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ABSTRACT

LIANG YIN: CONFIDENCE REGION AND INTERVALS FOR SPARSE
PENALIZED REGRESSION USING VARIATIONAL INEQUALITY

TECHNIQUES.
(Under the direction of Shu Lu and Yufeng Liu.)

With the abundance of large data, sparse penalized regression techniques are commonly

used in data analysis due to the advantage of simultaneous variable selection and prediction.

By introducing biases on the estimators, sparse penalized regression methods can often select a

simpler model than unpenalized regression. A number of convex as well as non-convex penalties

have been proposed in the literature to achieve sparsity. Despite intense work in this area,

it remains unclear on how to perform valid inference for sparse penalized regression with a

general penalty. In this work, by making use of state-of-the-art optimization tools in variational

inequality theory, we propose a unified framework to construct confidence intervals for sparse

penalized regression with a wide range of penalties, including the well-known least absolute

shrinkage and selection operator (LASSO) penalty and the minimax concave penalty (MCP).

We study the inference for two types of parameters: the parameters under the population version

of the penalized regression and the parameters in the underlying linear model. Theoretical

convergence properties of the proposed methods are obtained. Simulated and real data examples

are presented to demonstrate the validity and effectiveness of the proposed inference procedure.
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CHAPTER 1: INTRODUCTION

1.1 Sparse penalized regression and inference for statistical modeling

In recent years, significant developments have been made in high dimensional data analysis

driven by the great needs in different scientific disciplines. Theory and methodology that

are developed in modern research are generally guided by the following two aspects: (1) It

is desirable for investigators to understand the mechanism in the data with a parsimonious

model, to be found through data-driven model selection; and (2) Investigators often need to

make statistical inference from the model they select. These two aspects, variable selection and

inference, are two central issues in statistical modeling, which are particularly important when

a large set of candidate explanatory variables is available for the model.

Regarding data-driven model selection procedures, traditional statistical methods such as

ordinary least squares regression often give poor prediction accuracy and are weak in model

interpretation for high dimensional problems. With the advantage of simultaneous variable

selection and prediction, sparse penalized regression has been widely used. By introducing bi-

ases on the resulting estimators through sparse penalization, these methods can often produce

estimators with much smaller variances and consequently lower mean square errors than un-

penalized estimators. Furthermore, because of the built-in sparsity on the estimators, model

selection and parameter estimation can be achieved in a single step. There is a large literature

in this area including the L1 regularized technique LASSO [11; 49], as well as many other ex-

tensions with different settings or penalties, see [18; 15; 60; 28; 59; 9; 51; 29; 33; 46; 55; 47],

and many more. Lots of these extensions aim to obtain estimators with better properties such

as lower bias [15; 55] and with structure [5; 53; 57; 58]. For computation, fast implementations

have been proposed to handle data of very high dimensions. For example, the LARS algorithm

by [13], the Coordinate-Descent algorithm by [52], and the Glmnet algorithm by [17] are three

popular algorithms in practice.



After the data-driven selection, one common practice is to carry out conventional inference

on the selected model. Despite its prevalence, this practice is problematic because it ignores

the fact that the inference is conditional on the model selection that is itself stochastic. The

stochastic nature of the selection process affects and distorts sampling distributions of the

post-selection parameter estimates, leading to invalid post-selection inference. The problems of

post-selection inference have long been recognized and have been discussed recently by [2; 6;

25; 26; 27].

In recent years, many methods have been developed to achieve valid inference after LASSO.

We refer to [8] for a comprehensive review on these developments. We categorize these methods

into the following three types of approaches:

� The simultaneous inference approach. This approach is guided by a general heuristic to

consider all possible outcomes of the selected model and protect the valid inference for

the worst scenario. Papers along this line include [3; 10; 36].

� The bias-correction approach. This approach considers adjusting for the bias that is

introduced by the regularization step to achieve valid inference. Papers along this line

include [7; 21; 56; 50].

� The conditional sampling distribution approach. This approach aims at understanding

the asymptotic or exact distributions of some pivots conditional on the selected model

and developing inference methods based on these distributions. Papers along this line

include [24; 30].

Although so far there have been many methods can do inference after LASSO, the inference for

other penalized regression is still untouched. Fan and Li [15] pointed out three properties for

a good regularization penalty. The first one is sparsity. In order to reduce model complexity,

regularized regression estimators should automatically set small coefficients to zero. Penalties

with singularity at zero, such as LASSO, fulfill this requirement. The second one is the nearly

unbiasedness. Although we must introduce biases for sparsity, we want the resulting estimators

to be unbiased when the true coefficient is large. Common convex penalties can not achieve

the above two properties together. Consequently, a number of non-convex penalties have been
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proposed to reduce the model bias, such as SCAD [15] and MCP [55] penalties. These penalties

do not over penalize coefficients when the true coefficients are large. The last property is that

the resulting estimators should be continuous with respect to the tuning parameter to improve

stability in model prediction. A penalty function must be singular at the origin if it satisfies the

first and third conditions. Therefore, the general penalized regressions with sparse penalties

which may have these three properties deserve their own inference method.

1.2 A population penalized approach for inference after penalized regression

In this dissertation, we take a different view of the penalized regression and utilize the

state-of-the-art stochastic variational inequality theory in optimization to construct confidence

regions and confidence intervals. Consider the standard linear regression setting in which the

penalized regression solves

min
β0,β

1

N

∣∣∣∣y − β01N −Xβ
∣∣∣∣2
2
+

p∑
j=1

Pλj
(|βj |), (1.1)

where

y ,



y1

y2
...

yN


, X ,



x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xN1 xN2 · · · xNp


=



x1

x2

...

xN


, 1N =



1

1

...

1


∈ RN ,

and (x1, y1), · · · , (xN , yN ) are independent samples. For each i = 1, · · · , N and j = 1, · · · , p,

xij ∈ R, yi ∈ R and xi ∈ Rp. We use bold font to present data vectors and matrices. β0 ∈ R and

β = (β1, · · · , βp)T ∈ Rp are the regression parameters. Pλj
(| · |) is a general penalty for βj with

the regularization parameter λj > 0. This general penalty covers the L1 penalty, the adaptive

LASSO penalty [59], or any other nonconvex penalty such as SCAD or MCP. Our interest is

on the corresponding inference. To that end, we study the following population version of the
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penalized regression by solving

min
β0,β

E
[
Y − β0 −

p∑
i=1

βiXi

]2
+

p∑
j=1

Pλj
(|βj |), (1.2)

where X = (X1, · · · , Xp)
T ∈ Rp is an explanatory random vector, and Y ∈ R is a response

random variable. We refer to (1.1) as the sample average approximation (SAA) problem of the

population penalized problem (1.2). Denote the solution to the SAA problem (1.1) as (β̂0, β̂),

which we refer to as penalized estimators. We will make use of the penalized estimators (β̂0, β̂)

to derive confidence intervals and regions for the population penalized parameters (β̃0, β̃) as

the solution of (1.2).

The population penalized approach is closely related to the traditional least squares ap-

proach. When penalty terms Pλj
(|βj |) all take the value of 0, the problem (1.2) becomes the

following population least squares problem:

min
β0,β

E[Y − β0 −
p∑

j=1

βjXj ]
2, (1.3)

which has a unique minimizer (E[XXT ])−1E[XY ] when E[XXT ] is invertible. If additionally

X and Y are related by the following linear model

Y = βtrue0 +XTβtrue + ε (1.4)

with E[ε|X] = 0, then this solution to the population least squares problem (1.3) is ex-

actly (βtrue0 , βtrue). When penalty terms Pλj
(|βj |) > 0, the solution to (1.2) is not exactly

(βtrue0 , βtrue), but is related to (βtrue0 , βtrue) in a different way. We will also develop a method

which utilizes that relation to construct confidence intervals for the true parameters above in

the linear model (1.4).

Why could the minimizer from a population penalized regression be a reasonable target for

scientific research? While it is apparent that a selection procedure such as LASSO is necessary

when p > N , the population penalized approach is also meaningful when N > p. In the latter

case, although the least squares inference of all coefficients in the model are readily available,

4



it is well-known that including nearly collinear redundant variables in a regression model can

“adjust away” some of the causal variables of interest (see discussions in Section 2 in [3]).

Moreover, using the full model could be questionable in areas such as social science [1]. In

these areas, it is common that when the question of “which variables should be included in

the regression model” is asked, the scientific theory is not sufficient enough to dictate the

inclusion or exclusion of variables for the inference (even when N > p). In this case, a data-

driven model from sparse penalized regression would be helpful and more compelling. However,

under this situation, the goal of the inference is slightly changed from that of the least squares

approach: The investigator is no longer looking for the least squares coefficients that minimize

the squared error loss in the population. Instead, she wants to find the least squares estimate

subject to certain regularization on the model. Thus, this application of penalized regression

leads naturally to the consideration of the population penalized parameters as the target of

inference. On the other hand, under appropriately chosen nonconvex penalties, the difference

between the population penalized parameters and the least squares regression parameters would

be very small. Therefore in this case the inference for population penalized parameters is

approximately valid for the least squares regression parameters.

The regularization scheme mentioned above relates closely to the regularization terms

Pλj
(|βj |). The major difference between the population penalized approach and the least squares

approach is the incorporation of constraint information about the model/parameters. Though

the source of such information can be from different perspectives, they can all be reflected in the

penalty terms with λj as a measure of the strength of such information. Thus, the parameters

in the population penalized approach are both scientifically and statistically meaningful: They

lead to the best approximations to the response when external information is available. This

interpretation is valid both for N < p and for N > p.

1.3 New contributions and key techniques

In the work for this dissertation, the first contribution is to make use of the penalized

(include nonconvex penalization) estimators (β̂0, β̂) to derive confidence intervals and regions

for the population penalized parameters (β̃0, β̃). Our study on the inference of the population

5



penalized parameters is based on study of the asymptotic distribution of penalized estimators

(i.e., solutions to (1.1)), as they converge to the population penalized parameters (solution to

(1.2)). A good understanding of such asymptotics around the population penalized parameters

(as the right asymptotic target) will in turn provide important insights for the inference of

true parameters in the linear model (1.4). We also note here that inferences for the population

penalized parameters are by themselves meaningful probabilistic statements that are of practical

use.

� Since penalized estimators are obtained by solving (1.1), they depend on random samples

and are subject to uncertainty. Our inference results provide quantitative measures about

the level of such uncertainty, by estimating the distance between the population penalized

parameters and the computed penalized estimators. Sizes of those intervals are jointly

determined by sample variability and sensitivity of penalized estimators with respect to

random samples. Wide intervals indicate low reliability of the estimators, which can be

caused by large sample variability or high sensitivity. Thus, these inference results can

be used as quantitative assessments on the reliability and uncertainty level of penalized

estimators obtained from (1.1).

� The inference results of this work can be used to assess the relative importance of pre-

dictors. For nonzero penalized estimators, conclusions can be made regarding whether

the corresponding parameters are truly nonzero by checking if the corresponding intervals

contain zero or not. For zero penalized estimators, the inference results can be highly

informative as well. For example, if the confidence intervals of some penalized parameters

are singletons of zero, then we have strong evidence to conclude that the corresponding

population penalized parameters are zero.

Besides inference for the penalized parameters, the second contribution of this work is to

develop an inference method for the true parameters in the linear model (1.4) via the penal-

ized regression. Our method is based on a relationship between β̃ and βtrue as well as their

sample counterparts. To help explain our method, we can take the viewpoint of the following

6



decomposition:

β̂ − βtrue = β̂ − β̃︸ ︷︷ ︸
(∗)

+ β̃ − βtrue︸ ︷︷ ︸
(∗∗)

. (1.5)

In a sense, the decomposition in (1.5) is similar as the bias-variance decomposition. Through the

population penalized approach, we are able to quantify the uncertainty in (∗) (or the “variance”

part). Since the population penalized parameters β̃ is the asymptotic limit of the penalized

estimators β̂, the limiting distribution of (∗) characterizes the variation around β̃. Through

a connection between β̃ and βtrue that corrects the “bias” in (∗∗), we are able to provide

valid inference for the true parameters. This method belongs to bias-correction category and is

especially useful when the biases introduced by the penalization are large. Simulation results

show that under LASSO regression our method performs competitively with existing methods

with some gains on the width of confidence intervals for inactive variables in high dimensions.

In this dissertation, we develop the theories based on the fixed dimension p, although it is

possible to extend this idea to the case of growing dimensions. The development of our method

takes the following steps. First, we transform the problems (1.1) and (1.2) into their correspond-

ing normal map formulations, which are equations with a (2p+ 1)-dimensional variable vector

z. Next, we obtain the asymptotic distribution of solutions to the normal map formulation

of (1.1), and find reliable estimates for quantities that appear in the asymptotic distribution.

We then provide methods to compute simultaneous and individual confidence intervals for the

solution to the normal map formulation of (1.2). Finally, we convert these confidence intervals

into confidence intervals for the solution to (1.2). Note that our inference method is developed

for fixed penalties Pλj
(|βj |). In practice, the tuning parameters in the penalty terms can be

chosen by various criteria or through cross validation.

At last, inspired by existing LASSO path algorithms such as [13], we are interested in the

confidence band constructed by consecutively computing confidence intervals along the LASSO

solution path with respect to tuning parameter λ. The third contribution of this work is

to point out that our confidence intervals for the population LASSO parameters along their

solution path have the “piecewise Lipschitz property” under some mild assumptions (That

is, the endpoints of the confidence interval between two consecutive knots on a grid of λ are

7



Lipschitz continuous in λ), and to propose a linear approximation algorithm to track the entire

confidence band. We only calculate CIs on the two ends of a λ interval on which the boundaries

of the confidence band are Lipschitz, then we link the corresponding boundaries of these two

confidence intervals to make an approximated confidence band on this interval. There are two

key issues for this algorithm: Finding the λ knots which are cut-off points for piecewise Lipschitz

property and calculating confidence interval on these knots. According to our experience, the

number of such λ knots is O(p), but unfortunately the computation for confidence intervals at

some knots is very expensive. For the computational reason, we suggest a way to modify this

tracking algorithm into a more efficient version for computing confidence intervals on a grid of λ

values, by avoiding those computationally expensive λ knots. The tracking algorithm provides

computational advantage when the confidence intervals are desired at many values of λ.

1.4 Some preliminaries and notations on variational inequalities

This section introduces some preliminary knowledge about variational inequalities, their

relation with optimization problems, the normal map formulation, and normal manifolds. The

book [14] provides a comprehensive treatment on finite dimensional variational inequalities.

The normal map formulation for variational inequalities and normal manifolds for polyhedrons

were introduced in [39; 40]. Detailed discussions on normal and tangent cones, faces, and

relative interiors are contained in [42] and [43].

We start with definitions of normal cones and tangent cones. Let S be a closed, convex set

in Rn, and let x ∈ S. The normal cone to S at x is denoted by NS(x) and is defined as

NS(x) = {v ∈ Rn | ⟨v, s− x⟩ ≤ 0 for each s ∈ S}.

The tangent cone to S at x is denoted by TS(x) and is defined as

TS(x) = {w ∈ Rn| ∃{xk} ⊂ S and {τk} ⊂ R such that xk → x, τk → 0, and (xk − x)/τk → w} .

Roughly speaking, TS(x) contains all the directions along which x can be approached by a

8



sequence of points in S, and NS(x) contains all the “normal” vectors to S at x. It is easy to

see that NS(x) and TS(x) are indeed cones (a subset of Rn is a cone if a positive multiple of

any element of it still belongs to it). In fact, NS(x) and TS(x) are the polar cones of each

other, in the sense that the inner product of any element in NS(x) and any element in TS(x) is

nonpositive, see, e.g., Proposition 1.3.2 of [14].

To illustrate these concepts, consider the polyhedron S in Figure 1.1, defined as S = {x ∈

R2 | x1+x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}. Let x0 = (1, 0). For the moment, ignore z0 in the figure. The

middle graph shows the tangent cone TS(x
0), which is {w ∈ R2 | w1 + w2 ≤ 0, w2 ≥ 0}. The

right graph shows the normal cone NS(x
0) = {v ∈ R2 | v1 − v2 ≥ 0, v1 ≥ 0}.

)0,1(
0
=x

S

0 0

)(
0
xT

S

)(
0
xN

S
0

)(
000
xFxz Ñ-=

)1,0(

Figure 1.1: The normal and tangent cones of the polyhedron S.

Given a closed, convex set S ⊂ Rn, and a function f : Rn → Rn, the variational inequality

associated with (f, S) is the problem of finding x ∈ S such that

0 ∈ f(x) +NS(x). (1.6)

Here, f(x) +NS(x) is a set consisting of n-dim vectors of the form f(x) + v for v ∈ NS(x). If

the set f(x) +NS(x) contains the origin of Rn, then x is a solution of (1.6).

To see how a variational inequality is related to an optimization problem, consider the

problem of minimizing a function F : Rn → R over a closed and convex set S. If x0 ∈ S is a

local solution to this minimization problem and F is differentiable at x0, then x0 satisfies the

following variational inequality:

0 ∈ ∇F (x0) +NS(x
0). (1.7)

9



To prove (1.7), choose a point s ∈ S and consider the line segment connecting x0 and s. Since

x0 is a local minimum of F we have ⟨∇F (x0), s − x⟩ ≥ 0. The latter inequality holds for any

s ∈ S, which gives (1.7) in view of the definition of NS(x
0). Conversely, if x0 satisfies (1.7)

and F is a convex function, then x0 is a global minimizer of F over the set S, because for each

s ∈ S one has F (s)− F (x0) ≥ ⟨∇F (x0), s− x⟩ ≥ 0.

A variational inequality can be equivalently formulated as an equation using a concept

called the normal map. To introduce this concept, let us first consider, for a fixed point z ∈ Rn,

the problem of minimizing F (x) = 1
2∥z − x∥

2 over the set S. Applying the relation between

optimization and variational inequalities, and noting ∇F (x) = x−z, we find that the Euclidean

projection ΠS(z) is exactly the solution of the following inclusion

z − x ∈ NS(x).

Now, we define the normal map induced by f and S, denoted by fS , to be a function from Rn

to Rn given by

fS(z) = f(ΠS(z)) + (z −ΠS(z)) for each z ∈ Rn, (1.8)

where ΠS(·) denotes the Euclidean projector onto S. One can then show for any solution x of

(1.6) that the point z = x− f(x) satisfies ΠS(z) = x and

fS(z) = 0. (1.9)

Conversely, for any solution z of (1.9), the point x = ΠS(z) is a solution of (1.6) and satisfies

z = x− f(x). Equation (1.9) is the normal map formulation of (1.6).

Let us revisit the example in Figure 1.1 to illustrate above concepts. Suppose F (x) =

1
2(x1−1.5)2+ 1

2(x2−0.5)2. It follows that ∇F (x0) = (−0.5,−0.5), with −∇F (x0) = (0.5, 0.5) ∈

NS(x
0). Hence, x0 satisfies (1.7). Let z0 = x0 −∇F (x0) = (1.5, 0.5). Then ΠS(z

0) = x0, and

z0 satisfies

∇F (ΠS(z
0)) + z0 −ΠS(z

0) = ∇F (x0) + z0 − x0 = (−0.5,−0.5) + (1.5, 0.5)− (1, 0) = 0,

10



which means that z0 is a solution to (1.9) with ∇F in place of f .

If the set S is a polyhedron in Rn (a set defined by finitely many affine constraints), then the

Euclidean projector ΠS is a piecewise affine function from Rn to Rn: it coincides with an affine

function on each of finitely many n-dimensional polyhedrons whose union is Rn (the dimension

of a convex set is defined to be the dimension of its affine hull, which is the smallest affine set

containing the set). Those polyhedrons, along with their faces, are called cells in the normal

manifold of S. We call a cell with dimension k a k-cell. The relative interiors of all cells in

the normal manifold form a partition of Rn (the relative interior of a convex set is its interior

relative to its affine hull). For the set S in Figure 1.1, ΠS is a piecewise affine function with 7

pieces. For example, ΠS(z) = z for points z belonging to S, ΠS(z) = (0, z2) for points in the set

{z ∈ R2 | z1 ≤ 0, 0 ≤ z2 ≤ 1}, and ΠS(z) = (0, 0) for points in the set {z ∈ R2 | z1 ≤ 0, z2 ≤ 0}.

Those sets are 2-cells in the normal manifold of S. The halfline {z ∈ R2 | z1 ≤ 0, z2 ≤ 0} and

the edge {z ∈ R2 | z1 = 0, 0 ≤ z2 ≤ 1} are 1-cells. In total, there are seven 2-cells, nine 1-cells,

and three 0-cells (vertices of S).

Throughout this dissertation, we use ∥ · ∥ to denote the norm of an element in a normed

space; unless explicitly stated otherwise, it can be any norm, as long as the same norm is used

in all related contexts. We use N (0,Σ) to denote a Normal random vector with covariance

matrix Σ. Weak convergence of random variables Yn to Y will be denoted as Yn ⇒ Y . A

function g : Rn → Rm is said to be B-differentiable at a point x0 ∈ Rn if there is a positively

homogeneous function G : Rn → Rm, such that

g(x0 + v) = g(x0) +G(v) + o(v).

The above function G is the B-derivative of g at x0 and will be written as dg(x0). For each

h ∈ Rn, dg(x0)(h) is exactly the directional derivative of g at x0 for the direction h. In general,

B-differentiability is stronger than directional differentiability, as it requires dg(x0)(·) to be a

first order approximation of g(x0 + ·) uniformly in all directions.
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1.5 Outline of the dissertation

In this dissertation, we will discuss how to use variational inequality techniques to compute

confidence intervals for sparse penalized regression based on the penalty term. The main outline

of this dissertation is as follows:

� In Chapter 2, we consider the LASSO regression and transform LASSO problems in-

to variational inequalities to derive confidence intervals and regions for the population

LASSO parameters. In terms of the true parameters in the underlying linear model, we

propose a method to derive confidence intervals and compare them with existing methods

in the literature. Moreover, we study the confidence bands for the population LASSO

parameters along the LASSO solution path. We point out that the entire confidence band

is neither piecewise linear nor continuous with respect to λ, if we construct confidence

band pointwisely by using techniques described in this Chapter. We also propose a linear

approximation tracking algorithm to compute confidence intervals.

� In Chapter 3, we consider a general penalized regression with the penalty term satisfying

the three properties suggested by [15]. We propose a unified method to construct con-

fidence intervals of the population penalized parameters for these penalized regressions,

such as LASSO and MCP regression. For the true parameters in the underlying linear

model, by correcting the bias introduced by the penalty term, we obtain asymptotic dis-

tribution of the true model estimator to construct the confidence intervals. Technically,

we propose another problem transformation approach for the penalized regression opti-

mization problem with general penalties, and extend those asymptotic results obtained

in Chapter 2.

� In Chapter 4, we discuss two possible future directions. For the first direction, we point

out that it is not trivial to conduct hypothesis testing and find the corresponding p-

value for the population penalized parameters and the true model parameters using the

asymptotic results in Chapter 3. Therefore it deserves further investigation. The second

direction in Section 4.2 is to do inference for population constrained linear regression
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using variational inequality techniques.

13



CHAPTER 2: INFERENCE FOR THE LASSO

2.1 Introduction

In this Chapter, we discuss the inference after the LASSO regression, which is probably the

most popular method in the family of sparse penalized regression with convex penalties. We

consider the following population version of the random design LASSO problem

min
β0,β

E
[
Y − β0 −

p∑
i=1

βiXi

]2
+ λ

p∑
i=1

|βi|, (2.1)

where X = (X1, · · · , Xp)
T ∈ Rp is an explanatory random vector, Y ∈ R is a response random

variable, λ > 0 is the regularization parameter, and β0 ∈ R and β = (β1, · · · , βp) ∈ Rp are the

regression parameters. The random design is commonly used to select a well performed model

for out-of-sample prediction of population, which is of primary concern in many applications.

The solution of (2.1) can be estimated by the solution of the corresponding SAA problem

min
β0,β

1

N

∣∣∣∣y − β01N −Xβ
∣∣∣∣2
2
+ λ

p∑
i=1

|βi|, (2.2)

where

y ,



y1

y2
...

yN


, X ,



x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xN1 xN2 · · · xNp


=



x1

x2

...

xN


, 1N =



1

1

...

1


∈ RN ,

and (x1, y1), · · · , (xN , yN ) are independent samples of (X,Y ). For each i = 1, · · · , N and

j = 1, · · · , p, xij ∈ R, yi ∈ R and xi ∈ R1×p. For convenience, we write X̆ = [1N ,X]. It is well

known that the LASSO estimator (β̂0, β̂) (the SAA solution) will almost surely converge to the



population LASSO parameter (β̃0, β̃) (the solution of (2.1)) as the sample size N goes to∞. In

order to indicate the reliability of this LASSO estimator, we construct confidence interval (CI)

for the population LASSO parameter. For the linear model (1.4), we also propose a method to

produce confidence intervals for the true parameters (βtrue0 , βtrue) (which solves (1.3)).

In Section 2.2, one can see how we transform the population LASSO problem (2.1) and its

corresponding SAA problem (2.2) to their normal map formulations. The assumptions needed in

this Chapter are also listed in this section. In Section 2.3, we show the methodology of producing

confidence intervals for the population LASSO parameters at a fixed value of the regularization

parameter λ. When λ changes, in Section 2.4 we study the properties of the confidence bands

along the LASSO solution path, and propose sufficient algorithms to construct such bands. In

Section 2.5, we establish a connection between the population LASSO parameters (β̃0, β̃) and

the true parameters (βtrue0 , βtrue). We use this connection to give an estimator of (βtrue0 , βtrue),

which we denote as (β̂true0 , β̂true), and obtain the asymptotic distribution of (β̂true0 , β̂true) with

fixed dimension p. Numerical results are presented in Section 2.6 to illustrate the performance

of the proposed methods.

2.2 Problem transformations

In this section, we describe how to transform (2.2) and (2.1) into variational inequalities and

normal map formulations, from where we obtain the asymptotic distribution of SAA solutions.

2.2.1 Conversion to a standard quadratic program

In this subsection, we transform the population LASSO problem into a standard quadratic

programming problem. We need Assumption 2.1(a) below to guarantee the objective function

of (2.1) to be finite valued. We will use the stronger Assumption 2.1(b) in proving convergence

results.

Assumption 2.1. (a) The expectations E[X2
1 ], · · · , E[X2

p ], and E[Y 2] are finite.

(b) The expectations E[X4
1 ], · · · , E[X4

p ], and E[Y 4] are finite.
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To eliminate the nonsmooth term
∑p

j=1 |βj | from the objective function of (2.1), we intro-

duce a new variable t ∈ Rp into (2.1). The transformed problem is

min
β0,β,t

E[Y − β0 −
p∑

j=1

βjXj ]
2 + λ

p∑
j=1

tj

tj − βj ≥ 0, j = 1, · · · , p

tj + βj ≥ 0, j = 1, · · · , p.

(2.3)

We use S to denote the feasible set of (2.3):

S = {(β0, β, t) ∈ R× Rp × Rp | tj − βj ≥ 0, tj + βj ≥ 0, j = 1, · · · , p}. (2.4)

If we write

(β0, β, t) = (β0, β1, t1, β2, t2, · · · , βp, tp), (2.5)

then we can treat the set S as a Cartesian product:

S = R×
p∏

i=1

Si, (2.6)

where for each i = 1, · · · , p the set Si is a subset of R2 defined as

Si = {(βi, ti) | ti − βi ≥ 0, ti + βi ≥ 0}. (2.7)

Note that in equation (2.5) two ways of ordering elements in (β0, β, t) are used. We refer to the

ordering on the right hand side in (2.5) as “cross” ordering, and the ordering on the left hand

side as “block” ordering. Unless explicitly stated otherwise, vectors and matrices are ordered

using “block” ordering.

In the next subsection we will transform (2.3) into a variational inequality. This requires

writing down the gradient of its objective function. To this end, define a function F : R×Rp×
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Rp × Rp × R→ R2p+1 by

F (β0, β, t,X, Y ) =



−2(Y − β0 −
∑p

j=1 βjXj)

−2(Y − β0 −
∑p

j=1 βjXj)X1

...

−2(Y − β0 −
∑p

j=1 βjXj)Xp

λep


, (2.8)

where ep is the p-dimensional vector with all entries being 1. Clearly, F is a continuously

differentiable function, and its derivative with respect to (β0, β, t) at (β0, β, t,X, Y ) is given by

d1F (β0, β, t,X, Y ) =


2 2XT 0

2X 2XXT 0

0 0 0

 . (2.9)

Next, define a function f0 : R× Rp × Rp → R2p+1 by

f0(β0, β, t) = E[F (β0, β, t,X, Y )]. (2.10)

Assumption 1(a) guarantees f0 to be well defined and finite valued. Moreover, f0 is an affine

function, with its Jacobian matrix being

L = E[d1F (β0, β, t,X, Y )] =


2 2E[XT ] 0

2E[X] 2E[XXT ] 0

0 0 0

 . (2.11)

The following lemma is relatively straightforward and its proof is omitted.

Lemma 2.1. Suppose Assumption 2.1(a) holds. Then, the objective function of (2.3) is a finite

valued, convex quadratic function on R2p+1, its gradient at each (β0, β, t) ∈ R2p+1 is f0(β0, β, t),

and its Hessian matrix is L.

