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ABSTRACT 

Shannon Kathleen Jones: A Computational Fluid Dynamics Study of the Smallest Flying Insects 
(Under the direction of Laura Miller and Tyson Hedrick) 

 

The flight of insects has fascinated scientists for centuries, and a large body of work has 

focused on understanding the intricacies of the aerodynamics of these organisms. Most of this 

work has focused on the flight of insects ranging in size from a fruit fly to a hawkmoth. The 

smallest flying insects, however, are ten times smaller than a fruit fly, and much less is known 

about their wing kinematics and aerodynamics. These insects fly at Reynolds numbers on the 

order of 10, and at this scale relative viscous forces are much greater than they are for larger 

insects. Consequently, these small insects must overcome significant aerodynamic challenges in 

order to propel themselves.  

The main goal of this dissertation is to better understand the challenges of flying at low 

Reynolds numbers and to investigate possible mechanisms to overcome those challenges. I used 

the immersed boundary method to solve for the fluid flow around insect wings in both two- and 

three-dimensions. In Chapter 3, I use a two-dimensional model to explore theoretically whether 

small insects could “swim” through the air using a drag-based stroke mechanism to generate 

vertical force. Chapter 4 investigates the aerodynamic role of bristled wings, especially engaged 

in wing-wing interactions. And finally, Chapter 5 introduces a three-dimensional revolving wing 

which is used to explore the forces and flow structures generated at low Reynolds numbers.  
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Overall, the results suggest that there are drastic differences in the aerodynamics of flight 

at the scale of the smallest flying insects, which makes their flight more challenging, compared 

to larger insects. As the Reynolds number decreases, drag increases and the lift-to-drag ratio 

decreases significantly. Chapter 3 reveals that neither lift- nor drag-based vertical force 

generation mechanisms are very efficient at the range of the smallest flying insects. Chapter 4 

demonstrates that bristled wings could reduce the force required to fling the wings apart during 

clap and fling while still maintaining lift during translation. And Chapter 5 shows that both the 

leading edge vortex and trailing edge vortex remain attached to the wing and spanwise flow 

decreases as the Reynolds number is lowered.  
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CHAPTER 1: INTRODUCTION 

For more than a century, the flight of insects has fascinated scientists and the public. The 

flight of these organisms even seems improbable using aerodynamic theory, resulting in the 

lingering myth that, according to physics, “bumblebees can’t fly” (McMasters 1989, Peterson 

2004). As a result, a large body of work in the field of biomechanics has focused on the subtle 

complexities of insect flight. The majority of this work has focused on insects ranging in size 

from a fruit fly to a hawkmoth, whereas much less is known about the aerodynamics of the 

smallest insects (Ellington 1999, Dudley 2002, Miller and Peskin 2005, Miller and Peskin 2009).  

Because of their small size, we know that viscosity plays a much larger role in the 

aerodynamics of the smallest flying insects than it does for larger insects, however details of how 

these insects fly still remains a mystery. To fully appreciate the challenge faced by these insects, 

consider the following analogy: a tiny insect flying through the air would be similar to a human 

trying to swim through thick syrup (Childress 1981)—no easy feat! 

 The focus of this work is to understand the challenges of flight at the scale of the 

smallest flying insects and to investigate possible mechanisms to overcome these challenges. In 

this introductory section, I will discuss background on small insects, the challenges of being 

small, and previous work on the aerodynamics of the smallest flying insects. 

1.1 The smallest flying insects.  

The smallest flying insects, who are less than one millimeter in length, might be mistaken 

for a speck of dust floating through the air. A microscope, however, reveals interesting details of 

these small organisms (Fig. 1.1). The most interesting morphological difference between small 
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and large insects is that many species of small insects have wings that are fringed or bristled rather 

than continuous (Dudley 2002).  

While we rarely notice them in our day to day activities, the smallest flying insects are 

ubiquitous in nature. For example, over 5500 species of thrips (order Thysanoptera) have been 

described to date (Morse and Hoddle 2006). These insects are of significant agricultural, 

ecological, and economical importance. Thrips are a common agricultural pest (Palmer, Reddy et 

al. 1990, Crespi, Carmean et al. 1997), and parasitoid wasps have the potential to be used for 

natural biological control of agricultural pests (Austin and Dowton 2000). For example, a recent 

study demonstrated that successful biological control of thrips in California using a small predatory 

insect resulted in an economic benefit of nearly $60 million (Shogren and Paine 2015). These tiny 

insects can also transmit pollen (Terry 2001, Terry 2002), and serve as biological vectors for plant 

pathogens through mechanical transmission (Ullman, Meideros et al. 2002, Jones 2005).  

While one might assume that such small insects would be dependent upon wind currents 

for locomotion (and this may be true for long distance travel), they are capable of flight over short 

distances (Terry 2001). Understanding the aerodynamics of flapping flight at this small scale may 

lead to improved dispersal strategies for biological control. Additionally, further insight into the 

aerodynamical limits of flight of tiny insects will be beneficial to engineers developing 

biologically-inspired micro-aerial vehicles (Żbikowski 2002).  
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Figure 1.1. Photograph of a thrips (photo taken in Tyson Hedrick’s lab at UNC by Sarah 
Wright). 

1.2 It’s difficult to be small (or life at lower Reynolds numbers).  

Before I discuss the aerodynamics of small insect flight and how they differ from larger 

insects, it is useful to first introduce the Reynolds number (Re). Re is a dimensionless scaling 

parameter commonly used in fluid dynamics to predict similar patterns of flow in different fluid 

situations, and is defined as:  

 
𝑅𝑅𝑅𝑅 =

𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

, 

 

Eq. 1.1 

where ρ is the fluid density, U is the characteristic velocity, L is a characteristic length scale, and 

μ is the dynamic viscosity. The choices of U and L are somewhat arbitrary, but allow for 

comparisons across different organism sizes so long as the definition of the variables is 

consistent within a study. In studies of insect flight, U is typically the average wingtip velocity 

over a complete flapping cycle and L is typically the chord length of the wing. This convenient 

variable gives the ratio of inertial forces to viscous forces, and consequently describes the 

relative importance of these two forces. 
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Organisms that move through fluid (i.e. air or water) at Re approaching 1 experience 

greater challenges than their larger counterparts.  As the Re decreases, the ratio of inertial forces 

to viscous forces decreases. Therefore, viscosity plays a much larger role in the movement of 

these organisms than it does for larger organisms.  To overcome these challenges, different 

mechanisms for locomotion at low Re have evolved (Purcell 1977). Examples of low Re 

locomotion can be found in many organisms, including insects (Weis-Fogh 1973, Wang 2000, 

Sunada, Takashima et al. 2002, Miller and Peskin 2004, Miller and Peskin 2005, Miller and 

Peskin 2009), larval fish (Müller and van Leeuwen 2004, Müller, van den Boogaart et al. 2008, 

Gazzola, Van Rees et al. 2012), pteropods (Satterlie, LaBarbera et al. 1985, Borrell, Goldbogen 

et al. 2005) and jellyfish (Wilson, Peng et al. 2009, Herschlag and Miller 2011).   

Of particular interest to this work is the length scale (L) in Eq. 1.1. The smallest flying 

insects are nearly 10 times smaller than a fruit fly and 100 times smaller than a hawkmoth (Fig 

1.2), and that size difference plays a significant role in the aerodynamics experienced by the 

insects. For example, a 10-fold decrease in size (L) will increase the relative viscous forces just 

as much as a 10-fold increase in viscosity (μ) (Vogel 1996).  Now consider that there is 

approximately a 100-fold decrease in Re from the largest (Re~1000) to the smallest (Re~10) 

flying insects. Even though both are flying in air, the relative viscous forces are 100 times greater 

for the smallest insects than the largest. Consequently, these small insects must overcome 

significant aerodynamic challenges in order to propel themselves in this Re range.   
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Figure 1.2. The smallest flying insects, such as (a) fairyflies and (b) thrips, fly at Re that 
are an order of magnitude smaller than (c) fruit flies, and two orders of magnitude lower 
than (d) hawkmoths. The lengths are the approximate wingspan lengths. The smallest 
flying insects are on the order of 1 mm in size (dashed box).  

 

1.3 Aerodynamics of the smallest flying insects.  

1.3.1 Previous work in small insect flight. 

Previous work has shown that the flight kinematics and aerodynamics of the smallest 

insects may be significantly different from that of their larger counterparts (Weis-Fogh 1973, 

Ellington 1980, Wang 2000, Sunada, Takashima et al. 2002, Miller and Peskin 2004, Miller and 

Peskin 2005, Sun and Yu 2006, Miller and Peskin 2009, Kolomenskiy, Moffatt et al. 2010, 

Kolomenskiy, Moffatt et al. 2011, Santhanakrishnan, Robinson et al. 2014). Because of their small 

size and high wing beat frequency, detailed quantitative data on the wing kinematics of the smallest 

insects is not readily available (Sane 2003, Miller and Peskin 2009). As a result, there has been 

much debate and speculation about the flight strategies employed by these insects.   

The smallest flying insects are on the order of 1 mm in length, and some species of fairyfly 

are less than 250 µm long (Huber and Noyes 2013). They have been reported to flap their wings 
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at frequencies greater than 200 Hz (Santhanakrishnan, Robinson et al. 2014) and possibly as high 

as 400 Hz (Weis-Fogh 1973) or 1000 Hz (Sotavalta 1947). At this scale and wingbeat frequency, 

viscous forces are significant, and the relevant Re are on the order of 4-60. For flying insects, Re 

is usually defined using Eq. 1.1, where ρ is the density of air, U is the velocity of the wingtip, L is 

the chord length of the wing (Fig 1.3a), and μ is the dynamic viscosity of air. 

 
Figure 1.3. (a) A cross section through the chord of the wing provides a simplified way to 
study insect wing aerodynamics in two dimensions. (b) Drag (FD) is the component of 
force in the direction of oncoming airflow relative to the motion of the wing, and lift (FL) 
is the component of force normal to oncoming airflow.  Vertical force (FV) is the 
component of force opposing gravity, and horizontal force (FH) is the component of force 
normal to gravity.   

 

  Well-studied insects, such as Drosophila (Dickinson and Gotz 1993, Dickinson, Lehmann 

et al. 1999) and Manduca sexta (Usherwood and Ellington 2002, Hedrick, Cheng et al. 2009), fly 

at a Re on the order of 100 and 1000, respectively.  Smaller and less well-studied insects, such as 
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thrips and fairyflies, operate at a Re on the order of 10 or below. At this low Re range, the lift to 

drag ratio decreases significantly (Wang 2000, Miller and Peskin 2004) and the flight 

aerodynamics and wing kinematics differ from those of larger insects.  

Video recordings of free-flying tiny insects require high-speed cameras equipped with 

macro-lenses and high intensity lighting; even with an ideal set-up, the field of view is very narrow. 

Consequently, very few tiny insect species have been filmed to date. Those that have been filmed 

include Encarsia formosa (Weis-Fogh 1973), Trialeurodes vaporarioru (Weis-Fogh 1975), Thrips 

physapus (Ellington 1984), Muscidifurax raptor and Nasonia vitripennis (Miller and Peskin 2009), 

and other species of thrips (Santhanakrishnan, Robinson et al. 2014). All of these species appear 

to use the ‘clap and fling’ mechanism. 

To improve lift generation, it is thought that many tiny insects clap their wings together at 

the end of upstroke and fling them apart at the beginning of the downstroke in a flight mechanism 

called ‘clap and fling’ (Weis-Fogh 1973).  The rotation of the wings during “fling” results in a 

large attached leading edge vortex on each wing (Maxworthy 1979, Spedding and Maxworthy 

1986). This structure leads to larger lift forces compared with a single wing engaged in similar 

kinematics (Lighthill 1973, Maxworthy 1979, Ellington 1984, Ellington 1984, Spedding and 

Maxworthy 1986, Sun and Xin 2003, Lehmann, Sane et al. 2005, Miller and Peskin 2005, Sun and 

Yu 2006, Lehmann and Pick 2007, Miller and Peskin 2009). Clap and fling has been observed in 

tiny insects such as Encarsia formosa (Weis-Fogh 1973) and thrips (Ellington 1984), and larger 

insects such as butterflies (Srygley and Thomas 2002). While clap and fling is surely an important 

mechanism in small insect flight, a quantitative description of clap and fling kinematics for the 

smallest flying insects is still unavailable. Additionally, Miller and Peskin showed in two-

dimensional simulations that very large forces are required to fling the wings apart at the low Re 
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of tiny insects (Miller and Peskin 2005). Consequently, clap and fling may not be the only flight 

strategy used by these organisms to overcome the challenges of flying at lower Re. In addition to 

clap and fling, drag-based strokes (Horridge 1956, Wang 2000) and bristled wings (Thompson 

1942, Vogel 1996, Miller and Peskin 2009) have been proposed to aid small insects. In the 

following two sections, I introduce the role of drag and bristled wings in insect flight, which will 

be the topics of research in Chapters 3 and 4, respectively. 

1.3.2 Lift vs. drag.  

At this point, it would be useful to define conventional terminology that will be used 

throughout the following chapters (Fig 1.3b). I define lift as the component of force that is normal 

to the oncoming flow with respect to the motion of the wing, whereas I define drag as the 

component of force parallel to oncoming flow.  In the case of a hovering insect, lift and drag are 

perpendicular and parallel, respectively, to the direction of wing motion.  Intuitively, one might 

expect that lift is always “up”, however lift may also be entirely downward or even horizontal 

since it is defined with respect to the direction of movement of the wing.  To help keep this clear, 

I will also define two other forces: vertical force (FV) and horizontal force (FH). FV is parallel to 

the direction of gravity, whereas FH is normal to gravity. Unlike lift and drag, the orientation of FV 

and FH remain constant with respect to the global frame. I will adhere to these definitions of lift, 

drag, FV and FH as I investigate force production and flight aerodynamics of the smallest insects. 

A lift-based strategy for small insect flight became widely accepted following Weis-Fogh’s 

influential 1973 paper that described clap and fling (Weis-Fogh 1973). As described in the 

previous section, various lines of evidence supported the idea that insects increase the lift generated 

during flight by clapping their wings together at the end of upstroke and flinging them apart at the 

beginning of the downstroke (Lighthill 1973, Maxworthy 1979, Ellington 1984, Ellington 1984, 
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Spedding and Maxworthy 1986, Sun and Xin 2003, Lehmann, Sane et al. 2005, Miller and Peskin 

2005, Sun and Yu 2006, Lehmann and Pick 2007, Miller and Peskin 2009). However, very large 

forces are required to fling the wings apart at the low Re of the smallest insects (Miller and Peskin 

2005, Miller and Peskin 2009, Santhanakrishnan, Robinson et al. 2014).  

A drag-based strategy for small insect flight was first suggested when Horridge proposed 

that small insects might generate vertical force by ‘swimming’ or paddling through the air, rather 

than using a lift-based aerofoil action (Horridge 1956). This strategy has been observed in larger 

insects, such as butterflies, which use a nearly-vertical stroke plane (Ellington 1984). A 

computational study showed that the importance of drag is frequently underestimated in hovering 

flight, with an idealized dragonfly wing motion supporting three quarters of the insect’s weight 

with drag (Wang 2004). Recently, a drag-based, swimming-like mode of forward flight was 

observed in the fruit fly (Ristroph, Bergou et al. 2011). However, most studies of insect flight focus 

on insects with Re>100. With the challenges associated with generating lift at low Re, it could be 

beneficial for the smallest insects to use a drag-based motion to generate some or all of its vertical 

force. This has not, however, been rigorously investigated.  

A drag-based flight mechanism works for insects at higher Re because the pressure drag 

of the downstroke is much greater than the skin friction drag of the upstroke, which generates a 

sufficiently high net-vertical force (Ellington 1984). However, as the Re approaches the Stokes 

regime (Re << 1), the drag is primarily due to skin friction, is not very sensitive to angle of 

attack, and is linearly proportional to velocity.  A drag-based flapping flight mechanism in the 

Stokes regime would generate net-zero vertical force because the drag experienced during the 

upstroke would counter the drag-based vertical force produced during the downstroke.  

Therefore, I propose that there is a Re-based limit at which drag alone would no longer work as 
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an aerodynamic mechanism for vertical force production in insects.  A comparison of lift- and 

drag- based strategies for vertical force production is discussed in detail in Chapter 3.  

1.3.3 Bristled wings.  

Interestingly, the smallest flying insects commonly possess wings with long bristles on 

the fringes (Fig. 1.1). Thysanoptera, Trichogrammatidae, Mymaridae, Ptiliidae, Cecidomyiidae, 

Ceratopogonidae, and Nepticulidae (A. Deans, personal communication, 2012) all include 

species that have bristled wings. Little information is available on the diameter, spacing and Re 

of bristles on tiny insect wings.  The bristle-based Reynolds number (Reb), is defined the same as 

Eq. 1.1, but the characteristic length, L, is the diameter of the bristle. The bristles on the wings of 

Encarsia formosa (Ellington 1975) and Thrips physapus (Kuethe 1975) function near Reb = 7 x 

10-2 and 1 x 10-2, respectively; while the chord-based Re for these insects is on the order of 10.  

The ratios of gap spacing to bristle diameter are 5:1 and 10:1, respectively (Ellington 1975, 

Ellington 1980).  

A number of studies have investigated the fluid dynamics of flow through bristled 

appendages similar to those on the wings of small insects (Cheer and Koehl 1987, Loudon, Best 

et al. 1994, Sunada, Takashima et al. 2002, Barta and Weihs 2006, Weihs and Barta 2008, Barta 

2011, Davidi and Weihs 2012), however, these studies generally focus on the drag and leakiness 

of a row of bristles, without considering the angle of attack and more complicated kinematics. As 

a result, the mechanical significance of bristled insect wings remains a mystery.   

Computational fluid dynamics provides a convenient way to model a row of bristles. The 

bristles on insect wings can be approximated as a row of cylinders (Fig 1.4). Many examples of 

flow through an infinite row of cylinders exists in the literature (Tamada and Fujikawa 1957, 

Fornberg 1991, Ayaz and Pedley 1999, Gajjar and Azzam 2004). When fluid is forced to flow 
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between the bristles of an infinite row, however, shear gradients become steeper and drag 

becomes higher as the gap between bristles decreases. On the other hand, in a finite row of 

bristles, shear gradients become less steep and drag is reduced as the width of the gap between 

bristles decreases (Cheer and Koehl 1987).  This is because fluid is free to move both around and 

through the array of bristles.   

 

Figure 1.4. A bristled wing can be modeled in two-dimensions using a cross section 
through the chord of the wing (a). The row of two-dimensional cylinders can then be 
modeled performing desired kinematics (b).  
 

Cheer and Koehl mathematically approximated steady state flow near a finite array of 

bristles in free space by considering the flow around and between a two-dimensional cross-

section of a pair of circular cylinders (Cheer and Koehl 1987).  They described the fluid motion 

mathematically at a variety of biologically relevant cylinder diameters, spacings, and Reb.  They 

discovered that appendages with bristles that operate at very low Reb are paddle-like, while 

appendages with bristles operating at Reb close to 1 are more leaky and rake-like (Fig. 1.5).  
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Figure. 1.5. The Re influences the fluid dynamic behavior of bristles. Bristles at higher 
Reb are more leaky (a), while bristles at low Reb act more like solid paddles (b).  

 

The degree to which bristles operate as a rake versus a paddle is described as ‘leakiness’. 

Here, the leakiness of a pair of bristles is defined as the ratio of the volume of fluid that actually 

moves between a pair of bristles to the volume across which that bristle pair sweeps in a unit of 

time (Cheer and Koehl 1987). An ideal rake would have a leakiness of 1, and an ideal paddle 

would have a leakiness of 0. A transition in leakiness occurs as the Reb of the bristles or the 

width of the gap between them changes. This means that the bristles on tiny insect wings could 

act as both paddles and rakes during different portions of the stroke. The performance of bristled 

appendages operating at the biological conditions of thrips (Reb = 10-2) would be expected to 

change as a function of bristle spacing and velocity (Cheer and Koehl 1987).   

