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ABSTRACT

MINGSONG DOU: ENHANCED 3D CAPTURE FOR ROOM-SIZED DYNAMIC
SCENES WITH COMMODITY DEPTH CAMERAS.

(Under the direction of Henry Fuchs .)

3D reconstruction of dynamic scenes can find many applications in areas such as virtu-

al/augmented reality, 3D telepresence and 3D animation, while it is challenging to achieve a

complete and high quality reconstruction due to the sensor noise and occlusions in the scene.

This dissertation demonstrates our efforts toward building a 3D capture system for room-sized

dynamic environments. A key observation is that reconstruction insufficiency (e.g., incom-

pleteness and noise) can be mitigated by accumulating data from multiple frames. In dynamic

environments, dropouts in 3D reconstruction generally do not consistently appear in the same

locations. Thus, accumulation of the captured 3D data over time can fill in the missing frag-

ments. Reconstruction noise is reduced as well.

The first piece of the system builds 3D models for room-scale static scenes with one hand-

held depth sensor, where we use plane features, in addition to image salient points, for robust

pairwise matching and bundle adjustment over the whole data sequence.

In the second piece of the system, we designed a robust non-rigid matching algorithm

that considers both dense point alignment and color similarity, so that the data sequence for

a continuously deforming object captured by multiple depth sensors can be aligned together

and fused into a high quality 3D model. We further extend this work for deformable object

scanning with a single depth sensor. To deal with the drift problem, we designed a dense

iii



nonrigid bundle adjustment algorithm to simultaneously optimize for the final mesh and the

deformation parameters of every frame.

Finally, we integrate static scanning and nonrigid matching into a reconstruction system for

room-sized dynamic environments, where we prescan the static parts of the scene and perform

data accumulation for dynamic parts. Both rigid and nonrigid motions of objects are tracked in

a unified framework, and close contacts between objects are also handled.

The dissertation demonstrates significant improvements for dense reconstruction over state-

of-the-art. Our plane-based scanning system for indoor environments delivers reliable recon-

struction for challenging situations, such as lack of both visual and geometrical salient features.

Our nonrigid alignment algorithm enables data fusion for deforming objects and thus achieves

dramatically enhanced reconstruction. Our novel bundle adjustment algorithm handles dense

input partial scans with nonrigid motion and outputs dense reconstruction with comparably

high quality as the static scanning algorithm (e.g., KinectFusion). Finally, we demonstrate en-

hanced reconstruction results for room-sized dynamic environments by integrating the above

techniques, which significantly advances state-of-the-art.

iv



TABLE OF CONTENTS

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.1 Challenges and Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

1.2 Thesis approach and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

1.3 Related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

CHAPTER 2: Static Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Planar Surface Extraction from Depth Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Robust Pair-wise Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Plane Matching Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 RANSAC on one plane matching hypothesis and the feature match set . . . 22

2.5 Bundle Adjustment of Points and Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Comparison to Structure from Motion (SfM) algorithms . . . . . . . . . . . . . . . . . 32

2.6.2 Comparison to ICP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



2.6.3 Comparison to ICP with global error mitigation. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.4 Quantitative measurement of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.5 Running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 3: Nonrigid Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Nonrigid Alignment in Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Nonrigid Alignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Embedded Deformation Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Directional Distance Function and Measurement of surface alignment . . . . . . . . . . . 44

3.5 Color Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4: Dynamic Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Scanning Dynamic Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 DDF Transformation from Target to Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Fusion of multiple DDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Dynamic Surface Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Tracking Surfaces with Isometric deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Limitations of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 5: Dynamic Surface Recontruction with a Single Depth Sensor . . . . . . . . . . . . . . . 65

5.1 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Triangular Mesh Surface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Extracting Partial Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Coarse Scan Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Error Redistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Dense Nonrigid Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6.1 Deformation Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.2 Surface Regularization Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.3 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.2 Comparison with KinectFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7.3 Comparison with 3D Self-portraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7.4 Synthetic sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7.5 Scanned example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CHAPTER 6: Room-sized Dynamic Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



6.2 Room-sized Dynamic Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Room Scanning and Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Unified Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.3 System Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

CHAPTER 7: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Algorithmic Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 Bundle Adjustment of Points and Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.2 Nonrigid Alignment Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.3 Dense Nonrigid Bundle Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Developed systems in the disseration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Indoor Static Environment Scanning System. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.2 Dynamic Object Scanning and Tracking System . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3 Dynamic Object Scanning System with One Single Depth Sensor. . . . . . . . 112

APPENDIX A: DDF CALCULATION PSEUDO-CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

BIBLOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



LIST OF FIGURES

1.1 3D Medical Environment Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.2 3D Medical Environment Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.3 Room-sized reconstruction for a dynamic scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

1.4 Data accumulation for dynamic objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2.1 Static Scanning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Plane Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Extracted Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Robust pairwise matching with both planes and features . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Distance measurement for plane segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Refined Match Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Alignment Comparison of various algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Dynamic Object Scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Scanning System Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Fusing two 2D truncated signed distance fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Scanning Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Intermediate Scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Scanning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Tracking Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



5.1 Teaser Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Scanning Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Scanning a person with slight deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Bundle Adjustment Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Example Results of Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Bundle adjustment iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 KinectFusion with nonrigid alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Static Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Comparison with 3D Self-Portraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 Alignment error in Saskia dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Scanning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Room-sized Dynamic Scene Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Scanned Room Model and Scene Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Various Intersection Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Backward Deformation Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Results of tracking one person folding arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Results of tracking one person sitting on a chair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Depth bias v.s. depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Tracking two persons where severe occlusion happens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 Tracking semi-static objects and dynamic objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

x



LIST OF TABLES

2.1 Statistics on four datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Quantitative Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



CHAPTER 1: Introduction

Reconstructing a scene digitally, or capturing its 3D geometric model, has been one of

the most challenging and fundamental problems in Computer Vision since its emergence, and

high quality 3D reconstruction is essential for many potential but yet unrealized applications in

virtual and augmented reality. For example, virtual reality applications, such as surgical train-

ing programs and science demonstration, could continually record raw imagery (and sound)

inside operating rooms; when noteworthy events occur (e.g., a difficult trauma surgery case),

reconstruction and subsequent annotation would be triggered, to generate an immersive virtual

presence training module. To be effective, such modules should encourage free navigation and

user-selectable viewpoints and also have high reconstruction fidelity without any undesired

artifacts. Figure 6.1 illustrates the above concept.

3D reconstruction is also an important aspect for 3D telepresence, where users get custom

perspectives of the remote scene (or a combination of the local and remote scene) through a

3D display wall or head-mounted displays. Figure 1.2 illustrates the concept of a three-way

3D telepresence system for informal gathering. Different from traditional videoconferencing

systems such as CISCO TelePresence IX5000 series1, users are not restricted to sit at spe-

cific positions and are able to engage communications with remote users as they do with local

ones. We attempted to achieve such a system with a 2D image synthesis approach in our early

work (Dou et al., 2012). Although we solved some aspects of the problem (e.g., eye-contact for

1http://www.cisco.com/c/en/us/products/collaboration-endpoints/ix5000-series/index.html



(A) 3D capture during medical procedure (B) immersive experience of the 3D reconstruction

Figure 1.1: 3D Medical environment reconstruction for medical training. (A) Operating room
is instrumented with various capture devices such as depth and pan-tilt-zoom cameras; medical
personnel wear miniature cameras. (B) The procedure has been reconstructed in three dimen-
sions and annotated (orange). A medical student (grey) experiences the reconstructed sequence
immersively within a modern low-latency, wide-field-of-view head-worn display, navigating in
space and time.

users right in front of the display), lack of 3D information of the scene prevents us from gen-

erating proper views for all users. This early attempt motivated us to work on 3D room-sized

reconstruction.

The above applications demand sufficiently accurate 3D reconstruction to enable unencum-

bered and seamless immersion into the reconstructed environment. In addition, most activities

of interest involve not just static scenes, but also moving objects and people which are much

more difficult to reconstruct. Thus, in this dissertation we focus our research on a dynamic

3D-plus-time reconstruction of an actively evolving scene in indoor environment.

Combined with the recent emergence of high-quality, low-latency head-mounted displays

(e.g., Oculus Rift, Sony Morpheus, and Microsoft HoloLens), we can imagine that 3D dynamic
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Figure 1.2: Illustration of concept of 3D telepresence. Every location is reconstructed in 3D
and every person gets a custom view of the remote scenes from the 3D display. The wall on
the right side is instrumented with autostereoscopic displays, through which people in the local
room see the combination of two remote rooms.

scene reconstruction can impact society profoundly. It could influence the way we share infor-

mation. Instead of sharing photos on social media, people could share recorded 3D videos that

can be immersively experienced. It could also change the way we interact with other people

and the environment, via applications such as immersive virtual visits to interesting locations

and virtual attendance at events such as concerts or a class.

Today, the possibility of accurate high-quality 3D reconstruction (especially for indoor en-

vironments) gets ever more promising due to the advances in camera technology, especially the

introduction of depth sensors (e.g., Microsoft Kinect and Intel RealSense). These depth sensors

are affordable consumer-grade models, opening the possibility of populating a relevant location

with high sensor density, and making deployment of such 3D capture technology affordable in

many locations and situations. In this dissertation, we take advantage of these low-cost depth
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Figure 1.3: Room-sized reconstruction for a dynamic scene by performing data accumulation
and background prescan. Top: input depth points from 10 Kinects; Bottom: enhanced recon-
struction. The rendering from the perspective of the man standing at right is shown on the
right. Note the low quality on the input data despite there being 10 cameras. Note also we did
not shake the sensors to reduce some level of sensor interference (Maimone and Fuchs, 2012;
Butler et al., 2012).

sensors (i.e., Kinect) to achieve high quality reconstruction for room-sized dynamic scenes.

1.1 Challenges and Opportunities

To approach the possibilities described above, simply populating the walls of the space to

be captured with many depth sensors does not yield the required high-quality reconstructions

(as shown in Figure 1.3). One major artifact is the incompleteness of the reconstructed models.

Such incompleteness can be caused by dropouts in the depth sensor data. For example, the
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Figure 1.4: Data accumulation for a person turning around in front of depth sensors. Surfaces
after fusing 1, 5, 50, and 150 frames of data.

Kinect sensor has difficulty reconstructing low or high reflective surfaces. In addition, incom-

pleteness is also caused by occlusion, which includes self-occlusion as well as inter-occlusion

of objects. Yet another undesired artifact comes from the significant amount of noise in the

data from depth sensors (Maimone and Fuchs, 2011; Beck et al., 2013).

Fortunately, the dynamic properties of the scene raise opportunities for improved dense

reconstruction. One observation is that reconstruction insufficiency (i.e., incompleteness and

noise) can be mitigated by accumulating data from multiple frames (e.g., KinectFusion (New-

combe et al., 2011) for static scene reconstruction). In dynamic environments, dropouts in 3D

reconstruction generally do not consistently appear in the same locations. Thus, accumula-

tion of the captured 3D data over time can fill in the missing fragments. Reconstruction noise

will be reduced as well. Figure 1.4 shows the improvement on the reconstruction by accumu-

lation more and more data frames. However, before consecutively captured data frames can
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be accumulated, they must be aligned spatially, which requires tracking corresponding surface

fragments accurately over time. An insufficient alignment will lead to smoothing of surface de-

tails and geometric features. To use this data accumulation concept in real-world applications,

we must deal with the following challenges:

• Nonrigid movement. In many cases, especially when processing deformable geometry

such as human bodies, a nonrigid alignment algorithm must be employed. An ideal

alignment algorithm should be robust to data dropouts on surfaces and work for general

surfaces (i.e., without assumptions on the surface shape).

• Dynamic topology. In real scenarios, there are many topology changes in the geometry

of the scene caused by people and objects engaging contact (e.g., shaking hands, sitting

on a chair).

• Drift. Even for rigid alignment of non-deformable objects, drift occurs when accumu-

lating a sequence of geometric data over a period of time and thus over a number of

capture events (frames). As alignment error accumulates, scanned surfaces do not close

seamlessly.

1.2 Thesis approach and overview

In this dissertation, we developed several systems that employ the data accumulation strat-

egy to enhance surface reconstruction for indoor dynamic environment while tackling afore-

mentioned challenges. Specifically,

• We perform pre-scanning for static part of the environment by rigidly aligning and fusing
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data from one single hand-held depth sensor.

• We also perform data accumulation for the dynamic part of the scene via nonrigidly

aligning data to the same reference pose. The data either come from the depth sensors

mounted over the walls or from a single depth sensor (hand-held or fixed). Deforming

the accumulated model to align the data at every frame results with enhanced dense

reconstruction.

• We combine static pre-scanning with nonrigid accumulation, leading to a dense recon-

struction system for a room-sized dynamic scene. In addition, we estimate the rigid

movements for static objects (e.g., chairs, tables) and handle close contact between ob-

jects.

We will introduce the static scanning in Chapter 2, the dynamic object scanning with multiple

depth sensors in Chapter 4, the nonrigid surface reconstruction with one single depth sensor

in Chapter 5, and the combination of static pre-scanning and nonrigid accumulation for room-

sized dynamic reconstruction in Chapter 6. We will conclude the dissertation in Chapter 7 with

summarizing our contribution and listing future work.

To deal with the challenges in real world situations, we developed a nonrigid alignment

algorithm that robustly aligns data of deforming objects pair-wisely, by taking into account

the measurement of both dense surface alignment and color consistency. We do not make

any shape assumption for objects, and thus the algorithm works for general surfaces (up to a

fixed topology). It is a partial-to-partial alignment algorithm and allows for decent amount of

missing data on surfaces. Our nonrigid alignment algorithm is introduced in Chapter 3.
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Drift is a ubiquitous problem when aligning a sequence of data together, happening in

both rigid and nonrigid cases. For static scanning, we incorporate plane features into the bun-

dle adjustment framework to mitigate the error over the whole data sequence, in observance

of planes being the dominant feature for the indoor environment. For dynamic surface re-

construction from a single depth camera, we developed a dense nonrigid bundle adjustment

technique which simultaneously optimize both the dense geometry and deformation parame-

ter. The new bundle adjustment technique takes dense partial structure as input and outputs the

optimal fused surface and nonrigid motion. For the data accumulation from multiple units of

depth sensors, since the data is relative complete at a frame (compared with the case of a single

depth sensor), we take a computationally less intense algorithm. We estimate the deformation

of the currently accumulated model to the current data observation and build the point-to-point

correspondence, from which a backward deformation that deforms data to the model is esti-

mated. Then we fuse the current data into the model and repeat the above procedures. This

strategy would be proven effective in Chapter 4.

Surface topology change is also a ubiquitous problem and is very difficult to solve. Through-

out the dissertation, we make various assumptions to overcome the problem. In Chapter 4, we

divide the dynamic object reconstruction system into two stages: scanning and tracking. Dur-

ing scanning state, we restrict the user to maintain roughly a ’T’-pose and later lift such a

constraint during tracking stage. In Chapter 5, we assume the topology is consistent through-

out the whole data sequence. In Chapter 6, we partition the scene into different categories, and

perform segmentation on the pre-scanned static scene. Building a system without any topology

restriction would be future work.
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Note that we focus on reconstruction quality rather than on real-time processing in this dis-

sertation, i.e., the data are captured in real time while being processed offline. Such techniques

are still valuable as many potential applications do not require real-time reconstruction but

have stringent reconstruction quality requirement. It is the case with the aforementioned medi-

cal and surgical training, where high quality reconstruction and faithful presentation of delicate

and intricate 3D manipulations is paramount. Furthermore, with continuous advances in com-

puting power and GPU-enabled parallelization, it can be reasonably expected that the proposed

techniques will be applied to real-time situations in the near future, allowing telepresence-type

interactions.

1.3 Related work

We will give a brief summary of work on 3D reconstruction here. More related work for

each system component is provided at following chapters. Traditional 3D reconstruction al-

gorithms, including stereo vision (Scharstein and Szeliski, 2002) and multi-view vision (Seitz

et al., 2006) algorithms, rely on color cameras and have difficulties when processing texture-

less surfaces. Recent consumer-targeted depth sensors, such as the Microsoft Kinect and Intel

3D perception sensor, dramatically changed the field due to their high performance-price ratio.

These sensors either employ the infrared projector and camera system or time-of-flight tech-

nique and are able to give real-time reliable depth maps even for textureless areas. These lead

to static reconstruction approaches such as KinectFusion (Newcombe et al., 2011; Izadi et al.,

2011), commercial softwares such as ReconstructMe2 and Matterport3.

2http://reconstructme.com
3http://matterport.com
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The work of using Kinects for realtime reconstruction application with light-weight pro-

cessing on the depth maps include (Beck et al., 2013; Kuster et al., 2011), where the recon-

struction is far from complete and often has a high level of noise. Other reconstruction systems

that require highly controlled environment or employ expensive hardware include USC Light

Stage (Vlasic et al., 2009; Ghosh et al., 2011) and ETH Blue-C project (Gross et al., 2003).

Instead of the reconstruction of static scenes, work exists on building one model from a data

sequence of a deforming object (Tong et al., 2012; Hirshberg et al., 2012; Weiss et al., 2011;

Li et al., 2013; Zeng et al., 2013; Liao et al., 2009), but these systems either does not deal with

dramatic surface deformation or rely heavily on shape prior knowledge. In addition, Motion

Capture systems (De Aguiar et al., 2008; Gall et al., 2009; Ballan and Cortelazzo, 2008; Vlasic

et al., 2008; Wu et al., 2013; Ye et al., 2012; Starck and Hilton, 2007; de Aguiar et al., 2007)

deliver reliable reconstruction of the human body from a sequence of input color and/or depth

feeds. But these systems require a prescanned model or template and complicated skinning and

rigging preprocessing, which prevents their applications for reconstructing general shapes.
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CHAPTER 2: Static Scene Reconstruction

In this chapter, we introduce our 3D scanning system for room-sized static scenes using one

depth sensor/RGB-D camera (e.g., Microsoft Kinect). RGB-D cameras are new addition to vi-

sion sensors for 3D reconstruction, which output RGB images and corresponding depth images

at video frame rate. Recent approaches demonstrated the use of a single hand-held RGB-D

camera for scanning an indoor environment (Henry et al., 2010; Izadi et al., 2011; Newcombe

et al., 2011; Neumann et al., 2011; Lieberknecht et al., 2011) and even large scenes (Chen

et al., 2013; Nießner et al., 2013; Zhou et al., 2013).

