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ABSTRACT
DANIEL V. SAMAROV: The Analysis and Advanced Extensions of Canonical
Correlation Analysis
(Under the direction of J. S. Marron, Yufeng Liu and Alexander Tropsha)

Drug discovery is the process of identifying compounds which have potentially mean-
ingful biological activity. A problem that arises is that the number of compounds to
search over can be quite large, sometimes numbering in the millions, making experimen-
tal testing intractable. For this reason computational methods are employed to filter out
those compounds which do not exhibit strong biological activity. This filtering step, also
called virtual screening reduces the search space, allowing for the remaining compounds
to be experimentally tested.

In this dissertation I will provide an approach to the problem of virtual screening
based on Canonical Correlation Analysis (CCA) and several extensions which use kernel
and spectral learning ideas. Specifically these methods will be applied to the protein-
ligand matching problem.

Additionally, theoretical results analyzing the behavior of CCA in the High Dimension

Low Sample Size (HDLSS) setting will be provided.
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CHAPTER 1

Introduction

Recent advances in biology, genetics and chemistry have led to an influx in the amount
of information available on a wide variety of biological processes. A major issue facing
scientists is finding meaningful ways of utilizing this data to better understand the mech-
anisms of the diseases that affect humans. A key element in dealing with the challenges
involved in understanding and analyzing this type of information and the unique prob-
lems associated with them is the development of new statistical methodology.

Of interest to scientists is using the many different ways of measuring or viewing the
same (or similar) biological, genetic or chemical process in order to better understand
the key elements driving them. Consider the following example:

In the field of cheminformatics, drug discovery is a key step in the process of iden-
tifying compounds which may have potentially meaningful biological activity as related
to a particular disease process. The process of drug discovery typically begins with the
identification of a new or existing drug target, typically these targets are proteins. Pro-
teins are large organic compounds composed of amino acids and are the building blocks
from which all cells are built and are responsible for almost all cell function. The two
predominant families of target proteins in drug discovery are G-protein-coupled receptors
(GPCR) and protein kinases. About half of all known drugs work through GPCR’s.

GPCR’s belong to the family of transmembrane receptors, proteins that span the

cell membrane connecting the inside of the cell with the outside of the cell. These



transmembrane receptors bind extracellular signaling molecules, called ligands. Ligands
include other proteins and small peptides (short sequences of amino acids), as well as
derivatives of amino acids and fatty acids. Once bound these signaling molecules set off
a chain of intracellular signaling events. These signaling events are generally mediated
by protein kinases and lead to the alteration of some target proteins ultimately leading
to a change in cell behavior.

The reason GPCR’s and protein kinases are so important is that in both normal and
abnormal cell activity, they are used as lines of communication. In the event of abnormal
cell activity they are natural control points.

Consider the case where the target is a novel GPCR, ligands are then screened for
their ability to inhibit or stimulate that GPCR. A problem that arises is that the number
of compounds to search over can be quite large, sometimes numbering in the millions.
Subsequently, experimental verification of protein-ligand interaction can be extremely
time consuming and costly or in some cases simply not possible due to time and/or cost
constraints. For this reason computational methods are employed to filter out those
compounds that do not exhibit a strong relationship with a given receptor. This filtering
step reduces the search space allowing for the remaining compounds to be experimentally
tested.

A motivating example throughout this dissertation will be the prediction of protein-
ligand binding, utilizing descriptive variables associated with these compounds. These
descriptive variables, from here on referred to as descriptors, include information related
to the electronic attributes, hydrophobicity, and steric properties of the molecules. The
motivation for our model and its extensions will be based on the task of modeling these
relationships. This approach to the prediction of molecular function and interaction
is known as quantitative structure-activity relationship (QSAR) modeling. For a good
introduction and overview of the theory, practice and history of QSAR see Selassie (2003).

In this example the proteins and ligands are represented by a set of descriptors with



the number of descriptive variables typically ranging from 150 to as many as 800 or
more. The prediction problem can be generally stated as follows: for a set of n known
protein ligand pairs, with dx and dy descriptors, given a new protein we want to be
able to predict what ligand will bind to it. Let x; € R andy; € R¥™, i =1,...,n
denote a protein ligand pair. The sample of pairs is collected in matrices X € R™*%x and
Y € R™% with x; and y; as the descriptors for a row.

Our approach to this problem is based on the structural relationship between these
molecules. Specifically, that there is a strong (complementary) relationship in the stere-
ochemical layout (the relative spatial arrangement of atoms within a molecule) between
the protein and its ligand(s). Thus, if we can find a way to align the space of proteins
and ligands, then we may be able to exploit this structural relationship to predict which

pairs match up.

1.1 General Framework

Casting the protein-ligand matching problem into a general framework, following the
discussion of Bach and Jordan (2002) and Fukumizu et al. (2007), our example consists
of two multivariate random variables X and Y belonging to R?. In the context of our
example these random variables correspond, respectively, to proteins and ligands. Lets
and ligands. Let fx € Hx and fy € Hy be mappings from R and R? to R, where
‘Hx and Hy are spaces of functions. The type of functions we consider are, for example,
bilinear maps, fx(X) = (X,wx) and fy(Y) = (Y, wy). Define S : R x R — R to be
a function measuring the similarity between two random variables. An example of a
similarity measure is Pearson correlation. It is important to note that the notation § is
defined here in terms of the population random variables X and Y, as opposed to their
sample counterparts. When referring to the sample, i.e. empirical similarity measure we
will write S (so for example we would write corr for sample correlation).

Returning to our example, we want to find functions fx and fy such that the similar-



ity between proteins and ligands is maximized, this leads to the following optimization

problem

prn = max _ S(fx(X) fr(Y)) (1.1)

fx€Hx,fy€Hy

where the subscript H = (Hx, Hy) denotes the spaces of functions over which the simi-
larity is being maximized.

The selection of a meaningful measure of similarity is context dependent. All similar-
ity measures have relevance in certain circumstances. Examples of similarity measures
include correlation, covariance, and mutual information. The one which we will focus on
is correlation.

Defining Hx and Hy to be the Hilbert spaces of bilinear maps taking the form
fx(X) =(X,wx) and fy(Y) = (Y, wy) respectively, the problem as stated in (1.1) then
becomes the well known Canonical Correlation Analysis (CCA) (Hotelling (1936)). The

optimization problem in (1.1) then takes the form

pr = max corr((X,wx), (Y,wy)) = max cov(X, wi), (¥, wy)) (1.2)

WX, Wy wx.wy /var((X, wx))y/var((Y, wy))

The general framework of (1.1) will allow for a natural extension of linear CCA to kernel
CCA (KCCA) by defining Hx and Hy to be reproducing kernel Hilbert spaces (RKHS).
This will be discussed in further detail in Chapter 3.

CCA has a number of appealing properties, including

1. Extensions to kernel based methods, (i.e. Kernel CCA (KCCA)), discussed in Kuss
and Graepel (2003), Hardoon et al. (2004) and Bach and Jordan (2002).

2. An intuitive geometric interpretation to the cosine of the angle between two vectors,
discussed in Anderson (2003), with extensions to KCCA, discussed in Kuss and

Graepel (2003).

3. Connections to Mutual Information (MI) (Kullback (1997)). In the case when the



data is known to be normally distributed this can be shown directly. A connection

between MI and KCCA is discussed in Bach and Jordan (2002).
4. An extension of CCA to more than two data sets is presented in Kettenring (1971).

5. Connection to linear discriminant analysis (LDA) (Bie (2005) and Hastie et al.
(1995))

An illustration of the protein-ligand matching problem may help in the understanding
of CCA and its application to this problem as well as its extension to other similar

problems.

1.2 Two Space Toy Example

Consider the protein-ligand matching problem as outlined above. For this toy example
we set n = 10 and d = 2. Suppose the descriptors for this toy example are Molecular
Weight (MW) and Surface Area (SA) of the molecule. Recall that each row of X(19x2)
and each row of Y (19x2) corresponds to an observation, a protein or a ligand respectively,
and the columns correspond to the descriptors MW and SA. The pairs are identified by a
unique label, corresponding to ID’s from the Protein Data Bank (PDB) (www.pdb.org).
Figure 1.1 shows the two toy data sets.

From Figure 1.1 it can be seen that the distribution of points in the two spaces are
quite similar in the sense that the location of corresponding points in the two spaces
are close. The points connected to 11gs (red) by dashed black lines are its three nearest
neighbors. The cyan points are neighbors shared in both spaces and the blue and purple
points are mismatched. Two of three neighbors are shared in common (in the Euclidean
sense).

Consider the case where the red point in ligand space is not observed and the task is
to predict its value. Using the average of the points in ligand space that correspond to

the nearest neighbors of the point 11gs in the protein space (points highlighted in cyan
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Figure 1.1: Toy example data. The points highlighted in red correspond to the protein
ligand pair 11gs, and the points connected to it by dashed black lines are its three nearest
neighbors in each space. The observations highlighted cyan are neighbors in both spaces,
and those highlighted in blue and purple are neighbors only in the protein, and ligand
spaces respectively. The green point L™ in the ligand space corresponds to a simple
weighted average of the cyan points and the purple point; i.e. of the nearest neighbors of
11gs in the protein space.

and purple in ligand space) would yield a relatively poor prediction despite the strong
apparent similarity between the two distributions of points. This dissertation studies
more sophisticated approaches to exploiting this similarity.

In Section 1.1 the idea of similarity between two distributions was introduced. In
our current example the type of similarity measure that is needed is one that tells us
how well aligned the two spaces are. The functions fx and fy we consider will be ones
which place appropriate weights on the features (i.e. descriptors) that best align the two
distributions.

To motivate our approach and justify why CCA is an appropriate method to address

this problem we start by considering a simple example. Figure 1.2 shows four data



sets, each consisting of two spaces, X and Y with dx = dy = 1 at different levels of
correlation. For each data set two quite different views are considered. The top row of
plots are conventional scatterplots of the data and the bottom set of plots are connectivity
plots which provide a different view of the association between pairs of points. In the
connectivity plots points are shown as the (green) segments connecting the z-coordinates
(blue points) and y-coordinates (red points). This view highlights the similarity of the
pairs.

As correlation increases (moving from the left panels to the right) the difference
between the values of the points in the X and Y space becomes smaller. This is reflected
in the top set of plots in Figure 1.2 as the observations tend to fall closer to the 45
degree line in the right hand panels. In the bottom set of plots the dashed green lines
become increasingly parallel to each other. Based on these observations maximizing
the correlation between the sets of points x and y is equivalent to maximizing their
coordinate-wise alignment.

Yet another way to interpret correlation is as the cosine of the angle between the
vectors x and y (Anderson (2003)), assuming they are mean centered. This relationship
is easy to verify. Using the idea of projections provides concreteness to the interpretation
of correlation as a measure of alignment. Define the projection coefficient p to be the

scalar such that the vector py is orthogonal to x — py; solving the following for p

0=py (x—py)=py'x—py'y),

we have that, p = y’x/yTy. Next decompose x as x = (x — py) + py, see Figure 1.3.
The absolute value of the cosine of the angle between x and y is the same as the length

of py divided by the length of x;

cos(0) = /pyT(py)/x"x = x"y [/ (x"x)(yTy) = cori(x,y).
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Figure 1.2: Four bivariate toy data sets, with differing correlation. The top plots corre-
spond to the scatterplot view of data and the bottom plots are connectivity plots of the
data. The blue points, on the bottom set of plots, are the x coordinate values and the red
points are the corresponding y coordinate values. In the top set of plots as correlation
increases points begin falling closer to the 45 degree line. In the bottom set of plots the
dashed green lines become increasingly parallel to each other.

So in terms of (1.2) above, maximizing the correlation between x and y is equivalent
to minimizing the angle between them. As the angle goes to zero the closer each pair
of coordinates in both n vectors becomes (modulo a scale factor). This can be seen in
Figure 1.3 as the angle goes to zero x — py goes to zero.

With an intuitive grasp of the relationship between correlation and alignment we
return to the protein ligand example of Figure 1.1 at the beginning of this section. Solving
for wx and wy in (1.2), gives us the direction vectors shown in Figure 1.4 (details of
these derivations will be discussed in Chapter 2). What is important to notice is how
the distribution of points along the first (red) and second (green) canonical directions in
both protein and ligand space are quite similar. This is due to the property of alignment

that arises naturally from maximizing the correlation.



3

Figure 1.3: An illustration of the relationship between correlation and angle between two
vectors. Note that we assume that the vectors have been mean centered.

Figure 1.5 shows the projections of the data onto the first two canonical vectors (note
that separate directions are found in protein and ligand space). We can see that with the
slight modification in alignment that has resulted from the CCA projections, the point
11gs now shares the same neighbors in both spaces. In particular note that now the
predicted value in the projected ligand space is much closer to the actual value (again
using the simple average).

This is a simplified example and in most cases the relationship between points in
different spaces may be far more complicated. In coming sections we begin with the
simplest case scenario, i.e. standard CCA and related methods. This is used as a start-
ing point to motivate and develop methodology and theory appropriate for increasingly
complex problems. Along the way we address the strong and weak points of these various

methods.

1.3 Benchmark Data Sets

Two virtual drug screens will be used as a benchmark for testing the methods devel-

oped in this dissertation:
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Figure 1.4: The direction vectors and the projected value of each point. The top row of
plots shows the first direction vector, in red, and the projections onto it. The bottom row
of plots show the second direction vector, in green, and the projection onto it.

1. A set of 800 chemically, and functionally diverse protein-ligand pairs obtained from
the PDBbind Database (Wang et al. (2004)). These compounds are described by

a set of 150 descriptors. We will refer to this data set as the RLP800 data.

2. The World Drug Index (WDI) (Daylight (2004)) database which contains approxi-
mately 54,000 drug candidates (ligands). Each compound in the WDI is described

by the same set of 150 descriptors as the RLP800 data.
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Figure 1.5: Projection of the data in Figure 1.1 onto the first and second canonical
vectors. In contrast to Figure 1.1 the point 11gs now shares the same neighbors in both
spaces and the predicted value in green s much closer to the actual value.

1.3.1 Ligand Prediction

Recall the example discussed in Section 1.2. In that example we first used CCA to
define a mapping between the space of receptors and the space of ligands by projecting
onto the first px < dyx and py < dy directions (Figures 1.4 and 1.5). Let us define the
projected values of the observations in X and Y space onto their first pyx and py canonical

vectors as

pu— 1 px\T PX ;o
Xi,p—(WX,...,wX) X, ERPXY o =1,...,n
wo— 1 T Ry =1
Yip= Wy,..., Wy ) ,¥; € ,i=1,...,n

The sample of pairs are collected in matrices X; € R™PX and Y, € R™P with x

and y;’, as the observations for a row.
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The method of prediction and assessment of model performance used, in the context
of the protein-ligand matching problem, has similarities and differences with more tra-
ditional statistical definitions of these concepts. Prediction in this problem is similar to

traditional definitions in the following sense: given a new input, X,.,, and it’s projection

w

ew.p), We want

onto the first px canonical vectors in X space (call this projected value x
to predict the value of its unobserved pair, yj.,, ,, in canonical correlation space.

There is an important distinction to draw here. Traditional methods of prediction
usually assume a direction of dependence between the variables to be predicted (the
dependent variables) and the variables predicting them (the independent variables), e.g.
as in regression. Here we are more interested in a symmetric, not causal, type of re-
lationship. This type of approach can be justified in the context of our, and similar
problems for the following reasons: In our problem the binding between a protein and its
ligand is inherently co-dependent. In similar problems, such as in information retrieval,
the relationship between the input object, say a document in English, and the output
object, the corresponding Japanese translation (Li and Shawe-Taylor (2006)) does not
inherently imply a dependence one way or the other. Rather what we are interested in
are the attributes that are held in common between them. There are also many examples
in the field of bioinformatics where it is of interest to understand how multiple sources
of information, for example gene expression and the corresponding metabolic pathway
along which these genes fall (Vert and Kanehisa (2002)), co-depend on one another.

The accuracy of our prediction is assessed here in terms of how close, in Euclidean
distance, our prediction, y ., , is to the actual value, y,., ,. This is then compared
to the set of the distances from each observation, y}’,, © = 1,...,n to the actual value.
Predictive accuracy is measured by ranking these distances, from smallest to largest.

Defining r; to be the rank of our prediction of test ligand 7, model performance is defined

12



as the average rank (over ligands) of our predictions,
r=— Ty (13)

where nr is the number of test ligands.
The predicted value of ;.. , is calculated as follows (note that this is a modification

of the LLE algorithm developed by Saul and Roweis (2003));

1. Compute the k neighbors of the data point x;..,,  (the projected value of X, into

canonical correlation space). Define Ni(x) to be the k nearest neighbors of the

point x.

w
new,p

2. Compute weights [, ; that best reconstruct the data point x from its neigh-

bors, minimizing the cost:

L(ﬁnew) = X;erp - Z ﬁnew,jX}l’)p ’

j:xjeNk(x%ew,p (14)

subject to Z Brew,j = 1.

j:XjENk(X

%ew,p)

3. The new observation is then calculated as,

yg’ew,p = Z ﬁnew,jy;‘ljp- (15)

j:xjeNk(xzrfew,p)

Recall that CCA finds directions which best align two spaces. Thus, assuming that
directions w’% and wi., i = 1,...,p, have been found such that the correlation between
spaces is strong, using the weights (3., ; found in X space should provide a reliable
estimate of yj.,, -

The results of our methods will be compared against those presented in Oloff et al.

(2006). In their paper the RLP800 data was separated into 637 training points, used to
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build the model, and 163 testing points, used to validate the predictive accuracy of the
model. Predictive accuracy is measured by the ranking scheme described above.

To further test the predictive accuracy of our model (again following Oloff et al.
(2006)) the WDI database is combined with the ligands from the RLP800 data set. The
same ranking process is repeated but the set of ligands has been expanded to include

both the WDI and RLP800 datasets.

1.3.2 Principal Component Analysis and Visualization

A parallel, but simpler tool which will prove useful in developing intuition about CCA
and its extensions is principal component analysis (PCA) (Muirhead (1982)). PCA is a
method used for analyzing and visualizing data. In contrast to our discussion thus far
PCA looks to find linear combinations of the descriptors in an individual space, either in
the space of proteins X or ligands Y, which maximizes the variance (1.6). For convenience
we focus on the space X as the same concepts hold for Y. This variance maximization
aspect of PCA can be formulated as

vx = maxvar(Xvy),
VX

subject to, (1.6)

vivy = L.

The solution to (1.6) is found by defining Ax to be the Lagrange multiplier, which gives

us the corresponding Lagrangian,

A
L(Vx,Ax) :VizXXVX_TX( §Vx—1). (17)

Taking the derivative with respect to vx and setting equal to zero gives us

8L(Vx, )\X)

Ivx XXVX xvx =0 (1.8)
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Multiplying the left hand side of (1.8) by v% yields
VQEX)(VX = V&I‘(XVX) = )\X-
Thus A\x = 7x. Finally, rearranging terms in (1.8) gives us the eigen problem

EX)(VX = 7YxVx. (19)

A new direction, v% is found by repeating the process just described with the addi-
tional constraint that it be uncorrelated with vx. The problem in (1.6) is thus modified

to be,

vy = argmax var(XvYy),
v
X

subject to,

cov(Xvy, Xvyx) =0. (1.10)

Using Lagrange multipliers A% and px gives the Lagrangian,

A (i) Tvi — D+ ax i) Tvee (L)

L(V}a)‘}a,UX) - (V;{)TXTXV} - 9

Taking the derivative of (1.11) with respect to v and setting equal to zero we have,

aL(V}a)‘}JMX)

- = XTXvi — Nyvi + puxvx =0 (1.12)
ovy
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Multiplying the left hand side of (1.12) by v’ gives us,
VEXT XV — NeveVie + ixvxvx = fix,

which implies that px = 0. Thus it can be seen that the eigenvalue 7% and direction v
are the second eigenvalue and eigenvector of Y xx. Additional linear combinations of X
which maximize the variance are found in a similar fashion with the constraints in (1.10)
being modified to include all previous directions.

A useful characteristic of PCA is that it allows us to visualize and gain insight into
how the data are distributed. This is especially useful when the data is in a higher
dimensional space. In Figures 1.6 and 1.7 we have plotted a scatterplot matriz showing
the joint structure in the first four principal components as well as the eigenvalues for
both proteins and ligands, respectively in the RLP800 training data set.

Figures 1.6 and 1.7 provide some insight into the distribution of the RLP800 data.
Consider the plots of the eigenvalues in the lower left hand corner of each figure; what
immediately stands out is the relatively small number of eigenvalues needed to explain a
large proportion of the variation in both protein and ligand space. Here the proportion

of variation measured by principal component 7 is given as

var(Xvh) B Vs
dovar(Xvy) >k

(1.13)

This type of behavior can occur for a number of reasons, two of the more common ones
are scaling and strong correlation between descriptors (also known as multicollinearity).
Scaling can be an issue when the distribution of a descriptor has multiple modes, is skewed
and/or is (nearly) discrete. This may have the effect of biasing the principal component
vectors in the direction of these variables. In the presence of multicollinearity the PC
directions will be dominated by a few larger modes of variation with the remaining ones

being comparatively small. Multicollinearity will be discussed in more detail in Section
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2.3.
While PCA is useful for studying a single space we are interested in studying how

two spaces are related to one another. CCA is just such a tool.

17
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Figure 1.6: The plots in the upper right half of the figure are the projections of the
RLP800 receptor training data onto their first four principal components. The plots
along the diagonal show the distribution of the projected values with the red curve being
a kernel density estimate of the projections and the percentage in the upper right hand
corner the proportion of variation explained by that principal component. The plot on
the lower left side show the eigenvalues of all 150 principal components. The red curve
is the cumulative sum of the eigenvalues.
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PC Plot — Ligand Space
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Figure 1.7: Same layout as in Figure 1.6. but for the RLP800 ligand training data.
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CHAPTER 2

A mapping between spaces: Canonical Correlation
Analysis

CCA was first proposed in 1936 (Hotelling (1936)). Since then it has seen application
in a multitude of fields. In the prediction of protein-ligand binding the complexity of
the data necessitates a way to model the relationship between them. CCA provides a

natural framework for this type of analysis.

2.1 Linear Case

Consider the framework laid out in Section 1.1. Let Xxy = cov(X, X), Zyy =
cov(Y,Y) and X yy = cov(X,Y) denote the population covariances and Sxx = cov(X, X),
Syy = cov(Y,Y) and Sxy = cov(X,Y) the sample covariances.

Since correlation is scale invariant we can make an arbitrary normalization of wyx and

wy. With this in mind we have the constraint
cov({X,wx), (X, wx)) = cov((Y,wy), (Y, wy)) =1 (2.1)
Using this constraint the optimization problem in (1.2) can be written as

pr = max corr((X,wx), (Y, wy)) = W§ExyWy7
Wx ,Wy

subject to (2.2)

T T
WXZXXWX = WyzyyWy =1.



Using Lagrange multipliers px and py the corresponding Lagrangian is

L(Wx,Wy,pX,py) = W§2XyWy - pTX(W§EXXwX - 1) - %( )T/Zywa - 1) (23)

Taking the derivative of (2.3) with respect to wx and wy and setting equal to zero we

have
oL
(wX}) WY PXPY) 5 e — e Sxwy = O, (2.4)
Wx
oL
(WX> Wy, PX; pY) =YyxWx — pyZyywy = 0. (25)

aWy

Multiplying the left hand sides of Equations (2.4) and (2.5) by, respectively, wk and wi.

and then subtracting the resulting equations from each other gives us

T T T T
WxlxyWy — pxWxlxxWx — Wy lyxWy + py Wy lyy Wy

T T
= pYWYZYYWY - pXWXZXXWX =0,

from which it follows that

px = py = corr((X,wx), (Y, wy)) = pn.

Assuming Yyy is invertible we have

DIEDY
Wy = SyyZvXxWx (2.6)
PH
Similarly we have,
PIEIDY
Wy = SXXZXVWY (2.7)
PH

Substituting (2.6) into (2.4) and rearranging terms gives the generalized eigenvalue prob-

lem,

YxyIvy SyxWx = prSxx W, (2.8)
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similar calculations lead to

ZYXz;(g(ZYXWY = pg_[ZyyWy. (29)

Equivalently using Equations (2.4) and (2.5) the generalized eigenvalue problem can be

rewritten as,

= pu . (2.10)

We now discuss how to find second and subsequent linear combinations of X and Y. The
objective is to find maximally correlated linear combinations of X, say Xw?% and Y, say
Y'w3§ which are uncorrelated with Xwx and Y'wy from (2.2). The optimization problem

thus written as,

pr = max corr((X, w), (Y, wy)) = (wi)" Exywy,

Wi, wy

subject to
(W) Exxwi = (wy)  Syywy =1 (2.11)
Wg;—ZXXw;— = W}j;gyyw; =0
Wg}Z)(yW;f = W;EYXW} = 0.

