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ABSTRACT

CHRISTOPHER BRYANT: A Bayesian Analysis of Weighted Stochastic Block Models
with Applications in Brain Functional Connectomics
(Under the direction of Joseph Ibrahim and Hongtu Zhu)

The network paradigm has become a popular approach for modeling complex systems,
with applications ranging from social sciences to genetics to neuroscience and beyond. Often
the individual connections between network nodes are of less interest than network char-
acteristics such as its community structure - the tendency in many real-data networks for
nodes to be naturally organized in groups with dense connections between nodes in the
same (unobserved) group but sparse connections between nodes in different groups. Char-
acterizing the structure of networks is of particular interest in the study of brain function,
especially in the context of diseases and disorders such as Alzheimer’s disease and attention
deficit hyperactivity disorder (ADHD), where disruption of functional brain networks has
been observed.

The stochastic block model (SBM) is a probabilistic formulation of the community de-
tection problem that has been utilized to estimate latent communities in both binary and
weighted networks, but as of yet not in brain networks. We build a flexible Bayesian hierar-
chical framework for the SBM to capture the community structure in weighted graphs, with
a focus on the application in functional brain networks.

First, we fit a version of the SBM to Gaussian-weighted networks via an efficient Gibbs
sampling algorithm. We compare results from simulated networks to several existing esti-
mation methods and then apply our approach to estimate the community structures in the

functional resting brain networks of 185 subjects from the ADHD-200 sample.
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Next, we extend this probabilistic framework and our efficient estimation algorithm to
capture the shared latent structure in groups of networks; we perform simulation studies and
then apply this extended model to the same sample of brain networks from the ADHD-200
sample.

Finally, we adapt this model to allow for more complex latent structures and incorporate
a regression component to test for differences in the latent functional brain structure between
study groups. After examining the ability of this approach to capture the latent structures
in simulated networks, we apply this method once again to the same set of functional brain
networks to assess the differences between ADHD subtypes and healthy control subjects in

latent functional brain structure.
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CHAPTER 1: INTRODUCTION

In high-dimensional data, it is often of interest to understand the relationships between
a number of variables. Networks are commonly used to model complex systems with up to
millions of variables; some that are studied extensively include biological networks such as
gene regulatory networks, protein-protein interactions, and functional brain networks; social
networks of friends; links between webpages on the internet; contact between individuals in
epidemiological studies.

While graph theory (graph and network are interchangeable terms) has been studied
for decades, recently work in this area has expanded rapidly with technology bringing “big
data” to the forefront of many fields. Some types of networks are directly observed, for
example co-authorship networks and social networks, while others have to be estimated from
observed data. Numerous algorithmic approaches have been used to estimate the structure
and the parameters of directed acyclic graphs (DAGs), in which edges (signifying connections
or associations) between nodes (representing the random variables) have explicit direction
and no self-loops are allowed. Bayesian networks give a flexible framework for modeling
dependencies in a DAG through factorization of the joint probability distribution via the
Bayes theorem. Correlation and partial correlation are among the methods used to estimate
undirected graphs, where edges indicate association but not causality. Edges between pairs
of nodes can be binary, indicating the presence or absence of a connection, or weighted - for
example, counts of the number of connections between nodes or their correlation over time.
See Kolaczyk (2009) for a more thorough introduction to networks.

The field of network science has focused on answering questions about the structure



and organization of these complex systems. Measures and features such as connectivity (a
fully connected graph has an edge between each pair of nodes), degree distribution (the
degree of a node is the number of edges connecting to it), motifs (repeating sub-graphs
within a graph or set of graphs), clustering coefficient (measuring the tendency of nodes to
form small clusters), and community structure (also called graph clustering some places)
describe both global and local characteristics of networks, and there is particular interest in
understanding these aspects of functional brain networks. These and other measures give

macro-level information on the organization of high-dimensional complex systems.

1.1 Brain Connectomics

The network paradigm is especially useful in studying the structure and function of the
brain. Recently, a push has been made to characterize the connection matrix of the brain,
called the “connectome" (Sporns et al. 2005, Cao et al. 2014): the Human Connectome
Project (http://www.humanconnectomeproject.org) aims to map functional and struc-
tural brain connectivity and its variability in healthy adults; the Developing Connectome
Project (http://www.developingconnectome.org/project/) has the same goal for the de-
veloping brain; the BRAIN Initiative (http://www.braininitiative.nih.gov) is a large
Federally-funded program with the goal of moving beyond a macro-level understanding of
the brain and mapping the individual neuronal connections, much in the same way the hu-
man genome was mapped in the early 2000s. The existing literature has largely focused
on various topological measures, such as degree distribution, clustering coefficient, network
diameter, and modularity (Bullmore and Sporns 2012, Simpson et al. 2013); the modular
organization of brain networks has been associated with cognitive function (Crossley et al.
2013).

There is also tremendous interest in uncovering the relationships between brain connec-

tivity and predictors such as disease status and behavior. Disruption in brain networks has



been observed in neurological disorders such as depression (Zhang et al. 2011), Alzheimer’s
disease (Wang et al. 2013, Dickerson and Sperling 2009), and ADHD (Cocchi et al. 2012, Qiu
et al. 2011, Ahmadlou et al. 2012, Konrad and Eickhoff 2010, Castellanos and Proal 2012).
In ADHD, researchers have found evidence of the importance of functional connectivity in

certain brain subnetworks in attention-related tasks (Rosenberg et al. 2015).

1.2 Community Detection

The community network structure, in which there exist groups of nodes that have dense
connections within the group and sparse connections between groups, has been observed in
numerous real life networks (Zhang et al. 2008, Girvan and Newman 2002, Fortunato 2010,
Lancichinetti et al. 2010, Yang and Leskovec 2014), including functional brain networks
(Simpson et al. 2013). Closely tied to the concept of community detection is network mod-
ularity, which measures the strength of a network’s community structure - for binary graphs
the quantity is calculated as the difference between the fraction of the edges that fall within
the defined communities and the expected fraction if edges were randomly distributed, hold-
ing the degree-distribution of the graph constant. The greater the modularity of a network,
the more dense connections are within-community compared to out-of-community; this con-
cept can be extended in various ways to account for edge weights (Newman 2004). Fortunato
(2010) gives an in-depth review of the various approaches to the community detection prob-
lem. These approaches largely fall into one of a few categories: deterministic algorithms that
maximize modularity or optimize other graphical quantities (such as betweenness centrality -
the number of shortest paths between all other pairs of nodes that pass through a given node,
used to find the nodes that connect distinct communities (Girvan and Newman 2002)) with
respect to community membership; spectral methods that focus on the eigenvectors of the
adjacency matrix or the related Laplacian matrix (L = D — A, where D is a diagonal matrix

with the degrees of each node and A is the adjacency matrix); and statistical approaches



including generative models based on the joint probability distributions of the edges or on
hypothesis testing (see Wilson et al. (2014)).

Random graph models offer a statistical framework for modeling graphs probabilistically
and making inference on various aspects of the graphical structure. Paul Erdés and Alfréd
Rényi (Erdos and Rényi 1959) and Edgar Gilbert (Gilbert 1959) independently proposed
variants of what is now known as the Erd&s-Rényi model, in which binary edges appear
independently with probability p. Other models have been created to capture characteris-
tics of particular observed networks, such as the average path length between two nodes,
the clustering coefficient, and the degree distribution. Exponential random graph models
(ERGM) offer a more flexible framework based on the exponential family of distributions,

where the probability of an observed graph y is given by:

_exp{n"t(y)}

P(Y =yln) o)

Here 7 is the natural parameter of the exponential family and ¢(y) is a vector of statistics re-
lated to network or nodal characteristics, and ¢(n) is the normalizing constant. ERGMs have
been used to model graphs parametrically (Robins et al. 2007a;b) including in studying func-
tional brain networks (Simpson et al. 2011), but they typically cannot capture community

structure (Fronczak et al. 2013).

1.3 Stochastic Block Model

The stochastic block model has been the focus of much of the statistical work on the
community detection problem. White et al. (1976) introduced the (deterministic) blockmodel
for social networks, where rows and columns of the adjacency matrix A (where A;; = 1 if
node ¢ and node j are connected and A;; = 0 if they are not) are reordered until the matrix
consists of blocks along the diagonal. Figure 1 shows the observed adjacency matrix (for a

perfect blockmodel) on left, with the reorganized block matrix on right.



Figure 1.1: Blockmodel

Figure 1.1. Observed adjacency matrix on left, reorganized into blocks on right.

A stochastic model for directed graphs (digraphs) was proposed by Holland and Lein-
hardt (1981). In what they called the p; model, each node has a parameter governing the
probability of incoming ties and a parameter governing the probability of outgoing ties, with

each dyad in the directed graph (X;;, X;;) assumed to be independent. This model was ef-

5
fectively combined with the deterministic blockmodel into the stochastic blockmodel (SBM)
by Holland et al. (1983), to capture a greater variety of graphical structures. In this early
formulation, blocks of nodes are known a priori, and edges within a given combination of
blocks are stochastically equivalent. That is, the probability of an edge between any pair of
nodes from blocks B; and B, is a constant, pg, B, .

Work on the SBM picked up more than a decade later, when Snijders and Nowicki (1997)
proposed a framework for a posteriori blockmodeling in undirected graphs with two blocks.
It it more typical in practice that the blocks that form the structure of the observed network
are not known a priori and must be learned from the data; indeed, it is often the primary
question of interest. Snijders and Nowicki proposed maximum likelihood estimation, only
feasible for small graphs on the order of n=20 nodes, and a Bayesian approach for larger

graphs. They extended the model to an arbitrary number of classes, directed edges, and non-

binary edges (Nowicki and Snijders 2001); this formulation is the basis for most recent work



on the SBM. Essentially the SBM is a mixture of Erdés-Rényi graphs, with the probability
of an edge between two nodes determined by their latent classes.
Snijders and Nowicki propose the general form of the SBM for the undirected graph

Y = (Yij)1<izjen as follows (no self loops == Y;; =0V 19):

e The parameters of the model are given by the vector of latent class probabilities 6 =
(61,...,0¢) and class-specific edge probabilities n = (7)), where Q is the number of

latent classes (which they call the colors of the nodes) and 1<k <1 <@Q.
e The latent classes Z;, for each node i =1,...,n are i.i.d. generated with P(Z; = k) = 6.

e The edges are i.i.d. conditional on class-specific probabilities:

Yi;|Zs, Z; ~ Bernoulli(nz,z, ).

This leads to the joint probability distribution for (Y, Z):

p(y.z:0.m) = 0705 T mpf (1 =)™,
1<k<i<Q

where ny, = i I(Z; = k) gives the number of nodes in latent class k and
i=1

1
1+6kl 1<

Z Vil (2 =k)I(z;=1)

1£j<n

€kl =

denotes the number of edges in the graph with one node in class k£ and the other in class .

Here

ngny, if k+1
Nk =

(T;’f) if k=1
and 0y =1 for k=1 and 0y = 0 for k£ #[. This model is the basis for more recent extensions

to directed graphs, signed graphs (with +, 0, - edges), weighted graphs, and beyond.



1.3.1 Identifiability

As in all mixture models, the SBM is only identifiable up to the ordering of the latent
labels. Because the likelihood is invariant to permutations of the class labels, multiple
parameter sets can lead to exactly the same value of the likelihood. This problem leads
to the phenomenon frequently called label switching or swapping, which is well known in
the literature of Bayesian mixture modeling. Within Markov Chain Monte Carlo (MCMC)
samplers, when using symmetric priors the order of the latent labels will often switch between
successive samples, which leads to nonidentifiability of both the labels and the class-specific
parameters. One simple approach is to impose artificial identifiability constraints, say m <
Ty < ... < mg, but this is an ineffective approach when the latent class probabilities are
relatively similar since it is impossible to tell the difference between natural variation and
label switching. Similarly, informative priors can be used to break the symmetry in the
posterior distribution, but often the ordering is impossible to know a priori.

Stephens (2000) proposed a class of relabelling algorithms for post-processing MCMC
samples that attempt to minimize the posterior expected loss under a particular loss func-
tion. However, for the SBM a posterior: relabelling is not usually a valid solution to non-
identifiability when the parameters are also being sampled, because they are sampled based
on the uncorrected labels. Bayesian approaches to estimating the SBM typically have to
incorporate label switching algorithms into the MCMC sampler (such as Cron and West
(2011), Mena and Walker (2014)). An alternative approach is to focus on functions of the
parameters that are invariant to label order (Nowicki and Snijders 2001) or to parameterize

the model in such a way that it is identifiable.