These algorithms roughly fall into two major categories: (1) point cloud based registration

such as Iterative Closest Point (ICP) and (2) visual feature based Structure from Motion (SfM).

KinectFusion system (Izadi et al., 2011; Newcombe et al., 2011) utilizes ICP to align one

frame’s structure with previously captured data. While achieving subpixel accuracy in certain

environment settings (e.g., table-sized scene), the major drawback is that ICP relies only on

distinctive geometric information and would be confused when scanning geometrically smooth

region (e.g., a wall), leading to drift.

Structure from Motion (SfM) is another classic technique for 3D reconstruction. Standard

SfM algorithms only use image feature points, so it fails when very few matched features are

found or extracted features are not well distributed over the scene during pairwise matching

stage. As demonstrated later, in the worst case–when the whole room contains very few visu-

ally salient features—no frame will be registered together with SfM. Therefore, ICP and SfM



algorithms are expected to fail in challenging cases where a scene has very few image and

geometry salient features.

However, we notice that additional high level contraints exist in the depth channel. As

shown in Fig. 2.4, although there is no image feature correspondence detected around the ceil-

ing, the two frames can still be well aligned by extracting planes from the depth map and

searching for the correct plane matches. By combining high-level depth information and low-

level image salient features, our system handles well previously mentioned challenging situa-

tions, which cannot be solved alone by ICP or SfM.

In the SfM literature, the final step is usually global error mitigation through bundle adjust-

ment (BA) (Snavely et al., 2007, 2006; Crandall et al., 2011). This global adjustment step is

crucial for building a model for a large scene such as an entire room. However, as shown in

Chapter 5, it takes huge efforts (e.g., computation power) to directly incorporate dense point

cloud into the BA framework due to implicit point association. Instead, this chapter proposes

to use a compact planar representation of dense point clouds and integrate it into the traditional

BA formulation.

To summarize, the major contributions of the indoor scanning system introduced in this

chapter include:

• First, a robust pair-wise matching algorithm across frames via matching both extracted

planes and RGB image visual features. Our evaluation demonstrates that planes better

constrain the reconstruction problem in the aforementioned challenging cases (i.e. low-

texture low geometry information regions).
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Figure 2.1: Results of the scanning system on datasets (a)Rm. FB220, (b)Rm. SN277 and
(c)Rm. SN353. Accumulated point clouds (colors are added to distinguish points from different
planes), zoomed view, and planes resulted from our algorithm are shown from left to right.

• Second, a novel formulation for incorporating plane correspondences (in addition to vi-

sual feature correspondence) into the bundle adjustment framework. Planes are more

compact than points and have clear associations across frames. This bundle adjustment

step eliminates the drift problem that hurts KinectFusion.

• In addition, our proposed algorithm results in a piecewise planar representation for pla-

nar parts of the scene. Such compact representation of the scene can be deployed for

applications such as noise reduction, data compression, segmentation, etc.

While any primitive representation can be used with our method, a piecewise planar represen-
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tation is most natural for man-made indoor environments, due to the dominant existence of

planar surfaces, such as walls, floors, etc.

We evaluate our approach on several real world indoor datasets. Some have a lot of texture-

less regions, which confuse SfM algorithms; some also have areas with significant geometrical

ambiguity, such as large pieces of walls, which confuse ICP algorithms. By combining low

level appearance features and high level geometric primitives, our algorithm handles these

challenges well and significantly improves the reconstruction results.

2.1 Other Related Work

Plane constraints have been proved useful in other works for 3D reconstruction or 3D map-

ping. Sinha et al. (2009) and Furukawa et al. (2009) recovered a piecewise planar represen-

tation of the scene during the stereo procedure; Gallup and Frahm (2010) detected the planar

surface based on the trained information to improve the results of stereo for urban scene recon-

struction. Lee et al. (2011) used the constraints from coplanar feature points for visual SLAM.

Different from these works, we use planes extracted from relatively accurate depth maps, which

serve as an independent piece of information from features in RGB images. Pathak et al. (2010)

and Pathak et al. (2009) also extracted planes from a depth camera and performed plane match-

ing to register frames. However, without the help of salient feature points, planes alone can not

determine transformations between frames that contain only simple geometries such as walls.

Additionally, they did not exploit the plane alignment constraint for the global error mitigation.

Our work also relates to the research on SfM and Bundle Adjustment (Pollefeys et al.,

2004; Snavely et al., 2006; Crandall et al., 2011; Steffen et al., 2010). Again, the novelty of
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our method is that we perform bundle adjustment on both image features and planes.

2.2 System Overview

To build a complete room model, a sequence of RGB-D images is captured from a hand-

held depth sensor. The camera intrinsics are pre-calibrated, thus we only need to estimate the

camera poses (extrinsics, namely camera rotations and translations) to reconstruct the room.

Note that depth calibration (detailed in Chapter 6) helps the reconstruction quality for large

scene.

For every frame in the sequence, we extract SIFT features from RGB color image and

planar patches from the depth maps (detailed in Section 2.3). The corresponding 3D coordinate

for each image feature point is calculated under its camera coordinate system, given that the

depth value at its image location is known. We call these 3D points originating from image

features simply as “features” or “points” in order to differentiate them from planes extracted

from depth maps. We remove features that are located at discontinuity regions in the depth

map as their depth values are typically inaccurate.

Next, we perform a pairwise matching over the data sequence to find the matched frames.

Robust pairwise matching results are achieved by using both planar surfaces and features. For

each matched frame pair, the matched features and planes are found, together with their un-

derlying geometric transformation. We will introduce the RANSAC-based matching algorithm

that handles both points and planes matches in Section 2.4. To save computation time, We do

not test every frame pair for match exhaustively in the whole data sequence. Instead, similar

to (Henry et al., 2010), the time coherence of the sequence is explored and some key frames

15



are automatically selected during the matching procedure. When a new frame comes, it is only

matched against previous key frames and a few neighboring frames.

Finally, we run a bundle adjustment algorithm on all the matched features and planes from

all pairs of the matched frames to optimize camera poses globally. The bundle adjustment al-

gorithm is carried out directly in 3D space instead of 2D image space thanks to the 3D location

information computed from the depth channel. Different from traditional bundle adjustment,

planes provide strong constraints for camera pose estimation in indoor environment. This ex-

tended bundle adjustment algorithm is introduced in Section 5.6. We evaluate the proposed

system with plane constraints in Section 6.4 qualitatively and quantitatively and demonstrate

significant improvement over state-of-the-art reconstruction algorithms in real world indoor

datasets.

2.3 Planar Surface Extraction from Depth Map

Given the camera intrinsics, a depth map can be transformed to a point cloud, and vice

versa. Therefore we use these two terms interchangeably. In the literature of plane extraction

from point cloud, region growing (Poppinga et al., 2008) and voting (Borrmann et al., 2011) are

two popular techniques. Region growing algorithms scatter some initial seeds over the image,

and gradually merge neighboring pixels belonging to the same plane. The voting algorithms

transform all points into plane parameter space. The peaks in the parameter space correspond

to the consensus planes in the original space. A plane in 3D space is represented as

nTx− d = 0,
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Figure 2.2: Planar surface extraction via voting in plane parameter space. (a) input depth map;
(b) normal vectors of local planes at each pixel; (c) votes in the plane parameter space; (d)
pixels voting for the same peaks; (e) final plane labels; (c) the plane segments in 3D

where n = {nx, ny, nz} is the plane normal—a 3D unit vector; d is the distance of the plane

to the camera optical center. We force the plane normal point away from the origin, resulting a

positive d. From now on, we let P = 〈n, d〉, representing a plane under its individual camera

coordinate system for that frame.

Here a plane voting algorithm is used. Local planes are first fitted for every pixel in the

depth map using its neighboring pixels (as shown in Figure 2.2(b)). Then these local planes

vote in the plane parameter space to find consensus planes (Figure 2.2(c)). Spherical coordinate
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Figure 2.3: Example of extracted planes.

〈ρ, θ, φ〉 is used for plane voting, i.e.,

θ = cos−1 nz

φ = tan−1
ny
nx

ρ = d,

(2.1)

After finding the peaks in the plane parameter space, the plane parameters are re-estimated by

fitting planes from all the pixels voting for the same peak (Figure 2.2(d)). Finally, each pixel is

assigned either to one of the detected planes or as non-plane if the distance to all planes is too

large (Figure 2.2(e)). Plane parameters are refined again from their associated pixels, and the

convex hull {vi}Ki=1 of a plane segment is found to indicate its boundary (Figure 2.2(f)). More
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examples of extracted planes are shown in Figure. 2.3.

2.4 Robust Pair-wise Matching

Given the detected planes and features for two frames, next we find the matched features

and matched planes if any. The geometric transformation that aligns these two frames is also

estimated accordingly. Conventionally, we represent the transformation as a rotation matrix R

and a translation vector T , satisfying

Xr = RX l + T,

where X l and Xr are 3D points under two camera coordinate systems respectively (left and

right). To reduce the searching space of matched planes and features, the initial feature and

plane match set are found before being refined with RANSAC.

2.4.1 Plane Matching Hypothesis

While the initial feature match set can be extracted efficiently by checking the similarity

of SIFT descriptors, it is more difficult to find an initial plane match set. Appearance-only

matching algorithm is not reliable enough to find plane correspondence, as two frames can

observe disjoint parts of a same plane which visually can be dramatically different. Here we

use the plane relative angle as the additional clue. Within an authentic plane match set (two

groups of planes, one for each frame), relative angles between planes are invariant even with

different viewing perspective.
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Figure 2.4: Robust Pairwise Matching of Both Planes and Features. (a) two input frames and
detected planes. (b) four plane matching hypotheses are shown on top (same color indicates a
plane match), and the initial feature matches are shown on bottom. (c) matched features and
planes after RANSANC.

Generally, combining the above relative angle and appearance constraint does not achieve

one unique plane correspondence. For example, when three planes are mutually perpendicular

and have similar appearance, there are totally six different plane matching hypotheses. We

call the plane correspondence for two frames (containing a subset of planes in one frame and

the subset of the matching planes in the other frame) as a plane matching hypothesis. The

algorithm introduced in the remaining section reaches multiple hypotheses, which is fine since
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the following RANSAC stage is able to find a unique solution.

Finding two matched plane subsets is equivalent to finding a rotation matrix that rotates

the plane normals in one set to match the plane normals in the other set. Theoretically, a brute

force search on the rotation matrix space is a possible solution. That is, we apply all possible

rotation matrices on the planes of one frame, and find a subset of planes in this frame that have

corresponding planes with similar plane normals and appearance in the other frame.

However, the above brute force algorithm is not practical as it searches a 3D space for the

rotation matrix. Similar to (Pathak et al., 2009), we take advantage of the fact that a rotation

matrix can be decomposed into a rotation axis and a rotation angle about the axis. Specifically,

we repeat the following procedures:

1. Pick one pair of planes 〈P li ,Pri′〉 that have similar appearance from two frames, and find

a rotation matrix R that rotates normal vector ni to ni′ , i.e., Rni = ni′ .

2. Apply R on all the planes in the first frame. By now, P li and Pri′’s normals are aligned,

but most likely not any other planes in the two views.

3. Rotate the planes of the first frame about axis Rni to find their matched planes with

similar plane normals and appearance in the second frame. In this way, we search along

only one dimension—the rotation angle about axis Rni.

Note that using d in plane parameter as an extra constraint will give better plane matching

hypotheses but also increase the search space (6 DOF).

For each plane segment, we calculate a hue-saturation joint histogram hHS to represent

its color information and an intensity histogram hI to represent its texture information. The
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appearance similarity of the two planes is defined as the overlapping area of their histograms,

i.e., ∑
i

min(hHS1 (i),hHS2 (i)) +
∑
i

min(hI1(i),h
I
2(i)).

2.4.2 RANSAC on one plane matching hypothesis and the feature match set

The initial feature match set might contain spurious pairs, as might a plane matching hy-

pothesis. We use RANSAC to find the underlying geometric transformation between two

frames and refine the match sets. When a feature or plane pair fits a candidate transforma-

tion, it supports this transformation (details are given later). RANSAC returns a transformation

that collects most supports from match sets. Note RANSAC is extended to take both the fea-

ture match set and plane match set as input. Since Section 2.4.1 might return multiple plane

matching hypotheses, we run RANSAC multiple times on every plane matching hypothesis

together with initial feature match set. Within multiple transformations returned by RANSAC,

again we pick the one that collects most supports.

Randomly sample matched pairs

RANSAC randomly samples a minimum number of matched pairs from initial match set

to determine a rigid transformation candidate. In our case, there are two categories of matched

pairs–matched features and matched planes. As elaborated in (Pathak et al., 2010), three planes

with linearly independent normal vectors uniquely determine a transformation; similarly three

non-collinear features uniquely determine a transformation. Additionally, two nonparallel

planes and a feature also determine a transformation, as do two features and a plane with a
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different normal direction than the vector connecting the two feature points. Our randomly

sampled match subsets are evenly distributed over the above four cases—three planes, three

features, two planes with one feature, and two features with one plane.

Calculating the transformation from pairs of matches

Inside each loop of RANSAC, the transformation needs to be calculated from the randomly

sampled matches (the seeds). We consider a general case, where there are n pairs of matched

planes S = {〈P li ,Pri′〉}, and m pairs of matched features T = {〈f li , f ri′〉}. The upper-index

l and r indicates which frame the data belong to, and we will ignore them whenever it does

not cause confusions. A transformation 〈R, T 〉 is estimated to minimize the overall distance

between matched items. That is,

min
∑

〈Pl
i ,Pr

i′ 〉∈S

D2
pln(Q(R, T,P li),Pri′) +

∑
〈f li ,fri′ 〉∈T

D2
pt(Rf

l
i + T, f ri′). (2.2)

where Q(·) applies transformation 〈R, T 〉 to P li and is detailed later, while Dpln(·) and Dpt(·)

are distance functions for planes and features respectively. The distance between features is

simply defined as Euclidean distance. However, the Euclidean distance of plane parameters

〈n, d〉 is not a good measurement of the plane distance as shown in Fig. 2.5, mainly because

the planes in our case actually mean “plane segments” which have boundaries.
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Figure 2.5: The closeness on planes parameters shown in (a) does not equal to the closeness
of plane segments shown in (b). The solid line segments denote the plane segments, and o is
the origin of the world coordinate. In (b), even though each pair of matched planes have much
larger difference on the origin-to-plane distance d, they are better aligned comparing with (a).

Distance between plane segments

Instead of measuring Euclidean distance between plane parameters, we measure the dis-

tances from the boundary points (convex hull) of one plane segment to its matched plane.

Ideally, we could use the sum of the point-to-plane distances from all points in one plane seg-

ment to the other plane, since these points are the direct observations of a plane. However

it is computationally more expensive given the number of points in a plane segment. It can

be proven the convex-hull-to-plane distance is the upper-bound of the sum of point-to-plane

distances1.

1Each observed point p assigned to a plane could be represented by a linear combination of the convex hull vertices
{vi}, i.e., p =

∑
i civi + ε; where

∑
i ci = 1 and ε accounts for the fact that the point p might not lie exactly on

the fitted plane. Since the point-to-plane distance is a convex function, the weighted sum of convex-hull-vertex-
to-plane distances is statistically the upper-bound of the distance from an observed point to the world plane.
Taking all the points associated with one plane into consideration, the sum of squared point-to-plane distances
(upper-bound) is c

∑
i wiD2(vi), where c is the number of the points; D(·) measures point-to-plane distance;
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Let’s assume we are measuring the distance between two plane segments {P li ,Pri′} under

the transformation 〈R, T 〉. The the convex hull vertices of two plane segments are {vli,k}
K1
k=1

and {vri′,k}
K2
k=1 respectively. As shown in (Pathak et al., 2010), after applying the transformation

〈R, T 〉 to plane P li , its plane parameter becomes 〈Rni, di + nTi R
TT 〉, and its convex hull

vertices becomes {Rvi,k + T}K1
k=1. Then the distance between plane segments in Eq. 2.2 is

defined as,

D2
pln =

K1∑
i=1

wi,k‖nTi′Rvi,k + nTi′T − di′‖22 +
K2∑
i=1

wi′,k‖nTi RTvi′,k − nTi R
TT − di‖22. (2.3)

The first term in the right side of the equation measures the perpendicular distance from the

transformed convex hull vertices on the first plane to the second plane, while the second term

measures the distance between the vertices of the second plane and the transformed first plane.

Each point-to-plane distance is given a weight wi,k, satisfying
∑

k wi,k = 1. Because vertices

on the convex hull are not a uniform sample of the plane boundary, larger weights are given to

vertices further away from their neighboring vertices.

Find the supporting pairs and choose the best transformation

For each transformation candidate, we count the support from the match sets. A pair of

points will cast a constant vote value cpt if their distance is closer than εpt, while a pair of

planes cast vote value cpln if their distance defined in Eq. 2.3 is less than εpln and two plane

segments overlap after transforming one plane’s segment to the other plane’s image space. That

is, only when a pair of planes are close enough and have overlap under one transformation, we

and wi is the overall weight on a vertex satisfying
∑
wi = 1.
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Figure 2.6: Two examples of point and plane match sets after refinement.

say they fit the transformation. In our experiment, plane pairs carry more weight than point

pairs. Examples of the refined match set are shown in Figure 2.6.

