 + d2(β−α))2

→ 0.

α < β: Here we show that when α < β that λ̃1
X = 1

2n
(zx1 + zy1)

T (zx1 + zy1)
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(and λ̃1
Y = 1

2n
(zx1 + zy1)

T (zx1 + zy1)).

P

(∣∣∣∣
1

λ1
X

s11
xx −

(zx1 + zy1)
T (zx1 + zy1)

2n

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

λ1
X

s11
xx −

(zx1 + zy1)
T (zx1 + zy1)

2n

)

=
1

τ 2n2((dα + dβ)2 + d2β)2
Var

(
(dα + dβ)2zT

x1zx1 + d2βzT
y1zy1

+2dβ(dα + dβ)zT
x1zy1 −

((dα + dβ)2 + d2β)(zx1 + zy1)
T (zx1 + zy1)

2

)

=
1

4τ 2n2((dα + dβ)2 + d2β)2
Var

(
((dα + dβ)2 − d2β)zT

x1zx1

+(d2β − (dα + dβ)2)zT
y1zy1 − 2d2αzT

x1zy1

)

=
1

4τ 2n2((dα + dβ)2 + d2β)2

[
((dα + dβ)2 − d2β)2Var(zT

x1zx1)

+(d2β − (dα + dβ)2)2Var(zT
y1zy1) + 4d4αVar(zT

x1zy1)

−4d2α((dα + dβ)2 − d2β)Cov(zT
x1zx1, z

T
x1zy1)

−4d2α(d2β − (dα + dβ)2)Cov(zT
y1zy1, z

T
x1zy1)

]

=
2n[((dα + dβ)2 − d2β)2 + (d2β − (dα + dβ)2)2 + 2d4α]

4τ 2n2((dα + dβ)2 + d2β)2

=
((dα−β + 1)2 − 1)2 + (1− (dα−β + 1)2)2 + 2d4(α−β)

2τ 2n((dα−β + 1)2 + 1)2

→ 0.

Next we show that the remaining elements of 1
λ1

X

SXX go to zero as d → ∞.

We begin with s1i
xx

P

(∣∣∣∣
1

λ1
X

s1i
xx

∣∣∣∣ > τ

)

≤ 1

τ 2((dα + dβ)2 + d2β)2
Var(s1i

xx)

=
1

τ 2n2((dα + dβ)2 + d2β)2
Var((dα + dβ)zT

x1zxi + dβzT
y1zxi)

=
1

τ 2n2((dα + dβ)2 + d2β)2

[
(dα + dβ)2Var(zT

x1zxi) + d2βVar(zT
y1zxi)
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+2dβ(dα + dβ)Cov(zT
x1zxi, z

T
y1zxi)

]

=
1

τ 2n((dα + dβ)2 + d2β)
+

2(n + 2)

τ 2n((dα− 1

3
β + d

2

3
β)

3

2 + (dα−3β + d−2β)−
1

2 )2

→ 0.

The proof showing 1
λ1

X

sij
xx

p→ 0, i, j > 1 is similar. Putting these all together

we have that

1

λ1
X

SXX
F→ diag(λ̃1

X , 0, . . . , 0),

where λ̃1
X depends on the value α and β.

Next we study the behavior of the scaled cross-covariance matrix 1
λ1

X

SXY when

α > β and when α < β.

α > β: We begin by showing that when α > β we have λ̃1
XY = 1

n
zT

x1zy1.

P

(∣∣∣∣
1

λ1
X

s11
xy −

1

n
zT

x1zy1

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

λ1
X

s11
xy −

1

n
zT

x1zy1

)

=
1

τ 2n2((dα + dβ)2 + d2β)2
Var(dβ(dα + dβ)(zT

x1zx1 + zT
y1zy1)

+ ((dα + dβ)2 + d2β)zT
x1zy1 − ((dα + dβ)2 + d2β)zT

x1zy1)

=
1

τ 2n2((dα + dβ)2 + d2β)2
(dβ(dα + dβ))2(Var(zT

x1zx1) + Var(zT
y1zy1))

=
4n(dβ(dα + dβ))2

τ 2n2((dα + dβ)2 + d2β)2

=
4(dβ−α(1 + dβ−α))2

τ 2n((1 + dβ−α)2 + d2(β−α))2

→ 0.
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α < β: Next we show that for α < β λ̃1
XY = 1

2n
(zx1 + zy1)

T (zx1 + zy1).

P

(∣∣∣∣
1

λ1
X

s11
xy −

1

2n
(zx1 + zy1)

T (zx1 + zy1)

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

λ1
X

s11
xy −

1

2n
(zx1 + zy1)

T (zx1 + zy1)

)

=
1

4τ 2n2((dα + dβ)2 + d2β)2
Var

(
2dβ(dα + dβ)(zT

x1zx1 + zT
y1zy1)

+2((dα + dβ)2 + d2β)zT
x1zy1 − ((dα + dβ)2 + d2β)(zT

x1zx1 + zT
y1zy1)

−2((dα + dβ)2 + d2β)zT
x1zy1

)

=
1

4τ 2n2((dα + dβ)2 + d2β)2
d4α(Var(zT

x1zx1) + Var(zT
y1zy1))

=
4nd4α

4τ 2n2((dα + dβ)2 + d2β)2

=
d4(α−β)

τ 2n((dα−β + 1)2 + 1)2

→ 0.

