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ABSTRACT 

Karen Jennifer Bulaklak: Uncovering the role of microRNA-206 in Duchenne muscular 
dystrophy 

(Under the direction of Xiao Xiao) 

 

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder for 

which there is no cure. It is caused by a defect in the dystrophin gene, which encodes 

an important structural and regulatory protein at the muscle membrane. In DMD, the 

absence of dystrophin protein renders the muscle fragile and susceptible to damage. 

Patients gradually lose muscle mass and die prematurely from cardiac or respiratory 

complications. Current treatments are palliative and do not address the underlying 

cause. 

Gene therapies that replace or correct mutated genes have shown promise for 

DMD. Recombinant adeno-associated viruses (rAAVs) are popular gene delivery 

vehicles because of their non-pathogenic nature and ability to establish long-term and 

efficient gene transfer. Still, restoring dystrophin is challenging and cannot completely 

alleviate motor deficits. While DMD is caused by a single gene defect, many secondary 

disease mechanisms are involved, such as ischemia and fibrosis. Thus, a strategy 

addressing multiple pathological mechanisms may be beneficial. 

MicroRNAs (miRs) are small, regulatory RNA molecules that inhibit target gene 

expression. A skeletal muscle-restricted microRNA, miR-206, is highly upregulated in 

dystrophic muscle. Although its role in DMD is unclear, several miR-206 targets have 



 iv 

shown benefit for DMD, including vascular endothelial growth factor A (VEGFA) and 

utrophin. Counteracting miR-206 thus presents a viable treatment for DMD.  

The goal of this study was to determine if downregulation of miR-206 would 

increase therapeutic gene expression, inhibiting secondary disease mechanisms and 

improving dystrophic symptoms. I demonstrated that a rAAV carrying antisense 

sequences against miR-206, AAV-anti-miR-206, can ameliorate motor deficits in 

dystrophic mdx mice. To understand its therapeutic mechanism, I focused on two 

prominent disease pathways. 

Functional ischemia is a major contributor to the dystrophic phenotype and 

exacerbates muscle damage. Decreasing miR-206 appears to increase proangiogenic 

VEGFA expression, improving vascularization in mdx muscle. Also, overexpression of 

utrophin, a dystrophin paralog, can improve membrane stability and impede DMD 

progression. I observed increased utrophin in mdx muscle with miR-206 reduction, 

along with improved pathology, reduced fibrosis and delayed disease progression. 

Altogether, this study characterizes a novel therapeutic strategy for DMD and 

sheds light on a contributing factor in secondary pathology.  
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CHAPTER 1: INTRODUCTION 

 

I. Muscular dystrophy 

 The muscular dystrophies (MDs) are a heterogenous group of rare genetic 

diseases characterized by progressive skeletal muscle degeneration and weakness. 

The MDs vary greatly in age of disease onset, severity, inheritance pattern, as well as 

muscle groups affected (Dalkilic and Kunkel 2003, Wallace and McNally 2009). Over 30 

types of muscular dystrophy have been identified to date, which are classified into 

several major groups according to predominant distribution of symptoms (summarized 

in Table 1). These include: Duchenne and Becker MD, Emery-Dreifuss MD, congenital 

MD, limb girdle MD, facioscapulohumeral MD, distal MD and oculopharyngeal MD 

(Emery 2002). Despite sharing similar patterns of muscle weakness, MDs within each 

group can vary drastically in both clinical presentation and genetic etiology. For 

example, limb girdle muscular dystrophy can be further subdivided into 15 unique 

diseases (Guglieri, Straub et al. 2008). While the symptoms and causative genes for 

many MDs are known, current treatments are palliative and cannot prevent further 

muscle deterioration (Emery 2002).  

Muscular dystrophies have been linked to mutations in 29 distinct genetic loci 

(Dalkilic and Kunkel 2003, Wallace and McNally 2009). These mutations lead to the loss 

of function in genes encoding components of individual muscle cells, or myofibers, such 

as the membrane (sarcolemma), cytoskeleton, extracellular matrix and nuclear 
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membrane. Defects in gene products involved in muscle membrane repair, such as 

dysferlin, have also been found (Cohn 2000, Dalkilic and Kunkel 2003, Wallace and 

McNally 2009). The majority of these genes encode constituents of the dystrophin-

associated protein complex (DAPC), which spans across the sarcolemma and serves 

as a critical linkage between the extracellular matrix (ECM) and cytoskeletal actin 

fllaments (F-actin) that mediate movement (Figure 1). The DAPC provides mechanical 

stability to the sarcolemma by anchoring the cytoskeleton to the ECM as well as 

transmitting contractile force to the basement membrane to minimize stress on the lipid 

bilayer (Campbell and Stull 2003, Wallace and McNally 2009). Several proteins also 

participate in signaling cascades important for muscle development and maintenance 

(Jarmin, Kymalainen et al. 2014). The proteins within the DAPC can be classified into 3 

distinct subcomplexes: the cytoskeletal proteins (dystrophin, syntrophins, α-

dystrobrevin), sarcolemmal proteins (dystroglycan α and β subunits) and the 

sarcoglycans (α, β, γ and δ subunits) and sarcospan (Cohn 2000). The absence of any 

of these components renders the membrane fragile and susceptible to contraction-

induced damage, eventually leading to muscle degeneration (Wallace and McNally 

2009). 

II. Molecular pathogenesis of DMD 

Global muscle degeneration begins with myofiber necrosis caused by membrane 

permeability. Reduced membrane integrity results in high serum levels of muscle 

cytoplasm (sarcoplasm)-restricted enzymes, such as creatine kinase (Chargé and 

Rudnicki 2004). Membrane permeability and disorganization of structural components of 

the myofiber allow an unregulated influx of Ca2+ into the sarcoplasm, yet the mechanism 
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by which this occurs is not well-known. This event activates degenerative and well as 

reparative processes. Calcium-dependent proteases, such as calpains, degrade 

myofibrillar and cytoskeletal proteins, such as myosin, α-actinin, talin and vinculin. In 

addition, calpains can proteolytically cleave and thus activate other proteolytic enzymes, 

exacerbating injury. Raised intracellular calcium levels also stimulate dysferlin-mediated 

membrane repair; however, it cannot compensate for advanced muscle damage (Tidball 

1995, Wallace and McNally 2009). The injured myofiber releases factors that activate 

and recruit resident and circulating inflammatory cells, predominantly neutrophils and 

macrophages. Following initial neutrophil infiltration (~1 to 6 hours post-injury), 

macrophages become more abundant (~48 hours later). These cells play complex roles 

in both promoting damage by releasing cytolytic factors and recruiting myogenic cells to 

initiate muscle repair (Chargé and Rudnicki 2004, Tidball 2005). 

Following injury, myofibers release mitogens, such as hepatocyte growth factor 

(HGF), which activate muscle stem cells called satellite cells. Satellite cells are normally 

quiescent and reside in the basement membrane of the muscle. Once activated, 

satellite cells proliferate and are chemotactically drawn to the site of injury, where they 

produce muscle precursor cells, or myoblasts. Myoblasts then commit to the myogenic 

lineage, which is marked by myf5 and MyoD expression. Proliferating myoblasts 

continue to differentiate and fuse to existing fibers at the site of injury. In muscular 

dystrophy, normal regeneration may be impeded by defective muscle precursors, 

improper fusion or an unfavorable microenvironment (Wozniak, Kong et al. 2005, 

Wallace and McNally 2009). “Replicative aging,” which is defined as the premature 

senescence of muscle precursors, may also prevent regeneration due to telomere 
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shortening from constant proliferation (Wozniak, Kong et al. 2005, Wallace and McNally 

2009). 

In addition to muscle precursors, resident fibroblasts are stimulated in response 

to injury. Activated fibroblasts synthesize growth factors and extracellular matrix (ECM) 

components, including fibronectin, collagen I and III and proteoglycan, in order to 

promote cellular proliferation and provide a scaffold for infiltrating cells. Although 

fibroblast activity assists in proper regeneration in normal muscle, continuous damage 

and inflammation that are observed in muscular dystrophy results in permanent fibrotic 

deposition, ultimately replacing functional muscle (Serrano and Muñoz-Cánoves 2010). 

Satellite cells extracted from dystrophic mice have also been shown to overproduce 

collagen I and III (Alexakis, Partridge et al. 2007). Additionally, ECM components can 

sequester factors, such as insulin-like growth factor-1 (IGF-1), which are necessary for 

myoblast proliferation (Wallace and McNally 2009).  

In summary, the dystrophic phenotype is marked by continuous muscle 

degeneration, usually initiated by genetic defects that impair the membrane, and the 

concurrent cellular processes, including inflammation, regeneration and fibrosis, which 

work to repair and exacerbate myofiber damage. 

III. Duchenne muscular dystrophy 

 Originally described in 1851, Duchenne muscular dystrophy (DMD) is the most 

well-studied and common form of muscular dystrophy (~30% of MD cases), which 

affects about 1 in 3,500 male live births (Nonaka 1998). DMD is a sex-linked inherited 

muscle disorder that commonly affects young boys. The disease is characterized by 

progressive and debilitating weakness due to widespread degeneration in proximal 
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muscle (close to torso). Disease onset occurs in early childhood (~2 to 5 years of age) 

and initial symptoms include difficulties with walking, running and climbing stairs 

(Willmann, Possekel et al. 2009). About 20% of DMD patients also have some degree 

of mental impairment. Patients usually lose the ability to walk (non-ambulatory) in their 

early teens and cardiac and respiratory muscle failure are often observed in their late 

teens or early 20s. Presently available treatments, such as corticosteroid therapy, 

assisted ventilation and tracheostomy, have prolonged the lifespan of DMD patients. 

However, most eventually succumb to premature death in their 30s or 40s from 

pneumonia coupled with respiratory or cardiac insufficiency (Moser 1984, Emery 2002, 

Khurana and Davies 2003, Jarmin, Kymalainen et al. 2014). Becker muscular dystrophy 

(BMD) is a milder form of DMD that displays similar muscle distribution, but exhibits less 

severe symptoms and a slower rate of progression. Disease onset occurs later in life 

(~12 years of age) and patients survive well into their 40s and 50s (Blake, Weir et al. 

2002, Emery 2002).  

Duchenne and Becker muscular dystrophy are caused by mutations of the 

dystrophin gene, which encodes the 427 kDa dystrophin protein. In DMD, dystrophin is 

completely absent or greatly reduced in skeletal and cardiac muscle, while a truncated 

and partially functional dystrophin is present in BMD (Cohn 2000). Dystrophin was the 

first protein linked to muscular dystrophy pathogenesis and the recognition of its key 

role in muscle membrane integrity led to elucidation of other dystrophin-associated 

protein complex components. The full-length dystrophin protein can be organized into 

four major regions based on protein binding and sequence homology: the NH2 terminal 

domain, central rod domain, cysteine-rich domain and the COOH terminal domain. At its 
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NH2 terminus, dystrophin binds to cytoskeletal F-actin. The central rod domain contains 

24 spectrin-like repeats interspaced by four proline-rich hinge regions that confer 

flexibility to the protein. Immediately following the central rod domain is the WW domain, 

which interacts with the dystroglycan and sarcoglycan DAPC subcomplex through 

binding β-dystroglycan. The cysteine-rich region is thought to bind intracellular cations 

(Ca2+ and Zn2+) as well as calmodulin, a calcium-binding messenger protein that 

participates in calcium-dependent signal transduction. At its COOH terminus, dystrophin 

interacts with the cytoplasmic subcomplex of the DAPC by binding syntrophins and α-

dystrobrevin (Blake, Weir et al. 2002). Due to its close interactions with these 

subcomplexes, the presence of dystrophin is essential for assembly of the entire DAPC. 

In muscle biopsies from dystrophic humans and mice, sarcolemmal localization of 

syntrophin β1, α-sarcoglycan, δ-sarcoglycan, α-dystroglycan and β-dystroglycan were 

dramatically reduced. Genetic defects in other sarcolemmal proteins, as in the case of 

certain limb girdle MDs and congenital MDs, did not affect normal distribution of other 

DAPC constituents (Ohlendieck and Campbell 1991, Ohlendieck, Matsumura et al. 

1993). The loss of dystrophin also results in displacement of neuronal nitric oxide 

synthase (nNOS), which participates in signal transduction, at the sarcolemma 

(Wehling, Spencer et al. 2001, Kobayashi, Rader et al. 2008). Thus, the widespread 

and devastating muscle degeneration associated with DMD can be attributed to 

mutation of a single gene. 

As previously stated, Duchenne muscular dystrophy is a recessive X-linked 

disorder, predominantly affecting males. The dystrophin gene can be mapped to the 

p21 locus on the X chromosome (Xp21). The gene is 2.5 Mbp in length and contains 79 
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exons, encoding a 14 kb transcript. Most mutations found in DMD patients are gross 

intragenic deletions of the dystrophin gene (~65% of cases). These deletions commonly 

occur in two “hotspots” that encompass exons 45 through 53 and exons 2 through 20. 

These regions encode part of the rod domain and actin-binding site along with part of 

the rod domain, respectively. About one-third of cases are due to small deletions or 

point mutations that result in non-sense or frame shift mutations, introducing a 

premature stop codon. The remaining cases of DMD result from duplications (1 to 5%), 

or intronic deletions (Blake, Weir et al. 2002, Muntoni, Torelli et al. 2003). No direct 

correlation between the size of the deletion and disease severity has been found. For 

example, missense mutations in the NH2 terminal or cysteine-rich domain resulted in 

severe DMD phenotypes, while deletion of a large portion of the central rod domain 

(~46% of the dystrophin coding sequence) resulted in a mild case of BMD. As long as 

the normal open reading frame (ORF) is maintained, mutations in the dystrophin gene 

can be tolerated and in the case of BMD, produce a shorter, yet functional, protein. 

IV. Animal models of DMD 

Animal models of DMD have been used extensively to better understand disease 

pathology and develop new therapies. The most commonly used model is the 

dystrophin-deficient mdx mouse. The mdx mouse was first discovered in 1981 as a 

spontaneous mutant from a colony of C57BL/10 mice. These mice have a point 

mutation in exon 23 of the dystrophin gene that introduces a premature stop codon, 

which is found in about one-third of DMD patients. Unlike DMD patients who experience 

continuous muscle degeneration, mdx muscle pathology occurs in waves. An initial 

crisis of acute degeneration and regeneration is observed at 2 to 4 weeks, which is 
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marked by myofiber necrosis, centralized nuclei (actively regenerating fibers), variable 

myofiber sizes and elevated serum CK levels. By 8 weeks, muscle pathology returns to 

a chronic low level and fibrosis is not prominent in the hindlimb (Nonaka 1998, Grounds, 

Radley et al. 2008, Willmann, Possekel et al. 2009). In contrast, dystrophic pathology in 

the mdx diaphragm is severe and resembles the progressive degeneration, fibrosis and 

functional impairment found in DMD. By 6 months, a large number of diaphragm 

myofibers are necrotic and vary greatly in size. Also, the amount of connective tissue 

found in the mdx diaphragm is about 7 times greater than wild-type muscle and 10 

times greater than the mdx hindlimb (Stedman, Sweeney et al. 1991). Overall, motor 

function deficits found in mdx mice are not as pronounced in those found in humans. 

Reduction in relative forelimb strength by ~50% has been observed at 4 months of age. 

Forced exercise regimes involving eccentric contraction, such as wheel running or 

treadmill running, have been utilized to aggravate dystrophic symptoms for better 

comparison of DMD treatments (Grounds, Radley et al. 2008). Finally, no respiratory or 

cardiac deficiencies are observed until later in life (6 and 16 months, respectively) and 

lifespan is only slightly shorter than wild-type mice (Willmann, Possekel et al. 2009).  