Using Lagrange multipliers p%, py, px and py gives the Lagrangian,
* * >k k * * p* * *
LW, Wy, pXx, pys Hix, fly) = (WX)TEXYWY - TX((WX)TEXXWX - 1)
— %((W;)TZyyW; — 1) + MXwg(EXXw} + ,lj,yw;ZyyW;. (212)

Taking the derivative of (2.12) with respect w% and wj and setting equal to zero we
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have,

aL(W;O W;, p;{; )0;/, Hx, ,uY)
ow’

= nyw; — pi;(ZXXW;( + MXEXXWX = 0, (213)

aL(Wﬁ(’ W;” p;ﬁ pifv nx, My)
ows3

= Zyxw} — p;zyyw; + MyZyyWy = 0. (214)

Multiplying the left hand side of (2.13) and (2.14) by wk and wi respectively gives us

0= puxWySxxWy = [ix,

0= pywyYyyWy = fiy.

With pux = py = 0 it can be seen that the canonical vectors wi and wj are the
second set of eigenvectors from the generalized eigenvalue problem in (2.8) and (2.9).
The extension to additional linear combinations of X and Y follows along the same lines
as just described with the constraints in (2.11) being modified to include orthogonality

to all previous linear combinations of X and Y.

Remark 2.1.1. Eigen analyses have ambiguous polarity in the sense that they are only
determined up to a factor of +1. This ambiguous polarity is resolved in a way that gives
comparable results across similar data analyses by employing the following convention:
The main idea is that the directions the eigenvectors follow, in each space, will always
place the largest, in absolute value, projected value across both spaces on the positive
(right hand) side of the axis. In other words let X, Y, wx and wy be as defined
previously. Define the scores a% = x! wx and a} = y!wy to be the projected values of
the " observation onto its canonical vector. Let ag?) and a§7 ) be the largest score, in

absolute value, across all a% and a¥, k = 1,... n, respectively. Then,

al = sign(max{ag?)7 a@}) - a, (2.15)
aiY = sign(maX{(lg?)y a’gj'l)}) ’ ag/‘
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In the event of a tie in the scores ag?) and agf ) the sign is taken to be +1. This transfor-

mation of the data does not change the relationship of the projections between spaces.
This can be seen by noting that the values of the signs by which we are multiplying the
projections in both spaces will always be the same. Thus the correlation between the

projections will remain unchanged.

An example of linear CCA was presented in Section 1.2. In the following section we
present several toy examples illustrating where linear CCA performs well and also where

it does not perform well.

2.2 Properties of CCA

CCA is invariant with respect to several common linear transformations. This point
is illustrated in Figure 2.1. Plots (b), (c¢) and (d) in Figure 2.1 depict different transfor-
mations, orthonormal, scale and location, respectively of the data shown in Figure 2.1
(a) (not shown in the plots are the canonical correlations, 1 and 0.996 which are the same
for all four groups of plots). These properties are straightforward to verify. Let X, Y,
wy and wy be defined as above. To ease calculation we also assume that X and Y have

mean ZzZero.

1. Orthonormal: Define Qx € R¥**x and Qy € R % to be orthonormal matrices.

Le.:

(a) Q¥Qx = QxQ% =1,
(b) QL Qy = Qv Qi =14,

Define the orthonormal transformations X* = XQy and Y* = Y Qy. Define E[/]

to be the expected value. Using the result found in (2.8) we have

E[(X)TYEY)TY ) TE(Y) X wy = (0" E[(X7) X wk. (2.16)
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Substituting in for X* and Y* gives us,

QYEXTY]Qy(QyEYTY]Qy) ' QyE[YT X]Qxw = (p")*QXE[X X]Qxwk.
(2.17)
Next we use properties (a) and (b) defined above. Multiplying the left hand side

of the previous equation by Qx and setting w’y = Qxw¥ gives us,
nyz;;xyxwlx = (p*)QZXXW’X. (218)

From this it can be seen that the resulting generalized eigenvalue and eigenvector

from (2.18) will be the same as those found in (2.8).

Figure 2.1(b) illustrates CCA’s invariance to orthonormal transformations. In the
X space the data has been rotated 30° counterclockwise and in the Y space the data
has been rotated 75° clockwise (these rotations satisfy the properties (a) and (b)).
The resulting projected values remain unchanged as do the canonical correlation

values.

. Scale: We use the results from CCA’s invariance to orthonormal transformations
to show its scale invariance. This follows immediately by substituting in scalars a
and b for the orthonormal matrices Qx and Qy in (2.17) which then leads to the

same result as in (2.18).

An illustration of CCA’s scale invariance is presented in Figure 2.1 (c¢). The pro-

jected values and canonical correlations are identical to those in Figure 2.1 (a).

. Translation: Define ¢, € R% and ¢, € R{ to be vectors of constants, and 1,, € R"

to be a vector of ones then

corr((X + 1cl, wx), (Y + 1c] , wx))

= wiE[(X +1c! —E[X + 1IDT (Y + 1c§ —E[Y + 1c§])]wY
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= wiEXTY]wy

= corr((X, wx), (Y, wy)).

Figure 2.1(d) provides an illustration of CCA’s invariance to translation. Looking
at the projected values and canonical correlations they are identical to those found

in (a).

2.3 Regularized Canonical Correlation Analysis

There are many cases, particularly in biological problems where the data being an-
alyzed have a large number of covariates (descriptors) as compared to the number of
observations. This can lead to situations where there are potentially many highly corre-
lated covariates, this type of behavior is referred to as multicollinearity. An approach to
control the effects of multicollinearity is to add a penalty term which controls the vari-
ability of the eigenvectors of the sample covariance matrices within the X and Y spaces.
There is a close relationship between variability in the eigenvectors and multicollinearity
(which we discuss in greater detail below).

Recall that the eigenvalues and eigenvectors found from the eigen decomposition of the
sample covariance matrix Sxx (and Syy ) are also the solution to the PCA optimization
problem discussed in Section 1.3.2.

An important aspect of PCA is that it gives us insight into the structure of the
data. In particular it can alert us to the presence of multicollinearity. Consider a set
of n observations each of which has d variables (descriptors). If there exists strong
multicollinearity amongst the variables then a subset p(< d) of the eigenvalues will have
relatively large values and the remaining d — p eigenvalues will have comparatively small
values. This type of behavior in the eigenvalues can create numeric instabilities in the

sample covariance matrices. Recall from equations (2.6) and (2.7) that the canonical
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vectors wx and wy can be written as,

Sl Sxyw
XXPXY WY
Wy = ————,
PH
S_1 SnyX
Wy = vy rarma
PH

The effect of this instability on the canonical vectors can be seen by noting that their
solutions depend on the inverse of the covariance matrices Sxx and Syy. An immediate
consequence of this is that when the sample eigenvalues act as just mentioned it can be
seen from (2.19) that small eigenvalues (near zero) will tend to inflate the elements of

these matrices,

Sy = VxD ' V%,

(2.19)
Syy = VyDy' VL.
Here Vy = (vk,...,v%) and Vy = (vi,...,v{) are the matrices of eigenvectors

(i.e. principal component direction vectors) of the sample covariance matrices Sxx and
Syy. The matrices Dy' and Dy have elements %, i=1,...,dx and %, i=1,...,dy
along their diagonals, where 7% and 7% are the eigenvalues of their respective covariance
matrices.

The large sample to sample variation in the canonical vectors can be understood by
noting that even slight perturbations in the smallest eigenvalues of the sample covari-
ance can lead to drastically different results in the inverse of the covariance matrices and
therefore in the canonical vectors. The affect of this instability is illustrated in Figure 2.2
which shows an example of canonical vectors in X space. The data has been generated
such that the first and third variables are strongly correlated. The black lines show the
first canonical direction vector found from ten random samplings from this distribution.
The red dashed line is the theoretical direction derived from the true variance and co-

variance matrices. As can be seen there is a large amount of variation from sample to
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sample and a significant deviation from the theoretical direction.

The impact of this variation is felt the strongest when projecting new data onto
one of these directions. For example, suppose new observations are generated from a
distribution similar to that just described with the difference lying in a slight perturbation
of the covariance matrix in the X space. These new observations are then projected onto
the canonical vectors shown in Figure 2.2.

Ideally the projected values of the new data would vary only slightly from one set
of directions to the next. Figure 2.3 shows a plot of each pair of projected values (the
projection of the new data discussed above onto each of the directions shown in Figure
2.2) against one another. The observations within each of these plots should, if the
directions were well behaved, fall on or near the 45° line (shown in red). However, due
to the large amount of variation in the canonical vectors the resulting projections are
highly variable.

One possible approach to dealing with this problem is to control how variable we
allow the canonical direction vectors to be. One such penalty would be a modification of
the constraint in (2.1) where an Lo constraint on the Lo length of the canonical vectors
wx and wy (Vinod (1976)) is added. This new constraint (2.20) now penalizes for how

variable we allow the directions in any one space to be,

cov((X,wx), (X, wx)) + kx(wx,wx) = cov((Y,wy), (Y, wy)) + ky (Wy, wy) = 1.
(2.20)
Solving (2.2) but with new constraints (2.20) is done in a similar fashion to standard
CCA. Using Lagrange multipliers px and py we have the following modified Lagrangian

as compared to (2.3),

L(Wx, Wy, px, py) = Wy Sxy Wy — %X(W};ZXXWX + hxWixwy — 1)
(2.21)
— %(WgEyyWy + /in$Wy —1).
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Taking the derivative with respect to wx and wy and setting equal to zero gives

aL(WX7 Wy, PX, PY)
an

= ZXYWY - PX(EXXWX + /ﬁ',XwX) = 0, (222)

aL(WX, Wy, pXx, PY)
8WY

= ZnyX — py(zyyWy + finy) =0. (223)

Multiplying the left hand sides of Equations (2.22) and (2.23) by, respectively, wk and

w1 and then subtracting the resulting equations from each other gives us

T T T T T T
WyLxyWy — px(WyXxxWx + WyWx) — Wy Ly xWy + py (Wy Xyy Wy + Wy Wy)

= py(W,T/ZyyWy + W$Wy) - px(W§EXXWX + W§WX) =0,

from which it follows that

px = py = cort({X, wx), (Y, wy)) = pxn.

Assuming Yyy + ry Iy, is invertible we have

(Xyy + Iiyfdy)flzyxwx

PH

Wy =

Substituting into (2.22) and rearranging terms gives the generalized eigenvalue problem,

Yxy(Syy + kyle ) Syxwyx = p3(Sxx + rxliy )Wy, (2.24)

similar calculations lead to

Zyx(EXX + lixldx)_lzyxwy = p%(Eyy + Hy[dY)Wy. (225)

Equivalently using Equations (2.22) and (2.23) the generalized eigen problem can be
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rewritten as,

0 Yxy Wy Yxx + kxlay 0 Wy
= pu . (2.26)
Yvx O Wy 0 Yyy + Kkylg, Wy
Subsequent calculations to find new directions are similar to those discussed for the
un-penalized case. In addition the same invariance properties that were discussed for
standard CCA hold for this regularized variant of CCA (RCCA).

Consider again the example presented at the beginning of this section. Figure 2.4
shows a plot of the canonical direction vectors found from using RCCA with a value of
0.1 for the regularization parameter xkx. In contrast to Figure 2.2, the canonical direction
vectors are quite similar from one sample to the next. The dashed red line is once again
the theoretical direction.

Figure 2.5 is the same plot as Figure 2.3 but with the new data being projected onto
the direction vectors shown in Figure 2.4. As can be seen the projected values are quite
similar from one set of directions to the next.

In the context of the protein-ligand matching problem consistent behavior of the
canonical vectors is critical. Because the primary object of interest is the prediction of
new protein-ligand pairs it is important that the directions that are found are not overly
dependent on the training sample. As is illustrated in Figure 2.3 if measures are not
taken to control the variability of the canonical vectors the projected values and any

prediction based on them become unreliable.

2.4 A Toy Example

Linear CCA, in both its standard and regularized form, encounters greater challenges
when the relationship between distributions of points is more complex, for example if
some type of non-linearity is introduced. In the same framework as the example presented

in Section 1.2 we consider a new toy data set shown in Figure 2.6, with a much more
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complex relationship between proteins and ligands. Recall the task is the following: given
a new observation in the space of proteins can we accurately predict the corresponding
point in the space of ligands.

The data in the space of proteins falls into three distinct groups and the data in the
space of ligands falls into two distinct groups. This scenario is relevant in the context of
our example for the following reason: a single protein can bind many different ligands,
based on the conformation, i.e. steric layout, of the binding site. Thus in the context
of our example the three different clusters could be thought of as representing three
different proteins. The slight perturbation in each group is attributed to the change in
conformation of the binding sites of each protein to allow the binding of different ligands.
The two groups in the space of ligands could be thought of as representing ligands
corresponding to proteins, larger macro molecules or shorter sequences of peptides, small
molecules.

The data has been generated such that those points which fall into the same group in
both protein and ligand space are highly correlated. The result is that the global structure
of the data is non-linear in the following sense: the underlying correlation structure of
protein ligand pairs is localized, as a result this relationship cannot be captured by a
simple (global) linear combination of the descriptors.

Observations in Figure 2.7 are highlighted according to whether they fall into the same
cluster in both spaces. This plot helps illustrate just how different the neighborhood
structures are in protein space versus ligand space. Consider, for example, the point
labeled 1a7t (cyan). Its neighbors in protein space are all different from the corresponding
point in ligand space.

In addition to the failure of the simple nearest neighbor method, as shown in Figure
2.6, linear CCA is also challenged by this new toy example. Since both CCA and RCCA
essentially provide identical results in this example only the results from CCA are pre-

sented. In contrast to Figure 1.4 in Section 1.2 the distribution of points along the first
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canonical directions, shown in red in the top row of plots in Figure 2.8, do not show a
strong alignment of points between spaces. The same is true for the second canonical
direction, shown in green in the bottom set of plots. The canonical correlation values,
0.46 and 0.34 confirm our visual assessment.

Looking at the projections onto the first two canonical vectors shown in Figure 2.9 we
can see little if any change has been made to the structure of the data in protein space,
relative to the raw data shown in Figure 2.6. In ligand space the directions found appear
to have made the prediction of L™ worse.

In Chapter 3 a variant of CCA will be discussed which can capture this non-linear

relationship between spaces.

2.5 Connection Between Linear Discriminant Anal-

ysis and CCA

A question of interest in many problems is the classification of a set of observations
into one of several distinct categories. This is one example of supervised learning, see
Duda et al. (2000) for an overview of the large literature on this topic. In contrast to
supervised learning is clustering, a specific area of unsupervised learning. In clustering
the categories are unknown and the task is to determine what “natural” groupings can
be found in the data. Linear Discriminant Analysis (LDA) (Fisher (1936)) is a standard
tool used in classification. In Section 2.5.1 we outline LDA and in Section 2.5.2 we show

LDA in terms of CCA.

2.5.1 Linear Discriminant Analysis

Consider the k class (i.e. k category) discrimination problem. Suppose we have a set
of n observation-label pairs, (x;,y;) € R x {0,1}F, i =1,...,n. Let C;, 5 = 1,...,k
be the collection of points x; which belong to class j. To fit this problem into a similar

context as the protein-ligand example of Section 1.2 we consider the following variation:
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let the observations x; be a collection of drug descriptors (i.e. ligands) and y; be the
labels representing whether a drug is active or inactive. Define X € R™ 4 to be a matrix
whose rows are the observations x;. Define Y € R™** to be the label matrix whose i jth
entry is defined as y;; = I(x;ec;}, where I is the indicator function. One way to think of
LDA is that it looks to find a vector of weights, wy, associated with the columns of X,
such that the linear combination, Xwy maximizes the ratio of its between-class variance
to its within-class variance, defined in (2.30) and (2.29). To ease notation we assume
that X has been mean centered.

Define n; = ). y;; = |C;|, where |C}| denotes the cardinality of C}, to be the number

of observations in class j and let m; in (2.27) be defined as the mean of the observations

that belong to class 7,

1
J

i:x,€Cj

Define the total sum of squares to be

Sr=> Y xx =(n—1)Sxx, (2.28)

i=1 j:x;€C;

where Sxx is the sample covariance matrix, discussed in Section 2.1. The total sum of

squares, St can be decomposed into the sum of the within-class sum of squares,

Sw=>_ Y (x—m)(x;—m)", (2.29)

i=1 j:x;€C;

and between-class sum of squares

k
=1
Specifically,
S = Sw + Sg. (2.31)
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With these definitions we can now state the LDA optimization problem,

wh = argmaxwySpwy,
WX
subject to, (2.32)

Using the Lagrange multiplier A gives the corresponding Lagrangian

Taking the derivative of (2.33) with respect to wx and setting equal to zero gives us,

aL(W)(, )\)

= SBWX — ASWWX = 0,
aWX

which yields the following generalized eigenvalue problem,
SBWX = ASWWX (234)

Points are then projected onto the resulting eigenvectors wy giving x; = x/ wyx. An
observation x; is assigned to a class based on which class center m} = m]Tw x,j=1...k
is nearest,

arg min,||x} — m}|[® (2.35)

We show that for the two class problem a simple closed form solution exists for the

direction wy.

Theorem 2.5.1. Given the optimization problem in (2.32) when the number of classes

k is equal to 2 then

Syt (my — my), (2.36)
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n\

where \* = .
ning

Proof. First we observe that when the number of classes is equal to two the between-class

sum of squares can be expressed as

nn
SB = %n 2(m1 — m2)<m1 — mQ)T.

For notational purposes we rewrite the generalized eigenvalue problem in (2.34) as

BWx = A"Swywy, (2.37)

where S = (m; — my)(m; — my)”. From the generalized eigenvalue problem in (2.37)

and using the constraints in the optimization problem (2.32) we have

M= whShwy

= wi(m; —my)(m; — my) wy

1
= (m1 — mQ)TS;Vl(ml — mg)(ml — mQ) —S‘},l(ml — mg).

Vr

Rearranging terms gives us

M = (m; —my)" Sy} (m; — my). (2.38)

Next, starting with the left hand side of (2.37) and substituting in for wx and S}, we

have

1
EWx = ——=(my — my)(m; —my)" Sy} (m; — my)

Var

= )\*(ml — mg)
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Now looking at the right hand side of (2.37) we have

1
)\*SWwX = )\*—*SWS;VI(ml — mg)

vou

= >\*(m1 — mg).

Thus we have shown that the left and right sides of (2.37) are equal. Also note that
conditions in (2.32) are satisfied

1
Wg;SWwX = —(m1 — mg)TS;VlSWS;VI (m1 — mg)

)
(
(

1 —my)"Sy (my — my)
1 —my)TSy (my — my)

m
" (m
= 1.

From this we can see that (2.36) is an eigenvector of the generalized eigenvalue problem
in (2.34). In order to show that this is in fact the leading eigenvector note that because
the rank of the between-class scatter matrix is 1 there are at most 1 non-zero eigenvalues
in the generalized eigenvalue problem (2.37). However, from (2.38) it is clear that A\*
and therefore A will be strictly positive so long as m; # msy and Sy is non-singular.

Therefore we have that (2.36) is the leading eigenvector of (2.34). O

2.5.2 LDA Solved by CCA

In this section we derive the connection between LDA and CCA. It will be shown
that the generalized eigen problem in (2.4), is essentially the same, modulo a scalar, as

the generalized eigen problem in (2.34). Letting Y be defined as in Section 2.5.1 (the
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matrix of class labels), we have,

1,, O 0
v 0 1, 0
0 0 1,,
From this it is easy to see that,
nym?
Syx = YTX = nam;
npm;,
It follows that
+ 0 0
A R
0 0 —

Using these results we have

k
-1 T
SxySyySyx = E n;m;m;

i=1

=Sg (2.39)
Starting with

1 2
SxySyySyxwx = p5SxxWx,

and using (2.28) and (2.39) this can be rewritten as,

SBWX = pg_[STWX
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Finally using (2.31) and rearranging terms gives us,

2

Spwx = 7 f”p% SyWy. (2.40)

This is identical to (2.34) but with A = 1_f2;2L'
H

This relationship will prove useful later in developing intuition and theory about CCA

and its ability to find and understand the co-dependence of subpopulation’s between

spaces.

2.6 CCA Performance on Real Data

We now apply the methods described in this chapter on the RLP800 and WDI data
sets described previously. Figure 2.10 is a scatterplot matrix showing the projection of
the training (black) and testing (red) data onto the first three canonical vectors. Figure
2.11 is a plot of all the canonical correlations and density plots of the canonical directions
themselves.

Regularized CCA was used, with parameters Ky = ky = 0.1, the number of di-
mensions projected onto was px = py = 100 and the number of neighbors used in
the prediction was 60. These parameters were selected via a simple cross validation
scheme using a randomly selected subset of 537 and 100 points from the training data
as “training” and “testing” sets. Values for the tuning parameters were found by search-
ing over values of ky = ky = {0.1,1,10,20}, px = py = {25,50,75,100,125} and
k = {5, 10,20, 40, 60,80}, the final set of parameters were selected based on which pro-
duced the lowest average rank (see Section 1.3.1 for details), which in this case was
approximately 8.5.

Figure 2.11 shows the distribution of each of the first three canonical variates (left) as
well as the canonical correlations for each of the 150 variates (right). As can be seen the

leading canonical correlations are fairly large indicating that a strong relationship exists
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between spaces.

Figure 2.12 is a scatterplot matrix of the first three pairs of canonical variates in pro-
tein and ligand space respectively with one test point highlighted (red) and its predicted
value (green, ligand space only). As can be seen the prediction is fairly accurate.

Figure 2.13 is a histogram of the ranks associated with our prediction using regularized
CCA. The average rank in this case was approximately 10, indicated by the vertical red
line. This is a significant improvement over the current methodology implemented in
Oloff et al. (2006), where the average rank was 18.1 (vertical green line).

Figure 2.14 shows the results from prediction on the WDI data set. The mean pre-
dicted rank using CCA is approximately 67 (green line), the previous method yielded a

mean result of 310 (red line).
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Figure 2.1: Four groups of four plots, each group consists of a plot of the X and Y raw
data spaces (top left and right) and the projections of these spaces onto their respective
first and second canonical directions (bottom left and right). Group (a) shows the data
with no transformation. All subsequent groups have been transformed. In group (b) The
data in the X space have been rotated 30° counterclockwise and in the Y space the data
have been rotated 75° clockwise. In group (c) the points in the X space have been scaled
by g and in the space Y by % In group (d) the means of the points have been shifted

such that the centers are now at (—§ 1) and (%, —}1). The point of all these illustrations

102
1s that in all four groups of plots the bottom left and right plots, the projections into the
canonical correlation space, are all the same. This provides visual confirmation of CCA’s

mvariance properties.
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Standard CCA
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Figure 2.2: A simulated ezample of the canonical vectors in X space in the presence of
strong multicollinearity between the first and third descriptors. The major issue here is
the large amount of variation in the canonical directions from one sample to the next
despite the fact that the data are drawn from the same distribution.

41



Projected Values of New Data using LCCA
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Figure 2.3: Plot of the projected values of a new set of observations onto the canonical
direction vectors shown in Figure 2.2. Each panel shows the plot of one projection versus
another (only four projections are shown,).
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Regularized CCA
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Figure 2.4: This is a plot of the canonical direction vectors found from RCCA. The dashed
red line is the theoretical direction. In contrast to the direction found by linear CCA the
directions found by reqularized CCA display little variation from one sample to the next
and lie near the theoretical direction.
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Projected Values of New Data using RCCA
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Figure 2.5: A plot of each pair of projected values of the new data onto each of the
direction vectors shown in Figure 2.4 against one another. As can be seen the projections
are all quite similar to one another, in contrast to standard CCA where there was a great
deal of variation from one set of directions to the next.
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Figure 2.6: New toy example data. The points highlighted in red correspond to the protein
ligand pair 1ale, and the points connected to it by dashed black lines are its three nearest
neighbors in each space. The observations highlighted in blue and purple are neighbors
only in the protein and ligand spaces respectively.
space corresponds to a simple weighted average of the cyan point and the purple points,
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i.e. of the nearest neighbors of 1ale in the protein space.
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Colored by Common Groups
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Figure 2.7: These plots depict the same data as in Figure 2.6 with points highlighted
according to whether they appear in the same cluster in both spaces. For example, consider
the green points, these observations appear in the same cluster in both protein and ligand
space. The data has been generated such that points that appear in the same cluster in
both spaces are highly correlated.
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Receptors Ligands First Canonical Variate
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Figure 2.8: The linear CCA direction vectors and the projected value of each point colored
as in Figure 2.7. On the first row of plots the first two panels show the first direction
vector and the projections onto it in protein and ligand space respectively. The last panel
on the top row of plots is a plot of the first canonical variate in protein space against
the first canonical vector in ligand space. If the directions we found were able to capture
the underlying relationship between the two spaces we would expect these points to fall
along the 45° line. The second row of plots shows the same set of plots as the top row of
plots but for the second canonical direction. A wvisual assessment of the projected values
of the observations in each space shows how different the distribution of points is along
the canonical vectors. This discrepancy is further highlighted by noting how different
the location of the colored points are along the canonical vectors. The implication of
this is that the correlation, i.e. alignment is not very good as reflected by the canonical
correlations of 0.46 and 0.34.
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Figure 2.9: CCA Projected space. In contrast to Figure 1.4, linear CCA appears to have
made the prediction worse.
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of the data it appears as though the two spaces are fairly well aligned.
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Canonical Variates
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Figure 2.11: On the left are plots of the first three canonical variates in protein and ligand
space respectively. The red curves are the associated density estimates of the canonical
variates. This is meant to provide some insight into the distribution of the data within a
space as well as how well aligned points are between spaces. On the right is a plot of the
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Figure 2.12: Similar to Figure 2.10 but with one of the test points highlighted as well
as its three nearest neighbors. The color scheme is similar to that of the toy examples
discussed earlier this section.
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Histogram of Ranks
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Figure 2.13: A histogram showing the ranks resulting from prediction on the test data from
the RLP800 dataset. The vertical red line indicates the average rank (approximately 10)
using CCA and the vertical green line the method implemented in Oloff et al. (2006)
(approximately 18).
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Figure 2.14: Similar to the histogram above but using the WDI data. The mean rank using
CCA is approximately 67 while the previous method yielded a mean result of approzimately
310
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CHAPTER 3

Kernel Methods

In Section 1.1 we introduced the concept of a similarity measure S and a pair of spaces
of functions H = {Hx, Hy } over which it was defined. In the context of standard CCA, S
is the correlation function and H contains the Hilbert spaces of functions containing the
bilinear maps fx(X) = (X, wx) and fy(Y) = (Y, wy). As we saw in Section 2.2 standard
CCA may encounter problems when the relationships between and within distributions
of points cannot be described by a simple linear combination of the descriptors. For this
reason it is useful to consider an alternative space of functions which is more appropriate
for learning these complex relationships. In the following sections examples and details
surrounding such a space of functions will be discussed.

