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ABSTRACT 
 

JESSICA R. KEYS: Minority Drug Resistant Variants of HIV-1 and Response to Early 
Combination Therapy  

(Under the direction of Charles Poole) 
 

Initial HIV-1 therapy selection is informed by sequencing of a bulk PCR product 

to screen for antiretroviral resistance mutations. However, this method does not reliably 

sample drug resistant variants that occur in <20% of the viral population, and these may 

re-emerge and impair treatment response once therapy is administered. Alternatively, 

ultra deep sequencing can detect minority drug resistant variants, but it is difficult to 

distinguish very low abundance mutations from error. To address deep sequencing 

error, two regions of the HIV-1 genome spanning reverse transcriptase (RT) codons 34-

245 were tagged with a random 8-nucleotide sequence (Primer ID) prior to PCR and 

sequencing. Primer ID allowed us to use resampled raw sequences sharing the same 

Primer ID to construct consensus sequences, each representing an original viral 

template within that sample.  

We first established a residual error rate for Primer ID using known sequences 

for both the Roche 454 and Illumina MiSeq deep sequencing platforms. Primer ID 

reduced 454 and MiSeq errors from 71 to 2.6 and from 24 to 1.2 errors/10,000 

nucleotides, respectively. Applying Primer ID corrected 454 deep sequencing to 184 

therapy-naïve patients from North Carolina that went on to receive RT inhibitor based 

combination therapy, we found that 14% of had at least one RT inhibitor mutation, 

compared to 2.7% using standard bulk sequence analysis. Nearly 10% of 184 patients 

received regimens that contained fewer than 3 active antiretrovirals, according to the 
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Stanford resistance algorithm. While patients on suboptimal therapy failed faster than 

patients on fully-active regimens, the effect was driven by resistance detected by 

standard methods rather than previously undetected minority variants. Overall, the use 

of Primer ID revealed limited template utilization, limiting the depth of deep sequencing 

sampling. Primer ID addresses important limitations of deep sequencing and produces 

less biased estimates of low level resistance mutations in the viral population, which may 

allow us to more accurately define a threshold at which minority drug resistant variants 

of HIV-1 begin to compromise treatment response.
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CHAPTER 1     SPECIFIC AIMS 
 

1.1     STATEMENT OF PURPOSE 

HIV-related morbidity and mortality have declined significantly since the 

introduction of highly active antiretroviral therapy (HAART) [1, 2]. However, the benefits 

of potent combination antiretroviral therapy may be offset by the development of 

resistance and cross-resistance to these drugs [3]. Furthermore, HIV-1 variants with 

antiretroviral (ARV) resistance mutations may be transmitted to others, possibly limiting 

efficacy of HAART among patients initiating antiretroviral therapy [4, 5]. 

US Department of Health and Human Services (DHHS) Guidelines recommend 

resistance testing combined with expert opinion in patients failing therapy [6]. However, 

DHHS recommendations have only recently favored testing all patients prior to initiating 

therapy, irrespective of duration of HIV infection. DHHS’s caution stems from the fact 

that commercially-available genotypic antiretroviral resistance tests (GART) are unable 

to reliably detect minority HIV-1 variants present in below 20% of the population [7, 8]. 

Low sensitivity for minority variants could be problematic for testing chronically infected 

therapy-naïve patients, since resistant variants may have been overgrown by HIV-1 

variants with better replicative capacity in the absence of drug pressure. However, once 

corresponding drugs are administered, it is presumed that these minority drug resistant 

variants would quickly re-emerge [9], warranting further exploration into the prevalence, 

diversity, and clinical impact of minority resistance populations [10].  

The clinical utility of resistance testing in therapy-naïve patients is complex and 

depends on some key factors: transmissibility of resistance mutations; prevalence of 
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resistance in treated and untreated populations; persistence of resistance over time 

without drug pressure; and clinical relevance of minority drug-resistant HIV variants. 

Prevalence estimated using standard bulk sequence analysis indicates the burden of 

pre-therapy drug resistance is substantial in populations where ARV drugs have been 

historically more available, with an estimated 10-15% of untreated individuals having 

evidence of resistance [4, 5, 11, 12]. Moreover, transmitted HIV-1 variants with 

resistance mutations may persist as major circulating viral populations in therapy-naïve 

individuals for long periods of time [13-16]. While it is generally accepted that dominant 

resistant variants lead to adverse clinical outcomes in patients initiating therapy [5, 17], 

the impact of minority resistant variants on clinical outcomes is not as well characterized.  

Recent studies have implicated minority non-nucleoside reverse transcriptase 

inhibitor (NNRTI) resistant variants in shorter time to virologic rebound [18], but a 

threshold at which resistance mutations are clinically relevant has not been clearly 

defined. Difficulty in defining a clinical cut-point for variants with resistance mutations is 

partly due to complications associated with their measurement. Specifically, rare HIV-1 

RNA must be enriched in patient samples before sequencing, first by reverse 

transcription of HIV-1 RNA into cDNA followed by polymerase chain reaction (PCR) 

mediated amplification of the cDNA template. While both steps may introduce errors into 

the HIV sequence, PCR amplification in particular is associated with nucleotide 

misincorporation, recombination of viral sequences by template switching, biased 

amplification, and resampling of viral templates due to low template input [19, 20]. 

Further, HIV-1 replicates rapidly without a proofreading mechanism so that, theoretically, 

any mutation may be present in the viral population at any one time [21]. It is therefore 

critical to accurately estimate each individual’s viral population, which may be highly 
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variable and contain very low abundance resistance mutations, before a clinically 

relevant threshold can be defined. 

Ultra deep sequencing (UDS) is a high throughput technique that promises 

sampling depths capable of detecting minority drug resistant variants of HIV-1 [22, 23]. 

For this collection of highly sensitive sequencing platforms, patient-derived HIV-1 nucleic 

acids are amplified, pooled, and sequenced in a massively parallel fashion. Sensitivity is 

mainly limited by the number of HIV-1 RNA templates input and the efficiency with which 

they are reverse transcribed and amplified. However, UDS, like all other methods that 

rely on HIV-1 amplification, is subject to errors associated with PCR. UDS platforms in 

which a single nucleotide is added at one time (e.g., the 454 sequencing platform) are 

additionally prone to nucleotide miscalls within nucleotide repeats (homopolymeric 

regions) [24].  

Errors accumulated during UDS impede estimation of the highly diverse viral 

populations, since these must be distinguished from genuine mutations. Typically, 

known control sequences are used to inform statistical models that correct estimates 

skewed by nucleotide misincorporation, but not PCR re-sampling [25]. Alternatively, 

Jabara et al. introduced a method to address errors stemming from the PCR step 

forward, including PCR re-sampling [26]. With this approach, a random 8-nucleotide 

sequence is incorporated during cDNA synthesis so that each individual viral template is 

tagged with a unique Primer ID. After amplification and sequencing, majority-rules 

consensus sequences are constructed from sequences sharing the same Primer ID so 

that, collectively, these consensus sequences reflect the true viral population sampled 

rather than what was best amplified. Nucleotide miscalls are also filtered out by Primer 

ID consensus sequences since random nucleotide errors are more likely to be 

represented among the minority of raw sequences. 
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In this study, we estimated the prevalence of minority reverse transcriptase 

inhibitor (RTI)-resistant HIV-1 variants among therapy-naïve patients seeking HIV care 

at the University of North Carolina Infectious Disease Clinic and examined the influence 

of these resistant variants on response to early RTI-based HAART. For the latter 

question, we attempted to articulate relationships between the distribution of resistant 

variant within the individual and time-to-virologic failure (VF). To measure minority 

variants, we used an assay that is more sensitive than standard bulk sequence analysis 

to detect and quantify resistance in archived plasma samples from HIV-1-positive North 

Carolinians enrolled in the University of North Carolina Center for AIDS Research HIV 

Clinical Cohort (UCHCC). This assay was based on analysis of ultra deep sequencing 

(UDS) data generated by the 454 sequencing platform with the Primer ID method to 

allow more accurate estimation of the viral population [26]. We first established a 

baseline error rate for deep sequencing using both the 454 and less homopolymeric 

error prone Illumina platforms in a series of control experiments (Aim 1). We compared 

the results of resistance testing by deep sequencing with the 454 platform and standard 

bulk sequencing in samples from 184 patients obtained prior to therapy initiation (Aims 

2A and 2B). Among a subset of 19 patients with the greatest number of Primer ID 

consensus sequences generated using the 454 platform, we compared results obtained 

using the 454 platform to those obtained using the Illumina MiSeq platform, which is not 

susceptible to homopolymeric errors (Aim 2C). Last, we estimated the association of 

pre-therapy RT inhibitor resistant HIV-1 variants with virologic response to early RT 

inhibitor-based HAART (Aim 3).  

1.2     SPECIFIC AIM 1 

Using a known HIV-1 reverse transcriptase sequence, define a baseline error rate for the 

454 and MiSeq deep sequencing platforms. For each platform, compare results 
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estimated using Primer ID consensus sequences to those estimated using raw 

sequences. 

Hypothesis 1.1: Using Primer ID to create consensus sequences will 

reduce PCR and sequencing errors compared to raw sequences.  

Hypothesis 1.2: Error rates estimated using data from the 454 

sequencing platform will be higher in homopolymeric tracts compared to 

stretches of heterogeneous nucleotides. 

1.3     SPECIFIC AIM 2   

(A) Using the 454 FLX platform to sequence HIV-1 RT codons 34-138 and 149-236, 

estimate the prevalence and relative abundance of RT inhibitor resistance among 184 

therapy-naïve patients with concurrent bulk sequencing results. (B) Compare estimates 

obtained using the 454 platform to estimates obtained using bulk sequencing. (C) 

Among a subset of 19 patients with the greatest depth of sampling of viral templates, 

compare mutations detected within HIV-1 RT codons 34-73 and 111-138 between the 

Illumina MiSeq and Roche 454 platforms. 

Hypothesis 2A: Some drug resistance mutations will be detected more 

often as minority variants, particularly those associated with a reduction in fitness 

or those that are in homopolymeric regions (false positives), than other resistant 

variants. 

Hypothesis 2B.1: A larger proportion of the population will have 

evidence of RT inhibitor associated resistance mutations using deep sequencing 

compared to standard bulk sequence analysis. 
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Hypothesis 2B.2: Deep sequencing and bulk sequencing results will 

agree for drug resistance mutations that occur frequently on Primer ID 

consensus sequences within a patient sample. 

Hypothesis 2C.1: Results obtained using both ultra deep sequencing 

platforms will be highly concordant for mutations that occur on the majority of 

Primer ID consensus sequences. 

Hypothesis 2C.2: Results obtained using both platforms will be 

discordant for mutations that lie within stretches of homopolymeric sequence, 

and for mutations that occur in very low abundance. 

1.4     SPECIFIC AIM 3  

Among study participants with HIV-1 RT sequences obtained using both bulk 

sequencing and the 454 deep sequencing platform, estimate the association of pre-

therapy resistance to one or more antiretroviral agents within their first regimen on time-

to-first virologic failure (VF). 

Hypothesis 3.1: Participants harboring pre-therapy mutations conferring 

resistance to at least one ARV agent in their first HAART regimen will experience 

a shorter time-to-virologic failure compared to patients without any evidence of 

resistance at baseline. 

Hypothesis 3.2: The magnitude of the association of ARV with 

resistance will be proportional to abundance, copies of the resistant variant or 

both.
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CHAPTER 2     BACKGROUND 
 

2.1     EPIDEMIOLOGY OF HIV INFECTION 

The HIV epidemic has vastly altered the global infectious disease landscape 

since five patients were first identified with Pneumocystis carinii pneumonia in Los 

Angeles in October 1980 [27]. Over more than 30 years since, an estimated 34 million 

persons are living with HIV/AIDS worldwide, about 0.8% of the world’s reproductive aged 

population [28]. Some regions of the world are disproportionately affected, such as sub-

Saharan Africa, which accounts for 64% of the infected population [28]; however, even in 

the United States, over 600,000 people have died from AIDS and over 1 million people 

are living with HIV/AIDS [29] 

Persons living with HIV in the US represent a paradigm shift in the course of 

infection. This shift occurred as HIV underwent a transition from an illness of long clinical 

latency leading inevitably to AIDS and death into a manageable chronic illness of 

unknown duration. This shift, which is unequally distributed within the US population of 

HIV-infected individuals, was primarily due to the advent of combinations of powerful 

antiretroviral drugs with different mechanisms of action against the HIV virus, or highly 

active antiretroviral therapy (HAART) [1, 2, 30]. More people with HIV/AIDS are living 

longer as increasingly potent and tolerable regimens have become available (Figure 

2.1), but patients are completely dependent on HAART for remainder of their lives to 

prevent the onset of AIDS [31]. 
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Figure 2.1. AIDS cases, deaths, and persons living with AIDS, 1985-2009, US [31]. Data is 
adjusted for reporting delays. In 1993, the Centers for Disease Control and Prevention 
revised the definition of AIDS to include persons with CD4 cell counts <200 cells/µL [32]. In 
1996, widespread use of HAART began. HAART=highly active antiretroviral therapy. 

After HIV was eliminated from the blood supply, HIV/AIDS was thought to be 

confined to high risk groups, particularly men who have sex with men (MSM) and 

injection drug users (IDU) [33]. Since peaking at 31% in 1993, the proportion of AIDS 

diagnoses attributable to IDU declined to 13% in 2011, while MSM accounted for about 

half of diagnoses during that same period [29]. AIDS cases among persons reporting 

high risk heterosexual contact, while decreasing since 2008, have increased 

proportionately overall from 11% in 1993 to 31% in 2011 [29]. The most striking shift in 

the US epidemic, however, is the widening disparity between whites and racial and 

ethnic minorities. Minorities accounted for fewer than half of all new AIDS diagnoses in 

1985, but this proportion climbed to 74% in 2011 [29].  
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The Deep South, which includes Louisiana, Mississippi, Alabama, Georgia, 

South Carolina, and North Carolina [34], is a high priority region for HIV research, since 

the burden of AIDS is disproportionately high in that locale and changes in racial 

disparity and mode of transmission in the Deep South are at least as extreme as in any 

other region in the US. Nearly 17% of persons living with AIDS reside in these 5 states, 

which only account for 11% of the US population [29]. The Deep South has experienced 

a slower decline in AIDS cases since the introduction of HAART compared to other 

southern states and the remainder of the US: the Deep South experienced about a 19% 

decrease in AIDS diagnoses since 1996, while the remaining southern and non-southern 

states saw 38% and 52% declines [29, 35-45]. African Americans made up 70-77% of 

new AIDS cases in the Deep South in 2000-2004, which was higher than any other US 

region [46]. Further, the HIV epidemic in this region is driven by sexual transmission with 

heterosexual transmission playing an important role, particularly among women. 

Through 2002, 53% of all AIDS cases in the region were attributed to heterosexual 

transmission, with the majority of which were women [47].  

2.2     HIV VIROLOGY 

Acquired Immunodeficiency Syndrome (AIDS) was first recognized in 1980, but 

the causative pathogen, human immunodeficiency virus (HIV), was not identified until 

1983, when scientists at the Pasteur Institute in Paris isolated a retrovirus from a lymph 

node of a patient with AIDS [48]. Since this discovery, HIV virology has been vigorously 

studied in hopes of developing effective vaccines, powerful treatments, and a potential 

cure.  

Human immunodeficiency virus (HIV) belongs to the genus Lentivirus of the 

family Retroviridae based on shared morphology and similar mode of replication [49]. 

HIV is further classified into HIV-1 and HIV-2 based on genetic variability. HIV-1, which 
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originated in eastern and central Africa, and HIV-2 from western Africa, were both 

important in the early epidemic long before the 1980’s [50], but the current pandemic is 

due to HIV-1, and in particular HIV-1 Group M [50, 51]. While HIV-1 Group M subtype C 

is the most prevalent in the world given its dominance in Africa, subtype B, which is most 

prevalent in North America and Western Europe, has traditionally been the most 

frequently studied.   

HIV-1 is an enveloped virus with a matrix protein that surrounds a nucleoid 

structure in the center of the viral particle [49]. The nucleoid structure of mature HIV-1 

contains the viral dimeric RNA genome surrounded by a nucleocapsid core, which in 

turn is housed in the viral capsid. This nucleoid structure also contains viral enzymes 

integrase, reverse transcriptase (RT), and protease (PR). Surrounding the virion is a 

host-derived envelope, which is embedded with numerous spike-like glycoproteins that 

are responsible for host cell attachment and fusion [52]. Each glycoprotein is composed 

of three transmembrane gp41 subunits (trimer) plus a gp120 trimer that binds to the host 

cell’s CD4 receptor and CCR5 or CXCR4 coreceptor [53]. 

The HIV genome is approximately 9 kb in length and encodes ten genes: 

regulatory genes tat and rev; accessory genes vpu, vpr, vif, and nef; and structural 

genes gag, pro, pol, env (Figure 2.2). In addition, the HIV DNA genome includes non-

coding regulatory sequences, including two flanking long terminal repeats (LTR). Among 

the coding regions, regulatory gene rev encodes a protein that shuttles incompletely 

spliced RNA transcripts from cellular nucleus to cytoplasm for translation and packaging, 

while tat encodes a transcription factor that upregulates HIV DNA expression [54]. 

Accessory genes vpu, vpr, vif, and nef, encode proteins that likely inhibit cellular 

retroviral defenses [49]. Gag and env encode proteins that make up the nucleoid 

structure and envelope, respectively, while pro encodes HIV-1 PR. Finally, pol encodes 
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enzymes necessary for reverse transcription of viral RNA into DNA (RT and 

ribonuclease H, RNAse H) and integration (integrase, IN) of viral DNA into the host 

genome. In this study, HIV-1 pol is the region of interest since the most widespread 

therapeutic strategies target its products.   

 
Figure 2.2. HIV-1-encoded proteins (reprinted from [49]). Location of HIV-1 genes, sizes of 
primary translation products, and processed mature viral proteins are indicated. LTR=long 
terminal repeat; MA=matrix protein; CA=capsid protein; NC=nucleocapsid protein; 
IN=integrase. 

 
2.3     NATURAL HISTORY OF HIV INFECTION 

The classic model for the course of HIV infection in an untreated individual can 

be divided into three distinct phases: acute infection; chronic infection; and AIDS (Figure 

2.3) [55-57]. Typically, initial HIV infection is followed by a steep rise in plasma viral load 

and a drop in peripheral CD4+ T lymphocytes. This acute stage is followed by a partial 

rebound of CD4 cell count and a decline of plasma viral load to a relatively stable set-

point. This period of stable HIV-1 RNA concentration is generally marked by the near 

absence of overt clinical illness; however, dynamic immunologic changes are taking 
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place within the infected individual. Eventually, CD4 cell count falls below a threshold, 

plasma HIV-1 RNA concentration slowly rises, and the individual begins to experience 

opportunistic infections. Immune function continues to deteriorate over time and death 

follows, usually within 2 years of the onset of opportunistic infections. 

 
Figure 2.3. Classic model of HIV disease progression in the untreated HIV-infected adult. 
(adapted from [55-57]). 

 
2.3.1     TRANSMISSION AND ACUTE/EARLY INFECTION 

HIV disease begins with the transmission of the virus to a susceptible individual 

(time 0, Figure 2.3). HIV may be transmitted sexually, parenterally though exposure to 

infected blood products, or from mother to child. The probability of HIV transmission per 

exposure is highly variable and depends on exposure route, infectiousness of the 

transmitter, and susceptibility of the uninfected individual. Infectiousness of the 

transmitter is influenced by factors that alter the dose of virus to the susceptible 

individual. For example, acutely-infected individuals have higher viral loads in plasma, 

semen, and cervicovaginal fluids compared to persons with chronic HIV infection and 
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are therefore more likely to transmit HIV [58-60]. Conversely, infectiousness decreases 

with suppressive HAART, which lowers viral replication in these same fluids [61], and its 

use among discordant couples reduces HIV transmission [62, 63].  

Susceptibility may be influenced by factors that disrupt the mucosal barrier of the 

susceptible individual (concurrent infection with other sexually transmitted diseases 

(STD)), that are related to or modify the number of susceptible cells at the site of 

infection, (male circumcision, CCR5 Δ32 allele), or that modulate immune response 

(human leukocyte antigen class I alleles) [64-67]. Individual effects of each of these co-

factors on the probability of transmission are difficult to distinguish, given uncertain 

timing of events in the transmission process and high correlation between HIV, other 

STD, and high-risk behaviors [67]. How these co-factors might affect the transmission 

and acquisition of different variants of HIV-1, including those harboring drug resistance 

mutations, is even less certain.     

Once HIV is successfully transmitted, the acute stage of infection begins. During 

the first 2 weeks of acute infection, the virus disseminates from local to peripheral 

lymphatic tissues, creating a reservoir from which the virus can persist and replicate for 

the duration of disease [68]. Establishment of this viral reservoir within the peripheral 

lymphatic tissues is accompanied by irreversible and massive depletion of effector 

memory CCR5+ CD4+ T cells, particularly within the gastrointestinal tract [69, 70]. 

Massive die off of CCR5+ CD4+ T cells is not reflected in peripheral CD4 cell counts, 

since CCR5+ CD4+ T cells are not as common in peripheral blood and lymphatic tissues 

where central memory CCR5- CD4+ T cells dominate [71]. 

Within infected CCR5+ CD4+ T cells, HIV replication increases exponentially 

without significant control by an adaptive immune response, resulting in a burst in 

plasma virus concentration often higher than 10 million copies/mL [72]. As the adaptive 
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immune system becomes activated, many individuals with acute HIV may experience a 

constellation of non-specific, flu-like symptoms, collectively called acute retroviral 

syndrome [73, 74]. The onset of acute retroviral syndrome and the steep rise in viral 

titers coincides with the initiation of a CD8+ cytotoxic T lymphocyte response that is 

ultimately insufficient to eliminate HIV infection [75], but often allows reduction of viral 

load to a lower, somewhat more stable set-point [76]. Both lower viral load set-point and 

more rapid viral decay after reaching peak viral load during acute HIV infection have 

been linked to increased duration of the chronic stage of infection [76]. 

2.3.2     CHRONIC INFECTION AND AIDS 

The chronic stage of HIV disease begins with the establishment of the viral load 

set-point and detection of antibodies by standard clinical assays (seroconversion), but 

the duration of this relatively asymptomatic stage differs substantially among individuals. 

Some fast progressors experience AIDS onset within 2-3 years of seroconversion, while 

some long term non-progressors maintain high CD4 cell counts, lower viral loads, and 

remain asymptomatic for greater than 15 years after seroconversion [77]. However, on 

average, the time between seroconversion and the onset of AIDS-defining clinical 

conditions is around 10 years [78]. Although chronic infection of any duration is a period 

of clinical latency, in the absence of therapy, immunologic changes occur within the 

infected host that ultimately lead to the collapse of the immune system and the onset of 

AIDS. 

Once an infected person’s CD4 cell count has declined below 200 cells/µL, the 

individual meets the CDC laboratory definition of AIDS onset [32]. At this level of 

immunodeficiency, there is profound damage to the architecture of the lymphatic 

structures [55, 79], probably resulting from both indirect damage caused by general 

chronic immune activation and direct  damage due to cytopathic effects of HIV 
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replication and immunologic responses specific to HIV [56]. By the time HIV-infected 

individuals have met this definition of AIDS onset, many will already have begun 

experiencing symptoms such as oral candidiasis, herpes zoster outbreaks, recurrent oral 

ulcers, or constitutional symptoms such as prolonged fever, weight loss, or chronic 

diarrhea [32]. However, usually within 2 years after the laboratory threshold is reached, 

most begin experiencing the opportunistic illnesses that are listed in CDC category C, 

known as AIDS-defining clinical conditions [80, 81]. The number, duration, and severity 

of opportunistic infections vary among individuals, as does the prognosis. In one study, 

median survival for systemic illnesses such as progressive multifocal 

leukoencephalopathy was only 2 months (inter-quartile range, IQR: 1-5), while median 

survival for more superficial infections such as extrapulmonary tuberculosis was 19 

months (IQR: 7-37) [82].  

2.4     TREATMENT STRATEGIES FOR HIV INFECTION 

Potent combinations of ARV agents (HAART) have lengthened the chronic stage 

of HIV infection, reduced mortality [1, 2, 30, 83, 84], and improved AIDS survival time 

[85]. The expanding ARV repertoire in clinical use now includes 26 drugs from five 

classes distinguished by their mechanism of action against HIV (Figure 2.4) [86]. The 

five classes are: nucleoside and nucleotide reverse transcriptase inhibitors (NRTI); non-

NRTI (NNRTI); protease inhibitors (PI); entry inhibitors (EI), including fusion and CCR5 

inhibitors; and integrase strand transfer inhibitors (InSTI). Development of newer, better 

ARV is guided by our increasing understanding of the life cycle of HIV-1 and fueled by 

our need to outpace the development of resistance and cross-resistance within classes 

among individuals taking these drugs. 
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Figure 2.4. Antiretrovirals approved by the US Food and Drug Administration for the 
treatment of HIV-1 infection, 1987-2011 [86]. NRTI=nucleoside reverse transcriptase 
inhibitor; PI=protease inhibitor; NNRTI=non-NRTI; EI=entry inhibitor; InSTI=integrase 
strand transfer inhibitor; AZT=zidovudine; ddI=didanosine; ddC=zalcitabine; 
d4T=stavudine=3TC=lamivudine; ABC=abacavir; TDF=tenofovir; SQV=saquinavir; 
RTV=ritonavir; IDV=indinavir; NFV=nelfinavir=APV=amprenavir; LPV=lopinavir; 
ATV=atazanavir; FPV=fosamprenavir; TPV=tipranavir; DRV=darunavir; NVP=nevirapine; 
DLV=delavirdine; EFV=efavirenz; ETR=etravirine; RPV=rilpivirine; T20=enfuvirtide; 
MVC=maraviroc; RAL=raltegravir. 

The primary goals of HAART, as listed in DHHS treatment guidelines, are to: (1) 

reduce HIV-related morbidity and mortality; (2) improve quality of life; (3) restore and 

preserve immune function; (4) maximally and durably suppress viral load to below the 

limits of detection; and (5) prevent HIV transmission [6]. Modern HAART regimens 

include two NRTI as a “backbone,” along with a single NNRTI, a PI boosted with a low 

dose of the PI ritonavir (PI/r), an additional NRTI, or an InSTI [6, 87]; however, 

individuals may also maintain virologic suppression with a combination of an NNRTI and 

PI/r without a nucleoside backbone [88]. HAART is an effective and durable inhibitor of 

HIV replication since the combination of drugs from different ARV classes with different 

mechanisms of action minimizes the possibility of resistance to all three agents that 

make up the HAART regimen. 
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2.4.1     INHIBITORS OF HIV-1 REVERSE TRANSCRIPTASE 

Since the focus of this study is on reverse transcriptase inhibitor (RTI) resistance 

mutations, this discussion will focus on drugs within the NRTI and NNRTI classes. NRTI 

(Figure 2.4, black bars) are chain terminators of reverse transcription that halt reverse 

transcription of viral RNA when incorporated into the nascent DNA strand [89]. NRTI are 

the least potent inhibitors of viral replication because they are competitive inhibitors of 

naturally occurring cellular nucleotides and must be processed by the cell into an active 

form. Nucleoside reverse transcriptase inhibitors, including zidovudine (AZT), didanosine 

(ddI), discontinued zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), abacavir 

(ABC), and emtricitabine (FTC) [86], lack all three phosphate groups that are needed for 

incorporation into a DNA molecule and must have 3 phosphates added by cellular 

kinases. In contrast, the nucleotide reverse transcriptase inhibitor, tenofovir (TDF) [86], 

already has 1 phosphonate group prior to cell entry and require only 2 intracellular 

phosphorylation steps [90]. Once converted into an active form, NRTI halt DNA 

synthesis since they lack a 3’ hydroxyl group needed to connect the next nucleotide.  

NNRTI (Figure 2.4, medium gray bars) are a more structurally diverse group of 

compounds that inhibit HIV-1 RT by binding a hydrophobic pocket near the active site of 

this enzyme [91]; thus, NNRTI are allosteric inhibitors of HIV-1 RT. Once bound to RT, 

NNRTI induce a conformational change at the active site of RT that prevents the enzyme 

from binding correctly to nucleotides, the RT primer, and the RNA template [91]. NNRTI 

are highly specific to HIV-1 RT, which allows the inhibitory concentration of NNRTI to be 

lower than the amount that would be toxic to the individual [91]. NNRTI have higher oral 

bioavailability compared to nucleoside analogs since they do not have to be converted 

by the body into an active form, and these compounds have longer serum half-lives than 

nucleoside analogues (NRTI). Currently-approved NNRTI include delavirdine (DLV), 
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nevirapine (NVP), efavirenz (EFV), etravirine (ETV), and most recently, rilpivirine (RPV) 

[86]. 

2.4.2     TIMING OF INITIAL ANTIRETROVIRAL THERAPY 

When to initiate HAART and which ARV to combine is a complicated decision 

that is made based on individual and clinician considerations, including the presence of 

pre-existing resistance mutations [87]. Deferring HAART may benefit patients by: 

reducing the risk of treatment related toxicities and side effects; preserving and 

increasing future treatment options; decreasing the risk of treatment fatigue; and 

allowing patients to better understand the demands of HAART [6, 87]. On the other 

hand, deferring HAART may harm patients and their susceptible partners by: allowing 

irreversible damage to the immune system; increasing the risk of disease progression 

and death; and increasing the risk of HIV transmission to uninfected partners [6, 63, 87]. 

Given the risks and benefits of initiating HAART, current guidelines generally endorse 

initiation of therapy in all individuals with HIV infection, irrespective of disease stage [6]. 

All treatment guidelines recommend therapy initiation when individuals become 

symptomatic, regardless of CD4 cell count or HIV-1 RNA level. In asymptomatic 

patients, however, CD4 cell count is favored over HIV-1 RNA level in determining 

antiretroviral therapy initiation. Individuals with CD4 cell counts 200 cells/µL or below are 

offered therapy since initiation below this threshold increases the risk of disease 

progression or death and reduces the efficacy of treatment [92]. Therapy initiation at 

CD4 cell counts between 200 and 350 cells/µL is also recommended, since deferring 

therapy until CD4 cell counts dip below 200 cells/µL is associated with increased 

mortality and incidence of opportunistic infections [6, 87, 93]. Finally, for patients with 

CD4 cell counts ranging between 351 and 500 cells/µL, initiation of therapy is also 

recommended since there is good evidence that disease progression is delayed among 

these individuals, even if mortality is not clearly reduced [6]. CD4 cell count driven 
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recommendations underscore the importance of earlier diagnosis, which unfortunately is 

not the norm in the Southeastern US setting [94]. 