Because of the milder phenotype of mdx mice, dystrophic murine models based 

on mdx have been generated by chemical and genetic manipulation informed by our 

understanding of dystrophin mutations present in DMD. For example, mdx52 mice were 

created by disruption of exon 52 and have large deletions in the dystrophin gene, yet 

are histologically similar to mdx mice. Double knockout models have also been created 

to recapitulate muscle membrane fragility and exacerbate mdx pathology (Willmann, 

Possekel et al. 2009). Dystrophin/α-dystrobrevin (mdx; adbn-/-) and dystrophin/α7 
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integrin (mdx; α7 integrin-/-) are both examples of mdx mice lacking important structural 

membrane proteins. Another commonly used model is the dystrophin/utrophin double 

knockout (mdx; utrophin-/-), which additionally lacks utrophin, an autosomal dystrophin 

paralog (Deconinck, Rafael et al. 1997). Compared to mdx, double knockout mice are 

extremely weak and skeletal and cardiac muscle display extensive necrosis and 

fibrosis. In addition, growth is stunted and spinal curvature (kyphosis) is observed. 

These mice also have a significantly lower body mass and dramatically reduced lifespan 

of 4 to 20 weeks (Deconinck, Rafael et al. 1997, Willmann, Possekel et al. 2009). 

Dystrophin mutations have been identified in many dog breeds, including 

Rottweilers, Pembroke Welsh corgis, Labrador retrievers and most notably golden 

retrievers (Kornegay, Bogan Jr Fau - Bogan et al. , Nonaka 1998, Willmann, Possekel 

et al. 2009). The dystrophin-deficient golden retriever model (GRMD) is the most 

studied canine model. GRMD dogs possess a point mutation at the 3’ splice site of 

intron 6, resulting in deletion of exon 7 and a frameshift in exon 8 (Nonaka 1998, 

Willmann, Possekel et al. 2009). Skeletal muscle lesions and cardiac pathology are 

more severe, which bears resemblance to DMD patients. In addition, GRMD dogs 

exhibit decreased respiratory capacity and motor function deficits, such as an 

uncoordinated, stiff gait and overall weakness. Death is usually caused by heart failure. 

Because of their similarities to human pathology, GRMD dogs have been extremely 

useful for evaluating potential therapies for muscular dystrophy (Khurana and Davies 

2003, Willmann, Possekel et al. 2009). 
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V. Gene therapies for DMD 

 Gene therapy involves the use of nucleic acids (DNA or RNA-based) to improve 

cellular function. Gene-based strategies have successfully treated a plethora of 

diseases, including spinal muscular atrophy, hereditary blindness, hemophilia and 

metabolic enzyme deficiencies (Lu, Choi et al. 2006, Bainbridge, Smith et al. 2008, 

Burnett and Hooper 2009, Nathwani, Tuddenham et al. 2011, Bainbridge, Mehat et al. 

2015, Chiriboga, Swoboda et al. 2016). Duchenne muscular dystrophy has been a 

popular focus for gene therapies due to a dearth of effective therapies and single gene 

defect. Multiple strategies targeted at the dystrophin gene have been employed: gene 

replacement, exon skipping and direct genome editing.  

Gene replacement involves administration of a DNA sequence for the missing or 

defective protein. Viral vectors have been extremely useful for delivering the dystrophin 

sequence due to their prolonged transgene expression. Adenovirus-mediated delivery 

to the GRMD model resulted in moderate gene expression; however, a significant 

humoral and cellular immune response diminished dystrophin expression by 2 months 

post-treatment (Howell, Lochmuller et al. 1998). On the other hand, gene delivery 

attempts using recombinant adeno-associated viruses (rAAVs) were much more 

successful. To account for the small packaging size of AAVs (<5 kb), truncated 

dystrophin constructs (“mini-dysrophin” or “micro-dystrophin”) were generated to include 

essential regions of the dystrophin protein (Wang, Li et al. 2000, Fabb, Wells et al. 

2002, Sakamoto, Yuasa et al. 2002, Fairclough, Wood et al. 2013). In a notable 

example, mini-dystrophin constructs encoding the NH2 terminal domain, cysteine-rich 

domain, central rod repeats (repeats 1 to 2 or 3 and 22 to 24) and variable hinge 



 11 

regions were created (Wang, Li et al. 2000). These mini-dystrophin transgenes were 

packaged into the AAV2 capsid and injected intramuscularly into neonatal and adult 

mdx mice. Dystrophin and DAPC components at the sarcolemma were completely 

restored. As a result, dystrophic pathology was ameliorated, which was supported by 

normal myofiber morphology, increased membrane integrity, a reduction in centralized 

nuclei, decreased immune cell infiltration and absence of fibrosis. Greater 

improvements were observed with earlier intervention, but transgene expression was 

persistent at 6 months, regardless of age at treatment. A subsequent study reported 

that muscle from treated mdx mice showed increased contractile force, or the force 

generated by muscle (Watchko 2004).  

In a following study performed in GRMD dogs, a mini-dystrophin construct was 

packaged into the AAV9 capid, which exhibits high transduction in striated muscle, and 

administered intravenously (Kornegay, Li et al. 2010). Dystrophin was present in nearly 

100% of skeletal muscle and muscle from treated dogs largely mirrored murine 

histological findings. However, an innate immune response was detected. Coupled with 

transient immunosuppression, overall transgene expression was not affected and could 

be detected up to 2 years post-treatment. Studies using AAV6 to deliver a micro-

dystrophin transgene to GRMD dogs have reported similar results, noting an immune 

response as well (Wang, Storb et al. 2012). Still, the immune responses reported did 

not adversely affect dystrophic pathology nor abrogate overall therapeutic value of 

these treatments. This response ultimately may be attributed to disease-associated 

inflammation and an animal model-specific reaction (ex. canine neutralizing antibodies). 

To this end, a Phase I clinical trial evaluating AAV-delivered mini-dystrophin found that 
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the humoral immune response could be minimized by AAV capsid modification (Bowles, 

McPhee et al. 2012). Further investigation has helped to clarify the contribution of the 

AAV vector in these responses and possible areas for improvement, which will be 

discussed in a later section (see IV. Adeno-associated viruses).  

Exon skipping is another well-studied strategy that involves administration of 

antisense oligonucleotides (AONs), which hybridize to defective dystrophin precursor 

mRNA (premRNA) at specific splicing sites. Bound AONs would prevent splicing 

machinery from accessing these sites, effectively skipping certain exons to restore a 

normal open reading frame. The end product would be a truncated dystrophin protein to 

induce a milder phenotype as in BMD. Theoretically, most deletion, small and 

duplication mutations are amenable to skipping of one or two exons (79%, 91% and 

73%, respectively) (Aartsma and Rus 2009). Due to the relatively short circulation time 

of AONs, chemical modifications have been made to increase oligonucleotide stability. 

Most preclinical and clinical phase studies have used 2’-O-methyl oligoribonucleotide 

and morpholino-based AONs (Lu, Mann et al. 2003, Aartsma and Rus 2009, Clement, 

Knop et al. 2009, Yokota, Lu et al. 2009, Cirak, Arechavala-Gomeza et al. 2011). In one 

particular study, adult and neonatal mdx mice were injected with morpholino-based 

AONs to skip exon 23 (Fletcher 2006). Sarcolemmal dystrophin expression was 

observed in 36% of fibers after intramuscular injection into the tibialis anterior muscle. 

Localized improvements were observed, with less centrally nucleated fibers and 

reduced mononuclear infiltration adjacent to the site of transgene expression. In a study 

with dystrophic dogs, a cocktail of morpholino AONs targeting exons 6 and 8 splice sites 

was evaluated (Yokota, Lu et al. 2009). Widespread dystrophin expression was 
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observed, which was accompanied by improvements in dystrophic pathology and 

stabilization of clinical symptoms.  

Following promising preclinical results, several proof-of-concept clinical trials 

have been conducted in DMD boys (Kinali, Arechavala-Gomeza et al. 2009, Bowles, 

McPhee et al. 2012, Fairclough, Wood et al. 2013). A Phase I/II trial utilized a 

morpholino-based AON treatment targeted at exon 51, called Eteplirsen, which would 

be applicable to ~15% of patients. After treatment, patients expressed up to 32% of 

normal dystrophin levels. Results were dose-dependent and variable between patients, 

with some boys showing no changes in protein expression. In 2016, the FDA granted 

fast-track approval for Eteplirsen, which is contingent on evidence of functional 

improvements with treatment (Stein 2016). Nonetheless, the exon-skipping strategy 

faces major hurdles. AONs must be personalized for each mutation and each 

formulation would be considered an individual therapy subject to FDA approval. 

Oligonucleotides also suffer from poor uptake, which has been remedied by viral 

mediated delivery of exon-skipping sequences (Foster, Popplewell et al. 2012). Finally, 

the long-term effects associated with repeated oligonucleotide infusion are still unknown 

(Fairclough, Wood et al. 2013, Vila, Klimek et al. 2015). The recent approval of 

Nusinersen, an exon-skipping drug for spinal muscular atrophy, has strengthened hope 

in the field and may help to inform studies for future AON-based therapies for DMD 

(Dolgin 2017). 

Genome editing has garnered a great deal of attention due to the development of 

new tools that increase specificity of gene correction. Adapted from prokaryotes, the 

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system has 
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been used by several groups to permanently excise defective dystrophin exons in the 

host genome. This approach is similar to exon skipping in that a shorter dystrophin 

protein is produced. The genome editing machinery consists of the Cas9 endonuclease, 

which cleaves the genome, and a guide RNA (gRNA) that directs Cas9 to a desired 

location. In one study, these components were delivered in separate AAV vectors to 

adult and neonatal mdx mice, which restored dystrophin expression in ~67% of 

myofibers. As a result, nNOS activity was restored and muscle function significantly 

improved (Nelson, Hakim et al. 2016). Another group showed that CRISPR/Cas9 could 

be used to correct dystrophin in the germ line of mdx mice. In progeny with 81% allele 

correction, dystrophin levels were indistinguishable from wild-type muscle and the 

dystrophic symptoms did not develop. Correction of 17% of alleles also displayed 

dystrophin expression in the majority of fibers and a milder pathology (Long, McAnally 

et al. 2014). Nevertheless, remaining obstacles with this strategy are low rate of 

correction, off-target cutting and a potential immune response to Cas9 (Calos 2016). 

Further study is necessary to find ways to overcome these limitations for treatment of 

DMD patients. 

Vi. Surrogate therapies 

Despite significant success with dystrophin-targeted therapies, remaining 

challenges have pointed to an incomplete understanding of disease pathobiology. After 

micro-dystrophin rescue, mdx mice still experienced fatigue after mild exercise 

(Kobayashi, Rader et al. 2008). Additionally, full restoration of mini-dystrophin 

expression in GRMD dogs failed to combat the progression of cardiomyopathy and joint 

contractures (Kornegay, Li et al. 2010). Several studies have shown that the profound 



 15 

muscle degeneration observed in dystrophic muscle results from the contribution of 

secondary diseases pathways that exacerbate the primary genetic defect (Mendell, 

Engel et al. 1971, Deconinck and Dan 2007, Rosenberg, Puig et al. 2015). These 

findings have fueled investigation into surrogate therapies, which address aspects of 

DMD pathology aside from dystrophin loss. Gene therapies have utilized  “booster 

genes” to ameliorate symptoms in the absence of dystrophin. Expression of booster 

genes targeting functional ischemia, inflammation, structural integrity, membrane 

instability, oxidative stress response and fibrosis have all shown impressive therapeutic 

benefit (Engvall and Wewer 2003). Two well-studied approaches will be discussed: 

improving muscle blood flow and increasing structural integrity.  

Studies have indicated that dystrophic muscle is burdened by functional 

ischemia, or insufficient blood flow (Sander, Chavoshan et al. 2000, Nelson, Rader et al. 

2014). Due to the displacement of nNOS at the sarcolemma, dystrophic muscle 

produces suboptimal levels of nitric oxide (NO), a potent vasodilator, in response to 

movement (Wehling, Spencer et al. 2001, Kobayashi, Rader et al. 2008). Reduced 

perfusion has been observed in DMD patients, which negatively impacted grip force 

(Nelson, Rader et al. 2014). Studies in rodents have also demonstrated that ischemia 

reproduced DMD lesions and was necessary for the development of the dystrophic 

phenotype (Mendell, Engel et al. 1971, Asai, Sahani et al. 2007). In one study, mdx 

mice were treated with rAAVs carrying the gene for vascular endothelial growth factor A 

(VEGFA) to increase capillary density. (Messina, Mazzeo et al. 2007). The VEGF family 

of growth factors serves as critical drivers of vascular formation during embryogenesis 

and post-natal growth. Binding of VEGFA with VEGF receptors is known to promote 
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endothelial cell migration, proliferation and survival, providing a framework for new 

vasculature. VEGFA also stimulates permeability, an effect that is dose-dependent and 

prominent in diseases such as cancer (Yancopoulos, Davis et al. 2000, Jain 2003). 

Localized expression of VEGFA increased capillary density in mdx muscle, particularly 

in regenerating regions, and reduced the number of necrotic fibers. Treatment also 

increased satellite cell activation and significantly improved forelimb strength (Messina, 

Mazzeo et al. 2007). The therapeutic value of increased muscle blood flow has been 

further supported by studies using pharmacological agents to induce vasodilation. 

Administration of phosphodiesterase 5 (PDE5) inhibitor, a potent vasodilator, improved 

cardiac function in mdx mice and also restored normal blood flow in DMD patients after 

exercise (Adamo, Dai et al. 2010, Nelson, Rader et al. 2014). While further investigation 

is necessary, mitigating functional ischemia appears to be a viable strategy for future 

DMD therapies. 

Surrogate therapies have also aimed to increase structural integrity of the 

myofiber aside from dystrophin. One strategy is to increase the expression of utrophin, 

which is an autosomal paralog of dystrophin. Utrophin is found in all tissues and is 

normally localized at the neuromuscular and myotendinous junction of mature muscle. 

Utrophin is similar in size (395 kDa) and primary structure to dystrophin, especially at 

the NH2, WW, cysteine rich and COOH terminal domains (Blake, Weir et al. 2002). Due 

to their structural homology, utrophin and dystrophin are believed to be functionally 

interchangeable, which may explain the milder phenotype of mdx (Deconinck, Rafael et 

al. 1997). While DMD patients also displayed utrophin increases in muscle, these levels 

were not sufficient for compensatory action (Khurana and Davies 2003). 
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Transgenic mdx mice that overexpressed full-length and a truncated utrophin at 

the sarcolemma did not develop any dystrophic symptoms. Furthermore, their muscle 

exhibited close to normal force generation (~80%) that persisted with repeated eccentric 

contractions, suggesting that utrophin and dystrophin are functionally redundant. 

Overexpression of utrophin also protected the myofiber from membrane damage and 

restored calcium homeostasis (Deconinck, Tinsley et al. 1997, Tinsley, Deconinck et al. 

1998). To determine if utrophin-targeted gene therapy would be beneficial, a micro-

utrophin construct was created encoding the NH2, central rod repeats (1 to 3, 22) and 

cysteine-rich domains. The construct was packaged into an AAV6 vector and 

administered to mdx; utrophin-/- mice. Treatment increased utrophin and DAPC 

localization at the sarcolemma, which improved muscle fiber morphology and 

decreased central nucleation. Serum CK levels were also significantly reduced with 

treatment. Motor function deficits were also ameliorated; force generation increased and 

muscle injury from eccentric force was lessened with treatment (Odom, Gregorevic et 

al. 2008). Pharmacological interventions to increase endogenous utrophin levels have 

also been explored. A small molecule drug, SMT C110, increases utrophin transcription 

and provided therapeutic benefit in mdx mice (Tinsley, Fairclough et al. 2011). A clinical 

trial in DMD boys is currently underway (Tinsley, Robinson et al. 2014). 