In developing intuition and methodology related to kernel methods we follow the
discussion of Scholkopf and Smola (2002) (pp 25-60). From here on we will refer to the
spaces Y € Xx and X € Xy as the object space representations of the data. The spaces
Xx and Xy are nonempty sets from which the observations x; and y; are sampled. This
general definition of the object space is meant to emphasize the fact that the data can
be any of a number of different types. For example, we may be interested in using the
amino acid sequence of a protein in place of its descriptors in our analysis. However,
unless stated otherwise we only consider the object spaces in Xy = R%* and Ay = R .

The spaces ‘Hx and Hy, containing the functions fx and fy discussed in Section 1.1

will be referred to as the feature spaces. The maps ®x and ®y define a mapping from



object space (the original protein and ligand space) into feature space,

(I)XIXX—>HX,

(I)y : Xy —)Hy.

3.1 Example: Feature Maps

To illustrate the type of feature maps we may encounter consider the following toy
example: Recall the general framework of the examples discussed in Section 2 but rather
than having both protein and ligand space characterized by MW and SA, suppose that
the protein space has two descriptors, call them d% and d3% and the ligand space has
two descriptors, call them d}, and d?, shown in Figure 3.1. The observation highlighted
in red, 1a94, corresponds to a new protein whose corresponding ligand we are trying to
predict. The point highlighted in cyan is one of the 3-nearest neighbors of 1a94 in both
spaces. Those points highlighted in blue (and purple) are nearest neighbors in only the
protein (and ligand) spaces, respectively. The point L™ in the ligand space, highlighted
in green is a simple average of the nearest neighbors of the point 1a94 in protein space.
Using L™ as a prediction of the new ligand would not provide a particularly accurate
prediction.

As before we use CCA to try and find a linear combination of the descriptors which
best align the two spaces. Figure 3.2 is a plot of the projections onto the first and
second canonical variates in protein and ligand space. The color scheme is the same as
in Figure 3.1. As can be seen standard CCA does not seem to be able to find a good
alignment between the two spaces, which is confirmed by the low values of the canonical
correlations, 0.47 and 0.15 respectively for the first and second directions.

Suppose it is believed that some type of functional relationship exists between the

descriptors across spaces that is best characterized by looking at the second order poly-
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Figure 3.1: A plot of the data generated such that the underlying relationship between
points is non-linear. The observation highlighted in red, 1a94, is the new observations
which we are trying to predict. The points joined to it by dashed black lines are its nearest
neighbors. The points highlighted in cyan correspond to a point which is a nearest neighbor
of 1a94 in both spaces. Points highlighted in blue and purple correspond to points which
are only neighbors in either protein or ligand space respectively. The point labeled L™
i ligand space corresponds to a simple average of the points 1a08, 1a09 and 1alb, i.e.
the nearest neighbors of the point 1a94 in protein space.

nomials of the descriptors within each space, that is,

(DX : (dﬁ(adi) - ((dﬁ()Qa (di()27d§(d§()7

(3.2)

Figures 3.3 and 3.4 are plots of proteins and ligands respectively embedded in this three
dimensional space. As can be seen there are now two neighbors shared in common
between spaces (colored in cyan). Furthermore the prediction of the new observation,
L™" (in green) by a simple average of its three nearest neighbors in feature space is, by

comparison, much closer to the actual value than the corresponding prediction in object

space.

%)



Receptors Ligands

Canonical Vectors 1 vs. 2 Canonical Vectors 1 vs. 2
Lapt Lo 1a08
L7 1He 1a60 1%
1 — 1a07 — lalb e
1la7t . 1a7t 1ab0
1242 lalb 05 B
1a50 @ 1a08 11gs
0 — 1a30 — 0.0 — 16pk |
o lalk 1lgs o \ . 1242
|©] lale 120 @) ' 17
© 16pk 4 © 05 104 —
-1 — ’
/
—1.0 — 1a09 -
_9 - |
~1.5 — lale 1a0q I
1a09 ladk
I I I I I I I
-1 0 1 2 -1 0 1
CC] CC]

Figure 3.2: A plot of the data projected onto the first two canonical vectors in both protein
and ligand spaces. The directions found by standard CCA do not provide a good alignment
between the two spaces.

As before CCA is used on this transformed data, now in feature space, to align the
space of proteins and ligands. Figures 3.5 and 3.6 show the plots of the projected data.
Note that now both the new protein and its ligand (highlighted in red) share the same
neighbors. The quality of the alignment is further confirmed by looking at the canonical
correlation values which are equal to 1 for each of the directions.

It is worth noting that, due to overfitting, the kernel canonical correlation values
can sometimes be artificially large due to strong correlation between features in kernel
space. The intuitive ideas are similar to those discussed for linear CCA in Section 2.3.
Regularization methods for helping to control these effects in the kernel case will be

discussed in Section 3.4.
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Figure 3.3: A plot of the protein data in kernel space. The color scheme is the same as
in Figure 3.1. Looking at Figure 3.4 the overall correspondence between points in protein
space and ligand space is much better than in the original (object) space.

3.2 Kernels

In contrast to the example just discussed, there are many cases where the types

of feature spaces best suited for describing the relationship between spaces cannot be
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Figure 3.4: A plot of the ligand data in kernel space. The color scheme is the same as in
Figure 3.1. As discussed in Figure 3.3 the correspondence between points in ligand and

protein space is much better than in the original object space.

will allow CCA to do a better job aligning the two spaces.

This improved mapping

explicitly defined. Specifically, difficulties arise when the space of functions to which

® and Py belong, define mappings into large or possibly infinite dimensions. However,

what is more important than explicitly defining these feature spaces is showing that such
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Figure 3.5: This is a plot of the projection of the data in protein feature space onto the
first, second and third canonical vectors. As can be seen not only does the new observation
1a94 (red) have the same 3 nearest neighbors in both protein and ligand space but the
prediction of the new ligand, L™ highlighted in green below in Figure 3.6 is close to the
actual value of 1a94.

spaces exist and that a inner product can be defined in them. A space equipped with
a inner product allows us to understand how points are related to one another in that

space. Thus we want to show that given a similarity measure in object space, called a
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Figure 3.6: See Figure 3.5 for details.

kernel, under certain conditions this kernel also defines an inner product in feature space.
We give a few definitions associated with kernels, following the development of Scholkopf

and Smola (2002).
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Definition 3.2.1. (Gram Matriz) Given a function K : X* — R and observations

X1,...,X, € X, the n x n matriz K with elements
Kij = K(Xz‘, Xj) (33)
is called the Gram matriz (or kernel matriz) of K with respect to X1, ...,X,.

Definition 3.2.2. (Positive Definite Matriz) A real n x n matriz K satisfying
Zcichij > 0 (34)
2%

for all ¢; € R s called positive definite.

Definition 3.2.3. ((Positive Definite) Kernel) Let X be a nonempty set. A function K
on X x X which for alln € N and all x4,...,%, € X gives rise to a positive definite

Gram matriz is called a positive definite (pd) kernel.

With these definitions in place recall the feature maps defined in (3.1) (we restrict our
discussion to the space X as the same holds for the space Y). Assuming Ky is a real
valued positive definite kernel, replacing Hx by R := {f : Xx — R} we have

by Xy — R,
(3.5)

x — Kx(.,x).

Intuitively the function ®y(x) can be thought of as a function measuring the similarity
between x and all points x' € Xx. Here similarity is measured by the function Kx(x', x)
with

(I)X(X)(> :Kx(,X) (36)
From these definitions it can be shown (Scholkopf and Smola (2002))

1. The image of ®x can be represented as a vector space,
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2. a dot product can be defined in this vector space, and
3. this dot product satisfies K (x,x') = (Px(x), Px(x')).

In particular we have

<KX('7X)an> :fX(X)7 (37)

and

(Kx(.,x), Kx(.,x)) = Kx(x,x). (3.8)

The kernel function Kx as defined above is referred to as a reproducing kernel. The space
of functions to which the function Kx, endowed with properties (3.7) and (3.8), belongs

is called a reproducing kernel Hilbert space (RKHS) which is defined as follows

Definition 3.2.4. Let X be a nonempty set and H a Hilbert space of functions f : H —
R. Then H is called a reproducing kernel Hilbert space endowed with the dot product (., .)

if there exists a function K : X x X — R with the following properties,

1. K has the reproducing property

(f,K(x,.)) = f(x), for all f € H.

In particular,

(K(.,x),K(.,x)) = K(x,x).

2. K spans H, H = span{ K (x,.)|x € X'}, where X denotes the completion of the set

X.

Furthermore it can be shown that a RKHS uniquely determines the kernel K. With

these definitions in place we can now define kernel CCA (KCCA).
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3.3 Kernel CCA

The objective of standard CCA is now restated as follows (following the discussion of

Hardoon et al. (2004),

PrH = Imax COI‘I‘(<(I)X,W)(>, <(I)y,Wy>)
WX, Wy
(3.9)

cov({®x, wx), (Py, wy))

er(liz’()’ \/var((CI)X, Wx>>\/V3«1"(<CI)Y’ WY))

Now note that because wx (and wy) lie in the span of ®x (and ®y) these can be

re-expressed by the linear transformations

wx = Oxay,

Wy = (I)yOéy.
Plugging this into (3.9) gives us

cov((®x, Prax), (Py, Pyay))
px = max
ooy \/var((Qx, Phax))y/var((®y, ®Lay))
cov(Kxax, Kyay)

max .
ax,ay \/Val"(Konx) \/Val"(Kyay)

(3.10)

Following the same intuition as discussed in Section 2.1 we impose the constraints

T 372 _

agK%/Oéy = 1.
The optimization problem thus becomes

pr = max corr((Kx, ax), (Ky,ay)) = axKxKyay,
ax,y

subject to, (3.11)

T2 o TE2 .
axKxox = oy Ky ay = 1.
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The corresponding Lagrangian of (3.11) is

L(px,py,ax,ay) = axKxKyay — %(aﬁK%aX —1)— %(&X@K%ay —1).

Taking the derivatives with respect to ax and ay gives us

0L

o = KxKyOéy - pr_ZXOéX = O, (312)
X
oL
oy = KyKxax — pyKiay = 0. (3.13)

Multiplying (3.12) by a% and (3.13) by of- and subtracting the two gives us,
0= Oé§KxKyOéy — px()éiK?XOéX — OégKnyOéX + pyagK%Oéy
= PYOé%CszCYY - PX04§K§(OZX-

Using the constraints in (3.11) we then have that px = py. Setting px = py = py and

assuming that the matrices Ky and Ky are invertible, we have

KK KxKyay
ax —
e (3.14)
. KX KyOéy
PH '
Similarly,
K,'K
ay = —Y XX (3.15)
PH

Next substituting (3.15) into (3.12) gives us

KXKyK;lKonX - p%KXKXaX = 0,
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leading the generalized eigen problem
Iy = p%ax. (3.16)

From the solution in (3.16) it can be seen that the eigenvalues for each of the correspond-
ing eigenvectors will be equal to 1. Furthermore the corresponding eigenvectors will be
equal to the unit vector e; for o, and will be equal to #K;lKXei forai., i =1,...,n.
This will be true so long as the kernel matrices Kx and Ky are invertible.

As was the case with linear CCA we need to control how flexible we allow the directions
to be. In the following section we discuss a regularized variant of KCCA which allows us

to find non-trivial directions and relationships between spaces.

3.4 Regularized KCCA

Two standard regularization techniques used with KCCA are

T 1o2 T
axKyax + kxayax =1,

(3.17)
oL K3 ay + kyatay = 1,
discussed in Kuss and Graepel (2003), and
Koy +akKxax =1,
(3.18)

oy Kyay + ab Kyay = 1.

discussed in Hardoon et al. (2004). We focus on (3.17) since its behavior, generally

speaking, is similar to (3.18), but looks, and as a result has a more intuitively appealing
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connection to standard CCA. The optimization problem in (3.11) is rewritten as,

pr = max corr((Kx, ax), (Ky,ay)) = (I§KxKyO[y,
ax,oy

subject to (3.19)

T 12 T T2 T
The corresponding Lagrangian is

L(px, py,ax,ay) = ol KxKyay — pTX(O&K%(OéX—F

Kxakax —1) — %(Oz;K%O&yfiyOég;Oéy —1).

Taking the derivative with respect to ax and ay and setting equal to zero we have

oL

_— = KXKyOéY - pX(K?XOCX + HXax) == 0, (320)
804)(

oL )

day = KyKxyax — py(Kyay + kyay) = 0. (3.21)

Multiplying (3.20) by a% and (3.21) by ol and subtracting the two gives us,

0= ot KxKyay — pxak (K% + ixDay — ol KyKxax + pyai (K2 + kyl)ay+

= Py — PX,

where the last equality holds by the constraints in (3.19). We then have that px = py.
Setting px = py = py and assuming that the matrices K% + xxI and K% + kyI are

invertible, we find
K2 I)'KxK
oy = B+ i) KKyay (3.22)
PH

Similarly we have,
K2 I)'KyK
oy = Ky + o) KyKyax (3.23)
PH
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Next substituting (3.23) into (3.20) gives us the generalized eigen problem

KxKy(K%/ + /in)*leKXaX = p%(K?X + HX:[)OéX.

This can also be expressed as

0 KxKy ax
KyKX 0 Ay
(3.24)
K%( + Hxl 0 ax
= PH
0 K3 + kyl vy

In a similar fashion to linear CCA subsequent canonical correlations and vectors are found
by solving for the remaining eigenvalue eigenvector pairs of the generalized eigenvalue

problem in (3.24).

3.5 A Simultaneous Formulation of KCCA

An alternative formulation of the KCCA problem which will be of use later in Chap-
ter 4 combines the successive subproblems described previously in Section 3.4 into one

problem. The formulation of the simultaneous optimization problem is

n

pr = arg max Z(o&)TKXKya%/

(ak,0d),.... (o ,a) i—1

subject to,

1 if i #j,

0 otherwise,
1 if i # g,

0 otherwise.

(03)" (Ky + sL,)ag, =
(%) TKxKyal =0,Vi # j, (3.25)
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,)=1,...,n. (3.26)
The corresponding Lagrangian can be written as

L((a§{>a%/) (O‘XﬁoéY) {P zg 1>{p 7,] 1)

:i@éi TKXKY@Y__ZP )" (KX + w1 ——Zp )T(KY + k1,)ad

2,7=1 1,j=1

(3.27)

where {p%}7 7= and {p% ii=1 are Lagrange multipliers.

Theorem 3.5.1. The optimization problem in (3.25) can be restated as

pr = arg max Tr(AYKxKyAy)
Ax,Ay
subject to,
AL (K% +rL)Ax =1,
AL(KS + kL)Ay =1,

() TKxKyaod = 0,Yi # j, (3.28)

where Tr denotes the matriz trace and Ax = (o, ..., a%) and Ay = (o, ..., a}) are

the n X n matrices of canonical vectors.

Proof. Let Rx = {p% 1i=1 and Ry = {pn ii=1 be the n x n matrices of Lagrange
multipliers, note that these matrices are symmetric. The Lagrangian in (3.27) can be

written as

L(AX7 AY7 RX) RY)
1 1
= Tr(ATKxKyAy) — §Tr(A§(K§( + kL) AxRx) — §Tr(A$(K§/ + xL,)AyRy).

(3.29)
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In solving the Lagrangian in (3.29) we use the following identities related to the deriva-

tives of the trace function

8 T .
and
aiXTr(XTBXC) = BXC + B"XC". (3.31)

Taking the derivative of (3.29) with respect to Ax and Ay and setting equal zero gives

us

L
8— = KXKyAy — (K% + /'iIn>AxRX = O,
0A x
oL )
_— = KyKXAX — (KY + /*iIn)AyRy = 0. (332)
0Ay

Multiplying these by A% and AT respectively, using the constraints in (3.28) and rear-

ranging terms gives us

Rx = AYKxKyAy,

Ry = ATKyKxAy.

But note that

AinKyAy = AgKnyAX = dlag ({(aé()TKXKYagf}ZL:l) y

therefore
(%) "KxKyay 0 N .
Rx =Ry =R = 0 (%) KxKyad - 0
0 0 o (O&)TKXKyo@
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,0%{ 0O --- 0
0 p% o0
0 0 - py

Next solving for Ax and Ay above we have

Ax = (K% +xI,) 'KxKyAyR ™!,

Ay = (K2 + kL) 'KyKxAxR ™, 3.33
Y

which are the same as the solutions we found for o and o in Section 3.4. Plugging in

the solution for Ay into the first equation in (3.32) and rearranging terms gives us
KxKy (K2 + kL,) 'KyKxAx = (K% + k1) AxR?.
Let Bx = (K% + k1,)2 Ay then
Ky Ky (K2+5L,) 'Ky Kx (K4 +£1,)2 (K% +k1,) 2 Ax = (KX +kL,)? (KX +£1,)2 A xR2.
Rearranging terms gives us
(K2 + k1, 2Ky Ky (K2 + xL,) 'KyKx (K% + xI,) 2By = BxR2 (3.34)

Let Mxy = (K% + HIn)’%KXKy(Kf/ + /@In)’%. Suppose Bx are the eigenvectors of the

matrix M XyM%QY and Ax the corresponding eigenvalues, then

MxyM%y = BxyAxB%,
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Plugging this into (3.34) we have

MxyM%i,Bx = BxyAxBiBx
- BXAX

= BxR%

Left multiplying both sides by B% shows us that Ay = R? From this we can see that
the matrices R and Bx must be the singular values and left singular vectors of M xy.
Similar calculations show us that By are the right singular vectors of M xy. This is in

agreement with our calculations from Section 3.4. [l

3.6 Kernel Centering

In order to maintain our understanding of KCCA as maximizing correlation in feature
space we need to ensure that the data is centered in feature space. The following
calculation shows how this can be done. Let ® = %J ® where J is an n x n matrix of

ones, then

(® — 0)(d— )T = 20" — 0T — ¢ + PO

1 1 1
=K- ~JK - ~KJ + —JKJ
n n n

1 1
= (I — —J) K (I — —J) (3.35)
n n
Unless stated otherwise we assume throughout that the kernel matrices are centered.

3.7 Toy Example: Non-standard data

We saw in Section 3.1 that KCCA was able to overcome some of the obstacles en-
countered by standard CCA. Where KCCA begins to encounter problems is when the

distribution of points within a space is non-standard and/or heterogeneous. To illus-
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trate this consider the example shown in Figure 3.7, as with the protein-ligand matching

problem there is a one-to-one correspondence between points in the two spaces.

8

" 2in?”

2, oot Soatings, F0FF 550

! %%&%&;%gq.#" -
T

Figure 3.7: A toy example illustrating the cases when the distribution of points within a
space s non-standard and heterogeneous.

The underlying structure between these spaces is illustrated in Figure 3.8. The top
row of plots tells us about how the distribution of points on the right (cluster space)
relates to the distribution of points on the left (smiley face space). The bottom set of
plots tells us about how the distribution of points on the left is related to distribution of
points on the right.

If we were to look at the two spaces as marginal distributions, there is a distinct
impression of the three clusters in the left, and two in the right. However, the joint
distribution has six distinct groups. Looking at the plots on the left in Figure 3.8 each of
the three clusters is in fact composed of two subclusters. Likewise each of the two clusters
in the plots on the right are composed of three subclusters. Ideally the projections onto
the KCCA directions would identify each of these six groups, shown in Figure 3.9.

Using an RBF kernel with o = 1/2 we look at the first 5 canonical directions. Ideally
what we would see is a separation of each of the groups as well as a strong alignment
between each of the spaces. What we find looking at Figure 3.10, a scatter plot matrix
of the first five canonical directions, is that while the leading correlations are large (0.98,
0.97, 0.95, 0.80, 0.75), we are not able to find the structure in the data we were looking

for, i.e. separating out the six groups (with each of the colors corresponding to one of
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Figure 3.8: These plots highlight how the distribution of points in one space is related
to the distribution of points in the other. Looking at the plots on the left in Figure 3.8
each of the three clusters is in fact composed of two subclusters. Likewise each of the two
clusters in the plots on the right are composed of three subclusters.
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Figure 3.9: In this plot each of the siz underlying subgroups shown in Figure 3.8 is
highlighted.
the six groups). Note that only the projections in the smiley face space are shown since
the cluster space projections look essentially the same.

In the context of the protein-ligand matching problem this type of situation presents
a potential problem. Suppose a new point, say in the space with the smiley face, is
projected into KCCA space. As can be seen in Figure 3.10 there is a great deal of

overlap between each of the six subgroups in the projected space. In particular note that
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Figure 3.10: Scatterplot matriz of the first five KCCA direction vectors for the data shown
in Figure 3.7. Each of the colors in this plot corresponds to one of the six underlying
subpopulation in the data (see Figure 3.8 for details).

each of the overlapped groups is composed of, respectively, the left eye, right eye and
mouth. The reason this type of behavior presents a problem is that each of the eyes
and the mouth are actually composed of two different subpopulations where each of the
populations correspond to very different groups in the space with the two clusters. So
while we may be able to accurately predict the location of a new point in KCCA space

the interpretation of its surrounding neighbors may not be so meaningful.

3.8 KCCA Performance on Real Data

As in Section 2.6 we apply the methods described in this chapter on the RLP800 and
WDI data sets described in Section 1.3. The kernel used in our analysis is the radial

basis function (RBF)

1
K(XZ‘,XJ') —exp{—ﬁHXi—X]"F}. (336)
Regularized KCCA was used with tuning parameters selected via a cross validation
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scheme similar to that described in Section 2.6, the difference being the addition of the
bandwidth parameter o, whose with candidate values are {0.5,1,2,5,10}. The resulting
set of parameter values were 0 = 2, kx = Ky = 0.01, the number of dimensions projected
onto was px = py = 400 and the number of neighbors used in the prediction was 60.
Figure 3.11 shows the distribution of each of the first three kernel canonical variates
(left) as well as the canonical correlations for each of the 400 variates (right). As can be

seen the leading canonical correlations are fairly large indicating that a strong relationship
exists between spaces.
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Figure 3.11: On the left are plots of the first three canonical variates in protein and ligand
space respectively. The red curves are the associated density estimates of the canonical

variates. This is meant to provide some insight into the distribution of the data within a

space as well as how well aligned points are between spaces. On the right is a plot of the
canonical correlations associated with each of the 637 canonical vectors.

Figure 3.12 is a scatterplot matrix showing the projections of the training (black) and
testing (red) points from the RLP800 data onto the first three canonical vectors. From a

visual assessment of the data it appears as though both the training and testing points
in each of the two spaces is fairly well aligned.
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Figure 3.12: A plot of the kernel canonical correlations from the RLP800 data set with
the training data shown in black and the test data shown in red. From a visual assessment
of the data it appears as though the two spaces are fairly well aligned.

Figure 3.13 is similar to Figure 3.12 but with one test point highlighted (red), in both
protein and ligand space, and its predicted value (green), in ligand space only. As can
be seen the prediction is fairly accurate.