Next we show that the remaining elements of 1
λ1

X

SXY converge to 0 as d goes

infinity. We begin by looking at s1i
xy, i = 2, . . . , d. Proof of convergence to 0

for the remaining elements follow along similar lines.

P

(∣∣∣∣
1

λ1
X

s1i
xy

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

λ1
X

s1i
xy

)

=
1

τ 2n2((dα + dβ)2 + d2β)2
Var((dα + dβ)zT

x1zyi + dβzT
y1zyi)

=
1

τ 2n2((dα + dβ)2 + d2β)2

[
(dα + dβ)2Var(zT

x1zyi) + d2βVar(zT
y1zyi)

2dβ(dα + dβ)Cov(zT
x1zyi, z

T
y1zyi)

]

=
1

τ 2n2((dα + dβ)2 + d2β)2

[
n((dα + dβ)2 + d2β) + 2n(n + 2)dβ(dα + dβ)

]

=
1

τ 2n((dα + dβ)2 + d2β)
+

2(n + 2)

τ 2n((dα− 1

3
β)

3

2 + (dα−3β + d−2β))2
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→ 0.

Putting all these results together we have

1

λ1
X

SXY
F→ diag(λ̃1

XY , 0, . . . , 0),

where the value of λ̃1
XY depends on α and β. We summarize the results from

Model 2 S2 below

α > β:

λ̃1
X =

1

n
zT

x1zx1,

λ̃1
Y =

1

n
zT

y1zy1,

λ̃1
XY =

1

n
zT

x1zy1.

α < β:

λ̃1
X = λ̃1

Y = λ̃1
XY =

1

2n
(zx1 + zy1)

T (zx1 + zy1).

3. Model 3: Recall that in this population model the population canonical correlation

always converges to 0 (with the exception of the trivial case where the parameter

α = 0). In this population model we have that

X = (zx1 + dαzy1, zx2, . . . , zxd),

Y = (zy1 + dαzx1, zy2, . . . , zyd).

From which it can be seen that

s11
xx =

1

n
(zx1 + dαzy1)

T (zx1 + dαzy1),
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s1i
xx = si1

xx =
1

n
(zx1 + dαzy1)

Tzxi, i = 2, . . . , d,

sij
xx = sji

xx =
1

n
zT

xizxj, i, j > 1,

and

s11
xy =

1

n
(zx1 + dαzy1)

T (zy1 + dαzx1),

s1i
xy =

1

n
(zx1 + dαzy1)

Tzyi, i = 2, . . . , d,

si1
xy =

1

n
(zy1 + dαzx1)

Tzxi, i = 2, . . . , d,

sij
xy =

1

n
zT

xizyj, i, j > 1.

We begin by looking at the scaled covariance matrix 1
λ1

X

SXX . Since the case for

α = 0 does not depend on the number of dimensions d we do not consider it in this

example. Turning our attention to α > 0 we show that λ̃1
X = zT

y1zy1.

P

(∣∣∣∣
1

λ1
X

s11
xx − zT

y1zy1

∣∣∣∣ > τ

)

≤ 1

τ 2
Var

(
1

λ1
X

s11
xx − zT

y1zy1

)

=
1

τ 2n2(1 + d2α)2
Var(zT

x1zx1 + 2dαzT
x1zy1)

=
2n(1 + 2d2α + 6(n + 4)dα)

τ 2n2(1 + d2α)2

→ 0.

Next we show that the remaining elements of 1
λ2

X

SXX converge to 0. We only show

1
λ1

X

s1i
xx → 0, i = 2, . . . , d, as the proofs for the remaining elements is quite similar.

P

(∣∣∣∣
1

λ1
X

s1i
xx

∣∣∣∣
)

≤ 1

τ 2
Var

(
1

λ1
X

s1i
xx

)
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=
1

τ 2n2(1 + d2α)2
Var(zT

x1zxi + dαzT
y1zxi)

n(1 + d2α + 2(n + 2)dα)

τ 2n2(1 + d2α)2

→ 0.

Putting these all together we have that

1

λ1
X

SXX
F→ diag(zT

y1zy1, 0, . . . , 0).

We now turn our focus to the scaled cross-covariance matrix 1
λ1

X

SXY . As the proof

for the cross-covariance matrix are quite similar to that of the covariance matrix

the details are omitted. We have that

1

λ1
X

SXY
F→ diag(zT

x1zy1, 0, . . . , 0).

Summarizing the results for Model 3 we have

λ̃1
X =

1

n
zT

y1zy1,

λ̃1
Y =

1

n
zT

x1zx1,

λ̃1
XY =

1

n
zT

x1zy1.

This completes our proof.

We now return to our discussion of the sample cross-correlation matrix RXY . With

the results of Lemma 5.2.2 we can now prove the following theorem.

Theorem 5.2.4. Under all the population models described in Section 5.2.4 we have

RXY
d→∞→ diag(r, 0, . . . , 0),
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where

r =
λ̃1

XY√
λ̃1

X + c
√

λ̃1
Y + c

,

and c = lim
d→∞

κ

λ1
X

∼ lim
d→∞

dγ

λ1
X

. The values of λ1
X , λ̃1

X , λ̃1
Y , λ̃1

XY and subsequently r depend

on the population model and the parameters α and β.