We now introduce the second assumption.
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Assumption 2.2. Let (β̃0, β̃) be an optimal solution of (1.2), define t̃ ∈ Rp and q̃ ∈ Rp by

t̃i = |β̃i| and q̃i = E[−2(Y − β̃0 −
p∑

j=1

β̃jXj)Xi] for each i = 1, · · · , p.

Let I be a subset of {1, · · · , p} defined as

I =
{
i ∈ {1, · · · , p} | β̃i ̸= 0 or (β̃i = 0 and |q̃i| = λ)

}
,

and let LI be the submatrix of L in (2.11) that consists of intersections of columns and rows of

L with indices in {1} ∪ {i+ 1, i ∈ I}. Assume that LI is nonsingular.

In the above assumption, the vector (β̃0, β̃, t̃) is indeed a solution of (2.3), and Q is a

submatrix of the upperleft (p+ 1)× (p+ 1) submatrix of L. Lemma 2.2 of the next subsection

will show that the non-singularity of Q guarantees (β̃0, β̃) to be the global unique solution of

(2.1).

2.2.2 The variational inequality and normal map formulation

In view of Lemma 2.1, we can rewrite (2.3) as the following variational inequality:

−f0(β0, β, t) ∈ NS(β0, β, t). (2.12)

If we would introduce multipliers for constraints defining S in (2.4), we could write down an

explicit expression for NS(β0, β, t) and accordingly rewrite (2.12) into the well-known Karush-

Kuhn-Tucker conditions. However, that approach would lead to more variables (the multipliers)

in the formulation and we would need additional assumptions to ensure the uniqueness of

multipliers. For this reason, we choose to deal with (2.12) directly.

Let (f0)S be the normal map induced by f0 and S, as defined in (1.8) with f0 in place of f .

The normal map formulation for (2.12) is

(f0)S(z) = 0, (2.13)
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where z is a variable of dimension 2p+ 1.

As noted right below Assumption 2.2, the vector (β̃0, β̃, t̃) is a solution of (2.3). It is therefore

a solution of (2.12) as well. By the relation between variational inequalities and normal maps,

the point z0 ∈ R2p+1 defined as

z0 = (β̃0, β̃, t̃)− f0(β̃0, β̃, t̃) (2.14)

is a solution to (2.13) and satisfies ΠS(z0) = (β̃0, β̃, t̃). LetK be the critical cone to S associated

with z0, defined as

K = {w ∈ TS(ΠS(z0)) | ⟨z0 −ΠS(z0), w⟩ = 0}

= {w ∈ TS(β̃0, β̃, t̃) | ⟨f0(β̃0, β̃, t̃), w⟩ = 0}.
(2.15)

Using the special polyhedral structure of S, we will give an explicit expression of K in the proof

of Lemma 2.2 below. Critical cones are commonly used in optimization to define conditions

on optimality and local uniqueness of solutions, see, e.g., [38]. We use critical cones here for

the same purposes, but also for writing down an expression of the asymptotic distribution of

SAA solutions. Let LK be the normal map induced by the linear function L as in (2.11) and

the cone K, defined as in (1.8) with L and K in place of f and S respectively. In Lemma 2.2

below, we show that LK is a global homeomorphism from R2p+1 to R2p+1, that is, a continuous

bijective function from R2p+1 to R2p+1 whose inverse function is also continuous. The inverse

function of LK will appear in an expression for the asymptotic distribution of SAA solutions.

Lemma 2.2. Suppose that Assumptions 2.1(a) and 2.2 hold. Then the normal map LK is

a global homeomorphism from R2p+1 to R2p+1, and (β̃0, β̃, t̃) is the unique optimal solution of

(2.3).

Proof of Lemma 2.2. We start by examining the structure of K. In view of (2.6), the tangent

and normal cones to S at (β̃0, β̃, t̃) can be written as

TS(β̃0, β̃, t̃) = R× TS1(β̃1, t̃1)× · · · × TSp(β̃p, t̃p),
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and

NS(β̃0, β̃, t̃) = {0} ×NS1(β̃1, t̃1)× · · · ×NSp(β̃p, t̃p).

Let q̃ be as defined in Assumption 2.2, and let q̃0 = E[−2(Y − β̃0 −
∑p

j=1 β̃jXj)]. Since

f0(β̃0, β̃, t̃) = (q̃0, q̃, λep) and −f0(β̃0, β̃, t̃) ∈ NS(β̃0, β̃, t̃), we have

q̃0 = 0 and − (q̃i, λ) ∈ NSi(β̃i, t̃i) for each i = 1, · · · , p. (2.16)

Now choose an arbitrary v ∈ TS(β̃0, β̃, t̃), and write it as

v = (v0, v1, · · · , vp)

with v0 ∈ R and vi ∈ TSi(β̃i, t̃i) for each i = 1, · · · , p. It is not hard to see that v belongs to K

if and only if ⟨−(q̃i, λ), vi⟩ = 0 for each i = 1, · · · , p. We can therefore write K as

K = R×K1 × · · · ×Kp

where

Ki = {vi ∈ TSi(β̃i, t̃i) | ⟨−(q̃i, λ), vi⟩ = 0} for each i = 1, · · · , p.

From (2.45), for each i = 1, · · · , p we have

Ki =



{(0, 0)} if (β̃i = 0 and |q̃i| < λ),

{(βi, ti) ∈ R2
+ | βi − ti = 0} if (β̃i = 0 and q̃i = −λ),

{(βi, ti) ∈ R2 | βi − ti = 0} if β̃i > 0,

{(βi, ti) ∈ R− × R+ | βi + ti = 0} if (β̃i = 0 and q̃i = λ),

{(βi, ti) ∈ R2 | βi + ti = 0} if β̃i < 0.

(2.17)

We can now give an explicit expression for the affine hull of K. Define two matrices M and
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N as follows:

M =


1 0

0 Ip

0 Ip

 and N =


1 0

0 Ip

0 −Ip

 ,
where Ip is the p × p identity matrix. Construct a matrix Ξ by first adding the common first

column of M and N and then adding the i + 1’th column of M (N) if the condition in the

second or third (fourth or fifth) row of (3.20) is satisfied. Columns of Ξ form a basis of the

affine hull of K. It is not hard to check that ΞTLΞ = Q, where Q is defined in Assumption 2.2.

The latter assumption ensures Q to be nonsingular, so it is positive definite. It follows from

an application of [39, Theorem 4.3] that LK is a global homeomorphism. By [40, Theorem 3],

(β̃0, β̃, t̃) is a locally unique solution to (2.12). Thus, it is a locally unique solution to (2.3).

But the objective function of (2.3) is convex, so (β̃0, β̃, t̃) is indeed the global unique solution

of (2.3).

�

In the rest of this chapter, we use Σ0 to denote the covariance matrix of F (β̃0, β̃, t̃, X, Y ),

and let Σ1
0 be the upper left (p + 1) × (p + 1) submatrix of Σ0. Since the last p elements of

F (β̃0, β̃, t̃, X, Y ) are fixed at λ, we have

Σ0 =

Σ1
0 0

0 0

 . (2.18)

In addition, we make the following non-degeneracy condition

Assumption 2.3. The determinant of Σ1
0 defined in (2.18) is strictly positive.

2.2.3 Transformations of the SAA problem

So far we have reformulated (2.1) as a quadratic program (2.3), a variational inequality

(2.12), and an equation involving the normal map (2.13). We can reformulate the SAA problem

(2.2) in a similar way. By introducing the variable vector t, we rewrite (2.2) as the following
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problem:

min
(β0,β,t)∈S

1

N

∣∣∣∣y − β01N −Xβ
∣∣∣∣2
2
+ λ

p∑
j=1

tj , (2.19)

where S is as defined in (2.4). We define the SAA function

fN (β0, β, t) = N−1
N∑
i=1

F (β0, β, t,x
i, yi),

where F is as in (2.8). By noting that fN (β0, β, t) is exactly the gradient of the objective

function of (2.19) at (β0, β, t), we can rewrite (2.19) as a variational inequality

0 ∈ fN (β0, β, t) +NS(β0, β, t). (2.20)

The above fN is an affine function with its Jacobian matrix given by

LN = dfN (β0, β, t) =


2 2

∑N
i=1 x

i/N 0

2
∑N

i=1(x
i)T /N 2

∑T
i=1(x

i)T (xi)/N 0

0 0 0

 . (2.21)

Finally, we let (fN )S be the normal map induced by fN and S, and write the normal map

formulation of (2.20) as

(fN )S(z) = 0. (2.22)

In Section 2.3 we will discuss the asymptotic distributions and convergence rates of solutions of

(2.20) and (2.22), and generate confidence regions and confidence intervals for solutions of (2.12)

and (2.13). While Assumptions 2.1 and 2.2 are sufficient for the asymptotic distribution results

to hold, the results on convergence rates require additional assumptions, which are introduced

below. Assumption 2.4(a) imposes conditions on the random variable F (β0, β, t,X, Y ) to ensure

the SAA function fN to converge to f0 in probability at an exponential rate. These conditions

will hold, for example, if (X,Y ) is a bounded random variable. The other parts impose the

same type of assumptions on different random variables.
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Assumption 2.4. (a) For each h ∈ R2p+1 and (β0, β, t) ∈ R2p+1, let

Mβ0,β,t(h) = E
[
exp{⟨h, F (β0, β, t,X, Y )− f0(β0, β, t)⟩}

]
be the moment generating function of the random variable F (β0, β, t,X, Y )−f0(β0, β, t). Let C be

a compact set in R2p+1 that contains (β̃0, β̃, t̃) in its interior. Assume the following conditions.

1. There exists a constant ζ > 0 such that Mβ0,β,t(h) ≤ exp{ζ2∥h∥2/2} for each h ∈ R2p+1

and (β0, β, t) ∈ C.

2. There exists a nonnegative random variable ι(X,Y ) such that

∥F (β0, β, t,X, Y )− F (β′0, β′, t′, X, Y )∥ ≤ ι(X,Y )∥(β0, β, t)− (β′0, β
′, t′)∥

for all (β0, β, t) and (β′0, β
′, t′) in C and almost every (X,Y ).

3. The moment generating function of ι is finite valued in a neighborhood of zero.

(b) The same conditions as in (a) for d1F (β0, β, t,X, Y ) instead of F (β0, β, t,X, Y ). Ac-

cordingly, use E[d1F (β0, β, t,X, Y )] to replace f0(β0, β, t) in the conditions.

(c) The same conditions as in (a) for F (β0, β, t,X, Y )F (β0, β, t,X, Y )T . Accordingly, use

E[F (β0, β, t,X, Y )F (β0, β, t,X, Y )T ] to replace f0(β0, β, t) in the conditions.

Assumption 2.4(a-b) will enable us to show that solutions of (2.22) converge to the solution

of (2.13) in probability at an exponential rate (see Theorem 2.1 in Section 2.3.1). We need

such an exponential convergence rate to construct reliable estimates for an unknown quantity

in an expression of the asymptotic distribution of solutions of (2.13). Assumption 2.4(c) will be

needed only for the situations in which the matrix Σ1
0 defined in (2.18) is singular (see Theorem

2.3); for such situations we will use Assumption 2.4(c) to derive the exponential convergence

rate of an estimate of Σ1
0.
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2.3 Confidence intervals for the population LASSO parameters with fixed λ

This section proposes a method to compute confidence intervals and regions for solutions of

the population LASSO problem (2.1) with fixed λ based on the solutions to the SAA problem

(2.2). Section 2.3.1 below provides convergence properties and asymptotic distributions of

solutions to the variational inequality (2.20) and normal map formulation (2.22) of the SAA

problem. Section 2.3.2 explains more details on how to estimate quantities that appear in

the asymptotic distributions. Following that, Section 2.3.3 shows how to compute confidence

intervals for the solution to the normal map formulation (2.13) of (2.1). Finally, Section 2.3.4

discusses how to convert the latter confidence intervals to confidence intervals for solutions of

(2.1).

2.3.1 The convergence and distributions of SAA solutions

Theorem 2.1 below provides convergence properties and asymptotic distributions of solutions

of the SAA problems (2.20) and (2.22). It shows under Assumptions 2.1 and 2.2 that (2.22)

has a unique solution zN for sufficiently large N , and that zN converges almost surely to z0

defined in (2.14). Correspondingly, the projection ΠS(zN ) is the unique solution of (2.20), which

converges almost surely to (β̃0, β̃, t̃). This theorem also provides asymptotic distributions of zN

and ΠS(zN ), and gives their convergence rate in probability under Assumption (2.4)(a-b).

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then, for almost every ω ∈ Ω,

there exists an integer Nω, such that for each N ≥ Nω, the equation (2.22) has a unique

solution zN in R2p+1, and the variational inequality (2.20) has a unique solution in R2p+1 given

by (β̂0, β̂, t̂) = ΠS(zN ). Moreover,

lim
N→∞

zN = z0 a.e., lim
N→∞

(β̂0, β̂, t̂) = (β̃0, β̃, t̃) a.e., (2.23)

√
N(zN − z0)⇒ (LK)−1(N (0,Σ0)), (2.24)
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√
N(ΠS(zN )−ΠS(z0))⇒ ΠK ◦ (LK)−1(N (0,Σ0)), (2.25)

and
√
NLK(zN − z0)⇒ N (0,Σ0). (2.26)

Suppose in addition that Assumption 2.4(a-b) holds. Then there exist positive real numbers

ϵ0, δ0, µ0, M0 and σ0, such that the following inequality holds for each ϵ ∈ (0, ϵ0] and each N :

Prob
{
∥(β̂0, β̂, t̂)− (β̃0, β̃, t̃)∥ < ϵ

}
≥ Prob {∥zN − z0∥ < ϵ}

≥1− δ0 exp{−Nµ0} −
M0

ϵ2p+1
exp

{
−Nϵ

2

σ0

}
.

(2.27)

Proof of Theorem 2.1. The conclusions will follow from an application of [32, Theorem 7].

First, we verify assumptions of the latter theorem. It can be seen from equations (2.8) and

(2.9) that Assumption 1 in [32] holds under Assumption 2.1 of this paper. Assumption 2 in [32]

holds as a result of Lemma 2.2. Finally, let C be a compact set in R2p+1 that contains (β̃0, β̃, t̃)

in its interior. If Assumptions 2.4(a-b) of this paper are satisfied for this C, then Assumption

4 in [32] is satisfied.

By [32, Theorem 7], there exist neighborhoods Z of z0 and C0 of (β̃0, β̃, t̃), and an integer Nω

for almost every ω ∈ Ω, such that for each N ≥ Nw, the equation (2.22) has a unique solution

zN in Z, and the variational inequality (2.20) has a unique solution in C0 given by ΠS(zN ).

Equations (3.27), (3.28), (3.30) and (3.31) follow from this theorem. Because the objective

function in (2.19) is convex, ΠS(zN ) is in fact the globally unique solution for (2.19). From the

equivalence between (2.19), (2.20) and (2.22), it follows that zN and ΠS(xN ) are the globally

unique solutions to (2.22) and (2.20) respectively.

It remains to prove equation (3.29). Note that the function ΠS is B-differentiable, and its

B-derivative at z0 is exactly ΠK . In view of (3.28), we can apply the Delta theorem (see, for

example, [32, Theorem 6]) to ΠS to obtain (3.29).

�

In the above theorem, LK is the normal map induced by the linear function L in (2.11) and
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the critical cone K in (2.15). Since K is a polyhedral convex cone, the Euclidean projector

ΠK is a piecewise linear function (a function that coincides with a linear function on each of

finitely many polyhedral convex cones whose union is the entire space). The normal map LK is

therefore a piecewise linear function as well. If K happens to be a subspace, then ΠK and LK

are linear functions. By Lemma 2.2, LK is a global homeomorphism under Assumptions 2.1(a)

and 2.2. The inverse function (LK)−1 is again a piecewise linear function, and it is a linear

function if K is a subspace. Equation (3.28) implies that
√
N(zN − z0) asymptotically follows

a normal distribution if K is a subspace, and that the asymptotic distribution is not normal if

K is not a subspace. Equation (3.29) gives the asymptotic distribution of (β̂0, β̂, t̂) = ΠS(zN ),

which is the solution of (2.20) or equivalently (2.19). Equation (3.31) shows that zN converges

to z0 in probability at an exponential rate, as N goes to ∞.

In this section, our objective is to develop a method to compute confidence regions and

confidence intervals for z0 and (β̃0, β̃). After solving the LASSO (2.2) to find its solution

(β̂0, β̂), we let t̂ = |β̂| so that (β̂0, β̂, t̂) solves (2.19) and equivalently (2.20). We can then

compute zN by

zN = (β̂0, β̂, t̂)− fN (β̂0, β̂, t̂), (2.28)

which solves (2.22) and satisfies (β̂0, β̂, t̂) = ΠS(zN ). Now that zN is known, from (3.30) one can

readily write down an expression for the confidence region of z0 by using the χ2 distribution.

That expression contains unknown objects Σ0 and LK , and we describe below how to estimate

those objects.

We will substitute Σ0 by ΣN , the sample covariance matrix of {F (β̂0, β̂, t̂,xi, yi)}Ni=1. Let

Σ1
N be the upperleft (p+1)× (p+1) submatrix of ΣN ; we have ΣN =

Σ1
N 0

0 0

 . The following
lemma shows that ΣN converges to Σ0 almost surely, and provides a rate of the convergence of

ΣN in probability.

Lemma 2.3. Suppose that Assumptions 2.1, 2.2 and 2.4(a-b) hold. Then ΣN converges to Σ0

almost surely. If Assumption 2.4(c) holds additionally then there exist positive real numbers δ1,
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µ1, M1 and σ1, such that the following inequality holds for each ϵ > 0 and each N :

Prob {∥ΣN − Σ0∥ < ϵ} ≥ 1− δ1 exp{−Nµ1} −
M1

min(ϵ(2p+1)2 , ϵ2p+1)
exp

{
−Nϵ

2

σ1

}
. (2.29)

Proof of Lemma 2.3. Define a function Θ : R3p+2 → R(2p+1)×(2p+1) by

Θ(β0, β, t,X, Y ) = F (β0, β, t,X, Y )F (β0, β, t,X, Y )T ,

let θ0(β0, β, t) = E[Θ(β0, β, t,X, Y )], and for each N ∈ N define the sample average function as

θN (β0, β, t) =
1

N

N∑
i=1

F (β0, β, t, xi, yi)F (β0, β, t, xi, yi)
T =

1

N

N∑
i=1

Θ(β0, β, t, xi, yi).

Note that entries of Θ(β0, β, t,X, Y ) are linear combinations of terms Y 2XiXj , βiβjXiXjXkXl,

and terms of lower degrees, where i, j, k, l = 1, · · · , p. Assumption 2.1 guarantees that θ0 is finite

valued. Moreover, applying [32, Theorem 3(a)] to Θ, we see that θ0 is a continuous function

and that θN converges uniformly to θ0 on compact sets almost surely.

The covariance matrices ΣN and Σ0 are given by

ΣN = θN (β̂0, β̂, t̂)− fN (β̂0, β̂, t̂)fN (β̂0, β̂, t̂)
T

and

Σ0 = θ0(β̃0, β̃, t̃)− f0(β̃0, β̃, t̃)f0(β̃0, β̃, t̃)T .

It was shown in Theorem 3.1 that (β̂0, β̂, t̂) converges to (β̃0, β̃, t̃) almost surely. Consequently,

θN (β̂0, β̂, t̂) converges almost surely to θ0(β̃0, β̃, t̃). Similarly fN (β̂0, β̂, t̂) → f0(β̃0, β̃, t̃) almost

surely. Consequently ΣN converges to Σ0 almost surely.

Let C be a compact set that contains β̃0, β̃, t̃ in its interior. If Assumption 2.4(c) holds, we

can apply [45, Theorem 7.67] (see also [32, Theorem 4(a)]) to find positive real numbers δ2, µ2,
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M2 and σ2, such that the following holds for each ϵ > 0 and each N :

Prob

{
sup

(β0,β,t)∈C
∥θN (β0, β, t)− θ0(β0, β, t)∥ ≥ ϵ

}
≤ δ2 exp{−Nµ2}+

M2

ϵ(2p+1)2
exp

{
−Nϵ

2

σ2

}
.

(2.30)

Similarly, under Assumption 2.4(a) we can apply [45, Theorem 7.67] to fN to obtain positive

real numbers δ3, µ3, M3 and σ3, such that the following holds for each ϵ > 0 and each N :

Prob

{
sup

(β0,β,t)∈C
∥fN (β0, β, t)− f0(β0, β, t)∥ ≥ ϵ

}
≤ δ3 exp{−Nµ3}+

M3

ϵ2p+1
exp

{
−Nϵ

2

σ3

}
.

(2.31)

Since ∥ΣN − Σ0∥ is not greater than the sum of ∥θN (β̂0, β̂, t̂) − θ0(β̂0, β̂, t̂)∥, ∥θ0(β̂0, β̂, t̂) −

θ0(β̃0, β̃, t̃)∥, ∥fN (β̂0, β̂, t̂)fN (β̂0, β̂, t̂)
T − f0(β̂0, β̂, t̂)f0(β̂0, β̂, t̂)T ∥ and ∥f0(β̂0, β̂, t̂)f0(β̂0, β̂, t̂)T −

f0(β̃0, β̃, t̃)f0(β̃0, β̃, t̃)
T ∥, and θ0 and f0 are Lipschitz continuous on compact sets under the

assumptions, we obtain (2.29) by combining (2.30), (2.31) and (3.31).

�

Estimation of the normal map LK requires more understanding of its structure. It was

shown in [40] that LK is exactly d(f0)S(z0), the B-derivative of the normal map (f0)S at z0

(recall the definition of B-derivative at the end of Section 1.4). Applying the chain rule of

B-differentiability, one has

LK(h) = d(f0)S(z0)(h) = L dΠS(z0)(h) + h− dΠS(z0)(h) for each h ∈ R2p+1,

where L = df0(x0) is defined in (2.11), and dΠS(z0) is the B-derivative of the Euclidean projector

ΠS at z0 and satisfies dΠS(z0) = ΠK [41]. Note that dΠS(z) is not continuous with respect to z

at those points z on the boundary of any (2p+1)-cell in the normal manifold of S. This results

in the discontinuity of d(f0)S(·) at these points. If d(f0)S(z) is not continuous with respect

to z at z = z0, d(fN )S(zN ) may not converge to d(f0)S(z0) even though zN converges to z0.

Consequently, in general we need to find another estimator of LK instead of d(fN )S(zN ). The

following subsection provides more details on the estimation of dΠS(z0) and LK .
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2.3.2 Estimation of the B-derivative dΠS(z0) and the normal map LK

In this subsection, we will define two functions ΛN and ΦN from R2p+1×R2p+1 to R2p+1; for

each fixed z ∈ R2p+1, ΛN (z) and ΦN (z) are functions from R2p+1 to R2p+1. Theorem 2.2 will

prove that ΛN (zN ) and ΦN (zN ) converge to dΠS(z0) and LK respectively. We will then replace

the unknown object LK in (3.30) by the computable object ΦN (zN ), to establish a computable

formula for confidence regions of z0.

Before we introduce ΛN and ΦN , we have to discusses the computation of dΠS(z), the B-

derivative of the projector ΠS at a given point z ∈ R2p+1. The fact that S is a polyhedron implies

that ΠS is piecewise affine, so for each point z the B-derivative dΠS(z) is a piecewise linear

function. Moreover, S has a very special structure, in that it is a Cartesian product as shown in

(2.6). Consequently, ΠS is a product of individual projectors, and dΠS(z) is the product of B-

derivatives of those individual projectors. That is, for each z = (β0, β, t) and h = (β̆0, β̆, t̆) with

“cross” ordering, dΠS(z)(h) = (β̆0, dΠS1(β1, t1)(β̆1, t̆1), · · · , dΠSp(βp, tp)(β̆p, t̆p)), where each Si

is a subset of R2 defined in (2.7).

To give specific formulas for dΠSi for each i = 1, · · · , p, we need to examine the structure

of the normal manifold of Si. The set Si is a convex cone in the (βi, ti) space, illustrated

by the shaded area in Figure 2.1. Its normal manifold consists of 9 cells, which we denote

by C0
i , · · · , C8

i . Among those cells, C0
i is the singleton {0}, C1

i , C
2
i , C

3
i ,C

4
i are half rays as

illustrated in Figure 2.1, and C5
i , C

6
i , C

7
i , C

8
i are convex cones illustrated in the same figure

(C5
i is just Si). The left side of Table 2.1 gives the equality/inequality constraints that define

each of those cells. The union of all those cells is R2, and the relative interiors of those cells

form a partition of R2: each point in R2 lies in the relative interior of exactly one of C0
i , · · · , C8

i

(The relative interiors of the 2-cells C5
i , C

6
i , C

7
i , C

8
i are exactly their interiors. The relative

interiors of the 1-cells C1
i , C

2
i , C

3
i ,C

4
i are open half rays excluding the origin. The relative

interior of C0
i is itself).

The Euclidean projector ΠSi is a piecewise linear function that coincides with a linear
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Figure 2.1: The normal manifold of Si.

Cell Defining constraints Critical cone Defining constraints

C0
i ti = 0, βi = 0 K0

i ti − βi ≥ 0, ti + βi ≥ 0
C1
i ti = βi, ti ≥ 0 K1

i ti − βi ≥ 0
C2
i ti = −βi, ti ≥ 0 K2

i ti + βi ≥ 0
C3
i ti = βi, ti ≤ 0 K3

i ti = −βi, ti ≥ 0
C4
i ti = −βi, ti ≤ 0 K4

i ti = βi, ti ≥ 0
C5
i ti − βi ≥ 0, ti + βi ≥ 0 K5

i None
C6
i ti − βi ≥ 0, ti + βi ≤ 0 K6

i ti = −βi
C7
i ti − βi ≤ 0, ti + βi ≤ 0 K7

i ti = 0, βi = 0
C8
i ti − βi ≤ 0, ti + βi ≥ 0 K8

i ti = βi

Table 2.1: Cells in the normal manifold of Si and the associated critical cones

function on each 2-cell C5
i , C

6
i , C

7
i , C

8
i . More specifically, we define four 2× 2 matrices

A1 =

1 0

0 1

 , A2 =

 1/2 −1/2

−1/2 1/2

 , A3 =

1/2 1/2

1/2 1/2

 and A4 =

0 0

0 0

 ,
which represent the linear functions coinciding with ΠSi on C5

i , C
6
i , C

8
i , C

7
i respectively. On

the (relative) interior of each of those 2-cells, the B-derivative dΠSi(βi, ti) is a linear function.

On the relative interior of each 1-cell, the B-derivative dΠSi(βi, ti) is a piecewise linear function

with 2 pieces. The B-derivative dΠSi(0, 0) at the origin is the same as the projector ΠS itself,

and is a piecewise linear function with 4 pieces. Note that the B-derivative dΠSi(βi, ti) at all

points (βi, ti) in the relative interior of Cj
i for a fixed j = 0, · · · , 8 is the same function, which
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we denote by ψj . Table 2.2 provides the representations of each ψj . For example, ψ1 (the

B-derivative dΠSi(βi, ti) at a point (βi, ti) in the relative interior of C1
i ) is a piecewise linear

function with two pieces, and it coincides with the linear function A1 on C5
i ∪ C6

i and with A3

on C7
i ∪ C8

i .

At each point (βi, ti) in R2, the critical cone to Si associated with (βi, ti) is TSi(ΠSi(βi, ti))∩

{(βi, ti)−ΠSi(βi, ti)}⊥, which is the same definition for K in (2.15) with Si and (βi, ti) in place

of S and z0. At all points (βi, ti) in the relative interior of Cj
i for a fixed j = 0, · · · , 8, the

critical cone to Si associated with (βi, ti) is the same, which we denote by Kj
i . The right side

of Table 2.1 lists the constraints defining each Kj
i . The cone K

j
i is related with the function ψj

through the equality ψj = Π
Kj

i
[41].

C5
i C6

i C7
i C8

i

ψ0 A1 A2 A4 A3

ψ1 A1 A1 A3 A3

ψ2 A1 A2 A2 A1

ψ3 A2 A2 A4 A4

ψ4 A3 A4 A4 A3

ψ5 A1 A1 A1 A1

ψ6 A2 A2 A2 A2

ψ7 A4 A4 A4 A4

ψ8 A3 A3 A3 A3

Table 2.2: Matrix representations of ψk for k = 0, · · · , 8

By now we can write down the specific formula for dΠSi(βi, ti) for each point (βi, ti) ∈ R2:

each such point belongs to the relative interior of exactly one cell Cj
i , and dΠSi(βi, ti) = ψj .

We are ready to give the formula for dΠS(z) for each z ∈ R2p+1. In view of (2.6), each cell in

the normal manifold of S is the product of cells in the normal manifolds of the individual sets,

i.e., of the form R × Πp
i=1C

γ(i)
i , where γ(i) = 0, · · · , 8 for each i = 1, · · · , p. For each z in the

relative interior of one cell R × Πp
i=1C

γ(i)
i , dΠS(z) is the same function. We denote the latter

function as Ψγ , which is a function from R2p+1 to R2p+1 and is given by

Ψγ(h) = (β̆0, ψγ(1)(β̆1, t̆1), · · · , ψγ(p)(β̆p, t̆p)) for each h = (β̆0, β̆, t̆). (2.32)

If we use K(γ) = R×Πp
i=1K

γ(i)
i to denote the critical cone to S associated with a point in the
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relative interior of R×Πp
i=1C

γ(i)
i , then Ψγ(h) = ΠK(γ)(h) for each h ∈ R2p+1.