Previous work suggests that single bristled wings are almost as effective as solid wings at 

producing aerodynamic forces.  Sunada et al. used a dynamically scaled mechanical model of a 

single thrips forewing to compare the fluid dynamic forces acting on a bristled wing and a solid 

wing during translation and rotation.  They discovered that the lift and drag acting on the bristled 

wing were a little smaller than those on the solid wing over a range of angles of attack (Sunada, 

Takashima et al. 2002). Similarly, Davidi and Weihs used computational fluid dynamics to show 

that bristled wings can produce a very high percentage of the force produced by solid wings 
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(Davidi and Weihs 2012). While these works suggest that bristles may not significantly alter the 

aerodynamic forces experienced by a single wing during steady translation, the bristles might 

offer an aerodynamic benefit during wing-wing interactions (i.e. ‘clap and fling’).  

Miller and Peskin showed that very large forces are required to fling insect wings apart at 

the low Re relevant to tiny insects (Miller and Peskin 2005).  They suggest that bristled wings 

could reduce the force required to clap the wings together and fling the wings apart (Miller and 

Peskin 2009).  If the Reb and spacing of the bristles are near the transition where the bristled 

appendage acts either as a solid paddle or leaky rake (Cheer and Koehl 1987), then during clap 

and fling it could be possible for the bristles to offer an aerodynamic benefit. The bristles could 

reduce the force required to “fling” the wings apart. Then the wings could preserve lift by acting 

as a solid plate during the translational part of the stroke. Experiments with physical models have 

shown that leakiness is increased when bristles move near a boundary (Loudon, Best et al. 1994). 

During the fling, there could be some flow between the wings’ bristles enhanced by the presence 

of the other wing, which would reduce the force required to fling the wings apart.  The idea that 

bristles offer an aerodynamic benefit during clap and fling is supported by a numerical study of 

porous wings, which showed that porous wings, compared to solid wings, reduce the drag 

required to move two wings apart (Santhanakrishnan, Robinson et al. 2014). A computational 

study of the aerodynamic role of bristles is the topic of Chapter 4.  

1.4 Computational work in small insects.  

1.4.1 Previous computational studies in small insect aerodynamics. 

Computational fluid dynamics provide an opportune method to investigate the 

aerodynamics of flying insects where direct experimentation would be difficult (as is the case with 

tiny insects). Computational studies also have the advantage of being able to explore parameter 
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space and optimize the aerodynamics of the theoretical computational flier (Berman and Wang 

2007, Nakata and Liu 2012, Zheng, Hedrick et al. 2013). Most of the computational studies to date 

have focused on larger insects (Bush and Baeder 2007, Ramamurti and Sandberg 2007, Nakata 

and Liu 2012, Zheng, Hedrick et al. 2013, Xu and Sun 2014), but some have investigated fliers at 

Re<100 (Wang 2000, Miller and Peskin 2004, Wang, Birch et al. 2004, Miller and Peskin 2005, 

Miller and Peskin 2009).  

Computational fluid dynamics provides a convenient framework to compare theoretically 

the flight of small and large insects. For example, the forces and flow structure around a flapping 

wing can be compared over a range of Re simply by changing the dynamic viscosity while holding 

all other parameters constant. This has allowed for many theoretical studies that show that the 

aerodynamics of insect flight change as the Re decreases to that of the smallest flying insects. In a 

two-dimensional numerical study, Wang (2000) showed that when the Re was lowered from 157 

to 15.7, the lift coefficients decreased by more than 50 percent. Similarly, Wu and Sun showed 

that lift coefficients decreased and drag coefficients increased when the Re decreased from 1800 

to 20 in three-dimensional simulations (Wu and Sun 2004). Miller and Peskin (2004) found that at 

Re<32, the flow patterns around a wing are different than at Re>64 in two-dimensional 

simulations. They also showed that the force required to fling two wings apart using clap and fling 

is greater at lower Re (Miller and Peskin 2005), however these forces are somewhat reduced by 

wing flexibility (Miller and Peskin 2009). In addition to comparing different sized insects by 

changing the Re in a numerical simulation, different wing kinematics can be compared. For 

example, Wang (2004) compared fruit fly and dragonfly kinematics using a two-dimensional 

model.  
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1.4.2 Three-dimensional studies of the smallest flying insects. 

Most studies of insect flight at the Re relevant to tiny insects have been performed in two-

dimensions (Miller and Peskin 2004, Wang 2004, Wang, Birch et al. 2004, Miller and Peskin 2005, 

Miller and Peskin 2009, Kolomenskiy, Moffatt et al. 2010, Arora, Gupta et al. 2014, 

Santhanakrishnan, Robinson et al. 2014). While valuable information can be obtained from two-

dimensional studies, previous research shows that differences exist between two- and three- 

dimensional studies. In general, two-dimensional studies fail to capture any three-dimensional 

effects from spanwise flow, and there can be differences in the separation of the leading edge 

vortex (Wang, Birch et al. 2004). Two-dimensional studies also fails to take into account that the 

wings of insects are rotated about a wing base, rather than translated.  

A few studies have modeled tiny insect flight in three dimensions. Sun and Yu (2006) 

investigated the flight of a tiny insect at Re=15. Kolomenskiy et al. (2011) modeled three-

dimensional effects during clap and fling, but did not consider Re below 128. And Liu and Aono 

(2009) modeled a thrips (Re=10) and fruit fly (Re=134) in three-dimensions, and found that the 

thrips did not produce as much force as a fruit fly, but they did not explore Re between these two 

cases.  

To better understand the flight of the smallest flying insects, a more complete study of 

three-dimensional aerodynamics at low Re is required. In Chapter 5, I used a three-dimensional 

model of a revolving insect wing to compare the forces and flow structures over a range of Re 

relevant to the smallest insects. This study complements an experimental investigation by 

collaborators in Michael Dickinson’s and Laura Miller’s groups into the forces and flow structures 

around a dynamically scaled physical model of an insect wing. A three-dimensional numerical 

study can obtain additional information that enhances an experimental study. In the experimental 
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study, the particle image velocimetry performed on the physical model was limited to capturing 

the flow structures in a two-dimensional slice through the fluid domain, whereas the three-

dimensional numerical study captured the three-dimensional flow structures over the entire fluid 

domain. Using the computational model, I investigated three-dimensional effects, such as 

spanwise flow. To date, this is the first study to quantify the flow structures and forces around a 

three-dimensional wing at a range of angles of attack and Re relevant to the smallest flying insects 

(Re ~ 4-100).  

1.5 Concluding remarks.  

In the following chapters, two-dimensional and three-dimensional computational models 

were developed to explore the aerodynamic forces and the flow structures around the wings of 

the smallest flying insects. In Chapter 3, I compare theoretical drag-based and lift-based wing 

strokes using a two-dimensional model to determine if tiny insects could “swim” through the air. 

In Chapter 4, I investigate the aerodynamic role of bristles using a two-dimensional model. And 

in Chapter 5, I explore the forces and flow structures around a three-dimensional wing at the Re 

relevant to tiny insects and compare these to larger insects. The goal of these studies is to better 

understand the aerodynamics of the smallest flying insects and to explore possible strategies 

these insects might use to overcome the challenges of low Re flight. 
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CHAPTER 2: METHODS 

2.1 Numerical Method 

2.1.1 Immersed Boundary Method.   

In Chapters 3, 4, and 5, I used the immersed boundary (IB) method (Peskin 2002) to 

model insect wings immersed in a viscous, incompressible fluid.  The IB method was first 

developed by Peskin in 1972 to study the flow patterns around heart valves. Since then, the 

immersed boundary method has been used to model a variety of biological fluid dynamics 

problems at low to moderate Re, including aquatic locomotion (Fauci and Peskin 1988, Fauci 

and Fogelson 1993), insect flight (Miller and Peskin 2004, Miller and Peskin 2005, Miller and 

Peskin 2009), bacterial flagella (Lim and Peskin 2012, Maniyeri, Suh et al. 2012), jellyfish 

swimming (Herschlag and Miller 2011) and ciliary driven flows (Grunbaum, Eyre et al. 1998).  

Because the structure (in this case, an insect wing) changes the fluid flow and the fluid 

moves the structure simultaneously, coupling the deformation of the structure and the fluid flow 

is a challenging numerical problem. The IB method solves this fluid-structure interaction at low 

to intermediate Re by solving the fluid and the elasticity equations on separate grids using 

different frames of reference.  The viscous, incompressible fluid equations are discretized on a 

fixed Cartesian grid in the Eulerian frame, whereas the structure is defined on a curvilinear mesh 

in the Lagrangian frame (Fig. 2.1). The structure moves freely through the Cartesian grid without 

being constrained to the grid’s node points. This allows the fluid grid to be relatively coarse, 

without limiting the geometric complexity of the structure, resulting in reduced computational 

expense. The Eulerian and Lagrangian equations are coupled by interaction equations that 
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involve integral transforms with delta function kernels: forces generated by the structure are 

spread to the local fluid and the structure is moved at the local fluid velocity.  

The Navier-Stokes equations govern the motion for the viscous, incompressible fluid. 

Here I provide the formulation for two dimensions, but the extension to three dimensions is 

straightforward (at least in terms of the formulation itself):  

 

 𝜌𝜌 �
𝜕𝜕𝒖𝒖(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝒖𝒖(𝒙𝒙, 𝑡𝑡) ∙ ∇𝒖𝒖(𝒙𝒙, 𝑡𝑡)� = −∇𝑝𝑝(𝒙𝒙, 𝑡𝑡) + 𝜇𝜇∆𝒖𝒖(𝒙𝒙, 𝑡𝑡) + 𝒇𝒇(𝒙𝒙, 𝑡𝑡), Eq. 2.1 

 

 ∇ ∙ 𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 0 Eq. 2.2 

where 𝒖𝒖(𝒙𝒙, 𝑡𝑡) is the fluid velocity at position x=[x,y] and time t, 𝑝𝑝(𝒙𝒙, 𝑡𝑡) is the pressure, and f(x,t) 

is the force per unit area applied to the fluid by the structure. Eq. 2.1 is the momentum equation, 

and is essentially Newton’s second law of motion, F=ma, for a parcel of fluid. Eq. 2.2 is the 

incompressibility condition. 

The force term, 𝒇𝒇(𝒙𝒙, 𝑡𝑡), from Eq 2.1 depends on the application, but can include 

resistance of the structure to bending and stretching, applied forces required to move the 

structure with a preferred motion, force due to the action of muscles, and other external forces. In 

the following chapters, the force is a result of (1) prescribed motion of the structure using target 

points and (2) resistance of the structure to bending and stretching:  

 

 𝑭𝑭(𝑟𝑟, 𝑡𝑡) = 𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑟𝑟, 𝑡𝑡) + 𝑭𝑭𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒆𝒆(𝑟𝑟, 𝑡𝑡), Eq. 2.3 
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where F(r,t) is the force per unit length applied to the body as a function of Lagrangian position r 

and time t, 𝑭𝑭𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟, 𝑡𝑡) is the force per unit length applied by a target point to the immersed 

boundary point (discussed below), and 𝑭𝑭𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒆𝒆(𝑟𝑟, 𝑡𝑡) is the force per unit length as a result of 

resistance of the structure to bending and stretching. 

 

Figure 2.1. In the immersed boundary method, the fluid is discretized on a fixed Cartesian 
grid in the Eulerian frame, whereas the structure (red circles) is defined on a curvilinear 
mesh in the Lagrangian frame. The blue lines represent resistance to bending and 
stretching. The structure can be made to move in a prescribed way by using target points 
(yellow circles) attached to the structure via springs (green, dashed lines).  

 

A common way to prescribe the preferred motion of a structure is to apply a penalty 

force, 𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, that is proportional to the displacement of the immersed boundary from a target 

boundary (Kim and Peskin 2007). The boundary is tethered to the target boundary by elastic 

springs (Fig. 2.1). The target points on the target boundary are given Cartesian coordinates that 

may change in time. At each time step of the numerical method, the position of the target points 

are updated. When the immersed boundary points of the structure deviate from the position of 



 
 

20 
 

the target points, a linear spring force is applied that is proportional to the distance between the 

two points.  

 

 𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑟𝑟, 𝑡𝑡) = 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑿𝑿(𝑟𝑟, 𝑡𝑡) − 𝒀𝒀(𝑟𝑟, 𝑡𝑡)�, Eq. 2.4 

 

where 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the spring stiffness, 𝑿𝑿(𝑟𝑟, 𝑡𝑡) is the Cartesian position of the boundary at position 

r, and 𝒀𝒀(𝑟𝑟, 𝑡𝑡) is the Cartesian position of the target boundary at position r. The stiffness of the 

springs, 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, is selected so that the force is large enough to move the boundary close to the 

preferred position. The entire immersed boundary can be connected to target points to model a 

nearly rigid structure, or a subset of the immersed boundary can be tethered, resulting in a more 

flexible structure as seen in Chapter 3.  

The elastic deformations of the structure result in elastic body forces, 𝑭𝑭𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒆𝒆. The 

immersed boundary may be thought of as being composed of fibers with a preferred curvature. 

Immersed boundary points may be connected by springs (to resist stretching and compression) 

and beams (to resist bending). 𝑭𝑭𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒆𝒆 can then be written as: 

 

 𝑭𝑭𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕𝒆𝒆𝒆𝒆(𝑟𝑟, 𝑡𝑡) = 𝑭𝑭𝒆𝒆𝒔𝒔𝒕𝒕𝒆𝒆𝒔𝒔𝒕𝒕(𝑟𝑟, 𝑡𝑡) + 𝑭𝑭𝒃𝒃𝒕𝒕𝒕𝒕𝒃𝒃(𝑟𝑟, 𝑡𝑡), Eq. 2.5 

 

 

 
𝑭𝑭𝒆𝒆𝒔𝒔𝒕𝒕𝒆𝒆𝒔𝒔𝒕𝒕(𝑟𝑟, 𝑡𝑡) =

𝜕𝜕
𝜕𝜕𝑟𝑟
𝑘𝑘𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 ��

𝜕𝜕𝑿𝑿(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑟𝑟

� − 1� 𝝉𝝉�(𝑟𝑟, 𝑡𝑡), 
Eq. 2.6 

 

 



 
 

21 
 

 
𝑭𝑭𝒃𝒃𝒕𝒕𝒕𝒕𝒃𝒃(𝑟𝑟, 𝑡𝑡) =

𝜕𝜕2

𝜕𝜕𝑟𝑟2
𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏 �

𝜕𝜕2

𝜕𝜕𝑟𝑟2
(𝑿𝑿(𝑟𝑟, 𝑡𝑡) −𝑿𝑿𝒃𝒃(𝑟𝑟))�, 

Eq. 2.7 

 

 

where 𝑭𝑭𝒆𝒆𝒔𝒔𝒕𝒕𝒆𝒆𝒔𝒔𝒕𝒕 is the force from stretching and compression and 𝑭𝑭𝒃𝒃𝒕𝒕𝒕𝒕𝒃𝒃 is the force from bending, 

𝑘𝑘𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 and 𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏 are the stretching stiffness and the bending stiffness, respectively. 𝝉𝝉�(𝑟𝑟, 𝑡𝑡) is 

the unit vector tangent to the structure, and 𝑿𝑿𝒃𝒃(𝑟𝑟) is the preferred bending configuration of the 

structure. The material properties of the immersed boundary (how flexible it is) can be modified 

to resemble biological structures by changing 𝑘𝑘𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡 and 𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏.  

Once F(r,t) is calculated, the force needs to be spread from the structure to the 

surrounding fluid. The interaction equations between the fluid and the boundary are given by: 

 𝒇𝒇(𝒙𝒙, 𝑡𝑡) = �𝑭𝑭(𝑟𝑟, 𝑡𝑡)𝛿𝛿[𝒙𝒙 − 𝑿𝑿(𝑟𝑟, 𝑡𝑡)]𝑑𝑑𝑟𝑟, Eq. 2.8 

 

 

 𝜕𝜕𝑿𝑿(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝒖𝒖(𝑿𝑿(𝑟𝑟, 𝑡𝑡), 𝑡𝑡) = �𝒖𝒖(𝒙𝒙, 𝑡𝑡)𝛿𝛿�𝒙𝒙 − 𝑿𝑿(𝑟𝑟, 𝑡𝑡)�𝑑𝑑𝒙𝒙, Eq. 2.9 

 

 

in which δ(x) is a two-dimensional Dirac delta function.  

 𝛿𝛿ℎ(𝑥𝑥) =
1
ℎ2
ф �

𝑥𝑥
ℎ
�ф�

𝑦𝑦
ℎ
�, Eq. 2.10 
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Where 

 

ф(𝑟𝑟) =

⎩
⎪
⎨

⎪
⎧1

4
�1 + cos

𝜋𝜋𝑟𝑟
2
�              |𝑟𝑟| ≤ 2

0                                𝑜𝑜𝑡𝑡ℎ𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅

 
Eq. 2.11 

 

 

Eq. 2.8 and Eq. 2.9 act to couple the Lagrangian and Eulerian variables. Eq. 2.8 spreads 

force from the Lagrangian boundary to the Eulerian fluid grid. Using this force, the Navier-

Stokes equations are solved to update the fluid information. Next, Eq. 2.9 evaluates the fluid 

velocity in the Eulerian frame to interpolate the local fluid velocity at each boundary point in the 

Lagrangian frame. The boundary is then moved at the local fluid velocity, and this enforces the 

no-slip condition. 

Details on the discretization used in these simulations have been described previously 

(Peskin and McQueen 1996, Peskin 2002, Griffith, Hornung et al. 2007, Miller and Peskin 

2009). The general idea of this numerical method is as follows for each time step (see Fig. 2.2):   

 

1. Calculate the force that the boundary applies to the fluid. In the following chapters, the 

forces are a result of resistance to bending, resistance to stretching, and forces applied by 

target points to drive the motion of the boundary in a preferred manner.  

2. Spread the force from the Lagrangian grid describing the position of the boundaries to the 

Cartesian grid used to solve the fluid equations using a smoothed approximation of the 

Dirac delta-function (Eq. 2.8). 

3. Solve the Navier-Stokes equations for the entire fluid domain.  
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4. Use the new velocity field to interpolate the local fluid velocity at the boundary using a 

smoothed Dirac delta-function. The boundary is moved at the local fluid velocity to 

enforce the no-slip condition (Eq. 2.9). 

5. Advance to the next time step. These steps are repeated for each time step until the final 

simulation time is reached.  

 

 
Figure 2.2. The basic steps of the immersed boundary method for each time step. 

 

 



 
 

24 
 

2.1.2 IBFE Method 

The previous section described the classic immersed boundary method which I used to 

model a two-dimensional wing in Chapter 3. This method works well for simple geometries, 

where the structure can be modeled as a group of fibers that resist bending and stretching. 

However, it becomes more challenging to model complex structures, particularly in three-

dimensions, using this method. Therefore, in Chapters 4 and 5, I use a hybrid finite difference / 

finite element version of the immersed boundary method.  

