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Abstract

EUGENIO ANDRACA CARRERA: Approaches to parameter and variance
estimation in generalized linear models.
(Under the direction of Bahjat Qaqish.)

In many studies of clustered binary data, it is reasonable to consider models in which

both response probability and cluster size are related to unobserved random effects. Two

resampling methods have been recently proposed in the literature for mean parameter

estimation in this setting: within-cluster resampling (WCR) and within-cluster paired

resampling (WCPR). These procedures are believed to provide valid estimates in the

presence of nonignorable cluster size. We identify the parameters estimated under WCR

and under unweighted generalized estimating equations and elaborate on their differences

and validity. We propose a simple weighted generalized estimating equations strategy

that is asymptotically equivalent to WCPR but avoids the intensive computation in-

volved in WCPR. We investigate the parameter estimated by WCPR for a generalized

mixed model. We show that the parameter estimated by WCPR may be affected by

factors other than the actual effects of exposure and propose an alternative strategy for

the analysis of correlated binary data with cluster-specific intercepts based on simple

generalized estimating equations for random intercept-matched pairs.

We study the problem of variance estimation in small samples using robust or sand-

wich variance estimators. Robust variance estimators are widely used in linear regression

with heteroscedastic errors, generalized linear models with possibly misspecified variance

model, and generalized estimating equations. In these settings, the robust variance es-

timator provides asymptotically consistent estimates of the covariance matrix of mean

parameters. However, the robust variance estimator may severely underestimate the
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true variance in studies with small sample size. Bias-corrected versions of the robust

variance estimator have been proposed to improve its small sample performance. We

introduce a new class of corrected robust variance estimators with an emphasis on vari-

ance reduction and small sample performance. These estimators are applicable to linear

regression, generalized linear models and generalized estimating equations. We show in

simulations that the new estimators perform better in terms of variance and confidence

interval coverage than many current estimators, while maintaining comparable average

confidence interval width.
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Chapter 1

Introduction and literature review

1.1 Introduction

1.1.1 Cluster resampling methods

Studies involving correlated or clustered binary data arise often in medical applications.

Statistical tools have been proposed to analyze clustered binary data for various study

designs and parametrizations. Random-effect models and marginal models are commonly

used by researchers depending on whether interest lies in subject-specific effects or pop-

ulation average effects. Within-cluster resampling (WCR) was suggested by Hoffman,

Sen and Weinberg (2001) as a procedure for parameter estimation in marginal models

where response probability and cluster size are related to unobserved random effects.

A similar method, within-cluster paired resampling (WCPR), was suggested by Rieger

and Weinberg (2002) for estimation of subject-specific effects in models resembling a

matched-pairs setup. They proposed WCPR for the analysis of correlated binary data

with cluster-specific intercepts and slopes.

Even though WCR and WCPR have gained popularity in the literature, it is not clear

what parameters they estimate and how they differ from generalized estimating equations

(GEE). Hoffman et al. (2001) claim that unweighted generalized estimating equations

is not a valid estimating procedure when cluster size is related to response probability.



Similarly, Rieger and Weinberg (2003) suggest that conditional logistic regression (CLR)

is not a valid estimating procedure in the presence of cluster-specific intercepts and

slopes. WCR and WCPR are proposed as alternative estimating approaches in these

settings. In §1.2 and §1.3 we review the available literature on WCR and WCPR. In

Chapter 2 we investigate the parameters estimated by WCR, WCPR and unweighted

generalized estimating equations in various models. We show that WCR and WCPR can

be written in terms of specially weighted estimating equations. We study the parameters

induced by WCR, WCPR and GEE and comment on the validity of each procedure.

1.1.2 Variance estimation

WCR and WCPR are methods of mean parameter estimation for correlated data. Statis-

tical inference of these mean parameters requires estimates of their variance. The robust

or ‘sandwich’ variance estimator, introduced by Liang and Zeger (1986), is widely used

to estimate the covariance matrix of mean parameters in correlated data. One of the

main advantages of the robust variance estimator is that it provides consistent estimates

of the true covariance matrix of the parameters of interest, even if the variance model

is misspecified. It is applicable in settings such as linear regression with heteroscedas-

tic errors and generalized linear models. However, it has been shown that the robust

variance estimator may lead to anti-conservative inference in small samples in many sit-

uations. Corrections to the robust variance estimator have been proposed to improve its

small sample performance. Most corrections to the sandwich estimator available in the

literature focus on reducing its bias. Kauermann and Carroll (2001) showed that the

robust variance estimator has higher variance than parametric variance estimators when

the parametric model is correct. They showed that the increased variance of the robust

variance estimator results in a loss of efficiency.

In §1.4 we review the literature on robust variance estimation; we cover variance

estimators for linear regression with heteroscedastic errors, as well as their bias, variance
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and performance. In section 1.4.4 we review variance estimation for correlated data. In

Chapter 3 we introduce a new family of variance estimators for linear regression and

generalized estimating equations that includes some of the estimators introduced in §1.4

as well as new estimators not previuosly considered in the literature. We show that some

of the new estimators have smaller variance than currently available estimators and that

this translates into improved confidence interval coverage. In Chapter 4 we extend the

family of variance estimators to correlated data. We show that new estimators improve

upon current estimators in terms of variance and coverage in simulations with correlated

Gaussian data and correlated binary data. In Chapter 5 we summarize the results of the

previous chapters and discuss future research.

1.2 Literature review: within cluster resampling

1.2.1 Random effects models

One common approach to account for within-cluster correlation in correlated data is

through random effects models. We introduce one such model with a random intercept

for binary data.

Consider a study with K clusters, indexed by i = 1, . . . , K and observations within

cluster i indexed by j = 1, . . . , ni. Let the jth binary response in the ith cluster be

denoted by Yij, and let it be related to a (p× 1) vector of covariates xij through

logit(E(Yij)) = αi + x>ijβ. (1.1)

If αi in model (1.1) can be assumed to follow a probability distribution dependent on

parameters θ under some regularity conditions, then a random effects model eliminates αi

by estimating θ and the fixed slope β through likelihood methods. Models with logit link

and cluster-specific random effects were first proposed by Cox (1958) and Rasch (1961).

Laird (1982) proposed the use of random effects models for the analysis of longitudinal
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data and Stiratelli et al. (1984) extended random effects models to correlated binary

data. The interpretation of β may be marginal if random effects are integrated out or

conditional within a cluster.

Neuhaus et al. (1992) showed that misspecification of the random effects distribution

may lead to bias in regression coefficients, however this bias tends to be small. Neuhaus

and McCulloch (2006) then showed that ignoring the correlation between covariates and

random effects may also lead to biased regression coefficients.

An alternative to random effects models, marginal methods for the analysis of cor-

related binary data based on generalized estimating equations became available after

the work of Liang and Zeger (1986) and Zeger and Liang (1986). The GEE approach

assumes mean and variance models for the response and accounts for within-cluster as-

sociation by using a working correlation matrix for each cluster’s vector of responses Yi.

We discuss generalized estimating equations in more detail later in this document in the

context of sandwich variance estimators for correlated data.

1.2.2 Within cluster resampling

Hoffman et al. (2001) proposed WCR for the analysis of correlated binary data with

nonignorable cluster size. They define nonignorable cluster size as any violation of the

property E(Yij|ni, Xij) = E(Yij|Xij). In particular, they consider a model where re-

sponse probability and cluster size are related to an unobserved random effect. Hoffman

et al. (2001) claim that unweighted generalized estimating equations is not a valid

method of estimation when cluster sizes are nonignorable and propose WCR as a valid

estimation alternative.

The WCR procedure is based on sampling one observation from each cluster at each

of Q resampling steps. The q-th data set then consists of one independent observation

from each cluster. A regression model for independent data is fit to the q-th resample

and an estimate of mean parameters and their covariance matrix is obtained. The WCR
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estimate is obtained by pooling the estimators obtained at each resampling step. The

WCR procedure is described in detail in Chapter 2.

Williamson, Datta and Satten (2003) and Benhin, Rao and Scott (2005) showed that

the WCR procedure is equivalent to generalized estimating equations with independence

working correlation structure and cluster weight equal to the inverse of cluster size.

Neuhaus and McCulloch (2006) discussed Hoffman et al.’s (2001) paper and suggested

that nonignorable cluster size be considered as a misspecification of the random effects

distribution. They argue that the bias of slope coefficients in the simulations of Hoffman

et al. (2001) and Williamson et al. (2003) is small, and that only the intercept shows

significant bias. Neuhaus and McCulloch (2006) claim that these results are consistent

with their research on misspecified random effects distribution (Neuhaus et al., 1992).

Even though the simulations of Hoffman et al. (2001) and Williamson et al. (2003)

show small bias in slope coefficients and small differences between estimates obtained

by unweighted GEE and WCR, their data examples show large differences between

estimates obtained by the two approaches. In Chapter 2 we explain the differences

between unweighted GEE and WCR in these simulations and data examples.

Follmann, Proschan and Leiffer (2003) extended the use of within cluster resampling

to applications including angular data, p-values and Bayesian inference. Cong, Yin

and Shen (2007) and Williamson et al. (2008) used WCR to model correlated survival

data where the outcome of interest is associated with cluster size. Datta and Satten

(2005; 2007) extended WCR to rank-tests and signed-ranked tests in situations with

‘informative cluster sizes’. Our work focuses on the application of WCR to correlated

binary data.

Recent areas of application of WCR include cross-sectional surveys in epidemiology

(Williamson, Kim and Warner, 2007), veterinary epidemiology (Faes et al., 2006) and

genetic association in families (Shin et al., 2007). Faes et al. (2006) note that an

alternative approach to WCR, with a different parameter interpretation, is to include

5



cluster size as a covariate in the model. While this model may be useful in many

scenarios, we do not explore it further.

1.3 Literature review: within-cluster paired resam-

pling

Rieger and Weinberg (2003) proposed within cluster paired resampling for the analysis of

correlated binary data for models with cluster-specific intercepts and slopes. The method

is based on resampling two observations from each cluster such that one observation

has response yij = 1 while the other has response yik = 0. Clusters with at least one

y-discordant pair are called ‘informative clusters’. The resulting resampled data set

resembles data from a matched-pair design. Conditional logistic regression based on the

resampled pairs is then used to estimate the parameter vector β. The final estimate

β̂WCPR is the mean of Q resamples.

Conditional logistic regression has been widely used in case-control studies (Breslow

and Day, 1980). CLR assumes a cluster-specific intercept or random effect. Through

conditioning, CLR eliminates random intercepts and estimates conditional or cluster-

specific slope parameters. CLR makes no distributional assumptions about the random

effects. It assumes independent outcomes within clusters conditional on the random ef-

fects and a conditional slope parameter β common to all clusters. These two assumptions

are not required if all clusters have only two observations each and the data resemble

a matched-pair design. This is the motivation of the WCPR method: the resampling

procedure proposed by Rieger and Weinberg (2002) produces resampled data sets con-

taining one pair of y-discordant observations from each informative cluster and resembles

a matched-pair design. The WCPR is studied in more detail in Chapter 2.

Rieger, Kaplan and Weinberg (2001) proposed a less general version of WCPR based

on sampling one affected and one unaffected sibling from each sibship in family studies
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to test for linkage and association between a disease and candidate genes. The authors

named their method ‘Within Sibship Paired Resampling’ (WSPR). Both WCPR and

WSPR have met limited discussion in the literature. Our research aims to improve the

understanding of WCPR and offer alternative analysis tools for estimation of cluster

level parameters for correlated binary data. The results on WCPR are easily extended

to the special case of WSPR for use in family-based case-control studies.

1.4 Literature review: variance estimation

Consider the linear model E(Y) = Xβ,Var(Y) = Γ where Y is an n × 1 vector of

responses, X is a known n × p matrix of covariates of rank p, β is a p × 1 vector of

unknown parameters, and Γ = diag(γ1, . . . , γn) is unknown.

The ordinary least squares estimator of β, given by β̂ = (XTX)−1XTY, is best

linear unbiased under homoscedasticity, γ1 = · · · = γn = σ2. It also remains unbiased

under heteroscedasticity, but is no longer best unbiased. Asymptotically, for large n, β̂

is consistent under fairly general conditions (Eicker, 1963). The ordinary least squares

estimator (OLS) of cov(β̂),

(XTX)−1

n∑
i=1

r2
i /(n− p),

where ri = Yi − xTi β̂, is based on the assumption of homoscedasticity. This estimator is

the one typically printed out by most regression software. In general, the true covariance

is given by

cov(β̂) = (XTX)−1XTΓX(XTX)−1. (1.2)

The OLS variance estimator is generally biased under heteroscedasticity and can lead

to gross undercoverage of corresponding confidence intervals. This weakness of the OLS
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estimator has long been recognized and several alternative estimators exist.

The goal of this section is to review some of the most relevant approaches to es-

timate (1.2) under heteroscedasticity in the literature. It is organized as follows. In

§1.4.1 we introduce some notation. In §1.4.2 we review variance estimators proposed

for linear models with heteroscedasticity. In §1.4.3 we study issues of bias, variance and

performance of some of these variance estimators in published simulation studies. §1.4.4

reviews variance estimators available for correlated data.

1.4.1 Notation

We will use the following notation throughout this dissertation. If a = (a1, · · · , an)T is

a vector, then diag(a) will denote a diagonal matrix with diagonal elements a1, · · · , an.

Conversely, if A is a square matrix with elements aij, then diag(A) will denote the

column vector (a11, · · · , ann)T .

For any two vectors or matrices B = (bij) and C = (cij) of the same dimensions,

we denote their Schur product (Marcus and Minc, 1964, p.120) as B ∗C := (bijcij).

Consequently, the k-th Schur power of B is denoted by B∗k = (bkij).

The ‘hat matrix’ H = (hij) is given by H = X(XTX)−1XT . Its diagonal elements,

hii, are called ‘leverages’. Also, let the vector of squared residuals be denoted by S, with

elements r2
i . Finally, let us define the matrix P := (I − H)∗2 where I is the identity

matrix.

Estimators of the true covariance are generally obtained by replacing Γ in (1.2) by

an estimator Γ̂ = diag(γ̂). Since Γ̂ is diagonal, we may write it in full matrix form Γ̂

or, equivalently, in vector form γ̂. When talking about individual components of Γ̂ we

write γ̂i, where it is understood that γ̂i = Γ̂ii.
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1.4.2 Review of estimators

Early work on estimators of cov(β̂) and their properties can be traced to Eicker (1963)

and Huber (1967). Eicker anticipated the results of White (1980) by studying conditions

for the asymptotic normality of (β̂−β)/ĉov(β̂) where ĉov(β̂) is obtained by replacing Γ

by cov(rir
T
i ) in (1.2). Huber (1967) further studied the asymptotic properties of ĉov(β̂)

under maximum likelihood methodology.

Hartley et al. (1969) and Rao (1970) proposed the first variance estimators unbiased

under heteroscedasticity for a wide range of linear models. Rao (1970) named this class

of estimators MINQUE (minimum norm quadratic estimator). Estimators derived from

MINQUE such as the almost unbiased estimator soon followed (Horn et al., 1975). In

1980, White proposed a heteroscedasticity-consistent covariance matrix estimator. His

estimator, denoted HC0, is often used by researchers in fields such as economics and

social sciences, and is commonly available in most software packages (Long and Ervin,

2000). Since White’s (1980) seminal paper, modified White estimators such as HC1,

HC2 and HC3 have appeared in the literature. The performance of these estimators in

small samples has been studied extensively by MacKinnon and White (1985), Long and

Ervin (2000), Flachaire (2005), and many more.

In the following sections we introduce some of these estimators as well as some others

related to our work. Later, we discuss some of the literature available regarding their

performance in small samples, as well as issues of bias and variance.

MINQUE

Hartley et al. (1969) proposed unbiased estimators for a linear model with a stratified

design with one unit per stratum and unequal variances. Their estimator can be written

as γ̂ = P−1S. The estimator of Hartley et al. (1969) is included in a larger class of

estimators referred to as MINQUE by Rao (1970).

Consider a linear combination αTγ =
∑
αiγi to be estimated. A quadratic form

9



YTAY is said to be MINQUE of αTγ if A = (aij) is such that ‖A‖ is minimized

subject to

AX = 0 and
∑

aiiγi ≡
∑

αiγi.

These two conditions guarantee invariance to translation of β and unbiasedness of

YTAY as an estimator of αTγ.

MINQUE exist for more general linear models than the model of interest of this

review. The model we consider is that of independent, unreplicated data with variances

that are unknown and possibly all different. For this model the unreplicated MINQUE

corresponds to the estimator of Hartley et al. (1969) (Horn et al. 1975).

Even though MINQUE are unbiased, they exhibit some undesirable properties. First,

existence of MINQUE is not guaranteed; it is conditional on P being non-singular. Rao

(1970) gives sufficient conditions for the existence of P−1, however these conditions are

not simple. Second, even if MINQUE exist, it is possible to obtain negative estimators

of some γi and Var(zT β̂) for some p × 1 vector z in finite samples (Horn et al., 1975;

Dorfman, 1991). Finally, MINQUE seems to exhibit large variance in many scenarios

(Chesher and Jewitt, 1987; Bera, Suprayitno and Premaratne, 2002).

HC0. White’s estimator

White’s 1980 paper on a heteroscedasticity-consistent covariance matrix estimator is

one of the most influential papers in the field. His HC0 estimator is simply obtained by

replacing Γ in (1.2) by Γ̂
(0)

:= diag(S).

Since the expected value of the vector of squared residuals is given by E(S) = Pγ it

follows that White’s estimator is biased for finite samples. The extent of HC0’s bias was

studied by Chesher and Jewitt (1987). Issues of bias and performance are considered in

the following section.
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White’s (1980) major contribution was showing that

(XTX)−1XT Γ̂
(0)

X(XTX)−1 p−→ (XTX)−1XTΓX(XTX)−1

under either homoscedasticity or heteroscedasticity under regularity conditions. It allows

researchers to conduct adequate inference under unknown heteroscedasticity for large

enough samples.

HC1, HC2 and HC3

Several finite sample corrections to White’s estimator have been proposed in the litera-

ture. Perhaps the simplest one was given by Hinkley (1977). Hinkley’s estimator HC1

is a degrees of freedom corrected version of HC0 given by

HC1 :=
n

n− p
HC0.

In 1975, Horn et al. proposed the almost unbiased estimator, also known as HC2.

The HC2 estimator of Γ can be written componentwise as γ̂
(1)
i = r2

i /(1 − hii) and in

vector form as γ̂(1) = DS. The HC2 estimator of cov(β̂) is obtained by replacing

Γ̂
(1)

= diag(γ̂(1)) in (1.2). Horn et al. (1975) proposed HC2 based on the fact that the

expected value of the squared residuals E(S) = Pγ depends on both Γ and the leverages

hii through P. This estimator is unbiased under homoscedasticity, but in general it is

biased under heteroscedasticity.

The HC3 estimator closely approximates the jackknife estimator of Miller (1974).