2.4.3     VIROLOGIC RESPONSE TO INITIAL ANTIRETROVIRAL THERAPY 

Once HIV-infected individuals begin HAART, plasma HIV-1 RNA decays in at 

least biphasic fashion. Patients first experience a 2 to 3 log10 decrease in HIV-1 RNA 

plasma concentration within 2 to 4 weeks of starting therapy [95, 96].  This first phase of 

rapid decline is followed by a slower, second phase of decay in which plasma HIV-1 

RNA levels fall below detection limits within an additional 2 to 24 weeks of suppressive 

therapy [97-101]. It is now clear that this second phase lasts indefinitely, since even in 

the presence of potent HAART, there is evidence of ongoing viremia below the limits of 

detection in clinical HIV-1 RNA quantification assays [98, 102, 103]. Also, many patients 

who achieve HIV-1 RNA levels below detection limits experience transient episodes of 

detectible HIV-1 RNA, or “blips.”  Each viral blip is probably associated with its own 

biphasic decline [104], but since blips are usually detected in the context of clinical care, 

where HIV-1 RNA level is measured every 4 to 8 weeks, only a single point on the curve 

is captured. Intermittent viremia may have important implications for drug resistance, 

since ongoing replication of virus under antiretroviral pressure may select for resistant 

variants that may be archived in resting cells or compartmentalized in tissues where viral 

dissemination is restricted, allowing for persistence of drug resistant variants within the 

treated individual [105, 106]. Episodes of intermittent viremia after initial suppression 

occur in 20-40% of patients in clinical care within the first year of therapy [107-109], and 

most of these patients return to suppressed levels upon their next viral load 

measurement. However, a small proportion of patients with intermittent viremia (7-15%) 

do not return to previously suppressed HIV-1 RNA levels by their next HIV-1 RNA 

measurement and experience virologic failure, a form of treatment failure [107-109]. 
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2.4.4     TREATMENT FAILURE 

Treatment failure occurs when patients on therapy do not experience expected 

improvements in terms of virologic response, immune reconstitution, and/or HIV disease 

progression [6]. Treatment failure may be the result of poor adherence, insufficient drug 

concentration, advanced AIDS or other comorbid conditions, or drug resistance. Failure 

often leads to modification or discontinuation of ART, which is common in the clinical 

setting: an estimated 48% of patients in routine clinical care in the UK switched one ARV 

in their regimen within two years of HAART initiation [110]. In a Southeastern US cohort, 

55% of patients discontinued their first HAART regimen within one year; however, most 

of these were associated with drug toxicity rather than treatment failure [111, 112]. 

For this study, one type of treatment failure will be defined – virologic failure (VF). 

Although virologic and immunologic response are highly correlated, there are many 

cases in which patients achieving virologic suppression fail to achieve immunologic 

benefits from HAART [113]. Also, there are many cases in clinical care where patients 

may experience immunological benefits despite persistent viremia while on HAART 

[114]. In most settings, patients experiencing VF include individuals who either fail to 

achieve a significant decline in viral load within the first 6 months of HAART (0.5 to 1 

log10 copies/mL) or have detectible HIV-1 RNA levels after 6 months of HAART. HIV-1 

RNA assay detection limits have evolved over time, and this cut-off is usually set for the 

highest detection limit of all assays used. This definition of failure is flexible since it 

allows for differential viral decay after initiation of HAART that occurs between 

individuals [95]; it includes those individuals who never achieve suppression as well as 

those experiencing virologic rebound; and it allows for viral load blips, which may not be 

clinically important [108, 115].  



21 

 

2.5     SELECTION OF RESISTANCE MUTATIONS WITH ANTIRETROVIRAL THERAPY 

Treatment guidelines emphasize the importance of viral suppression to below the 

limits of detection primarily to prevent evolution of antiretroviral resistance mutations [6]. 

With selective pressure of non-suppressive therapy, resistant viral variants may acquire 

additional mutations that increase resistance to a single drug or lead to cross resistance 

to other drugs within that class.  Alternatively, resistant variants may acquire mutations 

that compensate for penalties to viral fitness incurred with initial drug resistance 

mutations [116]. Variants with resistance mutations may also recombine, producing 

populations with additional resistance mutations on the same genome [117, 118]. 

Following convention, resistance mutations are indicated using single letter 

amino acid abbreviations and the codon number; for example, M184V indicates a 

change from wild type methionine (M) to resistant valine (V) at codon 184 of HIV-1 RT 

(Appendix 2.1). Most known amino acid changes and insertions or deletions associated 

with NRTI or NNRTI resistance fall within codons 41 and 225 of HIV-1 RT [119]. The 

accumulation of resistance mutations within these regions is no accident: changes in 

these codons often confer structural changes that disrupt substrate binding and 

processing, not only for natural substrates, but also for inhibitors. 

2.5.1     ANTIRETROVIRAL RESISTANCE AND VIRAL FITNESS 

Viral fitness is defined as the virus’s capacity to replicate in a given environment 

[120]. Since fitness is contextual, the microenvironment in which HIV replicates must be 

well defined. Further, the concept of fitness is so broad that it may be altered at virtually 

any stage in the viral life cycle.  Multiple genes may be in play, thus complicating 

comparisons of viral fitness across studies that use different methods to measure viral 

fitness. However, the concept of viral fitness is central to determining the relative 

abundance of different viral variants in the individual; it is expected that in a given 

microenvironment, such as the presence of non-suppressive therapy, variants with a 
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fitness advantage allowing them to replicate more efficiently will emerge as the dominant 

population.  

In the absence of ARV, many viruses with resistance mutations are less fit than 

the wild type virus, since many of the mutations introduce conformational changes to the 

target enzymes that negatively impact function. The fitness difference between resistant 

and wild type variants differs substantially by ARV class, location, type and number of 

resistance mutations, and the methods and environment in which fitness is measured 

[121]. Because of the fitness cost associated with many drug resistance mutations, the 

more fit, drug sensitive virus tends to re-emerge as the dominant population once drug 

pressure is removed, assuming the patient was initially infected with sensitive virus [9]. 

Such re-emergence includes replacement of resistant variants with archived sensitive 

variants, but reversion of resistance through back mutation is also possible.  

NRTI mutations accumulate under suboptimal therapy, primarily increasing 

resistance rather than compensating for a loss in fitness. Many NRTI mutations (A62V, 

K65R, T69ins, V75I, L74V, F77L, Y115F, F116Y, and Q151M) accumulate near primer 

binding site of RT, impairing the function of the enzyme. For example, the K65R amino 

acid change is associated with decreased incorporation of natural nucleoside substrates 

by HIV-1 RT, especially dATP [122]. RT function may also be impaired by a mutation 

within the polymerase active site, M184V/I, which increases fidelity and reduces 

processivity of the enzyme [123]. A separate class of mutations, selected by AZT and 

d4T, occur outside the primer binding site in “palm” and “finger” subdomains of RT, and 

may have less of an effect on fitness than mutations occurring near the polymerase 

active site [124]. These are collectively called thymidine analogue mutations (TAM), and 

include M41L, D67N, K70R, L210W, T215Y/F and K219Q/E. During non-suppressive 

AZT or d4T therapy, TAM tend to accumulate in two exclusive patterns, with an 
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increasing number of mutations associated with increased resistance and eventually 

cross-resistance to other nucleoside or nucleotide analogues within the NRTI class [125, 

126]: (1) M41L/L210W/T215Y (TAM-1); or (2) D67N/K70R/T215F/K219Q (TAM-2). 

Clustering of TAM into these two patterns has been attributed to changes in fitness 

determined largely by T215Y and L210W [126]. 

Unlike many NRTI resistance mutations, amino acid changes conferring 

resistance to NNRTI are not often associated with large fitness reduction in the absence 

of drug. NNRTI mutations, including K103N, Y181C, and Y188L, are selected rapidly 

under failing NNRTI-based therapy. They may be associated with high-level, class-wide 

resistance, and they may persist for lengthy amounts of time once drug pressure is 

removed [127, 128]. NNRTI mutations cluster near the hydrophobic pocket of RT that is 

the target for NNRTI, and most do not interfere with RT function. However, some NNRTI 

associated resistance mutations, including V106A, G190S/E, and P236L, are associated 

with a significant decline in replicative capacity in the absence of NNRTI; these effects 

on fitness are believed to be due to a decline in RNase H activity of mutant RT [129].   

2.6     MECHANISMS OF REVERSE TRANSCRIPTASE INHIBITOR RESISTANCE 

Pathways of ARV resistance vary by drug class, by ARV within the class, and by 

individual mutation. Many of the best characterized mechanisms were first described 

under monotherapy, but mutations may accumulate and interact in more complex ways 

under combinations of ARV from multiple classes (HAART) [130]. Further, many 

resistance mutations to one class may interact in unexpected ways with mutations to 

another class, complicating expectations about the evolution of resistance mutations 

under suboptimal therapy.  

NRTI resistance mutations were reported almost immediately after the earliest 

NRTI became available [131]. However, as other analogues were introduced, the 



24 

 

spectrum of NRTI mutations also broadened, revealing two mechanisms of NRTI 

resistance: (1) reduced incorporation of the NRTI and (2) ATP-mediated excision of the 

NRTI from the terminated DNA strand [116]. The first mechanism, whereby RT shows a 

reduced capacity to add NRTI to the DNA chain, is associated with M184V/I, K65R, and 

the Q151M complex. M184V/I decreases incorporation of 3TC/FTC since the side chains 

of I/V sterically hinder binding of 3TC or FTC [132]. K65R, associated with ABC, ddI, and 

TDF resistance, occurs within the fingers domain of RT, where the wild type K residue 

forms a bridge with an incoming nucleotide; this bridge is disrupted by replacement of K 

with R [133, 134]. Q151M, which is associated with class-wide resistance upon 

accumulation of four additional mutations [135], appears to decrease binding of 

nucleoside analogues [136].  

The second mechanism of resistance to NRTI involves excision of the NRTI from 

the 3’ end of the DNA strand, or primer unblocking. This mechanism is associated with 

TAM, and involves the use of cellular ATP by mutant RT to attack the bond between the 

NRTI and the terminated DNA strand [116]. This second mechanism may be associated 

with cross-resistance to drugs within the NRTI class [137]. Excision of NRTI may also be 

less efficient in the presence of M184V, which may antagonize primer unblocking 

because of its position at the active site [138]. 

Pathways for NNRTI resistance mainly involve mutations that occur in the 

hydrophobic pocket of RT. This hydrophobic pocket, which is distal to the polymerase 

active site, is only formed once the NNRTI is bound to RT. In wild type unbound RT or 

RT bound with DNA, the side chains of tyrosine residues at codons 181 and 188 fill the 

pocket [139, 140]. Once the inhibitor binds, 181 and 188 side chains rotate toward the 

polymerase active site, and the hydrophobic pocket is formed. Mutations in this region 

confer resistance by: (1) blocking entry of the NNRTI; (2) inhibiting interactions between 
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the NNRTI and the amino acids within the pocket; and/or (3) changing the conformation 

of the pocket [141]. For example, the K103N substitution may prevent binding of NNRTI 

since the mutant N residue allows additional hydrogen bonds that prevent the 

hydrophobic pocket from opening [142]. Y181C, however, increases the size of the 

hydrophobic pocket of the enzyme, preventing first generation NNRTI, such as NVP and 

DLV, from making critical contacts with residues inside the pocket [143]. Newer NNRTI, 

such as RPV and ETR, are less affected by this mutation since they are more flexible 

and less dependent on interaction with 181 and 188. 

2.7     EPIDEMIOLOGY OF ACQUIRED ANTIRETROVIRAL RESISTANCE 

Accumulation of resistance mutations on therapy is a gradual process, leading to 

cross resistance and eventually exhaustion of drugs within a class, particularly as 

patients fail multiple HAART regimens [144]. Drug resistance that is acquired on therapy 

accounts for the majority of drug resistance in the HIV-infected population. The patterns 

of resistance among treated patients are somewhat reflected among therapy-naïve 

patients [145]. Comparing resistance across studies is difficult since only a fraction of 

patients at risk are tested, mutations considered relevant change over time or vary 

across mutations lists, and estimates must be updated as treatment strategies evolve. 

Further, standard resistance assays do not detect minority drug resistant variants [146], 

and resistance tests obtained at a single time point may not reflect the full spectrum of 

resistance within the individual, since mutations may have receded to undetectable 

levels in the absence of drug selection pressure [147]. 

2.7.1     PREVALENCE OF ACQUIRED REVERSE TRANSCRIPTASE INHIBITOR RESISTANCE 

Even with the above caveats, multiple efforts have been made to estimate the 

burden of resistance among patients failing therapy, particularly in regions where HIV 

treatment is widely available. Among a representative sample of viremic patients 

receiving care in the United States through 1998, the overall prevalence of resistance 
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was estimated to be 76%; 71 and 25% of patients showed reduced susceptibility to at 

least one NRTI or NNRTI, respectively [148]. These estimates are from the early HAART 

era, when most patients in care initiated therapy with mono- or dual-NRTI regimens 

(non-HAART). Since then, the pool of patients on therapy is increasingly dominated by 

those who initiate treatment with HAART, changing the pattern of resistance over time.  

Temporal associations demonstrate that resistance trends coincide with changes 

in ARV usage [149-154]. For example, in British Columbia in 1996, nearly 90% of 

patients failing therapy harbored resistance to at least one ARV within one class [149]. 

By 2003, this number fell to 60%. However, while in 1996 only 14% of patients had 

evidence of dual class resistance, and virtually none had triple class resistance, these 

numbers rose to 39% and 7%, respectively, by 2003. These 2003 estimates of multi-

class resistance were still dominated by patients who started with non-HAART regimens.  

HAART initiators are expected to develop multi-class resistance less frequently 

than those initially treated with mono- or dual-NRTI therapy, since the former begin with 

a regimen with multiple mechanisms of inhibiting viral replication. For example, among 

viremic patients in North Carolina, 26% of patients who initiated therapy with a non-

HAART regimen had evidence of triple-class resistance, while the prevalence was only 

10% in those who started with HAART [155]. As more patients begin therapy with more 

potent and tolerable regimens, it is expected that complete class-wide resistance, in 

which patients have exhausted all options within a class, will remain rare (under 5%) 

[154, 156]. 

While the frequency of particular resistance mutations is strongly associated with 

ARV usage patterns, some unexpected patterns emerge, even if the agents known to 

select for rarer mutations are widely used. Among NRTI resistance mutations, the 

M184V amino acid substitution continues to be one of the most common mutations, 
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which is expected given pervasive use of 3TC and FTC in clinical care [149, 150, 155, 

157, 158]. TAM are also common, especially T215Y/F and M41L, with 30-60% having 

evidence of either mutation [149, 150, 155, 157, 158]. K65R, in contrast, is usually seen 

in 5% or fewer patients failing therapy [149, 150, 153, 157-159]. K65R did appear to be 

on the rise after the introduction of TDF in 2001; yet, since 2005, its frequency has 

declined with decreased co-administration of TDF with ddI and ABC [160, 161]. The 

Q151M complex and the 69 insertion complex, associated with broad NRTI resistance, 

are also extremely rare [116]: in an Italian cohort of patients failing HAART, fewer than 

3% and 1% had evidence of the Q151M and 69 insertion complex, respectively [156].  

For NNRTI associated resistance, the most common mutations detected among 

patients failing therapy are K103N and Y181C, and their frequency depends on the 

dominant NNRTI in use as well as the specific co-administered NRTI. In settings where 

EFV is dominant, K103N is the most common [150, 157], while in populations in which 

NVP is the NNRTI of choice, Y181C is detected more frequently or as much as K103N 

[149], which is only selected by NVP combined with d4T or AZT [162]. As EFV became 

more widespread in Italy, for example, accounting for 6% of ARV used in 1999 and 18% 

in 2003, the prevalence of K103N jumped from 17% to 29% [153].  

2.7.2     INCIDENCE OF ACQUIRED REVERSE TRANSCRIPTASE INHIBITOR RESISTANCE 

Studies in which viremic patients were maintained on a failing ART regimen with 

two consecutive genotypic antiretroviral resistance tests (GART) have allowed 

estimation of the incidence of new drug resistance mutations as well as the identification 

of factors associated with their evolution. In a retrospective sample of 106 patients 

treated with a median of 6 ARV, 75% of patients maintained on a failing HAART regimen 

for a median of 14 months acquired a new resistance mutation, including 44% of those 

taking an NRTI, and 29% of those taking an NNRTI [163]. Results from the University of 



28 

 

North Carolina agree with these estimates: among 98 viremic patients with comparable 

ARV exposure history, 60% acquired a new drug resistance mutation over a median of 9 

months of stable HAART; 38% and 46% of patients receiving an NRTI or NNRTI, 

respectively, acquired at least one new mutation within that class [164]. New NRTI 

resistance was primarily the M184V substitution, detected among 42% of patients on a 

regimen containing 3TC or FTC. Among less heavily treated patients in a European 

cohort (median 5 ARV), 77% of patients maintained on failing HAART for a median of 11 

months acquired a new mutation [165]. At the other extreme, in a prospective sample of 

106 heavily treated patients (median 8 previous ARV), 44% had evidence of a new 

mutation at 12 months [166]. 

Different estimates of resistant mutation incidence among these studies could be 

due to differences in the amount of drug resistance patients had at baseline, since most 

studies reported increased incidence was associated with fewer mutations at baseline. 

The study reporting the lowest incidence, for example, included only patients with at ≥1 

major resistance mutation at baseline, while all other studies included a mixture of 

patients with and without evidence of resistance at baseline [166]. The effect of baseline 

mutations may be due to the evolutionary constraints on the virus, since additional 

mutations are often associated with a fitness cost to the virus and since a limited amount 

of selection pressure may be exerted by a particular regimen [21]. This ceiling effect may 

be critical for patients starting their first HAART regimen, since therapy-naïve individuals 

are expected to have fewer resistance mutations at baseline. 

Studies also identified the amount of time spent on the failing regimen [163], 

lower nadir CD4 cell count [165], increase in HIV-1 RNA level while on the stable 

regimen [164, 165], and average HIV-1 RNA level between 3-4 log10 copies/mL [164] as 

risk factors for acquiring new resistance. For the latter, an average HIV-1 RNA level 
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below 3 log10 copies/mL may be associated with sufficient suppression of replication to 

prevent the selection of mutations into the dominant population. In contrast, an average 

HIV-1 RNA level above 4 log10 copies/mL is probably a marker for poor adherence and 

thus insufficient ARV concentration to select for resistance mutations [164]. However, 

even among patients who achieve suppression well below 3 log10 copies/mL, there is 

evidence that drug resistance mutations that may not be detectible with standard GART 

still emerge in patients on HAART. Among a small number of therapy-naïve patients 

starting their first HAART regimen, 40% of patients developed minority drug resistant 

variants during the first phase of decay even though they eventually achieved viral loads 

below the limits of detection [167].  

2.7.3     CLINICAL IMPACT OF ACQUIRED ANTIRETROVIRAL RESISTANCE 

At least in the short term, the accumulation of resistance mutations may be 

associated with some level of immunologic benefit, although less so than observed 

under complete suppression [114, 158, 168]. In one observational study among women 

who experienced virologic failure, those with evidence of baseline NRTI resistance and 

NNRTI resistance at failure still achieved an average increase of 118 CD4 cells/µL (95% 

CI: 38-198) after one year of HAART [158]. However, those with baseline NRTI 

resistance alone showed some evidence of a decrease in mean CD4 cell count of 31 

cells/µL (95% CI: -82-20) at one year, while those who acquired NNRTI resistance alone 

experienced virtually no change. Increased benefit observed for women with both NNRTI 

and NRTI resistance could be due to the interaction between these mutations that 

causes hypersusceptibility to NNRTI [169]. 

In terms of virologic response, patients enrolled in a US clinical cohort (N=572) 

with fewer resistance mutations at baseline were more likely to achieve HIV-1 RNA <400 

copies/mL over follow-up: 28% of those with 0-2 mutations, 21% of those with 3-6 
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mutations, and 10% of those with ≥7 mutations achieved suppression at 6 months [170]. 

As the repertoire of available ARV expands, the number of mutations may become less 

important than the activity of ARV within the regimen. In two cohort studies of highly 

treated patients with baseline resistance, patients receiving regimens containing ≥3 

active ARV [171, 172] were more likely to achieve HIV-1 RNA <50 copies/mL within one 

year [173, 174].  

Finally, there is also evidence that resistance mutations acquired during early 

treatment are linked to an increase in mortality. Patients enrolled in a British Columbia 

cohort experienced an increased hazard of all cause mortality with the emergence of any 

major resistance compared to patients without emerging resistance (hazard ratio (HR): 

1.8, 95% CI: 1.3-2.4) [175]. Patients with emerging NNRTI resistance experienced the 

highest mortality rates (HR: 3.0, 95% CI: 2.0-4.6). These results were later confirmed in 

a randomized clinical trial estimating the effect of three different HAART strategies 

(NNRTI, PI, or NNRTI+PI) on the emergence of drug resistance over 5 years of follow-up 

among therapy-naïve patients [176]. Patients who failed and acquired NNRTI resistance 

were 2.4 times as likely to die or develop AIDS compared to patients who maintained 

suppression (95% CI: 1.5-3.7) [176]. Interestingly, patients who failed without any 

evidence of resistance also experienced excess mortality and AIDS incidence compared 

to patients who were suppressed (HR: 1.8, 95%CI: 1.2-2.7), which could be explained by 

their lower adherence scores and less time on therapy, indicating subtherapeutic 

exposure to HAART.  

2.8     EPIDEMIOLOGY OF TRANSMITTED REVERSE TRANSCRIPTASE INHIBITOR RESISTANCE 

A major consequence of acquired drug resistance among patients with detectible 

viral load is the increased risk of transmission to susceptible individuals. Acquired 

resistance has been shown to be transmitted sexually [177], from mother to child [178], 
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and parenterally [179]. Drug resistance transmitted to an HIV negative individual may 

also be further spread to other susceptible individuals [180]. Transmitted drug resistance 

(TDR) represents not only a public health threat, but it is also detrimental to individuals 

starting HAART since it may compromise initial treatment and set the patient on an 

accelerated path to multiple HAART failures and exhaustion of future treatment options. 

Further, TDR has been shown in many studies to persist for long periods of time in the 

absence of therapy, meaning reversion to sensitive strains may be unlikely in those 

initially infected with TDR, particularly when the resistant virus must pass through a less 

fit intermediate phase [13-15, 105, 128]. Resistant variants may also be found in resting 

CD4 cells of therapy-naïve individuals, so even if the dominant population circulating in 

peripheral blood is sensitive, resistant variants may re-emerge once the patient is 

exposed to the relevant ARV [16].  

The epidemiology of TDR is complicated because there is no single standardized 

list of mutations or system of interpretation defining TDR. In fact, TDR may be thought of 

as a special case of pre-therapy resistance, since some mutations correlated with 

acquired resistance may be natural polymorphisms that have no effect on phenotypic 

resistance [181]. Other mutations may actually be markers for more extensive resistance 

among treated patients [182]. Consequently, estimates of TDR based on patients with 

acquired resistance, such as the list of mutations maintained by the International 

Antiviral Society-USA (IAS-USA) [183] or the online resistance database maintained by 

Stanford University [171, 184] may not reflect the true extent of TDR. For example, T215 

revertant mutations are not usually included in these algorithms since they do not affect 

phenotypic resistance in vitro; however, these variants rapidly evolve to AZT resistance 

under selective drug pressure and are associated with treatment failure. The presence of 

T215 revertants reflects either transmission of T215Y/F and then reversion to a non-wild 
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type amino acid in the absence of therapy, or transmission of the revertant [185, 186]. 

Also, some resistance algorithms include V118I, which among patients failing therapy 

occurs in tandem with TAM-1 mutations. However, among therapy-naïve individuals 

starting AZT or 3TC regimens, V118I alone has no effect on virologic or immunologic 

response compared to patients with sensitive virus [187].  

To address issues of TDR surveillance, a list of mutations has been developed 

by Shafer and colleagues, and implemented by the World Health Organization (WHO) 

(Appendix 2.2) [188, 189]. The selection process for this list begins with lists of known 

resistance mutations from expert opinion and available clinical data. Polymorphisms on 

these lists present in >5% of sequences from therapy-naïve individuals are excluded to 

preclude the inclusion of naturally occurring mutations that do not necessarily reflect 

transmission events. The list of surveillance drug resistance mutations (SDRM) is then 

simplified to maximize sensitivity and specificity for probable TDR. 

Even if resistance mutations detected among therapy-naïve individuals represent 

transmission events, TDR estimates are often plagued by selection bias, since 

resistance testing may be selectively applied to individuals perceived as more likely to 

harbor resistance, especially in resource poor settings [182]. Estimates may be 

influenced by the stage of infection at testing, since less fit resistant variants may wane 

over time to clinically-undetectable levels without ARV selective pressure [146]. 

However, even when resistant variants may still dominate, such as among those with 

recent HIV infection, approximations may be biased since these individuals often have 

symptomatic acute HIV infection, undergo frequent HIV testing, or are identified by their 

partners on therapy, thus threatening generalizability of TDR estimates [190]. 
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2.8.1     PREVALENCE OF TRANSMITTED DRUG RESISTANCE 

Given these challenges, some generalizations about TDR may still be drawn 

from available observational information. TDR, analogous to acquired resistance, is 

strongly correlated with ARV use in the treated population. TDR is more likely to be 

detected among whites, MSM, individuals with subtype B infections, and among those 

with partners on therapy [180, 191-194], reflecting a correlation with greater access to 

ARV and more frequent testing behaviors. TDR is most common where ARV use has 

been more widespread, while the prevalence remains low where antiretroviral coverage 

is lowest [182, 195]. TDR more common among individuals with recent HIV infection 

(Table 2.1) compared to individuals with chronic infection or infection of unknown 

duration (Table 2.2), probably reflecting both recession of less fit resistant variants over 

time and overrepresentation of groups more likely to carry TDR, such as white MSM 

whose sexual partners may be on non-suppressive therapy [195].
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Table 2.1. Reverse transcriptase inhibitor resistance among antiretroviral-naïve individuals with recent HIV-1 
infection. 

Region Years N 
Resistance 
Definition 

Prevalence 
Reference % NRTI % NNRTI 

Africa       
 Côte d’Ivoire 2002-2006 100 IAS-USA 3.0% 2.0% Toni et al.[196] 
 Kenya 2009-2010 68 SDRM§ 1.5% 7.4% Sigaloff et al.[197] 
 Uganda 2004-2010 72 SDRM§ 0.0% 1.4% Ssemwanga et al.[198] 
 Uganda 2007 70 SDRM§ 2.9% 4.3% Ndembi et al.[199] 
 Uganda 2009-2010 47 SDRM§ 0.0% 6.4% Nazziwa et al.[200] 
 Kenya 2006-2009 64 SDRM§ 1.6% 1.6% Price et al.[201] 
 Rwanda 2006-2009 78 SDRM§ 0.0% 3.8% Price et al.[201] 
 South Africa 2006-2009 5 SDRM§ 0.0% 20.0% Price et al.[201] 
 Uganda 2006-2009 92 SDRM§ 1.1% 2.2% Price et al.[201] 
 Zambia 2006-2009 169 SDRM§ 1.8% 1.2% Price et al.[201] 
Asia       
 China 2006 53 SDRM§ 0.0% 1.9% Zhang et al.[202] 
 Thailand 2003-2006 305 IAS-USA 2.0% 2.3% Apisarnthanarak et al.[203] 
Europe       
 7 Countries 1987-2003 438 IAS-USA† 10.5% 3.4% Masquelier et al.[204] 
 France 2001-2002 303 IAS-USA† 10.3% 3.3% Descamps et al.[12] 
 Germany 1996-2007 1,276 SDRM§ 7.5% 3.5% Bartmeyer et al.[205] 
 Italy 2000-2010 226 SDRM§ 7.0% 7.0% Colafigli et al.[206] 
 Romania 1997-2011 5 SDRM§ 0.0% 0.0% Temereanca et al.[207] 
 Slovenia 2005-2010 31 SDRM§ 6.5% 3.2% Lunar et al. [208] 
 Spain 1997-2004 198 IAS-USA† 9.6% 4.0% de Mendoza et al.[209] 
 Switzerland 1996-2005 822 SDRM‡ 5.5% 1.9% Yerly et al.[180] 
 United Kingdom 1996-2004 316 IAS-USA† 7.0% 4.1% UK et al.[210] 
 United Kingdom 2004-2006 85 IAS-USA† 4.7% 2.4% Booth et al.[211] 
 United Kingdom 2005-2006 140 IAS-USA† 0.7% 3.6% Fox et al.[212] 
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Table 2.1 (continued). Reverse transcriptase inhibitor resistance among antiretroviral-naïve individuals with recent 
HIV-1 infection. 

Region Years N 
Resistance 
Definition 

Prevalence 

Reference % NRTI % NNRTI 

Latin America       
 Argentina 2003-2005 28 IAS-USA 3.6% 3.6% Dilernia et al.[213] 
 Brazil 1998-2002 55 IAS-USA† 9.1% 0.0% Barreto et al.[214] 
 Brazil 1999-2001 51 IAS-USA 2.0% 0.0% Varella et al.[215] 
 Cuba 2003-2011 194 SDRM§ 4.6% 3.6% Pérez et al.[216] 
 El Salvador 2008 19 SDRM§ 0.0% 10.5% Murillo et al.[217] 
 Mexico 2003-2005 10 IAS-USA 0.0% 0.0% Viani et al.[218] 
 Peru 2002 33 IAS-USA 3.0% 3.0% Lama et al.[219] 
North America       
 Canada 1996-2003 180 IAS-USA† 7.8% 3.9% Jayaraman et al.[191] 
 Canada 2000-2001 221 IAS-USA† 5.9% 1.8% Routy et al.[220] 
 United States       
  7 Cities 1995-2006 1,311 SDRM‡ 10.0% 7.0% Liu et al.[221] 
  6 Cities 1999-2003 195 SDRM‡ 8.7% 6.7% Eshleman et al.[222] 
  15 Sites 2004 55 IAS-USA 3.6% 14.5% Viani et al.[218] 
  Chapel Hill, NC 1999-2010 43 SDRM§ 0.0% 18.6% Yanik et al.[223] 
  New York 1995-2004 361 IAS-USA† 13.0% 8.0% Shet et al.[224] 
  New York 1995-2010 600 IAS-USA 8.3% 6.8% Castor et al.[225] 
NRTI=nucleoside(tide) reverse transcriptase inhibitor; PI=protease inhibitor; NNRTI=non-NRTI; IAS-USA=International Antiviral 
Society–USA Panel; SDRM=surveillance drug resistance mutations. *Estimate includes intermediate- and high-level resistance 
only. †Modified to include 215 revertant mutations and exclude V118I mutation of HIV-1 reverse transcriptase. ‡Based on 
transmitted resistance surveillance mutation list assembled by Shafer et al. [188]. §Based on surveillance drug resistance 
mutations list updated in 2009 [189]. 
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Table 2.2. Reverse transcriptase inhibitor resistance among antiretroviral-naïve individuals with HIV-1 infection of 
unknown duration. 