As in the classical immersed boundary method, a finite difference formulation is used to 

solve the fluid equations in the IBFE method. The difference lies in how the structure is 

modeled: a finite element (FE) formulation is used to describe the boundary in IBFE, whereas a 

finite difference formulation is used to describe the boundary in the classical immersed boundary 

method. The IBFE method is described in detail in Griffith and Luo (2012). The formulation is: 

 𝜌𝜌 �
𝜕𝜕𝒖𝒖(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝒖𝒖(𝒙𝒙, 𝑡𝑡) ∙ ∇𝒖𝒖(𝒙𝒙, 𝑡𝑡)� = −∇𝑝𝑝(𝒙𝒙, 𝑡𝑡) + 𝜇𝜇∆𝒖𝒖(𝒙𝒙, 𝑡𝑡) + 𝒇𝒇(𝒙𝒙, 𝑡𝑡), Eq. 2.12 

 

 

 ∇ ∙ 𝒖𝒖(𝒙𝒙, 𝑡𝑡) = 0 Eq. 2.13 

 

 
𝒇𝒇(𝒙𝒙, 𝑡𝑡) = � 𝑭𝑭(𝑒𝑒, 𝑡𝑡)𝛿𝛿[𝒙𝒙 − 𝝌𝝌(𝑒𝑒, 𝑡𝑡)]𝑑𝑑𝑒𝑒,

𝑈𝑈
 

Eq. 2.14 

 

 

 
� 𝑭𝑭(𝑒𝑒, 𝑡𝑡) ∙ 𝑽𝑽(𝑒𝑒)𝑑𝑑𝑒𝑒 = −� ℙ𝑡𝑡(𝑒𝑒, 𝑡𝑡):∇𝑠𝑠𝑽𝑽(𝑒𝑒)𝑑𝑑𝑒𝑒, ∀𝑽𝑽(𝑒𝑒),

𝑈𝑈𝑈𝑈
 

Eq. 2.15 
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 𝜕𝜕𝝌𝝌
𝜕𝜕𝑡𝑡

(𝑒𝑒, 𝑡𝑡) = � 𝒖𝒖(𝒙𝒙, 𝑡𝑡)𝛿𝛿[𝒙𝒙 − 𝝌𝝌(𝑒𝑒, 𝑡𝑡)]𝑑𝑑𝒙𝒙,
Ω

 
Eq. 2.16 

 

𝑭𝑭(𝑒𝑒, 𝑡𝑡) is defined in terms of the first Piola-Kirchhoff solid stress tensor, ℙ𝑅𝑅(𝑒𝑒, 𝑡𝑡), using a weak 

formulation in which 𝑽𝑽(𝑒𝑒) is an arbitrary Lagrangian test function. The elastic properties of the 

wing are described using a neo-Hookean material model. 𝝌𝝌(𝑒𝑒, 𝑡𝑡) denotes the physical position of 

material point s at time t.  

Eq. 2.12 and Eq. 2.13 are the standard Eulerian incompressible Navier-Stokes equations. 

Similar to the classical IB method, Eq. 2.14 and Eq. 2.16 couple the Lagrangian and Eulerian 

variables. Eq. 2.14 spreads force from the Lagrangian boundary to the Eulerian fluid, and Eq. 

2.16 interpolates the local fluid velocity at the boundary.   

2.2 Software 

2.2.1 IBAMR 

The numerical studies described in Chapters 3, 4, and 5 used a distributed-memory 

parallel implementation of the immersed boundary method with Cartesian grid adaptive mesh 

refinement, called IBAMR (Griffith, Hornung et al. 2007). IBAMR was developed by Boyce 

Griffith and makes use of many high-quality open-source libraries, including SAMRAI, PETSc, 

libMesh, and hypre. IBAMR has been used to investigate a variety of biological fluid dynamics 

problems, including modelling spined cells (Nguyen, Karp-Boss et al. 2011), biofilm 

deformation in capillaries (Vo and Heys 2011), lamprey swimming (Tytell, Hsu et al. 2010), and 

heart valves (Griffith, Luo et al. 2009, Griffith 2012).  

There are two major advantages of using IBAMR, when compared to other immersed 

boundary implementations. (1) The implementation can be run in parallel on multiple processors 

to decrease computation time. And, (2) the fluid grid is adaptive (Fig. 2.3). This means that 
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regions of fluid that contain the structure or regions of sufficiently high vorticity are discretized 

at higher levels of refinement, whereas regions far away from the boundary are discretized more 

coarsely. These features increase computational efficiency.  

In the following chapters, the adaptive method used four grid levels to discretize the 

Eulerian equations with a refinement ratio of four between levels. Regions of fluid that contained 

the wing or vorticity above a threshold were discretized at the highest level of refinement. Unless 

otherwise specified, the effective resolution of the finest level of the grid corresponded to that of 

a uniform 512×512 discretization. The boundary conditions were set to no-slip (u=0) on all sides 

of the computational domain.  
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Figure 2.3. (a) In IBAMR, the fluid grid is adaptive. This means that regions of fluid that contain 
the structure or regions of vorticity are discretized at higher levels of refinement, whereas 
regions far away from the boundary are discretized more coarsely. (b) An example of IBAMR 
being used to model a rubber band in two-dimensions (Boyce Griffith, used with permission). 
The adaptive mesh is discretized at the highest level of refinement near the boundary. 
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2.2.2 Mesh generation 

In Chapters 4 and 5, I use the IBFE method (Section 2.1.2) to model insect wings 

immersed in a viscous, incompressible fluid. In order to generate the finite element meshes for 

the immersed boundaries, I used a publicly available finite element mesh generator called Gmsh 

(Geuzaine and Remacle 2009). Gmsh is a free 3D finite element grid generator with a built-in 

CAD engine and post-processor.   

2.2.3 Fluid visualization 

All fluid visualization figures in the following chapters were generated by reading the 

output of IBAMR in VisIt (Childs 2013). VisIt is an open-source visualization and analysis tool 

which is able to visualize a wide variety of data including two- and three-dimensional structured, 

adaptive and unstructured meshes. Any quantitative calculations of fluid flow, such as fluid 

velocity, were also performed in VisIt. 

2.2.4 Force analysis 

 I used MATLAB to analyze the forces in Chapters 3, 4, and 5.  
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CHAPTER 3: LIFT VS DRAG BASED MECHANISMS FOR VERTICAL FORCE 

PRODUCTION IN THE SMALLEST FLYING INSECTS1 

3.1 Introduction 

Previous work has shown that the flight kinematics and aerodynamics of the smallest 

insects may be significantly different than that of their larger counterparts (Weis-Fogh 1973, Wang 

2000, Sunada, Takashima et al. 2002, Miller and Peskin 2004, Miller and Peskin 2005, Miller and 

Peskin 2009). Because of their small size and high wing beat frequency, detailed quantitative data 

on the wing kinematics of the smallest insects is not readily available (Sane 2003, Miller and 

Peskin 2009). As a result, there has been much debate and speculation about the flight strategies 

employed by these insects.  Traditional lift-based strokes in the horizontal plane and less-

traditional swimming-like strokes in the vertical plane have both been suggested. In this study, I 

used computational fluid dynamics to investigate whether lift- or drag-based mechanisms generate 

the most vertical force at Re<100 (the scale relevant to tiny insects). 

I used the immersed boundary method to solve the fully coupled fluid-structure interaction 

problem of a flexible wing immersed in a 2D viscous fluid. I used this method to (1) compare three 

idealized 2D hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in 

the horizontal plane, and a hybrid stroke on a tilted plane; (2) compare faster and slower 

downstroke velocities; and (3) compare flexible and rigid wings. FV and FH were calculated as 

functions of time, and I determined how the structure of the vortex wake influenced the forces. 

                                                 
1 This chapter previously appeared as an article in the Journal of Theoretical Biology. The original citation is as 
follows: SK Jones, R Laurenza, TL Hedrick, BG Griffith, LA Miller. “Lift vs. drag based mechanisms for vertical 
force production in the smallest flying insects.” Journal of Theoretical Biology. 384 (2015) 105-120. 



 
 

30 
 

Net vertical force and the ratio of vertical force to total force generated by these strokes were 

compared over a range of Re from 1 to 200. 

3.2 Methods 

3.2.1 Prescribed wing kinematics.  

To investigate the role of lift and drag in vertical force production, I considered three 

idealized stroke kinematics: a horizontal lift-based stroke, a vertical drag-based stroke, and a tilted 

hybrid stroke. The horizontal stroke approximates fruit fly kinematics (Fig. 3.1a), and lift is used 

to generate vertical force.  The vertical stroke is a theoretical stroke (Fig. 3.1b), idealized to give 

the most possible drag-based vertical force and is similar to rowing with feathering on the upstroke. 

The hybrid stroke approximates dragonfly kinematics (Fig. 3.1c), and uses a combination of lift 

and drag to generate vertical force.  

I explored the forces produced by these strokes with a numerical simulation of a moving 

elastic wing immersed in a viscous fluid. The simplified insect wing kinematics used in this chapter 

are similar to those used in previous computational studies to investigate hovering flight 

aerodynamics (Wang 2000, Wang 2004, Wang, Birch et al. 2004). A two-dimensional cross-

section of the wing chord was used for all investigations, and I use the term “wing” in the 

remainder of the chapter to describe a wing’s cross section. 
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Figure 3.1. Idealized wing kinematics (sections through the chord of the wing). The closed circle 
represents the leading edge of the wing, and each half-stroke is shown separately. The solid black 
arrows indicate the direction and relative magnitude of dimensionless drag (CD) during each half-
stroke, and the solid grey arrows indicate the direction and relative magnitude of dimensionless 
lift (CL). The solid axes on the right indicate the net CD and CL during a complete stroke. The 
direction of dimensionless vertical (CV) and dimensionless horizontal (CH) force always face the 
same direction with respect to the global frame (dashed arrows).  (a) A horizontal, lift-based stroke 
(α0=90°, β=0°) uses only CL to produce CV. (b) A vertical, drag-based stroke (α0=45°, β=90°) uses 
only CD to produce CV. (c) A tilted, hybrid stroke ((α0=60°, β=62.8°) uses both CL and CD to 
produce CV. 

 

 



 
 

32 
 

The kinematics of the wing were defined as follows: 

 
[𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)] =

𝐴𝐴0
2

(1 + cos(2𝜋𝜋𝜋𝜋𝑡𝑡))[cos(𝛽𝛽) , sin(𝛽𝛽)],  

 

Eq. 3.1 

 

 
𝛼𝛼(𝑡𝑡) = 𝛼𝛼0 + 𝐵𝐵𝑒𝑒𝑒𝑒𝐵𝐵(2𝜋𝜋𝜋𝜋𝑡𝑡), 

 

Eq. 3.2 

in which [x(t), y(t)] is the position of the center of the chord at time t, A0 is the amplitude of 

translation, f is the frequency, β is the stroke plane angle, α is the chord orientation relative to β 

(i.e. the angle of attack), α0 is the mean angle of attack, and B is the amplitude of rotation. In all 

computations, f=1, B=π/4 and A0/c=2.5, where c is the chord length. By changing α0 and β, I 

prescribe the motion of three idealized strokes: the horizontal stroke (α0=90°, β=0°), the vertical 

stroke (α0=45°, β=90°), and the tilted stroke (α0=60°, β=62.8°).  

3.2.2 Numerical method.   

I used the immersed boundary method as described in Chapter 2 to model two-dimensional 

insect wings immersed in a viscous, incompressible fluid. The dimensionless equation describing 

a two-dimensional elastic wing immersed in a fluid can be written as follows: 

 𝑭𝑭′ = 𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏′ 𝜕𝜕2

𝜕𝜕𝑟𝑟2
(�̂�𝜅𝐵𝐵�) −

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑇𝑇�̂�𝑟) Eq. 3.3 

Where F’ is the dimensionless force applied to the wing, 𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏′  is the dimensionless bending 

stiffness, �̂�𝜅 is the curvature, 𝐵𝐵� is the unit vector pointing normal to the wing, T is the tension, and 

�̂�𝑟 is the unit vector tangent to the wing. The dimensionless bending stiffness can be written as: 

 𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏′ =
𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏
𝜌𝜌𝜌𝜌𝑡𝑡𝑏𝑏𝑠𝑠2 𝑐𝑐3

 Eq. 3.4 
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Where kbeam is the dimensional flexural stiffness and Urms is the root mean square of the velocity 

of the center of the chord. In order to compare the forces from the computations, instantaneous 

forces experienced by the wing were non-dimensionalized by 0.5𝜌𝜌𝜌𝜌𝑡𝑡𝑏𝑏𝑠𝑠2 𝑐𝑐.  CV and CH denote the 

vertical and horizontal force coefficients, respectively.  

In this study, I used IBAMR (Griffith, Hornung et al. 2007) for all of the fluid dynamic 

simulations. The computational 2D wing was immersed in a fluid domain that was 20 chord lengths 

wide and high. The adaptive method used four grid levels to discretize the Eulerian equations with 

a refinement ratio of 4 between levels. Regions of fluid that contained the wing or vorticity above 

a threshold were discretized at the highest refinement. The effective resolution of the finest level 

of the grid corresponded to that of a uniform 512×512 discretization for Re≤100 and a uniform 

1024×1024 discretization for Re>100. The boundary conditions were set to no-slip (u=0) on all 

sides of the computational domain. Other simulation-specific numerical parameters are listed in 

Table 3.1. 

 

Table 3.1. Numerical parameters. 

Dimensionless parameter Value 
Chord length (c)  0.1 
Domain length (L) 2 
Finest Grid Refinement 512x512 
Number of refinement levels 4 
Refinement ratio 1:4 
Time step (dt) 1.0e-6 
Final simulation time 4 
Spatial step size (dx) L/512 
Target stiffness (k’targ) 64 
Spring stiffness (k’spring) 638 
Beam stiffness (k’beam) 31 
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To investigate the role of lift and drag in tiny insect flight, I considered three idealized 

wing strokes for Re ranging from 1 to 200. Re is defined as 

 𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝑏𝑏𝑡𝑡𝑚𝑚𝑐𝑐

𝜇𝜇
=
𝜌𝜌𝜋𝜋𝜋𝜋𝐴𝐴0𝑐𝑐2

𝜇𝜇
, Eq. 3.5 

in which Umax is the maximum velocity of the wing during a stroke. The Re was varied by changing 

µ while holding all other parameters constant.  

The lift-to-drag ratio is one common metric of comparison used in studies of hovering.  

The lift-to-drag ratio is not an appropriate metric in this study, however, because I investigated 

wing kinematics that predominantly use drag to generate vertical force. Because I am studying 

very different types of strokes, comparing them in an equal way is challenging: CV and CH are zero 

at different points in the strokes, and net drag and net lift are zero for the horizontal and vertical 

strokes, respectively. However, our main motivation is to determine the amount of vertical force 

that can be generated compared to the total amount of force. For that reason, I chose to compare 

the three strokes using the ratio of net vertical force to net total force (𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄ ) over the third and 

fourth wing stroke. CT determines the magnitude of the force that the muscles have to produce 

during flight. 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  gives us a metric for how much of that force goes toward CV.  

 
3.2.3 Grid convergence study.  

To test for spatial convergence, I compared four effective fine-grid resolutions: a uniform 

256×256 discretization, a uniform 512×512 discretization, a uniform 1024×1024 discretization 

and a uniform 2048×2048 discretization. All four resolutions used the horizontal stroke kinematics 

described in Fig. 3.1a and were evaluated at Re=10, Re=100, and Re=200.  I chose to complete 

the convergence study over a range of Re because more refined grids are often necessary at high 

Re, where the boundary layers around wings are smaller, and the error at the boundary is more 
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significant. The highest Re demonstrated the most error, because of the challenge of accurately 

resolving the boundary layers and the separation of vortices. CV and CH as functions of 

dimensionless time show small deviations between the grid resolutions during periods of wing 

acceleration and deceleration (Fig. 3.2a-c); however, the coefficients show overall good 

agreement.  

 

Figure 3.2. Refinement study displaying CV and CH as functions of dimensionless time for 
the horizontal stroke at (a) Re=10, (b) Re=100, and (c) Re=200. The legend denotes the 
mesh size of the finest grid near the wing and regions of vorticity. Effective 512×512 grid 
discretization was used for all other simulations with Re≤100, and 1024×1024 grid 
discretization was used for all other simulations with Re>100 in this chapter. 

I compared the four grid resolutions by calculating the average percent difference in force 

between the selected grid and the next finest grid over the first two wingbeats (Table 3.2). For 

comparison, the average percent difference between different Re over two wing strokes for the 

horizontal stroke is shown in Table 3.3. Effective 512×512 grid discretization was used for all 

other simulations with Re≤100, and 1024×1024 grid discretization was used for all other 

simulations with Re>100 in this chapter. These grids were chosen because the average percent 

difference in force between the selected grid and the next finest grid is ≤5%. 
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Table 3.2. Average percent difference in forces over 2 wing strokes between different grid 
refinements at three different Re. 

  % Difference 
 Grids CV CH 

Re=200 
256X256  vs.  512X512 19.9 19.4 
512X512  vs.  1024X1024 9.6 7.5 
1024X1024  vs.  2048X2048 4.4 3.4 

Re=100 
256X256  vs.  512X512 15.1 13.4 
512X512  vs.  1024X1024 5 4.1 
1024X1024  vs.  2048X2048 2.9 2.6 

Re=10 
256X256  vs.  512X512 6.3 10.8 
512X512  vs.  1024X1024 3 3.1 
1024X1024  vs.  2048X2048 1.2 1.8 

 

Table 3.3. Average percent difference in forces over 2 wing strokes between different Re for the 
horizontal stroke on a 512X512 grid. 

 % Difference 
 CV CH 
Re=100 vs. Re=10 94 53 
Re=10 vs. Re=5 34 25 
Re=5 vs. Re=1 67 55 

 

3.2.4 Comparison to existing numerical data.   

To check the method, I compared the model of the  horizontal stroke to the numerical 

model given by Wang at Re=150 (Wang 2004).  CV and CH as functions of time are shown (Fig. 

3.3).  Overall, there was good agreement between my IBAMR simulation and the numerical 

simulation described by Wang. The differences can probably be attributed to differences in the 

numerical models—our wing is a flexible two-dimensional plate, while Wang’s is a rigid ellipse. 
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Figure 3.3. Comparison of IBAMR to an existing numerical method showing CV and CH 
as functions of dimensionless time. I compared the lift-based stroke  (α0=90°, β=0°, 
A0/c=2.5, f=1, and B=π/4) at Re=150. Overall, there is good agreement between my 
simulation and the simulation described by Wang (28). Only the last two wing beats are 
shown. 

 

3.3 Results  

3.3.1 Comparison of three idealized hovering kinematics.  

Simulations using the kinematics described in the Fig 3.1 were performed for Re ranging 

from 1 to 200. Each simulation included four stroke cycles. Only the third and fourth stroke cycles 

that exhibited periodic behavior were used to obtain net aerodynamic forces.  

CV and CH as functions of dimensionless time are shown for Re = 1,5,10, and 100 for the 

horizontal stroke (Fig. 3.4), the tilted stroke (Fig. 3.5) and the vertical stroke (Fig. 3.6).  The shapes 

of the graphs of the horizontal and tilted strokes at Re=100 were similar to those obtained by Wang 

at Re=150 (Wang 2004), and the magnitude and trends for the horizontal stroke were consistent 

with those found by Miller and Peskin for a similar horizontal stroke (Miller and Peskin 2004). 

For all stroke types in this Re range, the magnitude of the instantaneous force coefficients 

decreased with increasing Re.  
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For the horizontal stroke (Fig. 3.4), CV was positive for nearly the entire stroke, whereas 

for the tilted and vertical strokes (Figs. 3.5-3.6), CV was positive during the downstroke and 

negative during the upstroke. In the tilted and vertical strokes, CV peaked during mid-translation 

when the wing was moving most quickly. This was also the case for the horizontal stroke at low 

Re. At Re=100, CV peaked during wing rotation and decreased during the translation phase for the 

horizontal stroke. 

 
Figure 3.4. Instantaneous CV and CH as functions of dimensionless time for the horizontal 
lift-based stroke at Re 1, 5, 10 and 100 (α0=90°, β=0°, A0/c=2.5, f=1, and B=π/4). Only the 
last two wing beats are shown. 
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Figure 3.5. Instantaneous CV and CH as functions of time for the tilted hybrid stroke at Re 
1, 5, 10 and 100 (α0=60°, β=62.8°, A0/c=2.5, f=1, and B=π/4). 
 