2.5 Bundle Adjustment of Points and Planes

After performing the above robust pairwise matching algorithm over the whole RGB-D

sequence, we have a large number of feature/plane match sets, and groups of matched fea-

tures/planes are linked together according to . A set of linked features {f ik}i∈Ck is called a

feature track, corresponding to the same 3D point pk in a world coordinate system. The no-

tation f ik represents a 3D feature point in the k-th visual feature track from the i-th frame, and

Ck is the set of frame indices where all the indexed frames have feature corresponding to the

3D world point pk. Similarly from the plane matching sets, a number of plane tracks can be
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found. Each plane track is composed of a set of linked planes {P ij}i∈Dj
from various frames

corresponding to the same world planeQj . The notation P ij represents a plane in the j-th plane

track and extracted from i-th frame, while Dj is the set of frame indices where all the indexed

frames have the extracted planes corresponding to the world plane Qj . From now on, we al-

ways use i as the index of frames, j as the index of the plane track or its corresponding plane

in the world space, and k as the index of the visual feature track or its corresponding point in

the world space.

2.5.1 Problem Statement

Given M plane tracks {{P ij}i∈Dj
}Mj=1, and K feature tracks {{f ik}i∈Ck}Kk=1, which are rep-

resented under their own camera spaces, the bundle adjustment problem is to simultaneously

optimize the camera poses {Ri, Ti}Ni=1 for N frames in the sequence, the plane parameters

{nj, dj}Mj=1 for M planes {Qj} in the world, and K point locations {pk}Kk=1 in the world. As

a usual practice, the camera pose is represented by rotation matrix R and a 3D translation

vector T , which transform a point Xwld in world space to the camera space coordinate Xc via

Xc = RXwld + T .

2.5.2 Cost Function

Based on the extracted feature and plane tracks, we adjust simultaneously the camera poses

and the parameters of the world planes and world points to make sure that the desired world

planes and world points are as close as possible to the planes and points detected in each frame.

The cost function to be minimized is:
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c

Npln

∑
{i,j|i∈Dj}

cijD
2
pln

(
Q(Ri, Ti,Qj),P ij

)
+

1− c
Npt

∑
{i,k|i∈Ck}

D2
pt

(
Q(Ri, Ti,pk), f

i
k

)
,

(2.4)

where Dpln(·) measures the distance between a detected plane and the world plane, while

Dpt(·) measures the distance between an observed feature and a world point. Q(·) transforms

a point or a plane in the world space to a certain camera space given the camera pose. Constant

c weights the effects of plane tracks against feature tracks; Npln and Npt are the number of

planes in all plane tracks and the number of points in all feature tracks respectively. cij is the

weight on the plane in the plane track and equals to the number of associated pixels in a plane

divided by the average number of pixels among planes in all plane tracks.

Again we use the Euclidean distance to measure Dpt, i.e.,

D2
pt (Q(Ri, Ti,pk) , f

i
k) = ‖Ripk + Ti − f ik‖22.

For distance between a detected plane and a world plane, as in Eq. 2.3, we measure the convex-

hull-to-plane distance, i.e.,

D2
pln

(
Q(Ri, Ti,Qj),P ij

)
=
∑
h

wij,h‖nTj RT
i v

i
j,h − nTj R

T
i Ti − dj‖22,

where {vij,h} are the vertices on the convex hull of the plane P ij , and 〈nj, dj〉 are the plane
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parameters of Qj . Putting everything together, we have the cost function,

c

Npln

∑
{i,j,h|i∈Dj}

cijw
i
j,h‖nTj RT

i v
i
j,h − nTj R

T
i Ti − dj‖22+

1− c
Npt

∑
{i,k|i∈Ck}

‖Ripk + Ti − f ik‖22.
(2.5)

Note that the camera pose for the very first camera is fixed at the origin with an identity rotation

matrix in the above function.

Statistically speaking, the noise on observed points comes from variant independent factors,

for example, errors from the 2D SIFT detector, depth map, camera calibration, thus we assume

it is normally distributed based on Central Limit Theory. Hence, L2 norm is used to measure

the error of an observed feature in the above cost function. As to the measurement of the

error on a plane segment, we use the convex-hull-to-plane distance as a compromise since it is

computationally prohibitive to use the sum of the point-to-plane distances given the number of

points. As stated earlier, this convex-hull-to-plane distance is statistically the upper-bound of

the error of the points on the plane segment. Since this error (or noise) also comes from various

independent factors, we assume it is normally distributed and L2 norm is used.

Initialization and optimization

A general sparse Levenberg-Marquardt solver (Lourakis, 2010) is used to minimize the cost

function defined in Eq. 2.5. Since there are only three degrees of freedom in a rotation matrix

and two degrees of freedom in a normal vector, the Rodriguez representation and spherical

coordinates are used respectively when performing the optimization. Although there are three
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#features #matched #feature #plane #planes
dataset #frames per frame features tracks tracks in tracks
SN353 228/191 328 143 6066 83/52 1179/916
SN277 381/350 497 129 10695 155/72 1896/1520
FB220 360/280 137 46 3357 138/64 1516/1232

Lab 180/180 694 267 10636 85/46 1236/858

Table 2.1: Statistics on four datasets. Under column “#frames”, the number of frames in the
sequence is recorded before the slash, while the number of frames registered with others is
shown after the slash. The third and fourth column give the average number of all detected
features and matched features respectively. Column “#plane tracks” gives the number of the
detected plane tracks provided to BA and also the number of planes tracks after refinement in
BA. Column “#planes in tracks” gives the total number of planes in all tracks before and after
BA.

sets of unknowns, only the camera poses need to be initialized. The initial parameters for the

world planes and world points are estimated from their corresponding tracks with the given

camera poses. The camera poses are initialized one by one with the pairwise matching results.

Plane track refinement

Since we do not match every possible frame pair, some large planes tend to have several

disjoint plane tracks instead of one complete track. These plane tracks need to be merged

together. We compute the plane distance between estimated planes in the world space returned

by bundle adjustment according to Eq. 2.3; if some of them are closely located, we merge them

into one plane and also merge their plane tracks accordingly. Moreover, we delete a detected

plane from its plane track if its distance to the corresponding world plane is beyond a threshold

d. If more than half the planes of one plane track do not fit its estimated world plane, we

delete the entire plane track. After refining the plane tracks, we rerun the bundle adjustment

algorithm, and repeat the above procedure several times until the plane tracks no longer change.
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2.6 Experiments

We evaluate our algorithm on four datasets of indoor office settings captured in real-world

environment: SN353, SN277, FB220 and LAB. All the datasets except “LAB” have consid-

erably fewer visual features. Some statistics on the datasets when running our algorithm are

shown on Table 2.1. In each data set, 200 to 500 frames of RGB-D data are captured with sig-

nificant overlaps. Among four datasets, “FB220” is the most challenging one, since the num-

ber of detected feature is dramatically fewer than others. On average, there are only around

10 matched points per matched frame pair (the number “46” shown under the forth column

for “FB220” is the average number of the features in one frame that have matches in all other

frames), which can hardly lead to robust registration (camera pose transformation between two

frames) with traditional SfM methods. As shown in the second column of Table 2.1, some

frames are not registered with others and thus abandoned. This is because: (1) a frame is only

matched with key frames and some adjacent frames; (2) the white balance and gain of the

RGB channel on Kinect is in “auto” mode and cannot be disabled with current drivers, so the

appearance of objects (mainly walls and ceilings) across frames changes dramatically, espe-

cially when pointing the camera towards a light (which explains why some ceiling parts in the

following results disappear), leading to missing matches between frames.

The plane/feature trade-off coefficient c in Eq. 2.5 is set to 0.1 empirically for all the ex-

periments presented here. The registered point clouds for different rooms using our algorithm

are shown in Fig. 2.1, along with the planes delivered by BA. The point clouds shown here

come directly from the depth camera and are not further processed to reduce the noise, while
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dataset point proj error(cm) plane proj error(cm) zero angles(°) right angles(°)
SN353 1.46± 1.37 1.74± 2.03 -0.60± 2.95 89.97± 2.14
SN277 2.01± 1.83 1.68± 1.58 -0.22± 0.80 89.94± 1.70
FB220 2.38± 1.63 2.36± 2.15 -1.17± 2.41 89.96± 2.42

Lab 1.91± 1.77 1.91± 1.66 -0.59± 4.27 89.61± 2.11

Table 2.2: The quantitative measurements of our algorithm. Inside each cell, the average error
and the standard deviation are provided.

a volumetric method such as (Izadi et al., 2011; Newcombe et al., 2011) could be used to fuse

all the depth map together given the camera poses.

2.6.1 Comparison to Structure from Motion (SfM) algorithms

To compare our method with state-of-the-art SfM algorithms, we ran Bundler (Snavely

et al., 2007)(Snavely et al., 2006) on all datasets. Since camera poses from SfM are determined

up to a scale, we need to the find this scale compared to the one used by the depth camera. SfM

outputs a sparse point cloud which can be projected to image space to extract the depth values

from the depth cameras. Hence by comparing the depth values from the depth camera and

those from Bundler, we have the relative scale.

Not surprisingly, Bundler fails on “FB220”, giving camera poses for only three frames out

of 360 frames. Bundler does give results for “SN353” and “SN277”, but there are dramatic

misalignments between frames as shown in Fig. 2.7(a), while Bundler gives visually almost

perfect results for dataset “Lab” with rich features. Clearly Bundler does not work well on

dataset with relatively few features, and fails when features are very sparse. Another obser-

vation is that the frames in “Lab” have significant depth variance than frames in other three

scenes. For example, in dataset “FB220” many frames only capture the side of wall, which is

the degenerated case for Bundler and thus results in inaccurate camera poses.
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2.6.2 Comparison to ICP method

We compared our system with RGBD-ICP algorithm (Henry et al., 2010). Since RGBD-

ICP also uses visual features to constrain the planes from drifting along the plane surface

direction arbitrarily, it achieved better result than Bundler. But our algorithm comfortably out-

performed RGBD-ICP algorithm as shown in Fig. 2.7(b), since the error accumulation problem

is not handled in RGBD-ICP, while we address that with our new bundle adjustment formu-

lation. We also compared our system with KinectFusion(Izadi et al., 2011; Newcombe et al.,

2011) which uses only the depth information to align one frame with previously accumulated

data. And as expected, KinectFusion did not result in a reasonable output on our dataset either,

due to its lack of constraints to handle the drifting in some frames with simple geometry struc-

ture.Since our reconstruction input frames are temporally down-sampled from the original 30

fps hand-held Kinect streams, the adjacent frames normally have noticeable amount of camera

pose differences. Hence, for RGBD-ICP and KinectFusion to work, a decent initial camera

pose is required. The transformation returned by our robust pairwise matching algorithm in-

troduced in Sec. 2.4 is used for camera pose initialization.

2.6.3 Comparison to ICP with global error mitigation

As shown in (Henry et al., 2010), the accumulated error can be re-distributed globally. To

fairly compare our algorithm to the ICP algorithm with error distribution, we use the same

frame matching strategy, that is, to match one frame against all previous key frames and its

adjacent frames. After collecting all the pairwise transformations {〈Rj←i, Tj←i〉|(i, j) ∈ E},
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as in (Grisetti et al., 2007), we distribute the error over the graph by minimizing

∑
(i,j)∈E

‖Rj←i −RjR
T
i ‖22 + ‖Tj←i − Tj +Rj←iTi‖22. (2.6)

As shown in Fig. 2.7(c), after distributing the accumulated error, ICP gives decent results.

However, some details are not preserved as well as using our method. For example, the ceiling

in “SN277” is distorted as shown in Fig. 2.7(c). Note that both ICP with and without error

re-distribution have to use our robust pairwise matching algorithm with planes and features for

initial registration, otherwise both ICP algorithms would fail frequently in texture-less regions.

2.6.4 Quantitative measurement of errors

To evaluate our method quantitatively, we measure the projection error of feature points

and planes in all datasets. The estimated 3D world points and world planes are projected

to the camera coordinate system at each frame to compare them with extracted planes and

features. Additionally, the relative angles between some planes in the room, such as walls,

ceilings and floors, can be safely assumed to be either 0°or 90°(at least very close if not equal),

and we measured these angles between the world planes delivered by our system. All the

measurements are listed in Table 2.2. Although the error on the dataset “FB220” is slightly

bigger than others, the projection error is considerably small and the measured angles are fairly

close to 0°or 90°.
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2.6.5 Running times

Our single thread program takes 2.5 to 3 seconds to extract planes from one frame, another

1.5 seconds to extract SIFT features on a desktop PC with 3.0 CPU Hz. Depending on how

many planes and features are in the frames, it takes up to a few seconds to finish one pairwise

matching. In our four datasets, the pairwise matching on a whole sequence takes two to five

hours. We do not perform incremental bundle adjustment, and instead we perform BA on all

frames directly. Generally it takes less than fifty iterations to converge with the default param-

eters of the chosen Levenberg-Marquardt solver (Lourakis, 2010). We run bundle adjustment

and the plane track refinement repeatedly. The whole BA procedure takes 5 to 20 minutes on

a dataset. We expect significant computation speed acceleration with optimized code or on

parallel processing unit such as GPU. This remains one of the future directions of this research

work.

2.7 Discussion

In this chapter, we present a complete pipeline of indoor 3D reconstruction with a hand-held

RGB-D camera. Given indoor settings, we explore the commonly available high level plane

constraint to achieve better reconstruction quality. By combining both low level feature corre-

spondences and high level plane primitive, we significantly improve the reconstruction result in

challenging cases such as surfaces lack of texture and geometry features. More specifically, we

demonstrate the use of the plane primitive in robust pairwise matching even when few salient

feature points are detected or they are not well distributed. This compact representation of

dense points for planar parts of the scene also helps us incorporate these constraints into the
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BA framework to globally mitigate the error. Real world data sets show that our method signif-

icantly improves the reconstruction quality over state-of-the-art scene reconstruction methods

and the measured error is very small comparing to the ground truth.
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Figure 2.7: Comparison of our algorithm with other methods. The top-down view of recon-
structions on two rooms are shown. 1st Row: Bundler; 2nd Row: ICP; 3rd Row: ICP+Loop
Closure; 4th Row: ours. Recontruction details for one corner of the room are shown on the
right.
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CHAPTER 3: Nonrigid Alignment

In the following chapters, we focus on the 3D reconstruction problem for dynamic objects.

As introduced in Chapter 1, we take advantage of the dynamic properties of the object being

captured by accumulating data from multiple frames, which requires nonrigidly aligning data

across frames. In this chapter, we will introduce the nonrigid alignment algorithm which is the

fundamental component for techniques proposed in following chapters.

3.1 Nonrigid Alignment in Literature

Nonrigid Alignment is to deform a template surface to match with a target surface.

It is essentially a data association/point correspondence problem. One category of meth-

ods (Nießner et al., 2013; Liao et al., 2009; Bronstein et al., 2006) directly estimates the new

vertex locations of the template surface that aligns with the target surface. The problem is

typically under-constrained due to the huge amount of parameters (i.e., new vertex locations)

and incomplete correspondence (i.e., partial-to-partial matching problem), so regularization is

applied to limit the deformation freedom. Nießner et al. (2013) use the As-Rigid-As-Possible

constraint (Sorkine and Alexa, 2007) to enforce that each vertex moves rigidly with its neigh-

boring vertices. Liao et al. (2009) preserve the laplacian coordinate (Sorkine et al., 2004) at

each vertex during the deformation. Bronstein et al. (2006); Pokrass et al. (2013) use the iso-

metric invariance constraint to penalize the change of geodesic distance between any points on

the surface, preventing the surface from stretching and shrinking.



Another category of methods takes the indirect approach and estimates deformation param-

eters instead. Some work (Gall et al., 2009; Vlasic et al., 2008; Ballan and Cortelazzo, 2008;

De Aguiar et al., 2008; Wu et al., 2013; Schmidt et al., 2014) assumes the articulated surface

structure and use the kinematic model (i.e., skeleton model) to parameterize the deformation.

They typically need a manual skinning procedure, i.e., attach the pre-scanned surface (volume

in case of (Schmidt et al., 2014)) to a skeleton structure or kinematic tree. The skeleton param-

eters are then estimated by matching the skeleton-driven surface with the current observation,

such as silhouettes. A later surface refinement stage is usually employed to reduce the artifacts

on the deformed surface resulting from the coarse deformation model.

The skeleton model above only applies to articulated objects, such as human beings. Sum-

ner et al. (2007) proposed a more general motion model for shape manipulation—the embedded

deformation model, which is capable of preserving geometry details while still providing de-

sired properties such as simplicity and efficiency. Thus, it has been used to parameterize the

non-rigid deformation and applied to shape matching (Li et al., 2009), which in turn is used

for dynamic shape completion (Li et al., 2012; Zeng et al., 2013) and surface tracking (Bojsen-

Hansen et al., 2011). Inspired by these works, we apply the Deformation Graph Model on

dynamic model scanning and tracking using the noisy data from commodity depth cameras,

and we incorporate both dense depth and color information into the non-rigid matching frame-

work.
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3.2 Nonrigid Alignment Problem

When deforming a template surface to match with a target surface, we want the correspond-

ing points to be as close as possible. However, the point correspondence is unknown before the

alignment. One solution is an ICP-like method (Li et al., 2009) which iteratively estimates the

point correspondence and alignment parameters), but such an oscillated-optimization strategy

has slow convergence and performs poorly for challenging cases. Another option is to first pre-

compute the distance transform (i.e., signed distance fields (Curless and Levoy, 1996)) for the

target surface, through which the surface alignment error is measured directly without knowl-

edge of point correspondence. Then the best alignment is found by minimizing the error with a

gradient descent method. LM-ICP (Fitzgibbon, 2003) uses the same idea for rigid object align-

ment, and it estimates the descent direction with finite differences, which might be problematic

for noisy surfaces and lead to local minima. We propose to represent the template surface as a

Directional Distance Function by adding a direction field pointing to the nearest points on the

surface along with the signed distance field. In this way, we can deduce an analytic solution

for the derivatives of the measurement function, from which we compute the gradient descent

direction. In addition, we integrate a color consistency constraint into the framework such that

its derivative also has an analytical solution, which allows the problem to be solved efficiently

and robustly.
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3.3 Embedded Deformation Model

In general, we will want to allow our meshes to deform, for example to allow our surface

reconstruction to explain the data in a depth sequence. Our desire to keep our algorithm ag-

nostic to object class led us to choose the embedded deformation (ED) model of Sumner et al.