Region Years N 
Resistance 
Definition 

Prevalence 

Reference % NRTI % NNRTI 

Africa       

 
6 Sub-Saharan 
Countries 2007-2009 2,436 SDRM§ 2.5% 3.3% Hamers et al.[226] 

 Burkina Faso 2003 97 IAS-USA 2.1% 4.1% Vergne et al.[227] 
 Cameroon 2001 102 IAS-USA 2.9% 2.0% Vergne et al.[227] 
 DRC 2008 253 SDRM§ 3.2% 3.2% Muwonga et al.[228] 
 Ethiopia 2003 92 IAS-USA 1.1% 2.2% Kassu et al.[229] 
 Kenya 2008-2010 182 SDRM§ 0.6% 0.0% Hassan et al. [230] 
 Mali 2005-2006 198 IAS-USA 1.6% 1.1% Derache et al.[231] 
 Mali 2010 51 SDRM§ 3.9% 3.9% Maiga et al.[232] 
 Morocco 2005-2009 82 SDRM§ 4.9% 2.4% Annaz et al.[233] 
 Senegal 1998-2007 200 SDRM§ 2.0% 0.0% Diop-Ndiay et al.[234] 
 South Africa 2008 80 SDRM§ 1.2% 1.2% Nwobegahay et al.[235] 
 Uganda 2006-2007 37 IAS-USA 0.0% 0.0% Ndembi et al.[236] 
Asia       
 India NG 49 Stanford† 0.0% 2.0% Arora et al.[237] 
 India 2007 34 SDRM§ 0.0% 0.0% Chaturbhuj et al.[238] 
 India 2007-2009 47 SDRM§ 0.0% 2.1% Thorat et al.[239] 
 Iran 2010-2011 47 SDRM§ 4.3% 0.0% Jahanbakhsh et al.[240] 
 Israel 1999-2003 171 Stanford† 3.5% 3.5% Grossman et al.[241] 
 Japan 1996-2006 402 IAS-USA 1.5% 2.0% Ibe et al.[242] 
 Japan 2003-2008 2,573 SDRM§ 4.3% 0.8% Hattori et al.[243] 
 South Korea 2006 81 IAS-USA 1.2% 1.2% Bang et al.[244] 
 Malaysia 2003-2004 100 IAS-USA* 0.0% 1.0% Tee et al.[245] 
 Taiwan 1999-2006 786 IAS-USA 5.2% 4.1% Chang et al.[246] 
 Thailand 2005-2007 151 IAS-USA 4.0% 4.0% Apisarnthanarak et al.[247] 
 Thailand 2007-2010 466 SDRM§ 1.9% 2.8% Sungkanuparph et al.[248] 
 Thailand 2010-2011 330 SDRM§ 0.6% 2.1% Manosuthi et al. [249] 
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Table 2.2 (continued). Reverse transcriptase inhibitor resistance among antiretroviral-naïve individuals with HIV-1 
infection of unknown duration. 

Region Years N 
Resistance 
Definition 

Prevalence 
Reference % NRTI % NNRTI 

Asia       
 Vietnam 2007-2008 47 SDRM§ 0.0% 2.3% Duc et al.[250] 
 Vietnam 2008-2009 92 SDRM§ 6.5% 6.5% Dean et al.[251] 
Europe       
 16 Countries 1996-2004 525 SDRM‡ 9.3% 1.0% Bannister et al.[252] 
 Belgium 2003-2006 285 SDRM‡ 7.0% 3.5% Vercauteren et al.[253] 
 Croatia 2006-2008 118 SDRM§ 19.5% 1.7% Grgic et al. [254] 
 Denmark 2001-2009 1,405 SDRM§ 2.9% 1.3% Audelin et al.[255] 
 Former USSR 1997-2004 278 Stanford† 2.5% 3.6% Vazquez de Parga et al.[256] 
 France 2001-2002 363 IAS-USA* 4.3% 0.8% Descamps et al.[12] 
 Germany 2001-2005 831 IAS-USA* 5.4% 3.0% Sagir et al.[257] 
 Greece 2002-2003 101 IAS-USA 5.0% 4.0% Paraskevis et al.[258] 
 Greece 2009-2011 238 SDRM§ 14.3% 18.9% Skoura et al.[259] 
 Italy 1996-2007 1,690 SDRM§ 11.0% 6.0% Bracciale et al.[260] 
 Italy 2000-2010 2,937 SDRM§ 7.4% 5.0% Colafigli et al.[206] 
 Italy 2001-2006 569 SDRM‡ 6.5% 6.0% Lapadula et al.[261] 
 Latvia 2005-2006 117 SDRM§ 0.9% 0.9% Balode et al.[262] 
 Romania 1997-2011 56 SDRM§ 14.3% 3.6% Temereanca et al.[207] 
 Slovenia 2000-2004 77 IAS-USA* 3.9% 0.0% Babic et al.[263] 
 Slovenia 2005-2010 131 SDRM§ 0.8% 1.5% Lunar et al. [208] 
 Spain 2004-2008 683 SDRM§ 4.4% 4.0% García et al.[264] 
 Spain 2007-2010 1,864 SDRM§ 3.9% 2.3% Monge et al.[265] 
 Sweden 2003-2010 1,463 SDRM§ 4.1% 2.7% Karlsson et al.[266] 
 United Kingdom 1996-2004 4,138 IAS-USA* 7.8% 4.7% UK Collaboration[210] 
 United Kingdom 1997-2005 8,272 SDRM‡ 5.8% 3.6% Green et al.[267] 
 United Kingdom 2004-2006 154 IAS-USA* 3.9% 1.3% Booth et al.[211] 
 United Kingdom 2005-2006 149 IAS-USA* 3.4% 4.7% Fox et al.[212] 
 United Kingdom 2005-2007 392 IAS-USA* 0.5% 1.8% Payne et al.[268] 
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Table 2.2 (continued). Reverse transcriptase inhibitor resistance among antiretroviral-naïve individuals with HIV-1 
infection of unknown duration. 

Region Years N 
Resistance 
Definition 

Prevalence Reference 
% NRTI % NNRTI  

Europe       
 United Kingdom 2002-2009 14,583 SDRM§ 6.9% 4.1% Dolling et al.[269] 
Latin America       
 Argentina 2003-2005 256 IAS-USA 1.6% 2.3% Dilernia et al.[213] 
 Brazil 1998-2002 280 IAS-USA* 3.2% 1.4% Barreto et al.[214] 
 Brazil 2000-2001 76 IAS-USA 1.3% 1.3% Rodrigues et al.[270] 
 Brazil 2008-2009 63 SDRM§ 4.8% 3.2% Arruda et al.[271] 
 Brazil 2008-2009 99 SDRM§ 15.0% 5.5% Bermúdez-Aza et al.[272] 
 Brazil 2008-2009 82 SDRM§ 5.0% 3.6% Gräf et al.[273] 
 Chile 2000-2005 79 IAS-USA 0.0% 0.0% Rios et al.[274] 
 Cuba 2003-2011 207 SDRM§ 7.2% 1.4% Pérez et al. [216] 
 DR 2007-2010 103 SDRM§ 1.0% 6.8% Myers et al.[275] 
 El Salvador 2008 98 SDRM§ 5.1% 5.1% Murillo et al.[217] 
 Honduras 2002-2003 336 SDRM‡ 7.7% 7.1% Lloyd et al.[276] 
 Honduras 2004-2007 200 SDRM§ 3.0% 5.0% Murillo et al.[277] 
 Mexico 2002-2003 96 IAS-USA* 12.5% 6.3% Escoto-Delgadillo et al.[278] 
 Mexico 2005-2010 1,655 SDRM§ 4.2% 1.9% Avila-Ríos et al. 
 Peru 2002 326 IAS-USA 2.1% 0.6% Lama et al.[219] 
North America       
 Canada 2000-2001 494 IAS-USA* 3.2% 1.2% Jayaraman et al.[191] 
 USA 1999-2001 491 IAS-USA* 7.8% 3.0% Novak et al.[192] 
  40 Cities 2003 317 IAS-USA 3.5% 6.0% Ross et al.[279] 
  10 Cities 1997-2001 1,082 IAS-USA* 6.4% 1.7% Weinstock et al.[194] 
  6 Cities NG-2008 1,585 SDRM§ 8.2% 8.3% Poon et al.[280] 
  7 Cities 2006-2009 145 SDRM§ 4.1% 12.4% Hightow-Weidman et al.[281] 
  10 States 2007 2,030 SDRM§ 7.8% 5.6% Wheeler et al.[282] 
  10 States 2005-2007 228 Stanford† 4.5% 9.8% Huang et al.[283] 
  Chapel Hill, NC 1999-2010 677 SDRM§ NG 4.9% Yanik et al.[223] 
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Table 2.2 (continued). Reverse transcriptase inhibitor resistance among antiretroviral-naïve individuals with HIV-1 
infection of unknown duration. 

Region Years N 
Resistance 
Definition 

Prevalence 

Reference % NRTI % NNRTI 

North America       
 USA       
  Charlotte, NC 2008-2011 189 SDRM§ 2.6% 6.9% Klibanov et al.[284] 
  Detroit, MI 2006-2008 133 SDRM§ 9.8% 8.3% Huaman et al.[285] 
  Portland, OR 2003-2009 165 SDRM§ 9.1% 10.3% MacVeigh et al. [286] 
  Saint Louis, MO 2003-2005 192 IAS-USA* 6.3% 7.3% Grubb et al.[287] 
  Seattle, WA 2001-2009 801 SDRM§ 6.0% 12.0% Taniguchi et al.[288] 
  Washington, DC 2005 42 IAS-USA 2.4% 4.8% Boyd et al.[289] 
  New York State 2006-2008 4.032 SDRM§ 2.9% 6.3% Redhead et al.[290] 
NRTI=nucleoside(tide) reverse transcriptase inhibitor; PI=protease inhibitor; NNRTI=non-NRTI; IAS-USA=International Antiviral 
Society–USA Panel; SDRM=surveillance drug resistance mutations; NG=not given. *Includes 215 revertant mutations and 
exclude V118I mutation of HIV-1 reverse transcriptase. †Estimate includes intermediate- and high-level resistance only. ‡Based 
on transmitted resistance surveillance mutation list assembled by Shafer et al. [188]. §Based on surveillance drug resistance 
mutations list updated in 2009 [189]. 
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Even in areas with an extensive history of widespread ARV use, there are 

regional differences in transmitted resistance. TDR appears to be more common in 

North American cohorts compared to European cohorts: surveys including 19 European 

cohorts over 1996-2002 reported that 11% of individuals with recent HIV infection had ≥1 

major mutation [291], while in the United States and Canada, 15% of recently infected 

patients from 1995-2006 had evidence of TDR [221]. In a review of published literature 

through 2009, an estimated 12.9% (95% CI: 12.2-13.7%) of all therapy-naïve individuals 

in North America had evidence of any drug resistance, mostly driven by NRTI (7.4%, 

95% CI: 6.8-8.0%) and NNRTI resistance (5.7%, 95% CI: 5.2-6.2%) [292]. 

Corresponding European studies yielded regional estimates of overall, NRTI, and NNRTI 

resistance of 10.9% (95% CI: 10.6-11.4%), 7.4% (95% CI: 7.1-7.7%), and 3.4% (95% CI: 

3.2-3.6%), respectively [292].  

Temporal trends in these regions reflect more frequent NNRTI use and an 

increasing proportion of patients on HAART achieving durable virologic suppression 

[220]. Over time, TDR declined in Europe (11.5% to 7.7% before 2001 to after 2004), 

driven by decreases in NRTI resistance from 8.0% to 4.3%  and PI resistance from 3.3% 

to 1.4%  before 2001 to after 2004 [292]. NNRTI resistance peaked in 2001-2002 in 

Europe, but declined to 3.2% after 2004 [292]. These estimates agree with results from 

19 European countries, where TDR decreased from 12% to 8% from 1996-2004, and 

NRTI resistance decreased from 10% to 4% from 2001-2004 [193]. North America, in 

contrast, experienced an increase in TDR prevalence from 11.6% before 2001 to 14.3% 

after 2003, with increasing NNRTI resistance outpacing overall declines in transmitted 

NRTI and PI resistance [292].  

Since TDR is influenced by ARV usage patterns, it is not surprising that NRTI 

resistance has dominated in North America and Europe (Table 2.1 and Table 2.2). Most 
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NRTI resistance detected among therapy-naïve individuals from Europe and North 

America are TAM including M41L, K70R, and mutations in codon 215, which are present 

in nearly 5% of these populations; far fewer have evidence of M184V (<1%) or K65R 

(<0.5%) [12, 180, 191, 192, 194, 204, 279]. NNRTI-associated mutations are usually the 

second most common form of TDR resistance (1-15%), and many studies report K103N, 

Y181C, and G190A/S. Transmitted multi-drug resistance, though, remains rare, with 

dual-class and triple-class resistance present in 2.6% and 1.1% of individuals infected 

between 2004-2005 [180]. 

In contrast to developed regions, TDR estimates from resource-poor settings 

have been traditionally nonexistent, but the WHO implemented a strategy to monitor 

prevalence below 2 critical thresholds (5% and 15%) in settings where resistance testing 

is not routine but antiretroviral therapy was on schedule for expanded access [293]. 

Since the rollout of antiretrovirals starting in 2003, there is evidence of an increase in 

TDR prevalence, but changes are highly variable across different regions. Sub-Saharan 

Africa, for example, experienced an estimated annual increase of 14% (95% CI: 0-29%) 

since rollout started in 2004, with an overall estimated prevalence of 3.7% (95% CI: 2.5-

5.4%) by 2011 [294]. Eastern Africa experienced a steeper 29% annual increase (95% 

CI: 15-45%) since rollout, with an estimated overall prevalence of 7.4% (95% CI: 4.3-

12.7%) by 2011 [294]. Transmitted NNRTI resistance dominated these trends, reflecting 

their use in all first line options [294]. Latin American and Caribbean countries, in 

contrast, experienced no statistically significant increase in TDR prevalence since an 

estimated 6.9% of individuals had evidence of TDR at the start of and 8 years after 

antiretroviral therapy access was expanded [294]. 
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2.8.2     TRANSMISSIBILITY AND PERSISTENCE OF DRUG RESISTANCE MUTATIONS 

The relatively high prevalence of TAM among therapy-naïve individuals is 

reflective of populations where mono- and dual-NRTI therapy as well as single PI-based 

HAART were once the standard of care [195], while the low prevalence of major PI 

mutations and some NRTI mutations may be due to a reduction in transmissibility of 

certain variants [295]. Transmission efficiencies of drug resistant variants relative to wild 

type strains have been estimated by several studies that have attempted to define 

populations of potential transmitters and recent seroconverters. One group estimated 

variants containing the M184V mutation alone were more than 10 times less likely to be 

transmitted than sensitive virus [296]. Dual-class and triple-class resistant variants were 

even less likely to be transmitted with a 20-fold reduction in transmission compared to 

sensitive virus [296]. Another group estimated that while the prevalence of TAM were 

similar between recently infected individuals and the pool of potential transmitters, 

M184V was underrepresented among recent infected individuals [297]. A third group 

estimated that M184I/V and T215Y/F had the lowest transmission efficiency relative to 

sensitive virus, while V118I, K219E/Q, and Y181C/I, had a higher transmission efficiency 

relative to sensitive virus [295]. Whether the underrepresentation of certain mutations 

among recently infected is due to outgrowth of more fit variants in the absence of ARV 

exposure [9, 13], reduction in viral load associated with these mutations among potential 

transmitters [297], or other factors, cannot be determined from these study designs.   

Specific mutations are also differentially distributed between recently infected 

and chronically infected individuals, possibly reflecting persistence or reversion of these 

variants in the absence of ARV selective pressure. For example M184V, T215Y/F, and 

K103N are found more frequently among those with recent infections, while other 

variants not associated with phenotypic resistance, such as T215 revertant mutations, 

are less likely to be found in recently infected individuals [194]. Reversion cannot be 
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confirmed from cross-sectional comparisons between therapy-naïve populations infected 

at different times and by potentially different sources.  

Longitudinal sampling of recent seroconverters with TDR has been applied to 

estimate the rate of reversion of drug resistant variants in the absence of therapy. 

Among 12 of 20 recently infected individuals with ≥2 pre-therapy samples available, the 

virus evolved at drug resistance positions without ARV pressure over a median 15 

months [298]. The variants that reverted to wild type, in order of increasing time since 

detection, were K70R, D67N, T215S, Y181C, and M184V [298]. T215Y/F variants 

evolved to revertant mutations rapidly in all cases, while M41L, T69D/N, L210W, K219Q, 

and G190S in were maintained over follow-up [298]. These observations agree with 

another study of 14 recently infected individuals: while M41L, T69N, K103N, and T215 

revertants persisted up to 3 years, Y181C and K219Q became undetectable in 27 

months and 9 months, respectively [299]. However, each of these studies detected 

resistance by population sequencing, which misses minority variants that make up <20% 

of the total [146], making it difficult to draw conclusions about the mechanism of resistant 

variant decline in the population. 

2.8.3     CLINICAL IMPACT OF TRANSMITTED RESISTANCE 

The general consensus is that resistant variants usually show a reduction in 

fitness compared to sensitive variants, as implied by in vivo studies of the decline of 

many of these mutations over time among untreated, recently infected individuals [13, 

128, 299], as well as by in vitro comparisons of  replicative capacity and infectivity 

between resistant and sensitive variants [10, 129, 300, 301]. It follows that TDR may be 

expected to have a beneficial impact on the natural course of infection. Several studies 

have observed lower HIV-1 RNA levels [302, 303] and higher CD4+ T cell counts [4, 

303, 304] near the time of HIV infection among individuals infected with drug resistant 
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virus compared to individuals infected with sensitive virus. These apparent advantages 

may not be preserved over time, however. One study estimated that an individual with 

500 CD4+ T cells/µL at seroconversion could expect a decline of 199 cells/µL or 73 

cells/µL in the first year without treatment if infected with resistant or sensitive virus, 

respectively [304].  

Once therapy is initiated, patients with TDR experience reduced virologic benefit 

compared to patients infected with fully susceptible virus. Among a cohort of patients on 

HAART for 6 months, time to suppression of HIV-1 RNA levels was longer and time to 

first failure was shorter for patients with high level phenotypic resistance compared to 

patients with sensitive virus [5]. Another study showed that patients with genotypic 

evidence of resistance to their initial regimen achieved suppression in a median of 3 

months compared to 5 weeks for patients without resistance [4]. In another cohort study, 

patients with resistant HIV experienced a slower decline in plasma HIV-1 RNA between 

1 and 6 months of HAART compared to patients with sensitive virus following a similar 

rate of decline in the first month of HAART [305]. Other studies have failed to detect 

statistically significant differential virologic response [17, 252, 303, 304, 306], but lack of 

statistical significance association could be due to the small number of exposed patients, 

shorter follow-up, decreased frequency of HIV-1 RNA level testing, or even definition of 

TDR. Most studies that reported “no effect” actually reported that fewer patients with 

TDR achieved virologic suppression within the study period compared to other patients. 

For example, virologic suppression within 6 months of HAART initiation was achieved in 

85% (49/58) of patients with susceptible virus and 64% (7/11) of patients with TDR in 

one study (p=0.2) [303].  

In terms of immunologic response, most studies have not demonstrated negative 

outcomes for patients with TDR, but these are difficult to interpret given the variable 
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definitions of immunologic outcomes. For example, one group reported that chronically 

infected patients with resistance to ≥1 ARV in their first regimen were more likely to 

achieve an increase of 100 CD4 cells/µL after 6-12 months of HAART compared to 

patients with >3 active ARV [252]. Similar observations were reported in an even smaller 

study in which patients with TDR experienced larger CD4 cell count gains at months 6 

and 12 after HAART compared to patients with wild type strains [154].  

2.9     MEASUREMENT OF ANTIRETROVIRAL ASSOCIATED RESISTANCE 

Because a single individual infected with HIV produces 109 viral particles with 

possibly 106 mutations per day [307], currently available technology cannot provide a full 

picture of evolving HIV populations in one compartment, such as plasma, over time, let 

alone simultaneous characterization of viral diversity within infected resting T cells or 

other compartments such as the genital tract or central nervous system. Given these 

limitations, the standard fluid tested for antiretroviral resistance is plasma because of its 

relative ease of collection, storage, and processing. However, the use of plasma allows 

characterization of HIV-1 RNA only from actively replicating virus, not integrated HIV 

DNA, which may contain archived drug resistance mutations. Also, HIV-1 RNA extracted 

from plasma must be reverse transcribed into cDNA and then amplified via PCR prior to 

resistance testing to enrich for rare viral sequences, which introduces error through 

multiple steps and probabilistically favors amplification of the dominant circulating viral 

population [7, 308]. Further, individuals must have >500 HIV-1 RNA copies/mL of 

plasma to allow sufficient HIV RNA templates for sampling for sequencing by 

commercial assays [308]. Thus, commercial resistance assays sample the most recently 

replicating, dominant viral variants among individuals with higher viral loads.  

2.9.1      GENOTYPIC ASSAYS USING POPULATION (BULK) SEQUENCING 

Standard genotypic antiretroviral resistance tests (GART) rely on population or 

bulk sequencing, where specific regions of HIV-1 pol are amplified and sequenced from 
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a sample of HIV genomes using the chain terminator method [309, 310]. For chain 

terminator sequencing, 4 deoxynucleotides (dNTP)  and 4 fluorescently labeled (1 

color/base) dideoxynucleotides (ddNTP) are used to extend DNA strands complimentary 

to amplified HIV DNA (dNTP) or to terminate DNA extension (ddNTP) [309]. As a result, 

each sample contains fragments of HIV DNA with a labeled ddNTP at each 3’ end. This 

population of HIV DNA fragments is separated by size, labeled fragments fluoresce as 

they pass through a laser light source, and the order of ddNTP is recorded on a 

chromatogram. The chromatogram consists of ordered, color-coded peaks for each 

incorporated ddNTP, representing the consensus HIV DNA nucleotide sequence. This 

sequence is then aligned with a reference HIV sequence to identify mutations associated 

with reduced ARV susceptibility. 

2.9.2      INTERPRETATION OF GENOTYPIC RESISTANCE DATA   

A variety of systems are available to interpret genotypic data, including 

proprietary systems such as  the VirtualPhenotype [311], publicly available algorithms 

including the Stanford University HIV Drug Resistance (HIVdb, Appendix 2.3) [171, 184] 

or Agence Nationale de Recherches sur le SIDA (ANRS) algorithms [312], and lists of 

mutations such as those published by the IAS-USA (Appendix Table  A.1) [313]. These 

algorithms are used to score a patient’s viral sequence with a given set of mutations as 

susceptible, possibly resistant, or resistant to a particular ARV, or in some cases they 

may predict a fold-change in susceptibility for each ARV. Different algorithms may use 

several sources of resistance to construct rules including [221]: (1) associations between 

mutations and ARV exposure (genotype-treatment correlations); (2) associations 

between mutations and phenotypic susceptibility (genotype-phenotype correlations); and 

(3) associations between mutations and clinical outcomes (genotype-outcome 

correlations). 
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For genotype-treatment correlations, in vitro passage experiments may be used 

in which mutations are selected in laboratory strains of HIV in the presence of a single 

ARV.  In vivo data may be used, in which  sequences derived from patient isolates are 

correlated with ARV exposure history [130]. However, these in vivo correlations cannot 

determine whether the mutations identified are merely markers for resistance in certain 

populations. Further, genotype-treatment correlations determined in vitro identify a 

fraction of mutations observed in a clinical setting in which people may have complex 

ARV exposure histories.  

Like genotype-treatment correlations, genotype-phenotype correlations may be 

derived from in vitro and in vivo sources. Mutations that arise from passage experiments 

or that are introduced into laboratory HIV strains may be tested with a phenotypic assay, 

or correlations between pairs of genotypic data and phenotypic data may be analyzed 

from patient sequence databases. Genotype-phenotype correlations may miss some 

clinically significant mutations such as T215 revertants, and clinical cut-offs for each 

ARV cannot be defined using this approach.  

Unlike the previous two correlation types, genotype-outcome correlations are 

only estimated in vivo. Genotype-outcome correlations are determined using data from 

clinical trials in which the effects of patient baseline genotypes on virologic response to 

new ARV are studied. Even this approach is limited, though, since various trials have 

different study designs and various patient populations with different ARV experience. 

Thus, each data source may be weighted very differently between algorithms and 

produce discordant interpretations of the same set of mutations. Also, interpretation 

algorithms must constantly be updated to be clinically relevant as new ARV and ARV 

combinations are used in clinical practice. 
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2.9.3      GENOTYPIC ASSAYS TO DETECT MINORITY DRUG RESISTANT VARIANTS 

One of the major drawbacks of commercial resistance assays is their inability to 

detect and quantify minority HIV variants that make up <20% of the sample [146, 308]. It 

is clear that resistance detected by commercial assays adversely affects treatment 

outcomes [4, 5, 175], but the role of undetected minority resistant variants is less clear. 

In a pooled analysis of 985 therapy-naïve participants who received an NNRTI-

containing regimen, minority NNRTI resistant HIV was associated with an increased 

hazard of virologic failure (HR: 2.6, 95% CI: 1.9-3.5) [18]. This study also reported a 

dose-response relationship between the number of copies of reverse transcriptase 

inhibitor (RTI) resistant variant and virologic failure: 10-99 vs. 0 copies of resistant virus 

(HR: 2.2, 95% CI: 1.5-3.2); 100-999 vs. 0 copies (HR: 3.0, 95% CI: 2.0-4.5); ≥1000 vs. 0 

copies (HR: 4.1, 95% CI: 2.5-6.8) [18].  

Most studies included in the pooled analysis relied on allele-specific PCR (AS-

PCR) to measure minority variants [127, 314, 315], where HIV DNA amplicons from an 

initial RT-PCR reaction are subsequently amplified by real time PCR using codon 

specific primers. AS-PCR (Table 2.3) is quantitative, since primers specific to the target 

codon are combined with HIV-1 total copy primers. As primer sets extend across 

targeted sequence, probes annealed within the target template sequence fluoresce, 

producing signals for the mutant or wild type sequence and the total copy sequence. 

Intensity of the signals increases with each amplification cycle, producing curves for both 

total copy number and mutant or wild type sequences. By comparing the curves, the 

relative abundance of variants in the sample may be quantified down to 0.1% [127, 315]. 

However AS-PCR has several major limitations: (1) Only a limited number of a priori 

mutations are interrogated.; (2) Polymorphisms within the primer or probe binding sites 

may lead to false negative results.; (3) RT-PCR and real time PCR may introduce bias 

through nucleotide misincorporation and differential amplification [19]. (4)Linkage of 
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mutations to the same viral genome is not possible since AS-PCR queries single codons 

at one time [316].  

Another high throughput, low cost assay that detects minority point mutations 

includes the oligonucleotide ligation assay (OLA) (Table 2.3) [317]. The OLA relies on 

differential hybridization of mutant and wild type amplicons to specific oligonucleotide 

probes in a 96-well plate. Two oligonucleotide probes with different detection molecules, 

one for wild type, one for mutant, are added to wells along with a ligation enzyme and 

amplified HIV DNA. After ligation, two separate reactions are used to visualize 

hybridization complexes containing either wild type or mutant sequences. While OLA is 

more sensitive for detection of minority variants than bulk sequencing and can be 

performed rapidly on clinical samples, OLA is only quantitative if a standard of known 

relative abundance is run in parallel. Also, OLA is highly sensitive to polymorphisms in 

the regions queried by the probes, with incomplete binding leading to 2% of clinical 

samples negative for both wild type and mutant probes [317].  

The heteroduplex tracking assay (HTA) is more sensitive than the OLA, allows 

quantification of different viral populations, and is high throughput (Table 2.3). HTA 

probes are generated from labeled HIV-1 DNA clones with nucleotide changes proximal 

to the target nucleotides associated with resistance [318-320]. These changes allow 

greater mismatch between the HTA probe and wild type sequences relative to mutant 

sequences, and secondary structure of these heteroduplexes that results from 

mismatches may be resolved by polyacrylamide gel electrophoresis (PAGE). Using 

PAGE, HTA: wild type heteroduplexes shift upward from the probe: mutant 

heteroduplexes, forming two distinct bands. The relative intensity of these bands allows 

quantification of relative abundance of variants down to 1-3% [318, 319]. Bands may 

also be isolated and sequenced with less contamination [320]. However, the HTA is still 
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limited by: (1) errors introduced by an initial RT-PCR step to reverse transcribe and 

amplify HIV DNA sequences; (2) poor separation between mutant and wild type 

heteroduplexes; and (3) restriction to predetermined resistance mutations. 

All previously discussed technologies, while high throughput and low cost, rely on 

the detection of a priori resistance mutations. Other sensitive experimental technologies 

address this limitation, but many have been traditionally been limited by cost and labor. 

Clonal sequencing (Table 2.3) [321, 322], for example, is a technique in which an 

amplified HIV DNA insert is cloned into plasmid DNA and transformed into bacterial 

cells. Each bacterial colony originates from one cell carrying a single copy of the 

plasmid. By sequencing plasmids from multiple colonies, the relative abundance of HIV 

variants can be determined. However, clonal sequencing is still limited by the 

introduction of errors during the initial RT-PCR step [323], and by the loss of viral 

genomes during the cloning step. Also, there is the possibility of resampling of PCR 

template molecules, which can skew relative abundance estimates [19]. This last 

limitation has been addressed by taking a single colony from multiple PCR reactions, but 

this type of clonal sequencing is even more costly and labor-intensive [324]. 

Some limitations of clonal sequencing have been addressed by a method that 

relies on serial dilution of cDNA templates so that one molecule on average is amplified 

in each initial PCR reaction. This method, single genome sequencing (SGS) [146], 

employs multiple PCR reactions per cDNA dilution. PCR products are resolved on an 

agarose gel to determine the cDNA dilution that contains about 1 template per reaction 

based on the expected number of positives using the Poisson distribution. That cDNA 

dilution is then subjected to nested PCR, and products are bulk sequenced, allowing 

linkage of mutations on the same viral genome. However, sensitivity to detect minority 

variants is limited by the number of genomes or clones that are sequenced for both SGS 
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and clonal sequencing: 490 genomes/clones are required to detect a mutation present at 

1% abundance with 99% certainty [316]. 

Alternatively, massively parallel, ultra deep sequencing (UDS) techniques, 

including Illumina and 454 platforms, promise to deliver the advantages of SGS and 

clonal sequencing in a high throughput format [22, 23, 325, 326]. For HIV applications, a 

library of HIV DNA must be prepared for UDS in a series of amplification, purification, 

and quantification steps. Typically, HIV RNA preparations from clinical samples are 

independently reverse-transcribed with a sequence specific cDNA primer that includes 

preassigned barcode nucleotide sequence [23]. These are then amplified by nested 

PCR, purified, quantified, and pooled for UDS library preparation. 