 
 

 
Figure 3.6. Instantaneous CV and CH as functions of time for the vertical drag-based stroke 
at Re 1, 5, 10 and 100 (α0=45°, β=90°, A0/c=2.5, f=1, and B=π/4). 
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For the horizontal stroke, peak CH was much larger in magnitude than peak CV, whereas 

for the tilted and vertical strokes peak CV was larger in magnitude than peak CH. For the horizontal 

and tilted strokes at lower Re, CH peaked during translation. At Re=100, CH increased during wing 

rotation and decreased during the translation phase of the stroke. For the vertical stroke, the peaks 

in CH correspond to forces generated during wing rotation for all Re investigated. During 

translation, I expect CH to be negligible due to the orientation of the wing during the vertical 

strokes. 

The basis for some of these differences can be seen by comparing vorticity plots of the 

fluid flow around the wing at Re=10 and Re=100 (Figs. 3.7-3.9). For all strokes at Re=10 (Figs. 

3.7A, 3.8A, 3.9A), leading edge vortices (LEV) and trailing edge vortices (TEV) formed during 

wing rotation at the beginning of downstroke (i). These vortices remained attached during 

downstroke (ii), and were shed at the end of downstroke during wing rotation (iii). New LEVs 

were formed during wing rotation and remained attached until the wing rotated at the beginning 

of the next downstroke (iv).  
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Figure 3.7. Vorticity plots of the horizontal stroke during the 4th wingbeat at (A) Re=10 and (B) 
Re=100, shown at (i) the beginning of downstroke, (ii) midway through downstroke, (iii) at the 
beginning of upstroke, and (iv) midway through upstroke. The vectors show the direction of flow 
and are scaled to the magnitude of the flow velocity. The colour map shows the vorticity of the 
fluid (min=-60 and max=60; red, counter clockwise rotation; blue, clockwise rotation). 

 
Figure 3.8. Vorticity plots of the tilted stroke during the 4th wingbeat at (A) Re=10 and (B) Re=100, 
shown at (i) the beginning of downstroke, (ii) midway through downstroke, (iii) at the beginning 
of upstroke, and (iv) midway through upstroke. The vectors show the direction of flow and are 
scaled to the magnitude of the flow velocity. The colour map shows the vorticity of the fluid (min=-
60 and max=60; red, counter clockwise rotation; blue, clockwise rotation). 
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Figure 3.9. Vorticity plots of the vertical stroke during the 4th wingbeat at (A) Re=10 and (B) 
Re=100, shown at (i) the beginning of downstroke, (ii) midway through downstroke, (iii) at the 
beginning of upstroke, and (iv) midway through upstroke. The vectors show the direction of flow 
and are scaled to the magnitude of the flow velocity. The colour map shows the vorticity of the 
fluid (min=-60 and max=60; red, counter clockwise rotation; blue, clockwise rotation). 
 

In contrast, vortex shedding played a significant role in force generation at Re=100. In the 

horizontal stroke (Fig. 3.7B), at the beginning of downstroke, a LEV and a TEV formed (i). 

Midway through downstroke, the LEV remained attached while the TEV was shed (ii). During 

wing rotation and the beginning of upstroke, the vortices were shed and a new LEV and TEV were 

formed as the wing travelled back through its wake (iii). Midway through upstroke, the LEV 

remained attached while the TEV was shed generating positive CV (iv). The tilted stroke behaved 

similarly to the horizontal stroke at Re=100 (Fig. 3.8B). At the end of downstroke, the shed vortices 

travelled downward more quickly for the tilted stroke than for the horizontal stroke, which matched 

results reported by Wang (Wang 2004). In the vertical stroke at Re=100 (Fig. 3.9B), a larger LEV 

formed during wing rotation at the beginning of downstroke (i), and remained larger during 

downstroke (ii). During wing rotation and the beginning of upstroke, the vortices were shed (iii). 
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The shed vortices travelled downward more quickly for the vertical stroke than for the other 

strokes. During upstroke (iv), the wing was oriented parallel to the direction of movement, and 

vorticity was shed asymmetrically, generating some CH. 

 
Figure 3.10. Net dimensionless vertical forces as functions of Re, shown for (a) all Re 
studied and (b) Re in the range of the smallest flying insects. The forces are averaged over 
the 3rd and 4th wing beats.  

 

 
  

 
Figure 3.11. Net vertical force normalized by the total magnitude of force experienced by 
the wing (𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄ ) as a function of Re, shown for (a) all Re studied and (b) Re in the range 
of the smallest flying insects. The horizontal stroke had a higher 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  for Re>5.  
 

The three strokes were evaluated at Re ranging from 1 to 200.  CV was averaged over the 

3rd and 4th wingbeats and plotted as functions of Re for each of the types of stroke (Fig. 3.10).  
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Similarly, the 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄   as functions of Re are shown in Fig. 3.11. The horizontal stroke generated 

more 𝐶𝐶𝑉𝑉��� than the other strokes at Re > 2, whereas the vertical stroke generated the most 𝐶𝐶𝑉𝑉��� at Re 

< 2.  The vertical stroke generated the least 𝐶𝐶𝑉𝑉��� at Re > 10. The vertical stroke had the greatest 

𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  at Re<5; however, it had the lowest 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  at Re>20.  The horizontal stroke had the greatest 

𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  at Re>5. 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  increased with Re, and at Re>20 𝐶𝐶𝑉𝑉��� increased with Re for all stroke types. 

Both 𝐶𝐶𝑉𝑉��� and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  began to plateau at Re>100 as viscous effects become less significant. It is 

worthwhile to note that these results include unsteady effects, and much of the CV for the lower Re 

was generated during wing rotation at the end of each stroke. There was a large increase in 𝐶𝐶𝑉𝑉��� as 

Re decreased below 10. This matches results of Miller and Peskin: dimensionless drag remained 

relatively constant with decreasing Re, then increased rapidly for Re<10 (Miller and Peskin 2004). 

This likely happens because at these low Re most CV is generated as a result of shearing the viscous 

fluid during wing rotation. 

3.3.2 Faster downstroke.   

Bennet suggested that a faster downstroke velocity would enhance CV produced by a drag-

based mechanism (Bennet 1973). Despite observed insects having faster upstrokes rather than 

downstrokes (Table 3.4), I wanted to investigate what effect a faster downstroke would have on 

CV produced by tiny insects using a drag-based mechanism. 

Table 3.4 Ratio of downstroke velocity to upstroke velocity. 

Insect Velocity Ratio (η) 
Encarsia formosa (Weis-Fogh 1973) 0.75 

Thrips (Santhanakrishnan, Robinson et al. 2014) 0.88 
Fruit fly (Zanker 1990) 0.6 

Honeybee (Osborne 1951) 0.77 
House fly (Osborne 1951) 0.67 
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I evaluated the vertical stroke at different ratios (η) of the downstroke velocity to the 

upstroke velocity. Here, 

𝜂𝜂 =
𝑇𝑇𝑢𝑢𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡
𝑇𝑇𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡

, 

where Tdownstroke  and Tupstroke are the times to complete downstroke and upstroke, respectively.  Re 

was calculated as before.  

 

 
Figure 3.12. Instantaneous CV and CH as functions of time for the vertical drag-based stroke 
with different ratios of downstroke and upstroke velocity (η) for (a) Re=10 and (b) Re=100. 

 
 

 
Figure 3.13. Net dimensionless vertical forces as functions of Re for different ratios of 
downstroke velocity to upstroke velocity (η) shown for the vertical stroke at (a) all Re 
studied and (b) Re in the range of the smallest flying insects.  Greater ratios produce larger 
𝐶𝐶𝑉𝑉���. The symmetric (η =1) horizontal stroke is shown for reference as the dashed line.  
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Figure 3.14. 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  as a function of Re for different ratios of downstroke velocity to 
upstroke velocity (η) shown for (a) all Re studied and (b) Re in the range of the smallest 
flying insects. Greater ratios have higher 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄ . The symmetric (η=1) horizontal, lift-
based stroke is shown for reference as the dashed line. 

 

CV was evaluated for η ranging from 0.75 to 2, at Re from 1 to 100. CV and CH as functions 

of dimensionless time are shown for all η at Re=10 and Re=100 (Fig. 3.12a&b). The magnitude 

of CV during downstroke increased with increasing η, however the duration of the downstroke 

decreased. Similarly, the magnitude of CV during upstroke decreased with increasing η; however, 

the duration of the upstroke increased. In all Re investigated, 𝐶𝐶𝑉𝑉��� increased with η, and the η=2 case 

had a greater 𝐶𝐶𝑉𝑉��� than the corresponding symmetric horizontal stroke (Fig. 3.13).  Similarly, 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  

increased with η; however, at higher Re the horizontal stroke had a greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than all vertical 

strokes regardless of η (Fig. 3.14).  At Re≤10, the η=2 case had a greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than the horizontal 

stroke. The increase in 𝐶𝐶𝑉𝑉��� and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  was Re dependent—the magnitude of the effect decreased 

with decreasing Re.  At the Re of the smallest insects, the increase in performance was small. 

Interestingly, Encarsia formosa has a faster upstroke than downstroke with η=0.75 (Weis-Fogh 

1973). A vertical stroke with η=0.75 had a lower 𝐶𝐶𝑉𝑉��� and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than η=1.   

The aerodynamic basis for these changes in 𝐶𝐶𝑉𝑉��� and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  can be seen by comparing the 

vorticity field when η=1 (Fig. 3.9) and η=2 (Fig. 3.15). When η=2 at Re=10, larger vortices were 
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formed during downstroke (Fig 3.15Aii), and consequently larger vortices were shed during wing 

rotation at the end of downstroke (Fig. 3.15Aiii). The effect of η was even more pronounced at 

larger Re. When η=2 at Re=100, larger vortices were also formed during downstroke (Fig. 3.15Bii) 

and shed during wing rotation (Fig. 3.15Biii). The shed vortices travelled downward twice as fast 

when η=2 (Fig.  3.15Biv).  

 
Figure 3.15. Vorticity plots of the vertical stroke with a downstroke that is twice as fast as the 
upstroke (η=2) during the 4th wingbeat at (A) Re=10 and (B) Re=100, shown at (i) the beginning 
of downstroke, (ii) midway through downstroke, (iii) at the beginning of upstroke, and (iv) midway 
through upstroke. The vectors show the direction of flow and are scaled to the magnitude of the 
flow velocity. The colour map shows the vorticity of the fluid (min=-60 and max=60; red, counter 
clockwise rotation; blue, clockwise rotation). 

 

3.3.3 Flexible wings.  

I also expect that flexibility will play a role in wing performance. Flexibility of biological 

structures has been demonstrated to reduce drag in a number of studies (Koehl 1984, Vogel 1989, 

Etnier and Vogel 2000, Alben, Shelley et al. 2002, Alben, Shelley et al. 2004, Miller, 

Santhanakrishnan et al. 2012). To compare a flexible wing to the rigid case, I selected 𝑘𝑘𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏′ =31. 
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I chose this value to represent a case in which deformations are very small but some bending does 

occur (Fig. 3.16). The vertical stroke experienced bending of ~10° during mid-downstroke at 

Re=10. In the flexible wing, the leading edge of the wing (1/5 of the chord length) remained rigid, 

whereas the trailing edge of the wing was flexible and allowed to bend as it interacted with the 

fluid. This represents a simplified way of modelling a stiffer leading edge and flexible trailing 

edge.  

 

Figure 3.16. Plots of the configuration of a rigid wing (gray line) and a flexible wing (black 
line) engaged in the vertical stroke at Re=10, shown at (A) the beginning of downstroke, 
(B) midway through downstroke, (C) at the beginning of upstroke, and (D) midway through 
upstroke. The greatest deformation among all of the strokes analyzed occurs during the 
middle of downstroke for the vertical stroke. 

 

Vorticity fields of the three strokes with flexible wings at Re=10 and Re=100 (Figs. 3.17-

3.19) can be compared to the rigid cases (Figs. 3.7-3.9). The flexible wing generated weaker 

vortices than the rigid wing in all wing strokes. The vortices were also shed more quickly during 

with rotation in the flexible wing cases. 
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Figure 3.17. Vorticity plots of the horizontal stroke with a flexible wing during the 4th wingbeat at 
(A) Re=10 and (B) Re=100, shown at (i) the beginning of downstroke, (ii) midway through 
downstroke, (iii) at the beginning of upstroke, and (iv) midway through upstroke. The vectors 
show the direction of flow and are scaled to the magnitude of the flow velocity. The colour map 
shows the vorticity of the fluid (min=-60 and max=60; red, counter clockwise rotation; blue, 
clockwise rotation). 

 
Figure 3.18. Vorticity plots of the tilted stroke with a flexible wing during the 4th wingbeat at (A) 
Re=10 and (B) Re=100, shown at (i) the beginning of downstroke, (ii) midway through 
downstroke, (iii) at the beginning of upstroke, and (iv) midway through upstroke. The vectors 
show the direction of flow and are scaled to the magnitude of the flow velocity. The colour map 
shows the vorticity of the fluid (min=-60 and max=60; red, counter clockwise rotation; blue, 
clockwise rotation). 
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Figure 3.19. Vorticity plots of the vertical stroke with a flexible wing during the 4th wingbeat at 
(A) Re=10 and (B) Re=100, shown at (i) the beginning of downstroke, (ii) midway through 
downstroke, (iii) at the beginning of upstroke, and (iv) midway through upstroke. The vectors 
show the direction of flow and are scaled to the magnitude of the flow velocity. The colour map 
shows the vorticity of the fluid (min=-60 and max=60; red, counter clockwise rotation; blue, 
clockwise rotation). 

 

CV and CH as functions of dimensionless time are shown for the flexible and rigid case for 

all stroke types at Re=10 and Re=100 (Fig. 3.20). In most cases, the rigid and flexible wings 

behaved similarly. For the horizontal stroke (Fig. 3.20a), there was a larger peak in CV following 

wing rotation at the beginning of downstroke and upstroke in the flexible wing. During wing 

rotation, the wing bends slightly, and the small increase in CV was likely a result of the wing 

returning to a nearly straight configuration during translation.  
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Figure 3.20. Instantaneous CV and CH as functions of dimensionless time for flexible wing and 
rigid wings at (i) Re=10 and (ii) Re=100, shown for (a) the horizontal stroke, (b) the titled stroke, 
and (c) the vertical stroke. 
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The flexible and rigid tilted strokes (Fig. 3.20b) had similar CV during downstroke, but the 

magnitude of the negative CV during wing rotation and upstroke was smaller for the flexible wing. 

This is likely due to the flexible wing encountering a smaller wake during the upstroke than the 

rigid wing. The magnitude of CH was smaller during both upstroke and downstroke for the flexible 

wing as a result of drag reduction in the flexible wing. CV was similar for the flexible and rigid 

vertical strokes (Fig. 3.20c); however, the plots of CH are quite different—likely a result of 

variations in how vortices are shed for the two cases and oscillations in the flexible wing following 

wing rotation.  

There was little difference in 𝐶𝐶𝑉𝑉��� for the horizontal stroke (Fig. 3.21a), but 𝐶𝐶𝑉𝑉��� was greater 

for the flexible wing at all Re for both the tilted and vertical strokes (Fig. 3.21b&c). The greatest 

increase in 𝐶𝐶𝑉𝑉��� was seen for the tilted stroke. There was very little difference in 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  for flexible 

and rigid wings using either the horizontal or vertical strokes. The tilted stroke with the flexible 

wing had a ~20% greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than the rigid wing (Fig. 3.22). The increase in 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  for the 

flexible tilted stroke resulted from decrease in negative CV during upstroke and the decrease in the 

magnitude of CH.  The magnitude of this improved 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  increased with Re. 

 

Figure 3.21.  Net dimensionless vertical forces as functions of Re for the flexible and rigid 
wings, shown for (a) the horizontal stroke, (b) the titled stroke, and (c) the vertical stroke. 
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Figure 3.22. 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  as a function of Re for the flexible and rigid wing, shown for (a) the 
horizontal stroke, (b) the titled stroke, and (c) the vertical stroke. 

 
 

3.4. Discussion  

The results of this study suggest that: (1)  lift-based mechanisms produce more CV than 

drag-based mechanisms at Re > 2, whereas drag-based mechanisms produce more CV than lift-

based mechanisms at Re < 2; (2) lift-based mechanisms have greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than drag-based 

mechanisms at Re > 5, while drag-based mechanisms have greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than lift-based 

mechanisms at Re < 5; (3) a faster downstroke increases CV and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  of a drag-based mechanism, 

although this effect is modest at lower Re; and (4) flexibility has little effect on a lift-based 

mechanism, although flexibility increases CV in a drag-based mechanism and increases both CV 

and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  in a stroke that uses both drag- and lift-based mechanisms. At greater Re, a lift-based 

strategy produces more CV and has a greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than a drag-based strategy; however, at the Re 

pertinent to small insect hovering there is little difference in performance between the two 

strategies. According to the results of this study, a drag-based mechanism of flight would have a 

greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than a lift-based mechanism for insects at Re<5, although I am unaware of flapping 

insect flight at Re <5.   
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Wang suggested that to benefit from the large drag found in symmetric horizontal strokes, 

an insect could tilt the downstroke by ~56° so that the net force points vertically up (Wang 2004). 

Then the wing could return to the starting position with a zero angle of attack during the upstroke. 

Rather than tilting the horizontal stroke as Wang suggested, I created a theoretical stroke in the 

vertical plane. This stroke also has a net force that points vertically up during the downstroke, and 

a wing that returns to the starting position with a zero angle of attack during the upstroke. 

Assuming that the upstroke contributes almost no force, Wang estimated that the average 𝐶𝐶𝑉𝑉��� would 

be 0.99 for a complete stroke at Re=150. Our results indicate that 𝐶𝐶𝑉𝑉��� would be ~0.9 at Re=150.  

Our results are slightly lower than Wang’s because our model does not assume zero force during 

the upstroke and the upstroke does contribute some negative CV. 

Bennet (1973) suggested that a faster downstroke velocity would enhance 𝐶𝐶𝑉𝑉��� produced by 

a drag-based mechanism. Observed insects to-date actually have downstrokes that are slower than 

their upstroke. Since little is known about the flapping kinematics of the smallest insects, I wanted 

to investigate the effectiveness of a drag-based stroke with faster downstrokes. The results indicate 

that a faster downstroke does increase 𝐶𝐶𝑉𝑉��� and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  in a vertical stroke. The increase in 

performance with increasing downstroke velocity is dependent on Re. The magnitude of the effect 

decreases as Re decreases.  At the Re of the smallest flying insects, a vertical stroke with the 

downstroke twice as fast as the upstroke actually slightly outperforms a lift-based horizontal 

stroke; however, the increase in performance is modest. Interestingly, Encarsia formosa has been 

observed to have a faster upstroke than downstroke with η=0.75 (Weis-Fogh 1973). The results 

suggest that an insect performing a vertical stroke with η=0.75 would perform worse than insects 

with larger η. It is likely that observed insects have slower downstrokes because they are not 

engaged in a drag-based vertical stroke. I did not investigate the effect of faster or slower 
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downstrokes on lift-based kinematics, but it has been suggested that the upstroke is relatively fast 

so as to minimize the loss of lift (Grimaldi and Engel 2005). 

Flexibility has been demonstrated to play an important role in drag reduction in a number 

of studies (Alben, Shelley et al. 2002, Miller and Peskin 2004, Miller and Peskin 2009, Miller, 

Santhanakrishnan et al. 2012). Consequently, I expected that flexibility would impact wing 

performance. I compared the three stroke types using both a flexible and a rigid wing (Figs. 3.21 

and 3.22). There was little difference between the flexible and rigid wings for the lift-based 

horizontal stroke. However, 𝐶𝐶𝑉𝑉��� increased for the flexible wing case for the tilted and vertical 

strokes, and the 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  increased for the flexible wing case for the tilted stroke. The greatest 

increase in 𝐶𝐶𝑉𝑉��� and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  was observed for the tilted stroke (Fig. 3.22b). However, even with the 

increase in performance with added flexibility, the tilted and vertical stroke still had lower forces 

and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than the horizontal stroke at Re pertinent to the smallest insects. 

