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ABSTRACT 

MATTHEW S. MCMURRAY: A Rodent Model Of Cocaine’s Effect On The Mother Infant Dyad 
 (Under the direction of Josephine M. Johns) 

 

Cocaine abuse by women is correlated with a high incidence of child neglect and abuse, and 

young children prenatally exposed to cocaine show early signs of neurobehavioral stress, including 

excessive and high-pitched crying, increased state lability, decreased responsiveness to caregivers, 

stress-related behavioral differences, and poor social development. Research on the effects of in utero 

cocaine exposure on early brain development and behaviors that elicit maternal care is relatively 

sparse. Using a rat model of cocaine-induced maternal neglect, the goals of this dissertation were to 

first examine the impact of cocaine on the interactions between rodent mothers and pups and to 

determine whether specific elements of pup behavior may be altered by prenatal cocaine exposure to 

influence these interactions. The first experiment described here examined whether the effects of 

cocaine-induced maternal neglect extend intergenerationally and if the rearing environment 

(neglectful or nurturing) can alter the effects of prenatal cocaine on offspring. Results from this study 

indicated that cocaine-exposed pups elicited reduced maternal care from their rearing mother, 

regardless of that mother’s drug history. Since rodent mothers attend to the specific stimuli of pups, 

such as vocalizations, body temperature, and olfactory cues, the next study was completed to examine 

the impact of cocaine on the cues utilized by pups to elicit care. Results from these studies suggested 

that prenatal cocaine-exposure influences thermoregulation and vocalization in the early postnatal 

period, either directly or perhaps in combination with the indirect effects of prenatal stress and 

malnutrition. A third experiment was also conducted to examine a number of chemicals in pup urine 

that may contribute to the elicitation of maternal care. The only chemicals of interest that were 
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detectable in urine were cocaine and its major metabolites, found in samples through postnatal day 3, 

suggesting that cocaine may still be pharmacologically relevant into the postpartum period and may 

influence the taste and smell of pup urine, thus potentially influencing the maternal response. 

Together, this dissertation suggests that cocaine impacts both members of the mother-infant dyad to 

alter these important social interactions, and highlights numerous targets of prenatal cocaine on infant 

behavior for further study. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

A Brief History of Prenatal Drug Exposure 

Fetal exposure to drugs of abuse is arguably one of the more preventable causes of learning 

and developmental disorders, and exceeds Down’s Syndrome and Autism in prevalence (Fombonne 

2009). Fetal Alcohol Spectrum Disorder alone effects approximately 10 out of every 1000 births 

(May et al. 2001), a statistic that increases when considering exposure to other drugs of abuse. Even 

more startling is that despite a concerted public health effort, the number of infants born with in utero 

exposure to drugs of abuse (including alcohol and nicotine) is climbing (Office of Applied Studies 

2008), as is the human and financial cost associated with such exposure. Recent estimates (Stade et al. 

2009) of the cost of Fetal Alcohol Spectrum Disorder alone are as much as $11 billion (adjusted for 

2002), or nearly half of the annual budget for the state of North Carolina. Clearly, prenatal exposure 

to drugs of abuse continues to pose an enormous public health and financial problem, and thus an 

important field for scientific study. 

While a large body of research has been accumulating with respect to fetal alcohol exposure, 

less is known about exposure to other drugs of abuse, particularly stimulants, with cocaine being one 

of the most prominent. During the height of the cocaine epidemic of the 1980’s and 90’s an 

abnormally large number of infants were born to cocaine-abusing, primarily black, mothers. The 

consensus at that time was that these babies were hopeless cases. The public’s already prejudiced 

opinion of the mothers of these infants spread to the infants themselves. This early opinion was fueled 

by statements from a number of prominent outspoken individuals, such as Boston University 
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President John Silber’s statement lamenting the usage of tax dollars to care for "crack babies who 

won't ever achieve the intellectual development to have consciousness of God." Pulitzer Prize 

winning columnist Charles Krauthammer declared that cocaine-exposed babies would have "a life of 

certain suffering, of probable deviance, of permanent inferiority.”  

Clinical science finally began to address the issue of prenatal cocaine exposure to some 

extent in the 1980’s to 1990’s. Clinical research on the topic was not without its weaknesses, 

however. Physicians published case-reports on infants in the worst possible situations, born exposed 

to a number of drugs, to single mothers with a low socio-economic status, and having numerous other 

health issues. In 1985, one of the first scientifically designed studies was published indicating that 

infants of 23 cocaine users were more irritable and less interactive or engaged than non-exposed 

babies (Chasnoff et al. 1985). Even though several important controls were not employed 

(socioeconomic status, concurrent non-cocaine drug use, prenatal care, etc), many individuals 

considered these to be the definitive findings concerning these infants. 

The National Institutes of Health had not funded large-scale clinical research to this point, 

largely because of the expense required for such projects. Journals were also more likely to publish 

papers that demonstrated an effect of prenatal cocaine than those showing no effect regardless of 

control issues in the late 1980s (Koren et al. 1989). A turning point came in a 1992 paper that stated, 

“predictions of an adverse developmental outcome for these children are being made despite a lack of 

supportive scientific evidence. Whatever the true outcome, we are concerned that premature 

conclusions about the severity and universality of cocaine effects are in themselves potentially 

harmful to children” (Mayes et al. 1992). Clearly, clinical science was just becoming aware of the 

need for well-designed research in this area.  

 

Epidemiology 

Although the epidemic of the 1980’s may have come to a not-so-abrupt close, maternal 

cocaine usage has certainly not ceased, and remains a large public health concern. Cocaine has been, 
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and continues to be, one of this country’s top illicit drug problems. The perceived availability of 

cocaine has remained relatively constant since 2002. In 2008, an estimated 12% of the American 

population, roughly 37,000,000 individuals, reporting use during their lifetime (Office of Applied 

Studies 2007; Office of Applied Studies 2008). This number is up from approximately 11% in 2007. 

Approximately 16 million women report use during their lifetime, and 1.9 million reported using 

during the past month. While these statistics may show a trend towards increasing usage, there have 

been some improvements, especially with regard to use by women of childbearing age (15-44 years 

old). In 2006, roughly 700,000 women of child-rearing age reported usage in the past month, while in 

2008, this number dropped to a little over 500,000. The improvement is even more positive within 

pregnant women. The number of pregnant women using cocaine decreased from a reported 45,000 in 

1992 to approximately 9,000 in 2008. While there have been some positive trends in cocaine use 

statistics, it is clear that cocaine remains an important public health and financial concern, especially 

for maternal and child health. 

 

Effects of Prenatal Cocaine Exposure 

Generally it is thought that there are two primary causes of the pathophysiological effects 

from prenatal cocaine exposure: the direct effects of cocaine on neurodevelopment, and its indirect 

effects resulting from vasoconstriction. Cocaine readily crosses the placental barrier, thus entering 

fetal circulation and directly affecting the central and peripheral nervous systems. Cocaine’s 

mechanism of action in fetal brain is identical to its mechanism in adult brain, where it primarily 

blocks presynaptic monoamine uptake, effectively increasing extracellular levels of the 

neurotransmitters dopamine, serotonin, and norepinephrine. However, in contrast to the adult brain 

where cocaine alters signaling parameters in an already developed brain, fetal cocaine exposure is 

more likely to result in malformations of the developing brain, potentially disrupting the development 

of uncountable behavioral systems and biochemical pathways. These teratogenic effects depend 

greatly upon the time point of exposure, as well as the duration and dose. As new physiological 
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Figure 1.2. Critical periods for neuronal development in the 
neonatal rodent brain. Times are based on autoradiographic 
studies of specific structures over time. The vertical line at 
day 12 represents the approximate end of critical period for 
gross defects and the vertical line at day 20 indicates birth. 

systems become functional, these developing systems are more susceptible to insult caused by 

teratogens, such as cocaine. Such vulnerable periods in development are summarized in Figure 1 

below (adapted from (Selevan et al. 2000)). 

 

Especially vulnerable 

developmental periods exist not only in 

the whole organism, but within the 

developing brain as well. During central 

nervous system development, brain 

regions form non-synchronously, causing 

especially vulnerable periods of 

development for specific brain regions. 

Such periods in the rat are shown in 

 
Figure 1.1. Schematic illustration of the vulnerable periods in human development. Dark gray denotes 
highly sensitive periods; light gray indicates stages that are less sensitive to teratogens. 



5 

Figure 2 (Selevan et al. 2000). While each region may emerge anatomically at different 

developmental time points, their development tends to overlap to some degree. These periods of 

overlap include especially sensitive periods where exposure to teratogens can affect the development 

of a large number of brain regions, potentially resulting in widespread effects on postnatal behavior 

and health (highlighted in Figure 2, noted between the vertical dotted lines). In addition to such 

critical periods in brain formation, the early stages of brain development are also especially 

vulnerable to effects of environmental contaminants, as disruptions in neurogenesis and cell migration 

can have long lasting and often dramatic effects on the outcome of the developing brain, as seen in 

fetal alcohol exposure (Sulik 2005). 

As discussed above, cocaine’s primary mechanism of action results in reuptake inhibition 

and, thus initially increased levels of the neurotransmitters serotonin, dopamine, and norepinephrine, 

which in turn allow for both direct and indirect effects on development. Monoamines are among the 

earliest signaling molecules to emerge in development (Levitt et al. 1982; Puelles et al. 1998), and 

thus provide an important regulatory role as demonstrated in mouse knock out models of tyrosine-

hydroxylase and dopamine-β-hydroxylase, the precursors to dopamine and norepinephrine, 

respectively. Knock-outs of these genes result in an almost complete loss of fetal viability (Kobayashi 

et al. 1995; Thomas et al. 1995; Thomas et al. 1998; Zhou et al. 1995). Dopamine plays a particularly 

important regulatory role in both neurogenesis and neuron migration to cortical regions (Bhide 2009). 

Additionally, serotonin works developmentally to influence the genesis, migration, and targeting of 

growing serotonergic neurons, which in turn can alter the development of other neuron types and 

even target tissues (Whitaker-Azmitia et al. 1996). Given the importance of these neurotransmitter 

systems in development, it appears likely that the developmental effects of cocaine work directly 

through these mechanisms. 

Among the most robust physical findings in cocaine-exposed human infants is a reduction in 

head circumference compared to control infants (Bada et al. 2002; Chasnoff et al. 1998; Mirochnick 

et al. 1995; Zuckerman et al. 1989), potentially a direct physiological consequence of the impact of 
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cocaine exposure on brain development. These findings have been further explored in preclinical 

models using full-term cocaine exposure, which have demonstrated alterations in the development of 

both the neocortex (Akbari et al. 1994; Jones et al. 1996; Kosofsky et al. 1994; Lidow et al. 2001; 

Ren et al. 2004) and hippocampus (Baraban et al. 1999), as well as disruptions in central myelination 

(Wiggins et al. 1990). Prenatal cocaine exposure has also been shown to alter developmental 

neurogenesis, new neuron proliferation, and connectivity (Garg et al. 1993; Nassogne et al. 1995; 

Nassogne et al. 1998), effectively disrupting neuronal migration and thus cortical structure. 

Secondary to its direct effect on monoamine levels, cocaine may work indirectly to alter 

development through its vasoconstrictive properties. An increased plasma concentration of 

catecholamines in the cocaine-using mother reduces placental blood flow, thus reducing fetal oxygen 

and nutrient supply and potentially causing hypoxia in the developing fetus. Catecholamine levels are 

also elevated in the developing fetus, resulting in fetal vasoconstriction and potentially resulting in 

further hypoxia in the developing brain. When coupled with the anorectic effects of cocaine, a 

reduction in fetal blood supply can have disastrous effects on development. In general, maternal 

cocaine usage leads to an increased likelihood of fetal resorption, and in those infants that survive, 

there is an increased likelihood that the infant will be Small for Gestational Age, born prematurely, 

and have reduced birth weight. These are likely the effects of in utero malnourishment. In addition to 

malnourishment, hypoxia activates the sympathoadrenal system through increases in pH, resulting in 

fetal stress. 

Fetal distress may be a third emerging cause of cocaine’s pathophysiological effects. While 

there is little empirical evidence to support this hypothesis, it is generally thought that elevated levels 

of fetal stress hormones following a stressor such as prenatal cocaine exposure can act upon the 

hypothalamic-pituitary-adrenal (HPA) axis to alter the neuroendocrine environment, potentially 

changing the set-point for endocrine-related behavioral phenotypes (Matthews 2001). As Lester and 

Padbury stated, “There are few settings in which gene-environment interactions are more profound, 

critical windows are of a narrower duration, and the latency to onset of effect is shorter, than the 
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influence of an adverse intrauterine environment on neuroendocrine and neurobehavioral functioning 

in the newborn” (Lester et al. 2009).  

Researchers have recently turned to animal models in an effort to isolate the specific effects 

of prenatal cocaine from the various confounds associated with research in human populations 

(socioeconomic status, subject compliance, etc). Rodent research has revealed that rat pups of 

different ages that are prenatally exposed to cocaine differ in their endocrine response to tactile 

stimuli, stress responsivity, ability to elicit play solicitations from a normal conspecific (Wood et al. 

1994; Wood et al. 1995), and exhibit abnormal social/aggressive behavior (Johns et al. 1994a; Johns 

et al. 1994b; Johns et al. 1999; Overstreet et al. 2000). Prenatal cocaine exposure has also been 

speculated to result in an altered ability to recognize social cues or relevant behavioral displays (Johns 

et al. 1995), as evidenced by a tendency towards asocial behavior and aggression. Many of these 

effects of prenatal cocaine found in rodent populations are similar to the effects of fetal stress, 

suggesting the validity of this theory. Fetal stress alone is associated with a number of developmental 

effects in rodents, including an elevated degree of “emotionality,” deficits in play behavior, increased 

vocalizations, and impairments in discrimination, reversal learning, and memory. Additionally, 

human infants with fetal stress are often reported to be more irritable, anxious, and difficult to control. 

These last effects are particularly important as they relate to maternal-infant interactions. It is 

unknown if such effects of cocaine also exist in rodents, but should these effects translate between the 

two species it would suggest yet another potential phenotype targeted by prenatal cocaine. 

 

Effects of Cocaine on the Mother-Infant Dyad 

Development in most species involves at least two parties: the offspring and the parent. Our 

own anecdotal evidence suggests that even following an optimal uterine environment, there is still 

tremendous room for developmental disruption in the postpartum period due to poor maternal care. 

While subtle aspects of maternal care can affect development, perhaps the most dramatic example of 

how maternal care can influence development is in the extreme case of child maltreatment or neglect, 
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when maternal care is poorest. The effects of maltreatment are not only immediate, with maltreated 

children showing significant cognitive delay and weight gain compared to controls (Scarborough et 

al. 2009), but long term behavioral effects can also occur, often manifesting in adolescence or 

adulthood (Johnson et al. 1999). 

Cocaine-use by human mothers during pregnancy is associated with a greater incidence of 

child neglect (Kelley 1992), deficits in mother/infant “bonding” (Burns et al. 1991), child abuse 

(Murphy et al. 1991), and placement in foster homes (Leventhal et al. 1997; Nair et al. 1997). 

Cocaine-using mothers have been shown to respond less to their infants (Mayes et al. 1997), and are 

more likely to show hostility during feeding or play interactions (Goldman-Fraser 1997; Light et al. 

2000). However, clinical studies must always account for numerous confounds such as poor subject 

compliance, biases in sampling, and multi-drug exposure, thus limiting the interpretability of these 

findings. Animal models can more precisely target the impact of cocaine on maternal behavior 

without the many confounding variables inherent in human studies. A variety of cocaine treatment 

models have been explored in pregnant or postpartum rats, which include chronic (throughout the 21 

day pregnancy), acute (single dose after delivery, 30 minutes prior to testing), or intermittent (two 

days every five days during pregnancy and lactation) at doses generally between 15-30 mg/kg. These 

studies observed an increased latency and decreased duration of nursing behavior in chronically, 

acutely (when cocaine is in their bloodstream) and intermittently treated groups, along with other 

general disruptions in maternal behavior (Elliott et al. 2001; Johns et al. 1994c; Johns et al. 1997b; 

Johns et al. 1998b; Nelson et al. 1998). The results from studies such as these suggest that all 

regimens of cocaine treatment seem to affect similar systems, though the extent of effect seems 

determined by the administration regimen (Johns et al. 2005a). Importantly, these effects are not 

primarily attributable to cocaine withdrawal (Johns et al. 1997b) or cocaine-induced hyperactivity 

(Johns et al. 1994c; Kinsley et al. 1994; Vernotica et al. 1996a; Vernotica et al. 1999). Significant 

effects begin to appear at a moderately high dose (30 mg/kg/day) of cocaine (Nelson et al. 1998), 

translating to approximately 1 gram of cocaine in a 150 lb woman. 
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Since many cocaine-exposed children experience adverse maternal care environments, as 

clinical data indicate, any behavioral/biological disorders caused by prenatal cocaine exposure may be 

exacerbated in these children (Eiden et al. 1999; Smith 1992; Zuckerman et al. 1993). Thus, there is 

likely an important interaction between any biological vulnerabilities due to the direct effects of 

prenatal cocaine exposure and any indirect effects of the postnatal environment. In other words, 

infants with prenatal cocaine exposure may be less capable of eliciting the optimal care from their 

mothers. Indeed, infants with prenatal cocaine exposure show poor state regulation (Eiden et al. 