For technical reasons, we define a function g from the set of integers to R. The function g can

be any linear combination of finite many terms of the form aN b with a > 0 and b ∈ (0, 1/2).

Other choices are also possible; for more details see [32]. Among other requirements, the

function g needs to satisfy g(N)→∞ as N →∞.

Next, we equip the (β0, β, t) space with a norm, which will be used to compute distances be-

tween points in R2p+1 and cells in the normal manifold of S. Theoretically, this can be any norm.

For convenience of computation, we use in each individual (βi, ti) space the norm, ∥(βi, ti)∥ =

max(|βi+ ti|, |βi− ti|), and use the norm, ∥(β0, β, t)∥ = max(|β0|,maxi=1,··· ,p {∥(βi, ti)∥}) in the

overall (β0, β, t) space. Table 2.3 provides formulas on distances between a point (βi, ti) and

each cell in the normal manifold of Si. The distance between z = (β0, β, t) and R×Πp
i=1C

γ(i)
i ,

a cell in the normal manifold of S, is

d(z,R×Πp
i=1C

γ(i)
i ) = max

i=1,··· ,p
d
(
(βi, ti), C

γ(i)
i

)
.

Cell Distance from (βi, ti)

C0
i max(|βi − ti|, |βi + ti|)

C1
i max(−(βi + ti), |βi − ti|)

C2
i max(βi − ti, |βi + ti|)

C3
i max(βi + ti, |βi − ti|)

C4
i max(−(βi − ti), |βi + ti|)

C5
i max(−(βi + ti), βi − ti, 0)

C6
i max(βi + ti, βi − ti, 0)

C7
i max(βi + ti,−(βi − ti), 0)

C8
i max(−(βi + ti),−(βi − ti), 0)

Table 2.3: Distances between (βi, ti) and cells in the normal manifold of Si

Let N be a given integer. For each z ∈ R2p+1, find a cell in the normal manifold of S, that

has the smallest dimension among all cells whose distances from z are no more than 1/g(N).

Let this cell be denoted as R×Πp
i=1C

γ(i)
i . Define the function ΛN (z) : R2p+1 → R2p+1 by

ΛN (z)(h) = Ψγ(h) for each h ∈ R2p+1, (2.33)
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where Ψγ is defined in (2.32). In other words, ΛN (z) is defined to be the B-derivative dΠS(z
′)

for a point z′ that belongs to the relative interior of a cell that has the smallest dimension

among all cells whose distances from z are no more than 1/g(N). When z′ lies in the interior of

a full-dimensional cell, dΠS(z
′) is a linear map from R2p+1 to R2p+1; otherwise it is a piecewise

linear map.

Next, define the function ΦN : R2p+1 × R2p+1 → R2p+1 as

ΦN (z)(h) = LN ΛN (z)(h) + h− ΛN (z)(h) (2.34)

for each z ∈ R2p+1 and h ∈ R2p+1, where LN is defined in (2.21). For a given N , ΛN is a fixed

function, while ΦN depends on sample data since LN does. If ΛN (z) is a linear map from R2p+1

to R2p+1, then ΦN (z) is a linear map as well; otherwise it is a piecewise linear map.

Theorem 2.2 below shows that ΛN (zN ) and ΦN (zN ) are asymptotically exact estimators of

dΠS(z0) and LK respectively.

Theorem 2.2. Suppose that Assumptions 2.1, 2.2 and 2.4(a-b) hold. Then

lim
N→∞

Prob
[
ΛN (zN )(h) = dΠS(z0)(h) for all h ∈ R2p+1

]
= 1,

and there exists a positive real number ϕ such that

lim
N→∞

Prob

[
sup

h∈R2p+1

∥ΦN (zN )(h)− LK(h)∥
∥h∥

<
ϕ

g(N)

]
= 1. (2.35)

Proof of Theorem 2.2. The conclusions follow from Theorem 2.1 and Corollary 3.2 of [31].

�

We can now replace the normal map LK in (3.30) by ΦN (zN ), without changing the weak

convergence, see Theorem 2.3 below.

Theorem 2.3. Suppose that Assumptions 2.1, 2.2 and 2.4(a-b) hold. Then

√
NΦN (zN )(zN − z0)⇒ N (0,Σ0). (2.36)
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If Assumption 2.3 holds, then

√
N

(Σ1
N )−1/2 0

0 Ip

 (ΦN (zN ))(zN − z0)⇒ N (0, Ip+1)× 0. (2.37)

Otherwise, if Assumption 2.4(c) holds, then let l be the number of positive eigenvalues of Σ1
0

counted with regard to their algebraic multiplicities, and decompose Σ1
N as

Σ1
N = UT

N∆NUN , (2.38)

where UN is an orthogonal (p+1)× (p+1) matrix, and ∆N is a diagonal matrix with monoton-

ically decreasing elements. Let DN be the upper-left submatrix of ∆N whose diagonal elements

are at least 1/g(N). Let lN be the number of rows in DN , and let (UN )1 be the submatrix of

UN that consists of its first lN rows, and let (UN )2 consist of the remaining rows of UN . Then

Prob{lN = l} → 1 as N →∞, and

N
[
(ΦN (zN ))(zN − z0)

]T (UN )T1D
−1
N (UN )1 0

0 0

 [
(ΦN (zN ))(zN − z0)

]
⇒ χ2

l , (2.39)

and

N
[
(ΦN (zN ))(zN − z0)

]T (UN )T2 (UN )2 0

0 Ip

 [
(ΦN (zN ))(zN − z0)

]
⇒ 0. (2.40)

Proof of Theorem 2.3. Equation (3.37) follows from [31, Corollary 3.3]. If Σ1
0 is nonsingular,

then (3.38) follows from the fact that Σ1
N converges to Σ1

0 almost surely, as shown in Lemma

2.3.

Now suppose Σ1
0 is singular and Assumption 2.4(c) holds. Decompose Σ1

0 as

Σ1
0 = UT

0

D0 0

0 0

U0 (2.41)

where U0 is an orthogonal (p+1)× (p+1) matrix and D0 is a diagonal l× l matrix with strictly
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positive, monotonically decreasing diagonal elements. Let (U0)1 be the submatrix of U0 that

consists of its first l rows, and let (U0)2 consist of the remaining rows of U0. From (3.37) and

(2.41) we have

√
N


D−1/2

0 0

0 Ip+1−l

U0 0

0 Ip

 (ΦN (zN ))(zN − z0)⇒ N (0, Il)× 0,

which implies

N
[
(ΦN (zN ))(zN − z0)

]T (U0)
T
1D

−1
0 (U0)1 0

0 0

 [
(ΦN (zN ))(zN − z0)

]
⇒ χ2

l , (2.42)

and

N
[
(ΦN (zN ))(zN − z0)

]T (U0)
T
2 (U0)2 0

0 Ip

 [
(ΦN (zN ))(zN − z0)

]
⇒ 0. (2.43)

According to Lemma 2.3, there exist positive real numbers δ1, µ1, M1 and σ1, such that

(2.29) holds for each ϵ > 0 and each N . It follows from the Lipschtiz continuity of eigenvalues

that there exist positive numbers δ2, µ2, M2 and σ2 such that the following holds for each ϵ > 0

and each N :

Prob


∥∥∥∥∥∥∥∆N −

D0 0

0 0


∥∥∥∥∥∥∥ < ϵ


≥1− δ2 exp{−Nµ2} −

M2

min(ϵ(2p+1)2 , ϵ2p+1)
exp

{
−Nϵ

2

σ2

}
.

Denote the right hand side of the above inequality by ηN (ϵ), and let r be the smallest diagonal

element in D0. For N large enough to satisfy g(N) ≥ 2/r, we have

Prob

{
(∆N )ii >

1

g(N)
for all i = 1, · · · , l

}
≥ Prob

{
(∆N )ii >

r

2
for all i = 1, · · · , l

}
≥ ηN (r/2)
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On the other hand for each such N we have

Prob
{
(∆N )ii <

r

2
for all i = l + 1, · · · , p+ 1

}
≥Prob

{
(∆N )ii <

1

g(N)
for all i = l + 1, · · · , p+ 1

}
≥ ηN

(
1

g(N)

)
.

Thus, for large N , the equality l = lN holds with probability at least ηN (r/2)+ηN (1/g(N))−1,

which converges to 1 as N →∞. It follows that DN converges to D0 in probability.

Let S be the family of (p+ 1)× (p+ 1) matrices A, such that A is symmetric and positive

semi-definite, with its largest l eigenvalues strictly larger than r/2 and its remaining eigenvalues

strictly smaller than r/2. Each matrix A ∈ S has a unique approximation Â in Frobenius norm

of rank no more than l, and the rank of Â is exactly l. Let W (A) be the pseudo-inverse of Â.

Note that W is a continuous function on the set S.

Note that Σ1
0 belongs to S with W (Σ1

0) = (U0)
T
1D

−1
0 (U0)1. On the other hand, the prob-

ability for Σ1
N to belong to S converges to 1 as N → ∞, and the probability for the equality

(UN )T1D
−1
N (UN )1 = W (Σ1

N ) to hold also converges to 1 as N → ∞. Since Σ1
N converges to

Σ1
0 almost surely, (UN )T1D

−1
N (UN )1 converges to (U0)

T
1D

−1
0 (U0)1 in probability. This and (2.42)

implies (3.40).

To prove (3.41), conduct a spectral decomposition A = V TΛV for each matrix A ∈ S, with

V being orthogonal and Λ being a diagonal matrix with monotonically decreasing diagonal

elements. Let V2 be the submatrix of V that consists of its last p + 1 − l rows, and let

H(A) = V T
2 V2. The function H is continuous on S. Consequently, the matrix (UN )T2 (UN )2

converges to (U0)
T
2 (U0)2 in probability. This together with (2.43) implies (3.41).

�

The above theorem deals with two cases separately, depending on whether Σ1
0 is nonsingular

or not. In practice, since Σ1
0 is unknown, we will always start by decomposing Σ1

N as in (2.38).

If some eigenvalues of Σ1
N (i.e., diagonal elements of ∆N ) are less than 1/g(N), then DN is a

proper submatrix of ∆N , and we will use (3.40) and (3.41) to establish confidence intervals for

z0 (more details will be given in the following subsections). Otherwise, if all eigenvalues of Σ1
N

are greater than or equal to 1/g(N), then DN equals ∆N and (3.40) and (3.41) are equivalent
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to (3.38).

2.3.3 Confidence intervals for the normal map solutions

In this subsection, we discuss how to obtain individual and simultaneous confidence intervals

for z0, based on results in Theorem 2.3.

The computation of individual confidence intervals is based on (3.37). Recall from Lemma

2.2 that the normal map LK is a global homeomorphism under our assumptions. As a piecewise

linear function, both LK itself and its inverse function are globally Lipschitz continuous. We

can apply [41, Lemma 3.1] to conclude from (2.35) that the probability for ΦN (zN ) to be a

global homeomorphism converges to 1 as N → ∞. If ΦN (zN ) is a global homeomorphism, we

can then use

(ΦN (zN ))−1(N (0,ΣN )) (2.44)

to approximate the distribution of
√
N(zN − z0). We discuss how to construct individual

confidence intervals from (2.44) depending on whether ΦN (zN ) is linear or not.

When ΦN (zN ) is a linear map from R2p+1 to R2p+1, the distribution in (2.44) is normal. In

such situations, we letmi be the ith diagonal element of the matrix (ΦN (zN ))−1ΣN (ΦN (zN ))−T ,

and use [
(zN )i −

√
χ2
1(α)mi

N
, (zN )i +

√
χ2
1(α)mi

N

]
as an approximate (1 − α)100% individual confidence interval for (z0)i. Here and in what

follows, χ2
n(α) is the number that satisfies P (U > χ2

1(α)) = α for a χ2 random variable U with

n degrees of freedom.

When ΦN (zN ) is not a linear map, we simulate data based on the distribution in (2.44),

and find individual confidence intervals by ordering the data by each component and finding

bounds on each component that cover a specified percentage of data points. To simulate the

distribution of (2.44), let R × Πp
i=1C

γ(i)
i be the cell that is used to define ΛN (zN ); it follows

that

ΛN (zN ) = Ψγ = ΠK(γ),

where K(γ) is defined below (2.32). From (3.35) it can be seen that ΦN (zN ) is exactly the
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normal map induced by LN and K(γ). To find (ΦN (zN ))−1(q) for a given q ∈ R2p+1, we first

find the vector h that solves the following optimization problem

min
h∈K(γ)

1

2
hTLNh− qTh,

and then let (ΦN (zN ))−1(q) = h− LN (h) + q.

Below we discuss the computation of simultaneous confidence intervals for all components

of (z0)i. From (3.40), the set of z ∈ R2p+1 satisfying the following constraints

N
[
ΦN (zN )(zN − z)

]T (UN )T1D
−1
N (UN )1 0

0 0

 [
ΦN (zN )(zN − z)] ≤ χ2

lN
(α)

(UN )2 0

0 Ip

 [
ΦN (zN )(zN − z)

]
= 0

is an approximate (1 − α)100% confidence region for z0. The set is an ellipsoid in a subspace

of R2p+1, if ϕN (zN ) is linear. Otherwise it is the union of fractions of different ellipsoids.

To obtain simultaneous confidence intervals, we find the maximal and minimal values of zi

under the above constraints, for each i = 1, · · · , 2p + 1. When ϕN (zN ) is a piecewise linear

function with multiple pieces, we treat each of its pieces separately, and then combine the

results.

2.3.4 Confidence intervals for LASSO parameters

Having computed confidence intervals for z0, we transform them into confidence intervals

for the population LASSO parameters (β̃0, β̃).

Let q̃ be as defined in Assumption 2.2, and let q̃0 = E[−2(Y − β̃0 −
∑p

j=1 β̃jXj)]. By the

definitions of (2.8) and (2.10), we have f0(β̃0, β̃, t̃) = (q̃0, q̃, λep). It follows from (2.14) that

z0 = (β̃0, β̃, t̃)− (q̃0, q̃, λep). Since −f0(β̃0, β̃, t̃) ∈ NS(β̃0, β̃, t̃), we know that q̃0 = 0 which gives

β̃0 = (z0)1. Thus, confidence intervals of (z0)1 are exactly those of β̃0.
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From the definition of Si and the fact −(q̃i, λ) ∈ NSi(β̃i, t̃i), we have for each i = 1, · · · , p

−λ ≤ q̃i ≤ λ if β̃i = 0, q̃i = −λ if β̃i > 0, and q̃i = λ if β̃i < 0. (2.45)

This relation between β̃i and q̃i with the fact that (z0)i+1 = β̃i− q̃i imply the following equality

for each i = 1, · · · , p:

β̃i =


(z0)i+1 − λ if (z0)i+1 > λ,

0 if (z0)i+1 ∈ [−λ, λ],

(z0)i+1 + λ if (z0)i+1 < −λ.

(2.46)

Let us denote the right hand side of (3.42) as Γ((z0)i+1), which is a nondecreasing piecewise

linear function of (z0)i+1. We can then use images of confidence intervals of (z0)i+1 under the

map Γ as confidence intervals of β̃i. Because Γ(·) takes the constant value of 0 on [−λ, λ], the

confidence interval for β̃i computed from this method will contain the true solution of (2.1) with

a probability larger than the prescribed level, when the confidence interval for (z0)i+1 meets a

part of the interval [−λ, λ].

2.4 Confidence intervals for the population LASSO parameters with varying λ

We have introduced in Section 2.3 on how to construct confidence intervals for z0 and (β̃0, β̃)

when λ is fixed. In this section, we study properties of confidence intervals for z0 as λ varies

with fixed sample size N . Section 2.4.1 provides a condition to ensure the confidence intervals

to be computationally tractable. Following that, Sections 2.4.2 and 2.4.3 discuss properties of

these confidence intervals, and show that their dependence on λ is Lipschitz continuous when λ

is restricted on certain intervals. In Section 2.4.4, we propose algorithms to track the confidence

bands for (β̃0, β̃) along the LASSO solution path.

2.4.1 Properties of zN and ΦN (zN )

Recall that each cell in the normal manifold of S has the form R×Πp
i=1C

γ(i)
i , where γ(i) =

0, 1, · · · , 8 for each i = 1, 2, · · · , p. We divide the plane (βi, ti) into 9 pieces E0
i , · · · , E8

i , as

illustrated in Figure 2.2. Table 2.4 lists the constraints that define each of the sets E0
i , · · · , E8

i .
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Figure 2.2: E0
i , · · · , E8

i in the plane (βi, ti)

Piece Defining constraints

E0
i |ti − βi| 6 1/g(N), |ti + βi| 6 1/g(N)

E1
i |ti − βi| 6 1/g(N), ti + βi > 1/g(N)

E2
i ti − βi > 1/g(N), |ti + βi| 6 1/g(N)

E3
i |ti − βi| 6 1/g(N), ti + βi < −1/g(N)

E4
i ti − βi < −1/g(N), |ti + βi| 6 1/g(N)

E5
i ti − βi > 1/g(N), ti + βi > 1/g(N)

E6
i ti − βi > 1/g(N), ti + βi < −1/g(N)

E7
i ti − βi < −1/g(N), ti + βi < −1/g(N)

E8
i ti − βi < −1/g(N), ti + βi > 1/g(N)

Table 2.4: E0
i , · · · , E8

i in the plane (βi, ti)

Each partition R×Πp
i=1E

γ(i)
i is associated with the cell R×Πp

i=1C
γ(i)
i . Let

γ(zN ) ,
(
γ(1), · · · , γ(p)

)
such that zN ∈ R×Πp

i=1E
γ(i)
i .

This γ(zN ) identifies the partition that contains zN . In view of the definition of ΛN , if zN is in

the partition R×Πp
i=1E

γ(i)
i , then

ΛN (zN )(h) = Ψγ(h) for each h ∈ R2p+1.
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The “cross” ordered ΛN (zN ) has following representation

ΛN (zN ) =



1

ψγ(1)

ψγ(2)

. . .

ψγ(p)


,

where each ψγ(i), i = 1, · · · , p is a (piecewise) linear map defined in Table 2.2. We write ΦN (zN )

as

ΦN (zN ) =

 Φ1 Φ2

Φ3 Φ4

 ,
where Φ1 and Φ4 are respectively functions from Rp+1 to Rp+1 and from Rp to Rp.

Lemma 2.4. Suppose that we have chosen g(N) s.t.

1

g(N)
< λ, (2.47)

zN is a solution of (2.22). Then for any i ∈ {1, 2, · · · , p}, the components ((zN )i+1, (zN )i+1+p)

can only be in E3
i , E

4
i , E

6
i , E

7
i , or E

8
i . Furthermore, the matrix representations of Φ4 are all

diagonally invertible matrices.

Proof of Lemma 3.1. We know that the SAA optimal solution (β̂0, β̂, t̂) always lies on the

boundary of S, i.e. t̂i = |β̂i| for any i = 1, · · · , p. From (2.28) and the fact that (β̂0, β̂, t̂) is the

projection of zN on S, we have

(zN )i+1+p = t̂i − λ,

(zN )i+1 =


β̂i + λ if β̂i > 0,

τi ∈ [−λ, λ] if β̂i = 0,

β̂i − λ if β̂i < 0,

for each i = 1, · · · , p. According to the defining constraints in Table 1 and (2.47), one can see
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that ((zN )i+1, (zN )i+1+p) can only be in E3
i , E

4
i , E

6
i , E

7
i , or E

8
i . This means that ψγ(i) never

coincides with A1, the 2× 2 identity matrix.

One can check that ΛN (zN ) has the following form


1 0 0

0 W1 W2

0 W3 W4

 , (2.48)

in which each Wj is a (piecewise) linear function represented by p× p diagonal matrices. More-

over, we know that

ΦN (zN ) = LN ΛN (zN ) + I − ΛN (zN ).

From (2.21) and (2.48), we obtain

Φ4 = Ip×p −W4.

Because ψγ(i) never coincides with A1, the matrix representations ofW4 have diagonal elements

0 or 1
2 . Consequently, all the matrix representations of Φ4 are diagonally invertible matrices.

�

Lemma 2.5. Suppose zN is a solution of (2.22). Let

L =
{
i ∈ {1, · · · , p} | ((zN )i+1, (zN )i+1+p) ∈ E3

i , E
4
i , E

6
i or E8

i

}
,

and (LN )L be the submatrix of LN that consists of columns and rows of LN with indices in

{1} ∪ {i+ 1, i ∈ L}. Then the following two statements are equivalent.

1. ΦN (zN ) is a global homeomorphism.

2. (LN )L is nonsingular, and ((zN )i+1, (zN )i+1+p) /∈ E0
i , E

1
i or E2

i for all i ∈ {1, · · · , p}.

Proof of Lemma 3.2. For any i = 1, · · · , p and j = 0, · · · , 8, the critical cone to Si associated

with any point (βi, ti) is the same, which are denoted by Kj
i and defined in Table 2. Let
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K(γ(zN )) = R×Πp
i=1K

γ(i)
i , then one can see that

Ψγ(zN )(h) = ΠK(γ(zN ))(h) for each h ∈ R2p+1.

From (3.35) and (3.34), ΦN (zN ) is a normal map induced by linear function LN and critical

cone K(γ(zN )).

Next, we give an explicit expression for the affine hull of K(γ(zN )). Define two matrices

Q1 and Q2 as

Q1 =


1 0

0 Ip

0 Ip

 and Q2 =


1 0

0 Ip

0 −Ip

 ,
where Ip is the p dimensional identity matrix. Construct a matrix Ξ by adding columns from

Q1, Q2 or I2p+1 according to the following rule: At first add the first column of Q1, then for

i = 1, · · · , p, add (i+ 1)’th column of Q1 if ((zN )i+1, (zN )i+1+p) ∈ E4
i or E8

i , or add (i+ 1)’th

column of Q2 if ((zN )i+1, (zN )i+1+p) ∈ E3
i or E6

i , or add (i+1)’th and (i+1+p)’th columns of

I2p+1 if ((zN )i+1, (zN )i+1+p) ∈ E0
i , E

1
i or E2

i . Note that zN can not be in E5
i and K7

i = {(0, 0)},

so columns of Ξ form a basis of the affine hull of K(γ(zN )). From Proposition 2.5 and Theorem

4.3 of [39], we find that ΦN (zN ) is a global homeomorphism if and only if ΞTLNΞ is nonsingular.

We prove the latter statement is equivalent to the statement 2 in the Lemma.

If ΞTLNΞ is nonsingular, one can check that ((zN )i+1, (zN )i+1+p) /∈ E0
i , E

1
i or E2

i for all i.

Furthermore, in this case ΞTLNΞ = (LN )L. So (LN )L is nonsingular.

On the other hand, if statement 2 is true, then one can check that ΞTLNΞ = (LN )L. Thus

ΞTLNΞ is nonsingular.

�

Lemma 3.2 gives a sufficient and necessary condition for checking if ΦN (zN ) is a global

homeomorphism in a given SAA problem with fixed N and λ. It shows that it is possible for

ΦN (zN ) to be a global homeomorphism even when N < p. Combining Lemmas 3.1 and 3.2, we

obtain a sufficient condition which guarantees the function ΦN (zN ) to be homeomorphism for

a SAA problem.
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Corollary 2.1. Suppose zN is a solution of (2.22). For a specific SAA problem, ΦN (zN ) is a

global homeomorphism if the following condition holds:

(LN )L is nonsingular and g(N) is chosen to satisfy (2.47).

We assume this condition holds for the SAA problem (2.2) in the rest of Section 2.4.

2.4.2 Properties of individual confidence bands for z0

If ΦN (zN ) is an invertible linear map, then
√
N(zN−z0) asymptotically follows the distribu-

tion of (ΦN (zN ))−1YN , where YN ∼ N (0,ΣN ). Thus, each component of zN−z0 approximately

follows a normal distribution, and we can give an explicit expression for the approximate indi-

vidual confidence interval for each component of z0.

Define

X̃ , −2X̆T


y1 − β̂0 − x1β̂

. . .

yN − β̂0 − xN β̂

 ,

then we have

Σ1
N =

1

N − 1
X̃HX̃T =

4

N − 1
X̆T H̆X̆,

where

H = I − 1

N
1N1TN ,

and

H̆ =


y1 − β̂0 − x1β̂

. . .

yN − β̂0 − xN β̂

H

y1 − β̂0 − x1β̂

. . .

yN − β̂0 − xN β̂

 .

We write ΦN (zN )−1 as

ΦN (zN )−1 =

 A11 A12

A21 A22

 ,
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in which A11 and A22 are square matrices with dimensions p+ 1 and p respectively. Then the

sample covariance matrix of (ΦN (zN ))−1YN is

V̂ar
[
(ΦN (zN ))−1YN

]
=

(
ΦN (zN )

)−1

 Σ1
N 0

0 0

(
ΦN (zN )

)−T

=
4

N − 1

 A11X̆
T H̆X̆AT

11 A11X̆
T H̆X̆AT

21

A21X̆
T H̆X̆AT

11 A21X̆
T H̆X̆AT

21

 .
For convenience, we introduce a matrix

B =



b11 b12 · · · b1N

b21 b22 · · · b2N
...

...
. . .

...

b(p+1)1 b(p+1)2 · · · b(p+1)N


, A11X̆

T ,

which is a (p+ 1)×N constant matrix. After defining

cik , (yk − β̂0xkβ̂)bik, for each k = 1, · · · , N, (2.49)

we can explicitly express the ith (i = 1, · · · , p+ 1) diagonal entry of BH̆BT as

diag(i) ,
N∑
k=1

c2ik −
1

N
(

N∑
k=1

cik)
2. (2.50)

Since each component of zN −z0 asymptotically follows a normal distribution, the approximate

(1− α)100% individual confidence interval for the ith component of z0 (i = 1, · · · , p+ 1) is

[
(zN )i − 2

√
χ2
1(α)diag(i)

N(N − 1)
, (zN )i + 2

√
χ2
1(α)diag(i)

N(N − 1)

]
, (2.51)

where α is the significance level. From (3.42), this interval is also an approximate (1−α)100%

confidence interval for βi−1.
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The following theorem gives properties of such confidence intervals.

Theorem 2.4. With a fixed sample size N , suppose ΦN (zN ) is an invertible linear map and

the SAA solution (β̂0, β̂) is a linear function of λ on an interval [λ1, λ2]. Then the square of

the width of the interval (2.51) is a quadratic function of λ on [λ1, λ2], and the endpoints of

this interval are Lipschitz functions of λ on [λ1, λ2].

Proof of Theorem 2.4. From (2.49) and (2.50), it is obvious that the square of the width of

(2.51) for each i = 0, · · · , p is a quadratic function of λ on [λ1, λ2].

Since (2.50) is always nonnegative, we can express the width of (2.51) as

p′i

√
(λ− b′i)2 + c′i

where p′i, b
′
i and c′i are constants and c′i > 0. If it is strictly positive on the entire interval

[λ1, λ2], then it is Lipschitz in λ on this interval. Otherwise, if it is zero for some λ′ ∈ [λ1, λ2],

then we must have λ′ = b′i and c
′
i = 0. In either case, the width is a Lipschitz function.

From the fact that t̂i = |β̂i| for any i = 1, · · · , p, equation (2.28) and the expression of fN ,

one can see that zN is a piecewise linear function of β̂ and is therefore a Lipschitz continuous

function of λ. Thus, we conclude that endpoints of (2.51) are Lipschitz in λ on the interval

[λ1, λ2].

�

By assuming ΦN (zN ) to be an invertible linear map on [λ1, λ2], we assume that zN stays

in the same partition R× Πp
i=1E

γ(i)
i with a fixed value of γ(zN ) on [λ1, λ2]. As λ changes, zN

moves along a piecewise linear path. When zN enters another partition, γ(zN ) and ΦN (zN )

will change, and the confidence band will change its course. In Section 2.4.4 we will describe

how to find those cut-off points.

2.4.3 Properties of simultaneous confidence bands for z0

In this subsection, we assume the sample covariance matrix Σ1
N to be nonsingular, which

is satisfied by sufficiently large N under Assumption 2.3. From (3.38), we can express the
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asymptotically exact (1− α)100% confidence region for z0 as

z ∈ R2p+1

∣∣∣∣∣ N [ΦN (zN )(zN − z)]T

 (Σ1
N )−1, 0

0, 0

 [ΦN (zN )(zN − z)] 6 χ2
p+1(α)

[0, Ip] [ΦN (zN )(zN − z)] = 0


(2.52)

Moreover, we choose g(N) to satisfy (2.47). By Lemma 3.1, ΦN (zN ) is a piecewise linear map

with at least two pieces only if zN is in the partition R×Πp
i=1E

γ(i)
i with γ(i) = 3 or 4 for some

i. We define a set

G(zN ) =
{
i
∣∣γ(i) = 3 or 4, i = 1, · · · , p, where R×Πp

i=1E
γ(i)
i is the partition containing zN

}
,

and denote the total number of pieces of ΦN (zN ) as TP . Then we have

TP , 2|G(zN )|. (2.53)

The approximate (1−α) 100% confidence region (3.44) is the union of TP fractions of different

ellipsoids. On each fraction, ΦN (zN ) has a fixed matrix representation.