V. MicroRNA-206 

 Dysregulated microRNA profiles have been associated with a number of 

diseases, including schizophrenia, cardiac hypertrophy and cancer (Soifer, Rossi et al. 

2007). MicroRNAs (miRNAs or miRs) are short (~21-24 bp) RNA molecules that serve 

as important regulators of gene expression. MicroRNA sequences are located in the 
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intronic region of protein encoding genes or in long non-coding RNAs. The majority of 

miRs are transcribed along with their respective protein encoding genes from a common 

promoter by RNA polymerase II (Pol II). Once transcribed, the miRNA hairpin within the 

primary mRNA (pri-mRNA) is recognized and cleaved by the nuclear microprocessor 

complex, composed of the ribonuclease enzyme Drosha and RNA-binding protein 

DGCR8. The resulting pre-miRNA (~60 nt) is recognized by exportin-5 and transported 

into the cytoplasm, where it is cleaved by Dicer into ~22 nt duplexes. One of the duplex 

strands is preferentially incorporated into the RISC complex with the help of cofactors 

such as TAR RNA binding protein (TRBP) and protein activator of the interferon-

induced protein kinase (PACT). RISC will then cleave, degrade or preventing translation 

of hundreds of target transcripts, which is dictated by hybridization of the incorporated 

mature miRNA with complementary sequences in the 3’ untranslated region (UTR) in 

the mRNA (Soifer, Rossi et al. 2007). 

 Four muscle-specific miRNAs, or myomiRs, have been identified: miR-1, miR-

206, miR-133 and miR-208. These myomiRs play important roles in regulating gene 

expression in skeletal and cardiac muscle proliferation, differentiation and function. 

Expression of myomiRs is controlled by myogenic transcription factors (ex. SRF, MEF2 

and MyoD) that direct transcription from gene clusters located on chromosome 20 (miR-

1-1 and miR-133a-2), chromosome 18 (miR-1-2 and miR-133a-1) and chromosome 6 

(miR-206 and miR-133b). Due to their involvement in multiple signaling pathways in 

muscle, strict control of myomiR expression is necessary (Williams, Liu et al. 2009).  

 A shared microRNA signature was discovered in DMD and mdx muscle, 

characterized by significant changes in 11 miRNAs. Levels of myomiRs miR-1 and miR-
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206 were markedly decreased and increased, respectively, in dystrophic muscle 

compared to normal controls (Greco, De Simone et al. 2009). To ascertain whether 

dystrophin rescue normalized miRNA expression, mdx mice and DMD myotubes were 

treated with viral vectors encoding sequences to induce skipping of defective exons. In 

both cases, dystrophin rescue restored wild-type levels of all affected miRNAs, but not 

miR-206. Moreover, deregulation of miRs, such as miR-1 and miR-29, was linked to the 

abnormal oxidative stress response and fibrosis, respectively, typically observed in 

dystrophic muscle (Cacchiarelli, Martone et al. 2010). Thus, the miR-206 upregulation in 

DMD occurs independently of dystrophin loss and its contribution to disease pathology, 

if any, remains unclear. 

Skeletal muscle-restricted miR-206 is highly expressed in regenerating muscle 

and serves as an important mediator of satellite cell differentiation via Pax7 inhibition 

(Chen, Tao et al. 2010). Transgenic miR-206 knockout mice develop normally, yet 

exhibit impaired regeneration in response to muscle damage. MicroRNA-206 gradually 

decreases with continued differentiation, but is relatively one of the most abundant miRs 

in adult skeletal muscle (McCarthy 2008). Compared to normal muscle, miR-206 levels 

are significantly upregulated in the mdx muscle and particularly in the diaphragm, which 

closely mirrors DMD pathology (McCarthy, Esser et al. 2007, Greco, De Simone et al. 

2009). Elevated levels have also been discovered in myotonic dystrophy type I (DMI) 

patients (Gambardella, Rinaldi et al. 2010). Previous attempts have been made to 

elucidate the role of miR-206 in both DMD and amyotrophic lateral sclerosis (ALS) 

(Williams, Valdez et al. 2009, Liu, Williams et al. 2012). In these studies, mdx and ALS 

model mice were crossed with miR-206 knockout mice. Loss of miR-206 disrupted 
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skeletal muscle and neuromuscular synapse regeneration in each model, respectively. 

MicroRNA-206(-/-)/mdx mice displayed a drastically worsened phenotype, suggesting a 

reparative role for miR-206. Since proper satellite cell functioning is necessary for 

adequate muscle regeneration in response to muscle damage, the additional loss of 

miR-206 may compound existing deficiencies in dystrophic muscle precursors. Still, 

these studies have only focused on myoblasts and do not address elevated miR-206 

levels in mature muscle. Transgenic knockout also confound the possible contribution of 

other cell types present in the muscle. While miR-206 levels have been shown to be 

particularly high in the diaphragm compared to other muscle groups, the level myogenic 

proliferation in the diaphragm does not differ significantly from the hindlimb muscles 

(Anderson, Garrett et al. 1998, McCarthy, Esser et al. 2007). The notion that 

regenerating muscle is solely responsible for observed miR-206 levels is thus subject to 

question. Altogether, these findings denote a limited understanding of the function of 

miR-206 in dystrophic muscle overall, which warrants further study. 

Interestingly, there is overlap between confirmed miR-206 targets and genes 

used for surrogate therapies. For example, studies in zebrafish have shown that miR-

206 negatively regulates VEGFA and angiogenesis. Knockdown of miR-206 increased 

VEGFA expression and subsequently increased endothelial cell proliferation (Stahlhut, 

Suarez et al. 2012, Lin, Lee et al. 2013). Utrophin is another target of miR-206, which 

contains a miR-206 binding sequence that is shared between mice, humans and dogs. 

Induction of microRNA-206 expression in vitro has been shown to inhibit utrophin via its 

3’ UTR (Rosenberg, Georges et al. 2006). While elevated miR-206 levels are necessary 

for regulating differentiation-associated gene expression in muscle precursor cells, its 
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abnormal expression in dystrophic muscle may be detrimental by repressing proper 

responses to muscle damage. Altogether, miR-206 may be involved in downregulating 

beneficial gene expression, which points to a possible pathological role in DMD. 

VI. Adeno-associated virus 

Found ubiquitously in nature, the wild-type AAV is a small (~20 nm), non-

enveloped Parvovirus with a DNA genome of about 4.8 kb. AAVs are naturally 

replication-defective, requiring helper virus functions for productive infection. Unlike 

other viruses commonly used for gene transfer, such as adenovirus and retroviruses, 

AAVs are non-pathogenic and have not been associated with any known disease. 

Recombinant adeno-associated viruses have been used extensively in basic research 

and therapeutics for their tissue tropism, favorable safety profile and ability to stably 

transduce tissue. These attributes have collectively made AAV-based gene therapies 

attractive for muscle diseases, such as DMD (Mezzina and Merten 2011). 

The recombinant AAV genome is composed of an expression cassette 

containing a promoter, gene of interest (GOI) and poly-A signal, which is flanked on 

either side by inverted terminal repeats (ITRs). The ITRs are the only remnants of the 

wild-type AAV genome and are essential for proper orientation and packaging into the 

capsid (Mezzina and Merten 2011). To restrict expression to muscle, muscle-specific 

transcriptional regulatory elements have been utilized, such as the muscle creatine 

kinase (MCK) promoter and α-myosin heavy chain enhancer (Salva, Himeda et al. 

2007). Gene therapies have also taken advantage of different AAV capsid variants, or 

serotypes, which display distinct receptor binding, tissue tropism and antigenicity. 

Twelve naturally-occurring serotypes, AAV1 through AAV12, have been isolated to date 
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(Asokan, Schaffer et al. 2012). AAV2 was the first identified serotype and has been 

used most frequently in muscular dystrophy trials. However, AAV1, AAV6, AAV7, AAV8 

and AAV9 all display naturally high tropism in post-mitotic muscle, exceeding that of 

AAV2. These serotypes have demonstrated exceptional transduction in muscle (>90%) 

after intravenous delivery, which would ensure efficient delivery to afflicted tissue (Qiao, 

Koo et al. 2011).  

While rAAV gene therapies for DMD have many advantages, they still face 

vector- and disease-specific hurdles. AAV vectors have a limited packaging capacity of 

~5 kb, which cannot accommodate the full-length dystrophin gene. Additionally, as 

many as 72% of the population has pre-existing neutralizing antibodies to the AAV2 

serotype, which may obstruct AAV delivery to target tissue (Boutin , Calcedo, 

Vandenberghe et al. 2009). Employing an alternative serotype or mutant capsids are 

two strategies to avoid the Nab response, and can also work to reduce off-target effects 

and increase genetic payload (Kotterman and Schaffer 2014). Although the use of a 

mutant capsid minimized immunogenicity in a trial with DMD patients, there is also 

evidence of dystrophin-specific T cells present in some DMD patients (Mendell , 

Campbell  et al. 2010, Bowles, McPhee et al. 2012). Thus, a greater understanding of 

DMD pathology and alternative strategies for treatment is necessary. 

VII. Hypothesis & Specific Aims 

 As outlined in the previous sections, the lack of effective treatments for 

Duchenne muscular dystrophy warrants investigation into responsible pathological 

mechanisms and alternative therapeutic strategies. Challenges with dystrophin-targeted 

therapies have highlighted the role of secondary disease mechanisms, which 
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exacerbate dystrophic pathology. Surrogate therapies that address these mechanisms 

have significantly improved dystrophic symptoms. Studies have shown that microRNAs 

are dysregulated in dystrophic muscle and elevated microRNA-206 levels have been 

observed in muscle from both mdx mice and DMD patients compared to normal 

controls. However, the contribution of miR-206 in mature muscle to pathology is 

unknown. Overexpression of verified targets, VEGFA and utrophin, has demonstrated 

therapeutic benefit in animal models of DMD, pointing to pathological role for miR-206. 

Thus, I hypothesize that (1) miR-206 inhibits expression of therapeutic genes VEGFA 

and utrophin and (2) downregulation of miR-206 via an AAV9 vector ameliorates 

associated secondary disease pathways to improve dystrophic pathology. Focusing on 

two well-studied disease mechanisms, I will test these hypotheses in the following Aims:  

(1) Deternine the role of miR-206 on muscle vascularization in mdx mice via VEGFA. 

(2) Examine the role of miR-206 on muscle pathology in mdx mice via utrophin. 
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Table 1. Classification of the muscular dystrophies. Adapted from (Khurana and 

Davies 2003). 
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Figure 1.1. Schematic diagram of the dystrophin-associated protein complex (DAPC) at the muscle membrane 

(sarcolemma). Dystrophin (in yellow) forms a linkage between inner actin filaments and extracellular matrix through its 

association with the transmembrane DAPC. Adapted from (Fairclough, Wood et al. 2013).   
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CHAPTER 2: DOWNREGULATION OF MICRORNA-206 IMPROVES MUSCLE 
VASCULARIZATION IN MDX MICE 

I. Introduction 

Several studies have demonstrated hemodynamic differences in muscle from 

normal patients and those with Duchenne muscular dystrophy (Sander, Chavoshan et 

al. 2000, Nelson, Rader et al. 2014). Dystrophin loss from the muscle membrane results 

in sarcolemmal delocalization of neuronal nitric oxide synthase (nNOS), which produces 

nitric oxide (NO) in response to skeletal muscle contraction. NO induces vasodilation by 

attenuating sympathetic vasoconstriction to allow for adequate blood flow (Grange, 

Isotani et al. 2001). Without proper localization of nNOS, dystrophic muscle suffers from 

functional ischemia, or insufficient blood flow that cannot meet metabolic demands. 

Compared to normal controls, mdx mice and DMD patients display reduced 

compensatory muscle oxygenation after exercise (Sander, Chavoshan et al. 2000, 

Latroche, Matot et al. 2015). Studies have also shown that functional ischemia is 

necessary for muscle necrosis in dystrophin-deficient mice, supporting a “two-hit” 

mechanism in dystrophic pathology (Rando 2001, Asai, Sahani et al. 2007). Therapeutic 

agents that induce vasodilation or increase muscle vascularization significantly 

improved muscle pathology as well as motor function in DMD and mdx mice (Ennen, 

Verma et al. 2013). Therefore, counteracting functional ischemia is a viable strategy for 

alleviating dystrophic symptoms. 

Vascular endothelial growth factor A (VEGFA) is an important mediator in 

angiogenesis, stimulating endothelial cell proliferation, migration and survival 
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(Yancopoulos, Davis et al. 2000). AAV-mediated delivery of VEGFA to the mdx bicep 

significantly increased capillary density in regenerating regions and also reduced 

necrotic regions in muscle. VEGFA overexpression also significantly improved forelimb 

strength and increased muscle regeneration (Messina, Mazzeo et al. 2007). Still, 

VEGFA expression must be closely regulated as excessive levels may cause an 

imbalance of angiogenic signals. While many endothelial cells are recruited after 

administration of large doses of VEGFA, vessels are disorganized and leaky and may 

result in hemangioma formation (Carmeliet 2000). Thus, systemic application of VEGFA 

required to treat all of the muscle poses risks. Increasing endogenous expression of 

VEGFA may be a better alternative to avoid persistent overexpression from additional 

copies of the gene.  

VEGFA is a target of microRNA-206, which is overexpressed in dystrophic 

muscle, yet its function in mature muscle is not well-understood. Studies in zebrafish 

have shown that miR-206 inhibits VEGFA expression and that disruption of miR-206 

expression increased levels of VEGFA, stimulating angiogenesis (Stahlhut, Suarez et 

al. 2012, Lin, Lee et al. 2013). Thus, microRNA-206 may work to prevent endogenous 

VEGFA expression, contributing to functional ischemia in dystrophic muscle.  