2009a; Schuetze et al. 2007; Schuetze et al. 2009b; Schuetze et al. 2009a), exhibit altered 

physiological responses to stimulation (Eiden et al. 2009a; Eiden et al. 2009b), are more excitable 

(Eiden et al. 2009a), and are generally less physiologically stable (Bendersky et al. 1998a; Bendersky 

et al. 1998b; Brown et al. 1998; Chasnoff et al. 1989; Chiriboga et al. 1993; Delaney-Black et al. 

1996; Gingras et al. 1995; Jacobson et al. 1996; Karmel et al. 1996; Lester et al. 1998; Mayes et al. 

1995; Mayes et al. 1996; Neuspiel 1995; Nulman et al. 1994; Regalado et al. 1996; Regalado et al. 

1995; Sheinkopf et al. 2006b; Tronick et al. 1996). Given cocaine’s likely effects on early brain 

development resulting from both prenatal exposure, as well as the secondary effects of altered 

maternal care, it is reasonable to suggest that individuals with prenatal exposure to cocaine may 

exhibit a different pattern of effects as adolescents and adults than they did as infants.  

The Specific Aims of this dissertation examine how prenatal cocaine exposure affects stimuli 

related to early mother-infant interactions. Specifically, to determine: 1. If dam cocaine treatment or 

pup prenatal cocaine exposure alters dam-pup interactions; 2. If prenatal cocaine exposure alters pup-

produced stimuli that could subsequently affect maternal behavior towards those pups; and 3. How 

long cocaine and its metabolites are present in pup urine following parturition and if levels of 

additional urine chemicals are altered that may influence the odor or taste of urine. These experiments 

will be the first systematic evaluation of these issues. The long-term objectives are to determine how 

cocaine affects development in prenatally-exposed offspring, nurturing behavior in mothers, and 

subsequent mother-offspring interactions. While it is beyond the scope of this single proposal to 
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manipulate and determine differential response of mothers to various changes in pup-produced 

stimuli, future experiments will make these determinations. It is reasonable to suggest that drug-

exposed infants seeking care from a non-nurturing caregiver may have difficulty responding to their 

mother/caregiver, as well as forming normal social bonds, which if true in clinical and preclinical 

models, presents a significant societal issue.



 

 
 
 
 
 
 

CHAPTER II 

AN INTERGENERATIONAL CROSS-FOSTERING STUDY OF  

THE EFFECTS OF COCAINE ON MATERNAL BEHAVIOR AND AGGRESSION 

 

Introduction 

As discussed in the general introduction above, maternal cocaine abuse during pregnancy has 

been associated with deficits in maternal-infant “bonding” (Burns et al. 1991), and mothers with a 

history of drug abuse often exhibit poor mother-infant interactions (Bauman et al. 1983; Bays 1990; 

Howard et al. 1995; Johnson et al. 1990). Though studies with human subjects are helpful in 

understanding the connection between cocaine-use and maternal neglect, these experiments are 

correlational at best. There is an unavoidable lack of control over many important variables that could 

confound the results, such as socioeconomic issues, lack of family support, multi-drug abuse, and 

poor general prenatal care (Chasnoff et al. 1998; Koren et al. 1998). However, despite this lack of 

control, studies that employ numerous controls have shown a strong correlation between reported 

history of child maltreatment and the perpetration of maltreatment and/or neglect in next generation 

mothers (Egeland et al. 1987; Hunter et al. 1978). 

In order to appropriately investigate and describe the characteristics of cocaine-induced 

disruption of maternal behavior and potential neglect, as well as possible intergenerational effects of 

such disruptions, a non-human cocaine abuse model offers several advantages. The laboratory rat is a 

particularly good model for the study of maternal behavior. Their offspring are born blind, unable to 

thermoregulate, defecate, urinate, or protect themselves from attack (Numan 1994), thus needing 

considerable maternal care to survive (Stern 1997). Behaviorally and neurologically, maternal 

behavior in the rat has also been relatively well characterized (Numan 1994; Pedersen et al. 1982; 
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Pedersen et al. 1994) so that any insult to normal maternal behavior can be easily determined. One 

subset of maternal behaviors in the rat is maternal aggressive behavior, related to protecting offspring 

from intruders into the nesting environment (Gammie 2005; Numan 1994). Maternal aggression is 

found in most mammals and has been characterized as an offensive/aggressive series of actions and 

postures, including direct attacks on an intruder, thought to help ensure offspring survival (Numan 

1994). Maternal aggression can be elicited during the late gestational period, but is thought to peak 

during the first 10 postpartum days (PPDs) (Giovenardi et al. 1997). 

The results of the animal studies to date seem to replicate the disruptions in maternal care 

seen in human populations. There is general agreement that acute cocaine treatment in rat dams 

disrupts both early onset and established pup-directed maternal behavior, while increasing locomotor 

behavior and stereotypies (Johns et al. 1994c; Johns et al. 1998b; Kinsley et al. 1994; Zimmerberg et 

al. 1992). Significant disruptions in maternal behavior following chronic gestational cocaine 

treatment during pregnancy were reported only for the onset of maternal behavior or very early 

postpartum period, and these dams did not display the hyperactivity often seen in acutely treated 

dams (Heyser et al. 1992; Johns et al. 1994c; Kinsley et al. 1994; Peeke et al. 1994; Vernotica et al. 

1996a). To our knowledge, no reports have been previously published on the intergenerational effects 

of such treatment on maternal behavior; however, numerous studies have demonstrated the non-

genomic intergenerational transmission of naturally occurring variations in maternal behavior and 

stress responsivity (Champagne et al. 2001b; Francis et al. 1999; Meaney 2001; Weaver et al. 2004). 

In addition to its effect on maternal behavior, drug abuse has long been associated with both 

anxiety and aggressive behavior (Moss et al. 1993). Research from several labs has reported that 

chronic and acute cocaine-treatment can both alter maternal aggression, sometimes in a dose-

dependent fashion (Heyser et al. 1992; Johns et al. 1994c; Johns et al. 1998b; Lubin et al. 2001; 

Vernotica et al. 1996a). Chronic cocaine-treatment has been shown to increase maternal aggression 

significantly by PPD six (Johns et al. 1994c), and under certain conditions, PPD 10 (Heyser et al. 

1992), while acute treatment has been shown to decrease it (Johns et al. 1994c; Johns et al. 1998b; 



13 

Vernotica et al. 1996b). Importantly, the effects of chronic cocaine-treatment on aggression do not 

result from cocaine withdrawal (Johns et al. 1997b). Most findings to date are reported for lactating 

dams during the earlier postpartum period at more moderate doses of cocaine, with some data 

available for the later postpartum period at higher doses (Heyser et al. 1992). Interestingly, the 

concept of intergenerational transmission of stress responding through altered maternal behavior has 

gained attention over the last few years (Champagne et al. 2001b; Fish et al. 2004; Francis et al. 2000; 

Francis et al. 2002; Pedersen et al. 2002). To our knowledge there are no reports of intergenerational 

studies examining maternal aggression following cocaine treatment or exposure in the later 

postpartum period. 

This initial study was designed to examine if the previously reported effects of cocaine-

treatment on maternal behavior and maternal aggression persist into the next generation, and if these 

effects were primarily related to the offspring prenatal exposure condition, maternal care experience, 

or the interaction between both of these factors. We hypothesized that the onset of maternal behavior 

in first generation dams (FGDs) would be altered primarily by prenatal cocaine exposure, with 

secondary effects resulting from the maternal care environment, and the largest behavioral effect 

resulting from the combined effect of poor maternal care and prenatal exposure to cocaine. With 

regards to cocaine’s effect of maternal aggression, we hypothesized that the cocaine-induced 

increases in maternal aggression previously reported on PPD six (Johns et al. 1994c; Johns et al. 

1998b) would continue in mothers at later points and would affect the first generation offspring’s later 

aggressive behavior. In the first generation dams, we expected a lesser, but still elevated level of 

maternal aggression resulting primarily from prenatal cocaine exposure, with a lesser effect due to the 

rearing environment, and the strongest effect seen in animals both exposed to cocaine and reared by 

cocaine-treated mothers. 
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Methods 

Subjects: 

Following a two-week habituation period, virgin female (200-240 grams) Sprague-Dawley 

rats (Charles River, Raleigh, NC) were placed with males on a breeding rack until a sperm plug was 

found, which was designated as gestation day (GD) zero. Subjects were randomly assigned to 

treatment or control groups and singly housed and maintained on a 12:12 reverse light cycle (lights 

off at 0900) for seven days. They were then transferred to a room with a regular light cycle (lights on 

at 0700) for the remainder of the experiment, a procedure that generally results in the majority of 

dams delivering their litters during daylight hours (Mayer et al. 1998). 

While a total of five treatment groups were presented in the original publications (Johns et al. 

2005a; McMurray et al. 2008b), for the simplicity of our discussion the groups have been reduced to 

the following: chronic cocaine (CC), chronic saline (CS), and untreated (UN) dams. Chronic cocaine 

and CS dams received subcutaneous injections twice daily throughout gestation (GD 1-20) on 

alternating flanks, of 15 mg/kg cocaine HCL (dose calculated as the free base; Sigma Chemical 

Company, St. Louis, MO) dissolved in 0.9% normal saline (total volume 2mg/kg), or normal saline 

(0.9%) respectively, at approximately 8:00 am and 4:00 pm. UN dams were weighed and handled 

daily but received no drug treatment. All treatment groups had free access to water and food (rat 

chow), except the CS treated dams who were pair fed to match CC dams in order to control for the 

anorectic effects of cocaine, as previously described (Johns et al. 1994c). Separate groups of animals 

were designated for maternal behavior and maternal aggression testing. A schematic outline of the 

testing schedule for each group can be found in Figure 3. All procedures were conducted under 

federal and institutional animal care and use committee guidelines for humane treatment of laboratory 

subjects. 
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Cross-fostering 

On the day of parturition, pups were removed from each dam, weighed, counted and their 

gender determined before being culled to a litter of 4 males and 4 females. Litters were culled 30 

minutes before testing and then returned to either their natural mothers at time of testing or the entire 

litter fostered to a dam from a different treatment or control group having delivered as closely as 

possible to the same time (usually within several hours) who had her own pups removed. Dams and 

their litters were matched for delivery time and cross-fostering interval in all groups. Group numbers 

varied somewhat because of the loss of some animals during testing and the necessity of breeding 

extra dams to deliver at specific times to allow fostering of specific groups. Cross-fostering allowed 

for independent assessment of the effects of prenatal drug exposure of a rearing litter and the effects 

of maternal drug treatment (or the interaction of these conditions) on maternal behavior and maternal 

aggression in original test dams. We were also able to determine the effects of prenatal drug 

exposure, as well as the effects of treatment condition of the rearing mother on the maternal behavior 

of first generation offspring dams. 

 

Original Dam Maternal Behavior Testing 

The procedure for maternal behavior testing has been previously described (Johns et al. 

1994c). Following delivery of their final pup, dams and their litters were brought in their home cage 

 
Figure 3. Timeline of intergenerational testing. (A) maternal behavior test; (B) maternal aggression test. 



16 

to an enclosed behavioral observation room, 400cm x 460cm, where dams were removed from their 

cage and weighed, and their pups removed. Dams were placed back in their home cages without pups, 

and the cages placed in a 60.96cm x 40.64cm x 50.80cm dimly lit testing cubicle, designed to reduce 

environmental distractions, for a 30-minute habituation period. During the habituation period, litter 

measurements were taken and litters were culled to four female and four male pups. Then, either her 

natural litter or a foster litter culled at the same time was placed in a warm, (room temperature) plastic 

cage lined with paper towels on top of the dam’s testing cubicle. After habituation, nesting material 

(10, 2.54cm strips of paper towel) was placed at the back of the cage and each dam’s culled litter 

(fostered or natural) was placed in the front of her cage. Videotaping with a Panasonic VHS 

(AG188U) recorder with low light sensitivity began as soon as the pups were placed in the cage and 

continued for 30 minutes on PPD one. After testing, dams and their culled litters were returned to the 

colony room until the next testing session (PPD five). On PPDs five and 10, the testing procedure for 

maternal behavior was the same, excepting that after PPD one, each dam kept her litter assigned on 

PPD one throughout the entire study until weaning, and maternal behavior was only recorded for a 

15-minute period. We reduced the test time after PPD one because we found in pilot studies that 

group differences were still apparent with a 15-minute test period, and that scoring all sessions for 30 

minutes was very labor intensive and thus prohibitive. At the end of each maternal behavior test, 

dams and their culled litters were returned to the colony. Dams remained with their pups until 

weaning on PPD 21. Recorded sessions from PPD one, five, and 10 were later analyzed for 

frequency, duration, and latency of the following 11 behaviors: nest-build (dam manipulates or 

moves the paper strips with her mouth or paws), touch/sniff pups (dam touches pups with her nose or 

front paws or sniffs them), retrieve 2 pups (dam has carried 2 pups from the front to the rear of the 

cage), self-groom (dam grooms herself with her tongue or paws), rest off/lie on (dam rests away 

from the pups or lies flat on top of them in a non-feeding position), crouch (dam stands over the pups 

with back arched in the nursing position, legs stiff and straight and head lowered), retrieve 6 pups 

(dam has carried 6 pups from the front to the rear of the cage), lick pup (dam licks a pup), retrieve 8 
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pups (dam has carried all 8 pups from the front to the rear of the cage), rear-sniff (dam rears on hind 

legs and sniffs the cage or air), and ‘other’ (any behavior other than those designated above). 

 

Original Dam Maternal Aggression Testing 

Maternal aggression was assessed using a procedure similar to one previously described 

(Johns et al. 1998b; Lubin et al. 2003). Tests were conducted on PPDs eight and 12 for the original 

dams. On the morning of PPD eight, between 0800 and 1100 hrs (during the light phase), dams and 

their litters were brought in their home cage to a behavioral observation room where weight gain was 

recorded. On both test days, all dams and litters habituated to the test area in a quiet environment for 

25 minutes, after which the home cage was placed in a 61x41x51cm dimly lit testing cubicle, 

designed to reduce environmental distractions, for a further 5-min habituation period. A smaller 

intruder male (~175 grams) was then placed in the front of the cage and the session was videotaped 

with a low light sensitivity VHS recorder for 10 minutes, after which the session was terminated. A 

new inexperienced intruder male was used for each session with no male used more than once. If the 

pups were attacked by the dam or the intruder, or if the dam or intruder was severely injured, the 

session was immediately terminated and data was excluded from analysis. Terminated sessions were 

noted for each group. After testing on PPD eight, dams and their culled litters were returned to the 

colony room and monitored for health daily. Maternal aggression was again assessed on PPD 12, 

using the same procedures as on PPD eight. 

Observed maternal aggressive behaviors included maternal behaviors, defensive behaviors 

(threat), aggressive behaviors varying in intensity (rough groom, nip/bite male, aggressive posture, 

fight attack) and general activity. These behaviors of interest have been described previously (Johns 

et al. 1998b; Lubin et al. 2003) and included: maternal behavior (dam licks pups, moves pups, or 

crouches over pups); rough-groom (dam grooms intruder male roughly, usually around head, neck or 

back); lateral / front threat (dam threatens male while approaching with her body in a lateral 

position, or moves her face close to the males face often accompanied by teeth chattering); fight / 
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attack (dam makes a quick lunge usually followed by rolling, biting, and fur pulling directed towards 

the neck and back regions of the intruder); nip / bite (dam nips or bites male; differentiated from a 

fight attack by degree and lack of jumping and lunging); aggressive posture (dam forces intruder into 

a full submissive posture and pushes him down with extended front paws or stands over him with her 

paws on his chest or belly); and general activity (including general locomotor behaviors and other 

non-aggressive motor activities). Dams and litters were returned to the colony room after testing on 

PPD 12 and pups were weaned and separated on PPD 21. 

 

First Generation Dam Subjects and Testing 

After weaning on PPD 21, litters were separated by sex into same-sex housing (4 

males/females per cage), from which one female from each litter was randomly selected at 60 days of 

age for breeding and testing for the onset of maternal behavior on PPD one or maternal aggression on 

PPD eight. Remaining pups from the litters were used for other behavioral tests at various ages (not 

reported here). Breeding conditions were the same as with the original treatment dams except that all 

animals were drug-naive, were tested with their natural litters, were bred to different males, and were 

fed ad libitum. FGDs were assigned group designations based on their prenatal exposure condition 

and their rearing dams’ drug treatment (for example, CCCS indicates that the dam that reared the first 

generation dam was CC treated but the dam she was born to was treated gestationally with CS, thus 

she was prenatally exposed to saline). First generation dams were weighed every five days to monitor 

weight gain throughout pregnancy. 

On the day of expected delivery, first generation dams were monitored throughout the day 

until delivery of their final pup, at which time their natural litters were culled to four males and four 

females for maternal behavior testing. Testing procedures for first generation dams were essentially 

the same as for the original parent dams on PPD one, except there was no cross-fostering. At the end 

of the 30-minute behavioral test, dams and their culled litter were returned to the colony. Offspring 

from mothers tested for maternal aggression were tested for maternal aggression with their own 
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culled litter on PPD eight using testing procedures as described above, except that they were tested 

with eight of their own pups that they had reared from delivery (four male and four female). At the 

completion of the 10-min behavioral test, dams and their litters were returned to the colony. 

 

Data Analysis 

Videotaped sessions were scored by two independent observers blind to treatment condition 

with inter-and intra-reliability set at 95-100% concurrence for frequency and latency, and 80% or 

better for duration of behaviors displayed by the dam using a computer program that calculated the 

frequency, duration, and latency of all relevant behaviors displayed by the dams. Behaviors not 

displayed by the dam were assigned a frequency and duration of 0 and the highest possible latency 

(1800 seconds for a 30-minute test, 900 seconds for a 15-minute test). 

