
 
 

 
 
 
 
 

A SYSTEMS BIOLOGY-BASED APPROACH TO INVESTIGATE 
FORMALDEHYDE’S EFFECTS ON MICRORNA EXPRESSION PROFILES 

 
 
 
 

 
Julia Elizabeth Rager 

 
 
 
 

 
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 
of Environmental Sciences and Engineering of the Gillings School of Global Public Health 
 
 
 
 

 
Chapel Hill 

2013 
 
 
 

 
 

Approved by:    
 

Dr. Rebecca C. Fry   
 

Dr. David Diaz-Sanchez  
 

Dr. Ilona Jaspers   
 

Dr. Kenneth G. Sexton  
 

Dr. James A Swenberg  
 



ii 
 

 
 
 
 
 

ABSTRACT 
 

JULIA RAGER: A Systems Biology-Based Approach to Investigate Formaldehyde’s Effects on 
MicroRNA Expression Profiles 

(Under the Direction of Dr. Rebecca C. Fry) 
 

Formaldehyde is a common indoor and outdoor air pollutant that adversely impacts 

global public health. Many toxicological studies have shown that formaldehyde causes 

nasopharyngeal cancer, possibly through tissue damage, increased cell proliferation, and/or DNA 

damage. However, there is lack of knowledge regarding formaldehyde’s effects at the systems 

biology level and whether epigenetic mechanisms may contribute to cellular responses. 

Furthermore, whether formaldehyde is capable of altering genomic and epigenomic processes 

throughout sites distal to the respiratory tract is unknown. This topic is of high interest, as the 

link between formaldehyde inhalation exposure and leukemia development is currently under 

heated debate. Epidemiological studies have shown evidence supporting a link between 

formaldehyde exposure and leukemia development, while toxicological investigations have yet 

to provide evidence supporting formaldehyde’s ability to influence sites distant to the respiratory 

tract. Before this dispute is resolved, further evaluation of the biological mechanisms linking 

formaldehyde to disease is clearly necessary. In particular, formaldehyde-induced changes to 

epigenetic contributors to transcriptional programs are extremely understudied, where 

microRNA (miRNA) expression profiles have yet to be investigated in relation to formaldehyde. 

 

We set out to test the novel hypothesis that miRNAs have altered expression profiles 

within the respiratory and hematopoietic systems upon exposure to formaldehyde. Our studies 

were the first to show that formaldehyde significantly disrupts miRNA expression patterns in 

vitro, within cultured human lung cells, and in vivo, within the nasal epithelium of nonhuman 

primates. Using a rodent model, the impact of formaldehyde exposure on miRNA-related 

processes in direct contact and distant tissues, including the nasal mucosa, circulating white 

blood cells, and bone marrow, was evaluated. Formaldehyde was found to significantly alter 
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miRNA expression profiles within the nose and blood, but not the bone marrow. Evaluating the 

epigenetic effects of formaldehyde exposure at the systems biology level, putative miRNA-

mediated responses were mapped onto interacting networks. Signaling related to inflammation, 

cell death, and cancer was identified as enriched. Taken together, our research increases the 

knowledge of under-studied mechanisms linking formaldehyde exposure to disease, acting as an 

important foundation for future research in public health and toxicology.  
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INTRODUCTION 

 
Understanding the biological impacts upon exposure to formaldehyde via inhalation 

exposure is crucial, as formaldehyde in a ubiquitous air pollutant present throughout the 

environment. The combined studies in this work take several approaches to investigate novel 

mediators of response to formaldehyde exposure. The ultimate goal for this investigation is to 

increase the current knowledge of mechanisms and biological pathways underlying 

formaldehyde-induced effects, acting as an important foundation for future research in public 

health and toxicology. 

 

Formaldehyde Exposure Sources 

Formaldehyde is a common air toxic that is present in both indoor and outdoor 

atmospheres. In outdoor environments, formaldehyde is present due to direct emissions from 

anthropogenic and biogenic sources, and is also formed as a secondary chemical product through 

hydrocarbon atmospheric chemistry (WHO 2001). Anthropogenic sources of formaldehyde 

include automobile exhaust, power plants, manufacturing facilities, and incinerators (NTP 2011; 

WHO 2001). Ambient air is estimated to contain formaldehyde at levels between 0.0008 and 

0.02 ppm (WHO 2001). High formaldehyde exposures can occur within indoor environments, 

where formaldehyde is released from household products (e.g. cleaning agents, carpet, furniture) 

and cigarette smoke (NTP 2011). The highest formaldehyde levels are found in certain 

occupational environments. For example, high chronic exposures of 2-5 ppm formaldehyde have 

been measured in garment and textile industries, during the varnishing of furniture and wooden 

floors, and in some manufacturing jobs related to board mills and foundries (Duhayon et al. 

2008). Acute exposures to high levels of formaldehyde (≥ 3 ppm) have been reported for 

pathologists, embalmers, and paper workers (Duhayon et al. 2008). A range of lower 

formaldehyde levels have also been measured in industries related to the production of resins, 

plastics, fibers, abrasives, and rubber (Duhayon et al. 2008).  
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It is also important to note that formaldehyde is produced endogenously in all cells, as it 

is an intermediate of serine, glycine, methionine, and choline metabolism (IARC 2006). It is also 

an essential intermediate formed during the biosynthesis of purines, thymidine, and certain 

amino acids (IARC 2006).  Because of the constant presence of both endogenous and 

environmental formaldehyde exposure, understanding the exposure response and biological basis 

of formaldehyde-induced health effects is of utmost importance. 

 

Mechanisms Underlying Formaldehyde-Induced Cancer of the Upper Respiratory Tract 

The exact mechanisms linking formaldehyde exposure to cancer remain unknown. 

Formaldehyde is currently classified as a known human carcinogen (IARC 2006), although the 

entire mechanism by which formaldehyde induces cancer is not fully understood (Liteplo et al. 

2003; NTP 2011). The genotoxic effects of formaldehyde exposure on direct target cells within 

the respiratory tract have been studied extensively. Specifically, formaldehyde has been shown to 

cause a variety of types of genetic damage in vitro and in vivo.  These types of damage include 

DNA-protein crosslinks, which have been detected in vitro (Merk et al. 1998), in the nasal 

mucosa of rats (Casanova et al. 1989; Casanova et al. 1994),  and in the nasal turbinates, 

nasopharynx, larynx, trachea, carina, and proximal bronchi of nonhuman primates (Casanova et 

al. 1991) exposed to formaldehyde. DNA double strand breaks have also been shown to result 

from formaldehyde exposure in vitro (Noda et al. 2011). Formaldehyde also causes a multitude 

of DNA adducts to form in vitro, including N2-hydroxymethyl-deoxyguanosine, N6-

hydroxymethyl-deoxyadenosine, and N4-hydroxymethyl-deoxycytosine (Swenberg et al. 2011). 

N2-hydroxymethyl-deoxyguanosine adducts have also been found to be induced exogenously in 

the nasal mucosa of rats (Lu et al. 2011) and nonhuman primates (Moeller et al. 2011) exposed 

to formaldehyde. 

Formaldehyde-induced genetic damage can lead to cell death. For example, in vitro 

studies show that the amount of formaldehyde-induced DNA-protein crosslinks inversely relates 

to cell survival (Merk et al. 1998; Ross et al. 1980). Furthermore, a pharmacodynamic model has 

been created to describe the relationship between formaldehyde exposure, DNA-protein 

crosslink formation, and DNA replication arrest using in vivo measurements (Heck et al. 1999). 

During DNA replication arrest, lesions can be repaired. However, if the damage is not repaired 

properly, DNA damage-response signaling triggers cell death by apoptosis or cellular senescence 
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(Jackson et al. 2009). Alternatively, carcinogenesis can occur from the activation of an oncogene 

or the inactivation of a tumor suppressor gene (Jackson et al. 2009). Altogether, the various types 

of formaldehyde-induced DNA damage may underlie the observed increases in cytotoxicity in 

vitro (Lovschall et al. 2002; Merk et al. 1998; Quievryn et al. 2000) and tissue damage in vivo 

(Chang et al. 1983; Monticello et al. 1991; Monticello et al. 1996). 

Cytotoxic damage to target cells is known to cause regenerative cell proliferation to 

replace and repair damaged tissue (Boobis 2010; Cohen et al. 2008). Increases in the rate of 

cellular proliferation can then increase the probability of  de novo mutations in critical oncogenes 

(Boobis 2010). In the case of formaldehyde, it is postulated that regenerative cell proliferation 

resulting from formaldehyde-induced cytotoxicity increases the number of DNA replications, 

and thereby, increases the likelihood of DNA damage causing DNA replication errors, resulting 

in mutations and eventually carcinogenesis (Liteplo et al. 2003; McGregor et al. 2006). This 

proposed mode of action is supported by previous investigations showing that formaldehyde 

causes sustained cell proliferation in direct target tissue in vivo (Figure 1). For example, many 

studies show that formaldehyde exposure increases cell proliferation rates in the upper 

respiratory epithelium of rodents and nonhuman primates (Chang et al. 1983; Monticello et al. 

1989; Monticello et al. 1991; Roemer et al. 1993). Furthermore, sites of increased cellular 

proliferation rates have been shown to correlate with regions of nasal tumor incidence 

(Monticello et al. 1991; Monticello et al. 1996). 
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Figure 1: As a part of formaldehyde’s carcinogenic mode of action, formaldehyde 
causes significant increases in cell proliferation in direct target cells (modified 
from Monticello et al. 1991). Increases in cell proliferation rates, as measured using 
labeling indices, across several nasal passage levels were found in rats exposed to 
formaldehyde (Monticello et al. 1991). 
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While there is a link between cell proliferation and carcinogenesis, other mechanisms 

influencing formaldehyde-induced cancer are understudied, including signaling pathways that 

may play a role in altered cell proliferation and carcinogenesis. Our study, therefore, contributes 

to the current understanding of mechanisms underlying cancer caused by formaldehyde by 

evaluating epigenetically-regulated processes at the systems-level. Our project is the first to use a 

systems biology approach to assess the epigenetic effects of formaldehyde on direct target cells 

within the respiratory tract. 

 

Incongruent Findings Between Epidemiological and Toxicological Studies 

There is disparity between epidemiological and toxicological findings regarding possible 

links between formaldehyde and leukemia. Formaldehyde is a known human carcinogen (IARC 

2006), but its association with hematological cancers is currently undergoing debate. In June 

2011, the U.S. National Toxicology Program added formaldehyde as a human 

lymphohematopoietic carcinogen, while stating that the mechanisms by which formaldehyde 

causes leukemia are unknown (NTP 2011). This classification is largely based on 

epidemiological evidence supporting formaldehyde-induced myeloid leukemia, as identified in 

cohorts of embalmers (Hauptmann et al. 2009), garment workers (Pinkerton et al. 2004), and 

workers in various formaldehyde-related industries (Beane Freeman et al. 2009; Zhang et al. 

2009). However, some of these epidemiological findings are controversial (Bachand et al. 2010). 

These types of occupational exposures are common, where more than two million U.S. workers 

are exposed to formaldehyde (USDL 2011). Because formaldehyde exposure and leukemia 

development are both prevalent, understanding the biological basis linking formaldehyde to 

disease is extremely important. 

Despite epidemiological evidence supporting formaldehyde as a leukemogen, the 

biological plausibility underlying formaldehyde-induced leukemia is still debated. To elaborate, 

leukemia is a cancer of the blood or bone marrow, where recognized environmental leukemogens 

typically cause hematopoietic toxicity/genotoxicity and subsequent leukemia development 

(McHale et al. 2012; Mukherjee et al. 2012). However, formaldehyde is reactive and undergoes 

metabolism rapidly (IARC 2006), and formaldehyde blood concentrations do not change after 

inhalation exposure (Casanova et al. 1988; Heck et al. 1985). As a result, some scientists believe 

it is improbable for such a compound to cause toxicity at sites distant from the respiratory tract 
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(Cole et al. 2004; Golden et al. 2006; Heck et al. 2004; Pyatt et al. 2008). Nevertheless, a few 

mechanisms underlying formaldehyde-induced leukemia have been proposed (Goldstein 2011; 

Zhang et al. 2009). One key event common amongst these proposed mechanisms requires 

damages or alterations within hematopoietic stem or progenitor cells. Still, researchers have yet 

to elucidate how formaldehyde, either directly or indirectly, may alter hematopoietic cells. With 

the goal of filling a component of this research void, our study investigates changes in miRNA 

signaling throughout the body, representing an area of research that has yet to be evaluated in 

relation to formaldehyde. 

 

MicroRNAs 

MicroRNAs are important epigenetic regulators of gene expression that may play key 

roles in formaldehyde-induced health effects. These recently discovered molecules, clearly a part 

of the epigenetic machinery (Iorio et al. 2010), play a large role in the regulation of mRNA 

abundance and protein production. By base pairing to target mRNAs, miRNAs can cause mRNA 

degradation and/or translational repression (Filipowicz et al. 2008; Friedman et al. 2009). In 

some cases, miRNAs can even cleave newly translated proteins (Friedman et al. 2009) (Figure 

2). To quantify, mammalian miRNAs are estimated to regulate more than 60% of all protein-

coding genes (Friedman et al. 2009). Because miRNAs play such pivotal roles in gene 

regulation, miRNAs have received increasing attention throughout medical and toxicological 

research fields. Several cancer-related studies have shown that miRNA expression profiles are 

drastically altered in tumors in comparison to healthy tissue. For example, miRNA expression 

profiles have been shown to be significantly disrupted in nasopharyngeal carcinoma (Chen et al. 

2009) and leukemia (Bousquet et al. 2008; Cammarata et al. 2010; Garzon et al. 2008; Wang et 

al. 2011). Whether formaldehyde exposure is capable of affecting miRNA expression profiles, 

which may ultimately influence disease, is currently unknown. 
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MicroRNAs and Leukemia 
Leukemia development is known to be influenced by miRNAs. Hematological function is 

heavily influenced by miRNAs, since these molecules are important regulators of hematopoietic 

stem/progenitor cell differentiation (Marcucci et al. 2011; Yendamuri et al. 2009), cell cycle 

(Han et al. 2010), and apoptosis (Garzon et al. 2009). Distinct miRNA expression profiles also 

exist in leukemia patients, where miRNAs have been shown to classify various risk groups 

(Calin et al. 2006; Marcucci et al. 2009; Marcucci et al. 2011). Further linking miRNAs to 

leukemia, several miRNAs have been implicated as leukemia-related tumor suppressors (e.g. 

miR-29b) (Garzon et al. 2009) and oncogenes (e.g. miR-125b, miR-155, miR-29a) (Costinean et 

al. 2006; Han et al. 2010; O'Connell et al. 2008). Because of the current interest regarding 

formaldehyde’s link to leukemia, we find the lack of research on formaldehyde’s epigenetic 

effects surprising. We therefore address this scientific gap by investigating formaldehyde-altered 

miRNAs throughout multiple target tissues, revealing novel responses that have yet to be 

investigated. 

 

Project Approach 

This research focuses on epigenetic responses to formaldehyde inhalation exposure 

across direct contact and distant tissues. The primary hypothesis to be tested is that miRNAs 

have altered expression profiles within the respiratory and hematopoietic systems upon 

exposure to formaldehyde. 

 

DNA

miRNA

mRNA

Protein

Transcription

Translation

Transcription
1. Decay of target mRNA

2. Translational repression

3. Cleavage of newly 
translated polypeptides

Figure 2: MicroRNAs are important regulators of gene expression and protein 
production. Three routes are illustrated through which miRNAs can influence gene 
expression and protein production. 
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The project employs an integrated approach to perform cross-tissue and cross-species 

comparative analyses of epigenetic responses to formaldehyde exposure (Figure 3). We assess 

miRNA expression profiles across three separate species in multiple tissues and cells, 

representing possible key events linking formaldehyde inhalation exposure to respiratory and 

hematopoietic disease. It is notable that our research is the first to: (i) investigate miRNA 

expression profiles in formaldehyde-exposed cells, (ii) to compare formaldehyde-induced 

miRNA responses across three species, and (iii) to compare miRNA expression profiles between 

direct contact and distant targets of formaldehyde inhalation exposure using the rodent model. 

Using this strategy, we reveal novel mechanisms underlying formaldehyde exposure-induced 

effects on biological signaling. 

 

 
Figure 3: Project overview. The effect of formaldehyde inhalation exposure 
on miRNA expression profiles is assessed across three species. Using this 
experimental design, this research tests the novel hypothesis that miRNAs have 
altered expression profiles within the respiratory and hematopoietic systems 
upon exposure to formaldehyde. 

 

Dissertation Organization 

This dissertation is organized into three chapters. The first chapter describes an in vitro 

study which was the first to show that formaldehyde exposure significantly alters miRNA 

expression profiles. The study detailed in the second chapter expanded the initial in vitro 

findings using an in vivo model. Here, nonhuman primates exposed to formaldehyde were found 

Homo 
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--------------------
• Lung

Macaca 
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miRNAs
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to also show significantly altered miRNA expression profiles within the nose, a direct target of 

formaldehyde inhalation exposure. The last study, described in chapter three, compares miRNA 

expression profiles altered by formaldehyde exposure across the nose, circulating white blood 

cells, and bone marrow cells in a rodent model. It is of great interest that miRNA expression 

patterns were identified as disrupted by formaldehyde exposure in the nose and white blood 

cells, but not the bone marrow. This study also included a time-series analysis, where 

formaldehyde was found to disrupt miRNA expression profiles more drastically after shorter 

periods of exposure. In all three studies, miRNA responses were further evaluated at the 

mechanistic level by mapping results to the biological networks. Significant pathways involved 

in cellular regulation were identified as likely disrupted via formaldehyde’s influence on miRNA 

expression profiles. The studies contained within these three chapters provide novel insights into 

the mechanisms and biological pathways underlying formaldehyde-induced effects. 
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CHAPTER 1 

FORMALDEHYDE EXPOSURE ALTERS MICRORNA EXPRESSION PROFILES IN 
HUMAN LUNG CELLS 

 
1.1 Overview 
 

Exposure to formaldehyde, a known air toxic, is associated with cancer and respiratory 

disease. Despite its adverse health effects, the mechanisms underlying formaldehyde-induced 

disease remain largely unknown. Research investigations have uncovered microRNAs (miRNAs) 

as key post-transcriptional regulators of gene expression that may influence cellular disease state. 

While studies have compared different miRNA expression patterns between diseased and healthy 

tissue, this is the first study to examine perturbations in global miRNA levels resulting from 

formaldehyde exposure. 

We set out to investigate whether cellular miRNA expression profiles are modified by 

formaldehyde exposure in human lung cells. We hypothesized that formaldehyde exposure 

disrupts miRNA expression levels within lung cells, representing a novel epigenetic mechanism 

through which formaldehyde may induce disease. 

Human lung epithelial cells were grown at air-liquid interface and exposed to gaseous 

formaldehyde at 1 ppm for 4 hours. Small RNAs and protein were collected and analyzed for 

miRNA expression using microarray analysis or IL-8 protein levels by ELISA, respectively. 

Gaseous formaldehyde exposure altered the miRNA expression profiles in human lung 

cells. Specifically, 89 miRNAs were significantly down-regulated in formaldehyde exposed 

samples versus controls. Functional and molecular network analysis of the predicted miRNA 

transcript targets revealed that formaldehyde exposure potentially alters signaling pathways 

associated with cancer and inflammatory response. IL-8 release was increased in cells exposed to 

formaldehyde, and results were confirmed by real-time PCR. 

Formaldehyde alters miRNA patterns which regulate gene expression, potentially leading 

to the initiation of a variety of diseases. 
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1.2 Study Objectives 

For this study, we set out to test the novel hypothesis that formaldehyde exposure can 

disrupt miRNA levels within lung cells. We tested this hypothesis by exposing human lung 

epithelial cells to formaldehyde using a direct air-liquid interface that physically mimics the 

human respiratory tract. Using microarray analysis, we assessed genome-wide miRNA 

expression profiles and identified miRNAs altered at the expressed level by formaldehyde 

exposure. To expand our findings to the systems-level, we predicted transcriptional targets of the 

formaldehyde-altered miRNAs and mapped them onto molecular interaction networks. Here, 

critical biological pathways related to putative miRNA-mediated responses to formaldehyde 

were identified. Taken together, this research suggests a novel epigenetic mechanism by which 

formaldehyde may induce disease. 

 

 

1.3 Materials and Methods 

 

1.3.1 Cell Culture 

Human A549 type II lung epithelial cells derived from a human lung adenocarcinoma 

were cultured according to standard protocol (ATCC). Cells were grown in growth media 

containing F-12K plus 10% FBS plus 1% penicillin and streptomycin. Cells were plated onto 24 

mm diameter collagen-coated membranes with 0.4 μM pores (Trans-CLR; Costar, Cambridge, 

MA). Upon confluence, cells were cultured in phenol red-free F-12K nutrient mixture without 

FBS. Immediately prior to exposure, media above each membrane was aspirated in order to 

create direct air-liquid interface culture conditions. The media beneath each membrane remained 

to supply nourishment for cells throughout the exposure. 

 

1.3.2 Formaldehyde Treatment 

Gaseous formaldehyde was generated by heating 143 mg paraformaldehyde (Aldrich 

Chemical Company, Inc., Milwaukee Wi, lot no. 05910EI) in an air-flushed “U-tube” until the 

powder was completely vaporized within a dark un-irradiated 120 m3 environmental chamber. 

The walls of the chamber are made of chemically non-reactive film, as detailed previously 

(Sexton et al. 2004). The chamber was naturally humidified from pre-flushing with HEPA 
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filtered ambient air during cloudy conditions. This resulted in a formaldehyde concentration of 1 

ppm (1.2 mg/m3) which was then drawn through a cellular exposure chamber (Billups-

Rothenberg, Modular Incubator Chamber, Del Mar, CA) at 1.0 L/min. The exposure chamber 

was positioned within an incubator where CO2 was added to the formaldehyde exposure source 

stream at 0.05 L/min and a small water dish provided proper humidification. Prepared lung cells 

were exposed to 1 ppm formaldehyde for 4 hours, while mock-treated control cells were exposed 

to humidified air under similar conditions. Experiments were carried out with six technical 

replicates for each exposure condition, generating a total of 12 samples. After nine hours, cells 

were scraped and stored at -80°C in TRIzol® Reagent (Invitrogen Life Technologies), and 

basolateral supernatants were aspirated and stored at -80°C. 

 

1.3.3 Cytotoxicity Analysis 

To measure formaldehyde exposure’s cytotoxicity, the enzyme lactate dehydrogenase 

(LDH) was measured within the supernatant of each sample. Measurements were acquired using 

a coupled enzymatic assay, according to the supplier’s instructions (Takara Bio Inc., Japan). 

LDH fold increase was calculated as μLDH, FE / μLDH C, where μ represents the mean LDH activity, 

FE represents formaldehyde exposed samples, and C represents controls. 

 

1.3.4 Microarray Processing 

RNA molecules of at least 18 nucleotides in length were isolated using Qiagen’s 

miRNeasy® Kit according to the manufacturer’s protocol (Qiagen, Valencia CA). RNA was 

quantified with the NanoDrop™ 1000 Spectrophotometer (Thermo Scientific, Waltham MA) and 

its integrity was verified with an Agilent Technologies 2100 Bioanalyzer (Santa Clara, CA). 

RNA was labeled and hybridized to the human miRNA microarray (version 1) manufactured by 

Agilent Technologies (Santa Clara, CA). This microarray measures the expression levels of 534 

human miRNAs. Three of the six total samples from each exposure condition, three 

formaldehyde-exposed and three mock-treated samples, were hybridized using 400 ng of input 

RNA per sample. RNA labeling and hybridization were performed according to the 

manufacturer’s protocol, and microarray results were extracted using Agilent Feature Extraction 

Software. Data were submitted to NCBI's Gene Expression Omnibus (GEO) database 

(www.ncbi.nlm.nih.gov/geo/) and are available under accession #GSE22365 (Edgar et al. 2002). 
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1.3.5 Microarray Analysis 

The resulting expression levels for each of the miRNAs measured by the microarrays 

were calculated and filtered for miRNAs expressed above a background level (background was 

set at 30, approximating the median signal per array). This resulted in a reduction of probesets 

from 12033 to 4900 records. Differential miRNA expression was defined as a significant 

difference in miRNA expression levels between treated samples and untreated samples, where 

the following three statistical requirements were set: (1) fold change of ≥ 1.5 or ≤ - 1.5 (treated 

versus untreated); (2) p-value < 0.05; and (3) false discovery rate (FDR) < 0.05. P-values and 

FDRs were generated using the Comparative Marker Selection tool in GenePattern 

(www.broadinstitute.org/cancer/software/genepattern/) (Reich et al. 2006). Here, 2000 

permutation tests were carried out using the signal-to-noise (SNR) ratio analysis and smoothed 

p-values were determined for each miRNA. SNR is defined by the equation SNR = (μA – μB) / 

(σA + σB), where μ represents average sample intensity and σ represents standard deviation 

(Golub et al. 1999). SNRs have been shown to provide one of the most accurate classification 

prediction methods (Cho et al. 2002). False discovery rates (FDRs) were calculated as the 

expected fraction of false positives among probesets reported as significant using the Benjamini 

and Hochberg procedure (Benjamini et al. 1995). Targets for the most differentially expressed 

miRNAs were identified using miRDB (www.mirdb.org) (Wang 2008) where targets with a 

score of >70 were investigated. 

 

1.3.6 Enriched Biological Functions and Network Analysis 

Enriched biological functions and molecular network analyses were performed using the 

Ingenuity database (Ingenuity® Systems, www.ingenuity.com, Redwood City, CA). The 

Ingenuity database provides a collection of gene to phenotype associations, molecular 

interactions, regulatory events, and chemical knowledge accumulated to develop a global 

molecular network. The lists of putative targets for each miRNA were overlaid onto this global 

molecular network, where protein networks significantly associated with the targets were 

algorithmically constructed based on connectivity. Associated enriched canonical pathways 

within these networks were also identified. Functional analysis was carried out to identify 

biological functions and disease signatures most significantly associated with the input targets. 

Statistical significance of each biological function or disease was calculated using a Fischer’s 
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exact test. This test generated a p-value signifying the probability that each function or disease 

was associated with the miRNA targets by chance alone. Only enriched functions with p-values 

< 0.005 were assessed. 

 

1.3.7 RT-PCR Verification of miRNA Expression 

Expression levels of the five most significantly modified miRNAs were also tested using 

real-time reverse-transcriptase PCR (RT-PCR). The TaqMan® MicroRNA Primer Assays for 

hsa-miR-33 (ID 002135), hsa-miR-450 (ID 2303), hsa-miR-330 (ID 000544), hsa-miR-181a (ID 

000516), and hsa-miR-10b (ID 002218) were used in conjunction with the TaqMan® Small RNA 

Assays PCR kit (Applied Biosystems). The Bio-Rad MyCycler Thermal Cyler was used for the 

reverse transcription step, and the Roche Lightcycler 480 was used for the real-time step. The 

same three control and three formaldehyde exposed samples from the microarray were used for 

RT-PCR, which was performed in technical duplicate. Statistical significance was evaluated 

using a t-test. 

 

1.3.8 Interleukin-8 Measurement 

The protein abundance of the cytokine interleukin-8 (IL-8) was measured using the 

basolateral supernatant from all 12 samples. A BD OptEIATM human IL-8 enzyme-linked 

immunosorbent assay (ELISA) was performed and analyzed according to the manufacturers’ 

protocol (BD Biosciences, San Jose, California). Experiments were carried out with 12 technical 

replicates for each exposure condition. Scanned absorbance reading outliers were identified 

through the Grubbs’ test (www.graphpad.com) where outliers were identified as those with less 

than a 5% probability of occurring as an outlier by chance alone, as based off a normal 

distribution (Grubbs 1969). IL-8 fold increase was calculated as μIL-8 FE / μIL-8 C, where μ 

represents the mean, FE represents formaldehyde exposed samples, and C represents controls. 

Statistical significance of the treated versus untreated IL-8 levels was calculated using a t-test 

with Welch’s correction. 
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1.4 Results 

 

1.4.1 Formaldehyde Exposure Modulates miRNAs in Human Lung Cells 

In this study, we set out to identify whether formaldehyde exposure alters the expression 

levels of miRNAs in lung cells. Human lung epithelial cells (A549) were exposed to gaseous 

formaldehyde drawn directly from an un-irradiated (dark) environmental chamber into an 

exposure chamber or were mock-treated. This exposure resulted in a 6.68 fold increase in LDH 

release. Comparisons to cell viability demonstrate that this fold change in LDH is associated 

with minimal cell killing. After exposure, small RNAs were collected and their relative 

abundance measured using microarrays. A total of 343 unique miRNAs were detectable above 

background in these cells. The 343 miRNAs were further assessed for formaldehyde-induced 

changes in expression level. A total of 89 miRNAs showed a significant decrease in expression 

in the formaldehyde exposed lung samples compared to control samples (Figure 4, see 

Supplementary Table 1). There were no miRNAs identified with significantly increased 

expression levels in response to formaldehyde. The five most significantly differentially 

expressed miRNAs, as determined through microarray analysis, were miR-33 (FC -5.5), miR-

450 (FC -3.6), miR-330 (FC -2.4), miR-181a (FC -2.1), and miR-10b (FC -2.1). Here, fold 

change (FC) represents the ratio of miRNA abundance in exposed relative to the control samples. 

 
Figure 4: Formaldehyde modulates the expression of 89 miRNAs in human 
lung cells. A heat map displays the relative expression levels of the 89 miRNAs, 
where data are mean standardized and hierarchical clustering is performed. Blue 
indicates relative low expression while red indicates relative high expression. 
Formaldehyde-treated samples are abbreviated as FA. 

Control 1 Control 2 Control 3 FA 1 FA 2 FA 3
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1.4.2 miRNA Expression Changes are Validated through RT-PCR 

RT-PCR was used to confirm the array-based findings, where the decreased miRNA 

expression induced by formaldehyde exposure was verified. Specifically, miR-330 showed a 

formaldehyde-induced FC of -1.3, miR-181a showed a FC of -7.4, miR-33 showed a FC of -1.2, 

and miR-10b showed a FC of -1.5 (Figure 5). miR-450 showed minimal expression changes 

with a FC of -1.04 (data not shown). As it was not validated with RT-PCR, further analysis on 

miR-450 was not performed. To assess the similarity of the RT-PCR and array-based expression 

level quantification, the average relative miRNA abundances were compared against the raw 

microarray expression levels. This analysis shows high correlations (0.81 for control samples, 

0.76 for treated samples) between the average miRNA abundance measured with both RT-PCR 

and microarray (Figure 5). These analyses support that the direction of miRNA differential 

expression induced by formaldehyde was consistent between the RT-PCR and microarray 

analyses. It is important to note that there is a difference in the magnitude of expression change 

with the microarray results generally greater than those obtained with RT-PCR. 

 
Figure 5: Microarray results align with RT-PCR results. (A) miRNA microarray results are 
displayed as miRNA abundance obtained from raw microarray data. (B) miRNA RT-PCR results are 
displayed in terms of miRNA abundance relative to 40, the maximum cycle threshold. (*) represents p-
value < 0.1, and (**) represent p-value < 0.05. Each column represents either control samples (CT) or 
treated samples (Trt). Average fold changes (FC) are shown, and error bars represent S.E.M. (C) 
Correlation between average miRNA abundance measured by microarrays and RT-PCR is illustrated. 
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1.4.3 miRNA Targets are Integrated into Biological Networks 

In order to identify potential biological pathways affected by formaldehyde exposure, the 

89 miRNAs that showed significant changes in expression levels were ranked according to their 

fold changes in expression, p-values of significance, and RT-PCR results (see Supplementary 

Table 1). Here, the four miRNAs with the most significant formaldehyde-induced changes in 

expression were further investigated: miR-33, miR-330, miR-181a, and miR-10b. For each of 

these four miRNAs, we identified their putative mRNA targets. Using a stringent cutoff of a 

match score between each miRNA and its mRNA targets followed by analysis for unique 

mRNAs per target list, we identified a total of 67 targets of miR-33, 217 targets of miR-330, 334 

targets of miR-181a, and 25 targets of miR-10b (see Supplementary Table 2). Among this list 

of 643 mRNAs, there are 42 that are common to at least two of the modulated miRNAs. 