Corollary 5.2.5 follows directly from Theorem 5.2.4. Letting fR denote the density of the

sample correlation coefficient when the correlation is 0 (Anderson (2003))

fR =
Γ
[

1
2
n
]

Γ
[

1
2
(n− 1)

]√
π

(1−R2)
1

2
(n−3),

we have

Corollary 5.2.5. Let ρ1 and ρ̂1 denote the population and sample canonical correlations,

we then have

ρ̂1(d) →





1 if ρ1
d→∞→ 1 and κ

λ1
X

d→∞→ 0,

0 if ρ1
d→∞→ 0 or 1 and κ

λ1
X

d→∞→ ∞,

R if ρ1
d→∞→ 0 and κ

λ1
X

d→∞→ 0, R ∼ fR.

The results from Corollary 5.2.5 are summarized in Remark 5.2.8.

Remark 5.2.6. Note that in Corollary 5.2.5 when ρ
d→∞→ 1 we can make the additional

statement that ρ̂1 is either consistent or strongly inconsistent depending on the behavior

of κ
λ1

X

. A similar statement cannot be made about the remaining cases since the support

of R contains 0.

The results from Corollary 5.2.5 lead to the following theorem

Theorem 5.2.7. Assuming ρ1
d→∞→ 1 and κ

λ1
X

d→∞→ 0 then

angle(w1
X , ŵ1

X)
p→ 0,

angle(w1
Y , ŵ1

Y )
p→ 0.
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In Theorem 5.2.7 we consider only the case where ρ1 converges to 1 since in all other

cases no conclusive statement can be made about the convergence of the angle between

the population and sample canonical vectors. The reason for this is that the directions

found when ρ1 does not converge to 1 will be random in either the population and/or

sample canonical vectors. This can be seen by noting that either the population or sample

cross-correlation matrix will be equal to the matrix of 0’s. Therefore the set of left and

right singular vectors resulting from an SVD of the cross-correlation matrix can be any

orthonormal basis.

We now prove Theorem 5.2.4.

Proof. From Lemma 5.2.2 we have

1

λ1
X

SXX
d→∞→ diag(λ̃1

X , 0, . . . , 0),

1

λ1
X

SY Y
d→∞→ diag(λ̃1

Y , 0, . . . , 0),

1

λ1
X

SXY
d→∞→ diag(λ̃1

XY , 0, . . . , 0).

With this in mind we have

RXY = (SXX + κIn)−
1

2SXY (SY Y + κIn)−
1

2

= (SXX + κIn)−
1

2

(
1

λ1
X

)− 1

2
(

1

λ1
X

) 1

2

SXY

(
1

λ1
X

) 1

2
(

1

λ1
X

)− 1

2

(SY Y + κIn)−
1

2

=

(
1

λ1
X

SXX +
κ

λ1
X

In

)− 1

2
(

1

λ1
X

SXY

)(
1

λ1
X

SY Y +
κ

λ1
X

In

)− 1

2

d→∞→




λ̃1
X + c 0 · · · 0

0 c · · · 0

...
...

. . .
...

0 0 · · · c




− 1

2



λ̃1
XY 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0







λ̃1
Y + c 0 · · · 0

0 c · · · 0

...
...

. . .
...

0 0 · · · c




− 1

2

161



= diag


 λ̃XY√

λ̃1
X + c

√
λ̃1

X + c
, 0, . . . , 0


 ,

as we wanted to show.

Remark 5.2.8. We consider each of the population models separately.

Model 1: Note that under Model 1 ρ1 = 0 and does not depend on the value of d

or α. From (5.9) we have

r =
zT

x1zy1√
zT

x1zx1 + c
√

zT
y1zy1 + c

,

and so

ρ̂1
d→∞→





0 if c =∞,

R if c = 0.

Model 2:

1. S1 case I: Note that this case corresponds to conditions under which ρ1
d→∞→ 1.

From (5.10) we have

r =
(zx1 + zy1)

T (zx1 + zy1)

(zx1 + zy1)T (zx1 + zy1) + c
,

and so

ρ̂1
d→∞→





0 if c =∞,

1 if c = 0.

2. S1 case II and case III: These cases correspond to conditions under which

ρ1
d→∞→ 0. From (5.11) and (5.12) we have

r =
zT

x1zy1√
zT

x1zx1 + c
√

zT
y1zy1 + c

,
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and so

ρ̂1
d→∞→





0 if c =∞,

R if c = 0.

3. S2 case I: This case correspond to conditions under which ρ1
d→∞→ 0. From

(5.13) we have

r =
zT

x1zy1√
zT

x1zx1 + c
√

zT
y1zy1 + c

,

and so

ρ̂1
d→∞→





0 if c =∞,

R if c = 0.

4. S2 case II: This case corresponds to conditions under which ρ1
d→∞→ 1. From

(5.14) we have

r =
(zx1 + zy1)

T (zx1 + zy1)

(zx1 + zy1)T (zx1 + zy1) + c
,

and so

ρ̂1
d→∞→





0 if c =∞,

1 if c = 0.

Model 3: Note that under Model 3 ρ1 = 0 regardless of the value of d or α. From

(5.9) we have

r =
zT

x1zy1√
zT

y1zy1 + c
√

zT
x1zx1 + c

,

and so

ρ̂1
d→∞→





0 if c =∞,

R if c = 0.

We now turn out attention to the proof of Theorem 5.2.7.

Proof. The only population models which satisfy the assumptions of the theorem are

Model 2 S1 and Model 2 S2. Under these models and the assumptions made in the
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statement of theorem we have that the cross-correlation matrix

RXY
d→∞→ diag(1, 0, . . . , 0).