Figure 3.14 is a histogram of the ranks associated with our prediction using regularized
KCCA. The average rank in this case was approximately 7.1, indicated by the vertical red
line. For the purposes of comparison the average rank from linear RCCA (approximately
10) and the previous approach used in Oloff et al. (2006) (approximately 18.1) is also
shown (blue and green respectively).

Figure 3.15 similarly summarizes the results from prediction on the WDI data set.
The mean predicted rank using KCCA is approximately 56 (red line), using CCA it is
approximately 67 (blue line) and using the previous method is approximately 310 (green

line).
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Figure 3.13: Similar to Figure 3.12 but with one of the test points highlighted and only its
three nearest neighbors. The color scheme is similar to that of the previous toy examples
discussed in the linear case.
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Figure 3.14: A histogram showing the large improvement in rank resulting from KCCA
prediction on the test data from the RLPS00 dataset. The vertical red line indicates the
average rank (approximately 7.1) using KCCA, the blue line shows the average rank using
CCA (approxzimately 10) and the vertical green line the method implemented in Oloff et al.
(2006) (approximately 18.1).
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Figure 3.15: Similar to the histogram above but using the WDI data. The mean rank
using KCCA is approzimately 56, RCCA is approzimately 67 and the previous method is
approximately 310.
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CHAPTER 4

Indefinite KCCA

A potential shortcoming of standard KCCA, that was illustrated in the example
presented in Figure 3.7, is that standard positive definite kernels can be limited in their
ability to capture non-standard heterogeneous behavior in the data. A general class of
kernels which is better suited to handle this type of behavior takes the form

K () = w(x;, X;) if x; € N(x;), (41)

0 otherwise.

Here N(x) denotes some neighborhood of the observation x, such as a k(€ Z,.) or ¢(> 0)-
neighborhood. Kernels of this form restrict attention to the local structure of the data
and allow for a flexible definition of similarity. The problem encountered with this class
of kernels is that they are frequently indefinite (see the discussion following Definition
4.1.1). Recalling our discussion from Section 3.2 one of the requirements on the function
K is that it should be positive semi-definite. As a result of the indefiniteness many of
the properties and optimality guarantees no longer hold.

Indefinite kernels have recently gained increased interest (Ong et al. (2004), Haasdonk
(2005), Chen and Ye (2008), Luss and d’Aspremont (2008)), where rather than defining K
to be a function defined in a RKHS K is defined in an space characterized by an indefinite
inner product called a Krein space. In Section 4.1 we provide an overview of some of the

definitions and theoretical results about Krein spaces (following the discussion of Ong



et al. (2004)). In Section 4.2 we formulate the IKCCA problem. In Section 4.3 we provide
an overview of spectral clustering and in Section 4.4 we show a connection between
IKCCA and LDA when a variant of the Normalized Graph Laplacian (NGL) kernel is
used. In Section 4.5 we apply IKCCA to the non-standard data example introduced
in Section 3.7. Finally in Section 4.6 we apply IKCCA to the protein-ligand matching

problem.

4.1 Krein Spaces

In this section we provide some definitions and theorems as they relate to Krein spaces
and connect these ideas to the IKCCA problem (more details can be found in Ong et al.
(2004)).

Definition 4.1.1. (Inner Product) Let KC be a vector space on the scalar field. An inner

product (., ) on K is a bilinear form where for all f,g,h € K, a« € R

<f> g>lC - (g, f>]c
(af +g.h)c = alf. By + (9. 9)x
(f,9)x =0 for all g € K implies = f = 0.

The importance of K being a vector space on a scalar field is that it allows for a flexible
definition of an inner product (i.e. the scalar in one of the dimensions could be complex
or negative as we will see below). An inner product is said to be positive if for all f € IC,
(f, [Yx > 0. It is called a negative inner product, if for all f € K, (f, f)x < 0. An inner

product is called indefinite if it is neither strictly positive nor strictly negative.

Definition 4.1.2. (Krein Space) An inner product space (IC, (., .)x) is a Krein space if

there exist two Hilbert spaces Hy, H_ spanning IC such that

1. All f € K can be decomposed into f = f. + f_, where f, € Hy and f_ € H_.
2' vag € ’Ci <f7 g>IC = <f+7g+>7'l+ - <f,,g,>H_
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Definition 4.1.3. (Associated Hilbert Space) Let K be a Krein space with decomposition

into Hilbert spaces Ho and H_. Then we denote by K the associated Hilbert space defined
by
IC = H-l- ® H_ hence <f7 g)ﬁ = <f+7g+>7'l+ + <f—7g—>'H7-

Likewise we can introduce the symbol & to indicate that

K =M1, ©H_ hence (f,9)x = (fr;91)m, — (f- 9-)n_.

The strong topology on K is defined as the Hilbert topology of K. The topology does
not depend on the decomposition chosen. Clearly |{f, f)|x < ||f||g for all f € K. Note
that we only have equality when (f_,g_)_ = 0, this, however, does not imply that the
inner product, i.e. the kernel, is positive.

Let X be a non-empty set from which the data, x is sampled. Assuming K is an

indefinite kernel and X C R* := {f : X — R} we have

o X - RY

x — K(.,x) = f(x).

Definition 4.1.4. (Reproducing Kernel Krein Space) Let X be a nonempty set, H, and
H_ are RKHS (with kernels K and K_) and K = Hy © H_ a Krein space of functions
f: K — R endowed with its strong topology K. Then K is called a reproducing kernel
Krein space (Alpay (2001), Chapter 7) endowed with an inner product (.,.)x if ® is
continuous on IC and K : X x X — R with the following properties

1.
(f, K(x,))x = f(x) for all feK.

In particular

(K(x,.), K(X,.))x = K(x,X).
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2. K=K, —K_.

To illustrate how Krein spaces and indefinite inner products arise in the context of
our problem consider the following. Suppose we have a symmetric kernel function K
which is indefinite. The implication of this is that the resulting kernel matrix K =
{K;}, is indefinite and that it therefore contains positive and negative eigenvalues.
Let K = UAUT be the eigendecomposition of K, where U are the eigenvectors and A is
the diagonal matrix of eigenvalues starting with the p positive eigenvalues, followed by
the ¢ negative ones and the n — p — ¢ > 1 eigenvalues equal to 0. To see how K can be
interpreted as a matrix composed of inner products in this indefinite inner product space

consider the following representation of its eigendecomposition
K = U|A|zdiag(1,, —1,,0,_,_,)|A[2U”.

Let M = diag(1,, —1,) and @ be equal to the first p + ¢ columns of U|A|2. Define the

i'" row of @ be equal to

o, = (5251',1, o Qi Piprts - s Diptaq)-

g '

-y =37

7

We then have a kernel matrix composed of elements

K;j = ®M®;
— (&N THt T F—
= (&))" - (8;)"%;
= (Py, @)1, — (s, Pj)p

Many of the properties that hold for reproducing kernel Hilbert spaces also hold for re-

producing kernel Krein spaces. The key difference is that rather than minimizing (max-

83



imizing) a regularized risk functional the problem becomes that of finding a stationary
point of a similar risk functional. In the statement of the optimization problem in Theo-
rem 4.1.5, when we write “stabilize” it is meant to emphasize the fact that the solutions
we are finding are not necessarily global or local minima and maxima (the solution could

be a saddle point), but are stationary points.

Theorem 4.1.5. (Ong et al. (2004)) Let K be a RKKS with kernel K. Denote by
L{f, X} a continuous convex loss functional depending on f € KC only via its evaluation
f(xi) with x; € X, let Q({f, f)x) be a continuous stabilizer with strictly monotonic

Q:R — R and let C{f, X} be a continuous functional imposing a set of constraints on

f, that is C': K x X™ — R"™. Then if the optimization problem

stabilize L{f, X} + Q{f, f)x)

(4.2)
subject to C{f, X} <d
has a stationary point f*, it admits the expansion
fr= ZO%K(X@', -) where x; € X and a; € R. (4.3)

4.2 IKCCA

The results of Section 4.1 provide some insight into the challenges that arise from
dealing with indefinite kernels. In particular the results of Theorem 4.1.5 point to the
fact that the solution that we find may not be globally, or even locally optimal (as it
may be a saddle point). The “stabilization” problem stated in (4.2) of Theorem 4.1.5
motivated the form of the Indefinite KCCA (IKCCA) problem we present in this section.
In particular, the addition of the stabilizing function, €2 on the indefinite inner product,
(f, [ led us (in addition to results and discussion from Luss and d’Aspremont (2008))

to consider introducing a constraint on the behavior on the indefinite kernels matrix
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itself.

In the following let || - || denote the Frobenius norm. Define M > 0 to mean that
the matrix M is positive semi-definite and let Ax, \y € Rt U co be tuning parameters
(discussed in more detail later this section). Here K% and K. are the (potentially)
indefinite kernels and Ky and Ky will be the positive semi-definite approximations of

these kernels. With these notations in mind we now define the IKCCA optimization

problem,

pr = Jnax  min Tr(AYKxKyAy) + Ax|[Kx — K& |7 + v |[Ky — Ky |7,
subject to,

ATKYAx + kAYVAx =1,

ATKLAy + kAT Ay =1,

(o) " KxKyad =0, fori#j,i,7=1,...,n,

Kx = 0,

Ky = 0, (4.4)
where, Ax = (ak,...,a%) and Ay = (aj,...,a%). Note that the this optimization

problem and the KCCA optimization problem (see (3.28) in Section 3.5 for details) are
only equivalent when the kernel matrices K% and K¢ are positive semi-definite, as will

be shown in the proof of Theorem 4.2.2.

Theorem 4.2.1. Letting A\x, \y — 00, the optimization problem in (4.4) is concave in

,L' ,L s .
oy and o, 1 =1,...,n and conver in Kx and Ky .

Proof. We begin by showing that the loss function

Tr(AYKxKyAy) (4.5)
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is concave in a% and o, i =1,...,n. Note that (4.5) can be expressed as

Tr(AYKxKyAy) =Y o{KxKyal.
i=1

It can be seen from this representation that if o/l KxKyal is concave in o and oi
for all i = 1,...,n then (4.5) will also be concave. For the remainder of the proof we
suppress the superscript i.

Suppose that Ky, Ky = 0. Recall that the solution for ax in the KCCA optimization
problem in (3.19) is

1

ax = _(K.ZX + K,In)ileKyOéy.
PH

Plugging this in we have

1
OéinKyOéy = p—OziKny(K?X + K}In)_leOéy.
H

Note that (K% + xI,,) 'K x is symmetric, this can be seen by looking at its eigendecom-

position

(K% + kL) 'Ky

(&;QM 0 0 /\}( 0O --- 0
0 D S 0 0 X2 ... 0
=ve| VRV T | VX
1 n
0 0 PR 00 M
)\1
(/\ﬁ())g%‘f 0 0
0 LS S 0
=Vl T YR
)\n
0 0 (/\T)L())§+K
where Vx are the eigenvectors and \,i = 1,...,n are the eigenvalues of the matrix
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Kx.
Now, if the kernel matrices Kx and Ky are positive definite then Ky Ky (K% +
kL) 'Ky must be positive definite. To see this, let ¢ € R"™ be a vector of constants,

then

CTKny(K?X + HIn)ileC
= (c")TKx (K% + «I,,)"'c*

>0

)

where ¢* = Kyc. The last inequality holds since (K% + xI,,) 'Ky is positive definite.
Therefore, since the terms Ax||[Kx — K%||% and A\y||Ky — K%||% do not depend on A x
and Ay, as will be shown in Theorem 4.2.2, the IKCCA loss function in (4.5) is concave,
as we wanted to show.

Using the fact that the square of the Frobenius norm is strictly convex (Boyd and
Vandeberghe (2004)) we then have that the inner minim

Putting this all together we have that the IKCCA problem is concave in o and ol
i =1,...,n and it is convex in Ky and Ky, as we wanted to show.

]

Let (X); denote the positive part of the matrix X, i.e. (X); = >, max(0, \;)v;v]

7
where \; and v; are ' eigenvalue-eigenvector pair of the matrix X. With this in mind

we following state theorem,

Theorem 4.2.2. Letting Ax, \y — oo, and given the optimization problem in (4.4) the

optimal values for Kx and Ky are given by

KX = (Kg()Jr?

Ky = (K});. (4.6)
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Before proving Theorem 4.2.2 we will need to make use of the following lemma. Let
M, € R™" be a known, square, not necessarily positive-definite matrix, and M € R™*"

a square, unknown matrix, then

Lemma 4.2.3. The solution to the following optimization problem,
in ||[M — My||?
argin | ol
18
M - (MO)Jr .

Proof. Let Ay, = diag(A)y,, ..., Aly,) and V@ = 1,...,n denote the eigenvalues and
eigenvectors of My. Note that for any real matrix A € RP*? and orthonormal basis

V € R?*1 that

|A[|7 = Tr(ATA)
= Tr(VATVTVAVT)

= |[VAV']|%.
Keeping this identity in mind the optimization problem in (4.2.3) can be restated as

arg min [[M — Mo|[;
_ : T 2
= arg min [V, (M — M) Vg |5

= arg gg& ||V£/IOMVM0 - AMOH%“

Note that since Ay, is diagonal Vi, MV, should be diagonal in order to minimize the

Frobenius norm. This implies that V,,, must be the eigenvectors of M. Thus we can
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assume that the matrix M which minimizes the above problem has the form
T
M — VMO AMVM07
where A/ is a diagonal matrix with entries \Y;, i = 1,...,n. The problem then becomes

n
arg uin ([ Ay = Ay [ = g gmin (0 — Ny
- M= =1

Clearly the quantity which minimizes this is A}, = max(0, A\y;,). Thus we have that

M = (M), as we wanted to show. O
We now return to our proof of Theorem 4.2.2.

Proof. We begin by expanding out the terms in the objective function (4.4)

pr = Tr(AXKxKyAy) + Ax|[Kx — K&|[%
+Av|[Ky — Ky |7
= Tr(ATKxKyAy) + AxTr(Kx — K% (Kx — K%)) + Ay Tr(Ky — KV (Ky — KY))
= Tr(KyAyATKx) + \xTr(KxKy — 2KxK%) + Ay Tr(Ky Ky — 2Ky KY)

+ AxTr(KYKS) + Ay Tr(KSKS).

Letting C = )\yTI'(KyKy — 2Kng)/) + /\yTl"(Kg)/K?/) + )\XTr(Kngg() and GYX =

Ky Ay AL we have

PH = TI'(nyKX + )\XKXKX - QAxKg(Kx) + C

:/\X'I‘l" KX—2 LGYX"‘K%— KX —|—C
2Xx
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Adding and subtracting H2A Gyx + K%||% we have

2
P = Ax KX—<EGYX+K°) HEGY“LK F+C.
Note that there is only one term involving Kx. Thus the minim
2
%ixn Kx — (EGYX—#K ) ;
subject to,
Ky = 0. (4.7)

For the purpose of our application we only consider the case where A\x — oo, forcing
Ky to be the closest proxy of the matrix K%. This then becomes the projection of the
matrix K% on the cone of positive semidefinite matrices (Luss and d’Aspremont (2008)).

The optimal solution to this problem is given by

KX = (KOX)+7

as we wanted to show. Similar results hold for Ky-. O

Note that it is equivalent to solve the IKCCA problem by solving the regularized
CCA optimization problem replacing the matrices X and Y with the matrices Cx and

Cy, respectively, where

Cx =K%V%,

Cy =K\ V7.

The matrices V§ and Vi are the matrices of eigenvectors corresponding to the positive
eigenvalues in X and Y space respectively. A justification for this equivalency can be

found in Kuss and Graepel (2003).
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With this in mind, out-of-sample points x € R% and y € R¥ are projected onto
their first p canonical directions as follows: first compute their kernelization, using the

indefinite kernel functions K% and KV

K% (x,.) = (K%(x,%x1),..., K%(x, Xn))T,

KV (x,.) = (Ky(y,¥1),-- - Ko (y, ya))"

Next, K% and K9 are projected onto the matrices of eigenvectors Vi and V7, respec-

tively, giving us

Kx(x) = K% V% € RFX,

Ky(y) = KyV). € R,

Here px and py correspond the the number of non-zero eigenvalues in X and Y space

respectively. Finally, the projections onto the canonical directions are given by

F(x) = (Kx(x),ax) = Y o K(x);,

f(y) = (Ky(y),ay) = Za@K(y)i_

where the a’’s and of,’s are the solutions from the IKCCA optimization problem in (4.4)
(also note that p < min(py,py)).

In the following section we show that for the class of kernels in (4.1) an interesting
and intuitive connection can be made between IKCCA and LDA.

In particular we study a class of kernels related to the normalized graph Laplacian
(NGL) used in spectral clustering (Chung (1997), Shi and Malik (2000), Ng et al. (2002),
Belkin and Niyogi (2003), Bengio et al. (2004), v. Luxburg (2007), v. Luxburg et al.

(2008), Zelnik-Manor and Perona (2004)). In Section 4.3 we provide an overview of
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spectral clustering and some associated properties. Then in Section 4.4 we show the

connection between the NGL kernel for IKCCA and LDA.

4.3 Spectral Clustering

In this section we provide an overview of spectral clustering and its properties. Our
discussion follows that of v. Luxburg (2007).

The intuitive goal of clustering can be summarized as follows: given a set of n data
points, x; € R?, and some measure of similarity between them, w;; the goal is to divide
the data points into several groups such that points in the same group are similar and
points in different groups are dissimilar. A convenient way of representing the data in
this context is in the form of a similarity graph G = (V. E), V = {v1,...,v,}, E = {w;; }.
The vertices v; € V' in this graph are the points x;. Two vertices are connected if the
similarity, w;; between the corresponding data points x; and x; is positive. The edge
between them is given the weight w;;.

The similarity graph provides a natural framework for clustering evidenced by the
following restatement of the clustering problem: given the graph G the goal is to find a
partition such that the weights of the edges within a group are large (i.e. that points
which are similar to one another fall into the same cluster) and the weights of the edges
between groups is small (i.e. that points which are dissimilar to one another are in
different clusters). In the following section, we introduce some graph notation and briefly

describe the types of graphs we are going to study.

4.3.1 Graph Notation

Let G = (V, E)) be an undirected graph with vertex set V' = {vy,...,v,}. We assume
that the graph is weighted with non-negative edge weights w;;(> 0) between vertices
v; and v;. The weighted adjacency matrix of a graph is a square, symmetric matrix

W = (wy)}?;—;. If wy; = 0 this means that vertices v; and v; are not connected. The
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degree of a vertex v; € V is defined as

n
di: E Wij.
=1

Note that this sum runs over only those vertices which are adjacent to v;, and tells us
how well connected a vertex is. The degree matriz is defined as D = diag(dy, ..., d,).
Given a subset of vertices A C V we define its compliment as A = V — A. Define the
indicator vector, fa = (fi,..., f,)T € R" as the vector with entries f; = 1 if v; € A and
fi = 0 otherwise. Convenient shorthand is to write ¢ € A to mean the set of indices

{ilv; € A}. The two ways in which we measure the size of a set A is

|A| := the number of vertices in A,
vol(A) =Y d;. (4.8)
icA

Intuitively we can think of |A| as measuring the size of A by the number of vertices it
contains and vol(A) as measuring the size of A by the weights of its edges.

A subset A C V is called connected if any two vertices A can be joined by a path such
that all intermediate points also lie in A. A subset A is called a connected component if
it is connected and if there are no connections between the vertices of A and A.

In conventional set theory Ay, ..., Ay form a partition when A;NA; = O and U§:1Ai =
V. In graph theory there is a similar, stronger definition of a partition with the sets A;,
1 =1,...,k defined as connected components explicitly constructed from the similarity

graph G.

4.3.2 Similarity Graphs

The goal in constructing a similarity graph, G, is to model the local distribution of
the data, v;,i = 1,...,n. Below we list some of the similarity graphs that are frequently

used in spectral clustering
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1. The e-neighborhood graph: Here all points (i.e. vertices v;) which are in an -
neighborhood of one another are connected by an edge. The potential shortcoming
of this type of graph is that using a fixed ¢ may not capture the changes in the

local scale of the data.

2. The k-nearest neighbor graphs: Here we connect the point v; to the point v; if
v; is within the k-neighborhood of v;. However, care needs to be taken to avoid a
graph that is not symmetric. There are two ways in which this is typically handled;
the first is to put an edge between v; and v; if one is in the neighborhood of the
other. The second is to only put an edge between v; and v; if they are both in the

neighborhood of the other.

3. The Fully Connected Graph: Here all vertices in the graph are connected by
a positive weight. In order to model the local behavior of the data typically a
similarity function is used which can capture this type of information, e.g. the

o~ 12
Gaussian similarity function w;; = exp <—%)

4.3.3 Graph Laplacians

The main concept of spectral clustering revolves around the graph Laplacian matrix
and its various representations (see Chung (1997) for a more detailed discussion). Here
we provide an overview of some of the definitions and basic properties associated with
the graph Laplacian. In the following, since we are dealing with generalized eigenvalue
problems, when we speak of eigenvectors we do not assume that they have unit length.
Additionally we assume that eigenvalues are ordered increasingly and when we speak
of the first k£ eigenvectors we mean those eigenvectors associated with the k smallest

eigenvalues.
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The Unnormalized Graph Laplacian

The unnormalized graph Laplacian matrix is defined as
L=D-W.

Recall membership in the connected component A is captured by the indicator vector fy.
The quadratic form f7Lf will play the role of cluster index in spectral clustering.
The following proposition summarizes most of the important facts needed (see Mohar

(1991) and Mohar and Juvan (1997) for further details)
Proposition 4.3.1. The matrixz L satisfies the following properties
1. For every vector g € R™ our cluster index can be computed as

1 n
g'Lg = 2 Z wij(g9; — 9;‘)2-

ij=1
2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant

vector 1 € R"™.

4. L has n non-negative, real-valued eigenvalues 0 = Ay < Ay < ... < A,

For a proof see v. Luxburg (2007).
The unnormalized graph Laplacian and its eigenvalues and eigenvectors can be used to
describe many properties of graphs. The following proposition is particularly important

in spectral clustering:

Proposition 4.3.2. (Number of Connected Components) Let G be an undirected graph
with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the
number of connected components Ay, ..., A, in the graph. The eigenspace of eigenvalue

0 is spanned by the indicator vectors £4,,...,fa, of those components.
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Remark 4.3.3. This proposition has been proven in v. Luxburg (2007). A similar proof
is given here to highlight the way in which the graph Laplacian’s eigenvectors behave as

indicator (i.e. label) vectors.

Proof. For a fully connected graph, i.e. & = 1, we know from Proposition 4.3.1 that
the smallest eigenvalue of L is A\; = 0 and the corresponding eigenvector is the constant
vector 1,,.

For k > 1, assume without loss of generality that the vertices are ordered according
to which connected component they belong to, the graph Laplacian then takes the block

diagonal form

L, 0 --- 0

0 L, --- O
L=

0 0 --- L,

The key observation to be made here is that each block L;, i = 1,...  k is itself a proper
graph Laplacian. Therefore each of these blocks must have 0 as an eigenvalue and the
constant vector 1,, as an eigenvector, where n; is the number of vertices contained in
the " connected component. Thus, the matrix L has as many eigenvalues 0 as there are
connected components, and the corresponding eigenvectors are the indicator vectors, fu,

of the connected components. O]

The Normalized Graph Laplacian

In this section we present some results on the normalized graph Laplacian. The nor-
malized graph Laplacian is of particular interest to us as it has been shown by v. Luxburg
et al. (2008) to have much stronger consistency properties, in terms of the convergence
of its sample eigenvalues and eigenvectors to their population counterparts, then its un-
normalized counterpart. For this reason in the discussion that follows we focus on the

normalized graph Laplacian.
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There are two closely related matrices which are referred to as normalized Graph

Laplacians in the literature, these are
1 1 1 1
Ly, =D 2LD 2 =1, -D 2WD"2,
L., =D 'L=1,-D'W.
The first matrix is denoted as Ly, since it is symmetric. The second matrix is denoted

by L,., since it is closely related to the transition matrix of a random walk. The transition

matrix in this case would be composed of transition probabilities of jumping in one step

from vertex ¢ to vertex j which would be equal to p;; := 121" )

Next we summarize some of the properties of these two matrices (see Chung (1997),
Mohar (1991) and Mohar and Juvan (1997), for further details). The key properties asso-
ciated with the normalized graph Laplacians are summarized below in Proposition 4.3.4.

These properties are similar to those presented in the unnormalized case (Proposition

4.3.1).

Proposition 4.3.4. (Properties of Ly, and L,,,) The normalized Laplacians satisfy the

following properties:

1. For every g € R™ we have

1

n 2
T _ 1t N 9. Gj
g Lsymg - 2 Z wl] (\/d—Z \/d—]) .

ij=1

2. X 1s an eigenvalue of L., with eigenvector v if and only if \ is an eigenvalue of

. . 1
Ly with eigenvector w = D2v.

3. X 1s an eigenvalue of Ly, with eigenvector v if and only if X and v solve the

generalized eigenvalue problem Lv = ADv.