For statistical analysis of maternal behavior data, two-factor (drug treatment x litter prenatal 

exposure) Analyses of Variance (ANOVA) for between groups were employed for original dams and 

first generation offspring (prenatal exposure condition x rearing dam treatment) on PPD one. Test 

durations for PPDs five and 10 were only 15 minutes, so the data could not be directly compared to 

PPD one. Repeated measures ANOVA were employed for original dams on PPDs five and 10 for 

between and within group differences (drug treatment x litter prenatal exposure). Tukey (HSD) tests 

were used for post hoc analyses and statistical significance was set at less than or equal to the 0.05 

level with relevant trends acknowledged in the results or discussion. Effects on maternal behavior of 

original dams as a result of drug treatment across PPDs, effects based on their rearing litter condition 

(litter prenatal exposure), and interaction effects (dam treatment by prenatal litter condition) are 

presented. Effects on first generation dam maternal behavior are presented based on prenatal exposure 

condition, rearing condition (treatment of rearing dam), and interaction effects (rearing by prenatal). 

For statistical analysis of maternal aggression data, due to the relatively low levels of many 

behaviors, standard ANOVAs could not be used (data were non-normal). Thus, generalized linear 

models were used (Zeger et al. 1986), allowing for the usage of non-normal distributions, and 
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resulting in a series of test statistics with a Chi-squared (χ2) distribution under the null hypothesis (for 

application review, see (Hanley et al. 2003)). Repeated measures log linear models for count data 

(frequency) were used to examine between group differences within each day as well as over repeated 

days of testing. Repeated measures weighted additive models for time to event best fit the duration 

dataset. Weights were inversely proportional to the within-cell (rearing, prenatal, session) variance 

estimate. Latency data were analyzed using the Cox Proportional Hazard model, a semi-parametric 

survival analysis procedure. To account for multiple observations in each rat, general estimating 

methods were used to obtain group estimates and standard errors, and p-values were adjusted for 

multiple comparisons via the FDR method (Benjamini et al. 2001). Estimates of the mean and 

standard errors under the model are presented graphically for frequency and duration data. Statistical 

significance was set at the p≤0.05 level. Following the original dam treatment effects, results based 

on the dam’s foster-litter prenatal exposure condition are presented, and finally any effects resulting 

from the combined treatment and rearing litter interaction are presented. Results for first generation 

dams are first listed as those resulting from only their rearing dam’s treatment (drug treatment of their 

rearing dam), followed by prenatal exposure effects (treatment of their biological dam), regardless of 

their rearing condition, and finally results based on the interaction of both rearing and prenatal 

environment. Given the large amount of data, only statistically significant results are presented in 

text. 
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Results 

Original Dam Gestational Variables 

There were significant effects of dam treatment on gestational weight-gain [F(4,354)=20.95, 

p≤0.01] and litter birth weight [F(4,360)=2.75, p≤0.03], with cocaine-treated dams displaying reduced 

weight gain over the gestational period (p≤0.05), and cocaine and saline-treated dams displaying 

reduced litter birth weight compared to untreated dams (p≤0.05). Lower litter birth weight in the CC 

and CS treated dams may be the result of either cocaine treatment or stress, but may also be related to 

a non-significant reduction in litter size in these treatment groups. 

 

Original Dam Maternal Behavior 

On PPD one, there were significant effects of dam treatment on the duration of crouching 

[F(4,331)=4.24, p≤0.01], nest-building [F(4,332)=4.12, p≤0.01], and self-grooming [F(4,333)=2.65, 

p≤0.03]. There were also significant effects on the frequency of nest-building [F(4,333)=2.59, 

p≤0.04], self-grooming [F(4,333)=3.51, p≤0.01], rear-sniff [F(3,333)=2.71, p≤0.03], and ‘other’ 

[F(4,333)=2.57, p≤0.04], and on the latency to begin nest-building [F(4,333)=3.28, p≤0.01]. CC 

treated dams crouched less (duration p≤0.01) than both CS and UN treated dams, and had a longer 

duration of (p≤0.03) and shorter latency (p≤0.02) to nest-build than UN treated dams. CC treated 

dams also spent more time performing non pup directed behaviors (self-groom, other, rear/sniff) than 

CS and UN treated dams (p≤0.01). 

There were also significant between group main effects of dam treatment on the frequency 

[F(4,321)=2.72, p≤0.05] and latency [F(4,321)=3.11, p≤0.05] of nest-build, and on the duration 

[F(4,321)=2.77, p≤0.01] and latency [F(4,321)=2.38, p≤0.05] of self-grooming on PPD 5. There were 

also significant between group effects of dam treatment on the frequency [F(4,321)=2.72, p≤0.05] of 

nest-building and duration of self-grooming [F(4,321)=2.77, p≤0.01] on PPD 10. There was a 

significant within group main effect of dam treatment between PPD 5 and 10 on crouch frequency 

[F(4,321)=4.77, p≤0.01] and duration of self-groom [F(4,321)=2.77, p≤0.05]. Untreated and 
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chronically treated groups crouched more often (but for shorter durations) on PPD 5 than 10 and 

while activity was generally constant, self-grooming was increased in intermittent groups on PPD 10 

compared to 5. 

The prenatal exposure condition of the litter significantly affected the duration of nest-

building by all dams [F(4,333)=2.52, p≤0.04]. Dams that reared pups prenatally exposed to CC spent 

less time nest-building compared to dams that reared pups prenatally exposed to CS (p≤0.02). There 

were also many strong trends that persisted over the entire testing period (PPD one through 10) 

indicating that CC pups received less overall maternal care (less or later crouching, licking, touching, 

more resting away from pups) than offspring from other prenatal exposure conditions. 

There was a significant interaction between dam treatment and litter exposure on the latency 

to crouch [F(16,332)=1.86, p≤0.02]. CC-treated dams rearing CS or UN exposed pups crouched later 

than all other chronically treated dams rearing pups from any prenatal exposure group (p≤0.05). 

There was also a significant interaction of dam treatment and prenatal litter exposure on within-group 

lick pup latency [F(16,321)=2.27, p≤0.01] across PPDs five and 10. All groups licked later on PPD 5 

than 10 except CCCS, UNCC, and UNCS groups (p≤0.05). 

 

Original Dam Maternal Aggression 

There were no differences resulting from dam treatment on defensive behaviors (threat), 

maternal behaviors, aggression, or general activity on either PPD eight or 12. Levels of most 

behaviors were relatively low in all groups compared to those previously reported (Johns et al. 1994c) 

at earlier times during the postpartum period (PPD 6). There were also no effects of litter prenatal 

exposure condition on defensive, aggressive, maternal behavior, or general activity levels in dams, 

and no effects resulting from the interaction of dam treatment and litter prenatal exposure. 

 

First Generation Dam Gestational Variables 
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There were no significant effects of rearing condition or prenatal exposure condition on any 

gestational measure. 

 

First Generation Dam Maternal Behavior 

There was a significant main effect of rearing condition on the frequency of ‘other’ behaviors 

[F(4,262)=2.72, p≤0.03]. First generation dams reared by CC-treated dams performed ‘other’ 

behaviors less frequently than CS reared dams (p≤0.01) and had a non-significantly lower frequency 

of crouching [F(4,260)=2.32, p=0.06] compared to UN and CS reared dams. 

There were also significant effects of prenatal exposure on the latency to retrieve all 8 pups 

[F(4,262)=3.25, p≤0.01] and the duration of rest away/lie on pups [F(4,264)=2.79, p≤0.01]. CC 

exposed dams took longer to retrieve all eight pups than CS (p≤0.01) and UN (ns) exposed FGDs, and 

spent more time resting away from pups or lying flat on top of pups than did CS or UN exposed dams 

(p≤0.01).  

There was a significant interaction effect on the latency to touch/sniff pups [F(16,262)=1.86, 

p≤0.02]. First generation dams with no prenatal drug exposure that were reared by CC treated dams 

(CCUN) touched pups later than FGDs from any other rearing condition (p≤0.05) and later than any 

other CC-reared FGDs from any prenatal exposure condition (p≤0.05). 

 

First Generation Dam Maternal Aggression 

FGDs reared by cocaine-treated dams, regardless of their prenatal exposure condition, 

exhibited a number of behavioral effects related to rearing condition alone. CC-reared FGDs had 

higher frequencies of aggressive posture and rough grooming of the intruder compared to CS-reared 

FGDs (aggressive posture, χ2
(1)=10.76, p≤0.01; rough groom, χ2

(1)=5.51, p≤0.02). Conversely, they 

had significantly lower levels of nip/bite compared to both UN- (χ2
(1)=10.14, p≤0.02) and CS-reared 

(χ2
(1)=4.57, p≤0.03) FGDs. 
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Prenatal exposure to chronic cocaine, regardless of rearing condition, also resulted in 

behavioral differences in first generation dams. CC-exposed FGDs exhibited maternal behaviors less 

frequently (χ2
(1)=3.92, p≤0.05, see Figure 7) and were more frequently defensive and aggressive than 

CS-exposed control FGDs (threat, χ2
(1)=4.59, p≤0.04; aggressive posture, χ2

(1)=7.23, p≤0.01).  

FGDs prenatally exposed to chronic gestational cocaine and reared by their own CC-treated 

dams (CCCC) displayed fewer instances of maternal behavior than control FGDs (UNUN, χ2
(1)=7.26, 

p≤0.02; CSCS, χ2
(1)=5.89, p≤0.02). They also displayed a higher frequency of aggressive behaviors 

than CSCS FGDs (rough groom, χ2
(1)=6.92, p≤0.01; aggressive posture, χ2

(1)=17.62, p≤0.01).  
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Discussion 

Maternal Behavior 

The findings of the maternal behavior study support our hypotheses, as cocaine drug 

exposure as well as differential maternal treatment disrupted the onset of maternal behavior in first 

generation offspring. The effects on the original dams have been reported (Johns et al. 2005a), but to 

briefly summarize, the disruptive effects of cocaine treatment on PPD one, regardless of litter prenatal 

exposure, are similar to those previously reported with cocaine-treated dams rearing only surrogate 

offspring (Johns et al. 1994c). In addition to the decreased crouching seen here, consistent with 

previous reports following cocaine treatment, there were also non-significant trends for these dams to 

touch pups later, rest away from or lie flat on pups longer, and to lick pups later than other dams, 

indicating a general disruption of pup directed behavior on PPD one with non-significant trends 

continuing to PPD five. A slight increase in activity-related behaviors of cocaine-treated dams on 

PPD one was also found in this study, but had not been previously reported in dams that did not have 

cocaine in their bloodstream at the time of testing. 

More applicable to our focus on first generation offspring were the effects of litter prenatal 

exposure on the original dam behavior and consistent trends across the postpartum period. Similar to 

prior reports of cocaine-treated dams rearing surrogate pups, in this study cocaine-treated dams 

rearing control (saline and untreated) pups began crouching later than other dams (Johns et al. 1994c; 

Johns et al. 1994b; Johns et al. 1996; Johns et al. 1998c; Kinsley et al. 1994; Vernotica et al. 1996a). 

In a design similar to the one used here, Heyser and colleagues reported that the maternal behavior of 

cocaine-treated dams did not differ from controls when examined in later postpartum periods (PPDs 

five through nine) and when rearing either their own biological offspring or fostered offspring 

(Heyser et al. 1992). Here, we report similar findings with respect to diminishing group differences 

later in the postpartum period; however, we also unexpectedly found a pattern of differential 

treatment of pups prenatally exposed to cocaine. This effect was shown by all dams, regardless of the 

dam’s own treatment condition. Some significant effects and many consistent trends, some quite 
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strong considering the design (p≤0.06-0.07), indicating impaired or delayed nesting, less crouching, 

licking, touching of pups, and more time spent resting away from pups or lying flat on pups that were 

prenatally exposed to cocaine. In our subjects, the behavior of lying flat on the pups did not appear to 

stimulate nursing, although others may disagree (Stern et al. 1989). 

Rat pups prenatally exposed to cocaine differ in their stress responsivity, ability to elicit play 

solicitations from an untreated conspecific (Johns et al. 1995; Overstreet et al. 2000), have different 

activity levels, and some early physical developmental differences such as lower body weight, smaller 

head circumference, and potentially different cry patterns (Johns et al. 1992b; Johns et al. 1992a). 

These data taken together suggest that behavior and physical attributes of drug exposed offspring may 

make them more vulnerable to neglect or even abusive behavior. Preliminary data in humans suggests 

that premature babies or babies with low birth weight are physically unattractive and emit disturbing 

high pitched, arrhythmic cries leaving them more susceptible to abuse and neglect (Belsky 1993; 

Brunk et al. 1984). The specific attributes of offspring with prenatal cocaine exposure that may lead 

to poorer social outcomes is potentially a very interesting topic. 

 

First Generation Dams 

Our hypotheses concerning the maternal behavior of the FGDs were supported in that we did 

find both rearing and prenatal effects on the onset of maternal behavior, with more significant effects 

in the FGDs prenatally exposed to cocaine. The effects of prenatal cocaine exposure in FGDs were 

different from the effects of rearing condition in several ways. Retrieval and time spent away from 

pups were altered in the cocaine-exposed FGDs, who also demonstrated non-significantly shorter 

durations of crouching, touched pups significantly less, nest-built less, and were more active than 

other FGDs. These effects are somewhat reminiscent of the cocaine-treated original dams, in terms of 

activity levels and crouching, but to a much less extensive degree. Alternatively, rearing by cocaine-

treated dams, regardless of prenatal exposure condition, disrupted the frequency, but not duration, of 

crouching in FGDs, and they were generally less active; a series of effects strikingly similar to their 
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Figure 4. The relationship between maternal behavior 
received and maternal behavior performed. 

rearing dams (see Figure 4). Interestingly, they also exhibited trends to touch, crouch, and lick pups 

later, as well as rest away from pups more often than other FGDs from different rearing conditions. 

This was the first systematic investigation reporting effects of cocaine exposure and rearing condition 

on mothers and their offspring. 

The fact that despite the cocaine treatments, the drug treated dams performed relatively 

adequately maternal behavior, especially in the later postpartum period, highlights the robust nature 

of maternal behavior in rats. Although the rearing effects were not particularly robust effects, they 

likely impact other types of offspring behavior (other than maternal), particularly in combination with 

effects of prenatal exposure to cocaine. 

Given the relatively mild effects we see 

in rat dams compared to the effects 

reported in human populations, these 

findings indicate factors such as 

polydrug abuse and environment 

probably play a larger role in behavioral 

differences, and that future animal 

studies focusing on the interaction 

between stress, environment, and 

relevant polydrug abuse models may be very informative. One important common finding in this and 

other intergenerational studies (cocaine or maternal separation) is that there is some transfer of 

behavior resulting from altered maternal care, which manifests itself in the next generation. 

Several conclusions may be drawn from the maternal behavior study including: a) that 

chronic treatment alters primarily the onset of maternal behavior in rat dams (when cocaine is not in 

their system), which diminishes across the postpartum period; b) that there are intergenerational 

effects of cocaine on the onset of maternal behavior in FGDs associated with prenatal cocaine 

exposure, rearing condition, or the interaction of these two factors, but to a lesser degree than those 
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seen in the original cocaine-treated dams; and c) that prenatal exposure to cocaine increases the 

likelihood that a litter will receive less pup-directed care compared to controls. 

 

Maternal Aggression 

Using this paradigm we did not find that cocaine-treated dams exhibited higher levels of 

maternal aggression towards intruders on PPD eight as we had hypothesized. Historically, significant 

increases in maternal aggressive behavior in gestationally treated dams rearing surrogate pups have 

been seen on PPD six through ten (Johns et al. 1994c; Johns et al. 1997a; Johns et al. 1998b; Johns et 

al. 1998a). When higher doses of cocaine are used, these effects can extend through PPD twelve 

(Heyser et al. 1992), however behavioral effects apparently diminish by PPDs eight through 12 using 

the dose and regimen used here. Without testing throughout the entire postpartum period, we cannot 

say whether the early increased levels of aggression are a truly transient effect. Importantly however, 

our findings may also be a factor of the different cross-fostering conditions in this study, as previous 

reports used untreated surrogate pups, and as indicated in the maternal behavior study, dams rearing 

cocaine-exposed pups exhibit a number of altered behavioral patterns. 

During aggression testing, we rarely see high rates of pup-directed maternal behavior, as the 

dam is generally more focused on the intruder than in performing these behaviors over the short test 

period. Thus, the lack of group differences in crouching, licking, and touching of pups during testing 

was not surprising. Along with maternal behavior, the frequency and duration of all behaviors 

examined were similar on both PPDs eight and 12, with slightly lower overall maternal aggression 

levels on PPD 12, consistent with prior reports that maternal aggression diminishes after PPD 10 

(Flannelly et al. 1987; Mayer et al. 1987). 

 

First Generation Dams 

Regardless of their prenatal exposure condition, FGDs reared by cocaine-treated dams, 

exhibited increased maternal aggressive behavior, the type and degree largely dependent on their 
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rearing dam’s drug history. FGDs reared by cocaine-treated dams were more likely to pin intruders 

and have direct contact with the male, but were less likely to nip/bite the male than were controls. The 

differentiation of the type and degree of aggressive behaviors in the next generation is perhaps 

something that needs to be studied further, as it may provide clues to the mechanisms through which 

cocaine is be acting. As seen in the maternal behavior study, the less than optimal maternal behavior 

received when pups are reared by cocaine-treated dams appeared to have influenced behavior of the 

FGDs. Perhaps these findings reflect the strong link between rearing environment and behavior as 

suggested in numerous published reports of the non-genomic transmission of behavior (Champagne et 

al. 2001b; Fish et al. 2004; Francis et al. 1999; Meaney 2001; Pedersen et al. 2000).  