The HC3 is obtained by replacing Γ̂
(2)

in (1.2), where γ̂(2) = D2S. It be written com-

ponentwise as γ̂
(2)
i = r2

i /(1− hii)2. The HC3 estimator is biased upwards.

It is known that HC0, HC1, HC2 and HC3 are consistent for cov(β̂) under some

regularity conditions. Dorfman (1991) proved that estimators obtained by replacing Γ̂
(δ)

in (1.2) where γ̂
(δ)
i = r2

i /(1 − hii)
δ are consistent for any fixed δ ≥ 0 as long as the
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leverages are bounded so that max1≤i≤n(hii) → 0 as n → ∞. HC0, HC2 and HC3 are

special cases with δ = 0, 1 and 2.

Other estimators

Other estimators have been proposed in the literature. We discuss two of them by

Cribari-Neto et al. (2000) and Cribari-Neto (2004).

Cribari-Neto et al. (2000) proposed a sequence of modified White estimators of Γ

with decreasing bias that is related to both HC0 and MINQUE. They argued that the

k-th estimator in the sequence has bias of order O(n−(k+2)). Their sequence of estimators

γ̂(0), . . . , γ̂(k) is defined in the following way:

1. Let γ̂(0) = S, White’s estimator.

2. Let Bγ̂(k)(γ) := E(γ̂(k))− γ.

3. Obtain the k-th estimator in the sequence by subtracting the estimated bias from

the (k − 1)-th estimator evaluated at γ̂(0) , that is γ̂(k) = γ̂(k−1) −Bγ̂(k−1)(γ̂(0)).

Cribari-Neto et al. (2000) showed that after k iterations

γ̂(k) =
k∑
j=0

(−1)jM (j)(γ̂(0))

where M (j) = (P− I)jγ̂(0). Using this notation, their k-th estimator can be written as

γ̂(k) =

(
k∑
j=0

(I−P)j

)
S.

As k → ∞, γ̂(k) converges to P−1S, the unreplicated MINQUE, if P−1 exists and

diverges otherwise. This result follows from a generalization of the geometric series

commonly known as the von Neumann series. This result was not explicitly noted by

Cribari-Neto et al. (2000)
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This sequence of estimators has some undesirable properties. First, if P is not in-

vertible, then the sequence γ̂(k) is divergent. Second, even if P−1 exists, γ̂(k) may have

some negative elements γ̂i
(k) < 0 for some i ∈ {1, . . . , n} for any k ≥ 1.

Another estimator proposed recently in the literature is the HC4 estimator of Cribari-

Neto (2004). Elementwise HC4 is defined by γ̂i = r2
i /(1− hii)δi where

δi = min

(
4,

nhii∑n
j=1 hii

)
.

The idea behind HC4 is to inflate the i-th residual by a larger factor than HC3 when

hii is large relative to h̄ =
∑n

j=1 hii/n. Cribari-Neto (2004) found that HC4 performed

better than HC3 and HC0 in terms of test size relative to nominal size in simulations.

The HC4 estimator is a potentially useful alternative to HC3 when the design matrix X

includes points of very high leverage. However, HC4 tends to be more biased than HC3

and usually leads to wider confidence intervals.

In the following sections we review results on bias, variance and performance in

confidence intervals of the estimators introduced in this section. We find that most

authors recommend the use of HC3 over competing estimators.

1.4.3 Bias, variance and performance

In many applications, interest lies in estimation and inference on the linear combi-

nation zT β̂ for some p × 1 vector z. Let aT = zT (XTX)−1XT and let us define

υ := Var(zT β̂) = aTΓa. The estimators discussed so far differ in terms of bias and

variance of corresponding υ̂ = aT Γ̂a. These differences affect the way estimators υ̂ be-

have in terms of confidence interval coverage relative to nominal size, power and width

of confidence intervals.

In this section we review the work of Chesher and Jewitt (1987) on limits on the

bias of HC0, HC2 and the jackknife estimator, and the work of Kauermann and Carroll
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(2001) on the role of variance on the efficiency of covariance matrix estimators. Finally,

we discuss the performance of these estimators in simulations under heteroscedasticity.

Bias

Chesher and Jewitt (1987) studied the role of heteroscedasticity and design on the bias

of HC0, HC2 and the jackknife estimator. They found bounds on the bias of these

estimators in terms of the true Γ and the leverages hii. We present some of their results.

Let α = maxi(γi)/mini(γi) be a measure of the level of heteroscedasticity present

in the model. Chesher and Jewitt (1987) show that if heteroscedasticity is moderate,

α < 2, then the HC0 estimator υ̂(0) = aT Γ̂
(0)

a is biased downward for any p × 1 vector

z. However, if α > 2, it is possible for White’s estimator to be biased upward.

Let pb(υ̂(0)) :=
(
E(υ̂(0))− υ

)
/υ be the proportionate bias of υ̂(0). Under homoscedas-

ticity Chesher and Jewitt (1987) show that

−max(hii) ≤ pb(υ̂(0)) ≤ −min(hii).

Under heteroscedasticity, they derive the following results

pb(υ̂(0)) ≤ max(αhii(1− hii) + hii(hii − 2))

and

−max(hii)(1/α− 1) ≤ pb(υ̂(1)) ≤ −max(hii)(α + 1)

where υ̂(1) corresponds to the HC2 estimator. A similar result is derived for the jackknife

estimator and therefore to a close approximation for HC3.

The importance of these results is twofold. First, they allow us to set bounds on

the bias of HC0, HC1, HC2 and HC3 under known moderate heteroscedasticity in terms

of Γ and under unknown heteroscedasticity in terms of the design. Second, Chesher

and Jewitt (1987) show that the bias of HC0-HC3 is not dependent only on the level
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of heteroscedasticity, but that it can be strongly affected by the design, specially in the

presence of high leverage points.

Variance

Kauermann and Carroll (2001) studied the variance of the robust or sandwich variance

estimator in the linear model and in quasi-likelihood models and generalized estimating

equations. They showed that the sandwich estimator has higher variability than para-

metric variance estimators when the parametric model is correct and that the extent of

the extra variance depends on the design. Increased variance of the variance estimators

translates into confidence intervals with subnominal coverage.

Let p = 1− α be the quantile of the normal distribution for a given α. Kauermann

and Carroll (2001) show that variance relates to coverage through the following theorem,

we quote:

Theorem 2. Let θ̂ ∼ N(θ, σ2/n) and let σ̂2 be an unbiased estimator of σ2

independent of θ̂. The coverage probability of the 1 − α confidence interval

CI(σ̂2, α) equals

Pr{θ ∈ CI(σ̂2, α)} = 1− α− cp
Var(σ̂2)

σ4
+O(n−2)

where cp = φ(zp)(z
3
p + zp)/8, with φ(·) the standard normal distribution

density.

The authors then suggest a coverage adjustment to construct confidence intervals

based on normal quantiles. This adjustment is based on homoscedastic errors. They

show in simulations that their correction reduces undercoverage of sandwich estimators

in the heteroscedastic case but may still result is subnominal coverage, particularly in

the presence of points of high leverage.
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Kauermann and Carroll (2001) state that: “...undercoverage is determined mainly

by the variance of the variance estimator”. Their work suggests that variance reduction

of variance estimators is highly important when constructing confidence intervals of

regression parameters in small samples.

Further work has focused on the issues of bias and variance of heteroscedasticity

consistent variance estimators. Motivated by the work of Chesher and Jewitt (1987),

Bera et al. (2002) studied the variance of MINQUE. They found that MINQUE may have

very large variance particularly for highly unbalanced design matrices. Qian and Wang

(2001) studied the influence of high leverage points on the bias of White’s (1980) and

Hinkley’s (1977) estimators. They proposed bias-corrected versions of these estimators

with a focus on reducing variance and MSE of υ̂. Our work focuses on a class of variance

estimators with reduced variance.

Performance

There has been considerable research on the performance of HC0-HC3 estimators in

terms of confidence interval coverage under heteroscedasticity. We comment on three

influential papers on the problem by MacKinnon and White (1985), Long and Ervin

(2000) and Cribari-Neto (2004).

MacKinnon and White (1985) compared HC1, HC2 and the jackknife estimator under

different scenarios of heteroscedasticity in simulations with sample sizes 50, 100 and 200.

The jackknife is closely approximated by the HC3 estimator (Dorfman, 1991; Long and

Ervin, 2000); therefore conclusions regarding the jackknife should apply to HC3. Long

and Ervin (2000) compared HC0-HC3 in simulations with sample sizes as small as 25.

The conclusions of both articles are as follows:

• The OLS may lead to severely misleading inference under heteroscedasticity.

• Tests of heteroscedasticity lack power in small samples. When heteroscedasticity

is suspect, the OLS should be replaced by HC3.
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• HC3 performs better than HC0-HC2 in studies with sample size less than 250; for

larger sample sizes the choice of variance estimator does not matter as much.

• White’s estimator (HC0) underestimates the variance in small samples and leads

to undercoverage of confidence intervals. The HC0 estimator should not be used

in small samples, even though this seems to be common practice in research and

software (Long and Ervin, 2000).

Cribari-Neto (2004) followed a different approach and studied the influence of high

leverage points on confidence interval coverage of HC0, HC3 and HC4 estimators. He

found that HC3 may perform poorly in the presence of points of high leverage and that

HC4 is more robust to influential observations. The disadvantage of HC4 in relation to

HC3 comes in the form of wider average confidence intervals and larger variance.

1.4.4 Correlated data

Correlated data are common in medical studies where each cluster contributes multiple

observations to a study. The theory on the use of the robust variance estimator for

correlated data can be traced back to the work of Huber (1967), Hartley et al. (1969)

and White (1980), as discussed in previous sections. Liang and Zeger (1986) and Zeger

and Liang (1986) extended the use of the robust variance estimator to generalized es-

timating equations. Since then, the robust variance estimator has gained popularity in

the literature and is routinely used by researchers in many disciplines. We introduce

some basic results on generalized estimating equations and robust variance estimation

for correlated data.

Consider a clustered study with M total clusters. Let ni denote the size of the i-th

cluster and let observations within it be denoted by yij, j = 1, . . . , ni. The response of

interest yij is related to a p × 1 vector of covariates xij through g(µij) = xTijβ where

µij = E(yij|xij). Let µi = {µi1, . . . , µini}T and let the vector of all responses be written as
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Y = {YT
1 , . . . ,Y

T
M}T . Also let cov(Yi) = Γi and the block-diagonal matrix cov(Y) = Γ.

The generalized estimating equations methodology of Liang and Zeger (1986) estimate

β by solving the equations

Uβ,GEE1 =
M∑
i=1

DiV
−1
i (Yi − µi) = 0

where Di := ∂µi/∂β
T , Vi := diag(σ

1
2
ijj)Ri(α)diag(σ

1
2
ijj), Ri is a working correlation

matrix for corr(yi) and σijj = µij(1− µij).

Estimators of cov(β̂) are obtained by replacing estimators of Γi in

(
M∑
i=1

DT
i V−1

i Di

)−1( M∑
i=1

DT
i V−1

i ΓiV
−1
i Di

)(
M∑
i=1

DT
i V−1

i Di

)−1

. (1.3)

The robust variance estimator of Liang and Zeger (1986), denoted here by BC0,

is obtained by replacing Γi by Γ̂i := rir
T
i in (1.3) where ri = (yi − µ̂i). Liang and

Zeger (1986) showed that the robust variance estimator provides consistent estimates of

regression parameters in correlated data even when the covariance of the responses is

misspecified. However it has been shown that the robust variance estimator is usually

biased downwards in small samples and leads to Wald tests that are too liberal (Mancl

and DeRouen, 2001; Fray and Graubard, 2001; Lipsitz et al., 1994). This topic is

discussed in more detail in Chapter 4.

Several approaches have been suggested to improve estimation of cov(β̂) and the

performance of Wald tests in small samples. Two corrections to the sandwich variance

estimator given by Kauermann and Carroll (2001) and Mancl and DeRouen (2001) are

especially relevant to our work.

Kauermann and Carroll (2001) suggest using

Γ̂i := (Ini −Hii)
−1/2rir

T
i (Ini −Hii)

−1/2T
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in (1.3) where Hij = Di

(∑K
l=1 DT

l V−1
l Dl

)−1

DT
j V−1

j . This estimator will be referred

to as BC1. The matrix Hii is the leverage of the i-th subject (Preisser and Qaqish,

1996) and can be seen as a generalization of the univariate hii. The rationale behind

Kauermann and Carroll’s (2001) correction is that if E((yi−µi)(yi−µi)T ) = σ2Vi then

E(zTBC1z) = Var(zT β̂){1 +O(K−2)} for any p× 1 vector z.

Mancl and DeRouen (2001) suggested the correction

Γ̂i := (Ini −Hii)
−1rir

T
i (Ini −Hii)

−1T

in (1.3). Mancl and DeRouen’s (2001) estimator will be referred to as BC2. Their

derivation follows a different argument than Kauermann and Carroll (2001). They obtain

the first order approximation

E(rir
T
i ) ≈ (Ii −Hii)Γi(Ii −Hii)

T +
∑
j 6=i

HijΓjH
T
ij

and drop the summation in the expression above assuming its contribution is negligible.

Both corrected estimators improve upon the standard sandwich estimator in terms of

confidence interval coverage. Lu et al. (2007) compared both estimators in a simulation

study. They found that in general BC2 provides coverage closer to nominal than BC1

except in studies with small cluster sizes, where BC2 may lead to overcoverage. An

interesting note is that the observed bias of BC2 is expected to be larger than the bias

of BC1 in most situations even though BC2 provides coverage closer to nominal. An

explanation for this behavior is that positive bias in variance estimators may compensate

for their variability when constructing confidence intervals (Lu et al., 2007). Kauermann

and Carroll (2001) results on the variance of the variance estimator discussed in the

previous section extend to generalized estimating equations. They show that the variance

of the sandwich estimator directly affects the coverage of confidence intervals. The

research of Lu et al. (2007) and Kauermann and Carroll (2001) strongly suggests that
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both bias and variance of sandwich variance estimators should be taken into account

when constructing confidence intervals of regression parameters with either independent

or correlated data. In Chapter 4 we study variance estimation for correlated data in

more detail. We introduce a class of variance estimators that includes BC0, BC1 and

BC2 as well as some new estimators. We compare estimators in this class in simulation

scenarios for correlated data. We show that newly proposed estimators perform better

in terms of variance and confidence interval coverage than BC0, BC1 and BC2.

The literature includes other approaches to constructing sandwich variance estimators

and corresponding Wald tests for studies with correlated data. We briefly name some

of them. Fay and Graubard (2001) proposed a modification to the sandwich estimator

based on the first order Taylor expansion of the expectation of the i-th squared residual.

They also suggested evaluating corresponding Wald tests as an F ratio with degrees of

freedom that are a function of the estimated variance of the sandwich estimator. Pan

and Wall (2002) also suggested a correction to the degrees of freedom of t or F tests

as a function of the variance of the variance estimator. Approaches based on degrees of

freedom corrections have met limited success (Lu et al., 2007; Braun, 2007). McCaffrey

and Bell (2006) introduced a bias-reduction correction to the sandwich estimator in the

setting of correlated binary data along with a Satterthwaite correction to the degrees of

freedom of corresponding t tests. However, their method may not work adequately in

the presence of high intra-cluster correlation. Morel et al. (2003) suggest a correction

to the sandwich estimator based on adding a fraction of the naive variance estimator.

Braun (2007) studied the problem from the point of view of cluster randomized trials.

He suggested combining GEE regression estimates with variance estimators based on

penalized quasi-likelihood and corrected Wald tests. The methods of Morel (2003) and

Braun (2007) seem to work adequately in terms of coverage of confidence intervals in

many situations; however the correction of Mancl and DeRouen (2001) seems to perform

better with a small number of clusters (Braun, 2007). Some of the approaches above are
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not exclusive: Pan and Wall (2003) and Braun (2007) discuss the possibility of using

corrected estimators such as Mancl and DeRouen’s (2001) together with a Wald test

correction. Our work focuses on corrections to the sandwich variance estimator rather

than degrees of freedom corrections of Wald tests. However, both are viable areas of

research.

1.4.5 Summary

We introduced two methods for mean parameter estimation for correlated binary data:

within cluster resampling and within-cluster paired resampling. WCR was proposed for

marginal parameter estimation in situations where cluster size may be related to response

probability. WCPR was proposed for conditional parameter estimation for models with

cluster-specific intercepts and slopes. The literature on WCR and WCPR does not iden-

tify the parameters estimated by each approach clearly. A comparison of the parameters

estimated by WCR, WCPR and unweighted GEE is needed to gain understanding of

these procedures. Our work aims to compare these estimation approaches, clarify their

differences and comment on their validity.

We reviewed the topics of robust variance estimation for linear models under het-

eroscedasticity and correlated data. The robust variance estimator is asymptotically

consistent but usually anti-conservative in small samples. Several corrections improve

the small sample performance of the robust variance estimator. Most corrections fo-

cus on the bias of the variance estimator. Kauermann and Carroll (2001) showed that

the variance of the variance estimator is largely responsible for interval undercoverage

in small samples. The goal of our work is to propose a new class of robust variance

estimators with an emphasis on variances reduction and small sample performance.
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Chapter 2

Random cluster size, within-cluster

resampling and generalized

estimating equations

2.1 Introduction

Correlated binary data are common in public health and biomedical applications. Several

statistical tools have been developed to analyze this type of data, such as random-effect

models (Laird and Ware, 1982) and generalized estimating equations (GEE) (Liang and

Zeger, 1986). An interesting problem arises when both response and cluster size are as-

sociated with unobserved random effects. Hoffman, Sen and Weinberg (2001) proposed

‘within cluster resampling’ (WCR) for the analysis of correlated binary data with nonig-

norable cluster size, defined as any violation of the property E(Yij|ni, Xij) = E(Yij|Xij).

They use nonignorable cluster size in the context of a random effects model in which clus-

ter size Ni is random and associated with an unobserved random effect Pi. Their method

is based on resampling units within clusters. Williamson, Datta and Satten (2003) and

Benhin, Rao and Scott (2005) showed that resampling in WCR can be avoided through

the use of cluster-weighted generalized estimating equations. Rieger and Weinberg (2003)



proposed within cluster resampling of pairs of discordant observations for estimation of

conditional parameters.

In this chapter we investigate the parameters estimated by unit-resampling, pair-

resampling and generalized estimating equations. We explore the validity of unit-resampling

and generalized estimating equations in studies with non-ignorable cluster sizes and pro-

pose a new method of estimation for conditional parameters with correlated binary data.

Our analysis extends the understanding of these models and the strengths and weak-

nesses of these estimation procedures.

This chapter is organized as follows. In §2.2 we describe the WCR procedure. In

§2.3 we introduce the model used by Hoffman et al. (2001) and Williamson et al. (2003)

and investigate the parameters estimated by WCR and GEE in their model and two

other models. In §2.4 we describe within cluster paired resampling (WCPR). In §2.5 we

introduce the model used by Rieger and Weinberg (2003), study the parameter estimated

by WCPR and propose an alternative estimating method. §2.6 is a conclusion.