4. 0 1s an eigenvalue of L, with the constant vector 1, as an eigenvector. 0 is an

eigenvalue of Ly, with eigenvector D:1,.
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5. Lsym and Ly, are positive semi-definite and have n non-negative real-valued eigen-

values 0 = A\ < ... < \,.

For a proof see v. Luxburg (2007).
The following proposition provides similar results to those discussed in Proposition

4.3.2 but for the normalized case.

Proposition 4.3.5. Let G be an undirected graph with non-negative weights. Then the
multiplicity k of the eigenvalue 0 of both Ly, and L,,, equals the number of connected
components Ay, ..., A, in the graph. For Ly, the eigenspace of 0 is spanned by the

vectors D%fAi. For L,,, the eigenspace of 0 is spanned by the indicator vectors {4, .

Remark 4.3.6. Recall that in the protein-ligand matching problem we were primarily
interested in predicting the binding between as of yet unobserved proteins and ligands.
For this reason it is important that there be a direct way to compute the kernelization

for out-of-sample observations. Because of this we use the weighted adjacency matrix
K=D:WDz, (4.9)

rather than the normalized graph Laplacian Lyy,,, as there is no direct extension of
the symmetric normalized graph Laplacian to out-of-sample observations. The lack of
a direct out-of-sample extension can be seen from the following: by definition the 7, j*

element of the symmetric normalized graph Laplacian is

1 — Za if i = j, and d; # 0,

d;
(Ligym)ij = _wTi:dj if 7 and j are adjacent, (4.10)
0 otherwise.

Thus, given a new observation, while it is possible to calculate its value in the last two

cases of (4.10), it is not possible to calculate its value in the first case.
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What is important to note is that we do not lose any relevant information by using
K instead of Ly,,,. The weighted adjacency matrix K has the same eigenvectors as Ly,
and its eigenvalues are equal to 1 —A;, 2 = 1,...,n, where \; are the eigenvalues of Ly,,.

In addition, the results stated in Proposition 4.3.5 still hold for K with the mod-
ification that the multiplicity of the eigenvalue 1 rather than 0 equals the number of
connected components. This can be seen by noting that since the smallest eigenvalue of
Ly, =1, — K(> 0) is 0, the largest eigenvalue of K (corresponding to the number of
0’s in Lgy,,) must be 1.

We can also establish a lower bound on the eigenvalues of K, utilizing the following

2
fi 1 5 f_f)
(\/d_i \/@) SQ(dierj '

Keeping in mind that the eigenvectors f of Ly, have unit length (see Section 4.3.5) we

inequality

have
1y AN
2 ij=1 Vd; d;
- I
< N A
< Z w; ( o
i,j=1
ey
i=1 j=1
= 2.
Therefore the smallest possible eigenvalue of K is 1 — \,,.. = —1. The consequence of

this is that K is not strictly positive semi-definite, i.e. it may be indefinite. In order
to be able to meaningfully use the weighted adjacency matrix with KCCA, conditions
like those we discussed in Section 4.2, need to be introduced as otherwise there is no

guarantee that the solutions we find will be meaningful.

Remark 4.3.7. In the following sections we refer to the weighted adjacency matrix as the
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normalized graph Laplacian (NGL) kernel to emphasize its connection with the graph
Laplacian. In Sections 4.4.1 and 4.4.2 the properties of the graph Laplacian discussed in
Propositions 4.3.2 and 4.3.5 will be shown to connect IKCCA with LDA.

4.3.4 Spectral Clustering Algorithms

There are a number of spectral clustering algorithms used in practice. Here we state
one algorithm which is commonly used in conjunction with the normalized symmetric

graph Laplacian, Ly,,,. Most spectral clustering algorithms have a similar structure.

Normalized Spectral Clustering according to Ng, Jordan and Weiss (2002)
Input:  Similarity measure w;;, number of clusters k

» Construct a similarity graph by one of the ways
described in Section 4.3.2. Let W be its weighted
adjacency matrix.

» Compute the normalized graph Laplacian Lsym.

e Compute the first k eigenvectors vi,...,vi Of Lg,,.

« Let V € R™* be the matrix containing the vectors Vi, ...,V
as columns.

* Form the matrix U < R* from V by normalizing the row
sums to have norm 1, that is Uij =< - i >;-

T;Lzl vi2m 2
eFor i=1,...,n, let y; € R* be the vector corresponding to

the i-th row of U.

Cluster the points {yi:}~, with the k-means algorithm into
clusters Ci,...,Ch.

Output:  Clusters Ay, Ay with A = {jly; € Ci}.

A note on the normalization step in the above algorithm. Recall from Proposition 4.3.5
that the eigenvectors corresponding to the smallest eigenvalue of each of the connected

components of Ly, is equal to D:f A, Where f4, is the indicator vector of the i'* connected
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1

component. The purpose behind normalizing by - is therefore to retrieve the

( fn:l Vim
indicator vectors f4,. In the more general setting where there is possible overlap between
groups the purpose is to approximate the indicator vectors as closely as possible. In both

cases this is meant to make the identification of the clusters in the k-means step easier.

4.3.5 Graph Cut Point of View

As stated at the beginning of this section, representing data in the form of a similarity
graph provides a powerful approach to clustering. From a graph theoretic standpoint the
clustering problem is typically formulated in terms of the graph partitioning problem.
The objective of the graph partitioning problem is to divide a graph into k£ disjoint parts
such that each of these parts is approximately equal in size and the sum of the edge
weights is minimized. In this section we will show how spectral clustering can be derived
as an approximate solution to the graph partitioning problem.

Given two disjoint subsets A, B C V define

cut(A,B) = Z Wi -

i€A,jeB

Given the adjacency matrix W the most straightforward way to construct a partition
is to solve the mincut problem. This consists of finding a partition Ay, ..., A; which
minimizes

k
cut(Ay,..., Ap) =Y cut(4;, 4;).
=1

However, in practice this often does not lead to satisfactory partitions. The problem is
that frequently the solution of the mincut problem results in one vertex being separated
from the rest. This is of course not what we are usually interested in achieving. One way
to avoid this issue is formulate the problem in such a way that the sets Aq,..., A, are
“reasonably large”. The two most common objective functions which incorporate this

are the RatioCut (Shi and Malik (2000)) and the normalized cut Ncut (Shi and Malik
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(2000)). In RatioCut the size of a subset A is measured by the number of vertices, |A],
while in the Ncut the size of a subset of A is measured by weights of its edges vol(A)
(defined in (4.8)). The definitions are

k _
RatioCut(A,..., Ag) = Y out(Ay, 4;)

i=1 |Ail
" cut(A; A)
NCHt(Al,...,Ak) = ZTA%U

i=1

What both objective functions try to achieve is a balance in the clusters as measured
by the number of vertices or edge weights, respectively. Unfortunately, by having these
balancing conditions the mincut problem becomes NP hard (see Wagner and Wagner
(1993) for details). What we will see is that spectral clustering is a way to solve “relaxed”
versions of these problems. We focus here on the Ncut problem as this leads to the
normalized spectral clustering problem, which is what we are primarily interested in (see

v. Luxburg (2007) for a spectral clustering approach to the RatioCut problem).
Approximating Ncut

Following the discussion in v. Luxburg (2007), we begin with the case where the

number of clusters k is 2. Define the cluster indicator vector f by

vol(4) fic A
I Iz € A,

fi= Vjo(lfi ) ] (4.11)
~\/ vol(a) if1 € A.

<

One can check that (Df)71,, = 0, fTDf = vol(V), and fTLf = 2vol(V)Ncut(4, A). With

this in mind an equivalent restatement of the Ncut problem is

min fTLf
A

subject to,
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f asin (4.11) and Df"1, = 0,f"Df = vol(V). (4.12)

This is an NP-hard discrete optimization problem (Wagner and Wagner (1993)) as the
entries f are only allowed to take one of two values. The obvious relaxation in this setting
is to remove the condition that the f;’s take one of two values and allow f; € R. This

leads to the relaxed optimization problem

mfin fTLf
subject to,

Df"1,, = 0,f"Df = vol(V).
Letting g = D:f we have

ming’D LD g
g
subject to,

g™D:1, =0, ||g||> = vol(V). (4.13)

This is exactly the spectral clustering problem for £ = 2 using the symmetric normalized
graph Laplacian.
Generalizing to the case of k > 2 cluster, we begin by defining the indicator vectors

hi = (hlia ce hm')T, where

—L_  ifie A,
hy =4 Vvoly ’ (4.14)
0 otherwise .

Letting H = (hy,...,h;) € R™* we have that H'H = I;, h/Dh; = 1, and h!Lh; =
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20ut(AiAi) We can then write the Ncut problem as
vol(4;)

min Tr(H”LH) subject to H'DH = I,.
k

Al A

As above, we relax the discreteness condition and substitute U = D%H, which then gives
us

min Tr (UTD-%LD—%U> subject to UTU = I,.

The solution to the latter is simply the eigendecomposition of D :LD .

4.4 Connecting the NGL Kernel for IKCCA with

LDA

In the first part of this section we show that under some certain assumptions on the
distribution of the data, when the NGL kernel is used, IKCCA finds the same directions
as LDA. We also explore conditions under which the directions found by IKCCA deviate
from those found by LDA. At the end of this section we extend these results to the more
general setting by using the idea of “spectral relaxation” discussed in Section 4.3. The
purpose behind this discussion is to provide a more concrete foundation for understanding

how IKCCA behaves, when the NGL kernel is used.

4.4.1 IKCCA and LDA

We begin by describing the distribution of the data which we propose to study. We
consider two scenarios, the first is an IKCCA setting which corresponds to standard LDA

and the second scenario is the standard LDA setting.

1. As before we have a collection of pairs of observations x; € R% and y; € R%,
1 =1,...,n which we will refer to as the data space and label space respectively.
The x;’s (data space) fall into two distinct groups, highlighted in red and green

and labeled by a “4” and “—” respectively in the left plot of Figure 4.4.1. The
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yi’s (label space) also fall into two groups centered at u_ = (u*,..., ,u‘iY)T and
py = (pd, ... ,,uﬂirY)T, shown in the right plot in Figure 4.4.1. The distribution
of points within each of these groups follows the uniform distribution on a sphere
with radius 7. In the plot on the right in Figure 4.4.1 (label space) the means are
connected by a dashed black line, the corresponding distance between the means
is A = ||y — p—||]. The solid circles and lines correspond to the support type
and radius of the support, respectively of the two groups (“+” in red and “—” in
green). The dashed circles and connecting lines indicate the 2r-neighborhoods of
the two points in each group that are closest to the other group. Note that so long

as A > 6r there will be no overlap in any of the 2r-neighborhoods in each of the

spaces.

2. The distribution of the x;’s are the same as described above but now the y;’s are
label vectors, i.e. y;; = 1if x; € Cy and 0 otherwise and y;, = 1 if x; € C_ and 0
otherwise, where C'; and C_ correspond to the + and — group in the data space

(note that x; can only belong to one class). See Section 2.5.1 for details.

Recall from our discussion in Section 4.3.3 that given an adjacency matrix W the NGL

kernel is defined as
K =D WDz,
where the 75" element has the form

Ky = Wi . (4.15)

D irmy Wity | Dy Wi
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Data Space Label Space

X2
y
N

X1 Y1

Figure 4.1: A plot of the data as described in Scenario 1. In the Label Space plot the
means are connected by a dashed black line, the corresponding distance between the means
is A = ||y — pu—||. The solid circles and lines correspond to the support type and radius
of the support, respectively of the two groups (“+” in red and “—" in green). The dashed
circles and connecting lines indicate the 2r-neighborhoods of the two points in each group
that are closest to the other group.

In this example we define the weights w;; to be

1 if ||x — x| < 2r

0 otherwise.

Theorem 4.4.1. Given the distribution of the data as described in scenario (1) above

»

with nq and ny observations in groups “+” and “—” respectively (n = ny + ny) and the
NGL kernel as represented in (4.15) and (4.16), if A > 6r then the directions found by

IKCCA are identical to those found by LDA (i.e. in Scenario (2) described above).

Note, in the following while the matrix X is assumed to be mean centered, we do not
mean center the kernel matrix Ky. While we would normally center Ky, our primary
interest in this example is to illustrate that the general behavior between IKCCA and

LDA is similar, this is achieved more directly and clearly if Ky is not mean centered.
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Proof. We begin by writing down the exact form of the kernel matrix KY (using the

notation from Section 4). The matrix of weights W9, = {w}? o118
1,17 | o
Wg/ - - )
0 | 1,17,

where 1,, = (1,1,..., 1)%2“). Next define

n n
DY = diag {szg} :diag(zzl,nl,...,nlj,pQ,ng,...,ng),
j:1 j=1 XZl XVTLQ
then
1 T
-1,,1 0
K} = (D)) iWp(Dy) 4= |
0 11,17

The expression for the positive part of the matrix Ky is

L1, 0 10 L7 0
Ky = (Kg)f)Jr = vme v - VyV)T/,
1 1 4T
0 —= 1, 0 1 0 \/_7721@
=1,, 0
where Vy = | V™ . We know that only two of the eigenvalues are non-
0 \/%1”2

zero since the rank of the matrix Ky is 2. The IKCCA optimization problem is
prx = arg max wy X' Kyay
WX,y

= arg max wy X' VyViay
WX,y

= arg max Wg;XTVyWY (4.17)
WX, Wy

subject to,

Wg;XTXWX = WgV}Y;VyWy =1.
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Since our primary interest here is to show that the discriminant direction, wx, is the
same for IKCCA and LDA we solve for wy = V}Y;(Xy rather than ay. In some sense
this amounts to an inversion of the kernel trick. Note that our choice of Vy in wy is

arbitrary since we could select any Vi and V%, V1, # V2 such that

Ky = Vy (V)T

holds. However, as we will see this does not affect our results. Let

L0
Ky=Y | ™ Y7,
1
0 %
Next define
L0 - 0
V=Y | ™ and Vi =Y | ™ ;
0 0 L
2 U

for any —oco < a,b < oo. From here on we replace Kyay in (4.17) by Vi (Vi) ay =
V%/Wy.
Recall from Section 2.1 that the optimization problem in (4.17) (solving for wx)

results in the following generalized eigenvalue problem

XTVL(VLY VL) (VL) Xwy = p2 X Xwy. (4.18)

Note that the left hand side of (4.18) is in fact the between-class sum of squares matrix,
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Sp, discussed in Section 2.5. In particular, note that

l—a_ . T
ny 1y
Vy)TX = ,
Vi) s
2 2
and
2a
n® 0
(Vy)TVy) ' =
0 n2

Putting this all together we have that
X"VLVO)ITVIHVITX = nymm? 4+ nomym?! = Sp.
Thus (4.18) becomes
SEWx = pxSrwx,

where S; = Syx. From here the same calculations done in Section (2.5.2) show us that
the direction found by IKCCA is the same as that found by LDA when the label matrix

Y is explicitly known. O]

Next we consider the case where A < 6r. Intuitively, with all points sharing the same
neighborhood, i.e. the “4+” and “—” populations are indistinguishable, the directions
found by IKCCA should not provide any information with regard to the separation of

these groups.

Theorem 4.4.2. Using the same framework as in Theorem 4.4.1 when A < 6r the

direction wx is the null vector, wx = (0,...,0)T.
Proof. The NGL kernel matrix in this context is of the form
1

Ky =-1,1].
Y n n
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The rank of this matrix is 1, thus there is at most 1 non-zero eigenvalue. The nearest

positive approximation of K{ is then

Ky =(K%)y = (%171) <%1R)T = Vy Vi

Following the same steps as in Theorem 4.4.1 we have
VIX = /nm =0,

since X is assumed to be mean centered. The generalized eigenvalue problem then reduces
to
0= )\STW X-

So long as St = Sxx is non-singular, the only possible solution is wx = (0,...,0)7. O

Using the NGL kernel, Theorems 4.4.1 and 4.4.2 provide some insight into the be-
havior of IKCCA. Under a similar framework these results extend naturally to the case

of more than two classes.

4.4.2 Spectral Relaxation

In this section we provide some discussion generalizing the results of Section 4.4.1.

Consider a data set consisting of n multivariate vector pairs
{(xi,yi)lx: € R™ y; € R™},

with X = (x1,...,%x,)7 and Y = (yi,...,y,)?. Furthermore let us assume that the

observations y; fall into two distinct groups such that the NGL kernel representation of
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the matrix Y has the block diagonal form

Ky — Ky, O

0 Ky
From Remark 4.3.6 following Proposition 4.3.5 we know that the number of connected
components is equal to the multiplicity of the eigenvalue 1. Suppose we modify the

IKCCA optimization problem in (4.1.5) to include the constraint
rank(Ky) = #{ecig(K}) = 1}, (4.19)

where eig(X) denotes the spectrum (the set of ordered eigenvalues) of the matrix X
and KV is as defined in Section 4.2. The result of this additional constraint is that
the best rank k (in this case 2) representation of the kernel matrix K will be selected
(see Lemma 4.2.3 in Section 4.2 for details). This corresponds to selecting the first k
eigenvalue-eigenvector pairs.

With this in mind we now show that the resulting IKCCA generalized eigenvalue
problem will look very similar to the LDA generalized eigenvalue problem. First, we
introduce some notation: let vy = (vy11, ..., vy10)" and vy = (vy21,. .., vy2,)7 be the

leading eigenvectors of Ky and Ky respectively. Define the n x 2 matrix

and let

NY - diag(\\/ nlvylh sV nlvylnlja \\/ n2vy217 sV nZUanQJ)v
vV vV

XNy Xng

where n; and nsy are the number of observations in each of the two groups in Y space.
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Let

dy, 0

0o 1J,,
n2

where J,, = 1,17

Next we apply the NGL kernel to the y;’s and leave the x;’s unchanged. Setting
the regularization parameter k = 0, we solve the IKCCA optimization problem with
the addition of the rank constraint in (4.19). After some calculations this leads to the

following generalized eigenvalue problem
XT'VyVIVyViXwy = pt X  Xwi. (4.20)
Focusing on the left hand side of (4.20) we have

X'VyVIVy VIXwy
= X"NyNy'Vy VINy Ny Xwy
= X""CX*

*
- SBWX7

where X* = Ny X. Let x}, denote the i’ row of the matrix X*.
The key observation to be made here is that the matrix S} is closely related to the
between group sum of squares for the uncentered data matrix X*. To see how S3 is

related to the between group sum of squares consider the following: let

m;} = X'Nyf, = X*7f,,

m} = X' Nyf, = X*f,, (4.21)

112



where f; = (fi1,..., fln)T and 5 = (fo1,. .. ,an)T, and

L if y; is in cluster 1

fi=9 "

0 otherwise.

I n% if y; is in cluster 2
2 =

0 otherwise.

From (4.21) it can be seen that m} and mj are the group means of the x;’s corresponding
to either the first or second cluster in Y space. Letting m* be the overall mean of the

x;’s we have

St =nimimj’ + nomim};’
1
= mnm (m} — m})(m} — mj)" + Em*m*T. (4.22)

From (4.22) it can be seen that the only difference between S%; and the standard definition

of the between group sum of squares is the term %m*m*T. This additional term arises
as a result of the fact that the x}’s are not centered.

Returning to our earlier discussion, we can rewrite (4.20) as

S*BWX = p,%STWX, (423)

where S = XTX is the total sum of squares, discussed in Section 2.5.2.

The generalized eigenvalue problem in (4.23) is closely related to the generalized
eigenvalue problem associated with the Maximum Data Piling (MDP) problem (Ahn and
Marron (2009)). In the MDP problem the eigenvector solving the generalized eigenvalue

problem

SpwWypp = ASTWypp
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can be shown to be

Wrpp X S}l(ml — 1’I12).

If d < n then the MDP direction vector and the LDA direction vector are the same.

In the IKCCA problem, if we assume that %m*m*T in (4.22) is close to enough to zero
that it is negligible (see Remark 4.4.4 for a discussion of when this may be a reasonable
assumption). Then by similar methods used in proving Theorem 2.5.1 of Section 2.5 the

leading eigenvector can be shown to be

1
wk = —=S8;'(m] — mj),

VP

where pi. = 2. From this it can be seen that the IKCCA direction vector w will tend
to behave quite similarly to the MDP direction vector wypp.
Putting this all together, we can think of IKCCA, when the NGL kernel is used, as a

spectral relaxation of the LDA problem.

Remark 4.4.3. Intuitively the diagonal matrix Ny should, in some sense, impose the
group structure of the points in Y space on the points in X space. The reason for this
is that the elements of Ny, i.e. the eigenvectors v,; and v,s, “code”, as was discussed
in Section 4.3, for the different groups. Thus, even if there is a different group structure
in X space, the directions found by IKCCA should tend to cluster points in X space
according to how they are distributed in Y space. Extending this line of reasoning one
step further, if the NGL kernel is also used in X space then the directions found should
incorporate group structure from both spaces. This phenomenon will be illustrated in
Section 4.5.

Remark 4.4.4. An interesting observation can be made about the behavior of %m*m*T
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as n — oo, that is

1 *_ xT

—m'm — 0,

F

provided the distribution from which the x;’s are sampled has a finite second moment.

This can be shown as follows

2
1
_m*m*T
n F
1
— _Tr(m*m*Tm*m*T)
)
1
= —Tr(m”"m*m* ' m").
n2
Taking a closer look at m*’m* we have
m*Tm*
d 1 n1 n 2
= E o E VIUy1Tji + E V2Uy2;Tji
i=1 j=1 j=n1+1

IN

d
i=

ni n ni n
% Z <n1 szlj +ny Z UZQJ) (Z 3 + Z xfl>
j=1 j=1

1 Jj=n1+1 j=n1+1

by the Cauchy-Schwartz inequality. Recall that the terms vy;;, 7 = 1,2, j = 1,...,n
are the elements of the leading eigenvectors of Ky; and Ky respectively, therefore
St v, = > vk, = 1. Since the x;;’s are mean centered, as n — oo, we have

=1 “yli 1=1 "y2i
by the central limit theorem that
1 d n d
DI i (120

i=1 j=1 =1

where the ¢;’s are the population standard deviations. Assuming that the x;’s have finite
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n 2

second moments then each of the ¢7’s in (4.24) will also be finite. Letting s; = > ", 27

and s = (sy,...,84)7, provided that % — 0 we then have that

~|lm*m™ ||
n
1
< —|[|s"s|lr
n

— 0,

as we wanted to show. What we can infer from this is that in the limit as n — oo
(subject to % — 0), provided the group structure of the y;’s is preserved, it is reasonable

to assume that Tm*m*’ is negligible.

4.5 Toy Example: Non-standard Data

We now return to the example in Section 3.7 using the NGL kernel (4.15) with weights
(4.25). From Figure 4.2 ti can be seen that we are now able to capture the underlying

structure of the data, identifying each of the six subpopulations.

exp{—%ﬁHxi—xjHQ} if x; € Ni(x;)

0 otherwise.

Wij = (4.25)
Here Nj(x;) is the symmetric k-neighborhood of the point x; (i.e. if x; € Ni(x;) then
x; € Ni(x5)).

Looking at plots of the first four eigenvectors (Figures 4.3 and 4.4) in both the smiley
face space and the cluster space we can see how the behavior of the eigenvectors causes
the segmentation of the data that we observe in Figure 4.2. First we discuss how these

figures are generated and then what it is they are telling us

1. Generating an equally spaced dimensional grid spanning the range of values in each

space.

116



Figure 4.2: Continuation from the example in Section 3.7. This is a scatterplot matriz
of the projections onto the first five IKCCA directions using the kernel in (4.15). Unlike
the projections shown in Figure 3.10 here we are able to separate out the six groups.

2. Calculating the kernel representation and projection of each grid point into IKCC

space.

3. Using the projected values to assign color intensities to each point in the grid of

each space (blue for negative values, red for positive values).

4. Plotting the grid and for each point using the colors calculated from the previous

step.

The important thing to note in both of these figures is the distribution of positive and
negative projected values, and how these are driving the segmentation which we observe
in Figure 4.2. For example in Figure 4.3 the first canonical variate segments out one of

the faces (red) from the other (blue).

4.6 Performance on Real Data

Using the same kernel as in (4.15) we now look at the performance of IKCCA in the

receptor ligand matching problem. Figure 4.5 shows the performance of our method which
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Figure 4.3: A plot of the first four indefinite kernel canonical direction vectors in the
smiley face space from the example in Section 3.7 using the kernel in (4.15). These plots
allow us to visualize how the canonical vectors separate out each of the clusters.

10
I

10

Figure 4.4: A plot of the first four indefinite kernel canonical directions vectors in the
cluster space from the example in Section 3.7 using the kernel in (4.15).

has an average rank of approximately 4.5 (red vertical line) which is a large improvement
over the previously described methods. Here the orange line corresponds to the RBF

kernel (rank of 7.5), the blue line corresponds to standard CCA (rank of 10.1) and the
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green line corresponds to the performance of the method from Oloff et al. (2006) (rank

of 18.1).