In this chapter, I aimed to determine whether miR-206 plays a role in DMD 

pathogenesis by inhibiting VEGFA expression and impeding proper muscle 

vascularization. First, I demonstrated that miR-206 can be effectively downregulated 

with an antisense construct, “anti-miR-206.” The anti-miR-206 construct was packaged 

into the AAV2 capsid to determine specificity in vitro and then into the AAV9 capsid and 

administered to mdx mice to examine therapeutic benefit. Functional improvements 
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were evaluated by rotarod, grip force and treadmill testing. VEGFA levels were assayed 

to determine the effect of treatment on miR-206 target expression. Capillary density was 

measured to determine the angiogenic effect of VEGFA. Finally, vessel permeability 

was investigated to determine the influence of VEGFA expression on endothelial cell 

organization and function. Findings from these studies could help to clarify the role of 

miR-206 and corroborate a new approach for treating DMD.  
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II. Materials and methods 

AAV vector construction and production 
 
 Four tandem repeats of the antisense sequence against miR-206 (5’-

CCACACACUUCCUUACAUUCCA-3’) were previously generated through the UNC 

Nucleic Acids Core Facility. This sequence was cloned into the 3’ untranslated region of 

a full length or truncated GFP coding sequence in the pEMBOL AAV vector plasmid, 

which contains ITRs for efficient viral packaging. The completed construct, “anti-miR-

206,” or the truncated GFP without miR-206 binding sites, “1/2gfp,” were packaged into 

the AAV2 (in vitro analyses) or AAV9 (in vivo studies) capsid via triple-plasmid 

transfection in HEK293 cells. Briefly, 293 cells were propagated in Dulbecco’s modified 

Eagle’s medium (DMEM) in 15 cm plates supplemented with 10% fetal bovine serum 

(FBS) at 37°C in 10% CO2/90% air. When cells reached 90-95% confluency, each plate 

was transfected with 18.7 μg vector plasmid (containing anti-miR-206 sequence), 25 μg 

Adenovirus helper plasmid and 6.25 μg AAV9 packaging plasmid diluted in a solution 

consisting of 2 ml 0.25M CaCl2 and 2 ml cold HBS buffer (50 mM HEPES, 280 mM 

NaCl and 1.5 mM NaH2PO4; pH 7.1). For each virus preparation, 30 to 40 15 cm plates 

were used. Eight to twelve hours later, the medium was replaced with fresh DMEM 

supplemented with 2% FBS. At 60 to 68 hours post-transfection, cells and media were 

collected for AAV purification. Cells were resuspended in suspension buffer I (50mM 

HEPES, 150 mM NaCl, 50 mM NaH2PO4, 2 mM MgCl2, 2.5 mM KCl, pH 8.0) and 

freeze-thawed 3 times. The cell lysate was treated with DNAse (100 units/ml) and 

RNase A (4 units/ml) and incubated at 37°C for 1 hour. Debris was removed by 

centrifugation at 25,000 rpm at 4°C for 25 minutes. PEG-8000 and NaCl solution were 
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added to the clarified medium and incubated at 4°C overnight. For the culture medium, 

PEG-8000 and NaCl were added and incubated at 4°C overnight. The cell lysate and 

medium were centrifuged at 25,000 rpm for 30 minutes and resuspended in fresh 

suspension buffer. The solutions were combined and ultracentrifuged at 31,000 rpm for 

16 hours in a CsCl density gradient. The AAV band was collected and subjected to a 

second round of CsCl density gradient ultracentrifugation at 38,000 rpm for 48 hours. 

The AAV band was collected in 1 ml aliquots and stored at -80°C. 

 AAV titer was quantified by dot blot hybridization. Ten microliters of AAV stock 

was added to 200 μl DMEM and treated with 50 μg/ml Dnase I at 37°C for 1 hour to 

degrade unencapsidated DNA. Then, 0.5 mg/ml proteinase K in 200 μl proteinase K 

buffer (20 mM Tris Cl pH 8.0, 20 mM EDTA pH 8.0, 1% SDS) was added and the 

sample was incubated at 55°C for 1 hour to degrade the capsid. The vector DNA was 

precipitated in 70% ethanol, 135 μmol sodium acetate and glycogen (40 μg) and 

centrifuged at 17,000 x g at 4°C for 10 minutes. The resultant pellet was resuspended in 

alkaline buffer (0.4 M NaOH and 10 mM EDTA pH 8.0) and bound to a hybridization 

transfer membrane (PerkinElmer). A standard of the original vector plasmid was applied 

to the same membrane. A biotin-labeled probe against CMV was hybridized to the 

membrane at 55°C overnight. Bound probe was detected using the North2South 

Chemiluminescent Nucleic Acid Hybridization and Detection Kit (Pierce). AAV titers 

were in the range of 1012 to 1013 vector genomes (vg)/ml. Virus intended for treatment 

were then dialyzed in dialysis buffer (2% mannitol, 6 mM MgCl2 and 1X PBS) for a total 

of 8 hours with a buffer change every 2 hours. 
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In vitro specificity assay 

 MicroRNAs silence their target mRNAs through binding complementary sites 

within the 3’ UTR and recruiting factors that degrade the mRNA or prevent translation. 

We hypothesized that the anti-miR-206 construct serves as a mock mRNA target for 

miR-206. To determine if miR-206 specifically bound and prevented expression of the 

GFP marker upstream of the anti-miR-206 sequence, we performed an in vitro 

specificity assay. CMV-GFP-anti-miR-206, CMV-pre-miR-206 and CMV-pre-miR-124 

sequences were packaged into the AAV2 capsid by the triple transfection method 

described above (AAV vector construction and production). HEK293 cells were 

transduced with AAV2-CMV-GFP-anti-miR-206 (MOI: 106 vg/cell) alone or in 

combination with AAV2-pre-miR-206 (1X MOI: 106 vg/cell or 2X MOI: 2 x 106 vg/cell) or 

AAV2-pre-miR-124 (MOI for 1X: 106 vg/cell). After 48 hours, GFP expression was 

examined using a Nikon Eclipse TE300 microscope (Nikon USA) and a SPOT RT Slider 

camera (Diagnostic Instruments, Inc.). 

Animals 

Breeding pairs of homozygous females and hemizygous males for the mdx 

genotype (C57BL/10ScSn-Dmdmdx/J) were obtained from the Jackson Laboratory (Bar 

Harbor, ME). Male mdx mice were treated with PBS or 1012 vg of AAV9-anti-miR-206 at 

8 weeks of age via tail vein injection. Wild-type C57/B6 mice were also used for 

comparison. Animals were anesthetized with 2.5% avertin (total dose of 250 mg/kg) and 

sacrificed at 1, 3 and 5 months post-treatment. Extracted muscle was snap-frozen in 

liquid nitrogen-cooled isopentane. Extracted muscle was stored at -80°C for future 

analysis. All experiments using mice were approved by the Institutional Animal Care 
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and Use Committee at the University of North Carolina at Chapel Hill and in accordance 

with the National Institute of Health guidelines. 

Motor function testing 

 AAV9-anti-miR-206, AAV9-1/2GFP (control vector) and PBS treated mice were 

subjected to grip force test, rotarod testing and treadmill running to examine motor 

function at baseline, then 1 month after vector administration and repeated every two 

weeks until sacrifice. Forced exercise also increases muscle damage in mdx hindlimb, 

which otherwise shows only mild dystrophic symptoms, for better comparison of 

untreated and treated groups. Grip force test was used to measure the forelimb strength 

of the mice. A grip force meter (Chantillon, model DFIS-2) was used. Mice were held by 

the tail and allowed to grasp the attached bar with their front paws. The mice were then 

pulled back quickly to measure grip force. Rotarod testing was performed on a rotarod 

machine (Med Associates, Inc.) to examine balance, motor coordination and grip 

strength. Mice were placed on the rod and allowed to acclimate for 1 minute. The rod 

was then accelerated from 4 to 40 rpm over 5 minutes. The time to first fall was 

recorded and used for analysis. Treadmill running was performed to test endurance. 

Mice were allowed to acclimate to the treadmill (Harvard Apparatus) at a speed of 5 

meter/min (m/min) for 60 seconds. The speed was increased to 10 m/min for 15 

minutes and then increased by 5 m/min after every 10 minutes. The shock grids at the 

end of each lane were set to 1 mA to encourage mice to run until exhaustion. If a mouse 

failed to run and remained on the grid for 10 seconds, the test was terminated and the 

mouse was removed immediately. The total run time at each speed was recorded to 

calculate total distance for statistical analysis. 
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MicroRNA-206 quantification 

 Total RNA was extracted from diaphragm muscle using the TRIzol reagent 

(Thermo Fisher Scientific) and stored at -80°C until further use. A cDNA template for 

microRNAs was created using the miRNA 1st-Strand cDNA Synthesis Kit (Agilent 

Technologies). The resulting template was diluted 1:5 for quantitative PCR (qPCR). 

Reactions were set up using PowerUp SYBR Green Master Mix (Thermo Fisher 

Scientific) according to the manufacturer’s protocol and run in an Applied Biosystems 

7300 Thermocycler. MicroRNA-206 expression was quantified relative to ubiquitous 

miR-26b. The primers used were as follows: miR-206 (5’-

GGCTGGAATGTAAGGAAGTGTGTGG-3’), endogenous miR-26b (5’-

GGCCGTTCAAGTAATTCAGGATAGGT-3’) and a universal reverse primer provided 

with the cDNA synthesis kit (proprietary sequence). Expression was depicted as fold-

change over control. 

VEGF-A transcript quantification 

 A cDNA template was reverse transcribed from total RNA using the High-

Capacity Reverse Transcription kit (Thermo Fisher Scientific). The resulting template 

was diluted 1:5  for qPCR. Reactions were set up using PowerUp SYBR Green Master 

Mix (Thermo Fisher Scientific) according to the manufacturer’s protocol and run in an 

ABI 7300 Thermocycler. VEGF-A expression was quantified relative to ubiquitous beta-

actin. The primers used were as follows: VEGF-A (forward: 5’-

GGCCTCCGAAACCATGAACTT-3’ and reverse: 5’-TGGGACCACTTGGCATGGTG-3’) 

and beta-actin (forward: 5’-ATCACTATTGGCAACGAGCG-3’ and reverse: 5’-

ACTCATCGTACTCCTGCTT-3’). Expression was depicted as fold-change over control. 
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Western blot 

 Tibialis anterior (TA) muscle was homogenized in cold RIPA buffer (150 MM 

NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris pH 8.0) 

using a tissue homogenizer (Tekmar Ultrasonic Processor model TM130). Protein 

concentration was determined by BCA assay (Thermo Fisher Scientific). For Western 

blotting, 20 μg of protein from each sample was prepared in 6X loading buffer (375 mM 

Tris pH 6.8, 12% SDS, 60% glycerol, 0.6 M DTT, 0.06% bromophenol blue) and heated 

at 95°C for 5 minutes. Proteins were separated by SDS-PAGE and wet transferred onto 

a PVDF membrane using the Bio-Rad Mini-PROTEAN II system. Membranes were 

blocked in 5% milk in 1% TBS-Tween 20 (TBS-T) for 1 hour and incubated with either 

rabbit polyclonal antibody against VEGF-A (Abcam, catalog #ab46154, 1:1000) or rabbit 

polyclonal antibody against GAPDH (Sigma-Aldrich, cat. # G9545, 1:10,000) diluted in 

3% bovine serum albumin (BSA) in 1% TBS-T overnight at 4°C. Membranes were 

washed 3 times for 10 minutes in 1% TBS-T and then incubated with anti-rabbit IgG 

conjugated to horseradish peroxidase (Sigma-Aldrich, A0545, 1:5,000 for VEGF-A and 

1:10,000 for GAPDH) in 5% milk. Blots were developed using the Western Lightening 

Pro chemiluminescence kit (PerkinElmer) and visualized using the FluorChem M 

imaging system (ProteinSimple). 

Vessel quantification 

 Cryosections of diaphragm muscle 10 μm thick were made. At room temperature, 

slides were washed in PBS for 10 minutes then blocked in 10% horse serum for 1 hour. 

The muscle basal lamina was immunostained with a rat anti-laminin α2 antibody 

(Sigma-Aldrich, L0663, 1:500) in 1% horse serum in PBS for 1 hour and washed with 
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0.5% PBS-T 3 times for 5 minutes each. Anti-rat IgG conjugated to Alexa Fluor 488 dye 

(Molecular Probes, #A21470) and a Griffonia simplicifolia I lectin (GSLI) conjugated to 

rhodamine dye (Vector Laboratories, #RL-1102) for staining endothelial cells were 

diluted in 1% horse serum and used to incubate slides for 1 hour. Slides were washed 

with 0.5% PBS-T 3 times for 5 minutes each and mounted with aqueous mounting 

media (Gel/Mount, Biomeda). Slides were visualized using a Zeiss Axiovert 200M 

Confocal Microscope and images were taken using an AxioCam MRm camera. Images 

were processed using AxioVision Rel 4.6 and analyzed using ImageJ software. 

Miles assay 

 Evans blue dye (EBD), an azo dye with high affinity for serum albumin, was used 

for Miles assay to test vessel function/integrity in mice. While normal vessels are 

impermeable to albumin, leaky vessels allow albumin and thus dye to disperse into the 

muscle parenchyma (Radu and Chernoff 2013). A 10 mg/ml solution of EBD was made 

in PBS and 2 mg total was injected in mice via the tail vein. After 30 minutes, mice were 

anesthetized with i.p. injection of 2.5% avertin and cervically dislocated. Muscle 

dissection was performed as quickly as possible to avoid increased vessel permeability 

after death. Each dissection was performed within 15 minutes. Muscle was weighed, 

placed in 500 μl formamide and incubated at 55°C for 24 hours to fully extract dye. A 

standard was created with EBD in formamide was run concurrently with samples in a 96 

well plate. EBD absorbance was measured at 550 nm using the Perkin Elmer Victor2 

1420 Multi-label Counter/Plate-reader. 
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Statistical analysis 

 Graphs were generated and statistical analysis was performed using GraphPad 

5.0 software. Unpaired, two-tailed t-tests with Welch’s correction were performed when 

comparing two groups. One-way ANOVA was performed to determine treatment effect 

for Miles assay experiments. P values <0.05 were considered statistically significant. 
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III. Results 

Anti-miR-206 specifically binds miR-206 

 AAV vector plasmids were generated encoding the “anti-miR-206” sequence 

(Fig. 1A). A CMV promoter drove the expression of either GFP or a truncated GFP gene 

(for in vivo studies, not shown), followed by four tandem repeats of the exact antisense 

sequence against miR-206. Specificity for miR-206 was tested by packaging the anti-

miR-206 construct, the pre-miR-206 sequence and non-specific miR-124 sequence into 

the AAV2 capsid to transduce HEK293 cells (Fig. 1B). In AAV2-GFP-anti-miR-206 

transduced cells (first row), GFP levels were high, which suggests that the construct 

was efficiently packaged and the AAV vector was fully functional. In addition, cells did 

not show any signs of stress, such as contraction or cell death, following AAV 

transduction. Co-transduction with an equal amount of AAV2-pre-miR-206 greatly 

diminished GFP expression (second row), while expression was completely inhibited 

with additional pre-miR-206 (third row). Conversely, co-transduction of AAV2-GFP-anti-

miR-206 and non-specific AAV2-pre-miR-124 (fourth row) had no effect on GFP 

intensity. Thus, miR-206 specifically decreased expression of a GFP gene containing 

anti-miR-206 sequences in its 3’ untranslated region. 

Motor function improvements with anti-miR-206 treatment 

 PBS, AAV9-1/2GFP or AAV9-anti-miR-206 (1012 vg per mouse) were tail vein 

injected into 8 week-old mdx mice. One month following treatment, motor function 

testing was performed every two weeks until sacrifice. Anti-miR-206 treated mice 

demonstrated a significant increase in rotarod run times compared to PBS treated mice 

at 1 month post-treatment (Fig. 2A, untreated mean = 90.95 + 95 sec, sham vector 
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mean = 116.2 + 28.83 sec, treated mean = 150.9 + 18.61 sec, **p = 0.0105). While 

there was no major distinction at 3 months (Fig. 2B, PBS mean = 148.7 + 18.78 sec, 

sham vector mean = 151.3 + 12.16 sec, treated mean = 164.4 + 16.69 sec), anti-miR-

206 treated mice again performed significantly better (201.1 + 25.86 sec) than the 

untreated groups (90.25 + 20.70 sec and 95.40 + 12.24 sec, for PBS and vector control) 

at 5 months post-treatment (Fig. 2C, **p = 0.0044 and **p = 0.0038 for PBS and vector 

control). Over the course of 5 months, rotarod run time in untreated mdx mice was 

stagnant, with only a slight increase at 3 months. On the other hand, miR-206 reduction 

appeared to positively impact run time within the given time span. Grip force testing did 

not reveal any significant differences in strength between the groups until 4 and 5 

months post-treatment (Fig. 2D, 4 month PBS mean = 74.61 + 8.379 g, vector control 

mean = 69.55 + 14.05 g, treated mean = 96.24 + 4.867 g, *p = 0.0372 and *p 0.0277 

between treated and PBS and vector control, respectively. 5 month PBS mean = 79.49 

+ 9.808 g, sham vector mean = 67.63 + 18.875 g, treated mean = 106.9 + 7.345 g, *p = 

0.0376 and *p = 0.0455 between treated and PBS and vector control, respectively). At 3 

months, control mice began to experience a decline in strength, while treated mice 

continued to improve. In contrast, no obvious differences in treadmill running were seen 

between the groups over the course of 5 months (Fig. 2E, 2F, 2G). 