Once the predicted transcriptional targets were identified for the most significant 

miRNAs, they were overlaid onto molecular pathway maps enabled through the Ingenuity® 

Systems Knowledge Base. Networks containing miRNA targets were algorithmically constructed 

based on connectivity and known relationships among proteins. The predicted targets of miR-33, 

miR-330, miR-181a, and miR-10b resulted in the generation of a total of 40 networks (see 

Supplementary Table 3). For each of the miRNA targets, the most significant (p-values range 

from 10-23 to 10-43) network has been highlighted for further evaluation (Figure 6). The proteins 

identified within these networks were queried for their enrichment for various canonical 

pathways. A comparison of the canonical pathways highlighted the conservation of a cancer-

associated pathway common to all four miRNA-generated networks (see Supplementary Table 

4). Overlaying the pathway information onto the most significant networks resulted in the 

identification of enrichment for the nuclear factor kappa beta (NFκB) pathway and the 

interleukin-8 (IL-8) signaling pathway, among others. 
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Figure 6: Significant molecular networks of miRNA-mediated signaling likely affected by 
formaldehyde exposure in human lung cells. Protein networks display interactions using the 
transcriptional targets of (A) miR-33, (B) miR-330, (C) miR-181a, and (D) miR-10b. Networks are 
displayed with symbols representing predicted miRNA targets (red symbols) or proteins associated with 
the predicted targets (white symbols). 

 

Using a biological process enrichment analysis, the 40 networks encoded by the 

transcriptional targets for each miRNA were queried for biological processes that were most 

significantly modulated by formaldehyde exposure. A total of 71 unique biological processes 

were found (see Supplementary Table 5). Across the mRNA targets, common enrichment was 

found for 13 different cellular biological processes. These processes included inflammatory 

response (p-value = 0.0029) and endocrine system development/function (p-value = 0.0018) 

which were enriched within the targets of all four miRNAs (Table 1). 
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Table 1: Biological functions significantly associated with all 
predicted target sets of miR-33, miR-330, miR-181a, and miR-10b, 
the miRNAs with the greatest expression alterations upon exposure 
to formaldehyde in human lung cells. 

Enriched Functions Average p-value 
Cellular Development 0.0011 
Small Molecule Biochemistry 0.0015 
Nervous System Development and Function 0.0016 
Cell-To-Cell Signaling and Interaction 0.0017 
Cell Morphology 0.0017 
Tissue Development 0.0017 
Cellular Function and Maintenance 0.0017 
Cellular Movement 0.0017 
Endocrine System Development and Function 0.0018 
Gene Expression 0.0018 
Cellular Growth and Proliferation 0.0021 
Inflammatory Response 0.0029 
Hematological System Development and Function 0.0033 

 

1.4.4 Conservation of Predicted and Observed mRNA Targets 

In our analysis, we used a stringent computational metric to match miRNAs to their 

predicted mRNA targets to better understand the biological implications of formaldehyde 

exposure. As these mRNA targets were computationally predicted, we also compared our results 

with those of an existing genomic database established from a study that analyzed human 

tracheal fibroblast cells exposed to formaldehyde (Li et al. 2007). In this comparison, we found 

overlap between the predicted mRNA targets of the formaldehyde-modulated miRNAs and the 

tested formaldehyde-responsive genes previously identified (Li et al. 2007). Specifically, brain-

derived neurotrophic factor (BDNF), bone morphogenetic protein receptor, type II 

(serine/threonine kinase) (BMPR2), calcium channel voltage-dependent L type, alpha 1C subunit 

(CACNA1C), casein kinase 1 delta (CSNK1D), high mobility group AT-hook 2 (HMGA2), heat 

shock transcription factor 2 (HSF2), heat shock 105kDa/110kDa protein 1 (HSPH1), and Pim-1 

oncogene (PIM1), are found within the four most significant networks associated with the 

identified miRNA targets (Figure 6). 

We expanded our comparison by performing network analysis on the formaldehyde-

associated genes identified by Li et al. (2007). Here, networks were constructed and related 

biological functions were identified, as done with the miRNA predicted target network analysis. 
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Networks related to cancer (p-value = 1.9 x 10-19), inflammation (p-value = 1.1 x 10-8), and 

endocrine system disorders (p-value = 3.15 x 10-4) were generated (see Supplementary Table 

6). 

 

1.4.5 Inflammatory Cytokine IL-8 is Released in Response to Formaldehyde 

Based on our findings from the canonical pathway and biological process enrichment 

analyses that showed the IL-8 pathway as potentially dysregulated by miRNAs associated with 

formaldehyde exposure, we set out to confirm whether IL-8 protein levels may be influenced by 

such exposure. After cells were exposed to formaldehyde, IL-8 protein release was assessed. The 

investigation of the inflammatory response protein IL-8 showed that human lung cells activate an 

inflammatory response after exposure to formaldehyde. Specifically, an average 16.9 fold 

increase (p-value < 0.05) in cytokine release was observed in formaldehyde exposed cells 

relative to control samples (Figure 7). 

 
Figure 7: Interleukin-8 levels are significantly elevated in 
formaldehyde-treated lung cells compared to untreated cells. Results 
are displayed as fold increase over control +/- S.E.M. (*) indicates 
statistical significance compared to control samples (p-value < 0.05). 

 

 
1.5 Discussion 

In this study, we exposed human A549 lung epithelial cells to formaldehyde using an in 

vitro exposure system that physically replicates in vivo human lung gas exposures (Bakand et al. 

2005). It is important to note that A549 cells are carcinoma cells that exhibit differences in 

certain signaling compared to non-cancerous cells. For instance, A549 cells are enriched for Nrf2 
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detoxifying pathways and are more resistant to apoptosis in comparison to normal cells (Kweon 

et al. 2006). While we recognize that A549 cells may not completely mimic normal lung cell 

response, there are several advantages to using these cells for air toxicant studies. For example, 

when exposed to gases at an air-liquid interface, A549 cells secrete enough surfactant to mimic 

airway surface tension (Blank et al. 2006). As a result, A549 cells are routinely used to study the 

effects of environmental air exposures (Doyle et al. 2004; Doyle et al. 2007; Jaspers et al. 1997; 

Sexton et al. 2004), including formaldehyde (Quievryn et al. 2000; Speit et al. 2008; Speit et al. 

2010). A549 cells have also shown the same sensitivity and removal efficiency towards 

formaldehyde-induced DNA protein crosslinks as primary human nasal epithelial cells (Speit et 

al. 2008). 

Our microarray analysis revealed that formaldehyde exposure resulted in the down-

regulation of 89 miRNAs. It was interesting that all of the modulated miRNAs were down-

regulated by formaldehyde exposure. This general trend of miRNA down-regulation has been 

observed in rat lung cells exposed to cigarette smoke (Izzotti et al. 2009), as well as in multiple 

tumor cell types, including lung cancer, breast cancer, and leukemia (Lu et al. 2005). 

We focused a detailed analysis on the four most significantly down-regulated miRNAs, 

as determined through microarray analysis and RT-PCR: miR-33, miR-330, miR-181a, and miR-

10b. These miRNAs have been studied, to some extent, and knowledge about their regulation 

and association to disease is growing. For example, miR-33 shows decreased expression levels in 

tissues from patients with lung carcinomas (Yanaihara et al. 2006). Also, miR-330 expression 

has been measured at significantly lower levels in human prostate cancer cells when compared 

against nontumorigenic prostate cells (Lee et al. 2009). Furthermore, miR-330 has been 

suggested to act as a tumor suppressor by regulating apoptosis of cancer cells (Lee et al. 2009). 

In addition, miR-10b shows altered expression levels within breast cancer tissue, and is one of 

the most consistently dysregulated miRNAs able to predict tumor classification (Iorio et al. 2005; 

Ma et al. 2007). These findings suggest that miR-33, miR-330, and miR-10b may influence 

cellular disease state, specifically related to cancer. 

Formaldehyde exposure also altered the expression level of miR-181a, which has known 

associations with leukemogenesis (Marcucci et al. 2009). The specific link between 

formaldehyde exposure and leukemia is currently debated, as numerous epidemiological studies 

show evidence for possible association to this disease (Hauptmann et al. 2009; Pinkerton et al. 
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2004; L Zhang et al. 2010), as well as against it (Bachand et al. 2010; Marsh et al. 2004). 

However, it is important to note that our study evaluates miRNA expression in lung cells, which 

likely differ from leukemia target cells’ responses to formaldehyde exposure, or exposure to 

formaldehyde’s metabolic products. Nevertheless, it is worth highlighting the observation of the 

dysregulation of miR-181a upon exposure to formaldehyde. 

To expand our analysis, we used a systems biology approach to understand the potential 

biological implications of the miRNA expression changes induced by acute formaldehyde 

exposure. For this analysis, we used a stringent computational matching approach to identify 

predicted mRNA targets for miR-33, miR-330, miR-181a, and miR-10b. The identified mRNA 

targets were used to construct associated molecular networks and were analyzed for their known 

involvement in signaling pathways and biological functions. The identified networks showed 

enrichment for various canonical pathways including nuclear factor kappa-B (NFκB) and 

interleukin-8 (IL-8) signaling. Although very few predicted targets overlapped between the four 

miRNAs, proteins involved with cancer mechanisms including that of the NFκB pathway were 

found within the miRNA target networks. Importantly, NFκB has clear links to inflammation and 

cancer development (Karin et al. 2005). Also related to inflammation, IL-8-related signaling 

molecules were present in the miRNA target networks. Previous studies have shown IL-8 release 

in lungs cells representing inflammatory response after exposure to other air pollutants (Jaspers 

et al. 1997; Sexton et al. 2004). In addition, investigations have shown increased IL-8 levels in 

lungs of patients with diseases such as acute lung injury (McClintock et al. 2008), adult 

respiratory distress syndrome (Jorens et al. 1992), and asthma (Bloemen et al. 2007). 

Inflammation is a recognized formaldehyde-induced response, as formaldehyde is known to 

irritate the respiratory system (Tuthill 1984) and increase asthmatic response (Rumchev et al. 

2002; Wieslander et al. 1997). Our findings suggest that the canonical pathways associated with 

formaldehyde-induced miRNA alterations may affect the regulation of biological pathways 

associated with various disease states, including cancer and inflammation. 

As a method to further verify our results, we compared the protein levels of cytokine 

interkeukin-8 (IL-8) in formaldehyde-exposed cells versus mock-treated controls. We found that, 

indeed, IL-8 showed significantly increased protein expression levels in the formaldehyde-

exposed cells. These results support our findings that IL-8 signaling is altered in lung cells 

exposed to formaldehyde. Interestingly, IL-8 levels are also increased in formaldehyde-exposed 
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lung cells after pre-sensitization to tumor necrosis factor alpha (TNFα) (Persoz et al. 2010). 

TNFα is a proinflammatory mediator shown to have increased levels upon exposure to 

formaldehyde (Bianchi et al. 2004). Our network analyses suggest that cytokine signaling may 

be altered through changes in miRNA expression levels. Supporting this is a recent study that 

shows modifications to miRNAs may influence the expression of cytokines, including IL-6 and 

IL-8 (Jones et al. 2009). Future research will test whether the observed miRNA expression 

changes are directly associated with IL-8 signaling. 

In an effort to gain further understanding of formaldehyde’s effects on gene expression, 

we compared our results with those of an existing genomics database (e.g. mRNA) from a study 

that evaluated human lung cells exposed to formaldehyde (Li et al. 2007). Using the predicted 

targets in our most significant miRNA networks, we found the following genes overlap with the 

existing database: BDNF, BMPR2, CACNA1C, CSNK1D, HMGA2, HSF2, HSPH1, and PIM1. 

These genes have been shown to play a role in various diseases. For example, BDNF, or brain-

derived neurotrophic factor, modulates neurogenesis after injury to the central nervous system 

(Ming et al. 2005). CSNK1D, or casein kinase 1 delta, has been identified as up-regulated in 

breast cancer tissue (Abba et al. 2007). HMGA2, or high mobility group AT-hook 2, is oncogenic 

in many cells, including lung carcinoma cells, and is regulated by the tumor-suppressive miRNA 

let-7 (Lee et al. 2007). Lastly, PIM1, or Pim-1 oncogene, is found at increased levels within 

prostate cancer tissue (Dhanasekaran et al. 2001). Network analysis of all formaldehyde-

responsive genes identified through the Li et. al. (2007) study revealed significant associations 

with cancer, inflammation, and endocrine system regulation, which also overlap with our 

findings. These genes are therefore linked with formaldehyde-induced changes in miRNA 

abundance as well as mRNA alterations, and they are related to a diverse range of cellular 

responses including tumorigenesis. 

In conclusion, our study provides evidence of a potential mechanism that may underlie 

the cellular effects induced by formaldehyde, namely the modification of miRNA expression. 

We identify a set of 89 miRNAs that are dysregulated in human lung cells exposed to 

formaldehyde. Mapping the most significantly changed miRNAs to their predicted 

transcriptional targets and their network interactomes within the cell reveals the association of 

formaldehyde exposure to inflammatory response pathways. We also validate our findings by: 

(1) performing RT-PCR; (2) integrating our predicted networks with known formaldehyde-
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induced mRNA expression changes; and (3) examining protein expression changes of a key 

inflammatory response mediator, IL-8. Future research will investigate whether the expression 

levels of these miRNAs may serve as potential biomarkers of formaldehyde exposure in humans. 

Such biomarkers can be utilized to better monitor human exposure to environmental toxicants 

and relate them to health effects. Based on our findings, we believe that miRNAs likely play an 

important role in regulating formaldehyde-induced gene expression and may represent a possible 

link between exposure and disease. 
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CHAPTER 2 
FORMALDEHYDE AND EPIGENETIC ALTERATIONS: MICRORNA CHANGES IN THE 

NASAL EPITHELIUM OF NONHUMAN PRIMATES 
 
2.1 Overview 

Formaldehyde is an air pollutant present in both indoor and outdoor atmospheres. 

Because of its ubiquitous nature, it is imperative to understand the mechanisms underlying 

formaldehyde-induced toxicity and carcinogenicity. MicroRNAs (miRNAs) can influence 

disease caused by environmental exposures, yet miRNAs are understudied in relation to 

formaldehyde. Our previous investigation demonstrated that formaldehyde exposure in human 

lung cells caused disruptions in miRNA expression profiles. 

Here, we expand our preliminary in vitro findings to an in vivo model. We set out to test 

the hypothesis that formaldehyde inhalation exposure significantly alters miRNA expression 

profiles within the nasal epithelium of nonhuman primates. 

Cynomolgus macaques were exposed by inhalation to approximately 0, 2, or 6 ppm 

formaldehyde for 6 hours/day for two consecutive days. Small RNAs were extracted from nasal 

samples and assessed for genome-wide miRNA expression levels. Transcriptional targets of 

formaldehyde-altered miRNAs were computationally predicted, analyzed at the systems level, 

and assessed using RT-PCR. 

Expression analysis revealed that 3 and 13 miRNAs were dysregulated in response to 2 

and 6 ppm formaldehyde, respectively. Transcriptional targets of the miRNA with the greatest 

increase (miR-125b) and decrease (miR-142-3p) in expression were predicted and analyzed at 

the systems level. Enrichment was identified for miR-125b targeting genes involved in apoptosis 

signaling. The apoptosis-related targets were functionally tested using RT-PCR, where all targets 

showed decreased expression in formaldehyde-exposed samples. 

Our study reveals that formaldehyde exposure disrupts miRNA expression profiles within 

the nasal epithelium, and these alterations likely influence apoptosis signaling. 
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2.2 Study Objectives 

For this study, we set out to test the novel hypothesis that formaldehyde inhalation 

exposure significantly alters miRNA expression profiles within the nasal epithelium of 

nonhuman primates. We tested this hypothesis by exposing nonhuman primates (cynomolgus 

macaques) to ~ 0, 2, or 6 ppm formaldehyde for 6 hours/day across two days. After exposure, 

nasal epithelial tissue was assessed for formaldehyde-induced changes in miRNA expression 

profiles across the genome. Transcriptional targets of the miRNAs with the highest increase and 

highest decrease in expression were predicted in silico and mapped onto molecular interaction 

networks. Important canonical pathways enriched within the constructed networks were 

identified and further assessed at the gene expression level. Altogether, this study reveals a novel 

epigenetic mechanism through which formaldehyde may influence critical signaling pathways 

known to influence disease. 

 

 

2.3 Materials and Methods 

 

2.3.1 Animals 

Cynomolgus macaques were treated humanely and with regard for alleviation of 

suffering. Animals were exposed, sedated, and euthanized using protocols approved by the 

Lovelace Research Institute’s animal care and use committee (FY10-104A). For this study, eight 

male cynomolgus macaques (Macaca fascicularis) were selected from the Lovelace Respiratory 

Research Institute colony. Animals were approximately six years of age and weighed between 

4.48 and 8.56 kilograms. Animals were conditioned to whole body exposure chambers for 30, 

60, 180, and 360 minutes prior to the first day of exposure, as previously described (Moeller et 

al. 2011). 

 

2.3.2 Formaldehyde Exposures 

Animals were exposed to formaldehyde over the course of two days for six hours each 

day using whole body exposure chambers. Target exposure concentrations were 0, 2, and 6 ppm 

formaldehyde. Exposure conditions were created by vaporizing [13CD2]-paraformaldehyde. 
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Formaldehyde was isotope-labeled for the purposes of a previous investigation (Moeller et al. 

2011). Chamber concentrations were monitored by collecting samples with a Waters XpoSure 

Aldehyde Sampler cartridge every five minutes throughout each exposure period. Samples from 

the cartridges were analyzed using high-performance liquid chromatography with an attached 

detector monitoring ultraviolet absorbance at 360 nm (Lu et al. 2011; Moeller et al. 2011). Two 

control animals were placed in whole body exposure chambers containing clean air. Three 

monkeys were exposed to a target concentration of 2 ppm formaldehyde, where the measured 

concentration averaged 1.9 ppm across the exposure periods. Three monkeys were exposed to a 

target concentration of 6 ppm formaldehyde, where the measured concentration averaged 6.1 

ppm across the exposure periods. For more detailed methods, see Moeller et al. (Moeller et al. 

2011). 

 

2.3.3 Sample Collection 

Approximately 15 minutes after the second exposure period, animals were serially 

sedated with Ketamine (10 mg/kg, intramuscular) and euthanized with Euthasol (>1 ml/4.5 kg, 

intravenous). Animals underwent necropsy one at a time with each necropsy requiring 

approximately 45 minutes. All samples were collected within 3 hours of the exposure. Sample 

collection started immediately after the last exposure in order to parallel sacrifice and sample 

collection times used in our previous studies (Lu et al. 2011; Moeller et al. 2011). During 

necropsy, nasal epithelial tissue from the maxilloturbinate regions were collected, placed in 

RNAlater® (Qiagen, Valencia, CA), and stored at -80°C. Samples were shipped by overnight 

courier on dry ice to the University of North Carolina at Chapel Hill. 

 

2.3.4 Sample Processing 

Small RNAs were isolated from nasal tissue samples. Samples were first disrupted and 

homogenized using a TissueRuptor (Qiagen) in the presence of TRIzol (Invitrogen Life 

Technologies, Carlsbad, CA), and RNA was isolated using the miRNeasy® kit (Qiagen). 

Extracted RNA was quantified with a Nanodrop 1000 spectrophotometer (Thermo Scientific, 

Waltham, MA) and its integrity verified with a 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA). RNA was then labeled and hybridized to the Agilent Human miRNA Microarray 

(v1.0). This microarray assesses the relative expression levels of 534 miRNAs measured using 
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11080 probesets. Microarray results were extracted using Agilent Feature Extraction software. 

Microarray data have been submitted to National Center for Biotechnology Information (NCBI) 

Gene Expression Omnibus repository (Edgar et al. 2002) and are available under accession 

number GSE34978 (NCBI 2010). 

 

2.3.5 Microarray Analysis 

Microarray data were normalized by quantile normalization. To eliminate background 

noise, miRNA probes with signal intensities less than the median signal (signal = 40) across all 

replicates were removed. Differential expression was defined as a significant difference in 

miRNA levels between exposed versus unexposed samples, where three statistical requirements 

were set: (i) fold change of ≥ 1.5 or ≤ - 1.5 (average exposed versus average unexposed); (ii) p-

value < 0.05 (ANOVA); and (iii) a false discovery rate corrected q-value < 0.1. Analysis of 

variance (ANOVA) p-values were calculated using Partek® Genomics SuiteTM software (St. 

Louis, MO). To control the rate of false positives, q-values were calculated as the minimum 

“positive false discovery rate” that can occur when identifying significant hypotheses (Storey 

2003). 

 

2.3.6 RT-PCR Confirmation of miRNA Expression Changes 

To confirm formaldehyde-induced miRNA expression changes, we performed real-time 

reverse transcriptase polymerase chain reaction (RT-PCR) using two miRNAs identified as the 

most increased in expression (miR-125b and miR-152) and two miRNAs identified as the most 

decreased in expression (miR-145 and miR-142-3p) following 6 ppm formaldehyde exposure. 

TaqMan® MicroRNA Primer Assays for hsa-miR-125b (ID 000449), hsa-miR-152 (ID 000475), 

hsa-miR-145 (ID 002278) and hsa-miR-142-3p (ID 000464) were used in conjunction with the 

TaqMan® Small RNA Assays PCR kit (Applied Biosystems, Carlsbad, CA). The same control 

and formaldehyde-exposed samples from the microarray analysis were used for RT-PCR, and 

was performed in technical triplicate. The resulting RT-PCR cycle times were normalized 

against the U6 housekeeping miRNA, and fold changes in expression were calculated using the 

ΔΔCt method. Statistical significance of the difference in miRNA expression levels between the 

formaldehyde-exposed and unexposed samples was calculated using an ANOVA (Partek®). 
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2.3.7 Predicting Targets of miR-125b and miR-142-3p 

In order to understand the effects formaldehyde-responsive miRNAs may cause at the 

gene expression level, computational predictions of the mRNA targets of miR-125b and miR-

142-3p were carried out. These two miRNAs were selected as they showed the largest increase 

(miR-125b) or decrease (miR-142-3p) in expression after 6 ppm formaldehyde exposure. Here, 

TargetScanHuman (Whitehead 2011) algorithms were employed to identify potential matches 

between 3’ untranslated mRNA regions and miRNA seed sequences (Lewis et al. 2005). The 

resulting predicted miRNA-mRNA interactions were filtered for the probability of preferentially 

conserved targeting (PCT) ≥ 0.9. This PCT filter controlled for background conservation across 

mammals by accounting for mutational biases, dinucleotide conservation rates, and individual 

untranslated region conservation rates (Friedman et al. 2009). 

 

2.3.8 Pathway Enrichment Analysis of Predicted Targets 

Network analysis was performed to understand the systems level response to 

formaldehyde inhalation exposure possibly mediated via epigenetic (e.g. miRNA) regulation. For 

this analysis, the predicted mRNA targets of miR-125b and miR-142-3p were overlaid onto a 

global interaction network. Here, networks were algorithmically constructed based on 

connectivity, as enabled through Ingenuity Pathway Analysis (Ingenuity Systems®, Redwood 

City, CA). Canonical pathways within the constructed networks were then identified. Over-

represented pathways were defined as pathways than contain more targets than expected by 

chance, as calculated using the right-tailed Fisher’s Exact Test. Here, pathways with enrichment 

p-values < 0.05 were considered significantly enriched with the predicted targets of miR-125b or 

miR-142-3p. 

 

2.3.9 Testing miRNA Targets using RT-PCR 

All apoptosis-associated genes (n=4) predicted to be regulated by formaldehyde-

responsive miR-125b, and all integrin-linked kinase (ILK)-associated genes (n=2) predicted to be 

regulated by formaldehyde-responsive miR-142-3p, were tested at the gene expression level 

using RT-PCR. QuantiTect Primer Assays were used with QuantiTect SYBR® Green PCR kits 

(Qiagen) and the LightCycler® 480 (Roche Applied Science). Specifically, BCL2-

antagonist/killer 1 (BAK1) (Catalog Number QT00228508), caspase 2, apoptosis-related cysteine 
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peptidase (CASP2) (QT01342509), integrin, beta 8 (ITGB8) (QT00038507), mitogen-activated 

protein kinase kinase 7 (MAP2K7) (QT00090545), myeloid cell leukemia sequence 1 (BCL2-

related) (MCL1) (QT00094122), and rapamycin-insensitive companion of mTOR (RICTOR) 

(QT00065793) were evaluated for potential changes in gene expression levels induced by 

formaldehyde exposure. Resulting RT-PCR cycle times were normalized against the β-actin 

housekeeping gene, and fold changes in expression were calculated using the ΔΔCt method. 

Statistical significance comparing the expression levels between exposed and unexposed samples 

was calculated using an ANOVA (Partek®). 

 

 

2.4 Results 

 

2.4.1 Formaldehyde Disrupts miRNA Expression Profiles in Nasal Tissue 

To study the effects of formaldehyde inhalation exposure, cynomolgus macaques were 

exposed to ~ 0, 2, or 6 ppm formaldehyde 6 hr/day for two days. After treatment, nasal epithelial 

tissue samples were collected and assessed for genome-wide changes in miRNA expression 

profiles using the Agilent Human miRNA Microarray. A human microarray was used because a 

miRNA microarray is not currently available for nonhuman primates. This array is suitable for 

these experimental purposes based on the high degree of similarity in DNA sequences as well as 

conserved basal gene expression profiles between humans and cynomolgus macaques (Walker 

2008). Nevertheless, it is recognized that certain cynomolgus macaque-specific miRNAs may 

not be accounted for in these analyses, resulting in the potential for underestimation of 

formaldehyde’s true impact on genome-wide miRNA profiles. 

Microarray analysis showed three miRNAs with significantly decreased expression levels 

upon exposure to 2 ppm formaldehyde (Table 2). In comparison, exposure to 6 ppm 

formaldehyde significantly disrupted the expression levels of 13 miRNAs, represented by 15 

array probesets (Table 2). Of the 13 miRNAs, four were significantly increased and nine were 

significantly decreased in expression. Interestingly, the three miRNAs that were significantly 

decreased in response to 2 ppm formaldehyde (e.g. miR-142-3p, miR-145, and miR-203) were 

also significantly decreased in response to 6 ppm formaldehyde. 
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Table 2: Formaldehyde inhalation exposure in the nasal epithelium of nonhuman primates 
significantly disrupts the expression levels of 13 unique miRNAs, represented by 15 array 
probesets. Significant fold change (FC) comparisons between exposed and unexposed samples are 
indicated with * (representing p-value < 0.01, q-value < 0.1). 

  2 ppm 6 ppm 

miRNA Array Feature 
Number log2FC p-value q-value log2FC p-value q-value 

miR-125b 2637 0.44 6.1E-01 0.666 2.86* 2.2E-04 0.090 
miR-152 1548 0.79 3.0E-03 0.297 1.29* 1.3E-04 0.072 
miR-219-5p 1180 0.36 8.8E-02 0.451 1.22* 1.7E-04 0.075 
miR-532-5p 1259 0.35 3.4E-02 0.390 1.09* 8.1E-05 0.055 
miR-520f 14457 -0.61 3.3E-04 0.188 -0.77* 1.4E-04 0.072 
miR-26b 12607 -1.13 9.3E-05 0.146 -1.38* 5.2E-05 0.050 
miR-140-5p 12026 -0.69 3.6E-04 0.188 -1.56* 2.4E-05 0.036 
miR-22 12927 -0.69 4.8E-04 0.203 -1.70* 2.6E-05 0.036 
miR-374a 14431 -1.68 1.2E-04 0.148 -1.77* 1.1E-04 0.067 
miR-203 12162 -1.98* 4.7E-05 0.098 -2.11* 4.1E-05 0.046 
miR-203 11451 -1.75 1.0E-04 0.146 -2.12* 6.7E-05 0.055 
miR-142-3p 12366 -4.12* 1.1E-06 0.009 -2.92* 1.6E-06 0.011 
miR-29a 13448 -3.24 2.5E-04 0.188 -3.15* 2.6E-04 0.099 
miR-145 15649 -3.15* 3.0E-05 0.098 -3.56* 2.6E-05 0.036 
miR-142-3p 14658 -2.81 3.1E-04 0.188 -5.01* 1.8E-04 0.075 

 

 

2.4.2 RT-PCR Confirmed Formaldehyde-Induced miRNA Expression Changes 

To confirm that formaldehyde inhalation exposure significantly disrupts the expression of 

miRNAs, RT-PCR was performed. Specifically, the two miRNAs most increased in expression 

(miR-125b and miR-152) and the two miRNAs most decreased in expression (miR-145 and 

miR-142-3p), in response to 6 ppm formaldehyde were validated using this alternative method. 

Comparing the exposed versus unexposed samples confirmed that miR-125b and miR-152, were, 

indeed, significantly (p<0.05) increased in expression upon exposure to 6 ppm formaldehyde 

(Figure 8). The microarray analysis’ stringent multiple test correction filter excluded miR-125b 

from the list of miRNAs significantly differentially expressed by 2 ppm formaldehyde. However, 

RT-PCR analysis showed that miR-125b was significantly increased in expression in the 2 ppm 

formaldehyde-exposed animals. Similar confirmation was observed for miR-145 and miR-142-

3p, where expression levels were significantly (p<0.05) decreased following 6 ppm 

formaldehyde exposure (Figure 8). 
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Figure 8: RT-PCR confirms the altered expression of selected miRNAs upon exposure 
to formaldehyde within the nonhuman primate nasal epithelium. Mean fold changes 
(exposed / unexposed) in gene expression are displayed (± SE), where (*) represents p<0.05. 

 

2.4.3 Transcriptional Targets of miR-125b and miR-142-3p were Predicted 

To understand genomic changes regulated via miRNAs that formaldehyde inhalation 

exposure may initiate, we computationally predicted mRNA targets of miR-125b and miR-142-

3p. These miRNAs were selected for further investigation, as they showed the highest increase or 

decrease in expression upon exposure to 6 ppm formaldehyde, respectively. In addition, their 

differential expression was confirmed through RT-PCR analysis. Using seed match-based 

algorithms, a total of 132 genes were predicted to be targeted by miR-125b (see Supplementary 

Table 7). In comparison, only 13 genes were predicted to be targeted by miR-142-3p (see 

Supplementary Table 8). 

 

2.4.4 Apoptosis Signaling is Associated with miR-125b Predicted Targets 

In order to evaluate the potential effects of formaldehyde exposure at the systems level, 

enriched canonical signaling pathways were evaluated for the 132 predicted targets of miR-125b. 

Through this network analysis, 11 canonical pathways were identified as significantly over-

represented amongst the networks constructed using the predicted targets of miR-125b (see 
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Supplementary Table 9). The two pathways of highest significance were sphingolipid 

metabolism (p=0.003) and apoptosis signaling (p=0.003) (Figure 9). 

 

 
Figure 9: Predicted mRNA targets of formaldehyde-altered miR-125b are involved 
in apoptosis signaling, suggesting that the regulation of the apoptotic machinery 
may be modified through formaldehyde’s influence on miRNAs. The apoptosis 
signaling pathway is illustrated, where molecules predicted to be targeted by miR-125b 
are shaded in dark grey. 