2.2 Within-cluster unit resampling

Consider a study with K clusters, indexed by i = 1, . . . , K. Let observations within

cluster i be indexed by j = 1, . . . , ni. Let the jth binary response in the ith cluster be

denoted by Yij with corresponding p×1 vector of covariates xij. Throughout this section

we consider the logistic model

logitE(Yij; xij) = x>ijβ (2.1)

where β is a parameter vector to be estimated.

The WCR procedure can be summarized as follows: a data set is obtained by ran-

domly selecting one observation from each cluster. Thus each resample consists of K

independent observations. Then by fitting a regression model for independent data to

23



the q-th resample, an estimate β̂(q), and an estimate of its covariance matrix Σ̂(q), are

obtained. The resampling procedure is repeated Q times. The final estimate is the mean

of the Q estimates,

β̂WCR =
1

Q

Q∑
q=1

β̂(q), (2.2)

and its covariance is estimated by

Σ̂ =
1

Q

Q∑
q=1

Σ̂(q)− Sβ, (2.3)

where Sβ is the sample covariance matrix of the Q estimates.

We analyze the WCR procedure to identify what parameters it estimates. The q-th

resample is identified by the sampling vector

Z(q) = (Z1(q), · · · , ZK(q))>,

where the components of Z(q) are independent and Zi(q) is an integer drawn randomly

from the set {1, · · · , ni}. The estimate β̂(q) is the solution in β of the estimating

equation

Uq(β; Z(q)) :=
K∑
i=1

ni∑
j=1

I(Zi(q) = j)xij(yij − µij) = 0,

where µij := E[Yij]. We use Ec to denote expectations with respect to resampling,

conditioned on the data. The expected value of Uq(β; Z(q)) conditional on the data is

Ec[Uq(β;Z(q))] =
K∑
i=1

1

ni

ni∑
j=1

xij(yij − µij). (2.4)

Thus when both K and Q are large, and under standard regularity conditions, β̂WCR
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is equivalent to the solution of

UWCR(β) :=
K∑
i=1

1

ni

ni∑
j=1

xij(yij − µij) = 0. (2.5)

The above estimating equation is a weighted generalized estimating equations with

independence working correlation structure and cluster weight 1/ni. This equivalence is

useful for two purposes. First, the computational burden of the resampling procedure can

be avoided and the same estimate obtained by using generalized estimating equations

with independence working correlation structure and cluster weight 1/ni. This can

be easily implemented in standard software for generalized estimating equations. The

covariance matrix can be estimated by the sandwich variance estimator. This has been

shown by Williamson et al. (2003).

Second, the parameter estimated by WCR can be found as the solution of E[UWCR(β)] = 0

where the expectation is taken under the model of interest.

2.3 A beta-binomial model and associated parame-

ters

2.3.1 The model

The WCR procedure of Hoffman et al. (2001) was not derived in the context of a specific

model. However, the model gleaned from their simulations is a mixed model of the beta-

binomial type in which cluster size is random and is correlated with the cluster-specific

random effect. Here we describe the model used in the simulation section of Williamson

et al. (2003) which differs only in some minor numerical details from that of Hoffman

et al. (2001). There is a single cluster-level binary covariate xi. The random effect Pi is

distributed as beta(a0, b0) if xi = 0 and beta(a1, b1) if xi = 1. The parameters (al, bl) are

chosen such that for xi = 0 the mean of Pi, a0/(a0 + b0) = 0.25 and the within-cluster
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correlation 1/(a0 + b0 + 1) = 0.15. For xi = 1 the mean of Pi is 0.35 and the within-

cluster correlation is 0.25. This gives a0 = 17/12, b0 = 4.25, a1 = 1.05 and b1 = 1.95.

Conditional on Pi, cluster size Ni follows a truncated binomial(9, g(Pi)) where values

0, 1, 8 and 9 are discarded. The binomial probability g(Pi) is as follows: g(Pi) = 0.25

if Pi > E[Pi] and g(Pi) = 0.75 if Pi ≤ E[Pi]. Conditional on Pi and Ni, the response

Ti :=
∑ni

j=1 Yij follows a binomial(Ni, Pi) distribution.

2.3.2 Estimation by WCR

We now investigate the parameters estimated by WCR. Let β = (β0, β1)
> and πi(β) be

the function

πi(β) := {1 + exp(−β0 − β1xi)}−1.

In the context of the above model, (2.5) can be written as

UWCR(β) =
K∑
i=1

1

Ni

(1, xi)
T{Ti −Niπi(β)} =

K∑
i=1

(1, xi)
T{ Ti
Ni

− πi(β)}.

We assume that Pr(Ni > 0) = 1. This implies that βWCR is the limit solution in β

of

K∑
i=1

(1, xi)
T

{
E

[
Ti
Ni

]
− πi(β)

}
= 0. (2.6)

Under the model of section (2.3.1), E[Ti|Ni, Pi] = NiPi which implies that

E

[
Ti
Ni

|Ni, Pi

]
= Pi, (2.7)

and by unconditioning

E

[
Ti
Ni

]
= E[Pi].

Thus if E[Pi] follows a logistic regression on xi with parameters β∗, then β∗ will be
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the limit solution of (2.6), that is βWCR = β∗. That is certainly the case in the model

given above, and the parameters are

β∗0 = logit(0.25) ≈ −1.099, β∗1 = logit(0.35)− logit(0.25) ≈ 0.48.

Note that in the above derivation the critical condition is (2.7); as long as

E[
Ti
Ni

|Ni, Pi] = Pi,

WCR estimates the same parameter regardless of the dependence, or lack thereof, be-

tween Ni and Pi.

On a technical note, we have assumed uniqueness of the limiting root of (2.6) which,

strictly speaking, follows from other considerations. The required conditions are not

restrictive and we assume that they hold. A similar assumption is made below.

2.3.3 Estimation by GEE

The estimating function for unweighted generalized estimating equations is

UGEE(β) =
K∑
i=1

(1, xi)
T {Ti −Niπi(β)}.

Its expected value with respect to both Yi and Ni is

E[UGEE(β)] =
K∑
i=1

(1, xi)
T {E[Ti]− πi(β)E[Ni]}.

So βGEE, the parameter estimated by unweighted generalized estimating equations

is the limit solution in β of

K∑
i=1

E[Ni] (1, xi)
T

{
E[Ti]

E[Ni]
− πi(β)

}
= 0.
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For the model given above,

E[Ni;xi = 0] = 4.72, E[Ti;xi = 0] = 0.957,

E[Ni;xi = 1] = 4.66, E[Ti;xi = 1] = 1.31,

with corresponding βGEE = (−1.37, 0.43)>. The mean parameter estimates reported by

Williamson et al. (2003) from their simulation study, (−1.382, 0.429)> for K = 50 and

(−1.366, 0.418)> for K = 500, are in close agreement with the theory.

Essentially, unweighted generalized estimating equations are valid for fitting the

model

logit
E[Ti]

E[Ni]
= β0 + β1xi, (2.8)

while weighted generalized estimating equations with cluster weight 1/Ni and, equiva-

lently, WCR are valid for fitting the model

logit E[
Ti
Ni

] = β0 + β1xi. (2.9)

Both methods are valid for their respective models, and the choice of estimation

method should be based on whether the model of interest is (2.8) or (2.9). The two

models coincide only if, for all i, E[Ti]/E[Ni] = E[Ti/Ni], a condition equivalent to

Cov(Ti/Ni, Ni) = 0.

2.3.4 Examples of nonignorable cluster size

The purpose of these examples is to show that the choice of estimation procedure should

be based on examination of the model and its parameters.
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A missing data model

Let Yij , j = 1, . . . , n∗i , be i.i.d. Bernoulli variables with mean pi given by

logit pi = β0 + β1xi,

where xi is a cluster level binary covariate. Let {Zij, j = 1, · · · , n∗i } be missingness

indicators such that Zij = 1 if Yij is observed and Zij = 0 if Yij is missing, and suppose

that

γs := Pr(Zij = 1|Yij = s), s = 0, 1,

with γ0 6= γ1.

Suppose we observe only Ti =
∑n∗i

j=1 YijZij and Ni =
∑n∗i

j=1 Zij. Nonignorability of

cluster size can be seen by comparing E[Yij] = pi to E[Yij|Ni = n∗i ] = piγ1/{piγ1 + (1−

pi)γ0}. Unweighted GEE fit the model (2.8) given by

logit
E[Ti]

E[Ni]
= logit

piγ1

piγ1 + (1− pi)γ0

= β∗0 + β1xi, (2.10)

where β∗0 = β0 + log(γ1/γ0). If the data are limited to clusters with Ni > 0 then (2.9)

becomes

logitE[
Ti
Ni

|Ni > 0] = logit
E[Ti|Ni > 0]

E[Ni|Ni > 0]
= β∗0 + β1xi

and both WCR and GEE fit (2.10). The proof is in the appendix. This example shows

that it is possible for WCR and GEE to estimate the same parameters in the presence

of nonignorable cluster sizes.

A model for developmental toxicity

Kuk (2003) developed a model for fetal response in developmental toxicity in which

both the number of fetal implants as well as the death or malformation of implanted

fetuses are dose dependent. The model produces ignorable cluster sizes according to the
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definition of Hoffman et al. (2001), but Kuk (2003) argues that failure to consider the

association between dose and fetal implantation might underestimate the total effect of

exposure.

Let N0 be the unobserved cluster size that would have been observed in the absence

of a toxic agent. Through the concept of thinning, the observed cluster size is assumed

to have mean exp(α1xi)E(N0) where xi represents dose level of a toxic agent and α1 ≤ 0.

Given that a fetus is implanted, the probability of death or malformation pi is inde-

pendent of cluster size and is modeled by

logitpi = β0 + β1xi.

Under this model E[Ti/Ni] = E[Ti]/E[Ni] = pi and the parameters estimated under

WCR and GEE will both asymptotically converge to β0 and β1.

Kuk (2003) argues that pi itself is not the measure of risk of interest for developing

a virtually safe dose, since it ignores the negative effect of the toxic agent on fetal

implantation. He proposes a combined risk that takes into account the probability of

failure to implant and the probability of successful implantation leading to malformation

or death. This is the risk measure of interest in the model. In this case cluster size is

associated with exposure in a way that leads to ignorable cluster size according to the

definition by Hoffman et al. (2001). While WCR and GEE provide consistent estimates

of β0 and β1, both underestimate the total risk associated with exposure.

2.4 Within cluster paired resampling

Rieger and Weinberg (2003) proposed within cluster paired resampling (WCPR) for

the analysis of correlated binary data for models with cluster-specific intercepts and

slopes. The method is based on resampling two observations from each cluster such

that one observation has response yij = 1 and the other has response yik = 0. This
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can be done only in clusters with at least one yij = 1 and one yik = 0, that is, clusters

for which 0 < ti :=
∑ni

j=1 yij < ni. Such clusters are called informative clusters. The

resulting resampled data set resembles data from a matched-pair design. The conditional

likelihood based on the resampled pairs is then used for estimation. The resampling

procedure is repeated Q times. The final estimate β̂WCPR and its estimated covariance

matrix are calculated using (2.2) and (2.3). The parameter β̂WCPR can be interpreted

as “the log odds per unit increase of exposure based on randomly sampling an affected-

unaffected pair from a randomly sampled informative cluster” (Rieger and Weinberg,

2002).

We describe the procedure using the sampling-vector notation. For i = 1, · · · , K

define the sets

Ai = {j : yij = 1}, Bi = {j : yij = 0}.

For the q-th resample, let Zi1(q) and Zi0(q), i = 1, · · · , K, be independent random

variables distributed uniformly over the sets Ai and Bi, respectively. We set Zi1 = 0 if

Ai is empty and Zi0 = 0 if Bi is empty. Sampling one pair from each informative cluster

and maximizing the conditional likelihood is equivalent to solving:

Uq(β; Z(q)) =
K∑
i=1

ni∑
j=1

ni∑
k=1

I(Zi1(q) = j)I(Zi0(q) = k)∆ijk(yij − γijk) = 0, (2.11)

where ∆ijk := xij − xik and γijk = E[Yij|Yij + Yik = yij + yik; ∆ijk].

For each j ∈ Ai and k ∈ Bi, let

wi = Ec[I(Zi1(q) = j)I(Zi0(q) = k)] =


1

ti(ni−ti) if 0 < ti < ni

0 otherwise.
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Then the expected value of Uq(β; Z(q)) conditional on the data is

Ec[Uq(β; Z(q))] =
K∑
i=1

wi
∑

j∈Ai,k∈Bi

∆ijk(yij − γijk). (2.12)

Empty sums are taken to be zero.

We propose solving UWCPR := Ec[Uq(β; Z(q))] = 0 to estimate β. We will refer

to this strategy as ‘cluster weighted generalized estimating equation’ (CWGEE). This

can be implemented in standard software by converting each informative cluster to a

pseudo-cluster consisting of ti(ni − ti) observations with responses yij = 1, yik = 0,

associated covariate vectors ∆ijk and cluster weight wi. A standard logistic regression

model with no intercept is fitted using yij as response, and with an independence working

correlation structure. For large K and Q, the weighted CWGEE estimator is equivalent

to the WCPR estimator. This follows from arguments similar to those of Williamson et

al. (2003).

The CWGEE approach offers advantages over WCPR. First, CWGEE avoids the

intensive computation involved in WCPR. Second, in a resampled data set in WCPR,

some elements of ∆ijk can be 0 for most or every sampled pair, resulting in infinite

or undefined parameter estimates. This may happen in studies with small number of

clusters or where the exposure of interest is rare. The instability of the resampling-

based estimates, especially with small K, has been noted by Hoffman et al. (2001) and

Williamson et al. (2003). In contrast, CWGEE does not suffer from this problem unless

it is a global issue affecting the whole data set.
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2.5 A mixed model and associated parameters

2.5.1 The model

In this section we investigate the nature of the parameter estimated by WCPR, to be

denoted βWCPR, in a generalized mixed model used in Rieger and Weinberg (2002). We

consider K clusters of equal size and a single binary covariate Xij that may vary within

a cluster. Covariates Xij’s are mutually independent. Several values of the prevalence

of exposure, Pr(Xij = 1), will be investigated.

The intercept parameter is fixed at α = logit(0.25). The cluster-specifc random slope

βi takes two possible values with probability 1/2 each. Given this structure, βWCPR is

the root of the expected value of (2.12), that is, the solution of

K∑
i=1

∑
yi,xi, bi

Pr(Yi = yi,Xi = xi, βi = bi) · wi
∑

j∈Ai,k∈Bi

∆ijk(Yij − γijk) = 0, (2.13)

where Pr(Yi,Xi, βi) is computed under the model as Pr(Yi,Xi, βi) = Pr(Xi = xi) ·

Pr(βi = bi) · Pr(Yi = yi|xi, bi).

We calculate βWCPR for each simulation setup of Rieger and Weinberg (2002).

Table 2.1 summarizes the results for the case ni = 4 and Pr(Xij = 1) = 0.5. It

can be seen that, in general, βWCPR 6= E[βi]. The table also shows the probability that

a random cluster contributes an XY -informative pair, a pair that is discordant with

respect to both Y and X. This is important because in the resampling scheme, only

XY -informative pairs contribute to the conditional likelihood. The table shows that,

for the setups considered, only about 34-42% of the clusters are expected to provide

informative pairs. This implies that the resample estimates will be highly unstable when

K is small, and thus a very large Q may be needed.

The parameter βWCPR is a function not only of the distribution of βi, but also of the

intercept parameter, cluster size and exposure prevalence. This property is illustrated
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in Figure 2.1. In this setup the intercept and the distribution of βi are held fixed. The

plot shows that cluster size and exposure probability have a large impact on the value

of βWCPR. The impact of exposure prevalence is especially large for large cluster sizes.

For example, when the common cluster size is 3 and the probability of exposure is 0.1,

βWCPR = 0.1650, which may suggest that exposure is a risk factor. When the common

cluster size is 8 and the probability of exposure is 0.9, βWCPR = −0.2270, which may now

suggest that the exposure has a protective effect. The attractiveness of WCPR is that it

is simple to describe. However, this comes at the high cost of βWCPR being affected by

factors other than the actual effects of exposure. When applying or using WCPR, this

feature must be kept in mind.

2.5.2 An alternative GEE estimator

Alternative estimating methods for the analysis of correlated binary data for models

with cluster-specific intercepts and slopes can be obtained by applying different weights

than CWGEE in (2.12). We propose solving

UUWGEE :=
K∑
i=1

∑
j∈Ai,k∈Bi

∆ijk(yij − γijk) = 0. (2.14)

We will refer to this approach as UWGEE. The parameter βWCPR obtained by either

WCPR or CWGEE can be interpreted as “the log odds per unit increase of exposure

based on randomly sampling an affected-unaffected pair from a randomly sampled infor-

mative cluster” (Rieger and Weinberg, 2002). The parameter βUWGEE that solves (2.14)

is interpreted as “the log odds per unit increase of exposure based on randomly sampling

an affected-unaffected matched pair from the population of all such matched pairs”.

The advantage of βUWGEE over βWCPR is that βUWGEE is not affected by cluster size

and exposure prevalence. For example, the value of βUWGEE is 0.165 for all combinations

of cluster size and exposure probability shown in Figure 2.1.
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2.5.3 Example

We analyzed data from the Intergenerational Epidemiologic Study of Adult Periodontitis

known as Multi-Pied (Gansky et. al, 1998; 1999). The study included 467 subjects. The

number of teeth per person ranged between 2 and 32 with a mean of 21. For each person

in the study the investigators recorded the mean clinical attachment level, in mm, by

type of tooth. The binary outcome of interest is whether the mean clinical attachment

exceeded 3 mm. We consider one binary covariate: whether a tooth is categorized as

posterior (molar or premolar) or anterior (cuspid or incisor) and fit the logistic model

logitE(Yij|αi, β,MOLARij) = αi + β(MOLARij), (2.15)

where MOLARij is an indicator of whether the jth tooth in the ith subject is posterior.

This is the same model used by Rieger and Weinberg (2003) but with a different data set.

The parameter of interest β is interpreted as the log odds of mean clinical attachment

exceeding 3 mm of a molar tooth compared to an anterior tooth based on randomly

sampling a pair of affected-unaffected teeth from a randomly sampled person with at

least one such pair of teeth.

We fit the model using WCPR with 1000, 5000 and 10000 resamples and with the

CWGEE and UWGEE approaches. Our analysis used only the 167 subjects with at least

one affected-unaffected pair of teeth. Table 2.2 shows estimates of β and corresponding

standard errors. Results under CWGEE and WCPR with a large number of resamples

were very similar. Under CWGEE we obtained β̂ = 0.1064 with estimated standard

error 0.1339. Under WCPR with 10,000 resamples we obtained β̂ = 0.1070 (0.1354).