The results of this study suggest it is possible that a small insect could use a drag-based 

strategy to produce as much 𝐶𝐶𝑉𝑉��� as a lift-based strategy, although I am unaware of any insects that 

have a drag-based stroke at very low Re. It is important to point out that neither lift- nor drag-based 

weight support mechanisms are efficient at Re<100, and particularly at Re<20, which is the range 

of the smallest flying insects. This may help explain the importance of additional flight strategies 

not included in this study, such as wing-wing interactions (Lighthill 1973, Weis-Fogh 1973, 

Maxworthy 1979, Ellington 1984, Ellington 1984, Spedding and Maxworthy 1986, Sun and Xin 

2003, Lehmann, Sane et al. 2005, Miller and Peskin 2005, Sun and Yu 2006, Lehmann and Pick 

2007, Miller and Peskin 2009) and bristled wings (Cheer and Koehl 1987, Sunada, Takashima et 

al. 2002). 
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3.5. Limitations 

This study only considers the vertical force that could be produced by tiny insects. I did 

not consider the advantages that either lift or drag based mechanisms might have for other 

components of flight. Previous computational work for larger insects has shown that it is easy to 

synthesize optimized computational models of wing strokes that exceed the performance of the 

biological stroke when the measurement of aerodynamic performance is defined in terms of force, 

power, or efficiency (Berman and Wang 2007, Nakata and Liu 2012, Zheng, Hedrick et al. 2013). 

However, the design of insect wing kinematics is the result of compromise among many factors, 

including stability, maneuverability, control, and wing strength. Vertical force alone cannot fully 

explain whether tiny insects would use lift or drag mechanisms. For example, at higher Re, stability 

increases as the stroke plane angle increases (Xu and Sun 2014). Additional studies into the 

maneuverability, stability and control of insects at low Re would be beneficial to understanding 

the flight strategies employed by these insects. 

While this study was conducted using 2D cross sections of an insect wing, I expect that the 

3D geometry of wings will play an important role in aerodynamic performance.  In general, 2D 

studies fail to capture any effects from spanwise flow, and there can be differences in the separation 

of the LEV, especially at higher Re (Wang, Birch et al. 2004). The 2D study also fails to take into 

account that the flapping wings of insects are rotated about a wing base, rather than translated. 

Especially during stroke reversal with a tilted stroke plane, the vector normal to the wing surface 

does not typically point upward. This effect is more significant for insects with larger wing stroke 

amplitudes.  I only considered linear stroke planes, but the wing tip of many insects actually trace 

more complicated patterns such as ovals, parabolas, or figure eights (Wang 2004). I also did not 

consider the effects of wing-wing interactions, which could be quite important since it is widely 
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believed that many tiny insects use clap and fling to enhance lift (Weis-Fogh 1973).  Large forces 

are required to fling the wings apart at low Re (Miller and Peskin 2005), but it is possible that 

bristles on the wing could reduce the force required to clap the wings together and fling the wings 

apart (Miller and Peskin 2009). The flight mechanisms employed by insects at Re<100 requires 

further investigation. 
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CHAPTER 4: A NUMERICAL STUDY OF THE ROLE OF BRISTLES  

IN SMALL INSECT FLIGHT 

4.1 Introduction 

The fluid dynamics of flow through bristled appendages similar to those on the wings of 

small insects have been explored with physical (Loudon, Best et al. 1994, Sunada, Takashima et 

al. 2002), analytical (Cheer and Koehl 1987) and numerical models (Barta and Weihs 2006, 

Weihs and Barta 2008, Barta 2011, Davidi and Weihs 2012). However, the physiological or 

mechanical importance of bristled insect wings remains a mystery.   

Previous work suggests that a single wing with bristles engaged in steady translation or 

rotation is almost as effective as a solid wing at producing aerodynamic forces (Sunada, 

Takashima et al. 2002) (Davidi and Weihs 2012).  While these works suggest that bristles may 

not significantly alter the aerodynamic forces experienced by a single wing during steady 

translation, the bristles might offer an aerodynamic benefit during wing-wing interactions (i.e. 

‘clap and fling’). Miller and Peskin (2005) showed that very large forces are required to fling 

insect wings apart, particularly at Re<20, the range of the smallest flying insects. They suggested 

that bristled wings could reduce the force required to clap the wings together and fling the wings 

apart (Miller and Peskin 2009).   

If the Reb and spacing of the bristles are near the transition where the bristled appendage 

acts either as a solid paddle or leaky rake (Cheer and Koehl 1987), then during clap and fling it 

could be possible for the wing to preserve lift by acting as a solid plate during the translational 

part of the stroke and a leaky rake during the fling.  Experiments with physical models have 
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shown that leakiness is increased when bristles move near a boundary (Loudon, Best et al. 1994). 

During the fling, there could be some flow between the wings’ bristles enhanced by the presence 

of the other wing, which would reduce the force required to fling the wings apart. This idea is 

supported by a previous numerical study of porous wings that showed that porous wings, 

compared to solid wings, reduce the drag required to fling two wings apart (Santhanakrishnan, 

Robinson et al. 2014). However, it is unclear if a bristled wing can be treated as a homogenized 

porous layer, and if so, what the biologically reasonable permeability should be.  

The goal of this study was to investigate if bristled wings could reduce the force required 

to fling the wings apart during clap and fling while still maintaining lift during translation. The 

challenge of studying the fluid dynamics of bristles was in resolving the fluid flow between the 

bristles. In order to accurately model the flow between the bristles, a very high grid resolution 

was required. The effect of Reynolds number, angle of attack, bristle spacing, and wing-wing 

interactions were investigated. 

4.2 Methods 

4.2.1. Bristles modeled in 2D.  

An insect wing stroke is commonly approximated in two dimensions using a cross 

section through the chord of the wing, as was seen in Chapter 3. Similarly, a row of bristles on an 

insect wing can be modelled in two dimensions by taking a cross section through the bristles 

(Fig. 4.1a). The resulting row of two-dimensional cylinders can then be moved to perform 

desired kinematics (Fig. 4.1b), and the resulting forces and flow structures can be quantified. 

In this study, bristles were modeled as rows of two-dimensional cylinders.  In cases with 

full wings, three different gap to diameter (G/D) ratios were compared to each other and to a 

solid wing (Fig. 4.2). The G/D ratios were 5:1, 11:1, and 17:1, and the number of bristles per 



 
 

60 
 

wing were 25, 13, and 9, respectively. These G/D ratios were selected because they capture the 

range commonly observed in tiny flying insects (approximately 4-12). The number of bristles per 

wing was selected to allow for the total chord length of the wing, c, to remain constant at 145 

bristle diameters. In this way, the chord-based Reynolds number, Rec was identical for all of the 

wings, regardless of G/D.  

  

Figure 4.1. A bristled wing can be modeled in two-dimensions using a cross section 
through the chord of the wing (a). The row of two-dimensional cylinders can then be 
modeled performing desired kinematics (b). 
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Figure 4.2. The fluid dynamic forces and leakiness were compared between (a) a solid 
wing and bristled wings with three gap to diameter (G/D) ratios: (b) 5:1, (c) 11:1 and (d) 
17:1.  In all four cases, the wings were the same length, c, and in cases with two wings, 
the wings were spaced c/10 apart. 
 

4.2.2 Chord-based and bristle-based Reynolds numbers 

For this study, it was important to differentiate the bristle-based Reynolds number (Reb) 

and the chord-based Reynolds number (Rec). Reb and Rec were each defined using Eq. 1.1.  

𝑅𝑅𝑅𝑅𝑏𝑏 = 𝜌𝜌𝑈𝑈𝜌𝜌
𝜇𝜇

    and    𝑅𝑅𝑅𝑅𝑐𝑐 = 𝜌𝜌𝑈𝑈𝑐𝑐
𝜇𝜇

 

where the diameter of the bristle, D, was the characteristic length for Reb. And the total length of 

the chord, c, was the characteristic length for Rec. In general, the characteristic velocity, U, is 

defined as the average wing tip velocity of the insect, and in the simulations, U was defined as 

the steady state velocity of the chord. Tiny insects are generally reported to fly at Rec ranging 

from 4-20. In contrast, Reb has been reported to be on the order of 10-2 for thrips (Ellington 1975) 

and 10-1 for Encarsia formosa (Kuethe 1975). For this study, Reb was varied from 10-1 to 10-3 for 
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cases with full wings. Because the total chord length of the wing remained constant at 145D, Rec 

was 145 times larger than Reb (see Table 4.1). The Reb most relevant to tiny insects are 10-1 and 

10-2, which corresponds to Rec of 14.5 and 1.45, respectively. While Rec=1.45 is slightly lower 

than that observed biologically, these Rec are of the order of magnitude relevant to tiny insect 

flight. 

 

Table 4.1 Comparison of bristle-based and chord-based Reynolds numbers for full wings 

Reb Rec 

0.5 72.5 

10-1 14.5 

10-2 1.45 

10-3 0.145 

 

4.2.3 Leakiness.   

The leakiness (Fig. 4.3) of a pair of bristles was defined as the ratio of the volume of 

fluid that actually moves between a pair of bristles to the volume across which that bristle pair 

sweeps in a unit of time (Cheer and Koehl 1987).   

𝜌𝜌𝑅𝑅𝐿𝐿𝑘𝑘𝑒𝑒𝐵𝐵𝑅𝑅𝑒𝑒𝑒𝑒 =
𝑉𝑉𝑙𝑙𝑡𝑡𝑡𝑡𝑢𝑢
𝑉𝑉𝑠𝑠𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠

 

Where 𝑉𝑉𝑙𝑙𝑡𝑡𝑡𝑡𝑢𝑢 is the volume of fluid that actually moves between two cylinders, and 𝑉𝑉𝑠𝑠𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠 is the 

volume across which the cylinders sweep. The leakiness for a pair of cylinders has been 

calculated analytically over a range of Reb previously (Fig. 4.4). In general, leakiness increases 

with increasing Reb and G/D (Cheer and Koehl 1987). 
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I used Visit (Childs 2013) to determine the leakiness from numerical simulations. I 

performed a lineout operation on the fluid velocity between two bristles, then integrated to 

determine the leakiness. 

 

 

Figure 4.3. Leakiness is the ratio of (a) the volume of viscous fluid that actually moves 
between a pair of bristles to (b) the volume across which that bristle pair sweeps in a unit 
of time (the volume of fluid that would move between the bristles in an inviscid fluid). 

  

 
Figure 4.4. Leakiness as a function of gap to diameter ratio for a pair of cylinders 
(reproduced from Cheer and Koehl 1987).  
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4.2.4 Dimensionless drag 

In order to compare the forces from the computations, instantaneous forces experienced 

by the wing were non-dimensionalized by 0.5𝜌𝜌𝜌𝜌2 𝜌𝜌, where U was the characteristic steady state 

velocity. L was the characteristic length and depended on the application. For simulations with 

only 2 bristles and simulations comparing the effect of additional bristles, L was the bristle 

diameter, D, and the reported force was that for each individual bristle. For simulations with full 

length wings, L was the chord length, c, and the reported force was the sum of the forces 

experienced by the entire row of bristles. CL and CD denote the lift and drag coefficients, 

respectively. 

4.2.5 Numerical method 

 I used the IBFE method as described in Chapter 2.1.2 to model two-dimensional bristles 

immersed in a viscous, incompressible fluid. The finite element bristle meshes were constructed 

using Gmsh (Geuzaine and Remacle 2009) and each individual bristle consisted of at least 16 

triangular elements. In cases with full wings, the wings used the G/D ratios and number of 

bristles listed in Section 4.2.1. The computational domain was 500 bristle diameters wide and 

high. And the bristles were at least 100 bristle diameters from the edges of the computational 

domain at all times.  

I used IBAMR (Griffith, Hornung et al. 2007), as described in Chapter 2, for all of the fluid 

dynamic simulations. The adaptive method used four grid levels to discretize the Eulerian 

equations with a refinement ratio of four between levels. Regions of fluid that contained the bristles 

or vorticity above 0.125 were discretized at the highest refinement. The effective resolution of the 

finest level of the grid corresponded to that of a uniform 2048×2048 discretization. The boundary 

conditions were set to no-slip (u=0) on all sides of the computational domain. The bristles were 
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moved using a preferred position that was changed in time. A penalty force was applied 

proportional to the distance between the actual and desired boundaries. Other simulation-specific 

numerical parameters are listed in Table 4.2. 

 

Table 4.2. Numerical parameters. 

Dimensionless parameter Value 
Bristle diameter (D) 0.001 
Velocity 0.02 
Domain length (L) 0.5 
Finest Grid Refinement 2048×2048 
Number of refinement levels 4 
Refinement ratio 1:4 
Time step (dt) 1.0e-6 
Final simulation time 5 
Spatial step size (dx) L/2048 
Stiffness (kappa_s) 1e11 

 

4.2.6 Grid convergence study. 

The grid convergence study had two components. (1) Unique to this study, the effective 

radius of the immersed boundary in IBFE, as a result of the discretized, smooth delta functions, 

was investigated and the radii of the bristles were modified to compensate for the extra width due 

to the delta functions. (2) As is typical in immersed boundary numerical studies, spatial 

convergence was investigated. 

Because I am investigating the effect of bristle size and spacing in this study, the 

effective diameter of the bristles is important. When using the standard delta function (Fig. 4.5.a) 

for the classical immersed boundary method (Peskin 2002), a single immersed boundary point 

interacts with the fluid like a sphere with radius 1.255 grid cells in Stokes flow (Bringley and 

Peskin 2008), however this needs to be validated for the full Navier Stokes equations. As a 
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result, a bristle of diameter, D, (Fig. 4.5.b) would have an effective radius greater than D (Fig. 

4.5.c), and the diameter of the bristle would need to be decreased to accommodate the effective 

radius (Fig. 4.5.d).  

 

 

Figure 4.5. The effect of the delta function on the diameter of an immersed boundary 
bristle. (a) The regularized 2D delta function has the support of 4 Cartesian grid cells in 
the classical immersed boundary method. A bristle modeled as a 2D cylinder (b), with 
diameter, D, would actually have an effective diameter greater than D (c), because each 
boundary point acts like a sphere with an effective radius (light blue circles) dependent 
on the fluid discretization. (d) When constructing the bristles, the center of the immersed 
boundary points should be adjusted inward so that the effective diameter is D.   
 

A key difference between the classical IB method and the IBFE method used in this 

chapter is that rather than spreading forces from the nodes of the boundary mesh, the forces are 

instead spread from quadrature points within the interiors of the Lagrangian finite elements. 

Consequently, calculating the effective radius of the node points of a mesh was not straight 

forward, and needed to be quantified numerically. I assumed that the effective radius was 

between 0 and 2 fluid grid points, and decreased the radius of the bristle meshes accordingly. I 
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combined this study with a standard spatial convergence study across different grid sizes (Fig. 

4.6). 

Changes in spacing between neighboring bristles have the most pronounced effect at Reb 

approaching 1 and when the bristles are already fairly close together (Cheer and Koehl 1987).  

For that reason, the grid refinement study focused on two bristles with Reb =10-1 (the largest Reb 

used in this study) and a G/D ratio of 5:1 (the smallest spacing used in this study). To test for 

spatial convergence, I compared a uniform 1024×1024 discretization, a uniform 2048×2048 

discretization, and a uniform 4096×4096 discretization. These three resolutions were compared 

for 2 bristles translating at a constant velocity (G/D=5:1, Reb=1e-1). The average leakiness at 

steady state are shown in Fig. 4.6.   

To accommodate the effect of the discretized delta functions, I confirmed that the 

appropriate distance required to compensate for the effective added radius was 1.5 grid cells, by 

investigating the effect that decreasing the bristle radius from 0 to 2 grid cells had on leakiness. 

The bristle radius was decreased by 1.5 fluid grid cells for all further simulations in this chapter. 

With this adjustment, the average percent difference in leakiness between the 2048×2048 

discretization and the 4096×4096 discretization was less than 3%. For computational efficiency, 

effective 2048×2048 discretization was used for all other simulations in this chapter.  
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Figure 4.6. Grid convergence study. Leakiness for three mesh widths (2 bristles at 
Reb=10-1 and G/D=5). The x-axis is the number of fluid grid points that the bristle radius 
is decreased in order to compensate for the effective radius of an immersed boundary 
point using the discretized delta function. The leakiness determined by Cheer and Koehl 
using an analytical model at this Reb and G/D is plotted for reference. The 2048X2048 
grid and 1.5 dx adjustment were used for all remaining simulations in this chapter. 

 

4.2.7 Considering wall effects.  

In this study, the boundaries of the computational fluid domain acted as walls, just like 

the walls of an experimental flow tank. The effect these walls have on the fluid flow needs to be 

considered when interpreting the results. At low Re, the influence of walls, even at great 

distances, is unexpectedly great; for example, a two-fold increase in drag is observed for a 

cylinder 500 diameters from a wall at Reb=10-4 (White 1946). The following formula estimates 

when wall effects can be ignored (Vogel 1981):  

 𝑦𝑦
𝑙𝑙

>
20
𝑅𝑅𝑅𝑅

 Eq. 4.1 
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where y is the distance to the wall and l is a characteristic length. Using this estimate, the nearest 

wall would have to be 20,000 diameters away before wall effects could be ignored at Reb=10-3.  

Unfortunately, limitations in the computational models in this study prevent wall distances of 

this magnitude.  

Luckily, Loudon and Koehl demonstrated that when the distance from the closest side 

wall is 15 cylinder diameters or greater, leakiness changes very slowly with distance from the 

wall (Loudon, Best et al. 1994). So while wall effects cannot be avoided, the magnitude of the 

effect should be minimal so long as the distance from the sides are greater than 15 diameters. In 

this study, the bristles are always at least 100 diameters from the walls.  

4.3 Results 

4.3.1 Validation study.  

In order to validate the numerical model, I compared the results of the model to a 

previously published analytical model given by Cheer and Koehl (1987). In the model by Cheer 

and Koehl, the drag acting on the bristles and leakiness between 2 two-dimensional bristles were 

solved analytically. To compare my numerical model to the previously published analytical 

model, I simulated two bristles translating at a steady velocity over a range of Reb (Fig. 4.7). At 

lower Reb, a large region of fluid was moved with the bristles and the bristles acted more like a 

solid plate. At larger Reb, the bristles entrained a smaller region of fluid, and the bristles were 

leakier. For example, at Reb=10-3 (Fig. 4.7.d) the region around the bristles looked like a uniform 

flow field, whereas at Reb=0.5 (Fig. 4.7.a), the direction of flow quickly changed over a short 

distance from the bristles. 
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Figure 4.7. Vorticity plots of two bristles (light blue) translating at (a) Reb=0.5, (b) Reb=1e-1, (c) 
Reb=1e-2 and (d) Reb=1e-3 (G/D=5:1). The frame shown is at steady state, after the bristles have 
traveled 150 bristle diameters (the bristles are moving toward the top of the page at a constant 
velocity). The vectors show the direction of flow and are scaled to the magnitude of the flow 
velocity (min=0, max=0.2). The color map shows the vorticity of the fluid (min=-30 and max=30; 
red, counterclockwise rotation; blue, clockwise rotation). 
 

Fig. 4.8 shows the (a) leakiness and (b) forces of my numerical simulation compared to 

Cheer and Koehl’s analytical solution (1987) over a range of Reb. The reported leakiness and 

drag are for bristles at steady state. I defined steady state as less than a 1% change in leakiness or 

force per unit of dimensionless time. Overall, there was good agreement between the IBAMR 

simulations and the analytical model by Cheer and Koehl (1987). The differences can probably 

be attributed to the different boundary conditions used in the numerical and analytical models. In 

the numerical model, wall effects had a greater effect on leakiness and forces at lower Reb, 
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whereas the analytical model assumed an infinite domain. This explains why the numerical 

model was leakier and experienced greater forces than the analytical model at lower Reb. 

Differences at higher Reb may be due to the use of the Oseen approximation in the analytical 

model. 

