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ABSTRACT

HENGCHIN YEH: Adaptive Modeling of Details for Physically-based Sound Synthesis and
Propagation

(Under the direction of Ming C. Lin)

In order to create an immersive virtual world, it is crucial to incorporate a realistic aural

experience that complements the visual sense. Physically-based sound simulation is a method to

achieve this goal and automatically provides audio-visual correspondence. It simulates the physical

process of sound: the pressure variations of a medium originated from some vibrating surface

(sound synthesis), propagating as waves in space and reaching human ears (sound propagation).

The perceived realism of simulated sounds depends on the accuracy of the computation methods

and the computational resource available, and oftentimes it is not feasible to use the most accurate

technique for all simulation targets. I propose techniques that model the general sense of sounds

and their details separately and adaptively to balance the realism and computational costs of sound

simulations.

For synthesizing liquid sounds, I present a novel approach that generate sounds due to the

vibration of resonating bubbles. My approach uses three levels of bubble modeling to control the

trade-offs between quality and efficiency: statistical generation from liquid surface configuration,

explicitly tracking of spherical bubbles, and decomposition of non-spherical bubbles to spherical

harmonics. For synthesizing rigid-body contact sounds, I propose to improve the realism in two

levels using example recordings: first, material parameters that preserve the inherent quality of the

recorded material are estimated; then extra details from the example recording that are not fully

captured by the material parameters are computed and added. For simulating sound propagation

in large, complex scenes, I present a novel hybrid approach that couples numerical and geometric

acoustic techniques. By decomposing the spatial domain of a scene and applying the more accurate

and expensive numerical acoustic techniques only in limited regions, a user is able to allocate

computation resources on where it matters most.
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CHAPTER 1: INTRODUCTION

In our real-world experience, we are constantly submerged in a wide variety of sounds. The

aural experience complements the visual sense. For example, when we see a wave crashing on a

beach we expect to hear the splashing sound. When we walk toward talking people we expect to

hear them more clearly, and the voice should become less distinctive when we walk around a corner.

In a virtual environment, being able to incorporate sound effects that corresponds to visual events

greatly enhances users’ immersion. Sound effect production thus has a wide application in video

games, computer animation, films, training systems, computer aided design, scientific visualization,

and assistive technology for the visually impaired.

Traditional methods of incorporating sound effect is a laborious practice. talented Foley artists

are normally employed to record a large number of sound samples in advance and manually edit and

synchronize the recorded sounds to a visual scene. This approach generally achieves satisfactory

results. However, it is labor-intensive and cannot be applied to all interactive applications. It is still

challenging, if not infeasible, to produce sound effects that precisely capture complex interactions

that cannot be predicted in advance.

Therefore physically-based sound simulation has been developed as a method to automatically

integrate sounds into a virtual environment. It aims to simulate the physical process of sound,

which is essentially the pressure variations of a medium originated from some vibration of surface,

propagating in space and reaching human ears. Recent progress has been made on sound synthesis

models that automatically produce sounds for various types of objects and phenomena. The practice

directly provides audio-visual correspondence – it generates sounds that automatically synchronize

with visual events and naturally capture the variation of object interactions (e.g. a ball bouncing or

rolling, water in a brook running rapidly or calmly) or acoustic effects (e.g. the muffling of sound

when the source is occluded from the listener).



Besides audio-visual correspondence, another factor is the quality of audio. In theory, if the

perfect model of a physical phenomenon exists and infinite computing power is available, the

resulting sound can be faithfully simulated from first principles. In practice, one model does not fit all.

In some cases the existing model is not complete. For example, a universal damping model that can

explain the vibration and sound-generating behavior of all materials is still an open research problem.

In some cases the fine-scale dynamics is not resolved, especially when sound is to be generated

from existing visual simulation. For example the fluid simulation in games usually provides only

the surface information, and only in a coarse time resolution (30-60 fps). Even if an accurate model

exists and all scales are resolved, the computational cost might be prohibitively high. On the other

hand, simply omitting details and applying only coarse approximation often produces unsatisfactory

results. Human ears are extremely sensitive to details: the ‘crisp’ noise of placing a coffee cup on a

plate, the subtle variation of each rain drop, the acoustical quality of a concert hall – all contribute to

perceived realism. A poorly simulated audio sounds ‘fake’ and affects the sense of immersion.

1.1 Adaptive Modeling of Details

In order to efficiently produce faithful aural experience for a complex sound source or environ-

ment, I propose techniques that model the general sense of sounds and their details separately. The

principle is to first employs simplified, efficient methods to produce sounds that coarsely approximate

the simulated sound sources (e.g. water motion, solid objects collision) or give a rough sense of the

environment (e.g. a room or an open scene). Then rich and complex details are modeled separately

and coupled into the system to improve realism of generated audios in an adaptive, user-controllable

manner. The goal of my thesis is to develop simulation approaches that follow this general principle

for many sound-related problems that are of interest to virtual environment applications.

For synthesizing liquid sounds, we adaptively model bubbles in different levels of details, because

the dominant source of sound generated by liquid is the oscillation of bubbles within the fluid medium.

Given just the geometry and velocity of a water surface, liquid sounds can be simulated in real

time through statistical bubble generation and radius distribution models. If bubbles are explicitly

modeled and tracked, more faithful liquid sounds can be generated. Even more sound details can

be added by considering non-spherical bubbles, where the shape deviation from a perfect sphere is

2



decomposed into spherical harmonics, and the sound from each harmonic is summed. By choosing

which bubbles are statistically generated, which bubbles are explicitly tracked, and which bubbles’

shapes are decomposed to spherical harmonics (and to what order), a user can control the trade-offs

between realism and computational cost.

For synthesizing rigid-body contact sounds, linear modal synthesis is a powerful tool to simulate

rigid-body sound in a physically-based manner, but the synthesized sounds are not as rich and

realistic as real-world recordings. Recorded sounds, on the other hand, include a lot of details

that linear modal synthesis does not model, such as fine-scale inhomogeneity, nonlinear resonant

modes, and transient noise of unknown nature, are are still widely used in movies, animations, and

games. I propose to improve the realism of linear modal synthesis in two levels. First, using an

example recording to estimate the material parameters allows modal-synthesized sounds to preserve

the inherent quality of the recorded material. Secondly, the difference between the example recording

and the modal-synthesized sound is computed, transfered to different geometries if necessary, and

added back to the final synthesized sound.

For simulating sound propagation in a large scene, the adaptive modeling of details is achieved

by combining two different acoustic techniques. Traditionally, numerical acoustic technique are

used to accurately model wave phenomena such as diffraction, interference, and scattering, but

these techniques are generally expensive. Performing an accurate wave simulation for the entire

scene, however, is usually not necessary – sound wave traveling in empty space and reflecting from

large objects can be more efficiently modeled as rays with geometric acoustic techniques. Only in

the vicinity of objects smaller than the wavelength of the sound waves are the wave phenomena

significant and numerical techniques required. I propose to decompose the spatial domain of a scene

and apply the numerical acoustic techniques only in limited, smaller regions, allowing a user to

allocate computation resources on where it matters the most.

1.2 Thesis Statement

Realistic sounds from complex physical systems such as liquids and rigid bodies, as well as

propagation in a large scene, can be efficiently simulated on current hardware through physically-

based sound synthesis and propagation techniques that model details separately and adaptively.
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1.3 Challenges and Contributions

My contributions can be divided into three main areas, the simulation of liquid sounds, rigid-body

contact sounds, and sound propagation. I will discuss the respective computational challenges as

well as my contributions.

1.3.1 Sound Simulation from Fluid Simulation

I investigate new methods for sound synthesis in a liquid medium in the first part of my thesis.

Our formulation is based on prior work in physics and engineering, which shows that sound is

generated by the resonance of bubbles within the fluid (Rayleigh, 1917). We couple physics-based

fluid simulation with the automatic generation of liquid sound based on Minneart’s formula (Minnaert,

1933) for spherical bubbles and spherical harmonics (Leighton, 1994) for non-spherical bubbles. We

also present a fast, general method for tracking the bubble formations and a simple technique to

handle a large number of bubbles within a given time budget.

The proposed synthesis algorithm offers the following advantages:

• It renders both liquid sounds and visual animation simultaneously using the same fluid simula-

tor.

• It introduces minimal computational overhead on top of the fluid simulator.

• For fluid simulators that generates bubbles, no additional physical quantities, such as force,

velocity, or pressure are required – only the geometry of bubbles.

• For fluid simulators without bubble generation, a physically-inspired bubble generation scheme

provides plausible audio.

• It can adapt and balance between computational cost and quality.

We also decouple sound rendering rates (44,000 Hz) from graphical updates (30-60 Hz) by

distributing the bubble processing over multiple audio frames.

4



1.3.2 Example-Guided Rigid Body Sound Synthesis

In real-time applications, modal synthesis methods are often used for simulating sounds. This

approach generally does not depend on any pre-recorded audio samples to produce sounds triggered

by all types of interactions, so it does not require manually synchronizing the audio and visual events.

The produced sounds are capable of reflecting the rich variations of interactions and also the geometry

of the sounding objects. Although this approach is not as demanding during run time, setting up

good initial parameters for the virtual sounding materials in modal analysis is a time-consuming and

non-intuitive process. For a complicated scene consisting of many different sounding materials, the

parameter selection procedure can quickly become prohibitively expensive and tedious.

Although tables of material parameters for stiffness and mass density are widely available,

directly looking up these parameters in physics handbooks does not offer intuitive, direct control

as using a recorded audio example. In fact, sound designers often record their own audio to obtain

the desired sound effects. This chapter presents a new data-driven sound synthesis technique that

preserves the realism and quality of audio recordings, while exploiting all the advantages of physically

based modal synthesis. We introduce a computational framework that takes just one example audio

recording and estimates the intrinsic material parameters (such as stiffness, damping coefficients,

and mass density) that can be directly used in modal analysis.

As a result, for objects with different geometries and run-time interactions, different sets of

modes are generated or excited differently, and different sounds are produced. However, if the

material properties are the same, they should all sound like coming from the same material. For

example, a plastic plate being hit, a plastic ball being dropped, and a plastic box sliding on the

floor generate different sounds, but they all sound like ‘plastic’, as they have the same material

properties. Therefore, if we can deduce the material properties from a recorded sound and transfer

them to different objects with rich interactions, the intrinsic quality of the original sounding material

is preserved. Our method can also compensate the differences between the example audio and the

modal-synthesized sound. Both the material parameters and the residual compensation are capable of

being transfered to virtual objects of varying sizes and shapes and capture all forms of interactions.

The key contributions of my approach are summarized below:
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• A feature-guided parameter estimation framework to determine the optimal material parameters

that can be used in existing modal sound synthesis applications.

• An effective residual compensation method that accounts for the difference between the

real-world recording and the modal-synthesized sound.

• A general framework for synthesizing rigid-body sounds that closely resemble recorded

example materials.

• Automatic transfer of material parameters and residual compensation to different geometries

and runtime dynamics, producing realistic sounds that vary accordingly.

1.3.3 Wave-Ray Hybrid Sound Propagation

Sound propagation techniques are used to model how sound waves travel in the space and interact

with various objects in the environment. Sound propagation algorithms are used in many interactive

applications, such as computer games or virtual environments, and offline applications, such as

noise prediction in urban scenes, architectural acoustics, virtual prototyping, etc.. Realistic sound

propagation that can model different acoustic effects, including diffraction, interference, scattering,

and late reverberation, can considerably improve a user’s immersion in an interactive system and

provides spatial localization (Blauert, 1983).

The acoustic effects can be accurately simulated by numerically solving the acoustic wave

equation. Some of the well-known solvers are based on the boundary-element method, the finite-

element method, the finite-difference time-domain method, etc. However, the time and space

complexity of these solvers increases linearly with the volume of the acoustic space and is a cubic

(or higher) function of the source frequency. As a result, these techniques are limited to interactive

sound propagation at low frequencies (e.g. 1-2KHz) (Raghuvanshi et al., 2010; Mehra et al., 2013),

and may not scale to large environments.

Many interactive applications use geometric sound propagation techniques, which assume that

sound waves travels like rays. This is a valid assumption when the sound wave travels in free space or

when the size of intersecting objects is much larger than the wavelength. As a result, these geometric

techniques are unable to simulate many acoustic effects at low frequencies, including diffraction,
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interference, and higher-order wave effects. Many hybrid combinations of numeric and geometric

techniques have been proposed, but they are limited to small scenes or offline applications.

I have developed a novel hybrid approach that couples geometric and numerical acoustic

techniques to perform interactive and accurate sound propagation in complex scenes. My approach

uses a combination of spatial decomposition and frequency decomposition, along with a novel

two-way wave-ray coupling algorithm. The entire simulation domain is decomposed into different

regions, and the sound field is computed separately by geometric and numerical techniques for each

region. In the vicinity of objects whose sizes are comparable to the simulated wavelength (near-object

regions), we use numerical wave-based methods to simulate all wave effects. In regions away from

objects (far-field regions), including the free space and regions containing objects that are much

larger than the wavelength, we use a geometric ray-tracing algorithm to model sound propagation.

We restrict the use of numeric propagation techniques to small regions of the environment and

precompute the pressure field at low frequencies. The rest of the pressure field is precomputed using

ray tracing.

At the interface between near-object and far-field regions, we need to couple the pressures

computed by the two different (one numerical and one geometric) acoustic techniques. Rays entering

a near-object region define the incident pressure field that serves as the input to the numerical acoustic

solver. The numerical solver computes the outgoing scattered pressure field, which in turn has to be

represented by rays exiting the near-object region. At the core of our hybrid method is a two-way

coupling procedure that handles these cases. We present a scheme that represents two-way coupling

using transfer functions and computes all orders of interaction.

The key results of my work include:

• An efficient hybrid approach that decomposes the scene into regions that are more suitable for

either geometric or numerical acoustic techniques, exploiting the strengths of both.

• Novel two-way coupling between wave-based and ray-based acoustic simulation based on

fundamental solutions at the interface that ensures the consistency and validity of the solution

given by the two methods. Transfer functions are used to model two-way couplings to allow

multiple orders of acoustic interactions.

7



• Fast, memory-efficient interactive audio rendering that only uses tens to hundreds of megabytes

of memory.

We have also tested our technique on a variety of scenarios and integrated our system with the

Valve’s Source™game engine. Our technique is able to handle both large indoor and outdoor scenes

(similar to geometric techniques) as well as generate realistic acoustic effects (similar to numeric

wave solvers), including late reverberation, high-order reflections, reverberation coloration, sound

focusing, and diffraction low-pass filtering around obstructions. Furthermore, our pressure evaluation

takes orders of magnitude less memory compared to state-of-the-art wave equation solvers.

1.4 Thesis Organization

The following chapters are organized as follows. In the next chpater, I discuss related work in

the areas of sound synthesis (for liquid sounds and rigid body sounds) and sound propagation. Then,

three chapters are devoted to describe the three main key contributions of my thesis work: sound

synthesis from fluid simulation, example-guided rigid body sound synthesis, and wave-ray hybrid

sound propagation. I conclude my thesis with a summary of the main results, as well as a discussion

of future work.
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CHAPTER 2: PREVIOUS WORK

In this chapter I review related work in sound synthesis and sound propagation.

2.1 Sound Synthesis

In the last couple of decades, there has been strong interest in digital sound synthesis in both

computer music and computer graphics communities due to the needs for auditory display in virtual

environment applications. The traditional practice of Foley sounds is still widely adopted by sound

designers for applications like video games and movies. Real sound effects are recorded and edited

to match a visual display. More recently, granular synthesis became a popular technique to create

sounds with computers or other digital synthesizers. Short grains of sounds are manipulated to

form a sequence of audio signals that sound like a particular object or event. Roads (2004) gave an

excellent review on the theories and implementation of generating sounds with this approach. Picard

et al. (2009) proposed techniques to mix sound grains according to events in a physics engine.

Another approach for simulating sound sources is physically based sound synthesis. Sounds of

interesting natural phenomena as well as object interactions are simulated from physical principles,

and the synthesized sounds automatically synchronize with the visual rendering. My work on sound

synthesis follows this approach. I review the related work of physically-based simulation of liquid

and rigid-body sounds, as well as work on improving realism of synthesized sound by acquiring

parameters from real audio recordings and incorporating residuals.

2.1.1 Liquid Sounds

Since the seminal works of Foster and Metaxas (1996), Stam (1999), and Foster and Fed-

kiw (2001), there has been tremendous interest and research on visual simulation of fluids in

computer graphics. Generally speaking, current algorithms for visual simulation of fluids can be clas-

sified into three broad categories: grid-based methods, smoothed particle hydrodynamics (SPH), and



shallow-water approximations. We refer the reader to a recent survey (Bridson and Müller-Fischer,

2007) for more details.

For audio simulation, the physics literature presents extensive research on the acoustics of

bubbles, dating back to the work of Lord Rayleigh (1917). There have been many subsequent

efforts, including works on bubble formation due to drop impact (Pumphrey and Elmore, 1990;

Prosperetti and Oguz, 1993) and cavitation (Plesset and Prosperetti, 1977), the acoustics of a bubble

popping (Ding et al., 2007), as well as multiple works by Longuet-Higgins presenting mathematical

formulations for monopole bubble oscillations (1989b; 1989a) and non-linear oscillations (1991). T.