MicroRNA-206 levels in the muscle 

 Since no differences were observed between the PBS and control vector groups, 

the PBS group was considered the control or “untreated” group. MicroRNA-206 levels in 

the diaphragm muscle were investigated by relative qPCR in WT, mdx and mdx treated 

with AAV9-anti-miR-206. At the 1 month timepoint, dystrophic muscle miR-206 levels 
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were significantly greater than the WT, with a difference of ~4-fold (Fig. 3A, **p=0.0055, 

n = 6). Anti-miR-206 treatment reduced the amount of miR-206 in the diaphragm by 

about half, but considerable variation between treated samples was observed 

(p=0.2891, n = 6). Two months later, WT levels were still low, yet a substantial increase 

in miR-206 was detected in untreated mdx (Fig. 3B, ***p < 0.0001, n = 6). Vector 

treatment significantly decreased miR-206 by almost half (*p=0.0341, n = 6). However, 

there was no noticeable difference between the treated and untreated mdx at 5 months 

(Fig. 3C, p=0.9753, n = 6). 

VEGFA expression increases with treatment 

 VEGFA expression was first examined using relative qPCR to measure transcript 

levels in WT, mdx and treated mdx diaphragm. At 1 month, VEGF mRNA levels were 

significantly lower in the dystrophic diaphragm (Fig. 4A, *p = 0.0198, n = 6). With 

treatment, transcript levels appeared to increase albeit not significantly (untreated vs. 

treated, p = 0.0509, n = 6). Two months later, a significant ~2-fold increase in VEGF 

transcripts was found in the treated group vs. the untreated (Fig. 4B, **p = 0.0026, n = 

6), surpassing expression of the WT. This 2-fold increase was sustained until the 5 

month timepoint; however, this difference was not statistically significant (Fig. 4C, p = 

0.0683, n = 6). Within the given timeframe, mdx VEGF transcript levels were 

consistently (~2-fold) lower than the WT. A significant decrease was again observed 

between WT and mdx muscle (Fig. 4C, ***p < .0001, n = 6) at 5 months. 

 The amount of VEGFA protein was assayed by Western blot at tibialis anterior 

muscle samples at 1 month post-treatment (Fig. 5). Bands were observed at ~35 kDa, 
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which is indicative of ubiquitous VEGFA-164 isoform expression. A noticeable increase 

in VEGFA was observed with treatment compared to WT and untreated mdx. 

Increased capillary density with miR-206 reduction 

 To determine if VEGF expression induced angiogenesis, the number of 

capillaries per muscle fiber was quantified in the diaphragm. At 1 month, there was no 

obvious difference in vessel density between the untreated and treated groups (Fig. 

6A). A statistically significant decrease in capillary density was found between WT 

(mean = 2.184 + 0.1108) and mdx (mean = 1.788 + 0.0551) muscle (*p = 0.0495, n = 

6), but not in the treated sample (mean = 1.817 + 0.0333, n = 6). Capillary density in WT 

and treated muscle stayed fairly consistent at 3 months (Fig. 6B). In contrast, capillary 

numbers were further reduced in the mdx (mean = 1.503 + 0.0581) compared to WT 

(mean = 2.347 + 0.1022, ***p = 0.0008, n = 6) as well as treated mdx muscle (mean = 

1.982 + 0.0672, ***p < 0.0001, n = 6). A significant difference was also observed 

between WT and treated mdx groups (WT mean = 2.141 + 0.1282, *p = 0.0244, n = 6). 

At 5 months, vessels were again more numerous in the treated vs. untreated mdx 

muscle (2.123 + 0.2065 vs. 1.574 + 0.0708, *p = 0.0258, n = 6). Significantly fewer 

capillaries were found in the untreated muscle compared to the WT (**p = 0.0043, n = 

6).  

Vessel permeability is reduced with treatment 

 Vessel permeability in response to treatment was determined by Miles assay 

after 1, 3 and 5 months in quadriceps (QUAD), hamstring (HAM), gastrocnemius (GAS) 

and tibialis anterior (TA) muscles. In WT muscle overall, Evans blue dye (EBD) content 

was fairly consistent across muscle groups at all timepoints (1 month mean = 0.01753 + 
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0.001089 ng/mg, 3 months mean = 0.02460 + 0.001015 ng/mg, 5 months mean = 

0.01796 + 0.001171 ng/mg). EBD content in dystrophic muscle was significantly greater 

than WT (1 month mean = 0.03021 + 0.003278 ng/mg and *p = 0.0349, 3 months mean 

= 0.03548 + 0.002087 ng/mg and **p = 0.0094, 5 months mean = 0.02788 + 0.002463 

ng/mg and *p = 0.0220). A significant decrease in EBD was found in treated muscle at 3 

and 5 months post-treatment compared to the untreated group (3 month mean = 

0.02490 + 0.002746 ng/mg and *p = 0.0278, 5 month mean = 0.01895 + 0.001904 

ng/mg and *p = 0.0351).  At 1 month post-treatment, EBD levels were lower in anti-miR-

206 treated muscle (mean = 0.02073 + 0.002114 ng/mg), but this was not statistically 

significant (p = 0.0592). Two-way ANOVA analysis revealed that these results were 

dependent on treatment only (1 month ***p = 0.0008, 3 months *p = 0.0101, 5 months 

*p = 0.0129) and not muscle group (1 month p = 0.0881, 3 month p = 0.3252, 5 month p 

= 0.5205). In addition, there was no significant interaction between treatment and 

muscle group (1 month p = 0.8203, 3 month p = 0.9449, 5 month p = 0.8125).  
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IV. Figures 

 
Figure 2.1. Vector construct design and miR-206 specificity. (A) Anti-miR-206 

construct design. Four tandem repeats of the exact antisense sequence were placed in 

the 3’ UTR of a GFP expression marker driven by a CMV promoter. The sequence was 
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followed by a poly-A signal and flanked by ITRs on either side for packaging into the 

AAV capsid. (B) Anti-miR-206 specificity for miR-206 was tested in vitro. CMV-GFP-

anti-miR-206, CMV-pre-miR-206 and CMV-pre-miR-124 sequences were packaged into 

the AAV2 capsid and used to transduce HEK293 cells. AAV2-CMV-GFP-anti-miR-206 

transduction alone (first row, MOI: 106 vg/cell) elicited high GFP expression, which was 

reduced by co-transduction with miR-206 precursor (second row, 1x MOI: 106 vg/cell 

and third row, 2x MOI: 2 x 106 vg/cell). The presence of miR-124 had no effect on GFP 

expression (fourth row). Magnification: 10x, scale bar = 300 μm. 
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Figure 2.2. Motor function improvements with anti-miR-206 treatment. Rotarod 

running time was measured in PBS, control vector and AAV9-anti-miR-206 treated mdx 

mice at (A) 1, (B) 3 and (C) 5 months post-treatment. Significant improvements were 

observed with treatment at 1 and 5 months (**p = 0.0105 and **p = 0.0044 for PBS vs. 

treated and **p = 0.0038 for sham vector vs. treated, n = 6). Grip strength was also 

assessed at baseline and until 5 months post-treatment (D). Significant increases in 

strength were observed in anti-miR-206 treated mice versus the untreated group at 4 

months (*p = 0.0372 and *p = 0.0227 for PBS and sham vector vs. treated, respectively) 
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and 5 months (*p = 0.0376 and *p = 0.0455 for PBS and sham vector vs. treated, 

respectively) post-treatment. No discernable differences were observed in treadmill 

running distance at (E) 1 month, (F) 3 months, or (G) 5 months post-treatment. Bars 

represent mean with SEM. 
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Figure 2.3. MicroRNA-206 levels in muscle. MicroRNA-206 levels were measured in the diaphragm from untreated and 

treated mdx mice as well as age-matched WT mice at (A) 1 month, (B) 3 months and (C) 5 months post-treatment. (A) At 

1 month, miR-206 was significantly upregulated in untreated mdx muscle compared to WT (**p = 0.0055, n = 6). 

MicroRNA-206 levels appeared to decrease with treatment with considerable variation. (B) MicroRNA-206 was 

upregulated in dystrophic muscle and treated muscle compared to WT at 3 months (***p < 0.0001, n = 6). MicroRNA-206 

significantly decreased with AAV9-anti-miR-206 treatment compared to the untreated group (*p = 0.0341). (C) At 5 

months, treatment had no effect on miR-206 levels. In both mdx groups, miR-206 was again significantly more abundant 

than the WT (***p < 0.0001, n = 6). Bars represent mean with SEM. 
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Figure 2.4. VEGF transcript levels in muscle. VEGF mRNA in diaphragm from untreated and treated mdx mice as well 

as age-matched WT mice was quantified at (A) 1 month, (B) 3 months and (C) 5 months post-treatment. (A) At 1 month, 

dystrophic muscle contained significantly less VEGF mRNA than the WT (*p = 0.0198, n = 6). With treatment, transcript 

levels slightly increased. (B) Two months later, VEGF mRNA was significantly upregulated in treated muscle compared to 

the untreated (**p = 0.0026, n = 6). (C) Again, significantly lower transcript levels were observed in untreated mdx muscle 

vs. WT (***p < 0.0001, n = 6). While treated muscle contained a greater quantity of VEGF transcripts than untreated, this 

result was not statistically significant (p = 0.0683, n = 6). Bars represent mean with SEM. 



 

 49 

 

Figure 2.5. VEGFA expression in muscle. VEGFA protein levels were examined by 

Western blot at 1 month post-treatment in tibialis anterior muscle samples. 
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Figure 2.6. Increased capillary density in treated mdx muscle. Capillaries were quantified in diaphragm muscle from 

untreated and treated mdx mice as well as age-matched WT mice at (A) 1, (B) 3 and (C) 5 months post-treatment. (A) At 

1 month, the number of capillaries per fiber was significantly lower in mdx muscle compared to WT (*p = 0.0495, n = 6). 

Capillary density was similar in treated muscle. (B) At 3 months, the number of capillaries per fiber in dystrophic muscle 

was again significantly lower than in the WT (***p = 0.0008, n = 6). A distinct increase was found after treatment (mdx vs. 

mdx+amiR ***p < 0.0001, n = 6). A significant increase was also observed between WT and treated mdx muscle (*p = 

0.0244, n = 6). (C) At 5 months, capillary density was decreased in dystrophic muscle compared to WT (**p = 0.0043, n = 



 

 

5
1
 

6). On the other hand, treatment significantly increased the number of capillaries per fiber compared to untreated mdx (*p 

= 0.0258). Bars represent mean with SEM.
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Figure 2.7. Reduced vessel permeability in treated muscle. Miles assay to 

determine Evans blue dye content (ng/mg tissue) was performed with muscle from 

untreated and treated mdx mice as well as age-matched WT mice at (A) 1 month, (B) 3 

months and (C) 5 months post-treatment. (A) At 1 month, a significant increase in dye 

permeation in dystrophic muscle was observed compared to WT (*p = 0.0349, n = 6). 

(B) At 3 months, mdx dye content was again statistically greater than WT (**p = 0.0094, 

n = 6). Dye levels were significantly reduced with treatment (*p = 0.0278, n = 6). (C) At 5 

months, dye content was significantly greater in mdx muscle than WT (*p = 0.0220, n = 

6). With treatment, mdx muscle contained considerably less dye (#, *p = 0.0351, n = 6). 

Bars represent mean with SEM. 
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V. Discussion 

 In this chapter, I examined the role of microRNA-206 in muscle vascularization 

and if downregulation of miR-206 would confer therapeutic benefit by allowing 

expression of VEGFA. I show for the first time that miR-206 can be bound by an 

antisense construct, “anti-miR-206,” which acts as a decoy target transcript or 

microRNA “sponge.” Excess amounts of miR-206 in vitro completely eliminated 

expression of a GFP reporter gene containing the antisense sequence in its 3’ UTR. 

MicroRNA sponges have been used to competitively inhibit small RNAs in mammalian 

cells to derepress target gene expression (Ebert, Neilson et al. 2007). This is usually 

accomplished in vivo by direct administration of complementary oligonucleotides, or 

antagomirs, which tend to be 2’-O-methyl, phosphorothioate or cholesterol-modified. 

Similar to exon skipping, these antagomirs only offer a transient effect and suffer from 

poor uptake unless a large dose is applied. To overcome this, microRNA inhibitory 

constructs have been packaged into viral vectors to enable long-term suppression 

(Haraguchi, Ozaki et al. 2009). Stable miR suppression has been demonstrated in vivo 

in bone marrow reconstitution and cancer xenograft models (Ebert and Sharp 2010). To 

accomplish this, I packaged the anti-miR-206 construct into an AAV9 vector, which 

displays superior muscle tropism and stable gene transfer for up to 2 years (Kornegay, 

Li et al. 2010, Qiao, Koo et al. 2011). Administration of the completed vector effectively 

reduced miR-206 levels in mdx mice. However, miR-206 inhibition in the diaphragm was 

short-lived and was not observed at 5 months post-treatment. This could be attributed to 

severe pathology and continuous muscle death, causing the loss of transduced tissue.   
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 Interestingly, AAV9-anti-miR-206 treatment provided therapeutic benefit to mdx 

mice. Rotarod testing revealed significant improvements in balance and motor 

coordination with treatment. Additionally, grip strength was maintained in mice treated 

with anti-miR-206 over the experimental period. It is possible that the construct is still 

present in the limbs of mdx mice, which display milder dystrophic symptoms and muscle 

degeneration compared to the diaphragm (Stedman, Sweeney et al. 1991). Thus, 

treatment impeded eventual motor decline in the mdx. 

Treadmill running had two purposes in this study: to assess motor function and 

exacerbate muscle damage for treatment comparison (Grounds, Radley et al. 2008). 

While no significant differences in run distance were observed, forced eccentric 

contraction may have amplified functional decline observed in mdx mice during rotarod 

and grip force testing. Furthermore, respiratory or cardiac impairments do not develop in 

the mdx mouse until 6 and 16 months of age, respectively. It is possible that these 

deficiencies are not severe enough to affect motor performance during the experimental 

period. Another study noted that changes in perfusion after induced ischemia were 

observed only in aged mdx mice (12 months), suggesting that vascular impairments 

may not develop until later (Latroche, Matot et al. 2015). Discrepancies in testing 

protocols and the motivation of the mice to run may also contribute to the these results. 

 Finally, target expression and muscle vascularization were evaluated to 

determine the therapeutic mechanism of miR-206 downregulation. VEGFA transcript 

levels in muscle significantly increased with anti-miR-206 treatment and protein levels of 

the ubiquitous isoform were elevated accordingly. Thus, treatment with this microRNA 

sponge relieved target gene inhibition. In zebrafish, angiogenesis was observed after 
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inhibition of miR-206, which permitted VEGFA activity (Stahlhut, Suarez et al. 2012, Lin, 

Lee et al. 2013). The angiogenic properties of VEGFA have been used in DMD 

treatments to ameliorate functional ischemia, which significantly increased capillary 

density in muscle as well as forelimb strength after intramuscular injection (Messina, 

Mazzeo et al. 2007). Transgenic mdx/Flt-1 knockout mice, which have increased ratios 

of capillaries to muscle fibers, have also shown improvements in muscle histology, 

blood flow and force production (Verma, Asakura et al. 2010). Similarly, miR-206 

reduction significantly increased capillary density in dystrophic muscle. Due to concerns 

regarding vascular permeability with systemic VEGFA expression, vessel integrity was 

tested. Abnormal vasoregulation in dystrophic muscle has also been linked to 

diminished vessel integrity caused by dystrophin loss in smooth muscle cells. 