 
Figure 4.8. Comparison of the numerical method (IBAMR) to a previously published analytical 
model of 2 bristles. (a) Leakiness as a function of Reb for a gap to diameter ratio of 5:1 (squares) 
and 15:1 (circles). Dotted lines represent analytical results from Cheer and Koehl (1987), and 
solid lines represent the numerical results. (b) The log of the drag coefficient (CD) plotted vs. the 
log of Reb.  The data from IBAMR are for a gap to diameter ratio of 5:1. The data from Cheer 
and Koehl (1987) are those for a 0.1um cylinder with a neighbor 0.3µm away.   
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4.3.2 Effect of additional bristles on a row. 

Given that insect wings consist of an array of 10-100s of bristles, depending on the 

species, it was important to consider the effect of additional bristles on leakiness and drag. Cheer 

and Koehl pointed out that under certain conditions, the width of a row of bristles will likely 

affect leakiness and drag, however they do not explore it quantitatively (Cheer and Koehl 1987). 

Later work showed that increasing the number of cylinders from two to four decreased the 

leakiness between individual bristles at Reb=0.5 and increased the leakiness at Reb=4 (Koehl 

1993). Cheer and Koehl suggested that the shear gradients in the middle region of a row of 

bristles might be larger than predicted if the row is wide enough that it is easier for fluid in the 

middle region to move between bristles rather than around the edges (Cheer and Koehl 1987).  

Therefore, investigating leakiness and drag along the entire width of a finite array of bristles is 

important to our understanding of bristle function.  

A number of studies have investigated the leakiness and drag along a finite row of 

cylinders in creeping flow (Barta and Weihs 2006, Weihs and Barta 2008, Barta 2011).  The 

more bristles added to the row, the lower the drag exerted on each body becomes, and the drag 

near the edge of the row is greater than that near the center (Barta and Weihs 2006). Davidi and 

Weihs reported similar results with the drag distribution along a row of 50 cylinders for 

Rec=0.01-100 (Davidi and Weihs 2012) , but they did not report the effect of additional bristles. 

I investigated the effect of adding additional bristles for parameters similar to the bristles 

of thrips (Reb =10-2 and G/D=10). In all cases, the row of bristles was positioned perpendicular to 

the direction of motion, at a constant velocity. The leakiness and drag were reported when the 

bristles had traveled 150 diameters and were at steady state. The number of bristles was varied 
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from 2 to 20 bristles (Fig. 4.9). Note that while Reb remained constant with additional bristles, 

Rec would increase as the length of the row increases. 

Adding additional bristles to a row had a significant effect on both leakiness and drag. 

The leakiness was greatest at the edge of a row of bristles (Fig. 4.9.a), and smallest at the center. 

In all cases, the drag (Fig. 4.9.b) near the edge of the row was greater than that near the center, 

which supports previous research (Barta and Weihs 2006). In the absence of wall effects, I would 

expect that the more bristles added to the row, the lower the drag exerted on each bristle and the 

lower the leakiness. In these simulations, increasing the number of bristles from 2 to 4 decreased 

the drag experienced by the center bristles. However, as the number of bristles increased above 

6, the drag experienced by each bristle increased. I expect that this was in part due to wall 

effects.  Another possibility was that as the row became wider, it was easier for fluid in the 

middle region to move between bristles rather than around the edges, increasing the shear 

gradients around the middle bristles (Cheer and Koehl 1987).   
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Figure 4.9. Effect of additional bristles on a row (Reb =10-2 and G/D=10). (a) Leakiness 
and (b) nondimensional drag experienced by each bristle in a two dimensional row, 
shown for row lengths ranging from 2 to 20 bristles. Steady state drag and leakiness are 
reported for each bristle translating at a constant velocity. 
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4.3.3 Bristles and angle of attack.  

In addition to the number of bristles, I expected the performance of bristles to change 

with the angle of the wing relative to the approaching flow (eg. the angle of attack). While 

studying flow between gill rakers, Cheer et al. discovered that the speed and approaching angle 

of the flow played a role in generating vortices that reduce the effective size of the gap between 

rakers, leading to changes in leakiness (Cheer, Cheung et al. 2012). While these results were 

obtained at Reb=37.5 to 225, I might expect to see a similar change in leakiness with angle of 

attack at lower Reb.   

To investigate the effect of angle of attack on bristle performance, I compared the lift and 

drag experienced by a single wing translating with three different G/D ratios (see Fig. 4.2) and at 

the relevant Reb of thrips (Reb=10-2, Rec=1.45). The angle of attack of the row of bristles ranged 

from 0° to 90°, and the row translated at a steady velocity until each wing traveled 150 bristle 

diameters (approximately 1 wing length). The reported force was the sum of the forces 

experienced by the entire row of bristles, normalized by the chord length as described in Section 

4.2.4. CL and CD denote the lift and drag coefficients, respectively.  
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Figure 4.10. Dimensionless (a) lift and (b) drag coefficients experienced by a bristled 
wing translating at steady state over a range of angles of attack (Reb=10-2, Rec=1.45). 
Three different gap to diameter ratios were investigated: 5:1 (circles), 11:1 (squares), and 
17:1 (triangles).  
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For all angles of attack, the magnitude of the force coefficients decreased with increasing 

G/D ratios (Fig. 4.10). The magnitude of this effect was greatest for lift at angles of attack near 

45° (Fig. 4.10.a) and the magnitude of this effect was greatest for drag at angles of attack 

approaching 90° (Fig. 4.10.b). Interestingly, the effect of G/D was greater at higher angle of 

attack than at lower angles of attack. For example, at angle of attack=9°, there was little 

difference in lift between the three wings, whereas at angle of attack=81°, there was a noticeable 

increase in lift as G/D decreases. Similarly, there was a smaller difference in drag at lower angles 

of attack, whereas there was a large increase in drag with decreasing G/D at higher angles of 

attack. This was most likely because lower angles of attack reduced the effective size of the gap 

between bristles, leading to changes in leakiness and forces (Cheer, Cheung et al. 2012).  

The effect of angle of attack on bristle performance was particularly evident in the 

aerodynamic polars of the average coefficients of lift and drag shown in Fig. 4.11.a. While the 

G/D affected the lift and drag coefficients at higher angles of attack, it appears to have less 

influence on the lift and drag at lower angles of attack. While G/D certainly changed the lift and 

drag experienced by a bristled wing, interestingly it appeared to have little effect on the lift-to-

drag ratio (Fig. 4.11.b.) In these simulations, there was no difference in CL/CD for angles of 

attack < 27°. And at angles of attack >27°, there appeared to be no difference between G/D=5 

and G/D=11, and G/D=17 performed only slightly below the other two.  

Flow visualization of the entire bristled wing revealed differences between the different 

G/D ratios (Fig. 4.12). Vector fields of the three G/D ratios translating at an angle of attack of 

45° reveal that significantly more fluid was entrained by the wing at lower G/D ratios. The 

leading edge vortex was slightly more diffuse at G/D=17 (Fig. 4.12.c) than at G/D=5 (Fig. 

4.12.a), which might help explain the slightly larger lift-to-drag ratio at G/D=5 (Fig. 4.11.b).  
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Figure 4.11. Aerodynamic performance of a row of bristles translating at steady state for 
a range of angles of attack (Reb=10-2, Rec=1.45). (a) The aerodynamic polars of the 
average coefficients of lift and drag for three different gap to diameter ratios and (b) the 
lift-to-drag ratio over a range of angles of attack.  
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Figure 4.12. Vorticity plots of a row of bristles translating at 45 degree angle of attack and 
Reb=10-2 (Rec=1.45) with (a) G/D=5, (b) G/D=11, and (c) G/D=17. The row of bristles are 
moving to the right. The frame shown is at steady state, after the bristles have traveled 150 
bristle diameters (approximately 1 wing length). The wing is traveling at a dimensionless 
velocity of 0.02. The vectors show the direction of flow and the color is scaled to the 
magnitude of the flow velocity (min=0, max=0.02). The gray dashed box in (a) is the region 
shown in Figure 4.13. 
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Figure 4.13. Vorticity plots of the leading edge of a row of bristles translating at (a) angle of 
attack=18°, (b) angle of attack=45°, and (c) angle of attack=72°. The gap to diameter ratios are 
(i) 5, (ii) 11, and (iii) 17. The row of bristles are moving to the right, and have reached steady 
state (Reb=10-2, Rec=1.45). Only the leading edge of the row is shown (the dashed box in Figure 
4.12.a corresponds to B.i. in this figure). The color map shows the vorticity of the fluid (min=-5 
and max=5; red, counter clockwise rotation; blue, clockwise rotation). 
 

Concentrating the view in on the dashed box shown in Fig. 4.12.a revealed interesting fluid 

dynamics around the bristles. Vorticity plots (Fig 4.13) of the leading edges of the row of bristles 

at angles of attack = 18°, 45°, and 72° showed differences in the fluid behavior as the angle of 

attack changes. Each translating bristle generated a pair of oppositely spinning attached vortices. 
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The magnitude and size of these vortices were greater near the leading and trailing edges of the 

wing, and smallest near the center of the wing. With decreasing angle of attack, the vortices 

became more diffuse and extended over a greater area, effectively reducing the size of the gap 

between bristles (see Fig 4.13.A). While studying flow between gill rakers, Cheer et al. discovered 

a similar relationship between angle of the flow and the effective size of the gap between rakers, 

leading to changes in leakiness (Cheer, Cheung et al. 2012). This suggests that at lower angles of 

attack, bristled wings may act more like solid wings than they do at higher angles of attack.  

4.3.4 Wing-wing interactions.  

To investigate the effect of wing-wing interactions (Fig 4.14), I compared a single wing 

to a pair of wings moving apart. I investigated both pure wing translation and pure wing rotation 

for bristled and solid pairs of wings (see Fig 4.2) at Reb ranging from 10-1 to 10-3 (Rec ranging 

from 14.5 to 0.145). The wing length, L, was defined as the length of the row of bristles and is 

constant across all G/D ratios. 

In the case of two wings translating apart (Fig 4.14.a), the wings started at a distance of 

0.1c, where c is the chord length of the wing, based on observations of clap and fling in thrips 

(Santhanakrishnan, Robinson et al. 2014). They accelerated over a distance of 0.05c, then 

translated at a steady state velocity until each wing had traveled 0.8c, so that the two wings were 

2c apart at the end of the simulation. For a single wing translating, the wing performed the exact 

same kinematics, without the presence of a second wing. 

In the case of two wings rotating apart (Fig 4.14.b), the wing rotated about the trailing 

edge of the wing, as is commonly seen in fling. The velocity and distance traveled was based on 

the leading edge of the wing. Similar to translation, the wings started at a distance of 0.1c. They 

accelerated apart until the wing tips had traveled 0.05c, then rotated at a steady velocity until the 
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wings tips had each traveled 1c. For a single wing rotating, the wing performed the exact same 

kinematics, without the presence of a second wing. Reb was based on the wing tip velocity. 

 

 

Figure 4.14. Illustration of bristled wing-wing interactions: a row of bristles can (a) 
translate or (b) rotate apart. In the numerical simulations, the bristled wings start a 
distance of 0.1c apart (i). They accelerate until they are 0.2c apart (ii), and then translate 
or rotate at a steady velocity until they are 2c apart (iii). In the case of a translating wing 
(a), the angle of attack is 90 degrees. In the case of a rotating wing (b), the wing rotates 
about the trailing edge. Velocity and distance traveled is based on the leading edge. 
Numerical simulations of a single wing perform the exact same kinematics in the absence 
of a second wing. 

 

In all cases, the drag required to translate (Fig 4.15) or rotate (Fig 4.16) two wings apart 

was greater than the drag required to move a single wing. The peak drag experienced during two 



 
 

83 
 

wings performing a “fling” was much greater than the peak drag experienced by a single wing 

(Fig 4.15). This was particularly true at lower Reb and smaller G/D ratios. For example, there 

was a 28-fold increase in the maximum drag required to translate two solid wings vs one solid 

wing at Reb=10-3, whereas, there was only a 5-fold increase in the max drag at Reb=10-1. In 

contrast, there was a 4-fold increase in the drag required to translate two bristled wings vs one 

bristled wing at Reb=10-3 and G/D=17, whereas there was only a 0.1-fold increase in the drag 

required at Reb=10-1. At the biological conditions most relevant to thrips (Reb=10-2 and G/D=11), 

there was only a 2-fold increase in the drag required to translate two bristled wings vs one 

bristled wing, compared to a 10-fold increase for a solid wing at the same Reb.  

 
Figure 4.15. Maximum dimensionless drag experienced by 1 wing translating (solid markers) or 
2 wings translating apart (open markers) at Reb =10-1 (Rec=14.5), Reb =10-2 (Rec=1.45), and Reb 
=10-3 (Rec=0.145). The wings accelerate over a distance of 0.05 wing lengths, then translate at a 
steady velocity. For cases with two wings, the wings start at a distance of 0.1 wing lengths apart. 
The maximum drag is the peak drag experienced by a single wing translating or the drag 
experienced by an individual wing that is part of a pair moving apart.  



 
 

84 
 

 

Figure 4.16. Maximum dimensionless drag experienced by 1 wing rotating (solid markers) or 2 
wings rotating apart (open markers) at Reb =10-1 (Rec=14.5), Reb =10-2 (Rec=1.45), and Reb =10-3 
(Rec=0.145). The wings rotate about the trailing edge of the row of bristles. The wings accelerate 
until the wing tips are 0.05 wing lengths, then rotate at a steady rotational velocity. For cases 
with two wings, the wings start at a distance of 0.1 wing lengths apart. The maximum drag is the 
peak drag experienced by a single wing rotating or the drag experienced by an individual wing 
that is part of a pair moving apart.  
 

A more careful inspection of the drag as a function of time as two wings translate apart 

(Fig 4.17) reveals more details about the effect of bristles in wing-wing interactions. A similar 

pattern was seen for the drag of two wings rotating (not shown). In all cases, the drag peaked as 

the wings accelerated at the beginning of the stroke, then the drag plateaued to a steady state. In 

all cases, two wings experienced greater drag than a single wing. In particular, the magnitude of 

the peak was much larger in the presence of a second wing. However, as the wings continued to 

move farther apart, the drag decreased and approached that of a single wing. The increase in drag 

in the presence of a second wing was dependent upon Reb and G/D. The magnitude of the effect 

increased with decreasing Reb and decreasing G/D ratio. At the conditions most relevant to thrips 
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(Reb =10-2 and G/D=11), there was little difference in drag due to the presence of a second wing 

after the wings traveled 0.5 wing lengths (Fig 4.17.b). 

 

Figure 4.17. Instantaneous dimensionless drag as functions of dimensionless time at (a) 
Reb =10-1 (Rec=14.5), (b) Reb =10-2 (Rec=1.45), and (c) Reb =10-3 (Rec=0.145). A single 
wing translating (solid lines) is compared to two wings performing a “fling” (dashed 
lines) for three different bristle gap to diameter ratios and a solid wing (angle of 
attack=90°). Only the first 0.75 wing lengths traveled are shown. 

 

Velocity vectors of the fluid around the leading edge of two wings moving apart and a 

single wing translating are shown for Reb=10-1, Reb=10-2 and Reb=10-3 in Figs 4.18, 4.19 and 

4.20, respectively. In general, the bristles were more leaky as Reb increased and as G/D 

increased. The leakiness of the bristles was enhanced with the presence of a second wing. There 
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were fewer differences in the flow between a single wing and two wings as the Reb increased and 

G/D increased.  For example, at Reb=10-1 and G/D=17, the fluid fields were very similar between 

a single wing (Fig. 4.18.b.i) and two wings (Fig. 4.18.a.i). There was also little difference in the 

forces experienced by these two cases (Fig 4.15 and Fig. 4.17.a). In both cases, there was fluid 

flow between bristles in the direction opposite to motion. The magnitude of this fluid flow was 

greater in the presence of a second wing (Fig. 4.18.a.i). As the G/D decreased, however, less 

fluid was able to flow between bristles. 

As the Reb decreased, differences between one and two wings became more apparent. At 

Reb=10-2 and Reb=10-3, there was a visible difference in the amount of fluid that travelled with a 

single wing translating (b) compared with two wings moving apart (a). The presence of a second 

wing (a) enhanced the flow between bristles, especially at lower Reb. For example, in the 

presence of a second wing, fluid flowed between bristles in the direction opposite to motion 

when G/D=17 (Figs. 4.19.a.i and 4.20.a.i), whereas fluid moved in the direction of motion 

between bristles in the absence of a second wing (Figs. 4.19.b.i and 4.20.b.i).  
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Figure 4.18. Velocity vector field plots of the leading edges of (a) two wings translating apart 
and (b) a single wing translating to the right at Reb=10-1 (Rec=14.5). Three gap to diameter ratios, 
(i) 17, (ii) 11, and (iii) 5, are compared to (iv) a solid wing. The frame shown is at the end of 
acceleration, when the wings are 0.2 wing lengths apart. The vectors show the direction of flow 
and the color is scaled to the magnitude of the flow velocity (min=0, max=0.02).  
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Figure 4.19. Velocity vector field plots of the leading edges of (a) two wings translating apart 
and (b) a single wing translating to the right at Reb=10-2 (Rec=1.45). Three gap to diameter ratios, 
(i) 17, (ii) 11, and (iii) 5, are compared to (iv) a solid wing. The frame shown is at the end of 
acceleration, when the wings are 0.2 wing lengths apart. The vectors show the direction of flow 
and the color is scaled to the magnitude of the flow velocity (min=0, max=0.02).  
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Figure 4.20. Velocity vector field plots of the leading edges of (a) two wings translating apart 
and (b) a single wing translating to the right at Reb=10-3 (Rec=0.14). Three gap to diameter ratios, 
(i) 17, (ii) 11, and (iii) 5, are compared to (iv) a solid wing. The frame shown is at the end of 
acceleration, when the wings are 0.2 wing lengths apart. The vectors show the direction of flow 
and the color is scaled to the magnitude of the flow velocity (min=0, max=0.02).  
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4.4 Discussion  

In this numerical study, I found that: (1) leakiness and drag are greatest at the edge of a 

row of bristles and smallest at the center; (2) the decrease in force with increasing gap-to-

diameter ratio is greater at higher angles of attack than at lower angles of attack, suggesting that 

bristled wings may act more like solid wings at lower angles of attack than they do at higher 

angles of attack; (3) in wing-wing interactions, an increase in drag in the presence of a second 

wing is Reb and gap-to-diameter ratio dependent—the magnitude of the effect increased with 

decreasing Reb and decreasing gap-to-diameter ratio; and (4) bristled wings significantly 

decrease the drag required to fling two wings apart compared with solid wings, especially at 

lower Reb.  

Previous work suggests that single translating bristled wings produce almost as much 

aerodynamic force as solid wings (Sunada, Takashima et al. 2002) (Davidi and Weihs 2012). My 

results show that drag and lift decrease as the space between bristles increases (Fig. 4.10), 

however the spacing between bristles appears to have little effect on the lift-to-drag ratio (Fig. 

4.11.b) over a range of Reb and angles of attack.  A previous study of porous wings in single 

wing translation also showed no improvement in the lift-to-drag ratio for a biologically relevant 

range (Santhanakrishnan, Robinson et al. 2014).  

My results support the idea that bristles could offer an aerodynamic benefit during wing-

wing interactions. To improve lift generation, many tiny insects clap their wings together at the 

end of upstroke and fling them apart at the beginning of the downstroke in a flight mechanism 

called ‘clap and fling’.  At the Reb relevant to tiny insects, very large forces are required to clap 

the wings together and fling the wings apart (Miller and Peskin 2005).  A computational study by 

Miller and Peskin (2009) showed that flexibility can reduce the drag required to fling wings 
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apart, however the drag generated is still 3-5 times greater than a single wing translating at 

Re<30. In addition to flexibility, bristles may help reduce the drag experienced during fling. For 

example, at the biological conditions most relevant to thrips (Reb =10-2 and G/D=11), the drag 

required to fling two bristled wings was only 2 times greater than a single wing translating, 

compared to a 10-fold increase in drag for a solid wing at the same Reb.  