The behavioral effects of prenatal exposure to cocaine have been reported in numerous 

papers, too extensive to describe here. However, for the purposes of this discussion it is important to 

note that prenatal cocaine exposure in rat pups has been shown to alter stress responsivity in 

adolescence and adulthood (Bilitzke et al. 1992; Campbell et al. 2000; Molina et al. 1994; Planeta et 

al. 2001; Spear 1996; Wood et al. 1995), play behavior in adolescence (Wood et al. 1994; Wood et al. 

1995), the ability to elicit play or social interactions (Johns et al. 1995; Overstreet et al. 2000), and 

social/aggressive behavior at older ages (Johns et al. 1994b; Overstreet et al. 2000). Most of the 

literature to date has focused on resident intruder and social aggression in males; however, maternal 

aggression and female aggression differ from male aggression in a number of respects, and thus 

generalizing across paradigms may be unwise. 

Given this literature though, we expected to see more aggression in our offspring. FGDs that 

were prenatally exposed to cocaine did exhibit minor increases in several aspects of maternal 

aggression, regardless of their rearing environment (rearing dam treatment). It is important to note 

that cocaine-exposure was associated with higher levels of aggression than was rearing by a cocaine-

treated dam. The more aggressive behavior of cocaine-exposed FGDs we report here, although less 

intense than other types of non-maternal aggression seen in male offspring (Johns et al. 1994b; Johns 

et al. 1995; Wood et al. 1998), establishes aggression as a potential behavioral target of prenatal 
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cocaine exposure in both sexes. As we expected, the FGDs exposed to cocaine and also reared by 

cocaine-treated dams were the most aggressive and least maternal offspring, highlighting both the 

individual and interactive effects of prenatal and rearing conditions.  

There were several instances of behaviors in saline-reared (rough groom, aggressive posture) 

or exposed (threat, nip/bite, aggressive posture) FGD groups that were performed even less frequently 

than in UN-reared or unexposed FGDs. Although we have no evidence to support stress related 

effects in this group, we believe this is very likely an important factor, and indicates a need for further 

research on the effects of stress alone on these behaviors. 

Regarding the limitations of the current study, cross-fostering alone has been shown to result 

in many behavioral alterations (Francis et al. 1999), but these effects were offset by ensuring that all 

dams received litters from another dam, generally within an hour of final pup delivery. The ability to 

isolate these two potential individual factors (prenatal exposure and rearing environment) in relation 

to maternal behavior and aggression in both dams and offspring was a significant strength of this 

study, and indicates the importance of examining the separate contributions and the interaction of 

both mother and offspring in response to drug treatment. The finding that infants prenatally exposed 

to cocaine are differentially treated by all dams indicates that something is different about these pups, 

perhaps making them less able to elicit normal care. This idea, combined with the knowledge of the 

importance of maternal care on future offspring development, helped to determine our future research 

aims concerning how these pups are different.



 

 
 
 
 
 
 

CHAPTER III 

AN INVESTIGATION OF PRENATAL COCAINE’S EFFECT ON EARLY POSTNATAL 

THERMOGENESIS AND VOCALIZATION PRODUCTION 

 

Introduction 

Unlike the prominent neuroanatomical and behavioral alterations seen following Fetal 

Alcohol Spectrum Disorder (Kodituwakku 2009; Norman et al. 2009), prenatal cocaine exposure is 

known to produce a myriad of subtle effects on developing infants. The behavioral effects of prenatal 

cocaine exposure are well documented (Bandstra et al. 2010; Chae et al. 2009) and a number of these 

effects may directly impact the ability of the infant to elicit optimal maternal care. Although 

deleterious effects of cocaine exposure on maternal stress responsivity and infant attention have been 

reported in human clinical populations (Strathearn et al. 2010a), as well as in studies of rodent 

mothers treated with cocaine while pregnant (Johns et al. 1998b; Johns et al. 2005a; Kinsley et al. 

1994; McMurray et al. 2008b; Nelson et al. 1998; Quinones-Jenab et al. 1997; Vernotica et al. 1996a; 

Vernotica et al. 1999; Vernotica et al. 2007), the impact of cocaine on maternal and neonatal behavior 

is best viewed interactively (Eiden et al. 2011; Stern 1986). Thus far, few studies have systematically 

studied how cues from cocaine-exposed infants influence maternal care. 

While changes in endocrine system function are a large determinant of the onset of maternal 

behavior (Keverne 1988; Numan 1994; Numan et al. 2003; Rosenblatt 1990), sensory input is also 

important for the onset and retention of maternal behavior (Morgan et al. 1992). A number of cues 

produced by infants can modify maternal responses, including vocalizations (Brunelli et al. 1994; 

D'Amato et al. 2005; Farrell et al. 2002b; Smotherman et al. 1974), odors (Levy et al. 2004), and 

temperature (Adels et al. 1986; Bates et al. 1985; Henning et al. 1982; Jans et al. 1990; Leon et al. 
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1985; Stern et al. 1996; Woodside et al. 1988). The importance of each cue depends loosely on the 

maternal environment, including the number of pups, age of the pup producing the cue, maternal 

experience, and the environment in which the nest resides (Brudzynski 2005; Champagne et al. 

2001a; Champagne et al. 2003; Mattson et al. 2001). All of these behavior sets could affect maternal 

care and likely interact with any alterations in maternal stimulus perception and response resulting 

from potential drug exposure or other environmental disruption. 

Thermoregulation presents a particularly interesting target for study, given both its own role 

in eliciting care as well as its involvement in other cues, such as ultrasonic vocalization production 

(discussed below). While human infant temperature regulation is largely accomplished in an 

individual manner, in rat pups thermoregulation is achieved on both a group and an individual level. 

In the early days of life, individual rat pups rely on external sources for heat production, such as their 

littermates and their mother, as well as internal metabolic sources. As a litter, rat pups achieve 

warmth through huddling, are insulated from cold by the nest, and receive additional heat from their 

mother during close contact nursing. Individual rat pups produce heat through a number of 

mechanisms, including shivering and locomotion to warmer environments, but primarily through 

brown adipose tissue (BAT) thermogenesis (Smith 1964). BAT thermogenesis is sympathetically 

driven by β-adrenergic activity, and once activated the mitochondrial uncoupling protein 1 effectively 

oxidizes fatty acids to produce heat. Brown adipose tissue is primarily located surrounding the heart 

and is also distributed throughout the peritoneum. Its location proximal to the heart is of particular 

importance, as the heart acts as a pumping mechanism to distribute the heat generated by BAT 

throughout the body via the circulatory system. 

Generally, the volume of brown fat depends on the age of the animal, with older animals 

having significantly less brown fat than younger animals, in favor of white adipose tissue. Typically, 

as the rat ages alternative mechanisms of heat production and maintenance develop, such as better 

thermogenesis through locomotion and better thermoregulatory capacity as the pup increases in body 

size and thus insulative capacity (Spiers et al. 1986). Over development, BAT is transdifferentiated 
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into white adipose tissue, the primary purpose of which is to store energy in the form of triglycerides. 

Individual brown adipose tissue thermogenesis is immediately apparent at birth in rats and is of 

seminal importance to proper nervous system development (Blumberg 2002), may play a role in the 

development of obesity and diabetes (Cinti 2005; Cinti 2006; Cypess et al. 2009), and likely 

determines nursing opportunities. When in the huddle, heat is shared with littermates to reduce total 

heat loss and supplement maternally provided warmth, with BAT thermogenesis supplying additional 

heat to the litter (Alberts 1978). Rat dams are indeed capable of determining the current thermal state 

of pups, and their behavior is modified by their pups’ thermal state (Adels et al. 1986; Bates et al. 

1985; Henning et al. 1982; Jans et al. 1990; Leon et al. 1985; Stern et al. 1996; Woodside et al. 1988). 

Specifically, decreases in pup body temperature have been associated with increases in nursing 

behaviors in rat dams, during which maternal heat is passed to the litter. 

The effects of prenatal cocaine exposure on pup thermal control have not been thoroughly 

investigated, although acute exposure to cocaine in adulthood does alter cardiac function in both 

humans and animals (Regalado et al. 1996; Sheinkopf et al. 2006a; Sheinkopf et al. 2007; Sun et al. 

2003), and raises body temperature and impairs heat dissipation in humans (Crandall et al. 2002). 

Brown adipose tissue thermogenesis specifically is a likely target of prenatal cocaine exposure due to 

cocaine’s direct impact on maternal norepinephrine systems as well as on the developing stress 

response systems of the fetus. Cocaine-induced prenatal malnutrition is also a likely contributor, as 

maternal cocaine use has been strongly associated with malnourishment of the mother and fetus, as 

well as placental vasoconstriction that further complicates nourishment delivery to the fetus. As is the 

case with fetal cocaine exposure, under- or over-provision of nutrients and even postnatal nutritional 

challenges can alter the long-term adipose tissue volume and function (Mostyn et al. 2009), 

potentially leading to obesity, diabetes, and disruptions in renal function (Cinti 2006). 

Assessments of individual thermogenic ability in cocaine-exposed pups have not been studied 

previously, so it is unknown if this pup characteristic may be a contributing factor to the decreased 

maternal care of cocaine-exposed offspring. Any alterations in thermoregulatory capacity would 
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likely result in qualitative differences in vocalizing behavior. Thus, this study is designed to 

determine if there are differences in thermoregulation or ultrasonic vocalization resulting from 

prenatal cocaine exposure and if the normal relationship between these two behaviors is maintained. 

In humans, vocalizations have been used as important biomarkers of developmental delay, thus such 

findings in rodents would have great impact on predicting the level of insult caused by a drug. 

In addition to its contribution toward the elicitation of maternal care, thermal state also has 

tremendous influence over vocalizing behavior in early life, which in turn contributes to the 

elicitation of maternal attention. Rats of various ages have been shown to vocalize in response to 

handling, cold temperatures, isolation, and social factors (Blumberg et al. 1992; Branchi et al. 2001; 

Hahn et al. 2005; Shair et al. 1997), thus vocalizations potentially constitute one major method of 

communication between rats (Brudzynski 2005; Brunelli et al. 1994). While the perceptual frequency 

range of human hearing is thought to be from 20 Hz – 20 kHz, rats are able to perceive frequencies up 

to 100 kHz. Additionally, rat pups are born able to vocalize at frequencies from 20 Hz – 100 kHz. 

Thus, along with vocalizations that occur in frequency ranges that are audible to humans, rats can 

vocalize in frequencies that would be ultrasonic to humans. For the purposes of this discussion, label 

ultrasonic vocalizations are considered relative to the human perceptual range: those produced with 

fundamental frequencies in the 20 kHz – 100 kHz range. 

Similar to audible vocalizations, the complexity, rate, and duration of ultrasonic calls vary 

immensely with age and gender. At birth, vocalizations of any form rarely occur (Blumberg et al. 

1996; Blumberg 2002). Those that do occur are thought to be a bi-product of a thermoregulatory 

mechanism called laryngeal braking. Blumberg and Alberts (1990) noted that ultrasound production 

by rat pups was remarkably similar to the audible grunting of human infants with respiratory distress 

syndrome (Blumberg et al. 1990), which are known to be an acoustic by-product of a respiratory 

mechanism called laryngeal braking. Laryngeal braking is a technique that literally brakes expiration 

to increase intrathoracic pressure, enhancing oxygen uptake in the lungs (Davis et al. 1987; England 

et al. 1985; Hofer et al. 1993), and thus providing additional oxygen. In infants undergoing 
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respiratory distress this provides much needed oxygen; however, laryngeal braking also boosts blood 

oxygenation to assist in brown adipose tissue metabolism and associated thermogenesis. This increase 

in intrathoracic pressure results in a comparatively quick expulsion of air from the lungs, which 

produces the vocalization as it flows past the vocal cords and out the respiratory tract. In humans, 

these vocalizations are typically audible; however, whether due to the diameter of the respiratory tract 

or properties of the larynx itself, rodent pups typically produce these in ultrasonic ranges. 

Vocalizations at this age are not thought to be socially intended by the pup producing the call, but are 

none-the-less an important indicator to the rat mother that the pup is in need of care. 

As pups grow older, two changes typically occur that alter the production of vocalizations: 

the need for brown adipose tissue thermogenesis reduces in favor of more effective thermoregulatory 

mechanisms and the positive relationship between vocalizing and maternal attention is learned. Thus, 

the purpose of calling can become more socially mediated and less of an acoustic bi-product. This 

shift is thought to occur between postnatal day (PND) eight to ten (Blumberg et al. 2001), and such a 

shift in mechanism would suggest that characteristics of the call change as the pup develops. Indeed, 

ultrasonic vocalizations tend to decrease slightly in the fundamental frequency across the neonatal 

period as pups grow larger (Naito et al. 1987), while the duration of calling and the complexity of the 

sonographic characteristics of the call increase (Brudzynski et al. 1999; Brudzynski 2005). These 

developmental changes in vocalizations may in part regulate naturally occurring changes in maternal 

care over the postpartum period, and thus provide interesting targets to use in the study of 

developmental disorders.  

Human vocalizations have been suggested as a marker for central nervous system integrity 

following prenatal insult; however, this relationship has not yet been established in rodents. 

Unfortunately, rodent studies have typically used poorly controlled thermal environments and have 

focused simply on the number of vocalizations emitted following removal from littermates and dam. 

These studies have shown some common themes though, mostly demonstrating decreased 

vocalizations following prenatal insult via drug exposure (Antonelli et al. 2005; Hahn et al. 2000; 
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Kehoe et al. 1991; Tattoli et al. 2001; Winslow et al. 1990) or malnutrition (Tonkiss et al. 2003). 

Unfortunately, few studies have been conducted longitudinally and even fewer studies have 

performed in depth analyses of assessed acoustic properties of the call. One such study examined 

prenatal pesticide exposure, finding a decrease in the duration of each call produced and an increase 

in the latency to emit the first call (Venerosi et al. 2009). Additionally, and perhaps most relevant to 

the current discussion, prenatal cocaine exposure has been shown to increase the starting pitch of calls 

following a mild thermal challenge, but that these effects were dependent upon the genotype of the 

subject (Hahn et al. 2000). 

As a stimulus for maternal attention, a sustained high-rate of vocalizing by pups is the most 

effective for eliciting retrieval from dams (Brunelli et al. 1994; Deviterne et al. 1990; Farrell et al. 

2002a; Fu et al. 2007; Zimmerberg et al. 2003) and can also be an important stimulus for the maternal 

consumption of pup excretions during anogenital licking (Brouette-Lahlou et al. 1992). In humans, 

alterations in infants cry patterns can illicit altered physiological and behavioral responses from their 

caregivers (LaGasse et al. 2005; Sheinkopf et al. 2006b; Tronick et al. 2005), though the direct 

mechanisms of these effects are still being revealed. In rats, it is thought that ultrasonic vocalizations 

may directly stimulate prolactin secretions in dams, thus altering maternal care, although some 

controversy exists (Hashimoto et al. 2001; Stern et al. 1984; Terkel et al. 1979). However, the 

implication of a direct effect of vocalizations on the endocrine systems of dams is certainly an 

interesting theory considering the altered endocrine system of drug-exposed dams. 

It is likely that the effect of developmental exposure to drugs of abuse on ultrasonic 

vocalizations varies by the drug, developmental timing, and dose. Several studies reported alterations 

in ultrasonic vocalization following prenatal alcohol and cocaine exposure (Barron et al. 1996; Barron 

et al. 2000; Barron et al. 2005; Hahn et al. 2000; Kehoe et al. 1992); however, results following 

prenatal cocaine exposure alone are mixed (Meyer et al. 1996). Clearly, the study of vocalizations 

following prenatal cocaine bears great clinical relevance, as the cries of human babies with in utero 

cocaine exposure are perceived by mothers as more aversive than the cries of normal babies (Corwin 
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et al. 1992) and high-risk infants have shown altered patterns of vocalization (LaGasse et al. 2005). 

As discussed in Chapter 2, rat dams typically respond less or slower to cocaine-exposed pups, 

suggesting that something about these pups alters maternal motivation or ability to elicit normal 

levels of care. 

Methods 

Breeding 

Individually housed Sprague-Dawley nulliparous female rats (200 grams, Charles River, 

Raleigh, NC) were kept on a 12:12 reverse light cycle (8:00 AM dark) for one week and then mated 

until conception was noted by the presence of a vaginal plug and sperm in a vaginal smear (gestation 

day (GD) 0). Following conception, females were randomly assigned to chronic cocaine, chronic 

saline, or untreated groups as they became pregnant (see below for treatment information). Weight 

gain was measured daily for all animals throughout gestation. Water and chow was available ad 

libitum for all except chronic saline-treated rat dams, who were matched with a chronic cocaine dam 

on a pair-feeding schedule to control for any effects of cocaine-induced anorexia. Seven days 

following conception (GD 7), females were moved to a colony room and individually housed on a 

regular 12:12 light:dark cycle with lights on at 7:00 AM. This procedure results in the majority of 

dams delivering in the normal daylight hours (Mayer et al. 1998). PPD 1 was defined as the calendar 

day during which delivery was completed. Following delivery, litters were culled to 10 pups (5 male, 

5 female) and pups were returned to their own biological mothers. We chose not to employ surrogate 

mothers to control for differences in postnatal care between groups as we wished to study the more 

natural interactions of mothers and pups, as occurs in human clinical populations. 