Transgenic mice expressing dystrophin solely in vascular smooth muscle cells exhibited 

normal hemodynamic responses after muscle contraction. While no differences in basal 

blood flow were seen between these mice, mdx and control mice, vascular dystrophin 

expression produced an intermediate muscle pathology. These finding suggest that 

vessel defects can contribute to the severity of dystrophic symptoms (Ito, Kimura et al. 

2006). Miles assay revealed that dye extravasation in different muscle groups was 

significantly lowered with treatment and comparable to WT levels, which may be an 

indication of normalization of the vessel lining and the dystrophic phenotype. Alterations 

in microvessel endothelial cells of the blood-brain barrier have been observed in mdx 

(Nico, Frigeri et al. 2003). The open tight junctions of the microvessels caused abnormal 

permeability of the BBB, which may be associated with neurological dysfunction 

observed in DMD patients. Although the Miles assay has been typically employed in 
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DMD studies to look at muscle membrane integrity, mice are usually subjected to 

additional exercise and sacrificed 24 hours later. Mice were sacrificed 30 minutes after 

dye administration, which would allow transient circulation and only measure 

extravasation from the vessels. 

 Although increases in VEGFA expression were found, the question of its role in 

motor function improvements still remains. Prior to experimentation, it was thought that 

vascular improvements would influence endurance due to enhanced blood flow and 

aerobic capacity. In a study with muscle-specific VEGFA-deficient mice, significant 

decreases in capillary density and treadmill endurance were observed (Olfert, Howlett et 

al. 2009). However, the previously mentioned study involving AAV-mediated VEGFA 

delivery showed increased capillary density, but did not evaluate endurance nor blood 

flow (Messina, Mazzeo et al. 2007). Vascular smooth muscle and endothelial cells in 

mdx mice are still dystrophin-deficient and unable to recruit nNOS to induce proper 

vasoregulation in response to exercise (Loufrani, Levy et al. 2002, Ito, Kimura et al. 

2006). Since our treatment does not target nNOS, the lack of blood flow regulation to 

affect performance during long bouts of vigorous exercise is understandable. On the 

other hand, defects in microvascular stress have been observed in mdx mice. This can 

be attributed to reduced endothelial diameter, which cannot withstand or mediate 

normal blood flow resistance (Loufrani, Levy et al. 2002). Increases in capillary density 

and integrity may address such issues with normal vessel stress and localized blood 

flow to the muscle to decrease pathology, producing the observed motor function 

improvements. It is also possible that treatment improves expression of B-utrophin, 

which localizes to the vessel endothelium (Weir, Burton et al. 2002). While utrophin 



 

 58 

cannot sequester nNOS, it may substitute for dystrophin’s structural role to improve 

vessel integrity similar to muscle (see Chapter III). Our observations of reduced Evans 

blue dye permeation with treatment support some degree of vessel integrity correction, 

which could aid in normalizing vessel stress and blood flow. Pharmacological agents 

work directly on the smooth muscle cells to induce vasodilation and improve exercise-

related muscle aerobic capacity (Khurana and Davies 2003, Nelson, Rader et al. 2014). 

In contrast to gene therapies that improve vessel density and function, the effect of 

these treatments is temporary and may not address the progression of muscle 

pathology long-term. Overall, these results support a therapeutic role for miR-206 

downregulation via VEGFA-induced muscle vascularization. 
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CHAPTER 3: DOWNREGULATION OF MICRORNA-206 IMPROVES MUSCLE 
PATHOLOGY IN MDX MICE 

I. Introduction 

 Due to its similarity with dystrophin, several therapeutic strategies have aimed to 

provide or upregulate endogenous utrophin in dystrophic muscle. Utrophin is 

comparable in size to dystrophin (395 kDa) and its primary structure bears resemblance 

to dystrophin, especially at the NH2 and COOH terminal domains (Blake, Weir et al. 

2002). Overexpression of utrophin at the sarcolemma of transgenic mdx muscle 

prevented development of dystrophic symptoms and maintained normal muscle function 

(Deconinck, Tinsley et al. 1997, Tinsley, Deconinck et al. 1998). In addition, AAV 

delivery of a micro-utrophin protein ameliorated disease pathology, normalizing muscle 

fiber morphology and force generation (Odom, Gregorevic et al. 2008). Increasing 

utrophin levels also promoted structural integrity of the myofiber and increased 

resistance to contraction-induced damage. The findings from these studies underscore 

the compensatory role and therapeutic value of utrophin. 

Studies with mdx mice and DMD patients have found that utrophin is upregulated 

in dystrophic muscle (Khurana and Davies 2003). While utrophin levels may explain the 

milder phenotype of mdx, they are not sufficient for improving muscle pathology in DMD 

patients (Deconinck, Rafael et al. 1997). Treatment with pharmacological agents, such 

as SMTC110, which work to increase endogenous utrophin expression have benefitted 

disease muscle (Tinsley, Fairclough et al. 2011, Tinsley, Robinson et al. 2014). 

Furthermore, it is believed that increasing endogenous utrophin avoids issues with 
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dystrophin-specific T cell targeting associated with gene replacement strategies. In one 

study, viral-mediated gene transfer of utrophin persisted longer and elicited a weaker 

immune response compared to dystrophin in immunocompetent mice (Ebihara, 

Guibinga et al. 2000). 

MicroRNA-206 is overexpressed in DMD, but its role in disease pathology has 

not been defined. Utrophin is a known target of miR-206 and its expression is known to 

be post-transcriptionally regulated (McCarthy 2008). Overexpression of miR-206 in 

muscle cell culture had a strong inhibitory effect on utrophin levels, suggesting direct 

regulation of utrophin via its 3’ UTR (Rosenberg, Georges et al. 2006). Similarly, high 

levels of miR-206 may contribute to insufficient utrophin expression observed in 

dystrophic muscle. Reducing miR-206 in the muscle may relieve its inhibitory effect, 

increasing endogenous expression of therapeutic booster genes, such as utrophin, and 

improving dystrophic pathology. To this end, I investigated whether miR-206 influences 

muscle pathology and expression of one of its target, utrophin. First, I measured 

utrophin expression, looking at both the transcript and protein level to determine if miR-

206 negatively regulates utrophin. Second, I examined general muscle pathology by 

H&E staining in response to treatment. Third, I assessed the effect of treatment on 

related dystrophic symptoms, including fibrosis, fiber regeneration, serum CK, myofiber 

size and muscle mass. Lastly, I looked at vector persistence in the muscle to assess 

long-term efficacy. Findings from these studies could help to clarify the role of miR-206 

in muscle pathology and define a new strategy for treating DMD.
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II. Materials and methods 

Utrophin transcript quantification 

Total RNA was extracted from diaphragm muscle using TRIzol reagent according 

to the manufacturer’s instructions (Thermo Fisher Scientific) and stored at -80°C until 

further use. A cDNA template for microRNAs was created using the miRNA 1st-Strand 

cDNA Synthesis Kit (Agilent Technologies). The resulting template was diluted 1:5 for 

quantitative PCR (qPCR). Reactions were set up using PowerUp SYBR Green Master 

Mix (Thermo Fisher Scientific) according to the manufacturer’s protocol and run in an 

Applied Biosystems 7300 Thermocycler. Utrophin expression was quantified relative to 

ubiquitous beta-actin. The primers used were as follows: utrophin (forward: 5’-

CACTGGCAGGTGAAGGATGT-3’, reverse: 5’-CTTGACTGTAGGGCCTGGTG-3’) and 

beta-actin (forward: 5’-ATCACTATTGGCAACGAGCG-3’ and reverse: 5’-

ACTCATCGTACTCCTGCTT-3’). Expression was depicted as fold-change over control. 

Western blot 

Gastrocnemius (GAS) muscle was homogenized in cold dystrophin lysis buffer 

(2% SDS, 6.25 mM Tris pH 8.8, 2% glycerol, PMSF, 50 mM DTT, 0.005% BPB) using a 

tissue homogenizer (Tekmar Ultrasonic Processor model TM130). Protein concentration 

was determined by BCA assay. For Western blotting, 50 μg (for utrophin detection) and 

15 μg (for GAPDH detection) protein from each sample was prepared in 2X dystrophin 

loading buffer (5% SDS, 0.75 M Tris pH 8.8, 2% glycerol, 100 mM DTT, 1% BPB) and 

heated at 95°C for 5 minutes. Proteins were separated by SDS-PAGE and wet 

transferred onto a PVDF membrane using the Bio-rad Mini-PROTEAN II system. 
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Membranes were blocked in 5% milk in 1% TBS-Tween 20 (TBS-T) for 1 hour and 

incubated with either goat polyclonal antibody against utrophin (Santa Cruz 

Biotechnology, #sc-7459, 1:1000) or rabbit polyclonal antibody against GAPDH (Sigma-

Aldrich, cat. # G9545, 1:10,000) diluted in 3% bovine serum albumin (BSA) in 1% TBS-

T overnight at 4°C. Membranes were washed 3 times for 10 minutes in 1% TBS-T and 

then incubated with anti-goat or anti-rabbit IgG conjugated to horseradish peroxidase 

(Sigma, A5420, 1:5,000 for utrophin and Sigma-Aldrich, A0545, 1:10,000 for GAPDH) in 

5% milk. Blots were developed using the Western Lightening ECL reagent (Pierce) and 

visualized using the FluorChem M system. 

Utrophin immunostaining 

 GAS muscle samples were processed into 10 μm cryosections and mounted on 

glass slides. At room temperature, slides were blocked in 10% horse serum for 1 hour. 

Utrophin was immunostained with a goat utrophin antibody (Santa Cruz Biotechnology, 

#sc-7459, 1:100) in 1% horse serum in PBS overnight at 4°C and then washed with 

0.5% PBS-T 3 times for 5 minutes each. Anti-goat IgG conjugated to Cy3 dye (1:500, 

Jackson ImmunoResearch Laboratories, Inc.) was diluted in 1% horse serum and used 

to incubate slides for 1 hour. Slides were washed with 0.5% PBS-T 3 times for 5 

minutes each and mounted with aqueous mounting media (Gel/Mount, Biomeda). Slides 

were visualized using a Zeiss Axiovert 200M Confocal Microscope and images were 

taken using an AxioCam MRm camera. 

Hematoxylin & eosin (H&E) staining 

 Frozen muscle samples were cryosectioned 10 μm in thickness and placed on 

glass slides. Slides were fixed in 3% acetic acid (in 95% ethanol) and washed with tap 
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water. They were then stained in Gill’s hematoxylin solution (#24244, Polysciences, 

Inc.) for 30 minutes (min) to visualize cell nuclei. Slides were washed in running tap 

water then differentiated in 1% acid alcohol (hydrochloric acid in 70% ethanol) for about 

30 seconds (sec). After washing in tap water, tissue was blued in 0.2% ammonia water 

for 30 sec to 1 min. Slides were then washed again and counterstained with eosin for 

about 5 sec to visualize eosinophilic structures (i.e. sarcoplasm). Serial dehydration was 

performed in 70%, 85%, 95% and 100% ethanol. Slides were then cleared in xylene 3 

times for at least 5 min overall and mounted with Permount (Fisher). Images were 

acquired using a Nikon Eclipse TE300 microscope (Nikon USA) and a SPOT RT Slider 

camera (Diagnostic Instruments, Inc.). H&E images were used for centrally located 

nuclei quantification and analyzed in ImageJ using the Cell Counter function. 

Collagen staining 

 To examine the level of fibrosis in muscle samples, two methods of collagen 

staining were performed. To visualize areas containing collagenic compounds, Masson 

trichrome staining was performed using solutions from a kit (IMEB Inc.). Slides were 

made by cryosectioning frozen muscle samples, which were then fixed in Bouin’s 

solution for 15 to 20 min. After rinsing in water, sections were stained in hematoxylin 

solution for 10 min to visualize nuclei. After another rinse, sections were placed in 

Biebrich’s scarlet acid fuschin solution for 15 min to stain the sarcoplasm then rinsed 

again. Slides were placed in Phosphotungstic/Phosphomolybdic acid solution for 15 

min, then directly transferred into aniline blue stain solution to stain collagenic areas. 

After rinsing, slides were serially dehydrated as mentioned above (Hematoxylin & eosin 

(H&E) staining). Slides were then cleared in two changes of xylene for at least 5 min in 
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total. Slides were mounted with Permount. Collagen fibers and muscle were stained 

with Sirius red and fast green, respectively. Frozen sections were allowed to reach room 

temperature, then fixed in pre-warmed Bouin’s solution for 15 to 20 min. Slides were 

washed in lukewarm running tap water until yellow color faded. They were then stained 

in 0.1% Fast green (in water) for 10 to 15 min and washed briefly in tap water. Slides 

were then placed in 1% acetic acid solution for 2 minutes and then directly into 0.1% 

Sirius red stain (in water) for 30 minutes. Slides were dehydrated in 100% ethanol for 2 

to 3 minutes twice and xylene cleared for at least 5 min. Finally, slides were mounted 

with Permount. Images were acquired using a Nikon Eclipse TE300 microscope (Nikon 

USA) and a SPOT RT Slider camera (Diagnostic Instruments, Inc.). The percentage of 

fibrosis was calculated with Sirius red/fast green images using ImageJ software and the 

Threshold_Colour plugin. 

Hydroxyproline quantification 

 Hydroxyproline, a non-proteinogenic amino acid, is particularly abundant in 

collagen, making up ~13.5% of the total composition. Hydroxyproline content was 

determined using the method described by Carlson (2009). Diaphragm samples were 

extracted and hydrolyzed in 5 M HCl in a 108°C dry bath overnight. After bringing 

samples to room temperature, 50 μg of sample was diluted in 2.25 ml ddH2O and then 

neutralized with 0.1 N and 0.8 N KOH solutions. A hydroxyproline standard was also 

made at this time. Sodium borate buffer (0.1 M, pH 8.7) was added and then the mixture 

was oxidized with 2 ml of 0.2 M chloramine-T solution. After a 25 min incubation period, 

1.2 ml of 3.6 M sodium thiosulfate was added to stop the oxidation reaction and 

vortexed briefly. Next, 2.5 ml toluene and 1.5 g KCl were added. The samples were 
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inverted slowly for 5 min on a test tube inverter then centrifuged at 300 x g for 1 minute. 

The toluene phase containing impurities was removed and the remaining aqueous layer 

was heated at 100°C in a dry bath for 30 min to convert the oxidized hydroxyproline 

(pyrrole-2-carboxylic acid) to pyrrole. After cooling to room temperature, another 2.5 ml 

of toluene was added and mixed with the aqueous solution to extract the pyrrole. After 

another round of centrifugation, 1.5 ml of the organic phase was mixed with 0.6 ml 

Erlich’s reagent and developed for 30 min at room temperature. Sample and 

hydroxyproline standard absorbances were read at 560 nm. Hydroxyproline content was 

expressed as μg per mg muscle. 