1.3.2 Extensions

Considerable work has been done to extend the SBM to better fit the characteristics of

observed graphs. For example, in many social networks there are hub nodes that are more



connected both within its community and to other communities. Since the classical SBM
assumes all nodes in a community share the same degree distribution, to capture this degree-
heterogeneity Karrer and Newman (2011) proposed the degree-corrected SBM. This model
utilizes an additional parameter for each node, governing the node’s degree. In addition
to better fitting graphs with known degree-heterogeneity, the degree-corrected SBM can
sometimes fit comparably well as the uncorrected SBM but with fewer clusters of nodes;
that is, the degree-corrected SBM can sometimes explain a graph more succinctly than the
uncorrected SBM (Herlau et al. 2014). Yan et al. (2014) introduced an algorithm for model
selection between the degree-corrected and uncorrected SBM.

Sometimes it may be known that a particular nodal attribute can affect the structure
of a graph, and other times it may be of interest to uncover which attributes influence
graph structure. A number of versions of the SBM have incorporated nodal information
via regression in the latent space (for example Tallberg (2005), Handcock et al. (2007),
Mariadassou et al. (2010), Choi et al. (2012), Vu et al. (2013)).

While the standard SBM assumes that communities are distinct, several extensions have
generalized the model to capture more complex latent structures. Hoff et al. (2002) gen-
eralized the SBM to what they called latent space modeling, which allows a more general
latent structure than that of the blockmodel. Airoldi et al. (2008) introduce the mixed-
membership SBM for directed graphs, where nodes can have membership in multiple latent
classes dependent on the pair of nodes. The overlapping SBM developed by Latouche et al.
(2011) allows clusters of nodes to overlap, and the probability of edges between two nodes
depends on how many latent clusters in which they share membership. The community-
affiliation graph model presented by Yang and Leskovec (2012) allows for both overlapping
and hierarchically-nested communities, the latter of which is also the aim of the method
proposed by Lyzinski et al. (2015).

The affiliation model reduces the number of parameters of the SBM to two by constraining



the probabilities of edges to:
Pin, ifq=1
DPq =
Pout, lf q * l.

This model is parsimonious and can capture both assortative (where the connections are
denser within communities than between them) and disassortative (where the connections

are denser between communities than within them) (Ambroise and Matias 2012).

1.3.3 Weighted SBM

While most of the work done on the SBM has been motivated by the study of social
networks, and therefore has been focused on modeling the structure of binary graphs, many
approaches are easily altered to fit weighted graphs. Newman (2004) generalized a deter-
ministic algorithm for community detection in binary graphs, based on edge-betweenness,
to networks with positive weights, and modularity-maximizing community detection meth-
ods have also been extended to weighted graphs (Traag and Bruggeman 2009). Within the
realm of statistical models for the SBM, Nowicki and Snijders’ formulation allows for an
arbitrary set of possible values for edges (Nowicki and Snijders 2001). Frequently, in prac-
tice, researchers have thresholded weighted graphs such as correlation or partial correlation
matrices to reduce them to binary graphs and then apply existing approaches for community
detection. Clearly this thresholding is discarding potentially useful information and it may
induce an artificial structure to the graph (Fortunato 2010, Simpson et al. 2013).

Mariadassou et al. (2010) introduced a version of the SBM for weighted graphs via the
mixed model:

Z; ~1i.i.d. Multinomial(«),

Q
where Z; denotes the latent class of node ¢ and a = (ay,...,aq), with ) a, =1 and
q=1

X2]|7/ € Q7j € lveql ~ f(’)eql)v



for nodes i, j and latent groups ¢,l. Here f(-) is a distribution from the exponential family
and {0y} -1, ¢ are class-specific edge parameters. There has been particular focus on
implementation for discrete-valued graphs, such as from the Poisson distribution (see McDaid
et al. (2013), Vu et al. (2013), Herlau et al. (2014)), but also for real-valued graphs via
the Gaussian distribution and others from the exponential family. Ambroise and Matias
(2012) extended the affiliation model to graphs with weighted edges, reducing the number

of parameters of the weighted SBM.

1.3.4 Estimation approaches

Approximate maximum-likelihood estimates can be calculated by using an
Expectation-Maximization (EM) algorithm (Dempster et al. 1977), but because the expec-
tation step involves summing over all possible combination of the latent variables, this is
computationally intractable for any practically-sized graph (Daudin et al. 2008). Snijders
and Nowicki (1997) present this ML estimation scheme for small graphs with just two latent
classes, and they suggest Bayesian estimation for larger problems.

Because of the computational demands of estimating the SBM, variational methods have
also been used to approximate the likelihood or posterior distribution (in the case of Bayesian
estimation). While the exact form may vary, typically this involves approximating the tar-
get distribution 7(z,6) by a factorizable distribution ¢(z,0) = qz(2)ge(#); this approach is
common in statistical physics and machine learning (Aicher et al. 2015). Within the class of
functions ¢(-) where the parameters of the model and the latent variables are conditionally
independent, given the data (and therefore can be factorized as just mentioned), the optimal
variational distribution ¢ is the one that minimizes the Kullback-Leibler divergence between
q(+) and 7(-) (Attias 2000). Hofman and Wiggins (2008) note that EM is a limiting case of
variational Bayes (VB) when the distributions of parameters are collapsed to their modes.

Daudin et al. (2008) introduced a variational method for approximating ML estimates of

10



the binary SBM, which Mariadassou et al. (2010) extended to weighted graphs. Amini et al.
(2013) utilized a pseudo-likelihood which is computationally tractable for solving with an
adaptation of the standard EM algorithm. Ambroise and Matias (2012) computed consistent
estimates for the SBM by moment estimators and also by use of EM on a tractable com-
posite likelihood; they showed these estimates were consistent and asymptotically normally
distributed. Come and Latouche (2015) introduce what they call the exact integrated com-
plete data likelihood, a version of which had been proposed by Daudin et al. (2008) as a way
to compare latent groupings with different numbers of classes; Come and Latouche develop
a greedy algorithm to use this exact method for estimation as well as model selection, but
theoretical properties are as of now unestablished.

Bayesian estimation is more commonly used than frequentist methods for estimating all
versions of the SBM. Nowicki and Snijders (2001) originally proposed a Gibbs sampling al-
gorithm, which was extended by Tallberg (2005) to include regression to allow for variability
in degree within each community, dependent on nodal attributes. In an empirical Bayes ap-
proach, Suwan et al. (2014) use a Gibbs sampler which involves Metropolis-Hastings (MH)
steps within; Herlau et al. (2014) also utilize a Gibbs sampler with MH within it to sample
their nonparametric Bayesian formulation of the degree-corrected SBM; Peng and Carvalho
(2013) use a Gibbs sampler with data-augmentation for sampling regression coefficients in
their formulation of the degree-corrected SBM; McDaid et al. (2013) create an MCMC al-
gorithm with several MH steps. Variational approximation of the posterior is sometimes
preferred to standard MCMC sampling due to the ability to handle far larger graphs; these
have been used for the standard binary SBM (Hofman and Wiggins 2008) and also the
mixed-membership SBM (Airoldi et al. 2008), the weighted SBM (Aicher et al. 2015), and
the more general random graph model of Schweinberger and Handcock (2015).

There are also non-statistical approaches to estimating the latent structure of the SBM,

as mentioned previously. In addition to modularity-maximizing algorithms, particular focus

11



has been on applying spectral algorithms to graphs. For the K-block SBM, these algorithms
involve calculating the spectral decomposition of either the adjacency matrix (Sussman et al.
2012) or the Laplacian (L = D— A, where D is a diagonal matrix of node degrees), then clus-
tering the K largest eigenvectors using a method such as k-means. The statistical properties
of these algorithms have been well-studied (see the next section); under certain conditions
the eigenvectors of the graph Laplacian (adjacency matrix) asymptotically converge to a

population graph Laplacian (adjacency matrix) (Rohe et al. 2011).

1.3.5 Consistency and Model Selection

Consistency of the binary SBM has been well-studied with respect to what is known as
detectability or, sometimes in the context of the community detection problem, the resolu-
tion limit. Fortunato and Barthélemy (2007) show that modularity optimization methods
can fail to detect communities that are smaller than a value which depends on the total
network size and the connectedness of separate communities. Abbe et al. (2014) give a par-
tial list of methods for the binary SBM that have established bounds for two-community
recovery, based on the within-community edge probability p and the between-community
edge probability ¢; the EM approach of Snijders and Nowicki (1997) yields the optimal
bound p-¢q = Q(1) (i.e. [p-g¢| > 0 and the number of nodes n - o). Abbe et al. find
a sharp threshold for exact recovery with two groups (misclassified nodes — 0): if we let
a = pnflog(n) and B = gn/log(n) be constant with o > 3, then exact recovery of the com-
munities with high probability is only possibly if # —/af > 1; maximum likelihood achieves
this optimal threshold. Other authors have addressed this question for specific algorithms:
maximum likelihood (Abbe et al. 2014, Celisse et al. 2012, Choi et al. 2012, Zhao et al. 2012),
Bayesian estimation (Decelle et al. 2011, Mariadassou and Matias 2015), spectral methods

(Chin et al. 2015, Chen and Hero III 2015, Lei and Rinaldo 2015, Rohe et al. 2011, Sussman

et al. 2012), other algorithmic approaches (Zhao et al. 2012, Gao et al. 2015), and general

12



results applicable to all algorithms (Mossel et al. 2014). While the thresholds determined for
various estimation methods and various conditions (e.g. growing number of classes, sparse
graphs) differ in precise form, the common asymptotic behavior is a threshold past which
recovery is impossible, a region in which recovery is highly probable, and then a region in
which a given method can recover the block structure exactly. This has apparently not been
studied yet for weighted SBM, but as in all mixture models a similar behavior would be ex-
pected - the closer together the mixture distributions are, the more difficult the classification
problem will be.

In the pursuit of uncovering the correct latent block structure for the SBM, the issue
of selecting the correct number of groups arises. For many of the estimation methods for
the SBM, this is assumed known (and then often assessed a posteriori), though in practice
it rarely is. While criteria such as the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) have been suggested in places, Biernacki et al. (2000) state that
the regularity conditions under which the BIC approximates the integrated likelihood (the
marginal likelihood of the model of interest) do not hold for the problem of determining the
number of components in a mixture model. They proposed the Integrated Completed Like-
lihood (ICL) criterion, which has commonly been used in some form for the SBM (Daudin
et al. 2008, Mariadassou et al. 2010, Matias and Miele 2015); Céme and Latouche (2015)
introduce a similar expression, which they call the integrated complete data log likelihood.
Specifically for variational Bayesian estimation of the SBM, Latouche et al. (2012) developed
the Integrated Likelihood Variational Bayes criterion. Some other methods for SBM model
selection include: McDaid et al. (2013) put a prior on the number of clusters and estimate
the best number within their Bayesian formulation (see also Herlau et al. (2014) for a similar
approach); Lei (2014) developed a goodness-of-fit test statistic and its asymptotic distribu-
tion based on random matrix theory; Wang and Bickel (2015) have recently proposed an

approach for model selection based on likelihood-ratio testing.
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CHAPTER 2: LCN: A RANDOM GRAPH MIXTURE MODEL FOR
COMMUNITY DETECTION IN FUNCTIONAL BRAIN NETWORKS

2.1 Introduction

Community structure has been studied in brain networks based on functional magnetic
resonance imaging (fMRI) studies (Bullmore and Sporns 2009), but most of the focus with
regards to statistical modeling for fMRI networks has been on defining brain nodes and
network estimation techniques, and further downstream the analyses typically have involved
network summary measures and the use of ERGMs (Simpson et al. 2011). The stochastic
block model and other similar random graph models have apparently not been utilized in
studying brain connectivity, despite the strengths of this approach in this application. The
SBM not only captures the important community structure of a network but also simul-
taneously quantifies its modularity, all within a statistically-principled framework. In this
chapter we present a Bayesian formulation of the affiliation SBM, followed by several exten-
sions in the next chapters to settings where there are multiple networks and questions about
the population of networks, such as in brain connectivity studies with collections of fMRI
networks.

Our motivating data are resting-state functional magnetic resonance images (fMRI) from
the ADHD-200 sample, which is downloadable from http://fcon\_1000.projects.nitrc.
org/indi/adhd200. For each of 185 subjects, we estimate resting-state brain networks via
Pearson correlation across 172 fMRI images per subject. See Figure 2.1 for the networks
of two randomly selected subjects, which have been visualized with the BrainNet Viewer

(http://www.nitrc.org/projects/bnv/) (Xia et al. 2013). Our question of interest is how
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these networks are organized into functionally-overlapping groups of brain regions, in both

healthy children and those with ADHD.