To find the explicit expression for a specific ellipsoid fraction, we specify the constraints

that define this fraction. Let

z − zN =

 r

η

 , r ∈ Rp+1, η ∈ Rp,

and define a diagonal matrix D ∈ R(p+1)×(p+1) as

Dk+1,k+1 ,

 1 or − 1,
(
(zN )k+1, (zN )k+1+p

)
∈ E3

k ∪ E4
k

0,
(
(zN )k+1, (zN )k+1+p

)
∈ E6

k ∪ E7
k ∪ E8

k

for k = 1, 2, · · · , p, while all the other elements of D are 0’s. Note that D can take TP possible

values resulting from the different combinations of ±1, each of which can be used to define

an ellipsoid fraction. From Lemma 3.1, the matrix representations of Φ4 are all invertible.
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Consequently, after some algebraic manipulations we can eliminate the variable η and add

some constraints to obtain an explicit representation for the projection of an ellipsoid fraction

onto the r space as r ∈ Rp+1

∣∣∣∣∣ rTQr 6 1
N χ

2
p+1(α)

Dr 6 0


where

Q = KT (Σ1
N )−1K, K = Φ1 − Φ2Φ

−1
4 Φ3 (2.54)

and D takes one of the TP possible values. Note that K is the Schur complement of ΦN (zN ),

so K is nonsingular if the condition in Corollary 2.1 is satisfied.

To obtain simultaneous confidence intervals, we find the maximal and minimal values of

zi for each i = 1, · · · , p + 1 in every piece of ΦN (zN ), by solving the following optimization

problems

max ri

s.t.

 rTQr 6 1
Nχ

2
p+1(α),

Dr 6 0,

min ri

s.t.

 rTQr 6 1
N χ

2
p+1(α),

Dr 6 0,
(2.55)

for each i = 1, · · · , p + 1 and each ellipsoid fraction. In the case in which G(zN ) = ∅ (i.e.,

ΦN (zN ) is a linear map) and Q is nonsingular, the constraint Dr 6 0 disappears and we can

find explicit optimal values of (2.55) as

√
1

N
χ2
p+1(α)(Q

−1)i,i and −
√

1

N
χ2
p+1(α)(Q

−1)i,i (2.56)

for the maximization and minimization problems respectively.

In general, the matrix D will change as one changes to a different ellipsoid fraction. Let

the optimal value of (2.55) be Rj
i for the maximization problem and rji for the minimization

problem in the jth piece of ΦN (zN ). Then we combine the optimal values to obtain the two
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endpoints of the approximate simultaneous confidence interval for (z0)i as

Li(λ) = (zN )i + min
16j6TP

{rji },

Ui(λ) = (zN )i + max
16j6TP

{Rj
i}. (2.57)

Next, we introduce the definitions that will be used to show the Lipschitz continuity of Li(λ)

and Ui(λ).

For any points x, x′ ∈ Rn, nonempty and closed sets C,D ⊂ Rn, we denote the Euclidean

distance between x and x′ as

dE(x, x
′) = ||x− x′||2,

and the Euclidean distance between x and C as

dE(x,C) = inf
y∈C
||x− y||2.

The Hausdorff distance between C and D is defined as

d∞(C,D) = sup
x∈Rn

|dE(x,C)− dE(x,D)|.

Suppose the feasible set is

Ω = {x ∈ Rn | gi(x) = 0, i ∈ E ; hj(x) 6 0, j ∈ I}.

We say that Mangasarian-Fromovitz constraint qualification (MFCQ) [34] holds at a feasible

point x̄ ∈ Ω when the equality constraint gradients are linearly independent and there exists a

vector d ∈ Rn such that

∇gi(x̄)Td = 0, i ∈ E ; and ∇hj(x̄)Td < 0, for all j ∈ A(x̄) ∩ I,

where A(x̄) represents the active index set of the constraints at x̄.
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The graph of a set-valued mapping F : Rn ⇒ Rm is defined as

gphF = {(x, u)|u ∈ F(x)} .

A set-valued mapping F : Rn ⇒ Rm is outer semicontinuous (osc) relative to X at x̄ if

lim sup
x→x̄, x∈X

F(x) = F(x̄).

F : Rn ⇒ Rm has the Aubin property relative to X at x̄ for ū, where x̄ ∈ X and ū ∈ F(x̄),

if gphF is locally closed at (x̄, ū) and there are neighborhoods V ∈ N (x̄),W ∈ N (ū), and a

positive constant κ such that

F(x′) ∩W ⊂ F(x) + κ|x′ − x|B for all x, x′ ∈ X ∩ V,

where B denotes the closed unit ball.

Note that the feasible set of (2.55) is changing with respect to λ, we can define a set-valued

mapping for a specific ellipsoid fraction as

F : (0,+∞) ⇒ Rp+1

λ 7→ feasible set of (2.55).

We state two facts about the mapping F(λ).

Lemma 2.6. Suppose on an interval [λ1, λ2] ⊆ (0,∞), Σ1
N is nonsingular, 1

g(N) < λ holds

and zN stays in the same partition R× Πp
i=1E

γ(i)
i with the value of γ(zN ) fixed. Then for any

λ̄ ∈ [λ1, λ2] and r̄ ∈ F(λ̄), F(λ) has Aubin property relative to [λ1, λ2] at λ̄ for r̄.

Proof of Lemma 2.6. Since F(λ) is just for one ellipsoid fraction and zN stays in the

same partition R × Πp
i=1E

γ(i)
i , D and ΦN (zN ) will not change according to λ on [λ1, λ2]. For

∀λ̄ ∈ [λ1, λ2] and ∀r̄ ∈ F(λ̄), let M = 1
Nχ

2
p+1(α) and

I(r̄) = {i| (Dr̄)i = 0}
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be the index set of the active constraints in Dr 6 0 at r̄. Let DI(r̄) denote the submatrix of

D which consists of the corresponding active rows. Then we have DI(r̄)r̄ = 0. It is well known

that the Aubin property follows the MFCQ condition for feasible set mapping [12]. We only

need to show the MFCQ condition holds in (2.55) for λ̄ and r̄.

If r̄TQr̄ < M , the first constraints in (2.55) is not active at r̄. Since the nonzero entries of

different rows in DI(r̄) would not appear in the same column, there exists some vector d⃗ ∈ Rp+1

such that DI(r̄)d⃗ < 0. Thus the MFCQ condition holds.

If r̄TQr̄ =M , let

h(r) =

 rTQ(λ̄)r −M

DI(r̄)r

 ,

then h(r̄) = 0 and h(0) =

 −M
0

. Since h(·) is continuous and DI(r̄) has a special structure,

we can always change r = 0 a little bit to find a r̃ such that h(r̃) < 0. Note that matrix Q(λ̄)

is positive semidefinite on [λ1, λ2], so h(r) is a convex function. Thus we have

h(r̄) +∇h(r̄)(r̄ − r̃) 6 h(r̃) < 0.

Let d = r̄ − r̃, then the above inequality becomes ∇h(r̄)d < 0, which implies the MFCQ

condition.

�

Lemma 2.7. Suppose on an interval [λ1, λ2] ⊆ (0,∞), Σ1
N and K are nonsingular, 1

g(N) < λ

holds, the SAA solution (β̂0, β̂) is a linear function of λ and zN stays in the same partition

R× Πp
i=1E

γ(i)
i with the value of γ(zN ) fixed. Then for any λ̄ ∈ [λ1, λ2], F(λ) is osc relative to

[λ1, λ2] at λ̄. In addition, F(λ) is bounded on [λ1, λ2].

Proof of Lemma 2.7. From the proof of Theorem 2.4, we know that each element of Σ1
N is

a quadratic function of λ. Since Σ1
N is nonsingular on [λ1, λ2], according to the matrix inverse

formula, each element of (Σ1
N )−1 has a form P1(λ)

P2(λ)
, where P1(λ) and P2(λ) are polynomials

and P2(λ) ̸= 0 on [λ1, λ2]. Also, each entry of Q is a rational function of λ with nonzero

denominator on [λ1, λ2], because Q = KT (Σ1
N )−1K and nonsingular matrix K is independent
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of λ on [λ1, λ2]. Moreover, Q is positive definite on [λ1, λ2] since we assume Σ1
N and K are

nonsingular on [λ1, λ2].

Consider two arbitrary sequence {λn}n>1 and {rn}n>1 such that λn, λ̄ ∈ [λ1, λ2] and r
n ∈

F(λn) for all n, λn → λ̄, rn → r̄ as n→∞. In order to show osc at λ̄, we must verify that the

limit point r̄ ∈ F(λ̄). Since rn ∈ F(λn), we have

 (rn)TQ(λn)rn 6 M,

Drn 6 0.
(2.58)

Since each element of Q(λ) is a rational function with domain [λ1, λ2], limn→∞Q(λn) = Q(λ̄).

Taking limit as n→∞ on the inequalities of (2.58), we get

 r̄TQ(λ̄)r̄ 6 M,

Dr̄ 6 0,

i.e. r̄ ∈ F(λ̄). So the osc property follows.

On the other hand, in order to see that F(λ) is bounded on [λ1, λ2], we do eigenvalue

decomposition for Q(λ̄). We get

Q(λ̄) = U(λ̄)V (λ̄)U(λ̄)T ,

where U(λ̄) is an orthogonal matrix and V (λ̄) is the eigenvalue matrix with increasing positive

diagonal entries. We always can do this because Q(λ̄) is positive definite on [λ1, λ2]. For

convenience, we dismiss the variable λ̄ from now on. So we have

rTQr =
(
UT r

)T
V
(
UT r

)
. (2.59)

Since Q is continuous in λ on [λ1, λ2], all the eigenvalues of Q are also continuous with respect

to λ on [λ1, λ2]. So all the eigenvalues of Q are positive and bounded on [λ1, λ2]. It is obvious

that
{
UT r

∣∣ rTQr 6 M
}
is bounded on [λ1, λ2] from (2.59), and so is

{
||UT r||

∣∣ rTQr 6 M
}
.

Since U is an orthogonal matrix,
{
r
∣∣ rTQr 6M

}
is bounded on [λ1, λ2], and so is

{
r
∣∣ rTQr 6

M and Dr 6 0
}
. I.e., F(λ) is bounded on [λ1, λ2].
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From Lemma 2.6 and 2.7, we are ready to prove the piecewise Lipschitz property of Li(λ)

and Ui(λ), when λ is restricted to certain sections.

Theorem 2.5. With a fixed sample size N , suppose that Σ1
N and K are nonsingular on an

interval [λ1, λ2] ⊆ (0,∞). Additionally, suppose (2.47) holds and the SAA solution (β̂0, β̂)

is a linear function of λ and zN stays in the same partition R × Πp
i=1E

γ(i)
i with the value of

γ(zN ) fixed on [λ1, λ2]. Then the approximate confidence region (3.44) is Lipschitz continuous

on [λ1, λ2] in Hausdorff distance and the endpoints of the approximate simultaneous confidence

interval for (z0)i in (2.57) are Lipschitz functions of λ on [λ1, λ2].

The Lipschitz continuity we showed for the end points of confidence intervals is restricted

to certain intervals. At some λ, the partition containing zN changes abruptly, which causes

a dramatic change in ΦN (zN ) and G(zN ). Hence a sudden jump in the boundaries of the

confidence band may appear at such λ points. Consequently, it is important to track those λ

points where the value of γ(zN ) changes, in order to correctly characterize the entire confidence

band. The next section will describe how to track those discontinuity points and compute

confidence bands.

2.4.4 Algorithms of LASSO confidence intervals along the path

In this section, we describe an algorithm to establish confidence bands for the LASSO

parameters along the LASSO solution paths. In order to obtain the confidence bands for (β̃0, β̃),

we first find the confidence bands for z0, then transfer them onto (β0, β) using the projector Γ

defined in (3.42). In Sections 2.4.2 and 2.4.3, we showed that the endpoints of the approximate

individual and simultaneous confidence intervals for z0 are Lipschitz continuous in λ on certain

λ segments. On those segments, the SAA solution (β̂0, β̂) is a linear function and zN stays in a

fixed partition. To approximate the confidence bands along the entire path, we first obtain all

the break points of the above segments, and then compute the confidence intervals for each of

those break points. We use linear approximations for the confidence intervals on the intervals

between the break points, which are reasonable given the properties proved in Theorems 2.4

and 2.5.
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Although Theorems 2.4 and 2.5 assume ΦN (zN ) to be a linear map and Σ1
N to be non-

singular, our techniques work even if those assumptions fail. We can compute the confidence

intervals as long as the condition in Corollary 2.1 holds. In practice, we can choose 1/g(N) to

be very small such that most of λ values fall into segments on which ΦN (zN ) is linear. Next,

we give algorithms to find the knots of λ that result in these λ segments.

First, we modify Rosset and Zhu’s path tracking algorithm [44] by using KKT conditions

of (2.2) to find the λ segments where (β̂0(λ), β̂(λ)) is linear. Recall that our SAA problem is

min
β0,β

1

N
||y − β01N −Xβ||22 + λ

p∑
i=1

|βi|,

in which the intercept β0 is included. Since the original LASSO path tracking algorithm in [44]

did not consider the intercept, we adapt that algorithm to obtain Algorithm 1 below.

Denote xi = (x1i, x2i, · · · , xNi)
T , i = 1, · · · , p and β⃗ = (β0, β). Let A = {i | βi ̸= 0, i =

1, · · · , p} be the active set, and

XA = [xj ]j∈A.

Assuming XA is always full column rank, we present the modified LASSO path tracking algo-

rithm as follows.

Algorithm 1 (Tracking the LASSO solution path for the SAA problem)

1. Inputs: a vector y in RN , a matrix X in RN×p.

2. Initialization: Set β = 0, β0 =
1
N 1TNy, λ = || 2NXT (y − β01N )||∞; active set

A = { i : | 2N xT
i (y − β01N )| = λ} and inactive set I = {1, 2, · · · , p}\A.

3. While (λ > 0)

(a) Compute the direction ν⃗ , (ν0, ν) ∈ R× Rp of the solution path as λ decreases.

νA =
N

2

[
XT

AXA −
1

N
XT

A1N1TNXA
]−1

sgn
(
XT

A(y − β01N −Xβ)
)
,

νI = 0, and ν0 = −
1

N
1TNXAνA.
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(b) Set d1 = min{d > 0 : (β + dν)j = 0, j ∈ A},

d2 = min{d > 0 :
∣∣ 2
N xT

j [y − (β0 + dν0)1N −X(β + dν)]
∣∣ = λ− d, j ∈ I}.

Find the step length: d = min(d1, d2).

(c) If d = d1 then remove the variable attaining 0 at d from A and add it to I.

If d = d2 then add the variable attaining equality at d to A and remove it from I.

(d) Update β0, β, λ: β0 ← β0 + dν0, β ← β + dν, λ← λ− d.

Record λ, (β0, β) and ν⃗.

4. Return: Sequences of recorded values of λ, (β0, β) and ν⃗.

After running algorithm 1, we obtain a sequence of consecutive λ segments on which the

SAA solution (β̂0(λ), β̂(λ)) is linear in λ. Our next task is to divide each such segment into

smaller pieces on which γ(zN ) is fixed. Assuming γ(zN ) changes by one component at a time

when λ decreases, we present the following algorithm to find all such pieces on any segment on

which (β̂0(λ), β̂(λ)) is linear.

Algorithm 2 (Locating λ’s at which γ(zN ) changes)

1. Inputs: a vector y in RN , a matrix X in RN×p;

an interval [λ1, λ2] and the direction ν⃗ from Algorithm 1;

the SAA solution β⃗(λ2) ,
(
β̂0(λ2), β̂(λ2)

)
with parameter λ2;

the parameter 1
g(N) in R which satisfies (2.47).

2. Initialization: Set λ = λ2;

zN = β⃗(λ2) +
2
N X̆T (y − X̆β⃗(λ2)) (only components associated with β);

direction of zN in decreasing λ: νz = ν⃗ − 2
N X̆T X̆ν⃗;

find γ(zN ) in Rp using Table 1.

3. While (λ > λ1)

(a) For i = 1, · · · , p, compute the shortest step length di such that
(
(zN )i+1, (zN )i+1+p

)
meets a boundary of Ej

i for some j ∈ {0, 1, · · · , 8}.
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If γ(zN )i = 6 then di = min{d > 0 : (zN )i+1 + (νz)i+1d = −(λ− d)− 1
2g(N)};

else if γ(zN )i = 8 then di = min{d > 0 : (zN )i+1 + (νz)i+1d = λ− d+ 1
2g(N)};

else if γ(zN )i = 7 then di = min{d > 0 :

(zN )i+1 + (νz)i+1d = −(λ− d) + 1
g(N) , or (zN )i+1 + (νz)i+1d = λ− d− 1

g(N)};

else if γ(zN )i = 3 then di = min{d > 0 :

(zN )i+1 + (νz)i+1d = −(λ− d)− 1
2g(N) , or (zN )i+1 + (νz)i+1d = −(λ− d) + 1

g(N)};

else if γ(zN )i = 4 then di = min{d > 0 :

(zN )i+1 + (νz)i+1d = λ− d− 1
g(N) , or (zN )i+1 + (νz)i+1d = λ− d+ 1

2g(N)}.

(b) Find the step length: d = min(d1, d2, · · · , dp).

(c) If d = di (i = 1, · · · , p), assume the old value of γ(zN )i is j (j = 3, 4, 6, 7, or 8)

and (zN )i+1 + (νz)i+1d achieves the boundary between Ej
i and El

i, then we update

γ(zN )i ← l.

(d) Update λ, β⃗, zN : λ← λ− d, β⃗ ← β⃗ + ν⃗d, zN = β⃗ + 2
N X̆T (y − X̆β⃗).

Record λ, β⃗, zN and γ(zN ).

4. Return: Sequences of recorded values of λ, β⃗, zN and γ(zN ).

Applying Algorithm 2 to every λ segment obtained from Algorithm 1, we obtain the knots

of λ between which γ(zN ) is of a fixed value. Then we find confidence intervals for z0 from

(2.51) or (2.57) at each λ knot and link their corresponding boundaries linearly to obtain the

confidence band on each λ segment. It should be noted that the confidence band is usually not

continuous at a λ knot that has different γ(zN ) values of the λ segments on its left and right

sides. We summarize the main algorithm below.

Algorithm 3 (Main algorithm: computing the confidence bands for (β̃0, β̃))

1. Inputs: a vector y in RN , a matrix X in RN×p, the parameter 1
g(N) in R which satisfies

(2.47).

2. Run Algorithm 1. Obtain s consecutive λ segments with s+1 knots λ1 < λ2 < · · · < λs+1

and values of β⃗, ν⃗ on λ2, · · · , λs+1 except λ1 = 0.
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3. For i = 1, · · · , s,

(a) Run Algorithm 2 on segment [λi, λi+1]. Obtain si + 1 knots of λ: λi = λ1 < λ2 <

· · · < λsi < λsi+1 = λi+1 and values of γ(zN ) on λ2, · · · , λsi+1.

(b) For j = 1, · · · , si, compute simultaneous CIs for the first p+1 components of z0 from

(2.56) or (2.57), and individual CIs from (2.51) or simulation discussed in Section

2.3.3 at λj and λj+1 by using the value of γ(zN ) at λj+1. Then link the corresponding

endpoints of CIs for the same component of z0 linearly between λj and λj+1.

4. Use the projector Γ (3.42) to transform the confidence bands for z0 into confidence bands

for (β̃0, β̃) on [λ1, λs+1].

Using this algorithm, we can efficiently compute confidence intervals at a large number of λ’s,

if they all belong to one segment. However, when the number of λ segments is large, it can

take a long time to compute the entire confidence band. The main computational cost is on

computing the confidence intervals at the λ knots where G(zN ) ̸= ∅. When G(zN ) ̸= ∅, we use

simulation and (2.57) to compute individual and simultaneous confidence intervals respectively,

which are computationally expensive. For simplification, we can choose 1/g(N) to be very small

such that almost all of λ values fall in segments where G(zN ) = ∅, and then use (2.51) and

(2.56) to compute confidence intervals at the endpoints of these segments.

2.5 Confidence intervals for the true parameters in the underlying linear model

In this section, we derive asymptotic results for the true parameters in an underlying linear

model based on the convergence theorems in Section 2.3, and aim to obtain individual confidence

intervals for the true parameters.

Suppose the true linear model between X and Y is

Y = βtrue0 +XTβtrue + ε, (2.60)

where βtrue0 ∈ R and βtrue = (βtrue1 , · · · , βtrue
p ) ∈ Rp are the true parameters. The random error

ε has mean zero and variance σ2ε . Moreover, ε is independent of Xi for each i = 1, · · · , p. In
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this section, we assume that E(Xi) = 0 for each i = 1, · · · , p, hence E(Y ) = βtrue0 . Denote the

covariance matrix of X as Σ, i.e., Σ = E(XXT ).

Plugging (3.46) into (2.14), we have

z0 =


β̃0 + 2E(Y − β̃0 −XT β̃)

β̃ + 2E
[
(Y − β̃0 −XT β̃)X

]
t̃− λep

 =


2βtrue0 − β̃0

β̃ + 2Σ(βtrue − β̃)

t̃− λep

 (2.61)

If Σ is nonsingular, then from (3.47) and the fact that β̃0 = (z0)1 in Section 2.3.4 we obtain

βtrue0 = (z0)1, βtrue =
1

2
Σ−1(z0)2:(p+1) +

[
Ip −

1

2
Σ−1

]
β̃, (2.62)

where (z0)2:(p+1) denotes the vector that consists of the second to p + 1’th entries of z0. Ex-

pression (3.48) suggests the following estimators

β̂true0 = (zN )1, β̂true =
1

2
Θ̂(zN )2:(p+1) +

[
Ip −

1

2
Θ̂

]
β̂, (2.63)

where Θ̂ is an estimator of the precision matrix Σ−1. From (2.28) and (3.47) one may notice

that the estimators in (3.49) essentially have the same expression as the de-biased estimator in

[56] and [50], but we will show below that our construction of confidence intervals for the true

parameters is different from theirs.

Let G be a map from R2p+1 to Rp+1 defined as

G =
1

2


1 0

0 Σ−1

B +

1 0

0 2I − Σ−1

B ◦ΠK

 , (2.64)

and Ĝ be the following map

Ĝ =
1

2


1 0

0 Θ̂

B +

1 0

0 2I − Θ̂

B ◦ dΠS(zN )

 , (2.65)
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where B is a (p + 1) by (2p + 1) matrix defined as B =

[
Ip+1 0

]
. Since ΠS is positively

homogeneous, we know that ΠS(z0) = dΠS(z0)(z0) = ΠK(z0) and ΠS(zN ) = dΠS(zN )(zN ).

Then according to (3.48), (3.49), (β̃0, β̃, t̃) = ΠS(z0) and (β̂0, β̂, t̂) = ΠS(zN ), we can rewrite

(3.48) and (3.49) as

(βtrue0 , βtrue) = G(z0) and (β̂true0 , β̂true) = Ĝ(zN ).

The following theorem shows that (3.49) gives a consistent estimator of the true parameter

(βtrue0 , βtrue), and provides an asymptotic distribution from which we can derive a confidence

region for (βtrue0 , βtrue).

Theorem 2.6. Suppose that Assumptions 2.1 and 2.2 hold, and the true covariance matrix Σ

is nonsingular. Let Θ̂ be a
√
N -consistent estimator of Σ−1. Then (β̂true0 , β̂true) is a consistent

estimator of (βtrue0 , βtrue) and

√
N

(
(β̂true0 , β̂true)− (βtrue0 , βtrue)

)
⇒ G ◦ (LK)−1(N (0,Σ0)), (2.66)

where G is the map defined in (3.50) and Σ0 is defined in (2.18).

Proof of Theorem 2.6. Let ηi0 =
(
(z0)i+1, (z0)i+1+p

)
and ηiN =

(
(zN )i+1, (zN )i+1+p

)
for all

i = 1, · · · , p. From t̃i = |β̃i| and (β̃0, β̃, t̃) = ΠS(z0), one can check that ηi0 can only be in riC3
i ,

riC4
i , riC

6
i , riC

7
i or riC8

i (Here “ri” before a set denotes the relative interior of the set). The

special structure of S and the locations of z0 ensure that the equality dΠS(z0)zN −dΠS(z0)z0 =

dΠS(z0)(zN − z0) always holds, thus

√
N

(
(β̂true0 , β̂true)− (βtrue0 , βtrue)

)
=
√
N(ĜzN −Gz0)

=
√
N(ĜzN −GzN ) +

√
N(GzN −Gz0)

=
√
N(Ĝ−G)zN +

√
NG(zN − z0).
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Because G is a continuous map, from (3.28) we have

√
NG(zN − z0)⇒ G ◦ (LK)−1(N (0,Σ0)).

To show (3.52) it suffices to prove

lim
N→∞

Prob
{√

N ||(Ĝ−G)zN || < ϵ
}
= 1 (2.67)

for each ϵ > 0.

Denote the conical subdivision of ΠSi as Bi = {C5
i , C

6
i , C

7
i , C

8
i }. Let

Bi(η
i) = {Ci ∈ Bi | ηi ∈ Ci},

and let |Bi(η
i)| be the union of all sets in Bi(η

i). We define two sets

I1 =
{
i ∈ {1, · · · , p} | ηi0 ∈ riC6

i , riC
7
i or riC8

i

}
,

and

I2 =
{
i ∈ {1, · · · , p} | ηi0 ∈ riC3

i or riC4
i

}
.

For a given index i ∈ I1, since zN converges to z0 almost surely, for almost every ω ∈ Ω

there exists a positive integer N i
ω, such that for all N > N i

ω, dΠSi(η
i
N ) and dΠSi(η

i
0) are the

same linear function. Therefore we have dΠSi(η
i
N )ηiN = dΠSi(η

i
0)η

i
N .

Similarly, for a given index i ∈ I2 and almost every ω ∈ Ω, there exists a positive integer

N i
ω, such that for all N > N i

ω, η
i
N ∈ |Bi(η

i
0)|, hence dΠSi(η

i
N )ηiN = dΠSi(η

i
0)η

i
N .

In summary, the fact that S = R×Πp
i=1Si implies that for almost every ω ∈ Ω there exists

a positive integer N∗
ω = max{N i

ω, · · · , N
p
ω}, such that

dΠS(zN )zN = dΠS(z0)zN = ΠK(zN ), for all N > N∗
ω.
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Therefore for sufficiently large N ,

√
N ||(Ĝ−G)zN || (2.68)

6
√
N

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0

0 Θ̂

−
1 0

0 Σ−1


BzN

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

+

√
N

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0

0 2I − Θ̂

−
1 0

0 2I − Σ−1


B ◦ΠK(zN )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

6
√
N

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0

0 Θ̂

−
1 0

0 Σ−1



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ||BzN ||

+

√
N

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0

0 2I − Θ̂

−
1 0

0 2I − Σ−1



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ||B ◦ΠK(zN )||

By Theorem 2.1 we know that zN converges to z0 almost surely. Furthermore, since B ◦ ΠK

is a continuous map and Θ̂ is a
√
N -consistent estimator of Σ−1, we have the following four

equalities hold for each ϵ > 0:

lim
N→∞

Prob {||BzN || 6 ||Bz0||+ 1} = 1,

lim
N→∞

Prob {||B ◦ΠK(zN )|| 6 ||B ◦ΠK(z0)||+ 1} = 1,

lim
N→∞

Prob

√N
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0

0 Θ̂

−
1 0

0 Σ−1



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ <

ϵ

||Bz0||+ 1

 = 1,

and

lim
N→∞

Prob

√N
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0

0 2I − Θ̂

−
1 0

0 2I − Σ−1



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ <

ϵ

||B ◦ΠK(z0)||+ 1

 = 1.

Combining (2.68) and the above four equalities proves (2.67).

Similarly, from
(
(β̂true0 , β̂true)− (βtrue0 , βtrue)

)
= (Ĝ − G)zN + G(zN − z0), one can show
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that for each ϵ > 0,

lim
N→∞

Prob
{
||(β̂true0 , β̂true)− (βtrue0 , βtrue)|| < ϵ

}
= 1,

i.e., (β̂true0 , β̂true) is a consistent estimator of (βtrue0 , βtrue).

�

There are many choices for Θ̂ in real applications. Some common choices are the inverse

of sample covariance matrix and the estimate of precision matrix computed by the banding

method [4] or the penalized likelihood method [54; 16]. It is well known from the literature that

under some regularity conditions, these estimators of the precision matrix have
√
N -consistency

when p is fixed [22].

From (2.14) and the definition of f0 (2.10) we note that
(
(z0)i+1, (z0)i+1+p

)
can be only

in the relative interior of C3
i , C

4
i , C

6
i , C

7
i or C8

i for all i from 1 to p. Below, we consider two

cases based on the location of z0, which correspond to the two situations in which the random

variable (LK)−1(N (0,Σ0)) is normally distributed, or is a combination of more than one normal

random variables. We refer to these two cases as the single-piece case and the multiple-piece

case respectively.