 

2.4.5 Apoptosis-Related miR-125b Targets are Decreased in Expression 

All four of the apoptosis-related mRNA molecules predicted to be targeted by miR-125b 

were tested at the gene expression level using RT-PCR. As miR-125b was increased in 

expression, it was anticipated that its potential targets would be decreased in expression after 

formaldehyde exposure. Three of the evaluated targets, BAK1, MAP2K7, and MCL1, showed 

significantly (p<0.05) decreased expression levels in response to both 2 and 6 ppm formaldehyde 

exposures (Figure 10). CASP2 showed significantly decreased expression in response to 2 ppm 

formaldehyde. CASP2 expression was also decreased in response to 6 ppm formaldehyde, but 

was not statistically significant (p=0.15) (Figure 10) Altogether, all four of the apoptosis-related 
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mRNAs predicted to be regulated by miR-125b showed decreased expression upon exposure to 

formaldehyde. 

 

 
Figure 10: RT-PCR shows the decreased expression of apoptosis signaling-related 
genes predicted to be targeted by miR-125b, the miRNA with the greatest increased 
expression resulting from 6 ppm formaldehyde exposure. Mean fold changes (exposed / 
unexposed) in gene expression are displayed (± SE), where (*) represents p<0.05. 

 

2.4.6 ILK Signaling is Associated with miR-142-3p Predicted Targets 

To further assess the potential effects of formaldehyde exposure at the systems level, 

enriched canonical signaling pathways were evaluated for the 13 predicted targets of miR-142-

3p. Three canonical pathways were identified as significantly over-represented within the 

predicted targets of miR-142-3p (see Supplementary Table 10). The pathway of highest 

significance was ILK signaling (p=0.008). 

 

2.4.7 ILK-Related miR-142-3p Targets are Altered in Expression 

The two ILK signaling-related mRNA molecules predicted to be targeted by miR-142-3p 

were tested at the gene expression level using RT-PCR. As miR-142-3p was decreased in 

expression, it was anticipated that its potential targets would have increased expression after 

formaldehyde exposure. One of the evaluated targets, ITGB8, showed significantly increased 

expression in response to 6 ppm formaldehyde exposure (Figure 11). Transcript levels for the 

other predicted target, RICTOR, were significantly decreased in response to 2 and 6 ppm 

formaldehyde exposure (Figure 11). 
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Figure 11: RT-PCR shows the altered expression of ILK signaling-related 
genes predicted to be targeted by miR-142-3p, the miRNA with the greatest 
decreased expression resulting from 6 ppm formaldehyde exposure. Mean fold 
changes (exposed / unexposed) in gene expression are displayed (± SE), where (*) 
represents p<0.05. 

 

 

2.5 Discussion 

This study is the first to evaluate formaldehyde’s influence on miRNA expression 

signatures in vivo. In order to study the effects of formaldehyde inhalation exposure, nonhuman 

primates (cynomolgus macaques) were exposed for 6 hr/day over a course of two days to ~ 0, 2, 

or 6 ppm formaldehyde. These exposure levels were selected based on previous investigations 

showing that exposure to 2 ppm and 6 ppm formaldehyde caused DNA-protein crosslinks 

(Casanova et al. 1991) and DNA adducts (Moeller et al. 2011) within the nasal mucosa of 

nonhuman primates. The use of nonhuman primates as our animal model is advantageous, as the 

nasal gross anatomy and pattern of airflow are similar between nonhuman primates and humans 

(Harkema et al. 2006). Furthermore, there is an extremely high degree of similarity in DNA 

coding and non-coding sequences between macaques and humans (Walker 2008).  

After exposure, animals were euthanized, and nasal epithelial samples from the 

maxilloturbinate region were collected and assessed for genome-wide changes in miRNA 

expression profiles. Samples from the maxilloturbinate region were used because inhaled 

formaldehyde is maximally absorbed within this region (Kepler et al. 1998). In addition, our 

previous investigation revealed that cynomolgus macaques exposed to isotope labeled [13CD2]-

formaldehyde showed detectable amounts of exogenous (i.e. induced by formaldehyde exposure) 
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and endogenous DNA adducts within nasal samples collected from the maxilloturbinate (Moeller 

et al. 2011). Specifically, 0.26 ± 0.04 and 0.41 ± 0.05 exogenous N2-hydroxymethyl-dG / 107 dG 

were present in monkeys exposed to approximately 2 and 6 ppm, respectively, while 2.05 ± 0.53 

and 2.49 ± 0.39 endogenous N2-hydroxymethyl-dG / 107 dG adducts were present (Moeller et al. 

2011). Furthermore, the respiratory nasal turbinate region of rats exposed to formaldehyde is a 

site of squamous cell carcinoma formation (Kerns et al. 1983; Monticello et al. 1996). 

The expression levels of more than 500 miRNAs were measured across two unexposed, 

three 2 ppm formaldehyde-exposed, and three 6 ppm formaldehyde-exposed nonhuman primates. 

Although this sample size was robust enough to detect formaldehyde-responsive miRNAs, we 

recognize that the size may have limited the power to detect additional changes in miRNA 

expression. For the genome-wide analysis, a human miRNA microarray was used because a 

miRNA microarray is not currently available for nonhuman primates. This array is suitable for 

these experimental purposes based on the high degree of similarity in DNA sequences as well as 

conserved basal gene expression profiles between humans and cynomolgus macaques (Walker 

2008). Baseline human miRNA expression patterns have even been shown to correlate well with 

cynomolgus macaque miRNA patterns using human miRNA microarrays (Montag et al. 2009). 

Furthermore, a previous study compared miRNAs identified in the rhesus macaque genome to 

human homologs and found that 38% of the miRNAs showed 100% homology in precursor 

sequences (Yue et al. 2008). The remaining 62% of the miRNAs showed between 90 and 100% 

sequences homology (Yue et al. 2008). Nevertheless, it is recognized that certain cynomolgus 

macaque-specific miRNAs may not be accounted for in these analyses. Despite these potential 

limitations, a set of 13 miRNAs with significant differential expression upon exposure to 2 

and/or 6 ppm formaldehyde were identified. 

Fewer miRNAs were identified as altered by formaldehyde exposure in this in vivo study 

using nonhuman primates than in the in vitro study using cultured human airway cells (Chapter 

1). This finding was unexpected, as higher formaldehyde levels were used in the nonhuman 

primates in comparison to the cultured cells. This difference in the number of miRNAs that 

responded to formaldehyde may be attributable to a variety of factors. As previously discussed, 

the human miRNA microarray used to assess cynomolgus macaque miRNA responses may have 

caused a potential underestimation of formaldehyde’s true impact on genome-wide miRNA 

profiles. Also, the cultured airway cells were directly exposed to formaldehyde without the 
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presence of surrounding tissue. In comparison, the nonhuman primate maxilloturbinate region of 

the nasal epithelium is surrounded by other tissues that also absorb gaseous formaldehyde, 

including the anterior lateral meatus, posterior lateral meatus, anterior dorsal septum, anterior 

mid-septum, and posterior mid-septum, all of which uptake considerable amounts of inhaled 

formaldehyde (Kimbell et al. 2001). These other tissues may have caused the actual dose of 

formaldehyde absorbed within the maxilloturbinate region to be lower than a similar in vitro 

exposure. Lastly, there is likely variability between miRNA responses to formaldehyde in the 

cultured human alveolar epithelial cancer cells versus cynomolgus macaque nasal epithelial non-

cancer cells resulting from differences between species, cell type, and/or disease status. 

Two of the 13 formaldehyde-responsive miRNAs were among those that we previously 

showed as altered in vitro by formaldehyde, namely miR-26b and miR-140-5p (Rager et al. 

2011b). This overlap in response suggests that in vitro models may show some responses in 

common to in vivo models at the miRNA level. Many of the formaldehyde-responsive miRNAs 

in the nonhuman primate have known relationships to disease, where six of the 13 formaldehyde-

responsive miRNAs have been identified as differentially expressed in human nasopharyngeal 

carcinoma. More specifically, miR-142-3p, miR-145, miR-152, miR-203, miR-26b, and miR-29a 

have all been shown to have altered expression levels in nasopharyngeal cancer tissue in 

comparison to non-cancerous tissue (Chen et al. 2009; Li et al. 2011; Sengupta et al. 2008; Wong 

et al. 2012). 

In order to evaluate the effects of formaldehyde inhalation exposure at the systems level, 

molecular targets of miR-125b and miR-142-3p were computationally predicted and analyzed for 

pathway enrichment. We focused our systems-based analysis on miR-125b and miR-142-3p 

because these miRNAs showed the highest increase and decrease in expression, respectively, 

upon exposure to 6 ppm formaldehyde through microarray analysis and were confirmed using 

RT-PCR analysis. A total of 132 genes were predicted to be targeted by miR-125b, and thereby 

decreased at the expression level. Far fewer genes were identified for miR-142-3p, where 13 

genes were predicted to be targeted by miR-142-3p, and thereby increased at the expression 

level. 

Canonical pathway enrichment analysis revealed a significant association between the 

predicted targets of miR-125b and apoptosis signaling. To further test this finding, we evaluated 

the gene expression levels of all four apoptosis signaling-related genes predicted to be targeted 
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by miR-125b, namely BAK1, CASP2, MAP2K7, and MCL1. As predicted, all four genes showed 

decreased expression levels in the formaldehyde exposed versus unexposed samples. Two of the 

apoptosis-related genes predicted to be regulated by miR-125b, MAP2K7 and MCL1, have also 

been shown to have significantly altered expression levels in the nasal epithelium of rats exposed 

to formaldehyde (Andersen et al. 2010). 

The observed decreased expression of genes involved in apoptosis signaling suggests a 

possible link between formaldehyde exposure and altered regulation of cell death. For example, 

BAK1 and CASP2 are both pro-apoptotic and have been shown to induce apoptosis in vitro and 

in vivo in several cell types (Kumar 2009; Pataer et al. 2000). While the evaluation of proteins 

encoded by the apoptosis-related genes would further support these findings, such an assessment 

was not possible here as proteins were not collected. Still, a similar finding has been observed in 

the nasal epithelium of rats, where nasal instillation of liquid formaldehyde decreased the 

expression levels of pro-apoptotic genes (Hester et al. 2003). These findings are of high interest, 

as impaired apoptosis can lead to cellular transformation and cancer development (Hanahan et al. 

2011). 

Other pathways were also identified as enriched for by the predicted targets of miR-125b, 

including sphingolipid metabolism. Sphingolipids are an abundant class of lipids present a high 

levels within eukaryotic membranes (Bartke et al. 2009). Although sphingolipids were first 

recognized for their structural roles in membrane formation, more recent work shows that 

sphingolipid metabolites are involved in the regulatory signaling of various biological processes, 

including apoptosis, cell cycle arrest, inflammation, necrosis, and senescence (Bartke et al. 

2009). 

Pathway enrichment analysis of the predicted targets of miR-142-3p revealed an 

enrichment for ILK signaling. It is important to note that this enrichment was not as significant 

as the enrichment between miR-125b and apoptosis signaling. ILK signaling is involved in a 

variety of processes within epithelial cells, including cell survival, cell proliferation, and cell 

adhesion to the extracellular matrix (Gilcrease 2007). 

To test our prediction that formaldehyde alters ILK signaling, the expression levels of 

genes involved in ILK signaling were assessed, including ITGB8 and RICTOR. Because miR-

142-3p was decreased in expression by 6 ppm formaldehyde, we anticipated its potential targets 

to show increased expression. As anticipated, ITGB8 showed significantly increased expression 
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resulting from 6 ppm formaldehyde exposure. ITGB8 has been implicated in several biological 

processes, including airway epithelial cell proliferation (Fjellbirkeland et al. 2003) and airway 

remodeling involving the extracellular matrix (Kitamura et al. 2011). One of the predicted 

targets, RICTOR, did not show increased transcript levels in formaldehyde-exposed samples. 

This finding suggests that (i) miR-142-3p may not influence RICTOR in the tested conditions, 

(ii) miR-142-3p may influence RICTOR protein levels by blocking RICTOR translation, or (iii) 

other mechanisms besides miRNA regulation may influence RICTOR expression. Some of these 

scenarios are supported in a recent study where miRNAs were computationally predicted to 

target hepatic nuclear factor 4α (HNF4α) (Ramamoorthy et al. 2012). This study found that a 

portion of the tested miRNAs successfully targeted HNF4α. In addition, some of the miRNAs 

targeted HNF4α by blocking HNF4α translation, causing the reduced expression of HNF4α 

protein while leaving transcript levels unchanged (Ramamoorthy et al. 2012). 

It is important to note that our results do not demonstrate that miR-125b directly 

decreases the expression of BAK1, CASP2, MAP2K7, and MCL1 upon exposure to 

formaldehyde, nor that miR-142-3p directly increases the expressed of ITGB8. Indeed, this 

would be difficult to demonstrate in vivo. Rather, we show that formaldehyde is associated with 

the increased expression of the miR-125b and the decreased expression of miR-142-3p, and 

decreased or increased expression of their respective target genes. However, other studies have 

confirmed some of these specific miRNA-mRNA interactions. For example, miR-125b has been 

shown to directly target BAK1 and down-regulate its expression in prostate cancer cells (Shi et 

al. 2007) and breast cancer cells (Zhou et al. 2010). Our study thereby employs bioinformatics-

based approaches to increase knowledge on the interplay between exposure responses, 

epigenetics, and signaling pathways. 

In conclusion, our study demonstrated that formaldehyde inhalation exposure 

significantly disrupts miRNA expression profiles within the nasal epithelium in vivo. Systems 

level analysis of the transcriptional targets predicted to be regulated by formaldehyde-responsive 

miR-125b and miR-142-3p revealed the highest enrichment between genes involved in apoptosis 

signaling and miR-125b. Apoptosis-related gene targets of miR-125b were functionally 

validated, as they were shown to have altered transcriptional levels after exposure to 

formaldehyde in the nasal epithelium. These results provide evidence for a relationship between 

formaldehyde exposure and altered signaling of the apoptotic machinery, likely regulated via 
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epigenetic mechanisms. These changes in apoptosis-related signaling are of high importance, as 

an inappropriate balance between cell death and survival heavily influences cellular disease state. 

Future research will compare these changes to potential formaldehyde-induced changes 

occurring in tissues collected from sites distal to the respiratory tract in vivo. These comparisons 

may provide key information related to the pathophysiological mechanisms of action of 

formaldehyde. 
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CHAPTER 3 
FORMALDEHYDE-INDUCED CHANGES IN MICRORNA SIGNALING IN THE RAT 

 
3.1 Overview 

MicroRNAs (miRNAs) are critical regulators of gene expression, yet much remains 

unknown regarding miRNA changes resulting from environmental exposures and whether they 

influence pathway signaling across various tissues and time. 

To gain knowledge on these novel topics, we set out to investigate in vivo miRNA 

responses to inhaled formaldehyde, an important air pollutant known to disrupt miRNA 

expression profiles. 

Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde (6 hours/day) for 7 

days, 28 days, or 28 days followed by a 7 day recovery. Genome-wide miRNA expression 

profiles and associated signaling pathways were assessed within the nasal respiratory mucosa, 

circulating mononuclear white blood cells (WBC), and bone marrow (BM). 

We found that miRNAs were responsive to formaldehyde exposure in the nose and WBC, 

but not the BM. A transcriptomics-based analysis was performed in the nose and WBC of the 

rats exposed for 28 days. In the nose, formaldehyde altered the expression of 42 transcripts; of 

these, 15 (36%) were computationally predicted to be regulated by formaldehyde-responsive 

miRNAs. Conversely, in the WBC, formaldehyde altered the expression of 130 transcripts; of 

these, 18 (14%) were predicted to be regulated by miRNAs. Systems-level analyses revealed that 

the transcripts regulated by miRNAs play diverse roles in cell signaling. Key players include 

dosage suppressor of mck1 homolog, meiosis-specific homologous recombination (Dmc1) and 

secreted frizzled-related protein 4 (Sfrp4) within the nose, involved in cell death signaling. In 

WBC, key players were v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, 

gamma) (Akt3) and integrin, alpha 2 (Itga2), involved in inflammation signaling. 

Our study informs critical knowledge towards the biological consequences of inhaled 

formaldehyde exposure. 
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3.2 Study Objectives 

In this study, we set out to assess the effects of formaldehyde inhalation exposure by 

examining miRNA endpoints across time and throughout multiple tissues. There is currently a 

lack of knowledge regarding how miRNAs respond to environmental toxicants over time. In 

order to fill this knowledge gap, we assessed genome-wide miRNA expression profiles in rats 

exposed to 0 or 2 ppm formaldehyde for 6 hours/day for 7 days, 28 days, or 28 days after an 

additional 7 days of recovery. We also performed a novel comparison of formaldehyde-induced 

miRNA expression changes throughout three tissues: (1) the nasal epithelium, (2) circulating 

white blood cells (WBC), and (3) the bone marrow (BM). These miRNA responses were 

integrated with formaldehyde-induced transcriptomic changes, where miRNA-mRNA 

interactions were predicted and assessed at the systems-level. Taken together, our study 

contributes critical knowledge towards the understanding of mechanisms underlying 

formaldehyde-induced health effects, as well as a broader understanding on how miRNAs 

respond as a function of time and tissue. 

 

 

3.3 Materials and Methods 

 

3.3.1 Animals 

For this study, male Fischer rats (Charles River, Wilmington, MA) were selected from 

the Lovelace Respiratory Research Institute colony. Animals were exposed, sedated, and 

euthanized using protocols approved by the Lovelace Research Institute’s animal care and use 

committee (FY10-094). Animals were approximately six to eight weeks of age and weighed 

between 150 and 250 grams. Animals were housed up to two per cage in approved housing 

chambers with hardwood chip bedding. Caging and bedding was changed two times per week. 

The animal room environment was maintained at 18-26°C and 30-70% humidity with a 12 hour 

light-dark cycle. Animals were provided unlimited access to food (2016C Harlan Global 

Certified Rodent Chow, Harlan Teklad, Madison, WI) and municipal water except during 

conditioning and inhalation exposure periods. After a two week quarantine period, animals were 

conditioned to nose-only exposure tubes for 6.5 hours/day over four conditioning sessions. 
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3.3.2 Formaldehyde Exposures 

In this experiment, male Fischer rats received nose-only inhalation exposures of 2 ppm 

formaldehyde. Three exposure durations were investigated: (1) 2 ppm formaldehyde exposure, 6 

hours/day, for 7 days (7-day group), (2) 2 ppm formaldehyde exposure, 6 hours/day, for 28 days 

(28-day group), and (3) 2 ppm formaldehyde exposure, 6 hours/day, for 28 days, with a 7 day 

recovery period following the last exposure (28-day plus recovery group). Control (unexposed) 

rats were placed in nose-only exposure tubes containing room air for the same duration. 

An exposure dose of 2 ppm formaldehyde was used, as this exposure level has been 

shown to alter gene expression profiles (Andersen et al. 2008) and DNA adduct levels (Lu et al. 

2011) in sites of direct contact in rats. Isotope labeled [13CD2]-formaldehyde was used in order to 

allow the detection of exogenously produced DNA adducts in a parallel experiment, similar to 

our previous investigations (Lu et al. 2011; Moeller et al. 2011). To generate the exposure 

conditions, deuterated/13C labeled paraformaldehyde (Cambridge Isotope Laboratories, Inc) was 

vaporized and directed through a delivery line and into a Tedlar® bag. During each of the 6 hour 

exposures, one Tedlar® bag was diluted with pre-filtered air and delivered to the inhalation 

chambers at a target formaldehyde concentration of 2 ppm. Nose-only chamber concentrations 

were monitored by collecting breathing port samples using Waters XpoSure Aldehyde Sampler 

cartridges. Cartridges were analyzed by ultraviolet high-performance liquid chromatography. For 

more detailed exposure protocol descriptions, see our previous publication (Lu et al. 2011). 

 

3.3.3 Sample Collection 

After the last exposure period (or the last recovery period for the 28-day plus recovery 

group), animals were euthanized using an intraperitoneal injection of pentobarbital-based 

euthanasia solution (Euthasol, Virbac Corp, Fort Worth, TX). Sample collection started 

immediately after the last exposure in order to parallel sacrifice and sample collection times used 

in our previous studies (Lu et al. 2011; Moeller et al. 2011). To collect nasal epithelial tissue, the 

rat skull was split with a slight bias to one side (to preserve septal mucosa) and tissue from the 

maxilloturbinate was collected and stored in RNAlater® (Qiagen, Valencia, CA, USA). Whole 

blood was collected by cardiac stick using a heparin-laced syringe, and WBC were isolated using 

Vacutainer® CPT™ cell preparation tubes (Becton Dickinson, Franklin Lakes, NJ, USA) and 

stored in TRIzol LS (Life Technologies, Grand Island, NY, USA). To collect BM cells, femurs 
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were flushed with saline and BM cells stored in RNAlater® (Qiagen). All samples were stored at 

-80°C and shipped by overnight courier on dry ice to the University of North Carolina at Chapel 

Hill for further processing. 

 

3.3.4 RNA Isolation 

The isolation of total RNA molecules was required to assess miRNA and mRNA 

expression levels associated with formaldehyde exposure in rats. Nasal epithelial tissue samples 

were disrupted and homogenized using a TissueRuptor (Qiagen) and RNA isolated using the 

miRNeasy® kit (Qiagen). For the WBC, samples were homogenized in TRIzol (Life 

Technologies) and RNA isolated according to the standard TRIzol protocol. The BM samples 

were filtered through 70-μm nylon mesh filters (Fischer Scientific, Waltham, MA, USA) to 

remove any bone fragments. Filtered bone marrow samples were then homogenized in TRIzol 

(Life Technologies) and RNA isolated according to the standard TRIzol protocol. Extracted 

RNA was quantified with a Nanodrop 1000 spectrophotometer (Thermo Scientific, Waltham, 

MA) and its integrity verified with a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), 

using both the Nano and Small RNA kits. We employed quality control to incorporate RNA 

integrity number assessment and electrophoretogram peak assessment of small RNA molecules. 

 

3.3.5 MiRNA Microarray Analysis 

To assess whether formaldehyde inhalation exposure modifies the expression levels of 

miRNAs within the nose, WBC, and BM, RNA samples were labeled and hybridized to the 

Agilent Rat miRNA Microarray, as based off miRBase v16.0. For the nose and BM samples, 

exposed and unexposed samples were assessed in biological triplicate. For the WBC samples, 

exposed samples were assessed in biological quadruplicate and unexposed samples were 

assessed in biological triplicate. Microarray results were extracted using Agilent Feature 

Extraction software. Microarray data have been submitted to National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus repository (Edgar et al. 2002) and are available 

under accession number GSE42393 (www.ncbi.nlm.nih.gov/geo). To analyze the miRNA 

microarray results, data were first normalized by quantile normalization. In the case where 

multiple microarray chips were used, batch effect was identified and removed using Partek® 

Genomics SuiteTM software (St. Louis, MO). To eliminate background noise, miRNA probes 
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with signal intensities less than the median signal across all replicates were removed. Differential 

expression was then defined as a significant difference in miRNA levels between exposed versus 

unexposed samples, where three statistical requirements were set: (i) fold change of ≥ 1.5 or ≤ - 

1.5 (average exposed versus average unexposed); (ii) p-value < 0.05 (ANOVA); and (iii) a false 

discovery rate corrected q-value < 0.1. Analysis of variance (ANOVA) p-values and q-values 

were calculated using Partek® Genomics SuiteTM software (St. Louis, MO). To control the rate of 

false positives, q-values were calculated as the minimum “positive false discovery rate” that can 

occur when identifying significant hypotheses (Storey 2003). The miRNAs that met these 

statistical requirements were identified as significantly altered at the expression level after 

exposure to formaldehyde, or formaldehyde-responsive. 

 

3.3.6 Transcript (mRNA) microarray analysis 

To assess the influence of formaldehyde exposure on gene expression levels, nose and 

WBC RNA samples from the 28-day group were assessed. Here, exposed and unexposed 

samples were assessed in biological triplicate. RNA was labeled and hybridized to the 

Affymetrix GeneChip® Rat Gene 1.0 ST Array. Microarray data have been submitted to National 

Center for Biotechnology Information (NCBI) Gene Expression Omnibus repository (Edgar et al. 

2002) and are available under accession number GSE42394 (www.ncbi.nlm.nih.gov/geo). To 

analyze the mRNA microarray results, data were first normalized by robust multi-chip average 

(Irizarry et al. 2003), and background noise was eliminated by removing mRNA probes with 

signal intensities less than the median signal across all replicates. Because the resulting mRNA 

microarray data were far more robust than the miRNA microarray data, a slightly different set of 

statistical parameters was used in this microarray analysis. Specifically, differential expression 

was defined as a significant difference in mRNA levels between exposed versus unexposed 

samples, where two statistical requirements were set: (i) fold change of ≥ 1.5 or ≤ - 1.5 (average 

exposed versus average unexposed); and (ii) p-value < 0.01 (ANOVA). The q-value filter was 

not applied in this analysis; however, a stricter p-value requirement of p < 0.01 was required to 

ensure statistical significance. The genes that met these statistical requirements were identified as 

differentially expressed upon exposure to formaldehyde. 
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3.3.7 Computationally Predicting miRNA Transcriptional Targets 

In order to gain further understanding of potential interactions between formaldehyde-

responsive miRNAs and mRNAs, mRNA targets of the formaldehyde-responsive miRNAs were 

predicted in silico. Here, TargetScanHuman algorithms (release 6.2) were employed to identify 

potential matches between 3’ untranslated mRNA regions and miRNA seed sequences 

(Whitehead 2012). These algorithms are frequently updated to ensure prediction of targets above 

the background of false-positive predictions (Grimson et al. 2007). The resulting predicted 

miRNA-mRNA interactions were filtered for total context plus scores < - 0.1. The total context 

plus score controlled for factors influencing miRNA targeting, including miRNA binding site 

type and location, local adenine and uracil content, supplementary pairing, target site abundance, 

and seed-pairing stability (Garcia et al. 2011). The list of predicted mRNA targets of 

formaldehyde-responsive miRNAs was then compared to the mRNAs identified as differentially 

expressed by formaldehyde exposure. mRNAs that were both measured as differentially 

expressed by formaldehyde and predicted to be targeted by formaldehyde-responsive miRNAs 

were identified and referred to as the predicted miRNA-mRNA interactions resulting from 

formaldehyde exposure. 

 

3.3.8 Systems-Level Analysis of Predicted miRNA-mRNA Interactions 

Network analysis was performed to understand the systems-level response to 

formaldehyde inhalation exposure possibly mediated via miRNAs. For this analysis, the mRNAs 

differentially expressed by formaldehyde and also predicted to be regulated by formaldehyde-

responsive miRNAs were overlaid onto a global interaction network. Here, networks were 

algorithmically constructed based on connectivity, as enabled through Ingenuity Pathway 

Analysis (Ingenuity Systems®, Redwood City, CA). Significance for each constructed network 

was evaluated based off a modified Fisher’s exact test (Calvano et al. 2005), where networks 

containing known interactions between formaldehyde-associated proteins and associated signals 

were mapped. Functional enrichment analysis was performed by querying the networks for over-

represented pathways involved in diseases and disorders or molecular and cellular functions. 

Over-represented pathways were defined as pathways than contain more targets than expected by 

random chance, as calculated using the right-tailed Fisher’s Exact Test. Here, functions with 
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enrichment p-values < 0.005 were considered significantly enriched within the constructed 

networks. 

 

3.3.9 Confirming miRNA Microarray Results using RT-PCR 

To confirm the miRNA microarray results, formaldehyde-induced changes in miRNA 

expression were validated using real-time reverse transcriptase polymerase chain reaction (RT-

PCR). The same sample replicates used for the microarray analysis were used for RT-PCR, 

plated in technical triplicate. TaqMan® MicroRNA Primer Assays for hsa-miR-31 (ID 000185) 

and the U6 housekeeping miRNA (ID 001973) were used in conjunction with the TaqMan® 

Small RNA Assays PCR kit (Applied Biosystems, Carlsbad, CA). The MyCyler Thermal Cycler 

(Bio-Rad, Hercules, CA) was used for the reverse transcription step, and the Lightcycler 480 

(Roche, Indianapolis, IN) was used for the real-time step. The resulting RT-PCR cycle times 

were normalized against the housekeeping miRNA, and fold changes in expression were 

calculated based off delta delta cycle time values. Statistical significance of the difference in 

miRNA expression levels between the formaldehyde-exposed and unexposed samples were 

calculated using ANOVA (Partek®). 

 

3.3.10 Confirming mRNA Microarray Results using RT-PCR 

To verify the mRNA microarray analysis results for the nose of the 28-day rat group, RT-

PCR was performed at the gene expression level. The same sample replicates used for the 

microarray analysis were used for RT-PCR, plated in technical triplicate. QuantiTect Primer 

Assays were used in conjunction with QuantiTect SYBR® Green PCR kits (Qiagen) and the 

Stratagene Mx3005P QPCR System (Agilent Technologies). Specifically, chloride channel 

calcium activated 3 (Clca3) (Cat. No. QT01570870), C-type lectin domain family 11, member a 

(Clec11a) (Cat. No. QT00407043), dosage suppressor of mck1 homolog, meiosis-specific 

homologous recombination (Dmc1) (Cat. No. QT01627241), and secreted frizzled-related 

protein 4 (Sfrp4) (Cat. No. QT00179830) were evaluated for changes in gene expression levels 

induced by formaldehyde exposure. Resulting RT-PCR cycle times were normalized against the 

β-actin housekeeping gene, and fold changes in expression were calculated based off delta delta 

cycle time values. Statistical significance comparing the expression levels between exposed and 

unexposed samples was calculated using ANOVA (Partek®). 
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3.4 Results 

 

3.4.1 Study Design 

Our study set out to investigate formaldehyde-induced changes in miRNA expression 

profiles at three different exposure times and three different tissues. Specifically, male Fischer 

rats received nose-only inhalation exposures of 2 ppm formaldehyde (6 hours/day) for either (1) 

7 days, (2) 28 days, or (3) 28 days followed by a 7 day recovery (Figure 12). Control 

(unexposed) rats were placed in nose-only exposure tubes containing room air for the same 

duration. In order to examine the effects of formaldehyde across multiple tissues, samples were 

collected from (1) the nasal epithelium, (2) circulating mononuclear WBC, and (3) BM cells 

immediately after the last treatment. 

 

 
Figure 12: Study design. Responses to formaldehyde were evaluated across three exposure 
durations, where rats were exposed to 2 ppm formaldehyde (6 hours/day) for either: (1) 7 
days, (2) 28 days, or (3) 28 days followed by a 7 day recovery. Control (unexposed) rats 
were treated using matched conditions. 

 

3.4.2 Formaldehyde Alters miRNA Expression in the Nose and WBC 

In order to determine whether formaldehyde inhalation exposure modifies the expression 

levels of miRNAs within the rat nose, WBC, and BM, small RNAs from these samples were 

assessed using the Agilent Rat miRNA Microarray, developed using miRBase v16.0. This 

recently updated array measures the expression levels of 695 rat miRNAs. Using stringent 

statistical requirements (fold change ≥ 1.5 or ≤ - 1.5, p-value < 0.05, q-value < 0.10), microarray 

analysis revealed that formaldehyde exposure altered the expression of 84, 59, and 0 miRNAs in 

the nose in the 7-day, 28-day, and 28-day plus recovery groups, respectively. Together, these 

represent 108 formaldehyde-responsive miRNAs in the nose. In the WBC, formaldehyde 

exposure altered the expression of 31, 8, and 3 miRNAs in the 7-day, 28-day, and 28-day plus 

recovery groups, respectively. These represent 40 total formaldehyde-responsive miRNAs in the 
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WBC. In the BM, no miRNAs were identified as significantly altered at the expressed level 

using our statistical filters (Figure 13, Supplementary Table 11). 

 

 
Figure 13: Distribution of formaldehyde-responsive miRNAs across 
three exposure conditions and three tissues in the rat. Formaldehyde was 
found to significantly disrupt miRNA expression profiles in the nose and 
WBC, but not the BM. More miRNAs showed altered expression after 7 
days in comparison to 28 days of exposure. 