Let ŵ∗1
X = (1, 0, . . . , 0)T ∈ R

d×1 and W
∗(d−1)
X ∈ R

d×d−1 be any orthonormal basis orthog-

onal to ŵ∗1
X . Similarly, let ŵ∗1

Y = (1, 0, . . . , 0)T ∈ R
d×1 and W

∗(d−1)
Y ∈ R

d×d−1 be any

orthonormal basis orthogonal to ŵ∗1
Y . Letting R = diag(1, 0, . . . , 0) ∈ R

d×d we then have

that the SVD of RXY is

W∗
XRW∗T

Y ,

where W∗
X =

(
ŵ∗1

X W
∗(d−1)
X

)
and W∗

Y =

(
ŵ∗1

Y W
∗(d−1)
Y

)
. Thus we have that

the leading scaled canonical vectors are w∗1
X and w∗1

Y and the corresponding unscaled

canonical vectors are

w1
X = (SXX + κIn)−

1

2w∗1
X ,

w1
Y = (SY Y + κIn)−

1

2w∗1
Y .

Next in order to show that the sample canonical vectors converge to their population

counterpart as d → ∞ we show that the angle between them goes to 0. We begin by

calculating the cosine of the angle between the sample and population canonical vectors

〈w1
X , ŵ1

X〉 =
w∗1T

X Σ
− 1

2

XX(SXX + κIn)−
1

2 ŵ∗1
X√

w∗1T
X Σ−1

XXw∗1
X

√
ŵ∗1T

X (SXX + κIn)−1ŵ∗1
X

=
w∗1T

X

(
1

λ1
X

ΣXX

)− 1

2
(

1
λ1

X

SXX + κ
λ1

X

In

)− 1

2

ŵ∗1
X√

w∗1T
X

(
1

λ1
X

ΣXX

)−1

w∗1
X

√
ŵ∗1T

X

(
1

λ1
X

SXX + κ
λ1

X

In

)−1

ŵ∗1
X

d→∞→
(1, 0, . . . , 0)diag

((
1
2n

(zx1 + zy1)
T (zx1 + zy1)

)− 1

2 , 0, . . . 0
)

ŵ∗1
X

(
1
2n

(zx1 + zy1)T (zx1 + zy1)
)− 1

2

= (1, 0, . . . , 0)(1, 0, . . . , 0)T
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= 1.

Thus we have that

angle(w1
X , ŵ1

X) = arccos
(
〈w1

X , ŵ1
X〉
) d→∞→ 0

as we wanted to show.

5.2.6 Asymptotics of the Sample Kernel Cross-Correlation Ma-

trix

Using the sample kernel cross-correlation representation for analyzing the behavior of

CCA in the HDLSS setting has appeal in that the matrices KX and KY are composed of

the inner products between observations. We can exploit certain asymptotic properties

such as independence between observations or utilize other assumptions which we place

on the distribution of the data by letting d→∞ .

An important component in our analysis of the HDLSS behavior of CCA are the

measures of sphericity

ǫX ≡
Tr2(ΣXX)

dTr(Σ2)
=

(
∑d

i=1 λi
X)2

d
∑d

i=1(λ
i
X)2

and

ǫY ≡
Tr2(ΣY Y )

dTr(Σ2)
=

(
∑d

i=1 λi
Y )2

d
∑d

i=1(λ
i
Y )2

,

proposed by John John (1971) and John (1972) as the basis of a hypothesis test for the

equality of eigenvalues. Here λi
X and λi

Y , i = 1, . . . , d are the eigenvalues of ΣXX and

ΣY Y . Note that for ǫ denoting either ǫX or ǫY , the following inequalities always hold

1

d
≤ ǫ ≤ 1.
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Also note that ǫ = 1 only when all the eigenvalues are all equal.

Following the discussion of Jung and Marron (2009) we assume the ǫ-condition, i.e.

that ǫX , ǫY ≫ 1
d
, in the sense that

(dǫX)−1 =

∑d

i=1(λ
i
X)2

(
∑d

i=1 λi
X)2
→ 0 as d→∞

(dǫY )−1 =

∑d

i=1(λ
i
Y )2

(
∑d

i=1 λi
Y )2
→ 0 as d→∞. (5.23)

In the following lemma we will show that the following conditions are necessary in order

for the ǫ-condition to hold,

1. Model 1: 0 ≤ α < 1
2
.

2. Model 2:

S1: If β ≤ 1 then 0 ≤ α < 1
2
, and if β > 1 then 0 < α < 1

2β
.

S2: Either 0 ≤ α < β < 1
2

or 0 ≤ β < α < 1
2
.

3. Model 3: 0 ≤ α < 1
2
.

With this in mind we have the following lemma

Lemma 5.2.9. Assuming the ǫ-condition holds and letting λi
X and λi

Y , i = 1, . . . , n be the

eigenvalues of the population covariance matrices ΣXX and ΣY Y . Then the off diagonal

elements of the scaled kernel matrices, n∑d
i=1

λi
X

KX and n∑d
i=1

λi
Y

KY converge to 0 and the

diagonal elements converge to 1 as d→∞.

Proof. We consider each of the models described in Section 5.2.4 and the conditions un-

der which they satisfy the ǫ-condition separately. We present results for 1∑n
i=1

λi
X

KX only

as the proof for 1∑n
i=1

λi
Y

KY is exactly the same.