� Case I (single-piece case). In this case,
(
(z0)i+1, (z0)i+1+p

)
is in the relative interior of

C6
i , C

7
i or C8

i for all i ∈ {1 · · · p}, and the normal map LK and the B-derivative dΠS(z0)

are linear functions. Note that

d(fN )S(zN )(h) = LN dΠS(zN )(h) + h− dΠS(zN )(h) for each h ∈ R2p+1.

In this case, dΠS(zN ) converges to dΠS(z0) almost surely, and d(fN )S(zN ) converges to

LK almost surely, so we can use dΠS(zN ) and d(fN )S(zN ) as the estimators of dΠS(z0)

and LK respectively.

� Case II (multiple-piece case). In this case,
(
(z0)i+1, (z0)i+1+p

)
is in the relative interior of

C3
i or C4

i for some index i ∈ {1 · · · p}, and LK and dΠS(z0) are piecewise linear functions.

This is the case in which dΠS(z) is discontinuous at z0, and we use ΦN (zN ) and ΛN (zN )
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to estimate LK and dΠS(z0) respectively.

To use (3.52) to compute confidence intervals, we replaceG and LK there by their estimators.

For Case I, the following theorem gives an approach to compute the asymptotically exact

individual confidence intervals for (βtrue0 , βtrue).

Theorem 2.7. Suppose that Assumptions 2.1, 2.2 and 2.4(a-b) hold, the true covariance matrix

Σ is nonsingular, and the solution to the normal map formulation (2.13) satisfies the conditions

for Case I. Let Θ̂ be a
√
N -consistent estimator of Σ−1, and define H = G(LK)−1 and HN =

Ĝ [d(fN )S(zN )]−1. If (HΣ0H
T )i+1,i+1 ̸= 0, then

√
N(β̂truei − βtruei )√
(HNΣNHT

N )i+1,i+1

⇒ N (0, 1) , (2.69)

for all i = 0, 1, · · · , p.

Proof of Theorem 2.7. In Case I, G, LK and H are linear maps, and Ĝ, d(fN )S(zN ) and

HN are all linear for sufficiently large N . To prove (3.53), we will show that (HNΣNH
T
N )i,i

converges to (HΣ0H
T )i,i in probability for all i ∈ {1, 2, · · · , p + 1}. Then the results follow

from (3.52) and Slutsky’s Theorem.

From (3.50) and (3.51), one can see that Ĝ converges to G in probability, since Θ̂ converges

to Σ−1 in probability and dΠS(zN ) is the same as ΠK for sufficiently large N . Note that

[d(fN )S(zN )]−1 converges to (LK)−1 almost surely in Case I, which implies for each ϵ > 0,

lim
N→∞

Prob
{
||Ĝ−G|| || [d(fN )S(zN )]−1 || < (||L−1

K + 1||) ϵ
2

}
= 1, (2.70)

and

lim
N→∞

Prob
{
||G|| ||L−1

K − [d(fN )S(zN )]−1 || < ϵ

2

}
= 1. (2.71)

Since

||Ĝ [d(fN )S(zN )]−1−G(LK)−1|| 6 ||Ĝ−G|| || [d(fN )S(zN )]−1 ||+ ||G|| ||L−1
K − [d(fN )S(zN )]−1 ||,
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(2.70) and (2.71) imply

lim
N→∞

Prob {||HN −H|| < ϵ} = 1, for each ε > 0. (2.72)

By Lemma 2.3, ΣN converges to Σ0 almost surely, so HNΣN converges to HΣ0 in probability.

From the following inequality

Prob
{
||HNΣNH

T
N −HΣ0H

T || < ϵ
}

> Prob
{
||HNΣN −HΣ0|| ||HN || <

ϵ

2

}
+ Prob

{
||HΣ0|| ||HN −H|| <

ϵ

2

}
− 1

> Prob

{
||HNΣN −HΣ0|| <

ϵ

2(||H||+ 1)

}
+ Prob {||HN || 6 (||H||+ 1)} − 1

+ Prob
{
||HΣ0|| ||HN −H|| <

ϵ

2

}
− 1,

one can see thatHNΣNH
T
N converges toHΣ0H

T in probability, which implies that (HNΣNH
T
N )i,i

converges to (HΣ0H
T )i,i in probability for all i ∈ {1, 2, · · · , p+ 1}.

�

Theorem 2.7 suggests constructing an asymptotically exact individual confidence interval

for βtruei with the significance level α as

[
β̂truei −

√
χ2
1(α)m̄i

N
, β̂truei +

√
χ2
1(α)m̄i

N

]
,

where m̄i is the ith diagonal element of the matrix HNΣNH
T
N .

For Case II, to show how to compute asymptotically exact individual confidence intervals

for (βtrue0 , βtrue), we consider the image of normal random vectors under certain functions.

Let f : R2p+1 → R be a continuous function and Z be a random variable in R2p+1 with

Z ∼ N (0, Ip+1)× 0⃗. Define ar(f) ∈ (0,∞) as

ar(f) = inf {c > 0 | Prob {−c 6 f(Z)− r 6 c} > 1− α} . (2.73)

Suppose that Prob {f(Z) = b} = 0 for all b ∈ R. Then for any given r ∈ R and α ∈ (0, 1), ar(f)
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as defined in (3.54) is the smallest value that satisfies

Prob {−ar(f) 6 f(Z)− r 6 ar(f)} = 1− α.

Define two functions R and R̂ from R2p+1 to Rp+1 as

R = G ◦ (LK)−1

(Σ1
0)

1
2 0

0 Ip

 and R̂ = Ĝ′ ◦ (ΦN (zN ))−1

(Σ1
N )

1
2 0

0 Ip

 , (2.74)

where

Ĝ′ =
1

2


1 0

0 Θ̂

B +

1 0

0 2I − Θ̂

B ◦ ΛN (zN )

 . (2.75)

We denote the jth component function of R and R̂ as Rj and R̂j respectively for each j =

1, 2, · · · , p+ 1.

Note that the map G is a piecewise linear function in Case II. From the expression (3.50)

and the matrix representations of the piecewise linear function ΠK based on the location of z0

(see Section 2.3.2), one can check that G has the following form

 1 0

0 1
2Σ

−1(I −W ) +W
∗

 , (2.76)

in which W is a piecewise linear function represented by p× p diagonal matrices with diagonal

elements 0 or 1
2 . If Σ and Σ1

0 are nonsingular, then the matrix representation of each piece

of the map G has full row rank. Because LK is a global homeomorphism under Assumptions

2.1(a) and 2.2, it follows that Prob {Rj(Z) = b} = 0 for all b ∈ R. The following theorem gives

a way of computing individual confidence intervals for (βtrue0 , βtrue).

Theorem 2.8. Suppose that Assumptions 2.1, 2.2 and 2.4(a-b) hold, and the population co-

variance matrices Σ and Σ1
0 are nonsingular. Let Θ̂ be a

√
N -consistent estimator of Σ−1,

α ∈ (0, 1) and ar(·) be as in (3.54). Then for every r ∈ R and all j = 0, 1, · · · , p, we have

lim
N→∞

Prob
{
|
√
N(β̂truej − βtruej )− r| 6 ar(R̂j+1)

}
= 1− α, (2.77)
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where R and R̂ are defined in (3.55).

The proof of Theorem 2.8 uses the following two lemmas.

Lemma 2.8. Let C(R2p+1,R) denote the space of continuous functions from R2p+1 to R,

{uN}∞N=1 be a sequence of C(R2p+1,R) valued random variables which converges to u in prob-

ability uniformly on compact sets, and {ZN}∞N=1 be a sequence of real valued random variables

that converges to u(Z) in distribution. Then for every r ∈ R,

lim
N→∞

Prob {−ar(uN ) 6 ZN − r 6 ar(uN )} = 1− α.

Proof of Lemma 2.8. By Lemma 1 in [23] and the assumption that uN → u in probability

uniformly on compact sets, it follows that ar(uN )→ ar(u) in probability. Since ar(u) > 0,

1

ar(uN )
1ar(uN )>0 →

1

ar(u)

in probability, where 1ar(uN )>0 is the indicator random variable for the event ar(uN ) > 0. Let

AN denote the event ar(uN ) > 0. Then

Prob {−ar(uN ) ≤ ZN − r 6 ar(uN )} = Prob

{
AN ; −1 6 ZN − r

ar(uN )
6 1

}
+ Prob {Ac

N ; −ar(uN ) 6 ZN − r 6 ar(uN )} .

By ar(uN )→ ar(u) in probability and ar(u) > 0 it follows that Prob {AN} → 1. Therefore

lim
N→∞

Prob {Ac
N ; −ar(uN ) 6 ZN − r 6 ar(uN )} = 0.

Let BN be the event −1 6 ZN−r
ar(uN )1ar(uN )>0 6 1; then we have

Prob (BN )→ Prob

{
−1 6 u(Z)− r

ar(u)
6 1

}
= Prob {−ar(u) 6 u(Z)− r 6 ar(u)} = 1− α.
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Consequently,

lim
N→∞

Prob {−ar(uN ) 6 ZN − r 6 ar(uN )} = lim
N→∞

Prob {AN ∩BN} = 1− α.

�

Lemma 2.9. Suppose that Assumptions 2.1, 2.2 and 2.4(a-b) hold, and the population covari-

ance matrices Σ and Σ1
0 are nonsingular. Let Θ̂ be a consistent estimator of Σ−1. Then R̂

converges to R in probability uniformly on compact sets.

Proof of Lemma 2.9. Let

T = (LK)−1

(Σ1
0)

1
2 0

0 Ip

 and TN = (ΦN (zN ))−1

(Σ1
N )

1
2 0

0 Ip

 .
According to the proof of Proposition 2 in [23], we know that TN converges to T in probability

uniformly on compact sets. From Theorem 2.2, (3.50) and (3.56) one can see that Ĝ′ converges

to G in probability uniformly on compact sets. Hence, for any ϵ > 0 we have

lim
N→∞

Prob

{
sup

h∈R2p+1,h̸=0

||R̂h−Rh||
||h||

< ϵ

}

> lim
N→∞

Prob

{
sup

h∈R2p+1,h̸=0

||Ĝ′TNh−GTNh||
||h||

+ sup
h∈R2p+1,h ̸=0

||GTNh−GTh||
||h||

< ϵ

}

> lim
N→∞

Prob

{
sup

h∈R2p+1,h̸=0

||Ĝ′(TNh)−G(TNh)||
||TNh||

sup
h∈R2p+1,h̸=0

||TNh||
||h||

<
ϵ

2

}
+

lim
N→∞

Prob

{
||G|| sup

h∈R2p+1,h̸=0

||TNh− Th||
||h||

<
ϵ

2

}
− 1

= 1,

i.e., R̂ converges to R in probability uniformly on compact sets.

�

Proof of Theorem 2.8. By Lemma 2.9, R̂j converges to Rj in C(R2p+1,R) in probability
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uniformly on compact sets. Let

ZN =
√
N

(
(β̂true0 , β̂true)− (βtrue0 , βtrue)

)
j

for j = 1, · · · , p+1. From (3.52), ZN converges to Rj(Z) in distribution. Then the conclusions

follow from Lemma 2.8 with uN = R̂j and u = Rj .

�

In practice, for a fixed choice of r we can find the empirical individual confidence intervals

for (βtrue0 , βtrue) by simulating data from R̂(Z). We first generate data from N (0,ΣN ), then

compute (ΦN (zN ))−1(q) for a given vector q as described in Section 2.3.3, and based on that

obtain an empirical distribution of R̂(q) = Ĝ′ ◦ (ΦN (zN ))−1(q) since Ĝ′ is computable.

2.6 Numerical examples

This section contains five examples. The first four examples are based on simulated data,

and we use them to illustrate the distribution of SAA solutions, examine coverage of confidence

intervals and confidence bands computed from the proposed methods and algorithms. The last

one uses real data from the literature. We use

1

g(N)
=

min(λ, θ)

N1/3
, θ = 0.0001, (2.78)

which satisfy (2.47).

2.6.1 Example 2.6.1: Asymptotic distribution of LASSO parameters

This subsection uses a small example to demonstrate the asymptotic distribution of SAA

solutions. We generate data from the model Y = β∗TX + σε, where β∗ = (2, 1), X is a 2-

dimensional normal random variable with mean 0 and covariance matrix Σ = 0.5I2 + 0.5J2,

with I2 being the 2× 2 identity matrix and J2 being the 2× 2 matrix of 1’s, ε follows N (0, 1),

and σ = 3. Here X and ε are independent of each other.

Consider the LASSO problem with λ = 3. From the above distributions of X and Y , the
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first term in the objective function of (2.1) is given by

E[Y − β0 −
p∑

j=1

βjXj ]
2 = (β∗ − β)TΣ(β∗ − β) + β20 + σ2.

We find the following closed-form expression for f0 defined in (2.10) as

f0(β0, β1, β2, t1, t2) =



2 0 0 0 0

0 2 1 0 0

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0





β0

β1

β2

t1

t2


+



0

−5

−4

3

3


.

One can check that (β̃0, β̃1, β̃2, t̃1, t̃2) = (0, 1, 0, 1, 0) satisfies (2.12), and that z0 = (0, 4, 3,−2,−3).

Note that ((z0)3, (z0)5) ∈ C4
2 , and this example is one of Case II.

Specializing (3.30) to this example, we find

(zN )1 ⇒ N (0, 12N),

and

√
N

 2((zN )2 − 4) + max(0, (zN )3 − 3)

(zN )2 + (zN )3 − 7 + max(0, (zN )3 − 3)

⇒ N (0,

57 33

33 57

),
with (zN )1 being independent of ((zN )2, (zN )3). If we write

w(u, v) =

 2(u− 4) + max(0, v − 3)

u+ v − 7 + max(0, v − 3)

 ,
then the set

{
(u, v) ∈ R2 | Nw(u, v)T

57 33

33 57


−1

w(u, v) ≤ χ2
2(α)

}
(2.79)

contains ((zN )2, (zN )3) with probability approximate (1− α)100%, for any α ∈ (0, 1).
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Specializing (3.29) to this example, we find that (β̂0, β̂1, β̂2), the solution to (2.2), asymp-

totically follows the distribution of the following random vector:

(
s1

2
√
N
, 1 +

−max(0, (2s3 − s2)/3) + s2

2
√
N

,
max(0, (2s3 − s2)/3)√

N

)
,

where s = (s1, s2, s3) is a normal random vector with covariance matrix


48 0 0

0 57 33

0 33 57

 .

In particular, the probabilities for β̂2 to be exactly zero and strictly positive are both 1/2.

Moreover, each of the following two regions contain (β̂1, β̂2) with probability about 0.5(1 −

α)100%:

{
(u, v) ∈ R× R++ | N [u− 1, v]T

17 −7

−7 17


−1

[u− 1, v] ≤ χ2
2(α)

}
(2.80)

and {
(u, v) ∈ R× {0} | 1−

√
57

4N
χ2
1(α) ≤ u ≤ 1 +

√
57

4N
χ2
1(α)

}
. (2.81)

To demonstrate the distributions graphically, we generate 400 replications, each with sample

size N = 2000, and compute the SAA solutions zN and (β̂0, β̂1, β̂2) for each of them. The left

panel of Figure 2.3 plots the 400 points ((zN )2, (zN )3), and also displays boundaries of regions

defined in (2.79), with α = 0.1, 0.2, · · · , 0.9. The nine boundaries divide the plane into ten

divisions, with around 40 points (min 34, max 45, mean 40, std 3.62) in each division. The true

solution ((z0)2, (z0)3) = (4, 3) is marked with a “+” sign.

The right panel of Figure 2.3 plots the corresponding 400 points (β̂1, β̂2). The curves shown

in the graph are boundaries of regions defined in (2.80) with α = 0.1, 0.2, · · · , 0.9. Short

vertical lines on the horizontal axis are markers of the endpoints of intervals defined in (2.81)

with the same α values. The markers are not located at intersections between the curves and
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Figure 2.3: Distribution of SAA solutions in Example 2.6.1

the horizontal axis, because the two regions (2.80) and (2.81) come from different distributions.

An extra short vertical line is plotted at the true solution (β̃1, β̃2) = (1, 0). The 19 short vertical

lines on the horizontal axis divide the axis into 20 intervals. There are 208 points out of the

total 400 that lie on the horizontal axis, with about 10 points (min 5, max 18, mean 10.4, std

3.10) in each interval. The other 192 points lie above the horizontal axis, with about 20 points

(min 15, max 25, mean 19.2, std 3.01) in each of the ten divisions divided by the nine curves.

2.6.2 Example 2.6.2: Low dimensional simulation

For this example, we simulate data using the model in Example 1 of [49]. The model is

the same as that of Example 2.6.1, with β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0). Here X is normal with

mean 0 and covariance Σij = ρ|i−j| for ρ = 0.5, and ε is a standard normal random variable

independent of X. We set σ = 1.

We generate 100 replications, each of sample size N = 300, and compute two types of

confidence intervals for three fixed λ values 0.5, 1, 2. The first type of confidence intervals

is for the population LASSO parameters (β̃0, β̃), and the second is for the true parameters

(βtrue0 , βtrue) in the underlying linear model (3.46), both of significance levels α =0.1, 0.05,

0.01. For the second type intervals, we also compare our method with two other approaches in

the literature. One is the LDPE method [56; 50]. The other is a recent method introduced by
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[21], which we call “JM” method. We use nodewise LASSO regression introduced by [35] to

compute the estimate of the precision matrix Θ̂ (Graphical LASSO method [54; 16] also works

well), which is the same approach used in the LDPE method. Both LDPE and JM methods

need to estimate the error variance σ2ε in their asymptotic distributions, and they use scaled

LASSO [48] to estimate it. In contrast, our method does not need to estimate σ2ε . In terms of

the tuning parameter λ, we check the performance of our method using GIC [37] with a weight

αn = n in front of the penalization term of model complexity. In the LDPE method, the model

parameters are estimated by scaled LASSO which does not require the specification of a tuning

parameter λ. The JM method uses λ = 4σ̂ε
√

(2 log p)/n as the tuning parameter, where σ̂ε is

the scaled LASSO estimator of the noise level.

λ = 0.5 λ = 1 λ = 2
Est Ind CI Sim CI Est Ind CI Sim CI Est Ind CI Sim CI

β0 -0.08 [-0.18, 0.02] [-0.31, 0.15] -0.10 [-0.21, 0.02] [-0.37, 0.17] -0.14 [-0.30, 0.03] [-0.53, 0.25]
β1 2.82 [2.72, 2.93] [2.58, 3.07] 2.65 [2.52, 2.78] [2.35, 2.95] 2.30 [2.11, 2.50] [1.85, 2.76]
β2 1.43 [1.32, 1.53] [1.18, 1.67] 1.28 [1.16, 1.40] [1.00, 1.56] 0.99 [0.81, 1.16] [0.58, 1.40]
β3 0 [0, 0] [0, 0.17] 0 [0, 0] [0, 0.12] 0 [0, 0] [0, 0.08]
β4 0 [0, 0] [0, 0.22] 0 [0, 0] [0, 0.09] 0 [0, 0] [0, 0]
β5 1.74 [1.64, 1.83] [1.52, 1.96] 1.51 [1.40, 1.63] [1.24, 1.79] 1.06 [0.88, 1.24] [0.64, 1.48]
β6 0 [0, 0.08] [0, 0.31] 0 [0, 0] [0, 0.14] 0 [0, 0] [0, 0]
β7 0 [0, 0.02] [0, 0.30] 0 [0, 0] [0, 0.04] 0 [0, 0] [0, 0]
β8 0 [0, 0] [0, 0.17] 0 [0, 0] [0, 0] 0 [0, 0] [0, 0]

Table 2.5: 90% CIs for (β̃0, β̃) in Example 2.6.2.

LDPE method JM method λ = 0.49 tuned by GIC
True Est Ind CI Est Ind CI Est Ind CI

βtrue
0 0 – – – – -0.06 [-0.16, 0.03]

βtrue
1 3 3.00 [2.90, 3.11] 3.00 [2.91, 3.10] 3.00 [2.90, 3.10]

βtrue
2 1.5 1.59 [1.48, 1.70] 1.59 [1.49, 1.69] 1.59 [1.48, 1.70]

βtrue
3 0 -0.06 [-0.18, 0.05] -0.08 [-0.17, 0.02] -0.06 [-0.16, 0.04]

βtrue
4 0 0.05 [-0.06, 0.17] 0.06 [-0.04, 0.16] 0.05 [-0.06, 0.16]

βtrue
5 2 1.91 [1.79, 2.02] 1.91 [1.81, 2.00] 1.91 [1.79, 2.02]

βtrue
6 0 0.08 [-0.03, 0.20] 0.08 [-0.02, 0.18] 0.08 [-0.02, 0.19]

βtrue
7 0 0.03 [-0.09, 0.14] 0.01 [-0.09, 0.11] 0.03 [-0.08, 0.13]

βtrue
8 0 0.03 [-0.07, 0.14] 0.03 [-0.06, 0.12] 0.03 [-0.07, 0.14]

Table 2.6: 90% individual CIs for (β̃true
0 , β̃true) in Example 2.6.2.

Tables 2.5 and 2.6 show the first and second types of confidence intervals respectively,

both of which are computed from a specific replication with significance level 0.1. The “Est”

columns in Table 2.5 and Table 2.6 contain values of the SAA solution (β̂0, β̂) and the true

parameter estimates (β̂true0 , β̂true) respectively. The “True” column in Table 2.6 contains the
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true parameter (βtrue0 , βtrue) and the “β̃” columns in Table 2.7 contain the solutions to the

population LASSO problem (β̃0, β̃) for different λ values. The “Ind CI” and “Sim CI” columns

in Table 2.5 give individual and simultaneous confidence intervals respectively. The intervals

are not always symmetric around the estimates, a result of the non-normality.

In Table 2.5, the value 0 appears as an endpoint for many intervals, and in some cases

the entire interval shrinks to the singleton {0}. In Table 2.6, the confidence intervals for the

intercept β0 are not available for the LDPE and JM methods. In our method, there is no need to

center each replication. The estimates and individual confidence intervals for true parameters

computed from these three methods as shown in Table 2.6 are quite similar.

λ = 0.5 λ = 1 λ = 2

β̃ α =0.1 0.05 0.01 β̃ α =0.1 0.05 0.01 β̃ α =0.1 0.05 0.01
β0 0 93 98 100 0 92 97 100 0 89 96 100
β1 2.83 97 97 99 2.67 95 97 100 2.33 96 99 100
β2 1.36 90 96 100 1.22 88 94 100 0.94 86 93 98
β3 0 100 100 100 0 100 100 100 0 100 100 100
β4 0 100 100 100 0 100 100 100 0 100 100 100
β5 1.78 88 95 99 1.56 90 97 100 1.11 89 97 100
β6 0 100 100 100 0 100 100 100 0 100 100 100
β7 0 100 100 100 0 100 100 100 0 100 100 100
β8 0 100 100 100 0 100 100 100 0 100 100 100

Table 2.7: Coverage of the individual CIs for (β̃0, β̃) in Example 2.6.2.

LDPE method JM method Our method with GIC
True α =0.1 0.05 0.01 α =0.1 0.05 0.01 α =0.1 0.05 0.01

βtrue
0 0 – – – – – – 93 99 100

βtrue
1 3 92 96 98 90 92 97 92 96 98

βtrue
2 1.5 92 94 100 85 91 98 93 96 100

βtrue
3 0 88 95 99 92 99 100 88 95 99

βtrue
4 0 87 95 99 96 99 100 88 95 99

βtrue
5 2 90 96 100 90 94 97 90 95 100

βtrue
6 0 85 90 95 85 97 100 85 91 94

βtrue
7 0 90 95 99 95 99 100 91 94 99

βtrue
8 0 90 96 100 93 99 100 89 97 100

Table 2.8: Coverage of the individual CIs for (β̃true
0 , β̃true) in Example 2.6.2.

To test the coverage of the first type confidence intervals, we compute the population LAS-

SO parameters (β̃0, β̃) for each λ. We first check if the population LASSO parameters are

contained in the high-dimensional boxes formed by the simultaneous confidence intervals. We

observe 100% coverage from all SAA problems, even with simultaneous confidence intervals of

significance level 0.1. This is not very surprising, since these boxes are much larger than the
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confidence regions of the specified probability levels enclosed in them. Next, we check if com-

ponents of the population LASSO parameters are contained in the corresponding individual

confidence intervals. Table 2.7 lists the numbers of individual confidence intervals that cover

the population LASSO parameters, for each λ and each α. For example, the second entry in row

1 means that 93 individual confidence intervals of significance level 0.1 computed from the 100

replications with λ = 0.5 cover the population LASSO parameter β̃0. As shown in the table,

the individual confidence intervals for β̃i are conservative when β̃i equals zero with i ̸= 0. This

is consistent with the discussion in Section 2.3.4. For the second type confidence intervals, we

check if components of the true parameters β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0) in the underlying model

are contained in the corresponding individual confidence intervals. Table 2.8 lists the numbers

of individual confidence intervals that cover β∗ for the three methods. Those three methods

perform similarly and fairly well.

2.6.3 Example 2.6.3: High dimensional simulation

In this example, we consider a case in which the dimension p is larger than the sample size.

The simulation model is the same as that of Example 2.6.1, with β∗ being a 300-dimensional

vector: β∗1 = 3, β∗2 = β∗100 = β∗200 = β∗300 = 1.5, β∗5 = β∗95 = 2, and all the other components

are 0. Again X is normal with mean 0 and covariance Σij = ρ|i−j| for ρ = 0.9, ε is standard

normal and independent of X, and σ = 1.

We generate 100 replications of sample size N = 100, and consider three fixed λ values,

0.5, 1 and 2, as well as the λ value chosen by GIC for each SAA problem. As in Example

2.6.2, we compute two types of individual confidence intervals both with the significance level

0.05: the first type is for the population LASSO parameters (β̃0, β̃), and the second type is

for the true parameters (βtrue0 , βtrue) in the underlying linear model (3.46). Define the active

set as A = {j : β∗j ̸= 0} = {1, 2, 5, 95, 100, 200, 300} and Ac = {1, 2, · · · , p}\A. For each type

of individual confidence intervals, we report the average coverage, median coverage, average

length and median length of the individual confidence intervals corresponding to parameters in

either A or Ac:
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Avgcov A = |A|−1
∑
j∈A

CPj , Avgcov Ac = |Ac|−1
∑
j∈Ac

CPj ,

Avglen A = |A|−1
∑
j∈A

ALenj , Avglen Ac = |Ac|−1
∑
j∈Ac

ALenj ,

Medcov A = median
j∈A

{CPj}, Medcov Ac = median
j∈Ac

{CPj},

Medlen A = median
j∈A

{ALenj}, Medlen Ac = median
j∈Ac

{ALenj},

where CPj and ALenj respectively represent the empirical coverage probability and average

interval length of the confidence intervals for βj among the 100 replications (see Tables 3.4

and 2.10). For the second type intervals, we compare the above measures computed from our

method with those from the LDPE and JM methods (Table 2.10).

λ = 0.5 λ = 1 λ = 2
Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen

A 91.86 94.00 0.92 0.92 91.57 94.00 1.17 1.18 90.43 92.00 1.59 1.65
Ac 99.92 100.00 0.07 0.06 99.96 100.00 0.04 0.02 99.96 100.00 0.04 0.01

Table 2.9: Coverage and length of 95% individual CIs for (β̃0, β̃) in Example 2.6.3.

As shown in Table 3.4, the first type confidence intervals are often conservative for the

inactive variables. The same phenomena is observed in Example 2.6.2. On the other hand,

the interval lengths for the inactive variables are very short compared to the lengths for active

variables. This is related to the nature of LASSO: For a large λ, many population LASSO

parameters are exactly 0’s. Thus the SAA solutions of LASSO of these parameters concentrate

closely around 0’s. This fact also leads to shorter confidence intervals for true parameters of

the inactive set, as will be discussed later.

Our λ = 0.5 λ = 1 λ = 2
method Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen
A 93.86 94.00 0.81 1.03 95.86 97.00 1.08 1.39 95.86 98.00 1.72 2.28
Ac 92.85 93.00 0.75 0.74 93.44 94.00 1.04 1.02 93.81 94.00 1.71 1.69

LDPE method JM method Our method with GIC
Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen

A 88.43 89.00 1.04 1.06 84.71 83.00 0.84 0.86 93.14 94.00 1.03 1.02
Ac 95.13 95.00 1.07 1.07 98.94 99.00 0.87 0.87 92.61 93.00 0.72 0.72

Table 2.10: Coverage and length of 95% individual CIs for (β̃true
0 , β̃true) in Example 2.6.3.

The top rows of Table 2.10 report results of our method with different λ values. One may
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notice that the length of confidence intervals for the true parameters (βtrue0 , βtrue) increases

when λ increases. For an intuitive explanation, recall that the estimator (β̂true0 , β̂true) in (3.49)

is a bias correction version of the LASSO solution (β̂0, β̂). Large λ brings the LASSO solution

close to zero, which causes an increase of the correction part, and the latter leads to wide

confidence intervals. On the other hand, if λ is too small, the SAA solution lacks sparsity and

the corresponding LASSO estimates are less reliable. This suggests choosing an intermediate

value of λ to achieve the best overall performance.