 

3.4.3 Formaldehyde-Responsive miRNAs are Tissue-Specific 

Comparing the formaldehyde-responsive miRNAs across the different tissues reveals 

largely distinct miRNA responses. To specify, out of a total 108 formaldehyde-responsive 

miRNAs within the nose, only 10 were also responsive within the WBC (Figure 14A,B). 

Furthermore, most of these overlapping miRNAs displayed different directions of altered 

expression. 

 

3.4.4 Formaldehyde-Responsive miRNA Expression is Largely Sustained in the Nose 

Comparing the formaldehyde-responsive miRNAs across the various exposure conditions 

reveals that many miRNAs show similar expression patterns in the nose, but not in the WBC 

(Figure 14A,C). To specify, 35 miRNAs were altered at the expression level in the nose in both 

the 7-day and 28-day exposure groups. Furthermore, 34 of these 35 miRNAs showed altered 

expression in the same direction. Seven of the 34 miRNAs with sustained decreased expression 
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over time, let-7a, let-7c, let-7f, miR-10b, miR-126, miR-21, and miR-23a, have previously been 

shown to be significantly down-regulated in expression in cultured lung cells exposed to 1 ppm 

formaldehyde (Rager et al. 2011b). One of the 34 miRNAs with sustained decreased expression 

over time, miR-203, has also previously been shown to be significantly decreased in expression 

within the nasal epithelium of nonhuman primates exposed to 2 and 6 ppm formaldehyde across 

two days. It is important to note that these miRNA expression changes did not persist in the nose 

after 7 days of recovery. 

 

 
Figure 14: Formaldehyde-responsive miRNAs throughout the nose and WBC. (A) Formaldehyde-
responsive miRNAs are largely tissue-specific. Significantly responsive miRNAs are shaded according 
to fold change value (FC = Exposed / Unexposed). (B) Few formaldehyde-responsive miRNAs overlap 
between the nose and WBC. (C) Formaldehyde-responsive miRNAs are largely sustained over time 
in the nose but not the WBC. Overlapping miRNAs are enumerated in the centers of the venn diagrams 
and the number of overlapping miRNAs with the same direction of altered expression is shown within 
parentheses. 

 

Formaldehyde-responsive miRNAs were less sustained over time within the WBC. To 

detail, only two miRNAs were significantly altered at the expression level when comparing 

between the 7-day, 28-day, and 28-day plus recovery groups (Figure 14C). The first miRNA, 

miR-326, showed increased expression in both the 7-day and 28-day groups. The second 

miRNA, miR-212, showed decreased expression in both the 7-day and 28-day plus recovery 
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groups. It is important to note that miR-212 also showed decreased expression (FC = -2.34, p-

value = 0.008, q-value = 0.155) in formaldehyde-exposed WBC samples from the 28-day group, 

but it did not pass the stringent multiple test correction requirement. 

 

3.4.5 Formaldehyde Causes Tissue-Specific Gene Expression Changes 

In order to assess the influence of formaldehyde inhalation exposure at the gene 

expression level, a transcriptomics-based analysis was performed using the nose and WBC 

samples from the 28-day rat group. This additional analysis was performed on the 28-day group 

in order to understand the genomic effects resulting from longer exposure conditions. Only the 

nose and WBC samples were assessed at the gene expression level, as no changes in miRNA 

expression were detected in the BM, and our ultimate goal was to gain insight into possible 

miRNA-mRNA interactions resulting from formaldehyde exposure. 

Here, transcript levels were measured using the Affymetrix GeneChip® Rat Gene 1.0 ST 

Array, which assesses the expression levels of 27,342 genes. Comparing the gene expression 

levels within exposed versus unexposed samples revealed that formaldehyde inhalation exposure 

caused the differential expression of 42 genes in the nose, 3 of which were up-regulated and 39 

were down-regulated in expression (Figure 15A, Supplementary Table 12). In the WBC, 130 

genes were differentially expressed, where 123 were up-regulated and 7 were down-regulated in 

expression (Figure 15B, Supplementary Table 13). Of the genes differentially expressed by 

formaldehyde in the nose and WBC, only two overlapped between the two tissues, and these 

genes showed different directions of differential expression associated with formaldehyde 

(Figure 15C). This analysis, therefore, shows that the transcriptomic changes induced by 

formaldehyde inhalation exposure are tissue-specific. 
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Figure 15: Gene expression changes induced by formaldehyde exposure in the rat nose and WBC of 
the 28-day group. (A) Formaldehyde changes the expression levels of 42 transcripts in the nose. (B) 
Formaldehyde changes the expression levels of 130 transcripts in the WBC. The relative, z-score 
normalized expression levels of messenger RNAs (mRNAs) are displayed. CT refers to unexposed 
control samples, and Exp refers to formaldehyde-exposed samples. (C) Transcriptional changes 
induced by formaldehyde exposure are tissue-specific. The number of differentially expressed mRNAs 
for each tissue is shown, where overlapping mRNAs are enumerated in the center of the venn diagram 
and the number of overlapping mRNAs differentially expressed in the same direction is shown within 
parentheses. 

 

3.4.6 Formaldehyde-Responsive miRNAs May Mediate a Fraction of Transcriptional 
Effects 

To gain insight into the potential impact miRNAs may have on gene expression, 

interactions between formaldehyde-responsive miRNAs and differentially expressed transcripts 

were computationally predicted based on sequence matches between 3’ untranslated mRNA 

regions and miRNA seed sequences. Here, 15 of the 42 (36%) differentially expressed transcripts 

in the nose were predicted to be regulated by 14 miRNAs in the 28-day group (Figure 15A). In 

the WBC, on the other hand, 18 of the 130 (14%) differentially expressed transcripts were 

predicted to be regulated by 3 miRNAs (Figure 15B). It is important to note that the 

computational miRNA database did not recognize all of the formaldehyde-responsive miRNAs, 

leaving some potential interactions unexamined. Still, these predictions suggest that the 

magnitude of miRNA-mediated gene expression regulation may differ between tissues. The 
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predicted miRNA-mRNA interactions resulting from formaldehyde exposure are illustrated in 

more detail within Figure 16. 

 

3.4.7 Systems-Level Analysis Reveals miRNA-Mediated Signaling of Critical Pathways 

A systems biology-based analysis was performed to understand formaldehyde-associated 

pathways and cellular functions that are possibly mediated by miRNAs. For this network 

analysis, the proteins encoded by transcripts differentially expressed by formaldehyde and also 

predicted to be regulated by formaldehyde-responsive miRNAs (n=15 for the nose, n=18 for the 

WBC) were mapped onto molecular networks (Supplementary Table 14). Within these 

significant networks (p < 0.001), signaling of proteins involved in certain molecular/cellular 

functions and diseases was enriched (Table 3). Key players involved in the enriched functions 

and diseases include DMC1 and SFRP4 within the nose, involved in signaling related to cancer, 

cell death and survival, cell development, and cell growth. In WBC, key players include AKT3 

and ITGA2, involved in signaling related to cell growth, cell movement, and inflammation. 

While the identified gene sets are small, p-values are adjusted for size and represent enriched 

functions. All the constructed networks were combined for each tissue, and only molecules 

required to maintain network structure are shown illustrating important miRNA-mediated 

signaling within the nose and WBC (Figure 16). 

In the nose, key players involved in multiple enriched signaling patterns include proteins 

encoded by dosage suppressor of mck1 homolog, meiosis-specific homologous recombination 

(Dmc1) and secreted frizzled-related protein 4 (Sfrp4). These two transcripts, predicted to be 

regulated by formaldehyde-responsive miRNAs, are both involved in signaling related to cell 

growth and proliferation and cell death and survival, among others (Table 3). Also within the 

miRNA-mediated signaling in the nose are signaling interactions involving the transcription 

factor, hepatocyte nuclear factor 4, alpha (HNF4A). 

In WBC, key players involved in multiple enriched signaling patterns include proteins 

encoded by v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma) (Akt3) 

and integrin, alpha 2 (Itga2). These two transcripts, predicted to be regulated by formaldehyde-

responsive miRNAs, are both involved in signaling related to inflammatory response, among 

others (Table 3). 
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Table 3: Functions and diseases that are enriched within the miRNA-mediated signaling networks 
associated with formaldehyde exposure in the (A) nose and (B) WBC of the rat 28-day group. 

Function or Disease p-value Proteins Encoded by Formaldehyde-Associated Transcripts 
(A) Nose 

Cellular Development 0.0005 CLEC7A, CLEC11A, DMC1, EHD4, NOV, OSMR, SFRP4 

Cellular Growth and Proliferation 0.0006 CLEC7A, CLEC11A, DMC1, EHD4, GBP2, NOV, OSMR, 
SFRP4 

Cell Cycle 0.0008 DMC1, GBP2 
Cellular Movement 0.0008 CLEC11A, NOV, SFRP4 
Dermatological Diseases and Conditions 0.0008 CLEC7A,CLEC11A,GBP2, OSMR 
Developmental Disorder 0.0008 HS3ST1, MID1, OSMR 
DNA Replication, Recombination, and 
Repair 0.0008 DMC1 

Hereditary Disorder 0.0008 CLEC7A, MID1, OSMR 
Hypersensitivity Response 0.0008 CLEC11A 
Infectious Disease 0.0008 CLEC7A, CLEC11A 
Inflammatory Response 0.0008 CLEC7A, CLEC11A 
Lipid Metabolism 0.0008 CLEC7A, CLEC11A, FAR1 
Nucleic Acid Metabolism 0.0008 GBP2, FAR1 
Small Molecule Biochemistry 0.0008 CLEC7A, CLEC11A, FAR1, GBP2, SFRP4 
Cell Morphology 0.0016 CLEC11A, DMC1, EHD4, MID1, NOV, OSMR 
Metabolic Disease 0.0016 NOV, OSMR 
Molecular Transport 0.0023 CLEC7A, CLEC11A, SFRP4 
Cancer 0.0024 CLEC11A, DMC1, EHD4, GBP2, NOV, SFRP4 
Cell-To-Cell Signaling and Interaction 0.0024 CLEC7A,CLEC11A,GBP2, NOV 
Hematological Disease 0.0024 CLEC11A 
Cell Death and Survival 0.0032 CLEC11A, DMC1, EHD4, NOV, SFRP4 
Cell Signaling 0.0040 GBP2 
Cardiovascular Disease 0.0048 NOV 

(B) WBC 
Cellular Development 0.0010 AKT3, ITGA2 
Developmental Disorder 0.0010 ITGA2 
Respiratory Disease 0.0010 ITGA2 
Cellular Growth and Proliferation 0.0020 AKT3, ITGA2, SKAP2, TES 
Neurological Disease 0.0020 AKT3 
Cell Morphology 0.0030 AKT3, DNAJC3, ITGA2 
Small Molecule Biochemistry 0.0030 AKT3, DNAJC3, TPK1 
Inflammatory Response 0.0030 AKT3, ITGA2 
Nucleic Acid Metabolism 0.0030 AKT3, TPK1 
Cell Signaling 0.0030 MUC20 
Cell-To-Cell Signaling and Interaction 0.0030 ITGA2 
Vitamin and Mineral Metabolism 0.0030 TPK1 
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Function or Disease p-value Proteins Encoded by Formaldehyde-Associated Transcripts 
Cellular Movement 0.0037 AKT3, ITGA2 
Gene Expression 0.0040 ITGA2 
 

 

 
Figure 16: Network interactomes associated with formaldehyde exposure in the rat 28-day 
group. (A) miRNA-mediated signaling in the nose involves cell death and survival. (B) 
miRNA-mediated signaling in the WBC involves inflammatory response. Genes that have 
formaldehyde-induced increased expression are shown in blue, and genes that have decreased 
expression are shown in green. MiRNAs that have formaldehyde-induced increased expression are 
shown in red, and miRNAs that have decreased expression are shown in yellow. Proteins 
associated with the network signaling are white. 
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3.4.8 Microarray Results were Confirmed using RT-PCR 

To confirm the microarray analyses, formaldehyde-induced changes in miRNA and 

transcript expression levels were validated using RT-PCR. To specify, RT-PCR was performed 

on miR-31, the miRNA showing the greatest increase in expression in the nose of the 28-day 

group and also an increase in expression in the nose of the 7-day group. Supporting the 

microarray findings, miR-31 was measured as significantly increased in expression in the 

formaldehyde-exposed nose samples of the 7-day and 28-day groups through RT-PCR (Figure 

17). A subset of genes differentially expressed by formaldehyde in the nose of the 28-day group 

was also tested using RT-PCR. Specifically, Dmc1 and Clca3 were tested, as they showed the 

greatest increase and decrease in expression resulting from exposure, respectively. Two other 

genes, Clec11a and Sfrp4, were evaluated using RT-PCR in order to test genes that were not as 

drastically altered at the expression level, but still identified as differentially expressed. All of the 

tested genes showed significant formaldehyde-induced changes in expression that aligned with 

the microarray findings (Figure 17). 

 

 
Figure 17: Microarray results align with RT-PCR results in the rat nose. 
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3.5 Discussion 

This study employed a multi-tiered approach to enable an understanding of the genome-

wide miRNA responses to an important environmental toxicant and relate these to alterations in 

transcription-based signaling pathways. Changes in miRNA expression were investigated over a 

time series through the evaluation of various exposure durations. Changes in miRNA expression 

were also evaluated over a spatial distribution through the evaluation of various sites across the 

body. The environmental air pollutant formaldehyde was selected as the toxicant for this 

investigation as it is currently ranked as a high priority contaminant of concern and our previous 

study showed that formaldehyde significantly disrupts miRNA expression profiles in vitro 

(Rager et al. 2011b). For the current study, formaldehyde was further evaluated in vivo, where 

rats received nose-only inhalation exposures of 2 ppm formaldehyde 6 hours/day for either 7 

days (7-day group), 28 days (28-day group), or 28 days followed by a 7 day recovery (28-day 

plus recovery group). Control (unexposed) rats were treated using matched conditions. 

This investigation is the first to simultaneously examine exposure-induced perturbations 

in genome-wide miRNA expression throughout the nose, circulating WBC, and BM. The nose 

was the site of greatest change in miRNA expression profiles (n=108 miRNAs) resulting from 

formaldehyde inhalation exposure followed by the WBC (n=40 miRNAs) after 7 and 28 days of 

exposure. There were no miRNAs that showed significantly altered expression in the BM using 

the statistical parameters of FC ≥ ± 1.5, p-value < 0.05, and q-value < 0.10 (exposed versus 

unexposed). These findings suggest that cells in direct contact with formaldehyde exposure 

display more drastic responses at the miRNA-level than cells distant from the exposure contact 

sites immediately after exposure. 

It is noteworthy that both the nose and WBC showed a higher number of formaldehyde-

responsive miRNAs after 7 days of exposure in comparison to 28 days of exposure, suggesting 

that both these tissues may display a degree of adaptive or compensatory responses to 2 ppm 

formaldehyde exposure over time. This adaptive trend coincides with a previous genomics study 

showing that 2 ppm formaldehyde inhalation exposure significantly disrupts the expression of 

more genes after 5 days of exposure than 15 days of exposure in the rat nasal epithelium 

(Andersen et al. 2008). It is important to note that this adaptive trend in miRNA expression may 

be dose-dependent and not apparent at higher concentrations. For example, 6 ppm formaldehyde 

exposure has been shown to cause sustained alterations in gene expression (Andersen et al. 2008) 
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and increases in cell proliferation across time within the rat nasal epithelium (Monticello et al. 

1991). Future studies will evaluate how miRNA expression levels change throughout time in 

higher exposure conditions. 

The degree to which formaldehyde-responsive miRNAs are sustained across the exposure 

time points within the rat nose is substantial. More specifically, 34 of the 59 (58%) 

formaldehyde-responsive miRNAs in the nose of the 28-day group were also altered in the same 

direction in the 7-day group. Many of these miRNAs with sustained expression alterations have 

also been shown to be altered in cultured human lung cells exposed to formaldehyde (Rager et al. 

2011b). Specifically, let-7a, let-7c, let-7f, miR-10b, miR-126, miR-21, and miR-23a were all 

significantly decreased in expression in cultured lung cells exposed to formaldehyde (Rager et al. 

2011b) and in the nose of rats exposed to formaldehyde for 7 and 28 days. Of these miRNAs, let-

7a, let-7c, let-7f, and miR-10b are also decreased in expression in nasopharyngeal carcinoma 

tissue in comparison to healthy tissue (Li et al. 2011). These common patterns of miRNA 

expression associated with both exposure and disease could represent etiologic relationships 

which warrant further investigation. 

In contrast to the nose, the WBC showed few miRNAs with shared expression patterns 

across the time points. The only miRNA common to the 7 day and 28-day plus recovery groups 

was miR-212, which showed significantly decreased expression in WBC. This miRNA was also 

decreased in expression in the 28-day group but was not statistically significant. Although the 

function of miR-212 within circulating WBC is unknown, in lung cancer cells miR-212 plays an 

important role in cell death, where inhibition of miR-212 has been shown to decrease apoptosis 

involving the tumor necrosis factor-related apoptosis-inducing ligand (Incoronato et al. 2010). 

One of the goals of this study was to compare formaldehyde-altered miRNA expression 

to transcript levels in order to determine the relationship between these two genomic events. To 

achieve this goal, we next performed a genome-wide mRNA expression analysis in the nose and 

WBC of the 28-day group. Gene expression analysis was not performed in the BM, as miRNA 

expression levels within the BM were not significantly altered by formaldehyde. Within the 

nose, we found that formaldehyde exposure caused the differential expression of 42 genes. It is 

not surprising that many of these genes have previously been identified as differentially 

expressed by formaldehyde exposure. For example, C-type lectin domain family 11, member a 

(Clec11a), midline 1 (Mid1), phospholipase A2, group IVA (cytosolic, calcium-dependent) 
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(Pla2g4a), and schlafen 2 (Slfn2) expression levels were identified here as well as in a previous 

study evaluating formaldehyde-induced changes in the rat nasal epithelium (Thomas et al. 2007). 

Within the WBC of the rats exposed for 28 days, 130 genes were differentially expressed 

by formaldehyde exposure. This transcriptomic response was unexpected, as this trend was 

reversed at the miRNA-level, where fewer miRNAs were altered by formaldehyde in the WBC 

in comparison to the nose. These data suggest that other transcriptional regulators, for example, 

DNA methylation and histone modifications (Cedar et al. 2009), likely play a role in 

formaldehyde-induced genomic response. 

There are very few studies that have evaluated the effects of formaldehyde inhalation 

exposure on gene expression within blood. It has been shown that the expression levels of six 

genes in human whole blood samples correlate with formaldehyde exposure dose, as evaluated 

using urinary concentrations of a formaldehyde adduct, thiazolidine-4-carboxylate  (Li et al. 

2007). Contrasting this finding, another study found that formaldehyde inhalation exposure of up 

to 0.7 ppm for 5 days (4 hours/day) did not cause significant changes in gene expression patterns 

within the blood of humans (Zeller et al. 2011). Our study is the first to evaluate the 

transcriptomic effects of formaldehyde inhalation exposure within the blood of rodents.  

A previous rodent study evaluated formaldehyde’s effect on blood at the proteomics-

level, where rats were exposed to 0, 5, or 10 ppm formaldehyde for two weeks at 6 hours/day 

and 32 plasma proteins were identified as potential biomarkers of exposure (Im et al. 2006). This 

study also identified two cytokines with modified levels associated with formaldehyde inhalation 

exposure, suggesting that formaldehyde induces an inflammatory effect within the blood (Im et 

al. 2006). None of these proteins were encoded by genes we identified as differentially expressed 

in the WBC. However, we did identify other genes with altered expression in the WBC that play 

a role in inflammation. To date, there is a lack of studies with consistent findings regarding 

formaldehyde’s influence on gene expression and protein levels within circulating blood, making 

our study’s findings critical to elucidating the systemic effects of formaldehyde inhalation 

exposure. 

Realizing that miRNAs are not the only regulators of gene expression in the cell, we set 

out to predict which of the formaldehyde-induced transcriptional changes may be attributable to 

the miRNAs themselves. The aim of this analysis was to determine potential miRNA-mRNA 

interactions that occur within the nose and WBC upon exposure to formaldehyde. For this 
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analysis, interactions between formaldehyde-responsive miRNAs and differentially expressed 

transcripts were computationally predicted based on seed match-based algorithms in the nose and 

WBC of the 28-day group. It is important to note that some rat miRNAs and transcripts were not 

recognized by the computational prediction database, and as databases become more populated 

with more species-specific information, our ability to perform such analyses will improve. 

Taking this limitation into account, we predicted that 15 of the 42 (36%) differentially expressed 

transcripts were predicted to be regulated by formaldehyde-responsive miRNAs in the nose. In 

the WBC, 18 of the 130 (14%) differentially expressed transcripts were predicted to be regulated 

by formaldehyde-responsive miRNAs. These findings suggest that the extent of miRNA-

mediated control may differ between tissues, and that other mechanisms likely contribute to the 

formaldehyde-induced genomic response. 

A systems biology-based analysis was performed to identify formaldehyde-associated 

pathways and cellular functions that are likely influenced by miRNAs within the rat nose and 

WBC. For this systems-level analysis, molecular networks were constructed of proteins encoded 

by the differentially expressed transcripts predicted to be regulated by formaldehyde-responsive 

miRNAs. Specifically, the 15 transcripts predicted to be regulated by miRNAs in the nose, and 

the 18 transcripts predicted to be regulated by miRNAs in the WBC, were used to construct 

molecular signaling networks. 

Within the resulting networks, key players involved in multiple enriched functional 

signaling patterns were identified in the miRNA-mediated signaling in the nose and WBC. 

Within the nose, enriched cell proliferation and cell death-related signaling involving the key 

players, DMC1 and SFRP4, was present. For example, DMC1 is essential for meiotic 

recombination, where targeted Dmc1 disruption causes apoptosis (Yoshida et al. 1998). SFRP4 

is a secreted-type WNT signaling inhibitor which plays an important role in the regulation of cell 

proliferation and cell death (Katoh et al. 2007). The enrichment for cell proliferation and cell 

death-related signaling in the nose coincides with previous studies showing that formaldehyde 

inhalation exposure causes cell death and cytotoxicity-induced cell proliferation (Monticello et 

al. 1991) and altered genomic signaling related to cell proliferation and apoptosis (Andersen et 

al. 2010; Hester et al. 2003) in the rat nasal epithelium. Results of the network analysis highlight 

the role of the transcription factor, HNF4A, within miRNA-mediated signaling in the nose. 
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Interestingly, this transcription factor has previously been implicated in the response of lung cells 

exposed to air pollutant mixtures containing formaldehyde (Rager et al. 2011a). 

The miRNA-mediated signaling in the WBC involved the key players AKT3 and ITGA2, 

which are both related to inflammation signaling. To elaborate, AKT3 is involved in 

inflammation and cytokine production (Wang et al. 2012), and ITGA2 is involved in 

inflammation and platelet aggregation (Jirouskova et al. 2007). Validating our computational 

predictions, miR-150 has been shown to suppress Akt3 expression in the mouse lung (Wang et 

al. 2012). In addition to miRNAs mediating inflammation-related gene expression, the altered 

signaling of miRNAs in the WBC may be a secondary effect associated with formaldehyde-

induced inflammation. The expression levels of miRNAs have been shown to be altered under 

conditions of inflammation, including in the WBC of human subjects exposed to 

lipopolysaccharides (Schmidt et al. 2009), as well as in response to activation of antiviral 

signaling proteins (Goncharova et al. 2010). As previously discussed, formaldehyde’s ability to 

influence inflammatory-related proteins within the blood has been shown in one study (Im et al. 

2006), but this response is not well characterized. Future research should investigate the 

relationship of inflammatory response pathways as mediators of formaldehyde-induced miRNA 

change. 

Taken together this study advances the growing body of knowledge on miRNAs by 

evaluating environmental exposure-induced changes in miRNA expression and relating these 

changes to gene expression regulation and cell signaling. We find that formaldehyde inhalation 

exposure significantly disrupts miRNA expression profiles within the rat nose and WBC, but not 

within the BM. While we recognize that miRNAs are but one regulator of gene expression, this 

finding could inform our understanding of diseases associated with formaldehyde. We also find 

that formaldehyde-induced changes in miRNA and transcript expression are largely tissue-

specific, where there is minimal overlap between formaldehyde-responsive miRNAs or 

transcripts in the nose compared to WBC. In addition, a systems biology-based analysis of the 

miRNA-mediated transcriptional changes reveals that formaldehyde-responsive miRNAs may 

mediate important pathways involved in critical cell functions, including cell death in the nose 

and inflammation in the WBC. These results increase the understanding of mechanisms and 

biological pathways underlying formaldehyde-induced effects, and also broaden our knowledge 

on how miRNAs respond across time and in different tissues. 
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DISCUSSION AND CONCLUSIONS 
 

Understanding the biological impacts upon exposure to formaldehyde via inhalation 

exposure is crucial in order to effectively promote global public health. Formaldehyde is a 

ubiquitous air pollutant present throughout indoor and outdoor environments, thus it is 

imperative to understand how it influences human health and identify which target tissues are 

impacted upon exposure. The studies described within the three chapters contribute meaningful 

findings to the overall field of toxicology, as they are the first to: (1) investigate formaldehyde’s 

effects on miRNA expression profiles, (2) relate formaldehyde-altered miRNAs to critical 

biological signaling pathways, and (3) compare and contrast epigenomic responses to an air 

toxicant throughout multiple regions of the body across multiple exposure durations. Together, 

these findings contribute novel science to the knowledge of mechanisms and biological pathways 

underlying formaldehyde-induced effects. 

 

MiRNAs are Key Responders to Formaldehyde in Direct Target Tissues 

A common theme throughout this dissertation is the replicated finding that gaseous 

formaldehyde exposure significantly disrupts miRNA expression profiles in direct target tissues, 

regardless of the species, exposure level, and exposure duration investigated. In the first chapter, 

we identified 89 miRNAs with significantly decreased expression upon exposure to 1 ppm 

formaldehyde in human lung epithelial cells. The research detailed in the second chapter 

revealed 3 and 13 miRNAs significantly differentially expressed by 2 and 6 ppm formaldehyde 

exposure, respectively, in nonhuman primate nasal epithelial tissue. Within the third chapter, we 

identified 84 and 59 miRNAs with significant changes in expression resulting from 7 and 28 

days of 2 ppm formaldehyde exposure, respectively, in rodent nasal epithelial tissue. Comparing 

these formaldehyde-responsive miRNAs across species reveals that 28 miRNAs are altered at the 

expression level in direct target tissues in at least two of the species investigated (Figure 18).  
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Figure 18: 28 miRNAs that were significantly altered at the expression level within direct 
target tissues by formaldehyde exposure in at least two of the three models tested. These 
miRNAs represent critical epigenetic responders to formaldehyde exposure that persist across all 
three evaluated model systems. 

 

 Many of the 28 commonly altered miRNAs have known relationships to disease. For 

instance, nine of the 28 formaldehyde-responsive miRNAs have also been identified to be 

dysregulated in nasopharyngeal carcinoma. To specify, let-7a, let-7b, let-7c, let-7f, miR-10b, and 

miR-203 are all decreased in expression in nasopharyngeal carcinoma tissue (Li et al. 2011; 

Wong et al. 2012) and also show decreased expression after formaldehyde exposure.  

Additionally, miR-106b, miR-182, and miR-9* are all increased in expression in nasopharyngeal 

carcinoma tissue (Wong et al. 2012) and also show increased expression upon exposure to 

formaldehyde. Although the exact functions of these formaldehyde-altered miRNAs that are 
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dysregulated in nasal cancer are currently unknown, some miRNAs’ functions are beginning to 

be elucidated. For instance, the disruption of let-7 family members is known to a cause a less 

differentiated cellular state and contribute to the development of cancer (Roush et al. 2008). The 

increased expression of miR-106b has also been shown to contribute to tumor cell development 

by promoting cell cycle progression and modulating the function of cell cycle checkpoints 

(Ivanovska et al. 2008). 

The 28 consistently responsive miRNAs are of high interest, as these molecules could 

represent future targets for therapeutic strategies. For example, the induction of miR-126 

expression has been implicated as a treatment strategy for small cell lung cancer (Miko et al. 

2011). This miRNA is commonly found at decreased expression levels in small cell lung cancer 

cells, but when overexpressed, miR-126 inhibits cancer cell proliferation (Miko et al. 2011). In 

our studies, we found that miR-126 was significantly decreased in expression by formaldehyde 

in human lung cells and rat nasal tissue, paralleling the expression profile evident in small cell 

lung cancer. Our studies thereby support miRNAs as key responders of formaldehyde exposure 

that may play a role in disease progression, regardless of species. 

 

MiRNAs Respond in a Tissue Type-Specific Manner 

The in vivo comparison of miRNA expression profiles across tissues revealed that 

miRNA responses to formaldehyde exposure are largely tissue-specific. As detailed in chapter 

three, miRNA expression profiles were drastically altered within the rodent nasal epithelium, a 

region in direct contact with inhaled formaldehyde. Circulating mononuclear white blood cells 

also showed altered miRNA expression patterns, but to a lesser extent than in the nose. After 7 

days of exposure, 84 miRNAs were modified at the expression level in the nose, while 31 were 

modified in the WBC. Additionally, 28 days of formaldehyde exposure disrupted the expression 

levels of 59 miRNAs in the nose and 8 miRNAs in the WBC. Comparing the formaldehyde-

responsive miRNAs in the nose to the white blood cells revealed only three miRNAs with 

differential expression in the same direction across both tissues, providing further evidence that 

formaldehyde alters miRNA expression levels in a highly tissue-dependent manner. 

Of high interest, no miRNAs were identified as significantly responsive to formaldehyde 

exposure within the bone marrow, a region that is distal to tissues directly contacting inhaled 
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formaldehyde. These results are the first to reveal that, under the tested conditions, the bone 

marrow does not respond to inhaled formaldehyde at the miRNA level within the rodent model.  

 

Formaldehyde-Responsive miRNAs Regulate Genes Involved in Critical Pathways 

To gain insights into the mechanistic consequences of formaldehyde-induced changes in 

miRNA expression profiles, all three studies employed a systems biology strategy to evaluate 

putative miRNA-mediated signaling disruptions. All studies performed functional enrichment 

analyses by querying the miRNA-mediated network signaling likely modified by formaldehyde 

for known associations to cellular function and disease, and in chapters 2 and 3 these were 

functionally validated. It is notable that many of the enriched functions overlapped between each 

species/tissue analysis (Figure 19). Strikingly, four of the same functions were identified as 

enriched across all the species/tissues, namely, cellular development, cellular growth and 

proliferation, cellular movement, and small molecule biochemistry. Also of note was the 

enrichment for inflammatory response and cancer, present in most of the putative miRNA-

mediated signaling responses. These results suggest that despite potential differences between 

species or tissues, formaldehyde-associated changes in biological pathway signaling related to 

similar biological functions remains a common theme. 
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Figure 19: Common biological functions and disease signatures are enriched for by miRNA-
mediated signaling responses to formaldehyde exposure across multiple species/tissues. 

 

 
Proposed Mechanism for Changes in Distal Signaling Induced by Formaldehyde 

An important finding from the research detailed in chapter three was that inhaled 

formaldehyde significantly disrupted miRNA and gene expression profiles within the nasal 

epithelium and circulating mononuclear white blood cells in vivo. A mode of action linking 

formaldehyde inhalation exposure to changes in sites distal to the respiratory tract, 

including the circulating blood and bone marrow, is currently unknown. Because 

formaldehyde is highly reactive and undergoes rapid metabolism (IARC 2006), some scientists 

believe it is unlikely for such a compound to cause toxicity at sites distant from the respiratory 

tract upon inhalation (Cole et al. 2004; Golden et al. 2006; Heck et al. 2004; Pyatt et al. 2008). 