The close agreement between the two methods was expected due to the asymptotic

equivalence of the WCPR and the CWGEE estimators. The UWGEE method obtains

β̂ = 0.0925 (0.1449).
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2.6 Discussion

We investigated two within-cluster resampling procedures. The difference between unit

resampling and unweighted generalized estimating equations is that they estimate dif-

ferent models and have different target parameters. With that in mind, both WCR and

unweighted generalized estimating equations are robust to dependence between Ni and

Pi. The choice of procedure should be based on whether the model of interest is (2.8)

or (2.9).

For the paired resampling procedure, the computational cost can be avoided by using

a special version of weighted generalized estimating equations that is easily implemented

in standard software. The attractiveness of WCPR is that it is simple to describe and

implement. However, its target parameter is unduely sensitive to cluster size and ex-

posure prevalence. An alternative version of generalized estimating equations with unit

weights estimates a target parameter that is not affected by cluster size distribution and

exposure prevalence. Since cluster size and, more importantly, exposure distribution are

not intrinsically related to exposure risk, the alternative procedure is preferable.
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Table 2.1: Parameters estimated by WCPR and expected proportion of XY -informative
clusters

βi values E(βi) βWCPR % XY-informative
0.3/-0.3 0 0.01990 34.2
1.5/-0.3 0.6 0.67050 40.0
2.0/-0.3 0.85 0.89470 42.4
1.2/-1.2 0 0.26340 36.3
2.0/-2.0 0 0.54799 39.2

0.992/-2.5 -0.754 -0.03677 33.9
1.026/-2.9 -0.937 -0.04004 33.9
0.934/-1.8 -0.433 -0.00017 34.2
1.046/-2.5 -0.727 -0.00223 34.2

βi values assigned with probability 1/2, cluster
size = 4, α = logit(0.25), exposure prevalence = 0.5 .

Table 2.2: Analysis of dental data

β̂ (SE)
UWGEE 0.0925 (0.1449)
CWGEE 0.1064 (0.1339)
WCPR

1,000 resamples 0.0986 (0.1360)
5,000 resamples 0.1109 (0.1392)
10,000 resamples 0.1070 (0.1354)
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Figure 2.1: True βWCPR by cluster size and exposure probability

Clusters assigned βi = −2.5 or βi = 1.25 with probability 1/2.
Common intercept α = logit(0.25).
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Chapter 3

Variance estimation in regression

models

3.1 Introduction

Consider again the linear model introduced in Chapter 1: EY = Xβ,Var(Y) = Γ where

Y is an n× 1 vector of responses, X is a known n× p matrix of covariates of rank p, β

is a p× 1 vector of unknown parameters, and Γ = diag(γ1, . . . , γn) is unknown.

In Chapter 1 we stated that the ordinary least squares (OLS) estimator of β is best

linear unbiased only under homoscedasticity and that the OLS estimator of cov(β̂) is

biased and leads to improper inference under heteroscedasticity. We introduced variance

estimators that are robust to heteroscedasticity. The goal of this chapter is to introduce

a class of robust variance estimators for independent data that includes some currently

available estimators as well as some new estimators. We evaluate estimators in this class

in terms of confidence interval coverage under homoscedasticity and some scenarios of

heteroscedasticity.



Throughout this chapter, we use the notation introduced in 1.4.1. If a = (a1, · · · , an)T

is a vector, we write diag(a) to denote a diagonal matrix with diagonal elements a1, · · · , an.

Conversely, if A is a square matrix with elements aij, then diag(A) will denote the col-

umn vector (a11, · · · , ann)T . H denotes the hat matrix H = X(XTX)−1XT , and S is the

vector of squared residuals with elements r2
i , where ri = Yi − xTi β̂.

Heteroscedasticity-consistent covariance estimators (HCCME) of the true covariance,

cov(β̂) = (XTX)−1XTΓX(XTX)−1, (3.1)

are generally obtained by replacing Γ in (3.1) by an estimator. The most commonly

used HCCME, the ‘sandwich’, ‘empirical’ or ‘robust’ variance estimator, was proposed

by White in 1980. White’s estimator, γ̂i = r2
i , is biased in finite samples (Chesher and

Jewitt, 1987) and can lead to inadequate coverage of confidence intervals. Several correc-

tions to White’s estimator have been proposed to reduce its bias or improve its coverage.

A well known class of HCCMEs is given by γ̂i = r2
i /(1− hii)δ (Dorfman, 1991), where

hii are the diagonal elements of H and δ ≥ 0. White’s estimator is obtained with δ = 0,

the ‘almost unbiased’ estimators of Horn et al. (1975) and Wu (1986) with δ = 1 and the

jackknife estimator of Miller (1974) with δ = 2 to a close approximation. These three

estimators are referred to as HC0, HC2 and HC3 respectively (Long and Ervin, 2000).

Cribari-Neto (2004) proposed HC4, given by γ̂i = r2
i /(1− hii)δi with δi = max(4, hii/h̄),

for designs with high leverage points. Estimators HC0-HC3 have been evaluated by

MacKinnon and White (1985) and Flachaire (2005), among others.

The HC2 estimator is unbiased only under homoscedasticity. The HC3 and HC4
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are generally biased upwards. However, bias is not the only concern with the sandwich

estimator. In fact, bias can be removed completely; since E[S] = Pγ, where P has

elements that are the squares of the corresponding elements of (I −H), the estimator

γ̂ = P−1S is exactly unbiased for γ = diag(Γ). Horn et al. (1975) show that this

estimator is the (unreplicated) MINQUE (minimum norm quadratic estimator) with

uncorrelated and heteroscedastic errors of Rao (1970). Even though the MINQUE is

unbiased, it has large variance (Bera et al., 2002) and can have negative components.

Kauermann and Carroll (2001) identified high variability of the sandwich estimator as a

source of poor coverage of confidence intervals. We show that reducing the variance of

covariance estimators results in improved coverage of confidence intervals. This chapter

is organized as follows. In §3.2 we describe the new class of estimators; in §3.3 we present

simulation studies; in §3.4 we show data analysis examples; §3.5 is a conclusion.

3.2 Heteroscedasticity-consistent covariance estima-

tors

3.2.1 A class of variance estimators

We consider estimators of the true covariance of cov(β̂) obtained by replacing Γ in (3.1)

by an estimator. Since Γ is a diagonal matrix, we limit our attention to the vector of its

diagonal elements γ = diag(Γ). We define the class of estimators of γ:

γ̂
(k)
δ = Dδ−1(DP)kDS, (3.2)
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where D = diag{1/(1 − hii)}, k is an integer and δ ≥ 0. The diagonal Dδ−1 will be

called the scale matrix and (DP)kD will be called the weight matrix. Several well

known estimators are obtained by replacing Γ̂
(k)

δ := diag(γ̂
(k)
δ ) in (3.1):

• The case k = −1 and δ = 1, γ̂
(−1)
1 = P−1S, yields the unreplicated MINQUE.

• The case k = 0 and δ = 0, γ̂
(0)
0 = S, yields HC0.

• The case k = 0 and δ = 1, γ̂
(0)
1 = DS, yields HC2.

• The case k = 0 and δ = 2, γ̂
(0)
2 = D2S, yields HC3.

• The case k →∞ and δ = 1 yields the OLS estimator. Here γ̂
(∞)
1 := limk→∞γ̂

(k)
1 =

1
n−pJS, where J is the n × n matrix with all elements equal to 1. The proof is in

the appendix.

The HC4 estimator does not belong to class (3.2). It uses γ̂
(0)
δ∗

= D∗S where D∗ =

diag(1/(1− hii)δi), δi = max(4, hii/h̄) and h̄ =
∑
hii/n.

Estimators γ̂
(k)
δ corresponding to values of k other than −1, 0 and k → ∞ have

not previously appeared in the literature. In this chapter we study estimators γ̂
(1)
δ with

k = 1. Componentwise, they can be written as:

(γ̂
(1)
δ )i =

1

(1− hii)δ−1

(
r2
i +

∑
j 6=i

h2
ij

(1− hii)(1− hjj)
r2
j

)
. (3.3)

We define new estimators HC3(1) with δ = 2, k = 1 and HC4(1) with γ̂
(1)
δ∗

= D∗(DP)S.

Under homoscedasticity, the most efficient estimator, the OLS, assigns equal weight to

each squared residual r2
i to estimate σ2. When heteroscedasticity is suspect, estimators
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such as HC0, HC2 and HC3 of the form (γ̂
(0)
δ )i = r2

i /(1− hii)δ assign full weight to each

observation’s squared residual when estimating γi. Estimators γ̂
(1)
δ assign a positive

weight to every squared residual when estimating each γi. As such, γ̂
(1)
δ offers a weight

matrix that falls between (γ̂
(0)
δ )i = r2

i /(1− hii)δ and the weight matrix for OLS.

3.2.2 Generalized linear models (GLM)

GLM generalizes the linear model introduced earlier and allows the study of non-linear

models under a unified framework. Robust covariance estimation in GLM is obtained

by replacing an estimator of Γ in the generalized version of (3.1). In this section, we

show how to generalize the class of estimators γ̂
(k)
δ to GLM. For a complete treatment

of GLM see McCullagh and Nelder (1989).

In GLM, EY = µ is related to a known matrix of predictors X and an unknown

parameter β through a link function g(·) by

g(µi) = ηi =
∑
j

xijβj.

Typically, a working model for Var(yi) dependent on µi is also used, usually denoted

by Vi = Vi(µi). Maximum likelihood estimates of β are obtained by solving

XTWXβ̂ = XTWZ
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iteratively where Z is the adjusted dependent variable

zi = η̂i + (yi − µi)
(
∂ηi
∂µi

)

and W is a diagonal matrix given by W−1 = diag

(
Vi

(
∂ηi
∂µi

)2
)

.

After solving for β̂ in the last iteration, let Y∗ =
√

WZ and X∗ =
√

WX. It follows

that β̂ = (X∗TX∗)−1X∗TY∗. Therefore we can use Y∗ and X∗ with correspondingly

defined D∗, P∗ and S∗ to obtain a class of variance estimators for GLM given by

γ̂
∗(k)
δ = D∗δ−1(D∗P∗)kD∗S∗.

The corresponding estimate of Cov(β̂) is obtained by replacing γ̂
∗(k)
δ in the generalized

version of (3.1).

3.2.3 Properties

We derive some properties of the class of covariance estimators in (3.2).

1. Estimators γ̂
(k)
1 are unbiased under homoscedasticity for any integer k.

2. Theorem 3.1. If P is invertible and Var(S) ∝ P, then Var(zTΓ̂
(k+1)
δ z) ≤ Var(zTΓ̂

(k)
δ z)

for any p× 1 real vector z, any δ ≥ 0 and any integer k.

3. For any p × 1 real vector z, and fixed integers k and δ ≥ 0, zTΓ̂
(k)
δ z

p−→ zTΓz as

n→∞.

4. Theorem 3.2. If k = 1, the corresponding weight matrix (DP)D is equal to the
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correlation matrix of S under normality and homoscedasticity.

Proofs are given in the appendix.

Property 1 implies that the MINQUE, HC2 and OLS estimators are unbiased under

homoscedasticity. A direct consequence of Property 1 is that E(γ̂
(k1)
δ ) = E(γ̂

(k2)
δ ) for

any integers k1 and k2 and any δ under homoscedasticity.

Property 2 implies that if Var(S) ∝ P then for fixed δ we can rank zTΓ̂
(k)
δ z in terms

of their variances by means of k. In particular, the condition Var(S) ∝ P is satisfied

if Y ∼ Nn(Xβ, σ2I) (normality and homoscedasticity), but is slightly more general.

Kauermann and Carroll (2001) proved that under normality and homoscedasticity, lin-

ear combinations of the OLS estimator have smaller variance than linear combinations of

the HC2 estimator. Theorem 3.1 is a generalization of Kauermann and Carroll’s (2001)

result. A direct corollary is that, under homoscedasticity and normality, linear combi-

nations of the unreplicated MINQUE have higher variance than the HC2 estimator, and

the HC2 higher variance than the OLS.

Property 3 assures consistency of this class of estimators for fixed δ and k. Property

4 allows for an interpretation of the weight matrix in γ̂
(1)
δ as the correlation matrix of

the vector of squared residuals under normality and homoscedasticity.

The properties above do not apply to finite samples under heteroscedasticity. In the

following section, we compare estimators of the class γ̂
(k)
δ with k = 0 and k = 1 in

simulations with small sample sizes under heteroscedasticity. We show that in many

scenarios of heteroscedasticity, linear combinations of γ̂
(1)
δ have smaller variance than

those of γ̂
(0)
δ . The smaller variance of γ̂

(1)
δ translates into good performance of confidence

intervals in small samples.
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3.3 Simulations

MacKinnon and White (1985) compared several versions of the variance estimators of

Hinkley (1977) and White (1980). They concluded that among the estimators consid-

ered in their chapter, the jackknife estimator performed best in terms of coverage of

confidence intervals in small samples. Recent work in the literature of inference in the

heteroscedastic linear model has used the jackknife estimator as a benchmark in simula-

tions (Dorfman, 1991; Mancl and DeRouen, 2001; Kauermann and Carroll, 2001). The

HC3 estimator is equivalent to the jackknife estimator to close approximation (Dorfman,

1991) and will be used throughout our simulations.

We compare the performance of sandwich estimators of Var(zT β̂) of the form aT Γ̂
(k)

δ a,

where aT = zT(XTX)−1XT, in a linear model with heteroscedasticity. We compare

the estimators OLS (δ = 1, k → ∞), HC3 (δ = 2, k = 0), HC3(1) (δ = 2, k = 1),

HC4 and HC4(1) in terms of bias, variance, confidence interval width and confidence

interval coverage. The HC4 estimator is expected to improve upon HC3 in terms of

coverage in scenarios with high leverage points (Cribari-Neto, 2004). Estimators HC3

and HC3(1) share the same scale matrix and therefore the same expected value under

homoscedasticity. The same holds true for HC4 and HC4(1).

In GLM we study beta-binomial and gamma-Poisson examples of overdispersion.

Liang and McCullagh (1993) conducted case studies of overdispersion in the binary

case. They found that misspecification of the dispersion model may strongly affect

inference. They also state that the use of the robust variance estimator of Liang and

Zeger (1986) may be inadequate in small samples. In each case, our simulations compare
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the model based estimator of Var(zT β̂), the robust variance estimator HC0∗ given by

a∗T Γ̂
(0)∗
0 a∗ as defined in Section 3.2.2, and similarly defined HC3∗(δ = 2, k = 0) and

HC3(1)∗(δ = 2, k = 1) in terms of bias, variance, confidence interval width and coverage.

We show that HC3∗ and HC3(1)∗ lead to confidence intervals with adequate coverage

even in moderately small samples.

Simulation 1. Linear model. The following simulation setup is taken from example

3 of Kauermann and Carroll (2001). Let yi = β0 + xiβ1 + εi with β0 = 0, β1 = 1 and

εi ∼ N(0, γi). The errors are drawn from three different models: (1) homoscedastic with

γ
1/2
i = 0.2, (2) γ

1/2
i = 0.2 + exp(xi/2)/2 and (3) γ

1/2
i =

√
(0.1 + x2

i ). The covariates

xi are chosen to correspond to fixed quantiles of: (a) uniform distribution in (-0.5,0.5),

(b) standard normal, (c) standard Laplace, (d) exponential(λ = 1) centered around 0.

Simulation results are based on 1000 replicates. Table 3.1 shows nominal 95% confidence

intervals for β1 using estimators OLS, HC3, HC3(1), HC4 and HC4(1) with sample sizes

15 and 30 based on quantiles of the t distribution with n − 2 degrees of freedom, and

the ratio of average widths of confidence intervals and simulation variances of estimators

HC3 and HC3(1). Table 3.2 shows the average simulation bias of the OLS, HC3, HC3(1),

HC4 and HC4(1) and the ratio of average interval widths and simulation variances of

HC4 and HC4(1).

The results on Table 3.1 show that the OLS estimator obtained subnominal cover-

age under heteroscedasticity. In most scenarios HC3(1) provided comparable coverage

to HC3, and HC4(1) provided similar or higher coverage than HC4. The newly pro-

posed HC3(1) lead to slightly wider confidence intervals on average than HC3 under
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homoscedasticity, the ratio of average widths ranged from 1.00 to 1.04, but the new

estimator produced shorter intervals on average under heteroscedasticity, with average

width ratios between 0.91 and 1.00. Table 3.2 shows that HC4(1) also obtained wider

confidence intervals under homoscedasticity than HC4, with ratios between 1.00 and

1.10, but shorter intervals under heteroscedasticity, and average width ratios between

0.91 and 1.00.

The new estimators HC3(1) and HC4(1) obtained smaller simulation variance than

HC3 and HC4 respectively in every scenario. Table 3.1 shows that the simulation variance

of HC3(1) was only between 0.42 and 0.86 times the simulation variance of HC3 in

scenarios with sample size 15 and between 0.51 and 0.94 times the simulation variance

of HC3 in scenarios with sample size 30. Table 3.2 shows that the simulation variance

of HC4(1) was between 0.36 and 0.85 times that of HC4 in scenarios with sample size

15 and between 0.45 and 0.91 in scenarios with sample size 30. The smaller variance of

the new estimators explains why they were competitive in terms of coverage with HC3

and HC4 in these scenarios while obtaining intervals of shorter average width under

heteroscedasticity.

Table 3.2 shows simulation bias of these estimators. It is known that HC3, HC3(1),

HC4 and HC4(1) are biased in these scenarios. Positive bias of covariance estimators

often increases confidence interval coverage and counteracts the effect of the estimators’

high variability (Kauermann and Carroll, 2001; Lu et al. 2007). Therefore, it may

be desirable to use biased variance estimators when constructing confidence intervals.

However, given two or more variance estimators with comparable coverage, it is reason-

able to prefer estimators with smaller bias and variance. Table 3.2 shows that HC3 and
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HC3(1), and HC4 and HC4(1) had similar simulation biases under homoscedasticity. This

is consistent with theoretical results since HC3 and HC3(1), and HC4 and HC4(1) have

equal expectations under homoscedasticity. The new estimators HC3(1) and HC4(1) had

smaller bias than HC3 and HC4 respectively in every scenario of heteroscedasticity.

We repeated the simulations above with sample size 50. The coverage of HC3(1) was

very similar to that of HC3, but HC3(1)’s width was 0.94 to 1.00 times the width of

HC3 and the simulation variance of HC3(1) was only 0.60 to 0.96 times the variance of

HC3 throughout all scenarios. These results were repeated for HC4(1) and HC4: the

new estimator obtained similar coverage but smaller average confidence interval width

(ratios from 0.92 to 1.00) and reduced simulation variance (ratios from 0.56 to 0.97).

These results are not shown in tables.

We also evaluated the performance of HC3(2) with γ̂
(2)
2 = D(DP)2DS in the above

scenarios. HC3(2) obtained slightly higher coverage (0.1% to 0.5%) than HC3(1) under

homoscedasticity in scenarios with sample sizes 15 and 30, but lower coverage (up to 1%

lower) in scenarios of heteroscedasticity. We do not study the HC3(2) estimator further

in this paper.