For Roche’s 454 pyrosequencing platform (Table 2.3) [327], two proprietary 

adaptors are linked to each end of HIV DNA amplicons, either through incorporation 

during RT-PCR or ligation after RT-PCR. Both adaptors contain a nucleotide sequence 

for PCR and sequencing priming, but one adaptor also contains a tag that allows 

enrichment of single stranded DNA linked to one of each adaptor. Single stranded HIV 

DNA is diluted and captured by DNA beads, one molecule per bead. Beads are 

combined with PCR reagents and each HIV DNA is clonally amplified on the bead by 

emulsion PCR [328]. Clonally amplified HIV DNA is denatured and distributed across a 

picoliter plate, one bead per well [329]. Nucleotides are singly washed over the wells in 

limited concentration. Unincorporated nucleotides are degraded, but if a nucleotide is 

incorporated, pyrophosphate is released, converted into ATP, and used by an enzyme to 

generate a light signal. The signal is recorded as a series of ordered peaks proportional 

to the number of identical bases incorporated.  

The latest version of the 454 pyrosequencing platform, 454 GS FLX Titanium, 

allows for simultaneous interrogation of all known positions within 300-1,000 bp region, 
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producing up to 106 sequences per run. This enormous output allows 454 

pyrosequencing to detect minority sequences present in <0.1% of the population [330]. 

However, multiple PCR amplification steps and the initial RT step introduce a substantial 

amount of error [24]. Additional error may be introduced when more than three of the 

same nucleotide occur in a row [24], resulting in false calls of the third nucleotide, 

followed by partial incorporation of the next base [325]. These errors can make it difficult 

to distinguish actual base changes associated with drug resistance from errors 

introduced by reverse transcription or PCR amplification.  

Illumina UDS platforms, including MiSeq and HiSeq 2500 (Table 2.3), offer an 

alternative to the 454 sequencing platform. Similar to the 454 platform, proprietary 

adaptors are added to the ends of double stranded amplified HIV DNA to enrich single-

stranded HIV DNA with both adaptors. These templates are then immobilized on a 

surface coated with sequences complimentary adaptors [326]. Immobilized HIV DNA is 

clonally amplified by bridge PCR to form dense clusters of HIV DNA. One strand of the 

HIV DNA template is sequenced at a time, depending on which adaptor is cleaved prior 

to denaturation of amplified, double stranded HIV DNA products [326]. After sequencing 

the initial strand, the immobilized HIV DNA is again amplified, and double stranded DNA 

is nicked at the opposite end for paired end sequencing.  

For the sequencing using the Illumina platform, DNA polymerase and four 

labeled nucleotides are added to the surface containing clusters of clonally amplified, 

single stranded HIV DNA. The DNA polymerase incorporates only one nucleotide, since 

the nucleotide’s 3’ hydroxyl group of the nucleotide is blocked after its incorporation 

[331]. Unincorporated nucleotides are washed away, and the color of the incorporated 

nucleotide is captured for each immobilized HIV DNA cluster. A second enzyme then 
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cleaves the blocking group from the incorporated nucleotide, and these molecules are 

washed away following cleavage, allowing another single round of sequencing to begin. 

Compared to 454 platforms, the Illumina sequencing platforms are higher output, 

producing up to 6 billion 150 bp paired end sequences per run for HiSeq 2500 and 15 

million 250 bp paired end sequences for MiSeq. Illumina platforms are less prone to 

errors within homopolymeric stretches of sequence compared to 454 technologies [332], 

but the quality of the sequencing read declines rapidly towards the end of the run [333]. 

The decline in sequence quality over the run is due to incomplete cleavage of the 

nucleotide blocking site that accumulate over the run [334]. Also, low diversity 

sequences, such as might be expected among a pool of amplified, HIV DNA with 

predetermined barcodes, cause the Illumina platform data filters to count multiple 

clusters as the same sequence and bias estimates of sequence diversity [335].  

Table 2.3. Common genotypic assays to detect low abundance antiretroviral 
resistant HIV-1. 

Assay Avg. Length Threshold Main error source Cost Throughput 

AS-PCR point mutation 0.1% primer/probe mismatches $$ high 
OLA point mutation 10% sequence mismatches $ high 
HTA point mutation 1-3% band discrimination $$ medium 
Clonal  700 bp 5%* cloning efficiency $$$ low 
SGS 700 bp 5%* dilution $$$ low 
454 700 bp <1% homopolymeric regions $$$$ high 
Illumina  150-250 bp <1% phasing $$$$ very high 
AS-PCR=allele-specific polymerase chain reaction; OLA=oligonucleotide ligation assay; 
HTA=heteroduplex tracking assay; SGS=single genome sequencing. *Value for 
sequencing 60 genomes with 95% certainty; sequencing 490 genomes is necessary to 
obtain a 1% limit with 99% certainty. 

 

2.9.4      ADDRESSING MULTIPLE SOURCES OF SEQUENCING ERROR  

Despite rapidly advancing next generation sequencing techniques, estimating 

resistant HIV populations in plasma remains challenging because of the balance 

between the high diversity of rapidly evolving HIV within the individual [21] and errors 

introduced during multiple steps of viral enrichment and sequencing. These errors are 

first a function of the integrity of starting samples, which must be properly handled and 
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stored to prevent loss of HIV RNA genomes [332]. Upon RNA extraction from these 

samples, genomes are inevitably lost, but various protocols may be used to enhance 

recovery. For example, plasma samples with low viral titers may be centrifuged prior to 

extraction to concentrate viral particles [333], or carrier RNA may be added to samples 

so that rare viral RNA sequences are less likely to be lost during extraction.  

Even if losses during RNA extraction are minimized, errors may be introduced 

when purified HIV RNA is reverse-transcribed into cDNA by an engineered RT enzyme,  

which introduces an error every 30,000 to 17,000 nucleotides [334]. Reverse 

transcription is also associated with template recombination, which occurs when cDNA 

strands are incompletely extended and serve as primers for downstream amplification. 

Reverse transcription errors may first be addressed by starting with the highest quality 

(full-length) RNA, and by increasing cDNA synthesis reaction times to allow complete 

extension of the cDNA [335]. 

The next step, PCR amplification, is a major source of sequencing error, but it is 

currently necessary to produce an adequate sequencing signal. PCR errors may be 

introduced through one or more of the following: (1) biased amplification due to 

mismatches between the primer and some HIV sequences [336]; (2) resampling of 

starting templates due to low number of input templates [19]; (3) nucleotide 

misincorporation by the DNA polymerase [337]; and (4) PCR recombination from 

incomplete extension of amplified DNA or template switching [338]. To alleviate biased 

amplification due to primer-template mismatches (1), primers may be designed to 

complement conserved sequence regions or degenerate nucleotides may be substituted 

where potential mismatches may occur. To address PCR resampling (2), the number of 

starting templates may be maximized by concentrating the virus before extraction, for 

example. To reduce nucleotide misincorporation (3), high fidelity DNA polymerases with 
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proofreading capability are often used, but there is usually a trade-off with PCR 

efficiency [337]. Finally, to prevent PCR recombination (4), PCR extension times must 

be optimized to prevent too-short products from priming subsequent amplifications or to 

reduce the opportunity for template switching by the DNA polymerase [338]. 

For next-generation sequencing platforms, errors introduced during PCR and 

some platform specific errors discussed previously (2.9.3) have been addressed using a 

method engineered into the cDNA synthesis step. Here, a randomized sequence (Primer 

ID) is tagged to each individual viral genome via the cDNA synthesis primer (Figure 

2.5A) [26]. The Primer ID and pre-assigned, sample specific nucleotide barcode are 

subsequently amplified along with the viral sequence (Figure 2.5B). Downstream, 

majority-rules consensus sequences may be constructed from 3 or more resampled 

sequences within a sample (barcode) sharing the same Primer ID sequence (Figure 

2.5C), so that concordant nucleotides at a given position are more likely to be genuine 

nucleotide calls and discordant nucleotides at a given position are more likely to be 

errors. Importantly, collapsing raw sequences into Primer ID consensus sequences 

allows estimation of the viral population that was originally sampled, rather than what 

was best amplified. Thus, tagging individual viral genomes with a Primer ID allows 

correction of most sources of error from PCR amplification forward.
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Figure 2.5. Primer ID method to estimate HIV-1 viral population [26]. Panel A demonstrates 
how a randomized nucleotide sequence (Primer ID, medium gray) is added to the HIV RNA 
genome (black) during cDNA synthesis. The cDNA primer consists of an HIV specific 
sequence (black), the sequence specific Primer ID (medium gray), the pre-assigned sample 
barcode (light gray), and the non-specific sequence for downstream PCR (dark gray with 
circle). Panel B shows differential amplification of different Primer ID (black circles, diagonal 
stripes, dark gray hatch on gray) tagged viral genomes within the same sample (light gray 
barcode). Panel C shows how multiple resampled raw sequences (dark gray) sharing the 
same Primer ID (black circles) and barcode (light gray) are collapsed into a single 
consensus sequence (black). 
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CHAPTER 3     RESEARCH DESIGN AND METHODS 
 

 3.1     OVERVIEW 

For this study, a new method (Primer ID) that simultaneously addresses many 

sources of PCR and ultra deep sequencing (UDS) errors [26] was used to estimate HIV-

1 reverse transcriptase (RT) inhibitor resistance among a population of therapy-naïve, 

HIV-infected patients who eventually received an RT inhibitor regimen (N=184). For the 

Primer ID method, each viral RNA template was tagged with a unique primer 

identification sequence prior to amplification (Figure 2.5). Downstream, consensus 

sequences made from sequences sharing the same Primer ID represented the viral 

templates input into cDNA synthesis, rather than what was most efficiently amplified.  

First, by sequencing known HIV-1 RT sequences spanning HIV-1 RT codons 34-

138 with the 454 and Illumina deep sequencing platforms, the amount of error 

associated with the Primer ID was quantified for each platform (Aim 1). The rate of 

nucleotide substitutions, insertions and deletions, and template recombination was 

estimated from both Primer ID consensus and raw sequences and compared by analysis 

method (Primer ID vs. raw sequences) and platform (454 vs. Illumina).  

Next, the 454 platform was used to sequence Primer ID tagged, amplified HIV-1 

DNA spanning HIV-1 RT codons 34-138 and 139-245 from 184 therapy-naïve patients to 

estimate the prevalence of RT inhibitor resistance (Aim 2A). Prevalence estimates 

obtained using 454 deep sequencing and Primer ID were compared to those obtained by 

bulk sequencing. For a subset of patients with evidence of increased sequence sampling 

depth using the 454 platform (N=19), samples were also submitted for paired-end 
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sequencing of HIV-1 RT codons 34-74 and 111-138 using the Illumina MiSeq platform. 

For these 19 patients, results from the analysis of Illumina MiSeq sequences were 

compared to results obtained using the 454 platform within the same HIV-1 RT coding 

region (Aim 2B).  

Finally, the effect of pre-existing RT inhibitor resistance on time-to-first virologic 

failure was estimated among 184 patients using both deep and bulk sequencing 

measured pre-existing resistance (Aim 3). To define pre-existing resistance, the number 

of active antiretrovirals within each patient’s initial RT inhibitor regimen was determined 

using the Stanford HIV Drug Resistance Database (HIVdb) [171] to interpret Primer ID 

consensus sequences and sequences obtained using bulk sequence analyses (See 

Appendix 2.3 for Stanford HIVdb scores.). Effect-measure estimates were obtained for 

deep sequencing alone, for bulk sequencing alone, and for the combined effect of 

resistance detected using both technologies to determine the added value of more 

sensitive sequencing technology. 

3.2     STUDY POPULATION 

Patients included in this study (N=184) were selected from patients enrolled in 

the University of North Carolina Center for AIDS Research HIV Clinical Cohort Study 

(UCHCC), an ongoing clinical cohort study founded in January 2000 that enrolls adults 

aged 18 years or older that are receiving HIV care at the University of North Carolina 

(UNC) Infectious Disease (ID) Clinic [339]. Patients enrolled in the UCHCC are 

representative of the HIV epidemic in the Southeastern United States, where HIV 

disproportionately affects minorities, the mode of transmission is primarily sexual, and 

most patients enter care during the chronic phase of HIV infection [340-342]. Through 

2011, 59% of all patients enrolled in the UCHCC (N=3,141 total) were African American, 

30% were female; 28% reported men who have sex with men (MSM) as a primary HIV 
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risk category, while only 11% reported injection drug use (IDU) [343]. Among 853 

UCHCC patients initiating HIV care at the UNC ID Clinic between 1999-2009, the 

median CD4+ T cell count at entry was 286 cells/µL (inter-quartile range (IQR): 63-482) 

[342].  Compared to the rest of the UCHCC cohort, this sample of 184 patients included 

in this study were less likely to be female (23%) or African American (53%), and more 

likely to be MSM (44%). These 184 patients were, however, enrolled in the cohort during 

the chronic stage of HIV infection, with a median CD4+ T cell count of 307 cells/µL (IQR: 

123-444) at entry to care. 

Only a subset of UCHCC patients was eligible for this study, based on a set of 

criteria related to the availability of a clinical sample for resistance testing and the timing 

and content of the initial antiretroviral regimen. First, UCHCC patients consented to the 

use of their specimens, which were collected as part of routine clinical care. Second, 

patients initiated therapy after December 31, 1999 to alleviate potential survivor bias 

from including patients who initiated therapy prior to the establishment of the cohort. 

Third, patients initiated therapy with a HAART regimen composed exclusively of RT 

inhibitors, including either ≥3 nucleoside(tide) reverse transcriptase inhibitors (NRTI), or 

≥2 NRTI and 1 non-NRTI (NNRTI). This criterion was imposed since sequencing was 

restricted to the coding region of HIV-1 RT associated with RT inhibitor resistance. 

Finally, patients had ≥1 pre-therapy HIV-1 RNA level recorded in the database, 

indicating a potential available sample for sequencing. A total of 331 UCHCC patients 

met the above criteria as of August 17, 2012, and of these, 184 had an archived, pre-

therapy plasma sample available for sequencing. A flow diagram of the study population 

is shown in Figure 3.1. 
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Figure 3.1. Flow diagram of the study population. RT inhibitor regimens consisted of ≥3 
nucleoside(tide) reverse transcriptase inhibitors (NRTI) or ≥2 NRTI plus 1 non-NRTI 
(NNRTI). PI=protease inhibitor; RT=reverse transcriptase.  

 
3.3     THE UNIVERSITY OF NORTH CAROLINA CENTER FOR AIDS RESEARCH 

This study relied on data collected on behalf of the University of North Carolina at 

Chapel Hill Center for AIDS Research (UNC CFAR). UNC CFAR is a collaborative 

institution among investigators at the UNC School of Medicine, Family Health 

International, and Research Triangle Institute [344]. UNC CFAR facilitates clinical care of 

persons living with HIV disease in the Southeastern United States, provides support for 

ongoing HIV/AIDS research, and supports grant development for new HIV/AIDS 

research.  
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The UNC CFAR oversees and maintains the UCHCC, which was established in 

2000 by the CFAR Clinical Core, but includes patient records dating back to the early 

years of the UNC ID Clinic. UCHCC maintains both an electronic database containing 

patient data and a repository of patient samples collected during routine care. The 

UCHCC database consists of patient data from standardized, biannual chart 

abstractions and from a hospital-wide electronic database that is updated in real time. 

UCHCC data is stored on a protected warehouse server with controlled access. Fewer 

than 2% refuse to participate in the UCHCC, and analyses indicate that patients who 

refuse are demographically and clinically similar to patients who agree to be in the 

UCHCC. 

3.4     DATA SOURCES 

Medical charts for patients enrolled in the UCHCC are routinely abstracted into 

the database at enrollment and at six month intervals. Copies of medical charts and web 

based clinic notes are used to complete paper chart abstraction forms, which are then 

entered into the electronic database using a standardized electronic data entry form. 

Chart abstraction forms are the source of the following information: patient name; unique 

identifier for UCHCC (patient key); HIV diagnosis history; entry to HIV care; clinic visit 

dates; HIV risk factors; allergies; results of screening tests (chest X-rays, PAP smears, 

mammograms); immunizations; hospitalizations; illnesses; medication history, including 

antiretroviral regimens and other medications; and HIV-related lab results not obtained 

at UNC. Paper forms are secured in a locked cabinet until they are completely entered 

into the UCHCC database, after which they are destroyed. The electronic UCHCC 

database is password protected and maintained on a secure warehouse server.  

As previously stated, the UCHCC database also contains data that is 

electronically transferred from UNC Hospital’s electronic database. This institutional 
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database is updated in real time and includes demographic information and laboratory 

results from tests performed through UNC Hospitals (e.g. HIV-1 RNA level and CD4 cell 

count). Both this electronically-transferred data and the manually abstracted data that 

are housed in the UCHCC were the source of clinical data for the 184 patients included 

in this study. Specific variables and specimens used are listed in Table 3.1. 

Table 3.1. Variables and specimens from the University of North Carolina Center 
for AIDS Research HIV Clinical Cohort Study  

Variable/clinical sample Source 

patient key* chart review 

first/last name* UNC Hospitals 

medical record number* UNC Hospitals 

date of entry to HIV care chart review 

consent questionnaire answers/date of enrollment chart review 

clinic visit dates chart review 

date of death chart review 

resistance test results/test dates† chart review 

HIV-1 RNA levels/test dates UNC Hospitals 

CD4+ T cell counts/test dates UNC Hospitals 

antiretrovirals used/start and stop dates chart review 

date of birth UNC Hospitals 

gender UNC Hospitals 

race/Latino ethnicity UNC Hospitals 

HIV risk category chart review 

≥140 μL plasma/draw date‡ repository 
*Medical record numbers, names, and patient key were linked to locate archived plasma 
samples. †Bulk sequencing results were provided at the amino acid level. ‡All plasma 
samples were collected prior to the initiation of antiretroviral therapy. If possible, the 
sample drawn closest to the last pre-therapy bulk sequencing result was used.  

 
3.5     HIV-RELATED LABORATORY PROCEDURES 
 
 
3.5.1     BLOOD SPECIMEN COLLECTION AND PREPARATION 

For UCHCC patients, venous blood is drawn as part of routine care and stored in 

the repository following informed consent. Specimens retrospectively tested for 

resistance in this study were collected from participants prior to initiating HAART 

(N=184) (Figure 3.1). On average, 2 samples consisting of 2-4 mL of blood each are 

drawn per patient prior to initiating antiretroviral therapy (IQR: 1-4), but for these 184 

patients, the median number of blood draws was 3 (IQR: 2-6). Blood samples are 
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centrifuged within 24 hours of collection to separate plasma from whole blood. Plasma is 

then used for testing or stored by the UNC CFAR Retrovirology or Immunology Core.  

Upon receipt of plasma, UNC CFAR personnel update a master specimen log 

with barcode information, and they create a tracking sheet for each specimen. Tracking 

sheets and specimen vials contain the patient’s name, UNC Hospital system medical 

record number, barcode, the sample’s collection date, batch number, and protocol 

number. Tracking sheets are updated with each freeze/thaw per sample as repeated 

cycles threaten the integrity and purity of clinical specimens. To prevent multiple cycles, 

stored plasma is usually aliquoted into smaller volumes (1 mL).  

For this study, a minimum of 140 µL plasma from each of 184 patients was used 

for resistance testing. For samples with fewer than 4.5 log10 HIV-1 RNA copies/mL, 1 mL 

of plasma was centrifuged (20,000 x g) for 2.5 hours at 4°C to concentrate the virus; this 

cut-off was chosen based on early tests of PCR primers (data not shown). After the 

centrifugation step, the supernatant was removed and stored at -80°C, and remaining 

virus-containing pellets were resuspended in 140 µL of phosphate-buffered saline (PBS) 

for RNA extraction. 

3.5.2     HIV-1 RNA EXTRACTION 

Total RNA was extracted from plasma samples to isolate RNA from impurities 

and nucleases that may degrade RNA. A total of 140 μL of plasma or PBS suspension 

was necessary to produce 60 μL of total RNA using the QIAGEN extraction protocol 

(QIAGEN, Hilden, Germany); however, high HIV-1 RNA viral loads were ideal (>4.5 log10 

copies/mL) for better sampling of the viral population. Given the instability of RNA [332, 

345] and the nature of researching rare HIV sequence variants, plasma samples and 

RNA were handled in an area where the potential for contamination and RNA 

degradation was minimized. A separate clean room free of amplified/cloned DNA, 



 

64 

 

enclosed safety cabinets with laminar air flow to prevent contamination, and 

ribonuclease (RNase) free surfaces and consumable items were employed to protect the 

integrity of patient samples. 

From each thawed plasma sample or PBS suspension, 140 µL was removed and 

combined with 5.6 µg of carrier RNA (to prevent template loss and aid RNA precipitation) 

and lysis buffer to: (1) denature RNases naturally present in plasma; (2) disrupt HIV-1 

envelope and capsid for RNA isolation; and (3) facilitate RNA capture. Following lysis, 

RNA was precipitated in ethanol, and applied to a silica membrane to bind nucleic acids. 

Bound RNA was washed with ethanol and high salt solutions, dried to remove excess 

ethanol, and dissolved (eluted) from the membrane using 60 µL of RNase-free water. 

Purified RNA preparations were stored at -80°C in a locked freezer. 

3.5.3     HIV-1 CDNA SYNTHESIS 

Next, HIV-1 RNA must be reverse transcribed into complimentary DNA (cDNA) 

using reverse transcriptase, since most downstream analyses rely on a DNA template. 

First, purified total RNA and dNTP were combined with an oligonucleotide primer such 

as a oligo(dT) which binds the HIV-1 RNA poly(A) tail, or a random typically 6-nucleotide 

sequence which could potentially bind any site within the genome, or HIV-specific 

nucleotide sequence that targets a specific sequence. This solution was heated and 

rapidly cooled to 2-4°C to disrupt the secondary structure of RNA and allow the primer to 

anneal to the RNA template. Next, an RT enzyme, RNase inhibitors, and reaction buffer 

were added, and the reaction was heated to allow cDNA extension. Following extension, 

the reverse transcriptase was inactivated, and RNase H was added to degrade 

remaining RNA bound to cDNA. cDNA may was then stored at -20°C. 

cDNA synthesis was performed in two separate reactions for each sample (184 

samples x 2 = 368 reactions), one per cDNA primer (Appendix 3.1). Each 60 µL cDNA 
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reaction contained 20 µL total RNA, 600 Units of SuperScript III (Life Technologies), 1st 

Strand Synthesis Buffer (Life Technologies), 0.25 mM dNTP mix, 100 mM dithiothreitol, 

120 Units of RNase OUT (Life Technologies), and 0.25 µM primer specific to either HIV-

1 HXB2 nucleotides 2965-2992 or 3258-3284 (Appendix 3.1) [346]. In addition to HIV-

specific sequence, cDNA primers featured a random 8-nucleotide Primer ID sequence 

(CGNNNNNNNNTC), a 4-nucleotide sample barcode sequence (BBBB), and a non-HIV-

specific PCR primer sequence (GCCTTGCCAGCACGCTCACAGCTGGCA). cDNA 

primers were removed following synthesis to prevent the excess from serving as primers 

for multiple sequences during downstream amplification, thus defeating the purpose of 

Primer ID. cDNA reactions were purified using the PureLink PCR Purification Kit (Life 

Technologies, Carlsbad, CA) with four wash steps to ensure their complete removal [26]. 

This kit includes a high cut-off DNA binding buffer that contains isopropanol, allowing 

separation of higher molecular weight cDNA from shorter cDNA primer sequences. 

3.5.4     HIV-1 DNA AMPLIFICATION 

Non-quantitative PCR was used to amplify HIV-1 cDNA spanning HIV-1 pol 

(HXB2 nucleotides 2620-2992 and 2992-3284). For the 1st round of PCR, 500 copies of 

cDNA, estimated using HIV-1 RNA level of the sample, were input into a 50 µL PCR 

reaction (one reaction/HIV-1 fragment) containing 0.5 µM of each round 1 PCR primer 

listed in Appendix 3.1. In addition, each reaction contained 0.2 mM of dNTP mix, 1.25 

Units of Phusion® High Fidelity Hot Start II DNA polymerase (Thermo Scientific, 

Waltham, MA), and Phusion® High Fidelity PCR Buffer with 1.5 mM MgCl2 (Thermo 

Scientific). cDNA were amplified using the following parameters: (1) 30 seconds at 98°C; 

(2) 30 cycles of 10 seconds at 98°C, 30 seconds at 67°C (HXB2 nucleotides 2620-2992) 

or 63°C (HXB2 nucleotides 2992-3284), 72°C for 30 seconds; and (3) final extension for 

10 minutes at 72°C. Next, 1-2 µL of the 1st PCR reaction was added to 25 µL containing 

identical reagents, but with 2nd round PCR primers listed in Appendix 3.1. Reactions 
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were amplified over 30 cycles using previous parameters, except that for the first 10 

amplification cycles, annealing temperatures were lowered to 57°C and 53°C, 

respectively. 

Given the large number of clinical samples and total reactions, cross-

contamination between patient samples was a significant concern. Multiple efforts were 

made to reduce the possibility of cross-contamination, including using biosafety 

cabinets, aliquoting reagents for single use, using disposable consumables, and limiting 

the number of samples processed per day. A negative control was included in the first 

and second rounds of PCR amplification to monitor contamination. For the 1st round of 

PCR, water was added instead of the cDNA template (no template control), and 2 µL of 

this amplified product was added to the 2nd round PCR reaction to check for low level 

contamination. In addition, separate water-only, no template controls were set up during 

the 2nd round of amplification to help determine the source of contamination. 

Following amplification, 10% (2.5 µL) of each sample or control was removed for 

agarose gel electrophoresis to visualize the amplified DNA band. The upstream HIV-1 

RT amplicon was expected produce a 410 bp band including 373 bp of HIV-1 sequence 

(HXB2 nucleotides 2620-2992) and 37 bp of non-HIV-1 primer sequence, while the 

downstream amplicon was expected to produce a 357 bp band, including 320 bp of HIV-

1 sequence (HXB2 nucleotides 2992-3284) and 37 bp of non-HIV-1 primer sequence. 

For each sample, band intensity for each amplicon was compared to a DNA mass 

standard to determine its concentration (Carestream Molecular Imaging Software SE, 

Rochester, NY). Samples were then pooled in equimolar amounts for UDS based on the 

determined concentration.  

Pools of amplicons from multiple samples were digested with PvuII (recognition 

sequence CAG▼CTG) to cleave a portion of the non-HIV-1 PCR primer sequence from 
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each amplicon, thus increasing the read length of HIV-1 sequence. It is possible that 

some amplicons would have the PvuII recognition site within the Primer ID sequence 

and therefore be excluded from downstream analyses after cleavage; however, this 

would only occur in 3 different Primer ID patterns: NCAGCTGN, NNCAGCTG, and 

CAGCTGNN. Thus, 42+42+42=48 out of a total 48=65,538 possible Primer ID would 

contain a PvuII cut site (0.073%). Following digestion, pools of amplicons were 

separated by agarose gel electrophoresis and gel purified to remove any short 

sequences (QIAquick Gel Purification kit, QIAGEN). Amplicons submitted for standard 

bulk sequencing analysis were not pooled, but rather 2nd round PCR products were 

individually purified before sequencing (QIAamp PCR Purification kit, QIAGEN). Both 

purified individual amplicons and amplicon pools were stored at -20°C. 

3.5.5     BULK HIV-1 DNA SEQUENCING 

Most patients (N=180/184, 98%) had a standard genotypic resistance result for at 

least one sample drawn prior to initiating therapy. For the majority of patients 

(N=140/180, 78%), genotypic resistance testing was performed using HIV GenoSure™ 

or GenoSure™ Plus assays (LabCorp, Research Triangle Park, NC), which produce a 

summary report of amino acid changes over HIV-1 RT codons 20-399 (in addition to 

protease and integrase). For 103 (74%) of these patients, resistance genotypes were 

preformed retrospectively as part of a collaboration with Virco laboratories (Mechelen, 

Belgium). For the other 37 (26%) patients, resistance tests were performed as part of 

routine care to guide initial therapy selection.  

For patients without commercial genotypic results (N=44), in-house bulk 

sequencing of both strands of each HIV-1 RT amplicon was attempted using purified 2nd 

round PCR products (with barcode and Primer ID) and 10 pmoles each of the inner PCR 

primers (Appendix 3.1). For 40 patients (91%), an in-house bulk sequence was obtained 
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for at least one of the two amplicons; for 8 of 40 patients, the downstream RT amplicon 

was not successfully sequenced.  

DNA amplicons were sequenced by the UNC-CH Genome Analysis Facility on 

an Applied Biosystems (ABI) 3730x1 DNA Analyzer (Life Technologies) using the ABI 

PRISM™ BigDye™ version 1.1 Terminator Cycle Sequencing Ready Reaction Kit with 

AmpliTaq® DNA polymerase FS (Life Technologies). Sequence chromatograms of both 

strands of each HIV-1 RT amplicon were inspected for quality, trimmed, and assembled 

using Sequencher version 4.8 (Gene Codes Corporation, Ann Arbor, MI). To check for 

evidence of cross-contamination between patient samples, sequences were aligned 

using a ClustalW2 server [347]. Alignments were input into MEGA version 5.2 to 

construct Neighbor-Joining phylogenetic trees using 1,000 bootstrap replicates [348]. 

The Kimura 2-parameter method was used to estimate evolutionary distances between 

sequences [349]. Nucleotide sequences were translated into amino acid sequences and 

antiretroviral resistance was interpreted using the Stanford HIV Drug Resistance 

database (Stanford HIVdb) [171].  

3.5.6     ULTRA DEEP HIV-1 DNA SEQUENCING 

Ultra deep sequencing (UDS) of amplicons from clinical samples was performed 

using two different proprietary platforms, Roche’s 454 GS FLX (Roche Diagnostics, 

Basel, Switzerland) and Illumina’s MiSeq (150 bp paired-end, Illumina, San Diego, CA), 

which were discussed in previous sections. For UDS using the 454 platform, a pool of 

amplicons from 184 patients spanning both RT fragments was submitted for sequencing 

on an entire plate (106 sequences expected). For Illumina MiSeq, amplicons from 19 

patients were sequenced using the 150 bp paired-end sequencing protocol to sequence 

HXB2 nucleotides 2648-2770 and 2878-2964 (107 sequences expected). These patients 

were selected because they had the greatest number of Primer ID consensus 
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sequences generated from 454 deep sequencing data, which is evidence of greater 

sampling depth of the viral population. 

3.5.7     HIV-1 RNA LEVEL AND CD4+ T CELL COUNT 

HIV-1 RNA level was measured using a quantitative RT-PCR system developed 

by Roche Diagnostics Systems (Basel, Switzerland). The Roche Amplicor HIV-1 Monitor 

assay relies on the following steps to quantify the amount of HIV-1 RNA in patient 

plasma: (1) plasma separation and HIV-1 RNA extraction; (2) reverse transcription of 

HIV-1 RNA into cDNA using biotinylated primers for a labeling reaction in steps 4 and 5; 

(3) PCR amplification of the cDNA; (4) hybridization of the PCR amplicons to 

immobilized HIV-specific probes; and (5) laser detection of the fluorescence from 

biotinyl-labeled primers. The Roche Amplicor HIV-1 Monitor assay can be performed 

using the standard or ultrasensitive procedures: the standard procedure can quantify 

HIV-1 RNA over a range from 400-750,000 copies/mL; the ultrasensitive procedure can 

quantify HIV-1 RNA over a range of 50-75,000 copies/mL. 