RLP 800 Data Set

40

30

20

10
1

Figure 4.5: The RLP 800 data set. The red line corresponds to IKCCA, the orange line
corresponds to KCCA, the blue line corresponds to CCA and the green line corresponds
to the method from Oloff et al. (2006).

Figure 4.6 shows the extension from the RLP 800 data to the WDI. Once again
our method, IKCCA, highlighted in red, has a much improved average performance,
approximately 30, over previous methods. Standard KCCA has an average performance
of 55, linear CCA has an average performance of 67, and the method from Oloff et al.

(2006) has an average performance of 310.
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WDI Data Set

40

30
1

10
1

0 100 200 300 400 500

Figure 4.6: The WDI data set. The red line corresponds to our method using IKCCA,
the orange line corresponds to KCCA, the blue line corresponds to CCA and the green
line corresponds to the method from Oloff et al. (2006).
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CHAPTER 5

HDLSS Asymptotics

A new challenge encountered in a large number of fields (including biology, signal
processing and image analysis) is the relatively large number of covariates as compared
to the number of observations. This is referred to as the high dimension low sample
size (HDLSS) problem, Hall et al. (2005), Ahn et al. (2007), Lee (2007). The HDLSS
problem has led to an interest in studying asymptotics from the standpoint of allowing
the number of dimensions, d, to grow.

Amongst the many subjects studied in multivariate asymptotics, a great deal of work
has focused on studying the eigenvalues and eigenvectors of sample covariance matrices,
i.e. PCA (Anderson (2003), Muirhead (1982)). Classical asymptotics deals with the case
where the sample size tends to infinity with the dimension fixed. In the case of the latter
most of these studies make use of the fact that the sample covariance matrix is a good
approximation of the population covariance. However, with d > n this is usually no
longer the case.

In studies where d is allowed to go to infinity there are three scenarios which are

typically considered:

1. In the first case, which we refer to as the Low Dimension High Sample Size (LDHSS)
problem, d < n, both d and n go to infinity, and % — 0. These problems are similar

to conventional asymptotics where n — oo.

2. In this case sample size and dimensionality grow together, in the sense that % —c



for some constant c¢. Bai and Yin (1993), Paul (2005) and Johnstone and Lu (2004)
have studied this type of asymptotic behavior. Some work has been done which
looks at the case where d grows with some power of n. For example, Portnoy (1984)

and Portnoy (1988) study the case where d grows as \/n. This type of scenario will
be referred to as High Dimension High Sample Size (HDHSS).

3. In this setting the sample size is fixed and the dimensionality is allowed to grow, in
the sense that % — 00. In the case of n fixed and d — oo, Hall et al. (2005), explored
the geometric structure of HDLSS data. In Ahn et al. (2007) conditions were
found under which the first eigenvector of the sample covariance matrix converges
consistently to its population counterpart. In this paper the population covariance
matrix is structured such that the leading eigenvalue is considerably larger than
the remaining eigenvalues. They also show that when the population covariance
matrix does not have this extreme aspherical structure, the sample eigenvalues tend

to behave as though they are from a spherical Gaussian distribution.

An important distinction needs to be made here between the aforementioned works
and the work done in this dissertation. Here we turn our focus away from the eigen-
analysis of the covariance matrix of a single set of variables (i.e. PCA) to the SVD-
analysis of the correlation between two sets of variables, or the “cross-correlation” matrix.
Similar work was done in Lee (2007) where the behavior of the covariance between two
sets of variables was studied, also known as the “cross-covariance” matrix.

We also look to study the HDLSS problem in the context of KCCA where we show
that high dimensionality can potentially lead to spurious results if not handled in an
appropriate manner.

In Section 5.1 we begin with a review of previous work which primarily focuses on
the HDHSS and HDLSS asymptotic behavior of the eigenvalues and eigenvectors of the
sample covariance and cross-covariance matrices. Finally in Section 5.2 we turn our

attention to the asymptotic behavior of CCA in the HDLSS setting. In this section we
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discuss conditions under which we have consistent and strongly inconsistent convergence
in the sample canonical correlations and vectors. We also present conditions where we

have convergence in distribution in the canonical correlations.

5.1 Asymptotics of the Sample Covariance and Cross-

Covariance Matrices

5.1.1 Asymptotics of the Sample Covariance Matrices

Suppose we have the data matrix X = (x1,...,x,)T € R™¢ where the x;’s are i.i.d.
observations with mean 0 and covariance 3 € R%*¢. Define the sample covariance matrix

as

1
S =-XTX.

n

Let i, ..., A be the eigenvalues of S where r = rank(S). Note that the data matrix X
has not been mean centered, this form is commonly used in studying high-dimensional
random matrices.

In the following sections we discuss some HDHSS and HDLSS asymptotic results

primarily related to the eigenvalues and eigenvectors of the sample covariance matrix S.
HDHSS Asymptotics

In this section we provide a summary of results analyzing the behavior of the sample
covariance matrix when both the sample size and the dimensions are allowed to go to
infinity so that ¢ — ~ € (0, 1].

Spherical Distribution:
In this section we assume that the population covariance matrix ¥ = I;. The empirical

distribution of eigenvalues, frequently referred to as the Empirical Spectral Distribution,
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is defined as
1 , ,
Fy(x) = 7% { number of s <z}, i=1,...,d.

The limiting spectral distribution of F,; was first obtained by Marcenko and Pasture
(1967). Fy converges the Marcenko and Pasture distribution F' with probability density

function

2myz) '/ (z—a)(b—x) a<z<b

0 otherwise,

where a = (1—,/7)? and b = (1+,/7)*>. When 7 > 1, this distribution has an additional
Dirac measure at x = 0 of mass 1 — % The survey paper by Bai (1999) provides a
comprehensive review on the spectral distribution.

Up to now our results have focused on the asymptotic behavior of the distribution
of sample eigenvalues, \;, @ = 1,...,n. We now turn our attention to the asymptotic
properties of each eigenvalue. Specifically we look at the behavior of the eigenvalues
lying around the edge of the support of the distribution F', i.e. the largest and smallest
eigenvalues.

Studies on the asymptotic behavior of the largest eigenvalue have been conducted by
Geman (1980), Yin et al. (1988), Silverstein (1989) and Johnstone (2001). Geman (1980)

show that for a spherical Gaussian distribution, the largest sample eigenvalue converges

to the edge of the support of F,

M1+ )7 (5.1)

where 3 denotes almost sure convergence. The smallest eigenvalue has also been studied
extensively (Bai and Yin (1993) and Silverstein (1985)). Analogous to the largest sample

eigenvalue, the smallest sample eigenvalue has been shown to converge to the lower edge
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of the support of F,

~

Amin — (1= /7). (5.2)

These results have been generalized to the non-Gaussian case by Yin et al. (1988) as-
suming finite fourth moments.
For the Gaussian case, Johnstone (2001) derived the limiting distribution of the largest

sample eigenvalue, \;. Specifically he showed that if \; was centered by
pa = (Vn—1+Vady

and scaled by

SN RV U W

then A\; converges in distribution to the Tracy-Widom law of order 1 (Tracy and Widom
(1996)).
Spiked Data

In many real world applications the assumption that the data follow a spherical dis-
tribution may not be accurate. Among the various approaches to studying non-spherical
population models, the spiked population model, named by Johnstone (2001) is of par-
ticular interest. This is due in part to the observation that in many examples, such
as speech recognition (Johnstone (2001), Buja et al. (1995)), wireless communication
(Telatar (1999)), and statistical learning (Hoyle and Rattray (2004)) there are typically
a few “larger” sample eigenvalues which are distinct from the rest. The spiked population

model assumes that all but finitely many eigenvalues of the population covariance matrix

125



are one. The population covariance matrix is assumed to take the form
Z:diag()\l,)\g,...,)\M,l,...,1), (53)

where A\ > Ay > ... > Ay > 1. The almost sure convergence of the largest eigenvalues
in the spike population model was shown by Paul (2005) and Baik and Silverstein (2006).
Paul (2005) examines the behavior of the eigenvalues assuming that the data are normally
distributed and derives the asymptotic distribution of the largest eigenvalue and examines
the behavior of the corresponding eigenvector. Baik and Silverstein (2006) provide results
on the almost sure limits of the largest and smallest eigenvalues in both the real and
complex non-Gaussian cases.

Baik and Silverstein (2006) and Paul (2005) also observed that under the spiked

population model if Ay <1+ /7 then

A 51+ )2 (5.4)

and if Ay > 1 — /7 then

Amin ™5 (1= \/7)%, (5.5)

provided v € (0,1). Note that here the limits in (5.4) and (5.5) are the same as the
corresponding quantities in (5.1) and (5.2). In other words, when the largest (or small-
est) population eigenvalue is not “different enough” from one, the corresponding sample
eigenvalue, asymptotically, will behave as though it came from a population character-
ized by an identity covariance. This behavior, referred to as “phase transition”, is an
important observation made in both works. A similar phenomenon is also observed in
the HDLSS setting (Ahn et al. (2007)).

The phase transition phenomenon is also observed in the sample eigenvectors (Paul
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(2005)). Define vy,...,v4 to be the eigenvectors of the population covariance ¥ = I,
and vi,..., vy the eigenvectors of the sample covariance matrix S. It was shown in Paul

(2005), that the following results hold when £ — ~ € (0,1):

If A; <1+ /7 then,

(vi, Vi) 230 as n — oo.

If \; > 1+ /7 and is of multiplicity one, then

|<vi,€ri>|‘5>'\/<l—ﬁ>/(l—)\iy_1) as n,d — 0. (5.6)

The implication of (5.6) is that if the leading population eigenvalue is not much

bigger than one than its corresponding eigenvector is strongly inconsistent to the

population eigenvector in the sense that the two vectors are orthogonal.

HDLSS Asymptotics

We now turn our attention to the case where the number of observations n is fixed
and d is allowed to go to infinity. In the following subsections we discuss the geometrical
representation of HDLSS data and the HDLSS asymptotics associated with the sample
covariance matrix.

Geometric Representation

The geometrical representation of HDLSS data was studied by Hall et al. (2005). Suppose
Z1,...,Z, are independent random variables drawn from the Gaussian distribution with
mean zero and covariance matrix I;. Since the sum of the squares of the entries of z; has

the Chi-square distribution with d degrees of freedom, it can be shown that

llz: — 2| = (2d) + O,(1),
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as d — oo. What this tells us is that for large enough d a sample of n standard normal
random variables will tend to lie at the vertices of a regular n-simplex in R?. Note that
the data vectors tend to have a deterministic distance apart. Hall et al. (2005) also
studied the geometric representation of HDLSS data in the context of classification. In
that study they obtained some insight into the limiting behavior of several classification
methods such as support vector machines (Cristianini and Shawe-Taylor (2000)) and
distance weighted discrimination (Marron et al. (2008)).

Dual Covariance Matrices

Let X = (x1,...,%,)7 where x; ~ Ng(0,%), for d = 1,2,.... The n x n dual sample

covariance matrix is defined as

Sp = Lxx.
n

Ahn et al. (2007) studied conditions under which the dual sample covariance matrix
converges to the identity, I,, as d — oco. These results were generalized to an arbitrary
distribution under some general assumptions on the moments of the data by Jung and
Marron (2009). In their analysis they also presented results on the consistency and strong
inconsistency of the sample eigenvectors.

In our discussion of the HDLSS asymptotics of CCA we provide a more detailed
discussion on the behavior of the dual sample covariance matrix which we refer to as the

kernel matrix (Section 5.2.6).

5.1.2 HDLSS Asymptotics of the Sample Cross-Covariance Ma-
trices

Consider a data set consisting of n paired multivariate vectors,

{<Xi>Yi)|Xi € Rdx?Yi € Rdyai = L s 7”}7
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where (x;,y;) ~ N(0,%). Here 0 € R¥x*4v and

EXX ZJXY
Y

(5.7)
EYX 2YY

Define X = (x1,...,%,)7 € R and Y = (y1,...,y,)? € R™% and the correspond-
ing sample mean matrices as X and Y. Note from here on we assume that the data
matrices X and Y have been mean centered.

In Section 5.1.1 our discussion focused on the behavior of the eigenvalues and eigen-
vectors of the sample covariance matrix. In this section we turn our attention to the

sample cross-covariance matrix

1
Syy = -X'Y.
n

In Lee (2007), under specific assumptions on the structure of the covariance matrix X,
the HDLSS asymptotics of the singular values and vectors of the sample cross-covariance
matrix were studied. In this study conditions were established showing convergence in
distribution of the largest sample singular value to a random quantity. In addition, con-
sistency and strong inconsistency results were established for the leading sample singular

vectors.

Remark 5.1.1. An important concept discussed in Lee (2007) is the construction of the
population covariance matrix ¥. Because ¥ potentially contains off-diagonal terms (i.e.
Y xy in (5.7)), greater care needs to be taken in order to ensure that it is positive semi-
definite. One way in which positive semi-definiteness can be guaranteed is to use the
so-called factor matrices which are defined as

Fxx | Fxy
F—

FYX FYY
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so that
Y = F2

Since F? is positive semi-definite this ensures that ¥ is positive semi-definite. The com-
ponents of F, i.e. Fxx, Fyy and Fxy are meant to capture the type of joint structure
which we would like to observe in Y. This construction will be play a central role in our

discussion of CCA in the HDLSS setting.

5.2 HDLSS Asymptotics of CCA

In Section 5.1 our discussion primarily focused on studying the asymptotic behav-
ior of the sample covariance (Sxx and Syy) and cross-covariance (Sxy) matrices and
their eigenvalues and eigenvectors. In the following section we move our attention to-
ward studying the population, sample and sample kernel cross-correlation matrices in the
HDLSS setting. In Sections 5.2.1, 5.2.2 and 5.2.3 we introduce the population, sample
and kernel sample cross-correlation matrices. In Sections 5.2.5 and 5.2.6 we study the
asymptotic behavior of the sample and sample kernel cross-correlation matrices, respec-

tively, in the HDLSS setting.

5.2.1 The Population Cross-Correlation Matrix

Recall from Section 2.1 that the canonical correlations and directions can be found

by solving the generalized eigenvalue problem
EXYZ}_/%/ZYXWX = p%EXXWX-

An alternative representation of the above problem which is easier to study and allows us
to solve for the canonical correlations and vectors simultaneously is the cross-correlation

matrix which we now derive. Beginning with the generalized eigenvalue problem above
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we have

11 1 1
Sxv Ry Sya Sk (B wx) = p5Six (S W),

1 _1
Letting wy = X% yWx and multiplying the left and right-hand sides by X% gives us
-3 ~1 3 2 x
Uk Exy Yyy Dy x LxxWx = pyWy-

_1 _1
The matrix Rxy = XyixXxyXyy, is commonly referred to as the population cross-

correlation matrix. Substituting in R xy we have
RXYIR/Y)(WE = p%w}

Put in this form it can be seen that the SVD of the cross-correlation matrix provides
us with both the canonical correlation pjy and the scaled, canonical vectors wi and wy,
(in contrast to the unscaled canonical vectors wx and wy ). Both notions are useful for
understanding the theory developed in Section 5.2.5.

Finding the sample counterpart of the cross-correlation matrix is not as straightfor-
ward. Because of the fact that we have d > n the covariance matrices Sxx and Syy
are singular and therefore cannot be directly inverted, we deal with this by using an
approach motivated by our previous discussion of regularized CCA as well as kernels and

the kernel trick.

5.2.2 The Sample Cross-Correlation Matrix

Recall that the Lagrangian of the regularized CCA problem (see (2.21) in Section 2.3)
is
- NN SO S Px 1 s AT o
L(px, py,Wx, Wy) —EWXX Ywy — T(EWXX Xwy + kwywy — 1)

1
- %(EVAV;YTYVAVY + Wiy — 1),
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where px and py are Lagrange multipliers and x is the regularization parameter. The
hats are meant to denote the respective variables sample counterpart.
Recall from our discussion in Section 2.3 on RCCA that the solution to the above

optimization problem leads to the generalized eigenvalue problem
Sxy(Syy + kL) 'Sy xwx = p},(Sxx + kL,)Wx.

In a similar fashion to our calculation of the population cross-correlation matrix we have

for the sample counterpart that

AA K

A~k
RxyRyxwy = pwy,

where Rxy = (Sxx + HIn)_%Sxy(SYY + /{In)_% is the sample cross-correlation matrix
and w% = (Sxx + HIn>%WX and wi = (Syy + HIn)%Wy are scaled sample canonical

vectors.

5.2.3 The Sample Kernel Cross-Correlation Matrix

Because we are letting the number of dimensions d go to infinity, rather than only
looking at the sample cross-correlation matrix it will also be useful to look at its kernelized
variant since n in this setting is fixed.

Recall that because wx and wy fall into the span of the column spaces of X and 'Y

respectively, they can be re-written as

WX = XTO./X

VAVY = YTO[y.
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The Lagrangian is thus modified to be

1 1
Lipx, py,ax,ay) = a5 -XXTYY ay — %X(o&—XXTXXTaX + kXX oy — 1)
n n
1
- %(a}Tf—YYTYYTay +kaZYY ay — 1)
n

= CY§KXKyCL/y — %(aﬁK%ax + /fa§KonX — 1)

— %(OQT,K%QY + /iOqT/KTay - 1),

where Ky = %XXT and K = %YYT (in the HDLSS literature these matrices are
sometimes referred to as the dual sample covariance matrices). Note that this particular
representation of the Lagrangian corresponds to the regularized KCCA problem with
ok (K% + kKx)ax = 1 as the constraint rather than of (K% + kI,,)ax = 1 which was

discussed in Section 3.3. Continuing, we know that py; = px = py and that the solutions

to ax and ay are

1
ax = —(Kg( + /{In)_leOzy,
PH
1
ay = —(K3 + kL,) 'Kyax.
PH

The derivative of the Lagrangian with respect to ay is

0L
_— = KxKyOéy - pH(KX + /iIn)KXa/X =0.
8aX

Plugging the solution for oy into the above equation and re-arranging terms gives us
KxKy(Ky + HIn)ilKonX = p?—((KX + /@In)KXaX
1 1
Letting % = K% (Kx + kl,,)2ax and re-arranging terms we have
1 11 1
KyK2(Ky + sL,) " K2K2 (Kx + £L,) 20k = p2 K2 (Ky + £1,)2 0%
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Finally, multiplying both sides by (Kx + kL) 2K <

D=

gives us
(Kx + #L) FKLK2 (Ky + #L,) 'K2K2 (Kx + L) Fay = phak.  (5.8)
Letting REy = (Ky + /@In)’%KéKi(KX + kL,)"2, we can re-write (5.8) as
RYyRyyay = phak.

From this we can see that the SVD of R%, gives us the regularized canonical correlations
and scaled kernel canonical vectors. We will refer to this matrix as the sample kernel
cross-correlation matrix.

As we develop theoretical results for these various examples, in what follows we assume

that the regularization parameter k appears in the asymptotic form
K~ d,

in the sense that = — ¢ € (0,00) as d — oo, where v > 0. The regularization pa-
rameter plays a critical role in the consistency and strong inconsistency of the canonical

correlations and vectors depending on the value of ~.

5.2.4 Population Models

In order to better understand the behavior of CCA in the HDLSS setting, we consider
several population models meant to capture a broad range of behaviors in the marginal
and joint distributions of the data. As in Lee (2007) we assume for the sake of notational

simplicity that d = dx = dy.

1. Uncorrelated Spiked Covariance Model (Model 1). The factor matrices (see
Section 5.1.2, Remark 5.1.1 for a discussion on factor matrices) are Fyx = Fyy =

diag(d*,1,...,1) and Fxy = diag(0,...,0). This model is meant to study the
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behavior of CCA when there is no correlation between data sets.

2. Spiked Covariance/Cross-Covariance Model (Model 2). We consider two
parameterizations of this model (which give different results) that we will refer to
as S1 and S2. These models explore the effect of relative signal strength from the

spike in the covariance matrix relative to the spike in the cross-covariance matrix.

S1: FXX = Fyy == diag(da, 1, ey 1) and FXY = diag(daﬁ,O, c. ,O)

S2: FXX = Fyy = diag(da + d’g, 1, ey 1) and FXY = diag(dﬁ,O, ce ,O)

3. Constant Covariance/Spiked Cross-Covariance Model (Model 3). Fxx =
Fxx = diag(l,...,1) and Fxy = diag(d®,0,...,0). This model explores the effect

of having a spike in only the cross-covariance matrix.

We now provide some details related to the eigenvalues, canonical correlations and canon-
ical vectors for each of these population models.
For the purposes of our calculations we re-express the (centered) data matrices X and

Y based on their joint distribution as

Fxx Fxy
XY |=\| Zx Zy =\ ZxFxx +2ZyFyx ZyFyy +ZxFxy |,
Fyx Fyy
where Zx = (a1, - - -, Zod) (nxd) a0d Zy = (2Zy1, . . ., Zyd) (nxd)-
1. Model 1
X = ( dozly zhy - 2y )
i=1
Y = ( dazél zzjg Z;d )‘_1.

In this model we have that Yxx = Yyy = diag(d®**,1,...,1) and Xxy = 0. The

eigenvalues of Yxy and Yyy are Ay = M, = d®** and Ny = AL =1,i =2,...,d.
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The corresponding cross-correlation matrix is

RXY = dlag(O, c. ,O)

Under this model framework the canonical correlations are all 0 and the scaled

canonical vectors are any orthonormal basis.

2. Model 2
S1:
X= ( A%y +dPzy 2y o 2y )
i=1

In this model we have Yxy = Yyy = diag(d®® + [ D 1) and Xxy =
diag(2d*0+9 0,...,0). The eigenvalues of Y¥xx and Yyy are Ay = A\, =
d** + d*>% and Xy = A\ = 1,4 = 2,...,d. The corresponding population

cross-correlation matrix is

) 2d42(1+0)
RXY = dlag (W,O,...,O) .

This is the same population model that was used by Lee (2007). The leading
canonical correlation in this model converges to 1 if and only if § = 1 and
it converges to 0 otherwise. If the leading canonical correlation converges to
1 then the leading scaled canonical vectors are wi = w3t = (1,0,...,0)T
and the remaining scaled canonical vectors are any orthonormal basis which is
orthogonal to w% and wi!. If the leading canonical correlation converges to

0 then the canonical vectors in both the X and Y spaces are any orthonormal

basis.
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In some sense (3 can be thought of as controlling the strength of the signal
from the joint distribution relative to the marginal distributions. If § = 1 then
the signal from the joint distribution is as strong as the signal of the marginal
distributions. If 8 # 1 then, asymptotically, the signal of the joint distribution

is dominated by the signal from one or both of the marginal distributions.

S2:

X = ( (d* +d°)zL, + dﬁzél Zhg v Zhg )
1
Y: < (da—'—dﬁ)zzl—'—dﬁzil Z;JQ e Zjlyd)
In this model we have Yxx = Yyy = diag((d* + d°)? + d?’,1,...,1) and
Yxy = diag(2d®(d* + d”),0,...,0). The eigenvalues of Yxx and Yyy are

Me =M = (@¥+d%)?+d* and X = N, = 1,4 =2,...,d. The corresponding

cross-correlation matrix is

2d°(d* + d°
RXY = diag < ( il ) 0 ,O)

(d> +dB)? +d?8’

Note that when o > (3 the leading population canonical correlation converges
to 0 and if B > « then this value converges to 1. If & =  then the canonical
correlation value is equal to %. In some sense a can be thought of as the noise
parameter and [ the signal parameter, i.e. if there is more signal than noise,

as the dimensions go to infinity the signal can still be detected.

If 3 > «, i.e. the leading canonical correlation converges to 1, then w3 =

w3t = (1,0,...,0)T and the remaining canonical vectors are any orthonormal
basis which is orthogonal to w% and w3'. Otherwise if & > 3 then the

canonical vectors are any orthonormal basis.
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3. Model 38

n
= i o 1 i L )
X ( Zz1 + d Zyl Zx2 Zrd ) )

n
— i i i
Y < Zg + A% 2z Zyd )

In this model we have Y x x = Syy = diag(1+d?*,1,...,1) and Sxy = diag(2d*,0,...,0).
The eigenvalues of Yxx and Yyy are Ay = A\), =1+ d?* and \y =\, =2,... d.
The associated cross-covariance matrix for this population model is

2d*
RXY = dlag (m,O,,O) .

The leading canonical correlation is equal to 1 only when o = 0, i.e. when there
is no spike present, and is 0 otherwise. If the leading canonical correlation is equal

to 1 then wi = wi! = (1,0,...,0)7 and the remaining canonical vectors are any

orthonormal basis which is orthogonal to w% and wi!. If the leading canonical

correlation converges to 0 then the canonical vectors are any orthonormal basis.