However, this line of evidence does not take into account possible mechanisms involving 

secondary toxicity or downstream events that may influence sites distant from direct targets of 

exposure. In fact, many scientists articulate that alternative mechanisms underlying 
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formaldehyde-induced effects distal to the respiratory tract, including leukemia development, 

should be tested (Goldstein 2011; NTP 2011; Thompson et al. 2011). 

In an effort to understand possible mechanisms for the observed changes in miRNA 

expression distal to the respiratory tract, we propose a novel mode of action (MOA) that may 

underlie formaldehyde-induced changes in the hematopoietic system. This MOA not only 

includes mechanisms by which inhaled formaldehyde may influence signaling within the 

circulating blood, but it also includes mechanisms related to leukemogenesis. This possible 

disease endpoint was included in order to comprehensively examine possible links between 

formaldehyde exposure and changes in sites distal to the respiratory tract at the theoretical level. 

While we did not identify changes in miRNA expression profiles within the bone marrow, our 

stringent statistical criteria of fold change ≥ ± 1.5, p-value < 0.05, and false discovery rate q-

value < 0.10 may have excluded more subtle changes in miRNA expression induced by 

formaldehyde exposure. It may be the case that modest miRNA changes may influence cell 

signaling. For this reason, our proposed MOA includes possible formaldehyde-induced 

disruptions in signaling within both the blood and bone marrow. 

The proposed MOA integrates published research findings that link formaldehyde 

exposure, airway responses, epigenetics, hematopoietic regulation, and the possible transfer of 

signals between organs. Specifically, we postulate that formaldehyde inhalation exposure 

initiates changes in the airway epithelium, which may lead to dysregulated miRNA expression 

profiles in distant hematopoietic stem/progenitor cells through three possible pathways (Figure 

20, A-C). While each pathway is drawn as a separate series of events, there is also possibility of 

cross-talk between the pathways. As this area of research is in its infancy, we recognize that 

more evidence is needed for the proposed MOA to be considered plausible. Still, we view it is 

necessary to propose events that may link formaldehyde inhalation exposure to effects in regions 

distal to the respiratory tract, highlighting the importance of studying possible epigenetic effects 

of formaldehyde exposure throughout the body. 
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Figure 20: Novel mode of action (MOA) that may link formaldehyde inhalation exposure to 
hematopoietic changes. We propose three possible pathways (A, B, and C) that join together with a 
common key event involving the dysregulation of miRNA expression profiles in bone marrow cells. 
While each pathway is illustrated as a separate series of proposed events, there is possibility of cross-talk 
between the pathways. 

 

It is important to note that our research did not aim to test this proposed MOA 

comprehensively. The purpose of outlining a possible MOA is to provide a potential basis for the 

biological plausibility underlying the observed changes in miRNA expression profiles in tissues 

distal to the respiratory tract. We did not test each potential interaction mentioned in the MOA. 

Rather, we focused on the critical steps in the proposed MOA: altered miRNA expression 

profiles within airway, circulating blood, and bone marrow cells. The pathways involved in the 

proposed MOA are discussed here. 
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Pathway A. Inflammatory Response Signaling: One possible pathway linking 

formaldehyde inhalation exposure to dysregulated miRNA expression profiles in the tissues 

distal to the respiratory tract may involve downstream inflammation signaling (Figure 20A). 

Formaldehyde exposure may cause local inflammatory responses within airway-related cells, 

which may progress to more systemic consequences through inflammatory protein release and 

circulation throughout the body. To detail, gaseous formaldehyde exposure has been shown to 

induce inflammatory-related protein (e.g. IL-1β, IL-6, VEGF, serpin A3N, serpin B9, and serpin 

B1A) release in airway cells in vivo (Ahn et al. 2010; Lino-dos-Santos-Franco et al. 2010). 

Inflammatory response proteins can then circulate in the blood, as supported by a previous study 

showing elevated levels of IL4 and IFNγ formaldehyde-exposed rats (Im et al. 2006). Then, 

inflammatory-related proteins may enter the bone marrow via the blood, as circulating 

inflammatory cytokines (e.g. IL-23) have been shown to regulate blood cell production and 

marrow-derived cell migration (Liu et al. 2009). Once inside bone marrow cells, cytokines and 

other inflammatory-mediators can heavily impact miRNA expression profiles (Schetter et al. 

2010). These proposed events may represent how inhaled formaldehyde possibly induces 

epigenetic changes within the hematopoietic system through inflammatory response signals. 

Pathway B. Circulating miRNAs: The second proposed pathway connecting 

formaldehyde inhalation exposure to epigenetic changes in tissues distal to the respiratory tract 

involves circulating miRNAs (Figure 20B). Circulating miRNAs that are free of cells, present 

within secreted membrane vesicles (e.g. exosomes), were recently discovered in 2007 (Valadi et 

al. 2007). This breakthrough study revealed that mRNA and miRNA molecules are present in 

cell-derived exosomes present in blood (Valadi et al. 2007). Exosomes are actively secreted 

membrane vesicles released from many cell types which can travel to distant tissues to influence 

cell behavior and physiology (Théry 2011). Increasing evidence indicates that exosomes play 

pivotal roles in cell-to-cell communication via bidirectional exchange of proteins, lipids, and 

genetic material (i.e. nucleic acids) (Camussi et al. 2010; Théry 2011). This transferrable 

material has clearly been demonstrated as functional in target cells. For example, transferred 

mRNAs can be translated into protein in target cells (Ratajczak et al. 2006; Valadi et al. 2007). 

In addition, transferred miRNAs can cause changes in mRNA levels in target cells (Aliotta et al. 

2010; Y Zhang et al. 2010). Because circulating plasma miRNAs have been identified as 

biomarkers of cancer, including lung cancer (Rabinowits et al. 2009; Silva et al. 2011) and 
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leukemia (Tanaka et al. 2009), it is possible that vesicle-modulated intercellular communication 

may occur between the respiratory tract and hematopoietic systems after formaldehyde exposure. 

This new connection may link formaldehyde inhalation exposure to effects in organs distal to 

direct target regions. 

This proposed pathway first requires that direct target cells exhibit altered miRNA 

expression profiles upon exposure to formaldehyde. With the research included in this 

dissertation, we provide strong evidence showing that formaldehyde exposure significantly 

disrupts miRNA expression profiles within directly exposed airway epithelial cells in vitro and in 

the nasal epithelium of rodents and nonhuman primates. These affected cells may then release 

miRNAs as shedding vesicles through direct budding from the cell plasma membrane, or 

miRNAs may be released as exosomes through endosomal membrane compartments fusing with 

the plasma membrane (Camussi et al. 2010). This phenomenon is found in vivo, where, for 

example, miRNAs derived from lung cancer cells have been identified in circulating plasma 

samples (Rabinowits et al. 2009). Furthermore, lung cells have been shown to release exosomes 

containing genetic material capable of modifying nearby marrow stem cell differentiation in an 

in vitro model (Quesenberry et al. 2008).  

Once the circulating exosomes travel from the respiratory tract to hematopoietic regions, 

it may be possible for exosomes to transfer material into target bone marrow cells. Exosomes are 

thought to recognize target cells through the binding of specific ligands on cell surfaces (Théry 

2011). After identifying specific target cells, exosomes can enter cells either through endocytic 

pathways or they can transfer material by fusing to the cell’s membrane and releasing contents 

into the cytoplasm (Théry 2011). General vesicle-mediated communication is thought to occur in 

four ways (Figure 21) (Camussi et al. 2010). It is possible that one of the communication 

methods involving epigenetic reprogramming of distant target cells may occur after 

formaldehyde exposure. 

 



70 
 

 
Figure 21: Methods of vesicle-mediated intercellular communication (from Camussi et 
al. 2010). Vesicles may communicate with target cells through: (a) ligands that directly 
stimulate target cells, (b) the transfer of membrane receptors, (c) the delivery of functional 
proteins, or (d) the transfer of genetic material, including mRNA and miRNA. This type of 
communication between tissues may act as a potential link between formaldehyde inhalation 
exposure and signal disruptions in sites distal to the respiratory epithelium. 

 

 

 Although circulating miRNAs have been implicated as probable messengers during 

tumor development (Théry 2011), studies have yet to show that miRNAs within circulating 

vesicles can specifically travel from the respiratory system to the bone marrow and cause 

leukemia. Still, vesicles have been shown to regulate the expansion of hematopoietic stem cells 

through the horizontal transfer of protein and mRNA (Ratajczak et al. 2006). In addition, 

circulating vesicles have been shown to interact and modulate leukemic bone marrow stromal 

cells (Ghosh et al. 2009). Furthermore, an in vitro model showed that mRNAs and miRNAs can 

transfer via vesicles from lung cells to bone marrow cells separated by a cell-impermeable 

membrane, causing altered transcriptional induction in marrow cells (Aliotta et al. 2010). It may, 

therefore, be possible for altered miRNAs originating from the respiratory tract to enter 

circulating blood and enter hematopoietic stem/progenitor cells, modifying hematopoietic 

function. 

Pathway C. Nasal Stem Cells: The third proposed pathway linking formaldehyde 

exposure to hematopoietic effects involves the epigenetic alteration of stem cells located within 

the nose (Figure 20C). Pluripotent stem cells are present within the nasal epithelium (Murrell et 

al. 2005; Roisen et al. 2001), a direct target region for formaldehyde inhalation exposure 

(Overton et al. 2001). These stem cells may experience altered miRNA expression profiles upon 

exposure to formaldehyde, as other types of stem cells can show modulated miRNA expression 

(Chen et al. 2005; Marcucci et al. 2011; Yendamuri et al. 2009). It has been suggested that 
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formaldehyde-altered nasal stem cells can migrate to the bone marrow during normal cell 

trafficking or trafficking enhanced by surrounding cytotoxicity (Zhang et al. 2009); although, 

there is no clear experimental evidence for this step. Next, the circulating stem cells with altered 

miRNA expression profiles may enter and repopulate the bone marrow. Evidence for this step is 

provided by a study using enzymatically dissociated olfactory epithelial cells from rats (Murrell 

et al. 2005). Here, nasal stem cells were injected into the tail vein of irradiated host rats, and the 

donated stem cells were found to repopulate the bone marrow, generating myeloid and lymphoid 

cells (Murrell et al. 2005). These nasal stem cells were also transplanted into a chicken embryo 

model, where numerous cells of hematopoietic lineage were also generated from the donated 

stem cells (Murrell et al. 2005). Although this proposed pathway requires further experimental 

evidence, it may represent a set of events linking formaldehyde inhalation exposure to epigenetic 

alterations within the hematopoietic system. 

Dysregulated miRNAs May Cause Hematopoietic Effects: The three proposed 

pathways, as detailed above, all connect formaldehyde inhalation exposure to altered miRNA 

expression profiles within the hematopoietic system. As pointed out previously, our research did 

not detect changes in miRNA expression profiles within rodent bone marrow cells using 

stringent statistical criteria. Still, more subtle changes in miRNA expression may influence cell 

signaling, and species variability may exist between rodent and human responses to 

formaldehyde within the bone marrow. For these reasons, this endpoint is still included in the 

proposed MOA in order to comprehensively examine all potential effects of altered signaling 

within tissues distal to the respiratory tract. 

Once hematopoietic stem/progenitor cells exhibit altered miRNA expression profiles, a 

few events may occur to ultimately tie formaldehyde exposure to leukemogenesis. First, 

dysregulated miRNAs can decrease or increase the transcription and/or translation of important 

genes (Bartel 2004; Filipowicz et al. 2008; Iorio et al. 2010). Within hematopoietic stem cells, 

miRNAs are known to regulate genes encoding proteins involved in several steps of 

hematopoiesis, including differentiation, proliferation, and apoptosis (Garzon et al. 2008; Han et 

al. 2010; Marcucci et al. 2011; Yendamuri et al. 2009). Because altered hematopoiesis is a key 

event known to induce leukemia (Sawyers et al. 1991), leukemogenesis may result through this 

mechanism. In addition, miRNAs within bone marrow cells regulate important leukemia-

associated tumor suppressors (Garzon et al. 2008; Mavrakis et al. 2011). When these miRNAs 
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are dysregulated, they can act as oncogenes and cause leukemia, likely through the inactivation 

of tumor suppressors (Garzon et al. 2008; Mavrakis et al. 2011). Through this MOA, inhaled 

formaldehyde may influence the hematopoietic system at the epigenetic level, ultimately 

contributing to disease. 

MOA Summary: Our proposed MOA illustrates three possible pathways linking 

formaldehyde inhalation exposure to miRNA expression changes in the blood and bone marrow. 

The relationships within these pathways are substantiated by research findings published in peer-

reviewed journals. However, the exact mechanisms linking inhalation exposure to blood and 

bone marrow responses are unknown, making this proposed MOA of high interest. Our research 

did not aim to fully test this MOA, as this was not feasible. Instead, we investigated parts of the 

postulated MOA by establishing whether miRNA expression profiles are altered by 

formaldehyde inhalation exposure in direct contact and distant sites. These investigations 

contributed critical knowledge to the MOA linking formaldehyde exposure to cancer. 

 

Public Health Relevance 

Our research investigating formaldehyde’s influence on miRNA expression profiles 

reveals novel mechanisms underlying formaldehyde-induced changes in biological signaling, and 

also lays the foundation for future research on disease prevention. The research has highlighted 

that formaldehyde is a potent disruptor of miRNAs through the evaluation of three model 

systems. With this new recognition of miRNAs as key regulators of air toxicant response, there 

is the opportunity to investigate methods to prevent miRNA expression disruption. The miRNA-

mediated biological pathways modified by formaldehyde exposure can also act as potential 

targets for therapeutic strategies. Our findings also provide sound evidence supporting the 

alterations of miRNA expression patterns, gene expression patterns, and associated signaling 

pathways caused by exposure to formaldehyde within circulating blood. The capability of 

inhaled air pollutants to impact sites distal to the airway epithelium is of high interest, and may 

link inhaled pollutant exposures to other non-respiratory diseases. Our findings provide the basis 

for future hypothesis generation for disease prevention and treatment, which can be used to 

decrease the overall impact of environmental exposure-induced disease. 
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Relationship of Current Research to Future Hypotheses 

Our research revealed novel responses to inhaled formaldehyde which no previous 

studies have investigated. Because of the originality of the research, some mechanisms 

underlying the observed responses remain unknown. Our findings provide the basis for future 

hypothesis generation and research questions, including some questions that are detailed in this 

section. 

1. What triggers altered signaling of formaldehyde-associated miRNAs? Results 

from our research were the first to indicate that formaldehyde exposure disrupts miRNA 

expression profiles. With these initial findings, much remains unknown regarding the exact 

mechanism though which formaldehyde exposure impacts these small RNAs. Other mediators of 

gene and/or miRNA expression may influence the observed miRNA expression modification, 

including transcription factors and epigenetic regulators. For instance, exposure to formaldehyde 

has been shown to cause histone modifications in vitro (Lu et al. 2008), which may ultimately 

affect gene and/or miRNA expression profiles. Another epigenetic mechanism that has yet to be 

investigated in relation to formaldehyde involves DNA methylation alterations in promoter-

associated CpG (cytosine-phosphate-guanine) sites. Increased methylation (i.e. 

hypermethylation) of promoter CpG islands commonly causes transcriptional silencing (Shames 

et al. 2007). Conversely, decreased methylation (i.e. hypomethylation) of promoter CpG islands 

is commonly associated with transcriptional activation (Shames et al. 2007). Because DNA 

methylation profiles have been identified as heavily influenced by various environmental 

exposures (Bollati et al. 2010), it is likely that formaldehyde impacts the methylation status of 

important genes and/or miRNAs. To gain increased knowledge on potential mechanisms linking 

formaldehyde exposure to changes in miRNA expression levels, the following hypothesis could 

be tested: Formaldehyde exposure modifies the methylation status of DNA encoding 

formaldehyde-responsive miRNAs. 

This hypothesis could be tested through the use of a methylation inhibitor, such as 5-aza-

2′-deoxycytidine. Nasal epithelial cells could be exposed to formaldehyde in vitro, and the 

resulting modifications in miRNA expression profiles could be compared in cells treated with the 

methylation inhibitor versus cells not treated with the methylation inhibitor. If differences in 

miRNA responses occur between the two treatments, then the miRNAs that respond differently 
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are likely to exhibit differential methylation resulting from formaldehyde exposure. Such 

epigenetic influence has been shown to occur for certain formaldehyde-responsive miRNAs. For 

example, the expression levels of let-7 family members, many of which were consistently 

dysregulated by formaldehyde in our studies, are known to be heavily influenced by DNA 

methylation status (Roush et al. 2008). Results from this future study could therefore provide 

important information on the mechanisms connecting formaldehyde exposure to miRNA 

expression modifications. 

 2. How are miRNA expression patterns altered in the WBC? Our research revealed 

that inhalation exposure to formaldehyde disrupted the expression levels of miRNAs within 

circulating WBC in rodents. This finding is of high interest, as the events linking inhaled 

formaldehyde exposure to altered signaling in tissues distal to the respiratory tract are unknown. 

A previous toxicological investigation found increased levels of inflammatory mediators IL4 and 

IFNγ within the circulating blood of rodents exposed to formaldehyde (Im et al. 2006). With this 

finding, future investigations could increase understanding on how formaldehyde influences 

tissues that are distant to the respiratory tract by testing the following hypothesis: Formaldehyde 

exposure changes the levels of inflammatory mediators within the blood which influence 

signaling within circulating WBC. 

In order to support this hypothesis, protein expression analysis could be performed using 

proteins collected from plasma and WBC samples of formaldehyde-exposed animals. If changes 

in the levels of inflammatory mediators are identified in formaldehyde-exposed samples, this 

would represent the first step in supporting this hypothesis. A next step would be to demonstrate 

that these proteins may link formaldehyde inhalation exposure to changes in miRNA expression 

and cell signaling in circulating WBC. 

To test whether formaldehyde-altered miRNAs are directly modulated by circulating 

inflammatory mediators, this hypothesis could be further tested using an in vitro model. For 

example, cultured WBC could be treated with the formaldehyde-modulated inflammatory 

mediators, and changes in miRNA expression could be assessed. If these changes overlap with 

those observed in response to formaldehyde, then it could support that inflammatory proteins 

indeed influence miRNA differential expression, acting as a link between formaldehyde 

exposure and miRNA expression alterations. 
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3. What is the relationship between formaldehyde-induced DNA damage and 

miRNA expression modification? Our research established that formaldehyde disrupts miRNA 

expression profiles in vitro and in vivo. Research performed by our collaborators also clearly 

showed that formaldehyde exposure causes DNA damage (Lu et al. 2009; Lu et al. 2011; 

Moeller et al. 2011). An understudied event underlying exposure-induced toxicity is the 

influence of DNA damage on miRNA signaling. Because miRNAs have been shown to play an 

important role in the response to UV-induced DNA damage (Pothof et al. 2009), it is possible 

that miRNAs are involved in responses to formaldehyde-induced DNA damage. In order to 

investigate this potential relationship, the following hypothesis could be tested: The expression 

levels of an important subset of formaldehyde-responsive miRNAs are associated with 

formaldehyde-induced DNA damage. 

This hypothesis could be tested by exposing nasal epithelial cells to various 

formaldehyde doses in vitro. Increases in DNA damage as well as changes in miRNA expression 

profiles would be observed, where some of the formaldehyde-altered miRNAs’ expression levels 

may correlate with the amount of formaldehyde-induced DNA damage. This subset of miRNAs 

would likely play important roles in DNA damage response associated with formaldehyde 

exposure. Findings may be similar to a previous study, where UV-inducible miR-16 was found 

to regulate cell cycle checkpoint genes and cell proliferation, which are heavily involved in 

responses to DNA damage (Pothof et al. 2009). Results from this proposed experiment would 

increase the understanding of relationships between DNA damage and novel mediators of 

damage response in order to accurately interpret biological events linking environmental 

exposure responses to disease. 

 

Dissertation Conclusion 

To summarize our investigations, we have highlighted formaldehyde as an air toxicant that 

dramatically alters miRNA expression patterns. These epigenomic responses were established in 

vitro, in cultured human lung epithelial cells, and in vivo, in nonhuman primates and rodents. 

The formaldehyde-associated miRNA expression alterations were evaluated at the systems 

biology level, where critical pathways likely altered via formaldehyde’s influence on miRNA 

expression were revealed. Taken together, our research increases the knowledge of under-studied 



76 
 

mechanisms linking formaldehyde exposure to disease, acting as an important foundation for 

future research in public health and toxicology. 
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SUPPLEMENTARY TABLES 
 

Supplementary Table 1: miRNAs significantly (p-value < 0.05, FDR < 0.05, fold change ≥ +/- 
1.5) differentially expressed upon exposure to 1 ppm formaldehyde in human lung epithelial 
cells. 

miRNA Formaldehyde/Control Ratio 
miR-33 -5.48 
miR-450 -3.57 
miR-330 -2.43 
miR-181a -2.11 
miR-10b -2.11 
miR-422b -2.02 
miR-532 -1.84 
miR-501 -1.82 
miR-487b -1.80 
miR-20a -1.80 
miR-34a -1.73 
miR-93 -1.72 
miR-106b -1.71 
miR-137 -1.71 
miR-103 -1.70 
miR-301 -1.70 
miR-10a -1.70 
miR-126 -1.70 
miR-17-5p -1.69 
miR-107 -1.69 
miR-454-3p -1.69 
miR-140 -1.68 
miR-101 -1.68 
miR-130a -1.68 
miR-19a -1.67 
miR-26a -1.67 
miR-19b -1.67 
miR-106a -1.66 
miR-99a -1.66 
miR-18a -1.66 
miR-424 -1.65 
let-7a -1.65 
miR-20b -1.65 
miR-25 -1.64 
miR-590 -1.64 
miR-15b -1.64 
let-7b -1.63 
miR-660 -1.63 
miR-27b -1.63 
miR-194 -1.62 
miR-361 -1.62 
miR-192 -1.62 
miR-215 -1.62 
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miRNA Formaldehyde/Control Ratio 
miR-374 -1.62 
miR-15a -1.62 
let-7c -1.61 
miR-148b -1.60 
miR-181b -1.60 
miR-425-5p -1.60 
miR-23b -1.60 
let-7d -1.59 
miR-28 -1.58 
miR-125a -1.58 
miR-181d -1.58 
miR-130b -1.58 
miR-185 -1.58 
miR-324-5p -1.58 
miR-9* -1.57 
miR-452 -1.57 
miR-565 -1.57 
miR-26b -1.57 
miR-152 -1.57 
miR-16 -1.57 
miR-650 -1.56 
miR-21 -1.56 
miR-9 -1.56 
miR-186 -1.56 
miR-151 -1.56 
miR-582 -1.55 
let-7e -1.55 
let-7g -1.55 
miR-98 -1.55 
miR-224 -1.55 
miR-23a -1.54 
miR-27a -1.54 
miR-362 -1.54 
let-7f -1.54 
miR-17-3p -1.53 
miR-550 -1.53 
miR-29b -1.53 
miR-182 -1.53 
miR-100 -1.51 
miR-509 -1.51 
miR-652 -1.51 
miR-331 -1.51 
miR-34b -1.51 
miR-189 -1.51 
let-7i -1.51 
miR-24 -1.50 
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Supplementary Table 2: Predicted transcriptional targets for miR-33, miR-330, miR-181a, and 
miR-10b. 

Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
1. miR-33 

ABCA1 NM_005502 19 miR-330 
ABCE1 NM_001040876 6059  
APPBP2 NM_006380 10513  
ARID5B NM_032199 84159  
ASAP1 NM_018482 50807  
B3GALT2 NM_003783 8707  
C11ORF41 NM_012194 25758  
CACNA1C NM_001129834 775  
CDC42BPA NM_003607 8476  
CDK6 NM_001259 1021  
CLSPN NM_022111 63967  
CROT NM_021151 54677  
CSNK1D NM_001893 1453  
DPY19L1 NM_015283 23333  
DSC3 NM_001941 1825 miR-181a 
DYRK3 NM_001004023 8444  
EBF1 NM_024007 1879  
EEA1 NM_003566 8411  
EN2 NM_001427 2020  
ESCO1 NM_052911 114799  
FAM46C NM_017709 54855  
FGA NM_000508 2243  
FUT9 NM_006581 10690 miR-181a 
GLCCI1 NM_138426 113263  
GOPC NM_020399 57120  
GRIA3 NM_007325 2892 miR-330 
HADHB NM_000183 3032  
HBS1L NM_006620 10767  
HIPK2 NM_001113239 28996  
HMGA2 NM_003483 8091  
ING3 NM_019071 54556  
KCNMA1 NM_001014797 3778  
KIAA2018 NM_001009899 205717  
KIF3C NM_002254 3797  
LCA5 NM_181714 167691 miR-10b 
LIPI NM_198996 149998  
LOC152742 XM_001128848 152742  
LPP NM_005578 4026  
MMP16 NM_005941 4325  
MSR1 NM_138715 4481  
NAP1L2 NM_021963 4674  
NARG1 NM_057175 80155  
NAT8 NM_003960 9027  
NAT12 NM_001011713 122830 miR-330 
PIM1 NM_002648 5292  
PNMA1 NM_006029 9240  
PRDM2 NM_001007257 7799  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
PTPN13 NM_080685 5783  
RCAN1 NM_203417 1827 miR-330 
RIMBP2 NM_015347 23504  
SATB2 NM_015265 23314  
SCN8A NM_014191 6334  
SEC24C NM_004922 9632 miR-181a 
SIX4 NM_017420 51804  
SLC25A25 NM_001006642 114789  
SLC26A7 NM_052832 115111  
SLC39A14 NM_015359 23516  
SLITRK3 NM_014926 22865  
SLU7 NM_006425 10569  
SPAST NM_199436 6683  
ST18 NM_014682 9705  
TNFRSF9 NM_001561 3604  
UBE2V2 NM_003350 7336  
ZNF140 NM_003440 7699  
ZNF148 NM_021964 7707 miR-330 
ZNF281 NM_012482 23528  
ZNF300 NM_052860 91975  

2. miR-330 
ABCA1 NM_005502 19 miR-33 
ACVR1 NM_001105 90  
ADAMTS5 NM_007038 11096  
AFF2 NM_002025 2334  
AFF4 NM_014423 27125  
AGTR2 NM_000686 186  
AK7 NM_152327 122481  
ANGEL2 NM_144567 90806  
ANKH NM_054027 56172  
AP2M1 NM_004068 1173  
API5 NM_006595 8539  
APPL1 NM_012096 26060  
ARFGEF2 NM_006420 10564  
ARHGAP12 NM_018287 94134  
ARHGAP20 NM_020809 57569  
ARL17P1 NM_001113738 51326  
ATL2 NM_022374 64225  
ATP2B1 NM_001001323 490 miR-181a 
ATP2C1 NM_014382 27032  
AZIN1 NM_148174 51582  
BCL9 NM_004326 607  
BCL11B NM_022898 64919  
BFSP1 NM_001195 631  
BMPR2 NM_001204 659  
BTRC NM_033637 8945  
C10ORF10 NM_007021 11067  
C14ORF129 NM_016472 51527 miR-181a 
C2CD2 NM_015500 25966  
C5ORF15 NM_020199 56951  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
C5ORF23 NM_024563 79614  
C9ORF5 NM_032012 23731  
C9ORF64 NM_032307 84267  
CALCR NM_001742 799  
CAPZA1 NM_006135 829  
CBX5 NM_012117 23468  
CCND3 NM_001760 896  
CD247 NM_000734 919  
CDR2 NM_001802 1039  
CHP NM_007236 11261  
CLCN5 NM_001127899 1184  
CLDN8 NM_199328 9073 miR-181a 
CLDN18 NM_016369 51208  
CMPK1 NM_016308 51727  
CNBP NM_001127195 7555  
CRLS1 NM_019095 54675  
CSNK1G3 NM_001044722 1456  
CYP7A1 NM_000780 1581  
D4S234E NM_014392 27065  
DAG1 NM_004393 1605  
DCAF7 NM_005828 10238  
DICER1 NM_030621 23405  
DLX1 NM_001038493 1745  
DNM3 NM_015569 26052  
DNM1L NM_005690 10059  
DOCK5 NM_024940 80005  
DPP10 NM_001004360 57628  
EDEM1 NM_014674 9695  
EEF1A1 NM_001402 1915  
EFHC1 NM_018100 114327  
EIF5 NM_183004 1983  
EIF4E NM_001968 1977  
EPM2A NM_005670 7957  
ERAP1 NM_016442 51752  
ERBB4 NM_005235 2066  
ERC1 NM_178039 23085  
ERLIN2 NM_001003791 11160  
EXOC8 NM_175876 149371  
FAM107B NM_031453 83641  
FAM72D NM_207418 728833  
FGFR1 NM_023107 2260  
FMO2 NM_001460 2327  
FOXK1 NM_001037165 221937 miR-181a 
FRK NM_002031 2444  
GJC1 NM_005497 10052  
GNRHR NM_001012763 2798  
GPRASP1 NM_014710 9737  
GRB10 NM_001001550 2887 miR-181a 
GRIA3 NM_007325 2892 miR-33 
HELZ NM_014877 9931  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
HIVEP2 NM_006734 3097  
HNRNPU NM_031844 3192  
HSF2 NM_004506 3298  
HSPH1 NM_006644 10808  
ID2 NM_002166 3398  
IMPACT NM_018439 55364  
INO80D NM_017759 54891 miR-181a 
INSL5 NM_005478 10022  
ITM2C NM_030926 81618  
JPH1 NM_020647 56704  
KANK2 NM_015493 25959  
KAT2B NM_003884 8850  
KDM4C NM_015061 23081  
KDSR NM_002035 2531  
KIAA1012 NM_014939 22878  
KLF10 NM_005655 7071  
KLHL24 NM_017644 54800  
LAPTM4B NM_018407 55353  
LNX2 NM_153371 222484  
LRPPRC NM_133259 10128  
MARK1 NM_018650 4139 miR-181a 
MAT2A NM_005911 4144  
MBNL2 NM_144778 10150  
MECOM NM_001105078 2122  
METAP2 NM_006838 10988 miR-181a 
MMD NM_012329 23531  
MOBKL1A NM_173468 92597  
MRPS6 NM_032476 64968  
MYEF2 NM_016132 50804  
MYPN NM_032578 84665  
NAT12 NM_001011713 122830 miR-33 
NEFL NM_006158 4747  
ONECUT2 NM_004852 9480 miR-181a 
OTUD3 NM_015207 23252  
PAFAH1B1 NM_000430 5048  
PCDHA1 NM_018900 56147 miR-181a 
PCDHA2 NM_018905 56146 miR-181a 
PCDHA3 NM_018906 56145 miR-181a 
PCDHA4 NM_018907 56144 miR-181a 
PCDHA5 NM_018908 56143 miR-181a 
PCDHA6 NM_031849 56142 miR-181a 
PCDHA7 NM_018910 56141 miR-181a 
PCDHA8 NM_018911 56140 miR-181a 
PCDHA9 NM_031857 9752 miR-181a 
PCDHA10 NM_018901 56139 miR-181a 
PCDHA11 NM_018902 56138 miR-181a 
PCDHA12 NM_018903 56137 miR-181a 
PCDHAC1 NM_018898 56135 miR-181a 
PCDHAC2 NM_018899 56134 miR-181a 
PCK1 NM_002591 5105  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
PCMT1 NM_005389 5110  
PCTP NM_001102402 58488  
PHAX NM_032177 51808  
PLSCR1 NM_021105 5359  
PLSCR4 NM_001128304 57088  
PLXNA2 NM_025179 5362  
PQLC1 NM_025078 80148  
PRKAB2 NM_005399 5565  
PRKCB NM_002738 5579  
PSD3 NM_015310 23362  
PTBP2 NM_021190 58155  
RAI2 NM_021785 10742  
RAP2A NM_021033 5911  
RAVER2 NM_018211 55225  
RBM12 NM_152838 10137  
RCAN1 NM_203417 1827 miR-33 
RGS10 NM_002925 6001  
RND3 NM_005168 390  
RNF212 NM_194439 285498  
RNF144B NM_182757 255488  
RUFY2 NM_001042417 55680  
SAMD12 NM_001101676 401474 miR-181a 
SCG3 NM_013243 29106  
SCP2 NM_001007100 6342  
SELI NM_033505 85465  
SEMA4D NM_006378 10507  
SEP15 NM_203341 9403  
SERINC3 NM_006811 10955  
SFRS1 NM_006924 6426  
SH3TC2 NM_024577 79628 miR-181a 
SIN3A NM_015477 25942  
SLAIN1 NM_001040153 122060  
SLC2A2 NM_000340 6514  
SLC5A3 NM_006933 6526  
SMG7 NM_173156 9887  
SMNDC1 NM_005871 10285  
SNAP23 NM_130798 8773  
SNX2 NM_003100 6643  
SORL1 NM_003105 6653  
SOSTDC1 NM_015464 25928  
STAU1 NM_001037328 6780  
STEAP4 NM_024636 79689  
STK3 NM_006281 6788  
SUDS3 NM_022491 64426  
SUMF1 NM_182760 285362  
TAPT1 NM_153365 202018  
TBL1XR1 NM_024665 79718 miR-181a 
TBX5 NM_080717 6910 miR-10b 
TEAD1 NM_021961 7003  
TGFBR3 NM_003243 7049  