CD4+ T cell counts were measured in-house using single-platform technology 

and flow cytometry. This technology is capable of measuring CD4+ T cell concentrations 

as low as 10 cells/μL of plasma. Normally, CD4+ T cell counts range from 500 to 1500 

cells/μL, but many advanced HIV patients have CD4+ T cell counts below 200 cells/μL. 

3.5.8     PLASMID CONTROL SEQUENCE 

To characterize errors associated with both Illumina and Roche UDS platforms, 

all of HIV-1 reverse transcriptase (HXB2 2550-3515) from a patient HIV-1 subtype C 

isolate was cloned into a plasmid vector, pcDNA3.1 (Life Technologies) and used as a 

known sequence control. The sequence of the plasmid insert was confirmed by in-house 

bulk sequencing. Once confirmed by bulk sequencing, the plasmid was linearized by 

BamHI digestion, purified using the Minelute PCR Purification kit (QIAGEN), and 



 

70 

 

quantified by UV spectrophotometry. Control DNA was then serially diluted to solutions 

containing 3,000, 10,000, 30,000, and 100,000 copies. Double stranded plasmid DNA 

were denatured, cooled, and tagged with Primer ID and barcode (one per dilution) using 

Platinum Taq DNA polymerase (Life Technologies). Excess cDNA primers were 

removed [26], and HIV-1 HXB2 nucleotides 2620-2992 were amplified from each dilution 

using the same conditions as patient samples. Amplicons were pooled across copy 

number dilutions in equimolar concentration, and pools were sequenced over HIV-1 RT 

codons 34-139 using the 454 Junior (HXB2 nucleotides 2648-2964, Roche) and Illumina 

MiSeq sequencing platforms (HXB2 nucleotides 2648-2840 and 2782-2964).  

3.5.9     DEEP SEQUENCING DATA PIPELINE 

Deep sequencing data was processed using a custom pipeline of filters, 

implemented slightly differently depending on the sequencing platform. Given the 

enormous amount of data output by Illumina MiSeq, a sample of 1,000,000 sequences 

was input into the filtering pipeline. For both platforms, sequence read lengths were 

examined and reads <300 nucleotides were discarded. Next, sequences were compared 

to HXB2 pol to determine orientation and location. The barcode and Primer ID of these 

sequences was checked, and sequences with invalid barcodes or Primer ID were 

discarded. Remaining sequences were partitioned by barcode (sample) and then Primer 

ID (viral template). For sequences read by the 454 platform, sequences with a Primer ID 

occurring fewer than 3 times within a sample were discarded; for the Illumina MiSeq 

platform, sequences with a Primer ID occurring less than 5 times were discarded. A 

larger threshold was chosen for sequencing data from the Illumina platform since a 

larger number of sequences were available. Consensus sequences were then created 

from multiple sequences with identical Primer ID. These nucleotide sequences were 

then translated into amino acid sequences and resistance to particular antiretrovirals 

was predicted using the Stanford HIVdb [171]. Excluding the HIV-specific primer 
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sequences used in PCR amplification, UDS sequences spanned HXB2 nucleotides 

2648-2964 and 2993-3257 (454 FLX sequencing platform only). 

Primer ID must be correctly sequenced to accurately estimate the viral population 

within the individual patient. Since each Primer ID sequence is 8 nucleotides, and since 

errors begin to occur with greater frequency after 3 or more identical consecutive 

nucleotides, homopolymer-associated miscalls within the Primer ID sequence were a 

concern. Miscalls within the Primer ID sequence could artificially inflate the number of 

templates within a sample when consensus sequences are generated from unique 

Primer ID. If a homopolymeric Primer ID appears a vast number of times within a sample 

(resampled), some small portion of Primer ID may consistently be misread and separate 

consensus sequences may be created from these unique Primer ID. To check for this 

type of error, Primer ID clusters were examined within patient barcodes with evidence of 

resampled Primer ID (>500 occurrences of the same Primer ID) using multiple sequence 

alignment. If Primer ID was 1 or 2 nucleotides different from larger clusters (resampled 

Primer ID), these consensus sequences were discarded.  

3.6     STATISTICAL ANALYSES 

All statistical analyses were performed using SAS version 9.3 (SAS Corporation, 

Cary, NC) and Stata version 10 (StataCorp, College Station, TX).  

3.6.1     SPECIFIC AIM 1 

Using a known HIV-1 reverse transcriptase sequence, define a baseline error rate for the 

454 and MiSeq ultra deep sequencing platforms. For each platform, compare results 

estimated using Primer ID consensus sequences to those estimated using raw 

sequences. 

Known HIV-1 Reverse Transcriptase Sequence: The plasmid control for this 

study was created by co-contributor Shuntai Zhou, using an HIV-1 subtype C sequence 
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isolated from a patient sample. The entire length of HIV-1 reverse transcriptase was 

cloned into a pcDNA3.1 plasmid DNA vector. Plasmid DNA was quantified and serially 

diluted into fixed volumes containing 3,000, 10,000, 30,000, or 100,000 copies of the 

HIV-1 sequence insert. Each copy number dilution was input into four independent, 

single round DNA synthesis reactions, where DNA templates were tagged with a 

barcode and random 8-nucleotide Primer ID. Excess cDNA primers were removed and 

samples were independently amplified by semi-nested PCR. Amplified DNA was pooled 

across dilutions (barcodes) in equal amounts and submitted for deep sequencing using 

the Illumina MiSeq and Roche 454 Junior platforms.  

Homopolymeric Regions: One of the main problems with 454 technologies is 

the tendency to read too few or too many nucleotides after ≥5 of them occur 

consecutively within a sequence [24, 350]. This is because one nucleotide is added to 

the sequencing reaction at one time, and the signal generated is proportional to the 

number of identical nucleotides incorporated in a row; however, the variability in the 

relationship between the size of signal peak and the number of identical nucleotides in a 

row rapidly increases as the length of the homopolymer increases, resulting in erroneous 

nucleotide calls. Homopolymeric regions are abundant within the interrogated region of 

HIV-1 reverse transcriptase (≈20-25% of the sequence), and homopolymer-associated 

errors were expected to be common among HIV-1 sequences read by this platform.  

In this analysis, homopolymeric regions were defined as 4 or more identical 

nucleotides in a row plus the two flanking nucleotides. By this definition, 75 (24%) of 317 

nucleotides spanning HXB2 2648-2964 were expected to be susceptible to 

homopolymeric error for the HIV-1 subtype C control sequence. Since error estimates 

from control experiments were extrapolated to subtype B patient samples, 

homopolymer-associated positions were defined separately for patient samples. The 
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2004 subtype B consensus sequence, available from the Los Alamos HIV sequence 

database, was used to identify homopolymeric positions for clinical patient samples 

since the true sequences are unknown. Within the 2004 HIV-1 subtype B consensus 

sequence, 61 (19%) of 317 positions were near or within homopolymeric regions within 

the sequence spanning HXB2 2648-2964, while 45 (17%) of 265 positions spanning 

HXB2 2993-3257 were expected to be within homopolymeric influence. 

Analysis: The main objective of Aim 1 was to define a baseline error rate for the 

Primer ID method using a known sequence to provide context for resistance estimates 

within clinical samples, where the viral population is unknown. For each sequencing 

platform, raw sequences or Primer ID consensus sequences were compared to the 

sequence of the cloned HIV-1 sequence insert at each nucleotide position. This was 

done by aligning each raw or Primer ID consensus sequence to the known sequence, 

determining if the call was correct, and totaling the number of erroneous nucleotide calls 

for all sequences for each nucleotide position. The percent of erroneous calls 

(errors/total nucleotides sequenced x 100) at each nucleotide position sequenced was 

plotted for both raw and Primer ID consensus sequences. Erroneous calls were further 

categorized as: (1) substitutions, where a nucleotide other than the known nucleotide 

was called; (2) insertions, where an extra nucleotide was called in that position; (3) 

deletions, where the nucleotide was represented as a gap in that position; or (4) other 

errors, such as an ambiguous base call.  

For error rates, erroneous nucleotide calls were summed across all 317 

interrogated nucleotide positions spanning HXB2 nucleotides 2648-2964, both for all 

copy number dilutions and separately for each copy number dilution (barcode). The total 

number of errors was divided by the total number of nucleotides read and multiplied by 

10,000 to determine the error rate per 10,000 nucleotides. Error rates were calculated 
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for strata defined by sequencing platform (454 Junior or MiSeq), analysis method (raw or 

Primer ID consensus sequences), and by sequence location (homopolymeric or 

heteropolymeric regions). Standard errors and 95% confidence intervals (CI) for error 

rates were calculated using the Poisson distribution. Clustered sandwich estimators 

were used to calculate standard errors and 95% CI for error rates calculated across all 

copy number dilutions [351]. 

Sampling Minority Variants: The ability to detect minority variants depends on 

the number of unique Primer ID consensus sequences within a sample (Figure 3.2). 

Assuming an error rate of 4/10,000 nucleotides and a 400 nucleotide sequence, 59 

Primer ID consensus sequences are necessary to detect a variant present in 5% of the 

population with 95%power in a hypothesis test with a 5% type I error probability. At 95% 

power, only 29 Primer ID consensus sequences would be needed to detect a variant 

present in 10% of the sample, while 298 Primer ID consensus sequences would be 

needed to detect a 1% variant. 
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Figure 3.2. Sampling depth and power to detect minority HIV-1 sequence variants. Assume 
4 errors per 10,000 nucleotides, a 400 nucleotide sequence, and α=0.05. 

 
3.6.2     SPECIFIC AIM 2A/B 

(A) Using the 454 FLX platform to sequence HIV-1 RT codons 34-138 and 149-236, 

estimate the prevalence and relative abundance of RT inhibitor resistance among 184 

therapy-naïve patients with concurrent bulk sequencing results. (B) Compare estimates 

obtained using the 454 platform to estimates obtained using bulk sequencing. 

Study Population: The study population for Aim 2A and 2B consisted of all 

participants enrolled in the UCHCC that met the inclusion criteria outlined below (Figure 

3.1). All HIV-infected persons at least 18 years of age and providing written, informed 

consent for inclusion in the UCHCC were eligible if: (1) they initiated combination 

antiretroviral therapy after December 31, 1999; (2) with either ≥3 NRTI or ≥2 

NRTI+NNRTI; (3) they had ≥1 HIV-1 RNA level measurement recorded in the database 

prior to therapy initiation; and (4) they had available frozen plasma prior to therapy 
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initiation. 331 patients met criteria (1) through (3), while 184 of these patients had 

available pre-therapy samples (4). 

To examine exchangeability between populations with and without available 

samples with respect to pre-existing drug resistance, distributions of key variables were 

compared:  

(1) Age at therapy initiation 

(2) Gender 

(3) Race: black, white, or other race. 

(4) HIV risk category: separate binary variables men who have sex with 

men (MSM), injection drug use (IDU), and heterosexual contact. 

(5) Year of therapy initiation: categorized as 1999-2001, 2002-2004, 2005-

2007, and >2007.  

(6) Last pre-therapy CD4+ T cell count: continuous or categorized using 

the CDC laboratory definition of AIDS (in cells/µL) [32]: <200; and ≥200.  

(7) Last pre-therapy HIV-1 RNA level:  log10-tranformed and treated as 

continuous.  

Distributions of continuous variables were first checked within all eligible patients 

(N=331) by inspecting boxplots and histograms, and non-normally distributed variables 

were transformed as necessary. Next, continuous and categorical variables were 

examined within patients with an available sample (N=184) and those without an 

available sample (N=147) and their differences compared.  

Aim 2A Analysis: The main objective of Aim 2A was to estimate the amount of 

pre-existing resistance within a population of mostly chronically-infected, therapy-naïve 

patients using highly-sensitive UDS to measure resistance mutations. Resistance 

mutations were defined using the 2009 list of surveillance drug resistance mutations 
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(SDRM) (Appendix 2.2) since detection of these mutations in patients before starting 

therapy is more likely to represent transmission of drug resistance rather than naturally 

occurring polymorphisms [188, 189]. However, given high error rates associated with 

homopolymeric positions, mutations at HIV-1 RT codons 65, 67, 74, 100, 101, 103, 115, 

116, and 219 were excluded from overall estimates of resistance prevalence. 

Deep Sequencing Data: Two amplicons per patient were submitted for 

sequencing using the Roche 454 FLX deep sequencing platform: one amplicon spanned 

HXB2 nucleotides 2620-2992, and one spanned HXB2 nucleotides 2965-3284. 

However, the HIV-1 specific primer sequence was excluded from analyses since these 

primer sequences are theoretically identical across all sequences and not biologically 

informative. Therefore, the sequence regions used to estimate resistance in this 

population spanned HXB2 nucleotides 2648-2964 and 2993-3257, which cover HIV-1 

RT codons 34-138 and 149-236, inclusive.  

Not all patient amplicons were successfully sequenced using the 454 platform. 

For 7 (4%) and 3 (2%) subjects, only HIV-1 RT fragment 1 (RT codons 34-138) or 2 (RT 

codons 199-236) sequences were available, while for 2 (1%) patients, no sequences 

were obtained. For those missing 454 sequence information, it was assumed that they 

had no resistance within the missing RT region. Therefore, prevalence estimates used 

the full 184 patients as the denominator. Population prevalence was estimated overall 

(any RT inhibitor resistance), and by antiretroviral class (NRTI and NNRTI resistance). 

For population prevalence estimates, standard errors and 95% CI were calculated using 

the binomial distribution. 

 Deep sequencing resistance data for each patient consisted of the following: (1) 

sample draw date; (2) sample HIV-1 RNA level; (3) number of Primer ID consensus 

sequences for each HIV-1 region sequenced; (4) presence or absence of each SDRM 
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mutation among all their Primer ID consensus sequences; (5) number of Primer ID 

consensus sequences with each SDRM mutation; and (6) proportion of Primer ID 

consensus sequences with each SDRM mutation (relative abundance). In addition, 

class-wide and overall resistance variables were estimated per patient as follows: (1) 

presence or absence of any RT inhibitor, NRTI, and NNRTI resistance mutation; (2) the 

total number of unique RT inhibitor, NRTI, and NNRTI resistance mutations detected; (3) 

for each amplicon sequenced and for both amplicons together, the minimum and 

maximum total occurrences of any RT inhibitor, NRTI, and NNRTI resistance mutation 

among Primer ID consensus sequences; and (4) for each amplicon sequenced and for 

both amplicons together, the minimum and maximum proportion of Primer ID consensus 

sequences with any RT inhibitor, NRTI, and NNRTI resistance mutation.  

In light of error rates observed in the control experiments from Aim 1, a stricter 

definition of deep sequencing detected resistance was implemented for a sensitivity 

analysis. For this analysis, all single occurrences of resistance mutations were excluded 

as errors. That is, within each patient sample, a resistance mutation had to occur on at 

least two Primer ID consensus sequences to be counted as genuine. This approach was 

probably overly conservative, however. For the upstream reverse transcriptase 

fragment, given 12,971 consensus sequences generated across 181 patients and 

assuming that errors follow the Poisson distribution, a total of 493 singly occurring 

mutations were expected; 1,887 were observed (observed/expected: 3.8). For the 

downstream fragment, 379 singly occurring mutations were expected given 10,122 

consensus sequences across 177 patients, while 1,828 were observed 

(observed/expected: 4.8).  

Analysis Aim 2B:  Deep sequencing and standard bulk sequencing analysis 

resistance results were compared. Since standard bulk sequencing cannot reliably 
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detect minority variants that comprise less than 20% of the total mixture [146], all SDRM 

detected by bulk sequencing were expected to be detected using the 454 deep 

sequencing platform. Comparisons between ultra deep and bulk sequencing detected 

resistance were repeated for each definition of ultra deep sequencing detected 

resistance.  

Bulk Sequencing Data: Bulk sequencing resistance data for each patient 

consisted of the following: (1) date of sample draw; (2) sample HIV-1 RNA level; (3) an 

indicator variable for whether or not bulk sequencing was done in-house; (4) laboratory 

where sequencing was performed; (5) presence or absence of each SDRM mutation; (6) 

presence or absence of any RT inhibitor, NRTI, and NNRTI mutations; and (7) number 

of unique RT inhibitor, NRTI, and NNRTI mutations.  

Agreement between bulk sequence analysis and deep sequencing was assessed 

for each SDRM and for each antiretroviral class by calculating Kappa statistics (-1 to 1). 

Median relative abundance of SDRM was compared by whether or not the mutation was 

detected using standard bulk sequencing. 

Statistical Precision: Using the logit transformation of proportions and their 

standard errors to calculate confidence intervals, precision around prevalence estimates 

increases with lower prevalence and increasing sample size (Figure 3.3). The logit 

transformation was used to avoid illogical confidence intervals that fall outside the 0 and 

1 range. Assuming a sample size of 184 patients, prevalence estimates as low as 2% 

may be statistically distinguished from zero (α=0.05). 
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Figure 3.3. Prevalence and 95% confidence intervals by sample size, assuming 2%, 4%, 
10%, or 20% of the study population has resistance. Confidence intervals were calculated 
using the logit transformation. 
 
 
3.6.3     SPECIFIC AIM 2C 

(C) Among a subset of 19 patients with the greatest depth of sampling of viral templates, 

compare mutations detected within HIV-1 RT codons 34-73 and 111-138 between the 

Illumina MiSeq and Roche 454 platforms. 

Study Population: Initially, 22 patients were chosen from the full population of 

184 patients for sequencing using the Illumina MiSeq platform, which is not susceptible 

to homopolymer-associated error. This subset was chosen since they had the greatest 

number of Primer ID consensus sequences generated using the 454 platform, and their 

barcode sequences were at least two nucleotides different from each other, making it 

less likely sequences would be misclassified. However, adequate amplified DNA from 

the previous 454 deep sequencing experiment was available for only 19 patients, who 

had a median 203 Primer ID consensus sequences (IQR: 168-243) generated from a 

median 3,378 raw 454 sequences (IQR: 2,494-3,796). Amplified DNA spanning HXB2 

nucleotides 2620-2992 from the second round of PCR was pooled in equal amounts 
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across 19 patients, gel purified, and submitted for deep sequencing using the 150 bp 

paired-end sequencing protocol on the Illumina MiSeq sequencing platform. Using this 

protocol, sequences spanning HXB2 nucleotides 2648-2840 and 2782-2964 were 

available for comparison. 

Analysis: The objective of Aim 2C was to compare any detected mutations 

between two different ultra deep sequencing methods: Illumina MiSeq and Roche 454 

FLX platforms. While Illumina is not susceptible to homopolymer-associated miscalls, it 

has a shorter read length limitation, and it is associated with its own set of platform 

specific errors, discussed in Section 2.9.3. The majority of singly occurring mutations 

within the 454 Primer ID consensus sequences were expected to fall within 

homopolymeric regions. In contrast, for Illumina MiSeq, the quality of raw sequences 

was expected to decline over the sequencing run, so more single occurrences of 

mutations were expected towards the end of each paired-end read. In this case, more 

single occurrences of mutations would be expected towards RT codon 73 (downstream) 

for one paired end, while for the other paired end, more single occurrences would be 

expected towards RT codon 111 (upstream). 

Deep Sequencing Data: The upstream HIV-1 reverse transcriptase amplicon for 

each of 19 patients (spanning HXB2 nucleotides 2620-2992) was submitted for 

sequencing using the Illumina MiSeq deep sequencing platform with the 150 bp paired-

end sequencing protocol. Thus, the biologically relevant sequence did not completely 

cover the entire amplicon (317 bp). Therefore, the sequence regions used for 

comparison to 454 deep sequencing spanned HXB2 nucleotides 2648-2770 and 2878-

2964, which covered HIV-1 RT codons 34-73 and 111-138, inclusive. 

Deep sequencing data for each patient consisted of the following: (1) sample 

draw date; (2) sample HIV-1 RNA level; (3) number of Primer ID consensus sequences 
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for each platform; (4) presence or absence of each mutation among Primer ID 

consensus sequences for each platform; (5) number of Primer ID consensus sequences 

with each mutation for each platform; and (6) proportion of Primer ID consensus 

sequences with each mutation (relative abundance) for each platform. Sequences were 

first examined at the amino acid level, and when differences between platforms were 

found, at the nucleotide level. 

For each patient, the number of Primer ID consensus sequences generated was 

compared by sequencing platform. Even though the Illumina MiSeq capacity is much 

greater than the 454 sequencing platform (10-fold increase in raw sequences), a 

comparable number of Primer ID consensus sequences was expected per patient since 

the same PCR amplicons were sequenced. After comparing these values, amino acid 

mutations were compared across platforms both by individual patient, and overall across 

all patients. Mutations were categorized as detected by MiSeq alone, by 454 FLX alone, 

and by both platforms. Median relative abundances of mutations detected solely by 

Illumina MiSeq, solely by 454 FLX, and by both sequencing platforms were compared. 

For each mutation detected, the nucleotide sequence was examined to determine its 

distance from a homopolymeric tract. Also, their location along HXB2 was plotted by the 

number of times the mutation was detected. 

  



 

83 

 

3.6.4     SPECIFIC AIM 3 

Among study participants with RT inhibitor resistance measured using both bulk and 

deep sequencing, estimate the effect of pre-therapy resistance to one or more 

antiretrovirals within their first regimen on time-to-first virologic failure (VF). 

Study Population: The effect of pre-therapy resistance on treatment response 

(Aim 3) was estimated among a subset of Aim 2A/B’s population that had at least one 

HIV-1 RNA level measurement after beginning HAART. Of 184 patients with pre-therapy 

samples available for resistance testing (Aim 2A/B), 153 had at least one HIV-1 RNA 

level measurement following HAART initiation.  

Statistical Model: Virologic response to HAART is indicated by a single 

biomarker that is repeatedly measured both prior to and after HAART initiation: HIV-1 

RNA level in the plasma, which is expected to decline to below detection (<50 HIV-1 

RNA copies/mL) with successful antiretroviral treatment. Treatment failure is not defined 

by guidelines using the slope of HIV-1 RNA level decay within a defined time period; 

instead individuals experience treatment failure when plasma HIV-1 RNA levels rise 

above or remain above 200 copies/mL 2-8 weeks following initial treatment or regimen 

switch [6]. The timing of HIV-1 RNA replication suppression is important, however, since 

individuals who more rapidly reach these endpoints experience better outcomes in terms 

of decreased evolution of drug resistance [167], enhanced immune reconstitution [84], 

and decreased mortality [175]. Therefore, the definition of VF used here included an 

HIV-1 RNA slope change from baseline so that patients who failed to achieve at least a 

0.5 log10 drop in HIV-1 RNA copies/mL from baseline within the first 6 months of therapy 

were also considered to have experienced VF, rather than just patients who experienced 

a HIV-1 RNA level above detection (in this case >400 co/mL) after 6 months of therapy. 

Since the outcome (VF) is not only the occurrence of virologic response but also the 
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timing of response, represented by event time T, a Cox proportional hazards model of 

the general form was used [352]:  
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0
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where λ0(t) is the unspecified baseline hazard function for first VF for individuals 

without evidence of baseline resistance to their initial regimen and with all covariates in 

vector L(t) set to 0. β2 is a vector of unknown coefficients for time-fixed (measured at 

baseline, t=0) and time-varying covariates L(t), while β1 represents the unknown 

coefficient for the main exposure (pre-existing resistance to their initial regimen). Cox’s 

partial likelihood method for estimating the conditional hazard of event T at time t may 

be extended so that the effects of variables may vary over time (relaxing the proportional 

hazard assumption) and so that individuals may enter and leave the risk set during the 

study period. However, since partial likelihood methods depend on the ordering of 

events, rather than the timing of events, ties in event times can be problematic. For our 

purposes, we relied on the exact methods for partial likelihood estimation of unknown 

beta coefficients proposed by Kalbfleisch and Prentice in 1980 [353], which assume that 

there are no real tied event times and that the true ordering of events is unknown 

because of imprecise measurement of time. If exact computations became too time-

consuming, approximations proposed by Efron were used [354], which are usually closer 

to exact estimations than other approximate methods [355].    

Exposure Variables: To construct clinically relevant exposure variables for pre-

therapy resistance, patients’ pre-existing resistance mutations were interpreted in the 

context of the combination of RT inhibitors they received over follow-up rather than 

examining the effect of any pre-existing resistance regardless of therapy received. To 

interpret individual patient genotypes, we relied on the Stanford HIV Drug Resistance 

Database (HIVdb) algorithm shown in Appendix 2.3 [171], which is also available online 
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at http: //hivdb.stanford.edu/. For bulk sequencing results, each patient’s amino acid 

sequence was uploaded to the Stanford HIVdb, which returned a susceptibility score for 

each of the following RT inhibitors: 3TC, FTC, ABC, AZT, d4T, ddI, TDF, EFV, ETR, 

NVP, and RPV. These scores were discrete values in intervals of 5, ranging from 0-5 

(susceptible), 10 (potential low-level resistance), 15-40 (intermediate resistance), and 45 

and above (high-level resistance). Individual antiretroviral scores were compared to each 

patient’s initial regimen, and patients receiving ≥1 antiretroviral (ARV) with a HIVdb 

score over 10 (≥15) were considered to have received a partially active initial regimen. 

For UDS genotypes, the above procedure was applied to patient Primer ID consensus 

sequences; however, Primer ID amino acid consensus sequences were interpreted 

within the context of homopolymer-associated errors. 

Susceptibility to initial regimen was categorized for each patient as follows: (1) <3 

active ARV vs. ≥3 active ARV versus using resistance detected either bulk sequencing 

or UDS; (2) by relative abundance (minority or dominant vs. ≥3 active ARV) using 

resistance detected using UDS; and (3) by absolute copy number of resistant 

sequences, calculated using the proportion of resistant consensus sequences and 

sample viral load. For patients with multiple RT inhibitor resistance mutations, the 

highest relative abundance among these was used to calculate the number of resistant 

copies. Finally, resistance was categorized by sequencing detection method (<3 active 

ARV by UDS only, by <3 active ARV bulk sequencing and UDS vs. ≥3 active ARV). This 

last variable was constructed to provide some insight into the added value of UDS 

compared to the standard method of resistance measurement. Each variable was 

considered overall (<3 active RT inhibitor), and by ARV class (<3 active NRTI or any <3 

active NNRTI). 



 

86 

 

Homopolymeric Regions: Again, deep sequencing resistance genotypes were 

expected to be susceptible to homopolymer-associated errors, given that deep 

sequencing was performed using 454 FLX platform. To account for homopolymer-

associated errors, homopolymeric sequencing regions were defined as sequences made 

up of 3 or more identical nucleotides in a row plus the two flanking nucleotides, which is 

more conservative than the definition given for Aim 1. Applying this definition to the 2004 

HIV-1 Subtype B consensus sequence, 140 (44%) of 317 and 94 (35%) of 265 

nucleotide positions were within homopolymeric influence within the upstream and 

downstream sequences. From the HIVdb drug resistance mutations listed in Appendix 

2.3, amino acid positions at HIV-1 RT codons 40, 41, 44, 65, 66, 67, 69, 70 71, 74, 77, 

98, 100, 101, 103, 115, 116, 118, 151, 188, 215, 219, and 227 were considered 

susceptible to homopolymeric error. Mutations on these homopolymer-susceptible 

codons had to occur on at least 2 Primer ID consensus sequences within a patient 

sample to be considered genuine. In a sensitivity analysis, this more conservative 

requirement was extended to all resistance positions. 

Outcome Variable: Patients were followed from the date of HAART initiation 

(origin) until the earliest HIV-1 RNA measurement at or before the first of the following: 

(1) switch to a regimen containing a non-RT inhibitor ARV; (2) discontinuation of HAART 

for 2 weeks or more (4 weeks in a sensitivity analysis); (3) the end of the follow-up 

period, August 17, 2012; or (4) virologic failure (VF), where VF was defined as failure to 

achieve at least 0.5 log10 HIV-1 RNA copies/mL decrease from baseline within the first 6 

months of HAART, or at 6 months or later, an HIV-1 RNA level of 400 copies/mL. The 

threshold of 400 copies/mL was chosen since this value was the highest limit of 

detection within the database. 
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Confounders: Confounders of the association between pre-therapy resistance 

and time-to-first virologic failure were first identified using a directed acyclic graph 

(DAG), shown in Figure 3.4. The exposure of interest is pre-therapy resistance to one or 

more antiretrovirals within the initial HAART regimen, represented by X(0) in the DAG. 

X(0) was technically measured using the sample most proximal but before HAART 

initiation, however, since the origin of time is HAART initiation and not the time of 

exposure measurement, the effect of X(0) was allowed to vary with S(t) to account for 

this lag. The outcome, λT(t), is the hazard of virologic failure, while T is the random 

variable representing individuals’ failure/censoring times. All repeated measures, Ln(t), 

and unmeasured time-varying adherence and treatment indication, U(t), where t indexes 

the timing of each measurement, lie on the causal path from X(0) to λT(t). Therefore, 

effect-measure estimates were not conditioned on these variables. However, variables 

included in sets Z (race/ethnicity, gender, and HIV risk group, and age at HAART 

initiation), and the time from resistance measurement until HAART initiation, S(t), lie on 

non-causal, unblocked backdoor paths from X(0) to λT(t), and are therefore should be 

adjusted for in the analysis. Adequate control may be achieved by only adjusting for 

variables in set Z, since the only pathway between S(t) and the outcome would be 

blocked by adjusting for Z.  
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Figure 3.4. Directed acyclic graph of the causal association between pre-therapy 
resistance and time-to-virologic failure. Confounding through indication includes 
treatment decisions made by care providers. 

Confounder variables were included in the model as follows:  

(1) Age (Z): age at therapy initition was modeled using restricted cubic 

splines with knots at the quartiles of the entire population distribution, 

allowing the effect of age to vary in a non-linear fashion. 

(2) Gender (Z): female versus male.  

(3) Race (Z): white versus non-white race. 

(4) MSM (Z): MSM versus non-MSM. IDU was not included since only 15 

patients fit into this category and none were exposed. 

(5) Lag Time [S(t)]: Days between the draw date of the sample used for 

UDS and therapy initiation was modeled as a simple continuous variable.  

For each confounding variable and for each resistance exposure variable, a 

cumulative incidence curve was created to examine the relationship between the 

confounder and cumulative incidence of virologic failure [356]. Curves were compared 

between categories of confounding variables using the log-rank test. For age and time 
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between UDS sample draw and HAART initiation, categories defined using quartile cut-

points were used to examine cumulative incidence curves. 