(2007) to parameterize the non-rigid deformations of a mesh V . In this model, a set of K “ED

nodes” are uniformly sampled throughout the mesh at a set of fixed locations {gk}Kk=1 ⊆ R3

and neighboring ED nodes are connected to form a graph. Each vertex m is “skinned” to the

ED nodes by a set of fixed weights {wmk}Kk=1 ⊆ [0, 1], where

wmk = (max(0, 1− d(vm,gk)/dmax))
2/wsum

with d(vm,gk) the geodesic distance between the two, dmax the distance of vm to its c+1-

th nearest ED node, and 1
wsum

the normalization weight. Note vm is only influenced by its c

nearest nodes (c = 4 in our experiments) since other nodes have weights 0. The weighted

deformation of the vertices surrounding gk is parameterized by a local affine transformation

Ak ∈ R3×3 and translation tk ∈ R3.

In addition, we follow Zeng et al. (2013); Li et al. (2013) in augmenting the deformation

using a global rotation R ∈ SO(3) and translation T ∈ R3. The precise location of vertex vm

deformed using the parameter set G = {R, T} ∪ {Ak, tk}Kk=1 is

ED(vm;G) = R
K∑
k=1

wmk [Ak(vm − gk) + gk + tk] + T (3.1)
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and its associated surface normal is (with bbxcc := x/‖x‖):

ED⊥(nm;G) = R

⌊⌊
K∑
k=1

wmkA
−T
k nm

⌋⌋
. (3.2)

In addition, we allow the former functional to be applied to an entire mesh at a time to produce

a deformed mesh

ED(V ;G) := {ED(vm;G)}Mm=1.

In general, we will want to find parameters that either exactly or approximately satisfy

some constraints (e.g. ED(vm;G) ≈ pk ∈ R3), and thus encode these constraints softly in an

energy function Econ(G), e.g.,

Econ(G) = ‖pk − ED(vm;G)‖2.

In order to prevent this model from using its tremendous amount of flexibility to deform in

unreasonable ways, we follow the standard practice of regularizing the deformation by aug-

menting E(G) with

Erot(G) =
K∑
k=1

‖ATkAk − I‖F +
K∑
k=1

(det(Ak)− 1)2, (3.3)

that encourages local affine transformations to be rigid, and

Esmooth(G) =
K∑
k=1

∑
j∼k

‖Aj(gk − gj) + gj + tj − (gk + tk)‖2, (3.4)
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that encourages neighboring affine transformations to be similar. For clarity, in later equations,

we use

Ereg(G) = αErot(G) + Esmooth(G), (3.5)

where α = 10 in our experiments. In addition, rigidity is encouraged by penalizing the defor-

mations at ED nodes,

Erigid(G) =
∑
k

ρ (‖Ak − I‖F ) +
∑
k

ρ
(
‖tk‖2

)
, (3.6)

where ρ(·) is a robustness kernel function.

To summarize, nonrigid alignment paramters are estimated for the deformation graph by

solving,

min
G
wregEreg(G) + wrigidErigid(G) + wconEcon(G) (3.7)

It is straightforward to minimize this energy using standard nonlinear least squares optimiza-

tion (Sumner et al., 2007; Li et al., 2009). The third term Econ comes from the matched key

points of two surfaces, In our case, the key points are Lucas-Kanade corner points that are

converted to 3D points from 2D image locations using their observed depth.

The energy terms above are inadequate to align noisy 3D data from commodity depth cam-

eras. Therefore, we include two more terms—dense point cloud alignmentEdns pts (Section 3.4)
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and color consistency Eclr (Section 3.5), transforming Equation 3.7 to

min
G

wregEreg(G) + wrigidErigid(G) + wconEcon(G)

+ wdns ptsEdns pts(G) + wclrEclr(G)

(3.8)

3.4 Directional Distance Function and Measurement of surface alignment

The matched key points in Sec. 3.3 are sparse features on the surface; their alignment does

not represent the global surface alignment. Thus the dense alignment must be measured. Dif-

ferent from Li et al. (2009) who iteratively estimates dense point correspondence, we represent

the target surface as a distance field so that the surface alignment can be efficiently measured.

At each voxel of this volume data, we record its distance D(·) and direction P(·) to its clos-

est point on the surface. This representation is an extension to the Signed Distance Function

(SDF) (Curless and Levoy, 1996), and we call it the Directional Distance Function (DDF).

Then, the energy function for dense point cloud alignment is defined by,

Edns pts(G) =
∑
i

(
D(ṽi)

)2 (3.9)

where ṽi = ED(vi, G).

Calculating the DDF takes no more effort than recording the position of the nearest point

on surface and subtracting its position to get P(·). The pseudo-code of calculating the DDF

from a surface or depth map is given in Appendix A. Note that the voxel whose closest surface

point lies at the boundary of an open surface is set to null (or empty), which prevents the un-

desired surface extension when recovering a triangle mesh from a DDF. The surface boundary
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is identified either as pixels on a depth map that have depth discontinuity with their neighbors

or the vertices on a triangular mesh that do not share its edge with other triangles.

P(·) in the Directional Distance Function is especially helpful when minimizing Eq. 6.3.

Since the energy function is in least squares form, it can be efficiently solved via a gradi-

ent descent-like method (e.g. Gauss-Newton algorithm) as long as the Jacobian matrix J is

provided. To solve this nonlinear least squares problem, we use the Levenberg-Marquardt al-

gorithm (Madsen et al., 2004) implemented by the Google Ceres solver (Agarwal and Mierle,

2013). The Jacobians for first three terms of Eq. 6.3 are straightforward; we will illustrate

those for Edns pts here and Eclr in next section. One interesting fact about SDF D(·) is that

its gradient is a unit vector aligned with the direction pointing to the closest surface point, i.e.,

P(·). More precisely, since we use a negative SDF for voxels inside a surface,

∇D =



−P , if D > 0

P , if D < 0

normal, if D = 0.

(3.10)

Thus, the Jacobians ∂
∂pk
D(ṽi) = ∇D|ṽi ∂

∂pk
ṽi, where pk is the k-th deformation parameter.

When computing DDF in practice, we align P to surface normal when |D| < ε, which is

analogous to using the point-to-plane distance instead of the point-to-point distance for ICP. In

our implementation, ε is set to 1.5 cm.

Sometimes there are parts on the target surface where front and back surfaces are close

enough that the deformed surface point ṽi is attracted to the wrong surface during iterations.
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Fortunately,∇D|ṽi is the approximation of the normal of ṽi’s closest point on the target. When

the normal ñi on the deformed reference surface does not agree with ∇D|ṽi , this means ṽi

is heading to the wrong side of the target surface. To resolve this, we let ∂
∂pk
D(ṽi) ← 0, if

∇D|ṽi · ñi < 0, nullifying the attraction from the wrong part of the target.

3.5 Color Consistency

When deforming the template surface to the target, the matched points must have similar

color (or texture). The Eclr term helps resolve alignment ambiguities when a near-symmetric

part on the surface rotates or moves, such as head turns and arm rotations. In our scanning and

tracking system, the template surface is the currently accumulated 3D model from the depth

and color of previous frames, and it is represented by a triangle mesh with a 3D color vector

ci attached at each vertex. The target surface is the current observation of the dynamic object,

and its raw representation is a set of depth maps {Zk(·)} and color images {Ik(·)}.

All the depth and color cameras are calibrated under the same world coordinate system,

and Pk(·) projects a 3D point to the k-th image coordinate. Thus, the color consistency term in

Eq. 6.3 is

Eclr(G) =
∑
k

∑
i

‖δk (ṽi) · [Ik (Pk (ṽi))− ci] ‖22, (3.11)

where δk (ṽi) is the visibility term; δk (ṽi) = 1 when ṽi is visible to the k-th color camera,

and 0 when invisible. Visibility checking is performed with a z-buffer algorithm—project the

surface to the image space and the vertices with smallest z values are visible. We also set

δk = 0 for vertices whose outward normals point away from the camera, to prevent holes in
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the incomplete front surface from erroneously letting parts of back-facing surfaces pass the

z-buffer test.

The Jacobians for Eclr also have an analytic solution: ∂
∂pi
Ick (Pk (ṽi)) = ∇Ick · ∂

∂ṽi
Pk · ∂

∂pi
ṽi,

where ∇Ick is the image gradient for the c-th channel of the k-th color image. Note that the

visibility check needs to be performed at each iteration of the gradient descent method since

each iteration produces a differently deformed template surface. Fortunately, it does not take

much more effort since we need to project vertices to image spaces anyway.

This color consistency term essentially estimates the optical flow that matches 3D surface

points to 2D image coordinates, while classical 2D optical flow performs matching in the image

space (Baker and Matthews, 2004). Even though the 3D flow technique (Herbst et al., 2013)

estimates the dense 3D motion with RGB-D data, the matching is still confined in the 2D image

space. In addition, our algorithm does not require that the color and depth image be aligned,

making it possible to use high resolution color cameras.

3.6 Comparison

Figure 3.1 compares our algorithm with previous works from Sumner et al. (2007) (de-

signed for shape editing and used by others for non-rigid alignment) and Li et al. (2009) and

shows the results of aligning one frame to another. Sumner et al. (2007) only uses matched

sparse points for alignment (Econ in Eq. 6.3), so the dense points are not perfectly aligned.

Li’s algorithm performs better since dense points is employed for alignment; as shown in Fig-

ure 3.1(G), the reference and target surfaces after alignment are well interleaved compared with

(F). But the textures of aligned surfaces do not match for both algorithms; in Figure 3.1, neither
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Source/Target Sumner et al. Li et al. Ours

Figure 3.1: Comparison of various algorithms aligning the source surface (E) to the target
surface (A). (B)(C)(D) show the deformed source surfaces with three algorithms (Sumner et
al., Li et al., and ours) respectively; (F)(G)(H) show deformed source surfaces over target
surfaces where the source is in green and the target in orange. Note neither method of Sumner
et al. nor that of Li et al. is able to align the head part correctly, while our method gives exact
alignment by using color consistency constraints.

(B) nor (C) is close to (A). Since our algorithm includes a color consistency constraint, it per-

forms better than the other algorithms. Not only do the surfaces align more tightly, the textures

match as well. Quantitative and qualitative evaluation on our nonrigid alignment algorithm are

shown in later chapters in more specific contexts.
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CHAPTER 4: Dynamic Surface Reconstruction

In this chapter, we introduce a 3D capture system that first builds a complete and accurate

3D model for dynamic objects (e.g., human body) by fusing a data sequence captured by mul-

tiple commodity depth and color cameras (e.g., Microsoft Kinects), and then tracks the fused

model to align it with following captures. One crucial component of our system is the nonrigid

alignment which has been introduced in Chapter 3. Our system also extends the volumetric

fusing algorithm (Curless and Levoy, 1996; Newcombe et al., 2011) to accommodate noisy 3D

data during the scanning stage. We introduce the scanning system in Sec. 4.2, and the tracking

system in Sec. 4.3.

4.1 Related work

KinectFusion shows successful scanning of static scenes in real-time in Newcombe et al.

(2011) and shows results on processing dynamic objects with piece-wise rigid matching in Izadi

et al. (2011). Our work aims at scanning and tracking dynamic objects by employing a non-

rigid alignment algorithm.

Previous work on fusing multiple scans of a dynamic object either restricts the motion of

the object (e.g., by using a turntable to rotate an object in a predefined manner (Tong et al.,

2012)), or uses a human model database (e.g., SCAPE (Anguelov et al., 2005)) as prior shape

knowledge for the human body (Hirshberg et al., 2012; Weiss et al., 2011). This gives up the

flexibility to scan other objects or humans wearing loose clothes. Our scanning system allows



(a) Pre-aligned Point Clouds (b) Post-aligned Point Clouds (c) Cross Section of alignment (d) Fused Scan (e) Fused Scan with Color

Figure 4.1: Scanned Dynamic Objects. (a)&(b) show 150 frames of point clouds of one moving
person before and after alignment. (c) shows the cross section of the aligned surfaces at the
upper body and leg (surfaces are assigned different colors). (d)&(e) show the fused 3D model.

for large deformations and motion of the subjects being scanned and makes no assumption on

their shapes.

Our work also relates to research into motion/performance capture of articulated dynamic

objects (Gall et al., 2009; Vlasic et al., 2008; Ballan and Cortelazzo, 2008). These works

presume a template surface model of the object being tracked is available. They also need a

manual skinning procedure, i.e., attach the pre-scanned surface to a skeleton structure or kine-

matic tree. De Aguiar et al. (2008) abandoned the skeleton and uses a coarse tetrahedral version

of the scan instead, but it still involves manual procedures during initialization. Our system in-

stead incorporates a scanning procedure that takes advantage of depth sensors and does not

need the manual operations such as skinning or rigging. While the systems above typically

need to use a blue-screen to get the object silhouette, our system has no such requirement.

Our work relates to the research into 3D Character Animation (Baran and Popović, 2007;

Chen et al., 2012) as well. Baran and Popović (2007) automatically fit a skeleton to the char-
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Figure 4.2: The Scanning System. 1©– 5© the steps in Algorithm 1; (A) the Eight-Kinect
System Setup; (B) depth maps; (C) color images; (D) volume visualization of the fused DDF
from 8 depth maps; (E) volume visualization of the accumulated DDF at the reference so far;
(F) the accumulated reference surface so far; (G) the deformation graph on the surface (F).

acter mesh and attach it to the surface. Chen et al. (2012) designed a real-time system that

transfers user’s motion to any pre-scanned object. The user’s skeleton is tracked from a Kinect

camera and is attached to the embedded deformation graph (Sumner et al., 2007) of the charac-

ter, and the character is then deformed accordingly. Instead of only transferring user’s motion,

we aim at a tight surface alignment between a user’s pre-scan and the later observation. We

also work without explicit requirement to track human skeletons allowing support for arbitrary

objects.

4.2 Scanning Dynamic Objects

The objective for scanning a dynamic object is to acquire a complete and accurate model

from a sequence of depth maps and color images captured by several commodity depth and

color cameras. In our system, eight Kinects are used and placed in a circle with radius of 1.8
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Algorithm 1: Scanning Pipeline
Set the data from the first frame as the reference;
foreach new frame do

1. fuse depth maps to get the DDF;
2. match the reference surface to the new observation;
3. transform the DDF from target to reference;
4. fuse the transformed DDF into MDDF at reference;
5. generate the reference surface from MDDF, and map colors to the surface;

meters. Four of them cover the upper space, and the other four cover the lower space. Our

system setup is shown in Fig. 4.2(a).

We use a similar data fusion pipeline as KinectFusion (Izadi et al., 2011; Newcombe et al.,

2011). Initially, the data of the first frame is set as the reference; then we repeatedly estimate

the deformation between the reference and newly observed data, and fuse the observed data to

the reference. More specifically, we perform following steps for each newly observed frame:

1. Convert depth maps from the Kinects to Directional Distance Functions (DDFs, intro-

duced in Chapter 3.4), and fuse them into one DDF Ftrg using the method introduced

later in Section 4.2.2.

2. Sample an Embedded Deformation Graph (ED, introduced in Chapter 3.3) from the ref-

erence surface, and estimate its parameters with the nonrigid alignment algorithm intro-

duced in Chapter 3 to align the reference surface with the new observation (Ftrg and

color images). The parameters for this forward deformation is computed.

3. Compute the backward deformation (from target to reference) according to the forward

deformation, and transform the fused DDF from step 1 to the reference, i.e., Ftrg →

Fref . Details are provided in Section 4.2.1.
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4. FuseFref into the Multi-Mode Directional Distance Function (MDDF) at reference. Un-

like DDF, MDDF has multiple distance values and direction vectors at each voxel. A de-

tailed introduction of MDDF and fusion of multiple DDFs is presented in Section 4.2.2.

5. Finally, generate the reference surface from the MDDF and texture it by all color images

observed so far. To texture the surface, we deform the surface to various frames accord-

ing to the estimated forward deformations and project each vertex to the image spaces,

the color pixels the vertex falls on are averaged to obtain one 3D color vector.

The scanning procedures are summarized in Algorithm 1, and a graphical illustration is

given in Figure 4.2. Note that we always align the fused data to following frames, which helps

to deal with the error accumulation problem (Izadi et al., 2011; Newcombe et al., 2011). Also

note that we do not directly estimate the backward deformation parameters by deforming the

target to the reference. This avoids generating an embedded deformation graph from the noisy

surface model at target.