Model 1:
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We begin by showing that the off diagonal elements of the scaled kernel matrix converge

to zero in probability which we denote by
p→. We have for i 6= j, and by Chebyshev’s

inequality, that

P

(∣∣∣∣
1

d2α + d− 1
xT

i xj

∣∣∣∣ > τ

)

≤
Var

(
1

d2α+d−1
xT

i xj

)

τ 2

=
1

τ 2(d2α + d− 1)2

[
Var

(
d2αzi

x1z
j
x1

)
+ Var

(
d∑

k=2

zi
xkz

j
xk

)]

=
d4α + d− 1

τ 2(d2α + d− 1)2

p→ 0,

as d → ∞ for 0 ≤ α < 1
2
. Note that it is necessary that 0 ≤ α < 1

2
in order for

the ǫ-condition to hold. Also, in the inequality above Var(xT
i xj) = E(xT

i xj)
2 since

(
E(xT

i xj)
)2

= 0. Variance exploits the fact that we have independent components in the

zi
xk, k = 1, . . . d, i = 1, . . . , n so that the variance of the sums is the sum of the variances.

Also note that in the last equality above, the ratio, excluding the 1/τ 2 is the sum of

the squared eigenvalues over the sum of the eigenvalues squared, which is the exact form

of the ǫ-condition. As we will see, this behavior holds true throughout this proof.

Next we show that the diagonal elements converge to 1 as d→∞

P

(∣∣∣∣
1

d2α + d− 1
xT

i xi − 1

∣∣∣∣ > τ

)

≤
E
(

1
d2α+d−1

xT
i xi − 1

)2

τ 2

=
1

τ 2

[
Var

(
1

d2α + d− 1
xT

i xi − 1

)
+

(
E

(
1

d2α + d− 1
xT

i xi − 1

))2
]

=
1

τ 2

[
1

(d2α + d− 1)2

(
d4αVar

(
(zi

x1)
2
)

+
d∑

k=2

Var
(
(zi

xk)
2
)
)]

=
d4α + d− 1

τ 2(d2α + d− 1)2

p→ 0,
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as d→∞ for 0 ≤ α < 1
2
.

Model 2 (S1):

In a similar fashion to Model 1, we begin by showing that the off-diagonal elements

converge to zero

P

(∣∣∣∣
1

d2α + d2αβ + d− 1
xT

i xj

∣∣∣∣ > τ

)

≤
Var( 1

d2α+d2αβ+d−1
xT

i xj)

τ 2

=
1

τ 2(d2α + d2αβ + d− 1)2

[
Var

(
(dαzi

x1 + dαβzi
y1)(d

αzj
x1 + dαβzj

y1)
)

+ Var

(
d∑

k=2

zi
xkz

j
xk

)]

=
1

τ 2(d2α + d2αβ + d− 1)2

[
d4αVar(zi

x1z
j
x1) + d4αβVar(zi

y1z
j
y1)

+ dα(1+β)Var(zi
x1z

j
y1) + dα(1+β)Var(zi

y1z
j
x1) +

d∑

k=2

Var(zi
xkz

j
xk)

]

=
d4α + d4αβ + 2dα(1+β) + d− 1

τ 2(d2α + d2αβ + d− 1)2

p→ 0.

Recall that in the context of this population model the ǫ-condition requires that if β ≤ 1

then α < 1
2

or if β > 1 then α < 1
2β

, which in both cases allows for convergence to 0.

Next we show the convergence of the diagonal elements to 1.

P

(∣∣∣∣
1

d2α + d2αβ + d− 1
xT

i xi − 1

∣∣∣∣ > τ

)

≤
E
(

1
d2α+d2αβ+d−1

xT
i xi − 1

)2

τ 2

=
1

τ 2
E

[
1

d2α + d2αβ + d− 1

(
(dαzi

x1 + dαβzi
y1)

2 +
d∑

k=2

(zi
xk)

2

)
− 1

]2

=
1

τ 2

[
Var

(
1

d2α + d2αβ + d− 1

(
(dαzi

x1 + dαβzi
y1)

2 +
d∑

k=2

(zi
xk)

2

)
− 1

)

+

(
E

1

d2α + d2αβ + d− 1

(
(
dαzi

x1 + dαβzi
y1

)2
+

d∑

k=2

(zi
xk)

2

)
− 1

)2


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=
1

τ 2

[
d4α + d4αβ + 2d2α(1+β) + d− 1

(d2α + d2αβ + d− 1)2
+

(d2α + d2αβ + d− 1)2

(d2α + d2αβ + d− 1)2
− 1

]
p→ 0,

where the above convergence holds provided the ǫ-condition is satisfied.

Model 2 (S2):

As before we begin by showing the convergence of the off-diagonal elements to zero

P

(∣∣∣∣
1

(dα + dβ)2 + d2β + d− 1
xT

i xj

∣∣∣∣ > τ

)

≤
Var

(
1

(dα+dβ)2+d2β+d−1
xT

i xj

)

τ 2

=
1

τ 2((dα + dβ)2 + d2β + d− 1)2

[
Var

(
((dα + dβ)zi

x1 + dβzi
y1)((d

α + dβ)zj
x1 + dβzj

y1)

+
d∑

k=2

zi
xkz

j
xk

)]

=
1

τ 2((dα + dβ)2 + d2β + d− 1)2

[
Var

(
(dα + dβ)2zi

x1z
j
x1 + d2βzi

y1z
j
y1

+ d2β(dα + dβ)zi
x1z

j
y1 + dβ(dα + dβ)zi

y1z
j
x1

)
+

d∑

k=2

Var(zi
xkz

j
xk)

]

=
(dα + dβ)4 + d4β + 2d2β(dα + dβ)2 + d− 1

τ 2((dα + dβ)2 + d2β + d− 1)2

p→ 0,

provided the ǫ-condition hold, i.e. that either 0 ≤ α < β < 1
2

or 0 ≤ β < α < 1
2
.