Proportional Hazards Assumption: Proportional hazards models, unadjusted 

and adjusted and stratified by months from UDS sample draw to therapy initiation, were 

fit for each resistance variable. Hazard ratios (HR) and 95% confidence intervals (CI) 

compared the hazard rate of VF among patients with resistance to their initial regimen, 

measured at the time of therapy initiation, to those initiating with all active antiretrovirals. 

The proportional hazards assumption was evaluated by inspection of log[-log(survival)] 

curves for confounder variables and for each exposure variable. If graphs of the survival 

function versus the log of survival time revealed non-parallel lines for a variable, an 

interaction with time since HAART initiation was included in the model. Using this 

criterion, the effects of MSM and race were allowed to vary over time since HAART 

initiation. 

Non-Informative Censoring: For sensitivity analyses to quantify the influence of 

potentially informative censoring, the regression analysis was repeated under two 

extreme operating assumptions [357]: (1) Censored observations were assumed to 

experience VF immediately after censoring. (2) Individuals who were censored had 

event times greater than any individuals with observed event times. For the first analysis, 

all patients were assumed to have experienced VF on the day after they were censored. 

For the second assumption, the event time for censored observations was changed to 

the maximum event time plus one day, August 18, 2012. Analyses, both adjusted and 

unadjusted, were repeated for each assumption and effect-measure estimates were 

compared between sets of three models to examine the influence of these assumptions 

on effect estimates. 
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Statistical Power: Assuming 10% of the 184 patients received less than fully 

active HAART, 25% of the patients without any resistance experience virologic failure 

within one-year, and 30% of patients are censored during follow-up, this study would 

have 80% power to detect an HR of 2.1 (α=0.05, two-sided log-rank test). HR estimates 

are from models containing the only the main exposure, or for models where there is no 

correlation between additional confounding variables and the main exposure. Power 

curves were generated assuming a range of individuals experience the event (Figure 

3.5). Here, statistical power declines as the proportion who experience the event 

declines as well as with the HR for the main effect.  

 
Figure 3.5. Statistical power to detect various hazard ratios, assuming 30% non-
informative censoring, virologic failure occurs among 25% of unexposed individuals 
within one year of HAART, and 10%, 20% or 30% of the study population has evidence of 
pre-existing drug resistance, two-sided test, α=0.05. Power curves are estimated for 
regression models containing the main exposure only. HAART=highly active antiretroviral 
therapy.  
 
 
3.7     LIMITATIONS 

The limitations of the proposed study affect each of the aims, and may be divided 

broadly by their relationship to validity and precision. Validity-related limitations include 

restricted generalizability, information bias, unmeasured confounding, and selection 
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bias. Precision-related limitations are associated with the fixed sample sizes, both in 

terms of the sampled patient population and the sampling depth achieved for minority 

viral variants. These limitations are outlined below:  

Generalizability: The results of our analysis may not be generalized to 

populations outside the Southeastern US, especially to areas where resistance testing is 

not routinely offered to all therapy-naïve individuals as they enter care. However, the 

results could be extrapolated with caution to other populations where the HIV epidemic 

includes more rural residents, among minority populations and driven by sexual 

transmission, and where the majority of individuals are diagnosed with HIV later in the 

course of infection. In addition, this analysis is restricted to RT inhibitor resistance, which 

limits generalizability to these two classes of antiretrovirals only. Since these 

antiretrovirals continue to make up the majority of first line regimens worldwide, this 

limitation is not particularly restrictive at this time. 

Information bias: Information bias was primarily related to exposure 

measurement by UDS in terms of accounting for additional sources of sequence error 

and achieving adequate sampling of the viral population. On one level, 454 deep 

pyrosequencing is superior to standard bulk sequencing given increased sensitivity for 

minority variants, quantification of variants in the viral population, and the possibility of 

linkage analysis; however, resistance data must be interpreted carefully to properly 

account for any additional errors introduced by this platform that may increase false 

positives (i.e., reduce specificity) and that may increase false negatives (i.e., reduce 

sensitivity). To limit the impact of this first limitation, the Primer ID method was used to 

more accurately estimate the viral population, rather than the population that best 

amplified, and resistance among the clinical population was interpreted within the 
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context of error rates from control experiments by imposing stricter definitions to account 

for errors associated with homopolymeric sequence regions. 

With respect to sampling depth, Primer ID enumerates the viral population within 

the infected patient, but the ability to detect minority variants is sharply limited by the 

number of viral templates sampled. To address this problem, several laboratory 

procedures were adjusted to maximize the number of templates sampled per patient. 

For example, virus was concentrated prior to RNA extraction if sample viral load was 

<4.5 log10 HIV-1 RNA copies/mL. However, preliminary experiments reveal that the 

number of viral genomes that are actually sampled is a small fraction of the total number 

that are available, assuming accurate viral load measurement.   

Unmeasured Confounding: There are at least two sources of unmeasured 

confounding in this study that may not be adequately controlled with measured 

confounders in our analysis for Aim 2: (1) adherence to HAART; (2) confounding by 

indication, whereby treatments are selected based on provider-patient decisions 

(disease severity, physician experience, underlying health of patient, etc.). On the DAG 

in Figure 3.4, the path from these unmeasured confounders adherence and indication 

are blocked by adjustment for measured confounders in the set Z, including age at 

HAART initiation, gender, race/ethnicity, and HIV risk factors. While we have no 

surrogate information about unmeasured adherence, we are able to examine the effect 

of one specific type of confounding by indication. Some patients in this dataset may have 

been offered alternative HAART regimens based on pre-therapy bulk sequencing 

(N=37). None of the 37 patients had reduced susceptibility to any of their prescribed 

regimens as predicted using bulk sequence analysis, but a few did have predominant 

resistance mutations that were detected by standard sequence analysis. This 

phenomenon itself may introduce bias if patients with drug resistance at baseline also 
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tended to have minority drug resistant variants that would not be detected by standard 

bulk sequence analysis. 

Selection Bias: Selection bias may be an important source of error for analyses 

involving clinical samples, since almost half of samples from eligible patients were not 

available for resistance testing. Patients with available samples tended to have a longer 

amount of follow-up time from entry to care and HAART initiation, and they had more 

samples drawn prior to HAART. This may lead to selection bias due to 

underrepresentation of fast progressors, which would artificially lengthen virologic failure 

times. In addition, the lack of fast progressors could inflate the estimate the prevalence 

of pre-therapy resistance, since individuals with infected with resistant virus may 

experience some initial benefit in terms of higher CD4 cell count [304], which could bias 

the hazard ratio estimates upward. However, if fast progressors were more likely to carry 

resistant virus, particularly multi-drug resistant virus, the effect-measure estimates for 

Aim 2 could be biased downward.  

Statistical Precision and Power: The precision of our measures of disease 

frequency and effect-measure estimates are limited by the fixed sample size for each 

study population, in terms of the population of patients. To address the problem with 

patient sample size, only retrospectively obtained samples were tested for UDS, and 

many of these were not available. A concerted effort was made to obtain the maximum 

number of clinical samples; however, the size of this population is relatively large 

considering the increased sensitivity and coverage of UDS.
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CHAPTER 4     PRIMER ID CORRECTS NEXT-GENERATION SEQUENCING 

PLATFORMS AND STILL REVEALS PRE-EXISTING DRUG RESISTANCE 

MUTATIONS IN THE HIV-1 REVERSE TRANSCRIPTASE CODING DOMAIN 
 

4.1     INTRODUCTION 

Combination antiretroviral therapy continues to improve patient outcomes as better 

treatment options are developed [1, 358, 359]. Advances may be offset among participants 

failing multiple regimens by development of resistance and cross-resistance [116, 144], 

which also may be transmitted to susceptible partners [360, 361]. Since transmitted drug 

resistance may compromise patient response to first-line combination therapy [303, 362, 

363], genotypic resistance testing is routinely recommended before therapy initiation [6]. 

The utility of pre-therapy testing may be limited by minority HIV-1 variants, present in <20% 

of the viral population, that are not reliably detected by standard sequencing [146], and that 

may jeopardize virologic response [346, 364-367].  

The prevalence of minority pre-therapy drug resistance varies, with estimates based 

on highly-sensitive research assays often double those reported using standard sequence 

analysis [336, 346, 365-368]. Some variation may be related to methods for measuring low 

abundance resistance. For example, allele-specific PCR detects mutations that make up 

≥0.01% of the viral population [366]; however, prevalence estimates are based on a few, 

pre-determined mutations, and estimates of resistance in an individual may be biased by 

differential amplification. Alternatively, single genome sequencing allows interrogation of 

entire viral genomes diluted to a single viral sequence, bypassing some amplification errors, 

but this labor-intensive method generally achieves low sensitivity due to limited sampling 

depth [146]. In contrast, ultra deep sequencing involves massively-parallel sequencing of 
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amplified viral sequences, producing upwards of 106 sequences and reaching apparent 

sampling depths of 1% or less [22]; however this method frequently generates errors during 

amplification and sequencing, making it difficult to distinguish true minority variants from 

sequencing errors [24]. In addition, resequencing of a smaller number of viral genomes after 

PCR amplification (PCR resampling) gives over-estimates of the true sampling depth. 

To address errors associated with deep sequencing, others have established 

threshold cut-offs based on estimated error rates from known sequences [23]. Cut-offs do 

not account for errors that may be introduced during the PCR step, such as biased 

amplification and nucleotide misincorporation [19, 20], nor do they address PCR resampling. 

Here, an alternative strategy engineered into the cDNA synthesis step (Primer ID) was used  

to circumvent the need for statistically-defined cut-offs [26] allowing: (1) definition of a 

background error rate for two deep sequencing platforms; (2) estimation of the prevalence of 

pre-existing reverse transcriptase inhibitor (RTI) resistance among chronically-infected 

patients; and (3) comparison of prevalence estimates from standard methods to those 

obtained by deep sequencing. 

4.2     METHODS 
 
4.2.1     STUDY POPULATION 

Study participants were previously enrolled in the University of North Carolina Center 

for AIDS Research HIV Clinical Cohort Study (UCHCC)  [339]. UCHCC is an ongoing, 

clinical cohort enrolling HIV-infected adults receiving care at UNC. UCHCC maintains an 

electronic database of patient information and houses a repository of plasma samples 

obtained during routine care. Patients were eligible for this study if they: (1) provided 

informed consent for inclusion in the UCHCC; (2) initiated therapy after December 31, 1999; 

(3) with two or more nucleoside/tide reverse transcriptase inhibitors (NRTI) plus one non-

nucleoside reverse transcriptase inhibitor (NNRTI), or three or more NRTI; (4) had at least 
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one reported pre-therapy HIV-1 RNA level; and (5) had an archived pre-therapy plasma 

sample available for resistance testing. This study was reviewed and approved by the 

University of North Carolina Institutional Review Board. 

4.2.2     HIV-1 SEQUENCING  

For most participants (141/184), bulk sequencing analyses were obtained using 

commercial HIV-1 GenoSure (Plus) assays (LabCorp, Research Triangle Park, NC). If no 

bulk sequence analysis was available (43/184), we attempted in-house sequencing of HIV-1 

reverse transcriptase (RT) codons 34-245 using the ABI Prism BigDye Version 1.1 Terminal 

Cycle Sequencing (Life Technologies, Carlsbad, CA). To check for evidence of cross-

contamination, sequences were aligned by ClustalW version 2 [347] and inspected by 

constructing Neighbor-Joining phylogenetic trees evaluated with 1,000 bootstrap replicates 

[348]. 

Sample amplicon libraries were generated using previously described methods [26]. 

Samples with <4.5 log10 HIV-1 RNA copies/mL were centrifuged to concentrate the virus 

particles prior to RNA extraction (QIAamp viral RNA extraction kit, QIAGEN, Hilden, 

Germany). One-third of the RNA was used in separate cDNA synthesis reactions targeting 

two regions of HIV-1 RT, HXB2 nucleotides 2648-2964 and 2965-3257 (RT codons 34-139 

and 139-245) [346], using the primers listed in Appendix 3.1. The cDNA primers included a 

barcode to allow pooling of samples during the deep sequencing step, and a randomized 

sequence tag of 8 nucleotides (Primer ID) to allow identification of each individual template 

in the subsequent sequence analysis (Figure 4.1A). Purified cDNA [26] was used for semi-

nested PCR (Figure 4.1B) using Phusion Hot Start II High Fidelity DNA polymerase (Thermo 

Fisher Scientific, Waltham, MA); annealing temperatures were 67°C and 63°C for RT 

fragments 1 and 2, respectively (Appendix 3.1). Input cDNA was estimated based on the 

assumption that all RNA templates (500 copies) were copied into cDNA.
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Figure 4.1. Primer ID to estimate the HIV-1 population. (A) During cDNA synthesis, a 
unique Primer ID sequence is incorporated into each viral genome along with a 
sample-specific barcode. (B) During PCR, differential amplification may occur so that 
the probability of amplification is not equally distributed across viral genomes. (C) 
Primer ID is applied to correct errors that accumulated over a deep sequencing run. 
Within each sample, a single majority-rules consensus sequence is generated from 3 
or more sequences with the same Primer ID (red, green, yellow). Collectively, 
consensus sequences reflect the number of viral genomes rather than what best 
amplified. Method (2) is more conservative than (1) since single occurrences of 
resistance mutations on Primer ID consensus sequences are also excluded as error. 

Amplified DNA was pooled in equimolar concentration, cleaved with PvuII to 

remove part of the PCR primer, and gel purified (QIAquick gel purification kit, 

QIAGEN). Pools were submitted for sequencing on the 454 GS FLX sequencing 
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platform with XLR80 Titanium reagents (Roche, Indianapolis, IN). To compare 454 

and MiSeq nucleotide calls, 19 amplicons were also sequenced using the 150 bp 

paired-end sequencing protocol (HIV-1 RT codons 34-74 and 111-139, HXB2 

nucleotides 2648-2770 and 2878-2964) on the Illumina MiSeq sequencing platform 

(San Diego, CA).    

4.2.3     PLASMID CONTROLS 

The entirety of HIV-1 RT (HXB2 nucleotides 2550-3515), derived from a 

clinical sample, was cloned into vector pcDNA3.1 (Life Technologies). Plasmids were 

linearized with BamHI, purified using the Minelute PCR purification kit (QIAGEN), 

quantified by UV spectrophotometry using a Nanodrop 1000 (Thermo Fisher 

Scientific), and serially diluted to 3,000, 10,000, 30,000, and 300,000 copies. 

Plasmid DNA dilutions were denatured at 95°C for 5 minutes, cooled, and tagged 

with distinct cDNA primers during a single round of DNA synthesis with Platinum Taq 

(Life Technologies). Excess cDNA primers were removed [26], samples were 

amplified by nested PCR using a protocol identical to samples with primers listed in 

Appendix 3.1, pooled in equimolar concentration, and gel purified (QIAGEN). Pools 

were sequenced over HIV-1 RT codons 34-139 using the Roche 454 Junior (HXB2 

nucleotides 2648-2964) and Illumina MiSeq sequencing platforms (HXB2 nucleotides 

2648-2868 and 2782-2964). 

4.2.4     SEQUENCE ANALYSIS 

Deep sequencing data was processed using a custom pipeline of computer 

programs [26]. Briefly, sequence length distributions were inspected, short reads 

were discarded, and the remaining sequences were compared to HXB2 pol for 

orientation and location. Sequences with an invalid Primer ID or barcode were 

discarded, and filtered sequences were partitioned first by barcode (sample) and 

then Primer ID (viral template). Sequences with a Primer ID that occurred less than 
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three times within a sample were discarded (fewer than five times for MiSeq), and 

consensus sequences were generated from sequences with the same Primer ID. A 

larger number of identical Primer ID reads was used to build the consensus 

sequence for data from the MiSeq platform because of the larger number of reads 

available and with the goal of obtaining a more reliable consensus sequence. There 

was no evidence that fortuitous consensus sequences were created as the result of 

sequencing errors in the Primer ID. 

Drug resistance was defined using an updated list of surveillance drug 

resistance mutations to exclude polymorphisms that may not contribute to resistance 

phenotype (Appendix 2.2) [189]. Deep sequencing detected surveillance drug 

resistance mutations were quantified using two conditions (Figure 4.1C): (1) 

barcode- and Primer ID-defined consensus sequences; and (2) barcode- and Primer 

ID-defined consensus sequences, but only including resistance mutations that 

occurred more than one time within a sample (i.e. associated with two or more 

different Primer ID consensus sequences). Relative abundance of individual 

resistance mutations per sample was calculated by dividing the number of 

sequences with resistance by the total number of consensus sequences obtained for 

the sample.  

Deep sequencing detected resistance mutations were considered in the 

context of homopolymeric regions, which are error hotspots for 454 sequencing 

platforms [24, 369]. We defined homopolymeric regions as four or more consecutive, 

identical nucleotides plus the two flanking nucleotides. We used the 2004 HIV-1 

subtype B consensus sequence to define homopolymer-associated positions for 

clinical subject samples (available from the Los Alamos HIV Database at http: 

//www.hiv.lanl.gov), and we defined homopolymeric regions directly for the subtype C 
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plasmid control. In the subtype C control sequence, 75 homopolymer-associated 

positions were identified within the sequence spanning HXB2 2648-2964. In the 

2004 subtype B consensus sequence, 61 and 45 homopolymer-associated positions 

were identified within the analogous upstream sequence and the downstream 

sequence spanning HXB2 2993-3257. Since mutations on HIV-1 RT codons 65, 67, 

74, 100, 101, 103, 115, 116, and 219 were within homopolymeric influence, they 

were excluded from prevalence estimates. 

4.2.5     STATISTICAL ANALYSIS 

Standard errors and 95% confidence intervals (CI) for plasmid control error 

rates (errors per 10,000 nucleotides) were calculated across all samples using 

clustered sandwich estimators [351] and the Poisson distribution. Standard errors 

and 95% CI for proportions were estimated using the binomial distribution. 

Sequencing depth, or the number of sequences required to observe x% viral variant 

with 95% confidence, was estimated using a power analysis (Figure 3.2). 

Distributions of categorical variables were compared using Pearson’s χ2 test, median 

values of continuously distributed variables were compared using the Kruskal-Wallis 

test. Statistical analyses were conducted in SAS version 9.3 (SAS Institute, Cary, 

NC). 

4.3     RESULTS 
 
4.3.1     QUANTIFYING DEEP SEQUENCING ERROR 

The goal of this study was to examine low level resistance to RT inhibitors 

encoded within the RT coding domain. Control amplicons were designed to include 

several important resistance positions: RT codons 34-139 or HXB2 nucleotides 

2648-2964. First, we established a residual error rate for both the 454 and MiSeq 

platforms using plasmid controls to evaluate our ability to interpret rare variants using 

either the raw sequences or sequences corrected by Primer ID, which was used as 



 

101 

 

the primer in the first round of DNA synthesis. We used Taq DNA polymerase rather 

than RT in the first round of synthesis because of low template utilization by RT 

when starting with a DNA template; also, we used a DNA template rather than an 

RNA template to avoid misincorporation during the synthesis of RNA in vitro. A total 

of 112,108 reads of the 317 nucleotide amplicon obtained using the 454 platform 

were collapsed into 2,893 Primer ID consensus sequences. The overall error rate 

using raw sequences was 71/10,000 nucleotides (95% CI: 70-72), which was 

reduced to 2.6/10,000 nucleotides (95% CI: 2.2-3.2) using the Primer ID/consensus 

sequence approach (Appendix 4.1). Over 75 homopolymeric positions, 6.0 (95%CI: 

4.8-7.4) miscalls were observed every 10,000 nucleotides using Primer ID; excluding 

homopolymeric regions reduced error to 1.6/10,000 (95% CI: 1.3-2.0) nucleotides. 

Errors were substitutions (76%), deletions (22%), or insertions (1.7%). Error 

frequency is compared for each position queried in Figure 4.2A. 

We were especially interested in the potential impact of homopolymeric error 

in the region of the K65 codon, the position of an important resistance mutation for 

tenofovir. In most subtype B isolates the lysine codon at this position is AAA and part 

of a longer homopolymeric region. However, some subtype B and most subtype C 

isolates have the AAG codon embedded in this longer homopolymer, and 

misplacement of the G can create the appearance of the AGA codon at this position 

which would be interpreted as a resistance mutation (arginine). In the control 

plasmid, which had a K65 AAG codon, only 59% of raw sequences had the correct 

sequence and 38% of the sequences were “ATA AAA A-G AAA GAC.” This was 

caused by the under-call of an A in the homopolymeric region in front of the AAG 

codon, thus shifting the G one position to the left and creating an AGA codon. Since 

it is not possible to know which A of the homopolymeric tract was undercounted one 
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cannot interpret the presence of the AGA codon. A more difficult situation would be 

when there is an under-call in the upstream portion of the homopolymeric tract and 

an over-call in the downstream portion, which would shift the G and leave the 

reading frame intact, thus obscuring the effect of the homopolymeric errors and 

creating an erroneous call for a resistance mutation. This was a very rare event that 

occurred in 12/112,108 raw reads. 

Alternatively, deep sequencing with the MiSeq platform is not susceptible to 

homopolymeric miscalls because it does not rely on the linearity of the relationship 

between the number of consecutive identical nucleotides and signal peak. Using the 

MiSeq sequencing platform, 123,822 raw reads were sampled from 678,702 total 

paired-end reads of the 317 nucleotide control amplicon that passed Illumina quality 

filters. From these, 2,710 Primer ID consensus sequences were generated. Using 

the MiSeq platform to sequence the same set of controls yielded an error rate of 

1.2/10,000 bases (95% CI: 0.59-2.4) compared to 24/10,000 bases (95% CI: 18-32) 

using raw sequence data (Appendix 4.1). All errors were substitutions, and no 

difference was observed within homopolymeric regions (1.1 errors/10,000 

nucleotides, 95% CI: 0.51-2.5). However, higher error rates were observed in the 

downstream than in the upstream paired-end sequence (rate ratio: 2.9, 95% CI: 1.7-

5.0). Within the downstream sequence, errors increased over the run 2.6 times per 

100 nucleotides sequenced (95% CI: 1.3-5.0). Positional errors associated with the 

MiSeq platform are shown in Figure 4.2B. 
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Figure 4.2. Percent incorrect nucleotide calls for each queried position of control sequence. 
(A) and (B) Positional errors for sequences read by the 454 Junior deep sequencing platform, 
with (B) enlarged to visualize very low error frequency of Primer ID corrected sequencing. 
Homopolymeric tracts are highlighted by dark gray bars. (C) Positional errors for sequences 
read using the Illumina MiSeq deep sequencing platform. The read length of each paired end 
is highlighted by dark gray bars. Error frequency was calculated for each platform across all 
dilutions submitted for deep sequencing. 

 
4.3.2     PREVALENCE OF PRE-THERAPY DRUG RESISTANCE 

Of 331 otherwise eligible participants in the UCHCC, 184 (56%) had an 

archived pre-therapy sample. Most were chronically infected, with median 254 (inter-

quartile range (IQR): 95-398) CD4+ T cells/µL and 4.8 (IQR: 4.2-5.3) log10 HIV-1 

RNA copies/mL prior to therapy (Table 4.1). The sequence analysis for these 184 

participants was based on the identification of resistance mutations to any reverse 

transcriptase inhibitor (RTI), or specifically to a nucleoside/tide RT inhibitor (NRTI) or 
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a non-nucleoside RT inhibitor (NNRTI), with the resistance mutations defined by the 

2009 list of surveillance drug resistance mutations [189]. We excluded homopolymer-

associated positions from these prevalence estimates to allow for later comparison to 

the 454 platform. Based on sequencing of a bulk PCR product, 2.7% of participants 

(5/184, 95% CI: 0.89-6.2%) had an RTI resistance-associated mutation. NRTI-

associated resistance was most common being present in 2.2% of participants 

(4/184, 95% CI: 0.60-5.5%), while 1.1% of participants (2/184, 95% CI: 0.13-3.4%) 

had an NNRTI resistance-associated mutation. The RTI resistance mutations 

detected by bulk sequencing in these five participants are shown in Figure 4.3A. 
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Table 4.1. Baseline characteristics of clinical participants. 
 All eligible Sample available 
Characteristic N=331 N=184 

Gender, n (%)     
 Female 77 (23%) 42 (23%) 
 Male 254 (77%) 142 (77%) 
Race, n (%)     
 Black 181 (55%) 98 (53%) 
 White 92 (28%) 51 (28%) 
 Other 58 (17%) 35 (19%) 
Age, median (IQR)

*
 38 (31-46) 38 (31-47) 

HIV risk group     
 MSM, n (%) 144 (44%) 80 (43%) 
 IDU, n (%) 29 (8.8%) 15 (8.1%) 
 Heterosexual, n (%) 196 (59%) 110 (60%) 
Year of 1

st
 therapy, n (%)     

 1999-2001 104 (31) 38 (21%) 
 2002-2004 99 (30%) 64 (35%) 
 2005-2007 83 (25%) 54 (29%) 
 >2007 45 (14%) 28 (15%) 
1

st
 regimen, n (%)     

 NRTI only 45 (14%) 22 (12%) 
 NVP 22 (6.7%) 9 (4.9%) 
 EFV 264 (80%) 153 (83%) 
HIV-1 RNA log10 copies/mL, median 
(IQR) 4.8 (4.3-5.4) 4.8 (4.2-5.3) 
CD4+T cells/µL, median (IQR) 205 (54-357) 254 (95-398) 

IQR=interquartile range; MSM=men who have sex with men; IDU=injection drug use; 
NRTI=nucleoside reverse transcriptase inhibitor; NVP=nevirapine; EFV=efavirenz. *Age 
is calculated using the date of antiretroviral therapy initiation. 

 Across 184 participants, >106 raw sequences were generated using the 454 

sequencing platform, 73% (746,809) of which were >300 nucleotides long. If we 

relied on raw sequence data, nearly all participants had evidence of an RT inhibitor 

resistance mutation (148/184, 80%), but 75% of these mutations occurred among 

<1% of sequences within a population (Table 4.2). Excluding these very low 

abundance mutations in the analysis of the raw reads, 21% of participants (38/184, 

95% CI: 15-27%) had any RT inhibitor resistance mutations, including 18% (34/184, 

95% CI: 13-25%) and 7.1% (13/184, 95% CI: 3.8-12%) with an NRTI or NNRTI 

resistance mutation. However, these estimates overlook the effects of allelic bias 
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during PCR amplification, PCR resampling, and potential hotspots for error 

incorporation. 

Table 4.2. Resistance mutations within clinical participant samples estimated 
using raw or Primer ID sequences. 

 454 FLX sequences
*
 

 Raw sequences only Raw & Primer ID sequences 

 
No. of 

participants 
(% w/ minority 

variants)
‡
 

No. of 
participant

s (% w/ minority variants)
‡ 

Not homopolymer-associated
†
    

 NRTI     
  M41L 62 (85%) 7 (0%) 
  T69D 16 (81%) 3 (0%) 
  K70R 14 (100%) 1 (100%) 
  V75A 17 (94%) 0 (0%) 
  F77L 50 (90%) 6 (33%) 
  M184I 20 (100%) 1 (100%) 
  L210W 25 (92%) 3 (0%) 
  T215Y 12 (92%) 1 (0%) 
  T215F 5 (80%) 0 (0%) 
  T215I 40 (100%) 1 (100%) 
  T215S 0 (0%) 2 (50%) 
  T215D 7 (100%) 1 (0%) 
 NNRTI     
  V106A 10 (90%) 0 (0%) 
  Y181C 18 (89%) 1 (0%) 
  Y188C 12 (100%) 1 (100%) 
  G190A 27 (96%) 5 (40%) 
  G190S 14 (86%) 1 (0%) 
  G190E 23 (91%) 2 (50%) 
Homopolymer-associated

†
    

 NRTI     
  K65R 62 (98%) 0 (0%) 
  D67N 150 (44%) 20 (0%) 
  D67G 49 (100%) 1 (100%) 
  D67E 55 (100%) 1 (0%) 
  L74V 38 (87%) 4 (25%) 
  L74I 55 (98%) 3 (67%) 
  K219Q 109 (85%) 9 (11%) 
  K219E 18 (100%) 1 (100%) 
  K219N 18 (100%) 1 (100%) 
  K219R 24 (96%) 0 (0%) 
 NNRTI     

  L100I 43 (95%) 0 (0%) 
  K101E 63 (76%) 7 (57%) 
  K103N 100 (91%) 2 (0%) 
  K103S 15 (100%) 1 (0%) 

NRTI=nucleoside reverse transcriptase inhibitor; NNRTI=non-NRTI. *Primer ID 
used to generate consensus sequences from ≥3 raw sequences sharing a 
Primer ID. †Positions near homopolymeric runs, ≥4 consecutive identical 
nucleotides plus 2 flanking nucleotides. ‡Minority variants detected among 
<1% of raw sequences. 
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We next used the Primer IDs to form consensus sequences from the reads 

that represented PCR resampling. From a median 1,475 (IQR: 598-2,471) raw 

sequences per subject, a median 41 (IQR: 18-76) consensus sequences were 

constructed per subject corresponding to an average sequencing depth for reliable 

detection of about 7% (IQR: 4-17%). The large reduction in useable reads from the 

raw reads to the consensus sequences is a function of removing PCR resampling 

with Primer ID tagging to reveal the actual number of templates sampled. We 

observed that only 5-15% of the RNA templates added to the cDNA reactions 

resulted in consensus sequences, indicating either inefficient cDNA priming and/or 

extension, or inefficient inclusion of cDNA products into the PCR. 

In our first analysis using Primer ID, a resistance mutation was considered if it 

appeared in any consensus sequence created using Primer ID, even if it appeared in 

a single consensus sequence (Figure 4.1C, method 1). A total of 14% (26/184, 95% 

CI: 9.4-20%) of participants had RTI resistance-associated mutations among Primer 

ID consensus sequences using the 454 platform, including 11% (20/184, 95% CI: 

6.8-16%) of participants with NRTI resistance, and 4.9% (9/184, 95% CI: 2.3-9.1%) 

of participants with NNRTI resistance. All of the RTI resistance mutations observed 

by bulk sequencing were also observed in the Primer ID consensus sequences 

(Figure 4.3B). Conversely, using Primer ID consensus sequences rather than raw 

sequences resulted in a 33% reduction in the number of participants where a 

resistance mutation was observed (21% versus 14%), even after using a 

conservative (but arbitrary) 1% cut-off for mutations in the raw reads. 
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Figure 4.3. Participants with pre-existing RT inhibitor resistance mutations. (A) RT inhibitor 
resistance genotype for 5 participants with mutations detected using standard sequence 
analysis. (B)  RT inhibitor resistance genotype for 26 participants with resistance detected 
using the 454 FLX deep sequencing platform, corrected using Primer ID. Mutations associated 
with a single Primer ID consensus sequence within a subject sample are shown in 
parentheses. RT codons and mutations associated with NNRTI resistance are highlighted in 
bold italic type, while RT codons and mutations associated with NRTI resistance are shown in 
standard type. Only RT codons outside of homopolymeric influence were included in this 
analysis. Lack of resistance for a particular RT codon is indicated by a dash. 