4.2.1 DDF Transformation from Target to Reference

Given the forward deformation parameters {〈Aj, tj〉}, we could set the backward deforma-

tion parameters as {〈A−1j ,−tj〉} and the graph node position as gj + tj; however it does not

guarantee a backward alignment, since the inverse of the linear interpolation of matrices {Aj}

does not equal the linear interpolation of the inverse of these matrices. Instead, we find the

point correspondence of the reference and target according to the forward deformation, and

estimate the backward deformation parameters via Eq. 3.7 by formulating the point correspon-
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Algorithm 2: DDF transformation Ftrg → Fref
foreach i-th voxel of Ftrg at location pi with direction to nearest surface point denoted
as Pi and distance value as Di do

1. find pi’s nearest point on target surface whose neighboring ED nodes are used for
later deformation;
2. deform its location according to Eq. 3.1: pi → p̃i;
3. deform its direction Pi according to Eq. 3.2: Pi → P̃i;
4. record the deformed voxel as a 4-tuple 〈pi, p̃i, P̃i, Di〉;

foreach each voxel of Fref at location q do
1. find the set of its neighboring deformed Ftrg voxel:

S = {〈pk, p̃k, P̃k, Dk〉|‖p̃k−q‖<ε};
2. Divide S in to subgroup {Gi} by clustering on p;
3. Find the subgroup Gs with smallest averaged D;
4. set the direction and distance value of Fref at q:

P ref =
∑

k∈Gs
wkP̃k

Dref =
∑

k∈Gs
wkDk

where wk = exp(−(q − p̃k)2)

dence into Econ.

With the backward deformation estimated, one way of deforming the DDF is first gen-

erating the underlying triangulated surface from the DDF, then deforming the surface, and

eventually re-computing the new DDF from the deformed surface. This method seems plausi-

ble, but the DDF field structure is not preserved during transformation due to downgrading the

DDF to a surface. We choose to directly apply deformation on DDF. Although the nonrigid

transformation is only defined on the surface, each voxel of the DDF could be transformed

according to the deformation parameters of its closest point on the surface. Alg. 2 shows our

solution of deforming DDF Ftrg to Fref according to the deformation graph G. Note that we

need to handle the situation when the transformed voxels collide with each other. At each

voxel position on Fref , we find its nearby transformed Ftrg voxels, then group them according

to their original grid positions, and find the group with smaller absolute distance value, from
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Figure 4.3: Fusing two 2D truncated signed distance fields. (a) shows two curves and their
signed distance fields in red and blue respectively. Directly adding two signed distance fields
ends up with expanded curves shown in green. (b) shows the signed two distance functions
along one line across two curves in red and blue, and the sum of the two in green. (c) shows
the above expansion effect is prevent by taking the one with smaller absolute value.

which the direction vector and signed distance value for the Fref voxel are interpolated.

4.2.2 Fusion of multiple DDFs

When the noise level of the 3D data is low, summing over multiple aligned DDFs cancels

out the noise, as shown in the work of KinectFusion (Izadi et al., 2011; Newcombe et al.,

2011). Then the surface can be recovered by finding the zero-crossing of the fused distance

field using algorithms such as marching cubes (Lorensen and Cline, 1987). However, when the

noise level is as large as the object dimension, summing over the distance field raises problems

as illustrated in Fig. 4.3(a)&(b). This is because the distance field needs to be truncated so that

the distance field of a front surface does not interference with the surface behind. The distance

behind the surface where truncation begins, denoted as µ, should be proportional to the noise
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level. Unfortunately, in the case of Fig. 4.3(a), when a big µ is chosen to suppress the noise,

the zero-crossing of the fused distance field does not align with the surface anymore due to the

interference between the distance functions of the front and back surface. This is exactly the

case when performing dynamic object scanning via commodity depth cameras, since the noise

is evident in the depth maps, due to sensor noise, calibration error and nonrigid alignment, and

it can easily go beyond the dimension of thinnest part of the object, such as a palm or wrist.

Fortunately, in many cases, ∇D differentiates which surface a distance value corresponds

to. And in our DDF representation, ∇D can be easily obtained using Eq. 3.10. When fusing

DDFs, at each voxel, we only sum over the distance value D with similar ∇D, preventing the

interference between the distance fields corresponding to different surface parts. This results

in a new data structure: Multi-Mode Directional Distance Function (MDDF). Each voxel of a

MDDF records a set of averaged D’s, ∇D’s, and the weights on all modes. In our scanning

Step 4, a newFref can be easily fused to MDDF. First, the mode with most similar∇D is found

at each voxel; then its distance value and∇D is incorporated to that mode and the weights are

updated.

To recover the underlying surface from a MDDF, it needs to be converted to a DDF. One

mode is selected among all the modes at a MDDF voxel as the DDF voxel. We choose the

one with smaller absolute distance value. As illustrated in Fig. 4.3(c), this strategy solves the

interference problem shown in Fig. 4.3(b). In practice, the mode with relatively smaller weights

(50% of the largest weight in our experiment) are discarded during the above conversion.
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4.3 Dynamic Surface Tracking

After fusing a number of DDFs (a few hundreds in our case), the improvement on a scanned

model tends to converge. Thus, after a complete model is achieved, we deform the scanned

model to the current depth and color observations, i.e., only Steps 1 and 2 in Algorithm 1 are

used during this stage—tracking. Note that a fixed Deformation Graph structure is used in Step

2 during tracking.

To track fast moving surfaces, we use a Kalman Filter to predict the translation vector tj for

each deformation graph node of the next frame , and use its prediction as the initial parameter

of the non-rigid alignment problem. The matrices {Aj} are simply initialized using the values

of the last frame.

4.3.1 Tracking Surfaces with Isometric deformations

In many cases, the surface being tracked is roughly under isometric deformations (Bron-

stein et al., 2006), i.e., the geodesic distance of any pair of surface points is preserved during

deformation. For example, the deformation of the 3D human body model is near isometric, if

not strictly isometric. Thus, for these cases, we add a new termElen to our energy minimization

problem in Eq. 6.3,

Elen(G) =
J∑
j=1

∑
k∈N(j)

‖|gj + tj − gk − tk| − |gj − gk|‖22 . (4.1)

where gj and tj are the node location and translation vector of the Deformation Graph respec-

tively, and N(j) are the neighbors of the j-th node. Elen penalizes the changes of the length
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of the edge connecting the neighboring nodes during deformation. Although Elen does not

guarantee an exact isometric deformation, in practice it works well to prevent the surface from

stretching or shrinking. In our implementation, we use the robust estimation technique (Agar-

wal and Mierle, 2013) on Elen to allow for length changes for some parts (outliers).

4.4 Experimental Results

To test our system, we captured several sequences of people performing various movements

using the eight Kinects setup shown in Fig. 4.2(A). Both depth maps and color images from

Kinects are used for nonrigid matching, and both have a resolution of 640 × 480. Since the

depth coming from Kinects deviates from the true depth value (Beck et al., 2013), we correct

this depth bias using a linear mapping function for each Kinect separately.

The resolution of the lattice of the volumetric representation (DDF) is set to 1cm in our

experiment to reduce the processing time and memory, yet it is still enough to output relatively

high quality models. The DDF with higher resolution is necessary to achieve the quality of a

high-grade commercial laser scanner. In all of our experiments, µ in DDF is set to 4cm; the

weights in Eq. 6.3 are set as follows, wrot = 30, wreg = 5.0, wcon = 1.0, wdns pts = 5.0, wclr =

5.0, and wlen = 3.0. These parameters are chosen experimentally. Both the color intensity and

signed distance value have been scaled to [0, 1]. The Google Ceres solver generally converges

after 10 iterations on Eq. 6.3. The Deformation Graph Model is uniformly sampled on the

surface based on the geodesic distance. The minimum distance between neighboring nodes

is set to 7cm, and about 350 graph nodes are sampled. A denser graph model does not show

visually improved results.
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Figure 4.4: Scanning Errors (in cm). The solid lines indicate the mean deviation of the fused
surface to the observed surface at each frame on four data sequence. The dashed line shows
the standard deviation of the error.

During scanning or tracking, around 150 pairs (per image pair) of matched corner points

from the current and previous frame are found via LK optical flow. The points of the previous

frame are transformed to the reference via the backward deformation. Note that Edns pts and

Eclr only work when the initialization is reasonably close to the optimal solution. Thus, when

the object moves fast and the initial is far off the optimal, Econ plays an important role. Oth-

erwise, it is overwhelmed by Eclr—dense color matches. In our experiment, we ignore Econ

in our tracking state to save us from computing the backward deformation and use the Kalman

Filter to predict a reasonable initial value.

4.4.1 Scanning

Some scanned 3D models of full human bodies are shown in Fig. 4.6. Despite the low DDF

resolution, our algorithm still recovers the geometry details such as wrinkles on the clothes.

59



Figure 4.5: Intermediate Scans at frame 1, 5, 15, 30, 50, 80, and 150.

Fig. 4.6 also shows the color on the vertices of the model averaged from all the frames used for

fusing (200~300 frames). The sharpness of the color indicates that the frames are well aligned.

Be aware that the sparseness of the model vertices (due to the low DDF resolution) leads to

some blur from the color interpolation during GPU rasterization. A few intermediate models

created during scanning are shown in Fig. 4.5. The noise is gradually filtered out and holes

filled up while the geometry details are preserved when accumulating more and more frames.

We evaluated the scanning system quantitatively. The deviation of the scanned model from

the observed surfaces at each frame is shown in Fig. 4.4. To measure the deviation, the observed

surfaces are deformed to the reference as shown in Fig. 6.1(b). The averaged distance between

matched points is used as an measurement of the surface deviation. As shown in Fig. 4.4, the

deviation stays around 0.42 cm for all frames of all test data sequences, indicating our nonrigid
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alignment algorithm works decently and the scanning system handles the error accumulation

problem well.

4.4.2 Tracking

We test our tracking algorithm on multiple sequences with people performing various

movements. Fig. 4.7 shows some results of tracking the scanned surface. The robust nonrigid

matching algorithm enables our system to track difficult gestures involving significant topology

changes such as arm folding or fast surface deformation such as squatting and stretching.

4.5 Discussion

Our work shows temporal information of depth and color is helpful for modeling dynamic

objects. We demonstrate a complete and accurate surface is fused from a sequence of depth and

color data from commodity depth and color cameras. By tracking this fused surface over time,

we acquire an improved 3D model for later frames. The key components of our system are a

nonrigid alignment algorithm that integrates both depth and color information and a volumetric

fusion algorithm that handles large noise on depth observations.

4.5.1 Limitations of the System

Synchronization The synchronization across Kinects is still an unsolved problem, but the

current setup works reasonably well when the subject of interest moves naturally. We expect

this problem to be eventually solved by hardware.

Segmentation. Currently, to segment the foreground dynamic objects from the rest of the
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scene on the depth map, we first eliminate the floor area via a clipping plane and other back-

ground outside a bounding box, then perform connected component labeling to filter out small

noisy blobs. The depth-only segmentation works fine on the human body except the feet. The

problems on the feet are visible in the scanned models in Fig. 4.6. An improved segmentation

might employ color information to refine the boundary.

Topology Change. During the scanning stage, we ask the people being scanned to turn around,

performing any movement they want except those changing the body topology such as crossing

the arms. Our scanning algorithm assumes the body topology does not change. This require-

ment could be removed by identifying the body parts with topology changes in each frame and

only fusing the body part without topology changes. The tracking stage remains free of these

restrictions; we make no assumptions on body topology then.

Processing Time. Most of the system implementation is single-threaded and performed on

CPU. As a result, it takes approximately one minute per frame to fuse or track one frame

containing approximately 30,000 vertices. Most of the computation time is dedicated to solving

Eq. 6.3. By taking advantage of the GPU technology and multi-grid computation strategy as

KinectFusion does, we expect boosted performance in our system.
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CHAPTER 5: Dynamic Surface Recontruction with a Single Depth Sensor

In the previous chapter, we achieve dynamic object scanning with multiple units of depth

sensors, which requires careful calibration and thus limits its application for a non-technical

user. In this chapter, we investigate dynamic object reconstruction with a single depth sensor.

KinectFusion (Izadi et al., 2011; Newcombe et al., 2011) achieves high quality scanning

by moving a Kinect sensor around an object. But it uses a rigid alignment algorithm and thus

requires the object or scene being scanned to remain static. In some scanning applications

such as human body scanning, particularly of children, nonrigid movement is inevitable. Also

in-hand scanning of soft objects introduces deformations when the objects are rotated to get

a complete scan. To address these issues we present a new 3D scanning system for arbitrary

scenes, based on a single sensor, which allows for large deformations during acquisition.

Our goal is to combine a sequence of depth images, each representing a noisy and incom-

plete scan of the object of interest, into a high quality and complete 3D model (Fig. 6.1). Even

for rigid alignment, the problem of drift occurs when aligning a sequence of partial scans con-

secutively, where the alignment error accumulates quickly and the scan does not close seam-

lessly (Fig. 5.3(b)). KinectFusion alleviates some level of drift by aligning the current frame

with the fused model instead of the previous frame (Newcombe et al., 2011). Note drift is not a

concern in our earlier system given that a relatively complete model is captured at each frame.

Many follow-up systems based on KinectFusion have specifically looked at scanning hu-

mans (e.g., for 3D printing or generating avatars) where the user rotates in front of the Kinect



Figure 5.1: A mother holds an energetic baby while rotating in front of a Kinect camera. Our
system registers scans with large deformations into a unified surface model.

while maintaining a roughly rigid pose, e.g., (Weiss et al., 2011; Li et al., 2013; Tong et al.,

2012; Zeng et al., 2013; Helten et al., 2013). This highlights the fundamental issue when

scanning living things – they ultimately move.

To make this problem more tractable, some systems make strong assumptions about the

nonrigid object being a human, using either parametric models (Weiss et al., 2011; Helten

et al., 2013) or limiting the user to certain poses such as a ‘T’ shape (Cui et al., 2013). We wish

to avoid such scene assumptions. Li et al. (2013) adapt a more general nonrigid registration

framework which can support a wider range of poses, clothing or even multiple users. This

system demonstrates compelling results but relies on a very specific type of user interaction:

the user moves in roughly 45 degree increments, in front of Kinect, and at each step remains

static, whilst the motorized sensor scans up and down. Each of these fused static scans are then

nonrigidly registered and a global model reconstructed. Here the user is assumed to explicitly

perform a loop closure at the end of sequence. For certain subjects, such as children or animals,
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such loop closure will often happen less explicitly, many times over a single sequence.

Zeng et al. (2013) show that when using nonrigid alignment to an embedded deformation

(ED) model (Sumner et al., 2007) for quasi-rigid motion, drift is greatly alleviated, and loop-

closure can be made implicit. However, for nonrigid motion, our experience (Fig. 5.7) shows

that drift is still a serious problem even when scanning mildly deforming objects such as a

turning head.

To deal with severe drift, loop closure must be explicitly dealt with, but without restricting

user motions. However, dealing with such loop closures, is only one piece of the puzzle, as this

only evenly distributes error over the loop instead of minimizing the alignment residual. Thus,

our pipeline also performs a dense nonrigid bundle adjustment to simultaneously optimize

the final shape and nonrigid parameters at each frame. We use loop closure to provide the

initialization for the bundle adjustment step. Our experiments show that bundle adjustment

gives improved data alignment and thus a high quality final model. We also show that the

bundle adjustment is able to converge to a reasonable solution even though loop closure fails

in some cases.

We will summarize previous work in the next section and describe our surface in Sec. 5.2.

From Sec. 5.3 through Sec. 5.5, we explain the preprocessing procedures for bundle adjust-

ment, including partial scan extraction, coarse scan alignment, and loop closure detection.

Then we illustrate our bundle adjustment algorithm in Sec. 5.6. Finally, we show results in

Sec. 6.4.1.
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5.1 Other Related Work

Tong et al. (2012) illustrated a full body scanning system with three Kinects. Their system

uses a turntable to turn people around, but cannot handle large deformations. Other high-end

multi-camera setups include (De Aguiar et al., 2008; Vlasic et al., 2008; Gall et al., 2009;

Vlasic et al., 2009). In our work we wish to move away from complex rigs, and support more

lightweight and commodity consumer setups, using only a single off-the-shelf depth sensor.

More lightweight capture setups have been demonstrated, but either still require complex

lighting, more than one camera, or cannot generate high quality results (Hernández et al.,

2007; Liao et al., 2009; Li et al., 2009; Weise et al., 2011; Valgaerts et al., 2012; Ye et al.,

2012; Wu et al., 2013).

More severe deformations can be handled with template-based systems. For example, Zoll-

hofer et al. (Zollhöfer et al., 2014) first acquire a template of the scene under near-rigid motion

using Kinect fusion, and then adapt that template to nonrigid sequences. Even more specialized

are systems based on human shape models (Vlasic et al., 2008; Weiss et al., 2011; Zhang et al.,

2014). The shape prior means they cannot scan general shapes, including even humans holding

objects, or in unusual clothing. More general approaches either work on diverse (non-rigged)

templates (Hernández et al., 2007; De Aguiar et al., 2008; Liao et al., 2009; Li et al., 2009), or

use template-less spatio-temporal representations (Mitra et al., 2007; Wand et al., 2009; Tevs

et al., 2012). Instead our system discovers the latent surface model without the need for an

initial rigid scan or statically captured template model. It also attempts to mitigate the drift

inherent in non-template-based models.
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5.2 Triangular Mesh Surface Model

Throughout this paper, we use a triangular mesh as our fundamental surface representation.

We parameterize a triangle mesh by the set of 3D vertex locations V = {vMm=1} and the set

of triangle indices T ⊂ {(i, j, k) : 1 ≤ i, j, k ≤ M}. We will also occasionally query the

triangulation through the function N (m) which returns the indices of the vertices neighboring

vertex m, or through the use of a variable τ ∈ T representing a single triangle face.