The bottom rows of Table 2.10 show the results calculated from the LDPE method, the

JM method and our method (with λ chosen by GIC) respectively. For the active variables,

our method performs considerably better than the other two. For the inactive variables, the

coverage from the LDPE method is closest to 95%, and the coverage from the JM method are

even better. However, their confidence intervals are comparatively wider than those from our

method on average. The coverage for inactive variables computed from our method is in line

with the coverage for active variables, and they both will be better with larger sample size.

Moreover, with the same significance level, intuitively the confidence intervals of the inactive

variables can be narrower than the confidence intervals of the active variables on average,

because the involved prediction error of a model parameter with large magnitude is larger than

that of a model parameter with small magnitude.

2.6.4 Example 2.6.4: Coverage test for confidence bands

In this example, the simulation model is the same as that of Example 2.6.1, with β∗ being

a 100-dimensional vector: β∗1 , β
∗
31, β

∗
61 and β∗91 are 3; β∗2 , β

∗
20, β

∗
38, β

∗
56, β

∗
74 and β∗92 are 1; β∗5 ,

β∗15, β
∗
45 and β∗70 are 2; all the other components are 0. We generate 100 replications and set

N = 300, ρ = 0.5, σ = 3. Using Algorithm 3, we compute 95% individual confidence intervals

for z0 and (β̃0, β̃) at 25 values of λ as 6.1
25 i, i = 1, · · · , 25. The confidence intervals for z0 can be

obtained by dropping Step 4 in Algorithm 3.

To show the overall performance of coverage, we draw a boxplot for coverage rates in the

101 coordinates at each λ value. ΦN (zN ) is close to being singular when λ is small. With

λ increasing, more and more coordinates of γ(zN ) become 7. Therefore (LN )L is more likely
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Figure 2.4: Boxplot of coverage rates of 95% individual CIs for z0 in Example 2.6.4

Figure 2.5: Boxplot of coverage rates of 95% individual CIs for (β̃0, β̃) in Example 2.6.4

to be nonsingular with large value of λ. This is a general phenomenon. When λ becomes

infinity, each β̂i (i = 1, 2, · · · , p) will decrease to 0. Consequently, from Lemma 3.1 and (2.78),

((zN )i+1, (zN )i+1+p) will approach to E7
i .

From Figure 2.5, we note that coverage rates in most of coordinates for (β̃0, β̃) tend to be

1 when λ increases. This can be explained by the fact that the affect of projector Γ (3.42)

becomes clearer when λ increases. The larger the tuning parameter λ is, the more coordinates

of β̃i are equal to 0.
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2.6.5 Example 2.6.5: Prostate cancer data

This subsection considers the prostate cancer example used in [19]. There are eight co-

variates, log cancer volume, log prostate weight, age, log of the amount of benign prostatic

hyperplasia, seminal vesicle invasion, log of capsular penetration, Gleason score, and percent

of Gleason scores 4 or 5. The parameters corresponding to these covariates are denoted by

β1, β2, · · · , β8. We standardize the data and split observations into two parts. One part con-

sists of 67 observations, which is the training set in [19]. We only use these 67 observations in

our computation. Table 2.11 shows simultaneous and individual confidence intervals for popu-

lation LASSO parameters of significance level 0.05 for λ values 0.45, 0.88 and 1.49. The value

λ = 0.45 corresponds to s ≈ 0.36, where s is the standardized turning parameter involved with

an alternative formulation of LASSO defined in Section 3.4.2 of [19], and the value s ≈ 0.36 was

chosen in [19] by 10-fold cross-validation. The value λ = 0.88 is tuned by GIC as in Example 2,

and the value λ = 1.49 is chosen to represent large λ values. For the true model parameters, we

compare the confidence intervals computed from our method with those from the LDPE and

JM methods, as shown in Table 2.12.

λ = 0.45 λ = 0.88 tuned by GIC λ = 1.49
Est Ind CI Sim CI Est Ind CI Sim CI Est Ind CI Sim CI

β0 2.47 [2.29, 2.65] [2.08, 2.85] 2.47 [2.25, 2.68] [2.01, 2.92] 2.46 [2.20, 2.72] [1.92, 3.00]
β1 0.53 [0.30, 0.77] [0.05, 1.02] 0.42 [0.20, 0.65] [0, 0.90] 0.16 [0, 0.44] [0, 0.75]
β2 0.18 [0.02, 0.33] [0, 0.50] 0.05 [0, 0.22] [0, 0.41] 0 [0, 0.13] [0, 0.63]
β3 0 [0, 0] [-0.20, 0.37] 0 [0, 0] [0, 0.32] 0 [0, 0] [0, 0.20]
β4 0 [0, 0.30] [0, 0.66] 0 [0, 0.02] [0, 0.43] 0 [0, 0] [0, 0.13]
β5 0.08 [0, 0.32] [0, 0.59] 0 [0, 0.28] [0, 0.69] 0 [0, 0.09] [0, 0.57]
β6 0 [0, 0] [0, 0.22] 0 [0, 0] [0, 0.23] 0 [0, 0] [0, 0.16]
β7 0 [0, 0.10] [0, 0.40] 0 [0, 0] [0, 0.13] 0 [0, 0] [0, 0]
β8 0 [0, 0.27] [0, 0.57] 0 [0, 0.13] [0, 0.52] 0 [0, 0] [0, 0.30]

Table 2.11: 95% CIs for (β̃0, β̃) in Example 2.6.5.

Table 2.11 shows how the confidence intervals for population LASSO parameters change as

λ changes. In particular, when λ takes the value of 0.45, the individual confidence intervals of

β1 and β2 do not contain zero, while the individual confidence intervals of all other variables

(except β0) include zero in them. This suggests that the first two predictors are the most

useful ones in predicting the response. Furthermore, although the LASSO estimator for β5 is

not 0, its interval contains 0 and indicates that the corresponding LASSO parameter is not
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significantly different from 0. When λ becomes 0.88, the individual confidence interval of β1

does not contain zero, while the individual confidence intervals of all other variables (except

β0) include zero in them. This change suggests that the first predictor is more important

than the second one. At λ = 1.49, all the individual confidence intervals (except those of

β0) include zero in them, reflecting the shrinking feature of LASSO. Some of the confidence

intervals are singletons that contains only zero, which implies that the corresponding variables

are not important in predicting the response. The confidence intervals of β0 are insensitive with

changes of λ. Overall, we can compute confidence intervals for population LASSO parameters

for a wide range of λ, to obtain information not only about the significance at a particular λ

but also the relatively importance of the predictors.

LDPE method JM method λ = 0.88 tuned by GIC λ = 0.45 λ = 1.49
Est Ind CI Est Ind CI Est Ind CI Est Ind CI Est Ind CI

βtrue
1 0.69 [0.46, 0.93] 0.68 [0.03, 1.33] 0.71 [0.41, 1.01] 0.70 [0.44, 0.95] 0.74 [0.37, 1.11]

βtrue
2 0.28 [0.09, 0.46] 0.26 [-0.22, 0.75] 0.29 [0.08, 0.49] 0.28 [0.10, 0.46] 0.32 [0.09, 0.55]

βtrue
3 -0.09 [-0.29, 0.11] -0.14 [-0.66, 0.38] -0.08 [-0.34, 0.17] -0.09 [-0.29, 0.10] -0.02 [-0.35, 0.31]

βtrue
4 0.21 [0.01, 0.41] 0.21 [-0.31, 0.73] 0.22 [-0.02, 0.45] 0.21 [-0.00, 0.42] 0.22 [-0.05, 0.49]

βtrue
5 0.31 [0.08, 0.54] 0.31 [-0.33, 0.94] 0.33 [0.04, 0.63] 0.31 [0.04, 0.58] 0.38 [0.05, 0.71]

βtrue
6 -0.21 [-0.48, 0.06] -0.29 [-1.08, 0.50] -0.19 [-0.47, 0.09] -0.21 [-0.45, 0.04] -0.10 [-0.41, 0.21]

βtrue
7 -0.01 [-0.27, 0.25] -0.02 [-0.76, 0.72] -0.02 [-0.28, 0.24] -0.01 [-0.24, 0.22] 0.04 [-0.25, 0.32]

βtrue
8 0.24 [-0.03, 0.51] 0.27 [-0.52, 1.05] 0.25 [-0.06, 0.56] 0.24 [-0.01, 0.48] 0.28 [-0.05, 0.61]

Table 2.12: 95% individual CIs for (β̃true
0 , β̃true) in Example 2.6.5.

Table 2.12 lists the estimates of the true model parameters and their individual confidence

intervals, computed from the LDPE and JM methods as well as our methods with λ = 0.88,

0.45 and 1.49. The estimate of the precision matrix Θ̂ is computed by nodewise LASSO except

for the JM method (the JM method uses its own procedure). Results from the three methods

are generally comparable, except that confidence intervals computed from the JM method are

overall wider than the other intervals. Based on results in Table 2.12, confidence intervals for

β1, β2, β4 and β5 from the LDPE method do not contain zero. In contrast, the only confidence

interval that does not contain zero from the JM method is the one for β1. Across all three values

of λ, our methods always select β1, β2 and β5 with their confidence intervals not covering zero.

For comparison, the 95% ordinary least squares regression confidence intervals for the true

parameters are quite similar to confidence intervals computed from LDPE and our method.

We also construct 95% confidence bands for population LASSO parameters. In Figure 2.6,
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Figure 2.6: 95% Confidence bands for (β̃0, β̃) in Example 2.6.5.

the simultaneous and individual confidence bands for some selected components of β are showed

by blue line and red dashed line respectively. We mark the end points of λ segments by “+”.

The green line represents the LASSO solution path of (2.2) for corresponding β components.

Each confidence band consists of 26 λ segments. The behavior of the confidence bands in Figure

2.6 is similar to that of simulation Example 2 in Figure 3.

As expected, individual confidence bands are narrower than simultaneous ones. Each con-

fidence band consists of 26 λ segments, some of which are very short. We mark the end points

by “+”. Although there are “jumps” at some end points, every confidence band will eventually

shrink to zero except that for β0. This is expected since the true solution of (3.60) goes to zero

except β̃0 when λ increases. For β0, its confidence band does not change if λ is large enough,
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since the solution β̃0(λ) remains at a fixed value for all large λs.

2.7 Summary

In this chapter, we consider a prevalent sparse penalized regression: the LASSO regression.

We transform LASSO problems into variational inequalities and make use of the asymptotic

convergence results to derive confidence intervals and regions for the population LASSO param-

eters. In view of (2.44), the lengths of confidence intervals for population LASSO parameters

are affected by two factors. The first is ΣN , the sample covariance of F (β̂0, β̂, t̂, xi, yi)}Ni=1.

The second is (ΦN (zN ))−1, which characterizes the sensitivity of solution to (2.2) with respect

to random samples. In general, large variance and high sensitivity lead to wide confidence

intervals, and small variance and low sensitivity lead to short intervals. Thus, the lengths of

confidence intervals for population LASSO parameters reflect the effect of sample variance on

the parameter estimates computed from the LASSO. In terms of the true parameters in the un-

derlying linear model, we also propose methods to derive confidence intervals and compare them

with existing methods in the literature. Both our theoretical and numerical results confirm the

validity and effectiveness of the proposed methods.

Moreover, we study the confidence bands for the population LASSO parameters along the

LASSO solution path. We point out that the entire confidence band is neither piecewise linear

nor continuous in λ, if we construct confidence band pointwisely by using techniques described

in Section 2.3. We propose the linear approximation tracking algorithm in Section 2.4.4 to

compute confidence intervals. Theoretically, we justify this algorithm by proving the piecewise

Lipschitz property for both individual and simultaneous confidence bands under some mild

conditions. Besides, we develop a sufficient and necessary condition in Section 2.4.1 to check

the global homomorphism for ΦN (zN ), which is crucial for construction of confidence intervals.

Corollary 2.1 is a more convenient sufficient condition. As long as (2.47) holds, the global

homomorphism of ΦN (zN ) implies that the matrix K defined in (3.17) is nonsingular. Further-

more, Σ1
N is nonsingular for sufficiently large N . Both are indispensable for using (2.56) to

construct simultaneous confidence interval. Finally, we want to point out that Theorems 2.4

and 2.5 do not cover the cases using simulation to find individual confidence intervals and using
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pseudo-inverse instead of (Σ1
N )−1 in (3.44). These two cases deserve further theoretical study

in the future.
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CHAPTER 3: INFERENCE FOR GENERAL PENALIZED REGRESSIONS

3.1 Introduction

In this chapter, we study a generalization of the methods discussed in Chapter 2 for the

LASSO confidence intervals at fixed values of tuning parameters. We propose similar methods to

construct confidence intervals for penalized regression parameters for a wide range of penalties,

including commonly used penalties such as LASSO and MCP. The requirements for the penalties

are consistent with the three properties proposed by [15].

We consider a general population penalized regression problem

min
β0,β

E
[
Y − β0 −

p∑
i=1

βiXi

]2
+

p∑
j=1

Pλj
(|βj |). (3.1)

For j = 1, 2, · · · , p, Pλj
(| · |) is a general penalty for βj with the regularization parameter

λj . This general penalty covers the L1 penalty, the adaptive LASSO penalty [59], or any

non-convex penalty such as SCAD or MCP. The conditions of the penalties discussed in this

chapter are listed in Section 3.2. We denote the solution of 3.1 as (β̃0, β̃), which we refer to as

the population penalized parameters. The solution of (3.1) can be estimated by the solution of

the corresponding SAA problem

min
β0,β

1

N

∣∣∣∣y − β01N −Xβ
∣∣∣∣2
2
+

p∑
j=1

Pλj
(|βj |), (3.2)

where

y ,



y1

y2
...

yN


, X ,



x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xN1 xN2 · · · xNp


=



x1

x2

...

xN


, 1N =



1

1

...

1


∈ RN ,



and (x1, y1), · · · , (xN , yN ) are independent samples of (X,Y ). For each i = 1, · · · , N and

j = 1, · · · , p, xij ∈ R, yi ∈ R and xi ∈ R1×p. We denote its solution as (β̂0, β̂)

In Section 3.2, we state the assumptions and the problem transformations used in this

chapter. Sections 3.3 and Section 3.4 discusses how to obtain the confidence intervals for the

population penalized parameters and the true model parameters respectively. To illustrate the

performance of the proposed method, numerical results are presented in Section 3.5.

3.2 Problem transformations

3.2.1 Transformations of the population penalized regression

In this subsection, we change the appearance of the optimization problem (3.1) gradually to

obtain its normal map formulation. Before penetrating into the process, we propose conditions

on the penalties Pλi
(·).

Assumption 3.1. (a) For each i = 1, 2, · · · , p, Pλi
(·) is nonnegative, nondecreasing and

continuously differentiable on [0,+∞) with P ′
λi
(0) > 0.

(b) For any optimal solution (β̃0, β̃) (local or global) to (3.1), the second derivative of Pλi
(ti)

is Lipchitz continuous on a neighborhood of ti = |β̃i| for every i from 1 to p.

Most well-known non-convex penalties satisfy Assumption 3.1(a), as well as convex ones.

We list four penalty families as examples.

(a) The adaptive LASSO penalty [59] defined as Pλi
(βi) = λi|βi|, where λi is the weight for

the ith coordinate.

(b) The combination of power penalties, such as elastic net penalty [60] given by Pλ(βi) =

λ1|βi|+ λ2|βi|2.

(c) The SCAD penalty [15] defined via Pλ(0) = 0 and

P ′
λ(βi) = λ1|βi|6λ +

(aλ− |βi|)+
a− 1

1|βi|>λ for a > 2. (3.3)

84



(d) The MCP penalty [55] defined as

Pλ(βi) = λ(|βi| −
β2i
2aλ

)1|βi|<aλ +
aλ2

2
1|βi|>aλ for a > 0. (3.4)

Assumption 3.1(b) is a mild condition for most of penalties. Take SCAD penalty for exam-

ple. It corresponds to a quadratic spline with two knots, at which it is not continuously twice

differentiable. Assumption 3.1(b) requires no optimal solution to (3.1) locates at these two

knots for each i. It is not a strong assumption in the sense that the set on which Assumption

3.1(b) does not hold has measure zero.

In the assumption below, part (a) is to ensure the objective function of (3.1) to be finite

valued, and part (b) will be used in proving convergence results.

Assumption 3.2. (a) The expectations E[X2
1 ], · · · , E[X2

p ] and E[Y 2] are finite.

(b) The expectations E[X4
1 ], · · · , E[X4

p ] are finite.

Next, we are going to transform the problem (3.1) to a normal map formulation by three

steps. First, we introduce an equivalent problem, in which a new variable t ∈ Rp is employed

to eliminate the non-smooth term
∑p

i=1 Pλi
(|βi|) from the objective function (3.1). This new

problem is presented as follows:

min
β0,β,t

E
[
Y − β0 −

∑p
i=1 βiXi

]2
+

∑p
i=1 Pλi

(ti) +m(||t||22 − ||β||22) (3.5)

s.t. ti − βi > 0, i = 1, · · · , p,

ti + βi > 0, i = 1, · · · , p,

where m is a non-negative constant. If we define Si ⊂ R2 as

Si = {(βi, ti) | ti − βi > 0, ti + βi > 0}, i = 1, · · · , p. (3.6)

and write

(β0, β, t) = (β0, β1, t1, β2, t2, · · · , βp, tp) (3.7)
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then we can treat the feasible set of (3.5), denoted by S, as a Cartesian product

S = R×Πp
i=1Si. (3.8)

We will use two ways of ordering in (β0, β, t) as showed in (3.7) interchangeably for notational

convenience.

We can choose m = 0 if the penalty functions Pλi
(·) are all strictly increasing on [0,+∞)

such as Lasso penalties, otherwise we must use a positive m. In general, under Assumption

3.1(a), the third term with any positive coefficient m can guarantee problems (3.1) and (3.5)

to be equivalent in the sense that there is an one-to-one correspondence between the optimal

solutions of the two problems. It is worth to note that the third term in the objective of (3.5)

is necessary for the case that the penalties are not strictly increasing on [0,+∞). For instance,

some non-convex penalties such as SCAD and MCP are “flat” when the variables are larger

than some positive thresholds, say di for the i
th penalty (i = 1, · · · , p). In other words, Pλi

(ti)

takes the same value on [di,+∞) for each i. Without the third term in the objective of (3.5),

if (β̃0, β̃) is an optimal solution to (3.1) and |β̃i| > di for some i, then (β̃0, β̃, t̃) is an optimal

solution to (3.5) for all t̃i > |β̃i|. Therefore, without specification we assume m > 0 in this

chapter (We use m = 1
2 in the numerical examples).

Second, we transform problem (3.5) into a variational inequality formulation. To this end, we

need to write down the gradient of its objective function. Let P (t) =
(
P ′
λ1
(t1), · · · , P ′

λp
(tp)

)T
.

Define a function F : R× Rp × Rp × Rp × R→ R2p+1 as

F (β0, β, t,X, Y ) =


−2(Y − β0 −

∑p
i=1 βiXi)

−2(Y − β0 −
∑p

i=1 βiXi)X − 2mβ

P (t) + 2mt

 . (3.9)

Furthermore, we define f0 : R× Rp × Rp → R2p+1 as

f0(β0, β, t) = E[F (β0, β, t,X, Y )]. (3.10)

f0 is well defined and finite valued under Assumption 3.2(a). If Pλi
(ti) is twice differentiable
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at ti for every i from 1 to p, then we can write down the derivative of F w.r.t. (β0, β, t) as

d1F (β0, β, t,X, Y ) =


2 2XT 0

2X 2XXT − 2mIp 0

0 0 ∇P (t) + 2mIp

 , (3.11)

where

∇P (t) =


P ′′
λ1
(t1)

. . .

P ′′
λp
(tp)

 (3.12)

and Ip is the p× p identity matrix. Moreover, we can write down the Jacobian matrix of f0 as

L(t) = E[d1F (β0, β, t,X, Y )] =


2 2E[XT ] 0

2E[X] 2E[XXT ]− 2mIp 0

0 0 ∇P (t) + 2mIp

 . (3.13)

The lemma below shows that there is an one-to-one correspondence between the optimal

solutions of problems (3.1) and (3.5).

Lemma 3.1. Suppose Assumption 3.1(a) and 3.2(a) hold. If (β̃0, β̃, t̃) is an (local) optimal

solution to (3.5), then t̃i = |β̃i| for all i from 1 to p, and (β̃0, β̃) is an (local) optimal solution to

(3.1). Conversely, if (β̃0, β̃) is an (local) optimal solution to (3.1), then (β̃0, β̃, t̃) is an (local)

optimal solution to (3.5), where t̃i = |β̃i| for all i from 1 to p.

Moreover, the objective function of (3.5) is a finite valued function on R2p+1, and its gradient

at each (β0, β, t) ∈ R2p+1 is f0(β0, β, t). In addition, if Assumption 3.1(b) also holds, then its

Hessian matrix at (β̃0, β̃, t̃) is L(t̃).

Proof of Lemma 3.1. Without loss of generality, suppose (β̃0, β̃, t̃) is a local optimal solution

to (3.5). Since Pλi
(·) is nondecreasing and m is positive, it is obvious that t̃i = |β̃i| for all i

from 1 to p. Denote the objective function in (3.1) by g1(β0, β) and the objective function in

87



(3.5) by g2(β0, β, t). Then there exists a neighborhood B1 at (β̃0, β̃) in Rp+1, such that

g2(β̃0, β̃, t̃) 6 g2(β0, β, t) for ∀(β0, β) ∈ B1 and ti = |βi|, i = 1 · · · , p.

That is,

g1(β̃0, β̃) 6 g1(β0, β) for ∀(β0, β) ∈ B1.

Therefore, (β̃0, β̃) is a local optimal solution to (3.1).

Conversely, suppose (β̃0, β̃) is a local optimal solution to (3.1). Then there exists a neigh-

borhood B2 at (β̃0, β̃) in Rp+1, such that

g1(β̃0, β̃) 6 g1(β0, β) for ∀(β0, β) ∈ B2.

Let t̃i = |β̃i| for all i from 1 to p, then we have

g2(β̃0, β̃, t̃) 6 g2(β0, β, t) for ∀(β0, β) ∈ B2 and ti = |βi|, i = 1 · · · , p.

Consequently,

g2(β̃0, β̃, t̃) 6 g2(β0, β, t) for ∀(β0, β) ∈ B2 and ∀ti > |βi|, i = 1 · · · , p.

Thus, (β̃0, β̃, t̃) is a local optimal solution to (3.5).

The second part of Lemma 3.1 is straightforward and we omit its proof.

�

In view of Lemma 3.1, we can transform (3.5) to the following variational inequality:

−f0(β0, β, t) ∈ NS(β0, β, t). (3.14)

Third, we state the normal map formulation for (3.14). Let (f0)S be the normal map induced

by f0 and S. Then the normal map formulation for (3.14) is

(f0)S(z) = 0, z ∈ R2p+1. (3.15)
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Let (β̃0, β̃, t̃) be an (local) optimal solution to (3.5), then (β̃0, β̃, t̃) is also a solution to (3.14).

So the point z0 ∈ R2p+1 defined as

z0 = (β̃0, β̃, t̃)− f0(β̃0, β̃, t̃) (3.16)

is a solution to (3.15) and satisfies ΠS(z0) = (β̃0, β̃, t̃). LetK be the critical cone to S associated

with z0, defined as

K = {w ∈ TS(ΠS(z0)) | ⟨z0 −ΠS(z0), w⟩ = 0}

= {w ∈ TS(β̃0, β̃, t̃) | ⟨f0(β̃0, β̃, t̃), w⟩ = 0}.
(3.17)

At last, we introduce the third assumption and the second lemma.

Assumption 3.3. Let (β̃0, β̃) be a locally optimal solution of (3.1), define t̃ ∈ Rp and q̃ ∈ Rp

by

t̃i = |β̃i| and q̃i = E[−2(Y − β̃0 −
p∑

j=1

β̃jXj)Xi] for each i = 1, · · · , p.

Let I be a subset of {1, · · · , p} defined as

I =
{
i ∈ {1, · · · , p} | β̃i ̸= 0 or (β̃i = 0 and |q̃i| = |P ′

λi
(t̃i)|)

}
,

and denote L(t̃) in (3.13) by L. Let Q1 be the submatrix of L that consists of intersections of

columns and rows of L with indices in {1} ∪ {i + 1, i ∈ I}, and let Q2 be the submatrix of L

that consists of intersections of columns and rows of L with indices in {i+ p+1, i ∈ I}. Define

matrix Q as

Q = Q1 +

 0 0

0 Q2

 . (3.18)

Assume that Q is nonsingular.

In the above assumption, Q1 is a submatrix of the upper left (p+1)× (p+1) submatrix of

L, and Q2 is a submatrix of the lower right p× p submatrix of L. It is well known that LK , the

normal map induced by L and K in (3.17), is the same as the B-derivative of the normal map
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(f0)S at z0 [40]. LK and its estimator play important roles in this chapter. Lemma 3.2 below

shows that LK is a global homeomorphism from R2p+1 to R2p+1, that is, a continuous bijective

function from R2p+1 to R2p+1 whose inverse function is also continuous.

Lemma 3.2. Suppose that Assumptions 3.1, 3.2(a) and 3.3 hold. Then the normal map LK is

a global homeomorphism from R2p+1 to R2p+1, and (β̃0, β̃, t̃) is a locally unique optimal solution

to (3.5), where t̃i = |β̃i| for all i from 1 to p.

Proof of Lemma 3.2. According to Assumption 3.3 and Lemma 3.1 we know that (β̃0, β̃, t̃)

is a locally optimal solution to (3.5). We will prove it is also a locally unique optimal solution

by showing that LK is a global homeomorphism.

From(3.8), we can write the normal and tangent cone to S at (β̃0, β̃, t̃) as

NS(β̃0, β̃, t̃) = {0} ×NS1(β̃1, t̃1)× · · · ×NSp(β̃p, t̃p),

and

TS(β̃0, β̃, t̃) = R× TS1(β̃1, t̃1)× · · · × TSp(β̃p, t̃p).

Let q̃ be as defined in Assumption 3.3, and let q̃0 = E[−2(Y − β̃0 −
∑p

j=1 β̃jXj)]. Since

−f0(β̃0, β̃, t̃) ∈ NS(β̃0, β̃, t̃), we have

q̃0 = 0 and − (q̃i − 2mβ̃i, P
′
λi
(t̃i) + 2mt̃i) ∈ NSi(β̃i, t̃i) for each i = 1, · · · , p. (3.19)

If β̃i > 0 for some i = 1, · · · , p, from the definition of Si and (3.19) we have

q̃i − 2mβ̃i = −P ′
λi
(t̃i)− 2mt̃i.

That is

q̃i = −P ′
λi
(t̃i),

because t̃i = |β̃i| = β̃i. Similarly, if β̃i < 0, then

q̃i = P ′
λi
(t̃i);
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if β̃i = 0, then

|q̃i| 6 P ′
λi
(t̃i).

According to (3.17), for each i = 1, · · · , p we have

Ki =



{(0, 0)} if
(
β̃i = 0 and |q̃i| < |P ′

λi
(t̃i)|

)
,

{(βi, ti) ∈ R2
+ | βi − ti = 0} if

(
β̃i = 0 and q̃i = −P ′

λi
(t̃i)

)
,

{(βi, ti) ∈ R2 | βi − ti = 0} if β̃i > 0,

{(βi, ti) ∈ R− × R+ | βi + ti = 0} if
(
β̃i = 0 and q̃i = P ′

λi
(t̃i)

)
,

{(βi, ti) ∈ R2 | βi + ti = 0} if β̃i < 0.

(3.20)

and

K = R×K1 × · · · ×Kp.

Next, we give an explicit expression for the affine hull of K. Define two matrices M and N

as follows:

M =


1 0

0 Ip

0 Ip

 and N =


1 0

0 Ip

0 −Ip

 .
Construct a matrix Ξ by first adding the common first column of M and N and then adding

the (i + 1)th column of M (N) if the condition in the second or third (fourth or fifth) row of

(3.20) is satisfied. Columns of Ξ form a basis of the affine hull of K. Note that ΞTLΞ = Q,

where Q is defined in Assumption 3.3. From Proposition 2.5 and Theorem 4.3 of [39], LK is a

global homeomorphism. Under Assumption 3.1(b), it easy to see that the partial derivative of

f0 at (β̃0, β̃, t̃) is strong. An application of [40, Theorem 3] implies that z0 is a locally unique

solution to (3.15), therefore (β̃0, β̃, t̃) is a locally unique optimal solution to (3.5).

�

In the above lemma, the non-singularity of Q in (3.18) guarantees (β̃0, β̃, t̃) to be a locally

unique optimal solution to (3.5), so (β̃0, β̃) is also a locally unique solution to (3.1) according

to Lemma 3.1. For the details, we refer the reader to its proof in the Appendix B.

As before, we use Σ0 to denote the covariance matrix of F (β̃0, β̃, t̃, X, Y ) and let Σ1
0 be the
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upper left (p+ 1)× (p+ 1) submatrix of Σ0. Since the past p elements of F (β̃0, β̃, t̃, X, Y ) are

constants at (β̃0, β̃, t̃), we have Σ0 =

 Σ1
0 0

0 0

 .