Simulation 2. Beta-binomial data. Let Yi|xi, i = 1, . . . , n, be independent, beta-

binomial random variables with mean and variance given by E(Yi|xi) = miπi and

Var(Yi|xi) = miπi(1 − πi){1 + ρ(mi − 1)}, where πi = π(xi) = logit−1(β0 + xiβ1). We

fit a logistic model for binomial data ignoring the overdispersion term {1 + ρ(mi − 1)}

and compare the coverage of nominal 95% confidence intervals for β1 based on standard

normal quantiles using the model-based variance estimator, the robust variance estima-

tor HC0∗ of Liang and Zeger (1986), the approximately jackknife HC3∗ and the newly
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proposed HC3(1)∗ after 1000 simulations. We let β = {0, 1}T and choose the covariate

xi to be: (1) equally spaced in [-0.5, 0.5] so that πi is in (0.37, 0.63) and (2) equally

spaced in [-2, -1] so that πi is in (0.11, 0.27). The binomial denominators mi range

from 2 to 12 and are randomly selected from a truncated negative binomial distribution

with mean 3.12 and variance 4.12 similar to the U.S. sibship size distribution in 1950

(Brass, 1958; Donner and Koval, 1987). We explore the combinations of n = 25, 50 and

ρ = 0.1, 0.2, 0.3, 0.5. Results are shown in Table 3.3. It is clear that the binomial model-

based variance estimator loses coverage quickly for increasing values of ρ. The robust

variance estimator HC0∗ leads to undercoverage with n = 25. Both HC3∗ and HC3(1)∗

maintain appropriate coverage for every scenario. Even though HC3∗ and HC3(1)∗ are

derived from the binomial model, they seem to implicitly account for the overdispersion

of the data. The difference in width between HC3∗ and HC3(1)∗ was less than 0.5%

in every scenario and is not shown in tables. The main difference between HC3∗ and

HC3(1)∗ was a smaller observed variance of HC3(1)∗: the ratio of simulation variance of

HC3(1)∗ to HC3∗ ranged from 0.65 to 0.91 in every scenario.

Simulation 3. Poisson data with extra-Poisson variation. Let Yi|xi, i = 1, . . . , n be

independent random variables from a gamma-Poisson mixture with mean and variance

given by E(Yi|xi) = λi and Var(Yi|xi) = λi(1 + b), where λi = λ(xi) = exp(β0 + xiβ1).

We fit a log-linear model for Poisson data ignoring the extra-Poisson variation term

(1 + b) and compare the coverage of nominal 95% confidence intervals for β1 based on

standard normal quantiles using the model-based variance estimator, the robust variance

estimator HC0∗ of Liang and Zeger (1986), the approximately jackknife HC3∗ and the

newly proposed HC3(1)∗ after 1000 simulations. We let β = {0, 1}T and choose the
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covariate xi to be equally spaced in [1/5, 5] in the log-scale so that λi is equally spaced

in [1/5, 5]. We study the combinations of n = 10, 25, 50 and b = 0.5, 1, 3, 5. Results are

shown in Table 3.4. It is clear again that the Poisson model-based variance estimator

loses coverage quickly when extra-Poisson variation increases. The observed coverage of

the model-based variance estimator did not improve with larger sample sizes and was as

low as 60%. The robust variance estimator HC0∗ showed undercoverage, 81.7% to 91.7%,

in scenarios with sample sizes 10 and 25 and moderate undercoverage, 91% to 92.7%,

with sample size 50. The new HC3(1)∗ showed slightly higher coverage than HC3∗ in most

scenarios, but both estimators maintained appropriate coverage throughout. Again, a

desirable property of both HC3(1)∗ and HC3∗ is that they appear robust to the extra-

Poisson variation of the data that is ignored when fitting the model. The difference in

average confidence interval width between HC3(1)∗ and HC3∗ is less than 2% in every

scenario and is not shown in tables, however HC3(1)∗ showed consistently smaller variance

than HC3, a ratio ranging from 0.74 to 0.99.

3.4 Examples

First, we compare estimators OLS, HC0, HC3, HC3(1), HC4 and HC4(1) in a linear model

for data on per capital spending on public schools and per capita income by state in the

United States in 1979.

We then compare estimates and standard errors using different estimators in three

data sets discussed by Liang and McCullagh (1993). These examples involve binary data

with overdispersion.
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Example 1. This example is taken from Cribari-Neto (2004). The data appear in

Greene (1997, Table 12.1, p. 541). The response of interest yi is per capita spending

in dollars on public schools per state in 1979 in the United States. The covariate xi

is per capita income in dollars times 10−4. The state of Wisconsin is dropped from

all analyses due to missing response and Washington, DC is included. The state of

Alaska has very large recorded values for both income (1.0851) and spending (821) and

shows as a probable outlier in Figure 3.1. This results in very high leverage for Alaska,

hii = 0.651 ≈ 10p/n = 0.180. Interest lies on whether per capita income has a linear or

quadratic effect on spending. We follow the analysis of Cribari-Neto (2004) and fit the

model

yi = β0 + β1xi + β2x
2
i + εi

with and without Alaska. The parameter of interest is β2.

Table 3.7 shows estimates of β̂2 and corresponding standard errors using OLS, HC0,

HC3, HC3(1), HC4 and HC4(1). Table 3.7 shows that the OLS and HC0 estimators’

standard errors are noticeably smaller than those obtained with the other estimators.

Even though HC3 and HC3(1) have the same expected value under homoscedasticity,

this example shows that they can differ significantly in data analysis. The same holds

true for HC4 and HC4(1). The interpretation and statistical significance of β2 depends

on the choice of standard error and on whether Alaska is included in the analysis or

not. In both analyses with and without Alaska, HC3 appears to overcorrect the HC0

standard error when compared to HC3(1): corresponding standard errors for HC0, HC3

and HC3(1) are 829.99, 1995.24 and 1715.85 when including Alaska, and 626.68, 1103.03
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and 1008.20 without Alaska. A similar situation arises with HC4 and the new HC4(1); the

HC4 estimator appears to overcorrect the HC0 standard error. The results in Simulation

1 lead us to prefer HC3(1) and HC4(1) over HC3 and HC4 respectively. Standard errors

obtained with HC4(1) are larger than HC3(1)’s but account for points of high leverage.

If the data have no points of high leverage, then HC3(1) is usually preferable to HC4(1).

This example shows the possible effect of a high influence point on parameter estimates

and standard errors. The estimators HC3(1) and HC4(1) appear less prone to overcorrect

the HC0 standard errors than HC3 and HC4 in these data.

Example 2. Liang and McCullagh (1993) studied the applicability of two models

for overdispersion in five data sets with binary responses from the literature. We revisit

three of their data sets applying their two models for overdispersion, robust variance

estimators based on their residuals, and a naive variance model.

The naive model is given by

Var(Yi) = miπi(1− πi)

where mi is the binomial denominator for Yi and πi is the probability of success. We

will refer to the naive model as Model 1.

Model 2 corresponds to a constant dispersion factor and is given by

Var(Yi) = miπi(1− πi)σ2.
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Model 3 comes from the beta-binomial distribution and is given by

Var(Yi) = miπi(1− πi){1 + (mi − 1)ρ}

where ρ is the intra-class correlation parameter.

Table 3.5 shows parameter estimates and standard errors for three of the data sets

analyzed by Liang and McCullagh (1993). The first data set corresponds to a toxicol-

ogy study by Weil (1970) comparing two treatment groups, each with 16 observations.

The second data set is taken from Crowder (1978, Table 3). Crowder’s data address

the growth of 831 seeds divided into 21 batches. The third data set comes from a ter-

atological dietary study by Shepard, Mackler and Finch (1980) on 58 rats divided into

4 groups. Liang and McCullagh (1993) present a full description of these data sets.

We show standard errors based on the robust variance estimator HC0∗ and the newly

proposed HC3(1)∗ under the naive, constant dispersion and beta-binomial models. Note

that sandwich estimators obtained from the residuals of the naive model or residuals of

the constant dispersion model are equivalent.

Table 3.5 shows smaller standard errors obtained under the robust variance estimator

HC0∗ than the model based estimator in the three data sets. The HC3(1)∗ estimator helps

correct this behavior. However it is not clear which standard errors are ‘correct’ in any

given case.

To gain understanding of this problem we simulated beta-binomial data with the

same cluster setup and estimated parameters as those of Crowder’s data in Table 3.5.
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The correlation ρ was set at its estimated valued ρ̂ = 0.19. We fit the incorrect con-

stant dispersion model and corresponding HC0∗ and HC3(1)∗. Coverage of nominal 95%

confidence intervals based on these three estimators and normal quantiles after 10000

simulations is shown in Table 3.6. The new HC3(1)∗ shows coverage closer to nominal

than the constant correlation model and much closer than the robust variance estimator

HC0∗.

Table 3.5 shows that standard errors based on models for overdispersion and the

proposed HC3(1)∗ may differ significantly. In general, no one variance estimation method

works adequately for every scenario of binary data with overdispersion. It is possible

to devise situations where any of the estimators considered performs poorly. However,

the proposed HC3(1)∗ has been shown to be a competitive approach to model-based

overdispersion. It performs better than the commonly used robust variance estimator

HC0∗ in most scenarios and should be preferred to it, especially in small to medium

samples. It can help assess the appropriateness of an assumed dispersion model and

offers a viable alternative when no dispersion assumptions are made.

3.5 Discussion

We described a new class of variance estimators for regression models, and focused on

one member, HC3(1). The main motivation behind this estimator is that it has the same

expected value than HC3 under homoscedasticity, yet it has smaller variance. Based on

the new class of estimators, we defined HC4(1) as an alternative to the HC4 estimator of
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Cribari-Neto (2004) for designs with high leverage points. The newly proposed estima-

tors differ from previously described estimators in that the estimate of the variance of

each observation is a linear combination of all the squared residuals, not only that obser-

vation’s squared residual. They thus seem to reduce variability by borrowing strength

across observations. We showed how the new class of estimators extends to generalized

linear models. The generalized HC3(1)∗ provides adequate inference in many situations

without the need for assumptions about the variance model. Our simulations show that

HC3(1)∗ provides intervals with coverage close to the nominal level in all but the most

extreme scenarios. Even when its coverage is similar to that of competing estimators

like HC3∗ , it shows consistently smaller variance and sometimes smaller average interval

width.
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Table 3.1: Coverage of estimators OLS, HC3, HC3(1), HC4 and HC4(1)

n=15
Model Distribution %Cover %Cover %Cover %Cover %Cover

OLS HC3 HC3(1) HC4 HC4(1) C8 C9
1 Exponential 98.00 94.70 96.50 96.80 99.50 1.04 0.50
1 Laplace 97.80 93.70 95.80 95.20 96.80 1.02 0.69
1 Normal 97.00 94.00 95.20 93.50 94.90 1.01 0.77
1 Uniform 97.00 95.80 96.00 94.70 95.20 1.00 0.86
2 Exponential 87.90 88.20 91.40 93.80 98.70 0.94 0.42
2 Laplace 91.70 95.20 96.50 96.70 97.70 0.96 0.63
2 Normal 94.80 94.90 95.80 94.90 95.80 0.98 0.71
2 Uniform 96.30 95.60 95.80 94.50 95.10 1.00 0.86
3 Exponential 80.70 90.40 90.60 95.00 98.90 0.91 0.42
3 Laplace 79.60 90.20 90.10 92.80 93.20 0.93 0.61
3 Normal 86.30 93.10 92.20 93.30 92.70 0.95 0.67
3 Uniform 93.20 94.40 94.30 93.20 93.30 0.99 0.84

n=30
Model Distribution %Cover %Cover %Cover %Cover %Cover

OLS HC3 HC3(1) HC4 HC4(1) C8 C9
1 Exponential 95.60 93.30 94.30 95.20 97.30 1.02 0.62
1 Laplace 97.40 93.60 94.70 95.20 96.80 1.01 0.79
1 Normal 96.70 95.00 95.30 94.90 95.20 1.00 0.86
1 Uniform 96.60 95.80 96.00 95.60 95.80 1.00 0.95
2 Exponential 77.20 89.10 89.20 93.90 96.70 0.93 0.52
2 Laplace 84.40 95.40 95.00 97.10 97.70 0.96 0.72
2 Normal 92.50 93.50 93.60 93.40 93.90 0.99 0.82
2 Uniform 96.00 95.50 95.50 94.90 95.10 1.00 0.94
3 Exponential 73.40 90.90 89.80 95.40 96.60 0.92 0.51
3 Laplace 76.20 91.50 90.60 94.70 94.10 0.95 0.72
3 Normal 83.50 93.00 92.40 93.70 93.30 0.97 0.79
3 Uniform 94.00 95.50 95.60 95.30 95.20 0.99 0.92

* C8 = Width(HC3(1))/Width(HC3), C9 = Var(HC3(1))/Var(HC3)

Coverage, ratio of average widths and ratio of simulation variances refer to nominal
95% confidence intervals of β1 after 1000 simulations. Model (1) is homoscedastic,
and Models (2) and (3) are heteroscedastic as described in the text.
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Table 3.2: Bias of estimators OLS, HC3, HC3(1), HC4 and HC4(1)

n=15
Model Distribution %Bias %Bias %Bias %Bias %Bias

OLS HC3 HC3(1) HC4 HC4(1) C8 C9
1 Exponential 70.23 72.58 72.08 485.79 483.58 1.10 0.40
1 Laplace 41.37 44.72 43.88 81.60 80.40 1.02 0.64
1 Normal 33.77 30.94 31.65 32.53 33.35 1.02 0.73
1 Uniform 24.30 24.11 24.08 12.44 12.40 1.00 0.85
2 Exponential -43.22 41.24 11.01 483.62 334.73 0.94 0.36
2 Laplace -35.68 27.37 11.94 69.07 46.42 0.96 0.60
2 Normal -6.58 30.12 22.46 35.25 26.47 0.98 0.69
2 Uniform 19.77 22.51 22.13 11.00 10.65 1.00 0.85
3 Exponential -59.81 20.12 -8.67 391.92 251.72 0.91 0.36
3 Laplace -59.95 21.84 2.90 63.78 36.18 0.93 0.58
3 Normal -45.97 22.56 8.87 29.91 14.26 0.95 0.65
3 Uniform -10.89 17.61 13.66 7.01 3.31 0.99 0.84

n=30
Model Distribution %Bias %Bias %Bias %Bias %Bias

OLS HC3 HC3(1) HC4 HC4(1) C8 C9
1 Exponential 27.89 26.22 26.51 123.79 124.57 1.05 0.50
1 Laplace 18.96 17.15 17.40 51.77 52.20 1.01 0.74
1 Normal 13.86 13.75 13.69 18.19 18.10 1.00 0.83
1 Uniform 11.38 10.44 10.51 5.32 5.40 1.00 0.94
2 Exponential -60.00 15.51 -5.54 164.64 105.94 0.92 0.46
2 Laplace -51.56 20.10 8.27 78.31 57.83 0.96 0.69
2 Normal -21.00 7.23 3.92 14.30 10.34 0.99 0.80
2 Uniform 8.34 10.45 10.27 5.41 5.23 1.00 0.93
3 Exponential -65.50 24.28 -0.64 187.50 118.22 0.91 0.45
3 Laplace -62.32 17.39 5.35 73.71 53.28 0.95 0.68
3 Normal -49.37 10.24 3.22 20.92 12.46 0.97 0.77
3 Uniform -13.75 11.46 9.50 6.74 4.83 0.99 0.91

* C8 = Width(HC4(1))/Width(HC4), C9 = Var(HC4(1))/Var(HC4)

Bias, ratio of average widths and ratio of simulation variances refer to nominal
95% confidence intervals of β1 after 1000 simulations. Model (1) is homoscedastic,
and Models (2) and (3) are heteroscedastic as described in the text.
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Table 3.3: Confidence intervals fitting a logistic model for binomial data to beta-binomial
data

n=25
Model ρ %Cover %Cover %Cover %Cover Var(HC3(1))

Var(HC3)Model HC0∗ HC3∗ HC3(1)∗

1 0.1 92.4 92.4 96.2 96.6 0.78
1 0.2 85.1 89.8 94.5 94.9 0.81
1 0.3 85.1 92.5 96.1 96.4 0.78
1 0.5 73.1 90.4 94.5 94.5 0.74
2 0.1 91.3 90.9 94.1 94.4 0.65
2 0.2 89.8 93.1 95.8 96.4 0.86
2 0.3 86.2 90.9 94.5 94.8 0.80
2 0.5 79.1 91.2 95.9 96.3 0.90

n=50
Model ρ %Cover %Cover %Cover %Cover Var(HC3(1))

Var(HC3)Model HC0∗ HC3∗ HC3(1)∗

1 0.1 91.1 93.6 95.5 95.5 0.91
1 0.2 84.8 93.5 95.2 95.1 0.88
1 0.3 81.7 92.3 94.4 94.2 0.87
1 0.5 76.2 93.6 95.2 95.0 0.88
2 0.1 91.5 93.4 94.5 94.4 0.91
2 0.2 87.5 92.9 94.7 94.4 0.91
2 0.3 82.5 93.1 94.4 94.6 0.87
2 0.5 76.2 92.7 94.0 94.3 0.89

Nominal 95% confidence intervals of β1 after 1000 simulations.
Estimators compared are the binomial model-based variance
estimator, the robust variance estimator HC0∗, the approxi-

mately jackknife HC3∗ and the newly proposed HC3(1)∗.
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Table 3.4: Confidence intervals fitting a Poisson model to gamma-Poisson data

n b %Cover %Cover %Cover %Cover Var(HC3(1))
Var(HC3)Model HC0∗ HC3∗ HC3(1)∗

10 0.5 91.5 86.6 94.1 96.0 0.95
10 1 85.8 85.4 95.1 96.1 0.86
10 3 76.1 85.2 95.9 97.0 0.79
10 5 68.5 81.7 93.9 96.6 0.62
25 0.5 90.3 90.7 94.7 94.9 0.95
25 1 86.1 90.3 94.1 94.1 0.95
25 3 71.5 89.8 93.7 94.4 0.91
25 5 64.1 87.6 91.9 93.1 0.85
50 0.5 88.9 92.4 93.7 93.7 0.98
50 1 84.3 92.7 94.0 94.2 0.97
50 3 71.1 91.9 93.6 93.6 0.96
50 5 60.0 91.0 93.1 93.2 0.97

Nominal 95% confidence intervals of β1 after 1000 simulations.
Estimators compared are the Poisson model-based variance
estimator, the robust variance estimator HC0∗, the approxi-

mately jackknife HC3∗ and the newly proposed HC3(1)∗.
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Table 3.6: Beta-binomial simulations based on Crowder’s data

%Coverage

Parameter Model HC0∗ HC3(1)∗

Intercept 90.71 84.06 90.94
Root 89.85 87.39 93.84
Seed 93.23 86.16 93.84

Root*Seed 92.30 88.02 95.73

Nominal 95% confidence intervals using
the constant dispersion model, HC0∗ and

HC3(1)∗ after 1000 simulations.