Figure 2.1: Functional networks and estimated latent structure from 2 subjects

1.4026 £ ’ » . — / -0.8504 1.4227

Figure 2.1. Functional brain networks for subject 1 (L) and subject 2 (R). There are
116 brain regions in each image. Different colored nodes indicate different estimated latent
classes, but colors are not comparable between subjects.

We fit the affiliation SBM to each of these weighted networks as a Bayesian hierarchical
random graph model and estimate the latent structure, including the graphical parameters
governing the edge weights. We also compare the performance of our approach, which we call
latent class network (LCN) estimation, to the variational EM method of Ambroise and Matias
(2012) for the same model and to the Bayesian implementation of the weighted SBM in the
R package hergm (R Core Team 2015, Schweinberger and Luna 2015) for several simulations
schemes; we find that our efficient Gibbs sampling algorithm using conjugate priors is more
accurate in classifying nodes into the correct groups than both of these methods and is faster

than the other Bayesian approach.
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2.2 Methodology

2.2.1 Random Graph Mixture Model

Let Y = (Y};) denote an observed undirected graph with n nodes, where Y;; denotes the
weighted edge value between node ¢ and node j. We assume that the n nodes each fall into
one of () latent classes, with the unobserved class label of node 7 given by the random vector
Zi=(Zu,...,Ziq), where Z;, = 1 indicates that node 7 is in the g—th group. Following the
version of the SBM in Ambroise and Matias (2012), our RGMM consists of:

e (i) A latent class model for characterizing the class label Z; for each node i = 1,...,n.

e (ii) A measurement model for characterizing the conditional distribution of Y;; given

{Zi7 Zj}'

We assume that the latent classes {Z;} are independently and identically distributed
as Multinomial random variables with the probability vector m = (my,...,mg) such that
0<m,<1and ¥, 7 =1. The measurement model is a two-component mixture model: we
assume that Y;; conditional on {Z; }1<;<, are independent and the conditional distribution of

Yi; given Z;.- Z;q = 1 is given by

Peaf (+50cq) + (1= pea)do(+) fori,j=1,... n, (2.1)

where f(-;0.4) is a prefixed probability distribution with an unknown parameter vector .4
and dy(+) denotes the Dirac measure at zero accounting for non-present edges. By assuming
that the edge values are conditionally independent given the latent classes of the nodes,
the (marginal) dependencies of the graph are fully determined by the latent community
structure.

Furthermore, we impose the affiliation SBM by reducing the @ - (Q + 1) parameters in
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{pcd}lscsdsQ and {Hcd}ISCSdSQ to:

Din ifc=d, Oin ifc=d,
Ped = and 0.4 = (2.2)
Dout if c#d, 0o ifezd.

Use of this parameterization allows us to avoid the typical problem of label switch-
ing /swapping in Bayesian mixture modeling. When non-symmetric priors are used for the
group proportions, the nonidentifiability of the order of the latent classes of nodes can lead
to the class labels changing between successive MCMC samples and make posterior infer-
ence difficult. The affiliation SBM does not have class-specific parameters, so the sampler
arbitrarily sets the order in the initialization step and then sampling proceeds without label
swapping.

This framework is flexible and can model directed graphs by utilizing a bivariate distribu-
tion for f(Y;;,Y};) and allowing peq # p4. and 0.4 # 04.. Here we focus on Gaussian-weighted
edges, such that 0 = (0, 0ou) = (Hins Tin, Houts Tout ), DUt we can easily incorporate different
distributions for the edge distribution f(-). We can also adapt the model for more complex
latent structures such as the overlapping SBM and correlated latent groups by alterations

within this hierarchical formulation.

2.2.2 Prior distributions

Priors are chosen to preserve conjugacy to allow for efficient MCMC estimation as follows:

7|@ ~ Dirichlet(as,...,aq), PinsPout ~ Uniform(0, 1),

2
2 og
,uin|7—in ~ N(MO,ina %)7 ,uout|7—out ~ N(MO,outy ,_O'Mt)7
Tout
Tin ~ Ga(QO,in7 Bﬂ,in)v Tout ™~ Ga(ao,outa ﬁo,out)a

17



where Ga(a,b) is a gamma distribution with shape a and rate b. To achieve relatively flat
priors, we set the hyperparameters to be: ai,...,ag =1, fto.in = fo,out = 0, agm = o2 10,

0,0out =

and Q@ in = Q0 out = BO,in = 60,out =0.01.

2.2.3 Estimation

We utilize a Gibbs sampler for posterior computation, with all full conditional posterior
distributions given in the Appendix. The Gibbs sampler involves sampling from a series
of conditional distributions while each of the components is updated in turn. Our Gibbs

sampler starts as follows:
e Initialize W(go) =1/Q for g=1,...,Q.

e Sample ZZ.(O) from Dirichlet(7(®) for i =1,...,n.

o tnitalizo 5 = %) = 140 = u0) 20,7 =79 <1
Then for t =1,..., N, we sequentially update all parameters as follows:

e Sample 7™ from P(7|Q,Y, Z(D).

e Fori=1,...,n, sample ZZ(t) from

P(ZIQ.Y. 2y, 1y 24500 0wl il i 7o ).

1:(3-1)° “ (i+1)n? in ) 'out

e Sample /JS? from P(u:,,|@Q,Y, Z(t),TiSi_l)) and 1 from P(piow|Q,Y, 2@, 7071).

e Sample 7'1.(7? from P(7;,|Y, Z(t),,ul(fl)) and 7 from P(7ou|Y, 2O, ul)

out out/"

e Sample pgl) from P(pi|Y, Z®) and pt, from P(pow|Y, Z®).

out

To improve sampling performance, we run multiple MCMC chains and use the Integrated

Completed Likelihood (ICL) criterion to automatically select the chain that maximizes ICL
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(Mariadassou et al. 2010, Daudin et al. 2008). For a graph with n nodes, the ICL criterion

is given by:

n(n-1)

ICLg = maxlog P(Y, Z|Q,0) - %[PQ : log( 5

) F Q- 1) - g, (23)

where Z denotes the predictions for the latent Z and P, denotes the number of independent
parameters. In this case, we have 6 = (Din, Pout, tins Houts Tin, Tout) and Py = 6. Moreover, we
plug in the univariate mode of each parameter into ICL¢g. This amounts to maximizing the
observed data likelihood when comparing two MCMC chains with ) and n fixed.

To achieve better sampling performance for large graphs, we propose using spectral clus-
tering to estimate the initial value of the latent structure Z(9); we can use the k-means
clustering algorithm (Hartigan and Wong 1979) to cluster all n nodes into @ groups accord-
ing to the first @) eigenvectors of a graph. Moreover, the diagnostic tools in the coda R

package (Plummer et al. 2006) can be used to assess posterior convergence.

2.3 Simulations

We carried out simulations to examine the finite sample performance of the LCN RGMM
in detecting the community structure of simulated networks and quantify their network

modularity.

2.3.1 Simulation setup

We simulated networks as follows: for a given Q*, m was randomly generated from
Dirichlet(ay, ...,aqg+), and then each Z; for i = 1,...,n was independently generated from
Multinomial(7y, ..., mg+). The data Y;; were generated from a mixture of zero-valued edges,
randomly drawn from either Bernoulli(1 - p;,) or Bernoulli(1 — p,,;) distributions and ei-

ther Normal(p,, ;') or Normal(tout, 7, ), depending on whether nodes ¢ and j are in
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2
0,in

the same latent class. We set hyper-parameters o7 . and a&out to one. The parameters
Dins Pouts Mhins fouts Tin, and Toe were fixed at various values in order to examine the finite
sample performance of LCN and the associated MCMC algorithm as modularity measures
change.

We considered six schemes and simulated 200 independent graphs for each scheme. Simu-
lation schemes are listed in Table 2.1. Scheme 1 is an example of a relatively easy community
detection problem with p;, >> pous and fun >> oy Scheme 2 is a much harder problem with
decreased distance between mixture distributions and fully dense graphs (no zero edges).
Schemes 3 and 5 were designed to test performance when the number of latent groups is
misspecified. Scheme 4 represents a scenario with a large number of nodes. Scheme 6 is a
scenario with a relatively large number of smaller latent groups.

For each graph, we ran two independent chains of the Gibbs sampler and then used ICL
to choose the best chain as described previously. We also compared our method with two
competing methods including the approximating method of Ambroise and Matias based on
a composite likelihood (Ambroise and Matias 2012) and the Bayesian implementation of
the original SBM of Nowicki and Snijders in the hergm R package (Nowicki and Snijders
2001, R Core Team 2015, Schweinberger and Luna 2015). To deal with the label switch-
ing phenomenon seen in the hergm output, MCMC samples were relabeled with the use

of the loss function from Peng and Carvalho (2013), which is included in the R function

hergm.postprocess.

2.3.2 Results

Classification is typically accurate under all of the simulation schemes, as shown via
box plots of the misclassification rates in Figure 2.2, though expectedly less so with more
similar mixture distributions. The most probable classes were estimated from the 10,000

MCMC samples for each simulation, and the misclassification rate was estimated as the sum
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Table 2.1: Simulation schemes

Sim n Q* Q (eSt) Pin | PDout | Hin | Mout | Tin | Tout
1 50 | 3 3 08103 ] 1 -1 1 1
2 50 | 3 3 1 1 105(-03(02] 04
3 50 | 3 ) 08103 ] 1 -1 1 1
4 1500 3 3 0803105 (-05] 1 1
o | 100 ] 5 10 0803105 |-05] 1 1
6 50 | 10 10 08103 ]05]|-05] 1 1

Table 2.1. 200 datasets were simulated from each of these schemes, then analyzed using 2
MCMC chains, and the chain with the greatest ICL was selected.

of false positives (nodes estimated to be in the same community when they are not) and false
negatives (nodes estimated to be in different communities when they are in the same) divided
by the total number of possible latent connections (n - (n —1)/2). Most misclassification
occurred in MCMC chains that did not converge to the true posterior distribution, which is
seen in the tails of the box plots - many of these incorrectly estimated a single latent class
containing all the nodes.

All the methods do well for the “easy” community detection problem (Scheme 1). Our
method outperformed the other two methods for the selection of the true number of groups
when more groups were specified (Schemes 3 and 5). The approximating method of Ambroise
and Matias fares well with a large number of nodes (Scheme 4), but it is not as accurate
for smaller graphs (Schemes 2 and 6). The Bayesian method (Nowicki and Snijders 2001,
R Core Team 2015, Schweinberger and Luna 2015) is approximately exact, but it involves
a computationally intensive algorithm for solving the label switching problem, which adds
another level of error in estimating the latent structure, especially in the difficult Scheme 2.

In our estimation method, when the MCMC chain converges to the true distribution,
estimation of the other parameters is accurate. Figure 2.3 shows the absolute deviation from

between the posterior median and the true parameter value, scaled by the magnitude of the
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Figure 2.2: Misclassifcation rates by simulation scheme
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Figure 2.2. Boxplots of misclassification rates by simulation scheme. The 6 schemes, each
with 200 simulated datasets, are listed in Table 2.1. Misclassification rate is defined as the
sum of the false positives and false negatives divided by the total number of possible node
pairs. AM is the implementation of SBM by Ambroise and Matias and HERGM is the
implementation of the SBM in the hergm R package.

parameter. For the edge parameters (i, fhout; Tins Tout) €Stimated in both our formulation

and the parameterization used in (Ambroise and Matias 2012), our approach typically has
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less estimation error. In the appendix, Figure A.1.1 gives coverage of the 95% highest
posterior density (HPD) regions for the edge parameters, and Figure A.1.2 shows the median
HPD width across the 200 simulations in each scheme. Coverage is near 95% for most
edge parameters, except for p;, and p,,; in Scheme 2 - in which the parameters are on the
boundary of the parameter space. For large graphs, the decreasing HPD widths indicate

efficient estimation of the edge parameters (see Schemes 4 and 5 in Figure A.1.2).

2.4 ADHD-200 resting-state fMRI networks

2.4.1 Functional brain networks

The resting state fMRI scans were acquired using a Siemens Allegra 3T scanner for six
minutes (voxel size = 3 x 3 x 4mm, slice thickness = 4mm, number of slices=33, TR=2s,
TE=15ms, flip angle=90°, field of view=240mm). The Athena pipeline was applied for
data preprocessing and the images were band-pass filtered within a frequency range of
(0.009,0.08)hz. The automated anatomical labeling (AAL) template (Tzourio-Mazoyer et al.
2002) was used to split patients’ brains into 116 non-overlapping regions of interest (ROIs);
blood-oxygen-level dependent (BOLD) contrast signals were averaged within each region for
each of 172 time points, and a Pearson correlation matrix was estimated for each subject’s
116 ROI x 172 time point matrix. Subsequently, the elements in each 116 x 116 matrix
were transformed to approximate normality via the Fisher transformation, z = 0.5 x In(£).
Additionally, the Fisher-transformed correlation matrices were thresholded at + 0.1 (which

corresponds to 7 ~ +0.1) to allow for some level of sparsity.