84 
 

Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
THBS1 NM_003246 7057  
TJP1 NM_003257 7082  
TMEM59 NM_004872 9528  
TNKS NM_003747 8658  
TNRC6B NM_001024843 23112  
TNS1 NM_022648 7145  
TOX NM_014729 9760 miR-181a 
TRA2A NM_013293 29896  
TRIM2 NM_015271 23321 miR-181a 
TRIM37 NM_015294 4591  
TRIP12 NM_004238 9320  
TROVE2 NM_004600 6738  
TSFM NM_005726 10102  
TSHR NM_000369 7253  
UBE2Q1 NM_017582 55585  
UBTD2 NM_152277 92181  
UBXN4 NM_014607 23190  
USP15 NM_006313 9958  
USP37 NM_020935 57695  
VAPA NM_003574 9218  
VASH2 NM_024749 79805  
VGLL3 NM_016206 389136  
VPS54 NM_016516 51542  
WDR37 NM_014023 22884  
XK NM_021083 7504  
YIPF5 NM_001024947 81555  
YTHDC1 NM_133370 91746  
ZBTB34 NM_001099270 403341 miR-181a 
ZC3HAV1 NM_020119 56829  
ZCCHC24 NM_153367 219654  
ZFC3H1 NM_144982 196441  
ZFR NM_016107 51663  
ZNF148 NM_021964 7707 miR-33 
ZNF410 NM_021188 57862  
ZNF423 NM_015069 23090  
ZNF490 NM_020714 57474  
ZNF706 NM_016096 51123  
ZNF280D NM_001002843 54816  

3. miR-181a 
ACSL1 NM_001995 2180  
ACVR2A NM_001616 92  
ACVR2B NM_001106 93  
ACYP1 NM_001107 97  
ADAM28 NM_014265 10863  
ADAMTSL1 NM_001040272 92949  
ADRBK1 NM_001619 156  
AFTPH NM_203437 54812  
AHCTF1 NM_015446 25909  
AKAP5 NM_004857 9495  
AKAP6 NM_004274 9472  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
AKAP7 NM_004842 9465  
ARHGAP26 NM_015071 23092  
ARHGEF3 NM_001128615 50650  
ARSJ NM_024590 79642 miR-10b 
ATG5 NM_004849 9474  
ATM NM_138292 472  
ATP11C NM_173694 286410  
ATP2A2 NM_170665 488  
ATP2B1 NM_001001323 490 miR-330 
ATXN3 NM_001127696 4287  
BAG2 NM_004282 9532  
BAG4 NM_004874 9530  
BAI3 NM_001704 577  
BAZ2B NM_013450 29994  
BBS7 NM_018190 55212  
BEND3 NM_001080450 57673  
BHLHE40 NM_003670 8553  
BIRC6 NM_016252 57448  
BOLL NM_197970 66037  
BRAP NM_006768 8315  
BRD1 NM_014577 23774  
BRWD1 NM_033656 54014  
BTBD3 NM_014962 22903  
C10ORF104 NM_173473 119504  
C14ORF129 NM_016472 51527 miR-330 
C15ORF29 NM_024713 79768  
C16ORF87 NM_001001436 388272  
C19ORF12 NM_031448 83636  
C20ORF12 NM_001099407 55184  
C21ORF66 NM_016631 94104  
C2ORF69 NM_153689 205327  
C5ORF41 NM_153607 153222  
C5ORF47 XM_376444 133491  
C6ORF89 NM_152734 221477  
CABC1 NM_020247 56997  
CALB1 NM_004929 793  
CALM1 NM_006888 801  
CAMK2D NM_172128 817  
CAPRIN1 NM_005898 4076 miR-10b 
CARD8 NM_014959 22900  
CBX7 NM_175709 23492  
CCAR1 NM_018237 55749  
CCDC14 NM_022757 64770  
CCDC117 NM_173510 150275  
CCNB1 NM_031966 891  
CCNJ NM_019084 54619  
CCNL2 NM_001039577 81669  
CD302 NM_014880 9936  
CDON NM_016952 50937  
CHMP2B NM_014043 25978  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
CLASP1 NM_015282 23332  
CLDN8 NM_199328 9073 miR-330 
CLIP1 NM_002956 6249  
CLVS1 NM_173519 157807  
CNTN4 NM_175612 152330  
CPNE2 NM_152727 221184  
CPOX NM_000097 1371  
CREB5 NM_004904 9586  
CSF2RB NM_000395 1439  
CTDSPL NM_005808 10217  
CTTNBP2NL NM_018704 55917  
CUL3 NM_003590 8452  
DARS NM_001349 1615  
DCN NM_133504 1634  
DDX52 NM_007010 11056  
DDX3X NM_001356 1654  
DDX3 NM_004660 8653  
DEPDC6 NM_022783 64798  
DIRAS3 NM_004675 9077  
DLGAP2 NM_004745 9228  
DNAJC13 NM_015268 23317  
DNAL1 NM_031427 83544  
DOCK10 NM_014689 55619  
DSC3 NM_001941 1825 miR-33 
DYNC1LI2 NM_006141 1783  
E2F5 NM_001951 1875  
E2F7 NM_203394 144455  
EIF4A2 NM_001967 1974  
ENPP1 NM_006208 5167  
EPC2 NM_015630 26122  
ETV6 NM_001987 2120  
EXD1 NM_152596 161829  
FAM13B NM_001101801 51306  
FAM160A2 NM_032127 84067  
FBXO33 NM_203301 254170  
FBXO34 NM_017943 55030  
FIGN NM_018086 55137 miR-10b 
FKBP1A NM_000801 2280  
FMNL2 NM_052905 114793  
FNDC3B NM_022763 64778  
FOXK1 NM_001037165 221937 miR-330 
FOXP1 NM_032682 27086  
FUCA1 NM_000147 2517  
FUT9 NM_006581 10690 miR-33 
G3BP2 NM_012297 9908  
GABRA1 NM_001127648 2554  
GAPVD1 NM_015635 26130  
GATA6 NM_005257 2627  
GATM NM_001482 2628  
GCC2 NM_181453 9648  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
GHITM NM_014394 27069  
GPD2 NM_000408 2820  
GPD1L NM_015141 23171  
GPRIN3 NM_198281 285513  
GPX8 NM_001008397 493869  
GRB10 NM_001001555 2887 miR-330 
HEY2 NM_012259 23493  
HIC2 NM_015094 23119  
HOOK1 NM_015888 51361  
HOXB4 NM_024015 3214  
HOXC8 NM_022658 3224  
HOXD1 NM_024501 3231  
HRH1 NM_001098212 3269  
HSPC159 NM_014181 29094  
IL2 NM_000586 3558  
INO80D NM_017759 54891 miR-330 
IPO8 NM_006390 10526  
ITGA2 NM_002203 3673  
ITSN1 NM_001001132 6453  
KANK1 NM_015158 23189  
KCNH8 NM_144633 131096  
KCTD3 NM_016121 51133  
KDM5A NM_005056 5927  
KIAA0528 NM_014802 9847  
KIAA1219 NM_020336 57148  
KIAA1239 XM_940885 57495  
KIAA2022 NM_001008537 340533  
KIF3A NM_007054 11127  
KLHL2 NM_007246 11275  
KLHL5 NM_199039 51088  
KRAS NM_033360 3845  
LAMP2 NM_001122606 3920  
LARP4 NM_199190 113251  
LCLAT1 NM_182551 253558  
LHFPL3 NM_199000 375612  
LIFR NM_002310 3977  
LMO3 NM_001001395 55885  
LOC161527 XM_929030 161527  
LONRF2 NM_198461 164832  
LRRC8D NM_018103 55144  
MAP1B NM_005909 4131  
MAPK1 NM_002745 5594  
MARK1 NM_018650 4139 miR-330 
MATN3 NM_002381 4148  
MBOAT2 NM_138799 129642  
MED8 NM_201542 112950  
MEGF9 NM_001080497 1955  
METAP1 NM_015143 23173  
METAP2 NM_006838 10988 miR-330 
MINA NM_032778 84864  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
MKLN1 NM_013255 4289  
MORC3 NM_015358 23515  
MPP5 NM_022474 64398  
MTF2 NM_007358 22823  
MTMR12 NM_001040446 54545  
MTMR15 NM_014967 22909  
MTX3 NM_001010891 345778  
MUC7 NM_152291 4589  
NCOA2 NM_006540 10499  
NFAT5 NM_001113178 10725  
NLN NM_020726 57486  
NOTCH4 NM_004557 4855  
NOVA1 NM_002515 4857  
NR3C1 NM_001018076 2908  
NR6A1 NM_033334 2649  
NRAS NM_002524 4893  
NTS NM_006183 4922  
NUDT12 NM_031438 83594  
ONECUT2 NM_004852 9480 miR-330 
OSBPL3 NM_145320 26031  
OSBPL8 NM_001003712 114882  
OTUD4 NM_001102653 54726  
PAM NM_138822 5066  
PAPD5 NM_001040285 64282  
PAPOLG NM_022894 64895  
PARK2 NM_013987 5071  
PARP11 NM_020367 57097  
PAWR NM_002583 5074  
PAX9 NM_006194 5083  
PCDHA1 NM_031411 56147 miR-330 
PCDHA2 NM_018905 56146 miR-330 
PCDHA3 NM_018906 56145 miR-330 
PCDHA4 NM_018907 56144 miR-330 
PCDHA5 NM_018908 56143 miR-330 
PCDHA6 NM_031849 56142 miR-330 
PCDHA7 NM_018910 56141 miR-330 
PCDHA8 NM_018911 56140 miR-330 
PCDHA9 NM_031857 9752 miR-330 
PCDHA10 NM_018901 56139 miR-330 
PCDHA11 NM_018902 56138 miR-330 
PCDHA12 NM_018903 56137 miR-330 
PCDHAC1 NM_018898 56135 miR-330 
PCDHAC2 NM_018899 56134 miR-330 
PCNP NM_020357 57092  
PDE5A NM_001083 8654  
PER3 NM_016831 8863  
PGAP1 NM_024989 80055  
PHC3 NM_024947 80012  
PHLPP2 NM_015020 23035  
PHTF2 NM_001127358 57157  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
PI4K2B NM_018323 55300  
PITPNB NM_012399 23760  
PKNOX2 NM_022062 63876  
PLAC1L NM_173801 219990  
PLEKHA3 NM_019091 65977  
PNRC2 NM_017761 55629  
POLQ NM_199420 10721  
POLR3G NM_006467 10622  
POM121 NM_172020 9883  
POM121C NM_001099415 100101267  
PPP1R12B NM_002481 4660  
PPP1R9A NM_017650 55607  
PPP2R5E NM_006246 5529  
PRDM4 NM_012406 11108  
PRDX3 NM_006793 10935  
PRH2 NM_001110213 5555  
PRKCD NM_006254 5580  
PRTG NM_173814 283659  
PSG5 NM_002781 5673  
PSRC1 NM_001032291 84722  
PTGER3 NM_198715 5733  
RAB3IP NM_022456 117177  
RAD21 NM_006265 5885  
RAN NM_006325 5901  
RAP1B NM_001010942 5908  
RASSF2 NM_014737 9770  
RBM26 NM_022118 64062  
RBM25 NM_021239 58517  
REPS2 NM_001080975 9185  
RFC1 NM_002913 5981  
RIN2 NM_018993 54453  
RLF NM_012421 6018  
RNF8 NM_183078 9025  
RNF34 NM_025126 80196  
ROD1 NM_005156 9991  
RP5-1022P6.2 NM_019593 56261  
RPAP2 NM_024813 79871  
RPE65 NM_000329 6121  
RPS6KB1 NM_003161 6198  
RRP15 NM_016052 51018  
S1PR1 NM_001400 1901  
SAMD12 NM_207506 401474 miR-330 
SCD NM_005063 6319  
SCOC NM_032547 60592  
SEC24C NM_004922 9632 miR-33 
SEMA3C NM_006379 10512  
SEMA4G NM_017893 57715  
SFRS7 NM_001031684 6432  
SH3TC2 NM_024577 79628 miR-330 
SIPA1L2 NM_020808 57568  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
SIRT1 NM_012238 23411  
SLC19A2 NM_006996 10560  
SLC24A1 NM_004727 9187  
SLC25A24 NM_213651 29957  
SLC7A11 NM_014331 23657  
SLITRK1 NM_052910 114798  
SPIN1 NM_006717 10927  
SPOCK1 NM_004598 6695  
SPP1 NM_001040058 6696  
SPRY4 NM_030964 81848  
SRPK2 NM_182692 6733  
ST8SIA4 NM_005668 7903  
STX7 NM_003569 8417  
SUCLG2 NM_003848 8801  
SYNE1 NM_133650 23345  
TADA2B NM_152293 93624  
TBC1D1 NM_015173 23216  
TBC1D4 NM_014832 9882  
TBL1X NM_005647 6907  
TBL1XR1 NM_024665 79718 miR-330 
TBPL1 NM_004865 9519  
TCERG1 NM_006706 10915  
TET2 NM_017628 54790  
TFEC NM_012252 22797  
TFRC NM_003234 7037  
TGFBR1 NM_004612 7046  
TGFBRAP1 NM_004257 9392  
TIFA NM_052864 92610  
TIMP3 NM_000362 7078  
TLL1 NM_012464 7092  
TMEM26 NM_178505 219623  
TMEM27 NM_020665 57393  
TMEM131 NM_015348 23505  
TMEM165 NM_018475 55858  
TMF1 NM_007114 7110  
TNF NM_000594 7124  
TNFRSF11B NM_002546 4982  
TNFSF4 NM_003326 7292  
TNPO1 NM_153188 3842  
TOM1L1 NM_005486 10040  
TOR1AIP2 NM_145034 163590  
TOX NM_014729 9760 miR-330 
TRDMT1 NM_176081 1787  
TRIM2 NM_015271 23321 miR-330 
TSPAN8 NM_004616 7103  
TSPYL4 NM_021648 23270  
UBE2A NM_003336 7319  
UBE2D1 NM_003338 7321  
UBP1 NM_001128160 7342  
USP42 NM_032172 84132  
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Symbol GenBank Entrez Gene ID miRNAs with Overlapping Targets 
VBP1 NM_003372 7411  
VCAN NM_001126336 1462  
WHSC2 NM_005663 7469  
WNK1 NM_018979 65125  
XRN1 NM_019001 54464  
ZBTB34 NM_001099270 403341 miR-330 
ZBTB44 NM_014155 29068  
ZFAND6 NM_019006 54469  
ZFP36L1 NM_004926 677  
ZFP36L2 NM_006887 678  
ZIC3 NM_003413 7547  
ZNF83 NM_001105549 55769  
ZNF124 NM_003431 7678  
ZNF439 NM_152262 90594  
ZNF440 NM_152357 126070  
ZNF441 NM_152355 126068  
ZNF454 NM_182594 285676  
ZNF468 NM_001008801 90333  
ZNF559 NM_032497 84527  
ZNF594 NM_032530 84622  
ZNF655 NM_138494 79027  
ZNF673 NM_001129898 55634  
ZSCAN23 NM_001012455 222696  

4. miR-10b 
ARG2 NM_001172 384  
ARSJ NM_024590 79642 miR-181a 
BDNF NM_170731 627  
C1ORF71 XM_001717264 163882  
CAPRIN1 NM_005898 4076 miR-181a 
CLCC1 NM_001048210 23155  
EBF2 NM_022659 64641  
FIGN NM_018086 55137 miR-181a 
FNBP1L NM_001024948 54874  
GALNT1 NM_020474 2589  
HOXA3 NM_153631 3200  
HOXB3 NM_002146 3213  
KLF11 NM_003597 8462  
LCA5 NM_001122769 167691 miR-33 
MAP3K7 NM_003188 6885  
NONO NM_007363 4841  
RB1CC1 NM_014781 9821  
RBM27 NM_018989 54439  
RNF7 NM_183237 9616  
SNX18 NM_001102575 112574  
TBX5 NM_181486 6910 miR-330 
TFAP2C NM_003222 7022  
TRNT1 NM_182916 51095  
USP46 NM_022832 64854  
WDR26 NM_001115113 80232   
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Supplementary Table 3: 40 networks associated with the predicted targets of miR-33, miR-330, 
miR-181a, and miR-10b. 

Network 
No. p-value No. of Predicted 

Transcripts Molecules in Network 

1. miR-33 

1 1E-34 16 

ABCA1, ACAA2, Alcohol group acceptor phosphotransferase, CACNA1C, 
CACNA1D, CACNA1H, CDK6, CROT, CSNK1D, GLO1, HADHB, HMGA2, 
KCNMA1, LDL, LIMK2, MIR124, MMP16, MSR1, NARG1, NEK2, NFkB 
(complex), PDGF BB, PGRMC2, PIM1, Pka, PLEKHA1, PPP1R13L, PTPN13, 
RCAN1, RYR1 (includes EG:114207), SERPINB6, ST18, SUCLG2, TNFRSF9, 
Trypsin 

2 1E-27 14 

AHSG, ARD1A, BAT1, CHMP1B, CLSPN, CP110, CPB2, CTNNB1, DSC3, 
FBXW11, FGB, FH, GLCCI1, GOT1, Groucho, HBS1L, HNF1A, HNF4A, HPX, 
ING3, LIN7C, MIR9-1 (includes EG:407046), NAT8, NFYB, PCBD1, PLK1, 
PNMA1, PTPN13, PZP, RIMBP2, SLC26A7, SLITRK3, SPAST, ZNF281, ZNF300 

3 1E-26 13 

ABCE1, ANP32A, ARID5B, ATXN1, B3GALT2, BACE1, BAT2, BECN1, 
C11ORF41, CCDC85B, CFL1, CHI3L1, CSF1R, DAZAP2 (includes EG:9802), 
DZIP3, EEA1, FAM46C(includes EG:54855), FGA, KIAA2018, KIF3C, KRT18, 
LPA, MIR17 (includes EG:406952), MIR212 (includes EG:406994), MIR29A 
(includes EG:407021), MIR29B1, MIR29B2, NAT12, NEDD4L, SATB2, SLC39A14, 
SLU7, TARDBP, TGFB1, TRIP6 

4 1E-21 11 

ASAP1, CADM1, CCL9, CDC42, CDC42BPA, CDC42BPB, CXCL12, EBF1, EFS, 
ERK, FCGR2B, FUT9, FZD5, GOPC, IL1B, ITSN2, LIMK2, LPP, MATK, PALLD, 
POSTN, progesterone, PRRX1, PTK2, RRS1, SEC23A, SEC24C (includes EG:9632), 
SHPRH, SIX4, SLC25A25, SLC6A4, SSTR3, UBE2V2, VIM, ZNF140 

5 1E-13 8 

amino acids, APLP2, APP, APPBP2, beta-estradiol, CA2, CXCL5, DYRK3, EN2, 
EPB41L3, EPO, FLOT1, FSTL1, GRI, GRIA3, GRIA4, GRIP2, HIPK2, HIST4H4 
(includes EG:121504), HSP90B1, KISS1, MLLT3, nitric oxide, NSF, PARD6B, 
PPP3R1, PRDM2, PRKCA, PRKG1, PTPN13, SLC6A4, SYT11, WNT5B, ZNF148, 
ZNRF1 

2. miR-330 

1 1E-40 23 

ACVR1, AGTR2, Ap1, APPL1, ATP2B1, BMPR2, C5ORF23, CAPZA1, CCND3, 
CD247, ERK, Estrogen Receptor, FGFR1, FSH, GNRH, GNRHR, hCG, HSF2, 
HSPH1, Insulin, KLF10, Lh, MAT2A, MRPS6 (includes EG:64968), PDGF BB, 
PP2A, RAP2A, RND3, SFRS1, Shc, SMG7, SNAP23, Tgf beta, THBS1, TRA2A 

2 1E-37 24 

ABCA1, ARFGEF2, BCL11B, BTRC, Calcineurin protein(s), CALCR, CBX5, CHP, 
cldn, CLDN8, CLDN18, Creb, CYP7A1, GJC1, HELZ, HNRNPU, LDL, N-cor, Nfat 
(family), NFkB (complex), PCK1, PRKAC, PRKCB, RCAN1, RNA polymerase II, 
Rxr, SEP15, SLC2A2, STAU1, TBL1XR1, TEAD1, TGFBR3, TJP1, TSHR, Vegf 

3 1E-33 20 

Akt, BCL9, Caspase, Ck2, EEF1A1, EIF5, EIF4E, ERBB4, ERK1/2, F Actin, FRK, 
GRB10, Histone h3, Histone h4, ID2, Jnk, KAT2B, KDM4C, MAGED2, Mapk, 
MECOM, MYEF2, NRG2 (includes EG:381149), P38 MAPK, PAFAH1B1, PCDHA4, 
PCDHA11, PI3K, Pkc(s), Rb, SIN3A, STK3, SUDS3, TNS1, XK 

4 1E-26 17 

AFF2, C10ORF10, CBLC, CD19, CD82, CNTFR, CRK, DAB1, EDEM1, EFEMP2, 
ERBB, FCGR1A/2A/3A, INPPL1, KHDRBS1, KRTAP4-12, LYN, NEDD9, 
PCDHA1, PCDHA2, PCDHA3, PCDHA5, PCDHA6, PCDHA7, PCDHA8, PCDHA9, 
PCDHA10, PCDHA12, PLSCR1, PLSCR4, RBM12, SSR1, STX18, XBP1, YIPF5 

5 1E-25 16 

ADIPOR1, ANGEL2, APOC3, ARL17P1, C9ORF5, C9ORF64, CIAO1, CNBP, 
EEF2K, FAM107B, FOXA2, glycogen, HNF1B, HNF4A, HNRNPR, KIAA1012, 
LRP5, MAGOH, METAP2, MLXIPL, NCBP1, ONECUT2, PCK1, PEPCK, PRKAB2, 
RAI2, RPL31, SLC2A2, SYTL4, TADA3L, TMEM59 (includes EG:9528), TOE1, 
TROVE2, TTR, USP15 

6 1E-25 16 

BMP2, C14ORF129, C2CD2, C5ORF15, CRADD, D4S234E, DNM1L, EPM2A 
(includes EG:7957), FRK, GSK3B, HNRNPA3, HOXA13, ITM2C, KLF10, MIR17 
(includes EG:406952), MIR27B (includes EG:407019), MIRN330, MNT, MYPN, 
NAT12, PAX8, PLXNA2, PPP1CA, PPP1R3C, RBL2, SERPINB2, SFRP1, SFRS5, 
SMYD2, SOSTDC1, TBX2, TNF, ZBTB34, ZNF410, ZNF423 
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Network 
No. p-value No. of Predicted 

Transcripts Molecules in Network 

7 1E-23 15 

ATL2, BCL2, BCLAF1, CGN, CMPK1, DCAF7, DERL1, DHX15, DPP10, E2F4, 
EFHC1, HIST2H2BE, IFNA2, KIF1B, LAPTM4B, MARK1, MIR122, MYCBP2, 
NDE1, NEFL, OFD1, PTPN3, SCG3, TBC1D4, TP53BP2, TRIM2, TSFM (includes 
EG:10102), UBXN4, USP18, USP37 (includes EG:57695), VCP, VPS54, YWHAG, 
YWHAZ, ZC3HAV1 

8 1E-23 15 

ABL1, AFF4, amino acids, APEX2, ARHGAP12, CSNK1G3, DLGAP5, DNM3, 
DYRK2, ERLIN2, EWSR1, GNS, hydrogen peroxide, MBNL2, MERTK, MIR133A, 
MIR133A-1, MIR133A-2, MIRN140, MOBKL1A, NBEA (includes EG:26960), 
PCDHAC2, PCMT1, PTBP2, RIPK4, SELI, SMNDC1, SNX2, SRF, STK38L 
(includes EG:23012), TCEB3B, TGFB1, TRAF2, TRIM37, UBTD2 

9 1E-22 15 

AGT, ANKH, AZIN1, BOK, CLNS1A, DICER1, DOCK5, EIF5, EIF2C2, FMR1, 
GRIA3, HSF2, LNX2, MIRLET7B (includes EG:406884), MIRN346, NR3C1, 
OTUD3, PIWIL4, PPP1R3C, PPP2CA, PRKRA, RNF144B, SERINC3, STXBP5, 
TARBP2, TBX2, TBX5, TNRC6B, UBE2A, UBE2I, UBE2L6, UBE2Q1, UBE2T, 
UGCG, WDR37 

10 1E-21 14 

AGR2, ARSA, ARSB, ARSD, ARSE, ARSF, ARSG, ARSI, ARSJ, BFSP1, BMX, 
CDKN2A, D4S234E, DAG1, DLX1, ERBB2, ERC1, KANK2, MMD, PLXNB2, 
PQLC1, PTRF, RASA3, RUFY2, SCP2, SLCO1A1, STEAP4, SULF1, SULF2, 
SUMF1, TLN1, TNF, VIM, ZFR, ZNF148 

11 1E-19 13 

ASS1, ATP2C1, BTRC, CCDC85B, CDKN1A, CDR2, CLCN5, Cofilin, ERAP1, 
EXOC7, EXOC8, GCN1L1, HIVEP2, HOXB4, IGF2BP1, IMPACT, KRT20, 
LRPPRC, MAZ, MBIP, MCM10, MIRLET7A1, MYC, PKN1, PNN, POLR1B, 
POLR2L (includes EG:5441), PRC1, RFX1, TADA2L, TRIP12, UXT, VASH2, 
YTHDC1, ZFC3H1 

12 1E-19 13 

ADAMTS5, AP1S2, API5, DHX15, DRD2, FMO, FMO2, FOXK1, GH1, GPRASP1, 
HTT, KCNK3, KLF16, MIR103-1 (includes EG:406895), MLH1, PCTP, PSD3, 
PTPN22, RALB, retinoic acid, RPL6, RPS19, SATB1, SFRS2IP, SLAIN1, SLC5A3, 
TOX, UBA7, VAMP1, VAPA, VAPB, VGLL3, YWHAB, ZNF133, ZNF706 

13 1E-13 10 

ACTR5, ACTR8, AP2M1, APEX2, ARHGAP29, ATP6V0E1, ERVK6, FGD1, FIGF, 
FURIN, GATS, HEBP2, INO80, INO80B, INO80D, INO80E, INS1, ITGB1, JPH1, 
KATNA1, KLHL24, LDLRAP1, MIR124, MIR124-1, phosphatidylinositol-3, 4, 5-
triphosphate, PREX1, Rac, RAVER2, RGS10, SEMA4D, SLC16A1, SORL1, SURF4, 
TNKS, ZCCHC24 

3. miR-181a 

1 1E-43 26 

BAG4, BIRC6, CALB1, CAMK2D, DLGAP2, E2F7, ENPP1, FUCA1, HEY2, HRH1, 
Ifn, MIR1, MTMR12, MUC7, NFkB (complex), NFkB (family), NOTCH4, NTS, 
PARK2, PAWR, POM121C, PRDX3, PRH2, Proteasome, SPHINGOMYELINASE, 
TFRC, TIMP3, Tnf receptor, TOM1L1, TRIM2, UBE2, UBE2A, UBE2D1, Ubiquitin, 
ZFAND6 

2 1E-41 25 

ACVR2A, ACVR2B, Alcohol group acceptor phosphotransferase, ATM, BHLHE40, 
DDX3X, EIF4A2, FBXO33, FBXO34, FKBP1A, GABRA1, Histone H1, IFN Beta, 
Importin beta, IPO8, KLHL2, MAPK1, p70 S6k, PDE5A, POLQ, PP1, PP1-C, 
PPP1R9A, PPP2R5E, PRKCD, RAN, REPS2, Smad, SPRY4, Tgf beta, TGFBR, 
TGFBR1, TGFBRAP1, TNFRSF11B, TNPO1 

3 1E-34 22 

Akt, Ap1, ATXN3, BAG2, BRWD1, CABC1, Cbp/p300, CBX7, CCAR1, E2F5, 
Estrogen Receptor, ETV6, GRB10, Growth hormone, Histone h4, HOXB4, HOXC8, 
Hsp90, ITSN1, KDM5A, N-cor, NCOA2, NR3C1, Pias, RAD21, Rxr, SPP1, SRPK2, 
STAT5a/b, TBC1D4, TBL1X, TBL1XR1, TET2, tyrosine kinase, VitaminD3-VDR-
RXR 

4 1E-32 21 

ACSL1, AKAP, AKAP5, AKAP6, AKAP7, AMPK, ATG5 (includes EG:9474), 
ATP2A2, CaMKII, Caspase, CCNL2, CDON, Creb, CREB5, Cytochrome c, 
DNAJC13, DYNC1LI2, FSH, GATA6, hCG, Histone h3, Hsp70, Mmp, P38 MAPK, 
PCDHA4, Pka, RFC1, RNA polymerase II, SCD, SFRS7, SIRT1, TBPL1, TCERG1, 
ZBTB44, ZNF83 
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Network 
No. p-value No. of Predicted 

Transcripts Molecules in Network 

5 1E-21 16 

ADAM11, ADAM28, C2ORF69, C5ORF41, CCNJ, CD40LG, CTDSPL, FBXO33, 
FRK, ILK, KCNH8, MEGF9, MIR140 (includes EG:406932), MIR153-1, MIR153-2, 
MIR181B1, MIR181B2, MIR21 (includes EG:406991), MIR217 (includes 
EG:406999), MT1G, NEFH, NFIB, OTUD4, PAPOLA, PAPOLG, PAX8, PCDHAC2, 
PHLPP2, RAB9A, RB1, SEMA4G, SLITRK1, SPIN1, TERT, ZIC3 

6 1E-20 17 

14-3-3, Angiotensin II receptor type 1, Calcineurin A, Calcineurin protein(s), CARD8, 
CD3, CLASP1, CLIP1, DOCK10, DSC3, Eotaxin, Fcer1, GPD2, Ifn gamma, IKK 
(complex), Importin alpha, LRRC8D, MAP2K1/2, MEF2, MHC Class II, MKLN1, 
NFAT5, NFAT (complex), Nfat (family), NR6A1, PLEKHA3, Ptger, PTGER3, 
SEMA3C, TCR, TIFA, TNF, TNFSF4, VAV, ZFP36L1 