The frequency of single mutations of any type in the data set of Primer ID 

consensus sequences was four as high as expected given the error rate determined 

using the plasmid sequences. Thus, in most cases the call of a resistance mutation 

based on a single observation was likely accurate. However, in a second, more 
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conservative analysis, only those resistance mutations that appeared in at least two 

consensus sequences were counted (Figure 4.1C, method 2). When only multiple 

(i.e. 2 or more) within-subject observations of a specific resistance mutation were 

included, the prevalence of RTI resistance among these 184 participants was 6.0% 

(11/184, 95% CI: 3.0-10%), representing 6 additional participants over the 5 who 

were also identified using bulk sequence analysis (Figure 4.3B). 

The preceding analysis did not include the homopolymeric regions, and we 

carried out a separate analysis to see what influence they would have on calls of 

drug resistance mutations. We found that only 4 (2%) out of 184 participants 

sequenced using 454 had a predominant “AAG” (a wild type lys codon) at RT codon 

65, and 11 (6%) participants had an “AAG” at RT codon 65 as a minority variant with 

abundance ranging from 1% to 24%. No evidence of K65R was found. If other 

homopolymeric positions were included, an additional 24 participants would have 

been classified as RTI resistant using the 454 data with consensus sequences, 

raising the overall prevalence to 27% (50/184). Some resistance calls at 

homopolymeric positions were also seen by bulk sequence analysis (in three 

participants) and were unlikely due to homopolymeric error given their high 

abundance. In contrast, homopolymer-associated resistance mutations detected 

solely by deep sequencing ranged in frequency from 0.35%-12.5% and most 

appeared once within a sample. Assuming these single occurrences were miscalls 

due to homopolymeric error, only six additional participants would be classified as 

having pre-existing RTI resistance (based on the mutation being on more than one 

consensus sequence). Thus, if homopolymer-associated positions were included, 

prevalence estimates would increase to 9% (17/184). 
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4.3.3     RELATIVE ABUNDANCE OF RESISTANCE MUTATIONS WITHIN VIRAL POPULATIONS 

The use of Primer ID allows an assessment of the number of viral genomes 

that were actually sampled from a subject, thus allowing an assessment of both 

sequencing depth and the relative abundance of detected mutations from a specific 

clinical sample. There were 6 participants who had resistance mutations that were 

detected in multiple Primer ID consensus sequences but not detected by bulk 

sequencing. The median abundance of these mutations within the viral population in 

each person was 1.8% (IQR: 1.2-2.8%). There were an additional 15 participants 

who had a resistance mutation present in one Primer ID consensus sequence and 

the median abundance of these mutations was 1.7% (IQR: 0.67-1.1%). However, the 

estimate of abundance is significantly limited given the low number of observations 

of each mutation, and the ability to detect variants at even less abundance is limited 

by low template utilization, as revealed using the Primer ID. This phenomenon is 

highlighted in Figure 4.4, where the majority of low abundance resistance was 

detected on a single Primer ID consensus sequence within a subject sample.  

 
Figure 4.4. Prevalence and frequency of pre-existing RT inhibitor resistance among 
participants. The left-hand panel excludes homopolymeric tracts (≥4 consecutive, 
identical nucleotides plus 2 flanking nucleotides). Resistance was defined using the 
surveillance drug resistance mutations [189]. 
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Using Primer ID, few participants with RTI resistance had evidence of 

multiple resistance mutations. Of 21 participants with minority drug resistance, only 2 

(10%) had more than one drug resistance mutation, each occurring on separate 

Primer ID consensus sequences at very low frequency. Of 5 participants with a 

majority drug resistant population, only 1 (20%) had multiple resistance mutations. 

This subject had extensive drug resistance that was also revealed by bulk sequence 

analysis: Y181C, G190S, and L210W appeared with T215Y, T215S, or T215D 

among 79% (26/29), 10% (3/29), or 10% (3/29) of consensus sequences, 

respectively, while M41L was linked to homopolymer-associated L74V and K101E in 

94% (29/31) of consensus sequences. Together, this suggests that this subject was 

initially infected with a variant carrying M41L, L74V, K101E, Y181C, G190S, L210W, 

and T215Y mutations, with the virus slowly reverting at codons 74 and 215. 

4.3.4     COMPARISON OF DEEP SEQUENCING PLATFORMS IN A CLINICAL SETTING 

Sequences spanning HIV-1 RT codons 34-74 and 111-139 (HXB2 

nucleotides 2648-2770 and 2878-2964) were determined for 19 of 184 participants 

using the Illumina MiSeq platform. Based on previous analyses of the data from the 

454 FLX sequencing platform, we selected participants who had the most consensus 

sequences constructed from ≥3 raw sequences sharing the same Primer ID (median 

203 [IQR: 168-247] consensus sequences), indicating that these samples had the 

highest level of genomes incorporated into the cDNA/PCR step. Using the MiSeq 

platform, a median 273 (IQR: 192-583) consensus sequences were constructed from 

≥5 raw sequences sharing a Primer ID (median 29,743 (IQR): 24,686-33,086 raw 

sequences). For 17 of the 19 participants, the number of consensus sequences 

generated using the MiSeq platform was comparable to those obtained using the 454 

FLX platform despite a nearly 10-fold increase in raw sequences. For the remaining 

2 participants, the number of consensus sequences increased 6- or 12-fold. While 
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every effort was made to sequence the same amplicons submitted for 454 

sequencing, RNA extraction was repeated for these 2 participants since their cDNA 

and amplicons were previously exhausted. In these 2 cases, high viral titers (6.6-7.9 

log10 HIV-1 RNA copies/mL) and dilution error could explain the discrepancy in 

apparent higher template utilization. 

 A total of 108 amino acid changes were observed in the RT coding 

region using both sequencing platforms, with 74 mutations detected using the 454 

platform and 82 using the MiSeq platform. About half (48/108) were detected by both 

sequencing platforms, 25% (26/108) were detected by the 454 platform alone, and 

33% (34/108) were detected solely by the Illumina MiSeq platform. Nearly 72% 

(43/60) of mutations detected by a single sequencing platform occurred on a single 

Primer ID consensus sequence, suggesting these mutations were either the result of 

method error or of stochastic sampling of rare variants. All 34 variants detected 

solely by the Illumina MiSeq platform were within the downstream paired end 

sequence, which was revealed as an error hotspot by the control experiments 

(Figure 4.2C). Conversely, 38% (10/26) of variants detected by the 454 platform 

alone were associated with homopolymeric regions, but most of the variants outside 

of homopolymeric regions occurred once (10/16, 62%) and could be due to a low 

number of templates. 

4.4     DISCUSSION 

Deep sequencing methods are subject to bias introduced by PCR 

amplification, and those methods that allow consecutive nucleotide additions in a 

homopolymeric run are also vulnerable to erroneous calls in or near these runs [369]. 

Here, an alternative deep sequencing method that tags a single viral template with a 

unique Primer ID prior to PCR [26] was used to estimate the prevalence of pre-
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existing RTI resistance within a clinical population initiating care for HIV-1. Among 

184 participants, up to 14% had evidence of RTI resistance, compared to 2.7% 

detection by sequencing of a bulk PCR product. An even more conservative use of 

the deep sequencing data based on making calls only if the mutation was associated 

with at least two consensus sequences gave an RTI resistance mutation detection 

rate of 6.0%, still more than a 2-fold increase over that seen by sequencing of a bulk 

PCR product, and these estimates did not include an analysis of homopolymeric 

regions that are susceptible to especially high error rates using the 454 sequencing 

platform.   

Prevalence estimates must be critically interpreted since the value can be 

inflated due to several intrinsic errors in the sequencing methodology, not all of which 

can be corrected by Primer ID. The 454 platform control experiments demonstrated 

nearly 4-fold higher error rates within homopolymeric regions compared to 

heteropolymeric regions despite the use of 3 or more raw sequences with the same 

Primer ID to create a consensus sequence. Intractable homopolymeric errors argue 

against using sequencing platforms that are subject to these errors to estimate the 

prevalence of minority variants, especially those associated with homopolymeric 

regions such as variants with K103N and K65R [346, 366, 370]. The Illumina MiSeq 

platform, which does not rely on the incorporation of multiple nucleotides at a 

homopolymeric stretch, eliminated homopolymer-associated errors in control 

experiments. However, this system has its own set of limitations including the 

accumulation of errors over the sequencing run [326], which was consistent with our 

own control experiments, and poor discrimination of highly similar sequences [371]. 

When Illumina was used to sequence samples from a subset of participants and 

compared to the 454 sequencing platform, concordance between the two platforms 
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was only 50% across all queried positions, suggesting either substantial sequencing 

error or stochastic sampling, particularly associated with very low abundance 

variants. There is some evidence of homopolymer-associated sequencing error, 

since nearly 40% of mutations detected only by the 454 platform were near or within 

these sites. It is also likely that many of the mutations detected by the MiSeq 

platform alone were the result of sequencing error, since all of these mutations were 

within the downstream paired-end which is associated with a 3-fold increase in error. 

However, it is not possible to rule out stochastic sampling of the viral population as 

the source of the discrepancy in most cases given the limited template usage 

revealed by the use of Primer ID. 

Our analysis of clinical subject samples was clearly limited by the number of 

templates we sampled, and if sufficient numbers of templates had been available 

(i.e. enough to give 1,000 or more consensus sequences) we could have queried 

down to the 0.1% to 0.5% range, below which residual method error still confounds 

the analysis. While limited template utilization was a problem in our analysis of these 

samples, it was the use of Primer ID that revealed the extent of template utilization 

and allowed us to estimate the quality of sampling. Alternatively, if we had relied on 

the raw reads with an arbitrary cut-off (1%), we would have not only overestimated 

the prevalence of RT inhibitor resistance, but we would have also erroneously 

concluded that our sampling depth was much higher for these samples given the 

number of raw reads that passed quality filters (median >2,000), and our estimates 

of the frequency of resistance mutations in the viral population would have been 

skewed upwards by nearly 20% compared to Primer ID.  

Even after correction with Primer ID, including all resistance mutations in 

estimates, i.e. even those that appear in only one Primer ID consensus sequence, 
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may fail to correct for errors that are introduced during cDNA synthesis, that occur in 

the earliest cycles of PCR amplification, or that are homopolymer-associated. 

Unfortunately, downstream data filtering with Primer ID cannot account for the first 

two of these biases, but control experiments did demonstrate a substantial reduction 

in errors within homopolymeric regions. Sequencing errors within the Primer ID itself 

cannot be ruled out, either, and these errors may be even more likely if the Primer ID 

itself contains a homopolymeric sequence. In the worst-case scenario, a viral 

genome is linked to a homopolymeric Primer ID and subsequently oversampled, 

such as might occur when the number of input templates is low, and thus the number 

of reads of each Primer ID is high. Since the original Primer ID itself contains a 

homopolymeric sequence, it is more likely to be misread repeatedly and in the same 

way by the 454 sequencing platform. In this manner, more than one Primer ID may 

be linked to the same viral genome, and these would be counted as separate viral 

genomes when collapsed into separate consensus sequences. Most such Primer IDs 

are unlikely to be abundant enough to be included in consensus sequence 

assembly. We assessed this type of error by building a tree of the Primer ID 

sequences themselves. We found no evidence of this type of oversampling in this 

dataset, although this type of monitoring is likely to be an important feature of using 

Primer ID. Finally, Primer ID may also fail when there are ties in nucleotide calls at a 

given position (ambiguity) among resampled raw sequences, thus making it 

impossible to infer the “real” viral sequence. This scenario is more likely to occur 

when consensus sequences are constructed from a low number of resampled raw 

sequences. Among 184 subject samples, each Primer ID consensus sequence was 

constructed from a median 12 (IQR: 6-24) resampled raw sequences, and therefore, 

this scenario cannot be excluded. 
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Despite its limitations, Primer ID offers an opportunity to make inferences 

about changes within the viral population when multiple resistance mutations are 

present, assuming that each unique Primer ID represents an individual viral genome. 

Only three participants had evidence of multiple resistance mutations on non-

homopolymer-associated codons, one of whom was identified by bulk sequence 

analysis. Two participants had multiple, low frequency NRTI resistance mutations on 

separate Primer ID consensus sequences, which could indicate past NRTI exposure 

followed by the reappearance of wild type from the participants’ reservoirs. The 

remaining subject had multiple, linked resistance mutations (M41L+L74V+K101E 

and Y181C+G190S+T215Y/D/S) that predominated the Primer ID consensus 

sequences with evidence of reversion at codons 74 and 215. Previous studies have 

shown that K101E+G190S reduce fitness compared to wild type virus in the absence 

of antiretroviral therapy, but that the addition of M41L+T215Y or L74V in particular 

improves fitness without reducing NNRTI resistance [372, 373]. In this subject it 

appears that T215Y is reverting more rapidly than L74V given the higher frequency 

of sequences with T215 revertant mutations compared to L74 (21% vs. 6%), but we 

are limited in our conclusions since these regions of RT were independently 

amplified and sequenced and thus for these different amplicons cannot be linked.  

Many studies, including a recent systematic review [18], have linked minority 

pre-therapy NNRTI resistance with an increased risk of virologic failure. Despite this 

evidence, questions still remain surrounding the clinical importance of minority drug 

resistant variants, particularly with respect to defining a specific abundance threshold 

at which resistance begins to affect response to combination therapy [364]. Before 

any particular cut-off for clinical significance can be determined, the drug resistant 

viral population must first be measured as accurately as possible. The most 
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promising method with potential to move beyond the research setting, ultra deep 

sequencing, still suffers from multiple sources of error that are inherent in this 

method. In this study, these errors and PCR resampling were addressed using the 

Primer ID, which showed a 30-fold reduction in error rates over raw sequence 

analyses and which, despite limited viral template usage in clinical samples, still 

revealed additional participants with pre-therapy resistance. As important, the use of 

Primer ID reveals the number of templates that were actually sampled thus providing 

an accurate assessment of the quality of the sampling depth, an essential piece of 

information when evaluating the meaning of the detection of rare variants. 
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CHAPTER 5     VIROLOGIC CONSEQUENSES OF PRE-EXISTING LOW 

ABUNDANCE RESISTANCE AMONG PATIENTS INITIATING WITH A 

REVERSE TRANSCRIPTASE INHIBITOR REGIMEN 
 

5.1     INTRODUCTION 

Accurate pre-therapy resistance profiles are critical to initial treatment 

selection [363]; however, standard sequencing fails to reliably sample viral variants 

<20% of the population [336]. This limitation has implications for chronically-infected 

patients with resistant virus that has faded to levels below detection, yet still remains 

clinically relevant [128]. Ultra deep sequencing (UDS) is capable of achieving 

sampling depths <1% of viral populations [23], but is limited by a PCR step that 

biases estimates upward through enzyme-mediated errors, differential amplification, 

and sequence resampling [20]. Some UDS platforms are additionally vulnerable to 

miscalls near homopolymeric nucleotide regions [24]. These artifacts must be 

distinguished from low level HIV resistance that may affect treatment [18].  

In this study, to minimize errors, each viral template was tagged by a random 

8-nucleotide sequence during cDNA synthesis, allowing identification of specific 

transcripts that were subsequently amplified. Amplified sequences sharing the same 

8-nucleotide Primer ID originate from the same genome so that concordant 

nucleotide changes from a consensus sequence are more likely to be actual 

mutations and discordant nucleotide changes are more likely to be errors. Creating 

consensus sequences from ≥3 sequences sharing the same Primer ID allows for 

fewer miscalls and estimation of input templates [26]. In patients receiving highly 

active antiretroviral therapy (HAART), this method was used to estimate the 
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proportion who received less than 3 fully-active antiretrovirals (ARV) and to examine 

the association between suboptimal HAART and virologic failure (VF).   

5.2     METHODS 

Patients enrolled in the University of North Carolina Center for AIDS 

Research HIV Clinical Cohort Study (UCHCC) were included if they: (1) provided 

written, informed consent for enrollment in the cohort study and use of their 

specimens for research purposes; (2) initiated HAART after December 31, 1999; (3) 

with either ≥2 nucleoside(tide) reverse transcriptase inhibitors (NRTI) plus an non-

NRTI or ≥3 NRTI; and (4) had at least one recorded pre-therapy HIV-1 RNA level; 

and (5) had an archived sample available for sequencing. UCHCC is an ongoing 

clinical cohort study enrolling adults seeking HIV care at UNC. UCHCC maintains an 

electronic database of patient information and repository of patient plasma samples 

[339]. This study was approved by the UNC Institutional Review Board. 

HIV-1 RNA was extracted from 140 µL of plasma, and concentrated if HIV-1 

RNA was <4.5 log10 copies/mL. One-third of the RNA was added to two cDNA 

reactions [26] using HIV-1 reverse transcriptase (RT) specific primers: (1) 5’-

GCCTTGCCAGCACGCTCACAGCTGGCA-NNNN-CGNNNNNNNNTC-

ACATTGTACTGATATCTAATYCCTGGTG-3’ complimentary to HXB2 nucleotides 

2965-2992 (fragment 1) [346]; and (2) 5’-GCCTTGCCAGCACGCTCACAGCTGGCA-

NNNN-CGNNNNNNNNTC-CACTATAGGCTGTACTGTCCATTTATC-3’ 

complimentary to HXB2 nucleotides 3258-3284 (fragment 2) [346]. Primers featured 

a patient barcode (NNNN) [22], a random template specific Primer ID 

(CGNNNNNNNNTC) [26], and a PCR primer with a PvuII cut site (Figure 5.1A).  

DNA was amplified using primers: (1) 5’-

GGCCATTGACAGAAGAAAAAATAAAAGC-3’, sense, fragment 1 [346]; (2) 5’-
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CACCAGGRATTAGATATCAGTACAATGT-3’, sense, fragment 2 [346]; (3) 5’-

GCCTTGCCAGCACGCTCACAG-3’, antisense, round 1; and (4) 5’-

CCAGCACGCTCACAGCTGGCA-3’, antisense, round 2. PCR conditions included 

30 cycles with 67°C (fragment 1) or 63°C (fragment 2) annealing temperatures 

(Phusion High Fidelity Hot Start II, Thermo Scientific, Waltham, MA). Amplicons were 

pooled in equimolar concentration and PvuII digested. Pools were gel purified, 

quantified, and submitted for 454 GS FLX sequencing (Roche, Indianapolis, IN). 

UDS sequences <300 nucleotides and those with ambiguous patient specific 

barcodes or Primer ID were discarded. Remaining sequences were partitioned by 

patient barcode. Sequences with template specific Primer ID that occurred <3 times 

were discarded as discrepancies between sequences could not be adjudicated, and 

majority-rules consensus sequences were constructed from remaining sequences 

sharing the same Primer ID. These were input into the Stanford HIV Drug Resistance 

Database (HIVdb) for interpretation [171]. To increase confidence of calls near 

homopolymeric regions, mutations on HIV-1 RT codons 40, 41, 44, 62, 65, 66, 67, 

69, 70, 71, 74, 77, 98, 100, 101, 103, 115, 116, 118, 151, 188, 215, 219, 221, and 

227 were considered genuine if they were associated with more than one Primer ID 

within a patient sample (Figure 1A). In sensitivity analyses, these criteria were 

extended to HIV-1 RT codons outside of homopolymeric regions. The number of 

active antiretroviral (ARV) in the initial regimen was calculated, with HIVdb scores 

≥15 considered resistant.  

Bulk sequences were obtained using HIV GenoSure (LabCorp, Research 

Triangle Park, NC) or by in-house bulk sequencing using 2nd round PCR primers. 

The majority of bulk sequencing was performed retrospectively. All patients with 
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prospective results available (N=37/184, 20%) were prescribed fully-active HAART 

as predicted by HIVdb interpretation of bulk sequences [171]. 

 Patients were followed from therapy initiation until the HIV-1 RNA level 

before the earliest of the following: (1) switch to non-reverse transcriptase inhibitor 

(non-RTI) HAART; (2) discontinuation of HAART for >2 weeks; or (3) August 17, 

2012. Patients experienced VF if they did not achieve 0.5 log10 HIV-1 RNA 

copies/mL decrease from baseline in the first 6 months of therapy, or after 6 months, 

if they had an HIV-1 RNA level >400 copies/mL.  

The combined association of NNRTI or NRTI resistance to all RTI regimens 

received with time-to-VF was examined. Drug resistance mutations were categorized 

as follows: (1) overall (<3 active ARV vs. ≥3 active ARV); (2) by relative abundance 

(minority or dominant vs. ≥3 active ARV); and (3) by absolute copy number of RTI 

resistant sequences, calculated using the proportion of resistant consensus 

sequences and sample viral load. Finally, the receipt of <3 active ARV was 

categorized by sequencing detection method (by UDS only, or by both bulk 

sequencing and UDS vs. ≥3 active ARV).  

Causal diagram analysis was used to identify adjustment variables, which 

consisted of gender, race (white vs. non-white), men who have sex with men (MSM), 

and age at therapy initiation (modeled using restricted cubic splines with knots at the 

quartiles of the population distribution). To account for lag between resistance 

measurement and the beginning of therapy, a continuous variable for months from 

sample draw to therapy initiation was created and included as an interaction term 

with resistance.  

Cumulative incidence curves for time-to-VF were stratified by key variables 

and compared using log-rank tests. Proportional hazards models, unadjusted and 
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adjusted and stratified by months from UDS sample draw to therapy initiation, were 

fit for each resistance variable. Hazard ratios (HR) and 95% confidence intervals (CI) 

compared the hazard (instantaneous rate) of VF among patients with resistance to 

their initial regimen, measured at the time of therapy initiation, to those initiating with 

all active ARV. The proportional hazards assumption was evaluated by inspection of 

log[-log(survival)] curves.  

5.3     RESULTS 

As of January 2010, 768 (37%, N=768/2076) UCHCC patients initiated 

therapy after 2000, 367 started with an RTI regimen, and 331 had ≥1 reported pre-

therapy HIV-1 RNA level. Of these, 184 (56%) patients had available pre-therapy 

samples. Median age at first therapy was 38 years (inter-quartile range (IQR): 31-

47). Patients were mostly male (77%), one-half African American (53%), and 43% 

and 8% of patients were MSM or had a history of injection drug use (IDU). Patients 

had median baseline 254 CD4+ T cells/µL (IQR: 95-398) and 4.8 log10 HIV-1 RNA 

copies/mL (IQR: 4.2-5.3).  

Most patients initially received efavirenz (EFV) (N=153, 83%), 9 received 

nevirapine (5%), and 22 (12%) received exclusively NRTI. Of NNRTI initiating 

patients, 78 (48%) were coadministered emtricitabine and tenofovir, and 58 (36%) 

received lamivudine (3TC) and zidovudine (AZT). Of NRTI initiating patients, 20 

(91%) were given abacavir, 3TC, and AZT. Patients received RTI regimens for a 

median 13 months (IQR: 3.3-39). Nearly 38% (N=70) of patients had not 

experienced VF and remained on RTI regimens at the close of follow-up; 23% 

(N=43) and 14% (N=26) of patients were censored because they discontinued 

therapy for >2 weeks or switched to a non-RTI. 
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UDS and bulk sequencing data were obtained for 182 and 180 patients; 

combined, 181 had both. Overall, 10% (N=19/181, 95% CI: 6-15%) of patients 

received a regimen with fewer than three active RTI, including 3 patients identified by 

both technologies. These 3 patients received regimens containing 3TC, AZT, and 

EFV and had evidence of the following mutations: M41L, L74V, K101E, Y181C, 

G190S, L210W, and T215Y/D/S; K103N/S and G190A; and M41L alone. An 

additional 9% (N=16/181; 95%CI: 5-14%) of patients had resistance detected by 

UDS alone, about half of which was NNRTI-associated (N=9/16). The most common 

mutations detected were G190A/S/E/V (N=6) M41L (N=3), and D67N (N=3). The 

characteristics of patients who received ≥3 active vs. <3 active ARV are compared in 

Table 5.1. 

Table 5.1. Baseline characteristics of patient population by number of active 
drugs. 

 <3 active RTI* ≥3 active RTI* 
 N=19 N=162 

Women, n (%) 3 (16%) 38 (23%) 
Age at 1st regimen, median (IQR) 41 (32-47) 38 (31-47) 
African American, n (%) 10 (53%) 86 (53%) 
MSM, n (%) 9 (47%) 70 (43%) 
IDU, n (%) 1 (5.3%) 14 (8.6%) 
1st regimen, n (%)     
 NRTI only 3 (16%) 19 (12%) 
 EFV based 14 (74%) 137 (85%) 
 NVP based 2 (10%) 6 (3.7%) 
Retrospective genotype, n (%) 17 (89%) 127 (78%) 
Deep sequencing to 1st regimen, n (%)     
 Same day 13 (68%) 99 (61%) 
 1-90 days 6 (32%) 42 (26%) 
 90+ days 9 (0.0%) 21 (13%) 
log10 HIV-1 RNA co/mL, median (IQR) 5.0 4.6-5.6 4.8 (4.1-5.2) 
CD4+ T cells/µL, median (IQR) 150 (33-306) 257 (108-402) 
Months follow-up, median (IQR) 18 (7.3-50) 12 (1.9-38) 
RTI=reverse transcriptase inhibitor; IQR=inter-quartile range; MSM=men who have sex 
with men; IDU=injection drug use; NRTI=nucleoside reverse transcriptase inhibitor; 
EFV=efavirenz; NVP=nevirapine *Mutations on HIV-1 reverse transcriptase codons 40, 
41, 44, 62, 65, 66, 67, 69, 70, 71, 74, 77, 98, 100, 101, 103, 115, 116, 118, 151, 188, 215, 
219, 221, or 227 were considered genuine only if they occurred >1 time within a patient 
sample. The number of active RTI per regimen was predicted using the Stanford HIV 
drug resistance database to interpret mutations detected by bulk PCR sequence 
analysis and/or ultra deep sequencing [171]. 
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Nearly one-fourth of patients (N=45) experienced VF within a median 60 

months (IQR: 17->142). Patients receiving sub-optimal regimens trended toward 

shorter time-to-VF than patients receiving 3 or more active RTI (HR: 1.8, 95% CI: 

0.87-3.7, p=0.1) (Figure 5.1B). Shorter failure times were driven largely by bulk 

sequencing predicted resistance; 2 of 3 patients, both of whom received inactive 

EFV, failed within 7.6 months (Figure 5.1C). Patients taking fewer than 3 active RTI 

predicted by UDS alone experienced VF at rates slightly higher than but not 

statistically different from those without resistance (HR: 1.6, 95% CI: 0.71-3.6, 

p=0.3), but the power to detect a difference was limited by the small number of 

patients with resistance. 
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Figure 5.1. Activity of early therapy predicted using Primer ID corrected deep 
sequencing genotype and time-to-virologic failure. Panel A illustrates the Primer ID 
correction method [26]. Individual HIV-1 RNA within a patient sample are tagged during 
cDNA synthesis with a randomized Primer ID sequence, a patient barcode and a PCR 
primer sequence. Sequences linked to unique Primer ID (dots, diagonal lines, hash) 
may be differentially amplified during PCR. Consensus sequences are constructed 
from >3 raw sequences sharing the same Primer ID within a sample and interpreted 
using the Stanford drug resistance database [171]. The association between receiving 
fewer than three active reverse transcriptase inhibitors over follow-up and time-to-
virologic failure is shown in panels B and C. ARV=antiretroviral; UDS=ultra deep 
sequencing; bulk=bulk PCR sequencing. 

The adjusted analysis produced similar results (Table 5.2). Shorter time to VF 

was associated with more abundant resistant variants, with mutations present among 

≥20% of the total viral population having a larger effect on time-to-VF (HR: 2.2, 95% 

CI: 0.77-6.5, p=0.1). Failure times were shorter for patients with as few as 2,000 

copies/mL of resistant virus. Using stricter interpretations of UDS data drove 

estimates further toward the null (Appendix 5.1). 
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Table 5.2. Adjusted hazard ratios for time-to-virologic failure and receiving 
suboptimal therapy. 

    Adjusted estimates 

Resistance to early therapy* n VF p-m HR† 95% CI 95%CLR 

Predicted resistance       
 <3 inactive RTI, Bulk or UDS 19 9 97 1.9 0.90-4.1 4.5 
 ≥3 active RTI 162 35 619 1.0   
 
Predicted resistance       
 <3 inactive RTI, Bulk & UDS 3 2 14 2.9 0.65-13 19 
 <3 inactive RTI, UDS Only 16 7 83 1.7 0.75-4.0 5.4 
 ≥3 active RTI 162 35 619 1.0   
 
% Viral population, UDS       
 ≥20% resistant 8 4 29 2.2 0.77-6.5 8.4 
 <20% resistant 11 5 68 1.7 0.64-4.5 6.9 
 None 163 36 635 1.0   
 
Copies resistant virus, UDS       
 ≥2,000 co/mL 14 6 56 1.6 0.65-3.8 5.9 
 <2,000 co/mL 168 39 676 1.0   
 
Copies resistant virus, UDS       
 ≥10,000 co/mL 9 5 38 3.5 1.0-7.1 6.9 
 <10,000 co/mL 173 40 694 1.0   
VF=virologic failure; p-m=person-months; CLR=confidence limit ratio; RTI=reverse 
transcriptase inhibitor; UDS=ultra deep sequencing; MSM, men who have sex with 
men. *Mutations near homopolymeric sequence regions were considered genuine if 
they occurred >1 time within a sample. RTI activity was predicted using the Stanford 
HIV drug resistance database [171]. †HR and 95% CI were adjusted for the following: 
(1) time-varying MSM and race; (2) gender; and (3) age at therapy initiation modeled as 
restricted cubic splines with knots at 25

th
, 50

th
, and 75

th
 percentiles. 

 
5.4     DISCUSSION 

Nearly 10% of patients received partially-active HAART, and 84% of these 

were not captured by standard sequencing. Although bulk sequencing was 

performed retrospectively for most patients, the number receiving suboptimal therapy 

was lower than in other cohorts with prospective testing [362]. By bulk sequencing 

analysis, <2% of study patients received suboptimal HAART, while 6% of patients 

from another cohort with clinically-available tests received suboptimal RTI 

combinations [362]. Additional resistance observed with UDS is consistent other 

groups that used more sensitive assays and reported an increase in NRTI resistance 
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from 3 to 13% of patients [374] or NNRTI resistance from 6% to 13% of patients 

[346]. 

In our analysis, the intra-patient distribution of pre-existing resistance was 

highly skewed towards the upper (≥20%) and lower (<5%) ends. Thus, a specific cut-

off at which minority variants affect VF could not be determined. Others suggest the 

effect of RTI resistance on time-to-VF may be more a function of copies of resistant 

virus rather than percent abundance alone [18, 364]. In this study, the magnitude of 

the estimated effect of copy number exceeded the estimated effect of variants 

defined by a percent cut-off at the highest copy numbers. This result is not 

surprising, since patients with a relatively high proportion of resistant virus often had 

lower viral loads and may have achieved sustained viral suppression more easily.  