Fiber diameter 

 Cryosections of diaphragm muscle 10 μm thick from WT, mdx and treated mdx 

were made. At room temperature, slides were washed in PBS for 10 minutes then 

blocked in 10% horse serum for 1 hour. The muscle basal lamina was immunostained 

with a rat anti-laminin α2 antibody (Sigma-Aldrich, L0663, 1:500) in 1% horse serum in 

PBS for 1 hour and washed with 0.5% PBS-T 3 times for 5 minutes each. Anti-rat IgG 

conjugated to Alexa Fluor 488 dye (Molecular Probes, #A21470) was diluted in 1% 

horse serum and used to incubate slides for 1 hour. Slides were washed with 0.5% 

PBS-T 3 times for 5 minutes each and mounted with Gel/Mount. Slides were visualized 

using a Zeiss Axiovert 200M Confocal Microscope and images were taken using an 

AxioCam MRm camera. Images were analyzed using ImageJ software and the Analyze 

Particles function to measure area. Diameter was then calculated in Microsoft Excel and 

graphed in GraphPad Prism 5.0. 
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Serum creatine kinase 

 Muscle contains high levels of creatine kinase (CK) and if damaged, will leak CK 

into the blood. Measuring serum CK activity thus serves as an overall assessment of 

muscle injury. Whole blood samples were collected with BD Microtainer Serum 

Separator tubes at the time of sacrifice from the carotid artery. Tubes were spun at 

10,000 rpm in a 4°C microcentrifuge for 10 min to separate serum, which was frozen at 

-20°C for later use. Creatine kinase reagent (Pointe Scientific) was used to catalyze the 

formation of NADH formation. The reaction rate of NADH production was measured at 

340 nm. The serum CK in the samples catalyzes the formation of creatine and ATP 

from ADP and creatine phosphate. Hexokinase then catalyzes the production of 

glucose-6-phosphate and ADP from ATP and glucose. Finally, glucose-6-phosphate 

and NAD+ are formed into 6-phopshogluconate, NADH and H+ through glucose-6-

phosphate dehydrogenase. 

Body weight and muscle mass 

Body weight was measured every 2 weeks after grip force testing. Muscle mass 

for quadriceps, hamstring, gastrocnemius, tibialis anterior and tricep muscles was 

measured upon dissection. 

Vector persistence 

 DNA was extracted from diaphragm and gastrocnemius muscle samples using 

the DNeasy Blood and Tissue Kit (Qiagen) according to manufacturer’s protocols. 

Absolute qPCR was performed to determine vector genome copies per cell. Two 

standards were created by serial dilution of the CMV-1/2gfp-anti-miR-206 vector 

plasmid and a previously generated plasmid containing a single copy of the mouse 
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glucagon gene. Reactions were set up using the GoTaq Probe qPCR Master Mix 

(Promega) according to the manufacturer’s protocol and run in an Applied Biosystems 

7300 Thermocycler. Vector genomes per cell were calculated by dividing CMV copies 

by half of the total glucagon copies, since one diploid nucleus contains two copies of the 

glucagon gene. The primers used were as follows: CMV promoter (forward: 5’-

GTATGTTCCCATAGTAACGCCAATAG-3’, reverse: 5’-

GGCGTACTTGGCATATGATACACT-3’, probe: FAM-TCAATGGGTGGAGTATTTA) 

and glucagon (forward: 5’-AAGGGACCTTTACCAGTGATGTG -3’ and reverse: 5’-

ACTTACTCTCGCCTTCCTCGG-3’, probe: FAM-CAGCAAAGGAATTCA). 
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III. Results 

Utrophin expression 

 Utrophin transcript levels were examined using relative qPCR in WT, mdx and 

treated mdx diaphragm (Fig. 1). At 1 month, utrophin expression in dystrophic muscle 

was significantly upregulated, nearing 3-fold, compared to WT (Fig. 1A, WT vs. mdx **p 

= 0.0016, WT vs. treated mdx ***p = 0.0001, n = 6), with no marked difference between 

the two mdx groups. Dystrophic muscle transcript levels were again greater (~2-fold) 

than the WT (***p<0.0001, n = 6) at 3 months (Fig. 1B). At the same time, a significant 

~2-fold increase in utrophin transcripts was observed with treatment compared to the 

untreated group (***p = 0.0001, n = 6). Transcript levels in the treated group were ~4-

fold greater than in WT (***p<0.0001, n = 6). A similar pattern was found two months 

later; however, the difference between the untreated groups was not statistically 

significant (Fig. 1 C, p = 0.2059, n = 6). Still, dystrophic muscle contained significantly 

greater levels of utrophin mRNA than the WT (WT vs. mdx *p = 0.0389, WT vs. treated 

mdx **p = 0.0051). Western blot was performed to examine utrophin expression at the 

protein level in the gastrocnemius muscle (Fig. 2). Due to cross-reactivity with 

dystrophin in WT samples, only mdx groups were compared.  After incubation with a 

utrophin-specific antibody, a band was observed at ~400 kDa, which corresponds in 

size to utrophin. A noticeable increase in expression was observed with treatment at 3 

months, which mirrors increases in transcript levels. 

 Immunofluorescent staining was performed to determine utrophin localization in 

gastrocnemius muscle (Fig. 3). WT and untreated mdx displayed sparse and punctate 

utrophin expression, which can be attributed to neuromuscular junction (NMJ) staining. 
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In anti-miR-206 treated muscle, NMJ staining was stronger and more abundant than in 

WT or untreated muscle. A distinct staining pattern lining the edges of the muscle fiber 

(highlighted in zoomed images) was also observed, likely due to utrophin expression at 

the sarcolemma. 

Muscle pathology is normalized with treatment 

 Muscle pathology was examined by H&E staining in diaphragm and hamstring 

muscle over the course of 5 months (Fig. 4). Normal muscle is characterized by fibers 

that are organized, uniform in size and with nuclei located at the periphery. WT muscle 

generally appeared normal within the given time period. In contrast, dystrophic muscle 

showed signs of degeneration (irregularly shaped fibers that are pale pink with 

fragmented sarcoplasm or swelled, hypercontracted fibers with dark pink staining) and 

regeneration (smaller fibers with centrally located nuclei) with mononuclear cell 

infiltration (small basophilic cells without cytoplasm). Muscle damage in the mdx 

diaphragm was markedly severe compared to the hindlimb. At 3 months, regenerating 

fibers in untreated mdx appeared to be more abundant than at 1 or 5 months in both 

diaphragm and hamstring. In treated mdx, dystrinopathy was less serious. Treated 

diaphragm was more organized and myofibers were relatively more uniform in size and 

shape than in the untreated sample. In addition, there appeared to be less inflammatory 

cell infiltration. Over time, overall myofiber area within the mdx diaphragm appeared to 

decrease and seemingly replaced by fibrotic tissue (unstained spacing between fibers). 

Decreased fibrosis in treated mdx mice 

  In dystrophic muscle, functional muscle mass is replaced by fibrotic collagen. 

Collagen deposition is particularly pronounced in the mdx diaphragm, which has been 
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shown to contribute to respiratory impairments that develop with age. Two methods of 

histological staining were used to assess fibrosis qualitatively.  Masson trichrome 

staining was performed at 3 and 5 months post-treatment (Fig. 5A and 5B, respectively) 

to detect collagenic compounds. No collagen deposition was observed in the WT 

diaphragm at either timepoint. On the other hand, mdx diaphragm was severely fibrotic, 

with collagen occupying close to half of the muscle area. Treated mdx diaphragm was 

also fibrotic, yet to a lesser degree and in a more organized fashion compared to 

untreated muscle. These results were paralleled with picrosirius red/fast green staining, 

which is used to stain collagen fibers versus collagen constituents. In addition to 

diaphragm muscle (Fig. 6A and 6C), hamstring muscle was also stained to examine 

hindlimb fibrosis (Fig. 6B and 6D). Again, no fibrosis was observed in WT muscle at 

either timepoint. In dystrophic diaphragm, there was substantial collagen deposition at 

both times. In contrast, collagen staining was more diffuse in treated diaphragm, which 

suggests that fewer mature collagen fibers are present and progression of fibroses is 

less advanced than in the untreated sample. In the hamstring, differences in collagen 

deposition were less distinguishable between groups, particularly at the 5 month 

timepoint. Picrosirius red staining was quantified and revealed a mean of 34.45 + 2.081 

and 27.67 + 5.711 at 3 and 5 months, respectively, in the dystrophic diaphragm (Fig. 7A 

and 7C). A significant reduction of fibrosis in both the mdx diaphragm (mean = 22.51 + 

3.274) and hamstring muscle (Fig. 7B, mean = 18.64 + 1.673) with treatment at 3 

months post-treatment (**p = 0.0043 and *p = 0.0279, respectively). At 5 months, 

diaphragm collagen deposition was also decreased in the treated vs. untreated group 

(mean = 21.56 + 3.949); however, this was not statistically significant (p=0.3919). At the 
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same time, there was no apparent difference in hamstring collagen staining across all 

groups (Fig. 7D, WT vs. mdx p=0.6045, WT vs. treated p = 0.615, mdx vs. treated p = 

0.8562). 

 Hydroxyproline, a major component of collagen, was also quantified in order to 

evaluate fibrosis in the muscle overall (Fig. 8). Consistent with the staining results, 

hydroxyproline content was greater in mdx diaphragm (mean = 5.967 + 1.407 μg/mg) 

than in WT (mean = 0.5724 + 0.2498 μg/ml, Fig. 8A). Treated diaphragm also contained 

less hydroxyproline (mean = 4.551 + 1.008 μg/mg) compared to the untreated group at 

3 and 5 months post-treatment. Hydroxyproline content increased in all groups at 5 

months yet rose most drastically in untreated mdx (untreated mean = 13.68 + 5.062 

μg/mg and treated mean = 7.461 + 1.546 μg/mg). At 3 months, hamstring muscle 

hydroxyproline values displayed a similar pattern to staining results, with an increase in 

mdx muscle (Fig. 8B, mean = 5.406 + 1.413 μg/mg) and a decrease with anti-miR-206 

treatment (mean = 4.410 + 1.011 μg/mg). Hydroxyproline assay results for hamstring at 

5 months were inconclusive and not shown. 

Normalization of fiber diameter 

 Immature fibers, which are smaller in diameter than mature fibers, are more 

abundant in dystrophic muscle due to active degeneration and regeneration. Fiber 

diameter was calculated in WT, mdx and treated mdx gastrocnemius muscle to 

determine fiber stability at 1, 3 and 5 months post-treatment (Fig. 9). The majority of WT 

fibers ranged between 45 and 75 μm, with a peak at 60 μm, which was consistent at all 

timepoints. However, the percentages of different fiber diameters within this range 

became more evenly distributed with increasing age and a less prominent peak at 60 
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μm was observed by 5 months. Muscle fibers in the untreated group were concentrated 

in the lower size range, with a peak at 10 μm and a gradual decline with increasing 

diameter.  After treatment, mdx fiber distribution still peaked at 10 μm, but appeared to 

shift slightly to larger diameters. Unlike WT muscle, there were no apparent changes in 

fiber size distribution in either mdx groups with age. Fiber diameter in the diaphragm 

was also examined and exhibited a similar pattern to the gastrocnemius muscle (results 

not shown). 

Centronucleation in dystrophic muscle 

 Newly regenerated fibers are recognized by their centrally located nuclei, or 

centronucleation, and are used as another indicator of fiber instability. Muscle fibers 

containing centrally located nuclei were quantified in WT, mdx and treated mdx 

diaphragm muscle at 3 and 5 months post-treatment (Fig. 10A and 10B). 

Centronucleation was not observed in WT muscle at either timepoint. In contrast, a 

large percentage of mdx fibers were centrally nucleated (33.20 + 1.984% and 29.34 + 

3.285%, at 3 and 5 months, respectively). A significant decrease was observed with 

treatment at 3 months (mean = 24.63 + 1.949%, **p=0.0065, n = 6). Centronucleation 

also markedly decreased with anti-miR-206 treatment at 5 months, yet this result was 

not statistically significant (mean = 21.46 + 1.671%, p = 0.0698, n = 6). Slightly less 

centronucleation was observed at 5 months compared to 3 months post-treatment for 

both untreated and treated mdx. 

Reduction of serum muscle creatine kinase in anti-miR-206 treated mice 

Striated muscle contains high levels of creatine kinase (CK), which is released 

into the serum in response to damage. Serum CK was measured in WT, mdx and 
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treated mdx to evaluate overall muscle damage (Fig. 11). At the 3 month timepoint, WT 

serum contained an average of 240.6 + 74.75 u/L CK, which decreased to 176.3 + 

22.46 u/L two months later. Compared to WT, mdx serum contained much greater 

levels of CK (up to 17,083 u/L, **p = 0.0224, and 12,531 u/L, *p = 0.0365, respectively) 

at 3 months and 5 months. Mean CK values for mdx serum were 8,512 + 2535 u/L and 

6,134 + 1,927 u/L at 3 and 5 months, respectively. Serum CK values in mdx varied 

greatly, with a range of  ~15,000 u/L at 3 months and ~10,000 u/L at 5 months. In 

response to anti-miR-206 treatment, CK values were reduced, with a mean of 4,412 + 

1,123 u/L and 5,295 + 1148 u/L at 3 and 5 months post-treatment. However, compared 

to untreated mdx, this result was not significant (p = 0.1896 and p = 0.7214 at 3 and 5 

months, respectively). Still, treated mdx exhibited a much smaller range of CK values 

versus the untreated group, with a range of ~6,000 u/L and ~7,000 u/L at 3 and 5 

months, respectively. Compared to WT, treated mdx levels were nonetheless 

significantly greater at both timepoints (*p = 0.0139 and *p=0.0112 for 3 and 5 months, 

respectively).  

Bodyweight & muscle mass 

 Bodyweight was measured in untreated and treated mice between 1 and 5 

months post-treatment (Fig. 12). While bodyweight increased steadily in untreated and 

treated mice, no major differences in weight were found between the two groups. 

Similarly, no notable changes were observed in muscle mass with treatment (Fig. 13).  

Hamstring mass very slightly increased between 1 and 5 months in the treated group. 
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Vector persistence 

 To determine if the AAV vector genome remained in the muscle over time, 

absolute qPCR was performed with diaphragm and gastrocnemius samples from AAV9-

anti-miR-206 treated mice (Fig. 14). At one month, ~0.3 vector genomes (vg) were 

detected per cell in the gastrocnemius muscle, which stayed constant two months later. 

The amount of vector genomes decreased by 5 months to ~0.2 vg/cell. In contrast, 

diaphragm muscle harbored up to 10 vg/cell with an average of 5 vg/cell at 1 month. 

Vector concentration was reduced by about half at 3 months. Finally, vector 

concentration was 0.5 vg/cell at 5 months. Overall, the diaphragm was highly 

transduced yet experienced considerable vector genome loss within the time period 

compared to the gastrocnemius muscle. 
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IV. Figures 

Figure 3.1. Upregulation of utrophin transcripts with treatment. Utrophin mRNA was quantified in diaphragm from 

untreated and treated mdx mice as well as age-matched WT mice at (A) 1, (B) 3 and (C) 5 months post-treatment. (A) 

Utrophin transcript levels were significantly greater at 1 month in both untreated mdx and treated mdx muscle versus WT 

(**p = 0.0016 and ***p = 0.0001, respectively, n = 6). (B) At 3 months, a significant increase in transcripts was again 

observed in mdx and treated mdx compared to WT (***p < 0.0001, n = 6). Utrophin mRNA in treated muscle was 

considerably upregulated compare to untreated muscle (**p = 0.0012, n = 6). (C) Two months later, mdx and treated mdx 

levels were consistently greater than WT (*p = 0.0389 and **p = 0.0051, respectively, n = 6). Treatment increased 

utrophin levels, but this difference was not statistically significant. Bars represent mean with SEM.
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Figure 3.2. Upregulation of utrophin protein with treatment. Utrophin expression 

was examined in the gastrocnemius muscle from untreated and treated mdx mice at 3 

months post-treatment. 
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Figure 3.3. Utrophin localization at the muscle membrane. Immunofluorescent staining was performed in 

gastrocnemius muscle from WT, mdx and treated mdx mice at 3 months. WT and mdx muscle had sparse, punctate 

utrophin staining while utrophin appeared to localize at the muscle membrane in the treated muscle. Bar = 100 μm, 

magnification: 10X. 
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Figure 3.4. Improvement in muscle pathology with AAV9-anti-miR-206 treatment. 