7 1E-20 15 

ADRBK1, CRK, EFNA1, ENG, ERBB4, FLNA, GNB2L1, INHBA, KAT2B, MIR34A 
(includes EG:407040), MMP13, MTF2, NEDD9, NFYC, NKX2-1, PCDHA1, 
PCDHA2, PCDHA3, PCDHA5, PCDHA6, PCDHA7, PCDHA8, PCDHA9, 
PCDHA10, PCDHA11, PCDHA12, PDPK1, PRDM4, SMAD3, sphingosine-1-
phosphate, TMEM165, TP53BP2, WEE1, ZEB2 

8 1E-20 15 

ACTR5, ACTR8, ALDOB, BBS7, BEND3, CD302, CDCA7L, CHMP2B, ERVK6, 
FOXA2, GATS, HNF1A, HOXD1, INO80B, INO80D, INO80E, KANK1, METAP1, 
MIR124, MIR124-1, ONECUT2, OSBPL8, PCNP, POLR3G, POU2F1, retinoic acid, 
RPE65, RUVBL1, SUCLG1, SUCLG2, SUMO1, TMEM109, TNFRSF21, TWIST2, 
ZNF673 

9 1E-19 15 

ACTB, AFTPH, ANKH, APBB1, beta-estradiol, C19ORF12, CPNE2, EIF3M, ENC1, 
FUT9, GH1, Glutathione peroxidase, GPX8, GSTM3 (includes EG:2947), GSTT1, 
hydrogen peroxide, MGST2, PARP, PARP4, PARP11, PER3, PNRC2 (includes 
EG:55629), progesterone, PSG5, PTGER3, PTP4A2, ROD1, SLC7A11, SMARCA4, 
SMPDL3A, SPOCK1, SRD5A2, TOR1AIP2, TOX, TSC22D1 

10 1E-18 14 

ATYPICAL PROTEIN KINASE C, BCR, C1q, Collagen type I, Collagen(s), DCN, 
ERK, Focal adhesion kinase, Ige, IgG, Igm, Integrin, ITGA2, KIF3A, Laminin, 
LAMP2, LIFR, Mek, NRAS, Pdgf, PDGF BB, PLA2, Pld, PP2A, RAB3IP, Rac, Rap1, 
Ras, RASSF2, RIN2, RPS6KB1, S1PR1, TLL1, TSPAN8, VCAN 

11 1E-18 14 

AP3B2, ARRB1, ATP11C, BRD1, BRF1, cldn, CLDN4, CLDN6, CLDN8, CNTN4, 
CSDA, DNAJB6, FIGN, FOXK1, GAPVD1, HNRNPAB, KCTD3, LOC161527, 
MIR31 (includes EG:407035), MIRN341, MTX3, NFYB, OGG1, OSBPL3, PLEC1, 
RAB8B, RBM26, SON, SSTR3, ST8SIA4, TJP1, VIM, VPS39, YWHAB, ZNF468 

12 1E-18 14 

AHCTF1, ARHGEF3, BTBD3, CDC2L1 (includes EG:984), COBRA1, DDX52, 
FAM13B, HEATR1, IPO7, KIAA1239, KIAA2022, KPNB1, MED8, MED25, 
MED26, MED28, MED29, MIR195, MIR373, MIR181C (includes EG:406957), 
MIR199A1, MLH1, MTMR15, MYC, NUP133, PAPD5, PHTF2, POLR2C, POLR2D, 
RDBP, Rfc, RPAP2, SR140, WHSC2, XRN1 

13 1E-16 13 

BRAP, C15ORF29, C20ORF12, CDC14A, CDK5, CTSB, DNAL1, FAM160A2, 
GFI1B, GHITM, GOLGA2, GPS2, HIC2, HLA-B, HNF4A, LARP4, MINA, 
MIRN336, MYST2, NDRG1, ONECUT1, PDK2, PPARGC1A, PPP1CA, PPP1R12B, 
PRDM5, PRKCE, RAB33B, RABAC1, ROCK1, SEC23A, SEC24C (includes 
EG:9632), SLC6A4, TMF1, ZNF594 

14 1E-16 13 

ADAMTS4, ADAMTS5, ARF4, C21ORF33, CAPRIN1, CASP14, CCDC14, 
CCDC85B, COMP, DNAJB4, FNDC3B, GCC2, MATN3, MATN4, NNMT, PARVA, 
PAX3, PHGDH, PI4K2B, RAB18, RBM25 (includes EG:58517), RNF8, RNH1, 
SDPR, SF3A3, SLC2A4, STOML2, STX7, TBC1D1, TGFB1, TSPYL4, VPS11, 
WBP4, WNK1, ZFP36L2 

15 1E-16 13 

ADAMTSL1, AHSG, ALP, ALPI, ATP2A1, B4GALNT1, BMYO, C16ORF87, 
CD274, CD1A, CSF1, DBT, DDX3Y (includes EG:8653), DGKA, EPC2, GATM, 
GRB2, HMGN3, HSPC159, IL4, L-triiodothyronine, LIF, MIRN328, PAX9, RP5-
1022P6.2, SHH, SLC24A1, SLC29A1, ST5, TFEC, TMEM131, VEGFA, ZBTB34, 
ZFP36, ZNF124 

16 1E-15 13 

ACADVL, AIMP2, ALB, BAI3, BAZ2B, BBC3, C10ORF104, CBX4, CPOX, CTBP2, 
DENR (includes EG:8562), EEF2K, EIF4A3 (includes EG:9775), GPRIN3, HIPK2, 
HP, ITGA2, LMO3, METAP2, MORC3, MTA1, PAX5, PCGF2, PDE4B, PEG3, 
PHC2, PHC3, PSRC1, RBBP6 (includes EG:5930), S100A4, SERPING1, SLC19A2, 
SUPT3H (includes EG:8464), TADA2B, TP53 
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Network 
No. p-value No. of Predicted 

Transcripts Molecules in Network 

17 1E-15 12 

ACYP1, APOBEC3B, C14ORF129, CDC5L, CHIC2, CMBL, CRB3, CYP2D9, 
DISC1, ETNK2, EXOSC4, G3BP2, GSK3B, HNF4A, HOOK1, Hydrolase, KIF3C, 
LTA4H, MDFI (includes EG:4188), MPP1, MPP5, NLN, NPDC1, PARP4, PRCC, 
PTPN7, REXO2, SCOC, SFI1, SYNE1, UBP1, VPS29, ZNF439, ZNF440, ZNF559 

18 1E-14 12 

ADCY, ADRBK1, ARHGAP26, ATP2B1, CCNB1, Cdc2, CSF2RB, CUL3, Cyclin A, 
Cyclin B, Cyclin E, DARS, DIRAS3, ERK1/2, G protein beta gamma, Gpcr, IL1, IL2, 
Insulin, Interferon alpha, Jnk, KRAS, LDL, Lh, Mapk, PI3K, PITPNB, Pkc(s), PLC, 
RAP1B, Ras homolog, Sapk, Shc, STAT, Vegf 

19 1E-11 10 

amino acids, ASPH, C7ORF16, CDKL1, CTTNBP2NL, DAPK2 (includes EG:23604), 
DEPDC6 (includes EG:64798), EEF1A1, FMNL2 (includes EG:114793), FNBP4, 
FOXP1, HAT1, HTT, IL12 (complex), MARK1, MBOAT2, MLST8, MTOR, NXN, 
PDK1, PGGT1B, PPP2CA, PQBP1, PRPF40A, PTPN7, RIPK4, RLF, RNF34, RP6-
213H19.1, STAT4, STRADA, TPP2, TRDMT1, TRIM30, ZNF655 

20 1E-11 10 

Actin, AFAP1, AKAP5, Alpha tubulin, APLNR, ARPP-21, C21ORF66, CALM1, 
Calmodulin, CAMK2N2, Ck2, CYB5R3, F Actin, FGD4, GABRR1, GRIN1, KCNQ2, 
KCNQ3, KIAA1219, MAP1B, NOVA1, PAM, PCP4, PFDN4, PFDN6, POM121, 
PPEF2, sodium chloride, SRC, TMEM27, TRIM13, Tubulin, UNC13A, USP6, VBP1 

4. miR-10b 

1 1E-23 10 

ACT1, ANKRD1, ARPP-21, ASB2, BDNF, CALB2, CNGA2, EBF2, EDARADD, 
FASLG, FIGN, FNBP1L, GRIN2B, GRIN2C, HTT, IP6K2, KLF11, LCA5, MAP3K7, 
MBTPS1, MIR124-1, NAPB, NEUN, NFkB (complex), PELI1, PELI3, RBM27, 
RNF7, SGSM2, SNX18, TPH1, UBC, UBE2V1, WDR34, YY1 

2 1E-22 10 

AGT, ANKRD1, ARG2, Arginase, beta-estradiol, CAPRIN1, CREB1, G3BP1, 
GALNT1, GRIN2C, GRM3, HOXA2, HOXA3 (includes EG:3200), HOXB3, HOXD3, 
LOR, MAFB, MYLPF, NR3C1, PBX1, PPP3R1, RB1CC1, RPS6KA5, SLC19A1, 
STAT3, TBX2, TBX3, TBX5, TFAP2C, TGFB1, TP53, TRNT1, WDR26, WWOX, 
WWTR1 

 
 

  



96 
 

Supplementary Table 4: Canonical pathways involving at least three molecules present in top 
networks significantly associated with predicted targets of miR-33, miR-330, miR-181a, and 
miR-10b. 

Canonical Pathways 
Present in 

miR-33 
Network? 

Present in 
miR-330 

Network? 

Present in 
miR-181a 
Network? 

Present in 
miR-10b 

Network? 

Total miRNA 
Networks with 

Canonical Pathway 
Molecular Mechanisms of Cancer Yes Yes Yes Yes 4 
Acute Phase Response Signaling Yes Yes Yes No 3 
Colorectal Cancer Metastasis Signaling Yes Yes Yes No 3 
Glucocorticoid Receptor Signaling Yes Yes Yes No 3 
GNRH Signaling Yes Yes Yes No 3 
G-Protein Coupled Receptor Signaling Yes Yes Yes No 3 
Hepatic Cholestasis Yes Yes Yes No 3 
NF-kB Signaling Yes No Yes Yes 3 
PPAR Signaling Yes Yes Yes No 3 
Production of Nitric Oxide and Reactive Oxygen 
Species in Macrophages Yes Yes Yes No 3 

Role of Macrophages, Fibroblasts and Endothelial 
Cells in Rheumatoid Arthritis Yes Yes Yes No 3 

Tight Junction Signaling Yes Yes Yes No 3 
Type I Diabetes Mellitus Signaling No Yes Yes Yes 3 
Actin Cytoskeleton Signaling Yes Yes No No 2 
Androgen Signaling Yes Yes No No 2 
Aryl Hydrocarbon Receptor Signaling Yes Yes No No 2 
Axonal Guidance Signaling Yes Yes No No 2 
B Cell Receptor Signaling No Yes Yes No 2 
BMP signaling pathway Yes Yes No No 2 
Breast Cancer Regulation by Stathmin1 Yes Yes No No 2 
Calcium Signaling Yes Yes No No 2 
Cardiac Hypertrophy Signaling Yes Yes No No 2 
Ceramide Signaling No Yes Yes No 2 
Ephrin Receptor Signaling Yes Yes No No 2 
Glioblastoma Multiforme Signaling Yes Yes No No 2 
Glioma Signaling Yes Yes No No 2 
Hepatic Fibrosis / Hepatic Stellate Cell Activation No Yes Yes No 2 
HMGB1 Signaling No Yes Yes No 2 
Huntington's Disease Signaling No Yes No Yes 2 
iCOS-iCOSL Signaling in T Helper Cells Yes No Yes No 2 
IL-12 Signaling and Production in Macrophages Yes Yes No No 2 
IL-6 Signaling No Yes Yes No 2 
IL-8 Signaling Yes Yes No No 2 
ILK Signaling No Yes Yes No 2 
LXR/RXR Activation Yes No Yes No 2 
PAK Signaling Yes Yes No No 2 
PPARalpha/RXRalpha Activation Yes Yes No No 2 
Protein Kinase A Signaling Yes No Yes No 2 
PTEN Signaling No Yes Yes No 2 
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Canonical Pathways 
Present in 

miR-33 
Network? 

Present in 
miR-330 

Network? 

Present in 
miR-181a 
Network? 

Present in 
miR-10b 

Network? 

Total miRNA 
Networks with 

Canonical Pathway 
RAR Activation Yes Yes No No 2 
Renin-Angiotensin Signaling Yes Yes No No 2 
Role of NFAT in Cardiac Hypertrophy Yes Yes No No 2 
Role of NFAT in Regulation of the Immune Response Yes Yes No No 2 
Role of Osteoblasts, Osteoclasts and Chondrocytes in 
Rheumatoid Arthritis No Yes Yes No 2 

Thrombin Signaling No Yes Yes No 2 
Type II Diabetes Mellitus Signaling Yes No Yes No 2 
4-1BB Signaling in T Lymphocytes Yes No No No 1 
Acute Myeloid Leukemia Signaling Yes No No No 1 
AMPK Signaling No Yes No No 1 
Amyloid Processing Yes No No No 1 
Amyotrophic Lateral Sclerosis Signaling Yes No No No 1 
Apoptosis Signaling No No Yes No 1 
Atherosclerosis Signaling Yes No No No 1 
Autoimmune Thyroid Disease Signaling No Yes No No 1 
Cardiac B-adrenergic Signaling Yes No No No 1 
CCR5 Signaling in Macrophages No Yes No No 1 
CD28 Signaling in T Helper Cells No Yes No No 1 
CD40 Signaling No No No Yes 1 
Cdc42 Signaling No Yes No No 1 
Cellular Effects of Sildenafil (Viagra) Yes No No No 1 
Cholecystokinin/Gastrin-mediated Signaling No Yes No No 1 
Chronic Myeloid Leukemia Signaling Yes No No No 1 
Crosstalk between Dendritic Cells and Natural Killer 
Cells No No Yes No 1 

CXCR4 Signaling No Yes No No 1 
Death Receptor Signaling No No Yes No 1 
Dendritic Cell Maturation No No Yes No 1 
EGF Signaling No Yes No No 1 
EIF2 Signaling No Yes No No 1 
Endothelin-1 Signaling No Yes No No 1 
ERK/MAPK Signaling No Yes No No 1 
Erythropoietin Signaling No Yes No No 1 
Estrogen Receptor Signaling No Yes No No 1 
Estrogen-Dependent Breast Cancer Signaling No Yes No No 1 
Factors Promoting Cardiogenesis in Vertebrates No Yes No No 1 
Germ Cell-Sertoli Cell Junction Signaling No Yes No No 1 
Human Embryonic Stem Cell Pluripotency No Yes No No 1 
Hypoxia Signaling in the Cardiovascular System No No Yes No 1 
IGF-1 Signaling No Yes No No 1 
IL-1 Signaling Yes No No No 1 
IL-2 Signaling No Yes No No 1 
IL-3 Signaling No Yes No No 1 
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Canonical Pathways 
Present in 

miR-33 
Network? 

Present in 
miR-330 

Network? 

Present in 
miR-181a 
Network? 

Present in 
miR-10b 

Network? 

Total miRNA 
Networks with 

Canonical Pathway 
Induction of Apoptosis by HIV1 No No Yes No 1 
Inositol Phosphate Metabolism Yes No No No 1 
Insulin Receptor Signaling No Yes No No 1 
Integrin Signaling No Yes No No 1 
mTOR Signaling No Yes No No 1 
Natural Killer Cell Signaling No Yes No No 1 
Neuropathic Pain Signaling in Dorsal Horn Neurons No No No Yes 1 
Neurotrophin/TRK Signaling No Yes No No 1 
Nicotinate and Nicotinamide Metabolism Yes No No No 1 
Nitric Oxide Signaling in the Cardiovascular System Yes No No No 1 
Ovarian Cancer Signaling No Yes No No 1 
P13K/AKT Signaling No Yes No No 1 
p70S6K Signaling No Yes No No 1 
PDGF Signaling No Yes No No 1 
Phospholipase C Signaling No Yes No No 1 
Prolactin Signaling No Yes No No 1 
Protein Ubiquitination Pathway No No Yes No 1 
PXR/RXR Activation Yes No No No 1 
Rac Signaling Yes No No No 1 
Regulation of eIF4 and p70S6K Signaling No Yes No No 1 
Regulation of IL-2 Expression in Activated and 
Anergic T Lymphocytes No Yes No No 1 

Relaxin Signaling Yes No No No 1 
Renal Cell Carcinoma No Yes No No 1 
Role of NANOG in Mammalian Embryonic Stem 
Cell Pluripotency No Yes No No 1 

Role of PKR in Interferon Induction and Antiviral 
Response No No Yes No 1 

SAPK/JNK Signaling No Yes No No 1 
Small Cell Lung Cancer Signaling Yes No No No 1 
Sphingosine-1-phosphate Signaling No Yes No No 1 
Synaptic Long Term Potentiation Yes No No No 1 
Systemic Lupus Erythematosus Signaling No Yes No No 1 
T Cell Receptor Signaling No Yes No No 1 
TGF-B Signaling No Yes No No 1 
Thrombopoietin Signaling No Yes No No 1 
VDR/RXR Activation Yes No No No 1 
Wnt/B-catenin Signaling No Yes No No 1 
Xenobiotic Metabolism Signaling No No Yes No 1 
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Supplementary Table 5: Biological functions significantly (p-value < 0.005) associated with 
predicted transcriptional targets of miR-33, miR-330, miR-181a, and miR-10b. 

Functions p-value 
1. miR-33 

Amino Acid Metabolism 0.0034 
Behavior 0.0001 
Cancer 0.0041 
Carbohydrate Metabolism 0.0041 
Cardiovascular Disease 0.0046 
Cell Cycle 0.0009 
Cell Death 0.0041 
Cell Morphology 0.0003 
Cell-mediated Immune Response 0.0041 
Cell-To-Cell Signaling and Interaction 0.0036 
Cellular Assembly and Organization 0.0036 
Cellular Compromise 0.0041 
Cellular Development 0.0003 
Cellular Function and Maintenance 0.0041 
Cellular Growth and Proliferation 0.0041 
Cellular Movement 0.0041 
Connective Tissue Development and Function 0.0041 
Drug Metabolism 0.0041 
Embryonic Development 0.0003 
Endocrine System Development and Function 0.0041 
Gene Expression 0.0041 
Genetic Disorder 0.0002 
Hair and Skin Development and Function 0.0017 
Hematological Disease 0.0041 
Hematological System Development and Function 0.0041 
Hematopoiesis 0.0041 
Immunological Disease 0.0041 
Inflammatory Response 0.0041 
Lipid Metabolism 0.0041 
Metabolic Disease 0.0041 
Molecular Transport 0.0041 
Nervous System Development and Function 0.0041 
Neurological Disease 0.0002 
Organ Development 0.0041 
Organ Morphology 0.0041 
Organismal Injury and Abnormalities 0.0041 
Post-Translational Modification 0.0034 
Protein Synthesis 0.0025 
Psychological Disorders 0.0002 
Renal and Urological System Development and Function 0.0009 
Reproductive System Development and Function 0.0041 

Skeletal and Muscular Disorders 0.0014 

Skeletal and Muscular System Development and Function 0.0040 
Small Molecule Biochemistry 0.0034 
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Functions p-value 
Tissue Development 0.0040 
Vitamin and Mineral Metabolism 0.0041 

2. miR-330  
Carbohydrate Metabolism 0.0006 
Cell Cycle 0.0043 
Cell Morphology 0.0038 
Cell-mediated Immune Response 0.0038 
Cell-To-Cell Signaling and Interaction 0.0011 
Cellular Development 0.0028 
Cellular Function and Maintenance 0.0002 
Cellular Growth and Proliferation 0.0028 
Cellular Movement 0.0002 
Embryonic Development 0.0019 
Endocrine System Development and Function 0.0028 
Gene Expression 0.0028 
Hematological System Development and Function 0.0038 
Immune Cell Trafficking 0.0038 
Inflammatory Response 0.0019 
Lipid Metabolism 0.0006 
Molecular Transport 0.0018 
Nervous System Development and Function 0.0004 
Organismal Development 0.0013 
RNA Trafficking 0.0028 
Small Molecule Biochemistry 0.0006 
Tissue Development 0.0019 

3. miR-181a  
Cancer 0.0012 
Carbohydrate Metabolism 0.0032 
Cardiovascular Disease 0.0000 
Cell Cycle 0.0001 
Cell Death 0.0001 
Cell Morphology 0.0012 
Cell-mediated Immune Response 0.0038 
Cell-To-Cell Signaling and Interaction 0.0004 
Cellular Assembly and Organization 0.0015 
Cellular Development 0.0012 
Cellular Function and Maintenance 0.0012 
Cellular Growth and Proliferation 0.0004 
Cellular Movement 0.0012 
Connective Tissue Development and Function 0.0012 
Connective Tissue Disorders 0.0012 
Dermatological Diseases and Conditions 0.0012 
DNA Replication, Recombination, and Repair 0.0038 
Drug Metabolism 0.0036 
Endocrine System Development and Function 0.0002 
Endocrine System Disorders 0.0020 
Gastrointestinal Disease 0.0005 
Gene Expression 0.0001 
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Functions p-value 
Genetic Disorder 0.0003 
Hair and Skin Development and Function 0.0012 
Hematological Disease 0.0012 
Hematological System Development and Function 0.0038 
Hematopoiesis 0.0038 
Immune Cell Trafficking 0.0038 
Immunological Disease 0.0012 
Infection Mechanism 0.0010 
Inflammatory Disease 0.0005 
Inflammatory Response 0.0012 
Lipid Metabolism 0.0023 
Metabolic Disease 0.0020 
Molecular Transport 0.0012 
Nervous System Development and Function 0.0003 
Neurological Disease 0.0005 
Nucleic Acid Metabolism 0.0012 
Organ Development 0.0017 
Organismal Development 0.0030 
Organismal Functions 0.0023 
Organismal Injury and Abnormalities 0.0019 
Organismal Survival 0.0020 
Respiratory Disease 0.0023 
Respiratory System Development and Function 0.0004 
Skeletal and Muscular Disorders 0.0012 
Skeletal and Muscular System Development and Function 0.0002 
Small Molecule Biochemistry 0.0004 
Tissue Development 0.0002 
Tissue Morphology 0.0004 
Tumor Morphology 0.0012 

4. miR-10b 
Amino Acid Metabolism 0.0015 
Auditory and Vestibular System Development and Function 0.0046 
Behavior 0.0030 
Cardiovascular Disease 0.0015 
Cardiovascular System Development and Function 0.0001 
Cell Death 0.0015 
Cell Morphology 0.0015 
Cell-To-Cell Signaling and Interaction 0.0015 
Cellular Assembly and Organization 0.0015 
Cellular Compromise 0.0017 
Cellular Development 0.0000 
Cellular Function and Maintenance 0.0015 
Cellular Growth and Proliferation 0.0013 
Cellular Movement 0.0015 
Connective Tissue Development and Function 0.0016 
Connective Tissue Disorders 0.0030 
Developmental Disorder 0.0046 
Digestive System Development and Function 0.0015 
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Functions p-value 
Embryonic Development 0.0010 
Endocrine System Development and Function 0.0002 
Endocrine System Disorders 0.0046 
Gastrointestinal Disease 0.0046 
Gene Expression 0.0003 
Genetic Disorder 0.0046 
Hair and Skin Development and Function 0.0030 
Hematological Disease 0.0015 
Hematological System Development and Function 0.0015 
Hematopoiesis 0.0015 
Humoral Immune Response 0.0015 
Immune Cell Trafficking 0.0046 
Immunological Disease 0.0046 
Inflammatory Disease 0.0030 
Inflammatory Response 0.0046 
Lymphoid Tissue Structure and Development 0.0030 
Nervous System Development and Function 0.0015 
Neurological Disease 0.0002 
Organ Development 0.0002 
Organ Morphology 0.0015 
Organismal Development 0.0002 
Organismal Functions 0.0015 
Organismal Injury and Abnormalities 0.0015 
Reproductive System Development and Function 0.0046 
RNA Post-Transcriptional Modification 0.0030 
Skeletal and Muscular Disorders 0.0030 
Skeletal and Muscular System Development and Function 0.0016 
Small Molecule Biochemistry 0.0015 
Tissue Development 0.0010 
Tissue Morphology 0.0001 
Visual System Development and Function 0.0015 
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Supplementary Table 6: Biological functions significantly (p-value < 0.005) associated with 
formaldehyde-responsive genes, as identified through pathway analysis of the Li et. al. 2007 
genomic database. 

Functions p-value 

Cell Death 1.65E-22 

Cellular Growth and Proliferation 1.17E-19 

Cancer 1.87E-19 

Gene Expression 4.40E-16 

Cell Cycle 1.51E-15 

Cellular Development 6.49E-13 

Developmental Disorder 7.45E-12 

Reproductive System Disease 2.93E-11 

Cardiovascular System Development and Function 2.38E-10 

Organismal Development 2.38E-10 

Organismal Survival 3.94E-10 

Hematological System Development and Function 1.93E-09 

Hematopoiesis 1.93E-09 

Tissue Development 5.73E-09 

Cell-mediated Immune Response 1.09E-08 

Cellular Function and Maintenance 1.09E-08 

Connective Tissue Disorders 1.10E-08 

Immunological Disease 1.10E-08 

Inflammatory Disease 1.10E-08 

Skeletal and Muscular Disorders 1.10E-08 

Tissue Morphology 5.86E-08 

Gastrointestinal Disease 5.86E-08 

Skeletal and Muscular System Development and Function 7.68E-08 

DNA Replication, Recombination, and Repair 1.47E-07 

Cardiovascular Disease 3.01E-07 

Organ Development 4.23E-07 

Genetic Disorder 4.39E-07 

Neurological Disease 4.39E-07 

Embryonic Development 4.92E-07 

Reproductive System Development and Function 4.92E-07 

Connective Tissue Development and Function 7.51E-07 

Cellular Compromise 9.51E-07 

Cellular Movement 9.84E-07 

Cell Morphology 1.74E-06 

Hematological Disease 4.32E-06 

Infection Mechanism 5.28E-06 

Nervous System Development and Function 5.28E-06 

Hair and Skin Development and Function 1.06E-05 

Molecular Transport 1.53E-05 
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Functions p-value 

Protein Synthesis 1.53E-05 

Post-Translational Modification 2.79E-05 

Protein Folding 2.79E-05 

Cell Signaling 5.05E-05 

Small Molecule Biochemistry 5.05E-05 

Digestive System Development and Function 8.26E-05 

Hepatic System Development and Function 8.26E-05 

Cell-To-Cell Signaling and Interaction 1.31E-04 

Behavior 1.40E-04 

Organ Morphology 1.40E-04 

Organismal Injury and Abnormalities 1.47E-04 

Cellular Assembly and Organization 1.59E-04 

Lymphoid Tissue Structure and Development 2.00E-04 

Respiratory Disease 2.03E-04 

Metabolic Disease 2.40E-04 

Tumor Morphology 2.84E-04 

Endocrine System Disorders 3.15E-04 

Dermatological Diseases and Conditions 3.39E-04 

Lipid Metabolism 6.94E-04 

RNA Trafficking 6.94E-04 

Renal and Urological Disease 6.94E-04 
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Supplementary Table 7: Transcriptional targets predicted to be regulated by miR-125b. 
PCT refers to the probability of preferentially conserved targeting. 