We will often need to label a mesh using a subscript (e.g. Vi) in which case we will label

the vertices with a corresponding superscript (e.g. vim). Indeed, a point on the surface itself is

parameterized using a surface coordinate u = (τ, u, v) where τ ∈ T is a triangle index and

(u, v) is a barycentric coordinate in the unit triangle. The position of this coordinate can then

be evaluated using a linear combination of the vertices in τ as

S(u;V) = uvτ1 + vvτ2 + (1− u− v)vτ3 (5.1)

and its surface normal computed as

S⊥(u;V) = (vτ2 − vτ1)× (vτ3 − vτ1)
‖(vτ2 − vτ1)× (vτ3 − vτ1)‖

. (5.2)

5.3 Extracting Partial Scans

The first phase of our algorithm begins by preprocessing an RGBD sequence into a set of

high quality, but only partial, scans {Vi}Ni=1 of the object of interest. Each of these segments is
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Figure 5.2: Scanning pipeline: 1© input depth and color; 2© partial scans; 3© coarse-aligned
scans; 4©(Left) aligned scans after Loop-Closure; 4©(Right) Fused mesh after Loop-Closure;
5© mesh after bundle adjustment; 6© meshes deformed to every frame. The input sequence

has around 400 frames which are fused into 40 partial scans (Sec. 5.3). Partial scans are
consecutively placed in the reference pose to achieve the coarse alignment (Sec. 5.4). Next,
loop closures are detected and alignment is refined (Sec. 5.5); all the LC-aligned scans are
fused volumetrically to get the LC-fused surface which serves as the initial for the following
bundle adjustment stage (Sec. 5.6). As a by-product of the system, the reconstructed model
can be deformed back to each frame.

reconstructed from a small contiguous set of F frames by using the method introduced in the

previous chapter to fuse the depth data into a triangular mesh. These short segments can be

reliably reconstructed using standard methods, in contrast to larger sequences where camera

and reconstruction drift generally leaves gross errors at loop closure boundaries. In addition,

these segments compress the information contained in the full sequence, drastically reducing

the computational complexity of fitting our surface model to the entire sequence as described

in following sections.
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To reconstruct the partial scan for segment i, we begin by iteratively fusing data from each

frame f ∈ {1, ..., F} into the reference frame which is set as the first frame. This is trivially

accomplished for frame 1, so for frame f ∈ {2, ..., F} we extract from the current volumetric

representation of the reference frame, the reference mesh V1
i and align it to frame f using an

ED deformation with parameters Gf
i . Note that the parameters Gf−1

i can be used to initialize

this optimization. We then observe the deformed mesh ED(V1
i ;G

f
i ), and find a set of nearby

points on Vfi to establish a set of correspondences between Vfi and V1
i . These correspondences

can then be used to estimate a parameter set Ĝf
i that aligns Vfi back to V1

i in the reference

frame (Sumner et al., 2007) and that can be used to volumetrically fuse the data from frame

f into the reference frame (where V1
i lives). After completing this operation for all frames, a

single surface Vi is extracted from the volumetric representation using marching cubes.

After this initial fusing, we have obtained a set of partially reconstructed segments {Vi}Ni=1,

each of which is a partial scan of the object of interest at a different time and in a different

pose. Examples of partial scans are shown in Figure 5.2(b). Ultimately, we want all segments

{Vi}Ni=1 to be explained by a single complete mesh V (we call it the latent mesh) and a set of

ED graphs {Gi}Ni=1 that deforms {Vi}Ni=1 to V . But it is not immediately clear where to get

such a mesh, and how to get a good initial estimate of the deformation parameters required to

achieve this. Instead, we proceed by deforming each of these segments into the reference pose,

fusing the results together into a complete mesh, and using the deformations to provide a good

initial guess for the parameters that minimize an appropriate energy.
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5.4 Coarse Scan Alignment

In this section, we describe how we find deformation parameters Gi for each segment Vi

so that a set of roughly aligned meshes {ED(Vi;Gi)}Ni=1 can be obtained in the reference pose

(i.e. pose of V1). We first align each segment Vi to its immediate neighbor Vi+1 yielding a

parameter set Gi→i+1 by using the nonrigid alignment technique introduced in the previous

chapter. This is straightforward as adjacent scans have similar poses and the Gi→i+1 can be

initialized using the parameters already estimated by (Dou et al., 2013) when aligning the first

frame to the last frame of segment i.

To obtain an alignment of segment Vi+1 back to the reference frame, it is helpful to assume

that we have already obtained such an alignment for segment Vi, which is trivial for i = 1.

Then for each vertex vim of mesh Vi, we find the nearest surface point vi+1
µ(m) on Vi+1 (closer

than 1cm) to its deformed position ED(vim, Gi→i+1). Similarly, the alignment parameter set Gi

tells us that vim should be located at ṽim = ED(vm;Gi) in the reference frame. This process

establishes a set of correspondences {〈vi+1
µ(m), ṽ

i
m〉}Mm=1 which provide constraints that can be

used to estimate Gi+1 using the standard ED alignment algorithm (Sumner et al., 2007).

5.5 Error Redistribution

Naturally, the error in the propagation step accumulates, making the deformation parameter

sets more and more unreliable as i increases. On the other hand, we assume that our sequence

includes a loop closure and thus there should be some later segments that could match reason-

ably well to earlier segments. We would thus like to identify such pairs and establish rough
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constraints between them, in the form of correspondences, so that the deformations can be re-

fined. To this end, we consider matching the aligned scan ED(Vi;Gi) against the aligned scans

{ED(Vj;Gj)}i−Kj=1 , where K ≥ 1 restricts to frames with enough movement. To measure the

overlap of a mesh Vj and a mesh Vi, we define the overlap ratio

d(Vi,Vj) =
1

Mi

Mi∑
m=1

I[min
m′
‖vim − vjm′‖ < δ] (5.3)

as the proportion of vertices in Vi that have a neighboring vertex in Vj within δ (we use

δ =4cm). We thus calculate dij = d(ED(Vi;Gi), ED(Vj;Gj)) and consider as possible can-

didates, the set of scan indices Ji = {j : dij ≥ r1, |i − j| > K, dij > dij−1, d
i
j > dij+1}, the

indices whose aligned scan is at least K indices away with a ‘peak’ overlap ratio of at least

r1. For any scan index j ∈ Ji, we then consider doing a more expensive, but more accu-

rate, direct alignment of Vj to Vi using a set of ED parameters Gj→i (Dou et al., 2013). If

d(Vi, ED(Vj, Gji)) ≥ r2 we then find a set of correspondences Cij ⊆ {1, ...,Mi}×{1, ...,Mj}

for which for any (m,m′) ∈ Cij , we have that‖vim − ED(vjm′ , Gj→i)‖ is less than 1 cm. We

set Cij = ∅ for any other pairs of frames that did not pass this test. In our experiment we let

r1 = 30%, r2 = 50%.

With these loop closing correspondences extracted, we use Li et al.’s algorithm (Li et al.,

2013) to re-estimate ED graph parameters G = {Gi}Ni=1, by minimizing the energy;

min
G
λcorrEcorr(G) + λreg

∑
i

Ereg(Gi) + λrigid
∑
i

Erigid(Gi), (5.4)
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where

Ecorr(G) =
N∑
i=1
j=1
j 6=i

∑
(m,m′)∈Cij

‖ED(vim;Gi)− ED(vjm′ ;Gj)‖2 . (5.5)

After the set of deformation parameters G is estimated, we deform the scans accordingly and

fuse them volumetrically to obtain a rough latent surface V . Fig. 5.2(b,c)&5.3(b) show exam-

ples of scan alignment before and after loop closure.

5.6 Dense Nonrigid Bundle Adjustment

At this point, the above procedure has succeeded in giving us a rough surface representation

of our object of interest, but the process has washed out the fine details that can be seen in the

partial scans (see Fig. 5.2 and Fig. 5.11). This is largely a result of the commitment to a

set of noisy correspondences used for error distribution. Eq. 5.4 does not aim to refine these

correspondences, and thus misalignments are inevitable. As shown in Fig. 5.2 where large

deformation exists, the misalignment is still visible where a loop closure has occurred, and the

fused model looks flat and misses many details.

To improve both the data alignment and recover the fine details we employ a bundle ad-

justment (BA) type technique to refine V as to explain all the data summarized in the partial

scans {Vi}Ni=1. We parameterize the deformation that each partial scan Vi has to undergo to be

explained by the reference V using a set of ED deformation parameters Gi. We then cast an

energy E(V) over the latent mesh V as a combination of the following terms.
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5.6.1 Deformation Terms

For each data point vim in segment Vi, we expect that some ED graph Gi deforms it towards

the latent mesh V and ED(vim;Gi) gets explained by V . We thus add an energy term designed

to encourage the distance of ED(vim;Gi) to the latent surface to be close, and for the normal to

match. This term is

Edata(V) =
N∑
i=1

min
Gi

Mi∑
m=1

min
u

λdataEpoint(vim;Gi,u,V)+

λnormalEnormal(nim;Gi,u,V)

+ λregEreg(Gi) + λrigidErigid(Gi)

(5.6)

where

Epoint(v;G,u,V) = ‖ED(v;G)− S(u;V)‖2 (5.7)

and

Enormal(n;G,u,V) = ‖ED(n;G)− S⊥(u;V)‖2 . (5.8)

S(u;V) and S⊥(u;V) are corresponding point and normal of ED(v;G)1 in the latent surface

V , which we have explained in Section 5.2.

As we continue to use the ED deformation model, the terms Ereg(G) and Erigid(G) continue

to provide regularization for ED graphs.

1Note that we do not set ED graph Gi on the latent mesh V to deform V towards partial scan Vi and minimize∑Mi

i=1 minu ‖vim−S(u;ED(V;G))‖2, because this gives many unnecessary ED nodes given that V is complete
and Vi is partial.
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5.6.2 Surface Regularization Terms

In addition, we regularize the latent mesh using the Laplacian regularizer

Elap(V) =
M∑
m=1

‖vm −
1

|N (m)|
∑

m′∈N (m)

vm′‖2 , (5.9)

whereN (m) is the set of indices of vertices that neighbor vm. This term attracts a vertex to the

centroid of its neighbors, penalizing unevenness of the surface, but has the potential to shrink

the surface by dragging the set of boundary vertices inwards. We thus also add a energy term

encouraging isometry as

Eiso(V) =
∑
m∈B

∑
m′∈N (i)

|‖vm′ − vm‖2 − L2
mm′|2 (5.10)

where B ⊆ {1, ...,M} is the set of indices of such boundary vertices, and Lmm′ is the length

‖vm′ − vm‖ in the initial mesh.

5.6.3 Solving

Combining all of the above energy terms (Eq. 5.6, 5.9, and 5.10), we obtain the full energy

E(V) = Edata(V) + λlapElap(V) + λisoEiso(V) (5.11)

that we seek to minimize. To deal with the inner minimizations, we follow the lead of (Taylor

et al., 2014; Zollhöfer et al., 2014), defining a set of latent variables, passing them through
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Figure 5.3: Scanning a person with slight deformation: 1© input depth and color; 2© be-
fore/after LC; 3© LC-fused surface; 4© BA-optimized surface; 5© KinectFusion results. Be-
fore loop closure (LC), scans are poorly aligned. After LC, the surface is topologically correct
but noisy. Bundle Adjustment (BA) removes spurious noise without further smoothing details
such as the shirt collar.

the sums, and rewriting the energy in terms of a lifted energy defined over these additional

latent variables. In our case, we have the ED deformation parameter sets G = {Gi}Ni=1 and the

surface coordinates U = {um1 }
M1
m=1 ∪ ... ∪ {umN}

MN
m=1, which allows us to obtain a lifted energy

E ′(V ,G,U) such that

E(V) = min
G,U

E ′(V ,G,U) ≤ E ′(V ,G ′,U ′) (5.12)
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Figure 5.4: Partial scan alignment residuals during bundle adjustment. Left: Low Resolution
BA; Right: High Resolution BA.

for any G ′ and U ′. We can thus minimize our desired energy by minimizing this lifted en-

ergy and to this end, we notice that all terms are in a sum of squares form. We thus use the

Levenberg–Marquardt algorithm implemented in Ceres (Agarwal and Mierle, 2013) to min-

imize E ′(V ,G,U). We initialize the latent mesh V using the coarse mesh recovered in the

previous section, and G using the corresponding ED parameter sets and U by conducting a

single closest point computation.

Note that even though surface normal S⊥(u; ·) is constant with respect to the barycentric

coordinate u (an entire triangle on the latent surface shares the same normal vector), it does

give constraints to the latent mesh and the ED graphs, which makes latent surface smooth and

improves the alignment.

Note that some special care has to be taken to allow the Levenberg-Marquardt algorithm to

interact with a surface coordinate variable u ∈ U (Taylor et al., 2014; Cashman and Fitzgibbon,

2013). Such a variable has the atypical parameterization u = (τ, u, v) where τ is discrete (a

triangle ID), and (u, v) are real valued coordinates in the unit triangle. As typically the coor-

dinate (u, v) will lie strictly within the unit triangle, τ remains constant locally and only the

Jacobians with respect to (u, v) which are well defined are provided to the optimizer. When an

update (u, v)← (u, v)+ δ(du, dv) is requested that would exit the unit triangle, the coordinate
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Figure 5.5: Two examples of aligned scan before and after BA (Left: before; Right: after). The
cross sections of scans are given in the middle.

should first move the distance δ̂ to the edge of the triangle. The adjacent triangle τ ′ is then

looked up, a new direction (du′, dv′) and step size δ′ = δ − δ̂ computed, and finally the proce-

dure is recursively called after updating τ ← τ ′, (du, dv)← (du′, dv′) and δ ← δ′. Eventually

the step size δ will be sufficiently small that an update does not need to leave a triangle.

5.7 Experiments

5.7.1 Implementation details

In the following experiments, we evaluate our method on a variety of RGBD sequences

of various objects of interest. Each sequence is between 200 and 400 frames, and we fuse

these volumetrically into 20 to 40 partial scans by fusing the data from each F = 10 frame

subsegment. We set the size of the voxels in the fusion procedure to 2mm cubed when scan-

ning a close object and 3mm cubed for objects at a further distance. This results in partial

scans with around 100,000 vertices. When conducting nonrigid alignment for both partial scan

extraction and alignment, ED nodes are sampled as to remain roughly at 5cm (measured in
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Low Resolution Full Resolution

Figure 5.6: Bundle adjustment iterations. Top row: evolving surface model. Bottom: per-
vertex residuals. Note the increase in detail of the right forearm and hand.

geodesic distance) to their neighbors. This endows each ED graph with roughly 150 to 200

nodes depending on the dimension of the object of interest.

After detecting the loop closure constraints and performing error redistribution, the aligned

partial scans are volumetrically fused to get an initial latent mesh for the final bundle adjustment

(BA) stage. We perform bilaterial filtering on the volume data to ameliorate any misalignment.

We also perform a simple remeshing to eliminate thin triangles on initial latent mesh extracted

with marching cubes, which makes BA numerically stable.

The bundle adjustment is the most expensive stage, given the huge amount of parameters to

be optimized in Eq. 5.12: the roughly 5,000 graph nodes, 300,000 vertices of the latent mesh

and three million surface coordinates. A limitation of this procedure is that the number of

vertices on the latent mesh and its triangulation remain fixed throughout the bundle adjustment

stage. Thus, if the initial mesh does not have the correct shape topology or has missing parts

due to poor initial alignment, it is difficult for the bundle adjustment to recover the correct
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Figure 5.7: KinectFusion with nonrigid alignment. The accumulated surfaces after fusing 10,
30, 50, 70, 90 frames are shown. Note the nose gets blurred at the end.

shape. To handle the above issues, we take a coarse-to-fine approach by running the bundle

adjustment twice with different levels of detail.

In the first run, a low resolution latent mesh is used with an average distance between neigh-

boring vertices of 1cm. The first run quickly converges and improves partial scan alignments

G significantly, from which a better initial latent mesh can be built. In the second run, we

use the full resolution mesh where the average distance between neighboring vertices is about

2mm. Initializing the parameters from the previous bundle adjustment, the vertices on the la-

tent mesh do not need to move much along the tangent direction, so we constrain the vertex

to only move as a displacement along the direction normal to the initial latent mesh, which

reduces the number of parameters on the latent surface by nearly two thirds. That is, only one

single displacement parameter per vertex instead of three is required to parameterize full 3D

position.

Fig. 5.6 illustrates the intermediate latent surfaces together with the alignment residual at

each BA iteration; the alignment error is computed for each vertex on the latent surface as its

average distance to the deformed partial scans. Fig. 5.4 plots the average alignment residuals

during BA (including both accepted and rejected BA iterations) on various data sequences. The
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ground truth KinectFusion Ours

Figure 5.8: Static Scanning. Error maps use the same scale as Fig. 5.6.

alignment error typically goes down from 3mm to less than 1mm. Examples of aligned scans

before and after BA are also given in Fig. 5.5, where the cross sections of scans are shown

to demonstrate the alignment quality and the bundle adjustment’s ability to recover the true

structure of the object.

5.7.2 Comparison with KinectFusion

Our system is designed for dynamically moving objects, but it still works in more restricted

cases such as rigid scenes (i.e. scanning static objects). in reconstruction quality between our

method and KinectFusion on a static mannequin. To compare the two systems quantitatively,

we first generate a 3D model of the mannequin which serves as the ground truth and then

synthesize a sequence of depth maps and color images by moving a virtual camera around the

3D model. We run our algorithm and KinectFusion on the synthetic data. As shown in Fig. 5.8,
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(a) (b) (c) (d)

Figure 5.9: Comparison with 3D Self-Portraits. Scanning results of (a) shapifyme; (b) 3D
self-portraits implemented by us; (c) BA-optimized 3D self-portraits; (d) our system.

both systems give appealing reconstructions which are authentic to ground truth. KinectFusion

has an average reconstruction error of 0.94 mm v.s. 1.21 mm in our system. Our system has

lower residual on the side that is observed by the reference frame (1st row in Fig. 5.8, error

map uses the same scale as Fig. 5.6) while has higher residual on the other side (2nd row in

Fig. 5.8) due to flexibility introduced by the nonrigid alignment. Naturally, we don’t expect to

outperform a method that exploits the rigidity of this scene, but we are satisfied that our system

can get similar results without requiring such assumptions.