3.2.2 Transformations of the SAA problem

We follow the same steps in Subsection 3.2.2 to formulate the SAA problem (3.2) as a normal

map equation. First, by introducing the variable t ∈ Rp we transform (3.5) to the following

equivalent problem:

min
(β0,β,t)∈S

1

N

N∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+

p∑
i=1

Pλi
(ti) +m(||t||22 − ||β||22). (3.21)

Second, we rewrite (3.21) as a variational inequality

0 ∈ fN (β0, β, t) +NS(β0, β, t), (3.22)

where fN (β0, β, t) = N−1
∑N

i=1 F (β0, β, t,x
i, yi). If Pλi

(ti) is twice differentiable at ti for every

i from 1 to p, then the Jacobian matrix of fN is given by

LN (t) = dfN (β0, β, t) =


2 2

∑N
i=1 x

i/N 0

2
∑N

i=1(x
i)T /N 2

∑T
i=1(x

i)T (xi)/N − 2mIp 0

0 0 ∇P (t) + 2mIp

 .
(3.23)

Third, denoting the normal map induced by fN and S by (fN )S , we obtain the normal map

formulation of (3.22) as

(fN )S(z) = 0. (3.24)

Let (β̂0, β̂, t̂) be an (local) optimal solution to (3.21), then (β̂0, β̂, t̂) is also a solution to (3.22).

So the point zN ∈ R2p+1 defined as

zN = (β̂0, β̂, t̂)− fN (β̂0, β̂, t̂) (3.25)
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is a solution to (3.24) and satisfies ΠS(zN ) = (β̂0, β̂, t̂). In fact, under Assumptions 3.1, 3.2 and

3.3, this zN is a locally unique solution to (3.24) when N is large enough and it converges to

z0. This result will be shown in Subsection 3.3.1. Consequently, (β̂0, β̂, t̂) is a locally unique

optimal solution to (3.21) and converges to (β̃0, β̃, t̃). Let ΣN be the sample covariance matrix

of {F (β̂0, β̂, t̂,xi, yi)}Ni=1 and Σ1
N be the upperleft (p + 1) × (p + 1) submatrix of ΣN , then we

have ΣN =

Σ1
N 0

0 0

 . Lemma 2.3 shows that ΣN converges to Σ0 almost surely as N goes to

infinity for LASSO penalty. One can similarly prove the same convergence result with general

penalty in this chapter under Assumptions 3.1-3.4.

Finally, we introduce the last set of assumptions below.

Assumption 3.4. (a) For each h ∈ R2p+1 and (β0, β, t) ∈ R2p+1, let

Mβ0,β,t(h) = E
[
exp{⟨h, F (β0, β, t,X, Y )− f0(β0, β, t)⟩}

]
be the moment generating function of the random variable F (β0, β, t,X, Y )−f0(β0, β, t). Let C be

a compact set in R2p+1 that contains (β̃0, β̃, t̃) in its interior, and on which the second derivative

of Pλi
(ti) is Lipchitz continuous for each i from 1 to p. Assume the following conditions.

1. There exists a constant ζ > 0 such that Mβ0,β,t(h) ≤ exp{ζ2∥h∥2/2} for each h ∈ R2p+1

and (β0, β, t) ∈ C.

2. There exists a nonnegative random variable κ(X,Y ) such that

∥F (β0, β, t,X, Y )− F (β′0, β′, t′, X, Y )∥ ≤ κ(X,Y )∥(β0, β, t)− (β′0, β
′, t′)∥

for all (β0, β, t) and (β′0, β
′, t′) in C and almost every (X,Y ).

3. The moment generating function of κ is finite valued in a neighborhood of zero.

(b) The same conditions as in (a) for d1F (β0, β, t,X, Y ) instead of F (β0, β, t,X, Y ). Ac-

cordingly, use E[d1F (β0, β, t,X, Y )] to replace f0(β0, β, t) in the conditions.
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(c) The same conditions as in (a) for F (β0, β, t,X, Y )F (β0, β, t,X, Y )T . Accordingly, use

E[F (β0, β, t,X, Y )F (β0, β, t,X, Y )T ] to replace f0(β0, β, t) in the conditions.

Assumption 3.4(a) imposes conditions on the random variable F (β0, β, t,X, Y ) as well as

the penalty terms. It will hold if (X,Y ) is a bounded random variable and Assumption 3.1(b)

holds. Assumption 3.4(a) is used to ensure the SAA function fN to converge to f0 in probability

at an exponential rate. We state the result in the following lemma.

Lemma 3.3. Suppose that Assumptions 3.1, 3.2 and 3.4(a) hold. Then there exist positive real

numbers δ1, µ1, M1 and σ1 such that the following holds for each ϵ > 0 and each N :

Prob

{
sup

(β0,β,t)∈C
||fN (β0, β, t)− f0(β0, β, t)|| > ϵ

}
6 δ1 exp{−Nµ1}+

M1

ϵ2p+1
exp

{
−Nϵ

2

σ1

}
.

(3.26)

Proof of Lemma 3.3. The conclusion follows from an application of [32, Theorem 4]. We

verify the assumptions of the latter theorem as follows. From equations (4.2) and (3.11) we can

see that the Assumption 1 in [32] holds under Assumptions 3.1 and 3.2 of this paper. Moreover,

Assumption 3.4(a) in [32] is satisfied for the compact set C under Assumption 3.4(a) of this

paper.

�

The parts (b) and (c) of Assumption 3.4 impose the same type of assumptions on different

random variables. Assumption 3.4(a-b) are needed in part of Theorem 3.1 and they enable us

to construct reliable estimates for an unknown quantity in the asymptotic distribution of (3.16)

(see Theorem 3.2). Assumption 3.4(c) is only required when the matrix Σ1
0 is singular.

3.3 Confidence intervals for population penalized parameters

In this section, we develop the method to construct confidence intervals for a (locally)

optimal solution of the population penalized regression problem (3.1) according to a (locally)

optimal solution of the SAA problem (3.2).
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3.3.1 Convergence and distribution of SAA solutions

Under Assumptions 3.1-3.3, from Lemma 3.2 we know that z0 defined in (3.16) is a unique

solution to (3.15) in some neighborhood. Furthermore, we can show that (3.24) has a unique

solution zN in a sub-neighborhood for sufficiently large N , and zN converges almost surely to

z0. The results are summarized in Theorem 3.1 below.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then, for almost every ω ∈ Ω,

there exists an integer Nω and neighborhoods Z of z0 and C0 of (β̃0, β̃, t̃), such that for each

N ≥ Nω, the equation (3.24) has a unique solution zN in Z, and the variational inequality

(3.22) has a unique solution in C0 given by (β̂0, β̂, t̂) = ΠS(zN ). Moreover,

lim
N→∞

zN = z0 a.e., lim
N→∞

(β̂0, β̂, t̂) = (β̃0, β̃, t̃) a.e., (3.27)

√
N(zN − z0)⇒ (LK)−1(N (0,Σ0)), (3.28)

√
N(ΠS(zN )−ΠS(z0))⇒ ΠK ◦ (LK)−1(N (0,Σ0)), (3.29)

and
√
NLK(zN − z0)⇒ N (0,Σ0). (3.30)

Suppose in addition that Assumption 3.4(a-b) holds. Then there exist positive real numbers

ϵ0, δ0, µ0, M0 and σ0, such that the following holds for each ϵ ∈ (0, ϵ0] and each N :

Prob
{
∥(β̂0, β̂, t̂)− (β̃0, β̃, t̃)∥ < ϵ

}
≥ Prob {∥zN − z0∥ < ϵ}

≥1− δ0 exp{−Nµ0} −
M0

ϵ2p+1
exp

{
−Nϵ

2

σ0

}
.

(3.31)

Proof of Theorem 3.1. Follow the proof of Theorem 2.1.

�

From (3.30) we can readily derive an expression for the confidence region of z0, which will

depend on Σ0 and LK . However, both of these two are unknown in real applications, since we
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can not obtain the true solution of (3.1) in advance. In order to obtain computable confidence

regions, we need to find reliable estimators of Σ0 and LK .

3.3.2 Estimators of Σ0 and LK

One can show that ΣN converges to Σ0 almost surely under Assumptions 3.1-3.3, therefore

we can use ΣN as a good estimator of Σ0. Our main task in this subsection is to introduce an

estimator of the normal map LK . Since LK is exactly the same as d(f0)S(z0), one may thus

attempt to use d(f0)S(zN ) as an estimate of LK . However, this is problematic because the

function d(f0)S(·) may not be continuous with respect to variable z in a neighborhood of z0.

This discontinuity can be seen from the chain rule of B-differentiability:

d(f0)S(z)(h) = L(t) dΠS(z)(h) + h− dΠS(z)(h) for each z ∈ R2p+1, h ∈ R2p+1,

where dΠS(z) is the B-derivative of the Euclidean projector ΠS at z. Note that dΠS(z) is not

continuous with respect to z at those points z on the boundary of any (2p+1)-cell in the normal

manifold of S. This results in the discontinuity of d(f0)S(·) at these points. If d(f0)S(·) is not

continuous at z0, d(f0)S(zN ) may not converge to d(f0)S(z0), in which case d(f0)S(zN ) is not

a good estimator of LK .

Denote each cell in the normal manifold of Si as Cj
i for indices from 1 to p. Accord-

ing to (3.6) we can derive the constraints defining each Cj
i which are listed in Table 2.1 in

Section 2.3.2. Therefore each (2p + 1)-cell in the normal manifold of S can be written as

R×Πp
i=1C

γ(i)
i , where γ(i) = 0, · · · , 8 for each i = 1, · · · , p. From (3.16) and Lemma 3.2 we note

that
(
(z0)i+1, (z0)i+1+p

)
can be only in the relative interior of C3

i , C
4
i , C

6
i , C

7
i or C8

i for all i.

Consequently, d(f0)S(·) is not continuous at z0 only when
(
(z0)i+1, (z0)i+1+p

)
is in the relative

interior of C3
i or C4

i for some index i. We consider two cases based on the location of z0, which

correspond to the two situations in which the random variable (LK)−1(N (0,Σ0)) is normally

distributed, or is a combination of more than one normal random variables..

� Case I: In this case,
(
(z0)i+1, (z0)i+1+p

)
is in the relative interior of C6

i , C
7
i or C8

i for all

i ∈ {1 · · · p}, and the normal map LK and the B-derivative dΠS(z0) are linear functions.
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We can use dΠS(zN ) and d(fN )S(zN ) as the estimators of dΠS(z0) and LK respectively.

� Case II: In this case,
(
(z0)i+1, (z0)i+1+p

)
is in the relative interior of C3

i or C4
i for some

index i ∈ {1 · · · p}, and LK and dΠS(z0) are piecewise linear functions. In this case, we

have to derive an estimator of LK other than d(fN )S(zN ).

To deal with Case II, first we give the expression of dΠS(z), and then construct an asymp-

totically exact approximation of dΠS(z0). According to (3.8), we have

dΠS(z)(h) =
(
β̆0, dΠS1(β1, t1)(β̆1, t̆1), · · · , dΠSp(βp, tp)(β̆p, t̆p)

)
, (3.32)

for each z = (β0, β, t) and h = (β̆0, β̆, t̆). We denote dΠSi(βi, ti) in the relative interior of each

Cj
i by a function ψj : R2 → R2. Since dΠSi(βi, ti) is the same function for all (βi, ti) in the

relative interior of each Cj
i (j = 0, 1, · · · , 8), dΠSi(βi, ti) has 9 different expressions. Define four

matrices

A1 =

 1 0

0 1

 , A2 =

 1/2 −1/2

−1/2 1/2

 , A3 =

 1/2 1/2

1/2 1/2

 , A4 =

 0 0

0 0

 .
Table 2.2 shows the expression of each ψj using these matrices. Consequently we can denote

dΠS(z) for all z in the relative interior of R×Πp
i=1C

γ(i)
i as

Ψγ(z)(h) =
(
β̆0, ψγ(1)(β̆1, t̆1), · · · , ψγ(p)(β̆p, t̆p)

)
for each h = (β̆0, β̆, t̆), (3.33)

where γ(z) ,
(
γ(1), · · · , γ(p)

)
such that z ∈ ri

(
R×Πp

i=1C
γ(i)
i

)
.

Next, we construct an estimator of dΠS(z0). We divide the plane (βi, ti) into 9 pieces

E0
i , · · · , E8

i . The constraints that define each of these sets E0
i , · · · , E8

i are listed in Table 2.4.

The function g(N) has many chooses. It can be any combination of finite many terms of the

form aN b with a > 0 and b ∈ (0, 1/2). Each partition R×Πp
i=1E

γ(i)
i is related to the (2p+1)-cell

R×Πp
i=1C

γ(i)
i . Let

γ(z) ,
(
γ(1), · · · , γ(p)

)
such that z ∈ R×Πp

i=1E
γ(i)
i .
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Given a sample size N and a fixed z, we define a function ΛN (z) : R2p+1 → R2p+1 as

ΛN (z)(h) = Ψγ(z)(h), for each h ∈ R2p+1. (3.34)

One can show that ΛN (zN ) converges to dΠS(z0) in probability under Assumptions 3.1-3.4.

Based on (3.23), (3.25) and (3.34), we define a function ΦN (zN ) : R2p+1 → R2p+1 as

ΦN (zN )(h) = LN (t̂) ΛN (zN )(h) + h− ΛN (zN )(h) (3.35)

for each h ∈ R2p+1. This ΦN (zN ) converges to LK in probability under Assumptions 3.1-3.4

and hence asymptotically exact estimator of LK .

Under Assumptions 3.1-3.4, a key result to compute confidence regions is that the weak

convergence in (3.30) still holds after substituting ΦN (zN ) for LK . Consequently, if Σ1
0 is

nonsingular, then we have

√
N

(Σ1
N )−1/2 0

0 Ip

 (ΦN (zN ))(zN − z0)⇒ N (0, Ip+1)× 0. (3.36)

If Σ1
0 is singular, then we can expect Σ1

N to be also singular when N is sufficiently large. Let l

be the number of positive eigenvalues of Σ1
0 counted with regard to their algebraic multiplicities,

and decompose Σ1
N as

Σ1
N = UT

N∆NUN

where UN is an orthogonal (p+1)× (p+1) matrix, and ∆N is a diagonal matrix with monoton-

ically decreasing elements. Let DN be the upper-left submatrix of ∆N whose diagonal elements

are at least 1/g(N), and let lN be the number of rows in DN . Moreover, let (UN )1 be the sub-

matrix of UN that consists of its first lN rows, and let submatrix (UN )2 consist of the remaining

rows of UN . Then we can present the weak convergence results in the following theorem.

Theorem 3.2. Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4(a-b) hold. Then

√
NΦN (zN )(zN − z0)⇒ N (0,Σ0). (3.37)
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If Σ1
0 is nonsingular, then

N
[
(ΦN (zN ))(zN − z0)

]T (Σ1
N )−1 0

0 Ip

 [
(ΦN (zN ))(zN − z0)

]
⇒ χ2

p+1, (3.38)

and

N
[
(ΦN (zN ))(zN − z0)

]T [
0 Ip

] [
(ΦN (zN ))(zN − z0)

]
⇒ 0. (3.39)

If Σ1
0 is singular and Assumption 3.4(c) holds, then Prob{lN = l} → 1 as N →∞,

N
[
(ΦN (zN ))(zN − z0)

]T (UN )T1D
−1
N (UN )1 0

0 0

 [
(ΦN (zN ))(zN − z0)

]
⇒ χ2

l , (3.40)

and

N
[
(ΦN (zN ))(zN − z0)

]T (UN )T2 (UN )2 0

0 Ip

 [
(ΦN (zN ))(zN − z0)

]
⇒ 0. (3.41)

Proof of Theorem 3.2. The conclusions follows from Theorem 2.3.

�

We can treat (3.38) and (3.39) as a special case of (3.40) and (3.41). For Case I, the following

theorem shows that d(fN )S(zN ) is a strongly consistent estimator of LK .

Theorem 3.3. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Moreover, the solution of

(3.15) z0 satisfies the conditions for I. Then dΠS(zN ) defined in (3.33) converges to dΠS(z0)

almost surely, and

d(fN )S(zN ) = LN (t̂) dΠS(zN ) + I − dΠS(zN )

converges to LK almost surely. Therefore, for sufficiently large N , [d(fN )S(zN )]−1 converges

to (LK)−1 almost surely.

Proof of Theorem 3.3. The conclusions follow from Theorem 2.1.

In Case I, we also have Theorem 3.2 hold by substituting d(fN )S(zN ) for ΦN (zN ).
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3.3.3 Confidence intervals for penalized parameters

At the beginning of this subsection, we investigate the relationship between a solution

of normal map formulation (3.15) and the corresponding (locally) optimal solution of problem

(3.1). Let q̃ be as defined in Assumption 3.3 and q̃0 = E[−2(Y −β̃0−
∑p

j=1 β̃jXj)]. f0(β̃0, β̃, t̃) =

(q̃0, q̃, λep). It follows from (3.16) that z0 = (β̃0, β̃, t̃) − (q̃0, q̃, λep). Since −f0(β̃0, β̃, t̃) ∈

NS(β̃0, β̃, t̃), we know that q̃0 = 0 which gives β̃0 = (z0)1. Thus, confidence intervals of β̃0 are

exactly those of (z0)1.

On the other hand, according to the fact (β̃i, t̃i) = ΠSi

(
(z0)i+1, (z0)i+1+p

)
for each i =

1, · · · , p, we have the following relationship between β̃i and
(
(z0)i+1, (z0)i+1+p

)
:

β̃i =


(z0)i+1+(z0)i+1+p

2 , if (z0)i+1 + (z0)i+1+p > 0 and (z0)i+1 − (z0)i+1+p > 0,

0, if (z0)i+1 + (z0)i+1+p 6 0 and (z0)i+1 − (z0)i+1+p > 0,

(z0)i+1−(z0)i+1+p

2 , if (z0)i+1 + (z0)i+1+p 6 0 and (z0)i+1 − (z0)i+1+p < 0.

(3.42)

Let us denote the right hand side of (3.42) as Γ
(
(z0)i+1, (z0)i+1+p

)
. Note that the above three

cases include all the possible situations for the location of
(
(z0)i+1, (z0)i+1+p

)
. This map Γ

can be used to obtain confidence intervals for β̃i (i = 1, · · · , p) as long as we have confidence

intervals for
(
(z0)i+1 + (z0)i+1+p

)
and

(
(z0)i+1 − (z0)i+1+p

)
in hand. For a fixed i, we denote

the confidence intervals for
(
(z0)i+1 + (z0)i+1+p

)
and

(
(z0)i+1 − (z0)i+1+p

)
as [Li

plus, U
i
plus] and

[Li
minus, U

i
minus] respectively. Then the confidence intervals for β̃i is

[
Γ
(
Li
plus, L

i
minus

)
,Γ

(
U i
plus, U

i
minus

)]
. (3.43)

Here we treat the inputs of Γ as
(
(z0)i+1 + (z0)i+1+p

)
and

(
(z0)i+1 − (z0)i+1+p

)
.

Now we focus on how to find confidence intervals for (z0)1,
(
(z0)i+1 + (z0)i+1+p

)
and(

(z0)i+1−(z0)i+1+p

)
. Under Assumptions 3.1-3.4, from Theorem 3.2 we can express the asymp-
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totically exact (1− α)100% confidence region for z0 as


z ∈ R2p+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N [ΦN (zN )(zN − z)]T

(UN )T1D
−1
N (UN )1 0

0 0

 [ΦN (zN )(zN − z)] 6 χ2
lN
(α)

(UN )T2 (UN )2 0

0 Ip

 [ΦN (zN )(zN − z)] = 0


(3.44)

for sufficiently large N , where χ2
lN
(α) is the critical value associated with significant level α of

a χ2 distribution with lN degrees of freedom. If ΦN (zN ) is a linear map, then the set in (3.44)

is an ellipsoid in a subspace of R2p+1. Otherwise it is the union of different ellipsoid fractions.

To obtain simultaneous confidence intervals, we find the maximal and minimal values of (z0)1,(
(z0)i+1 + (z0)i+1+p

)
and

(
(z0)i+1 − (z0)i+1+p

)
in the set of (3.44) by solving optimization

problems.

On the other hand, it can be shown that ΦN (zN ) is a global homeomorphism with probability

1 as N →∞. If ΦN (zN ) is a global homeomorphism, we can use

(ΦN (zN ))−1(N (0,ΣN )) (3.45)

to approximate the distribution of
√
N(zN − z0). When ΦN (zN ) is a linear map, the distribu-

tion in (3.45) is normal. Therefore (z0)1,
(
(z0)i+1 + (z0)i+1+p

)
and

(
(z0)i+1 − (z0)i+1+p

)
also

follow normal distributions, from which we can construct individual confidence intervals. When

ΦN (zN ) is not a linear map, we simulate data based on the distribution in (3.45), and find em-

pirical individual confidence intervals for (z0)1,
(
(z0)i+1 + (z0)i+1+p

)
and

(
(z0)i+1− (z0)i+1+p

)
.

3.4 Confidence intervals for the true parameters in the underlying linear model

In this section, we derive asymptotic results for the true parameters in the underlying linear

model based on the convergence theorems in Section 3.3, and aim to obtain the corresponding

individual confidence intervals.
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Suppose our underlying linear model is

Y = βtrue0 +XTβtrue + ε, (3.46)

where βtrue0 ∈ R and βtrue = (βtrue1 , · · · , βtrue
p ) ∈ Rp are the true parameters. The random error

ε has mean zero and variance σ2ε . Moreover, ε is independent with Xi for each i = 1, · · · , p. In

this section, we assume that E(Xi) = 0 for each i = 1, · · · , p, hence E(Y ) = βtrue0 . Denote the

covariance matrix of X as Σ, i.e., Σ = E(XXT ).

Plugging (3.46) into (3.16), we have

z0 =


β̃0 + 2E(Y − β̃0 −XT β̃)

β̃ + 2E(Y − β̃0 −XT β̃)X + 2mβ̃

t̃− P (t̃)− 2mt̃

 =


2βtrue0 − β̃0

(1 + 2m)β̃ + 2Σ(βtrue − β̃)

(1− 2m)t̃− P (t̃)

 (3.47)

If Σ is invertible, then from (3.47) we obtain

βtrue0 = (z0)1, βtrue =
1

2
Σ−1(z0)2:(p+1) +

[
Ip −

1

2
(1 + 2m)Σ−1

]
β̃, (3.48)

where (z0)2:(p+1) denotes a vector that consists of the second to (p+1)th entries of z0. Expression

(3.48) suggests the following corresponding estimators

β̂true0 = (zN )1, β̂true =
1

2
Θ̂(zN )2:(p+1) +

[
Ip −

1

2
(1 + 2m)Θ̂

]
β̂, (3.49)

where Θ̂ is an estimator of the precision matrix Σ−1. From (3.25) and (3.47) one may notice

that (3.49) is essentially the same estimator as in [56] and [50], when dealing with Lasso penalty

with m = 0. Let G be a map from R2p+1 to Rp+1 defined as

G =
1

2


1 0

0 Σ−1

B +

1 0

0 2I − (1 + 2m)Σ−1

B ◦ΠK

 , (3.50)
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and Ĝ be the following map

Ĝ =
1

2


1 0

0 Θ̂

B +

1 0

0 2I − (1 + 2m)Θ̂

B ◦ dΠS(zN )

 , (3.51)

where B is a (p+1) by (2p+1) matrix defined as B =

[
Ip+1 0

]
. Since ΠS is homogeneous,

we know that ΠS(z0) = dΠS(z0)(z0) and ΠS(zN ) = dΠS(zN )(zN ). Then according to (3.48),

(3.49), (β̃0, β̃, t̃) = ΠS(z0) and (β̂0, β̂, t̂) = ΠS(zN ), we can rewrite (3.48) and (3.49) as

(βtrue0 , βtrue) = G(z0) and (β̂true0 , β̂true) = Ĝ(zN ).

The following theorem shows that (3.49) gives a consistent estimator of the true parameter

(βtrue0 , βtrue), and states an asymptotic distribution from which we can derive the confidence

region for (βtrue0 , βtrue).

Theorem 3.4. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, and the true covariance matrix

Σ is nonsingular. Let Θ̂ be a
√
N -consistent estimator of Σ−1 and m be a positive constant

used in (3.5). Then (β̂true0 , β̂true) is a consistent estimator of (βtrue0 , βtrue) and

√
N

(
(β̂true0 , β̂true)− (βtrue0 , βtrue)

)
⇒ G ◦ (LK)−1(N (0,Σ0)), (3.52)

where G is the map defined in (3.50).

Proof of Theorem 3.4. Follow the proof of Theorem 2.6.

�

There are many choices for Θ̂ in real applications. What people usually used are the inverse

of sample covariance matrix and the estimate of precision matrix computed by banding method

[4] or penalized likelihood method [16]. From literature, it is well known that these estimators

of precision matrix have
√
N -consistency when p is fixed [22].

To use (3.52) to compute confidence intervals, we replaceG and LK there by their estimators.

For Case I, the following theorem gives an approach to compute the asymptotically exact

individual confidence intervals for (βtrue0 , βtrue).
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Theorem 3.5. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, the true covariance matrix Σ

is nonsingular, and the solution to the normal map formulation (3.15) satisfies the conditions

for Case I. Let Θ̂ be a
√
N -consistent estimator of Σ−1, and define H = G(LK)−1 and HN =

Ĝ [d(fN )S(zN )]−1. If (HΣ0H
T )i+1,i+1 ̸= 0, then

√
N(β̂truei − βtruei )√
(HNΣNHT

N )i+1,i+1

⇒ N (0, 1) , (3.53)

for all i = 0, 1, · · · , p.

Proof of Theorem 3.5. Follow from the proof of Theorem 2.7

�

For Case II, to show how to compute the asymptotically exact individual confidence intervals

for (βtrue0 , βtrue), we consider the image of normal random vectors under certain functions. Let

f : R2p+1 → R be a continuous function and Z be a R2p+1 dimensional random variable with

Z ∼ N (0, Ip+1)× 0⃗. Define ar(f) ∈ (0,∞) as

ar(f) = inf {c > 0 | Prob {−c 6 f(Z)− r 6 c} > 1− α} . (3.54)

Suppose that Prob {f(Z) = b} = 0 for all b ∈ R. Then for any given r ∈ R and α ∈ (0, 1), ar(f)

as defined in (3.54) is the smallest value that satisfies

Prob {−ar(f) 6 f(Z)− r 6 ar(f)} = 1− α.

Define two functions R and R̂ from R2p+1 to Rp+1 as

R = G ◦ (LK)−1

(Σ1
0)

1
2 0

0 Ip

 and R̂ = Ĝ′ ◦ (ΦN (zN ))−1

(Σ1
N )

1
2 0

0 Ip

 , (3.55)

where

Ĝ′ =
1

2


1 0

0 Θ̂

B +

1 0

0 2I − (1 + 2m)Θ̂

B ◦ ΛN (zN )

 . (3.56)
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We denote the jth component function of R and R̂ as Rj and R̂j respectively for each j =

1, 2, · · · , p+ 1.

Note that the map G is a piecewise linear function in Case II. From the expression (3.50)

and the matrix representations of the piecewise linear function ΠK based on the location of z0,

one can check that G has the following form with m = 1
2 1 0

0 1
2Σ

−1(I − 2W ) +W
∗

 , (3.57)

in which W is a piecewise linear function represented by p× p diagonal matrices with diagonal

elements 0 or 1
2 . If Σ is nonsingular, then the submatrix 1

2Σ
−1(I − 2W )+W has full row rank.

This can be seen by writing down an equivalent expression 1
2Σ

−1[I− (2−δ)W ]+(I− 1
2δΣ

−1)W

with sufficient small positive constant δ. Furthermore, if Σ and Σ1
0 are both nonsingular, then

the matrix representation of each piece of the map G has full row rank. Because LK is a global

homeomorphism under Assumptions 3.2(a) and 3.3, it follows that Prob {Rj(Z) = b} = 0 for

all b ∈ R. The following theorem gives a way of computing individual confidence intervals for

(βtrue0 , βtrue).

Theorem 3.6. Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4(a-b) hold, m = 1
2 and the

population covariance matrices Σ and Σ1
0 are nonsingular. Let Θ̂ be a

√
N -consistent estimator

of Σ−1, and α ∈ (0, 1), ar(·) be as in (3.54). Then for every r ∈ R and all j = 0, 1, · · · , p, we

have

lim
N→∞

Prob
{
|
√
N(β̂truej − βtruej )− r| 6 ar(R̂j+1)

}
= 1− α, (3.58)

where R and R̂ are defined in (3.55).

We introduce two lemmas that will be used in the proof of Theorem 3.6.

Lemma 3.4. Let C(R2p+1,R) denote the space of continuous functions from R2p+1 to R,

{uN}∞N=1 be a sequence of C(R2p+1,R) valued random variables which converges to u in prob-

ability uniformly on compact sets, and {ZN}∞N=1 be a sequence of real valued random variables
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that converges to u(Z) in distribution. If m = 1
2 , then for every r ∈ R,

lim
N→∞

Prob {−ar(uN ) 6 ZN − r 6 ar(uN )} = 1− α.