2.4.2 Results

We applied our RGMM to each subject’s weighted network as follows: two parallel MCMC
chains of our Gibbs sampling algorithm were run for each of () = 3, 6, 9, and 12, and then

ICL was used to choose the best of the 8 chains, which allowed for anywhere between 1
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Figure 2.3: Scaled absolute deviation between posterior median and true value
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Figure 2.3. Absolute deviation between the posterior median of each parameter and the
true value, scaled by the true value, from each of the 6 schemes listed in Table 2.1. For the
edge parameters L, fout, Tins Tout, TeSults from the Bayesian random graph model (LCN - on
the left of each panel) are compared to the method of Ambroise and Matias (AM - on right).

and 12 latent classes for each subject. Figure 2.1 shows the estimated latent classes of the

116 ROIs for two randomly selected subjects as the color of nodes in the networks; subject
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1 (L) has 7 latent classes of regions and subject 2 (R) has 8 latent classes of regions. To
assess the overlap of the community structures of the two subjects, the adjusted Rand Index
(Hubert and Arabie 1985) between the two clusterings was estimated to be 0.182, which is
significantly different from zero (which would indicate no overlap at all) via permutation
testing (10,000 permutations of the class labels, p < 0.001). So, while the latent community
structure for these two subjects is different, there is significant overlap between them, which
suggests that there may be a shared latent structure and individual deviations from this
structure.

Figure 2.5 shows the estimated number of latent classes across the 185 subjects, with
values ranging from 2 to 10. In Figure 3.5, the overlap of the latent structures of all 185
subjects is shown; the node pairs in red are those that are in the same latent class in most
networks. The node pairs that appear in the same latent class in a large proportion of
the subjects can be considered as the shared structure, while other node pairs that more
frequently are in different latent classes indicate deviations from this shared structure. Also,
the posterior distributions of the modularity parameters appear to vary across many of the
subjects, indicating heterogeneity in latent community structure even beyond the latent
class membership of the 116 ROIs. See Figure 2.4 for posterior samples of the modularity

parameters of the two subjects from Figure 2.1.

2.5 Discussion

We have developed the weighted affiliation SBM as a Bayesian RGMM. Our RGMM
utilizes an intuitive hierarchical parametric framework that accurately captures the affiliation
community structure in simulated data. The benefits of using this fully Bayesian framework
include incorporation of prior data, the ability to characterize the entirety of the posterior
distribution, as well as the validity of estimates and accurate classification with smaller

graphs. Additionally, this approach yields estimates of the modularity of the network as
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Figure 2.4: Modularity estimates from 2 subjects
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Figure 2.4. Posterior estimates of modularity parameters (Sparsity: p;, and pu., edge
weights: flin, fouts Tins Tout) for subject 1 (Blue) and subject 2 (Red). First 100 samples were
dropped, 9900 samples of each parameter shown.

parameters in the model. For highly modular graphs, in which nodes in one latent class
have considerably more connections and different weights as compared to nodes in different
classes, our estimation method performs well with minimal misclassification and accurate
estimates of the parameters.

Within the 185 functional brain networks from the ADHD-200 sample, subjects were
estimated to have between 2 and 10 latent classes of brain regions, but considerable overlap
in the latent structure is seen between some subjects. The commonalities between subjects
appear to include some level of symmetry in the latent classes across the left and right

hemispheres; as well as the functional overlap in the regions of the occipital lobe (see the
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Figure 2.5: Number of latent classes selected
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Figure 2.5. Number of latent classes of brain regions selected across 185 subjects from the
ADHD-200 sample.

red region near the center of the diagnoal of Figure 3.5). Other relationships between brain
regions appear to be conserved, in some cases within all subjects and in others more so within
a particular diagnosis group (see Figure A.1.3 in the appendix for group-specific overlap of
latent classes).

This framework allows the flexibility to utilize different distributions for the edge weights,
detect overlapping communities, and estimate the community structure in directed graphs,
all by straightforward alterations to the model. The following chapter is focused on extend-

ing this model to allow for groups of subjects that share a common structure, which appear
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Figure 2.6: Overlap of communities
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Figure 3.5. Overlap of the latent class structure across 185 subjects from the ADHD-
200 sample. Each element of the matrix is the proportion of all 185 subjects in whom the
corresponding two nodes fall in the same estimated latent class.

plausible based on our analyses of the resting-state fMRI networks from the ADHD-200 sam-

ple.
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CHAPTER 3: A RANDOM GRAPH MIXTURE MODEL FOR
ESTIMATING THE SHARED LATENT STRUCTURE IN GROUPS OF
BRAIN NETWORKS

3.1 Introduction

While we can apply the weighted SBM to a single network and estimate the latent block
structure underlying the observed configuration of edge values, in fMRI studies there are
often multiple subjects and questions about a population of interest. We have previously
observed heterogeneity in brain structure, but it is also apparent that some relationships
between brain regions and some larger-scale structural characteristics are conserved within
groups of individuals. In Figure 3.1 we see two groups of three graphs each, where the same
latent block structure is generating the graphs in each group. When we observe a sample of
weighted brain networks, it would be of interest to uncover these shared characteristics to
better understand functional brain organization.

Here we extend the weighted SBM to model a collection of weighted graphs by fitting
a random graph mixture model to classify the subjects into groups with similar graphical
parameters. We adapt our Bayesian hierarchical model from the previous chapter and esti-
mate the latent groups of subjects as well as the latent block structure for each individual’s
weighted network via an efficient Gibbs sampling algorithm. In Section 2, we present our
hierarchical model and our estimation scheme. Then, in Section 3, we show the ability of
this approach to accurately capture groups of subjects and classes of nodes in simulation
studies. In Section 4, we apply our method to the resting-state fMRI networks mentioned

previously, and finally in Section 5 we present a brief discussion of our results.
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Figure 3.1: Shared Latent Graphical Structure
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Figure 3.1. Two groups of networks with the same basic structure in each group.

3.2 Methodology

3.2.1 Hierarchical model

Let Yixnm) = (Yij)m denote the observed undirected graph with n nodes for subject
m, where Yj;,) is the weighted edge value between node i and node j for that subject.
We require that the n nodes are in common for all subjects m =1,..., M (e.g. the same
brain regions or the same genes) and assume that the M subjects fall into one of W latent
groups of subjects that share the same parameters governing the latent block structure of
an individual graph. We denote the latent group label for subject m by the random vector
Vin = Vi, -+, Viow ), where V,,, = 1 indicates that subject m is in the w'* group. Then for
each subject m the n nodes each fall into one of () latent classes, with the unobserved class
label of node i given by the random vector Z;,) = (Zi(m) - - -» Zig(m)), Where Zymy = 1

indicates that node 7 is in the ¢** group for subject m. Our model consists of:

e (i) A latent class model for the group label V,, for each subject m=1,..., M.
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e (ii) A latent class model for the class label Z;(,,) for each node i = 1,...,n within each

subject m=1,..., M.

e (ili) A measurement model for characterizing the conditional distribution of Yj;(n

given {Vin, Zitmy: Zj(m) }-

We assume that the latent group labels {V,,} are independently and identically dis-
tributed as Multinomial random variables with probability vector £ = (&, ..., &w), such that
0<&, <1 and Y, &, =1. Subsequently, we assume that, conditional on the latent group for
subject m, the latent class labels { Z;},, are independently distributed as Multinomial random
variables with class-specific and node-specific probability vectors ;) = (Ti1(w)s - - - TiQ(w))-

Then, the conditional distribution of Y,y given V;, = w and {Ziiny, Zjm)} is given by:

Q
> Zig(m)Zja(m)
=

I:pin(w)f('§ ein(w)) + (1 7pin(w))50('):| [pout(w)f('; gout(w)) + (1 7pout(w))60('):|

for 4,7 = 1,...,n, and m = 1,..., M. Here f(:;0)) is a probability distribution for the
edge values with an unknown parameter vector 6, and do(+) denotes the Dirac measure at
zero accounting for non-present edges. We assume that the edge values are conditionally
independent given the latent classes of the nodes, and so the dependencies of each graph and
between graphs are fully determined by the latent community structures.

We focus on Gaussian-weighted edges, but this framework can accommodate different
edge-distributions and various latent structures. Here we have proposed a more complicated
latent structure than the standard SBM by allowing each node to have its own generating
Dirichlet distribution, which is shrunken towards a common distribution for each group when
we assume that each of these distributions has the same hyperparameters (o) = @ V 4, w);

for a more parsimonious blockmodel we could assume that 7., = 7, foralle=1,...,n.
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3.2.2 Prior distributions

Without loss of generality, we let Y;;(m)|0caw) ~ N (Hedw)s Tojvyy)- Priors were chosen to

cd(w)

preserve conjugacy and allow for efficient MCMC estimation:

&la ~ Dirichlet(as, ..., aw), Ti@w)|@, a(w) ~ Dirichlet(on (), - - -, gw) ),

pzn(w) ~ Beta(apzn(w)7/8pzn(w))’ pOUt(w) ~ Beta(apout(w)7/8pout(w))7
2

2
UO,in(w) OO,out(w)
:uin(w)|7—in(w) ~ N(Mo,in(w)a 7_—)7 ,uout(w)|7_out(w) ~ N(MO,out(w)u T))

Tin(w) ~ Ga(ao,m(w)7 BO,in(w))a Tout(w) ~ Ga(ao,out(w)y BO,out(w))a

where Ga(a,b) is a gamma distribution with scale a and shape b. We specify flat priors by
setting the hyperparameters to ai,...,aw =1, aqyw), -, Q) = 1, Ho,in(w) = Ho,out(w) = 0,
Uam(w) = Uam(w) = 10, Q0 in(w) = X0,0ut(w) = 50,in(w) = ﬁ(),out(w) = 0.01, and Opin(wy = ﬁpm(w) =

=1, forw=1,...,W.

apout(w) = /Bpout(w)

3.2.3 Estimation

We use a Gibbs sampling algorithm to obtain samples from the posterior distribution
for the latent class multinomial variables (at the subject level and the node level) and the
associated graphical parameters. To assist with convergence, we propose utilizing spectral
clustering to initialize the MCMC chain. First, we initialize V(©) by clustering the eigenvalues
from all the graphs, and then we initialize Z((gl)) for each subject m =1,..., M by using a

traditional spectral clustering algorithm and clustering the eigenvectors of that subject’s

graph. The algorithm is as follows:

e Initialize ffuo) = % forw=1,...,W.

e Initialize V(©) by using k-means to find W clusters among the first W eigenvalues from
each subject’s graph.

e Initialize W(O)):éforq:l,...,Q andw=1,..., W.

q(w
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e Initialize Z ((fn)) by applying k-means to find Q clusters among the first Q eigenvectors
form=1,...,

o _ © _1 (© _ (0 _ (0) o _
o Initialize b; n(w) ~ pout(w) PR 'I’LG(w) - Mout(w) - O’Tin(w) Tout(w) L.

Then for t =1,..., N, we sample the parameters:

e Sample £ from P(E[V(O)
) FormZL...,MZ

— Fore¢=1,...,n, sample Zz.((?n) from

A (®) (t-1) (t-1) (t-1)  (t-1)
P(Z,(m)|W,Q,Y,V = W5 2y 1y (my Ll )nm) T(w) > Pingw)> Pout(w)?

(t-1)  (t-1) (t-1) _(t-1)
/'LG(w) ’ /’Lout(w) ’ 7-in(w) ’ 7-out(w))

— Sample V" from

PV Q.Y.60, 280 #0 fi 30 i 1,070 460

7“out ’ zn ) out

e Forw=1,...,W:

— Fori=1,...,n, sample 7r y from P(mi()|@, V®) Z®)

m(w) from P(Mm(w)lY I4ORAON T(t 1))
and ,u t( ) from P(,Uout(w)|Y V(t) Z(t) 7_(t 1))

- Sample ,u

- Sample 7' from P(Tinw)| Y, VO, Z®), (t))
and Tout from P(Tout|Y, V® Z(t),,u(';)

Sample p y from P(pinu)lY, V®) Z®)
from P(Pout(w)|Y, vV, Z1)

and p

out(w)

The Gibbs sampler is typically able to collapse to the correct number of groups of subjects
and the correct number of classes of nodes for each subject, when the posterior distribution
is distinctly unimodal (i.e. in simulations). For more difficult, high-dimensional problems
where the posterior may be multimodal, we propose using a variation of the the Integrated

Classification Likelihood (ICL) (Biernacki et al. 2000) to assist in model selection. Modifying
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the version of ICL used for a single graph (Daudin et al. 2008, Mariadassou et al. 2010), we
define

ICLw,q = max log P(Y,V, Z[W,Q,0) = §{ Pvq - log[M - "53] + W (Q = 1) -log(n) + (W ~ 1) -log (M)},

where Py is the length of 6, n is the number of nodes, M is the number of subjects, @
is the number of classes of nodes, and W is the number of groups of subjects. The first
penalty term (P, -log[ Mn(n—1)]) penalizes the number of edge parameters in the model,
the second term (nW(Q - 1) -log(n)) penalizes the number of latent classes of nodes, and

the third term ((W —1)-log(M)) penalizes the number of latent groups of subjects.