G. Leighton’s (1994) excellent text covers the broad field of bubble acoustics and provides many of

the foundational theories for my work.

Van den Doel (2005) introduced the first method in computer graphics for generating liquid

sounds. Using Minneart’s formula, which defines the resonant frequency of a spherical bubble in an

infinite volume of water in terms of the bubble’s radius, van den Doel provides a simple technique for

generating fluid sounds through the adustment of various parameters. Other previous liquid sound

synthesis methods provide limited physical basis for the generated sounds (Imura et al., 2007). Zheng

and James integrated fluid simulation with bubble-based sound synthesis to automatically generate

liquid sounds (2009). They consider spherical bubbles as in (van den Doel, 2005), and focus on the

propagation of sound – both from the bubble to the water surface and the water surface to the listener.

Their numerical sound propagation is compute-intensive and requires tens of hours of compute time

on a cluster.

A related topic is simulating sound generated by air movement, which is also governed by fluid

dynamics. Previous works include sound resulting from objects moving rapidly through air (2003)

and the sound of woodwinds and other instruments (Florens and Cadoz, 1991; Scavone and Cook,

1998). Sound generated by the turbulent field due to fire has also been simulated (Dobashi et al.,

2004; Chadwick and James, 2011).

2.1.2 Rigid Body Sounds

Rigid-body sounds play a vital role in all types of virtual environments. O’Brien et al. (2001)

proposed simulating rigid bodies with deformable body models that approximates solid objects’

small-scale vibration leading to variation in air pressure, which propagates sounds to human ears.
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Their approach accurately captures surface vibration and wave propagation once sounds are emitted

from objects. However, it is far from being efficient enough to handle interactive applications.

Adrien (1991) introduced modal synthesis to digital sound generation. For real-time applications,

linear modal sound synthesis has been widely adopted to synthesize rigid-body sounds (van den Doel

and Pai, 1998; O’Brien et al., 2002; Raghuvanshi and Lin, 2006; James et al., 2006a; Zheng and

James, 2010). This method acquires a modal model (i.e. a bank of damped sinusoidal waves) using

modal analysis and generates sounds at runtime based on excitation to this modal model. Moreover,

sounds of complex interaction can be achieved with modal synthesis. Van den Doel et al. (2001)

presented parametric models to approximate contact forces as excitation to modal models to generate

impact, sliding, and rolling sounds. Ren et al. (2010) proposed including normal map information to

simulate sliding sounds that reflect contact surface details.

More recently, Zheng and James (2011) created highly realistic contact sounds with linear modal

synthesis by enabling non-rigid sound phenomena and modeling vibrational contact damping. The

use of linear modal synthesis is not limited to creating simple rigid-body sounds. Chadwick et

al. (2009) used modal analysis to compute linear mode basis, and added nonlinear coupling of those

modes to efficiently approximate the rich thin-shell sounds. Zheng and James (2010) extended

linear modal synthesis to handle complex fracture phenomena by precomputing modal models for

ellipsoidal sound proxies. Moreover, the standard modal synthesis can be accelerated with techniques

proposed by (Raghuvanshi and Lin, 2006; Bonneel et al., 2008), which make synthesizing a large

number of sounding objects feasible at interactive rates.

However, few previous sound synthesis work addressed the issue of how to determine material

parameters used in modal analysis to more easily recreate realistic sounds.

2.1.2.1 Parameter Acquisition

Spring-mass (Raghuvanshi and Lin, 2006) and finite element (O’Brien et al., 2002) representa-

tions have been used to calculate the modal model of arbitrary shapes. Challenges lie in how to choose

the material parameters used in these representations. Pai et al. (2001) and Corbett et al. (2007)

directly acquires a modal model by estimating modal parameters (i.e. amplitudes, frequencies, and

dampings) from measured impact sound data. A robotic device is used to apply impulses on a real

object at a large number of sample points, and the resulting impact sounds are analyzed for modal
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parameter estimation. This method is capable of constructing a virtual sounding object that faithfully

recreates the audible resonance of its measured real-world counterpart. However, each new virtual

geometry would require a new measuring process performed on a real object that has exactly the

same shape, and it can become prohibitively expensive with an increasing number of objects in a

scene. This approach generally extracts hundreds of location-dependent parameters for one object

from many audio clips, while the goal of our technique instead is to estimate only a few parameters

that best represent one material of a sounding object from only one audio clip.

To the best of my knowledge, the only other research work that attempts to estimate sound

parameters from one recorded clip is by Lloyd et al. (2011). Pre-recorded real-world impact sounds

are utilized to find peak and long-standing resonance frequencies, and the amplitude envelopes are

then tracked for those frequencies. They proposed using the tracked time-varying envelope as the

amplitude for the modal model, instead of the standard damped sinusoidal waves in conventional

modal synthesis. Richer and more realistic audio is produced this way. Their data-driven approach

estimates the modal parameters instead of material parameters. Similar to the method proposed

by Pai et al. (2001), these are per-mode parameters and not transferable to another object with

corresponding variation. At runtime, they randomize the gains of all tracked modes to generate an

illusion of variation when hitting different locations on the object. Therefore, the produced sounds

do not necessarily vary correctly or consistently with hit points. Their adopted resonance modes plus

residual resynthesis model is very similar to that of SoundSeed Impact (Audiokinetic, 2011), which

is a sound synthesis tool widely used in the game industry. Both of these works extract and track

resonance modes and modify them with signal processing techniques during synthesis. None of them

attempts to fit the extracted data (which are pre-object based) to estimate a higher-level per-material

based model.

In computer music and acoustic communities, researchers proposed methods to calibrate phys-

ically based virtual musical instruments. For example, Välimäki et al. (1996; 1997) proposed a

physical model for simulating plucked string instruments. They presented a parameter calibration

framework that detects pitches and damping rates from recorded instrument sounds with signal

processing techniques. However, their framework only fits parameters for strings and resonance

bodies in guitars, and it cannot be easily extended to extract parameters of a general rigid-body

sound synthesis model. Trebian and Oliveira (2009) presented a sound synthesis method with linear
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digital filters. They estimated the parameters for recursive filters based on pre-recorded audio and

re-synthesized sounds in real time with digital audio processing techniques. This approach is not

designed to capture rich physical phenomena that are automatically coupled with varying object

interactions. The relationship between the perception of sounding objects and their sizes, shapes, and

material properties have been investigated with experiments, among which Lakatos et al. (1997) and

Fontana (2003) presented results and studied human’s capability to tell materials, sizes, and shapes

of objects based on their sounds.

2.1.2.2 Modal Plus Residual Models

The sound synthesis model with a deterministic signal plus a stochastic residual was introduced

to spectral synthesis by Serra and Smith (1990). This approach analyzes an input audio and divides it

into a deterministic part, which are time-variant sinusoids, and a stochastic part, which is obtained

by spectral subtraction of the deterministic sinusoids from the original audio. In the resynthesis

process, both parts can be modified to create various sound effects as suggested by Cook (1996;

1997; 2002) and Lloyd et al. (2011). Methods for tracking the amplitudes of the sinusoids in audio

dates back to Quateri and McAulay (1985), while more recent work (Serra and Smith III, 1990;

Serra, 1997; Lloyd et al., 2011) also proposes effective methods for this purpose. All of these works

directly construct the modal sounds with the extracted features. In contrast, our modal component is

synthesized with the estimated material parameters. Therefore, although I adopt the same concept

of modal plus residual synthesis for our framework, I face very different constraints due to the new

objective in material parameter estimation, and render these existing works not applicable to the

problem addressed in my thesis.

2.2 Sound Propagation

Computational acoustics studies the propagation of sound through a medium and may be roughly

classified into Geometric Acoustics and Numerical Acoustics depending on how wave propagation is

modeled. There has also been effort to combine the two techniques.
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2.2.1 Numerical Acoustic Techniques

Accurate, numerical acoustic simulations typically solve the acoustic wave equation using

numerical methods. The Finite Difference Time Domain (FDTD) method was originally proposed

to model electromagnetic waves (Yee, 1966; Taflove and Hagness, 2005). It discretizes space as a

uniform grid and solves for the field values at each cell for discrete time steps. It has been an adopted

to room acoustics problems (Botteldooren, 1994, 1995) and has recently been applied to medium sized

3D scenes (Sakamoto et al., 2002, 2004, 2006). The Finite Element Method (FEM) (Zienkiewicz

et al., 2006; Thompson, 2006) and the Boundary Element Method (BEM) (Cheng and Cheng, 2005;

Gumerov and Duraiswami, 2009) discretize the scene’s volume and surface into elements respectively.

They are usually employed to solve the steady-state frequency domain response, with FEM applied

mainly to interior and BEM to exterior acoustic problems (Kleiner et al., 1993). Digital Waveguide

Mesh approaches (Van Duyne and Smith, 1993) roots in musical synthesis and use discrete waveguide

elements to propagate acoustic waves along a single dimension (Savioja, 1999; Karjalainen and

Erkut, 2004; Murphy et al., 2007). Recently Raghuvanshi et al. proposed a method based on adaptive

rectangular decomposition (2009a). It achieves high accuracy with a coarse spatial discretization.

These techniques, however, require the volume or boundary of the scene to be discretized at least

twice the Nyquist frequency, and their time and space complexity increases as a third or fourth power

of frequencies. Hence, these techniques often require many hours of simulation time and gigabytes

of storage to model low frequencies in large scenes with static sources, and they scale as the third

or fourth power of frequency. Despite recent advances, they remain impractical for many real-time

applications.

Equivalent source method, also called the Method of Fundamental solutions (Ochmann, 1995,

1999), expresses the solution fields of the wave equation in terms of a linear combination of points

sources of various order (monopoles, dipoles, etc). The main idea behind this technique is to choose

the positions and amplitudes of these elementary sources such that the boundary condition is satisfied.

Thus, the resulting solution satisfies the wave equation. Recently, Mehra et al. (2013) proposed a

novel sound propagation technique for large outdoor scenes based on equivalent sources. James

et al. (2006b) solved a related sound radiation problem, using equivalent sources to represent the

radiation field generated by a vibrating object.
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2.2.2 Geometric Acoustic Techniques

Most acoustics simulation software and commercial systems are based on geometric tech-

niques (Funkhouser et al., 1998; Vorlander, 1989) that assume sound travels along linear rays (Funkhouser

et al., 2004). These methods are often based on stochastic ray tracing (Vorlander, 1989) or image

sources (Borish, 1984). They frequently take advantage of recent advances in CPU- and/or GPU-

based ray tracing techniques (Taylor et al., 2009, 2012) or frustum tracing (Chandak et al., 2008;

Lauterbach et al., 2007) to efficiently approximate sound propagation in complex, dynamic scenes.

The simplified assumption of rays limits these methods to accurately capture specular and diffuse

reflections only at high frequencies. Diffraction is typically modeled by identifying individual diffract-

ing edges (Svensson et al., 1999; Tsingos et al., 2001). These ray-based techniques can interactively

model early reflections and first order edge-diffraction (Taylor et al., 2012); however, they cannot

interactively model the reverberation of the impulse response explicitly, since that would require

high-order reflections and wave effects such as scattering, interference, and diffraction. Hence,

many commercial systems approximate reverberation using the parameters of simple statistical

models (Eyring, 1930).

While ray-tracing has been successfully used in many interactive acoustics systems (Lentz et al.,

2007), the number of rays traced has to be limited for scenes with moving listeners in order to

maintain real-time performance. As the worst-case complexity of image source methods scales

exponentially with the number of polygons in the scene, some interactive systems often group the

polygons to simplify the scene representation (Alarcao et al., 2010; Joslin and Magnenat-Thalmann,

2003).

2.2.3 Hybrid Techniques

Several methods for combining geometric and numerical acoustic techniques have been proposed.

One line of work is based on frequency decomposition: dividing the frequencies to be modeled

into low and high frequencies. Low frequencies are modeled by numerical acoustic techniques,

and high frequencies are treated by geometric methods, including the finite difference time domain

method (FDTD) (Southern et al., 2011; Lokki et al., 2011), the digital waveguide mesh method

(DWM) (Murphy et al., 2008), and the finite element method (FEM) (Granier et al., 1996; Aretz,
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2012). However, these methods use numerical methods at lower frequencies over the entire domain.

As a result, they are limited to offline applications and may not scale to very large scenes.

Another method of hybridization is based on spatial decomposition. The entire simulation

domain is decomposed to different regions: near-object regions are handled by numerical acoustic

techniques to simulate wave effects, while far-field regions are handled by geometric acoustic

techniques. Hampel et al. (2008) combine the boundary element method (BEM) and geometric

acoustics using a spatial decomposition. Their method provides a one-way coupling from BEM to

ray tracing, converting pressures in the near-object region (computed by BEM) to rays that enter

the far-field region containing the listener. In electromagnetic wave propagation, Wang et al. (2000)

propose a hybrid technique combining ray tracing and FDTD. Their technique is also based on a

one-way coupling, where rays are traced in the far-field region and collected at the boundaries of the

near-object regions. The pressures are then evaluated and serve as the boundary condition for the

FDTD method. These one-way coupling methods do not allow rays to enter and exit the near-object

regions of an object, and therefore acoustic effects of that object will not be propagated to the far-field

regions. Barbone et al. (1998) propose a two-way coupling that combines the acoustic field generated

using ray-tracing and FEM. Jean et al. (2008) present a hybrid BEM/beam tracing approach to

compute the radiation of tyre noise. However, these methods do not describe how multiple entrance

of rays into near-object regions of different objects is handled, which is crucial when simulating

interaction between multiple objects.

2.2.4 Acoustic Kernel-Based Interactive Techniques

There has been work in enabling interactive auralization for acoustic simulations through

precomputation. At a high level, these techniques tend to precompute an acoustic kernel, which is used

at runtime for interactive propagation in static environments. Raghuvanshi et al.(2010) precompute

acoustic responses on a sampled spatial grid using a numerical solver. They then encode perceptually

salient information to perform interactive sound rendering. Mehra et al. (2013) proposed an interactive

sound propagation technique for large outdoor scenes based on equivalent sources. Other techniques

use geometric methods to precompute high-order reflections or reverberation (Tsingos, 2009; Antani

et al., 2012) and compactly store the results for interactive sound propagation at runtime. Our method
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can be integrated into any of these systems as an acoustic kernel that can efficiently capture wave

effects in a large scene.
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CHAPTER 3: SOUND SYNTHESIS FROM FLUID SIMULATION

In this chapter, I discuss my work on performing sound synthesis from fluid simulation. The rest

of this chapter is organized as follows – in the next section I describe the physical principles of liquid

sound. After that, I describe how liquid sound can be simulated by integrating various kinds of fluid

simulators. Following this, I discuss the implementation details and the results obtained with my

approach. Finally I conclude with a summary of my contributions and a discussion of limitations of

my approach and possible directions of future work.

3.1 Liquid Sound Principles

Sound is produced by surface vibrations of an object under force(s). These vibrations travel

through the surrounding medium to the human ear and the changes in pressure are perceived as

sound. In the case of fluids, sound is primarily generated by bubble formation and resonance, creating

pressure waves that travel though both the liquid and air media to the ear. Although an impact

between a solid and a liquid will generate some sound directly, the amplitude is far lower than the

sound generated from the created bubbles. We refer the reader to Leighton’s (1994) excellent text on

bubble acoustics for more detail, and present an overview of the key concepts below.

3.1.1 Spherical Bubbles

Minneart’s formula, which derives the resonant frequency of a perfectly spherical bubble in an

infinite volume of water from the radius, provides a physical basis for generating sound in liquids.

Since external sound sources rarely exist in fluids and the interactions between resonating bubbles

create a minimal effect while greatly increasing the computational cost, we assume that a bubble

is given an initial excitation and subsequently oscillates, but is not continuously forced. The sound

generated by the bubble will, therefore, be dominated by the resonant frequency, as other frequencies

will be of lower magnitude and will rapidly die out after the bubble is created. Therefore, a resonating

bubble acts like a simple harmonic oscillator, making the resonant frequency dependent on the



stiffness of the restoring force and the effective mass of the gas trapped within the bubble. The

stiffness of the restoring force is the result of the pressure within the bubble and the effective mass is

dependent on the volume of the bubble and the density of the medium. If we approximate the bubble

as a sphere with radius, r0, then for cases where r0 > 1µm, the force depends predominantly on the

ambient pressure of the surrounding water, p0, and the resonant frequency is given by Minneart’s

formula,

f0 =
1

2π

√
3γp0

ρr2
0

, (3.1)

where γ is the specific heat of the gas (≈ 1.4 for air), p0 is the gas pressure inside the bubble at

equilibrium (i.e. when balanced with the pressure of the surrounding water) and ρ the density of the

surrounding fluid. For air bubbles in water, Equation 3.1 reduces to a simple form: f0r0 ≈ 3m/s. The

human audible range is 20 Hz to 20 kHz, so we will restrict our model to the corresponding bubbles

of radii, 0.15 mm to 15 cm.