Table 3.7: Analysis of Greene’s data

With Alaska, n=50 Without Alaska, n=49

β̂2 = 1587.04 β̂2 = −314.14

SE SE

OLS 716.38 OLS 872.60
HC0 829.99 HC0 626.68
HC3 1995.24 HC3 1103.03

HC3(1) 1715.85 HC3(1) 1008.20
HC4 5488.93 HC4 2320.83

HC4(1) 4649.77 HC4(1) 2065.17
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Figure 3.1: Per capita income and per capita spending in public schools
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Chapter 4

Variance estimation for correlated

data

4.1 Introduction

The generalized estimating equations (GEE) methodology (Liang and Zeger, 1986) fa-

cilitates the analysis of correlated and longitudinal data. GEE accounts for correlation

within subjects or clusters by specifying a working correlation model for observations

within a subject. The robust covariance estimator for GEE provides consistent esti-

mation of the true covariance matrix of the parameters of interest even if the working

correlation model is misspecified. However, it is known that the robust covariance esti-

mator may lead to anti-conservative inference when the number of independent subjects

or clusters is small (Mancl and DeRouen, 2001; Fay and Graubard, 2001; Lipsitz et al.,

1994).

Two main types of corrections have been proposed to improve the small sample

properties of inferential methods based on the robust variance estimator: bias-corrections



to the estimator itself and corrections to the degrees of freedom of the test statistic.

Corrections to the degrees of freedom of test statistics have met limited success (Fay

and Graubard, 2001; Lu et al., 2007; Braun, 2007). In this chapter we consider the bias

corrected robust variance estimators of Kauermann and Carroll (2001) and Mancl and

DeRouen (2001). These corrections obtain confidence intervals closer to nominal size in

small samples than the uncorrected robust variance estimator.

In Chapter 3, we proposed a class of robust variance estimators for independent

data that includes some currently available estimators and introduced new estimators

with reduced variance and improved confidence interval coverage. In this chapter, we

extend the class of variance estimators of Chapter 3 to generalized estimating equations.

The new class includes the estimators of Kauermann and Carroll (2001) and Mancl and

DeRouen (2001) as well as some new estimators. We follow a similar approach to Chapter

3 and show in simulations for correlated data that the newly proposed estimators have

smaller variance and better coverage than current estimators. This chapter is organized

as follows. In §4.2 we define the class of variance estimators in Chapter 3 in a recursive

manner. In §4.3 we define a class of variance estimators for GEE based on similar

recursive arguments. In §4.4 we present simulation studies; in §4.5 we show a data

analysis example. §4.6 is a conclusion.

4.1.1 Notation

Some of the notation used in this chapter was introduced in Chapter 1 and Chapter 3.

We require the following additional notation in this chapter: the matrix B = {A}diag

will denote the square matrix with diagonal elements bii = aii and bij = 0 if i 6= j. Let
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C be a block matrix with block elements Cij, then blockdiag(C) will denote the block

diagonal matrix with block elements Cii.

4.2 Independent Data

Consider the linear model EY = Xβ,Var(Y) = Γ where Y is an n × 1 vector of

responses, X is a known n × p matrix of covariates of rank p, β is a p × 1 vector of

unknown parameters, and Γ = diag(γ1, . . . , γn) is unknown. In Chapter 3, we proposed

a class of estimators of cov(β̂) for independent data obtained by replacing Γ by Γ̂
(k)

δ in

cov(β̂) = (XTX)−1XTΓX(XTX)−1.

We defined Γ̂
(k)

δ = diag(γ̂
(k)
δ ) in vector form as

γ̂
(k)
δ = Dδ−1(DP)kDr∗2 (4.1)

where D = diag{1/(1 − hii)}, P = (I−H)∗2, r = Y − Ŷ, k is an integer, δ ≥ 0,

H = X(XTX)−1XT and the operator A∗b denotes the b-th Schur power of A. Estimators

in this class are consistent for cov(β̂) for any fixed integer k and δ ≥ 0. The class in

(4.1) includes White’s estimator HC0 with Γ̂
(0)
0 , HC2 with Γ̂

(0)
1 and HC3 with Γ̂

(0)
2 . We

also discussed the HC4 estimator of Cribari-Neto (2004) for data sets with high leverage

points. The HC4 estimator does not belong to the class in (4.1), but it is closely related.

We proposed new estimators HC3(1) and HC4(1) and showed that they improve upon

HC3 and HC4 respectively in terms of confidence interval coverage and variance of the
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variance estimators in many scenarios for linear models and generalized linear models in

small samples.

Variance estimators in (4.1) follow a recursive structure that allows a generalization

to correlated data. The result follows from the fact that Er∗2 = Pγ and therefore

Eγ̂
(k−1)
δ = Dδ−1(DP)k−1DPγ. This allows us to write estimators in (4.1) as:

γ̂
(k)
δ = Eγ̂

(k−1)
δ |γ=γ̂(0)

1

= Dδ−1(DP)k−1DPγ|γ=γ̂(0)

1

= Dδ−1(DP)kDr∗2,

and in matrix form as

Γ̂
(k)

δ = E(Γ̂
(k−1)

δ )|
Γ=

ˆΓ
(0)

1

= diag(Dδ−1(DP)kDr∗2). (4.2)

Thus (4.2) defines Γ̂
(k)

δ in terms of Γ̂
(k−1)

δ and the HC2 variance estimator Γ̂
(0)

1 , and

therefore the class of estimators in (4.1) is defined recursively. In the following sections,

the recursive property of Γ̂
(k)

δ is extended to new variance estimators for generalized

estimating equations.

Finally, before discussing GEE, we write estimators Γ̂
(k)
δ , with k ≥ 0, in a form that

is easily generalizable to correlated data:

Γ̂
(k)
δ = {(Dδ−1(DP)kD)∗1/2diag(r∗2)(DT (PTDT )kD(δ−1)T )∗1/2}diag

= {(Dδ−1(DP)kD)∗1/2{rrT}diag(D(PD)kDδ−1)∗1/2}diag.
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In particular, the case k = 0 simplifies to

Γ̂
(0)
δ = {Dδ/2{rrT}diagDδ/2}diag = {Dδ/2rrTDδ/2}diag. (4.3)

4.3 Correlated Data

We revisit some concepts of variance estimation for correlated data discussed in §1.4.4.

Consider a study with M total clusters and ni observations in the i-th cluster. Observa-

tions in the i-th cluster are indexed by yij, j = 1, . . . , ni. The response yij is related to

a p× 1 vector of covariates xij through g(µij) = xTijβ where µij = E(yij|xij). Let µi =

{µi1, . . . , µini}T and let the vector of all responses be written as Y = {YT
1 , . . . ,Y

T
M}T .

We define cov(Yi) = Γi and the block-diagonal matrix cov(Y) = Γ. GEE estimates of

β are obtained by solving

Uβ,GEE1 =
M∑
i=1

DT
i V−1

i (Yi − µi) = 0

where Di = ∂µi/∂β
T , Vi = diag(σ

1
2
ijj)Ri(α)diag(σ

1
2
ijj), Ri is a working correlation matrix

for corr(Yi) and σijj = Var(Yij). We stated that estimators of cov(β̂) are obtained by

replacing Γi by an estimator in

cov(β̂) =

(
M∑
i=1

DT
i V−1

i Di

)−1( M∑
i=1

DT
i V−1

i ΓiV
−1
i Di

)(
M∑
i=1

DT
i V−1

i Di

)−1

. (4.4)

The BC0, or robust variance estimator of cov(β̂), is obtained by replacing Γi by

(Γ̂
(0)

0 )i := rir
T
i in (4.4) where ri = (yi − µ̂i). Kauermann and Carroll (2001) and Mancl
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and DeRouen (2001) introduced corrections to the BC0 estimator. The BC1 estimator

of Kauermann and Carroll (2001) is obtained by replacing

(Γ̂
(0)

1 )i := (Ini −Hii)
−1/2rir

T
i (Ini −Hii)

−T/2

in (4.4). The BC2 estimator of Mancl and DeRouen (2001) is obtained by replacing

(Γ̂
(0)

2 )i := (Ini −Hii)
−1rir

T
i (Ini −Hii)

−T .

The BC1 and BC2 estimators were proposed to improve the small sample properties

of the BC0 estimator. For correlated binary data, Lu et al. (2007) generally recommend

the use of BC2 over BC1 and BC0 in the construction of confidence intervals based on

standard normal quantiles.

The poor performance of BC0 in terms of confidence interval coverage in small sam-

ples can be attributed to its downward bias and its large variance compared to parametric

estimators. Kauermann and Carroll (2001) show that the large variance of the robust

or sandwich variance estimator causes undercoverage of confidence intervals in small

samples. In Chapter 3, we showed that sandwich estimators with Γ̂
(1)
δ defined in (4.1)

improve upon HC2 and HC3 estimators in terms of variance and confidence interval

coverage for independent data. In the following section, we use the results of §4.2 to

extend the family of variance estimators in (4.1) to correlated data.
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4.3.1 A class of variance estimators for correlated data

Let D = blockdiag((Ii −Hii)
−1) where Hij = DiS

−1DT
j V−1

j and S =
∑M

l=1 DlV
−1
l DT

l .

Note that Di are not components of D.

For any δ ≥ 0, we define a class of variance estimators for correlated data obtained

by replacing Γi in (4.4) by

Γ̂
(0)
δ := blockdiag(D

δ−1
2 D

1
2 blockdiag(rrT )D

1
2
TD

δ−1
2
T ) = blockdiag(D

δ
2 rrTD

δ
2
T ).

These estimators are a generalization of the independent data variance estimators

Γ̂
(0)
δ defined in (4.1) and written in form (4.3). In particular, if δ = 0 we obtain BC0, if

δ = 1 we obtain Kauermann and Carroll’s estimator BC1 with

Γ̂
(0)
1 = blockdiag(D

1
2 rrTD

1
2
T ).

If δ = 2 we obtain Mancl and DeRouen’s estimator BC2 with

Γ̂
(0)
2 = blockdiag(DrrTDT ).

In order to construct estimators Γ̂
(k)
δ with k > 0 for correlated data we propose a

recursive procedure analogous to the one described in §4.2. If k is a positive integer and

δ ≥ 0, we define:

Γ̂
(k)
δ = E(Γ̂

(k−1)
δ )|

Γ=Γ̂
(0)
1
. (4.5)
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The expectation E(Γ̂
(k−1)
δ ) is evaluated using the approximation

E(rir
T
i ) ≈ (Ii −Hii)Γi(Ii −Hii)

T +
∑
j 6=i

HijΓjH
T
ij (4.6)

given by Mancl and DeRouen (2001). This approximation allows a componentwise def-

inition of the recursive procedure in (4.5). Consider (Γ̂
(k)
δ )i, the estimator of cov(Yi)

given by the i-th block-diagonal element of Γ̂
(k)
δ . If k = 0 and δ = 1, we obtain the BC1

estimator with

(Γ̂
(0)
1 )i = (Ii −Hii)

− 1
2 rir

T
i (Ii −Hii)

− 1
2
T .

We use (4.6) to obtain its approximate expectation

E(Γ̂
(0)
1 )i ≈ (Ii −Hii)

− 1
2

(
(Ii −Hii)Γi(Ii −Hii)

T +
∑
j 6=i

HijΓjH
T
ij

)
(Ii −Hii)

− 1
2
T ,

and the recursive structure in (4.5) to define

(Γ̂
(1)
1 )i = E(Γ̂

(0)
1 )i|Γj=(Γ̂

(0)
1 )j ∀j=1,...,M

≈ (Ii −Hii)
− 1

2

(
(Ii −Hii)(Γ̂

(0)
1 )i(Ii −Hii)

T +
∑
j 6=i

Hij(Γ̂
(0)
1 )jH

T
ij

)
(Ii −Hii)

− 1
2
T

= rir
T
i + (Ii −Hii)

− 1
2

(∑
j 6=i

Hij(Ij −Hjj)
− 1

2 rjr
T
j (Ij −Hjj)

− 1
2
THT

ij

)
(Ii −Hii)

− 1
2
T .

The estimator (Γ̂
(1)
1 )i defined above is a generalization of the independent data

(γ̂
(1)
1 )i = r2

i +
∑
j 6=i

h2
ij

(1− hii)(1− hjj)
r2
j
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introduced in Chapter 3.

In general, estimators (Γ̂
(1)
δ )i can be written as

(Γ̂
(1)
δ )i = (Ii −Hii)

− δ−1
2 rir

T
i (Ii −Hii)

− δ−1
2
T

+ (Ii −Hii)
− δ

2

(∑
j 6=i

Hij(Ij −Hjj)
− 1

2 rjr
T
j (Ij −Hjj)

− 1
2
THT

ij

)
(Ii −Hii)

− δ
2
T .

Variance estimators BC1 and BC2 are obtained by replacing Γ by Γ̂
(0)
1 and Γ̂

(0)
2 in

(4.4). We define two new variance estimators: BC1(1) and BC2(1), obtained by replacing

Γ by Γ̂
(1)
1 and Γ̂

(1)
2 in (4.4) respectively. In the following sections we compare the perfor-

mance of BC1 and BC2 to that of BC1(1) and BC2(1) in simulations. We show that the

newly proposed estimators perform better in many scenarios in terms of variance and

coverage of confidence intervals.

The focus of this chapter is improved performance of variance estimators for corre-

lated data in small samples. However, it can be shown that the newly proposed variance

estimators BC1(1) and BC2(1) share the same large sample properties as BC1 and BC2.

A proof of consistency of BC1(1) and BC2(1) is shown in the appendix.

4.3.2 Computational issues

Let A be a n × n positive semidefinite matrix. We use the notation A
1
2 to denote the

specific square root matrix defined via diagonalization as follows. Let A = VDVT be

the eigen-decomposition of A where V is the matrix of eigenvectors of A and D is the

diagonal matrix D = VTAV. Then A
1
2 = VD

1
2 VT .

It would appear that for any δ ≥ 0, computation of estimators in the class Γ̂
(1)
δ
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requires much more computational effort than Γ̂
(0)
δ since the new estimators involve

cross terms Hij, i 6= j. However, the terms Hij need not be calculated in estimators like

Γ̂
(0)
1 and Γ̂

(0)
2 . In this section we show that the expression of Γ̂

(1)
δ can be manipulated

so that its computation does not involve terms Hij, i 6= j. We use the fact that Hij =

DiS
−1DT

j V−1
j where S =

∑M
l=1 DlV

−1
l DT

l .

In order to simplify Γ̂
(1)
δ , we use its componentwise form:

(Γ̂
(1)
δ )i = (Ii −Hii)

− δ−1
2 rir

T
i (Ii −Hii)

− δ−1
2
T

+ (Ii −Hii)
− δ

2

(∑
j 6=i

Hij(Ij −Hjj)
− 1

2 rjr
T
j (Ij −Hjj)

− 1
2
THT

ij

)
(Ii −Hii)

− δ
2
T .

The first term of (Γ̂
(1)
δ )i does not allow further simplification. The second term of

the sum can be written as

(Ii −Hii)
− δ

2

(∑
j 6=i

DiS
−1DT

j V−1
j (Ij −Hjj)

− 1
2 rjr

T
j (Ij −Hjj)

− 1
2
TV−1

j DjS
−1DT

i

)
×

(Ii −Hii)
− δ

2
T

= (Ii −Hii)
− δ

2 DiS
−1

(∑
j 6=i

DT
j V−1

j (Ij −Hjj)
− 1

2 rjr
T
j (Ij −Hjj)

− 1
2
TV−1

j Dj

)
×

S−1DT
i (Ii −Hii)

− δ
2
T . (4.7)

Now let U :=
(∑M

l=1 DT
l V−1

l (Il −Hll)
− 1

2 rlr
T
l (Il −Hll)

− 1
2
TV−1

l Dl

)
. It follows that

(4.7) can be written as

(Ii −Hii)
− δ

2 DiS
−1
(
U−DT

i V−1
i (Ii −Hii)

− 1
2 rir

T
i (Ii −Hii)

− 1
2
TV−1

i Di

)
×

S−1DT
i (Ii −Hii)

− δ
2
T ,
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and therefore we can write

(Γ̂
(1)
δ )i = (Ii −Hii)

− δ−1
2 rir

T
i (Ii −Hii)

− δ−1
2
T

+ (Ii −Hii)
− δ

2 DiS
−1
(
U−DT

i V−1
i (Ii −Hii)

− 1
2 rir

T
i (Ii −Hii)

− 1
2
TV−1

i Di

)
×

S−1DT
i (Ii −Hii)

− δ
2
T .

This last form of (Γ̂
(1)
δ )i is computationally simpler since it does not involve any cross

terms Hij, i 6= j.

4.4 Simulations

We compare the performance of sandwich estimators of Var(zT β̂) of the form zT (̂covβ̂)z

in simulations for correlated data.

The first example concerns multivariate normal data with possibly misspecified work-

ing correlation structure. The second example deals with correlated binary data. For

each set of simulations we compare the newly proposed BC1(1) and BC2(1) with the esti-

mators BC1 of Kauermann and Carroll (2001), BC2 of Mancl and DeRouen (2001), the

uncorrected estimator BC0 and the naive or model-based variance estimator in terms of

interval coverage and variance.

Simulation 1. Multivariate normal data. We simulate yi from a multivariate normal

distribution with element-wise expected value Eyij = β0 + x1iβ1 + x2ijβ2 with β0 = 0,

β1 = 1 and β2 = 1 where x1 is a cluster level covariate generated from a standard normal

distribution and x2 varies within-cluster and is generated as (a) exponential with mean

74



1, (b) standard Laplace, (c) standard normal. We consider simulations with M = 10

and M = 20 independent clusters and common cluster size ni = 4. The cluster-level

correlation matrix is either exchangeable (XCH) with σ2 = 1 and ρ = 0.2 or has an

independence structure (I) with σ2 = 1. The working correlation matrix is independent

(I), exchangeable with ρ estimated from the data (XCH), or exchangeable with ρ = 0.2

fixed (True). Confidence intervals were constructed using quantiles of a t-distribution

with
∑
ni − 3 degrees of freedom. Simulation results are based on 2000 replicates.

Table 4.1 shows nominal 95% confidence intervals for β1 using the naive or model-based

variance estimator, the uncorrected BC0, BC1 of Kauermann and Carroll (2001), BC2

of Mancl and DeRouen (2001), BC1(1) and BC2(1). Table 4.2 shows corresponding 95%

confidence intervals for β2.

Table 4.1 and Table 4.2 show that the naive or model based variance estimator

provided adequate coverage for both β1 and β2 only when both the true correlation

and the working correlation had an independence structure, or both the true correlation

and the working correlation structures were exchangeable and ρ was fixed at its true

value. The scenarios with true independence or exchangeable structure and exchangeable

working correlation structure have a correctly specified correlation structure. These

scenarios show that in small samples, underestimation of association parameters can

affect the coverage of confidence intervals of mean parameters obtained by the model

based variance estimator even when the model is correct. Lu et al. (2007) suggest a bias

correction for estimated association parameters that improves the confidence coverage

of mean parameters based on the model, BC0 and BC1 variance estimators, and may

result in slight overcoverage of the BC2 estimator. Our simulation results show coverage
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based on uncorrected mean and association parameter estimates.