My results show that bristles significantly decreased the drag required to ‘fling’ wings 

apart compared to a solid wing (Fig. 4.15). Table 4.3 shows the fraction of the drag produced by 

a single wing, compared to a solid wing, engaged in steady translation at the same Reb. These 

results show that as G/D increased, the drag decreased. As the Reb decreased, the bristled wing 

started to act more like a solid wing. Table 4.4 shows the fraction of the peak drag produced by 

two bristled wings, compared to two solid wings, engaged in “fling”. Bristles significantly 

reduced the drag required to fling two wings apart, even at lower Reb.  

 

Table 4.3. Fraction of drag produced by a single bristled wing translating compared to a 
solid wing (angle of attack=90°). 

 Gap-to-diameter ratio 
Reb 17 11 5 Solid 
10-1 0.09 0.14 0.29 1 
10-2 0.31 0.39 0.48 1 
10-3 0.59 0.67 0.76 1 

 

Table 4.4. Fraction of max drag produced by two bristled wings performing fling 
compared to two solid wings performing fling.  

 Gap-to-diameter ratio 
Reb 17 11 5 Solid 
10-1 0.03 0.05 0.14 1 
10-2 0.05 0.08 0.20 1 
10-3 0.06 0.09 0.20 1 
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Comparing Tables 4.3 and 4.4 reveals significant differences between single wings and 

wing-wing interactions. At Reb =10-3, a bristled wing with G/D=5 experienced 76% of the drag 

of a solid wing when engaged in steady translation, whereas a wing engaged in fling experienced 

only 20% of the drag of a solid wing. At the biological conditions of thrips (Reb=10-2, G/D=11), 

the max drag required to fling two solid wings apart was 12 times greater than the drag required 

to fling two bristled wings. Whereas, the drag during steady translation was only 2.5 times 

greater for a solid wing than a bristled wing.  

Single bristled wings may act even more like solid plates than is suggested by Table 4.3 

if they are translating at an angle of attack < 90. Fig. 4.10 shows that the decrease in force with 

increasing G/D ratio was greater at higher angles of attack than at lower angles of attack, 

suggesting that bristled wings may act more like solid wings at lower angles of attack than they 

do at higher angles of attack. Furthermore, the spacing between bristles appeared to have little 

effect on the lift-to-drag ratio (Fig. 4.11.b) for a single wing translating. 

These results support the idea that bristles may offer an aerodynamic benefit during clap 

and fling in tiny insects. My results showed that bristles significantly reduce the force required to 

fling the wings apart, compared to a solid wing. Although this study only considered “fling”, I 

expect that bristles have a similar force-reducing effect during the “clap” portion of the stroke.  

The idea that bristles offer an aerodynamic benefit during clap and fling is supported by a 

numerical study of porous wings, which showed that porous wings, compared with solid wings, 

reduce the drag required to move two wings apart (Santhanakrishnan, Robinson et al. 2014). My 

results show that bristles reduce the force experienced by a wing to a greater extent during fling 

than during steady translation. Following fling, the force approaches that experienced by a single 
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wing. Additionally, it could be possible for the bristled wing to preserve lift by acting more like a 

solid plate during the translational part of the stroke, especially if the angle of attack is < 90°. 

4.5 Limitations. 

While this study was conducted using 2D cross sections of infinitely long bristles, I 

expect that the 3D geometry and length of insect wing bristles will play an important role in their 

leakiness. I expect that the leakiness of bristles in 3D would be lower than the leakiness in 2D: 

rather than flowing between bristles, fluid may flow around the bristles in 3D. Cheer et al. 

demonstrated differences in the leakiness of the lower and upper part of fish rakers, so we may 

expect leakiness to vary with distance from the solid portion of the wing (Cheer, Cheung et al. 

2012). Another limitation to the 2D study is that the bristles are modeled as an array of cylinders 

that are parallel to the long axis of the wing (Fig. 4.21a). The actual wings have bristles that 

point forward and backward, in addition to pointing laterally at the tip (Fig. 4.21b). This 

simplification may have major implications for the results, particularly in the study on the role of 

angle of attack. For example, the bristles that face forward and backward will not experience the 

same change in the angle of oncoming flow that the bristles at the tip of the wing do. Similarly, 

the velocity at the base of the wing will be lower than the velocity at the tip, which will change 

the leakiness and force. Three dimensional studies of a bristled wing would be an important next 

step to understanding the aerodynamics of bristles.  
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Figure 4.21. Modeling the bristles in 2D simplifies the orientation of the bristles. The 2D model 
assumed that the bristles were an array (a) that was parallel to the long axis of the wing, but the 
bristles on actual wings (b) point forward and backward at the base and laterally at the tip.  
 

In this study, the distance between the wings at the start of fling was not varied: the wings 

started at 0.1 wing lengths apart. Kolomenskiy et al. demonstrated that lift is enhanced as the 

distance between wings approaches zero (Kolomenskiy, Moffatt et al. 2010, Kolomenskiy, 

Moffatt et al. 2011). However, observations of clap and fling in thrips has shown that the 

distance between the wings at the beginning of fling varies from about 1/4 to 1/10 of the chord 

length (Santhanakrishnan, Robinson et al. 2014).  

I also expect that the flexibility will play a role in bristle performance—flexibility of 

biological structures has been demonstrated to reduce drag in a number of studies (Koehl 1984, 

Vogel 1989, Etnier and Vogel 2000, Alben, Shelley et al. 2002, Alben, Shelley et al. 2004, 

Miller, Santhanakrishnan et al. 2012).  For example, when two hairs are very close and are 

flexible, they behave as a single hair with half of the deflection of an individual hair (Heys, 

Gedeon et al. 2008).  Ferner and Gaylord showed that deformation of bristled appendages may 

result in a reduction in leakiness across a range of low Reb (Ferner and Gaylord 2008).   
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CHAPTER 5: COMPUTATIONAL FLUID DYNAMICS OF A THREE-DIMENSIONAL 

WING AT LOW REYNOLDS NUMBERS 

5.1 Introduction 

Although a large body of work has examined the three-dimensional flow and forces 

around insect wings, most studies of insect flight have focused on insects at Re>100. Similarly, 

computational fluid dynamic studies of insect flight at the lowest Re have generally been 

conducted in two-dimensions (Miller and Peskin 2004, Wang 2004, Wang, Birch et al. 2004, 

Miller and Peskin 2005, Miller and Peskin 2009, Kolomenskiy, Moffatt et al. 2010, Arora, Gupta 

et al. 2014, Santhanakrishnan, Robinson et al. 2014). However, two-dimensional studies fail to 

capture the effects of spanwise flow and other three-dimensional effects. Previous research has 

shown that there can be differences between the results of two-dimensional and three-

dimensional studies. For example, differences can exist in the separation of the leading edge 

vortex, especially at higher Re (Wang, Birch et al. 2004). For these reasons, it is important to 

consider the three-dimensional flow and forces when investigating insect flight. 

Collaborators in Laura Miller’s group and Michael Dickinson’s groups experimentally 

investigated the forces and flow structures around a dynamically scaled physical model of an 

insect wing (Birch, Dickson et al. 2004, Wang, Birch et al. 2004, Lentink and Dickinson 2009). 

To complement the study, I completed a three-dimensional study of the forces and flow 

structures around a numerical insect wing of the same dimensions and engaged in the same 

kinematics. A three-dimensional numerical study can provide additional insights that enhance an 

experimental study. The PIV performed on the physical model is limited to capturing the flow 
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structures in a two-dimensional slice through the fluid domain, whereas a three-dimensional 

numerical study can capture the three-dimensional flow structures in the entire fluid domain. 

Using the computational model, I investigated the role of spanwise flow and other three-

dimensional effects. I also compared the experimental and the computational models to increase 

the confidence in the results of the study.  

In this study, I used a computational approach to investigate the effect of changing Re 

from 1 to 128 on the generation of aerodynamic forces and the flow structures of a three-

dimensional elliptical wing. To date, this is the first study to quantify the flow structures around 

a three-dimensional wing at a range of angles of attack and at the Re range of the smallest flying 

insects (Re<10). Of particular interest, I compared the numerical results to those obtained by 

collaborators using a dynamically scaled physical wing model. I also investigated the effect of 

changing Re on spanwise flow, and I compared the aerodynamic forces generated at this range to 

the Re of larger insects, such as a fruit fly (Re~100).   

5.2 Methods 

5.2.1 Computational wing.  

I modeled the wing to mimic a dynamically scaled robotic fly wing called the “Robofly” 

(Dickinson et al. 1999, Sane and Dickinson 2001, Birch and Dickinson 2003). The robot consists 

of a model wing attached to a coaxial arm, immersed in a 1 m x 1 m x 2 m tank filled with oil. 

Computer driven servo-motors control the orientation and movement of the wing, while force 

sensors record the lift and drag experienced by the wing. Collaborators for this project 

investigated the flow structures around a wing at Re ranging from 4 to 130 using particle image 

velocimetry (PIV), and recorded the forces experienced by the wing at various angles of attack 

(aoa).  
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Figure 5.1. The three-dimensional elliptical wing (a) was based on the dimensions of a 
dynamically scaled robotic fly (c = 8.25 cm, b = 16.5 cm, R = 20.11 cm, and the wing 
was 2.0 mm thick). The wing was prescribed to move through a 180 degree arc at a fixed 
angle of attack. (b) The angle of attack (aoa) of the wing was varied from 0° to 90° 
degrees. Flow structures in following figures were captured when the wing position was 
at mid-stroke (θ=90°). 

 
 

The computational wing (Fig. 5.1) did not have a force sensor or drive shaft, but 

otherwise had the same dimensions and prescribed motion as the experimental scaled model 

wing. Specifically, the wing consisted of an elliptical wing mesh based on the dimensions of the 

Robofly: c = 8.25 cm, b = 16.5 cm, R = 20.11 cm, and the wing was 2.0 mm thick. The wing was 

immersed in a 1 m x 1 m x 1 m fluid domain. The angle of attack (aoa) of the wing was varied 

from 0° to 90°. The kinematic pattern consisted of a single wing revolving through a 180° arc 

with constant angular velocity and a fixed angle of attack. Constant acceleration and deceleration 
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were used to start and end the stroke, respectively. The duration of the acceleration and 

deceleration was 10% of the stroke duration. Three-dimensional flow structures were 

investigated when the wing was at mid-stroke (θ =90°), and the forces were averaged over the 

steady part of the stroke. 

Re was calculated for the wing as follows: 

 𝑅𝑅𝑅𝑅 =
𝜔𝜔�𝑅𝑅𝑐𝑐𝜌𝜌
𝜇𝜇

 

 

Eq. 5.1 

where 𝜔𝜔� is the angular velocity of wing revolution during the steady portion of the revolution, R 

is the wingtip radius, c is the chord length, 𝜌𝜌 is the fluid density, and 𝜇𝜇 is the dynamic viscosity 

of the fluid. Re was varied in the computational model by changing µ while holding all other 

parameters constant. 

5.2.2 Numerical method.  

I used the IBFE method as described in Chapter 2.1.2 to model a three-dimensional 

revolving wing immersed in a viscous, incompressible fluid. The computational wing mesh was 

constructed using the dimensions described in Section 5.2.1 using Gmsh (Geuzaine and Remacle 

2009) and consisted of 1994 tetrahedral elements with at least two elements across the wing 

thickness. The computational domain was 12 chord lengths in each direction and the wing tip 

was at least 4 chord lengths from the edges of the computational domain at all times.  

I used IBAMR (Griffith, Hornung et al. 2007), as described in Chapter 2, for all of the fluid 

dynamic simulations. The adaptive method used four grid levels to discretize the Eulerian 

equations with a refinement ratio of four between levels. Regions of fluid that contained the bristles 

or vorticity above 0.125 were discretized at the highest refinement. The effective resolution of the 

finest level of the grid corresponded to that of a uniform 2563 discretization. The boundary 

conditions were set to no-slip (u=0) on all sides of the computational domain. The wing was moved 
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using a preferred position that was changed in time. A penalty force was applied proportional to 

the distance between the actual and desired boundaries. Other simulation-specific numerical 

parameters are listed in Table 5.1. 

Table 5.1. Numerical parameters. 

Dimensionless parameter Value 
Chord length 0.0825 
Span length 0.165 
Radius of wingtip 0.2011 
Sweep distance (degrees) 180 
Final simulation time 1 
Acceleration time 0.1 
Deceleration time 0.1 
Domain length (L) 1 
Finest Grid Refinement 2563 
Number of refinement levels 4 
Refinement ratio 1:4 
Time step (dt) 1.0e-5 
Spatial step size (dx) L/256 
Stiffness (kappa_s) 1e14 

 

5.2.3 Grid convergence study.  

To test for spatial convergence, I compared a uniform 2563 discretization to a uniform 

5123 discretization. These two resolutions were compared using aoa=45° and Re ranging from 1 

to 128. The average dimensionless lift and drag coefficients over the steady part of the stroke are 

shown in Fig. 5.2. The average percent difference in force between the 2563 grid and the 5123 

grid was ≤3% for lift and ≤7% for drag. For computational efficiency, effective 2563 grid 

discretization was used for all remaining simulations in this chapter.  
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Figure 5.2. Refinement study comparing average dimensionless lift and drag over a range 
of Re at 2563 and 5123 grid discretization. Average dimensionless force was calculated 
over the steady part of the stroke. Effective 2563 grid discretization was used for all other 
simulations in this study. 

 

5.3 Results 

5.3.1 Forces around a revolving 3D wing at low Reynolds numbers 

The time-averaged lift and drag coefficients for the revolving physical and numerical 

model wings as functions of the angle of attack are shown in Fig. 5.3 across three values of Re. 

The forces were sampled for 11 values of angle of attack for the computational model and 21 

values of angle of attack in the experimental model in the range of 0° to 90°. In general, there 

was good agreement between the computational and experimental models. The drag measured 

for the numerical model was higher than the drag measured for the physical model at lower Re 

(Fig. 5.3b). The Re of the physical model was varied by changing the angular velocity of the 
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wing. At the lowest Re, very slow velocities were required, and this may have impacted the 

accuracy of the results of the physical model.  

The behavior seen for Re = 130 was consistent with previously published results on a 

three-dimensional flapping wing at Re pertinent to fruit flies (Dickinson, Lehmann et al. 1999, 

Wang, Birch et al. 2004, Lentink and Dickinson 2009). And the overall relationship between 

force coefficients and angles of attack supported previous studies (Dickinson and Gotz 1993, 

Wang, Birch et al. 2004).  

In general, as the Re decreased, the force coefficients increased. This effect was stronger 

for drag than for lift. Drag coefficients increased with increasing angle of attack. Note that the 

drag was nonzero at a 0° angle of attack due to the non-negligible viscous forces. The maximum 

value of lift coefficient occurred at an angle of attack of 45° for all values of Re. The drag 

coefficient increased significantly with decreasing Re as compared to the slight increase in 

values of lift coefficient with decreasing Re. Both the computational and experimental results 

showed the same trends in forces generated as a function of Re and angle of attack. The drag in 

the numerical simulations was larger than the experiments for lower Re. 
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Figure 5.3. Comparison of (A) lift and (B) drag for computational and experimental 
models over a range of angles of attack.  

 

A careful examination of the effect of changing Re on the lift and drag coefficients 

revealed differences in the aerodynamics of tiny insects, such as thrips, compared with larger 

insects, such as fruit flies. The aerodynamic performance comparison shown in Fig. 5.4 

corresponds to the steady motion of a revolving model wing at a fixed angle of attack of 45°, a 

value that is typically observed during most of the downstroke in the flapping translation of 

flying insects (Sane 2003). Overall, there was good agreement between the computational and 

the experimental results. The average difference between the experimental and computational lift 

was <10% and the difference between the experimental and computational drag was <20%. In 

the lower Re end, applicable to thrips flight, there was a marked doubling in the values of drag 

coefficients, which has been seen in previous numerical studies (Miller and Peskin 2004). At 
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such low Re, viscous effects in the flow are highly pronounced as compared to inertial forces. 

The onset of the transition to highly elevated drag coefficients occurred near Re = 30 (Fig. 5.4).  

Fig. 5.5 shows the ratio of lift to drag over a range of Re. 

 

 

Figure 5.4. Comparison of computational model to experimental model (aoa=45°). 
Average dimensionless lift and drag was calculated over the steady part of the stroke. 
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Figure 5.5. Lift/drag coefficient for the computational and experimental models over a 
range of Re (aoa=45°).  

 

Fig. 5.6a shows the aerodynamic polar plots for the lower Re (12-20). Notice that while 

peak lift coefficient remained relatively constant, the entire polar plot shifted to the right with 

decreasing Re. This illustrates the sensitivity of the drag coefficient to Re at all angles of attack. 

Fig. 5.6b shows the aerodynamic polars for higher Re (50-130). The aerodynamic polar for 

Re=100 was in good agreement with previous experimental models at Re=110 (Lentink and 

Dickinson 2009) and Re=120 (Birch, Dickson et al. 2004). The lift coefficient did slightly 

increase at high Re, and the graph shifted to the left as Re increases (see Fig. 5.7 for additional 

aerodynamic polars and Fig 5.8 for a plot of the ratio of lift-to-drag over a range of angles of 

attack). Overall, these observations suggest that there are drastic differences in the aerodynamics 

of flight at the scale of the smallest insects as compared with larger insects.  
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Figure 5.6. Comparison of computational model (solid markers) and experimental model 
(open markers) at (a) lower Re range and (b) higher Re range. 

 

 
Figure 5.7. Plot of average dimensionless lift vs average dimensionless drag for the 
computational model over a range of Re. In all cases, peak lift occurs at angle of attack of 
45°. 
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Figure 5.8. Plot of the ratio of lift-to-drag vs angle of attack for the computational model 
over a range of Re.  

 

5.3.2 Flow structures at low Reynolds numbers 

The effect of changing Re on the flow structure around the wing can be examined from 

the streamlines plotted for the computational wing (Fig. 5.9). The wing was revolved at a fixed 

angle of attack of 45° for 1<Re<128, and the flow field shown in these figures corresponds to the 

instant when the wing had swept a 90˚ arc from starting at rest. The streamlines are instantaneous 

curves that begin at seed locations along the leading edge of the wing and are tangential to the 

local fluid velocity at every point in the vector field. Each streamline was computed by a Runge-

Kutta based numerical integration of the seed location through the vector field.  
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Figure 5.9. Streamlines around the wing at mid-stroke (aoa=45, Re range from 4-128). 
Seven streamlines are evenly spaced along the leading edge.  Streamlines are color-coded 
to indicate starting position. The streamline closest to the camera (blue) is furthest from 
the axis of rotation. Note that the wing is traveling to the left. 

 

For a revolving model insect wing at Re=128, closer to the dynamic scale of fruit flies, an 

attached LEV was observed at mid-stroke when the wing had traversed a quarter circle (Fig. 5.9i 

and 5.10i). At the start of motion, the TEV that formed on account of vorticity conservation was 

shed in the wake and was no longer attached to the trailing edge of the wing at mid-stroke. An 

attached LEV and shed TEV have been seen previously at Re pertinent to fruit flies and higher 

(Ellington, Van Den Berg et al. 1996, Dickinson, Lehmann et al. 1999, Birch, Dickson et al. 

2004, Wang, Birch et al. 2004). The attached LEV is primarily responsible for delayed stall and 
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enhanced lift generation (Dickinson, Lehmann et al. 1999). Furthermore, the asymmetric 

attached LEV and shed TEV structure of the flow around the wing has been shown in several 

insect flight studies to result in higher lift forces (Ellington, Van Den Berg et al. 1996, Birch and 

Dickinson 2001, Miller and Peskin 2004). The LEV, if formed, remained attached to the wing 

throughout the range of Re considered.  The computational results showed that the TEV moved 

closer to the wing with decreasing Re (Fig. 5.10).  