Next we show that the diagonal elements converge to 1.

P

(∣∣∣∣
1

(dα + dβ)2 + d2β + d− 1
xT

i xi − 1

∣∣∣∣ > τ

)

≤
E
(

1
(dα+dβ)2+d2β+d−1

xT
i xi − 1

)2

τ 2

=
1

τ 2
E

[
1

(dα + dβ)2 + d2β + d− 1

(
((dα + dβ)zi

x1 + dβzi
y1)

2 +
d∑

k=2

(zi
xk)

2

)
− 1

]2

=
1

τ 2

[
1

(dα + dβ)2 + d2β + d− 1
Var

(
((dα + dβ)zi

x1 + dβzi
y1)

2 +
d∑

k=2

(zi
xk)

2

)
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+

(
1

(dα + dβ)2 + d2β + d− 1
E

(
((dα + dβ)zi

x1 + dβzi
y1)

2 +
d∑

k=2

(zi
xk)

2

)
− 1

)2



=
1

τ 2

[
(dα + dβ)4 + d4β + 2d2β(dα + dβ)2 + d− 1

((dα + dβ)2 + d2β + d− 1)2
+

(
(dα + dβ)2 + d2β + d− 1

(dα + dβ)2 + d2β + d− 1
− 1

)2
]

p→ 0,

In order for the ǫ-condition to be satisfied we need to have either 0 ≤ α < β < 1
2

or

0 ≤ β < α < 1
2
, from which the above convergence to 0 follows.

Model 3:

In a similar fashion to the previous proofs we begin by showing convergence of the off-

diagonal elements to 0

P

(∣∣∣∣
1

d2α + d
xT

i xj

∣∣∣∣ > τ

)

≤
Var

(
1

d2α+d
xT

i xj

)

τ 2

=
1

τ 2(d2α + d)2

[
Var

(
(zi

x1 + dαzi
y1)(z

j
x1 + dαzj

y1)
)

+ Var

(
d∑

k=2

zi
xkz

j
xk

)]

=
d4α + 2d2α + d

τ 2(d2α + d)2

p→ 0.

The above convergence to 0 holds provided the ǫ-condition is satisfied, i.e. that 0 ≤ α < 1
2
.

Next we show convergence of the diagonal elements to 1.

P

(∣∣∣∣
1

d2α + d
xT

i xj − 1

∣∣∣∣ > τ

)

≤
E
(

1
d2α+d

xT
i xj − 1

)2

τ 2

=
1

τ 2

[
1

(d2α + d)2
E

(
(zi

x1 + dαzy1)
2 +

d∑

k=2

(zi
xk)

2

)
− 1

]2

=
1

τ 2

[
Var

(
1

d2α + d

(
(zi

x1 + dαzy1)
2 +

d∑

k=2

(zi
xk)

2

)
− 1

)
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+

(
E

(
1

d2α + d

(
(zi

x1 + dαzy1)
2 +

d∑

k=2

(zi
xk)

2

))
− 1

)2



=
1

τ 2

[
d4α + 2d2α + d

(d2α + d)2
+

(
d2α + d

d2α + d
− 1

)2
]

p→ 0.

Putting all these results together we have that all the population models presented in

Section 5.2.4 that

1∑n

i=1 λi
X

KX
p→ In

1∑n

i=1 λi
Y

KY
p→ In.

The following theorems present conditions under which we have consistency or strong-

inconsistency in the canonical correlations. As we will see these results depend heavily

on the behavior of the regularization parameter κ ∼ dγ. Let ρi denote the population

canonical correlation, ρ̂i the sample canonical correlation, i = 1, . . . , n.

Theorem 5.2.10. Assume for each of the population models described in Section 5.2.4

that the parameters α and β satisfy the ǫ-condition (discussed in conjunction with Lemma

5.2.9. Based on the population models described above we have the following behavior in

the canonical correlations

lim
d→∞

ρ̂i =





0 if γ > 1,

1 if γ < 1.

1. Model 1: If γ > 1 then ρ̂1 is consistent and ρ̂i, i = 2, . . . , n are strongly inconsistent.

If γ < 1 then all ρ̂i’s are strongly inconsistent.

2. Model 2:

S1: If β = 1 and 0 ≤ α < 1
2
, then ρ̂1 is consistent if γ < 1 and ρ̂i, i = 2, . . . , n

are strongly inconsistent. If β 6= 1 and 0 ≤ α < 1
2β

then ρ̂i, i = 1, . . . , d are
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consistent if γ > 1 and are strongly inconsistent otherwise.

S2: If 0 ≤ α < β < 1
2

then ρ̂1 is consistent if γ < 1, ρ̂i, i = 2, . . . , n are

strongly inconsistent. If 0 ≤ β < α < 1
2

then all ρ̂i’s are consistent if γ > 1

and are all strongly-inconsistent otherwise.

3. Model 3: If α = 0, then ρ̂1 is consistent if γ < 1 and ρ̂i, i = 2, . . . , n are strongly

inconsistent. If α > 0 then all ρ̂i’s will be consistent if γ > 1 and will be strongly

inconsistent otherwise.