The uncorrected robust variance estimator BC0, the BC1 estimator and BC1(1) pro-

duced varying levels of undercoverage of confidence intervals in every scenario, often

falling bellow 90%. The BC2 estimator improved upon BC0 and BC1 in terms of cov-

erage but still slightly undercovered the parameters of interest, with coverage close to

93% and 94% in most scenarios. The newly proposed BC2(1) obtained coverage closer to

nominal than any other estimator considered. The newly proposed BC2(1) and BC1(1)

led to equal or higher coverage than BC2 and BC1 respectively in every situation, while

maintaining comparable average interval width: the difference in average interval width

between BC2(1) and BC2 was less than 1% in most scenarios with a maximum differ-

ence of 4%. Differences in width are not shown in tables. The main difference between

the new estimators and BC2 and BC1 was the smaller observed variance of the new

estimators.

We repeated these simulations using autoregressive(1) (AR1) and moving average(1)

(MA1) true correlation structures and AR1, MA1, exchangeable and independence work-

ing correlation structures. The results were comparable to the ones presented in Table

4.1 and Table 4.2 in terms of coverage, width and variance of the estimators. These

results suggest that BC2 and BC2(1) may protect against misspecification of the work-

ing correlation structure in scenarios with a small number of clusters. Overall, the new

BC2(1) performed better than BC2 in terms of coverage and variance, and was com-

parable in terms of average width. We also repeated these simulations with M = 50

independent clusters. Results were qualitatively similar to the case M = 20, but the

difference in coverage and variance between estimators was smaller. The BC2(1) still
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obtained coverage closer to nominal overall and smaller variance than BC2.

Simulation 2. Correlated binary data. We conducted a simulation study to evaluate

the performance of the newly proposed BC1(1) and BC2(1) with the estimators BC1 of

Kauermann and Carroll (2001) and BC2 of Mancl and DeRouen (2001) in a setting with

variable cluster sizes. Let us define µijk = pr(Yij = Yik = 1). The association between

Yij and Yik is represented by the odds ratio

ψijk =
µijk(1− µij − µik + µijk)

(µij − µijk)(µik − µijk)
.

We generated correlated binary data from the models

logit(µij) = β0 + β1x1i + β2x2ij

and

log(ψijk) = α0 + α1|x1i|+ α2|x2ij − x2ik|

using the conditional linear family of Qaqish (2003). The covariate x1 is a cluster level

covariate generated from the standard normal distribution and x2 varies within-cluster

and is generated as (a) exponential with mean 1, (b) standard Laplace, (c) standard

normal.

Estimation was done using GEE1 for β with independence working correlation struc-

ture Ri(α) = I. The residuals ri obtained from these estimating equations were used to

construct variance estimators of β1 and β2 of the form aTBC
(k)
δ a with aT = {0, 1, 0} and

{0, 0, 1} respectively.
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We fixed β = {−1, 0.4, 0.1}T and α = {0.1, 0.3,−0.2}T . This setup results in ψijk

between 0.4 and 2.7 for most realizations of x1i, x2ij and x2ik. Number of clusters was

evaluated at M = 10, 20 or 25. Cluster sizes were set to either common size ni = 4 or a

50/50 mixture of clusters sizes 4 and 14. Corresponding 95% nominal confidence intervals

were constructed using a t-distribution with
∑
ni − 3 degrees of freedom. Simulation

results are based on 1000 replicates and are summarized in Table 4.3.

Our conclusions are as follows. Simulations results show that confidence intervals

based on the naive variance estimator BC0, BC1 and BC1(1) may undercover the pa-

rameters of interest. This behavior is clearest in confidence intervals for β1 where the

number of clusters was 10 or 20 and cluster sizes were a 50/50 mixture of clusters sizes

4 and 14. The BC2 estimator of Mancl and DeRouen and the new BC2(1) provided

coverage closer to nominal in most scenarios. Confidence intervals obtained using the

new estimators BC1(1) and BC2(1) had approximately the same average width as BC1

and BC2 respectively in every scenario: the maximum difference in average width be-

tween BC2(1) and BC2 was less than 1.5%. The difference in widths between estimators

is not shown in tables. The new estimators showed smaller variance in every scenario

and consistently higher coverage overall. In these simulations, it appears that BC2(1)

outperforms all other estimators considered in terms of coverage and also outperforms

BC2 in terms of variance while maintaining comparable average width.
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4.5 Example

We analyze data from a clinical trial of 59 epileptic patients carried out by Leppik et al.

(1985). The data appear in Thall and Vail (1990). An 8-week baseline seizure rate was

recorded for each patient in the trial. Patients were randomized to either the antiepileptic

drug progabide or a placebo and the number of seizures in two weeks periods of time

was recorded at four successive clinic visits.

We fit a model for clustered Poisson data with GEE to analyze the number of seizures

at the four visits after randomization. We use the same covariates as Thall and Vail

(1990): baseline seizure rate, calculated as the logarithm of 1
4

times the baseline seizure

rate, logarithm of age in years, indicators Trt for the progabide group and Visit4 for

the fourth clinic visit. Table 4.4 shows mean parameter estimates and standard errors

assuming (1) an exchangeable correlation structure and (2) an independence correla-

tion structure. Standard errors are calculated using the model-based variance estimator

(MB), the model-based variance estimator corrected for overdispersion using the de-

viance of the model (MB∗), the robust variance estimator BC0, the BC1 estimator of

Kauermann and Carroll (2001), the BC2 estimator of Mancl and DeRouen (2001) and

the newly introduced BC1(1) and BC2(1). Thall and Vail (1990) fit models with several

variance-covariance structures to these data; we present parameter estimates and stan-

dard errors for their model “11” using the robust variance estimator BC0. If we let Yit be

the number of seizures for patient i at time t then model “11” assumes Var(Yit) = αtEYit

and cov(Yit, Yiu) = 0.

Table 4.4 shows that parameter estimates and standard errors calculated with the
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robust variance estimator BC0 were similar for the exchangeable correlation model and

the independence model. In this example, the corrected variance estimators BC1, BC1(1),

BC2 and BC2(1) led to larger standard errors than BC0 under both the exchangeable

and independence correlation models and the standard errors reported by Thall and

Vail (1990) under model 11. This result suggests that BC0 standard errors might be too

small for these data. In particular, standard errors for the covariates Trt and Base.Trt

increased significantly when estimated under BC1, BC1(1), BC2 or BC2(1). Inference on

the effect of progabide on seizures and its interaction with the baseline seizure rate may

be anti-conservative if based on BC0 standard errors; use of corrected variance estimators

seems warranted. Table 4.4 shows large discrepancies between the standard errors for Trt

and Base.Trt estimated under BC1 and BC1(1) and under BC2 and BC2(2) respectively.

Based on our simulation results on variance and coverage, we suspect that BC1 and BC2

might overinflate the standard errors of Trt and Base.Trt and that BC1(1) and BC2(2) may

be more reliable. The reverse situation occurs with the effect of the covariate Baseline:

the new estimators BC1(1) and BC2(1) suggest larger standard errors than BC1 and BC2.

Standard errors calculated under BC0, BC1, BC1(1), BC2 and BC2(1) are not necessarily

different even in small or medium samples: the standard errors for covariate Visit4 were

almost unchanged by the choice of variance estimator. The difference in standard errors

across sandwich variance estimators would be expected to decrease with larger sample

sizes. Based on the results of Lu et al. (2007) and the results in this chapter, we believe

BC2(1) standard errors are most appropriate for analysis of these data.

The progabide data show strong evidence of heteroscedasticity and extra-Poisson

variation. The sandwich estimators BC0, BC1, BC2, BC1(1) and BC2(1) are robust to
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misspecification of the variance model and offer some protection against heteroscedastic-

ity and over-dispersion. However, these data also include at least one highly influential

subject, identified by id 207 in Thall and Vail (1990). Deletion of this subject changes

parameter estimates and standard errors. The goal of this example is to show differences

between the various sandwich variance estimators in real data. A more detailed discus-

sion of the progabide data and influential subjects can be found in Thall and Vail (1990).

4.6 Discussion

We introduced a new class of variance estimators for generalized estimating equations,

and focused on two estimators not previously mentioned in the literature, BC1(1) and

BC2(1). We showed in simulations that BC1(1) and BC2(1) are comparable in terms of

average width to BC1 and BC2 respectively, but that BC1(1) and BC2(1) show smaller

variance in most scenarios with a small number of clusters. The smaller variance of

BC1(1) and BC2(1) translates into higher confidence interval coverage than BC1 and BC2

respectively. These results are consistent with the theory developed by Kauermann and

Carroll (2001) on the variance of sandwich estimators and with similar results for variance

estimators for independent data in Chapter 3. They show that increased variance of

sandwich variance estimators often translates into loss of coverage.

In our simulations for correlated normal data, BC2(1) obtained higher coverage than

BC2 in every scenario due to BC2(1)’s smaller simulation variance and comparable av-

erage width. In every scenario, BC2(1) showed larger simulation variance and larger

average interval width than BC1(1) and BC0 respectively. The difference in confidence
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interval coverage between BC2(1) and BC1(1) can therefore be attributed to the larger

width of intervals obtained by BC2(1). Lu et al. (2007) note that intervals based on

the BC2 estimator may be too conservative in small samples for clustered binary data.

In our simulation study for correlated normal data, intervals constructed using a t dis-

tribution and M − p degrees of freedom, instead of our choice of
∑M

i ni − p, produce

slight subnominal coverage with BC1(1) and slight overcoverage with BC2(1). The use of

M − p degrees of freedom is common in the literature. Our work suggests that BC2(1)

is preferable to BC2, and BC1(1) to BC1 in most situations. We believe that BC2(1) is

preferable to BC1(1) in our simulation scenarios with intervals based on a t distribution

with
∑M

i ni − p degrees of freedom. More work is necessary to discriminate between

BC2(1) and BC1(1) in more general settings. The distribution of test statistics and the

choice of degrees of freedom for different corrections of the sandwich estimator are topics

of interest in the literature, see for example Fay and Graubard (2001) and Pan and Wall

(2002).

We observed in our simulations for correlated normal data that it is possible for a

confidence interval based on BC0 to be wider than an interval based on BC1, and an

interval based on BC1 to be wider than one based on BC2. This occurred in fewer

than 0.5% of the simulated data sets with M = 10 clusters, and even less frequently

in simulations with M = 20. The widths of intervals in every simulated data set were

ordered as follows: BC2(1) > BC1(1) > BC0.

Our work shows that use of the standard robust variance estimator BC0 results in

anti-conservative standard errors in studies with a small number of independent clusters.

Even though this result is well known in the literature, the use of BC0 in studies with
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small sample size is still common in many fields. We recommend the use of corrected

variance estimators for the analysis of clustered data with small or moderate number of

clusters; in particular, the BC2(1) estimator obtains adequate coverage in the scenarios

considered in this chapter. Further comparison of BC1(1) and BC2(1) might justify their

use in other settings.
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Table 4.1: Multivariate normal data with common cluster size ni = 4. Variance estima-
tion of cluster-level parameter.

M = 10
Correlation Dist. %Coverage

True Work X2 ρ̂ Naive BC0 BC1 BC1(1) BC2 BC2(1) C8 C9
I I expo 0 95.7 82.7 89.2 91.3 93.8 95.5 0.76 0.62
I I laplace 0 95.9 82.0 87.9 90.3 93.1 95.4 0.89 0.73
I I normal 0 94.3 81.6 88.2 90.2 93.5 95.7 0.81 0.52
I XCH expo -0.048 90.7 83.3 90.2 91.2 94.2 95.7 0.72 0.39
I XCH laplace -0.050 89.7 81.6 87.1 89.3 92.5 95.0 0.79 0.66
I XCH normal -0.050 90.7 82.7 88.6 90.7 93.8 95.7 0.84 0.80
XCH I expo 0 87.9 82.5 88.4 90.0 92.7 94.7 0.76 0.65
XCH I laplace 0 87.6 81.6 88.0 89.7 93.1 95.0 0.76 0.64
XCH I normal 0 86.5 80.9 87.9 89.8 92.9 95.2 0.76 0.67
XCH XCH expo 0.112 90.0 82.4 88.6 91.0 93.2 95.4 0.75 0.62
XCH XCH laplace 0.114 90.0 81.5 88.4 90.0 93.2 95.7 0.82 0.82
XCH XCH normal 0.110 89.6 82.5 88.2 89.4 92.9 95.0 0.93 0.91
XCH True expo 0.2 97.3 84.9 90.3 92.8 94.8 97.4 0.71 0.46
XCH True laplace 0.2 97.7 88.1 92.8 94.5 95.6 97.5 0.79 0.60
XCH True normal 0.2 97.4 87.8 92.1 94.1 95.5 96.8 0.84 0.78

M = 20
Correlation Dist. %Coverage

True Work X2 ρ̂ Naive BC0 BC1 BC1(1) BC2 BC2(1) C8 C9
I I expo 0 95.0 89.0 91.5 92.4 94.3 94.8 0.85 0.81
I I laplace 0 95.6 89.5 91.7 92.7 93.9 94.7 0.86 0.80
I I normal 0 95.5 87.9 91.3 92.3 93.7 95.0 0.84 0.79
I XCH expo -0.025 93.1 89.7 92.4 93.2 94.5 95.5 0.87 0.79
I XCH laplace -0.021 92.9 89.1 91.7 92.1 93.8 94.1 0.83 0.76
I XCH normal -0.026 92.9 89.1 91.4 92.0 94.1 94.8 0.84 0.79
XCH I expo 0 88.4 88.8 91.3 91.9 93.6 94.0 0.85 0.80
XCH I laplace 0 89.1 88.7 91.4 92.5 94.0 94.7 0.86 0.83
XCH I normal 0 87.3 88.7 91.8 92.5 94.3 95.0 0.84 0.80
XCH XCH expo 0.156 92.5 88.0 91.1 91.8 93.2 94.2 0.82 0.71
XCH XCH laplace 0.154 92.7 89.3 92.2 92.6 94.7 95.2 0.84 0.77
XCH XCH normal 0.154 92.1 88.4 91.2 92.1 93.4 94.1 0.82 0.70
XCH True expo 0.2 95.6 90.2 92.4 93.4 94.5 95.2 0.82 0.72
XCH True laplace 0.2 95.4 91.2 93.5 94.1 95.1 95.9 0.88 0.85
XCH True normal 0.2 95.5 90.8 93.1 93.8 95.0 95.7 0.85 0.79

* C8 = Var(BC1(1))/Var(BC1), C9 = Var(BC2(1))/Var(BC2)

Nominal 95% confidence intervals of β1 after 2000 simulations using the naive variance
estimator, BC0, BC1, BC1(1), BC2 and BC2(1).
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Table 4.2: Multivariate normal data with common cluster size ni = 4. Variance estima-
tion of subject-level parameter

M = 10
Correlation Dist. %Coverage

True Work X2 ρ̂ Naive BC0 BC1 BC1(1) BC2 BC2(1) C8 C9
I I expo 0 95.4 86.6 90.2 91.2 93.2 94.9 0.86 0.72
I I laplace 0 95.6 82.6 88.6 91.2 93.1 96.2 0.82 0.61
I I normal 0 94.6 88.7 91.6 92.1 93.5 94.2 0.87 0.84
I XCH expo -0.048 93.1 85.0 89.1 90.3 92.6 94.7 0.83 0.63
I XCH laplace -0.052 93.5 80.2 86.0 88.6 91.0 94.7 0.80 0.48
I XCH normal -0.049 93.3 86.6 89.6 90.0 92.2 93.1 0.86 0.81
XCH I expo 0 95.2 87.0 90.6 92.2 94.1 95.6 0.85 0.76
XCH I laplace 0 94.6 82.5 88.9 90.7 93.4 95.8 0.86 0.64
XCH I normal 0 94.9 88.8 91.1 91.8 93.7 94.8 0.84 0.78
XCH XCH expo 0.112 93.2 85.0 88.6 89.7 91.7 93.5 0.83 0.65
XCH XCH laplace 0.113 94.2 80.7 88.0 90.1 92.7 95.1 0.79 0.61
XCH XCH normal 0.110 95.2 88.3 90.8 91.4 93.3 94.1 0.89 0.85
XCH True expo 0.2 97.8 90.4 93.1 94.2 95.8 96.7 0.84 0.61
XCH True laplace 0.2 97.5 86.4 91.0 93.1 94.9 96.7 0.83 0.52
XCH True normal 0.2 97.0 92.9 94.3 94.7 95.8 96.2 0.88 0.84

M = 20
Correlation Dist. %Coverage

True Work X2 ρ̂ Naive BC0 BC1 BC1(1) BC2 BC2(1) C8 C9
I I expo 0 95.2 90.2 92.0 92.9 93.8 94.6 0.86 0.74
I I laplace 0 95.6 86.8 90.7 92.6 93.9 95.8 0.82 0.65
I I normal 0 95.4 92.2 93.4 93.6 94.5 94.7 0.93 0.92
I XCH expo -0.023 93.7 88.8 90.7 91.3 92.4 92.8 0.82 0.71
I XCH laplace -0.021 94.0 84.6 88.5 90.6 92.3 94.6 0.83 0.66
I XCH normal -0.027 94.5 91.8 93.4 93.5 94.3 94.3 0.92 0.91
XCH I expo 0 95.3 90.5 92.1 92.8 94.0 95.0 0.84 0.78
XCH I laplace 0 95.4 87.2 90.7 92.2 93.6 95.0 0.85 0.67
XCH I normal 0 95.1 92.1 93.4 93.8 94.9 95.2 0.91 0.90
XCH XCH expo 0.152 94.4 89.2 91.4 91.9 93.0 93.5 0.85 0.75
XCH XCH laplace 0.156 95.0 86.6 89.4 91.7 92.6 95.2 0.80 0.55
XCH XCH normal 0.149 93.9 90.9 91.7 91.8 92.7 92.9 0.94 0.92
XCH True expo 0.2 96.8 93.5 94.8 95.2 96.0 96.5 0.88 0.78
XCH True laplace 0.2 95.6 88.0 90.9 92.9 93.5 95.3 0.77 0.57
XCH True normal 0.2 95.6 93.5 94.3 94.5 95.2 95.4 0.94 0.93

* C8 = Var(BC1(1))/Var(BC1), C9 = Var(BC2(1))/Var(BC2)

Nominal 95% confidence intervals of β2 after 2000 simulations using the naive variance
estimator, BC0, BC1, BC1(1), BC2 and BC2(1).
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Table 4.3: Variance estimation for correlated binary data

95% nominal confidence intervals for cluster-level parameter β1

Dist. %Coverage Var(BC1(1))
Var(BC1)

Var(BC2(1))
Var(BC2)M ni X2 Naive BC1 BC1(1) BC2 BC2(1)

10 4/14 expo 87.3 86.5 87.4 92.7 94.7 77.0 64.4
4/14 laplace 89.1 88.7 90.2 93.0 95.5 75.2 58.6
4/14 normal 89.0 87.0 89.1 92.8 94.8 71.3 41.3