 

Dam Treatment 

Females were randomly assigned to chronic cocaine, chronic saline, or untreated groups as 

they became pregnant, with 15 animals per group. Chronic cocaine-treated dams received twice-daily 

subcutaneous injections of 15 mg/kg of cocaine hydrochloride (total 30 mg/kg dose calculated as free 
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base, 2ml total volume, Sigma, St. Louis, MO) dissolved in normal saline at approximately 9:00 AM 

and 4:00 PM throughout gestation (GD 1-20) and not thereafter. This is the lowest chronic gestational 

cocaine treatment dose consistently reported to produce significant effects on pup-directed maternal 

behavior (Nelson et al., 1996). To prevent skin lesions, injections were alternated daily between rear 

leg flanks. If a lesion appeared, the fur was clipped at the site, cleaned daily with a betadine solution, 

and a topical antibacterial ointment (Polymycin-Bacitracin-Neomycin, E. Fougera & Co., Melville, 

NY) was applied to the area. These measures have been shown to minimize skin lesion appearance 

and severity and have been used in numerous studies (McMurray et al. 2008b). 

Control groups included both chronic saline-treated and untreated dams. Chronic saline-

treated dams received injections of normal (0.9%) saline (2ml/kg total volume) on the same schedule 

and regimen as the chronic cocaine dams. Saline-treated dams were pair-fed to chronic cocaine dams 

in the early gestation period such that the amount of food ingested by cocaine-treated dams on 

average on a specific gestation day during the first 7 days of gestation was the amount provided to 

saline-control dams on the corresponding gestational day. Beginning GD 8, saline-treated dams had 

free access to rat chow. This procedure accounts for the time when cocaine-treated dams are most 

affected by the anorectic effects of cocaine in prior studies (Johns et al. 2005a; McMurray et al. 

2008b), while not inducing the serious confound of food deprivation in saline-treated dams. Untreated 

control dams received no drug treatment or food restriction during gestation or during the postpartum 

period, but were weighed daily to control for the effects of handling. 

 

Apparatus, Temperature Measurement, and Vocalization Recording 

The apparatus (shown in Figure 5) consisted of a double-walled glass chamber described 

previously (Blumberg et al. 1990; Blumberg et al. 1996). Temperature-controlled water was pumped 

between the walls to control the chamber air temperature (TA). Pups were placed in the chamber on a 

raised platform constructed of polyethylene mesh, a surface that is non-conductive and allows for the 

free passage of air through the chamber. A mesh wall surrounded the platform to prevent pups from 
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Figure 5: The thermogenesis testing apparatus. The 
subject is placed in the subject basket inside the 
double-walled glass chamber. The walls of the 
chamber are filled with temperature-controlled 
water, which actively regulates the internal 
temperature of the chamber. Forced humidified air 
is pumped into the chamber throughout testing. 
Subject and ambient temperatures were measured 
using thermocouples. 

touching the chamber walls directly. Holes in the 

side of the chamber, as well as in its plastic lid, 

allowed for the connection of thermocouples. 

Forced humidified air (300ml/min) entered the 

bottom of the chamber, flowed past the pup, and 

exited through the lid. Thermocouple leads for 

measuring physiological and air temperatures 

were attached to a National Instruments data 

acquisition device (USB-9211A), which sampled 

once per second per channel. All hardware and 

timing was controlled through LabView 2009 software. 

Chamber air temperature (TA) and physiological temperatures were measured using Chromel-

Constantan (T-Type) thermocouples. TA within the metabolic chamber was measured using a 

thermocouple suspended 2 cm beneath the subject. Two physiological temperatures were acquired by 

attaching thermocouples just under the surface of the skin using callodion as an adhesive (Blumberg 

et al. 1996; Spiers et al. 1986). One thermocouple was attached in the interscapular region above the 

brown fat pad, thus providing a measure of interscapular temperature (TIS) and BAT thermogenesis. 

The other thermocouple was attached in the lumbar region, and measured the temperature of the back 

of the subject (TBack), a non-heat-producing region. The difference between TIS and TBack (TIS - TBack) 

was used to confirm the presence and degree of brown adipose tissue thermogenesis (Blumberg et al. 

1996; Hull et al. 1965). 

Ultrasonic recording equipment included model CM16/CMPA40-5V microphones (Avisoft 

Bioacoustics; Berlin, Germany) connected to a desktop computer through a National Instruments 

instrumentation recorder (PCI-6132). Microphone voltage was sampled at a rate of 1 MS/s (1 million 

samples per second) at 14 bit, which allowed for high fidelity recording at frequencies well beyond 

100kHz, more than double the expected fundamental frequency range of 40-50KHz. The 



40 

10 Minute Bin

0 1 2 3 4 5 6 7 8 9 10 11 12

C
h

am
b

er
 T

em
p

er
at

u
re

 (
 C

)

20

22

24

26

28

30

32

34

36

38

Postnatal Day 3
Postnatal Day 5

Severe
Challenge

Moderate
Challenge

B
as

el
in

e

 
Figure 6: Environmental challenges posed on postnatal days 
(PND) 3 and 5. Subjects were first exposed to a baseline 
thermoneutral habituation period for one hour (PND 3: 36°C, 
PND 5: 35°C), then a moderate thermal challenge for one 
hour (PND 3: 32°C, PND 5: 28°C), and lastly an extreme 
thermal challenge for one hour (PND 3: 28.5°C, PND 5: 
21°C). 

microphones have a flat frequency response across the anticipated frequency range. National 

Instruments software (LabView 2009) began acquisition of ultrasonic vocalizations at the session 

start and terminated at the session end as described below. Recordings were conducted within the 

thermoregulatory test chambers as described above. 

 

Testing Procedure 

On PND 3 and 5, dams and their litters were removed from their home cage and transported 

in a small incubator to the surgical procedure room. One pup of each sex showing a milk band was 

removed from the litter, weighed, and placed into the incubator. Each pup was then anesthetized with 

isoflurane (5% for induction, 2% for maintenance), thermocouples were implanted, and pups were 

promptly returned to the incubator. The entire surgical procedure required less than 5 minutes and 

subjects were maintained at thermoneutral temperatures throughout surgery using heat pads. After 

surgery, subjects were transported in the incubator to the test room and placed into the thermal 

chambers. Data collection began following 60 minutes of habituation to the chamber at thermoneutral 

temperatures and continued for 2 hours using a series of thermal challenges. Since rat pups have 

exhibit age-dependent thermogenic capacities, age-appropriate thermal challenges were used 

(Blumberg et al. 1996). On PND 3, 

after 60-min of habituation at 36.0ºC, 

the apparatus temperature was reduced 

to 32.0ºC (a moderate temperature 

challenge) for another 60-min, and 

then again reduced to 28.5ºC (an 

extreme temperature challenge) for a 

final 60-min. On PND 5, pups were 

treated in the same manner, except that 

the habituation temperature was held at 35.0ºC, the moderate temperature challenge was 28.0ºC, and 
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Figure 7: Explanation of acoustic measures of two 
pup ultrasonic vocalizations. The amplitude is 
denoted by the intensity at each point in the call. 

the extreme temperature challenge was 21.0ºC. 

The actual thermal challenges used on both test 

days are presented in Figure 6. Biometric data 

were collected and vocalizations recorded 

continuously during the tests. Following 

testing, pups were returned to their litters. To 

ensure the same pups were not retested, they 

were marked with paw tattoos. 

 

Vocalization Measures 

Ultrasonic vocalization analyses 

addressed likelihood to call, latency to first call 

from the start of the recording period, repetition 

rate, duration of call, and acoustic spectral 

differences. Acoustic properties included 

measures of pitch (highest frequency achieved 

by the fundamental component) and minimum 

frequency, measures of acoustic power such as 

the maximum amplitude (loudness) and number of harmonics visible (additional waveforms visible at 

multiples of the fundamental frequency), and the variation in amplitude and frequency of each call. 

These measures are detailed in Figure 7. 

 

Data Analysis 

Gestational data and subject body weight were examined using Analysis of Variance 

(ANOVA), followed by posthoc Tukey tests where appropriate. TIS, TBack, and TIS - TBack data were 

binned into 10-min intervals for both statistical and presentation purposes, and compared between 
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treatment groups and sexes using repeated measures general linear models, followed by posthoc 

Tukey tests where appropriate. No statistical comparisons between PND 3 and 5 could be made, 

because of the different age-appropriate thermal challenges used for each time point. To reduce to 

total number of comparisons, the focus of our analysis was on temperatures from the two thermal 

challenges. Data from the first 50 minutes of unchallenged thermal habituation were excluded from 

our statistical models. Data from the last 10-min bin of the habituation period was included in figures. 

Means and standard deviations are presented in figures. 

Ultrasonic vocalization data was analyzed using generalized estimating equations, 

specifically Poisson regression. Data were adjusted for sex, group, body temperature (back or 

interscapular), and body weight to evaluate sex, group or sex x group differences for the number of 

calls within each PND (3 or 5). Further analyses included logistic regression to evaluate sex, group, or 

sex x group differences in the proportion of pups with/without calls. Frequency data were 

dichotomized into those vocalizations with frequencies above and below 75 kHz, based on pilot study 

results indicating that calls typically occur with fundamental frequencies of approximately 40-50 kHz 

or 85-95 kHz. To simplify the explanation of results, calls produced with fundamental frequencies 

below 75 kHz will be referred to as ‘low-pitch’ and those greater than or equal to 75 kHz will be 

referred to as ‘high-pitch.’ 
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Results 

Gestational Effects 

Gestational data are detailed in Table 1. There were statistically significant differences in 

gestational weight gain of the dam [F(2,54)=6.28, p≤0.01], with cocaine-treated dams gaining less 

weight over gestation than untreated dams (p≤0.01); however, cocaine-treated dams gained more 

weight over PPDs 1-5 [F(2,45)=8.49, p≤0.01] than untreated dams (p≤0.01). Mean PND1 cocaine-

exposed culled litter weights were also lower [F(2,45)=7.57, p≤0.01] than both untreated (p≤0.01) 

and saline-treated litters (p≤0.05), reflected in individual pup weight differences rather than litter size 

at birth [F(2,45)=5.52, p≤0.01] and on PND 3 [F(2,48)=4.16, p≤0.01]. Thus cocaine-exposed pups 

that were tested had lower pup body weights than untreated pups on both PND1 (p≤0.01) and PND 3 

(p≤0.02), but they were not statistically different from saline-treated pups on any day, and did not 

differ from either control group on PND 5. There were no statistically significant differences in 

gestational length, total number of pups in the litter, male to female pup ratio, or individual pup 

weights on PND 5. 

 

 

Thermoregulation-Specific Effects 

Figure 8 indicates that on PND 3, there was a significant main effect of treatment on 

interscapular [F(2,83)=12.01, p≤0.01] and back temperatures [F(2,82)=15.63, p≤0.01], such that both 

cocaine- (p≤0.01) and saline-exposed pups (p≤0.01) were significantly warmer than untreated pups in 

these two regions. Additionally, the interaction between treatment and time was also significant for 

both interscapular [F(24,978)=3.10, p≤0.01; Figure 8a] and back temperatures [F(24,957)=2.41, 

Table 1: Gestational and Postpartum Data 
Treatment 

Group

Cocaine 123.5 ± 3.5 U 15.5 ± 2.7 U 60.3 ± 1.7 U,s 6.2 ± 0.2 U 7.3 ± 0.3 u 9.6 ± 0.4

Saline 139.5 ± 6.2 9.0 ± 3.3 65.6 ± 1.2 6.6 ± 0.1 7.5 ± 0.1 9.4 ± 0.3

Untreated 146.5 ± 4.2 1.4 ± 1.9 67.7 ± 1.3 6.8 ± 0.1 8.0 ± 0.1 10.1 ± 0.2

PND 5           
Pup Weight (g)

Dam Gestational 
Weight Gain (g)

Dam Postpartum 
Weight Gain (g)

Culled Litter      
Weight (g)

PND 1           
Pup Weight (g)

PND 3           
Pup Weight (g)

 
Note: Superscripts indicate statistically significant difference from respective group (U: untreated, S: 
saline). Uppercase superscripts indicate significance of p≤0.01, lowercase superscripts indicate p≤0.05. 
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p≤0.01; Figure 8b] in those groups. As time progressed and environmental temperatures decreased, 

the higher interscapular temperatures of both cocaine (bins 5-12) and saline-exposed pups (bins 3-12) 

relative to untreated animals increased even further (significance ranged from p≤0.05 - p≤0.01). This 

effect was also evident in the back temperatures of cocaine-exposed (baseline and bins 1-12, p≤0.05) 

and saline-exposed pups (baseline and bins 1-12, p≤0.05). Despite these differences, there were no 

significant differences between groups on TIS - TBack data (see Figure 8c), implying that cocaine and 

saline-exposed pups were not generating significantly different amounts of heat from BAT than 

untreated pups. There were also no sex differences in any measure (data not presented). 

   

Figure 9: Postnatal day 5 pup thermoregulation 
and thermogenesis. As indicated by asterisks, 
cocaine-exposed pups demonstrated significantly 
lower interscapular (A) and back (B) 
temperatures than untreated pups across the 
testing period, but did not differ from saline, and 
showed no alterations in the difference between 
these measures (C), indicating that they did not 
differ in their thermogenic capabilities. 

Figure 8: Postnatal day 3 pup thermoregulation 
and thermogenesis. Cocaine and saline-exposed 
pups demonstrated significantly higher 
interscapular (A) and back (B) temperatures than 
untreated pups during the specific 10 minute bins 
denoted (cocaine: *, saline: #), but showed no 
alterations in the difference between these 
measures (C), indicating that they did not differ in 
their thermogenic capabilities. 
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As shown in Figure 9, on PND 5 there was a significant main effect of treatment on both TIS 

[F(2,88)=3.66, p≤0.03; Figure 9a] and TBack [F(2,85)=3.25, p≤0.04; Figure 9b]. Throughout the 

thermal challenges, cocaine-exposed pups demonstrated generally lower TIS and TBack temperatures 

than untreated pups (p≤0.05). However, there was no significant interaction between temperature and 

time. Additionally, as for PND 3 subjects, there were no significant differences in TIS - TBack (see 

Figure 9c). Sex was also not a significant factor in any temperature differences during the thermal 

challenges (data not presented). 

 

Ultrasonic Vocalization-Specific Effects 

The vocalization results were highly dependent upon the thermal state of the pup, indicating 

that at colder back temperatures, pups were more likely to vocalize on both PND 3 (p≤0.05) and PND 

5 (p≤0.01) regardless of exposure condition or sex. Additionally, the maximum amplitude of the call 

also increased as pup back temperature decreased on PND 5 (p≤0.01). On this day the effect of pup 

temperature on the peak frequency differed by the pitch of the call, in that high-pitch calls decreased 

in frequency as temperature decreased (p≤0.01), but low-pitch calls increased in frequency as 

temperature declined (p≤0.01). This effect was mirrored in the minimum frequency of the call (high-

pitch, p≤0.01; low-pitch, p≤0.01); however, regardless of temperature, the ratio of the number of low-

pitch to high-pitch calls did not change significantly. Back temperature was also strongly associated 

with changes in frequency variation on PND 5, but not with changes in amplitude variation. At lower 

temperatures, more variation in frequency was found in each call (p≤0.01). Changes in back 

temperature were not associated with any change in the number of harmonics on either PND 3 or 5. 

As shown in Figure 10, after adjusting for the effect of back temperature on both test days, 

pups that weighed more were more likely to produce a call and their calls were greater in amplitude 

(PND 3, p≤0.01; PND 5, p≤0.01). Pups that weighed more were less likely to produce high-pitch calls 

on PND 3 (p≤0.01), and on both test days, the peak and minimum frequencies of high- (PND 3, 

p≤0.01; PND 5 p≤0.01) and low-pitch calls (PND 3, p≤0.01; PND 5 p≤0.01) were lower. While no 
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Figure 10. Percent of pups that 
vocalized on PND 3 and 5. 

effects of weight on the number of harmonics, frequency variation, or amplitude variation were found 

on PND 5, heavier pups were found to produce fewer harmonics on PND 3 (p≤0.01), as well as have 

more variation in frequency and amplitude within each call (p≤0.01). 

Despite these relationships between body weight and vocalizing, females were still more 

likely to produce calls on PND 5 (p≤0.01), but not on PND 3. However, on PND 3, the low-pitch 

calls produced by females were typically of a lower peak frequency (p≤0.01) and minimum frequency 

(p≤0.01) than the low-pitch calls produced by males. The sex of the pup was not associated with any 

noteworthy differences in frequency or amplitude on PND 5. 