An oscillating bubble, just like a simple harmonic oscillator, is subject to viscous, radiative, and

thermal damping. Viscous damping rapidly goes to zero for bubbles of radius greater than 0.1 mm, so

we will only consider thermal and radiative damping. We refer the reader to Section 3.4 of (Leighton,

1994) for a full derivation, and simply present the peritinant equations here. Thermal damping is

the result of energy lost due to conduction between the bubble and the surrounding liquid, whereas

radiative damping results from energy radiated away in the form of acoustic waves. These two can

be approximated as,

δth =

√
9(γ − 1)2

4Gth
f0 δrad =

√
3γp0

ρc2 , (3.2)

where c is the speed of sound and Gth is a dimensionless constant associated with thermal damping.

The total damping is simply the sum, δtot = δth + δrad.

Modeling the bubble as a damped harmonic oscillator, oscillating at Minneart’s frequency, the

impulse response is given by

p(t) = A0sin(2π f (t)t)e−β0t, (3.3)

where A0 is determined by the initial excitation of the bubble and β0 = π f0δtot is the rate of decay due

to the damping term δtot given above. For single-mode bubbles in low concentration, We replace f0 in
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the standard harmonic oscillator equation with f (t), where f (t) = f0(1 + ξβ0t), which helps mitigate

the approximation of the bubble being in an infinite volume of water by adjusting the frequency as it

rises and nears the surface. van den Doel (2005) conducted a user study and determined ξ ≈ 0.1 to

be the optimal value for a realistic rise in pitch.

To find the initial amplitude, A0, in Equation 3.3, (Longuet-Higgins, 1992) considers a bubble

with mean radius r0 that oscillates with a displacement εr0, the pressure p at distance l is given by

p(t) = −
4π2εr3

0 f 2
0

l
sin(2π f0t). (3.4)

Simplifying by plugging in f0 from Equation (3.1), we see that |p| ∝ εr0/l. Longuet-Higgins plugs in

empirically observed values for |p| and suggests that the initial displacement is 1% to 10% of the

mean bubble radius r0. Therefore, we can set

A0 = εr0 (3.5)

in Equation (3.3), where ε ∈ [0.01, 0.1] is a tunable parameter that determines the initial excitation of

the bubbles. We found that using a power law to select ε was effective

g(ε) ∝ ε−µ, (3.6)

where g is the probability density function of ε. By carefully choosing the scaling exponent µ, we

can ensure that most of the values of ε are within the desired range, i.e. below 10%. This gives us

a final equation for the pressure wave created by an oscillating spherical bubble (i.e. what travels

through the water, then air, to our ear) of

p(t) = εr0sin(2π f (t)t)e−β0t ε ∈ [0.01, 0.1] (3.7)

3.1.2 Generalization to Non-Spherical Bubbles

The approximations given above assume that the shape of the bubble is spherical. Given that

an isolated bubble converges to a spherical shape, the previous method is a simple and reasonable

approximation. That said, we expect non-spherical bubbles to arise frequently in more complex and
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turbulent scenarios. For example, studies of bubble entrapment by ocean waves have shown that

breaking waves create long, tube-like bubbles. We illustrate the necessity of handling these types

of bubbles in our “dam break” scenario (see Sec. 3.3). Longuet-Higgins also performed a study

showing that an initial distortion of the bubble surface of only r0
2 results in a pressure fluctuation as

large as 1
8 atmosphere (Longuet-Higgins, 1989b). Therefore, the shape distortion of bubbles is a very

significant mechanism for generating underwater sound. The generated audio also creates a more

complete sound, since a single non-spherical bubble will generate multiple frequencies (as can be

heard in the accompanying video).

In order to develop a more exact solution for non-spherical bubbles, we consider the deviations

from the perfect sphere in the form of spherical harmonics, i.e.

r(θ, φ) = r0 +
∑

cm
n Ym

n (θ, φ). (3.8)

Section 3.6 of (Leighton, 1994) presents a full derivation for this equation. By solving for the motion

of the bubble wall under the influence of the inward pressure, outward pressure and surface tension

on the bubble (which depends on the curvature), it can be shown that each zonal spherical harmonic

Y0
n oscillates at

f 2
n ≈

1
4π2 (n − 1)(n + 1)(n + 2)

σ

ρr3
0

(3.9)

where σ is the surface tension. Longuet-Higgins (1992) notes that unlike spherical bubbles, the

higher order harmonics decay predominantly due to viscous damping, and not thermal or radiative

damping. The amplitude of the nth mode thus decays with e−βnt, where

βn = (n + 2)(2n + 1)
ν

ρr2
0

(3.10)

and ν is the kinematic viscosity of the liquid. Given the frequency and damping coefficient for

each spherical harmonic, we can again use Equation (3.3) to find the time evolution for each mode.

Figure 3.1 gives several examples of oscillation modes corresponding to different spherical harmonics.

Since we have a separate instance of Equation (3.3) for each harmonic mode, we must also

determine the amplitude for each mode. The time-varying shape of the bubble can be described by
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Figure 3.1: Here we show a simple bubble decomposed into spherical harmonics. The upper
left shows the original bubble. The two rows on the upper right show the two octaves of the
harmonic deviations from the sphere. Along the bottom is the sound generated by the bubble and the
components for each harmonic.

the following formula,

r(θ, ϕ; t) ∼ r0 +
∑

n

c0
n(t)Y0

n (θ, ϕ) cos(2π fnt + ϑ), (3.11)

and as with a spherical bubble, each nth harmonic mode radiates a pressure wave pn as it oscillates.

The first-order term of the radiated pressure pn, when observed at a distance l from the source,

depends on (r0/l)n+1 (Longuet-Higgins, 1989b,a), which dies out rapidly and can be safely ignored.

The second-order term of the radiated pressure decays as l−1 and oscillates at a frequency of 2 fn,

twice as fast as the shape oscillation. Leighton proposes the following equation for pn

pn(t) = − 1
l

(
(n−1)(n+2)(4n−1)

2n+1
σc2

n
r2

0

)
(

ω2
n√

(4ω2
n−ω

2
b)2+(4βnωn)2

)
e−βntcos(2ωnt) (3.12)

where cn is the shorthand for c0
n, the coefficient of the nth zonal spherical harmonic from Equa-

tion (3.11), ωn = 2π fn, ωb = 2π fb = 2π( f 2
0 − β

2
0)

1
2 is the angular frequency of the radial (0th) mode
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(shifted due to damping), and βn is the damping factor whose value is determined by Equation (3.10).

Using Equations (3.10) and (3.12) we can determine the time evolution of each of the n spherical

harmonic modes.

In order to determine the number of spherical harmonics to be used, several factors need to be

considered. First notice that mode n oscillates at a frequency of 2 fn, creating a range of n whose

resulting pressure waves are audible. We define Naud to be the number of these audible n’s. Naud can

be derived using Equation (3.9), the radius r0 of a bubble and the human audible range (20 to 20,000

Hz).

The second term in Equation (3.12) depends on 1/(4ω2
n − ω

2
b), which means that as 2ωn ap-

proaches ωb (thus 2 fn approaches fb), the nth mode resonates with the 0th mode, and the value of |pn|

increases dramatically, as shown in Figure 3.2. Therefore we select the most important modes in

the spherical harmonic decomposition (described in section 3.2.2.4), by choosing values of n with

frequencies close to 1
2 fb and truncating the rest of the modes (corresponding to the left and the right

tails in Figure 3.2). We compute the initial energy for each mode, En (proportional to |pn|
2), and

collect the modes starting from the largest En, until (1) En is less than a given percentage, p, of the

largest mode, Emax; or (2) the sum of energy of the modes not yet selected is less than a percentage,

p, of the total energy of all audible modes, Etotal. The number of modes selected by (1) is denoted as

Nind(p), and that by (2) as Ntot(p). Some typical values for different r0’s are shown in Table 3.1. One

may choose either one of two criteria or a combination of both. As indicated in Table 3.1, 8 modes

seems sufficient for various sizes of bubble radii using the criterion (1), where the En falls below 1%

of Emax. Therefore, we can also use a fixed number of modes, say 8 to 10, in practice.

Furthermore, recall that in Equation (3.12) the pressure decays exponentially with a rate βn,

where Equation (3.10) tells us that βn increases with n and decreases with r0. If we choose to ignore

the initial “burst” and only look at the pressure wave a short time (e.g. 0.001 s) after the creation of

the bubble, then we can drop out even more modes at the beginning. This step is optional and the

effect is shown in the rightmost two columns of Table 3.1.

Equations (3.7) and (3.12) provide the mechanism for computing the sound generated by either

single or multi-mode bubbles, respectively. The pressure waves created by the oscillating bubble

travel through the surrounding water, into the air and to the listener. Since we do not consider
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Figure 3.2: A plot of the initial amplitude vs. frequency. From the plot it is clear that as fn (the
frequency of the bubble) approaches 1

2 fb (the damping shifted frequency) the initial amplitude
increases dramatically. We, therefore, use harmonics where fn ≈ 1

2 fb because they have the largest
influence on the initial amplitude.
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r0 (m) Naud Nind(1%) Ntot(10%) Nind(1%) Ntot(10%)
(t = 0) (t = 0) (t = 10−3s) (t = 10−3s)

0.5 1881 4 1109 4 87
0.05 90 8 106 8 12

0.005 20 4 1 4 1

Table 3.1: Number of modes selected by the two criteria for various typical r0’s.

propagation in this chapter, we assume a fixed distance between the listener and each bubble using

Equations (3.7) and (3.12) to model the pressure at the listener’s ear.

3.1.3 Statistical Generation

In the case where the fluid simulator does not handle bubble generation, we present a statistical

approach for generating sound. For a scene at a particular time instant, we consider how many

bubbles are created and what they sound like. The former is determined by a bubble generation

criteria and the latter is determined by a radius distribution model. As a result, even without knowing

the exact motion and interaction of each bubble from the fluid simulator, a statistical approach based

on our bubble generation criteria and radius distribution model provide sufficient information for

approximating the sound produced in a given scene.

3.1.3.1 Bubble Generation Criteria

Our goal is to examine only the physical and geometrical properties of the simulated fluid, such

as fluid velocity and the shape of the fluid surface, and be able to determine when and where a bubble

should be generated. Recent works in visual simulation use curvature alone (Narain et al., 2007), or

curvature combined with Weber number (Mihalef et al., 2009) as the bubble generation criteria.

In our work, we follow the approach presented by Mihalef et al. (2009). The Weber number is

defined as

We =
ρ∆U2L

(σ)
(3.13)

where ρ is the density of the fluid, ∆U is the relative gas-liquid velocity, L is the characteristic

length of the local liquid geometry and σ is the surface tension coefficient (Sirignano, 2000). This

dimensionless number We can be viewed as the ratio of the kinetic energy (proportional to ρ∆U2) to

the surface tension energy (proportional to σ/L). Depending on the local shape, when this ratio is
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beyond a critical value, the gas has sufficient kinetic energy to “break into” the liquid surface and

form a bubble; while at lower Weber numbers, the surface tension energy is able to separate the water

and air.

Besides the Weber number, we also need to consider the limitation of a fluid simulator. In

computer graphics, fluid dynamics is usually solved on a large-scale grid, with small-scale details

such as bubbles and droplets added in at regions where the large-scale simulation behaves poorly,

namely regions of high curvature. This is because a bubble is formed when the water surface curls

back and closes up, at which site the local curvature is high.

Combining the effects of the Weber number and the local geometry, we evaluate the following

parameter on the fluid surface

Γ = u2κ, (3.14)

where u is the liquid velocity and κ is the local curvature of the surface. The term u2 encodes the

Weber number, because in Equation 3.13 ρ, σ and L (which is taken to be the simulation grid length

dx) are constants, and ∆U2 = u2 since the air is assumed to be static. Bubbles are generated at

regions where Γ is greater than a threshold Γ0. The criteria also matches what we observe in nature–a

rapid river (larger u) is more likely to trap bubbles than a slow one. In the ocean, bubbles are more

likely to form near a wave (larger κ) than on a flat surface–our bubble generation mechanism captures

both of these characteristics.

3.1.3.2 Bubble Distribution Model

Once we have determined a location for a new bubble using the generation criteria, we select

its radius at random according to a radius distribution model. Works on bubble entrapment by rain

(Pumphrey and Elmore, 1990) and ocean waves (Deane and Stokes, 2002) suggest that bubbles are

created in a power law (r−α) distribution, where α determines the ratio of small to large bubbles.

In nature, the α takes value from 1.5 to 3.3 for breaking ocean waves (Deane and Stokes, 2002)

and ≈ 2.9 for rain (Pumphrey and Elmore, 1990), thus in simulation it can be set according to the

scenario. The radius affects both the oscillation frequency (Equation 3.1) and the initial excitation

(Equation 3.5) of the bubble. Plugging in the initial excitation factor ε selected by Equation 3.6, the

sound for the bubble can be fully determined by Equation 3.7. Combining the genration criteria
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and the radius distribution model, our approach approximate the number of sound sources and the

characteristics of their sounds plausibly in a physically-based manner for a dynamic scene.

3.2 Integration with Fluid Dynamics

There are many challenging computational issues in the direct coupling of fluid simulation with

sound synthesis. As mentioned earlier, the three commonly used categories of fluid dynamics in

visual simulation are grid-based methods, SPH and shallow-water approximations. We consider two

fluid simulators that utilize all three of these methods. Our shallow water formulation is an integrated

adaptation of the work of Thürey et al. (2007a; 2007b) and Hess (2007). The other is a hybrid

grid-SPH approach, taken heavily from the work of Hong et al. (2008). We present a brief overview

of the fluid simulator methods below and describe how we augment the existing fluid simulation

methods to generate audio. We refer the reader to (Thürey et al., 2007a; Hess, 2007; Hong et al.,

2008) for full details on the fluid dynamics simulations.

3.2.1 Shallow Water Method

3.2.1.1 Dynamics Equations

The shallow water equations approximate the full Navier-Stokes equations by reducing the di-

mensionality from 3D to 2D, with the water surface represented as a height field. This approximation

works well for situations where the velocity of the fluid does not vary along the vertical axis and the

liquid has low viscosity. The height field approximation restricts us to a single value for the fluid

along the vertical axis, making it unable to model breaking waves or other similar phenomena.

The evolution of the height field, H(x, t), in time is governed by the following equations:

∂H
∂t

= −v · ∇H − H(
∂vx

∂x
+
∂vy

∂y
)

∂vx

∂t
= −v · ∇vx − g

∂H
∂x

∂vy

∂t
= −v · ∇vy − g

∂H
∂y
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Figure 3.3: An overview of our liquid sound synthesis system
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where we assume the gravitation force, g = (0, 0, g)T is along the z-axis and v is the horizontal

velocity of the fluid. We use a staggered grid of size Nx × Ny with equal grid spacing ∆x and use a

semi-Lagrangian advection step to solve the equations.

3.2.1.2 Rigid Bodies

Due to the 2D nature of the shallow water equations, rigid bodies must be explicitly modeled

and coupled to the fluid simulation. This is complicated by the fact that our rigid bodies are 3D,

whereas, our fluid simulation is 2D. We therefore cannot apply the method for fluid-rigid body

coupling presented in previous works (Carlson et al., 2004; Batty et al., 2007; Robinson-Mosher

et al., 2008), as our cells encompass an entire column of water and it is unlikely a rigid body will be

large enough to fill a full vertical column. To that end, we explicitly model the interactions between

the fluid simulation and the rigid body simulation using two one-way coupling steps.

The rigid body is coupled to the fluid in two ways, a buoyancy force and drag and lift forces

resulting from the fluid velocity. The buoyancy force is calculated by projecting the area of each

triangle up to the water surface, counting downward facing triangles positive and upward facing ones

negative. The resulting force is calculated as,

fbouy = −gρ
n∑

i=1

−sign(ni · ez)Vi,

where ρ is the density of the fluid, ni and Vi are the normal and projected volume of triangle i and ez

points in the upward direction. The drag and lift forces are also calculated per face and point opposite

and tangential to the relative velocity of the face and the fluid, respectively. Exact equations can be

found in (Hess, 2007).

The fluid is coupled to the object in two ways as well, through the surface height and the fluid

velocity. The height is adjusted based on the amount of water displaced by the body on a given

time step. This is again calculated per face, but this time the face is projected in the direction of the

relative velocity. This can create both positive and negative values for the volume displaced, which is

desirable for generating both the wave in front of a moving body and the wake behind. The fluid

velocity of the cells surrounding a rigid body are adjusted as the water is dragged along with the
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body. The adjustment is calculated used the percentage of the column of water filled by the rigid

body, the relative velocities and a scaling constant. More details can again be found in (Hess, 2007).

3.2.2 Grid-SPH Hybrid Method

3.2.2.1 Dynamics Equations

We use an octree grid to solve the invicid incompressible Navier-Stokes equations (Losasso

et al., 2004), which are

u f + (u · ∇)u + ∇p/ρ = f

∇ · u = 0

where u is the fluid velocity, p is the pressure, ρ is the density and f is the external forcing term.