20 4/14 expo 85.8 89.4 89.5 92.5 92.9 73.9 63.1
4/14 laplace 89.8 92.3 92.6 94.8 95.7 73.2 66.6
4/14 normal 88.3 89.5 89.6 92.4 93.1 77.1 71.3

25 4 expo 92.6 93.0 93.3 94.9 95.7 80.2 71.3
4 laplace 93.4 92.4 92.9 94.1 94.8 84.6 79.0
4 normal 94.8 94.1 94.4 95.1 95.4 83.7 79.1

95% nominal confidence intervals for subject-level parameter β2

Dist. %Coverage Var(BC1(1))
Var(BC1)

Var(BC2(1))
Var(BC2)M ni X2 Naive BC1 BC1(1) BC2 BC2(1)

10 4/14 expo 94.4 92.6 92.8 94.2 94.9 87.6 79.0
4/14 laplace 92.3 91.4 91.7 93.8 93.8 87.0 82.0
4/14 normal 93.9 92.4 92.8 95.2 95.4 86.9 80.1

20 4/14 expo 93.1 93.2 93.6 94.5 94.8 91.4 88.2
4/14 laplace 92.6 93.7 93.7 94.1 94.3 93.9 92.6
4/14 normal 93.1 94.4 94.6 95.7 96.0 91.5 87.1

25 4 expo 96.0 95.4 95.5 96.3 96.5 90.7 83.9
4 laplace 94.9 95.1 95.0 95.7 96.0 94.1 93.0
4 normal 95.7 94.8 94.9 95.7 95.9 91.9 86.3

Coverage and ratio of simulation variances refer to nominal 95% confidence
intervals after 1000 simulations.
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Table 4.4: Analysis of progabide data

Correlation model: Thall and Vail (1990) model 11
SE

Variable Estimate BC0
Int -2.695 0.902

Base 0.933 0.087
Trt -1.439 0.418

Base.Trt 0.595 0.171
Age 0.895 0.264

Visit4 -0.168 0.065

Correlation model: exchangeable
SE

Variable Estimate MB MB∗ BC0 BC1 BC1(1) BC2 BC2(1)

Int -2.770 0.584 1.138 0.956 1.034 1.072 1.181 1.178
Base 0.950 0.063 0.122 0.099 0.103 0.116 0.108 0.127
Trt -1.332 0.225 0.438 0.432 0.581 0.490 0.956 0.706

Base.Trt 0.559 0.091 0.177 0.177 0.262 0.210 0.463 0.331
Age 0.900 0.167 0.325 0.277 0.301 0.310 0.346 0.342

Visit4 -0.157 0.044 0.085 0.066 0.067 0.067 0.068 0.068

Correlation model: independence
SE

Variable Estimate MB MB∗ BC0 BC1 BC1(1) BC2 BC2(1)

Int -2.732 0.407 0.793 0.944 1.022 1.060 1.168 1.165
Base 0.949 0.044 0.085 0.096 0.101 0.114 0.106 0.125
Trt -1.333 0.157 0.305 0.429 0.578 0.486 0.955 0.703

Base.Trt 0.558 0.063 0.124 0.176 0.262 0.209 0.462 0.330
Age 0.890 0.116 0.227 0.275 0.299 0.308 0.343 0.339

Visit4 -0.157 0.054 0.106 0.066 0.067 0.067 0.068 0.068

Standard errors are calculated using the model-based variance estimator (MB),
the model-based variance estimator corrected for overdispersion (MB∗) and
estimators BC0, BC1, BC1(1), BC2 and BC2(2).
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Chapter 5

Summary and future research

5.1 Summary of accomplishments

5.1.1 Chapter 2: Random cluster size, within-cluster resam-

pling and generalized estimating equations

In Chapter 2 we discussed WCR for estimation of marginal parameters in correlated

binary data and WCPR for estimation of conditional parameters. We showed that

both WCR and WCPR can be thought of as specially weighted versions of generalized

estimating equations. We elaborated on the differences between WCR and unweighted

GEE in several models. We showed that the validity of WCR and unweighted GEE

is not dependent on cluster size ignorability, as had been previously claimed in the

literature, but rather that WCR and unweighted GEE estimate different parameters.

The validity of WCR and unweighted GEE depend on the model and the parameters

of interest of the study. We showed that the parameters estimated under WCPR have

some undesirable properties, such as being affected by the distribution of cluster sizes in



the sample and the exposure prevalence in the population. We proposed an alternative

estimating procedure based on generalized estimating equations with unit weights that

avoids some of the problems of WCPR, while having a similar interpretation.

5.1.2 Chapter 3: Variance estimation in regression models

We considered the problem of linear regression with heteroscedastic errors. The OLS

variance estimator is biased in this setting and the use of heteroscedasticity consis-

tent variance estimators is necessary. We reviewed robust variance estimators such as

the MINQUE, White’s HC0 (1980), HC1-HC3, and the HC4 estimator of Cribari-Neto

(1994). We proposed a new class of variance estimators that includes the MINQUE,

HC0, HC2, HC3 and the OLS as a limiting case. We showed that new robust variance

estimators in this class have smaller variance under homoscedasticity and many scenarios

of heteroscedasticity than HC0, HC2 and HC3. The new estimators show higher confi-

dence interval coverage in simulations in small samples while while maintaining average

interval width comparable to that of previously available estimators. We also proposed a

corrected version of the HC4 estimator with improved properties and extended the new

class of variance estimators to generalized linear models. In every case the newly pro-

posed variance estimators had smaller variance in simulations and improved confidence

interval coverage.

5.1.3 Chapter 4: Variance estimation for correlated data

We considered the problem of variance estimation for generalized estimating equations

and correlated data. The robust variance estimator BC0 of Liang and Zeger (1986) is too
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liberal in studies with a small number of clusters. Corrected robust variance estimators

such as the BC1 and BC2 estimators of Mancl and DeRouen (2001) and Kauermann and

Carroll (2001) have been proposed to improve coverage in small samples. We generalized

the family of variance estimators introduced in Chapter 3 to GEE and correlated data.

We showed that the new family of variance estimators includes BC1 and BC2 as well as

new estimators. We showed that two new estimators in this family outperform BC1 and

BC2 in terms of confidence interval coverage and variance in simulations with correlated

binary data and multivariate normal data and showed an application to the progabide

data discussed by Thall and Vail (1990).

5.2 Future research

5.2.1 Robust variance estimation in other settings

Cox proportional-hazards model

The Cox proportional-hazards regression model (Cox, 1972) is widely used in survival

analysis. It is a popular tool to relate covariates with the distribution of survival times.

The proportional hazards assumption states a multiplicative relationship between the

hazard function and the log-linear function of the covariates. If the assumption of pro-

portional hazards holds, then the covariance matrix of the mean parameters can be con-

sistently estimated by the model-based variance estimator. Therneau (1999) identified

three kinds of diagnostics for Cox regression: violation of the assumption of proportional-

hazards, effect of influential data points, and nonlinearity in the model. Lin and Wei
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(1989) proposed a variance estimator for the Cox proportional-hazards model that is ro-

bust against misspecification of the proportional-hazards assumption. The robust vari-

ance estimator of Lin and Wei (1989) shares the sandwich structure of the robust variance

estimator of Liang and Zeger (1986). In both types of variance estimators each subject’s

score function is added individually to obtain a sandwich-type variance estimator. We

believe it may be possible to extend the class of variance estimators in Chapter 3 and

Chapter 4 to Cox proportional-hazard models. The variance estimators derived in this

dissertation assign weights to each subject’s residual in a different way than the usual

robust variance estimator. We have shown that this strategy leads to reduced variance

and improved interval coverage in small samples in linear regression, generalized linear

models and GEE. We believe that a similar approach may improve the small sample

properties of sandwich estimators in proportional-hazard models when the assumption

of proportional-hazards is violated.

Finite population sampling

Robust variance estimation has been developed for linear regression in finite population

sampling by Royal and Cumberland (1978). Given a random sample from a finite pop-

ulation, Royal and Cumberland (1978) developed a variance estimator that is asymp-

totically equivalent to the jackknife and is robust to misspecification of the sample’s

variance model. Their variance estimator has a sandwich structure similar to that of the

HC0 estimator. We believe that the variance estimators proposed in Chapter 3 may be

extended to finite population sampling.
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Association parameters

This dissertation has focused on variance estimation for mean parameters in various mod-

els. Sometimes interest lies in estimation of association parameters, such as intra-cluster

correlations in clustered binary data. Preisser, Lu and Qaqish (in preparation) compared

the BC0, BC1 and BC2 estimators for confidence interval coverage of intra-cluster cor-

relations in simulations. A natural extension of our work is to evaluate the performance

of new variance estimators for inference of association parameters for correlated binary

data.

5.2.2 Other topics

Degrees of freedom corrections

We mentioned in Chapter 4 that two main types of corrections aim to improve the

performance of robust variance estimators in small samples in correlated data in the

literature: corrections to the robust variance estimator itself and corrections to the

degrees of freedom of test statistics. Corrections to the robust variance estimator have

focused on bias reduction. We proposed variance-based corrections to the sandwich

variance estimator. Corrections to the degrees of freedom of test statistics have not been

successful in the literature (Lu et al., 2007; Braun, 2007). However, hybrid approaches

combining corrections to the variance estimator and the degrees of freedom of the test

statistic might offer improvements over current methodology. This topic of research has

been suggested by Pan and Wall (2003) and Braun (2007).
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Outcome dependent sampling

Our work on WCR and WCPR resembles work in the literature on outcome dependent

sampling. Schildcrout and Heagerty (2005) studied the effect of design features on bias

and efficiency of GEE in the analysis of longitudinal binary data. They state that if

the model includes time dependent covariates, cross-sectional models may be biased un-

less the mean response is the same for multiple lagged values of the covariates or if an

independence correlation structure for GEE is used. This resembles statements on the

validity of WCR under informative cluster sizes. Schildcrout and Heagerty (2005) study

different working covariance models and their effect on bias and efficiency of parame-

ter estimates in this setting. Their work has parallels to our work on the validity of

unweighted GEE with informative cluster sizes. A review of the literature on outcome

dependent sampling may reveal connections to our work on resampling methods and

highlight future areas of research.
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Appendix

A.2.1 Proof of results in the missing data model in §2.3.4.

Proof. Since

E[Ti|Ni > 0] =

n∗i∑
k=1

Pr(Ni = k|Ni > 0)E[Ti|Ni = k]

=

n∗i∑
k=1

Pr(Ni = k|Ni > 0)k
piγ1

piγ1 + (1− pi)γ0

=
piγ1

piγ1 + (1− pi)γ0

E[Ni|Ni > 0],

it follows that

E[Ti|Ni > 0]

E[Ni|Ni > 0]
=

piγ1

piγ1 + (1− pi)γ0

.

Similarly

E[
Ti
Ni

|Ni > 0] =

n∗i∑
k=1

Pr(Ni = k|Ni > 0)E[
Ti
Ni

|Ni = k]

=

n∗i∑
k=1

Pr(Ni = k|Ni > 0)
1

k
k

piγ1

piγ1 + (1− pi)γ0

=
piγ1

piγ1 + (1− pi)γ0

n∗i∑
k=1

Pr(Ni = k|Ni > 0)

=
piγ1

piγ1 + (1− pi)γ0

.

Therefore

E[Ti|Ni > 0]

E[Ni|Ni > 0]
= E[

Ti
Ni

|Ni > 0].
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This completes the proof.

A.3.1 Proof that limk→∞γ̂
(k)
1 = 1

n−pJS, the OLS estimator.

Proof. For simplicity, let us write (DP)∞ := limk→∞(DP)k. We want to prove that

(DP)∞D = 1
n−pJ.

The matrix DP has diagonal elements (1− hii) and off-diagonal elements h2
ij/(1− hii).

Hence the sum of the elements on its i-th row is equal to 1:

n∑
j=1

(DP)ij = (1− hii) +
∑
j 6=i

h2
ij

1− hii
= 1.

It follows that DP1 = 1, where 1 is a vector with all elements equal to 1, and therefore

DP is a transition matrix.

Proving that (DP)∞D = 1
n−pJ is equivalent to proving that the transition matrix DP

has limiting distribution 1
n−pJD−1, also equivalent to showing that 1

n−pJD−1(DP) =

1
n−pJD−1.

By properties of the hat matrix H,
∑

j Pij = 1 − hii, and JD−1 = JP. It follows that

1
n−pJD−1(DP) = 1

n−pJP = 1
n−pJD−1 which completes the proof.

A.3.2 Proof of Property 1 in §3.2.3.

Proof. In order to prove that E(γ̂
(k)
1 ) = γ under homoscedasticity, write

E(γ̂
(k)
1 ) = (DP)kDE(S) = (DP)kDPγ = (DP)k+11σ2.
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We proved in A.3.1 that DP is a transition matrix, it follows that (DP)k+1 is also a

transition matrix and therefore (DP)k+11σ2 = 1σ2.

A.3.3 Proof of Theorem 3.1.

Proof. Let the k-th Schur power (Marcus and Minc, 1964, p.120) of a vector or matrix

B = (bij) be defined as B∗k = (bkij).

The estimator zTΓ̂
(k)
δ z can be written as

zTΓ̂
(k)
δ z = (zT )∗2γ̂

(k)
δ = uTδ (DP)kDS

where uTδ = (zT )∗2Dδ−1. Therefore we can write:

Var(zTΓ̂
(k+1)
δ z) = uTδ (DP)k+1DVar(S)D(PD)k+1uδ

and

Var(zTΓ̂
(k)
δ z) = uTδ (DP)kDVar(S)D(PD)kuδ.

Proving that Var(zTΓ̂
(k+1)
δ z) ≤ Var(zTΓ̂

(k)
δ z) is equivalent to proving that

Var(zTΓ̂
(k+1)
δ z)

Var(zTΓ̂
(k)
δ z)

≤ 1 for all z.

From the expressions of Var(zTΓ̂
(k)
δ z) and Var(zTΓ̂

(k+1)
δ z) above, it suffices to show that

C := ((DP)kDVar(S)D(PD)k)−1(DP)k+1DVar(S)D(PD)k+1
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has all eigenvalues less than or equal to 1.

Under normality and homoscedasticity, Var(S) = 2σ4(I−H)∗2 = 2σ4P. In general, if

Var(S) ∝ P we can write

C = ((DP)kDPD(PD)k)−1(DP)k+1DPD(PD)k+1

= ((PD)k)−1(PD)kPDPD = PDPD.

Finally, we have shown before that DP is a strictly positive transition matrix: DP1 = 1

and (DP)ij > 0. Therefore CT = DPDP is also a strictly positive transition matrix.

Hence C has one eigenvalue equal to 1 and the remaining eigenvalues less than or equal

to 1. This completes the proof.

A.3.4 Proof of Property 3 in §3.2.3.

Proof. Dorfman (1991) proved this property for the case k = 0. The case k = 0 requires

regularity conditions of the leverages hii, in particular, that max1≤i≤n(hii) → 0 as n →

∞. To extend the proof to other values of k we need conditions under which ||(DP)k −

In|| → 0 as n→∞ for fixed k. Again the sufficient condition is that max1≤i≤n(hii)→ 0

as n→∞. Since (DP)k is a transition matrix it follows that ||(DP)k−In||2 = ||(DP)k−

In||∞ = 0. Regularity of the leverages guarantees that the max norm ||DP− In||max =

max1≤i≤n(hii)→ 0.

A.3.5 Proof of Theorem 3.2.
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Proof. Let R be the vector of residuals ri, then R ∼ N(0, (I−H)Γ(I−H)).

Evaluating (I−H)Γ(I−H) under homoscedasticity, and by properties of H, we obtain

that Var(ri) = σ2(1− hii) and Cov(ri, rj) = −hijσ2.

Using fourth order moments of the multivariate normal distribution we obtain Cov(r2
i , r

2
j ) =

2Cov(ri, rj)
2 and Var(r2

i ) = 2Var(ri)
2. So that Corr(r2

i , r
2
j ) = h2

ij/(1 − hii)(1 − hjj) =

(DPD)ij if i 6= j and (DPD)ii = 1.

A.4.1

Liang and Zeger (1986) showed that under regularity conditions, BC0
p−→ cov(β̂) as

M →∞, where cov(β̂) is given in (4.4). The necessary conditions are sufficient moments

of X, Y and smoothness of g(µi). If these conditions hold then max(ij)||Hij|| = O(M−1).

This follows from Hij = Di

(∑M
l=1 DT

l V−1
l Dl

)−1

DT
j V−1

j ; the norm

||
(∑M

l=1 DT
l V−1

l Dl

)−1

|| = O(M−1) while the rest of the terms in Hij are O(1).

Theorem 4.1 If regularity conditions are met such that max(ij)||Hij|| = O(M−1) then

BC1, BC1(1), BC2 and BC2(1) are consistent for cov(β̂) as M →∞.

Proof. Liang and Zeger (1986) showed that substituting Γi in (4.4) by (Γ̂
(0)

0 )i = rir
T
i

guarantees convergence of BC0 as long as E(rir
T
i ) = Γi{1+O(M−1)}. This follows from

E(rir
T
i ) = (Ii −Hii)Γi(Ii −Hii)

T +
∑
j 6=i

HijΓjH
T
ij +O(M−2)

as long as ||Hij|| = O(M−1) for all {i, j}.

We want to prove that (Γ̂
(0)

1 )i, (Γ̂
(0)

2 )i, (Γ̂
(1)

1 )i and (Γ̂
(1)

2 )i share the same asymptotic
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expectation as (Γ̂
(0)

0 )i. This result follows directly from the structure of these estimators:

(Γ̂
(0)

1 )i = (Ini −Hii)
−1/2rir

T
i (Ini −Hii)

−1/2T

(Γ̂
(1)
1 )i = rir

T
i

+ (Ii −Hii)
− 1

2

(∑
j 6=i

Hij(Ij −Hjj)
− 1

2 rjr
T
j (Ij −Hjj)

− 1
2
THT

ij

)
(Ii −Hii)

− 1
2
T

(Γ̂
(0)

2 )i = (Ini −Hii)
−1rir

T
i (Ini −Hii)

−1T

(Γ̂
(1)
2 )i = (Ii −Hii)

− 1
2 rir

T
i (Ii −Hii)

− 1
2
T

+ ((Ii −Hii)
−1

(∑
j 6=i

Hij(Ij −Hjj)
− 1

2 rjr
T
j (Ij −Hjj)

− 1
2
THT

ij

)
(Ii −Hii)

−1T .

If max(ij)||Hij|| = O(M−1) then (Γ̂
(k)

δ )i = rir
T
i + O(M−1) for δ = 1, 2, k = 0, 1 and

therefore

E(Γ̂
(k)

δ )i = Γi +O(M−1) δ = 1, 2 k = 0, 1

Then, by the arguments of Liang and Zeger (1986), BC1, BC1(1), BC2 and BC2(1) are

consistent for cov(β̂) as M →∞.
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