There were no differences in the number of calls produced by untreated, cocaine- or saline-

exposed pups on PND 3 or 5, although variability in this 

measure was extremely high on both days. On PND 3 there 

was a significant difference in the proportion of pups in 

each group that called at all. Pups from the untreated group 

were four times more likely to have at least one call than 

pups from the cocaine-exposed group (p≤0.01; see Figure 

10) and five times more likely than saline-exposed pups 

(p≤0.05). There were no significant differences in the likelihood to call between cocaine- and saline-

exposed pups. In addition to calling more on PND 3, untreated pups were also significantly more 

likely produce high-pitch calls than the saline-exposed pups (p≤0.01), and non-significantly more 

than cocaine-exposed pups (p≤0.09). Despite these differences in the likelihood to call, there were no 

significant differences in the peak frequency, minimum frequency, amplitude, number of harmonics, 

or frequency/amplitude variation between the treatment groups. 
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Discussion 

The data presented here in part supported our hypotheses that prenatal exposure to cocaine 

would alter measures of early postpartum thermoregulatory ability vocalizing behavior and that it 

does so similarly in both male and female rat pups, although the group effects differed between PND 

3 and 5. The fact that chronic saline exposure was also associated with altered thermoregulation and 

vocalization was not predicted and indicates that differences in cocaine-exposed pups are likely not 

simply a result of drug exposure itself. Whether these effects were directly related to prenatal cocaine 

exposure or through the secondary effects of prenatal cocaine, such as prenatal stress, cannot be 

determined from the current dataset, although the similarities between the cocaine- and saline-

exposed animals would suggest either similar mechanisms or concurrently occurring, but different 

mechanisms of action in both groups. Barry Lester and colleagues (Lester et al. 2009) proposed three 

primary avenues by which fetal cocaine exposure may alter development: direct neurotransmitter 

modulation, vasoconstriction, and fetal programming. While fetal cocaine and saline exposure would 

not likely result in similar neurotransmitter modulation, it is possible that maternal stress caused by 

early food restriction and repeated saline injections could increase plasma concentration of 

catecholamines in both groups of dam (saline and cocaine-treated), reducing placental blood flow 

(Jansson 1988), and thus reduce fetal oxygen and nutrient supply, potentially causing hypoxia in the 

developing fetus. Catecholamine levels could then also be elevated in the developing fetus, resulting 

in fetal vasoconstriction and potentially resulting in further hypoxia in the developing brain (Jensen et 

al. 1987). Such effects may impact both cocaine and saline-exposed groups to different extents, as 

effects were not as severe in saline-exposed animals. 

Prenatal malnutrition is potentially a secondary contributing factor, as maternal cocaine use 

has been strongly associated with malnourishment of the mother and fetus and placental 

vasoconstriction further complicates nourishment delivery to the fetus. As is the case with fetal 

cocaine exposure, under- or over-provision of nutrients and postnatal nutritional challenges can alter 

the long-term adipose tissue volume and function (Mostyn et al. 2009), potentially leading to obesity, 
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diabetes, and disruptions in renal function (Cinti 2006). Unfortunately, no measures of diet or 

nutrition were examined in these animals, thus the contribution of this mechanism cannot be 

determined from the data presented here, aside from the measures of litter and individual pup weight 

gain; however, prenatal malnutrition alone has been shown to have no effect on early life dam-pup 

interactions (Tonkiss et al. 1995). Saline-treated control dams were employed in addition to the 

untreated controls as a specific control for prenatal stress, both from repeated daily injections and for 

cocaine-induced anorexia as mentioned previously. Prior studies have reported both significant and 

non-significant differences between untreated and saline-treated controls concerning both mothers 

and offspring, and stress effects are often considered to be an aspect of cocaine’s effects in animal 

studies. Our modified pair-feeding paradigm was designed to offset some concerns regarding 

continued food deprivation; however, some effects, though limited, are likely. The long term effects 

of cocaine and saline exposure likely differ despite the possible common mechanisms, and the 

interactive relationship between stress, malnourishment, and the specific effects of fetal cocaine 

exposure is currently unknown. 

With respect to prenatal cocaine exposure, body temperature is a relatively novel 

developmental target, but the presence of such effects are not necessarily surprising given the 

disturbances in cardiac development seen in similarly exposed pups (Regalado et al. 1996; Sun et al. 

2003) and prior reports of acute cocaine altering thermoregulation in adults (Crandall et al. 2002). 

Additionally, the magnitude of group effects was considerably stronger than we had anticipated; 

especially on PND 3. At this time point, the externally apparent temperature of cocaine- and saline-

exposed pups was almost two degrees (Celsius) warmer than untreated pups on average; a difference 

that was maintained despite alterations in environmental temperatures. Hyperthermia of only two 

degrees Celsius would not necessarily constitute a fever, but long-term elevation of body temperature 

could have significant developmental impacts, which again may be further exacerbated by prenatal 

cocaine exposure. Infant hyperthermia alone has been shown to intensify drug-induced neurotoxicity 

(Crandall et al. 2002), worsen hypoxia-induced brain damage (Kiyatkin 2007), dramatically alter 
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neurotransmitter levels (Laptook et al. 2002), and may alter brain development in numerous regions 

already be targeted directly by cocaine (Cremades et al. 1982). Infant hyperthermia has even been 

suggested as a potential contributor to Sudden Infant Death Syndrome (Baumgart 2008), which is 

more likely to occur in cocaine-exposed infants (Kinney 2009). Thus, despite the similarity in results 

between the cocaine and saline groups, the developmental repercussions of such effects may differ 

between these two groups. 

In spite of the increase in temperature in cocaine-exposed pups on PND 3, a decrease in 

temperature was seen only two days later in this group, on PND 5. This shift in body temperature 

relative to controls was unanticipated and highly interesting. There were no significant differences in 

the amount of heat generated by any of our pup groups at either testing time point (PND 3 or 5), 

suggesting that any differences in apparent body temperature were likely the result of alterations in 

heat distribution within the body (the heat produced in the interscapular region was more quickly 

dissipated to non-heat producing regions). Such effects would suggest non-metabolic mechanisms, 

and potentially point to cardiac or circulatory system effects. Brown adipose tissue primarily 

surrounds the heart and is also distributed throughout the peritoneum. Its primary location proximal to 

the heart is of particular importance, as the heart acts as a pumping mechanism to distribute the heat 

generated by BAT throughout the body via the circulatory system. Considering how strongly brown 

adipose tissue thermogenesis is tied to cardiac rate (Blumberg et al. 1997; Sokoloff et al. 1998), our 

lack of groups differences in TIS-TB (our measure of BAT thermogenesis) would suggest that cardiac 

rate may not be the primary mechanism. Instead, cardiac stroke volume, blood pressure, or other 

circulatory system characteristics may be more significant contributors. 

In an attempt to address this question, we have examined heart volume and beta-adrenergic 

receptor levels in cardiac tissue collected from a separate group of animals. This study (unpublished) 

found no change in beta-adrenergic receptor levels following prenatal cocaine exposure, but did show 

reductions in cardiac mass (see Figure 11 below), which should be directly proportionate to cardiac 

volume. Such findings would suggest that differences in thermoregulation following prenatal cocaine 
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Figure 11. Cardiac mass on 
postnatal day 5. Cocaine exposed 
males and females show 
reduction in cardiac mass 
compared to untreated pups. 

or saline may be resultant from altered cardiac stroke volume as 

opposed to the contractile mechanisms. However, without 

cardiac data from saline-exposed pups, it is difficult to tell if 

these effects are specific to cocaine. 

While altering steady-state body temperature likely has 

implications on the development of other physiological 

systems, such effects would also likely be detectable by the 

effected pup’s mother, influencing her behavior. A feedback 

system exists between the pup and mother, such that maternal heat is transferred to pups during close 

contact, but pups also act as a source of heat for mothers (Woodside et al. 1988). Thus, not only does 

a mother have incentive to isolate hyperthermic pups to reduce the body temperature of the pups, but 

also to reduce her own body temperature. Abnormally warm pups, such as the PND 3 cocaine-

exposed pups seen in the current study, would offset this feedback loop in favor of reduced maternal 

attention and increased isolation. Indeed, cocaine-exposed pups have been shown to receive less 

direct contact from dams, regardless of dam drug exposure (Johns et al. 2005a), especially very early 

in the postpartum period (days one through three). Later in the postpartum period, maternal care 

differences are less apparent, just as the temperature differences between the groups presented here 

were less severe. The inverse relationship between these two variables (heat and maternal attention) 

seems to fit nicely with the thermal data reported here on PND 3, and may present a potential factor 

in the patterns of maternal care deficits reported earlier (Johns et al. 2005a), although this was not 

directly tested in the present study. Follow-up studies of this system should include the external 

control of pup body temperature to assess direct effects on maternal contact. 

While the thermal state of pups alone can influence maternal attention, the thermal state of 

the pup also contributes to the production of ultrasonic vocalizations in the early postpartum, another 

cue important for the elicitation of care. One physiological mechanism of cry production, laryngeal 

braking, has been suggested as a potential link between these two behavioral systems (Blumberg et al. 
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2001). As a pup becomes colder, it is more likely to use this technique to boost metabolic and cardiac 

output, thus briefly warming the pup, but also producing a vocalization as a byproduct. The strong 

relationships between both the weight of the pup and the temperature of the pup and its likelihood of 

vocalizing found here strongly support this mechanism of vocalization production; however, it is 

unknown how the thermal state of the pup contributes to the frequency, amplitude, etc. 

Aside from physiological mechanisms, older pups with stress systems intact may also be 

experiencing stress related to the thermal challenge itself or resulting from isolation from littermates 

and maternal attention. In addition to vocalization production, a number of other attributes were 

found to be altered by the thermal state of the pup, such as the frequency, amplitude, and the variation 

in frequency of the call. While it is possible that such elements are the result of changes in the 

physiological mechanisms of cry production, it is just as likely that such elements reflect the 

psychological state of the pup. Such differences in mechanism might be reflected in the differences in 

these factors between PND 3 and 5. It is unknown exactly when stress systems become active, but in 

older animals with intact stress systems, applying psychological stress often results in vocalization 

production (Sanchez 2003). Holding animals at thermoneutral temperatures and applying non-thermal 

stimuli to elicit vocalizations (eg pain) may shed light on this question. 

The data we present here are robust and interesting; however, they must be interpreted with 

caution. Considering the deficits in maternal attention reported for cocaine-treated pups in the early 

postpartum, period, without using a cross-fostered group it is difficult to separate the respective 

contributions of prenatal cocaine and maternal cocaine treatment. Further mechanistic studies of other 

pup characteristics, as well as cross-fostering studies, could address these points, since the cues 

examined here are only one of many cues that are relevant to care. It is probable that thermal state can 

also influence other pup behaviors, interacting with other cues to effectively elicit care. Additionally, 

given the similar direction and magnitude of cocaine and saline exposure effects on PND 3, it will be 

important to determine differences in stress-related effects aside from those attributable to cocaine 

treatment alone, and how these effects interact to further alter development.



 

 

 
 
 
 
 
 

CHAPTER IV 

A Study of Prenatal Cocaine’s Effects on Urine Constituents 

 

Introduction 

In addition to the auditory and thermal cues discussed in Chapter III, olfactory cues are 

important to a dam’s ability to locate pups (Farrell et al. 2002a; Farrell et al. 2002b) and are thought 

to play a direct role in the initiation of maternal behavior (Morgan et al. 1992). It has been 

hypothesized that pup odors activate olfactory nuclei that exert an inhibitory effect on brain regions 

implicated in maternal behavior (Fleming et al. 1974a; Fleming et al. 1974b). Lesioning the main 

olfactory bulb will not eliminate maternal care, but does increase the latency to retrieve pups (Benuck 

et al. 1975; Fleming et al. 1974a; Kolunie et al. 1994). Disruption of olfactory bulb function may have 

many downstream effects of behavior given its direct neuronal connections to the supraoptic nucleus 

of the hypothalamus and amygdala (Yang et al. 1995). 

Pup-produced olfactory cues are mainly attributed to excretions, either from urine, feces, or 

the preputial gland, released by maternal licking in the early neonatal period (Capek et al. 1956; 

Friedman et al. 1981; Gubernick et al. 1983). Dams lick pups, thereby ingesting urine after delivery, 

to stimulate urination and defecation in the pups (Alberts et al. 1990) and to rehydrate themselves 

(Friedman et al. 1981; Gubernick et al. 1983). Olfactory cues influence maternal behavior in many 

mammalian species (Levy et al. 2004); even human mothers can detect subtle olfactory differences in 

babies (Bonnin et al. 1990). Rat dams prefer odors associated with pups or other rat dams, and 

disruption of the olfactory system can affect maternal retrieval (Bauer 1983; Bauer 1993; Kinsley et 

al. 1995; Magnusson et al. 1995; Malenfant et al. 1991). These results imply a difference in the 
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reinforcing properties of familiar versus unfamiliar pup cues (Lee et al. 2000; Mattson et al. 2001; 

Mattson et al. 2003; Mattson et al. 2005). 

To date, very little research has examined the particular compounds in pup urine that may be 

detected by rodent mothers. However, one compound, dodecyl propionate (DP), has garnered 

particular interest. DP is secreted by the rat pup preputial gland, and appears to regulate rather than 

stimulate the amount and quality of anogenital licking that a pup receives (Brouette-lahlou et al. 

1991; Brouette-Lahlou et al. 1991). While pups with ablated preputial glands still received small 

amounts of licking, they also had dramatically increased mortality rates related to significant 

reductions in anogenital licking compared to sham controls. It has been suggested that DP, in addition 

to the level of testosterone in pup urine, may in part explain while males pups are typically licked 

more frequently than female pups (Brouette-Lahlou et al. 1991). 

Aside from its utility as a maternal cue, pup urine can also provide valuable information 

regarding the general health of the pup in the early postpartum period. Urinalysis in humans has been 

used for decades as a screening and diagnostic tool, because it can detect substances or cellular 

material in the urine that are associated with many metabolic, kidney, and urinary tract disorders. 

Additionally, urine can also provide a non-invasive means of detecting drug presence, such as cocaine 

and its metabolites. Cocaine is typically eliminated from plasma by hydrolysis, and about 75-90% is 

eliminated in the urine as either ecgonine methyl ester or benzoylecgonine (Ambre 1985). Although 

drug clearance rates are fairly well understood in adult rats, the clearance of cocaine in young pups is 

poorly understood. Additionally, prenatal cocaine exposure likely alters drug metabolism and may 

alter pharmacokinetics through its impact on liver and renal function. Prenatal cocaine’s teratological 

effects on the renal system have been well documented in clinical research, with such infants showing 

a four-fold increase in the likelihood of urinary tract infections (Gottbrath-Flaherty et al. 1995), renal 

hypertension (Ho et al. 1994), and elevated bilirubin levels indicative of liver dysfunction (Wennberg 

et al. 1994). To our knowledge, no study of prenatal cocaine’s effect on the developing renal or 
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urinary systems have been conducted in animal models, but given the effects reported in humans, 

such findings are likely. 

The purpose of the current study was to determine the level of cocaine present in urine 

collected from young pups following prenatal cocaine exposure, and to examine levels of DP to 

determine if this may play a role in prenatal cocaine’s effect on pup elicitation of care. We 

hypothesized that cocaine and its metabolites would be apparent immediately following birth, but will 

not persist past PND 2 given previously reported clearance rates in adults. We also hypothesized that 

DP levels will be lower in cocaine-exposed pups, in line with the reduced licking these pups have 

been reported to receive (Johns et al. 2005a).  
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Methods 

Breeding 

Individually housed Sprague-Dawley nulliparous female rats (200 grams, Charles River, 

Raleigh, NC) were kept on a 12:12 reverse light cycle (8:00 AM dark) for one week and then mated 

until conception was noted by the presence of a vaginal plug and sperm in a vaginal smear (gestation 

day (GD) 0). Following conception, females were randomly assigned to chronic cocaine, chronic 

saline, or untreated groups as they became pregnant (see below for treatment information). Weight 

gain was measured daily for all animals throughout gestation. Water and chow were available ad 

libitum for all except chronic saline-treated rat dams, who were matched with a chronic cocaine dam 

on a pair-feeding schedule to control for any effects of cocaine-induced anorexia. Seven days 

following conception (GD 7), females were moved to a colony room and individually housed on a 

regular 12:12 light:dark cycle with lights on at 7:00 AM. This procedure results in the majority of 

dams delivering in the normal daylight hours (Mayer et al. 1998). PPD 1 was defined as the calendar 

day during which delivery was completed. Following delivery, litters were culled to 10 pups (5 male, 

5 female) and pups were returned to their own biological mothers. We chose not to employ surrogate 

mothers to control for differences in postnatal care between groups as we wished to study the more 

natural interactions of mothers and pups, as occurs in human clinical populations. 

 

Dam Treatment 

Females were randomly assigned to chronic cocaine, chronic saline, or untreated groups as 

they became pregnant, with 15 animals per group. Chronic cocaine-treated dams received twice-daily 

subcutaneous injections of 15 mg/kg of cocaine hydrochloride (total 30 mg/kg dose calculated as free 

base, 2 ml total volume, Sigma, St. Louis, MO) dissolved in normal saline at approximately 9:00 AM 

and 4:00 PM throughout gestation (GD 1-20) and not thereafter. This is the lowest chronic gestational 

cocaine treatment dose consistently reported to produce significant effects on pup-directed maternal 

behavior (Nelson et al., 1996). To prevent skin lesions, injections were alternated daily between rear 
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leg flanks. If a lesion appeared, the fur was clipped at the site, cleaned daily with a betadine solution, 

and a topical antibacterial ointment (Polymycin-Bacitracin-Neomycin, E. Fougera & Co., Melville, 

NY) was applied to the area. These measures have been shown to minimize skin lesion appearance 

and severity and have been used in numerous studies (McMurray et al. 2008b). 

Control groups included both chronic saline-treated and untreated dams. Chronic saline-

treated dams received injections of normal (0.9%) saline (2ml/kg total volume) on the same schedule 

and regimen as the chronic cocaine dams. Saline-treated dams were pair-fed to chronic cocaine dams 

in the early gestation period such that the amount of food ingested by cocaine-treated dams on 

average on a specific gestation day during the first 7 days of gestation was the amount provided to 

saline-control dams on the corresponding gestational day. Beginning GD 8, saline-treated dams had 

free access to rat chow. This procedure accounts for the time when cocaine-treated dams are most 

affected by the anorectic effects of cocaine in prior studies (Johns et al. 2005a; McMurray et al. 