Proof. We begin by looking at the behavior of the dual cross-correlation matrix as d→

∞,

RK
XY = (KX + κIn)−

1

2K
1

2

XK
1

2

Y (KY + κIn)−
1

2

= (KX + κIn)−
1

2

(
d∑

i=1

λi
X

) 1

2
(

d∑

i=1

λi
X

)− 1

2

K
1

2

X

×K
1

2

Y

(
d∑

i=1

λi
Y

)− 1

2
(

d∑

i=1

λi
Y

) 1

2

(KY + κIn)−
1

2

=

(
1∑d

i=1 λi
X

KX +
κ∑d

i=1 λi
X

In

)− 1

2
(

1∑d

i=1 λi
X

KX

) 1

2

×
(

1∑d

i=1 λi
Y

KY

) 1

2
(

1∑d

i=1 λi
Y

KY +
κ∑d

i=1 λi
Y

In

)− 1

2

→ 1

1 + c
In as d→∞,

by Lemma 5.2.9. Of interest to us is to study the behavior of c = lim
d→∞

dγ

∑d

i=1 λi
X

=

lim
d→∞

dγ

∑d

i=1 λi
Y

. Here c converges to 0 or 1 depending on the value of γ relative to the

highest order of the sum of the eigenvalues λi
X and λi

Y , i = 1, . . . , d. We will now look at

the behavior of c under each of the above population models,
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1. Model 1: Recall that the sum of the eigenvalues under this model is,

d∑

i=1

λi
X = d2α + d− 1.

From Lemma 5.2.9 we know that in order for the ǫ-condition to hold we must have

that 0 ≤ α < 1
2
. We then have that

c = lim
d→∞

1∑d

i=1 λi
X = d2α−γ + d1−γ − d−γ

=




∞ if γ > 1,

0 if γ < 1.

From this we then have

1

1 + c
=





0 if γ > 1,

1 if γ < 1.

Conditions for consistency and strong inconsistency are described in the statement

of the theorem.

2. Model 2:

S1: Under this population model the sum of the eigenvalues is

d∑

i=1

λi
X = d2α + d2αβ + d− 1.

Under the constraints of the ǫ-condition we have that if β ≤ 1 then 0 ≤ α < 1
2

or if β > 1 then 0 ≤ α < 1
2β

. Thus

c = lim
d→∞

1

d2α−γ + d2αβ−γ + d1−γ − d−γ
=




∞ if γ > 1,

0 if γ < 1.
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From this we then have

1

1 + c
=





0 if γ > 1,

1 if γ < 1.

Conditions for consistency and strong inconsistency are described in the state-

ment of the theorem.

S2: The sum of the eigenvalues for this population model is

d∑

i=1

λi
X = (dα + dβ)2 + d2β + d− 1

Recall that the conditions necessary for the ǫ-condition to hold are either

0 ≤ α < β < 1
2

or 0 ≤ β < α < 1
2
. The behavior of c once again depends on

the leading term d

c = lim
d→∞

1

(dα− γ
2 + dβ− γ

2 )2 + d2β−γ + d1−γ − d−γ
=




∞ if γ > 1,

0 if γ < 1.

From this we then have that

1

1 + c
=





0 if γ > 1,

1 if γ < 1.

Consistency and strong inconsistency of the ρ̂i’s is described in the statement

of the theorem.

3. Model 3: The sum of the eigenvalues under this population model is

d∑

i=1

λi
X = d2α + d

In order for the ǫ-conditions to hold we must have that 0 ≤ α < 1
2
. Then c behaves
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as

c = lim
d→∞

1

d2α−γ + d1−γ
=




∞ if γ > 1,

0 if γ < 1.

Consistency and strong inconsistency of the ρ̂i’s is described in the statement of

the theorem.

This completes the proof.

Remark 5.2.11. Note that throughout the proof of Theorem 5.2.10 the convergence of

the sample canonical correlations depended a considerable amount more on the regu-

larization parameter κ then on the relationship between the population parameters α

and β. Specifically the relationship between γ (recall κ ∼ dγ) and the highest order

term, d played the biggest role in determining the convergence of the sample canonical

correlation. In contrast the convergence of the sample canonical correlations when we

were exploring the behavior of the sample cross-correlation matrix did depend in large

part on the relationship between the population parameters. This suggests that the

regularization parameter is relatively more important for KCCA then for CCA.

In our analysis the kernel induced feature space that we were mapping into was

characterized by the standard inner product. While the inner products defined in other

kernel induced feature spaces may be considerably different, many are still a function of

Euclidean distance, which is itself simply the inner product of the difference between two

observations,

K(x,x′) = f(||x− x′||2)

= f(〈x− x′,x− x′〉)

= f(xTx + x′Tx′ − 2xTx′).

While we do not provide any formal proof, based on our results using the standard inner

product kernel, it seems reasonable to conclude that the selection of the regularization
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parameter for a general kernel plays a critical role in KCCA. This is not to say that the

regularization parameter does not play an important role in standard CCA. However,

based on our results from Section 5.2.5, where the sample cross-correlation matrix was

studied, when the regularization parameter converged to 0, and the population canonical

correlation converged 0, this did not immediately imply that the sample canonical corre-

lation would converge to 1 (Corollary 5.2.5). However, when studying the sample kernel

cross-correlation matrix when the regularization parameter converged to 0 the sample

canonical correlation always converged to 1 (Theorem 5.2.10).
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CHAPTER 6

Proposed Future Work

In the following section we discuss possible future work which looks at providing a

framework for performing variable selection using KCCA.