In contrast though, KinectFusion fails in dynamic cases. Fig. 5.3 shows the reconstruction

results of KinectFusion on a sequence with slight head movement. Replacing ICP in Kinect-

Fusion with the nonrigid alignment algorithm (Dou et al., 2013) does not result in a reasonable

reconstruction either. As shown in Figure 5.7, when non-rigidly fusing more than 30 frames,

the drifting artifacts result in a blurred nose.
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5.7.3 Comparison with 3D Self-portraits

3D self-portraits (Li et al., 2013) is among the first systems with the capability to scan

a dynamic object with a single consumer sensor. We want to stress that our system handles

continuously deforming objects while 3D self-portraits first reconstructs eight static scans and

then non-rigidly fuses them later. The above difference prevents us from comparing two system

quantitatively, but we show side-by-side of the reconstructed models of the same person from

the two systems in Fig. 5.9. The software Shapifyme which implements 3D self-portraits

appears to heavily smooth the reconstructions, and our implementation of 3D self-portrait gives

more detailed reconstructions. We then ran bundle adjustment algorithm of Sec. 5.6 on the eight

scans, and we find that it improves the reconstruction further, showing another advantage of

our approach. Compared with 3D self-portraits, our system allows continuous movement and

recovers more facial details.

5.7.4 Synthetic sequence

We tested our system on the Saskia dataset (Vlasic et al., 2009) which contains dramatic

deformations. The original sequence has a roughly complete model at each frame, and thus

we synthesize one depth map and color image from each frame with a virtual camera rotating

around the subject. Our reconstruction system results in a shape in a reference pose (i.e. the

latent mesh V) as shown on the left of Fig. 5.10. To measure alignment error, we then deform

V to each frame and compute the distance from the frame data. To achieve this a backward

ED graph G̃i from V to each partial scan Vi is first computed using correspondences. The
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Figure 5.10: Alignment error in Saskia dataset. The first shape in each triple is the deformed
reconstructed surface, the second is the ground truth, and the third shows the alignment error
(same scale as Fig. 5.6). Per-frame alignment error is drawn at the bottom.

deformations from partial scan Vi to the frames in the segment i have already computed as

explained in Section 5.3, so we first deform V to each partial scan’s pose and then to each

frame’s pose. The alignment error is then measured between the deformed reconstruction

and the synthesized depth map. We draw the alignment error at each frame at the bottom of

Fig. 5.10.

The Saskia sequence poses a particular challenge as the topology changes when the dress

touches the legs. This introduces some artifacts on the legs (e.g., expansions) in the recon-

structed latent mesh V and also gives some problems in the deformed latent mesh in each

frame’s pose.
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5.7.5 Scanned example

Fig. 5.3 shows a sequence with small deformations. The loop closure technique described

in Sec. 5.5 reconstructs a reasonable model, but some artifacts exist due to misalignment. Our

bundle adjustment technique in Sec. 5.6, however, improves the reconstruction. Another ex-

ample with considerable deformations is shown in Fig. 5.2, where the loop closure gives a

problematic alignment of the partial scans and a poor reconstruction (e.g. the arm is unrealis-

tically thin). During bundle adjustment, the arm gradually expands as optimization iterations

are performed until it is a realistic size (see Fig. 5.6).

We tested our system on several situations including full body scans and upper body scans.

We also tried to scan objects other than human beings. Fig. 5.11 shows some scan examples.

In all the scans that we performed, the Kinect sensor is mounted on a tripod, and we let people

turn around freely in front or, in the case of an object, be rotated by the “director” of the scene.

5.8 Discussions

We have presented a system which merges a sequence of images from a single range sensor

into a unified 3D model, without requiring an initial template. In contrast to previous systems,

a wider range of deformations can be handled, including wriggling children. Some limitations

remain, however. First, although complex scene topologies can be handled, the topology is

restricted to be constant throughout the sequence, and if the coarse-scale reconstruction does

not correctly choose the topology, it cannot currently change at the fine scale.

The computational cost is also high. We run our experiments on a desktop PC with 8-
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core 3.0G Hz Intel Xeon CPU and 64G memory. For a sequence with 400 frames, and the

partial scan preprocessing stage takes around 30 seconds per frame, initial alignment and loop

closure detection takes about 1 hour, and final bundle adjustment up to 5 hours. However, these

results are using only lightly optimized implementations, and if we were to assume that one

use of these models would be to 3D print a “shelfie”, the 3D printing process will itself take

a considerable time. Even if the goal is to upload the model to a game, an overnight process

remains valuable.
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CHAPTER 6: Room-sized Dynamic Scene Reconstruction

In this chapter, we demonstrate a system that is capable of capturing complete 3D struc-

tures of a room-sized dynamic scene, including furniture and its inhabits (human beings). We

achieve this by mounting multiple units of depth sensors on the walls and incorporating tem-

poral information to different degrees for different parts of the scene. We divide the indoor

environment into following three categories:

1. Static Background: objects that do not move or deform, such as the room frame (i.e.

walls, floor, and ceiling) and sturdy furniture (e.g. a large sofa).

2. Semi-Static Objects: objects that do not deform and move infrequently, such as small

furniture (e.g. chairs and tables) and decorating objects or appliances (e.g. teapots or

cups).

3. Dynamic Objects: objects that continuously move and deform, such as human beings.

For the dynamic objects, a fixed depth camera mounted on the wall can observe different per-

spective of the objects at different times since they move. Since these perspectives complement

each other, accumulating the 3D data over time can fill up holes and filter out noise as shown

in previous chapters. For static and semi-static objects, a fixed camera almost always views the

same perspectives; thus the 3D data quality does not improve while accumulating data. Instead,

we first scan them off-line by moving one depth camera over the room and then segment the

semi-static models (e.g., furnitures) from the static background. During the on-line operation,



Figure 6.1: Room-sized Dynamic Scene Reconstruction. (A) Originally captured point cloud
from 10 Kinects; (B) Enhanced result of our system; (C) Enhanced and textured result of our
system.

we replace the observed live static background with the pre-scanned static background. Simi-

larly, the pose of a semi-static object is first estimated and its pre-scanned model is transformed

accordingly to replace the live data.

The core of the system is a unified surface tracking algorithm that aligns previous accu-

mulated dynamic models and pre-scanned semi-static models with the live observations at one

frame. The algorithm allows for close interactions between objects, such as a person sitting on

a chair, and topology changes of dynamic objects. We will discuss our system implementation

in Section 6.2.

We placed 10 Kinects on the walls in a room and captured various sequence to test our

system. Section 6.4 gives implementation details and experimental results. The tracking algo-

rithm in the system is computationally expensive due to the high dimensionality of the param-

eter space, so our current CPU implementation does not run in real-time yet, while we expect

parallelized computation with GPU would dramatically boost the performance.
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Figure 6.2: Scanned Room Model and Scene Segmentation. The left shows the original
scanned model; the right shows various segmented parts. The tea pot and the tissue box on
the table is also manually segmented out.

6.1 Related work

Maimone and Fuchs (Maimone and Fuchs, 2011, 2012) have designed various 3D capture

systems using multiple Kinects. Their vibration system reduced the interference problem be-

tween Kinects; but the Kinects’ limited accuracy on far objects and occlusions between objects

limited the performance. Beck et.al. (Beck et al., 2013) demonstrates their 3D immersive telep-

resence system with a room-sized scene capture, but they did not improve the quality of the 3D

capture using temporal information either.

Use temporal information for improved 3D structure is not a new idea; KinectFusion (Izadi

et al., 2011; Newcombe et al., 2011) shows its success of fusing depth maps to a complete

model for static scene with one moving Kinect. Our system instead uses multiple fixed Kinects

to capture a dynamic scene. Our system introduced in previous chapters is able to scan and

track a single dynamic object with a nonrigid matching algorithm. In contrast, this work aims

at a room-sized capture system that deals with multiple dynamic objects and static objects. In
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addition, our system allows some degree of topology changes during data accumulation for

dynamic objects.

Our work also relates to Li’s work on shape completion (Li et al., 2012) and surface track-

ing (Bojsen-Hansen et al., 2011). In the former work, holes on a single person in a frame is

filled with the information from adjacent frames via nonrigid matching, and the latter work

tracks surfaces with topology changes. Our system only uses the information available before

the current frame; thus it is suitable for on-line operation (neither Li’s system and our sys-

tem runs in real time). In addition, we deal with topology variation with a simpler two-staged

matching algorithm.

6.2 Room-sized Dynamic Scene Reconstruction

As aforementioned, the key insight of our system is to partition an indoor scene into three

categories (static, semi-static, and dynamic) and treat each category differently when incorpo-

rating temporal information. Our system has two stages: off-line scanning and on-line running.

We scan the static parts (static background and semi-static objects) of the room off-line and

segment the scanned model into isolated triangles meshes, such as room frames and furnitures.

Each triangle mesh is labeled manually as either static or semi-static.

The prescan of the room is aligned with the live data (depth maps and color images) from

10 Kinects beforehand as explained in Section 6.3. During the on-line operation, the scanned

model of static background directly replaces its counterpart in the live data. We track the

rigid movements of the semi-static objects and transform the scanned models accordingly. We

also track the nonrigid movements of dynamic objects and accumulate their depth data for

92



complete and noise-free models. To deal with the interaction between objects, we use a unified

framework to track both semi-static objects and dynamic objects simultaneously, as introduced

in Section 6.2.2. The on-line system pipeline is detailed in Section 6.2.3.

6.2.1 Room Scanning and Segmentation

We scan the static background and semi-static objects together by capturing a sequence

of RGB-D frames with one moving Kinect. The plane and feature based bundle adjustment

system introduced in Chapter 2 is used to align all frames together. A combination of a volu-

metric depth map fusion algorithm (Curless and Levoy, 1996) and the Marching Cubes algo-

rithm (Lorensen and Cline, 1987) generates a triangle mesh of the room. The by-products of

our room scanning system are the dominant planes in the room, which is used to extract the

room frames. We detect six planes (correspond to the floor, walls and ceiling) composing of a

box that contains most data points; the surface points within certain distance from one of these

planes are denoted as room frame points. The remaining surface mesh after eliminating room

frame represents everything inside the room. We run connected component labeling on this

surface mesh to segment it into isolated triangle meshes. Each isolated triangle mesh is then

manually identified as a semi-static or static object. With minor manual efforts, all the static

and semi-static objects are segmented. Figure 6.2 shows the scanned model of a room and its

segmented pieces: room frame, sofa, table, etc.
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6.2.2 Unified Tracking Algorithm

The tracking algorithm introduced in this section transforms or deforms pre-scanned semi-

static models and previously accumulated dynamic models to fit the observations at current

frame under one unified framework. The accumulation of dynamic models will be explained

later in Section 6.2.3, and let’s assume they are ready for use at this point. From now on, we

use {Si}Mi=1 to denote pre-scanned semi-static models and {Tj}Nj=1 for accumulated dynamic

models; and we use {S̃i}Mi=1 and {T̃j}Nj=1 for the transformed models to be aligned with the cur-

rent observation. Surfaces S and T are represented by triangulated meshes. The observations

at a frame include depth maps and color images.

Compared with tracking the movement of each object individually, the unified algorithm is

able to deal with the close contact between objects. As the nonrigid matching technique intro-

duced in Chapter 3, we formulate the tracking problem as a non-linear least squares problem,

which is minimized with a gradient descent algorithm.

Parameterize the Movements

We assume the semi-static objects moves rigidly, thus their movements are represented by

rotation matrices and translation vectors, denoted as {〈Ri, Ti〉}mi=1. A vertex v on the semi-

static model Si is transformed as,

ṽ = Riv + Ti (6.1)

The nonrigid movement on the dynamic surface Tj is modeled by embedded deformation
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model introduced in Chapter 3 Gj . To deform a vertex v on Tj , its k-nearest ED nodes on Gj

is found, and a linearly blended affine transformation is applied,

ṽ := ED(v;Gj); (6.2)

where ED(·) is defined in Eq. 3.1.

Thus, the tracking problem is to estimate the rigid parameters R = {〈Ri, Ti〉}Mi=1 and

nonrigid parameters of G = {Gj}Nj=1. The parameters are estimated by solving the following

non-linear least squares problem that has multiple energy terms,

min
R,G

wreg

∑
j

Ereg(Gj) +
∑
j

Erigid(Gj)

+ wdns ptsEdns pts(R,G) + wclrEclr(R,G) + winsctEinsct(R,G)

(6.3)

where Ereg(Gj) is the regularization term on the embedded deformation model and is defined

in Eq. 3.5, and Erigid(Gj) is the global rigidity term defined in Eq. 3.6.

Similar as the data term defined in Chapter 3 for nonrigid alignment, Edns pts(R,G) and

Eclr(R,G) in Eq. 6.3 are terms that measure the geometry and color similarity of {Si} and

{Tj} with data observations at a frame under deformation of R,G. Einsct(R,G) is the energy

term that prevents the self-interaction of the deformed dynamic models or its intersection with

other objects. These three terms are introduced in the following two sections.
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Geometry and Color Constraints

Obviously, surfaces {S̃i} and {T̃j} should align tightly with the point cloud observed by

depth cameras at one frame under the optimal transformation. In addition, their colors should

match with the observation as well. The dense point cloud alignment is measured by term

Edns pts(R,G), and the color similarity is measure by Eclr(R,G).

As in Chapter 3, We fuse all depth maps from Kinects at current frame into a volumetric

representation, where each voxel records its distance D(·) to the implicit surface. Thus, for a

vertex ṽ on the transformed models {S̃i} or {T̃j}, D(ṽ) measures its distance to the observed

surface. Therefore, the overall alignment measurement is,

Edns pts(R,G) =
∑

v∈{Si,Tj}

(D(ṽ))2 (6.4)

where ṽ has the form of either Eq. 6.1 or Eq. 6.2 depending on whether it is from a rigid surface

Si} or a dynamic surface {Tj}.

Similarly, Eclr(R,G) has the exact form as Eq. 3.11 for nonrigid alignmetn, i.e.,

Eclr(R,G) =
∑

v∈{Ti,Sj}

∑
k

‖δk (ṽ) · [Ik (Pk (ṽ))− c] ‖22, (6.5)

where δk (ṽ) is the visibility term; δk (ṽ) = 1 when ṽ is visible to the k-th color camera, and

0 when invisible. Visibility checking is performed by projecting the surfaces {Si} and {Tj}

together to the image space and the vertices with smallest z values are visible. This visibility

checking requires all the surfaces as inputs, which is another reason to employ the unified
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Figure 6.3: Various Intersection Situations. (a) positive intersection (intersection condition is
satisfied); (b) non-intersection (intersection condition is not met); (c) deep intersection (inter-
section checking fails); (d) non-intersection (pass the intersection checking falsely).

tracking framework.

Intersection-Proof Constraint

Without further constraints, the surfaces being tracked tend to penetrate into each other

during close interaction such as one sitting on a chair, as illustrated in Figure. 6.6. This is

caused by severe occlusions during interaction and the high degree of freedom on the nonrigid

movement of the dynamic objects. Self-intersection happens as well when different parts of the

same dynamic object are close, e.g., when one folding one’s arms. We placed an intersection-

proof constraint Einsct on dynamic objects in Eq. 6.3 to force intersecting surfaces to move
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apart, i.e.,

Einsct(R,G) =
∑
v∈{Sj}

δ
(
ñT (ṽ− ṽnr) > 0 & ñTnr(ṽ− ṽnr) < 0

) (
ñTnr(ṽ− ṽnr)

)2
. (6.6)

δ(·) is the intersection checking term. δ(·) = 1 if the condition inside parenthesis is satisfied;

δ(·) = 0 otherwise. To detect whether a vertex ṽ intersects others, we find its nearest point ṽnr

on other surfaces or parts. As shown in Fig. 6.3(a), vertice ṽ, ṽnr and their outward normals ñ,

ñnr satisfy ñT (ṽ− ṽnr) > 0 and ñTnr(ṽ− ṽnr) < 0 when intersection happens. Note that ṽ and

ṽnr are from the deformed surfaces {T̃i} or {S̃j} and deformed via Eq. 6.1 or Eq. 6.2. During

optimization, Einsct pushes ṽ moving toward the position where ṽ− ṽnr is perpendicular to ñnr

(ṽ is on the tangent plane at ṽnr), which is the direction departing the other surface.

In practice, we only search for the nearest point ṽnr within some distance to ṽ (15 cm

in our experiment). For self-intersection prevention, we limit that ṽnr must have a geodesic

distance bigger than 10 cm and ‖ṽ − ṽnr‖ << ‖v − vnr‖ in order to prevent the situation

shown in Fig. 6.3(d), where two vertices from the same surface part falsely pass the intersection

detection.

There do exist positive intersection cases where the intersection checking conditions in

Eq. 6.6 are not met, such as the deep intersection shown in Fig. 6.3(c). However, Eq. 6.6 is

capable to detect and prevent intersections in most cases and easy to implement. Especially

when enforcing Eq. 6.6 from the start, the deep intersections in Fig. 6.3(c) has little chance to

happen.

We use the Levenberg-Marquardt algorithm to optimize Eq. 6.3. The Jacobians of the all
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Figure 6.4: Backward Deformation Graph Generation. (A) previously accumulated surface at
reference Sref ; (B) currently observed surface Sobv; (C) Deformation Graph on Sobv generated
with random sampling; (D) deformed surface of Sobv (to be aligned with reference surface (A))
via the graph (C); (E) the deformed graph generated with our method; (F) deformed surface of
Sobv via the graph (E).

the energy terms can be found analytically, and motion parameters of the previous frame are

used for initialization.