3.3 Simulations

3.3.1 Simulation setup
To assess performance, groups of weighted networks were simulated as follows:

e For a given W, £ is randomly generated from Dirichlet(ay, ..., aw).
e Each V,,, m=1,..., M, is independently generated from Multinomial(¢y, ..., &y ).

e For a given @, each ), w=1,...,W, is independently generated from

Dirichlet(a (), - - - s Q(w))-

e Fach Zj,y,i=1,...,nand m=1,..., M, is independently generated from

Multinomial(7;1(y), - - -, Tig(w) ), dependent on the value of V,,,.

e The data Yj;(,,) are generated from a mixture of zero-valued edges, randomly drawn

from either Bernoulli(1 - pj,(w)) or Bernoulli(1 = pyye(w)) distributions and either

Normal( ftn(w), Tz.;l(w)) or Normal(uout(w)m(;ult(w)), depending on whether nodes i and j

2

0.in(w) were set to one)

and o2

are in the same latent class (hyper-parameters o 0,0ut(w)

and depending on the value of V,,,.
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The parameters pin(w), Pout(w): Kin(w)s Hout(w)s Tin(w)s Tout(w) Were fixed at various values for
w=1,...,W to examine performance differences as modularity measures and the differences
between groups change. For each of 5 simulation setups (listed in Table 3.1), 200 separate
graphs were simulated, then analyzed with two chains of the Gibbs sampler; IC Ly was

used to choose the best chain as described previously.

Table 3.1: Simulation schemes

Sim n W* W (eSt) Q* Q (eSt) Pin Pout Hin Hout Tin Tout
1 [50] 2 2 2 2 (1.1) (1,1) | (0.121) ] (-0.1,1.9) | (1,1) | (1,1)
2 [50 | 2 2 2 2 (1,1) (1,1) | (0.5,0.6) | (-0.5-0.4) | (1,1) [ (1,1)
3 4 2
4150 2 2 2 4 (0.8,0.7) | (0.3,0.2) | (0.1,0.2) | (-0.1,0) | (1,1) | (1,1)
5 4 4

Table 3.1. 200 datasets were simulated from each simulation scheme, then analyzed using
2 MCMC chains, and the chain with the greatest IC Ly was selected. For simulations 3-5,
the same 200 datasets were analyzed with different input for W and Q, denoted by W (est)
and Q(est).

3.3.2 Results

For each simulation, we have collected two MCMC chains of 10,000 samples each and
estimated the maximum a posteriori (MAP) latent groups of subjects (V) and latent classes
of nodes (Z), and then we have selected the MCMC chain with the greatest /C L. After
determining the pairwise connections implied by the estimated latent classes, we calculate
the misclassification rate as the sum of the false positives (where a pair is estimated to be in
the same latent class but is not) and the false negatives (where a pair is estimated to be in
different classes when they are in the same class), divided by the total number of pairwise
comparisons. Figure 3.2 shows the misclassification rates for each latent variable; simulation
scheme 1 has easily distinguishable groups of subjects but difficult classification of nodes (i.e.

no block structure), while simulation scheme 2 has easy classification of nodes (i.e. strong
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block structure) but little difference between groups of subjects; for simulation schemes 3-5,
we have simulated 200 datasets and misspecified W and @) to examine the sampler’s ability
to collapse to the correct number of groups of subjects and classes of nodes. Interestingly,
estimation is more difficult only when W is misspecified but ) is not. As with other mixture
models, the similarity of the mixture distributions is a primary determining factor of the
ability of this approach to successfully recover the multinomial classes; the other main factor
in performance is difficult convergence for this high-dimensional posterior distribution. In
practice, issues with convergence can be dealt with by running parallel chains until several
of them are in sufficient classification agreement or until diagnostics confirm convergence has

been achieved.

3.4 Application to ADHD Data

The data consist of the same 185 fMRI correlation networks from the previous chapter.
We aim to capture any latent groups of subjects that share a similar large-scale latent struc-
ture, as well as that latent structure for each subject, including the modularity parameters.

We ran our algorithm four times on our sample of 185 weighted functional brain networks,
with two parallel MCMC chains for each of {W =5, @ =5} and {W =10, Q = 10}. We used
IC Ly, to select the “best" chain, which was found to have W =3 groups of subjects, () =5
classes of nodes for 178 subjects and () = 4 classes of nodes for 7 subjects. The parallel chains
with {W =5, @ =5} had over 90% agreement in the pairwise latent connections between
subjects and over 93% agreement across all pairwise latent connections between subjects’
brain regions, with at least 75% agreement for each subject.

Figure 3.3 shows the latent structures estimated for one randomly chosen subject from
each latent group, out of 19,500 MCMC samples after a burn-in of 1,000 samples. While
the latent classes are able to vary at the subject level, even within one latent group, the

shared block structure governed by the edge parameters is distinct for the three estimated
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Figure 3.2: Misclassifcation rates by simulation scheme
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03

Misclassification Rate

0.1

Sim 1 2 3 a 5

Figure 3.2. Boxplots of misclassification rates by simulation scheme. The 5 schemes, each
with 200 simulated data sets, are listed in Table 3.2. Misclassification rate is defined as the
sum of the false positives and false negatives divided by the total number of possible subject
or node pairs. V denotes the subjects and Z denotes the nodes within each subject.

groups of subjects. Figure 3.4 gives the posterior samples for the edge parameters, showing
that the three latent groups of subjects have differing modular brain structures. Group
one, for example, has more positive correlation within a class of nodes and more negative
correlation between classes of nodes than the other two groups, indicating a stronger block
structure. Table 3.2 shows the overlap in the estimated latent groups of subjects with their
ADHD diagnoses, and there is no clear relationship between diagnosis and the classification
from the model (Fisher’s exact test: p=0.22), indicating that there are functional differences

amongst these subjects that may not be captured by the ADHD diagnoses. Figure 3.5 gives
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the proportion of all 185 subjects in which each pair of brain regions is estimated to be in
the same latent class, showing functional relationships that are conserved in most subjects
(the node pairs which are in the same latent class across nearly all subjects, in red, and
the node pairs which are in different latent classes across nearly all subjects, in green), and
others that differ between subgroups of subjects. Figure B.1.1 in the Appendix shows the

differences in these proportions between pairs of latent groups.

Figure 3.3: Three estimated latent groups.

Superior Inferior Lateral R

0,
B

Superior Inferior

Figure 3.3. The estimated latent community structure for individual subjects from latent group 1
(Top), group 2 (Middle) and group 3 (Bottom). There are 116 brain regions in each image. Different
colors indicate different latent classes, but colors are not comparable between subjects.
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Figure 3.4: Posterior estimates of modularity parameters.
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Figure 3.4. Posterior samples of edge parameters for the three latent groups (1=blue, 2=red,
3=green). A burn-in of 1,000 samples was discarded and the remaining 19,500 posterior samples
for each group are included.

Table 3.2: Estimated latent group by diagnosis group

Diagnosis
Latent group Control | Combined | Inattentive | Total
1 16 12 8 36
2 41 28 19 88
3 34 22 5 61
Total 91 62 32 185

Table 3.2. Maximum a posteriori latent group estimated from 19,500 MCMC samples, by
ADHD diagnosis group.
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Figure 3.5: Overlap of communities

Count
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|
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Figure 3.5. Overlap of the latent class structure across 185 subjects from the ADHD-
200 sample. Each element of the matrix is the proportion of all 185 subjects in whom the
corresponding two nodes fall in the same estimated latent class.
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3.5 Discussion

We have extended the weighted stochastic block model to accommodate multiple net-
works, for situations in which we have the same network nodes defined for multiple subjects
as we see in fMRI studies. The results from our simulation studies suggest this approach
allows for accurate classification of both subjects and nodes within each subject, as well as
estimation of the associated modularity parameters that govern the latent graphical struc-
ture. Use of our modified classification criterion and parallel MCMC chains can be combined
with typical Bayesian convergence diagnostics to alleviate potential convergence issues that
can arise in real data problems where the likelihood is not clearly unimodal. Our efficient
estimation scheme, utilizing conjugate priors, allows for use on moderate-sized collections
(the number of subjects M in the low hundreds) of moderate-sized networks (n in the hun-
dreds or low thousands), such as in our motivating dataset where we have M = 185 subjects
and n = 116 nodes in common across all subjects. In truly high-dimensional problems (large
n, M, W, or (Q), variational approximation would be necessary to avoid excessive computation
times.

In applying this method to 185 fMRI networks from the ADHD-200 Sample, we uncover
3 groups of subjects, each of which has 4 or 5 estimated classes of brain regions. Our
results indicate differences in modularity between these distinct groups of subjects, as well
as heterogeneity in the latent connections between brain regions. The latent groups of
subjects that we have uncovered do not precisely align with the ADHD diagnoses, which
suggests that there are functional brain structures that involve other factors than ADHD.
The following chapter is focused on adapting this hierarchical formulation to accommodate
regression in the latent space, in order to assess whether differences between diagnosis groups,

for example, are associated with differences in the latent network structure.
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CHAPTER 4: A BAYESIAN HIERARCHICAL FRAMEWORK FOR
INFERENCE ON MULTIPLE WEIGHTED NETWORKS WITH
APPLICATIONS IN BRAIN IMAGING

4.1 Introduction

In the context of functional connectivity studies, the questions of interest may be focused
on examining differences among subjects in the structure of their functional brain networks.
There has been particular interest in understanding the effects of ADHD on functional con-
nectivity, as previously mentioned in the first chapter. While network summary measures
have been compared between small samples of ADHD patients and small control samples,
most of these approaches have been ad hoc in their statistical methodology. In this chapter,
our aim is to estimate the latent functional brain structures and examine the effects of co-
variates such as gender and the differences between ADHD and control groups in their latent
functional brain structures.

We propose a novel adaptation of the SBM to estimate the latent structure in collections
of weighted networks, with a regression component to assess the effects of covariates. Our
model is formulated as a Bayesian hierarchical random graph mixture model (BHRGMM),
and, as before, we utilize an efficient Markov Chain Monte Carlo (MCMC) algorithm with
conjugate priors to obtain samples from the posterior distribution. We conduct simula-
tion studies to examine the ability of our method to accurately capture the latent network
structure across subjects as well as its accuracy in capturing differences in this structure
explained by covariates. In the following section, we present the hierarchical model, the
prior distributions, and the sampling algorithm, and then in Section 3 we show some results

from simulation studies. In Section 4 we give results from analyzing the same 185 functional
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brain networks from the previous chapters, and in Section 5 we present a brief discussion of

our results.

4.2 Methodology

4.2.1 Hierarchical random graph model

Let the weighted edge between nodes ¢ and j in subject m’s network be denoted by
Yijm). We assume all subjects m = 1,..., M have the same network nodes, such as in a
brain network or a gene network. Then the distribution of each Yjj(,,) depends on whether
nodes ¢ and j are in the same latent group for subject m, which is given by the binomial

variable Zjj(,). We propose our hierarchical model as follows:

e (i) A latent model characterizing whether each pair of nodes, (i,7), where n is the
total number of nodes in each graph and 1 <7 < j < n, are in the same functional
group, indicated by Z;;(,») = 1. This model incorporates regression in the latent space

to account for the effects of covariates on the latent graphical structure.

e (ii) A measurement model for each weighted edge value Yj;(,,), conditional on the value

This latent structure allows for more complexity than the standard SBM, where each
node is a member of only one class (which is a subset of this formulation). We utilize probit

regression by introducing another latent variable Zi*j (m) and assume that

1, if Z.*.(m) >0

) i

0, otherwise

where z,, denotes the covariate vector for subject m and 3;; denotes the parameter vector

governing the latent connections between nodes ¢ and j. We assume that the latent variables
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{Zij(m)} are conditionally independent, given covariates {x,,} and regression coefficients f3;;.
Furthermore we assume that the edge values {Yj;,)} are independent conditional on the

latent variables {Z;;(m)}, and the distribution of Y;;(,,) given Z;j(m) is given by

Zij(m) 1=Zij(m)
I:pzn(m) ' f(a gzn(m)) + (]- _p'm(m)) : 50()] [pout(m) : f() Qout(m)) + (]- _pout(m)) : 50()] )

(4.2)
where {Pin(m), Pout(m)} are unknown parameters governing the sparsity of subject m’s graph,
{f(0inm))s [ (-, Oour(m))} are arbitrary probability distributions with unknown parameter
vectors {0in(m), Qour(m)} and &o(-) denotes the Dirac measure at zero accounting for non-
present edges. The dependencies of the graphs are determined by the latent structure 7,
and the latent structure is determined by the covariates.