Although this provides a highly detailed simulation of the water, it would be too computationally

expensive to refine the grid down to the level required to simulate the smallest bubbles. To resolve

this, we couple the grid-based solver with bubble particles, modeled using SPH particles (Müller

et al., 2003, 2005; Adams et al., 2007). The motion of the particles is determined by the sum of

the forces acting on that particle. The density of particles at a point i defined as ρi =
∑

m jW(xi j, r j)

where W(x, r) is the radial symmetric basis function with support r defined in (Müller et al., 2003)

and m j and r j are the mass and radius of particle j. We therefore model the interactions of the bubbles

with the fluid simulator through a series of forces acting on the bubble particles:

1. A repulsive force to model the pressure between air particles, that drops to zero outside the

support W(x, r)

2. Drag and lift forces defined in terms of the velocity at the grid cells and the radius and volume

of the particles, respectively

3. A heuristic vorticity confinement term based on the vorticity confinement term from (Fedkiw

et al., 2001)

4. A cohesive force between bubble particles to model the high contrast between the densities of

the surrounding water and the air particles

5. A buoyancy force proportional to the volume of the particle
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To model the effects of the bubbles on the water, we add the reactionary forces from the drag

and lift forces mentioned above as external forcing terms into the incompressible Navier-Stokes

equations given above.

3.2.2.2 Bubble Extraction

Specifically, we need to handle two types of bubbles, those formed by the level sets and those

formed by the SPH particles. The level set bubbles can be separated from the rest of the mesh

returned by the level set method because they lie completely beneath the water surface and form

fully connected components. Once we have meshes representing the surface of the bubbles, we

decompose each mesh into spherical harmonics that approximate the shape, using the algorithm

presented in Section 3.2.2.4. The spherical harmonic decomposition and the subsequent sound

synthesis is linear in the number of harmonic modes calculated. Therefore, the number of spherical

harmonics calculated can be adjusted depending on desired accuracy and available computation time

(as discussed in Sec. 3.1.2). Once we have the desired number of spherical harmonics, we determine

the resonant frequencies using Equation (3.9).

For SPH bubble particles, there are two cases–when a bubble is represented by a single particle

and when it is represented by multiple particles. In the case of a single particle bubble we simply use

the radius and Equation (3.7) to generate the sound. When multiple SPH particles form one bubble,

we need to determine the surface formed by the bubble. We first cluster the particles into groups that

form a single bubble and then use the classic marching cubes algorithm (Lorensen and Cline, 1987)

within each cluster to compute the surface of the bubble. Once we have the surface of the bubble, we

use the same method as the level set bubble to find the spherical harmonics and generate audio.

3.2.2.3 Bubble Tracking and Merging

At each time step the fluid simulator returns a list of level set bubble meshes and SPH particles

which we convert into a set of meshes, each representing a single bubble. At each subsequent time

step we collect a new set of meshes and compare it to the set of meshes from the previous time

step with the goal of identifying which bubbles are new, which are preexisting and which have

disappeared. For each mesh, M, we attempt to pair it with another mesh, Mprev, from the previous

time step such that they represent the same bubble after moving and deforming within the time step.
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We first choose a distance, l ≥ vmax∆t, where vmax is the maximum possible speed of a bubble. We

then define neighbor(M, l) as the set of meshes from the previous time step whose center of masses

lie within l of M. For each mesh in neighbor(M, l), we compute its similarity score based on the

proximity of its center of mass to M and the closeness of the two volumes, choosing the mesh with

the highest similarity score. Once we have created all possible pairs of meshes between the new

and the old time steps, we are left with a set of bubbles from the old time step with no pair–the

bubbles to remove–and a set of bubbles in the new time step–the bubbles to create. Although it may

be possible to create slightly more accurate algorithm by tracking the particles that define an SPH or

level set bubble, these methods would also present nontrivial challenges. For example, in the case of

tracking the level set bubbles, the level set particles are not guaranteed to be spaced in any particular

manner and are constantly added and deleted, making this information difficult to use. In the case of

tracking bubbles formed by SPH particles, there would still be issues related to bubbles formed by

multiple SPH particles. The shape could remain primarily unchanged with the addition or removal of

a single particle and therefore the audio should remain unchanged as well, even though the IDs of

the particles change. We chose this approach because of its generality and its ability to handle both

level set and SPH bubbles, as well as other types of fluid simulators.

3.2.2.4 Spherical Harmonic Decomposition

In order to decompose a mesh, M, into a set of the spherical harmonics that approximate it, we

assume that M is a closed triangulated surface mesh and that it is star-shaped. A mesh is star-shaped

if there is a point o such that for every point p on the surface of M, segment op lies entirely within

M. The length of the segment op can be described as a function |op| = r(θ, ϕ) where θ and ϕ are the

polar and azimuthal angles of p in a spherical coordinate system originating at o. The function r(θ, ϕ)

can be expanded as a linear combination of spherical harmonic functions as in Equation (3.8).

The coefficient cm
n can be computed through an inverse transform

cm
n =

∫
Ω

P(θ, ϕ)Y
m
n (θ, ϕ)dΩ

where the integration is taken over Ω, the solid angle corresponding to the entire space. Furthermore,

if T is a triangle in M and we define the solid angle spanned by T as ΩT , then we have Ω =
⋃

T∈M ΩT
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and cm
n =

∑
T∈M

∫
ΩT

P(θ, ϕ)Y
m
n (θ, ϕ)dΩ. The integration can be calculated numerically by sampling

the integrand at a number of points on each triangle. For sound generation, we only need the zonal

coefficients c0
n, with n up to a user defined bandwidth, B. The spherical harmonic transform runs in

O(BNp) where Np is the total number of sampled points.

If the bubble mesh is not star-shaped, then it cannot be decomposed into spherical harmonics

using Equation (3.8). To ensure that we generate sound for all scenarios, if our algorithm cannot find

a spherical harmonic decomposition it automatically switches to a single mode approximation based

on the total volume of the bubble. Since this only happens with large, low-frequency bubbles, we

have not noticed any significant issues resulting from this approximation or the transition between

the two generation methods.

3.2.3 Decoupling Sound Update from Graphical Rendering

Since computing the fluid dynamics at 44,000 Hz, the standard frequency for good quality audio,

would add an enormous computation burden, we need to reconcile the difference between the fluid

simulator time step, Tsim (30-60 Hz), and the audio generation time step, Taudio (44,000 Hz). We

can use Equations (3.1) and (3.9) to calculate the resonant frequency at each Tsim and then use

Equations (3.7) and (3.12) to generate the impulse response for all the Taudio’s until the subsequent

Tsim. Naively computing the impulse response at each Taudio can create complications due to a large

number of events that take place in phase at each Tsim. In order to resolve this problem, we randomly

distribute each creation, merge and deletion event from Tsim onto one of the ∼733 Taudio between the

current and last Tsim.

3.3 Implementation and Results

The rendering for the shallow water simulation is performed in real time using OpenGL and

custom vertex and fragment shaders while the rendering for the hybrid simulator is done off-line

using a forward ray tracer. In both cases, once the amplitude and frequency of the bubble sound is

calculated, the final audio is rendered using The Synthesis ToolKit (Cook and Scavone, 2010).
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3.3.1 Benchmarks

We have tested our integrated sound synthesis system on the following scenarios (as shown in

the supplementary videos).

3.3.1.1 Hybrid Grid-SPH Simulator

(a) Spherical Harmonic Decomposition

(b) Minimum Enclosing Sphere

Figure 3.4: Wave plots showing the frequency response of the pouring benchmark. We have
highlighted the moments surrounding the initial impact of the water and show our method (top) and
a single-mode method (bottom) where the frequency for each bubble is calculated using volume of
the minimum enclosing sphere.

Pouring Water: In this scenario, water is poured from a spigot above the surface as shown in

Figure 3.5. The initial impact creates a large bubble as well as many smaller bubbles. The large

bubble disperses into smaller bubbles as it is bombarded with water from above. The generated

sound takes into account the larger bubbles as well as all the smaller ones, generating the broad

spectrum of sound heard in the supplementary video. An average of 11,634 bubbles were processed

per simulation frame to generate the sounds. Figure 3.4 shows plots of the sound generated using our
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Figure 3.5: Liquid sounds are generated automatically from a visual simulation of pouring water.

method and a single-mode version using the volume of the minimum enclosing sphere to calculate

the volume.

Five Objects: In this benchmark, shown in Figure 3.7, five objects are dropped into a tank of water

in rapid succession, creating many small bubbles and one large bubble as each one plunges beneath

the water surface. The video shows the animation and the sound resulting from the initial impacts as

well as the subsequent bubbles and sound generated by the sloshing of the water around the tank. We

used ten spherical harmonic modes and processed up to 15,000 bubbles in a single frame. Figure 3.6

shows the wave plots for our method and the minimum enclosing sphere method. As you can see,

using the spherical harmonic decomposition creates a fuller sound, whereas the minimum enclosing

sphere method creates one frequency that decays over time.

Dam Break: In this benchmark, shown in Figure 3.9, we simulate the ”dam break” scenario that

has been used before in fluid simulation, however, we generate the associated audio automatically.

We processed an average of 13,589 bubbles per frame using five spherical harmonic modes. This
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(a) Spherical Harmonic Decomposition

(b) Minimum Enclosing Sphere

Figure 3.6: Wave plots showing the frequency response of the five objects benchmark. We have
highlighted the impact of the final, largest object. The top plot shows our method and the bottom, a
single-mode method where the frequency for each bubble is calculated using volume of the minimum
enclosing sphere.

benchmark also demonstrates the creation of a tube-shaped bubble as the right-to-left wave breaks,

something that studies in engineering (Longuet-Higgins, 1990) have shown to be the expected result

of wave breaking. The creation of highly non-spherical, tube-like bubbles highlight the need for the

spherical harmonic decomposition to handle bubbles of arbitrary shapes. This is illustrated in the

supplementary video and Figure 3.8, where the minimum enclosing sphere method creates a highly

distorted wave plot when the tube-shaped bubble is created.

3.3.1.2 Shallow Water Simulator

Brook: Here we simulate the sound of water as it flows in a small brook. We demonstrate the

interactive nature of our method by increasing the flow of water half way through the demo, resulting

in higher velocities and curvatures of the water surface and therefore, louder and more turbulent

sound.
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Figure 3.7: Sound is generated as five objects fall into a tank of water one after another.

Duck: As shown in Figure 3.11, as a user interactively moves a duck around a bathtub, our algorithm

automatically generates the associated audio. The waves created by the duck produces regions of

high curvature and velocity, creating resonating bubbles.

3.3.2 Timings

Tables 3.2 and 3.3 show the timings for our system running on a single core of a 2.66GHz

Intel Xeon X5355. Table 3.2 shows the number of seconds per frame for our sound synthesis

method integrated with grid-SPH hybrid method. Column two displays the compute time of the

fluid simulator (Hong et al., 2008). Columns three, four and five break down the specifics of the

synthesis process, and column six provides the total synthesis time. Column three represents the

time spent extracting the bubble surface meshes from the level set and SPH particles (described in

section 3.2.2.2). Column four is the time spent performing the spherical harmonic decomposition and
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(a) Spherical Harmonic Decomposition

(b) Minimum Enclosing Sphere

Figure 3.8: Wave plots showing the frequency response for the dam break scenario. We highlight the
moment when the second wave crashes (from right to left) forming a tube-shaped bubble. The top
plot shows our method and the bottom, a single-mode method where the frequency for each bubble
is calculated using volume of the minimum enclosing sphere.

spherical volume calculation (section 3.1.2) and column five is the time spent tracking the bubbles

(section 3.2.2.3) and generating the audio (section 3.1).

Average
Fluid

Simulation

Sound Synthesis
Bubbles Surface Bubble Tracking &

Total
per Frame Generation Integration Rendering

Pouring 11,634 1,259 s 10.20 s 1.77 s 0.18 s 12.15 s
Five Objects 1,709 1,119 s 2.37 s 0.21 s 0.94 s 3.52 s
Dam Break 13,987 3,460 s 39.92 s 1.45 s 1.13 s 42.50 s

Table 3.2: Hybrid Grid-SPH Benchmark Timings (seconds per frame).

Table 3.3 show the timings the shallow water simulator. Column one (Simulation) includes the

time for both the shallow water simulation and the sound synthesis and column two (Display) is the

time required to graphically render the water surface and scene to the screen. From the table we
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Figure 3.9: A “dam-break” scenario, a wall of water is released, creating turbulent waves and sound
as the water reflects off the far wall.

can see that both simulations run at around 55 frames per second, leaving compute time for other

functions while remaining real-time.
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Figure 3.10: Real-time sounds are automatically generated from an interactive simulation of a creek
flowing through a meadow.

Simulation Display
Creek Flowing 4.74 msec 12.80 msec
Duck in the Tub 7.59 msec 10.93 msec

Table 3.3: Shallow Water Benchmark Timings (msec per frame).

3.3.3 Comparison with Harmonic Fluids

A quick comparison of the timings for our method vs. Harmonic Fluids shows that our shallow

water sound synthesis technique runs in real time, including sound synthesis, fluid simulation, and

graphical rendering. This makes our approach highly suitable for many real-time applications, like

virtual environments or computer games. It is also important to note that our benchmarks highlight

more turbulent scenarios than those shown in (Zheng and James, 2009), thus generating more bubbles

per simulation frame. Our method also runs in a few seconds on a typical single-core PC, instead
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Figure 3.11: Sounds are automatically generated as a (invisible) user moves a duck in a bathtub.

of many hours on a many-core platform (such as (Zheng and James, 2009) for computing sound

radiation). The most time-consuming step in our current implementation is surface extraction using a

standard Marching Cubes algorithm (Lorensen and Cline, 1987). A more efficient variation of the

Marching Cubes algorithm could offer additional performance improvements.

3.4 User Study

To assess the effectiveness of our approach, we designed a set of experiments to solicit user

feedback on our method. Specifically, we were looking to explore (a) the perceived realism of our

method relative to real audio, video without audio, and video with less than perfectly synched audio

and (b) whether subjects can determine a difference and have a preference between our method

and a simple approximation based on a single-mode bubble. The study consists of four parts, each
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containing a series of audio or video clips. The next section details the procedure for each section of

our user study.

3.4.1 Procedure

In sections I and II, each subject is presented with a series of audio or video clips. In both cases,

one clip is shown per page and the subject is asked to rate the clip on a scale from 1 to 10, with 1

labeled “Not Realistic” and 10 labeled “Very Realistic.” In sections III and IV, the subject is shown

two audio or video clips side by side. In both cases, the subject is asked “Are these two audio/video

clips the same or different?” If they respond “different”, we then ask “Which audio/video clip do you

prefer?” and “How strongly do you feel about this preference?” The following sections detail the

specific video and audio clips shown. In all the sections, the order of the clips is randomized and in

sections III and IV, which clip appears on the left or the right is also random. The subject is also

always given the option to skip either an individual question or an entire section and can, of course,

quit at any time.

Section I: In this section the subject is shown a series of audio clips. The clips consist of five audio

clips from our method and four real audio recordings of natural phenomena.

Section II: In this section, the subject is shown a series of video clips. These videos consist of the

five benchmarks we produced, each shown with and without the audio we generated.

Section III: Here the subject is presented with six pairs of audio clips. Each page contains the audio

from one of our demo scenarios generated using the hybrid grid-SPH simulator paired with either the

identical audio clip (to establish a baseline) or the same demo scenario using audio generated with

the simplified, Minimal Enclosing Sphere method (denoted as MES in the table).

Section IV: This section is very similar to the previous experimental setup, however, we show the

subjects the video associated with the audio they just heard. There are nine pairs of videos. Each

page again contains the video and audio from one of our demo scenarios generated using the hybrid

grid-SPH simulator paired with either the identical video clip (again, to establish a baseline), the

video clip using the Minimal Enclosing Sphere Method or a video clip where we acted as the foley

artist, mixing and syncing pre-existing audio clips to our video clip. By adding the video clip

with pre-existing audio clips, we intended to evaluate the experience of using manually synched

pre-recorded audio clips compared to the audio-visual experience of using our method.
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3.4.2 Results

Mean Std. Mean Diff. Std.
Beach 7.45 2.14 1.67 1.92
Raining 8.69 1.57 2.9 1.53
River 8.17 1.79 2.37 1.57
Splash 7.04 2.44 1.25 2
Pouring 4.74 2.33 -1.05 1.73
Five Objects 4.73 2.26 -1.07 1.52
Dam Break 4.92 2.17 -0.87 1.56
Brook 5.23 2.25 -0.56 1.88
Duck 6.69 2.18 0.89 1.75

Table 3.4: Section I Results: Audio Only. The means and standard deviations for section I. Column
one is the mean score given by the subject, whereas, column three is the mean of the difference
a given question’s score was from the mean score for this subject. We calculated this quantity in
attempt to mitigate the problem of some subjects scoring all clips high and some subjects scoring
all clips low. The top group represents the real sounds and the bottom group represents the sounds
generated using our method. All 97 subjects participated in this section.

Mean Std. Mean Diff. Std.
Pouring 5.95 2.16 0.3 1.66
Pouring (No audio) 4.91 2.22 -0.65 1.7
Five Objects 6.65 2.18 1 1.57
Five Objects (No audio) 6.02 2.48 0.41 1.86
Dam Break 5.87 2.3 0.22 1.72
Dam Break (No audio) 5.36 2.48 -0.23 1.85
Brook 4.52 2.49 -1.13 1.84
Brook (No audio) 3.83 2.29 -1.78 1.61
Duck 6.3 2.45 0.65 2.23
Duck (No audio) 4.92 2.33 -0.7 2.01

Table 3.5: Section II Results: Video vs. Visual Only. The means and standard deviations for
section II. Column one is the mean score given by the subjects, whereas column three is the mean of
the difference a given question’s score was from the mean score for this subject. A total of 87 out of
97 subjects chose to participated in this section.