Remark 5.2.1. We had also originally considered a “Spiked Covariance/Constant Cross-
Covariance Model”, where the factor matrices were structured as, Fxx = Fyy =
diag(d*,1,...,1) and Fxy = diag(l,...,1). However, what we found was that this
resulted in exactly the same joint covariance matrix > as in Model 3. This happened
because the factor matrix F did not correspond to the matrix square root Z%, which is

unique. This can be seen by the following: let
Y =VAVT,

be the eigendecomposition of 3. The matrix square root of X is defined as Y3 = VA%VT,

which, provided ¥ is a positive semi-definite matrix, is unique.
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Let B be any orthonormal basis, we then have that

Y = VAV?T
— VA:BVIVBTA: VT

= FF7,

where F = VA:BV7. In general the matrix F will not be symmetric, however, if the
matrix B is a permutation matrix, then the rows of Az will be reordered and F will be
symmetric. The result is that without closer inspection the matrix F may appear to be
the matrix square root, while in reality it is not.

Consider the following: let F be the factor matrix associated with Model 3 and P a

permutation matrix, then there exists a permutation such that

1 0...() dao...o 1 ()...0 dO‘O--- 0

0 1...() () 0...0 () 1...0 () 0... 0

0 0 1] 0 0 0 0 0 110 0 0
Y= PP’

e 0 --- 0 1 0 - 0 e 0 --- 0 10 --- 0

0 0 0l 0 1 0 0 0 0| 0 1 0

0 0 0| 0 0 1 0 0 0| 0 0 1
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e 0 --- 0 1 0 --- 0 e 0 --- 0 1 0 --- 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
1 0 0| d O 0 1 0 0| d* 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

From this it can be seen that rearranging the rows of F does not effect the structure of
Y. This is why the behavior of the Spiked Covariance/Constant Cross-Covariance Model
does not differ from Model 3.

5.2.5 Asymptotics of the Sample Cross-Correlation Matrix

In this section we study the HDLSS asymptotics of the sample canonical correlations
and vectors via the sample cross-correlation matrix discussed in Section 5.2.2. However,
before we begin looking at the sample cross-correlation matrix it is necessary to first
study the asymptotic behavior of the sample covariance and cross-covariance matrices,
Sxx, Syy and Sxy as d — oco. Lemma 5.2.2 provides some results about the sam-
ple covariance and cross-covariance matrices that will be needed in order to study the
asymptotic behavior of the sample cross-correlation matrix.

Let the 5 entry of Sxx @) be denoted by sf;fé(d) and the 5 entry of Syy () be
denoted by sijy( d) where d is the dimension of the matrix. Define A} to be the leading
eigenvalue of the population covariance matrix Xxy. The value of A} will depend on the
population model (see Section 5.2.4 for details). Let

- 1
1 : 11
>\X = lim —lsm,

d—oo )\X
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1
AL = lim —s!!
Yo oo \L vy’
)\ = lim —sll
XY d—oo )\1

The values of Ay, AL and A\, will depend on the population model. Note that Ak,
;\%, and :\&Y correspond to the limiting eigenvalues or singular value, respectively of the
matrices /\%S XX, /\%Syy and )\%S xy. From here on we suppress the subscript (d).

X X X

In Lemma 5.2.2 we will show that

S S Ak,
TS
)\1}(311 FAXYa
Y S = 0, 0 # ],
Efﬂ,ﬁ’ 0, 1 # j,
S 0 A

where & denotes convergence in distribution and > denotes convergence in probability.

Below we provide a summary of the values taken on by AL, AL and AL, for each of
the population models. Calculations showing the convergence to each of these quantities
is given in the proof of Lemma 5.2.2. An interesting point is that in those circumstances
where the population canonical correlation converges to 1 we have that Ay = AL = A,
In contrast, when the population canonical correlation converges 0, these quantities are

not necessarily equal.

Model 1
Aﬁ( = Ezglsz
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Model 2:

1. S1: We have three cases here: § =1, > 1 and § < 1, we will refer to these

as S1 case I, S1 case II and S1 case III.

S1 case I

S1 case II:

S1 case III:

~ ~ ~ 1
)\_1)( = /\%/ = )\}XY = %(le + Zyl)T(le + Zy1)~

11 l T

X = nzylzyla
~ 1

1 Lior
)\Y _Zx1ZI17
i L

Xy = —Zz1Zy1
~ 1

1 T
/\X = szlzmlﬁ
~ 1

1 Lior
>\Y = ﬁzylzyl,

1

71 17
Axy = Ezzlzyl‘

(5.10)

(5.11)

(5.12)

2. 52: We have two cases here when a > (8 and when o < 3, we will refer to

these as S2 case I and S2 case II.

S2 case I

1 T
>\X - ﬁlezmlﬂ
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)\%/ = —zglzyl,
~ 1
My = Ezflzyl. (5.13)
S2 case II:
~ ~ ~ 1
)\_1)( = )\%/ = )&{Y = %(le —+ Zyl)T(le -+ Zyl)' (514)
Model 3
~ 1
)\ﬁ( = Ez;zyl,
~ 1
)‘%/ = _Zaq;lle?
n
~ 1
Moy = ﬁzzlzyl. (5.15)

Lemma 5.2.2. Under the population models described in Section 5.2.4 we have the fol-

lowing behavior in the covariance and cross covariance matrices as d — o0

1 Fo. ~
ESXX £, diag (Aﬁf,o, . ,0) , (5.16)

and similar results hold for Syy. The value of 5\}( and 5\%/ will depend on the

population model.

1

TSxr F, diag (Xﬁmo, o ,0) , (5.17)
X

where the value of 5\}(}/ depends on the population model.
Before going into the proof of Lemma 5.2.2 we will need the following results

Proposition 5.2.3. Let u, w, z ~ N,(0,1L,), where u, w and z are independent of one
another, then

Cov(whu,z" u) = n(n +2), (5.18)

143



Cov(w'w,w'z) = 3n(n +4).

Proof. We begin by showing the equality in (5.18),

Cov(w'u,z" u) = Cov( E Wiy, E Zi;)

= Z Cov(w;ug, ziu;) + 2 Z Cov(wjuy, zpuy)

=1 i<k

= Z (w;z;u?)* — [B(w;zu? —l— 2 Z wju]zkuk

i<k

= Z Ew!EzEu; + 2 Z Ew?Eu?Engui

i=1 j<k

=n(n+2).

Next we show the equality in (5.19)

Cov(w'w,w'z) = Cov (ZwZ,ZwZZJ

= Z Cov(w?, w;z;) + 2 Z Cov(w?, wyz)

i=1 i<k

(5.19)

— [E(wju;zrug)]?)

=3 (Bt = [Blui))?) + 23 (Bna — (et

<k

= Z EwEz} +2)  BuwEw;Ez]

i=1 j<k

= 3n(n +4)

We are now ready to prove Lemma 5.2.2.

Proof. For each of the population models described in Section 5.2.4 we first show

1
TS £ diag (AX,O, o ,0)
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as d — oo and then

1

)\1 SXY g diag(x‘lxy,
X

as d — 00.

0,...,0),

1. Model 1: Recall that in this population model we have no cross-covariance term

and the leading population canonical correlation is always equal to 0. Furthermore,

as we will see below, the limiting quantities A%, AL and M., are equal to different

random variables. Under this model

o
X = (d Zy1, Zy2,

o'
Y = (d Zy17Zy27

from which we have

...,sz)

~--7Zyd)7

2
1 _ = r
Spx = 21251,
13 il _ .
Sy = Sup = —Zy1Bgiyt = 2, ..., d,
o i i
Sya Sy = T2yiZxjy ] > 1
n
and
20
11 _ d=
Swy - n Zy12y1,
. d®
1e S
Spy = —Zp1Zyirt = 2,...,d,
n
) d
il T s
Spy = —ZyZyl, 1 = 2,...,d,
n
Spy = ~Lyiyj, 1, ] > 1.
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We begin by looking at the behavior of the scaled covariance matrix /\%S xx- Re-
X

calling that A}, = d?* a direct calculation shows that

Lan_ b

2a0,, T
—)\ksm = dQO‘d Z,1Zs1

T

We now show that the remaining elements of /\%S xx converge to 0. We begin by
X

17
iz

looking at )\ils
X

20220
1
T2nd2e

- T) - Var(zl,z,;)

1 7
P (|
— 0.

Similar calculations show us that the remaining elements of the scaled covariance

matrix converge to 0. Putting this together we have

1
)\TSXX 5 diag(zflzm, 0,...,0). (5.20)
X

Similar calculations give us

1
T Svy % diag(25,2,1,0, ..., 0). (5.21)
X

The behavior of the scaled cross-covariance matrix /\%S xy is quite similar to that
X

1

of the scaled covariance matrix. The leading term, /\—135102 can be calculated directly
X

as

1 1
11 _ 20, T
5 d*“z 12,1

)\}( Ty 2
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Similar calculations as in the case of the scaled covariance matrix show that the

remaining elements of )\%S xy converge to 0. Putting this together gives us
X

1
T Sxy L diag(zl,2,1,0, ... ,0). (5.22)
X

Finally, from (5.20), (5.21) and (5.22) we have

1

1 T
Ay = Ezmlea
~ 1

1 _ L7
Ay —Zy1Zy1,
i L

XY 7,17y,

as in (5.9).

2. Model 2: Under this population model we have two scenarios which we consider,

models S1 and S2.

S1: Recall that under this population model the population canonical correla-
tion converges 1 only when # = 1 and converges to 0 otherwise. An interesting
observation is that when 8 = 1 we have that A\, = AL = A}, When 3 # 1
we see that these quantities all correspond to different random variables. In

this population model we have that

o o
(d Z,1 + d gzylazx% s 7sz) )

X
Y = (daZyl + daﬁle, Zy2, . .. ,Zyd) .
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From which it can be seen that

1
S = —(d"21 + d*2,1)" (d°2e1 + d*z,1),

rxr

) ) 1 .
st =gt = E(dazzl +dPz,) 205,0 =2,... ,d,

Tx zx
- . 1

ig _ g1 — — T )
S:ca: - Sxx - nzxiZ$J7

and

1
oy = E<dazm1 +d*z,0) (A7 + d*2,0),
~ 1
Sty (07201 + dPz,) 20 =2,...,d,
Slxly - E(daZyl + daﬂzzl)Tin7 1 = 2, - ’d,
ij 1 T ..
S$y = ﬁzmizyjyl,] > 1.

Now we will show the convergence of the components of the covariance and
cross-covariance matrices to their respective quantities as d — oo. We con-

sider three cases, =1, <1 and 8 > 1 (recall that \} = d*>* + d**F).

f# = 1: In this case we can calculate directly the value of A} = %(le +

21)" (221 + 241)

1 1
X
1
= %(le +21)" (Zo1 + 2,1)
£ X
n Y

where X2 denotes the Chi-squared distribution with n degrees of freedom.

Similar calculations give us AL = %(le + 2y1) " (Ze1 + Zy1)-
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B < 1: Here we show that A} = 1zl z,, (similar calculations give us \, =
1,7

ﬁzylzyl)

T

L 1 ZaZa

P ( Esm - 7'>

iVar (—1 sil Zngxl)

IN

72 d2o + d2apB %% n
1
— T T dQQﬁ)QVar(dhzflle — (d* + dzaﬂ)zflle + dQO‘ﬂzleyl

+ 2da(1+ﬁ)z;{1zy1)

1 Q 107 (0%
T (e PoB) [d*Nar(z;1201) + d*"Var(zy,2,1) + 4d** T Var (2, 2,:1)

—4d2“ﬁ+a(l+ﬁ)Cov(zflzml, zl,7,1) + 4d2a5+a(1+ﬂ)Cov(z§1zy1, zflzyl)}

A(d1eB 4 2e0+8))

- Tzn(d2a+d2a5)2

— 0.

Where we have convergence to 0 as the order of the terms in the numerator,

d*? and d?*(*5) are less than d*® since 3 < 1.

B > 1: The calculation in this case is similar to when g < 1 but now AL =

1

n

T N 1,7 1 1i ;o
2,1 Zy1 and Ay = --7;,7,1 Next we show that 3] Swe 0,2=2,...,d.

xrx

Ly
P(‘Esm >T)
1

<

- 7—2(d2a + d2a6>2
1 a,,T afB,,T

T (et d2aﬂ)2var(d Z1 Zai + Ay Bi)

Var(s}b;)

1 N N
= (2 & Py [dQ Var(z!,z,;) + d* ﬁVar(zglzm)
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+2d*P) Cov (2L, 24, Z;Zmﬂ
B 1 N 2(n+2)
= T2n(d2e 4 d2F) T2n(d%(3—ﬁ) + d%(sﬁ—n)g

— 0

T

Similar calculations give us izzizxj — 0, as d — oo for 7,7 > 1. Putting

these results together we have

1 -
—Sxx & diag(A\,0,...,0),
)‘X

where A\, depends on the value 3.

Next we look at the behavior of the elements of Sxy when 3 = 1 and when

8#1.

(8 = 1: As was the case with the covariance matrix the cross-covariance matrix

can be calculated directly giving us \yy = o-(2u1 + 2y1)7 (201 + 2,1)

1 1 o' «Q T/ jo «
ES;:; = m(d Zy1 + d ﬂzyl) (d Zy +d BZQ:I)

1

= %(Zrl + Zy1>T<Zml + Zyl)

%

n .

Il

B # 1: When (3 # 1 we have that Ay = 120)z,,.
Rt Z41%y1

P(}\&sw - >T>

1 1 1 ZnZyl

IN

1
_ o(148),,T o(14+8),,T
= dQQB)QVar(d Z1Zy1 +d Z1Zy1
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+ (d** + &)zl 2, — (* + d**P)z) 2,,)
4nd?e(+6)
n272(d20 4 2e5)2
4
nr2(de0 B 4 doB D)2

— 0

Similar calculations for 3 > 1 gives us S\}W = %zglzyl. Next we show that

1 .1z
Ay oy = O

1
P ( gsiy > T)
< 1 V 13
= ({2 1 q20B)? ar(s,,)
1 o, T af,,T
— p T d2a6)2\far(d Zy1Zyi + A2, 2,)
1 2a T 203 T
— (e T ) [d Var(z,,2y;) + d™*"Var(z,,2,;)

+2da(1+ﬁ)COV(Z;{1Zyi, Z;Zyi)]
B 1 N 2(n+2)
= 7-2n(d2" + anﬁ) T2n<d%(3—ﬁ) + d%(Sﬁ—l))Q

— 0.

il 1

ij :
2y 3L Siy 0. From this we

Similar calculations are used to show that /\%s
X

see that
1 -
—Sxy 5 diag(Aky,0,...,0),
Ax

where the value of Ak, depends on the value of @ and . Summarizing the

results of Model 2 S1 we have

6 =1
IO 1
)\k = )\%/ = )\ky = %(le + Zyl)T(le + Zyl)-
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g >1:

~ 1
R
)\X = Ezylzyl,
~ 1
1 T
/\Y = —Z2,.1Z:1,
1
1 _
AXy = —Zy1Zy1-
b <1
~ 1
1 T
Ax = —Za1Zal;
~ 1
1 Lo
Ay = ﬁzylzyl,
1

71 L7
Axy = glezyb

S2: Recall that in this population model we have that the populations canon-
ical correlation converges to 1 when v < 8 and it converges to 0 when o > (3.
As was discussed in Model 2 S1 the values of Ak, A and AL, will be equal
or not depending on whether the population canonical correlation converges

to 1 or 0. In this population model we have that

X = ((d* 4 d°) 21 + d°2y1, 2, - - -, Za),

Y = ((da + dﬁ)zyl + dﬂle, Zyo, . .. ,Zyd).
From which it can be seen that

1
sl — ﬁ((da + d) 21 + dﬁzyl)T((da + d%) 2y, + dﬁzyl),

sh =5l = —((d* + d?) 2 + d°2,1) 20,1 = 2, ..., d,
n

rxr

. . 1
ig gt — T )
Sgz = Szz = nzxizfm’
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and

((d* + d*) 241 + d°2,0)" ((d* + d°)z,1 + d°21),

V2)
8] =
& =

=
.

((d* + d?) 2 + d°20) 20 = 2,. .. . d,

»

(2

»

2w
<SS @
|

((d* + dﬁ)zyl +d° le) Zyir = 2,...,d,

T .o
Zyj, 1, > 1.

Z.’L’Z

)
<
3I>—‘§Il—‘3|>—‘§l*—‘

We begin by showing the convergence of st for the case o > § and o < 8
X

(recall that A\, = (d* + dP)? + d?P).

o > (3: Here we show that AL = zflle (and )\1 = y1Zy1)

)
1 1 7zl 7
< = gl _ Za1%al
> V&I‘ ((do‘ T dﬁ) + dzﬂ a::c n )
1
_ o & B
= ma((d AP T B Var((d +d°)*z zzl +d*z,,2,1
+2d°(d* + d%)zh 2, — ((d* 4 d°)? + d*)z!\2.,1)
1

T T22((de + dP)? + d2P)? [d" (Var(z;,201) + Var(z,,2,1))

+4d* (d* + d°)*Var(zL,2,,) — 4d*°(d* + d°)Cov(2L, 2.1, 22, 2,1)

T
1 gl _ Zy1Za1

A3 (d* + dﬁ)COV(Zglzyla Zflzyl)}
dn(d*’ + d*(d* + d))

T rn2((de + )+ AR
(VO 4 PO (1 4 dP)?)

T (T Ao+ )

— 0.

a < 3: Here we show that when o < ( that )\X =5 L (7, + 2y1)" (Zz1 + Zy1)
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(and 5‘%/ = %(le + Zyl)T(le + Zy1)).

1 X T X

: :10}0 (Z 1 + Zyl) (Z 1 —+ Zyl) > 7
Ay 2n
< iVar 11 v (21 +2) (21 1 2)
Ax 2n

= A T P& ﬁ)QVar ((d* + d°) 2L 201 + d*'2) 2,

+2d°(d* + d°)zt,z,, — ((

0+ d)? 4 ) (21 + 20)" (21 + )
; )
B 1

= 4r2n2((d> + dP)? + d2P)

5 Var (((da +d°)? — d*)zt 2,

H(d — (A + d°))z 21 — 2d*25,2,1)
B 1
Ar?((do + d7)2 + d2P)

7 [((@* +d%)? — d*)*Var(z;,241)

+<d2,8 . (da + dﬂ)2)2var(zglzy1) -+ 4d4avar(zflzy1)
—4d** ((d* + d°)? — d*P)Cov (2L, 2,1, 2L, 2,1)

—4d**(d*° — (d* + d’g)2)COV(Z§1Zy1, zflzyl)}

2n[((d™ + d°)? — d?P)? + (d*° — (d* + dP)?)? + 2d*°]
42n2((d> + dP)? 4 d?P)?

((d* P +1)2 = 1)2 + (1 — (d* 8 + 1)?)? 4 2d*>P)
272n((doF + 1)2 4 1)2

— 0.

Next we show that the remaining elements of A%S xx g0 to zero as d — o0.
X

We begin with sl

P ( > 7')
1
<
= 72((d> 4 dB)? + d?8)
1

— o' 6\, T 8., T
T 2n2((de + dB)? + dzﬁ)2var((d + d7)24120i + A2 251)

1
)\1 Sxx
X

1i
5 Var(s,.,)

1 o 2 T 20 T
T PR2((do + dO)? 1 d2P)2 [(d + ) Var(zg 20) + & Var(zy, )
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+2d°(d* + d°)Cov(z!, 2, zflzm)}
B 1 N 2(n+2)
- (o + O+ AP r2p((dosP 4 d3P)3 4 (do38 - d28) e

— 0.

The proof showing - 3 s 2.0, 4,7 > 1 is similar. Putting these all together
we have that

1
)\1 —Sxx ER dlag()\X,O ..., 0),

where 56( depends on the value a and (.

Next we study the behavior of the scaled cross-covariance matrix /\%S xy when
X

a > ( and when a < f3.

a > [3: We begin by showing that when o > 3 we have )\ lezyl

)\1 Sxy Zy1Zy1
X
1 1 3 15
< ﬁ\/ar (Esxy 212yl
1

T T22((d* + dP)? + d2P)2 s Var(d’(d* + d°) (25,201 + 251 21)
+((d* + d°) + dP)zg 2y — (A + d7) + d¥)zg,2,1)
1
T2n2((d> + dP)% + d2ﬂ)2(
dn(dP(d™ + d°))?
T2n2((d> 4 dF)? + d?8)?
4(dP=2(1 + d°~))?
2n((1 4 dP=)? + @?(B-)2

dﬁ(da + dﬁ)) (Var(z!,z,1) + Var(z ylzyl))

— 0.
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a < (3: Next we show that for oo < 3 )\XY = 1 5 (Za1 + 2,1)" (Za1 + Zy1).

1 1
P < ES“}C; — %(le + Zyl)T(le -+ Zy1> > 7‘)

1 1 1
< —Var (Esié — %(le + zyl)T(Zu + zy1)>

_ B( Jo B
= 472n2<<da+dﬁ)2 +d2ﬁ) Var (2d (d +d )( 1Z$1 +Z 1Zy1)

+2((d* + d°)? + d*)zlyzy — ((d* + d°)° + d*°) (221201 + 2)12,1)

—2((d* + d°)* + d*)z], 1)

1 4o T T
i@y e ) V)
_ And*e
- 4T2n2((da +d6)2 —|—d25)2

d4(e=p)

(@7 1P+ 1)

— 0.

Next we show that the remaining elements of tS xy converge to 0 as d goes
infinity. We begin by looking at swy, , = 2,...,d. Proof of convergence to 0

for the remaining elements follow along similar lines.

P ( —sly > 7')
1
< —Var ()\1 “)

1
— o' 6\, T 6., T
~ 2n2((de + dP)? +d26)2Var((d + d7) 22y + 72, 2y)

1 (6%
= (e T L0 ) Var(anzy) + 4V (2 zy)

2d°(d* + d°)Cov(z!,z,;, Z;Zyi)]

1
— o' 32 23 B/ 0 3
T 2n2((de + dP)E 1 D)2 [n((d* + d°)* + d°%) + 2n(n + 2)d°(d* + d°)]
- 1 N 2(n +2)
T (@ + PP+ dP) (@) 1 (4 + d )
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— 0.

Putting all these results together we have

1 ~
—Sxy — diag(\iy, 0,...,0),
)‘X

where the value of AL, depends on o and 3. We summarize the results from

Model 2 52 below

a > 3.
~ 1
A%( = szlzﬂfl’
~ 1
AL = —z;zyl,
~ 1
A%(Y = _Z;clzyl'
a<f
11 11 11 1 T
Ax = Ay = Axy = %(le + 2y1)" (Ze1 + Zy1).

. Model 3: Recall that in this population model the population canonical correlation

always converges to 0 (with the exception of the trivial case where the parameter

a = 0). In this population model we have that

el
X = (Zwl + d ZylyZg2, - - - 7Z1‘d))

Y = (zy1 + d°241,2Zy2, - - ., Zya)-

From which it can be seen that

1
Silx = E(le + dazyl)T(le + dazyl)v

157



13 il T .
Sy = Sy = E(Z“”l +d%2y) 24,0 =2,...,d,
ij ﬂ — L r o>
Sz = Szx = ~ZziZaj; ) ’
n
and
1
11 e} T «
Smy = E<Z$1 + d Zyl) (Zyl +d le);
17 l da T, ; _ 2 d
sxy—n(le—i— Zy1) Zyi, i =2,...,d,
il 1 d T, — 9 d
Smy E(Zy1+ Za:l) Zyinyt = 4y...,0,
iy 1
i T, o
Say = nzm.zy],z,j > 1.

We begin by looking at the scaled covariance matrix tS xx- Since the case for

a = 0 does not depend on the number of dimensions d we do not consider it in this

example. Turning our attention to @ > 0 we show that 5\}( = zglzyl.

-

1
< —Var (}\1 1 _ Z;Flzyl)

- Ent(1 1 ) Var( 221 +2d°2) 2,1)

~2n(1 4 2d** + 6(n + 4)d*)
B 2n2(1 + d?«)?

1
1n_ .7
P (‘—sm — Zy1Zy1

— 0.

Next we show that the remaining elements of /\%S xx converge to 0. We only show
X

isiﬁc — 0,7=2,...,d, as the proofs for the remaining elements is quite similar.
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1 T o, T
= Tl g ey e Ty )
n(1+ d* + 2(n + 2)d*)

72n2(1 + d?«)?

— 0.

Putting these all together we have that

1 F .

ESXX — dlag(zglzyl, 0,...,0).

We now turn our focus to the scaled cross-covariance matrix A%S xy. As the proof
X

for the cross-covariance matrix are quite similar to that of the covariance matrix

the details are omitted. We have that

1
TSXY i diag(zflzyl, O, N ,O)
)\X

Summarizing the results for Model 3 we have

-
Ay = Ezylzyl,
1
1 _ L1
)\Y - ﬁlezmlv
1
1
Axy = szlzyl‘
This completes our proof. O]

We now return to our discussion of the sample cross-correlation matrix Rxy. With

the results of Lemma 5.2.2 we can now prove the following theorem.