6.1 Variable Selection KCCA

Variable selection can be a very useful statistical task. In particular in high dimen-

sional data, where the number of parameters is potentially greater than the number of

observations. In the context of KCCA we want to find the set of variables which is most

meaningful for capturing the relationship between spaces.

We look to build upon the ideas presented in Lafferty and Wasserman (2008). The

key idea in our approach is as follows. Consider a kernel which takes the form

Kh(x,x′) = K(xTHx′), (6.1)

where H = diag(h1, . . . , hd) and

K(h) = {Kh(xi,xj)}ni,j=1.

By K(1) we mean H = I, i.e. hi = 1, i = 1, . . . , d. Let

ρH(h) = αT
XKX(hX)KY (hY )αY (6.2)



where

KX(hX) = {Kh
X(xi,xj)}ni,j=1,

KY (hY ) = {Kh
Y (yi,yj)}ni,j=1.

If P = (h(t) : 0 ≤ t ≤ 1) is a smooth path through the set of weights with h(0) = 1 and

h(1) = 0 then letting ρH be as in (3.19) we can then write

ρH = ρH(1) = ρH(0) + ρH(1)− ρH(0) (6.3)

= ρH(0)−
∫ 1

0

dρH(h(s))

ds
(6.4)

= ρH(0)−
∫ 1

0

〈D(h(s)), ḣ(s)〉ds, (6.5)

where

D(h) = ∇ρH(h) = (DX(h), DY (h)) =

(
∂ρH
∂h1

X

, . . . ,
∂ρH

∂hdX

X

,
∂ρH
∂h1

Y

, . . . ,
∂ρH

∂hdY

Y

)T

(6.6)

is the gradient of ρH and ḣ(s) = dh(s)
ds

is the derivative of h(s) along the path.

If we assume that the number of relevant variables describing the relationship between

spaces is in fact some rX < dX and rY < dY then there should be a path for which D(h)

is also sparse. Along such a path we replace D(h) with some D̂(h) that makes use of the

sparsity assumption. Our estimate of ρH is then

ρ̂H = ρH(0)−
∫ 1

0

〈D̂(h(s)), ˙h(s)〉ds. (6.7)

To implement this idea we need two things

1. To find a sparse path for the derivative.

2. Take advantage of this sparsity as a method for variable selection.
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The key observation is that if a particular covariate ~xj(∈ R
n), j = 1, . . . , dX and/or

~yk(∈ R
n), k = 1, . . . , dY is irrelevant, then we would expect that changing the associated

weights hj
X and/or hk

Y would cause little or no change to the canonical correlation ρH.

On the other hand, if ~xj and/or ~yk is important we would expect a small change in the

weights hj
X and/or hk

Y to cause a large change in the canonical correlations. Thus the

derivatives, Dj
X(h) = ∂ρH

∂h
j
X

and Dj
Y (h) = ∂ρH

∂h
j
Y

should discriminate between relevant and

irrelevant covariates. To simplify the procedure we discretize the continuum of weights

replacing hX(s) and hY (s) with the sets

hj
X ∈ BX = {(1− βl

X)h0
X , (1− β2l

X)h0
X , . . .} where 0 ≤ βX ≤ 1, l ∈ N

hj
Y ∈ BY = {(1− βl

Y )h0
X , (1− β2l

Y )h0
Y , . . .} where 0 ≤ βY ≤ 1, l ∈ N.

Furthermore, we can proceed in a greedy fashion by estimating D(h) sequentially with

hj
X ∈ BX and hj

Y ∈ BY by setting D̂j
X(h) = 0 when hj

X < ĥj
X and similarly setting

D̂j
Y (h) = 0 when hj

Y < ĥj
Y , where ĥj

X and ĥj
Y are the first hX or hY , respectively, such

that |Dj
X(h)| < cj

X(h) or |Dj
Y (h)| < cj

Y (h) for some threshold cj
X and cj

Y . Thus our

estimate of ρH(h) is ρHĥ and the hard threshold estimate of the derivatives are

D̂X(h) = DX(h)I(|DX(h)| > cX(h)),

D̂Y (h) = DY (h)I(|DY (h)| > cY (h)).

The algorithm can be summarized as follows

1. Select constants 0 ≤ βX ≤ 1 and 0 ≤ βY ≤ 1 and initial weights 0 ≤ h0
X ≤ 1 and

0 ≤ h0
Y ≤ 1.

2. Initialize the weights and activate all covariates:

(a) hj
X = h0

X , j = 1, . . . , dX and hj
Y = h0

Y , j = 1, . . . , dY .

(b) AX = {1, 2, . . . , dX} and AY = {1, 2, . . . , dY }.

179



3. While AX and AY are nonempty, do for each j ∈ AX and j ∈ AY :

(a) Compute the thresholds cj
X and cj

Y .

(b) If |Dj
X | > cj

X , then set hj
X ← (1 − βtl

X)hj
X ; otherwise remove j from AX .

Similarly if |Dj
Y | > cj

Y , then set hj
Y ← (1 − βtl

Y )hj
Y ; otherwise remove j from

AY . Here t is the counter associated with the iteration number.

4. Output weight vectors ĥX = (h1
X , . . . , hdX

X ) and ĥY = (h1
Y , . . . , hdY

Y ) and updated

canonical correlation ρ̂H(h).

Future work will focus on the implementation of this approach and a detailed study of

algorithm performance and convergence.
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