To produce clinically relevant estimates, baseline resistance was defined in 

the context of the antiretroviral activity of each HAART regimen received over the 

course of follow-up [171], which is predictive of VF [363]. Consistent with previous 

bulk sequencing studies [362, 363], pre-therapy resistance was associated with a 

near 100% increase of the hazard of VF. Estimates were heavily influenced by 

NNRTI resistance detected by bulk sequencing, rather than additional resistance 

identified by UDS. Patients identified solely by UDS, nearly half of whom were 

resistant to their prescribed NRTI, experienced slightly elevated rates of VF 

compared to those receiving a fully active regimen, in agreement with other 

estimates for NRTI minority variants and VF [18]. It is possible that patients harboring 

minority resistance have accelerated failure times, but this study was unable to 

discriminate between groups with NRTI and NNRTI resistance, especially given the 

rigorous definition of drug resistance. 
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This is the first study to scale up the Primer ID based method to a large 

population of patients who went on to receive HAART. Primer ID allows a more 

accurate estimation of the viral population with UDS data [26] and may allow more 

refined estimation of the effects of minority drug resistant variants on virologic 

response given greater sampling depth and moderation of sequencing error. 

Predicting virologic response will likely improve by precise enumeration of minority 

variants actually present in the viral population pre-treatment. In order for these 

highly sensitive assays to complement clinical decision-making, it is important to 

distinguish resistance from error and to consider how resistance interacts with other 

factors such as viral load. 
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CHAPTER 6     CONCLUSION 
 

6.1     SUMMARY OF RESULTS 

A clear picture of antiretroviral resistance within the HIV-infected patient is 

clouded by factors that both are native to the virus, with its enormous capacity for 

evolution, and technology that is currently available for its measurement, which is 

tasked with distinguishing sequencing errors that, while rare, may occur more 

frequently than some mutations. Ultra deep sequencing (UDS) promises far better 

sampling of the viral population than standard sequencing, but UDS protocols are 

highly complex with multiple opportunities for error introduction. In particular, UDS 

still relies on a PCR amplification step to enrich rare HIV-1 sequences for an 

adequate sequencing signal; this step notoriously misrepresents the viral population 

through differential amplification of HIV-1 genomes [19]. Thus, when millions of HIV-

1 sequences are returned for analysis, they are not necessarily providing a clear 

picture of the HIV-1 population within the individual, but rather a picture of what HIV-

1 sequences were most efficiently amplified during PCR. Without accurately 

sampling and measuring the HIV-1 population within the individual, critical questions 

about the threshold at which minority drug resistant HIV-1 begins to affect treatment 

outcomes cannot be addressed. 

One method of addressing UDS error is through the use of Primer ID. This 

stretch of randomized nucleotides is incorporated into the HIV-1 genome before PCR 

amplification so that each viral genome is tagged with a unique Primer ID sequence. 

Primer ID are amplified along with the HIV-1 sequence, and multiple occurrences of 
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the same Primer ID sequence within a sample are used to create a single consensus 

sequence that not only better reflects the true nucleotide sequence of that particular 

viral genome, but also its distribution within the sampled viral population. Others 

have used UDS to measure minority drug resistant HIV-1, and they have attempted 

to determine a threshold at which these variants begin to affect treatment outcome 

[18]. However, this study shows that Primer ID may be successfully applied to this 

problem, increasing the potential to tease out clinically meaningful thresholds that 

are not confounded by UDS error.  

In this study, we first observed in control experiments that Primer ID virtually 

eliminated stochastic sequencing errors while revealing systematic errors associated 

with certain sequence regions. In known sequences spanning HIV-1 RT codons 34-

139, the overall error rate using the 454 platform was reduced from 70/10,000 

nucleotides (95% CI: 70-72) to 2.6/10,000 nucleotides (95% CI: 2.2-3.2) when raw 

sequences were corrected using the Primer ID. Homopolymeric sequence tracts are 

known to be particularly difficult to read for 454 sequencing platforms [24], and 

Primer ID dramatically reduced, but did not completely eliminate errors associated 

with these regions. Using raw sequences, we observed 216 errors/10,000 

nucleotides (95% CI: 213-220) near homopolymeric sequences that were 4 or more 

nucleotides in length, but Primer ID reduced this rate to 6.0/10,000 nucleotides (95% 

CI: 4.8-7.4) within these problematic areas. In contrast, the Illumina sequencing 

platform is not susceptible to homopolymeric errors, but it is associated with errors 

toward the end of a sequencing run (ie., towards the end of the sequence read) and 

within the downstream paired-end sequence [326]. Using the Illumina MiSeq 

platform, the overall error rate for both pair-end sequences was reduced from 

24/10,000 nucleotides (95% CI: 18-32) using raw sequences to 1.2/10,000 
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nucleotides (95% CI: 0.59-2.4) using Primer ID correction. However, while in raw 

sequences errors appeared more randomly distributed between the paired-ends, 

Primer ID revealed that residual errors were concentrated within the downstream 

paired-end. 

We next used Primer ID corrected 454 deep sequencing of HIV-1 RT codons 

34-245 to measure the amount of pre-existing RT inhibitor resistance in a population 

of 184 therapy naïve patients seeking HIV care in North Carolina. Although we relied 

on the most current list of surveillance drug resistance mutations to estimate the 

prevalence of transmitted drug resistance [189], we excluded those mutations near 

homopolymer-associated positions from our overall estimates in light of residual 

errors revealed by control experiments even after Primer ID correction. We also 

produced another set of prevalence estimates under the stricter assumption that a 

drug resistance mutation was genuine only if it occurred more than once within a 

patient sample (ie. on at least two Primer ID consensus sequences). Under the less 

strict interpretation, we found that nearly 14% (95% CI: 9.4-20%) of patients had one 

or more RT inhibitor mutations, including 11% (95% CI: 6.8-16%) with NRTI 

resistance and 4.9% (95% CI: 2.3-9.1%) with NNRTI resistance. Under the more 

conservative definition, 6.0% (95% CI: 3.0-10%) of patients had any RT inhibitor 

resistance; the prevalence of NRTI and NNRTI resistance was 6.0% (95% CI: 3.0-

10%) and 1.6% (95% CI: 0.34-4.7%), respectively. The latter was probably overly 

conservative since, given the error rate estimated from controls, we observed nearly 

a 3-fold excess of singly occurring mutations than what we would expect by chance 

alone. However, even the strictest interpretation of Primer ID consensus sequences 

revealed an increase in resistance prevalence over standard sequencing, since only 

2.7% (95% CI: 0.89-6.2%) of patients had evidence of RT inhibitor resistance by bulk 
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sequence analysis, including 2.2% (95% CI: 0.60-5.5%) and 1.1% of patients (95% 

CI: 0.13-3.4%) with NRTI or NNRTI resistance, respectively. 

Resistance mutations that were detected by both standard bulk sequencing 

and UDS dominated the viral population, and all were present in far greater than 

20% of Primer ID consensus sequences. In contrast, resistance mutations detected 

solely by UDS were in very low abundance (<1% to <5%), and these most often 

occurred on a single Primer ID within a patient sample. Our goal was to input 500 

HIV-1 RNA templates into the sequencing reaction, but the median number of Primer 

ID consensus sequences per patient was 41 (IQR: 18-76) created from a median 12 

raw sequences (IQR: 6-24) each, suggesting very limited sampling depth and low 

template utilization. We would not have observed this limitation if we had relied on 

raw sequences alone, since patients had a median 1,475 raw sequences (IQR: 598-

2,471), but since we restricted our analysis to mutations outside of homopolymeric 

influence, it is likely that even single occurrences of resistance mutations were 

authentic.  

When we compared all amino acid changes in a subset of 19 patients 

between results from Illumina MiSeq and 454, we found similar numbers of Primer ID 

consensus sequences for 11 of these patients despite a 9-fold increase in the 

number of raw sequences, while 8 had up to 9-fold more Primer ID consensus 

sequences using the Illumina platform. We could not explain this difference between 

platforms for all patients even though Illumina MiSeq outputs vastly more raw 

sequences compared to 454 platforms; however, 4 of 8 of these patients did have 

viral loads exceeding the limit of detection (>750,000 HIV-1 RNA co/mL), so the 

number 454 Primer ID consensus sequences could have been limited by platform 

throughput rather than template usage. When we compared all amino acid changes 
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between platform, we found that only 50% (N=48/108) were detected by both UDS 

platforms. Most of these (72% of 48) were detected on a single Primer ID consensus 

sequence. Further, up to 73% (N=19/26) of mutations detected by the 454 platform 

alone were near homopolymeric sequences, while all 33 mutations detected by the 

Illumina platform alone were within the downstream paired-end associated with the 

highest error rates in the control. Together, this suggests that many of these single 

occurrences are due to sequencing errors, rather than stochastic sampling of rare 

sequence variants. 

These 184 patients were initially selected for this study since they were 

therapy naïve at the time their plasma sample was obtained, and because they 

eventually initiated HAART with a regimen containing only RT inhibitors. Our goal 

was to estimate the effect of undetected minority drug resistance on time-to-virologic 

failure, to determine if UDS had any added value over standard bulk sequence 

analysis with respect to treatment outcomes, and to enumerate a clinically relevant 

threshold for intra-patient resistant HIV-1 variants. To address these questions, we 

used a genotypic scoring method available through the Stanford HIV Drug 

Resistance Database to interpret drug resistance mutations detected by UDS and/or 

bulk sequence analysis [171]. Using the Stanford database scores, we estimated the 

number of active antiretrovirals within each RT inhibitor regimen based on the 

spectrum of resistance mutations observed within each patient sample, with <3 

active antiretrovirals considered resistant. Using this scoring algorithm, only about 

10% of patients received fewer than three active RT inhibitors at any given time over 

the course of follow-up. We found that these patients tended to experience virologic 

failure faster than patients that received fully-active HAART; however, results were 

not statistically significant (adjusted HR: 1.9, 95% CI: 0.90-4.1). Only 3 patients were 
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taking suboptimal HAART according to their bulk sequencing and UDS results, and 2 

of 3 patients failed within the first 8 months of HAART. Patients receiving suboptimal 

HAART revealed by UDS alone also tended to experience virologic failure more 

quickly than patients without any resistance, but we were limited by the small number 

of patients in the exposed category (adjusted HR: 1.7, 95% CI: 0.75-4.0). We were 

also limited by the depth of sampling with respect to HIV-1 within individual patients. 

Since the resistance mutations we observed were either very high (>60%) or very 

low (<5%) abundance, we did not arrive at a clinical threshold for minority variants 

and virologic failure. We did, however, observe that very high copies of drug resistant 

virus (>10,000 co/mL) was associated with a decrease in time-to-virologic failure 

(adjusted HR: 3.5, 95% CI: 1.0-7.1). 

6.2     IMPLICATIONS 

In known control sequences, the large discrepancy in errors that we observed 

between analyses relying on raw sequences and Primer ID corrected consensus 

sequences highlighted the limitations of UDS technologies in their current form. 

Primer ID revealed that the number of HIV-1 RNA templates that we actually 

sampled is far lower than what we would have believed had we used raw sequence 

data alone. Thus, UDS is probably not able to reliably achieve the sampling depths 

that are often reported by others that rely on such data. These studies may filter 

errors from raw sequences based on control experiments and statistically defined 

cutoffs, but these methods do not account for differential amplification or PCR 

resampling. Measurement bias at all steps of UDS must be addressed before the 

effect of minority drug resistance on patient outcomes can be assessed. 

However, it is also clear that Primer ID does not completely eliminate all 

errors, especially those that are associated with particular sequencing platforms. 
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This residual error is based on the composition of the nucleotide sequence itself, 

which is unknown for clinical samples, and its interaction with the specific UDS 

technology (ie., homopolymeric sequence regions). Residual, systematic errors 

associated with specific UDS platforms may skew estimates in unpredictable ways in 

large pools of unknown HIV-1 sequences. Further, for Primer ID corrected estimates 

to be accurate, we must make a number of assumptions. For example, excess 

Primer ID must be completely removed from each sample prior to amplification to 

prevent Primer ID sequences from being associated with multiple HIV-1 templates. If 

such a phenomenon were to occur, the viral population’s sequence diversity could be 

deflated when consensus sequences are generated. Also, the Primer ID must be 

correctly sequenced so that a single Primer ID is not misread as multiple, unique 

Primer ID, thus inflating estimates of the size of the viral population. 

When we used the Primer ID to more accurately measure RT inhibitor 

resistance in our population of 184 patients, we further showed how limited our ability 

is for detection of minority drug resistant variants using UDS. Untreated patients had 

relatively high viral loads compared to patients on therapy, which theoretically would 

allow the highest level of resolution of the HIV-1 population. Yet, we still only 

achieved the ability to reliably sample variants that were present among ≥7% of 

sequences on average. This is still superior to standard bulk sequence analysis 

(≥20%), and we identified a number of additional patients who were placed on 

suboptimal therapy that would not have been captured by standard sequencing 

methods. We did observe an increased risk of virologic failure among patients with 

minority variants that appeared to increase with copies of resistant virus or relative 

abundance, and these estimates were probably underestimates given their lack of 

statistical significance. However, to what degree these estimates would change 
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given a larger patient population or deeper sampling of the viral population is 

unknown. 

6.3     FUTURE DIRECTIONS 

Since this study’s inception, the Primer ID has continued to improve. For 

example, the pre-assigned barcode sequence that differentiates patient samples is 

now represented twice within the cDNA primer, preventing incorrectly sequenced 

patient barcodes from either being discarded as non-matching, or worse, included 

with other similar patient barcode sequences as part of another sample. The Primer 

ID itself has been increased in length from 8 nucleotides to 11 nucleotides, which 

could facilitate increased sampling depth given the increase in available Primer ID 

sequence combinations from >65,000 to >4,000,000.  

However, it is imperative that this method continue to be rigorously validated 

before it is expanded into additional epidemiologic or clinical use. Because Primer ID 

addresses sequencing errors from the PCR step forward, it is still unknown if the 

HIV-1 RNA is actually the same sequence. Known, HIV-1 RNA sequences that 

originate from viral culture and that replicate with complete fidelity must be generated 

to estimate the amount of error introduced during the cDNA synthesis step. Within 

the PCR step, we are still limited in terms of interpreting resistance mutations that 

are linked to the same HIV-1 genome because of the potential for PCR 

recombination. A mixture of control sequences with recombination markers include 

within every UDS run may allow us to at least determine the extent of this 

phenomenon. Finally, additional experiments are needed to determine the limit of our 

capacity to detect rare HIV-1 sequence variants given a set number of available 

templates. This is crucial to interpreting rare HIV-1 sequence variants in the context 
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of lower patient viral loads, such as might be expected for patients experiencing 

virologic failure. 

Upon addressing these technical issues, Primer ID can and should be 

expanded to a larger number of patients, both prior to therapy and at treatment 

failure, to better estimate the point at which minority drug resistant variants begin to 

negatively affect patients receiving corresponding drugs. Clinically relevant 

thresholds are likely different not only between antiretroviral classes, but also for 

different individual resistance mutations and their combinations. This variability 

presents a major challenge to attempts at fleshing out meaningful estimates that 

clinical care providers can use to guide treatment selection. The Primer ID should 

also be expanded to other regions of the HIV-1 genome outside of RT that are drug 

targets. The very first study using Primer ID interrogated HIV-1 protease [26], but 

HIV-1 integrase and envelop could provide important information for clinicians 

considering regimens containing classes of drugs that target these enzymes. 

Although UDS is still far from supplanting current sequencing technology, Primer ID 

brings us a step closer to the level of accuracy needed for critical decision making.
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APPENDIX 2.1     MUTATIONS ASSOCIATED WITH REVERSE 

TRANSCRIPTASE INHIBITOR RESISTANCE, INTERANTIONAL AIDS 

SOCIETY-USA, 2013 [183] 

HIV-1 RT 
amino acid 
change* 

NRTI 
 Multi-NRTI† 

3TC 
FTC ABC AZT d4T ddI TDF +T69ins +Q151M TAM 

M41L   X X   X  X 
A62V       X X  
K65R X X  X X X    
D67N   X X     X 
K70R   X X   X  X 
K70E      X    
L74V  X   X     
V75I        X  
F77L        X  
Y115F  X        
F116Y        X  
M184V X X        
M184I X         
L210W   X X   X  X 
T215Y/F   X X   X  X 
T219Q/E   X X   X  X 

 

NNRTI 

EFV ETR NVP RPV 

V90I  X   
A98G  X   
L100I X X X  
K101E  X  X 
K101P X X X X 
K101H  X   
K103N/S X  X  
V106A   X  
V106M X X X  
V106I  X   
V108I X  X  
E138A/G/K/Q  X  X 
E138R    X 
V179D/F/T  X   
V179L    X 
Y181C/I X X X X 
Y181V  X  X 
Y188C/H   X  
Y188L X  X X 
G190S X X   
G190A X X X  
H221Y    X 
P225H X    
F227C    X 
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 NNRTI 
 EFV ETR NVP RPV 

M230I    X 
M230L X X X X 
RT=reverse transcriptase; NRTI=nucleoside reverse transcriptase inhibitor; NNRTI=non-
NRTI; 3TC=lamivudine; FTC=emtricitabine; ABC=abacavir; AZT=zidovudine; 
d4T=stavudine; ddI=didanosine; TDF=tenofovir; ins=insertion; TAM=thymidine analogue 
mutation; EFV=efavirenz; ETR=etravirine; NVP=nevirapine; RPV=rilpivirine. *Amino acid 
changes are given in the following format: wild type amino acid, HIV-1 RT codon, mutant 
amino acid change(s). †Multi-NRTI resistance mutations confer resistance to all currently 
approved NRTI. 
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APPENDIX 2.2     SURVEILLANCE DRUG RESISTANCE MUTATIONS FOR 

EVIDENCE OF TRANSMITTED RESISTANCE, 2009 [189] 
Amino acid 
change* 

NRTI 
3TC/FTC ABC AZT d4T ddI TDF 

M41L   X X   
K65R X X  X X X 
D67N/G/E   X X   
T69ins/D X X X X X X 
K70R   X X   
K70E      X 
L74V/I  X   X  
V75M/T/A/S    X X  
F77L       
Y115F  X     
F116Y       
Q151M X X X X X X 
M184V X X     
M184I X      
L210W   X X   
T215Y/F   X X   
T215I/S/C/D/E/V*       
T219Q/E/N/R   X X   

 
NNRTI 

EFV ETR NVP RPV 

L100I X X X  
K101E  X  X 
K101P X X X X 
K103N/S X  X  
V106A   X  
V106M X X X  
V179F  X   
Y181C/I X X X X 
Y181V  X  X 
Y188C/H   X  
Y188L X  X X 
G190S X X   
G190A X X X  
G190E X X X X 
H221Y    X 
P225H X    
M230L X X X X 
NRTI=nucleoside(tide) reverse transcriptase inhibitor; NNRTI=non-NRTI; 3TC=lamivudine; 
FTC=emtricitabine; ABC=abacavir; AZT=zidovudine; d4T=stavudine; ddI=didanosine; 
TDF=tenofovir; ins=insertion; EFV=efavirenz; ETR=etravirine; NVP=nevirapine; 
RPV=rilpivirine. *T215 revertant mutations [185]. 
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APPENDIX 2.3     STANFORD HIV DRUG RESISTANCE DATABASE 

ANTIRETROVIRAL SUSCEPTIBILITY SCORES FOR HIV-1 REVERSE 

TRANSCRIPTASE MUTATIONS [171] 

Amino acid change† 
NRTI Score* 

3TC/FTC ABC AZT d4T ddI TDF 

E40F 0 5 5 5 5 5 
M41L 5 5 15 15 5 5 
E44A/D 5 5 5 5 5 5 
A62V 5 5 5 5 5 5 
K65R 30 45 -10 30 45 45 
K65N 15 15 9 15 15 15 
K66ins 30 45 45 45 45 45 
K66del 15 15 15 15 15 15 
D67N/G/E 0 5 15 15 5 5 
D67S/T/H 0 5 10 10 5 5 
D67ins 30 45 45 45 45 45 
D67del 15 15 15 15 15 15 
S68ins 30 45 45 45 45 45 
S68del 15 15 15 15 15 15 
T69D 0 0 0 10 30 0 
T69N 0 0 5 5 10 0 
T69G 0 10 10 10 10 10 
T69ins 30 45 45 45 45 45 
T69del 15 15 15 15 15 15 
K70R 0 0 30 15 0 10 
K70E/G 10 15 -10 0 15 25 
K70T/S/N/Q 10 10 0 10 10 10 
K70ins 30 45 45 45 45 45 
K70del 15 15 15 15 15 15 
W71ins 30 45 45 45 45 45 
W71del 15 15 15 15 15 15 
L74I 0 20 0 0 60 0 
L74V 0 30 -10 0 60 0 
V75A 0 0 0 15 15 0 
V75I 5 0 0 10 10 0 
V75M/T 0 0 0 60 30 0 
V75S 0 0 0 20 10 0 
F77L 5 10 10 10 10 5 
Y115F 0 45 0 0 0 15 
F116Y 5 10 10 10 10 5 
V118I 0 5 5 5 5 5 
Q151L 10 30 30 30 30 10 
Q151M 15 60 60 60 60 15 
M184I/V 60 15 -10 -10 10 -10 
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Amino acid change† 
NRTI Score* 

3TC/FTC ABC AZT d4T ddI TDF 

L210W 5 5 15 15 5 5 
T215I/S/C/D/E/V/S 0 10 20 20 10 5 
T215N/A/L 0 5 20 20 5 5 
T215Y/F 5 15 45 45 15 15 
T219Q/E/N/R/W/D/H 0 5 10 10 5 5 
Combinations‡       
 M41L+L210W 0 10 10 10 10 10 
 M41L+T215Y/F 0 10 10 10 10 10 
 M41L+T215X§ 0 5 5 5 5 5 
 K65R+Y115F 0 0 0 0 0 10 
 K65R+Q151M 0 0 0 0 0 10 
 L74V/I+M184I/V 0 20 0 0 0 0 
 L210W+T215Y/F 0 10 10 10 10 10 
 L210W+T215X§ 0 5 5 5 5 5 

 

NNRTI Score* 

EFV ETR NVP RPV 

V90I 0 5 0 5 
A98G 5 5 15 5 
L100I 30 15 30 15 
K101E 15 10 30 10 
K101P 30 30 60 60 
K101H 10 10 15 10 
K103N/H 60 0 60 0 
K103S 30 0 60 0 
L103T 15 0 60 0 
V106A 30 0 60 0 
V106M 60 0 60 0 
V108I 5 0 10 0 
E138A 5 5 5 5 
E138K 10 10 10 30 
E138Q/G/R 5 10 5 15 
V179D 10 10 10 10 
V179E 10 5 10 5 
V179T 0 5 0 5 
V179F 5 15 10 15 
Y181C 30 30 60 30 
Y181I/V 30 60 60 60 
Y188S 15 15 30 15 
Y188C/H 15 0 60 0 
Y188L 60 10 60 60 
G190A 40 10 60 10 
G190S/C/V/T 60 10 60 10 
G190E/Q 60 15 60 15 
H221Y 5 5 5 5 
P225H 30 0 15 0 
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Amino acid change† 
NNRTI Score* 

EFV ETR NVP RPV 

Combinations‡     
 K103R+V179D 5 0 20 0 
 V106A+F227L 15 0 0 0 
 V106I+V179D 5 0 5 0 
 V179F+Y181C/I/V 0 15 0 15 
 Y181C/I/V+G190X§ 0 15 0 15 
NRTI=nucleoside(tide) reverse transcriptase inhibitor; NNRTI=non-NRTI; 3TC=lamivudine; 
FTC=emtricitabine; ABC=abacavir; AZT=zidovudine; d4T=stavudine; ddI=didanosine; 
TDF=tenofovir; ins=insertion; EFV=efavirenz; ETR=etravirine; NVP=nevirapine; 
RPV=rilpivirine. *To determine susceptibility to an individual antiretroviral, scores are 
added for each resistance mutation. A higher score corresponds to increased resistance 
to that antiretroviral. †Amino acid changes from are given in the following format: wild 
type amino acid, codon, resistant amino acid. ‡When combinations of given mutations are 
present, susceptibility scores for some antiretrovirals are increased over the score for the 
individual mutations. §For L215X, X is I/S/C/D/E/V/S/N/A/L; for G190X, X is A/S/E/Q/C/V/T. 
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APPENDIX 3.1     PRIMERS FOR CDNA SYNTHESIS AND DNA AMPLIFICATION 
    
Application Direction HXB2* Sequence (5’3’) 
       
Patient samples   
      cDNA† antisense 2965-2992 GCCTTGCCAGCACGCTCACAGCTGGCA-

BBBB-CGNNNNNNNNTC-
ACATTGTACTGATATCTAATYCCTGGTG 

      cDNA† antisense 3258-3284 GCCTTGCCAGCACGCTCACAGCTGGCA-
BBBB-CGNNNNNNNNTC-
CACTATAGGCTGTACTGTCCATTTATC 

      PCR 1/2  sense 2620-2647 GGCCATTGACAGAAGAAAAAATAAAAGC 
      PCR 1/2  sense 2965-2992 CACCAGGRATTAGATATCAGTACAATGT 
      PCR 1  antisense  GCCTTGCCAGCACGCTCACAG 
      PCR 2  antisense  CCAGCACGCTCACAGCTGGCA 
   
Plasmid samples   
      PCR 1 sense 2571-2598 GTACCAGTAAAATTAAAGCCAGGAATGG 
      PCR 1 antisense  GCCTTGCCAGCACGCTCAGGC 
      PCR 2 sense 2992-3284 CACCAGGGATTAGATATCAATATAATGT 
      PCR 2 antisense  CCAGCACGCTCAGGCCTTGCA 
     
*HIV-1-specific sequence targeting each region were derived from primers used in Simen 
et al. [346]. †Primers used for cDNA sequence contained a PvuII recognition site (bold), a  
four-nucleotide sample barcode linked to each individual patient (B), a random 8-
nucleotide Primer ID sequence (N), and 4 known nucleotides to facilitate alignment 
(underlined). 
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APPENDIX 4.1     ERROR RATES ESTIMATED FROM DEEP SEQUENCING CONTROLS 

 
Raw sequence analysis Primer ID consensus sequence analysis 

Sequences Errors Nt* Rate† (95% CI) Sequences Errors Nt* Rate† (95% CI) 

454 Junior           
 3,000 29,055 65,765 9,210,435 71 (71-72) 80 10 25,360 3.9 (1.9-7.3) 
 10,000 26,561 60,289 8,419,837 72 (71-72) 186 25 58,962 4.2 (2.7-6.3) 
 30,000 25,808 57,310 8,181,136 70 (69-71) 664 47 210,488 2.2 (1.6-3.0) 
 100,000 30,684 68,960 9,726,828 71 (70-71) 1,863 146 590,571 2.5 (2.1-2.9) 
 Total‡ 112,108 252,324 35,538,236 71 (70-72) 2,893 228 885,381 2.6 (2.2-3.2) 
MiSeq           
 3,000, F 33,305 20,489 7,360,405 28 (27-28) 79 10 17,459 5.7 (2.7-11) 
 3,000, R 33,305 5,491 6,094,815 9.0 (8.8-9.3) 79 18 14,457 12 (7.4-20) 
 10,000, F 32,186 22,711 7,113,106 32 (32-32) 168 2 37,128 0.54 (0.0065-1.9) 
 10,000, R 32,186 4,274 5,890,038 7.3 (7.0-7.5) 168 9 30,744 2.9 (1.3-5.6) 
 30,000, F 28,318 23,162 6,258,278 37 (37-37) 656 6 144,976 0.41 (0.15-0.90) 
 30,000, R 28,318 3,635 5,182,194 7.0 (6.8-7.2) 656 30 120,048 2.5 (1.7-3.6) 
 100,000, F 30,013 103,490 6,632,873 56 (55-57) 1,807 8 399,347 0.20 (0.0086-0.40) 
 100,000, R 30,013 17,493 5,492,379 7.5 (7.2-7.7) 1,807 47 330,681 1.4 (1.0-1.9) 
 Total‡ 123,822 120,983 50,024,088 24 (18-32) 2,710 130 1,094,840 1.2 (0.59-2.4) 
*For the 454 Junior platform, the read length was 317 nucleotides (nt) spanning HIV-1 reverse transcriptase (RT) codons 34-139 
(HXB2 nt 2648-2964). For the MiSeq platform, read lengths were 221 nt spanning HIV-1 RT codons 34-97 in the forward (F) 
direction (HXB2 nt 2648-2840), and 183 nt spanning codons 78-139 in the reverse (R) direction (HXB2 nt 2782-2964). †Rates are 
expressed as errors per 10,000 nt. ‡Standard errors for total error rates were calculated across all input DNA copy number 
dilutions using clustered sandwich estimators [351]

 
. 
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APPENDIX 5.1     ADJUSTED HAZARD RATIOS USING STRICTER 

INTERPRETATION OF DEEP SEQUENCING DATA  

Resistance to early therapy* 
Adjusted estimates 

n VF p-m HR† 95% CI CLR P-value 

Predicted resistance        

 
<3 inactive RTI, Bulk or 
UDS 11 4 35 1.2 0.43-3.5 8.1 0.7 

 ≥3 active RTI 170 40 681     
Predicted resistance        

 
<3 inactive RTI, Bulk & 
UDS 3 2 14 2.7 0.61-12 19 0.4 

 <3 inactive RTI, UDS only 8 2 21 0.77 0.18-3.3 18  
 ≥3 active RTI 170 40 681 1.0    
% Viral population, UDS        
 ≥20% resistant 6 3 22 2.1 0.63-7.4 12 0.4 
 <20% resistant 5 1 13 0.51 0.067-3.9 58  
 None 171 41 697 1.0    
Copies resistant virus, UDS        
 ≥2,000 co/mL 9 3 22 1.2 0.35-3.8 11 0.8 
 <2,000 co/mL 173 42 710 1.0    
Copies resistant virus, UDS        
 ≥10,000 co/mL 6 3 22 2.2 0.63.-7.4 12 0.2 
 <10,000 co/mL 176 42 710 1.0    
VF=virologic failure; p-m=person-months; CLR=confidence interval ratio; RTI=reverse 
transcriptase inhibitor; UDS=ultra deep sequencing; MSM=men who have sex with men. 
*For deep sequencing, resistance mutations were considered genuine if they occurred >1 
time within a patient sample. The number of active RTI per regimen was predicted using 
the Stanford HIV drug resistance database to interpret to interpret resistance mutations 
detected by bulk PCR sequence analysis and/or UDS [171]. †HR and 95% CI were adjusted 
for the following: (1) time-varying MSM and white race; (2) gender; and (3) age at therapy 
initiation modeled using restricted cubic splines with knots at 25

th
, 50

th
, and 75

th
 

percentiles. 
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