2008b), while not inducing the serious confound of food deprivation in saline-treated dams. Untreated 

control dams received no drug treatment or food restriction during gestation or during the postpartum 

period, but were weighed daily to control for the effects of handling. 

 

Urine Collection and Analysis 

Urine was collected in a pipette from all pups in test litters on PNDs one and three after 

gently stroking the pup’s genital region with a soft paintbrush to elicit urination. Urine from pups of 

the same sex within each litter was pooled to aggregate a minimum of 50 µl total. After collection, 

urine was rapidly frozen on dry ice and stored at -80°C. This method has worked well in preliminary 

studies where urine was analyzed with a dipstick test (Siemens MultiStix 10SG). Urine analysis was 

completed by the Center for Human Toxicology at the University of Utah and the Biomarkers Facility 

Core at the UNC Gillings School of Public Health, Center for Environmental Health and 

Susceptibility. Samples were transported on dry ice to each research facility for analysis. Samples 

were analyzed for the presence and quantity of cocaine and metabolites (benzoylecgonine and 
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Figure 12. LC/MS results from 
standards: (A) dodecyl propionate and 
(B) butyl laurate. 

ecgonine methyl ester) using liquid chromatography in combination with mass spectroscopy 

(LC/MS), specifically electrospray ionization-mass spectroscopy, as previously reported (Lin et al. 

2001; Lin et al. 2003). Detection of DP and level quantification was conducted via liquid 

chromatography followed by atmospheric pressure 

chemical ionization-mass spectroscopy. Since no 

published methods exist for the quantification of this 

chemical using these techniques, a series of studies took 

place to develop these methods for use in house. 

Additionally, since no standards were commercially 

available, standards first had to be synthesized in house. 

This was also completed by the Biomarkers Facility Core 

and validated using commercially available samples of 

butyl laurate, a chemically similar compound. LC/MS detection of the standards can be seen in Figure 

12. The mass of DP was determined to be 243 m/z and the product mass 75 m/z. Once standards were 

synthesized and validated, detection of DP occurred via a series of studies. First detection was 

conducted in a non-concentrated 10 µl sample of urine, then in a non-concentrated 10 µl sample 

spiked with 1.4 nmol DP standard. Next, urine protein was ethanol-precipitated to reduce background 

noise, and both non-spiked and spiked samples examined. Following this, urine samples were 

chloroform-extracted to further optimize the procedure, and again, spiked and non-spiked 10 µl 

samples were examined. 

 

Data Analysis 

Individual LC/MS data points were collected by the associated software package. Collected 

data was then compared between treatment groups, sexes, and across test days using ANOVA, with 

alpha levels of 0.05, and Tukey posthoc tests to examine specific effects.
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Figure 13. Levels of cocaine and metabolites 
in pup urine following prenatal cocaine 
exposure on PND 1 (A) and PND 3 (B). 

 

Results 

On both PND 1 and 3, cocaine and its primary metabolites (benzoylecgonine and ecgonine 

methyl ester) were detected in both male and female cocaine exposed pup urine samples (see Figure 

13), but not in untreated pups (data not shown). Considerably lower levels were detected on PND 3 

compared to PND 1. There were no differences between males and females on either day. 

No DP could be detected above background in either processed or unprocessed urine samples 

using the methods reported above. DP was detected only in the samples that had been spiked with 1.4 

nmol standard, suggesting that if DP is present in pup urine, it is at concentrations below the lower 

limits of quantification with LC/MS. Example data is shown in Figure 14. 

 

 
Figure 14. Detection of dodecyl propionate in 
unprocessed pup urine (A) and urine spiked 
with 1.4 nmol dodecyl propionate (B). No 
dodecyl propionate was seen above 
background in A. 



59 

 

Discussion 

The purpose of this study was to determine if cocaine and its metabolites were present over 

the 5 days following birth in the urine of pups exposed to cocaine in utero, and to determine if levels 

of DP in pup urine were reduced following prenatal cocaine exposure. Although we were able to 

demonstrate that both cocaine and its metabolites are present in pup urine up to 3 days postpartum, 

we were unable to successfully isolate DP in any urine sample. It is surprising that cocaine is still 

present in pup urine on PND 3, at least 24 hours after the last cocaine treatment was administered to 

their mother on gestation day 20. One study using similar methods found that cocaine plasma levels 

in a directly treated rat peak in 1-2 hours and remain elevated for up to 5 hours following a 40 mg/kg 

subcutaneous injection of cocaine (Vernotica et al. 1998), with urinary cocaine levels following 

similar timelines. While this dosage is slightly higher than the one used here, similar rates of 

clearance were expected from our dosage despite the indirect means by which cocaine was 

administered to the developing pup. The extended duration of cocaine’s presence found here could be 

related to either reduced metabolism of cocaine by the pup or reduced excretion of waste, possibly 

from less maternal licking, allowing levels to accumulate in the bladder. Considering the undeveloped 

state of pup liver and kidneys, it is likely that cocaine would persist for longer durations in plasma, 

altering the teratological time course and potentially influencing maternal care by altering the 

gustatory or olfactory properties of pup urine when finally excreted. To date no studies have been 

published on the reward value of cocaine containing urine compared to non-cocaine containing urine 

in rodent mothers, although such studies are underway at this time. 

The pharmacokinetics of prenatal drug exposure are poorly understood in general, and 

considering the numerous methods in which cocaine has been administered in prior studies 

(inhalation, intravenous, intraperitoneal, etc.) and the varying durations of exposure, the conclusions 

from the pharmacokinetic studies that have been completed are highly variable. For example, fetal 

plasma half-life has been reported in humans to range from as few as 4 minutes (Burchfield et al. 
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1990) to as many as 55 minutes (Robinson et al. 1994) depending on the route used and the number 

of infusions given. Despite this variability, it is generally agreed upon that cocaine is metabolized via 

first-order pharmacokinetic processes in the fetus as well as the mother (Downs et al. 1996), thus 

clearance of the drug from plasma would depend solely upon the dose of drug given.  

Estimates of the concentration of cocaine in the brain and plasma were approximately 2-3-

fold less in fetuses than in their dams (Spear et al. 1989), highlighting the role that the placenta plays 

in restricting cocaine’s entry into fetal circulation. Despite the differing levels, the brain/plasma 

cocaine ratio was equivalent in both parties. Thus, once past the placental barrier, cocaine appears to 

have equal affinity for brain tissue. Like cocaine, very little (approximately 2%) benzoylecgonine in 

maternal blood crosses the placenta in sheep (Covert et al. 1994), suggesting that the primary source 

of benzoylecgonine in the developing fetus is from the metabolism of cocaine within the fetus itself. 

However, in rats, benzoylecgonine can actually be found in greater concentrations in fetal brain than 

in maternal brain (Spear et al. 1989). This is particularly troubling, considering benzoylecgonine has 

been shown to cause vasoconstriction of cerebral arteries (Dixon et al. 1989; Madden et al. 1990; 

Schreiber et al. 1994). Such effects may explain in part the increased risk hypoxic-ischemic injury in 

infants with prenatal cocaine exposure. Benzoylecgonine levels have also been associated with 

alterations in infant behaviors. Neonates with increased signs of "neuroexcitation" had 

benzoylecgonine but no cocaine in urine, whereas “lethargic” neonates had detectable levels of 

urinary cocaine (Konkol et al. 1994). Considering such reports, the persistent elevation of urinary 

benzoylecgonine levels through PND 3 in our samples may have implications on fetal blood flow and 

brain development long after direct cocaine exposure has ceased. It would be most interesting to 

examine levels of these compounds in brain to determine how long pharmacologically relevant levels 

persist. 

The second goal of this study was to examine levels of DP in pup urine following prenatal 

cocaine exposure. As mentioned in the introduction, this chemical is thought to reinforce maternal 

licking of pups (Brouette-lahlou et al. 1991; Brouette-Lahlou et al. 1991). Unfortunately, we were 
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unable to quantify its levels in pup urine using the methods reported here. This may be due to a 

number of factors, including the techniques used to collect and store the urine, and the methodology 

for sample analysis. As implied by its chemical structure, DP is relatively oily, and it is possible that 

it would stick to the skin of the pup when excreted from the preputial gland and remain separate from 

the urine. Urine samples were collected from our subjects by suctioning the urine as it was secreted, 

thus potentially not collecting DP had it remained apart from the pool of urine. Studies that have 

effectively isolated DP (Brouette-lahlou et al. 1991; Brouette-Lahlou et al. 1991) directly extracted it 

from the pup preputial gland, bypassing its relevance as a stimulus for licking by the dam. However, 

even if DP had been successfully collected using these methods, because of its oily nature it is equally 

likely that it would have separated from the urine in our collection vials prior to freezing. It then 

could have affixed to the side of the vial and potentially not been collected when the sample was 

transferred for LC/MS analysis; however, the ethanol and chloroform extraction techniques were used 

to minimize the potential for this confound. 

Since LC/MS was clearly not effective in the current study, future investigations of DP 

should use other techniques for isolating the compound, such as radioimmunoassay or gas 

chromatography. These techniques traditionally have much greater signal to noise. Those studies 

reporting successful isolation of DP (Brouette-lahlou et al. 1991; Brouette-Lahlou et al. 1991) used 

gas chromatography followed by mass spectroscopy. We opted not to use such systems because of 

their lack of availability at the time of study design, and because we hoped to include our analysis of 

DP in a larger metabolomics-type study of pup urine, which would have required LC/MS. 

Unfortunately, this was not possible in the end, leaving our question about DP unanswered at this 

time. 

 



 

 

 

 

 

CHAPTER V 

GENERAL DISCUSSION 

 

These studies were designed to investigate how cocaine exposure during the gestational 

period influences the interactions between mothers and offspring including possible mechanisms 

involved in group differences. The first experiment identified a variety of disruptions in postpartum 

maternal responses to infants as well as long-term intergenerational effects on maternal-social 

behavior attributable to maternal drug treatment, pup prenatal drug exposure, or the interaction of 

these two factors in the postpartum and postnatal periods. One of the most important findings from 

this study was that offspring with prenatal cocaine exposure were less able to elicit optimal care from 

any mothers, drug treated or otherwise, during the early postpartum period. Thus, the second 

experiment was designed to investigate how prenatal cocaine exposure may alter a number of specific 

attributes and behaviors of pups known to elicit normal maternal care. The results from this study 

indicated that prenatal cocaine exposure can result in differences in thermoregulatory and vocalizing 

behavior in pups, but that these effects weren’t clearly dissociable from the possible effects of 

prenatal stress alone. These findings contribute not only to our understanding of cocaine’s effects on 

mother-infant interactions, but also to our understanding of cocaine’s effects on development in male 

and female offspring, a field of study that has suffered from a history of ill-conceived research and 

much political controversy. The final experiment was designed to determine the duration of cocaine 

and its metabolite’s presence in pup urine following prenatal cocaine exposure, as a possible 

contributor to pup behavior and maternal response to olfactory or gustatory stimuli. This study found 

that cocaine was present in pup urine through at least postnatal day 3. This finding has implications 
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on questions surrounding the teratological effects of prenatal cocaine, as it is likely that cocaine may 

have a much slower clearance rate in pups than was previously understood. 

This body of work derives from a common theoretical framework, concerning the impact of 

cocaine on mother-infant interactions. As detailed in Figure 15, this framework suggests that 

cocaine’s effect on development is determined by 1) its indirect effects on the mother’s maternal 

behavior; 2) its direct impact on developmental biology; and 3) by its indirect effects on pup 

stimulation of maternal care, mediated through its effects on developmental biology. This framework 

will be used to guide the discussion below, highlighting the interaction between the altered maternal 

environment and the altered postnatal development and behavior of the pup. 

 

 
 
Figure 15. Theoretical diagram of the effects of maternal cocaine use on the next generation. 
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Alterations to the Maternal Environment 

The effect of maternal cocaine treatment on maternal behavior has been well documented, 

both in Chapter 2 (Johns et al. 2005a) as well as in numerous other studies too extensive to detail 

(Johns et al. 1994c; Johns et al. 1998b; Kinsley et al. 1994; Nelson et al. 1998; Vernotica et al. 1996b; 

Vernotica et al. 1996a; Zimmerberg et al. 1992). Such effects could be mediated by cocaine’s direct 

effects on maternal biochemical or neurobiological systems or more indirectly through numerous 

other behavioral systems including the stress-response, motivational, nutritional, or perceptual 

systems. Additionally, these systems share many common molecular, genetic, and/or epigenetic 

origins that could be targeted by cocaine to alter numerous systems simultaneously. 

Much of the work on cocaine’s direct impact on maternal behaviors has focused on its impact 

on the oxytocin system. Oxytocin is an important neuroendocrine system implicated in the onset of 

normal maternal behavior (Fuchs 1983; Pedersen et al. 1982; Pedersen et al. 1985; Pedersen et al. 

1987; Pedersen et al. 1992; Pedersen et al. 1994) and therefore likely to be implicated when this 

behavior is disrupted. Indeed, a number of studies from our own lab have demonstrated alterations in 

many aspects of the oxytocin system following gestational cocaine exposure including central 

oxytocin levels (Elliott et al. 2001; Johns et al. 1997a), mRNA production (Jarrett et al. 2006; 

McMurray et al. 2008a), and receptor levels/binding (Jarrett et al. 2006; Johns et al. 2004; McMurray 

et al. 2008a), suggesting that this may be an important target through which cocaine may be altering 

maternal behavior. However, researchers have yet to find a direct mechanism through which cocaine 

may be altering oxytocin, and instead suggest it may be doing so indirectly through dopamine, 

serotonin, and/or norepinephrine (the primary reuptake inhibitor targets of cocaine in the brain). 

In general, reductions in central norepinephrine levels result in disruptions in the onset of 

maternal behavior in rats (Rosenberg et al. 1977; Thomas et al. 1997). For example, mice lacking 

norepinephrine show impaired maternal behavior, which can be reversed if norepinephrine is given 

before parturition (Thomas et al. 1997). Norepinephrine also contributes to the release of oxytocin 

(Lipschitz et al. 2003; Russell et al. 2003), and norepinephrine reuptake inhibitors can increase 
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hypothalamic oxytocin potency (Bealer et al. 2003), though the mechanism of this is not well 

understood. 

In addition to norepinephrine, serotonin has also been shown to modulate aspects of the 

oxytocin system, though the results of such research has not been as conclusive. For example, 

serotonin agonists may alter peripheral oxytocin release important for lactation (Bagdy et al. 1992; 

Bagdy et al. 1993; Bagdy 1996; Saydoff et al. 1991; Uvnas-Moberg et al. 1996) and reductions in 

serotonin levels may increase aggression (Coccaro 1989; Coccaro 1992; Olivier et al. 1992; Olivier et 

al. 1995). However, when acutely injected into ventricles, serotonin receptor agonists can reduce 

maternal aggression, yet have no apparent effect on maternal behavior (De Almeida et al. 1994). 

Thus, some debate still exists in the field as to whether serotonin positively or negatively modulates 

maternal behavior and aggression, though its role likely depends on the specific behavior, timing, and 

countless other factors. 

Manipulations of the dopamine system have been more conclusively associated with 

alterations in various aspects of maternal behavior and oxytocinergic modulation. Dopamine agonists, 

particularly D2 receptor agonists, have been shown to promote the release of peripheral oxytocin 

(Amico et al. 1992; Amico et al. 1993; Crowley et al. 1992; Parker et al. 1992), and dopamine 

antagonists can disrupt pup retrieval, nest building, and motor activity in general (Byrnes et al. 2002; 

Giordano et al. 1990; Keer et al. 1999; Silva et al. 2001; Silva et al. 2003; Stern et al. 1999). 

Interestingly, dopamine reuptake inhibitors given throughout gestation (in a model similar to our 

own) have also been shown to enhance maternal behaviors and decrease maternal aggression (Johns 

et al. 1996; Johns et al. 2005b). Such results would contradict the findings we report here, were 

dopamine the primary mechanism of cocaine’s effects on maternal behavior. 

It is important to note that the involvement of the dopamine system could be due to 

dopamine’s modulation of the oxytocin system, but could also be mediated through dopamine’s 

involvement in motivation and reward. Dopaminergic projections from the Ventral Tegmental Area to 

the Nucleus Accumbens and Striatum have been the focus of countless studies investigating reward 
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and motivation (Ikemoto 2010), and oxytocin can modulate dopamine signalling within a number of 

these brain regions as well as the hypothalamus (Shahrokh et al. 2010). As suggested above in Figure 

15, an altered motivation to care for infants following gestational cocaine exposure may also 

contribute to the reductions in care seen in our cocaine-treated animals. A number of studies have 

shown a blunting of response in reward circuits to non-drug-related rewards, enhanced responses to 

drug related cues, and altered responses to monoaminergic drug administration in psychomotor 

stimulant addicts (Kenny 2007). Indeed, there is evidence for both the anatomical ovelap of natural 

and drug reward systems (Kelley et al. 2002) as well as the separation of such systems (Carelli et al. 

2000). 