6.2.3 System Pipeline

Since the static and semi-static objects are pre-scanned and their geometries are well con-

structed, we directly replace the live data by the prescan (for static background) or by the

transformed prescan (for semi-static objects) based on the tracking result of Eq. 6.3. When a

dynamic object enters the scene, the system segments it out and choose the frame with an open

gesture (an example is shown in Fig. 6.4(A)) as its reference. This reference surface of the

dynamic object along with other static and dynamic objects are aligned with following obser-

vations via the unified tracking framework. Next, the observations of the dynamic object are

deformed back to the reference and accumulated at the reference. More specifically, the system

performs the following steps at each new frame:
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1. Fuse depth maps from 10 Kinects to one volume representation Dobv; the surface repre-

sentation Sobv is generated as well from Dobv via Marching Cubes algorithm.

2. If reference surfaces {T refj } for dynamic objects exist, parameterize their deformation

with embedded deformation model. Then run the unified tracking framework to align

dynamic reference models (if any) and pre-scanned semi-static models with the observa-

tions (Dobv and {Ik(·)}) at current frame via solving Eq. 6.3.

3. Perform scene segmentation on surface Sobv. Each vertex on Sobv is assigned to one of

a static model, a semi-static model, a dynamic model, or nothing. The reconstruction

can be improved by replacing Sobv with static models, transformed semi-static models,

and the deformed dynamic reference models. The vertex without an assignment is either

noise or belongs to the new dynamic object. If a big connected component exists on the

unlabeled surface, we treat this surface component as a new dynamic object and set the

current shape as its reference.

4. For segmented dynamic surfaces {T obvj }, compute the backward deformation (T obvj →

T refj ), and fuse the new observation to the references.

Note that we use a two-staged processing for dynamic surface accumulation: first a forward

deformation from the reference surface T ref to the current observation T obv is estimated; then

the backward deformation is calculated to deform the observation back to reference for data

accumulation. This two-staged algorithm is the key to deal with topology variation by dynamic

objects. The deformation graph sampled on surface T obv under certain topologies might have

an incorrect connectivity (e.g., nodes on arms connect to nodes on the body trunk as shown

100



in Fig. 6.4(C)), leading to torn surface during deformation. Since we assume the reference

frame has an “T”-pose, the sampled Deformation Graph at reference always has the correct

connectivity.

Steps 1 and 2 in the above pipeline are straightforward; the other two steps are described

below.

Scene Segmentation

Although the scene segmentation can be performed on the image (depth maps and color

images) or even on the volume Dobv, we choose to segment the surface Sobv because its by-

product—vertex correspondence—can be used for backward deformation estimation of dy-

namic objects. For each vertex vobv in Sobv, we search for its corresponding vertex on the

static background surface B, or transformed semti-static or dynamic surfaces {S̃i}, {T̃j} by

considering distance, color similarity, and angle between normals . More specifically,

1. All the vertices on B, {S̃i}, and {T̃j} within distance δ (δ = 5 cm in our experiment)

from vobv are listed as candidates of vobv’s correspondence. If the candidate list is empty,

no correspondence is assigned for vobv initially.

2. For each correspondence candidate of vobv, we compute the two’s distance d, color simi-

larity pclr, and angle between normals α. Among all candidates, we choose the one with

largest sum of dmin

d
+ pclr + cos(α).

If a vertex on Sobv does not have a correspondence, but its neighbor does, we copy the neigh-

bor’s correspondence to that vertex.
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Figure 6.5: Tracking one person folding arms. (A) original input; (B) tracking without
Intersection-Proof Constraint; (C) tracking with Intersection-Proof Constraint

Backward Deformation and Data Accumulation

The backward deformation is represented by an embedded deformation graph Gbwd on the

observed dynamic surface T obv. As explained above, directly sampling a Gbwd from T obv leads

to problematic graph connectivities when the topology is inconsistent as shown in Fig. 6.4(C).

Instead, we build a Gbwd with the same connectivity as the forward deformation graph Gfwd =

{〈gi, Ai, ti〉} (the global rigid parameters are ignored for clarity). First, we transform Gfwd’s

nodes position from {gi} to {gi + ti}. Note that {ti} is estimated during the tracking stage,

and thus the new ED nodes are aligned with T obv. We then project {gi+ ti} to surface T obv by

finding their nearest surface points vobvi . We let Gbwd = {gi = vobvi }, and Gbwd has same nodes

connectivity as Gfwd. Finally, we delete i-th node if ‖gi + ti − vobvi ‖ > δ. Fig. 6.4(E) shows

projected Gbwd with correct graph connectivity.
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Figure 6.6: Tracking one person sitting on a chair. (A) original input; (B) tracking without
Intersection-Proof Constraint; (C) tracking with Intersection-Proof Constraint

To deform a vertex vobv on T obv with backward deformation Gfwd, its k neighboring graph

nodes on Gfwd need to be found. Due to the surface topology change, we cannot search them

based on surface geodesic distance. Otherwise, a vertex of the arm might have a neighboring

node on the body trunk. Because a vertex vobv is associated with a vertex vref on the refer-

ence T ref during scene segmentation, we let vobv connected to the same graph nodes as vref

(projected graph nodes on T obv) with the same weights. With the graph structure defined, the

nonrigid deformation parameters of Gbwd is estimated using the method introduced in (Sumner

et al., 2007) based on the estimated points correspondence between T obv and T ref . Fig. 6.4(F)

shows the result of deforming T obv to the reference.

We used the same data accumulation algorithm introduced in Chapter 4, which is to trans-

form the volume representation of T obv and fuse it with the volume data at reference. One ex-

tension we made is that we build the color field together with the distance field. Since Kinect is

essentially a RGB-D camera, each pixel have a color vector in addition to a depth value. When
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Figure 6.7: Depth bias v.s. depth. (a) the original depth bias without correction; (b) the
depth bias after correction with a global linear function; (c) the depth bias after correction
with a global quadratic function; (d) the depth bias after correction with our regional quadratic
function.

building the distance field, we record a corresponding color vector along with distance value

at each voxel. Color field observed at each frame is fused to the reference as well. A modified

Marching Cubes algorithm interpolates the color for each vertex of the reference surface from

the color field.

6.3 System Calibration

The system calibration is three-fold: 1) the calibration of Kinects’ intrinsics and extrinsics;

2) Kinects’ depth calibration; 3) alignment of prescan with the live data. We use the Microsoft

Kinect SDK to align depth map to color images, so only the color cameras on Kinects require

the calibration of intrinsics and extrinsics, which we achieved with the standard checkerboard

calibration procedure.
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Figure 6.8: Tracking two persons where severe occlusion happens. (A)(C) original inputs;
(B)(D) tracking results.

Also noticed by others, Kinect’s output depth value deviates from the true depth, and the

deviation is different at different areas on the depth map. Beck et.al. (Beck et al., 2013) built

a 3D lookup table that covers the whole field of view of the Kinects to correct the depth bias;

they use a motor to move a Kinect in the exact orthogonal direction to a flat surface and a

commercial tracking system to track the distance of the Kinect from the surface. Instead, we

designed a simpler calibration system using only the checkerboard while achieving comparable

results.

Given the camera intrinsics and the detected 2D checkerboard corners, one can compute

the 3D coordinates (xc, yc, zc) in camera space precisely (Zhang, 2000). We denote the bias

depth value obtained from the Kinect’s depth map as zd. We use zc as the ground truth, and fit a

quadratic function mapping zd to zc for various image regions: zc = az2d + bzd + c. By waving

a checker board in front of a Kinect at various positions, tons of 〈zd, zc〉 pairs are collected.

We divide an 640 × 480 image equally into 20 × 15 blocks, and fit the quadratic function

separately for each block using the corners fallen into each individual region. To guarantee

the smoothness of parameters across the blobs, we let a block overlap with its neighbors by 16
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Figure 6.9: Tracking semi-static objects and dynamic objects. (A) original input; (B) scene
segmentation result; (C) final models.

pixels during function fitting. Figure. 6.7 shows our depth calibration results along with the

results of other methods.

To align the pre-scanned room with the live data from 10 Kinects, we capture the live

RGB-D images of the empty room, and match these images with the key frames of the RGB-D

sequence of the offline scanning. SIFT features and planes are used for matching. Afterwards,

the refinement is performed using Eq. 6.3. In this case, instead of tracking semi-static and

dynamic objects, we only track the pre-scanned room surface model.

6.4 Experiments

We mounted 10 Kinects in a room with the dimension of 4m×5m×3m (width, length and

height), five of them covering upper space and the other five covering lower space. When

mounting the Kinects, we try to minimize the field of view overlapping for adjacent units to

minimize their interference. However, the interference still leads to large amount of missing

data as shown in Fig. 6.9(A). The required calibration procedures are discussed in Section. 6.3,

and the results are shown in Section. 6.4.1.
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6.4.1 Results

The volume representation Dobv introduced in last section has the resolution of 1 cm (the

size of each voxel is 1×1×1 cm3). It would occupy a huge memory for the size of our room.

Instead, we eliminate the static background and only build Dobv for the remaining parts.

We tested our unified tracking frame work on multiple sequences under various situations.

As shown in Fig. 6.5, our system solves the self-intersection problem decently. It also allow

for close interaction between objects, such as one person sitting on a chair as shown in Fig. 6.6,

since the Intersection-Proof term in Eq. 6.3 effectively pushes interacting surfaces apart.

Our system can also deal with the missing data problem due to occlusions and Kinects

interference. In Fig. 6.8, dramatic data is missing for both people being tracked because of

occlusion, but our system still tracks them robustly.

Fig. 6.9 shows an example of tracking both scanned semi-static objects and previously

accumulated dynamic objects. The rendering results of the whole scene of the same frame

is shown in Fig. 6.1(B)&(C). Our system successfully segments each objects from the noisy

observation even though interaction exists between objects. The data accumulation on dy-

namic objects enhances their 3D quality dramatically as shown in Fig. 6.9(C) compared with

Fig. 6.9(A).

6.5 Discussions

We designed a system for 3D reconstruction of room-sized dynamic environments. We

divide the scene into three categories: static, semi-static and dynamic; and we use temporal
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information in different ways for different categories. We also designed a unified tracking sys-

tem that handles close interactions between objects. Finally, we show our system’s capabilities

on various situations.

Our system does have limitations. First, it is far from running in real-time, and it takes

around 1 minute to process one frame under current CPU single-threaded implementation.

We expect a future GPU implementation can improve the performance dramatically. Reduc-

ing the parameter space of the nonrigid matching is another possibility to boost the system

performance and increase the system robustness. Second, even though the system allows the

topology change of dynamic objects, it requires an open gesture for the reference frame. In our

experiment, we ask people being captured to hold the open gesture until a reference frame is

chosen.
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CHAPTER 7: Conclusions

3D reconstruction of dynamic scenes can find many applications in areas such as virtu-

al/augmented reality, 3D telepresence and 3D animation, while it is challenging to achieve a

complete and high quality reconstruction due to the sensor noise and occlusions in the scene.

This dissertation demonstrates our efforts toward building a 3D capture system for room-sized

dynamic environments. A key observation is that reconstruction insufficiency (e.g., incom-

pleteness and noise) can be mitigated by accumulating data from multiple frames (e.g., Kinect-

Fusion for static scene reconstruction). In dynamic environments, dropouts in 3D reconstruc-

tion generally do not consistently appear in the same locations. Thus, accumulation of the

captured 3D data over time can fill in the missing fragments. Reconstruction noise is reduced

as well.

The first piece of the system builds 3D models for room-scale static scenes with one hand-

held depth sensor, where we use plane features, in addition to image salient points, for robust

pairwise matching and bundle adjustment over the whole data sequence.

In the second piece of the system, we designed a robust non-rigid matching algorithm

that considers both dense point alignment and color similarity, so that the data sequence for

a continuously deforming object captured by multiple depth sensors can be aligned together

and fused into a high quality 3D model. We further extend this work for deformable object

scanning with a single depth sensor. To deal with the drift problem, we designed a dense

nonrigid bundle adjustment algorithm to simultaneously optimize for the final mesh and the



deformation parameters of every frame.

Finally, we combined the static scanning and nonrigid matching into a reconstruction sys-

tem for room-sized dynamic environments, where we prescan the static parts of the scene and

perform data accumulation for dynamic parts. Both rigid and nonrigid motions of objects are

tracked in a unified framework, and close contacts between objects are also handled.

Note that we did not solve every aspect of the above reconstruction problem. Specifically,

distinct limitations of the current work include lack of ability to deal with surface topology

changes and system performance issues.

7.1 Algorithmic Contributions

Throughout the dissertation, we made various algorithmic contributions in the area of dense

surface reconstruction.

7.1.1 Bundle Adjustment of Points and Planes

In Chapter 2, we demonstrate that plane features extracted from depth channel improve

indoor environment reconstruction in various ways. Given that planes are the dominant feature

for indoor environment, combining image feature and plane features leads to a robust pairwise

matching across data frames. In addition, we designed a bundle adjustment algorithm that

considers both point and plane features and optimize globally camera poses and point/planes

in the world space.
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7.1.2 Nonrigid Alignment Algorithm

In Chapter 3, we developed a robust nonrigid alignment algorithm. First, the algorithm

works for general surface alignment in contrast to algorithms using kinematic models, as we

parameterize the nonrigid motion with embedded deformation model and make no assumption

on the surface. Second, the algorithm handles missing surface data decently, which makes

it usable for partial-to-partial surface alignment. Third, we formulate the nonrigid alignment

problem as an energy minimization problem with several least square terms, which enables it to

be solved efficient by any least square solver. Finally, we incorporate both dense surface align-

ment measurement and color consistency to the formulation, and thus the alignment algorithm

is robust for geometrically smooth surfaces.

7.1.3 Dense Nonrigid Bundle Adjustment

In Chapter 5, we demonstrated a bundle adjustment technique for dense nonrigid surface

reconstruction. In contrast to classic bundle adjustment problem, where the correspondences

are explicit and sparse, the structure is sparse, and the motion is rigid, our algorithm does not

require explicit point-to-point correspondences, and it handles dense input data and optimizes

jointly for both the dense mesh geometry and its nonrigid motion.

7.2 Developed systems in the disseration

During our pursuit for a room-sized dynamic scene reconstruction system, we had worked

on various subproblems, which leads to several subsystems as byproducts that can work alone
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to solve specific problems in the area of dense reconstruction.

7.2.1 Indoor Static Environment Scanning System

In Chapter 2, we designed a system for indoor environment reconstruction with one hand-

held camera. ICP and SfM algorithms are expected to fail in challenging cases where a scene

has very few image salient features and large geometrically smooth regions. In our system, we

use both plane and image features for pairwise matching across frames and later for the bundle

adjustment stage.

7.2.2 Dynamic Object Scanning and Tracking System

In Chapter 4, we developed a system for dynamic surface reconstruction with multiple

depth sensors. The system does not require a prescan of the object being reconstructed. In-

stead, we build the model on-the-fly by accumulating data across frames. We do restrict the

consistency of the surface topology during this data accumulation stage. Later, after a complete

model is captured, we lift this requirement and only track surface deformation (i.e., aligned

model to new data observation).

7.2.3 Dynamic Object Scanning System with One Single Depth Sensor

In Chapter 5, we outlined a system that reconstructs a nonrigid surface with one single

depth sensor. The system starts from a sequence of color images and depth maps. We first

accumulate data over a short subsequence to extract partial scans. Next, we align partial scans

consecutively to the reference pose; loop closures are detected; alignment error is distributed
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over the whole loop. Finally, we run a dense nonrigid bundle adjustment step to optimize the

desired dense geometry and nonrigid alignment parameters simultaneously.

Our system is template free (i.e., no shape prior required), can be applied to fairly general

surfaces (e.g., articulated human bodies, clothes), allows for a significant amount of deforma-

tions (up to a fixed surface topology, see later limitations), and produces reconstructions of

comparable quality to those of a static scanning algorithm (e.g., KinectFusion).
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APPENDIX A: DDF CALCULATION PSEUDO-CODE

Input: surface points {vi}Mi=1; DDF grid dimension Nx ×Ny ×Nz; DDF thickness µ.

1 dxyz ←∞ ; / / s i g n e d d i s t a n c e f i e l d

2 Indxyz ← −1 ; / / i n d e x t o c l o s e s t s u r f a c e p o i n t

3 −→p xyz ←
−→
0 / / d i r e c t i o n a l f i e l d

4 / / l oop over M s u r f a c e p o i n t s

5 f o r ( unsigned i n t i =0 ; i<M; i ++) {

6 / / l oop over g r i d p o i n t s w i t h i n t h e bounding box (x1−x2 , y1−y2 , z1−z2 )

7 / / c e n t e r e d a t vi w i t h r a d i u s o f µ

8 f o r ( unsigned i n t x=x1 ; x<=x2 ; x ++)

9 f o r ( unsigned i n t y=y1 ; y<=y2 ; y ++)

10 f o r ( unsigned i n t z=z1 ; z<=z2 ; z ++)

11 dnew = d i s t a n c e t o vi ;

12 i f ( dnew < dxyz )

13 dxyz = dnew ;

14 Indxyz = i ;

15 f o r ( unsigned i n t x =0; x<Nx ; x ++)

16 f o r ( unsigned i n t y =0; y<Ny ; y ++)

17 f o r ( unsigned i n t z =0; z<Nz ; z ++)

18 i f ( Indxyz i s s u r f a c e boundary v e r t e x )

19 c o n t i nu e ;

20 / /−→v i s t h e c l o s e s t s u r f a c e p o i n t and −→n i s i t s outward normal

21 / /−→g i s t h e c u r r e n t g r i d p o i n t

22 −→p xyz = −→v−−→g ;

23 dxyz = (−→p xyz · −→n < 0 ) ?dxyz : −dxyz ;

24 dxyz = max (−1.0 , min ( 1 . 0 , dxyz /µ ) ) ;
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