Without loss of generality, we focus on Gaussian-weighted edges, but this framework
can easily accommodate other edge distributions, as well as directed graphs by utilizing a
bivariate distribution. We can also allow for more a complex latent structure via multinomial

probit regression instead of binomial probit regression in the latent space.

4.2.2 Prior distributions

Conjugate prior distributions are chosen to allow for efficient MCMC sampling:
Bij ~ MVN(boij, Agh;), where 7, = (1, Zm1, . ., Tmp) and B = (Bijo, - -+ Bijp) T
Din(m) ~ Beta(oy,,, Bp..), Pout(m) ~ Beta( g, ., Bpous )
Hingm) ~ N(Ho(in), Oaginy)s Hout(m)|tinm) ~ TN(Hogouty, 03 ury » Fin(m)» ),

Tin(m) ~ Ga(ao,ina 60,1'71)7 Tout(m) ~ Ga(ao,outa 50,out)>

where by ;; indicates the prior mean and Ag;; the prior precision for the parameter vector
Bij, Ga(a,b) is a gamma distribution with shape a and rate b, and TN(:, -, a, 00) indicates the

left truncated normal distribution, with the truncation point given by a.
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4.2.3 Estimation

We propose a Gibbs sampler for computation of the posterior distribution, with full
conditional posterior distributions shown in the Appendix. The Gibbs sampler draws from
these full conditional distributions to update each of the components sequentially. Our

sampling algorithm is initiated by setting: 5% =0 VY 4,75 Din(m) = Pout(m) = 0-3, Hin(m) =

L, fout(m) = =1, Tin(m) = Tout(m) = 1 for all m, and then we fill Z](((;)l) with random values
from a standard normal distribution for all ¢,j,m. Then for ¢t = 1,..., N, we update the

parameters as follows:

(t-1) (t-1) (t-1) (t-1) (t-1) (t 1) /B(t 1) Y;'j m))

(t)
* Sample Z fI'OHl P(Z](m) |pzn(m) pout(m)"uzn(m)"uout(m)’Tzn(m)’ out(m)’

forall1£i<j£nandm=1,...,M.

Sample 61(;) from P(6U|Z;(t), bO,iijO,ij;X) V1<ig <j <n
Sample pgl)(m) from P(pm(m)|Z€,S)), Qp,s Bpins Y(m)) and

t *(t
p(()u)t(m) from P(pout(m)|Z(n(~b))7 Apout s Bpoutay(m))

Z(:;)(m) from P(:um(m) |Z(>(_n(f))7 1(73(1;))’ Ho,ins 00 Jin? }/(m))

*(t t—1
and /IJ t( ) from P(,uout(m)|Z(TEL))7 (Sut(,zlyﬂo,outa aD,out’ Yv(m))

Sample

(t) #(t) (1)
Sample T; n(m) from P(Tm(m)|Z(m),/Lm(m), Qo m,ﬁo,im Yv(m))

and T t( ) from P(Tout(m)|Z(TEf)) ,U((m)t(m)a Q0 out s 50 out Y(m))

In practice, to ensure convergence we can run multiple parallel chains and then combine
the samples if they have converged to the same posterior distribution, which can be assessed
by the diagnostic tools in the coda R package (Plummer et al. 2006). The method was
written in C++ and implemented in R using the Repp and ReppEigen (Eddelbuettel et al.
2011, Bates and Eddelbuettel 2013) packages.
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4.3 Simulations

We performed simulation studies to examine the finite-sample performance of our esti-
mation algorithm. For each of the four simulation schemes, listed in Table 4.1, we have
simulated 100 datasets and then used our sampling algorithm to obtain 20,000 samples from
the posterior distribution, following an initial burn-in of 1,000 samples. Subsequently, we ex-
amined classification accuracy and the ability of our method to capture differences between

two groups in the latent relationships between nodes.

4.3.1 Simulation setup

For each scheme, we have simulated weighted networks for 100 subjects with 50 nodes
in each network. We focus on the scenario when there are two groups of subjects, defined
for example by diagnosis or treatment, which leads to a single covariate in our latent probit
model. Additionally, we have set the hyperparameters by and b; to zero for 100 of the {i,;j}
pairs, to be considered “null" effects. We fixed the other hyperparameters and sampled from
the appropriate prior distributions for each subject’s parameters, after which we generated

each subject’s weighted edges from the model presented in Eq. (4.2).

Table 4.1: Simulation schemes

Scheme bo b Ao,n = A0,22 = | Ho,in | H0,0ut
1 -1 2 5 2 -2
2 -0.5 1 10 2 -2
3 -1 2 10 1 -1
4 -0.5 1 10 1 -1
) -0.25 | 0.5 10 1 -1
6 -0.25 | 0.5 10 0.5 -0.5

Table 4.1. 100 datasets were simulated from each of these schemes.

For all simulations, we used the same flat priors, setting the hyperparameters as: by(;;) = (0, ...,0)
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001 0
0 001

17 5pm = /8pout = 17 Q0 in = Q0 out = 1750,in = BO,out =0.2.

and Ao(l]) = ( ) V O S Z <j S n’ /1/07“1 = M070Ut = 070-871'71 = Ug,out = 10’ apin = apout =

4.3.2 Results

In each simulation scheme, our estimation algorithm does well at recovering the true latent
relationships between nodes. To determine the best threshold for the posterior probability to
determine that a pair of nodes is in the same class, we examine the average misclassification
rates for each simulation scheme in Figure 4.1(L), across different cutoff values for

P(Z5 0y > 0]...).

Figure 4.1: Misclassifcation rates by simulation scheme
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Figure 4.1. (L) Average misclassification rates by simulation scheme, for different thresholds
of P(Z*, . >0]...). (R) Boxplots of misclassification rates by simulation scheme when using

ij(m)
P(Z;;’(m) >0|...) =0.5 as the threshold. The 6 schemes, each with 100 simulated datasets,

are listed in Table 4.1. Misclassification rate is calculated as the sum of the false positives
and false negatives divided by the total number of possible node pairs.

The threshold of 0.5 for the posterior probability P (Z;j(m) >0]...) to determine if Z;;(,,) =
1, corresponding to the maximum a posteriori (MAP) estimate of Z;j(n), allows for nearly

as accurate classification as the 0.6 threshold but is more easily interpretable, so we proceed
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using 0.5 as the cutoff. Figure 2.2(R) shows boxplots of the misclassification rates for each
set of 100 simulations. The classification is likely affected by the f;; with {bg, b1} set to zero,
where we would not expect to capture the latent relationships with P(Z;jm) = 1) ~ 0.5 for
all subjects.

To assess the ability of our method to capture the effects of covariates on the estimated
latent structure, we calculated the average coverage of the 95% credible intervals (the pro-
portion of the parameters where the true value fell between the 0.025 and 0.975 quantiles)
across all 3;;(1), 1 <i<j <nand all 100 simulations in each scheme. We found 91% coverage,
on average, for each of simulation schemes 1-5 and 82% coverage for the much more difficult

scheme 6.

4.4 Application to ADHD Data

We applied our Bayesian hierarchical random graph model to the same functional connec-
tivity networks seen in the previous two chapters, to assess whether covariates are associated
with latent functional brain structure. In our latent probit regression model, gender, age,
and diagnosis group are included as covariates. Table 4.2 shows the distribution of gender
across diagnosis groups. A Chi-squared test for independence leads us to reject the null hy-
pothesis and conclude that gender and study group are associated (p=0.0001). One subject
had a missing gender value; to include this subject, the mean of the gender indicator vari-
able (the proportion of males) was substituted as the imputed value into the design matrix.
Figure 4.2 shows that the age distribution is similar for both genders but differs somewhat
between diagnosis groups.

We analyze the set of functional networks with two parallel MCMC chains, using flat
0.1 0.01)

priors by setting the hyperparameters to: by(;;) = (0,...,0) and Agqj) = (061 SRS

; ; . _ _ 2 _ 2 _ K. _ _ _ —1-
for all 0 S 1< ] S n’ /VLOfln - MO7OUt - 07 UO,’LTL - 00,0ut - 5’ apin - apout - 176191‘71 - /8pout - 17

ap.in = Q0.out = 1, Bo,in = Bo.out = 0.2. We collect 5,000 samples in each chain, after a burn-in of
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Table 4.2: Gender by diagnosis group

Control | Combined | Inattentive
Female 46 10 12
Male 45 51 20

Table 4.2. Gender breakdown by diagnosis group.

Figure 4.2: Age distribution

T T T T T
Female Male Control Combined ADHD Inattentive ADHD

Gender Diagnosis

Figure 4.2. Age distribution by gender (L) and by diagnosis (R).

500 samples in each, and combine the samples after checking to make sure the two chains have
converged to the same posterior distribution by visual inspection of the posterior samples.
Figure 4.3 shows the parameter estimates comparing the latent structures of the ADHD
groups to that of the control group. In the left panel are the 99% credible intervals for each
Bi;, with those in black indicating parameters where zero was not contained in the interval,
and in the right panel are the median estimates for just those “significant" 3;;, which has
been visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia
et al. 2013). The inattentive subtype was found to have decreased probability of latent
connections between brain regions, after adjusting for age and gender (see Figure 4.3(b)). In
the appendix, Figure C.1.1 shows the effects of gender and age on the probability of latent

connections. There appears to be a tremendous effect of age on latent brain structure, after
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adjusting for gender and ADHD diagnosis.

Figure 4.3: Parameter estimates: ADHD diagnoses

-6

Biay

(b) Inattentive subtype vs. control

Figure 4.3. Coefficient estimates comparing the probability of a latent connection between
all n-(n—1)/2 pairs of nodes. (L) §;; posterior medians and 99% credible intervals and (R)
the posterior medians just for the “significant" estimates where zero was not contained in
the credible interval.
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Figure 4.4 gives the posterior medians and the 95% credible intervals for the modularity
parameters of all subjects 1,..., M, highlighting the heterogeneity of latent functional brain

structure across the children in this study.

4.5 Discussion

In this chapter we have presented a novel adaptation of the SBM, to allow for a more
complex latent structure than the typical block structure and additionally capture the effects
of covariates in the latent space. This framework makes sense in settings where the data
consist of a collection of networks that share the same nodes, such as in an fMRI study or in
the context of a genetic array. Our approach addresses, particularly, the common question
in neuroscience literature about differences in functional brain networks by going beyond
the typical assessment of network summary measures. By using an efficient Gibbs sampling
algorithm with conjugate priors, we are able to accommodate moderately large networks,
on the order of hundreds of nodes. In our simulations, we were able to accurately capture
both the latent structure across subjects and differences in the latent structure between two
groups, as in a study comparing treatments or diagnosis groups.