At a Re range of 4-32, which is representative of the range of flight experienced by the 

smallest insects, both the LEV and TEV did not separate from the wing (Figs. 5.10a-f). The TEV 

was not shed into the wake at this range of Re due to the increased viscous forces present in the 

flow field that stabilize the vortex. This ‘vortical symmetry’ is in agreement with numerical 

results of Miller and Peskin for 2D wings (2004). With decreasing Re and correspondingly 

reduced kinetic energy of the flow, both the LEV and TEV were more diffuse. The lack of 

separation of the TEV resulted in an overall reduction in the bound circulation around the wing.  
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Figure 5.10. Vorticity plots for aoa=45° at a range of Re. Cross section shown is through the 
chord at the midpoint of the span, midway through the stroke.  The vectors show the direction of 
flow and are scaled to the magnitude of the flow velocity. The color map shows the vorticity of 
the fluid (min=-30 and max=30). Note that the wing is traveling to the left. 
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5.3.3 Spanwise flow 

An advantage of performing 3D computational studies is that we can readily obtain 

detailed information on spanwise flow and 3D flow structures. Fig. 5.11 shows a top-down view 

of a pseudocolor plot of the spanwise flow through a slice just above the wing. In Fig. 5.12, 2D 

velocity vectors are shown in a plane that cuts through a cross section of the wing. A 

pseudocolor plot of the spanwise velocity (in the direction normal to the plane) is also provided 

to illustrate the three-dimensionality of the flow. At Re=4 (Fig. 5.11A and Fig. 5.12A), spanwise 

flow occurred over a broad region behind the wing. As the Re increased, the magnitude of the 

spanwise flow increased, and the region of non-negligible spanwise flow became smaller. Fig. 

5.12 also shows that the shape of the region of spanwise flow became more elongated as Re 

increases. The size and shape of the region of spanwise flow at Re=128 matched a previous 

experimental study at Re=120 (Birch, Dickson et al. 2004) and a computational study at Re=120 

(Harbig, Sheridan et al. 2013).  

Figs. 5.11 and 5.12 show that maximum spanwise flow occurred farther behind the wing 

as the Re decreased. This is in agreement with the results of a previous experimental study 

(Birch, Dickson et al. 2004) which found similar results comparing Re=120 and Re=1400, and 

the results of a computational study (Harbig, Sheridan et al. 2013) which found similar results 

comparing Re=120 and Re=1500. Fig. 5.12 further shows that there was little spanwise flow in 

the LEV at Re<128, which is supported by previous experimental studies (Birch, Dickson et al. 

2004, Lentink and Dickinson 2009, Harbig, Sheridan et al. 2013). In a numerical study, Aono et 

al. (2008) showed that spanwise flow was primarily confined to the core of the LEV at Re=6300, 

but little spanwise flow existed in the LEV at Re=134.  
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Figure 5.11. Spanwise flow above the wing at mid-stroke (aoa=45°, Re range from 4-128). The 
color map shows the spanwise flow through a slice parallel to the wing and 1/10 chord length 
above the wing (min=0 and max=0.3). Note that the wing is traveling counterclockwise, 
indicated by the arrow in (a), about an axis of rotation to the left. 
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Figure 5.12. Vector fields and spanwise flow at mid-stroke (aoa=45°, Re range from 4-128). 
Cross section shown is through the chord at the midpoint of the span. The vectors show the 
direction of flow and are scaled to the magnitude of the flow velocity. The color map shows the 
spanwise flow (min=0 and max=0.5). Note that the wing is traveling to the left. Average 
spanwise flow was calculated along the dashed transect in (a), and is shown in Fig. 5.13. 
 
 

Fig. 5.13 shows the average spanwise flow for a range of Re (aoa=45°) calculated along 

the dashed transect shown in Fig. 5.12A. Average spanwise flow increased with increasing Re, 

which has been observed previously at Re>100 (Birch, Dickson et al. 2004, Aono, Liang et al. 

2008, Harbig, Sheridan et al. 2013). The dependence of the average spanwise flow on Re was the 

most sensitive for lower Re, particularly Re<20. For 40<Re<128, average spanwise flow 

increased linearly with Re. It is interesting to note that the most sensitive Re range also 
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corresponded to the scales at which the TEV did not separate from the wing and the drag 

coefficient became particularly sensitive to Re. 

 

 

Figure 5.13. Average spanwise flow along the dashed transect shown in Fig. 5.11a as a 
function of Re (aoa=45). 
 

I also investigated how small changes in the angle of attack affected the 3D flow 

structure at Re=4 (Fig. 5.14), Re=32 (Fig. 5.15), and Re=128 (Fig. 5.16). For all angles of attack, 

the spanwise flow increased and became less diffuse as the Re increased. As expected, the flow 

field structure was symmetric for both 0° and 90° angles of attack at all Re. As the angle of 

attack increased from 0° to 90°, the magnitude of the spanwise velocity also increased. The 

magnitude of this effect was greater at larger Re. At Re=4, the maximum spanwise flow 

increased by only 42% between 0° and 90° angles of attack, whereas at Re=128 the maximum 

spanwise flow increased by 200% between 0° and 90° angles of attack. The shape of the region 

of significant spanwise flow was the most sensitive to the angle of attack at higher Re. At Re=4, 
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there was little change in the shape of the region of spanwise flow as the angle of attack 

increased, whereas at Re=128, the shape of the region of spanwise flow was greatly influenced 

by the angle of attack. As the angle of attack increased from 0° (Fig. 5.16a) to 45° (Fig. 5.16i), 

the region of spanwise flow extended behind and below the wing. As the angle of attack 

increased from 45° to 90° (Fig. 5.16j), the region of spanwise flow became symmetric again, and 

no longer extended below the trailing edge of the wing.  
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Figure 5.14. Vector fields and spanwise flow at mid-stroke (Re = 4, aoa range from 0° to 90°). 
Cross section shown is through the chord at the midpoint of the span. The vectors show the 
direction of flow and are scaled to the magnitude of the flow velocity. The color map shows the 
spanwise flow (min=0 and max=0.5). Note that the wing is traveling to the left. 
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Figure 5.15. Vector fields and spanwise flow at mid-stroke (Re = 32, aoa range from 0° to 90°). 
Cross section shown is through the chord at the midpoint of the span. The vectors show the 
direction of flow and are scaled to the magnitude of the flow velocity. The color map shows the 
spanwise flow (min=0 and max=0.5). Note that the wing is traveling to the left. 
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Figure 5.16. Vector fields and spanwise flow at mid-stroke (Re = 128, aoa range from 0° to 90°). 
Cross section shown is through the chord at the midpoint of the span. The vectors show the 
direction of flow and are scaled to the magnitude of the flow velocity. The color map shows the 
spanwise flow (min=0 and max=0.5). Note that the wing is traveling to the left. 
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5.4 Discussion 

To better understand the flight of the smallest insects, I have performed a more complete 

study of three-dimensional aerodynamics at low Re. I analyzed the forces and flow structures 

around a three-dimensional numerical wing model at the Re relevant to the smallest flying 

insects. My results were in good agreement with a dynamically scaled physical model. A number 

of previous studies have investigated the forces and flow structures around a wing in 3D at low 

Re (Sun and Yu 2006, Liu and Aono 2009, Zheng, Hedrick et al. 2013), however most of these 

studies only considered a single Re below 100. For that reason, I investigated the flow structures 

and forces around a three-dimensional wing at a range of angles of attack and Re relevant to the 

smallest flying insects (Re ~ 4-100). 

The results of this study showed that: (1) as Re decreased, drag increased significantly; 

(2) defined in terms of the average lift to drag coefficient, flight became increasingly less 

efficient as Re decreased; (3) at the range of flight experienced by the smallest insects 

(4<Re<32), both the LEV and TEV remain attached to the wing; and (4) spanwise flow 

decreased with decreasing Re, especially in the range of the smallest flying insects. Overall, 

these observations suggest that there are drastic differences in the aerodynamics of flight at the 

scale of the smallest flying insects, which makes their flight more challenging, compared with 

larger insects. 

This study supports previous research that suggests that the aerodynamics of the smallest 

flying insects may be significantly different from that of larger insects (Weis-Fogh 1973, 

Ellington 1980, Wang 2000, Sunada, Takashima et al. 2002, Miller and Peskin 2004, Miller and 

Peskin 2005, Sun and Yu 2006, Miller and Peskin 2009, Kolomenskiy, Moffatt et al. 2010, 

Kolomenskiy, Moffatt et al. 2011, Santhanakrishnan, Robinson et al. 2014). In general, the 
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smallest flying insects face many aerodynamic challenges as a result of their size. Both lift and 

drag coefficients increased as Re decreases. However, the drag coefficient was most sensitive to 

changes in Re: drag increased significantly with decreasing Re, whereas there were only small 

changes in lift. At the scale of fruit flies (Re~100), the lift to drag ratio approached 1 as seen both 

here (Fig. 5.5) and elsewhere (Dickinson and Gotz 1993, Sane and Dickinson 2001, Wang 

2004). Whereas, the lift to drag ratio approached 0.2 for the smallest insects such as fairyflies 

and haplothrips (Re<10).  

The TEV and LEV remained attached to the wing at Re<32 (Fig. 5.10). As Re increased 

above 32, however, the TEV was shed from the wing. This vortical symmetry at lower Re has 

implications for the aerodynamics of the smallest flying insects. An asymmetric attached LEV 

and shed TEV has been shown to increase lift (Ellington 1999, Birch and Dickinson 2001, Miller 

and Peskin 2004). At an Re range of 4-32, which is representative of the range of flight 

experienced by the smallest insects, both the LEV and TEV did not separate from the wing due 

to the increased viscous forces present in the flow field that stabilize the vortex. With decreasing 

Re, the lack of separation of the TEV resulted in an overall reduction in the bound circulation 

around the wing, and consequently a decrease in lift. Additionally, due to the relative increase in 

viscous forces present in the flow for Re < 10, vorticity is expected to dissipate much faster. For 

the same reason, vorticity enhancement via ‘wake capture’ of circulation from the previous 

stroke (at stroke reversal) is also expected to be minimal for the Re range appropriate to flight of 

tiny insects; this arises from the fact that the strength of the wake at the end of a stroke will be 

relatively diminished at this range of Re.  

Using the computational model, I investigated three-dimensional effects, such as 

spanwise flow. My results showed that as Re decreases, the magnitude of spanwise flow 



 
 

120 
 

decreased and the region of non-negligible spanwise flow occurred over a broader region behind 

the wing (Fig. 5.12). In larger insects, such as hawkmoths, the spanwise flow is concentrated in 

the LEV (Aono, Liang et al. 2008). My numerical results showed that there was little spanwise 

flow in the LEV at Re<128, which is in agreement with previous experimental studies (Birch, 

Dickson et al. 2004, Lentink and Dickinson 2009, Harbig, Sheridan et al. 2013) and numerical 

studies (Aono, Liang et al. 2008, Kolomenskiy, Moffatt et al. 2011). Interestingly, the shape of 

the region of non-negligible spanwise flow also changed with Re. At Re=4 (Fig. 5.12a), a cross 

section of the region of spanwise flow behind the wing was round and symmetrical. As the Re 

increased, however, the region became elongated and began to extend behind and below the 

wing. The shape of the region of spanwise flow at Re=128 (Fig. 5.12h) was in agreement with 

previous experimental studies (Birch, Dickson et al. 2004, Harbig, Sheridan et al. 2013).   

My results showed that there is a significant decrease in the average spanwise flow with 

decreasing Re, especially in the range of the smallest flying insects (Fig. 5.13), which could have 

implications for the interpretation of 2D studies. A major difference between 2D computations 

and 3D insect wings is the presence of 3D effects, such as spanwise flow (Wang, Birch et al. 

2004). This can lead to differences between the 2D and 3D results. For example, the LEV is shed 

after traveling a few chord lengths in 2D models (Dickinson and Gotz 1993, Miller and Peskin 

2004), whereas the LEV remains stably attached to a revolving 3D wing for much longer 

distances (Dickinson, Lehmann et al. 1999, Wang, Birch et al. 2004). The patterns of vortex 

shedding in our study, however, were in good agreement with the numerical results of a 2D wing 

at low Re (Miller and Peskin 2004). This suggests that three-dimensional effects may play a less 

significant role in the flight of the smallest insects. And consequently, these results imply that 2D 

studies may be able to more accurately model small insect flight than large insect flight.  
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Overall, the results supported previous work which highlight some of the significant 

challenges faced by insects flying at low Re (Ellington 1980, Wang 2000, Miller and Peskin 

2004, Miller and Peskin 2005, Sun and Yu 2006, Miller and Peskin 2009, Kolomenskiy, Moffatt 

et al. 2010, Kolomenskiy, Moffatt et al. 2011, Santhanakrishnan, Robinson et al. 2014). In 

particular, drag was enhanced and the lift to drag ratio was decreased during steady translation at 

low Re.  

While this study quantified the flow structures and forces around a three-dimensional 

wing at a range of angles of attack and Re relevant to the smallest flying insects (Re ~ 4-128), I 

only considered the case of a single rigid wing engaged in steady translation. I did not consider 

more complicated kinematics or the effects of wing-wing interactions, such as clap and fling 

(Weis-Fogh 1973). Clap and fling has been observed in tiny insects such as Encarsia formosa 

(Weis-Fogh 1973) and thrips (Ellington 1984), and it is believed to enhance lift by the formation 

of a large attached LEV (Lighthill 1973, Maxworthy 1979, Ellington 1984, Ellington 1984, 

Spedding and Maxworthy 1986, Sun and Xin 2003, Lehmann, Sane et al. 2005, Miller and 

Peskin 2005, Sun and Yu 2006, Lehmann and Pick 2007, Miller and Peskin 2009). A 2D 

numerical study demonstrated that very large drag forces are required to fling the wings apart at 

Re relevant to the smallest flying insects (Miller and Peskin 2005), however that force is reduced 

when the wings are flexible (Miller and Peskin 2009).  A logical future direction in the analysis 

of flight of the smallest insects would be an investigation of the three-dimensional forces and 

flow structures around flexible wings engaged in clap and fling at the Re relevant to tiny insects. 
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CHAPTER 6: CONCLUSIONS 

6.1 Conclusions 

I used computational fluid dynamics to better understand the challenges of flight at the 

scale of the smallest flying insects and investigated possible mechanisms to overcome these 

challenges. Because of their small size and high wing beat frequency, detailed quantitative data on 

the wing kinematics of the smallest insects is not readily available. As a result, there has been 

much debate and speculation about the flight strategies employed by these insects. Using the 

immersed boundary method and a hybrid finite difference/finite element immersed boundary 

method, I developed both two-dimensional and three-dimensional models of small insect wings to 

gain insight into the aerodynamics of flight at this scale.  

 In Chapter 3, I investigated whether lift- or drag-based mechanisms produce the most 

vertical force at the Reynolds numbers relevant to tiny insects. I compared three idealized two-

dimensional hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in 

the horizontal plane, and a hybrid stroke on a tilted plane. I discovered that drag-based 

mechanisms produce more vertical force than lift-based mechanisms at Re < 2 and drag-based 

mechanisms have greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  than lift-based mechanisms at Re < 5. A lift-based mechanism 

produced more vertical force at Re>2, and had greater 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  at Re>5.  Next, I explored how a 

faster downstroke and flexible wings might affect vertical force production. With a faster 

downstroke, I found an increase in vertical force and 𝐶𝐶𝑉𝑉��� 𝐶𝐶𝑇𝑇���⁄  for a drag-based stroke in the 

vertical plane, although this effect was modest at lower Re. And with added flexibility, I 

discovered an increase in vertical force in a drag-based mechanism. The results of this study 
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suggest it is possible that a small insect could use a drag-based strategy to produce as much 

vertical force as a lift-based strategy at very low Re, but I am unaware of any insects that use a 

drag-based strategy. Regardless, this study demonstrated that neither lift- nor drag-based weight 

support mechanisms are efficient at Re<100, and particularly at Re<20, which is the range of the 

smallest flying insects. This may help explain the importance of additional flight strategies, such 

as bristled wings and wing-wing interactions.  

In Chapter 4, I developed a two-dimensional model of a bristled insect wing using the 

IBFE method. The effect of Reynolds number, angle of attack, bristle spacing, and wing-wing 

interactions were investigated.  The inverse relationship between force and G/D ratio was smaller 

at lower angles of attack, suggesting that bristled wings may act more like solid wings at lower 

angles of attack than they do at higher angles of attack. I also found that bristled wings 

significantly decreased the force required to fling two wings apart compared to solid wings, 

especially at lower Reb. Following fling, and once the two wings were more than one half chord 

length apart, the force on each wing approached the drag experienced by a single wing. Although 

translational forces for solid and bristled wings were similar, the wing forces during fling were 

significantly reduced for the bristled case. These results support the idea that bristles may offer 

an aerodynamic benefit during clap and fling in tiny insects. Bristled wings could reduce the 

force required to fling the wings apart during clap and fling while still maintaining lift during 

translation. Additionally, it may be possible for the bristled wing to preserve lift by acting more 

like a solid plate during the translational part of the stroke, especially at smaller angles of attack. 

In Chapter 5, I used the IBFE method to investigate aerodynamics forces and resulting 

flow structures generated by a revolving three-dimensional elliptical wing over a range of 

Reynolds numbers and angles of attack. To date, this is the first study to quantify the flow 
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structures around a three-dimensional wing at a range of angles of attack and Re relevant to the 

smallest flying insects (Re < 10). I compared the numerical results to those obtained by 

collaborators using a dynamically scaled physical wing model. I discovered that as Re decreased, 

drag increased significantly and flight became increasingly less efficient. At the range of flight 

experienced by the smallest insects (4<Re<32), both the LEV and TEV remained attached to the 

wing. Spanwise flow decreased with decreasing Re, especially in the range of the smallest flying 

insects.  

Overall, the results of Chapters 3, 4, and 5 suggest that there are drastic differences in the 

aerodynamics of flight at the scale of the smallest flying insects, which makes their flight more 

challenging, compared to larger insects. As the Reynolds number decreases to that of the 

smallest insects (Re ~ 5), drag increases and the lift-to-drag ratio decreases significantly. Both 

the LEV and TEV remain attached to the wing and spanwise flow decreases. Additional flight 

strategies, such as bristled wings and wing-wing interactions, may offer a way for the smallest 

insects to overcome some of the challenges of flight at lower Reynolds numbers. 

6.2 Limitations 

There were many limitations to the studies presented in Chapters 3, 4, and 5. The greatest 

limitation in Chapters 3 and 4 was that the studies were conducted in two-dimensions. In general, 

two-dimensional studies fail to capture any effects from spanwise flow, and there can be 

differences in the separation of the LEV, especially at higher Re (Wang, Birch et al. 2004). 

Similarly, in Chapter 4, I expect that three-dimensional geometry and length of insect wing 

bristles will play an important role in their leakiness. While Chapter 5 considered the three-

dimensional effects of a revolving wing, I only investigated the case of a single rigid wing 

engaged in steady rotation. I did not consider more complicated kinematics or the effects of 
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wing-wing interactions, such as clap and fling (Weis-Fogh 1973). A logical future direction in 

the analysis of flight of the smallest insects would be an investigation of the forces and flow 

structures around flexible wings and bristled wings engaged in clap and fling at the Re relevant 

to tiny insects. 

Another limitation was that these studies placed great emphasis on the forces experienced 

by tiny insect wings. While lift and drag (and the ratio of the two) are certainly important to 

small insects, there are other important considerations when it comes to aerodynamic 

performance. For example, a tiny flier would need to find a compromise between force 

production, stability, maneuverability, control, and wing strength. Additional studies into the 

maneuverability, stability and control of insects at low Re would be beneficial to understanding 

the flight strategies employed.
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