Target Full Name Context Score PCT 

GCNT1 glucosaminyl (N-acetyl) transferase 1, core 2 (beta-1,6-N-
acetylglucosaminyltransferase) -0.67 > 0.99 

TMEM86A transmembrane protein 86A -0.26 > 0.99 

PODXL podocalyxin-like -0.47 > 0.99 

ARID3B AT rich interactive domain 3B (BRIGHT-like) -0.51 > 0.99 

FLJ20309 hypothetical protein FLJ20309 -0.37 0.99 

SH3TC2 SH3 domain and tetratricopeptide repeats 2 -0.73 0.99 

PHF15 PHD finger protein 15 -0.31 0.98 

GJC1 gap junction protein, gamma 1, 45kDa -0.37 0.98 

KLF13 Kruppel-like factor 13 -0.51 0.97 

OLFML2A olfactomedin-like 2A -0.49 0.97 

MFHAS1 malignant fibrous histiocytoma amplified sequence 1 -0.52 0.97 

IRF4 interferon regulatory factor 4 -0.58 0.97 

RAPGEF5 Rap guanine nucleotide exchange factor (GEF) 5 -0.39 0.97 

LBH limb bud and heart development homolog (mouse) -0.37 0.97 

ENPP1 ectonucleotide pyrophosphatase/phosphodiesterase 1 -0.4 0.97 

UBN1 ubinuclein 1 -0.33 0.97 

FAM176A family with sequence similarity 176, member A -0.33 0.97 

MXD4 MAX dimerization protein 4 -0.07 0.97 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 -0.24 0.97 

TLE3 transducin-like enhancer of split 3 (E(sp1) homolog, Drosophila) -0.2 0.97 

TRPS1 trichorhinophalangeal syndrome I -0.19 0.97 

KIAA1522 KIAA1522 -0.37 0.97 

ASAH3L N-acylsphingosine amidohydrolase 3-like -0.34 0.97 

UBE2R2 ubiquitin-conjugating enzyme E2R 2 -0.36 0.97 

SEMA4D sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 
and short cytoplasmic domain, (semaphorin) 4D -0.42 0.97 

LIN28 lin-28 homolog (C. elegans) -0.27 0.97 

CPSF6 cleavage and polyadenylation specific factor 6, 68kDa -0.34 0.97 

TGOLN2 trans-golgi network protein 2 -0.39 0.97 

OSBPL9 oxysterol binding protein-like 9 -0.45 0.97 

TBC1D1 TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 -0.36 0.97 

SLC39A9 solute carrier family 39 (zinc transporter), member 9 -0.47 0.96 

ENPEP glutamyl aminopeptidase (aminopeptidase A) -0.52 0.96 

ST8SIA4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 -0.26 0.96 

GRB10 growth factor receptor-bound protein 10 -0.43 0.96 

MYT1 myelin transcription factor 1 -0.39 0.96 

STARD13 StAR-related lipid transfer (START) domain containing 13 -0.99 0.96 

PTAR1 protein prenyltransferase alpha subunit repeat containing 1 -0.26 0.96 

BMF Bcl2 modifying factor -0.38 0.96 

ZNRF3 zinc and ring finger 3 -0.24 0.96 
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Target Full Name Context Score PCT 

ZSCAN29 zinc finger and SCAN domain containing 29 -0.58 0.96 

SPTB spectrin, beta, erythrocytic (includes spherocytosis, clinical type I) -0.29 0.96 

NIN ninein (GSK3B interacting protein) -0.38 0.96 

SMG1 PI-3-kinase-related kinase SMG-1 -0.31 0.96 

NUP210 nucleoporin 210kDa -0.55 0.96 

GGA2 golgi associated, gamma adaptin ear containing, ARF binding protein 2 -0.31 0.96 

DUS1L dihydrouridine synthase 1-like (S. cerevisiae) -0.48 0.96 

MTF1 metal-regulatory transcription factor 1 -0.33 0.96 

C14orf43 chromosome 14 open reading frame 43 -0.13 0.96 

PPAT phosphoribosyl pyrophosphate amidotransferase -0.43 0.96 

SMEK1 SMEK homolog 1, suppressor of mek1 (Dictyostelium) -0.61 0.96 

ORC2L origin recognition complex, subunit 2-like (yeast) -0.33 0.96 

ACHE acetylcholinesterase (Yt blood group) -0.57 0.96 

CGN cingulin -0.43 0.95 

LRP4 low density lipoprotein receptor-related protein 4 -0.28 0.95 

C6orf47 chromosome 6 open reading frame 47 -0.3 0.95 

TMEM77 transmembrane protein 77 -0.5 0.95 

KCNA1 potassium voltage-gated channel, shaker-related subfamily, member 1 
(episodic ataxia with myokymia) -0.24 0.95 

KIAA0174 KIAA0174 -0.29 0.95 

LFNG LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase -0.48 0.95 

HIC2 hypermethylated in cancer 2 -0.02 0.95 

TNFAIP3 tumor necrosis factor, alpha-induced protein 3 -0.29 0.95 

CASP2 caspase 2, apoptosis-related cysteine peptidase (neural precursor cell 
expressed, developmentally down-regulated 2) -0.25 0.95 

CRB2 crumbs homolog 2 (Drosophila) -0.44 0.95 

KIAA0317 KIAA0317 -0.13 0.95 

SCARB1 scavenger receptor class B, member 1 -0.34 0.95 

ANPEP alanyl (membrane) aminopeptidase (aminopeptidase N, aminopeptidase M, 
microsomal aminopeptidase, CD13, p150) -0.3 0.95 

PSTPIP2 proline-serine-threonine phosphatase interacting protein 2 -0.39 0.95 

CYP24A1 cytochrome P450, family 24, subfamily A, polypeptide 1 -0.41 0.95 

ZSWIM5 zinc finger, SWIM-type containing 5 -0.4 0.95 

NCAN neurocan -0.23 0.95 

TNFSF4 tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally 
activated glycoprotein 1, 34kDa) -0.49 0.95 

NECAB3 N-terminal EF-hand calcium binding protein 3 -0.39 0.95 

SLC6A17 solute carrier family 6, member 17 -0.22 0.95 

LRFN2 leucine rich repeat and fibronectin type III domain containing 2 -0.25 0.95 

FAM134A family with sequence similarity 134, member A -0.25 0.95 

C11orf57 chromosome 11 open reading frame 57 -0.28 0.94 

CACNB1 calcium channel, voltage-dependent, beta 1 subunit -0.08 0.94 

NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1 -0.18 0.94 

GTPBP2 GTP binding protein 2 -0.39 0.94 
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Target Full Name Context Score PCT 

EBF4 early B-cell factor 4 -0.24 0.94 

CDR2L cerebellar degeneration-related protein 2-like -0.2 0.94 

ETV6 ets variant gene 6 (TEL oncogene) -0.31 0.94 

RAPGEFL1 Rap guanine nucleotide exchange factor (GEF)-like 1 -0.22 0.94 

CGREF1 cell growth regulator with EF-hand domain 1 -0.35 0.94 

CCNJ cyclin J -0.46 0.94 

KCNIP3 Kv channel interacting protein 3, calsenilin -0.25 0.94 

PSCD1 pleckstrin homology, Sec7 and coiled-coil domains 1(cytohesin 1) -0.3 0.93 

CTF8 chromosome transmission fidelity factor 8 homolog (S. cerevisiae) -0.38 0.93 

MSI1 musashi homolog 1 (Drosophila) -0.21 0.93 

TAF9B TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 
31kDa -0.39 0.93 

SGPL1 sphingosine-1-phosphate lyase 1 -0.25 0.93 

TMPRSS13 transmembrane protease, serine 13 -0.31 0.93 

SEMA4C sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 
and short cytoplasmic domain, (semaphorin) 4C -0.28 0.93 

CDH5 cadherin 5, type 2, VE-cadherin (vascular epithelium) -0.43 0.93 

ABHD6 abhydrolase domain containing 6 -0.31 0.93 

ENTPD4 ectonucleoside triphosphate diphosphohydrolase 4 -0.22 0.92 

ZFYVE1 zinc finger, FYVE domain containing 1 -0.37 0.92 

MTUS1 mitochondrial tumor suppressor 1 -0.23 0.92 

ATXN1 ataxin 1 -0.19 0.92 

LNPEP leucyl/cystinyl aminopeptidase -0.25 0.92 

DIRAS1 DIRAS family, GTP-binding RAS-like 1 -0.3 0.92 

ESRRA estrogen-related receptor alpha -0.37 0.92 

SH3BP4 SH3-domain binding protein 4 -0.28 0.92 

ICHTHYIN ichthyin protein -0.51 0.92 

SUV39H1 suppressor of variegation 3-9 homolog 1 (Drosophila) -0.3 0.92 

MTMR3 myotubularin related protein 3 -0.2 0.92 

FAM118A family with sequence similarity 118, member A -0.27 0.92 

RBM38 RNA binding motif protein 38 -0.2 0.92 

EIF5A2 eukaryotic translation initiation factor 5A2 -0.15 0.92 

FAM116A family with sequence similarity 116, member A -0.33 0.92 

CDC42SE1 CDC42 small effector 1 -0.29 0.92 

HCN3 hyperpolarization activated cyclic nucleotide-gated potassium channel 3 -0.34 0.92 

USP37 ubiquitin specific peptidase 37 -0.19 0.91 

KIAA0644 KIAA0644 gene product -0.33 0.91 

FUT4 fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific) -0.65 0.91 

RND2 Rho family GTPase 2 -0.31 0.91 

SOX11 SRY (sex determining region Y)-box 11 -0.41 0.91 

FBXO45 F-box protein 45 -0.29 0.91 

PCSK7 proprotein convertase subtilisin/kexin type 7 -0.28 0.91 

TP53INP1 tumor protein p53 inducible nuclear protein 1 -0.29 0.91 
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Target Full Name Context Score PCT 

MCL1 myeloid cell leukemia sequence 1 (BCL2-related) -0.42 0.91 

EAF1 ELL associated factor 1 -0.12 0.91 

NFIB nuclear factor I/B -0.09 0.91 

LIFR leukemia inhibitory factor receptor alpha -0.28 0.91 

MAN1B1 mannosidase, alpha, class 1B, member 1 -0.3 0.91 

NEU1 sialidase 1 (lysosomal sialidase) -0.4 0.91 

BAK1 BCL2-antagonist/killer 1 -0.56 0.9 

SLC35A4 solute carrier family 35, member A4 -0.34 0.9 

KIAA1244 KIAA1244 -0.18 0.9 

MAP2K7 mitogen-activated protein kinase kinase 7 -0.26 0.9 

VDR vitamin D (1,25- dihydroxyvitamin D3) receptor -0.26 0.9 

SLC39A13 solute carrier family 39 (zinc transporter), member 13 -0.24 0.9 
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Supplementary Table 8: Transcriptional targets predicted to be regulated by miR-142-3p. 
PCT refers to the probability of preferentially conserved targeting. 

Target Full Name Context Score PCT 

ASH1L ash1 (absent, small, or homeotic)-like (Drosophila) -0.59 > 0.99 
RICTOR rapamycin-insensitive companion of mTOR -0.57 > 0.99 
ITGB8 integrin, beta 8 -0.62 0.98 
C20orf194 chromosome 20 open reading frame 194 -0.72 0.97 
SNF1LK SNF1-like kinase -0.39 0.97 
FAM44B family with sequence similarity 44, member B -0.65 0.95 
C10orf18 chromosome 10 open reading frame 18 -0.87 0.95 
ZCCHC14 zinc finger, CCHC domain containing 14 -0.5 0.94 
AFF1 AF4/FMR2 family, member 1 -0.25 0.94 
EML4 echinoderm microtubule associated protein like 4 -0.42 0.93 
LCOR ligand dependent nuclear receptor corepressor -0.33 0.93 
CCDC6 coiled-coil domain containing 6 -0.33 0.92 
BNC2 basonuclin 2 -0.32 0.9 
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Supplementary Table 9: Pathways significantly associated with the predicted targets of 
miR-125b. 

Canonical Pathways p-value miR-125b Predicted Targets 

Sphingolipid Metabolism 0.003 NEU1, SGPL1, ACER2, FUT4 
Apoptosis Signaling 0.003 MAP2K7, CASP2, BAK1, MCL1 
Glycosphingolipid Biosynthesis - Globoseries 0.012 ST8SIA4, FUT4 
Glycosphingolipid Biosynthesis - Neolactoseries 0.012 ST8SIA4, FUT4 
Glycosphingolipid Biosynthesis - Ganglioseries 0.014 ST8SIA4, FUT4 
N-Glycan Degradation 0.014 NEU1, MAN1B1 
O-Glycan Biosynthesis 0.017 GCNT1, FUT4 
N-Glycan Biosynthesis 0.037 MAN1B1, FUT4 
Sphingosine-1-phosphate Signaling 0.039 RND2, ACER2, CASP2 
TNFR1 Signaling 0.042 CASP2, TNFAIP3 
Semaphorin Signaling in Neurons 0.048 RND2, SEMA4D 
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Supplementary Table 10: Pathways significantly associated with the predicted targets of 
miR-142-3p. 

Canonical Pathways p-value miR-142-3p Predicted Targets 

ILK Signaling 0.008 ITGB8, RICTOR 

Role of IL-17F in Allergic Inflammatory Airway Diseases 0.031 SIK1 

Macropinocytosis Signaling 0.048 ITGB8 
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Supplementary Table 11: All formaldehyde-responsive miRNAs within the rat. FC (fold 
change = exposed / unexposed) values are listed by miRNAs identified as signficantly altered at 
the expression level by formaldehyde exposure. If a miRNA was not significantly altered at the 
expression level in a particular exposure condition or tissue, this is indicated with ns (not 
significant). 

miRNAs Nose 7-
Day FC 

Nose 28-
Day FC 

Nose 28-Day 
+ Recovery 

FC 

WBC 7-
Day FC 

WBC 28-
Day FC 

WBC 28-Day 
+ Recovery 

FC 

BM 7-
Day FC 

BM 28-
Day FC 

BM 28-Day 
+ Recovery 

FC 
miR-34b* -3.07 ns ns ns ns ns ns ns ns 

miR-144 -2.69 ns ns ns ns ns ns ns ns 

miR-142-3p -2.17 ns ns ns ns ns ns ns ns 

miR-126* -1.85 ns ns ns ns ns ns ns ns 

miR-34c* -1.85 ns ns ns ns ns ns ns ns 

let-7b -1.82 ns ns ns ns ns ns ns ns 

miR-672 -1.80 ns ns ns ns ns ns ns ns 

miR-214 -1.79 ns ns ns ns ns ns ns ns 

miR-375 -1.78 ns ns ns ns ns ns ns ns 

miR-145 -1.72 ns ns ns ns ns ns ns ns 

miR-135b -1.69 ns ns ns ns ns ns ns ns 

miR-202* -1.55 ns ns ns ns ns ns ns ns 

miR-27a -1.55 ns ns ns ns ns ns ns ns 

miR-29a -1.54 ns ns ns ns ns ns ns ns 

miR-129-1* 1.52 ns ns ns ns ns ns ns ns 

miR-211 1.52 ns ns ns ns ns ns ns ns 

miR-218 1.54 ns ns ns ns ns ns ns ns 

miR-128 1.57 ns ns ns ns ns ns ns ns 

miR-20a 1.57 ns ns ns ns ns ns ns ns 

miR-20b-5p 1.57 ns ns ns ns ns ns ns ns 

miR-17-5p 1.58 ns ns ns ns ns ns ns ns 

miR-129 1.59 ns ns ns ns ns ns ns ns 

miR-378 1.61 ns ns ns ns ns ns ns ns 

miR-7a-1* 1.64 ns ns ns ns ns ns ns ns 

miR-335 1.65 ns ns ns ns ns ns ns ns 

miR-204 1.67 ns ns ns ns ns ns ns ns 
miR-344a-
3p 1.67 ns ns ns ns ns ns ns ns 

miR-425 1.67 ns ns ns ns ns ns ns ns 

miR-872 1.68 ns ns ns ns ns ns ns ns 

miR-191* 1.69 ns ns ns ns ns ns ns ns 

miR-19a 1.72 ns ns ns ns ns ns ns ns 

miR-340-5p 1.73 ns ns ns ns ns ns ns ns 

miR-350 1.77 ns ns ns ns ns ns ns ns 
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miRNAs Nose 7-
Day FC 

Nose 28-
Day FC 

Nose 28-Day 
+ Recovery 

FC 

WBC 7-
Day FC 

WBC 28-
Day FC 

WBC 28-Day 
+ Recovery 

FC 

BM 7-
Day FC 

BM 28-
Day FC 

BM 28-Day 
+ Recovery 

FC 
miR-18a 1.78 ns ns ns ns ns ns ns ns 

miR-31* 1.82 ns ns ns ns ns ns ns ns 

miR-137 1.84 ns ns ns ns ns ns ns ns 

miR-592 2.00 ns ns ns ns ns ns ns ns 

miR-130b 2.04 ns ns ns ns ns ns ns ns 

miR-488 2.27 ns ns ns ns ns ns ns ns 

miR-9* 2.41 ns ns ns ns ns ns ns ns 

miR-9 2.45 ns ns ns ns ns ns ns ns 

miR-96* 3.43 ns ns ns ns ns ns ns ns 

miR-182 5.10 ns ns ns ns ns ns ns ns 

miR-183 6.32 ns ns ns ns ns ns ns ns 

miR-124 ns -19.20 ns ns ns ns ns ns ns 

miR-140* ns -3.64 ns ns ns ns ns ns ns 

miR-1 ns -2.93 ns ns ns ns ns ns ns 

miR-127 ns -2.79 ns ns ns ns ns ns ns 

miR-434 ns -2.29 ns ns ns ns ns ns ns 

miR-221 ns -2.27 ns ns ns ns ns ns ns 

miR-551b ns -2.26 ns ns ns ns ns ns ns 

miR-878 ns -2.23 ns ns ns ns ns ns ns 

miR-455* ns -2.01 ns ns ns ns ns ns ns 

miR-26a ns -1.97 ns ns ns ns ns ns ns 

miR-129-2* ns -1.89 ns ns ns ns ns ns ns 

miR-511* ns -1.73 ns ns ns ns ns ns ns 

miR-547 ns -1.69 ns ns ns ns ns ns ns 

miR-455 ns -1.60 ns ns ns ns ns ns ns 

miR-146b ns -1.52 ns ns ns ns ns ns ns 

miR-664 ns -1.52 ns ns ns ns ns ns ns 

miR-324-3p ns -1.52 ns ns ns ns ns ns ns 

miR-141* ns 1.52 ns ns ns ns ns ns ns 

miR-99b ns 1.81 ns ns ns ns ns ns ns 

miR-181c ns 2.13 ns ns ns ns ns ns ns 

miR-34a ns 2.47 ns ns ns ns ns ns ns 

miR-30a ns 2.51 ns ns ns ns ns ns ns 

miR-29c* ns 2.64 ns ns ns ns ns ns ns 

miR-106b ns 3.01 ns ns ns ns ns ns ns 

miR-365 -2.79 -3.26 ns ns ns ns ns ns ns 

let-7c -2.64 -3.75 ns ns ns ns ns ns ns 

miR-10b -2.45 -6.89 ns ns ns ns ns ns ns 
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miRNAs Nose 7-
Day FC 

Nose 28-
Day FC 

Nose 28-Day 
+ Recovery 

FC 

WBC 7-
Day FC 

WBC 28-
Day FC 

WBC 28-Day 
+ Recovery 

FC 

BM 7-
Day FC 

BM 28-
Day FC 

BM 28-Day 
+ Recovery 

FC 
miR-21 -2.45 -3.51 ns ns ns ns ns ns ns 

miR-146a -2.25 -2.04 ns ns ns ns ns ns ns 
miR-199a-
5p -2.22 -3.27 ns ns ns ns ns ns ns 

miR-322 -2.17 -2.23 ns ns ns ns ns ns ns 

miR-133b -2.10 -3.04 ns ns ns ns ns ns ns 

let-7a -2.04 -5.98 ns ns ns ns ns ns ns 
miR-125b-
5p -1.91 -4.93 ns ns ns ns ns ns ns 

miR-223 -1.88 -1.98 ns ns ns ns ns ns ns 

miR-195 -1.85 -2.33 ns ns ns ns ns ns ns 

miR-450a -1.84 -2.34 ns ns ns ns ns ns ns 

miR-23b -1.82 3.12 ns ns ns ns ns ns ns 

miR-23a -1.80 -4.71 ns ns ns ns ns ns ns 

miR-322* -1.78 -2.77 ns ns ns ns ns ns ns 

miR-1949 -1.72 -2.89 ns ns ns ns ns ns ns 
miR-199a-
3p -1.72 -2.17 ns ns ns ns ns ns ns 

miR-10a-5p -1.65 -2.54 ns ns ns ns ns ns ns 

miR-203 -1.64 -17.11 ns ns ns ns ns ns ns 

let-7f -1.55 -3.46 ns ns ns ns ns ns ns 

miR-200c 1.92 1.52 ns ns ns ns ns ns ns 

miR-200b 2.41 1.66 ns ns ns ns ns ns ns 

miR-200a 2.55 1.68 ns ns ns ns ns ns ns 

miR-200a* 2.60 1.66 ns ns ns ns ns ns ns 

miR-429 2.68 2.70 ns ns ns ns ns ns ns 

miR-598-3p 3.03 2.03 ns ns ns ns ns ns ns 

miR-200b* 4.03 2.09 ns ns ns ns ns ns ns 

miR-96 4.26 2.44 ns ns ns ns ns ns ns 

miR-183* 5.24 2.62 ns ns ns ns ns ns ns 

miR-503 -1.61 -1.61 ns 1.57 ns ns ns ns ns 

miR-143 -2.16 -3.00 ns ns 1.62 ns ns ns ns 

miR-126 -1.77 -3.02 ns ns 1.53 ns ns ns ns 

miR-497 -1.73 -1.95 ns ns 1.60 ns ns ns ns 

miR-31 1.99 3.73 ns ns 1.51 ns ns ns ns 

miR-451 -2.71 ns ns -1.51 ns ns ns ns ns 

miR-142-5p -2.19 ns ns 1.69 ns ns ns ns ns 

miR-193 -2.01 ns ns 1.55 ns ns ns ns ns 

miR-542-3p -1.61 ns ns 1.68 ns ns ns ns ns 

miR-150 -1.52 ns ns ns -2.83 ns ns ns ns 
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miRNAs Nose 7-
Day FC 

Nose 28-
Day FC 

Nose 28-Day 
+ Recovery 

FC 

WBC 7-
Day FC 

WBC 28-
Day FC 

WBC 28-Day 
+ Recovery 

FC 

BM 7-
Day FC 

BM 28-
Day FC 

BM 28-Day 
+ Recovery 

FC 
miR-326 ns ns ns 1.54 1.74 ns ns ns ns 

miR-212 ns ns ns -2.04 ns -1.91 ns ns ns 

miR-1224 ns ns ns -3.39 ns ns ns ns ns 

miR-494 ns ns ns -2.75 ns ns ns ns ns 

miR-196c ns ns ns -2.64 ns ns ns ns ns 

miR-327 ns ns ns -2.32 ns ns ns ns ns 

miR-331* ns ns ns -2.27 ns ns ns ns ns 

miR-188* ns ns ns -1.97 ns ns ns ns ns 
miR-3593-
5p ns ns ns -1.97 ns ns ns ns ns 

miR-290 ns ns ns -1.90 ns ns ns ns ns 

miR-30c-1* ns ns ns -1.89 ns ns ns ns ns 

miR-3582 ns ns ns -1.74 ns ns ns ns ns 

miR-10a-3p ns ns ns -1.66 ns ns ns ns ns 

miR-188 ns ns ns -1.65 ns ns ns ns ns 
miR-3580-
3p ns ns ns -1.61 ns ns ns ns ns 

miR-500 ns ns ns -1.59 ns ns ns ns ns 

miR-92a-2* ns ns ns -1.59 ns ns ns ns ns 

miR-760-3p ns ns ns -1.53 ns ns ns ns ns 

miR-331 ns ns ns 1.50 ns ns ns ns ns 

miR-151* ns ns ns 1.57 ns ns ns ns ns 

miR-29b ns ns ns 1.65 ns ns ns ns ns 

miR-34b ns ns ns 1.67 ns ns ns ns ns 

miR-141 ns ns ns 1.67 ns ns ns ns ns 

miR-383 ns ns ns 1.68 ns ns ns ns ns 

miR-32 ns ns ns 2.06 ns ns ns ns ns 

miR-33 ns ns ns 2.62 ns ns ns ns ns 

miR-342-3p ns ns ns ns -1.88 ns ns ns ns 

miR-196b ns ns ns ns 1.60 ns ns ns ns 

miR-652* ns ns ns ns ns -1.89 ns ns ns 

miR-877 ns ns ns ns ns -1.59 ns ns ns 
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Supplementary Table 12: 42 genes differentially expressed by formaldehyde within the 
nose of rats in the 28-day group. 

Affymetrix Transcript ID Gene Symbol Fold Change (Exposed / Unexposed) p-value 
10827201 Clca3 -18.82 0.00893 
10851581 Slpi -2.56 0.00920 
10749757 Cd7 -1.91 0.00039 
10859090 LOC689800 -1.90 0.00236 
10905453 Kdelr3 -1.89 0.00333 
10714103 Mpeg1 -1.79 0.00283 
10876208 Ccl21b -1.79 0.00514 
10798610 Sfrp4 -1.78 0.00542 
10733056 Ifi47 -1.75 0.00441 
10791250 Lpl -1.74 0.00726 
10799552 Ucma -1.72 0.00619 
10868627 Glipr2 -1.71 0.00361 
10896541 Nov -1.70 0.00162 
10766869 Cd34 -1.70 0.00096 
10798135 Serpinb9 -1.66 0.00432 
10769771 Fcgr2b -1.65 0.00883 
10917770 Mpi -1.64 0.00918 
10721339 Clec11a -1.62 0.00003 
10823548 Lxn -1.61 0.00543 
10773180 Hs3st1 -1.60 0.00181 
10866019 Clec7a -1.59 0.00366 
10705874 Tyrobp -1.59 0.00331 
10936072 Lage3 -1.59 0.00334 
10937624 Mid1 -1.58 0.00134 
10786532 Mustn1 -1.58 0.00880 
10768376 Pla2g4a -1.57 0.00248 
10718954 Lilrb4 -1.56 0.00095 
10939129 Pof1b -1.55 0.00984 
10907869 Mmp12 -1.54 0.00612 
10736795 Slfn2 -1.54 0.00481 
10712477 Lsp1 -1.54 0.00523 
10870837 Txndc12 -1.53 0.00119 
10819523 Gbp2 -1.53 0.00169 
10710051 Far1 -1.53 0.00442 
10771655 Cxcl10 -1.53 0.00749 
10810503 Slc10a7 -1.52 0.00105 
10848733 Ehd4 -1.51 0.00145 
10927780 Slc40a1 -1.51 0.00133 
10821698 Osmr -1.51 0.00800 
10931159 Tmem37 1.53 0.00696 
10937867 LOC100362769 1.67 0.00523 
10897666 Dmc1 1.68 0.00251 
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Supplementary Table 13: 130 genes differentially expressed by formaldehyde within the 
WBC of rats in the 28-day group. 

Affymetrix Transcript ID Gene Symbol Fold Change (Exposed / Unexposed) p-value 

10930624 LOC310926 -2.24 0.00320 
10849700 Mal -2.01 0.00703 

10889177 Rhob -1.90 0.00352 

10897852 Tnrc6b -1.76 0.00673 

10784117 Gjb2 -1.65 0.00185 

10873419 Ubr4 -1.56 0.00779 

10834719 Rxra -1.53 0.00625 

10862527 Skap2 1.50 0.00395 

10855925 Mmrn1 1.51 0.00417 

10737359 Cuedc1 1.51 0.00497 

10812021 Itgb1 1.51 0.00168 

10829816 Reep3 1.52 0.00906 

10917969 Arih1 1.52 0.00369 

10831236 Ly6g6c 1.52 0.00588 

10814484 Tbl1xr1 1.53 0.00666 

10911250 Rora 1.54 0.00170 

10905307 C1qtnf6 1.54 0.00945 

10855163 Cul1 1.54 0.00821 

10921141 Fyco1 1.54 0.00768 

10918718 Tmod3 1.54 0.00761 

10862327 Tpk1 1.54 0.00462 

10887831 Fez2 1.54 0.00782 

10861033 Ndufa4 1.55 0.00246 

10761375 Vkorc1l1 1.55 0.00915 

10803520 Slc39a6 1.55 0.00330 

10765102 Pigc 1.55 0.00168 

10786163 Ppif 1.55 0.00161 

10795689 Edaradd 1.56 0.00832 

10773098 Tapt1 1.56 0.00256 

10825209 Cd160 1.56 0.00264 

10708672 Prcp 1.56 0.00386 

10853171 Ptpn12 1.57 0.00762 

10896353 Oxr1 1.57 0.00242 

10935064 Plp1 1.58 0.00866 

10846762 Calcrl 1.58 0.00695 

10818823 Pde5a 1.58 0.00605 

10927809 Hibch 1.58 0.00403 

10921086 RGD1311745 1.59 0.00203 

10835817 Ptgs1 1.59 0.00963 

10782028 Dnajc3 1.59 0.00649 

10860858 Bet1 1.59 0.00999 
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Affymetrix Transcript ID Gene Symbol Fold Change (Exposed / Unexposed) p-value 

10754735 Muc4 1.59 0.00465 

10937391 Nxt2 1.60 0.00907 

10798459 Hist1h2bb 1.60 0.00553 

10853797 Tes 1.61 0.00701 

10923338 Coq10b 1.61 0.00432 

10914481 Kif15 1.62 0.00546 

10770197 Akt3 1.62 0.00363 

10880583 Clic4 1.62 0.00431 

10909091 Siae 1.63 0.00427 

10885006 Tmx1 1.64 0.00236 

10916920 Atp5l 1.65 0.00430 

10864590 Srgap3 1.65 0.00969 

10765937 Kmo 1.68 0.00977 

10826985 Dapp1 1.68 0.00718 

10798135 Serpinb9 1.68 0.00098 

10751636 Muc20 1.68 0.00924 

10932646 Ap1s1 1.69 0.00337 

10877943 Ptplad2 1.69 0.00831 

10812779 LOC100361629 1.69 0.00198 

10800497 Galnt1 1.69 0.00570 

10853995 Asb15 1.69 0.00061 

10851670 Pltp 1.70 0.00788 

10778558 Plek 1.70 0.00184 

10825736 Adora3 1.72 0.00380 

10792592 Agpat5 1.73 0.00615 

10790581 LOC290595 1.75 0.00950 

10845298 Arl5a 1.75 0.00392 

10791545 Hprt1 1.76 0.00578 

10803359 Dsc2 1.76 0.00694 

10923782 Abi2 1.78 0.00858 

10938874 Zdhhc15 1.78 0.00543 

10716634 Pcmt1 1.79 0.00612 

10912058 Cyb5r4 1.79 0.00957 

10923198 Nab1 1.80 0.00655 

10782234 Adk 1.81 0.00971 

10821207 Kif2a 1.81 0.00231 

10937641 LOC100363276 1.81 0.00532 

10912718 Cpne4 1.85 0.00838 

10935555 Fhl1 1.87 0.00464 

10776034 Mobkl1a 1.87 0.00579 

10870146 Alg6 1.87 0.00781 

10821377 Gzmk 1.89 0.00544 

10847728 RGD1309730 1.89 0.00882 
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Affymetrix Transcript ID Gene Symbol Fold Change (Exposed / Unexposed) p-value 

10936917 Xk 1.90 0.00945 

10861213 Tspan12 1.92 0.00798 

10905356 Lgals2 1.92 0.00312 

10939480 Morc4 1.93 0.00329 

10814415 Trim55 1.94 0.00695 

10854446 Cald1 1.96 0.00892 

10906533 Twf1 1.97 0.00796 

10836638 Klhl23 1.97 0.00601 

10846259 Lnp 1.98 0.00934 

10937624 Mid1 1.99 0.00957 

10770159 Chml 1.99 0.00821 

10865300 Klrg1 2.00 0.00416 

10710135 Nucb2 2.03 0.00831 

10926769 Rhag 2.05 0.00379 

10794836 Serpinb6a 2.05 0.00926 

10854108 Calu 2.05 0.00110 

10939310 Gla 2.06 0.00645 

10784378 RGD1306437 2.06 0.00694 

10787765 Psd3 2.08 0.00782 

10791474 Mfap3l 2.09 0.00814 

10856092 LOC100362003 2.10 0.00369 

10795611 RGD1564129 2.11 0.00659 

10903529 Angpt1 2.12 0.00234 

10932773 Chrdl1 2.13 0.00286 

10898879 Tmem117 2.13 0.00593 

10904587 LOC300024 2.14 0.00489 

10779225 Spetex-2D 2.15 0.00653 

10833659 Amd1 2.16 0.00585 

10821415 Itga2 2.16 0.00551 

10838312 Mpped2 2.18 0.00585 

10763367 Serpinb2 2.19 0.00316 

10925695 Pam 2.26 0.00523 

10862876 Il12rb2 2.26 0.00615 

10907962 Trpc6 2.38 0.00649 

10779243 Spetex-2H 2.40 0.00544 

10779265 Spetex-2B 2.45 0.00517 

10823819 Rxfp1 2.45 0.00759 

10779253 Spetex-2F 2.47 0.00412 

10939505 Nup62cl 2.48 0.00345 

10779260 Spetex-2C 2.48 0.00692 

10779233 Spetex-2G 2.50 0.00397 

10779293 Spetex-2A 2.50 0.00447 

10787757 Csgalnact1 2.61 0.00926 
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Affymetrix Transcript ID Gene Symbol Fold Change (Exposed / Unexposed) p-value 

10812734 Serf1 2.67 0.00429 

10801683 Prr16 2.78 0.00811 

10763351 Serpinb11 2.85 0.00303 
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Supplementary Table 14: Individual networks constructed using formaldehyde-associated 
mRNAs predicted to be regulated by formaldehyde-responsive miRNAs. 

Network 
Constructed Molecules in Network p-value 

Nose Network 1 

5(S)-HETE, 15(S)-HETE, CAP1, CARD9, CLEC11A, CLEC7A, DMC1, EHD4, 
ERK, FAR1, GLIPR2, HNF4A, Igfbp, IL5, IL31, Jnk, LBP, LTB4R2, LTB4R, 
Mac1, MID1, MID1IP1, miR-155-5p, NOV, OSMR, P38 MAPK, PDGFC, PMP22, 
PTH, SEMA7A, SFRP4, STYXL1, TACR1, urea, Vegf 

1.0E-27 

Nose Network 2 

beta-estradiol, BTBD2, CLEC7A, CREB3L4, EHD1, FGB, FXR1, GBP2, HBP1, 
HS3ST1, HSPE1, IFNGR2, KDELR3, KLHL20, KRT17, LDHA, LSM2, ORM1, 
OSMR, PAFAH1B3, PPP1R8, S100A6, SEPHS1, SERPINB9, SERPINC1, SMYD3, 
STK3, sulfotransferase, TACR1, TFG, TMEM37, TNF, UBC, UXT, ZYX 

1.0E-15 

WBC Network 1 

ARAP1, ARL5A, BET1, C18orf8, CALU, CCZ1/CCZ1B, CEP192, CHML, 
CHMP1A, CTNNAL1, FGFR1OP, FYCO1, GGCX, GOSR2, IFNA2, KIAA1715, 
MUC20, NME3, PMPCA, PPP2R3C, PRKRIR, PSD3, RAB27A, RABGGTA, 
SEC22B, SEC23B, SEC24B, SKAP2, TES, TMX1, TNF, TWF1, UBC, UBR4, 
YKT6 

1.0E-36 

WBC Network 2 

AKT3, Akt, AKT1S1, APPL1, ATF6, beta-estradiol, BMF, CD151, CDH13, CIB1, 
Collagen Type VI, COX1, COX2, DNAJC3, EDN3, FYB, Integrin alpha 4 beta 1, 
ITGA2, LYL1, MPPED2, MTORC2, NEDD9, NME3, NOV, PHLPP1, PHLPP2, 
Psg16, Ptk, SEC24B, SEMA6D, TCL1A, TRPC1, TTC3, Vla-4, ZYX 

1.0E-09 

WBC Network 3 CLDN7, thiamine diphosphokinase, TPK1 1.0E-03 
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