We applied our method to 185 functional brain networks from the ADHD-200 study and
found numerous differences in latent functional brain structure that can be explained by
covariates. There appear to be fundamental differences in the latent structures of ADHD
subtypes as compared to the control group, after adjusting for gender and age, as well as dif-
ferences between genders after adjusting for diagnosis and age. In particular, the inattentive
ADHD subtype appears to have significantly less connectivity across many regions of the
brain as compared to the control group, which is in line with what some other researchers
have found (Rosenberg et al. 2015). We also found a strong effect of age in latent functional
brain structure, which is unsurprising given all that is known about brain development in

children. This probabilistic approach could also be useful in applying to studies of other
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Figure 4.4: Modularity estimates
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Figure 4.4. Posterior medians and 95% credible intervals for modularity parameters (Spar-
Slty DPin(m) and Pout(m), edge WeightS: Min(m):Mout(m):Tin(m)aTout(m)) for all SU-bjeCtS‘

brain diseases such as Alzheimer’s disease, to better understand the underlying structure

that influences correlations in brain activity.
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APPENDIX A: CHAPTER 2

A.1 Figures

Figure A.1.1: Coverage of 95% highest posterior density regions by simulation scheme
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Figure A.1.1. Percent of the 95% HPD intervals containing the true value, across 200
simulations in each scheme. Simulation schemes are listed in Table 2.1. The horizontal line
indicates 95%.
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Figure A.1.2: Median 95% highest posterior density region width by simulation scheme
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Figure A.1.2. Median widths of the 95% HPD intervals across 200 simulations in each
scheme. Simulation schemes are listed in Table 2.1.
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Figure A.1.3: Overlap of communities: by study group

Figure A.1.3. Overlap of the latent class structure across 91 control subjects (Top), 62
combined-subtype subjects (Middle), and 32 inattentive-subtype subjects (Bottom) from
the ADHD-200 sample. Each element of the matrix is the proportion of the corresponding
subjects in whom the corresponding two nodes fall in the same estimated latent class.
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A.2 Distributions

A.2.1 Prior and sampling distributions

Prior and sampling distributions are listed as follows:

Q
. Z; aq—
P(Zi|m,Q) = 7T1Z’ "'WQQ, P(7lQ) = Hﬂ'q 1,

q=1

and P(Y|Z,7,Q,0,p) is given by

H P(Y;JWWL, eoutapirmpouta Z’L'7 Zj7 Q)

1<i<j<n
= H H P(Y;jwlnv eouhpm;pout, Zz‘q * Zjl = 1, Q)

l<i<j<n q,l

- H (H [(pmf( ijs m))l(yiﬁo)(l _pm)l(YiFo)]ZiqZﬂ)

l<i<j<n  g=l

( H [(poutf( lj7 out))l(YiFO)(l —pout)l(Yij:O)]Ziqzjl)

q#l

- H (H[( m(Tm)l/Zexp{__(YzJ fin)” })I(YZFO)(l—pin)l(Yij:O)]Ziqzjl)

l<i<j<n  g=l

(TT Lo 2 (2 1) 571 ) O %)

- H( oGP exp (-T2 (¥, - )}
g[(poutﬂ""f)”? (=5 =)} ) T ) TTC =i

where A, B,C, and D satisfy

A:{i<j7q:ZiqZ 17K]¢O}7 B:{i<jaqil:Ziqul:17 U:/:O}

C={i<j,q:ZiyZjy=1,Y;;=0}, and D={i<j,q#1: Zy,Z; =1,Y;; =0}.

Moreover, we set

P(pzn) = 1(0 < Pin < 1)7 P(pout) = 1(0 < Pout < ]-)7

o6



1/2
Tin Tin
P(pin|Tin) = ( ) exp{=—5— (fin — Ho,in)*},

2 2
2mo, 0,in 20 0,in
. 1 1
P(7in) = By =——Ti " exp{=LBo,inTin },

0,in F(ao,in) in

1/2
Tou Tou
P(ﬂ'out|7-out) = (—t) eXp{ : (Nout - [I'O,Out)2}a

2 2
271-O-O,out 2U(J,out

1 _
P(Tout) = ﬁ((i(;jrt F(Oéo t) T:££OUt ' exp{_ﬂo,outTout}-
,0U

A.2.2 Full conditional posterior distributions

The full conditional distributions are derived as follows. First, we have

P(Zi|7r7Qapin7pout>97Y) o< P(Y|97P>W727Q)P(ZI|W>Q)

1/2 I(Yij-#())
Tin Tin 2
o< H H [(p'm (%) exp{—7 (Y;j ~ [hin) })

1<i<j<n \ g=l

ZiaZj1
(1- pm)l(yﬁzo):l

1(Y;]¢0) ZZqul
) (1 _pout)l(Yi]‘—O)]

1/2
Tout Tout 2
* H [(pout( o7 ) eXp{_ 92 (YLJ - Mout) }

q#l

Zon 7
* (7T1 ”---7TQZQ) .

Therefore, the full conditional distribution of Z; given all others is proportional to

Zi1 ZiqQ
.. i1 .. > Z.q .. : .. > qu i1 Z;
ln Din (Zvj)ZJ Dout (%])qﬂ J ] ln Din (Zvj)ZJQ Dout (%])WQ ] (7r1Zl '“ﬂ_QQ)a

Ve Ve

. - N\1/2 - 1(Y35%0) Vi
where Dy, (1, 7) = (pi" ( 217?) exp{-5* (Vi; - Mm)Q}) (1 —pm)l( 7= and
Tout 172 Tout 2 120 1(Y;;=0)
Dout (Zaj) = (pout(%) eXp{_% (Y;j_,uout> }) (1_pout) v
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Finally, we have Z;|... ~ Multinomial (7;1, ..., 7o) , where 7;, is given by

. . ; - - Z Zk
Tr‘] H DZn (%])Zﬂq DOUt (Zh?)k#q J

- *1
Tiq = !

3 — 57, forq=1,...,Q.
zlﬂ-q I}Dm (Z,j) o Dout (%])qu
g=1  j#i

The full conditional distribution of 7 is given by

n Q
p(7|Q,Z,Y) o P(Z|r,Q)P(7|Q) o< (H 7T1Zi1“'7TgiQ)( qu_l)
i=1 =1

n
Z Z“+a171

el

ZiQ +an1

o< 7T7i:1 e

O

Y

which implies that 7|... ~ Dirichlet (i Zi+a,..., i Zig + aQ) .
i=1 i=1

The full conditional distribution of p;, is given by

P(Y\0,p, 7, Z,Q)P(pin) o< (1= pin)™ - 1(0 < pin, < 1) ~ Beta(ng + 1,n¢ + 1),

where ny = |A| and np = |B|. Similarly, we have

P(Pout|+-) ~ Beta(ng + 1,np + 1),

where n¢ = |C| and np = |D].

The full conditional distribution of u;, is given by

P(pinlt, ®, Z,Q,p,Y) o< P(Y|0,p,7,Z,Q) P(ptin|7;))

Tin Tin
o< exp{z _7(}/2']' - Nm)Q} eXP{_Q—g(Mm - Mo,in)2}7
A 0-

0,in
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which implies that

0 Z Y + Hoin 2 -1
11 | 0,in UO,inTin
il ~
TLAO'S’m +1 ’ nAaam +1

Similarly, we have

2
UO,out %Y;j + [o,0ut 2 7_—1

Lout]++ ~ 5 , 5
NACH oyt + 1 NBOG oyt + 1

The full conditional distribution of 7, is given by

P(Tin|,u77T7Z7Qap7Y) &< P(Y|97p77r7Z7Q)P(uzn|Tln>P(Tzn)

o< ll_[( m( )I/Qexp{— 5 (i = pin)? })]

A

Q0,in ]‘ (e! 'Lnil
(Mm ~ f10,in)?} B g m%o’ exp{—Bo,inTin}

Z( i /Lm) 2 (,Um Mﬂ,in)z —50,m7m},

0,in

which implies that

nA+1

Tin"" ~ Gamma( + Q) STy Z (}/Zj ,um) +t 2 (,uzn Mo,m)2 + ﬁO,in) .

O,zn
Similarly, we have

TLB+1

1
+ Oéo outy ~ Z (Y;J ,uout) + 9 (,U/out ,LLO,out)2 + 50,out) .

Tout| -+ ~ Gamma(
0 out
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APPENDIX B: CHAPTER 3

B.1 Figures

Figure B.1.1: Difference in overlap of communities between latent groups
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Figure B.1.1. Difference in the overlap of the latent class structure between the three
estimated latent groups. Each element in these matrices gives the difference in proportions
of the two groups’ subjects in whom the corresponding two nodes fall in the same estimated
latent class. The comparisons are groups 2 vs. 1 (L), 3 vs. 1 (C), and 3 vs. 2 (R).

B.2 Distributions
B.2.1 Prior and sampling distributions

The prior and sampling distributions are as follows: For each subject m=1,..., M,
P(Vm|€) :mel... “//[;”W’
where the probability vector £ is distributed according to
w
P =T&
w=1
Then, foreachi=1,....nand m=1,..., M

Zi m Zi m
P(Zimy)[Vin = 0, Tiqw)) = Ty iy
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where, forw=1,.... Wandi=1,....,n
P( ) = Xi1(w)~l igw)—l
Ti(w)) = Ti1(w) TiQ) -

Then P(Y“/? Zv My Ty Piny Pouts Min(w) s Mout(w)s Tin(w) s Tout(w)) 1s giVen by

M Vmw
H H H [P(K](m)|v =w Zz(m)7Z](m) Min(w) > Hout(w) s Tin(w) s Tout(w) s Pin(w)s pout(w))]

m=11<i<j<n w=1

VVV'Lw
W 1- Zqu(m) Jq(m):|
)

Z ig(m) “jq(m .
I‘[l)m(mw)(Z ])] (o )[Dout(m,w)(zv.])] =t

where

Tin(w) 1(Y55(m)*0)

.. Tm(w) 1(Yi(my=0
Din(m,w)(Z,j) (pzn(w)( )1/2 ex { K](m)_ﬂzn(w))z}) (]_ _pzn(w)) (Vi (m) )’

.. 7-out(w) Tout(w) 1(Y55(m)*0) 1 my=0
Dout(m,w)(zaj) (pout(w)( )1/2 p{_ 9 (Yvij(m)_,uout(w))2}) 7o) (1_p0ut(w))( em= )

Then for the edge parameters, we set

]' apin(w) -1
B0y Op)
apin(w) ) IFPin(w)

1 Oépout(w) -1

P(pOU w ): pou w
t( ) B(O{pout(wﬂﬁpout(w)) t( )

(1- pm(w))ﬁpmw)_l

P(p'm(w) ) =

(1 ~ Pout(w) )Bpom(w) o

1/2
Tin(w) Tin(w)
P(,u”m(w)|7_m(w)) = (—) eXp{—(”m(w) - MO,in(w))Q}a

2
27TO-O in(w) 20 o sin(w)

[0 1 64
_ sin(w) an(w) ™
P(Tm(w)) = /30 2n(w) F(Tm()) mo(w) eXP{—Bo,m(w)Tm(w)},

1/2
Tout(w) Tout(w)
O—w) exp{—w(ﬂ/out(w) - NO,out(w))2}7

P(Mout(w)|7_out(w)) = (

2
27TUO out(w) 20 99 Jout(w)
o 1 o -
_ 0,0ut(w) 0,0ut(w)
P(Tout(w)) = By gut () T (aommi) 70004 ™ exp{~Bo out(w) Tout(w) -
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B.2.2 Full conditional posterior distributions

The full conditional distributions are then derived as follows. First, we have

P(Vm| e ) oc P(Vm|€) H P(Xij(m)|vm7Zi(m)7Zj(m)7”>7—7pinapout)

1<i<j<n
Vs Z Ziq(m) Zja(m) 1- Z Zrtmy Ziatmy |
oc &gt [ H [ Dingm,w (i,4) [ Dout(mun (i:5)]
1<i<j<n w=1
So, V| .o~ Multinomial(&y, . .., &w ), where
2 Ziq(m) Zja(m) 1= Z Ziq(m) Zja(m)
gw H [Dzn(m w) (Z j)] [Dout(m w) (Z j)]
é _ 1<i<j<n
W 5 Ziq(m) Zja(m) oo Z Ziq(m) Zja(m)
Z gw 11 [Dzn(m w)(l .])]q_ [Dout(m,w)(laj)] =t
w=1 1<i<j<n
The full conditional distribution of £ is proportional to
M
P(E]...) o< P(&) [T P(Vinl€)
m=1
M M
> Vimitai1-1 Y Vmw+aw -1
o< 5171:1 ;"Vﬂ ,
M M
which implies that &|... ~ Dirichlet| ¥ Vi +a1,..., ¥ Vi +aw |.
m=1 m=1
For m =1,..., M, the full conditional distribution of Z;,) given all other variables is pro-

portional to

P(Ziu) Vi = w, micu)) [ T P(Xijom)| Zicmys Zimys Vins 1y Ty Dins Dout)

J#

o< T zl(m) T ZiQ(m) [ ZZul(m) ja(m) 1- Z:Zuz(m) q(m)]

i) Mg 11 Din(mw) (i, 7)% Dout(mu (i,5) =

C N\ Zj1(m) Zil(m) © Y\ ZiQ(m) 12iQ(m)
n(m,w) (2 ]) ! zn(m w) (Z ,7)
lﬂzl(w) | | ( ) [ TiQ(w) II ’

J#i out(m w)(l ]) j#i out(m w)(l j)
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which implies that Z;(,,|... ~ Multinomial(7;(,,)), where

Z V,
w . (m) ] mw
T ( ) l_[ Din(m,w)("v]) "
q(w i
q G#i Dout(m,w)(%])

~ w=1
Tia(m) = - .
g=1w=1 Zq(’LU) J#i Dout(m,w)(zv.])