As indicated above, chonic drug treatment has been shown to alter the processing of other 

non-drug rewards and may influence the rewarding value of pups and pup-associated stimuli. In the 

early postpartum, dams prefer pup-associated cues over cues associated with an acute dose of cocaine 

(Mattson et al. 2001; Seip et al. 2007); however, it is unknown how prior exposure to chronic cocaine 

may alter this normal preference. It is possible that in our subjects, exposure to cocaine for the 20 

days prior to birth may reduce the salience of pup cues in favor of non-pup-directed behaviors. 

Additionally, the rewarding salience of drugs can change over the postpartum (Seip et al. 2008) and it 

is likely that such changes also occur in the salience of natural reinforcers, such as pups. Should our 

cocaine-treated dams already have an altered ability to care for pups, such changes in the rewarding 

salience of their pups could compound any other insults to this behavioral set. 

In addition to maternal behavior and aggression, oxytocin is also strongly involved in the 

stress response, one of the potential secondary mechanisms through which cocaine may be altering 

maternal behavior. Addiction is generally thought to increase stress levels in humans (Goeders 2002). 

Maternal stress alone can reduce the amount of care given to rodent offspring by their dams 

(Champagne et al. 2006) and even reduce the amount of milk produced (Lau et al. 2004). While stress 

levels were not measured in our dams, it seems reasonable to suggest that they may be abnormally 

high. Unpublished work by our lab using the forced swim and open field tests suggests this to be the 
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case (Williams et al. 2010). Specifically, our preliminary results indicate that the normal oxytocin and 

corticsterone response to stress seems to be dysregulated in cocaine-treated dams. In normal settings, 

the presence of pups can reduce the apparent stress levels of mothers (Deschamps et al. 2003); 

however, the repeated injections of cocaine or saline administered to our dams may differentially alter 

this normal relationship. Gestational stress alone has been shown to affect maternal care of offspring 

(Champagne et al. 2006). Preliminary data from our lab (Williams et al. 2010) indicates that the 

treatment paradigm used in our studies differentially alters baseline stress levels and stress 

responsivity in both of these groups. This is not surprising considering the saline-treated dams are 

also food restricted, which likely interacts with injection stress to create a differential stress response. 

Since cocaine and saline likely result in differential developmental effects in offspring, how these 

changes in maternal stress response interact with the prenatal exposure condition of the pups to 

determine maternal care would certainly be an excellent topic for further study considering the 

similarity of our cocaine- and saline-exposed pups. 

As our discussion has indicated, a number of important questions remain to be addressed 

before we can fully understand the impact of cocaine on maternal behavior, even aside from its 

interaction with pup produced stimuli. With respect to the model presented in Figure 15, the data 

presented here and elsewhere have demonstrated that the maternal environment is altered following 

cocaine, and that the interaction between dam and pup is an additional contributing factor. It remains 

to be determined if maternal motivation, perception, etc play significant roles in altering the behavior 

of this half of the dyad, although cocaine’s effects on maternal motivation and stress are perhaps the 

most interesting target for further research since findings from such studies would suggest numerous 

routes for behavioral intervention strategies and could also suggest numerous molecular targets for 

the development of pharmacotherapies. 
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Alterations to Postnatal Development and Behavior 

Regardless of the mechanisms of cocaine’s effect on maternal behavior, offspring produced 

stimuli and the infant’s response to its environment play an important role in eliciting care. The 

results from Chapter 2 indicated that even when cared for by untreated mothers, cocaine-exposed 

pups have difficultly eliciting normal levels of care. Thus, Chapter 3 was designed to examine this 

aspect of the dyad and to determine if a pup’s thermoregulatory ability or vocalization production was 

altered by cocaine exposure, which could in part contribute to more neglectful responses from their 

caregivers. The results from this study indicated that there were differences between cocaine-exposed 

pups and non-exposed pups; however, the majority of these effects were not dissociable from the 

effects of fetal stress/malnutrition seen in our saline control group. Since Chapter 2 indicated that 

cocaine-exposed pups in particular received reduce levels of care, such findings indicate that these 

measures were not independently responsible for the effects on maternal care as assessed here. 

Despite the apparent lack of a cocaine-specific effect on many of our measures, it is important to note 

that there are many additional pup characteristics that were not examined that may provide 

supplementary information to dams, such as movement patterns, olfactory, and gustatory cues (since 

dams carry pups in their mouths, lick them, and ingest their waste). It is likely that the few cocaine-

specific effects we report here interact with these other behaviors to cause the overall phenotype of a 

cocaine exposed pup. 

Since pups alter their own behavior in response to maternal attention, developmental 

disruptions in numerous physiological systems, especially the brain, could influence the pup’s ability 

to respond normally to any mother. As discussed in Chapter 1, to date very little preclinical research 

has been conducted to investigate the neurodevelopmental targets of prenatal cocaine exposure. Those 

studies that have examined neurobiological targets have focused on the serotonin and dopamine 

systems, since these two systems are directly targeted by cocaine. However, the findings from such 

studies have been somewhat inconclusive, and depend strongly on the timing of exposure and age of 

assessment. Additionally, the majority of those effects reported have required very high doses of 
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cocaine. Although one study reported changes in the 5HT-1A receptor subtype (Johns et al. 2002) and 

another demonstrated an effect on serotonin release in the nucleus accumbens and striatum (Yan 

2002), a number of other investigations of the serotonin system have reported no effect of prenatal 

cocaine on the levels of most receptor subtypes, receptor production, or degradation (Battaglia et al. 

1994; Battaglia et al. 2000; Cabrera-Vera et al. 2000; Chen et al. 2004; Chen et al. 2005; Henderson 

et al. 1993; Vicentic et al. 2000). Similarly, investiations of prenatal cocaine’s effect on dopamine 

system function have found minimal effects on extracellular dopamine levels (Vathy et al. 1993) and 

subtle effects on dopamine D1 receptor levels (Friedman et al. 1998), but other studies have found no 

change in dopamine receptor production (de Bartolomeis et al. 1994) and no change in dopamine 

release within mesolimbic brain regions (de Bartolomeis et al. 1994; Phillips et al. 2003). Such an 

ambiguous picture reinforces the possibility that prenatal cocaine’s long term effects on behavior are 

the result of extremely subtle changes in brain function, although future studies may determine 

otherwise. 

Like all behaviors, the behaviors studied in this dissertation are controlled by a number of 

brain regions, although the specific regions used depend slightly upon the age of the subject. This is 

perhaps due to changes in motivating mechanisms behind each behavior. For example, as suggested 

in Chapter 3, ultrasonic vocalization production at very young ages is likely the product of laryngeal 

braking; however, as the pup grows older, social factors become their predominant determinant, thus 

shifting the neurobiological control of this behavior from the periaqueductal grey and brainstem to 

more socially-integrated regions such as the hippocampus and hypothalamus. Of course, despite this 

shift, motor control of the larynx and respiratory system still relies upon the brainstem. Similar shifts 

likely exist in the control of thermal behavior. The shifting of neurobiological control of each 

behavior presents a potentially interesting target for the study of developmental insults, and may help 

explain why behavioral differences that are seen early in life may not be apparent later in life, and 

vice versa. Such effects emphasize the importance of longitudinal study designs. Had we looked at 

these measures at later time points we may have seen cocaine-specific differences. 



70 

In an attempt to expand upon the current body of literature in a highly translational way, we 

have begun an investigation of prenatal cocaine’s impact on brain development in rats using advanced 

neuroimaging techniques. While the results from this study may not be able to suggest molecular 

targets of prenatal cocaine exposure, it does allow for an anatomical and organizational examination 

of the entire brain. Such data will be of tremendous benefit to the field, as it will highlight additional 

brain regions related to behaviors of interest through association and suggest anatomical regions and 

connections of circuits for future studies to examine. The preliminary results from this study suggest 

that there are anatomical and organizational alterations to the hippocampus, olfactory bulb, and 

colliculi (McMurray et al. 2010); however, only a portion of this project has been completed, so 

interpretation of these results should be done with caution. 

Aside from central nervous system effects, prenatal cocaine exposure likely affects numerous 

other physiological systems such as the metabolic, renal, and cardiovascular systems. Many of these 

systems have been discussed elsewhere in this dissertation (see Chapters 1, 3 and 4); however, it is 

worth noting that prenatal cocaine may also have effects on the developing peripheral nervous 

system, which could contribute to all of the previously mentioned physiological systems. The 

peripheral nervous system delivers information to the brain from sensory systems and peripheral 

organs, and in turn delivers information to these systems from the brain. Historically, psychologists 

have considered the central and peripheral nervous systems as important players in the determination 

of behavior; however, recent studies have tended to focus on the central nervous system and we have 

perhaps lost sight of the importance of peripheral action. A return of focus on the peripheral system 

may provide a number of revelations regarding prenatal cocaine’s effects on pup behavior very early 

in life, such as crying and thermoregulation. 

When considering the effects of prenatal cocaine exposure we report here in light of the 

Polyvagal Theory (Porges 2009), it seems reasonable to suggest that alterations in infant arousal may 

be due to alterations in polyvagal balance. The Polyvagal Theory was introduced to explain the 

different functions of the two primary source nuclei of the vagus: the nucleus ambiguus and the dorsal 
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motor nucleus. The fibers originating in the nucleus ambiguus are thought to be responsible for 

respiratory sinus arrhythmia, while those fibers originating in the dorsal motor nucleus are 

responsible for enacting survival strategies, such as fighting, fleeing, or freezing. Despite the 

functional dichotomization, both of these pathways terminate on the same region (sinoatrial node), 

which is thought to control cardiac function. Based on this theory, shifts in respiratory sinus 

arrhythmia and heart rate could be explained by the independent actions these two pathways. 

Therefore, polyvagal theory would suggest that the branch of the vagus originating in the nucleus 

ambiguus would inhibit the otherwise acceleratory sympathetic nervous system input to the heart 

when attention and social engagement are adaptive, and withdraw this inhibition when fighting or 

fleeing are adaptive. Since thermogenesis is highly dependent on the metabolism of brown fat, shifts 

in vagal output could have dramatic implications on this process. Similarly, infant crying is in part 

determined by the level of arousal achieved, again suggesting that vagal imbalance could result in an 

over- or under-aroused infant. Interestingly, not only is the start and stop of a crying bout potentially 

determined by vagal efferents (Nakazawa et al. 1997), but also the pitch, amplitude, and numerous 

sonographic characteristics (Porter et al. 1988). Interestingly, good vagal tone has been suggested by 

numerous investigators to be an excellent predictor of infant resilience following prenatal cocaine 

exposure (Mehta et al. 2002; Sheinkopf et al. 2006a; Sheinkopf et al. 2007). Such findings would 

suggest that in addition to its central and peripheral nervous system effects, the intersection between 

the peripheral and central nervous systems to be a likely target of prenatal cocaine exposure. 

The results presented here suggest a strong similarity between the effects of fetal cocaine and 

those of fetal stress. Fetal stress can be vasoconstrictive resulting in hypoxia, increase levels of stress-

associated molecules (corticosterone, adrenalin, etc.), and may be capable of activating the 

developing infant’s HPA axis (Charil et al. 2010; Lester et al. 2009). Prenatal stress has also been 

associated with numerous metabolic effects (for review see (Tamashiro et al. 2010)), and fetal 

hypoxia has been shown to alter cardiac development, potentially affecting thermoregulatory capacity 

(Patterson et al. 2010). As discussed in the Chapter 1, these effects can have long reaching 
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implications on development. Specific to this dissertation, research on the impact of prenatal stress on 

vocalizing behavior has been somewhat inconclusive, with some studies showing an increasing 

number of ultrasonic vocalizations (Harmon et al. 2009; Williams et al. 1998), others showing a 

decrease (Morgan et al. 1999) on PND 14, and effects on earlier time points are unknown. The period 

and intensity of stress seems to be a determining factor and it is difficult to determine the intensity of 

the stressor used in our models. Thus, interpretation of the data presented here in light of this is more 

challenging. 

In addition to fetal stress, postnatal factors (neglect, sickness, etc.) can also result in stress to 

the developing pup, which can, in turn, affect behavior. For example, relevant to the current 

dissertation, repeated isolation from the mother as might occur in our cocaine group has been shown 

to alter vocalizing behavior (Goodwin et al. 1994). Our own anecdotal evidence might suggest that 

repeated isolation from the mother is stressful, at least in humans; however, no physiological 

measures of stress were collected in this study. Such effects should have been minimized to an extent 

in the current dissertation by not testing the same animal repeatedly. It is relevant to note though, that 

even though no experimental isolation was conducted, cocaine-treated mothers have been shown to 

isolate their pups more than other groups without our involvement. The interaction between such 

postnatal stressors and any existing prenatal factors may have contributed to the similarity between 

the saline and cocaine groups. 

Mortola and colleagues (Mortola et al. 1998) have reported that early postnatal stress, and to 

some extent prenatal stress, can alter thermogenic capacity. Their results indicated that prenatal stress 

paradoxically decreased interscapular BAT tissue levels, while at the same time increasing 

thermogenic capacity. The authors attributed this finding to changes in body weight (which would 

alter the surface to volume ratio) and potential changes in blood oxygen carrying capacity, resulting 

in an increase in thermogenic efficiency. Interestingly, intermittent maternal separation as seen in our 

cocaine-treated dams would provide intermittent cold stimuli, which can stimulate BAT growth and 

thermogenic capacity (Cannon et al. 1983; Skála et al. 1974). Additionally, the thermogenesis can 
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also be affected directly by stress (Benedek et al. 1983; Tornatzky et al. 1993), which is likely due to 

likely activation of the preoptic thermoregulatory neurons (Vellucci et al. 1995) and likely increased 

sympathetic activation of BAT through increasing norepinephrine turnover (Yoshida et al. 1994). In 

light of the increased interscapular and back temperatures on PND 3 reported in this dissertation, it 

would be most interesting to determine if BAT levels are decreased in our animals. Such results 

would suggest an even stronger relationship between the effects found in the cocaine and saline 

exposed groups. 

The results presented here regarding alterations in early life behavior following prenatal 

cocaine exposure describe only two behaviors used by pups that communicate information to dams: 

temperature and vocalizations. These two behaviors appear to be only marginally affected by cocaine 

at the time points examined in this study, and those effects were similar to the effects of prenatal 

stress alone. Thus, the picture presented by our data fall in line with current views of prenatal cocaine, 

which suggest that its effects are relatively subtle in comparison to fetal alcohol and other 

developmental disorders, and likely involves interactions between both prenatal and postnatal factors. 

Clearly, this was not an exhaustive investigation of cocaine’s effects on early life behavior, but the 

two behaviors examined are at the core of numerous physiological processes, such as cardiac and 

respiratory regulation. Numerous other behavioral and anatomical differences remain to be addressed 

(see Figure 15). However, the lack of highly significant differences in the important behaviors 

examined here  would suggest that if these underlying processes are affected by prenatal cocaine, the 

effects are extremely subtle and restricted to very specific behavioral sets. 
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Conclusions 

While this dissertation has answered very specific questions about the impact of cocaine on 

maternal-infant interactions, the results from these studies leave questions unanswered. Though 

Chapter 2 may have demonstrated that cocaine affects the ability of dams to care for pups and that 

cocaine-exposed pups have difficulty in eliciting care from their dams, Chapter 3 failed to find highly 

significant differences in several behaviors of these pups thought to be important for elicitation of 

care. Thus, further exploration of other stimuli or combinations of other stimuli that may impact 

maternal response is required to answer these questions. The sensory capacity of the rat differs 

dramatically from those of the human, therefore the characteristics of infants that we as a species 

consider most important may not be as relevant to rodents. Chapter 4 was designed to address 

numerous aspects of this system; however, was unable to effectively do so. Despite this, Chapter 4 

was able to show that cocaine is indeed present in urine from young pups. While this finding has 

numerous implications regarding the developmental impact of cocaine, it is unknown how this may 

interact with the olfactory and gustatory systems of rat dams to alter the quality of care these pups are 

able to elicit. It is highly unfortunate that the one chemical in urine known to play a role in maternal 

stimulation, dodecyl propionate, was not able to be measured in our samples.  

One strength of the studies conducted in this dissertation is their translational relevance. For 

example, it is possible to measure many of the same endpoints in humans that this dissertation has 

addressed in rodents. The interactions between human cocaine-using mothers and their infants have 

been previously studied by many (Strathearn et al. 2010b), reporting similar reductions in the quality 

of care we report here. An interesting extension of this study is ongoing in human mother infant 

dyads to determine the salient characteristics of infants that drug using and non-drug using mothers 

typically attend. Such studies will prove immensely valuable to our understanding of both how 

cocaine may be altering both parties of the dyad and perhaps lead to future intervention studies. While 

our results suggest that these measures may not be as sensitive a tool as is needed to investigate many 

subtle developmental disorders in rodents, they may have more clinical value. A particularly valuable 
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finding from this dissertation is that maternal stress, which may come from many sources in the 

human environment, are likely to have a large impact on the developing child and should be 

highlighted as an important area of future research. 

In conclusion, the data we present here add to the literature characterizing the impact of 

cocaine on mother infant interactions. These data suggest that cocaine-induced decreases in maternal 

care are likely the result of its effects on both parties involved in the dyad (mother and offspring). 

While we were unable to detect considerable differences in pup behavior following prenatal cocaine 

exposure, our results demonstrate that rat dams are able to detect differences between cocaine-treated 

and untreated pups and alter their behavior towards them. Continued research on the relevant 

physiological and behavioral effects of cocaine on rat pups may supplement our understanding of the 

factors that determine high quality interactions between mothers and pups. Considering the 

predominantly social nature of both humans and rodents, understanding the factors that contribute to 

successful dyad interactions can have tremendous implications in other fields of psychology and 

public health. 
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