Theorem 5.2.4. Under all the population models described in Section 5.2.4 we have

Ryy =g diag(r,0,...,0),
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where

o VAt ey/A e

Y O
and ¢ = lim i1 ~ lim —-. The values of \x, Nk, Ay, Ny and subsequently r depend
d—0o0 )\X d—o0 )\X

on the population model and the parameters o and (3.

Corollary 5.2.5 follows directly from Theorem 5.2.4. Letting fr denote the density of the

sample correlation coefficient when the correlation is 0 (Anderson (2003))

fr= 2 (1 i RQ)%(nf?))’

we have

Corollary 5.2.5. Let py and py denote the population and sample canonical correlations,

we then have

1 ifp 21 and v 420 0,
X

Pray — 4§ 0 if py Y220 or 1 and T ey 00,
X
. d— k d—
R ifp =70 andg = 0,R ~ fnr.

The results from Corollary 5.2.5 are summarized in Remark 5.2.8.

Remark 5.2.6. Note that in Corollary 5.2.5 when p “22° 1 we can make the additional

statement that p, is either consistent or strongly inconsistent depending on the behavior

of f-. A similar statement cannot be made about the remaining cases since the support
X

of R contains 0.

The results from Corollary 5.2.5 lead to the following theorem

Theorem 5.2.7. Assuming p; 9221 and e Y2220 then
X

angle(wi, wy) = 0,

angle(wy,, wy) 2 0.
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In Theorem 5.2.7 we consider only the case where p; converges to 1 since in all other
cases no conclusive statement can be made about the convergence of the angle between
the population and sample canonical vectors. The reason for this is that the directions
found when p; does not converge to 1 will be random in either the population and/or
sample canonical vectors. This can be seen by noting that either the population or sample
cross-correlation matrix will be equal to the matrix of 0’s. Therefore the set of left and
right singular vectors resulting from an SVD of the cross-correlation matrix can be any
orthonormal basis.

We now prove Theorem 5.2.4.

Proof. From Lemma 5.2.2 we have

1 —00 . Y
—Sxx ‘= diag(Ak,0,...,0),
Ax

1 d—oo ;. 11
~—Syy — diag()y,0,...,0),
Ax

1 d—oo ;. 11
~—Sxy — diag(Axy,0,...,0).
Ax

With this in mind we have

1
2

Rxy = (SXX + K,In)7%SXy(SYY + K,In)

1 1 1 1
1 1\ 2 1 \:2 1 \2 1)\ 2 _1
= Sxx +4l) 2(@) @) Sxr (E) (E) vy +sl.)2
1 1
1 K T2 1 1 K T2
= —S —I1, —S —S —1I,
(Aa XX ) (Aa X> (Aa L >
_1 _1
Me+e 0 0 Aoy 0 0 A +e 0
. 0 ¢ 0 0 0 0 0 ¢
-
0 0 c 0 0 0 0 0
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)\XY
\/ch\/ch’o’m’o

as we wanted to show. O

= diag

Y

Remark 5.2.8. We consider each of the population models separately.

Model 1: Note that under Model 1 p; = 0 and does not depend on the value of d

or . From (5.9) we have

T
r = Zmlzyl 7
\/ Zglle —I'_ C\ / Zglzyl + C
and so
Cdeeo | 0 if e =00,
pr =
R ife=0.
Model 2:

1. S1 case I: Note that this case corresponds to conditions under which p; 2.

From (5.10) we have

(Zazl + Zyl)T(le + Zyl)

r = ,
(le + Zyl)T(Zml —+ Zy1> +c
and so
Cdeeo | O if e =00,
P —

1 ife=0.

2. S1 case II and case III: These cases correspond to conditions under which

p1 “=5° 0. From (5.11) and (5.12) we have

T
21721

Y
T [,T
V231221 + C\/ 21 Zy1 + C

r =
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and so

Cdeeo | O if e =00,
Pr

R ifc=0.

3. 52 case I: This case correspond to conditions under which p; 42%° 0. From

(5.13) we have
Zg1Zy1

)
T /T
V231221 + C\/ 21 Zy1 + C

r =

and so

0 if c =00,

~ d—oo
pr

R ife=0.

4. S2 case II. This case corresponds to conditions under which p, 922° 1. From

(5.14) we have
_ (Za1 + 2y1)" (221 + 241)
(Zo1 + 2y1) 7 (Za1 + Zy1) + ¢’

and so

0 if c= o0,

~ d—00
pr —

1 ife=0.

Model 3: Note that under Model 3 p; = 0 regardless of the value of d or a. From
(5.9) we have

T
Zmlzyl

)
[T /T

0 if c = o0,

T =

and so

~ d—oo

P —

R ifc=0.
We now turn out attention to the proof of Theorem 5.2.7.

Proof. The only population models which satisfy the assumptions of the theorem are

Model 2 S1 and Model 2 S2. Under these models and the assumptions made in the
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statement of theorem we have that the cross-correlation matrix
Ry "= diag(1,0,...,0).

Let Wil = (1,0,...,0)7 € R®>! and WV € R¥*¢~1 he any orthonormal basis orthog-
onal to wil. Similarly, let wi! = (1,0,...,0)T € R¥! and W;(d_l) € R¥1 be any
orthonormal basis orthogonal to wit. Letting R = diag(1,0,...,0) € R¥? we then have
that the SVD of Rxy is

Wi RWF

where W% = ( wil Wil ) and W3 = ( wil Wi ) Thus we have that

the leading scaled canonical vectors are w’ and wi' and the corresponding unscaled

canonical vectors are

Y = (Sxx +rL) 2wy,

Wi = (Syy + kL) 7wl

Next in order to show that the sample canonical vectors converge to their population
counterpart as d — oo we show that the angle between them goes to 0. We begin by

calculating the cosine of the angle between the sample and population canonical vectors

1
*1Ty "3 1
1 1 Wx EXX(SXX + kL,)” 2WX

(Wx, Wx) =
A/ WIS AWl /Wi T (Sxx + kL) 1wy

_1 _
*1T (1 2 (1 K ~ %1
Wi (Ber) T (S + L) W

-1 -1
1T 1 1 = 1T 1 K Sk 1
\/ VX <EEXX> WX \/ W37 (St Ta)

_1
(17 0 O>dlag (( (le + Zy1>T(Zml + Zyl)) 2 707 s 0) W;{l

d—oo
—

N|=

(%(Zwl + Zyl)T(Zzl + Zzﬂ))

164



Thus we have that

angle(wy,, W) = arccos (<W§(7 VAV%(>) =0

as we wanted to show. O

5.2.6 Asymptotics of the Sample Kernel Cross-Correlation Ma-
trix

Using the sample kernel cross-correlation representation for analyzing the behavior of
CCA in the HDLSS setting has appeal in that the matrices Kx and Ky are composed of
the inner products between observations. We can exploit certain asymptotic properties
such as independence between observations or utilize other assumptions which we place
on the distribution of the data by letting d — oo .

An important component in our analysis of the HDLSS behavior of CCA are the

measures of sphericity

TSk (0 M)
TTAR) an %)

o= TP (Eyy) (i AV’
AR an, (A

proposed by John John (1971) and John (1972) as the basis of a hypothesis test for the
equality of eigenvalues. Here Ay and A\.,i = 1,...,d are the eigenvalues of Yyx and

Yyy. Note that for € denoting either ex or ey, the following inequalities always hold

ISHNS
[\
@)
VAN
—_
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Also note that € = 1 only when all the eigenvalues are all equal.
Following the discussion of Jung and Marron (2009) we assume the e-condition, i.e.

that ex, ey > é, in the sense that

(deX)fl — Zz;l()‘%{)z
(S0 X)
(dEy)_l — Zz:I(A§/>

T, —Vasd— oo (5.23)
(i1 Av)

In the following lemma we will show that the following conditions are necessary in order

for the e-condition to hold,
1. Model 1: 0 < a < %
2. Model 2:

Sl:IfﬁSlthen0§a< and1fﬁ>1then0<oz<2ﬁ

S2: Either0§a<ﬁ<%or0§ﬁ<a<%.
3. Model 3: 0 < o < %
With this in mind we have the following lemma

Lemma 5.2.9. Assuming the e-condition holds and letting N and \i,,i = 1,...,n be the
eigenvalues of the population covariance matrices X xx and Xyy. Then the off diagonal

elements of the scaled kernel matrices KX and =Ky converge to 0 and the

S~ d yi
11>‘

’ Z
diagonal elements converge to 1 as d — oo.

Proof. We consider each of the models described in Section 5.2.4 and the conditions un-

der which they satisfy the e-condition separately. We present results for <K only

SR

as the proof for ———+Ky is exactly the same.

Z" A
Model 1:
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We begin by showing that the off diagonal elements of the scaled kernel matrix converge

to zero in probability which we denote by %. We have for i # j, and by Chebyshev’s

- 7)

d
Var (d%‘z;lzil) + Var (Z Z;Mﬁ*)]

k=2

inequality, that
1 T

F ( Pord_10Y
Var (mxij)
7—2
1
2(d?* +d—1)?
d*+d—-1

= — 0,

(e d— 1)

asd — oo for 0 < a < % Note that it is necessary that 0 < a < % in order for

the e-condition to hold. Also, in the inequality above Var(x!x;) = E(x!x;)? since
(E()(%’Ecj))2 = (0. Variance exploits the fact that we have independent components in the
2 k=1,...d,i=1,...,n so that the variance of the sums is the sum of the variances.

Also note that in the last equality above, the ratio, excluding the 1/72 is the sum of
the squared eigenvalues over the sum of the eigenvalues squared, which is the exact form

of the e-condition. As we will see, this behavior holds true throughout this proof.

Next we show that the diagonal elements converge to 1 as d — oo

1 T
2

< E (Faaxixi— 1)
>~ 2

1 1 . 1 . 2
:ﬁ Var <mxi Xz—1> + (E <mxi Xz_1>) ]

1 1 a
_ 4o i \2 i \2
= m d**Var ((le) )+kZ2Var ((z‘,pk) ))]

d“+d—-1

= —_ 0

7—2<d2a + d — 1)2 ’
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asd—>oofor0§a<%.
Model 2 (S1):
In a similar fashion to Model 1, we begin by showing that the off-diagonal elements

converge to zero

1 T

P( P 2P d = 1xz X, >7’)

Var (g% X))

< =
1 . d .

— (e L B d 1) Var ((d*z; + deB i L(do2, j daﬁzil)) + Var (Z z;kzik>]

k=2

1

Ao i 4oy
= 2 Pt A= 1) [d Var(lez ) +d 5\/&1"( ylzyl)

k=2
B d4o + d4ab + 2d0¢(1+5) +d—1 D
= @ B a1

Recall that in the context of this population model the e-condition requires that if 7 <1

then «a < sorif > 1 then a < which in both cases allows for convergence to 0.

2ﬁ’

Next we show the convergence of the diagonal elements to 1.

(

2
1 T
E <d2a+d2aﬁ+d—1xi Xi — 1)

= 7_2

1
d2a+d2aﬂ+d_1

X! X; — 1’ > 7')

d 2
1 1 .
_ ol aﬁ i \2 i \2
= 5P | ((dz +dPz)) +Z(zx))—1]
k=2
1 1 i afB i \2 . i \2
= |Var | G (@ + a5+ Y ()| -1
k=2
1 , & ’
+ (Ed2a+d2aﬁ+d_ 1 ((d“Z;l +daﬁ2;1> +Z(Z;k>2> - 1)
k=2

168



1 [de + d4a,8 + 2d2a(1+6) +d—1 (an + d2a,@ 4+d— 1)2 »
_ - 1| — 0,

7—2 (d2a + d2aﬂ + d— 1)2 (d2a + d2aﬁ + d— 1)2 o

where the above convergence holds provided the e-condition is satisfied.
Model 2 (S2):

As before we begin by showing the convergence of the off-diagonal elements to zero

-7

1
P Tx.
(‘(da+dﬂ)2+d25+d— TR

1 T
Var <(da+d5)2+d25+dflxi XJ)

< =
1 | | | |

_ e oo

T 2((do+ dF2 +d +d—1)? [Var (((d* + d®)zLy +d20,)((d* + d?)z], + d°z),)

d
+zz;kz;k)
k=2
1

= o BY2,0 0 284 o J
= 72((da+dﬂ)2+d2f6—|—d— 1)2 [Var ((d +d ) lez;1+d Zylzgj/l

d
+ d*(d + d7) ez + A+ A7)z l) + ) Var(zya)
k=2
(d* + dP)* + d* + 2d2°(d* + d°)?> +d — 1 0
= —
T2((d* + dP)? + d*P + d — 1)? ’

provided the e-condition hold, i.e. that either 0 < a < 3 < % or 0<f<ac< %

Next we show that the diagonal elements converge to 1.

1
P Ixi—1
<‘(da+d5)2+d%+d—1xzx ‘>T>

2
1 T
< B ((da+dﬁ)2+d2ﬁ+d_1xi Xi— 1)

> -2

1 1 d ’
_ o 7 i \2 i \2

72 (d* +dF)2 +d? +d—1 (((d + dﬂ)le + dﬁzyl) + Z(Zxk) ) - 1]

k=2

_ 1 1 V. de dﬁ 7 dﬁ i \2 . 7 \2

ﬁ (da + dﬁ)2 + d2ﬁ + d—1 ar (( + )le + zyl) + Z(Zwk>

k=2
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2

d 2
1 . . )
+ | = EQW+W%ﬁW%N+kaﬁ—Q
((d +dP)?+d¥+d—-1 -

1

72

(d + d°) +d% 420 (d 4+ d°’ +d =1 ((d*+d° +dP +d-1 1, .
— —
((d¥+dP)2+d?P +d—1)2 (d¥+dP)2+d?*$ +d—1 ’

In order for the e-condition to be satisfied we need to have either 0 < a < ( < % or

0<fB<acx< %, from which the above convergence to 0 follows.
Model 3:
In a similar fashion to the previous proofs we begin by showing convergence of the off-

diagonal elements to 0
1 T

T

Var (zagX] X;)

X

7-2
o
(P + d)?

Ao 2
_ d** 4+ 2d +dﬁ>0.
7—2(d2a _l_d)Z

d
Var ((23,1 + dazél)(zil + do‘z;l)) -+ Var (Z z;kz’ik>]

k=2

The above convergence to 0 holds provided the e-condition is satisfied, i.e. that 0 < a < %

Next we show convergence of the diagonal elements to 1.

1
P( d2a+dx;fpxj—1 >T)
2

_ B (e )
< =

1] 1 d ’
_ 7 o 2 i \2
=2 |t ((zﬂ +d%n)" ;%k) ) - 1]

M d

= ﬁ Var <d20‘——|—d ((Z;l + da2y1)2 + ;(prk>2> - 1)
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+ (E <d2a1—i— d <(ch1 + da2y1)2 + ;(Z;k)2>> - 1>

1 [die +2d8% +d <d2a+d 1>2 »
— 0.

2| (& + d)? A +d

Putting all these results together we have that all the population models presented in

Section 5.2.4 that

]

The following theorems present conditions under which we have consistency or strong-
inconsistency in the canonical correlations. As we will see these results depend heavily
on the behavior of the regularization parameter x ~ d?. Let p; denote the population

canonical correlation, p; the sample canonical correlation, i =1,... n.

Theorem 5.2.10. Assume for each of the population models described in Section 5.2.4
that the parameters a and (3 satisfy the e-condition (discussed in conjunction with Lemma
5.2.9. Based on the population models described above we have the following behavior in

the canonical correlations

0 ofv>1,
oo 1 ify<l.
1. Model 1: If~v > 1 then py is consistent and p;, 1 = 2,...,n are strongly inconsistent.

If v < 1 then all p;’s are strongly inconsistent.

2. Model 2:

Sl: If f=1and 0 < a < %, then py 1s consistent if y < 1 and p;, 1 =2,...,n

are strongly inconsistent. If 6 # 1 and 0 < a < ﬁ then p;, 1 = 1,...,d are
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consistent if v > 1 and are strongly inconsistent otherwise.

S2: I[f0 < a< f< % then py is consistent if v < 1, p;, 1 = 2,...,n are
strongly inconsistent. If 0 < 0 < a < % then all p;’s are consistent if v > 1

and are all strongly-inconsistent otherwise.

3. Model 3: If o = 0, then py is consistent if v < 1 and p;, 1 = 2,...,n are strongly
inconsistent. If ae > 0 then all p;’s will be consistent if v > 1 and will be strongly

inconsistent otherwise.

Proof. We begin by looking at the behavior of the dual cross-correlation matrix as d —

o0,

_1 1
1 K 2 1 2

= ————Kx+——1I, —Kx
(z?_wx S A ) (Z?_wx >

1 > 1 -
X ?Ky ?KY + %In
Dic Ay Dic1 Ay Doic1 Ay

I, as d — oo,

N

+c

PR
by Lemma 5.2.9. Of interest to us is to study the behavior of ¢ = dlim W =
T Qs Ay

d
dlim W. Here ¢ converges to 0 or 1 depending on the value of v relative to the
T s Ay A ,
highest order of the sum of the eigenvalues A% and A}, ¢ = 1,...,d. We will now look at

the behavior of ¢ under each of the above population models,
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1. Model 1: Recall that the sum of the eigenvalues under this model is,
d
d Ng=d"+d-1.
i=1

From Lemma 5.2.9 we know that in order for the e-condition to hold we must have

that 0 < a < % We then have that

b 1 _ oo ify > 1,
d=oo 370 Ny = d2e 7 4+ dV 7 — d 0 ify<l.
From this we then have
1 0 ify>1,
I+e )1 ify<t

Conditions for consistency and strong inconsistency are described in the statement

of the theorem.
2. Model 2:

S1: Under this population model the sum of the eigenvalues is
d
S Ng=d+dP+d-1.
i=1

Under the constraints of the e-condition we have that if 7 < 1 then 0 < a < %

0rif6>1then0§o¢<%. Thus

. 1 oo ify>1,
CcC = dll_{lc}o an—'y + d2a/87’7 + dlf')/ — df'y —

0 ify<l.
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From this we then have

1 0 ify>1,

1+c 1 ify < 1.

Conditions for consistency and strong inconsistency are described in the state-

ment of the theorem.

S2: The sum of the eigenvalues for this population model is
d
Ny =(d"+d°yP+d’ +d—1
i=1

Recall that the conditions necessary for the e-condition to hold are either
0<a<p< % or0<f<a< % The behavior of ¢ once again depends on

the leading term d

1 oo ify>1,
CcC = hm ST ,3—1 2 2/6‘— — — —
d=oo (d*72 +d° 72 )2 + 1 + d! 7 —d Y 0 ify<l.
From this we then have that
1 0 ify>1,
1+c 1 ify <1,

Consistency and strong inconsistency of the p;’s is described in the statement

of the theorem.

3. Model 3: The sum of the eigenvalues under this population model is
d
d Ny =d*+d
i=1

In order for the e-conditions to hold we must have that 0 < o < % Then ¢ behaves
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as

. oo ify>1,
Cc = 11m —2a_ — =
doo @207 4 &1 0 ify<l.

Consistency and strong inconsistency of the p;’s is described in the statement of

the theorem.
This completes the proof. n

Remark 5.2.11. Note that throughout the proof of Theorem 5.2.10 the convergence of
the sample canonical correlations depended a considerable amount more on the regu-
larization parameter x then on the relationship between the population parameters «
and . Specifically the relationship between 7 (recall K ~ d”) and the highest order
term, d played the biggest role in determining the convergence of the sample canonical
correlation. In contrast the convergence of the sample canonical correlations when we
were exploring the behavior of the sample cross-correlation matrix did depend in large
part on the relationship between the population parameters. This suggests that the
regularization parameter is relatively more important for KCCA then for CCA.

In our analysis the kernel induced feature space that we were mapping into was
characterized by the standard inner product. While the inner products defined in other
kernel induced feature spaces may be considerably different, many are still a function of
Euclidean distance, which is itself simply the inner product of the difference between two

observations,

K(x,x') = f(llx—x|]*)

= f((x=x,x=X))

= f(xTx +xTx' —2x'x).

While we do not provide any formal proof, based on our results using the standard inner

product kernel, it seems reasonable to conclude that the selection of the regularization
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parameter for a general kernel plays a critical role in KCCA. This is not to say that the
regularization parameter does not play an important role in standard CCA. However,
based on our results from Section 5.2.5, where the sample cross-correlation matrix was
studied, when the regularization parameter converged to 0, and the population canonical
correlation converged 0, this did not immediately imply that the sample canonical corre-
lation would converge to 1 (Corollary 5.2.5). However, when studying the sample kernel
cross-correlation matrix when the regularization parameter converged to 0 the sample

canonical correlation always converged to 1 (Theorem 5.2.10).
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CHAPTER 6

Proposed Future Work

In the following section we discuss possible future work which looks at providing a

framework for performing variable selection using KCCA.

6.1 Variable Selection KCCA

Variable selection can be a very useful statistical task. In particular in high dimen-
sional data, where the number of parameters is potentially greater than the number of
observations. In the context of KCCA we want to find the set of variables which is most
meaningful for capturing the relationship between spaces.

We look to build upon the ideas presented in Lafferty and Wasserman (2008). The

key idea in our approach is as follows. Consider a kernel which takes the form
K"(x,x') = K(x"Hx), (6.1)
where H = diag(hq, ..., hy) and
K(h) = {K"(xi,x;)} 1.
By K(1) wemean H=1ie. h; =1,i=1,...,d. Let

pr(h) = axKx (hx)Ky (hy)ay (6.2)



where

Koy (hy) = {Kx (%, %))} 1,

Ky (hy) = {K{(yi )}z

If P=(h(t):0<t<1)isasmooth path through the set of weights with ~(0) = 1 and

h(1) = 0 then letting py be as in (3.19) we can then write

pr = pr(1) = pn(0) + pr(1) — pr(0) (6.3)
—pmm—ﬁf@%§@- (6.4)
=mﬂD—A<Dw@%M$M& (6.5)

where

dp dpn Op Opr \ "
D(h) = Vpy(h) = (Dx(h), Dy (h)) = (ﬁ""’ahzﬁah;'“’ahz) (6.6)
X Y

is the gradient of py, and h(s) = d};is) is the derivative of h(s) along the path.

If we assume that the number of relevant variables describing the relationship between
spaces is in fact some ry < dy and ry < dy then there should be a path for which D(h)
is also sparse. Along such a path we replace D(h) with some D(h) that makes use of the

sparsity assumption. Our estimate of py is then

= pl0) = [ (D(s)). (s (6.7

To implement this idea we need two things
1. To find a sparse path for the derivative.

2. Take advantage of this sparsity as a method for variable selection.
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The key observation is that if a particular covariate X;(€ R"),j = 1,...,dx and/or
V(€ R™),k =1,...,dy is irrelevant, then we would expect that changing the associated
weights hg'( and/or hY would cause little or no change to the canonical correlation py.
On the other hand, if X; and/or ¥}, is important we would expect a small change in the
weights hJX and/or hY to cause a large change in the canonical correlations. Thus the
derivatives, D% (h) = gz;}; and DI (h) = gfb—z should discriminate between relevant and
irrelevant covariates. To simplify the procedure we discretize the continuum of weights

replacing hx(s) and hy (s) with the sets

Wy € Bx = {(1 = 85%)h%, (1 — B2)hS%, ...} where 0 < By < 1,1 € N

W, € By = {(1 - BL)n%, (1 — BZ)RY., ...} where 0 < By < 1,1 € N.

Furthermore, we can proceed in a greedy fashion by estimating D(h) sequentially with
W, € By and B} € By by setting D% (h) = 0 when h% < R’ and similarly setting
DJ(h) = 0 when R}, < ﬂ{,, where iALJX and izg/ are the first hx or hy, respectively, such
that | D% (h)| < c&(h) or |DJ(h)| < ¢ (h) for some threshold ¢ and ¢},. Thus our

estimate of py(h) is prL and the hard threshold estimate of the derivatives are

Dx(h) = Dx(h)I(|Dx(h)| > cx(h)),

A

Dy (h) = Dy (W)I(|Dy (h)| > ey (h)).

The algorithm can be summarized as follows

1. Select constants 0 < Bx < 1 and 0 < By < 1 and initial weights 0 < A < 1 and

0<h) <1
2. Initialize the weights and activate all covariates:

(a) Wy =h%,j=1,....,dx and b}, = h%,j =1,...,dy.

(b) AX:{l,Q,...,dx} andAY:{l,Q,...,dy}.
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3. While Ax and Ay are nonempty, do for each j € Ax and j € Ay

(a) Compute the thresholds ¢ and ¢},

(b) If |D%| > ¢, then set B — (1 — B%)h%; otherwise remove j from Ay.
Similarly if |Di| > ¢, then set hl « (1 — B%)h]; otherwise remove j from

Ay . Here t is the counter associated with the iteration number.

4. Output weight vectors hy = (hk,...,h%) and hy = (hL,...,h®) and updated

canonical correlation py(h).

Future work will focus on the implementation of this approach and a detailed study of

algorithm performance and convergence.
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