Proof of Lemma 3.4. Follow the proof of Lemma 2.8

�

Lemma 3.5. Suppose that Assumptions 3.1, 3.2, 3.3 and 3.4(a-b) hold, and the population

covariance matrices Σ and Σ1
0 are nonsingular. Let Θ̂ be a consistent estimator of Σ−1. Then

R̂ converges to R in probability.

Proof of Lemma 3.5. Follow the proof of Lemma 2.9

�

Proof of Theorem 3.6. By Lemma 3.5, R̂j converges to Rj in C(R2p+1,R) in probability

uniformly on compact sets. Let

ZN =
√
N

(
(β̂true0 , β̂true)− (βtrue0 , βtrue)

)
j

for j = 1, · · · , p+1. From (3.52), ZN converges to Rj(Z) in distribution. Then the conclusions

follow from Lemma 3.4 with uN = R̂j and u = Rj .

�

In practice, for a fixed choice of r we can find the empirical individual confidence intervals

for (βtrue0 , βtrue) by simulating data from R̂(Z).

3.5 Numerical examples

In this section, we use MCP penalized regression defined in (3.4) to illustrate the perfor-

mance of our method proposed in Section 3. We implement it using Matlab and GAMS, and

choose 1
g(N) =

0.001
N1/3 , m = 1

2 in (3.5), for all examples in this section. We use the MIQCP (Mixed

Integer Quadratically Constrained Program) solver in GAMS to solve optimization problems

such as (3.2).
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In the first two examples, we generate the data using the following model:

Y = β̄TX + σϵ (3.59)

where β̄ ∈ Rp, X is a p-dimensional normal random variable with mean 0 and covariance

Σ̄ij = ρ|i−j| for ρ = 0.5, ϵ is a standard normal random error which is independent of X. We set

the noise level σ = 1. The random design regularized regression problem under model (3.59) is

min
β0,β

(β̄ − β)T Σ̄(β̄ − β) + β20 + λ

p∑
i=1

|βi|. (3.60)

In simulation we compute the empirical coverage probability, i.e. the fraction of total replica-

tions in which the confidence intervals contain the corresponding population penalized param-

eters or true parameters in the linear model.

3.5.1 Example 3.5.1: Low dimensional simulation

We choose p = 8, β̄ = (3, 1.5, 0, 0, 2, 0, 0, 0) and generate a (y,X) dataset with 100 replica-

tions of sample size N = 300. We consider six MCP penalties, which have parameters (λ, a) as

the following values: λ = 0.5, 1 and 2, a = 2 and 2000. In each replication, by solving SAA

problem for every MCP penalty, we compute two types of individual confidence intervals. The

first type confidence intervals are for the solution to the problem (3.60), while the second type

confidence intervals are for the true parameters β̄, both with confidence level 0.95 (α = 0.05).

Figure 3.1 shows the 95% individual confidence intervals computed from the first replication

for each MCP penalty, which are also listed in Table 3.1. In Figure 3.1, red and green intervals

represent the first and second type of confidence intervals respectively, which are given in the

“Ind CI1” and “Ind CI2” columns of Table 3.1. The solution to the problem (3.60) is showed as

blue dots on the left of red intervals and β̄ is showed as blue dots on the left of green intervals

in Figure 3.1. The estimators (β̂0, β̂) and (β̂true0 , β̂true) are listed in the “Est1” and “Est2”

columns respectively in Table 3.1. From Figure 3.1 and Table 3.1, we observe comparatively

short first type confidence intervals as well as singleton {0} when the estimate β̂i = 0. In

addition, the first type confidence intervals are not always symmetric around the estimates,
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Figure 3.1: 95% individual CIs of (β̃0, β̃) and (β̃true
0 , β̃true) in Example 3.5.1.

except confidence intervals for β̃0. These two phenomena are due to the contraction effect of

projection Γ (3.42) on confidence intervals of z0.
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λ = 0.5 a = 2 a = 2000
Est1 Ind CI1 Est2 Ind CI2 Est1 Ind CI1 Est2 Ind CI2

β0 -0.21 [-0.53, 0.11] -0.21 [-0.53, 0.11] -0.19 [-0.51, 0.13] -0.19 [-0.51, 0.13]
β1 2.91 [2.53, 3.29] 2.90 [2.52, 3.28] 2.73 [2.35, 3.11] 2.91 [2.53, 3.29]
β2 1.55 [1.21, 1.89] 1.52 [1.17, 1.87] 1.45 [1.11, 1.79] 1.53 [1.18, 1.89]
β3 -0.00 [0, 0.06] 0.30 [-0.06, 0.66] 0 [0, 0.23] 0.34 [-0.02, 0.70]
β4 -0.00 [-0.21, 0] -0.47 [-0.86, -0.08] 0 [-0.09, 0] -0.45 [-0.84, -0.05]
β5 1.83 [1.49, 2.18] 1.91 [1.55, 2.28] 1.63 [1.29, 1.97] 1.93 [1.57, 2.29]
β6 0.00 [-0.01, 0] -0.13 [-0.48, 0.21] 0 [0, 0.08] -0.13 [-0.48, 0.21]
β7 0.04 [0, 0.41] 0.27 [-0.07, 0.62] 0.08 [0, 0.37] 0.27 [-0.08, 0.61]
β8 0.00 [0, 0.25] 0.10 [-0.28, 0.49] 0.00 [0, 0.27] 0.13 [-0.24, 0.50]

λ = 1 a = 2 a = 2000
Est1 Ind CI1 Est2 Ind CI2 Est1 Ind CI1 Est2 Ind CI2

β0 0.06 [-0.06, 0.17] 0.06 [-0.06, 0.17] 0.07 [-0.07, 0.22] 0.07 [-0.07, 0.22]
β1 3.25 [3.10, 3.40] 3.13 [3.00, 3.26] 2.71 [2.54, 2.89] 3.11 [2.93, 3.28]
β2 1.18 [0.97, 1.39] 1.46 [1.29, 1.62] 1.25 [1.08, 1.42] 1.51 [1.32, 1.70]
β3 0 [0, 0] -0.07 [-0.20, 0.06] 0 [0, 0] -0.05 [-0.22, 0.12]
β4 0 [0, 0.] 0.05 [-0.09, 0.20] 0 [0, 0] 0.06 [-0.11, 0.24]
β5 2.09 [1.95, 2.22] 2.03 [1.88, 2.18] 1.54 [1.39, 1.70] 2.00 [1.82, 2.18]
β6 0 [0, 0] 0.03 [-0.11, 0.17] 0 [0, 0] 0.05 [-0.13, 0.24]
β7 0 [0, 0] 0.04 [-0.12, 0.20] 0 [0, 0] 0.01 [-0.17, 0.20]
β8 0 [0, 0] -0.04 [-0.19, 0.12] 0 [0, 0] 0 [-0.18, 0.18]

λ = 2 a = 2 a = 2000
Est1 Ind CI1 Est2 Ind CI2 Est1 Ind CI1 Est2 Ind CI2

β0 0.04 [-0.12, 0.19] 0.04 [-0.12, 0.19] 0.08 [-0.12, 0.28] 0.08 [-0.12, 0.28]
β1 3.33 [2.99, 3.66] 3.14 [2.95, 3.33] 2.31 [2.05, 2.57] 3.10 [2.84, 3.36]
β2 0.63 [0.25, 1.01] 1.48 [1.23, 1.73] 1.06 [0.81, 1.31] 1.55 [1.28, 1.82]
β3 0 [0, 0] -0.02 [-0.22, 0.17] 0 [0, 0] -0.02 [-0.28, 0.23]
β4 0 [0, 0] 0.12 [-0.07, 0.31] 0 [0, 0] 0.08 [-0.17, 0.32]
β5 1.58 [1.34, 1.82] 2.05 [1.86, 2.25] 1.05 [0.83, 1.28] 1.99 [1.73, 2.25]
β6 0 [0, 0] 0.07 [-0.12, 0.27] 0 [0, 0] 0.07 [-0.20, 0.35]
β7 0 [0, 0] 0 [-0.21, 0.20] 0 [0, 0] -0.01 [-0.27, 0.25]
β8 0 [0, 0] 0 [-0.20, 0.21] 0 [0, 0] 0.03 [-0.22, 0.27]

Table 3.1: Estimates and 95% CIs for (β̃0, β̃) and (β̃true
0 , β̃true) in Example 3.5.1.

Table 3.2 and Table 3.3 show the empirical coverage probabilities (CP) and average interval

lengths (ALen) for 95% individual confidence intervals among the 100 replications. In Table

3.2, the “β̃” column contains the solution to the problem (3.60) for different MCP penalties,

which we expect to be covered by the first type confidence intervals. In Table 3.3, the “True”

column contains the true model parameters β̄, which we expect to be covered by the second

type confidence intervals. Note that the coverage is 100% for the first type confidence interval

when β̃i = 0, i = 1, · · · , 8. This is because the contraction effect of projection Γ (3.42) makes

the confidence intervals more conservative from z0 to β̃.

3.5.2 Example 3.5.2: High dimensional simulation

In this example, we consider a case that the dimension is much larger than the sample size.

We choose p = 300 and set β̄ as the following 300-dimensional vector: β̄1 = 3, β̄2 = β̄100 =
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a = 2 λ = 0.5 λ = 1 λ = 2

β̃ CP ALen β̃ CP ALen β̃ CP ALen
β0 0 96 0.68 0 99 0.23 0 98 0.34
β1 3 96 0.79 3.13 98 0.31 3.37 90 0.75
β2 1.5 94 0.82 1.25 93 0.42 0.51 89 0.70
β3 0 100 0.17 0 100 0 0 100 0
β4 0 100 0.20 0 100 0 0 100 0
β5 2 94 0.73 2.02 93 0.26 1.47 97 0.50
β6 0 100 0.22 0 100 0 0 100 0
β7 0 99 0.22 0 100 0 0 100 0
β8 0 100 0.26 0 100 0 0 100 0

a = 2000 λ = 0.5 λ = 1 λ = 2

β̃ CP ALen β̃ CP ALen β̃ CP ALen
β0 0 96 0.68 0 97 0.28 0 98 0.40
β1 2.83 97 0.79 2.67 98 0.33 2.33 98 0.49
β2 1.36 93 0.82 1.22 93 0.33 0.94 92 0.48
β3 0 99 0.25 0 100 0.01 0 100 0
β4 0 100 0.26 0 100 0 0 100 0
β5 1.78 93 0.74 1.56 95 0.30 1.11 93 0.45
β6 0 100 0.24 0 100 0 0 100 0
β7 0 100 0.20 0 100 0 0 100 0
β8 0 100 0.23 0 100 0 0 100 0

Table 3.2: Coverage and length of 95% individual CIs for (β̃0, β̃) in Example 3.5.1.

a = 2 a = 2000
λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2

True CP ALen CP ALen CP ALen CP ALen CP ALen CP ALen
βtrue
0 0 96 0.68 99 0.23 98 0.34 96 0.68 97 0.28 98 0.40

βtrue
1 3 96 0.78 95 0.27 98 0.42 96 0.79 98 0.33 99 0.49

βtrue
2 1.5 91 0.86 96 0.30 100 0.51 93 0.87 96 0.36 98 0.52

βtrue
3 0 96 0.84 91 0.28 95 0.42 95 0.85 94 0.34 98 0.50

βtrue
4 0 91 0.84 97 0.28 99 0.42 90 0.85 99 0.34 100 0.50

βtrue
5 2 94 0.84 94 0.29 100 0.44 94 0.85 98 0.36 100 0.54

βtrue
6 0 93 0.84 97 0.28 99 0.41 91 0.84 96 0.34 100 0.49

βtrue
7 0 96 0.83 94 0.28 98 0.41 96 0.84 99 0.34 100 0.49

βtrue
8 0 93 0.76 97 0.26 100 0.39 92 0.76 100 0.32 100 0.46

Table 3.3: Coverage and length of 95% individual CIs for (β̃true
0 , β̃true) in Example 3.5.1.

β̄200 = β̄300 = 1.5, β̄5 = β̄95 = 2, β̄10 = 1, β̄25 = 0.5, and all the other components are 0.

We generate a (y,X) dataset with 100 replications of sample size N = 100. We consider six

MCP penalties with parameters λ = 0.5, 1 or 2, and a = 2 or 2000. In each replication, we

compute two types of individual confidence intervals both with confidence level 0.95 as before.

One is for the population penalized parameters, i.e. the solution to the problem (3.60); and the

other is for the true parameters (βtrue0 , βtrue) in the underlying linear model (3.46). Define the

active set as A = {j : β̄j ̸= 0} = {1, 2, 5, 10, 25, 95, 100, 200, 300} and Ac = {0, 1, 2, · · · , p}\A.

For each type of confidence intervals, we report the average coverage, median coverage, average

length and median length of the individual confidence intervals corresponding to coefficients in
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a = λ = 0.5 λ = 1 λ = 2
2 Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen
A 79.78 89.00 0.43 0.41 93.00 93.00 0.67 0.72 85.67 90.00 1.14 1.20
Ac 100.00 100.00 0.02 0.02 100.00 100.00 0.00 0.00 100.00 100.00 0.01 0.00
a = λ = 0.5 λ = 1 λ = 2
2000 Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen
A 88.11 88.00 0.52 0.53 92.11 92.00 0.71 0.75 92.11 92.00 0.94 0.99
Ac 99.97 100.00 0.05 0.05 100.00 100.00 0.03 0.03 100.00 100.00 0.02 0.02

Table 3.4: Coverage and length of 95% individual CIs for (β̃0, β̃) in Example 3.5.2.

a = λ = 0.5 λ = 1 λ = 2
2 Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen
A 89.78 90.00 0.44 0.44 93.22 93.00 0.60 0.57 92.33 94.00 1.23 1.19
Ac 93.53 94.00 0.38 0.38 93.90 94.00 0.50 0.50 94.04 94.00 1.05 1.05
a = λ = 0.5 λ = 1 λ = 2
2000 Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen Avgcov Medcov Avglen Medlen
A 90.00 90.00 0.56 0.56 93.89 94.00 0.81 0.82 94.33 94.00 1.33 1.33
Ac 92.43 93.00 0.45 0.45 93.27 94.00 0.70 0.70 93.64 94.00 1.19 1.19

Table 3.5: Coverage and length of 95% individual CIs for (β̃true
0 , β̃true) in Example 3.5.2.

either A or Ac:

Avgcov A = |A|−1
∑
j∈A

CPj , Avgcov Ac = |Ac|−1
∑
j∈Ac

CPj ,

Avglen A = |A|−1
∑
j∈A

ALenj , Avglen Ac = |Ac|−1
∑
j∈Ac

ALenj ,

Medcov A = median
j∈A

{CPj}, Medcov Ac = median
j∈Ac

{CPj},

Medlen A = median
j∈A

{ALenj}, Medlen Ac = median
j∈Ac

{ALenj},

where CPj and ALenj respectively represent the empirical coverage probability and average

interval length of the confidence intervals for βj among the 100 replications. Results are listed

in Table 3.4 and 3.5

3.5.3 Example 3.5.3: Prostate cancer data

In this example, we consider the prostate cancer dataset [49] and compute confidence inter-

vals of confidence level 0.95 for six MCP penalties with parameters (λ, a) as λ = 0.14, 0.45 and

1.49, a = 2 and 2000. We standardized the data and split observations into two parts. One

part consists of 67 observations, which is the training set used in [20]. We only use these 67
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λ = 0.14 a = 2 a = 2000
Est1 Ind CI1 Est2 Ind CI2 Est1 Ind CI1 Est2 Ind CI2

β0 2.47 [2.30, 2.64] 2.47 [2.30, 2.64] 2.46 [2.30, 2.63] 2.46 [2.30, 2.63]
β1 0.60 [0.33, 0.87] 0.65 [0.42, 0.89] 0.55 [0.34, 0.76] 0.66 [0.43, 0.89]
β2 0.25 [0, 0.59] 0.26 [0.05, 0.47] 0.22 [0.04, 0.41] 0.26 [0.08, 0.45]
β3 -0.02 [-0.29, 0] -0.12 [-0.30, 0.06] 0 [-0.13, 0.02] -0.11 [-0.28, 0.06]
β4 0.17 [0, 0.59] 0.21 [-0.03, 0.46] 0.13 [0, 0.34] 0.21 [0, 0.43]
β5 0.23 [0, 0.72] 0.30 [0.02, 0.59] 0.19 [0, 0.42] 0.31 [0.06, 0.55]
β6 0 [-0.08, 0] -0.22 [-0.42, -0.03] 0 [-0.03, 0] -0.21 [-0.41, -0.01]
β7 0 [-0.01, 0.05] -0.01 [-0.23, 0.21] 0 [0, 0.06] -0.01 [-0.23, 0.20]
β8 0.06 [0, 0.35] 0.22 [0.01, 0.44] 0.08 [0, 0.26] 0.23 [0.02, 0.43]

λ = 0.45 a = 2 a = 2000
Est1 Ind CI1 Est2 Ind CI2 Est1 Ind CI1 Est2 Ind CI2

β0 2.48 [2.29, 2.66] 2.48 [2.29, 2.66] 2.47 [2.28, 2.65] 2.47 [2.28, 2.65]
β1 0.76 [0.50, 1.01] 0.70 [0.47, 0.94] 0.53 [0.30, 0.77] 0.70 [0.44, 0.95]
β2 0.16 [0, 0.38] 0.27 [0.08, 0.46] 0.18 [0.02, 0.33] 0.28 [0.10, 0.46]
β3 0 [0, 0] -0.11 [-0.29, 0.07] 0 [0, 0] -0.09 [-0.29, 0.11]
β4 0 [0, 0.13] 0.20 [-0.01, 0.41] 0 [0, 0.15] 0.21 [-0.01, 0.42]
β5 0 [0, 0.10] 0.29 [0.03, 0.55] 0.08 [0, 0.32] 0.31 [0.04, 0.58]
β6 0 [0, 0] -0.24 [-0.48, 0.01] 0 [0, 0] -0.20 [-0.44, 0.04]
β7 0 [0, 0] -0.05 [-0.30, 0.20] 0 [0, 0.05] -0.01 [-0.24, 0.22]
β8 0 [0, 0.09] 0.25 [-0.01, 0.51] 0 [0, 0.14] 0.24 [0, 0.48]

λ = 1.49 a = 2 a = 2000
Est1 Ind CI1 Est2 Ind CI2 Est1 Ind CI1 Est2 Ind CI2

β0 2.46 [2.21, 2.71] 2.46 [2.21, 2.71] 2.46 [2.20, 2.72] 2.46 [2.20, 2.72]
β1 0.21 [0, 0.56] 0.73 [0.36, 1.10] 0.16 [0, 0.45] 0.73 [0.35, 1.11]
β2 0 [0, 0.04] 0.31 [0.08, 0.54] 0 [0, 0.07] 0.31 [0.08, 0.55]
β3 0 [0, 0] -0.05 [-0.37, 0.27] 0 [0, 0] -0.04 [-0.38, 0.29]
β4 0 [0, 0] 0.22 [-0.05, 0.49] 0 [0, 0] 0.22 [-0.06, 0.50]
β5 0 [0, 0.02] 0.37 [0.04, 0.70] 0 [0, 0.05] 0.37 [0.04, 0.71]
β6 0 [0, 0] -0.15 [-0.47, 0.17] 0 [0, 0] -0.13 [-0.45, 0.19]
β7 0 [0, 0] 0.01 [-0.29, 0.30] 0 [0, 0] 0.02 [-0.28, 0.31]
β8 0 [0, 0] 0.26 [-0.08, 0.60] 0 [0, 0] 0.27 [-0.08, 0.61]

Table 3.6: Estimates and 95% CIs of (β̃0, β̃) and (β̃true
0 , β̃true) in Example 3.5.3.

observations to compute parameter estimates and two types of individual confidence intervals,

which are listed in Table 3.6. As we know about the MCP penalty, parameter a controls the

degree of non-convexity and λ controls the level of penalization. As λ increasing, more and more

parameter estimates and confidence intervals should shrink to 0 and singleton {0} respectively.

This is consistent with what we have observed in Table 3.1.

3.6 Summary

In this chapter we propose a unified method to construct confidence intervals of the popula-

tion penalized parameters and the true model parameters, for a wide range of penalties which

satisfy the three properties suggested by [15]. By transforming the problems (3.1) and (3.2) to

their equivalent problems (3.5) and (3.21) respectively, we exclude the non-smoothness in the

objectives. Therefore, we can obtain their normal map formulations and use the asymptotic
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results to derive confidence intervals. By correcting the bias introduced by the penalty term, we

obtain asymptotic distribution of the true model estimator (β̂true0 , β̂true) from the asymptotic

result of the normal map solution zN . The validity and effectiveness of the proposed method

are proved by our theoretical and numerical results.

In practice, we solve for a SAA solution (β̂0, β̂) and use (3.25) to obtain a solution to (3.24).

Even if we can only find a locally optimal solution of the SAA problem (3.2) when the objective

is non-convex, our method is still meaningful as long as the sample size N is large enough. The

confidence intervals we computed are then for a locally optimal solution of the random design

regularized regression problem (3.1). It is still challenging nowadays to find the globally optimal

solution of a general non-convex optimization problem. In the literature, most of algorithms

used to solve the SAA problem with non-convex penalties are approximation algorithms, such

as MC+ algorithm [55]. Their goal is to efficiently find an approximate solution that is close

to the global optimum. The problem is that (3.25) usually does not hold at these approximate

solutions due to sensitivity problem of fN . This refers us to MIQCP solver in GAMS. Study for

a more efficient procedure computing a SAA solution with (3.25) satisfied could be a valuable

future work, since MIQCP is not suitable in high dimensional cases.
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CHAPTER 4: DISCUSSION

In this chapter, we will discuss two future research directions. The first direction in Section

4.1 is to conduct hypothesis testing for the population penalized parameters and the true model

parameters. The second direction in Section 4.2 is to do inference for population constrained

linear regression using variational inequality techniques.

4.1 Hypothesis testing for sparse penalized regression

In this dissertation, we obtained confidence intervals both for the population penalized pa-

rameters and the true model parameters. A nature question is that can we also do hypothesis

tests for the population penalized parameters and for the true model parameters using same

techniques, or even find p-value for those tests? Suppose we are interested in testing an individ-

ual null hypothesis H0,i : β
true
i = 0 versus the alternative HA,i : β

true
i ̸= 0. From (3.5), we are

ready to conduct this individual test and find the corresponding p-values when the asymptotic

distribution is normal in Case I. In Case II, since the asymptotic distribution is not normal,

how to do the hypothesis testing needs further investigation. Similarly, it is not trivial to study

the hypothesis tests for the population penalized parameters, since its asymptotic distribution

in (3.29) is not normal too.

4.2 Inference for population constrained linear regression

In linear regression problems, linear constraints are often added to the minimization problem

for minimizing the mean squared error. For example, applications in finance and hyperspectral

imaging often require the model parameter β ∈ Rp to be non-negative, i.e., β > 0. This example

fits into the more general framework where the parameter β is subject to a set of inequality



linear constrains which can be written as

Cβ 6 b,

where C ∈ Rq×p and b ∈ Rq are constants. Therefore, we consider the following population

version of the constrained linear regression by solving

min
β0,β

E[Y − β0 −
∑p

j=1 βjXj ]
2, (4.1)

s.t. Cβ 6 b.

Denote the feasible set of (4.1) as S, and define a function F : R× Rp × Rp × R→ Rp+1 by

F (β0, β,X, Y ) =



−2(Y − β0 −
∑p

j=1 βjXj)

−2(Y − β0 −
∑p

j=1 βjXj)X1

...

−2(Y − β0 −
∑p

j=1 βjXj)Xp


. (4.2)

Clearly, F is a continuously differentiable function, and its derivative with respect to (β0, β) at

(β0, β,X, Y ) is given by

d1F (β0, β, t,X, Y ) =

 2 2XT

2X 2XXT

 , (4.3)

Next, define a function f0 : R× Rp → Rp+1 by

f0(β0, β) = E[F (β0, β,X, Y )]. (4.4)

Then we can rewrite (4.1) as the following variational inequality:

−f0(β0, β) ∈ NS(β0, β). (4.5)

Let (f0)S be the normal map induced by f0 and S. The population version of normal map
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formulation for (4.5) is

(f0)S(z) = 0, (4.6)

where z is a variable of dimension p+ 1.

We can do similar transformation for the sample version of problem (4.1). Our goal is to

obtain the asymptotic distribution, such as (3.28), for the solution to the sample version of

normal map formulation for (4.5). Based on that we will further construct confidence intervals

for the solution to (4.1) via substituting unknown quantities in the obtained asymptotic distri-

bution by their reliable estimates. The difficulty of this problem is that it is hard to compute

dΠS(·) and its estimate due to the general form of the feasible set S.

116



REFERENCES

[1] R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, K. Zhang, and L. Zhao. What you
can learn from wrong causal models. handbook of causal analysis for social research. s.
morgan, ed. pages 403–424, 2013b.

[2] R. Berk, L. B. Brown, and L. Zhao. Statistical inference after model selection. Journal of
Quantitative Criminology, 26:217–236, 2010.

[3] R. Berk, L. D. Brown, A. Buja, K. Zhang, and L. Zhao. Valid post-selection inference.
Annals of Statistics, 41:802–837, 2013.

[4] P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices. The Annals
of Statistics, 36:199–227, 2008.

[5] H.D. Bondell and B.J. Reich. Simultaneous regression shrinkage, variable selection, and
supervised clustering of predictors with oscar. Biometrics, 64(1):115–123, 2007.

[6] L. Breiman. The little bootstrap and other methods for dimensionality selection in regres-
sion: X-fixed prediction error. Journal of the American Statistical Association, 87:738–754,
1992.

[7] P. Buhlmann. Statistical significance in high-dimensional linear models. Bernoulli, 2012.

[8] P. Buhlmann and S. van de Geer. Statistics for high-dimensional data: Methods, theory
and applications. 2011. Springer.

[9] E. J. Candes and T. Tao. The dantzig selector: statistical estimation when p is much
larger than n. Annals of Statistics, 35:2313–2351, 2007.

[10] S. Chatterjee and P. Lahiri. Bootstrapping lasso estimators. Journal of the American
Statistical Association, 106:608–625, 2011.

[11] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometri-
ka, 81:425–455, 1994.

[12] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings: A View
from Variational Analysis. Springer Monographs in Mathematics. Springer, 2009.

[13] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of
Statistics (with discussion), 32:407–499, 2004.

[14] F Facchinei and J. S. Pang. Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems. Springer Series in Operations Research. Springer, New York, 2003.

[15] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96:1348–1360, 2001.

[16] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9:432–441, 2008.

[17] J. Friedman, T. Hastie, and R. Tibshirani. Regularized paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33:1–22, 2010.

117



[18] Wenjiang J. Fu. Penalized regression: The bridge versus the lasso. Journal of Computa-
tional and Graphical Statistics, 7:397–416, 1998.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag: New York, 2001.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, New York, 2001.

[21] A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-
dimensional regression. Journal of Machine Learning Research, 2014. To appear.

[22] C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix
estimation. The Annals of Statistics, 37:4254–4278, 2009.

[23] M. Lamm, S. Lu, and A. Budhiraja. Individual confidence intervals for true solutions to
stochastic variational inequalities. Submitted, 2014.

[24] J. Lee, D. Sun, Y. Sun, and J. E. Taylor. Exact post-selection inference with the lasso.
2014. Published online before print at http://arxiv.org/abs/1311.6238.

[25] H. Leeb and B. M. Pötscher. Model selection and inference: Facts and fiction. Econometric
Theory, 21:21–59, 2005.

[26] H. Leeb and B. M. Pötscher. Can one estimate the conditional distribution of post-model-
selection estimators? Annals of Statistics, 34:2554–2591, 2006b.

[27] H. Leeb and B. M. Pötscher. Can one estimate the unconditional distribution of post-
model-selection estimators? Econometric Theory, 24:338–376, 2008b.

[28] Y. Lin and H. H. Zhang. Component selection and smoothing in smoothing spline analysis
of variance models. The Annals of Statistics, 34:2272–2297, 2006.

[29] Y. Liu and Y. Wu. Variable selection via a combination of the l0 and l1 penalties. Journal
of Computional and Graphical Statistics, 16:782–798, 2007.

[30] R. Lockhart, J. Taylor, R. Tibshirani, and R. Tibshirani. A significance test for the lasso.
Annals of Statistics, 42:413–468, 2014.

[31] Shu Lu. A new method to build confidence regions for solutions of stochastic variational
inequalities. Optimization, 63(9):1431–1443, 2014.

[32] Shu Lu and Amarjit Budhiraja. Confidence regions for stochastic variational ienqualities.
Mathematics of Operations Research, 38(3):545–568, 2013.

[33] J. Lv and Y. Fan. A unified approach to model selection and sparse recovery using regu-
larized least squares. The Annals of Statistics, 37:3498–3528, 2009.

[34] O. L. Mangasarian and S. Fromovitz. The fritz john necessary optimality conditions in
the presence of equality and inequality constraints. Journal of Mathematical Analysis and
Applications, 17:37–47, 1967.

118
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