Tables 3.4, 3.5, 3.6 and 3.7 show the results from Sections I - IV of our user study. In many of the

subsequent sections we refer to the difference of means test. The test looks at the means and standard

errors of two groups of subjects, and determines whether or not we can reject the null hypothesis that

the difference we observe between the two means is the result of chance or is statistically significant.

The formula for the difference of means can be found in most introductory statistics texts, but we
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Same Diff Prefer Ours Prefer MES Mean Mean
Strength Strength

Ours MES
Pouring 21.8% (17) 78.2% (61) 68.9% (42) 31.1% (19) 6.36 5.42
Five Objects 27.6% (21) 72.4% (55) 54.7% (29) 45.3% (24) 5.86 5.17
Dam Break 2.6% (2) 97.4% (76) 77.3% (58) 22.7% (17) 7.29 5.82

Table 3.6: Section III Results: Audio Only for Ours vs. Single-Mode. Columns one and two show
the percentage (and absolute number) of people who found our videos to be the same or different
than the minimal enclosing sphere method. Columns three and four show, of the people who said
they were different, the percentage that preferred ours or the MES method and finally columns five
and six show the mean of the stated strength of the preference for those who preferred our method
and the MES method. A total of 78 subjects participated in this section.

Same Diff Prefer Ours Prefer Other Mean Mean
Strength Strength

Ours Other
Pouring 16.7% (12) 83.3% (60) 73.3% (44) 26.7% (16) 6.75 5.75
Five Objects 43.2% (32) 56.8% (42) 48.7% (19) 51.3% (20) 6.42 6.2
Dam Break 5.3% (4) 94.7% (71) 83.3% (55) 16.7% (11) 7.35 6.64
Pouring 1.4% (1) 98.6% (72) 65.7% (46) 34.3% (24) 7.13 6.79
Five Objects 1.3% (1) 98.7% (74) 94.4% (67) 5.6% (4) 8.75 5.33
Dam Break 2.8% (2) 97.2% (69) 60.6% (40) 39.4% (26) 7.65 7.19

Table 3.7: Section IV Results: Video for Ours vs. Single-Mode(top) & Ours vs.
Recorded(bottom). The top group shows our method versus the minimal enclosing sphere method
and the bottom group shows our method versus the prerecorded and synched sounds. Columns one
and two show the percentage (and absolute number) of people who found the two videos to be the
same or different. Columns three and four show, of the people who said they were different, the
percentage that preferred ours or the other method (either MES or prerecorded) and finally columns
five and six show the mean of the stated strength of the preference for those who preferred our
method and the other method. A total of 75 subjects participated in this section.

present it below for reference:

t =
∆Mobserved − ∆Mexpected√

S E2
1 + S E2

2

where ∆Mobserved is the difference of the observed means, ∆Mexpected is the expected difference of

the means (for the null hypothesis, this is always 0) and S E1 and S E2 are the standard errors for the

two observed means (where S E = σ/
√

N). t is the t-value of that difference of means test and we

choose a value of three on that t-distribution as our cutoff to determine if the difference between the

two means is statically significant.
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3.4.2.1 Demographics

A total of 97 subjects participated in our study and they were allowed to quit during any section,

at any time. 72% of our subjects where male and 28% were female. Their ages ranged from 17 to 65,

with a mean of 25. About 82% of subjects owned an iPod or other portable music device and listened

to an average of 13 hours of music per week.

3.4.2.2 Mean Subject Difference

Tables 3.4 and 3.5 show the two sections where the subject was asked to rate each video or

audio clip individually. For those two sections, along with calculating a regular mean and standard

deviation, we also computed a measure that we call the “mean subject difference”. Some subjects

tended to rate everything low, while some tended to rate everything high. Such individual bias could

unnecessarily increase the standard deviation–especially since these ratings are most valuable when

compared to other questions in each section. To calculate the mean subject difference, we first take

the mean across all questions in a section for each subject, then instead of examining the absolute

score for any given question we examine the difference from the mean. So, the mean values will be

centered around 0, with the ones subjects preferred as positive.

3.4.2.3 Section I and II

Tables 3.4 and 3.5 present a few interesting results. As we noted above, the subjects were

allowed to skip any question or any section of the study. While 97 people participated in section I,

only 87 participated in section II. In Table 3.4, the difference of means test clearly shows that the

difference between the mean of the real sounds and the computer synthesized sounds is statistically

significant. This difference is not surprising given the extra auditory clues that recorded sounds

have that synthesized sounds lack. That said, the mean for the duck being moved interactively in

the bathtub and the real splashing sound are not statistically different. In the best case, our method

is able to produce sounds with comparable perceived realism to recorded sounds. In addition, in

three recorded sounds (beach, raining and river), there are multiple sound cues from nature, such as

wind, birds and acoustic effects of the space where the recordings were taken. We conjecture that

the subjects tend to rate them higher because of the multiple aural cues that strengthen the overall
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experience. Therefore, although the perceived realism of our synthesized sounds is scored lower than

the perceived realism of the recorded sounds, the fact that our synthesized sounds are no more than

one standard deviation away from the recorded sounds without the presence of multiple aural cues is

notable.

In Table 3.5, two benchmarks have a statistically significant difference between the means of

the video with and without audio: the duck in the bathtub and the pouring water demos. It shows

that for these two cases, we can conclusively state that the sound effects generated using our method

enhances the perceived realism for the subjects. Although the the results of other cases are statistically

inconclusive, they show a difference in the means that suggests the perceived realism is enhanced by

using audio generated using our methods.

When comparing the perceived realism of audio only, visual only, and visual with audio from

Tables 3.4 and 3.5, we see that for demos with less realistic graphics, like the flowing creek and the

duck in the tub, the combined visual-audio experience does not surpass the perceived realism of the

audio alone. For benchmarks with more realistic rendering, this is not the case, suggesting that the

subject’s perception of realism is heavily influenced by the visual cues, as well as the audio.

3.4.2.4 Our method vs. Single-Mode Approximation

Based on the results from Tables 3.6 and 3.7, subjects clearly preferred our method to the method

using the minimal enclosing sphere approximation. We believe these studies suggest that when

presented with a clear choice, the subjects prefer our method. In addition, the degree of preference, as

indicated by the ”mean strength” for our method is more pronounced. We also see that the percentage

of people who were able to discern the difference between the sounds generated by our method

vs. MES approximation is highest in the Dam-Break benchmark, where the bubbles were most

non-spherical. Interestingly, Table 3.7 shows their ability to discern the difference becomes less acute

when graphical animation is introduced.

3.4.2.5 Roles of Audio Realism and AV Synchronization

We did not include the results for the comparisons of the same clips in Tables 3.6 and 3.7,

however, in each case close to 90% were able to detect the same video or audio clips. Earlier studies

(van den Doel and Pai, 2002a; van den Doel, 2005) suggested that the subjects were not necessarily
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able to detect the difference between single vs. multi-mode sounds or discern the same sounds when

played again. Our simple test was designed to provide a calibration of our subject’s ability to discern

similar sounds in these sets of tests.

We can also see in Table 3.7 that subjects reliably preferred our method to those videos using

manually synchronized, recorded sounds of varying quality. This study shows that simply adding

sound effects to silent 3D animation of fluids does not automatically improve the perceived realism

– the audio needs to be both realistic and seamlessly synchronized in order to improve the overall

audio-visual experience.

3.4.2.6 Analysis

From this study, we see several interesting results. First, although we feel this work presents a

significant step in computer synthesized sounds for liquids, the subjects still prefer real, recorded

audio clips when no additional sound cues were generated, as shown in Table 3.4. Second, Table 3.5

shows that our method appears to consistently improve the perceived visual-audio experience – most

significant in the case of interactive demos such as the rubber duck moving in a bath tub. Third,

in side-by-side tests (Tables 3.6 and 3.7 top) for the audio only and audio-visual experiences, the

subjects consistently prefer the sounds generated by our method over the sounds of single-sphere

approximation. Finally, when audio is added to graphical animations (Table 3.7 bottom), the audio

must be both realistic and synchronized seamlessly with the visual cues to improve the perceived

realism of the overall experience.

3.5 Conclusion, Limitations, and Future Work

We present an automatic, physically-based synthesis method based on bubble resonance that

generates liquid sounds directly from the fluid simulator. Our approach is general and applicable

to different types of fluid simulation methods commonly used in computer graphics. It can run at

interactive rates and its sound quality depends on the physical correctness of the fluid simulators.

Our user study suggests that the perceived realism of liquid sounds generated using our approach is

comparable to recorded sounds in similar settings.
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Although our method generates adequately realistic sounds for multiple benchmarks, there

are some limitations of our technique. Since we are generating sound from bubbles, the quality

of the synthesized sounds depends on the accuracy and correctness of bubble formation from the

fluid simulator. We also used a simplified model for the bubble excitation. Although no analytic

solution exists, a more complex approximation could potentially help. Continued research on fluid

simulations involving bubbles and bubble excitation would improve the quality and accuracy of the

sound generated using our approach, specifically we expect that as fluid simulators are better able to

generate the varied distribution of bubbles occuring in nature, the high frequency noise present in

some of our demonstrations would be reduced.

For non-star-shaped bubbles, because they cannot be decomposed into spherical harmonics, we

are forced to revert to the simple volume-based approximation. Since bubbles tend to be spherical

(and rapidly become spherical without external forces), this happens rarely. It can, however, be see in

the pouring water demo, when a ring-shaped bubble forms soon after the initial impact. There has

been some recent work on simulating general bubble oscillations using a boundary element method

(Pozrikidis, 2004) and we could provide more accuracy for complex bubble shapes using a similar

technique, but not without substantially higher computational costs.
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CHAPTER 4: EXAMPLE-GUIDED RIGID BODY SOUND SYNTHESIS

In this chapter, I discuss my work on example-guided rigid body sound synthesis. I begin with

a dicussion of the mathematical background of modal sound syntehsis, the relationship between

material properties and sounds, and the constraints of the material model that we used. After that,

I describe the overall methodology of the simulation framework, followed by detailed discussions

of individual stages: feature extraction, parameter estimation, and residual compensation. I then

discribe the results obtained by my approach, as well as an analysis of the results. Finally, I conclude

with a summary of my contributions and a discussion of possible future work.

4.1 Background

4.1.1 Modal Sound Synthesis:

The standard linear modal synthesis technique (Shabana, 1997) is frequently used for modeling

of dynamic deformation and physically based sound synthesis. We adopt tetrahedral finite element

models to represent any given geometry (O’Brien et al., 2002). The displacements, x ∈ R3N , in such

a system can be calculated with the following linear deformation equation:

Mẍ + Cẋ + Kx = f, (4.1)

where M, C, and K respectively represent the mass, damping and stiffness matrices. For small

levels of damping, it is reasonable to approximate the damping matrix with Rayleigh damping,

i.e. representing damping matrix as a linear combination of mass matrix and stiffness matrix:

C = αM + βK. This is a well-established practice and has been adopted by many modal synthesis

related works in both graphics and acoustics communities. After solving the generalized eigenvalue

problem

KU = ΛMU, (4.2)



the system can be decoupled into the following form:

q̈ + (αI + βΛ)q̇ + Λq = UT f, (4.3)

where Λ is a diagonal matrix, containing the eigenvalues of Equation 4.2; U is the eigenvector matrix,

and transforms x to the decoupled deformation bases q with x = Uq.

The solution to this decoupled system, Equation 4.3, are a bank of modes, i.e. damped sinusoidal

waves. The i’th mode looks like:

qi = aie−dit sin(2π fit + θi), (4.4)

where fi is the frequency of the mode, di is the damping coefficient, ai is the excited amplitude, and

θi is the initial phase.

The frequency, damping, and amplitude together define the feature φ of mode i:

φi = ( fi, di, ai) (4.5)

and will be used throughout the rest of the chapter. We ignore θi in Equation 4.4 because it can be

safely assumed as zero in our estimation process, where the object is initially at rest and struck at

t = 0. f and ω are used interchangeably to represent frequency, where ω = 2π f .

4.1.2 Material properties

The values in Equation 4.4 depend on the material properties, the geometry, and the run-time

interactions: ai and θi depend on the run-time excitation of the object, while fi and di depend on the

geometry and the material properties as shown below. Solving Equation 4.3, we get

di =
1
2

(α + βλi), (4.6)

fi =
1

2π

√
λi −

(
α + βλi

2

)2

. (4.7)

We assume the Rayleigh damping coefficients, α and β, can be transfered to another object with no

drastic shape or size change. Empirical experiments were carried out to support this assumption.
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Please refer to (Ren et al., 2012) for more detail. The eigenvalues λi’s are calculated from M and

K and determined by the geometry and tetrahedralization as well as the material properties: in our

tetrahedral finite element model, M and K depend on mass density ρ, Young’s modulus E, and

Poisson’s ratio ν, if we assume the material is isotropic and homogeneous.

4.1.3 Constraint for modes

We observe modes in the adopted linear modal synthesis model have to obey some constraint

due to its formulation. Because of the Rayleigh damping model we adopted, all estimated modes lie

on a circle in the (ω, d)-space, characterized by α and β. This can be shown as follows. Rearranging

Equation 4.6 and Equation 4.7 as

ωi
2 +

(
di −

1
β

)2

=

(
1
β

√
1 − αβ

)2

(4.8)

we see that it takes the form of ωi
2 + (di − yc)2 = R2. This describes a circle of radius R centered at

(0, yc) in the (ω, d)-space, where R and yc depend on α and β. This constraint for modes restricts the

model from capturing some sound effects and renders it impossible to make modal synthesis sounds

with Rayleigh damping exactly the same as an arbitrary real-world recording. However, if a circle

that best represents the recording audio is found, it is possible to preserve the same sense of material

as the recording. It is shown in Section 4.3 and 4.4.3, how a proposed pipeline achieves this.

4.2 Methodology

Figure 4.1 shows an example of our framework. From one recorded impact sound (Fig-

ure 4.1a), we estimated material parameters, which can be directly applied to various geometries

(Figure 4.1c, 4.1d, 4.1e) to generate audio effects that automatically reflect the shape variation while

still preserve the same sense of material. Figure 4.2 depicts the pipeline of our approach, and its

various stages are explained below.

Feature extraction: Given a recorded impact audio clip, from which we first extract some high-

level features, namely, a set of damped sinusoids with constant frequencies, dampings, and initial

amplitudes (Sec. 4.3). These features are then used to facilitate estimation of the material parameters

(Sec. 4.4), and guide the residual compensation process (Sec. 4.5).
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(a) (b) (c) (d) (e)

Figure 4.1: From the recording of a real-world object (a), our framework is able to find the material
parameters and generates similar sound for a replicate object (b). The same set of parameters can be
transfered to various virtual objects to produce sounds with the same material quality ((c), (d), (e)).

Parameter estimation: Due to the constraints of the sound synthesis model, we assume a limited

input from just one recording and it is challenging to estimate the material parameters from one

audio sample. To do so, a virtual object of the same size and shape as the real-world object used

in recording the example audio is created. Each time an estimated set of parameters are applied to

the virtual object for a given impact, the generated sound, as well as the feature information of the

resonance modes, are compared with the real world example sound and extracted features respectively

using a difference metric. This metric is designed based on psychoacoustic principles, and aimed at

measuring both the audio material resemblance of two objects and the perceptual similarity between

two sound clips. The optimal set of material parameters is thereby determined by minimizing this

perceptually inspired metric function (see Sec. 4.4). These parameters are readily transferable to

other virtual objects of various geometries undergoing rich interactions, and the synthesized sounds

preserve the intrinsic quality of the original sounding material.

Residual compensation: Finally, our approach also accounts for the residual, i.e. the approximated

differences between the real-world audio recording and the modal synthesis sound with the estimated

parameters. First, the residual is computed using the extracted features, the example recording,

and the synthesized audio. Then at run-time, the residual is transfered to various virtual objects.

The transfer of residual is guided by the transfer of modes, and naturally reflects the geometry and

run-time interaction variation (see Sec. 4.5).
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Figure 4.2: Overview of the example-guided sound synthesis framework (shown in the blue block):
Given an example audio clip as input, features are extracted. They are then used to search for the
optimal material parameters based on a perceptually inspired metric. A residual between the recorded
audio and the modal synthesis sound is calculated. At run-time, the excitation is observed for the
modes. Corresponding rigid-body sounds that have a similar audio quality as the original sounding
materials can be automatically synthesized. A modified residual is added to generate a more realistic
final sound.

4.3 Feature Extraction

An example impact sound can be represented by high-level features collectively.

We first analyze and decompose a given example audio clip into a set of features, which will

later be used in the subsequent phases of our pipeline, namely the parameter estimation and residual

compensation parts. Next we present the detail of our feature extraction algorithm.

Multi-level power spectrogram representation: As shown in Equation 4.5, the feature of a mode is

defined as its frequency, damping, and amplitude. In order to analyze the example audio and extract

these feature values, we use a time-varying frequency representation called power spectrogram.