For w = 1,...,W, the full conditional distribution of m;(,) given all other variables is pro-
portional to

P(’/ri(w)) H P(Zz(m)|vm :w>7ri(w))
Vim=w

Qir(w)~l @iQ(w)~l Zir(w) __ZiQ(w)
il(w) TiQ(w) H Tit(w) " TiQ(w)
m=w
(w)t X Zit(w)~l o)t X ZiQ(w)~1
Vm=w Vim=w

© Tiw) T TQ(w) ’

o< Tr

which implies that ()| ... ~ Dirichlet(oiw)y + X Zit(w),---> %Qw) + % ZiQw))-
Vim=w

Vin=w

For each w = 1,..., W, the full conditional distribution of p;,c,) given all other variables
is proportional to

P(pzn(w)) o< P(pm(w))P(X|Vm =w, Z7[1'77—7pin(w)7pout(w))

Q
T T U(Xijem)#0) q§1 Zig(m)Zja(m)

OLpin(w)_ Vm=w 1<i<j<n

1 ) -1
o< Pyt (1= Pingu) P ™ prr

Q
Y M Xiyem)=0) X Zig(m)Zja(m)
(L= Pingay 1550 ,

which implies that pi,(w]... ~ Beta(nag) + Wpinyr MO(w) + 5pm(w))'

Similarly, pout(w)|- - - ~ Beta(npw) + Yosiyr D) + Bpousur ), where
A(w) = {m)ijj’ q: Vm =W, 1<1< ] < naXij(m) * 0, Zlq(m) . qu(m) = 1}, NA(w) = |A(w)|7
B(w) = {m,i,j,q +r:V, = w,l <1< j < n,Xij(m) +0, Ziq(m) . er(m) = 1},nB(w) = |B(w)|,

C(w) ={m,4,j,q: Vin =w, 1 <1< j <0, Xijim) = 0, Zigim) - Zjgem) = 1}, o) = |C(w)],
and D(w) = {m,i,j,q#7: Vi =w,1<i<j<n, X;jm) =0, Zigim) - Zjr(m) = 1}, Mpw) = |[D(w)].
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For w = 1,...,W, the full conditional distribution of () given the other variables is
proportional to

P(pin)|Tine)) T T1 PKijem)[Vin =W, Zijmys s T, Pin(w) s Pout(w) )

Vim=w 1<i<j<n

Tin(w
o eXp{Q#
0,in(w)

7_zn(w)
[T I exp{- (Xij(m) = Hin(w))? 1(X21(m)¢0)}22“1(m) gq(m)>

Vim=w 1<i<j<n

(ﬂzn(w) - /*LO,z'n(w))2} X

which implies that

Toinwy 2 Xij(m) ¥ Hoinw) 2 -1
1L | o Osin( )A(w) ’ JO,in(w)Tin(w)
) nA(w)O-(Q),in(w) +1 ’ nA(w)O-(Q),in(w) +1
Similarly,
02 Z Xz + U -
Hout( )| Gouttw) B(w) ) T Hooutte) 0(2) out(w) oult(w)
out(w)| -+~ ’
nB(w)O-g,out(w) +1 nB(w)JO,out(w) +1
Finally, for w = 1,..., W the full conditional distribution of 7;,(,) given the other variables

is proportional to

P(Tzn(w))P(Mzn(w)h_zn(w)) H H P(XZJ(m)“/m :w7Zij(m)7,uwa’rwapin(w)vpout(w))

Vim=w 1<i<j<n

1/2
Qg in(w)~1 Tin(w) Tin(w)
i 7—ino(w)( ) eXp{—ﬁQm(w)Tm(w)} exp{ 2 (:um(w) - NO,in(w))2} x
277—0_0 Jin(w) 20 o Jin(w)

Q
LXijom)#0) & Zigm) Zja(m)

Tin(w Tin(w
H H (pzn(w)( ())1/2 xp{- é)(Xij(m)‘Mm(w))z})

Vin=w 1<i<j<n

(nA(w)+1
2

&< 7—in(w)

+O‘O,7ﬁn(w) _1)

—Tin(w 2 Tin(w 2
eXp{ 2( i A;) (Xij(m) - :um(w)) - 252 ( () ) (/Lm(w) ﬂO,in(w)) - ﬁO,in(w)Tin(w)}:
w 0,in(w

which implies that .
Tin(w)| ...~ Gamma (&zn(wﬁﬁln(w)) ’
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where

& —nA(w)+1+a '
n(w) 9 0,in(w)
= 1 2 1 2
and Bin(w) = 5 Z (Xij(m) - Hin(w)) + %92 (Mm(w) - Mo,m(w)) + Boin(w)-
A(w) 0,in(w)
Similarly,
7_out(w)| ...~ Gamma (dout(w)>ﬁout(w)) s
with
~ NB(w) T 1
Aout(w) = T + Q out(w)
= 1 2 1 2
and ﬂout(w) = 5 B(Z) (X'Lj(m) - ,U'out(w)) + 20_2—() (,uout(w) - ,u[),out(w)) + BO,out(w)-
w 0,out(w
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APPENDIX C: CHAPTER 4

C.1 Figures

Figure C.1.1: Parameter estimates: gender and age

(b) Age

Figure C.1.1. Coefficient estimates comparing the probability of a latent connection be-
tween all n-(n—-1)/2 pairs of nodes. (L) 3;; posterior medians and 99% credible intervals and
(R) the posterior medians just for the “significant” estimates where zero was not contained
in the credible interval.
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C.2 Distributions

C.2.1 Prior and sampling distributions

Prior and sampling distributions are listed below.
P(Z:j(m)|xm7ﬁlj) \/_G‘Xp{ ( ij(m) ~ ,, Bi]')2}7
where the distribution of the regression coefficients is given by

1 1
P(ﬁz‘j|bo,zj, AO,ij) = mexp{—ﬁ(ﬂij - bO,ij)TAO,ij (ﬁij - bo,z‘j)}
with b ;; = (boo,ij> bo1,ijs - - - » bop+1),ij) indicating the prior mean, A ;; denoting the (p+1) x (p + 1)
prior precision matrix for the coefficients, and x,, denoting the covariate vector for subject
m (including a one for the intercept). Then WLOG, we assume Gaussian-weighted edges for

each subject m=1,..., M:

.\ 1U(ZE,0>0) . \JUZE,<0)
P(Y;](m)| U(m)"”): [Dzn(m)(zaj)] atm) [Dout(m)(la.])] i) )

where
Dm(m)(i,j) _ [pm(m)(ﬂg:z) )1/2exp{_7m2(m) (Yij(m) _ Mm(m))z}]lmﬂm#o)(l _pm(m))l(nj(m:())
and
Doty (i 7) = [Poutiom) ( Toét;m) )2 exp =T (s oy =ttty )21 ] (LDt ) V0,
Then, for m=1,..., M the edge distributions are as follows:
P(pin(m)) = ; i (1 = Pinmy ) in 7,
B(ay,, vlﬁpm) Pinm)

Apout -1

pou m (1 ~ Pout(m )Bpout_l
B(apout7/8pout) t( ) ( )

P(pout(m) )

1 2
P(,Uzn(m)) = (271'0'2 ) Xp{ O_O (,uzn(m) #0,7271)2}7

0,in

1 : Tout(m)
P(Mout(m)Wm(m)) o< (T) exp{ (Uout(m) - MO,out)Q} 1(,um(m) > ,uout(m)),

0,out(w) 2 (2)out
Q0,in 1 ap,in—1
P(Tzn(m)) = BO,?n m Tino(,m) exp{_ﬁ(),in'rin(m)}a
1

aO,out_l

P(Towatm)) = Boit” Ty Touitmy P oowaTonam }-
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C.2.2 Full conditional posterior distributions

Here we show the derivations of all full conditional posterior distributions. The full
conditional distribution of Zl.*j (m) given all other variables is proportional to

1 * T 2 .. 1(Z;j(m)>0) o
o< xp{=5 (Zjjm) = mBii)"} Dingmy (i) [Doutmy (i-.3)]

1 * * .. * .o
= exp{_§(Zz‘j(m) - qunﬁm)Q}[l(sz(m) > O)Dm(m)(%]) + ]‘(sz(m) < O)Dout(m)(z7])]

U2, 1y <0)

7,

This implies that

P(Z.*. | N ) _ Qb(Z;}(m) - x;nﬁij)[l(zgj(m) > 0) ’ Din(m)(i7j> + 1(Z;j(m) < 0) ) Dout(m)(ivj)]
e Dinmy (i, )1 = ©(=27,58)] + Dout(my (i, 5)®(=7,8:5)

Y

and so

Zil.. Dingmy[1 = ®(=27,5:;)]
Dinmy[1 = @(~27,8:5) | + Dowr(my®(~27,8:)
Dot (m)® (=27, 8i5)

Din(m) [1 - (I)(_x;rnﬁij)] + Dout(m)q)(_x;rnﬁij)

TN(.Z’;FnBZ], 1, —0Q, O) +

TN(I’;;.LBZW 1, 0, OO),

where TN(u,02,a,b) refers to the truncated normal distribution with mean and variance
(from the untruncated distribution) p and o2, and truncation interval (a,b).
Then the full conditional distribution for each 3;;, 1 <i < j <n is proportional to

M
P(Bij|bo,ij, Nojij) H1 P(Z iyl ms Bij)
1 M. * T 2 1 T
o< exp{~3 T;(Zij(m) =@ 5i)” = 5 (Bij = boag) Roai (Bij = boa)}

1 ) 1
o eXp{_§(Zij - XBij) ' (Z5 - X Bij) - 5(5@‘ = bo,ij) " No,ij (Bij = bosij) }

= eXp{—%(ﬂij = B5) (XX + Mo ) (Bij = Bij) )

where B = (XTX + Agij) H(X7Z}5 + Agjijhosij) and Zf5 = (Z}

iy 2 )T. This implies
that

ij(M)

613‘ Y N(p_,_l)(ﬁ;j, (XTX +A0,ij)1)-
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The full conditional distribution for pi,(m), m =1,..., M, given the other variables, is pro-
portional to

1<i<j<n

o [ 0= e |2 0 o |

which implies that

Din(m)l - - - ~ Beta(apm + 1 A(m), Bpin + nc(m)),
and similarly,
Pout(m)] - - - ~ Beta(apm +NB(m)» Bpour + nD(m)),
where
A(m) ={i <j: Zjjn) > 0,Yi50m) # 0}, nagm) = [A(m)],
B(m) ={i<j: 25 £0,Yijim) # 0}, np@m) = |B(m)],

(m) {Z < ] Zz](m) < 0 Yz](m) = 0}7 nC(m) = |C(m)|7
D(m) {Z < j zg(m) < O?K](m) 0}7 ND(m) = |D(m)|

The full conditional distribution for fi,(,) given all other variables is proportional to

P(,uzn(m))P(,uout(m)|,uzn(m) H P(Y;](m)LU/zn(m)a)

1<i<j<n

1 Tin(m)
2 (,Um(m) - ,UO,in)Q} 1(Nzn(m) > ﬂout(m)) eXp{ Z _—(Y;](m) - Mzn(m))2}>
2O-O,in A(m) 2

o< exp{ -

which implies that

UO in 2 Y;J(m) + [o,in m(m) o2 -1
inon) NTN( (m) 0,inTin(m) ot oo)
in(m nA(m)O-gﬂ-n 4 Tl;l(m) ) nA(m) Uoﬂ»n i Tz_nl(m) s Mout(m) > y

and similarly,

Uo out Z ng(m) + Ho,0ut oult(m)

2 -1
(m) O—O,OutTout(m)

Mout(m)'n- ~ TN( _ ) 7_Oo7luin(m))'
N B(m) Og,out + 7—oult(m) nB(m)UO,out * 7—01,L1t(77’b)

Finally, the full conditional distribution for 7;,(,,) given the other variables is proportional
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to

P(Tm(m)) H P(Yz’j(m)hm(m)---)

1<i<j<n

oc TQO,in_ nA(m)/Z Tzn(m)

1
in(m) exp{—Bo,inTin(m) } Tin(m) exp{-

> (Yijm) = tinm))*}
A(m)

which implies that

nA(m) 1
Tm(m)| Sl Gamma(T + Q,in, 5 A(Z:)(Y;j(m) - Mz‘n(m))2 + 50,m),

and similarly,

N B(m)

1
+ Qg out 5 Z (}/z](m) - /4Lout(m))2 + 60,0ut)~

Tout(m)] - - - ~ Gamma(
B(m)
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