Pathology was observed at 1 month in (A) diaphragm and (B) hamstring muscle. 

Dystrophic pathology was more severe in mdx muscle than in WT or with treatment. 

Staining showed that dystrinopathy became more severe at 3 months in (C) diaphragm 

as well as (D) hamstring. Treatment once again appeared to lessen severity. Finally, 

muscle condition was observed at 5 months in (E) diaphragm and (F) hamstring. Again, 

dystrophic symptoms were worse in the mdx diaphragm than in the WT or untreated. 

Pathology was not as pronounced in the hamstring across all groups. Bar = 300 μm, 

magnification: 10X. 
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Figure 3.5. Decreased collagen deposition with treatment. Masson trichrome 

staining was performed to examine fibrosis in diaphragm at (A) 3 months and (B) 5 

months post-treatment. Collagen deposition is represented in blue and sarcoplasm in 

red. Little to no collagen was found within WT muscle. In contrast, collagen deposition 

was greatly increased in dystrophic muscle. While fibrosis was still observed with 

treatment, it was decreased overall and occupied a smaller area than without treatment. 

Bar = 300 μm, magnification: 10X. 
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Figure 3.6. Reduced fibrosis in treated muscle. Picrosirius red/fast green staining 

was performed to detect collagen fibers at 3 months in (A) diaphragm and (B) hamstring 

and 5 months in (C) diaphragm and (D) hamstring. Collagen fibers are shown in red, 

while sarcoplasm is stained green. Fibrosis was greatly increased in dystrophic 

diaphragm, but more diffuse in the treated sample, suggestive of fewer mature collagen 
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fibers. WT did not show any fibrosis. While an increase in fibrosis was observed in 

dystrophic muscle compared to normal muscle, no discernable changes were seen in 

the hamstring between groups. 

  



 

 83 

 

 
Figure 3.7. Reduced fibrotic area in treated muscle. Picrosirius red staining was 

quantified at 3 months in (A) diaphragm and (B) hamstring and at 5 months in (C) 

diaphragm and (D) hamstring. (A) Compared to WT diaphragm, both mdx groups 

displayed a significant increase in fibrotic area (***p < 0.0001, n = 6). With treatment, 

fibrotic area was greatly reduced (**p = 0.0043, n = 6). (B) A similar pattern was 

observed in the hamstring, with a significant increase in fibrosis between WT and 

dystrophic muscle (WT vs. mdx ***p < 0.0001 and WT vs. treated mdx **p = 0.0046, n = 

6). Treated hamstring also contained considerably less fibrosis compared to the 

untreated (*p = 0.0279). (C) At 5 months, a significant increase in fibrotic area in 
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dystrophic muscle from WT was again found (WT vs. mdx *p = 0.0112 and WT vs. 

mdx+amIR *p = 0.0139, n = 6). Fibrosis decreased with treatment yet this was not 

statistically significant. (D) No distinct differences could be found between groups in the 

hamstring at 5 months. Bars represent mean with SEM. 

  



 

 85 

 

 

 
 
Figure 3.8. Decreased hydroxyproline content with treatment. Hydroxyproline was 

quantified (A) diaphragm at 3 and 5 months and (B) hamstring at 3 months. (A) 

Hydroxyproline concentration was lower in WT diaphragm than either mdx group. All 

groups showed an increase in hydroxyproline from 3 to 5 months. While a small 

improvement was observed with treatment at 3 months, untreated mdx showed a much 

greater increase in hydroxyproline with time. (B) Hamstring muscle displayed a similar 

pattern, as dystrophic muscle contained higher levels of hydroxyproline, which was 

reduced with treatment. Bars represent mean with SEM.  
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Figure 3.9. Normalization of fiber diameter. Fiber diameter was measured at (A) 1 

month, (B) 3 months and (C) 5 months post-treatment. In WT muscle, a prominent peak 

at 60 μm across all timepoints. In contrast, the majority of dystrophic muscle fibers were 

small in size, with a peak at 10 μm. A slight shift toward normal sizes was observed with 

treatment, yet fibers were still smaller than WT overall. Bars represent mean. 
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Figure 3.10. Reduced fiber regeneration with treatment. Centronucleation was 

measured in diaphragm at (A) 3 months and (B) 5 months post-treatment. (A) 

Dystrophic muscle contained significantly more centrally nucleated fibers than the WT 

(WT vs. mdx and treated mdx ***p < 0.0001, n = 6 for all groups). A substantial 

decrease in centronucleation was found with treatment (mdx vs. mdx+amiR **p = 

0.0065, n = 6). (B) Similarly, a significant increase in the number of centrally nucleated 

fibers was found between WT and dystrophic muscle (WT vs. mdx ***p = 0.0003 and 

WT vs. mdx+amiR ***p < 0.0001, n = 6). Bars represent mean with SEM. 
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Figure 3.11. Improvements in overall muscle damage with treatment.  Serum CK 

levels were measured at (A) 3 months and (B) 5 months post-treatment. WT CK levels 

were consistently low, suggestive of minimal muscle damage at both timepoints. In 

contrast, mdx CK levels were generally much higher, with a considerable range 

amongst samples. (A) At 3 months post-treatment, treated mdx CK levels appeared to 

be lower, with less variation. (B) At 5 months, a similar pattern was observed in treated 

mice but there was less of a distinction between untreated mice. Points represent 

individual measurements, horizontal center bars represent means and vertical bars 

signify + SEM. 
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Figure 3.12. Bodyweight in mdx mice. Bodyweight was measured in untreated and 

treated mdx mice, which steadily increased with time. No significant differences were 

observed with treatment.  
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Figure 3.13. Muscle mass in mdx mice. Muscle mass was measured for different muscle groups at (A) 1 month, (B) 3 

months and (C) 5 months post-treatment. Treatment did not have a significant effect on mass for any muscle group. Bars 

represent mean with SEM. 
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Figure 3.14. Vector persistence in treated mdx mice. The number of viral genomes 

per cell were detected in (A) gastrocnemius and (B) diaphragm over time. (A) The 

number of vector genomes in gastrocnemius was maintained from 1 to 3 months, with a 

decrease at 5 months. (B) Viral genomes in the diaphragm were greatly reduced with 

time. Bars represent mean with SEM. 
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V. Discussion 

In this chapter, I examined the role of microRNA-206 in muscle pathology and if 

downregulation of miR-206 provides therapeutic benefit via expression of utrophin. First, 

I showed that administration of AAV9-anti-miR-206 significantly improved utrophin 

transcript levels in mdx mice and increased protein levels as well. Thus, downregulation 

of miR-206 diminishes its inhibitory effect on utrophin expression. After anti-miR-206 

treatment, muscle pathology in the mdx mice appeared to improve, with a normalization 

of muscle fiber morphology and organization and also a decrease in inflammatory cell 

infiltration. Lowered serum CK levels also reflected a reduction in overall muscle 

damage with treatment. A significant decrease in centronucleation signified 

improvements in muscle fiber stability, since regeneration occurs in response to active 

myofiber necrosis. A slight shift in myofiber size was observed with treatment; however, 

most fibers were still smaller and likely less mature than in the WT. Fiber size in the 

diaphragm showed a similar pattern (not shown). Coupled with the centronucleation 

results, it is possible that the treatment may prevent mature myofiber death, but has no 

effect on myoblast proliferation. Treatment also did not appear to affect body or muscle 

mass. 

Reducing microRNA-206 also appeared to influence a prominent aspect of the 

dystrophic phenotype, fibrosis. Masson trichrome staining revealed a significant 

decrease in collagen deposition. The presence of collagen fibers was examined by 

Picrosirius red/fast green staining, which showed that there were fewer mature fibers 

with treatment. Furthermore, increases in hydroxyproline content observed in the mdx 

diaphragm with time were stunted by treatment. These data suggest that 
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downregulation of miR-206 may delay progression of secondary disease pathways 

resulting from myofiber necrosis, such as fibrosis. 

While utrophin is a known therapeutic target and can prevent muscle damage 

and fibrosis associated with DMD pathology, it is important to note that any changes 

could be influenced by expression of additional miR-206 targets and through a variety of 

different mechanisms. As mentioned in Chapter II, increased VEGFA expression can 

improve muscle vascularization to better dystrophic pathology. IGF-1 is another 

therapeutic miR-206 target whose expression may be hampered as well (Engvall and 

Wewer 2003). It is possible that miR-206 downregulation depresses targets that work 

together to produce the improvements observed in this study. 

Nonetheless, there were obvious shortcomings with anti-miR-206 treatment. As 

discussed in Chapter II, miR-206 downregulation was short-lived and a marked 

reduction in viral genome was observed in the diaphragm. Interestingly, even though 

AAV transduction was initially lower in the hindlimb, motor function increases were still 

observed and may suggest that not all muscle fibers need to be transduced for 

therapeutic effect. Unlike utrophin gene replacement, sarcolemmal distribution in the 

majority of fibers was not observed. Studies suggest that only a two or three-fold 

increase is necessary to improve the dystrophic phenotype, so increased utrophin 

expression may only need occur in a fraction of fibers (Khurana and Davies 2003). 

Stronger staining in the neuromuscular junction with treatment also does not rule its 

contribution in improved function. In mdx; utrophin-/- mice, utrophin expression at the 

NMJ is greatly reduced and results in a decrease in the number of acetylcholine 

receptors by as much as 40%, suggesting that proper NMJ function is also affected in 
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DMD (Gramolini and Jasmin 1997). Furthermore, overexpression of PGC-1α, a 

transcriptional coactivator, enhanced NMJ function by improving motor neuron activity, 

resulting in improved muscle pathology and running performance in mdx mice 

(Handschin, Kobayashi et al. 2007). While dystrophic symptoms were greatly improved, 

miR-206 downregulation was not sufficient to completely alleviate pathology and 

prevent further muscle degeneration. Still, these data demonstrated that downregulation 

of miR-206 improve muscle pathology, supporting a deleterious role for miR-206 in 

DMD. In conclusion, this study draws attention to a previously unappreciated aspect of 

DMD and defines a new therapeutic avenue for muscular dystrophy. 
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CHAPTER 4: FUTURE DIRECTIONS 

I. Overall impact of the current study 

The goal of this study was to examine the role of microRNA-206 in mature 

muscle in secondary disease pathways that contribute to the dystrophic phenotype. The 

data presented here support a pathological role for miR-206, which is alleviated to some 

degree after miR-206 knockdown. This body of work also highlights the influence of 

secondary disease pathways on DMD pathology and their function in exacerbating the 

primary defect. Targeting dystrophin alone may not be sufficient to fully resolve 

symptoms and it is possible that concurrent disease mechanisms need to be addressed 

for complete recovery. 

Although treatment with AAV9-anti-miR-206 improved dystrophic symptoms, the 

effect is less striking compared to direct gene replacement therapies with mini- or micro-

dystrophin. Still, the lack of persistent gene expression and discovery of dystrophin-

targeted T cell responses observed in DMD patients have halted progression of such 

therapies, spurring investigation into alternative AAV serotypes and strategies for 

increasing efficacy (Kornegay, Li et al. 2010, Mendell , Campbell  et al. 2010). DMD 

patients may develop an immune response to the therapeutic dystrophin gene or to 

dystrophin expressed by revertant fibers. Therefore, strategies that seek to increase 

endogenous expression of booster genes may fare better. One example is treatment 

with an utrophin upregulator, which works by increasing expression of endogenous 

utrophin and has shown promise in clinical trials (Tinsley, Fairclough et al. 2011). 
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A major obstacle in DMD treatments is the size limit of presently available 

vectors. The full-length dystrophin gene is 2.4 Mbp with a cDNA length of 14 kb. Current 

gene therapy strategies rely on producing a truncated dystrophin protein to produce a 

milder phenotype similar to Becker muscular dystrophy. Using short sequences to affect 

microRNA-mediated regulation are more amenable to size constraints and are more 

versatile through their ability to target multiple pathways. Here, I have shown for the first 

time that using AAV-mediated microRNA downregulation has therapeutic potential for 

DMD, supporting further exploration into aberrant microRNA expression in other 

diseases that may benefit from a similar approach. 

II. Possible future studies 

MicroRNA-206 is known to be upregulated in both mdx mice and DMD patients, 

suggesting that this therapy could eventually be translated to human use (Greco, De 

Simone et al. 2009). Additional investigation to quantify miR-206 and miR-206 target 

expression in humans is needed to determine if patients would benefit from this therapy. 

Verification of miR-206 target binding in humans is also necessary. While miR-206 is 

upregulated in humans, it is possible that the amount of miR-206 or anti-miR-206 

binding is not similar to mice, which would affect therapeutic efficacy of this treatment. 

Adjustments could be made to the anti-miR-206 sequence to increase miR-206 

sequestration in humans. 

The full potential of this therapy may also be obscured by insufficient depletion of 

miR-206. Although no attempt was made during this study to maximize microRNA 

binding efficacy, another group showed that up to 7 binding sites for another microRNA 

can be placed on a decoy target, after which the knockdown effect was saturated 



 

 98 

(Haraguchi, Ozaki et al. 2009). This warrants further exploration into dosing and 

additional miR-206 binding sites on the decoy target. 

Presently available AAV vectors also do not efficiently transduce satellite, or 

muscle precursor, cells, which highly express miR-206 (Arnett, Konieczny et al. 2014). 

This may be an advantage, since one major concern of targeting the satellite cells 

would be interference with normal muscle maturation. However, it has been 

hypothesized that muscle precursors are unable to differentiate due to inhibitory factors 

in the diseased microenvironment (Oexle and Kohlschütter 2001). Since miR-206 levels 

decrease as muscle cells mature, it would be interesting to see if miR-206 reduction 

would affect differentiation or aid in repopulating the muscle with differentiated fibers. 

While miR-206 is known to inhibit transcription factor Pax7 expression during early 

stages of differentiation, it is unclear what role miR-206 plays at later timepoints. Further 

study into the expression profile of miR-206 over time and whether this pattern is 

perturbed in DMD would be very useful for understanding the best way to utilize this 

therapy. 

III. Considerations for DMD therapies 

 While we now have a better understanding of miR-206 function in DMD, the 

current results indicate that miR-206 reduction would not have an immediate impact on 

functional deficits. Because this treatment affects secondary disease mechanisms and 

does not appear to increase sarcolemmal utrophin expression globally, it can only work 

to lessen the severity of pathology and cannot prevent membrane instability and 

eventual muscle death. As mentioned previously, improvements to the current 

therapeutic design could be made. However, anti-miR-206 treatment may be useful in 
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combination with gene therapies that increase dystrophin levels. For example, AAVs 

carrying mini-dystrophin and anti-miR-206 could be co-delivered to target both primary 

and secondary disease mechanisms. Direct administration of an oligonucleotide with 

the anti-miR-206 sequence, similar to AONs for exon skipping therapies, could also 

easily be incorporated into existing therapies and allow for changes in dosing or even 

repeated dosing. 

IV. Conclusions 

Although additional verification is needed for eventual clinical application of anti-

miR-206 treatment, I have shown for the first time that miR-206 can be targeted to elicit 

a therapeutic effect. I also show that miR-206 affects beneficial gene expression, 

supporting its pathological role. In summary, I have uncovered evidence for a previously 

unappreciated disease mechanism as well as a novel therapeutic paradigm for 

Duchenne muscular dystrophy, bringing us another step closer to a cure.
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