A power spectrogram P for a a time domain signal s[n], is obtained by first breaking it up into
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overlapping frames, and then performing windowing and Fourier transform on each frame:

P[m, ω] =

∣∣∣∣∣∣∣∣
∑

n

s[n]w[n − m]e− jωn

∣∣∣∣∣∣∣∣
2

, (4.9)

where w is the window applied to the original time domain signal (Oppenheim et al., 1989). The

power spectrogram records the signal’s power spectral density within a frequency bin centered around

ω = 2π f and a time frame defined by m.

When computing the power spectrogram for a given sound clip, one can choose the resolutions

of the time or frequency axes by adjusting the length of the window w. Choosing the resolution in

one dimension, however, automatically determines the resolution in the other dimension. A high

frequency resolution results in a low temporal resolution, and vice versa.

To fully accommodate the range of frequency and damping for all the modes of an example

audio, we compute multiple levels of power spectrograms, with each level doubling the frequency

resolution of the previous one and halving the temporal resolution. Therefore, for each mode to

be extracted, a suitable level of power spectrogram can be chosen first, depending on the time and

frequency characteristics of the mode.

Global-to-local scheme: After computing a set of multi-level power spectrograms for a recorded

example audio, we globally search through all levels for peaks (local maxima) along the frequency

axis. These peaks indicate the frequencies where potential modes are located, some of which may

appear in multiple levels. At this step the knowledge of frequency is limited by the frequency

resolution of the level of power spectrogram. For example, in the level where the window size is 512

points, the frequency resolution is as coarse as 86 Hz. A more accurate estimate of the frequency as

well as the damping value is obtained by performing a local shape fitting around the peak.

The power spectrogram of a damped sinusoid has a ‘hill’ shape, similar to the blue surface

shown in Figure 4.3b. The actual shape contains information of the damped sinusoid: the position

and height of the peak are respectively determined by the frequency and amplitude, while the slope

along the time axis and the width along the frequency axis are determined by the damping value. For

a potential mode, a damped sinusoid with the initial guess of ( f , d, a) is synthesized and added to the

sound clip consisting of all the modes collected so far. The power spectrogram of the resulting sound

clip is computed (shown as the red hill shape in Figure 4.3b), and compared locally with that of the
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recorded audio (the blue hill shape in Figure 4.3b)). An optimizer then searches in the continuous

( f , d, a)-space to minimize the difference and acquire a refined estimate of the frequency, damping,

and amplitude of the mode at question. Figure 4.3 illustrates this process.

The local shape fittings for all potential modes are performed in a greedy manner. Among

all peaks in all levels, the algorithm starts with the one having the highest average power spectral

density. If the shape fitting error computed is above a predefined threshold, we conclude that this

level of power spectrogram is not sufficient in capturing the feature characteristics and thereby

discard the result; otherwise the feature of the mode is collected. In other words, the most suitable

time-frequency resolution (level) for a mode with a particular frequency is not predetermined, but

dynamically searched for. Similar approaches have been proposed to analyze the sinusoids in an

audio clip in a multi-resolution manner (e.g. Levine et al. (1998), where the time-frequency regions’

power spectrogram resolution is predetermined).

Figure 4.3: Feature extraction from a power spectrogram. (a) A peak is detected in a power
spectrogram at the location of a potential mode. f =frequency, t=time. (b) A local shape fitting of the
power spectrogram is performed to estimate the frequency, damping and amplitude of the potential
mode. (c) If the fitting error is below a certain threshold, we collect it in the set of extracted features,
shown as the red cross in the feature space. (Only the frequency f and damping d are shown here.)

We have tested the accuracy of our feature extraction with 100 synthetic sinusoids with frequen-

cies and damping values randomly drawn from [0, 22050.0](Hz) and [0.1, 1000](s−1) respectively.

The average relative error is 0.040% for frequencies and 0.53% for damping values, which are

sufficient for our framework.

Comparison with existing methods: The SMS method (Serra and Smith III, 1990) is also capable

of estimating information of modes. From a power spectrogram, it tracks the amplitude envelope of

each peak over time, and a similar method is adopted by Lloyd et al. (2011). Unlike our algorithm,

55



which fits the entire local hill shape, they only track a single peak value per time frame. In the case

where the mode’s damping is high or the signal’s background is noisy, this method yields high error.

Another feature extraction technique was proposed by Pai et al. (2001) and Corbett et al. (2007).

The method is known for its ability to separate modes within one frequency bin. In our framework,

however, the features are only used to guide the subsequent parameter estimation process, which

is not affected much by replacing two nearly duplicate features with one. Our method also offers

some advantages and achieves higher accuracy in some cases compared with theirs. First, our

proposed greedy approach is able to reduce the interference caused by high energy neighboring

modes. Secondly, these earlier methods use a fixed frequency-time resolution that is not necessarily

the most suitable for extracting all modes, while our method selects the appropriate resolution

dynamically.

The detailed comparisons and data can be found in Sec 4.6.1.

4.4 Parameter Estimation

Using the extracted features (Sec. 4.3) and psychoacoustic principles (as described in this

section), we introduce a parameter estimation algorithm based on an optimization framework for

sound synthesis.

4.4.1 An Optimization Framework

We now describe the optimization work flow for estimating material parameters for sound

synthesis. In the rest of the chapter, all data related to the example audio recordings are called

reference data; all data related to the virtual object (which are used to estimate the material parameters)

are called estimated data, and are denoted with a tilde, e.g. f̃ .

Reference sound and features: The reference sound is the example recorded audio, which can

be expressed as a time domain signal s[n]. The reference features Φ = {φi} = {( fi, di, ai)} are the

features extracted from the reference sound, as described in Sec. 4.3.

Estimated sound and features: In order to compute the estimated sound s̃[n] and estimated features

Φ̃ = {φ̃ j} = {( f̃ j, d̃ j, ã j)}, we first create a virtual object that is roughly the same size and geometry as

the real-world object whose impact sound was recorded. We then tetrahedralize it and calculate its
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mass matrix M and stiffness matrix K. As mentioned in Sec. 4.1, we assume the material is isotropic

and homogeneous. Therefore, the initial M and K can be found using the finite element method, by

assuming some initial values for the Young’s modulus, mass density, and Poisson’s ratio, E0, ρ0, and

ν0. The assumed eigenvalues λ0
i ’s can thereby be computed. For computational efficiency, we make

a further simplification that the Poisson’s ratio is held as constant. Then the eigenvalue λi for general

E and ρ is just a multiple of λ0
i :

λi =
γ

γ0
λ0

i (4.10)

where γ = E/ρ is the ratio of Young’s modulus to density, and γ0 = E0/ρ0 is the ratio using the

assumed values.

We then apply a unit impulse on the virtual object at a point corresponding to the actual impact

point in the example recording, which gives an excitation pattern of the eigenvalues as Equation 4.4.

We denote the excitation amplitude of mode j as a0
j . The superscript 0 notes that it is the response of

a unit impulse; if the impulse is not unit, then the excitation amplitude is just scaled by a factor σ,

a j = σa0
j (4.11)

Combining Equation 4.6, Equation 4.7, Equation4.10, and Equation4.11, we obtain a mapping

from an assumed eigenvalue and its excitation (λ0
j , a

0
j) to an estimated mode with frequency f̃ j,

damping d̃ j, and amplitude ã j:

(λ0
j , a

0
j)
{α,β,γ,σ}
−−−−−−→ ( f̃ j, d̃ j, ã j). (4.12)

The estimated sound s̃[n], is thereby generated by mixing all the estimated modes,

s̃[n] =
∑

j

(
ã je−d̃ j(n/Fs) sin(2π f̃ j(n/Fs))

)
(4.13)

where Fs is the sampling rate.

Difference metric: The estimated sound s̃[n] and features Φ̃ can then be compared against the

reference sound s[n] and features Φ, and a difference metric can be computed. If such difference
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metric function is denoted by Π, the problem of parameter estimation becomes finding

{α, β, γ, σ} = arg min
{α,β,γ,σ}

Π. (4.14)

An optimization process is used to find such parameter set. The most challenging part of our work

is to find a suitable metric function that can truly reflect what we view as the difference. Next we

discuss the details about the metric design in Sec. 4.4.2 and the optimization process in Sec. 4.4.3.

4.4.2 Metric

Given an impact sound of a real-world object, the goal is to find a set of material parameters

such that when they are applied to a virtual object of the same size and shape, the synthesized sounds

have the similar auditory perception as the original recorded sounding object. By further varying

the size, geometry, and the impact points of the virtual object, the intrinsic ‘audio signature’ of each

material for the synthesized sound clips should closely resemble that of the original recording. These

are the two criteria guiding the estimation of material parameters based on an example audio clip:

1. the perceptual similarity of two sound clips;

2. the audio material resemblance of two generic objects.

The perceptual similarity of sound clips can be evaluated by an ‘image domain metric’ quantified

using the power spectrogram; while the audio material resemblance is best measured by a ‘feature

domain metric’ – both will be defined below,

Image domain metric: Given a reference sound s[n] and an estimated sound s̃[n], their power

spectrograms are computed using Equation 4.9 and denoted as two 2D images: I = P[m, ω],

Ĩ = P̃[m, ω]. An image domain metric can then be expressed as

Πimage(I, Ĩ). (4.15)

Our goal is to find an estimated image Ĩ that minimizes a given image domain metric. This process is

equivalent to image registration in computer vision and medical imaging.

Feature domain metric: A feature φi = ( fi, di, ai) is essentially a three dimensional point. As

established in Sec. 4.1, the set of features of a sounding object is closely related to the material
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properties of that object. Therefore a metric defined in the feature space is useful in measuring the

audio material resemblance of two objects. In other words, a good estimate of material parameters

should map the eigenvalues of the virtual object to similar modes as that of the real object. A feature

domain metric can be written as

Πfeature(Φ, Φ̃) (4.16)

and the process of finding the minimum can be viewed as a point set matching problem in computer

vision.

Hybrid metric: Both the auditory perceptual similarity and audio material resemblance would need

to be considered for a generalized framework, in order to extract and transfer material parameters

for modal sound synthesis using a recorded example to guide the automatic selection of material

parameters. Therefore, we propose a novel ‘hybrid’ metric that takes into account of both:

Πhybrid(I,Φ, Ĩ, Φ̃). (4.17)

Next, we provide details on how we design and compute these metrics.

4.4.2.1 Image Domain Metric

Given two power spectrogram images I and Ĩ, a naive metric can be defined as their squared

difference: Πimage(I, Ĩ) =
∑

m,ω

(
P[m, ω] − P̃[m, ω]

)2
. There are, however, several problems with

this metric. The frequency resolution is uniform across the spectrum, and the intensity is uniformly

weighted. As humans, however, we distinguish lower frequencies better than the higher frequencies,

and mid-frequency signals appear louder than extremely low or high frequencies (Zwicker and

Fastl, 1999). Therefore, directly taking squared difference of power spectrograms overemphasizes

the frequency differences in the high-frequency components and the intensity differences near

both ends of the audible frequency range. It is necessary to apply both frequency and intensity

transformations before computing the image domain metric. We design these transformations based

on psychoacoustic principles (Zwicker and Fastl, 1999).

Frequency transformation: Studies in psychoacoustics suggested that humans have a limited

capacity to discriminate between nearby frequencies, i.e. a frequency f1 is not distinguishable from
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f2 if f2 is within f1±∆ f . The indistinguishable range ∆ f is itself a function of frequency, for example,

the higher the frequency, the larger the indistinguishable range. To factor out this variation in ∆ f a

different frequency representation, called critical-band rate z, has been introduced in psychoacoustics.

The unit for z is Bark, and it has the advantage that while ∆ f is a function of f (measured in Hz),

it is constant when measured in Barks. Therefore, by transforming the frequency dimension of a

power spectrogram from f to z, we obtain an image that is weighted according to human’s perceptual

frequency differences. Figure 4.4a shows the relationship between critical-band rate z and frequency

f , z = Z( f ).

(a) (b)

Figure 4.4: Psychoacoustics related values: (a) the relationship between critical-band rate (in
Bark) and frequency (in Hz); (b) the relationship between loudness level LN (in phon), loudness L
(in sone), and sound pressure level Lp (in dB). Each curve is an equal-loudness contour, where a
constant loudness is perceived for pure steady tones with various frequencies.

Intensity transformation: Sound can be described as the variation of pressure, p(t), and human

auditory system has a high dynamical range, from 10−5 Pa (threshold of hearing) to 102 Pa (threshold

of pain). In order to cope with such a broad range, the sound pressure level is normally used. For a

sound with pressure p, its sound pressure level Lp in decibel (abbreviated to dB-SPL) is defined as

Lp = 20 log(p/p0), (4.18)

where p0 is a standard reference pressure. While Lp is just a physical value, loudness L is a perceptual

value, which measures human sensation of sound intensity. In between, loudness level LN relates the

physical value to human sensation. Loudness level of a sound is defined as the sound pressure level
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of a 1-kHz tone that is perceived as loud as the sound. Its unit is phon, and is calibrated such that a

sound with loudness level of 40 phon is as loud as a 1-kHz tone at 40 dB-SPL. Finally, loudness L is

computed from loudness level. Its unit is sone, and is defined such that a sound of 40 phon is 1 sone;

a sound twice as loud is 2 sone, and so on.

Figure 4.4b shows the relationship between sound pressure level Lp, loudness level LN and

loudness L according to the international standard (ISO, 2003). The curves are equal-loudness

contours, which are defined such that for different frequency f and sound pressure level Lp, the

perceived loudness level LN and loudness L is constant along each equal-loudness contour. Therefore

the loudness of a signal with a specific frequency f and sound pressure level Lp can be calculated by

finding the equal-loudness contour passing ( f , Lp).

There are other psychoacoustic factors that can affect the human sensation of sound intensity.

For example, van den Doel et al. (van den Doel and Pai, 2002b; van den Doel et al., 2004) considered

the ‘masking’ effect, which describes the change of audible threshold in the presence of multiple

stimuli, or modes in this case. However, they did not handle the loudness transform above the

audible threshold, which is critical in our perceptual metric. Similar to the work by van den Doel and

Pai (1998), we have ignored the masking effect.

Psychoacoustic metric: After transforming the frequency f (or equivalently, ω) to the critical-band

rate z and mapping the intensity to loudness, we obtain a transformed image T(I) = T(I)[m, z]. Dif-

ferent representations of a sound signal is shown in Figure 4.5. Then we can define a psychoacoustic

image domain metric as

Πpsycho(I, Ĩ) =
∑
m,z

(
T(I)[m, z] − T(Ĩ)[m, z]

)2
(4.19)

Similar transformations and distance measures have also been used to estimate the perceived resem-

blance between music pieces (Morchen et al., 2006; Pampalk et al., 2002).

4.4.2.2 Feature Domain Metric

As shown in Equation 4.8, in the (ω, d)-space, modes under the assumption of Rayleigh damping

lie on a circle determined by damping parameters α and β, while features extracted from example

recordings can be anywhere. Therefore, it is challenging to find a good match between the reference
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Figure 4.5: Different representation of a sound clip. Top: time domain signal s[n]. Middle: original
image, power spectrogram P[m, ω] with intensity measured in dB. Bottom: image transformed based
on psychoacoustic principles. The frequency f is transformed to critical-band rate z, and the intensity
is transformed to loudness. Two pairs of corresponding modes are marked as A and B. It can be seen
that the frequency resolution decreases toward the high frequencies, while the signal intensities in
both the higher- and lower-end of the spectrum are de-emphasized.

features Φ and estimated features Φ̃. Figure 4.6a shows a typical matching in the ( f , d)-space. Next

we present a feature domain metric that evaluates such a match.

In order to compute the feature domain metric, we first transform the frequency and damping of

feature points to another different 2D space. Namely, from ( fi, di) to (xi, yi), where xi = X( fi) and

yi = Y(di) encode the frequency and damping information respectively. With suitable transformations,

the Euclidean distance defined in the transformed space can be more useful and meaningful for

representing the perceptual difference. The distance between two feature points is thus written as

D(φi, φ̃ j) ≡
∥∥∥∥∥(X( fi),Y(di)

)
−

(
X( f̃ j),Y(d̃ j)

)∥∥∥∥∥ . (4.20)
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Frequency and damping are key factors in determining material agreement, while amplitude

indicates relative importance of modes. That is why we measure the distance between two feature

points in the 2D ( f , d)-space and use amplitude to weigh that distance.

For frequency, as described in Sec. 4.4.2.1 we know that the frequency resolution of human is

constant when expressed as critical-band rate and measured in Barks: ∆ f ( f ) ∝ ∆z. Therefore it is a

suitable frequency transformation

X( f ) = czZ( f ) (4.21)

where cz is some constant coefficient.

For damping, although human can roughly sense that one mode damps faster than another,

directly taking the difference in damping value d is not feasible. This is due to the fact that humans

cannot distinguish between extremely short bursts (Zwicker and Fastl, 1999). For a damped sinusoid,

the inverse of the damping value, 1/di, is proportional to its duration, and equals to how long

before the signal decays to e−1 of its initial amplitude. While distance measured in damping values

overemphasizes the difference between signals with high d values (corresponding to short bursts),

distance measured in durations does not. Therefore

Y(d) = cd
1
d

(4.22)

(where cd is some constant coefficient) is a good choice of damping transformation. The reference

and estimated features of data in Figure 4.6a are shown in the transformed space in Figure 4.6b.

Having defined the transformed space, we then look for matching the reference and estimated

feature points in this space. Our matching problem belongs to the category where there is no

known correspondence, i.e. no prior knowledge about which point in one set should be matched

to which point in another. Furthermore, because there may be several estimated feature points in

the neighborhood of a reference point or vice versa, the matching is not necessarily a one-to-one

relationship. There is also no guarantee that an exact matching exist, because (1) the recorded

material may not obey the Rayleigh damping model, (2) the discretization of the virtual object and

the assumed hit point may not give the exact eigenvalues and excitation pattern of the real object.

Therefore we are merely looking for a partial, approximate matching.
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Figure 4.6: Point set matching problem in the feature domain: (a) in the original frequency and
damping, ( f , d)-space. (b) in the transformed, (x, y)-space, where x = X( f ) and y = Y(d). The blue
crosses and red circles are the reference and estimated feature points respectively. The three features
having the largest energies are labeled 1, 2, and 3.

The simplest point-based matching algorithm that solves problems in this category (i.e. partial,

approximate matching without known correspondence) is Iterative Closest Points. It does not work

well, however, when there is a significant number of feature points that cannot be matched (Besl and

McKay, 1992), which is possibly the case in our problem. Therefore, we define a metric, Match

Ratio Product, that meets our need and is discussed next.

For a reference feature point set Φ, we define a match ratio that measures how well they are

matched by an estimated feature point set Φ̃. This set-to-set match ratio, defined as

R(Φ, Φ̃) =

∑
i wiR(φi, Φ̃)∑

i wi
, (4.23)

is a weighted average of the point-to-set match ratios, which are in turn defined as

R(φi, Φ̃) =

∑
j ũi jk(φi, φ̃ j)∑

j ũi j
, (4.24)

a weighted average of the point-to-point match scores k(φi, φ̃ j). The point-to-point match score

k(φi, φ̃ j), which is directly related to the distance of feature points (Equation 4.20), should be designed

to give values in the continuous range [0, 1], with 1 meaning that the two points coincide, and 0

meaning that they are too far apart. Similarly R(φi, Φ̃) = 1 when φi coincides with an estimated

feature point, and R(Φ, Φ̃) = 1 when all reference feature points are perfectly matched. The weight
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wi and ũi j in Equation 4.23 and Equation 4.24 are used to adjust the influence of each mode. The

match ratio for the estimated feature points, R̃, is defined analogously

R̃(Φ, Φ̃) =

∑
j w̃ jR(φ̃ j,Φ)∑

i w̃ j
(4.25)

The match ratios for the reference and the estimated feature point sets are then combined to form the

Match Ratio Product (MRP), which measures how well the reference and estimated feature point

sets match with each other,

ΠMRP(Φ, Φ̃) = −RR̃. (4.26)

The negative sign is to comply with the minimization framework. Multiplying the two ratios penalizes

the extreme case where either one of them is close to zero (indicating poor matching).

The normalization processes in Equation 4.23 and Equation 4.25 are necessary. Notice that

the denominator in Equation 4.25 is related to the number of estimated feature points inside the

audible range, Ñaudible (in fact
∑

j w̃ j = Ñaudible if all w̃ j = 1). Depending on the set of parameters,

Ñaudible can vary from a few to thousands. Factoring out Ñaudible prevents the optimizer from blindly

introducing more modes into the audible range, which may increase the absolute number of matched

feature points, but may not necessarily increase the match ratios. Such averaging techniques have also

been employed to improve the robustness and discrimination power of point-based object matching

methods (Dubuisson and Jain, 1994; Gope and Kehtarnavaz, 2007).

In practice, the weights w’s and u’s, can be assigned according to the relative energy or perceptual

importance of the modes. The point-to-point match score k(φi, φ̃ j), can also be tailored to meet

different needs. The constants and function forms used in this section are listed in Sec 4.5.2.3.

4.4.2.3 Hybrid Metric

Finally, we combine the strengths from both image and feature domain metrics by defining the

following hybrid metric:

Πhybrid =
Πpsycho

|ΠMRP|
. (4.27)
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This metric essentially weights the perceptual similarity with how well the features match, and by

making the match ratio product as the denominator, we ensure that a bad match (low MRP) will

boost the metric value and is therefore highly undesirable.

4.4.3 Optimizer

We use the Nelder-Mead method (Lagarias et al., 1999) to minimize Equation 4.14, which may

converge into one of the many local minima. We address this issue by starting the optimizer from

many starting points, generated based on the following observations.

First, as elaborated by Equation 4.8 in Sec. 4.1, the estimated modes are constrained by a circle

in the (ω, d)-space. Secondly, although there are many reference modes, they are not evenly excited

by a given impact– we observe that usually the energy is mostly concentrated in a few dominant ones.

Therefore, a good estimate of α and β must define a circle that passes through the neighborhood of

these dominant reference feature points. We also observe that in order to yield a low metric value,

there must be at least one dominant estimated mode at the frequency of the most dominant reference

mode.

We thereby generate our starting points by first drawing two dominant reference feature points

from a total of Ndominant of them, and find the circle passing through these two points. This circle

is potentially a ‘good’ circle, from which we can deduce a starting estimate of α and β using

Equation 4.8. We then collect a set of eigenvalues and amplitudes (defined in Sec. 4.4.1) {(λ0
j , a

0
j)},

such that there does not exist any (λ0
k , a

0
k) that simultaneously satisfies λ0

k < λ
0
j and a0

k > a0
j . It can

be verified that the estimated modes mapped from this set always includes the one with the highest

energy, for any mapping parameters {α, β, γ, σ} used in Equation 4.12. Each (λ0
j , a

0
j ) in this set is then

mapped and aligned to the frequency of the most dominant reference feature point, and its amplitude

is adjusted to be identical as the latter. This step gives a starting estimate of γ and σ. Each set of

{α, β, γ, σ} computed in this manner is a starting point, and may lead to a different local minimum.

We choose the set which results in the lowest metric value to be our estimated parameters. Although

there is no guarantee that a global minimum will be met, we find that the results produced with this

strategy are satisfactory in our experiments, as discussed in Sec. 4.6.
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4.5 Residual Compensation

With the optimization proposed in Sec. 4.4, a set of parameters that describe the material of a

given sounding object can be estimated, and the produced sound bears a close resemblance of the

material used in the given example audio. However, linear modal synthesis alone is not capable of

synthesizing sounds that are as rich and realistic as many real-world recordings. Firstly, during the

short period of contact, not all energy is transformed into stable vibration that can be represented

with a small number of damped sinusoids, or modes. The stochastic and transient nature of the

non-modal components makes sounds in nature rich and varying. Secondly, as discussed in Sec. 4.1,

not all features can be captured due to the constraints for modes in the synthesis model. In this

section we present a method to account for the residual, which approximates the difference between

the real-world recordings and the modal synthesis sounds. In addition, we propose a technique for

transferring the residual with geometry and interaction variation. With the residual computation and

transfer algorithms introduced below, more realistic sounds that automatically vary with geometries

and hitting points can be generated with a small computation overhead.

4.5.1 Residual Computation

In this section we discuss how to compute the residual from the recorded sound and the synthe-

sized modal sound generated with the estimated parameters.

Previous works have also looked into capturing the difference between a source audio and its

modal component (Serra and Smith III, 1990; Serra, 1997; Lloyd et al., 2011). In these works,

the modal part is directly tracked from the original audio, so the residual can be calculated by

a straightforward subtraction of the power spectrograms. The synthesized modal sound in our

framework, however, is generated solely from the estimated material parameters. Although it

preserves the intrinsic quality of the recorded material, in general the modes in our synthesized

sounds are not perfectly aligned with the recorded audio. An example is shown in Figure 4.7a and

Figure 4.7c. It is due to the constraints in our sound synthesis model and discrepancy between the

discretized virtual geometries and the real-world sounding objects. As a result, direct subtraction

does not work in this case to generate a reasonable residual. Instead, we first compute an intermediate

data, called the represented sound. It corresponds to the part in the recorded sound that is captured,
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or represented, by our synthesized sound. This represented sound (Figure 4.7d) can be directly

subtracted from the recorded sound to compute the residual (Figure 4.7e).

The computation of the represented sound is based on the following observations. Consider a

feature (described by φi) extracted from the recorded audio. If it is perfectly captured by the estimated

modes, then it should not be included in the residual and should be completely subtracted from the

recorded sound. If it is not captured at all, it should not be subtracted from the recorded sound, and if

it is approximated by an estimated mode, it should be partially subtracted. Since features closely

represent the original audio, they can be directly subtracted from the recorded sound.

The point-to-set match ratio R(φi, Φ̃) proposed in Sec. 4.4.2 essentially measures how well a

reference feature φi is represented (matched) by all the estimated modes. This match ratio can be

conveniently used to determine how much of the corresponding feature should be subtracted from

the recording.

The represented sound is therefore obtained by adding up all the reference features that are

respectively weighted by the match ratio of the estimated modes. And the power spectrogram of the

residual is obtained by subtracting the power spectrogram of the represented sound from that of the

recorded sound. Figure 4.7 illustrates the residual computation process.

4.5.2 Residual Transfer

Residual of one particular instance (i.e. one geometry and one hit point) can be obtained through

the above described residual computation method. However, when synthesizing sounds for a different

geometry undergoing different interaction with other rigid bodies, the residual audio needs to vary

accordingly. Lloyd et al. (2011) proposed applying a random dip filter on the residual to provide

variation. While this offers an attractive solution for quickly generating modified residual sound, it

does not transfer accordingly with the geometry change or the dynamics of the sounding object.

4.5.2.1 Algorithm

As discussed in previous sections, modes transfer naturally with geometries in the modal analysis

process, and they respond to excitations at runtime in a physical manner. In other words, the modal

component of the synthesized sounds already provides transferability of sounds due to varying
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Figure 4.7: Residual computation. From a recorded sound (a), the reference features are extracted
(b), with frequencies, dampings, and energies depicted as the blue circles in (f). After parameter
estimation, the synthesized sound is generated (c), with the estimated features shown as the red
crosses in (g), which all lie on a curve in the ( f , d)-plane. Each reference feature may be approximated
by one or more estimated features, and its match ratio number is shown. The represented sound is the
summation of the reference features weighted by their match ratios, shown as the solid blue circles in
(h). Finally, the difference between the recorded sound’s power spectrogram (a) and the represented
sound’s (d) are computed to obtain the residual (e).

geometries and dynamics. Hence, we compute the transferred residual under the guidance of modes

as follows.

Given a source geometry and impact point, we know how to transform its modal sound to a

target geometry and impact points. Equivalently, we can describe such transformation as acting on

the power spectrograms, transforming the modal power spectrogram of the source, Ps
modal, to that of

the target, Pt
modal:

Ps
modal

H
−→ Pt

modal (4.28)

where H is the transform function. We apply the same transform function H to the residual power

spectrograms

Ps
residual

H
−→ Pt

residual (4.29)

where the source residual power spectrogram is computed as described in Sec. 4.5.1.
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More specifically, H can be decomposed into per-mode transform functions, Hi, j, which trans-

forms the power spectrogram of a source mode φs
i = ( f s

i , d
s
i , a

s
i ) to a target mode φt

j = ( f t
j , d

t
j, a

t
j).

Hi, j can further be described as a series of operations on the source power spectrogram Ps
modal: (1) the

center frequency is shifted from f s
i to f t

j ; (2) the time dimension is stretched according to the ratio

between ds
i and dt

j; (3) the height (intensity) is scaled pixel-by-pixel to match Pt
modal. The per-mode

transform is performed in the neighborhood of f s
i , namely between 1

2 ( f s
i−1 + f s

i ) and 1
2 ( f s

i + f s
i+1), to

that of f t
j , namely between 1

2 ( f t
j−1 + f t

j) and 1
2 ( f t

j + f t
j+1).

The per-mode transform is performed for all pairs of source and target modes, and the local

residual power spectrograms are ‘stitched’ together to form the complete Pt
residual. Finally, the

time-domain signal of the residual is reconstructed from Pt
residual, using an iterative inverse STFT

algorithm by Griffin and Lim (2003). Algorithm 1 shows the complete feature-guided residual

transfer algorithm.

Algorithm 1: Residual Transformation at Runtime
Input: source modes Φs = {φs

i }, target modes Φt = {φt
j}, and source residual audio ss

residual[n]
Output: target residual audio st

residual[n]
Ψ← DetermineModePairs(Φs,Φt)
foreach mode pair (φs

k, φ
t
k) ∈ Ψ do

Ps′ ← ShiftSpectrogram( Ps, ∆frequency)
Ps′′ ← StretchSpectrogram( Ps′, damping ratio)
A← FindPixelScale(Pt, Ps′′)
Ps

residual
′ ← ShiftSpectrogram(Ps

residual, ∆frequency)
Ps

residual
′′ ← StretchSpectrogram(Ps

residual
′, damping ratio)

Pt
residual

′′
←MultiplyPixelScale(Ps

residual
′′, A)

(ωstart, ωend)← FindFrequencyRange(φt
k−1, φt

k)
Pt

residual [m, ωstart, . . . , ωend]← Pt
residual

′′ [m, ωstart, . . . , ωend]
end
st

residual[n]← IterativeInverseSTFT(Pt
residual)

With this scheme, the transform of the residual power spectrogram is completely guided by the

appropriate transform of modes. The resulting residual changes consistently with the modal sound.

Since the modes transform with the geometry and dynamics in a physical manner, the transferred

residual also faithfully reflects this variation.

Note that a ‘one-to-one mapping’ between the source and target modes is required. If the target

geometry is a scaled version of the source geometry, then there is a natural correspondence between

the modes. If the target geometry, however, is of different shape from the source one, such natural
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correspondence does not exist. In this case, we pick the top Ndominant modes with largest energies

from both sides, and pair them from low frequency to high frequency.

Figure 4.8: Single mode residual transform: The power spectrogram of a source mode ( f1, d1, a1) (the
blue wireframe), is transformed to a target mode ( f2, d2, a2) (the red wireframe), through frequency-
shifting, time-stretching, and height-scaling. The residual power spectrogram (the blue surface at the
bottom) is transformed in the exact same way.

4.5.2.2 Implementation and Performance

The most computation costly part of residual transfer is the iterative inverse STFT process. We

are able to obtain acceptable time-domain reconstruction from the power spectrogram when we

limit the iteration of inverse STFT to 10. Hardware acceleration is used in our implementation to

ensure fast STFT computation. More specifically, CUFFT, a CUDA implementation of Fast Fourier

Transform, is adopted for parallelized inverse STFT operations. Also note that residual transfer

computation only happens when there is a contact event, the obtained time-domain residual signal

can be used until the next event. On an NVIDIA GTX 480 graphics card, if the contact events arrive

at intervals around 1/30s, the residual transfer in the current implementation can be successfully

evaluated in time.

4.5.2.3 Constants and Functions

We provide here the actual values and forms used in our implementation for the constants and

functions introduced in Sec. 4.4.2,
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For the relationship between critical-band rate z (in Bark) and frequency (in Hz), we use

Z( f ) = 6 sinh−1( f /600) (4.30)

that approximates the empirically determined curve shown in Figure 4.4a (Wang et al., 1992).

We use cz = 5.0 and cd = 100.0 in Equation 4.21 and Equation 4.22.

In Equation 4.23, the weight wi associated to a reference feature point φi is designed to be related

to the energy of mode i. The energy can be found by integrating the power spectrogram of the

damped sinusoid, and we made a modification such that the power spectrogram is transformed prior

to integration. The image domain transformation introduced in Sec. 4.4.2.1, which better reflects the

perceptual importance of a feature, is used.

The weight ũi j used in Equation 4.24 is ũi j = 0 for k(φi, φ̃ j) = 0, and ũi j = 1 for k(φi, φ̃ j) > 0

(ui j is defined similarly).

For the point-to-point match score k(φi, φ̃ j) in Equation 4.24, we use

k(φi, φ̃ j) = k(D) =



1.0 − 0.5D if D ≤ 1.0

0.5/D if 1.0 < D ≤ 5.0

0 if 5.0 < D

(4.31)

where D = D(φi, φ̃ j) is the Euclidean distance between the two feature points (Equation 4.20).

4.6 Results and Analysis

4.6.1 Feature Extraction

4.6.1.1 Comparison with Spectral Modeling Synthesis9

The Spectral Modeling Synthesis (SMS) method (Serra and Smith III, 1990) detects a peak also

in the power spectrogram, tracks the one peak point over time, and forms an amplitude envelope.

One can certainly use this amplitude envelope to infer the damping value, for example, by linear

regression of the logarithmic amplitude values (which is the approach adopted by (Välimäki et al.,

1996)). There are, however, several disadvantages of this approach.
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First of all, tracking only the peak point over time implies that the frequency estimation is only

accurate to the width of the frequency bins of power spectrogram. For example, for a window size

of 512 samples, the width of a frequency bin is about 86 Hz, direct frequency peak tracking has

frequency resolution as coarse as 86 Hz.

Serra and Smith pointed out this problem (Serra and Smith III, 1990), and proposes to improve

the accuracy by taking the two neighboring frequency bins around the peak and performing a 3-point

curve fitting to find the real peak (Serra, 1989). Our method takes a further step: instead of 3 points

per time frame, we use all points within a rectangular region. The region extends as far as possible in

both frequency and time axes until (a) the amplitude falls under a threshold to the peak amplitude, or

(b) a local minimum in amplitude is reached. We then use an optimizer to find a damped sinusoid

whose power spectrogram best matches the shape of the input data in the region of interest. An

example is shown in Figure 4.9a, where the blue surface is the power spectrogram of the input sound

clip, and the overlay red mesh is the power spectrogram of the best fitted damped sinusoid.

(a) (b)

Figure 4.9: Estimation of damping value in the presence of noise, using (a) our local shape fitting
method and (b) SMS with linear regression.

Secondly, for linear regression to work well, there must be at least two points (the more the

better) along the time axis, before the signal falls to the level of background noise. For high damping

values, there will be only a few data points along the time axis. On the other hand, we know that the

damping value is also reflected in the width of the hill, so when there are not enough points along the

time axis, there are more points along the frequency axis with significant heights–which will help

determining the damping value in our surface fitting method.
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Taking more points into account makes it less sensitive to noise. In Figure 4.10, we simulated a

noisy case where white noise with signal-to-noise ratio (SNR)=8 dB is added to a damped sinusoid

with damping value 240, and use (a) our local surface fitting method and (b) SMS with linear

regression to infer the damping value. In this particular example, due to the high damping value and

high noise level, only 4 points participate in linear regression, while 24 points are considered in our

method. Our shape fitting is less sensitive to irregularities than the fitted line in SMS. The average

damping error versus damping value for both methods are plotted in Figure 4.10a and Figure 4.10b,

where SNR=20 dB and 8 dB respectively.

(a) (b)

Figure 4.10: Average damping error versus damping value for our method and SMS.

Mathematically, the 2D power spectrogram contains as much information as the original time

domain signal (except for the windowing effect and the loss of phase). Using only a 1D sequence

inevitably discards a portion of all available information (as in SMS), and in some cases (e.g. high

damping values and high noise level) this portion is significant. Our surface matching method utilizes

as much information as possible. Fitting a surface is indeed more costly than fitting a line, but it also

achieves higher accuracy.

4.6.1.2 Comparison with a Phase Unwrapping Method

The ‘phase unwrapping’ technique proposed by (Pai et al., 2001) and (Corbett et al., 2007) is

known for its ability to separate close modes within one frequency bin. Our method, however, works

under a different assumption, and the ability to separate modes within a frequency bin has different
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(a) (b) (c)

Figure 4.11: Interference from a neighboring mode located several bins away.

(a) (b) (c)

Figure 4.12: A noisy, high damping experiment.

impacts in our framework and theirs. In their framework, the extracted features { fi, di, ai} are directly

used in the sound synthesis stage and thus control the final audio quality. In our case, the features are

only used to guide the subsequent parameter estimation process. In this process, two close modes

will show up as near-duplicate points in the ( f , d)-space. Because as pointed out by (Pai et al., 2001),

modes with close frequencies usually result from the shape symmetry of the sounding object, and

their damping values should also be close. In the process of fitting material parameters, or more

specifically, in computing the feature domain metric, replacing these near-duplicate points with one

point does not affect the quality of the result much.

Secondly, despite its ability to separate nearby modes, (Corbett et al., 2007) also proposes

to merge modes if their difference in frequency is not greater than human’s audible frequency

discrimination limit (2-4 Hz). Among the multiple levels of power spectrograms that we used, the

finest frequency resolution (about 3 Hz) is in fact around this limit.

On the other hand, our proposed feature extraction algorithm offers some advantages and

achieves higher accuracy compared with (Pai et al., 2001) and (Corbett et al., 2007) in some

cases. When extracting the information of a mode, other modes within the same frequency bin
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(which are successfully resolved by the Steiglitz-McBride algorithm (Steiglitz and McBride, 1965)

underlying (Pai et al., 2001) and (Corbett et al., 2007)) are not the only source of interference. Other

modes from several bins away also affect the values (complex or magnitude-only alike) in the current

bin, known as the ‘spillover effect’. In order to minimize this effect, the greedy method proposed in

our work collects the modes with the largest average power spectral density first. Therefore, when

examining a mode, the neighboring modes that have higher energy than the current one are already

collected, and their influence removed. This can be demonstrated in Figure 4.11. The original power

spectrogram of a mode ( f1, d1, a1) is shown in Figure 4.11a. The values at the frequency bin Fk

containing f1 are plotted over time, shown as the blue curve in Figure 4.11c. In Figure 4.11b, the the

presence of another strong mode ( f2, d2, a2) located 5 bins away changes the values at Fk, plotted

as the red curve in Figure 4.11c. The complex values of the STFT at Fk are not shown, but they

are similarly interfered. If these complex values at Fk are directly fitted with the Steiglitz-McBride

algorithm in the works by (Pai et al., 2001) and (Corbett et al., 2007), the estimated damping has a

20% error. The greedy approach in our multi-level algorithm removes the influence of the neighboring

mode first, resulting in a 1% damping error.

Based on our experimentations, we also found that the universal frequency-time resolution used

in (Pai et al., 2001) and (Corbett et al., 2007) is not always most suitable for all modes. Our method

uses a dynamic selection of frequency-time resolution to address this problem. For example, in

the case of high damping values, under a fixed frequency-time resolution, there may only be a few

points above noise level along the time axis, which will undermine the accuracy of the Steiglitz-

McBride algorithm. Figure 4.12 shows such an example, the damping value (150 s−1) is high but not

unreasonable, as shown in the time domain signal Figure 4.12a, where a white noise with SNR=60

dB is added. The power spectrogram is shown in Figure 4.12b. We implemented the method in

the paper by (Corbett et al., 2007) using the suggested 46 ms window size (with Noverlap = 4) and

tested on the above case. The input to this method is the complex values at the peak frequency bin,

whose magnitudes of the real and imaginary parts are shown in Figure 4.12c, and an error of 5.7%

for damping is obtained. As a comparison, our algorithm automatically selects a 23 ms window size

and fits the local shape in a 6 × 5 region in the frequency-time space, yielding merely a 0.9% error

for damping.
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4.6.2 Parameter estimation

Before working on real-world recordings, we design an experiment to evaluate the effectiveness

of our parameter estimation with synthetic sound clips. A virtual object with known material

parameters {α, β, γ, σ} and geometry is struck, and a sound clip is synthesized by mixing the excited

modes. The sound clip is entered to the parameter estimation pipeline to test if the same parameters

are recovered. Three sets of parameters are tested and the results are shown in Figure4.13.
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truth estimated relative
error

α 9.2003e+1 9.1995e+1 9.31e-5
β 1.8297e-7 1.8299e-7 9.30e-5
γ 3.6791e+0 3.6791e+0 3.91e-6
σ 2.1873e-3 2.1872e-3 5.61e-5

truth estimated relative
error

α 3.9074e+0 3.9069e+0 1.27e-4
β 3.3935e-8 3.3935e-8 1.62e-6
γ 3.4186e+0 3.4186e+0 1.17e-6
σ 9.0013e-6 9.0009e-6 4.67e-5

truth estimated relative
error

α 3.1425e+1 3.1428e+1 9.93e-5
β 7.0658e-7 7.0663e-7 7.61e-5
γ 7.3953e+0 7.3953e+0 3.00e-6
σ 3.5842e-9 3.5847e-9 1.46e-4

Figure 4.13: Results of estimating material parameters using synthetic sound clips. The intermediate
results of the feature extraction step are visualized in the plots. Each blue circle represents a
synthesized feature, whose coordinates (x, y, z) denote the frequency, damping, and energy of the
mode. The red crosses represent the extracted features. The tables show the truth value, estimated
value, and relative error for each of the parameters.

This experiment demonstrates that if the material follows the Rayleigh damping model, the

proposed framework is capable of estimating the material parameters with high accuracy. Below

we will see that real materials do not follow the Rayleigh damping model exactly, but the presented

framework is still capable of finding the closest Rayleigh damping material that approximates the

given material.

We estimate the material parameters from various real-world audio recordings: a wood plate, a

plastic plate, a metal plate, a porcelain plate, and a glass bowl. For each recording, the parameters

are estimated using a virtual object that is of the same size and shape as the one used to record the

audio clips. When the virtual object is hit at the same location as the real-world object, it produces a

sound similar to the recorded audio, as shown in Figure 4.14 and the supplementary video.
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Figure 4.14: Parameter estimation for different materials. For each material, the material parameters
are estimated using an example recorded audio (top row). Applying the estimated parameters to a
virtual object with the same geometry as the real object used in recording the audio will produce a
similar sound (bottom row).

Parameters

Material α β γ σ

Wood 2.1364e+0 3.0828e-6 6.6625e+5 3.3276e-6
Plastic 5.2627e+1 8.7753e-7 8.9008e+4 2.2050e-6
Metal 6.3035e+0 2.1160e-8 4.5935e+5 9.2624e-6
Glass 1.8301e+1 1.4342e-7 2.0282e+5 1.1336e-6
Porcelain 3.7388e-2 8.4142e-8 3.7068e+5 4.3800e-7

Table 4.1: Refer to Sec. 4.1 and Sec. 4.4 for the definition and estimation of these parameters.

Figure 4.15 compares the refenece features of the real-world objects and the estimated features

of the virtual objects as a result of the parameter estimation. The parameter estimated for these

materials are shown in Table. 4.1.

Transfered parameters and residual: The parameters estimated can be transfered to virtual objects

with different sizes and shapes. Using these material parameters, a different set of resonance modes

can be computed for each of these different objects. The sound synthesized with these modes

preserves the intrinsic material quality of the example recording, while naturally reflect the variation

in virtual object’s size, shape, and interactions in the virtual environment.

Moreover, taking the difference between the recording of the example real object and the

synthesized sound from its virtual counterpart, the residual is computed. This residual can also be

transfered to other virtual objects, using methods described in Sec. 4.5.
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Figure 4.15: Feature comparison of real and virtual objects. The blue circles represent the reference
features extracted from the recordings of the real objects. The red crosses are the features of the
virtual objects using the estimated parameters. Because of the Rayleigh damping model, all the
features of a virtual object lie on the depicted red curve on the ( f , d)-plane.

Figure 4.16 gives an example of this transferring process. From an example recording of a

porcelain plate (a), the parameters for the porcelain material are estimated, and the residual computed

(b). The parameters and residual are then transfered to a smaller porcelain plate (c) and a porcelain

bunny (d).

4.6.3 Comparison with real recordings

Figure 4.17 shows a comparison of the transferred results with the real recordings. From a

recording of glass bowl, the parameters for glass are estimated (column (a)) and transfered to other

virtual glass bowls of different sizes. The synthesized sounds ((b) (c) (d), bottom row) are compared

with the real-world audio for these different-sized glass bowls ((b) (c) (d), top row). It can be

seen that although the transfered sounds are not identical to the recorded ones, the overall trend

in variation is similar. Moreover, the perception of material is preserved, as can be verified in the

accompanying video. More examples of transferring the material parameters as well as the residuals

are demonstrated in the accompanying video.

4.6.4 Example: a complicated scenario

We applied the estimated parameters for various virtual objects in a scenario where complex

interactions take place, as shown in Figure 4.18 and the accompanying video.
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Figure 4.16: Transfered material parameters and residual: from a real-world recording (a), the
material parameters are estimated and the residual computed (b). The parameters and residual
can then be applied to various objects made of the same material, including (c) a smaller object
with similar shape; (d) an object with different geometry. The transfered modes and residuals are
combined to form the final results (bottom row).

4.6.5 Performance

Table 4.2 shows the timing for our system running on a single core of a 2.80 GHz Intel Xeon

X5560 machine. It should be noted that the parameter estimation is an offline process: it needs to be

run only once per material, and the result can be stored in a database for future reuse.

For each material in column one, multiple starting points are generated first as described in

Sec. 4.4.3, and the numbers of starting points are shown in column two. From each of these starting

points, the optimization process runs for an average number of iterations (column three) until

convergence. The average time taken for the process to converge is shown in column four. The

convergence is defined as when both the step size and the difference in metric value are lower than

their respective tolerance values, ∆x and ∆metric. The numbers reported in Table 4.2 are measured

with ∆x = 1e-4 and ∆metric = 1e-8.
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Figure 4.17: Comparison of transfered results with real-word recordings: from one recording (column
(a), top), the optimal parameters and residual are estimated, and a similar sound is reproduced (column
(a), bottom). The parameters and residual can then be applied to different objects of the same material
((b), (c), (d), bottom), and the results are comparable to the real-world recordings ((b), (c), (d), top).

Figure 4.18: The estimated parameters are applied to virtual objects of various sizes and shapes,
generating sounds corresponding to all kinds of interactions such as colliding, rolling, and sliding.

4.7 Conclusion and Future Work

We have presented a novel data-driven, physically based sound synthesis algorithm using an

example audio clip from real-world recordings. By exploiting psychoacoustic principles and feature

identification using linear modal analysis, we are able to estimate the appropriate material parameters

that capture the intrinsic audio properties of the original materials and transfer them to virtual objects

of different sizes, shape, geometry and pair-wise interaction. We also propose an effective residual

computation technique to compensate for linear approximation of modal synthesis.

Although our experiments show successful results in estimating the material parameters and

computing the residuals, it has some limitations. Our model assumes linear deformation and Rayleigh
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Material #starting points average #iteration average time (s)

Wood 60 1011 46.5
Plastic 210 904 49.4
Metal 50 1679 393.5
Porcelain 80 1451 131.3
Glass 190 1156 68.9

Table 4.2: Offline Computation for Material Parameter Estimation

damping. While offering computational efficiency, these models cannot always capture all sound

phenomena that real world materials demonstrate. Therefore, it is practically impossible for the

modal synthesis sounds generated with our estimated material parameters to sound exactly the

same as the real-world recording. Our feature extraction and parameter estimation depend on the

assumption that the modes do not couple with one another. Although it holds for the objects in our

experiments, it may fail when recording from objects of other shapes, e.g. thin shells where nonliear

models would be more appropriate (Chadwick et al., 2009).

We also assume that the recorded material is homogeneous and isotropic. For example, wood is

highly anisotropic when measured along or across the direction of growth. The anisotropy greatly

affects the sound quality and is an important factor in making high-precision musical instruments.

Because the sound of an object depends both on its geometry and material parameters, the

geometry of the virtual object must be as close to the real-world object as possible to reduce the

error in parameter estimation. Moreover, the mesh discretization must also be adequately fine. For

example, although a cube can be represented by as few as eight vertices, a discretization so coarse

not only clips the number of vibration modes but also makes the virtual object artificially stiffer than

its real-world counterpart. The estimated γ, which encodes the stiffness, is thus unreliable. These

requirements regarding the geometry of the virtual object may affect the accuracy of the results using

this method.

Although our system is able to work with an inexpensive and simple setup, care must be taken in

the recording condition to reduce error. For example, the damping behavior of a real-world object is

influenced by the way it is supported during recording, as energy can be transmitted to the supporting

device. In practice, one can try to minimize the effect of contacts and approximate the system as

free vibration, or one can rigidly fix some points of the object to a relatively immobile structure and
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model the fixed points as part of the boundary conditions in the modal analysis process. It is also

important to consider the effect of room acoustics. For example, a strong reverberation will alter the

observed amplitude-time relationship of a signal and interfere with the damping estimation.

Despite these limitations, our proposed framework is general, allowing future research to further

improve and use different individual components. For example, the difference metric now considers

the psychoacoustic factors and material resemblance through power spectrogram comparison and

feature matching. It is possible that more factors can be taken into account, or a more suitable

representation, as well as a different similarity measurement of sounds can be found.

The optimization process approximates the global optimum by searching through all ‘good’

starting points. With a deeper investigation of the parameter space and more experiments, the

performance may be possibly improved by designing a more efficient scheme to navigate the

parameter space, such as starting-point clustering, early pruning, or a different optimization procedure

can be adopted.

Our residual computation compensates the difference between the real recording and the syn-

thesized sound, and we proposed a method to transfer it to different objects. However, it is not the

only way – much due to the fact that the origin and nature of residual is unknown. Meanwhile,

it still remains a challenge to acquire recordings of only the stuck object and completely remove

input from the striker. Our computed residual is inevitably polluted by the striker to some extent.

Therefore, future solutions for separating sounds from the two interacting objects should facilitate a

more accurate computation for residuals from the struck object.

When transferring residual computed from impacts to continuous contacts (e.g. sliding and

rolling), there are certain issues to be considered. Several previous work have approximated con-

tinuous contacts with a series of impacts and have generated plausible modal sounds. Under this

approximation, our proposed feature-guided residual transfer technique can be readily adopted.

However, the effectiveness of this direct mapping needs further evaluation. Moreover, future study

on continuous contact sound may lead to an improved modal synthesis model different than the

impact-based approximation, under which our residual transfer may not be applicable. It is then also

necessary to reconsider how to compensate the difference between a real continuous contact sound

and the modal synthesis sound.
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In this chapter, we focus on designing a system that can quickly estimate the optimal material

parameters and compute the residual merely based on a single recording. However, when a small

number of recordings of the same material are given as input, machine learning techniques can be

used to determine the set of parameters with maximum likelihood, and it could be an area worth

exploring. Finally, we would like to extend this framework to other non-rigid objects and fluids, and

possibly nonlinear modal synthesis models as well.

In summary, data-driven approaches have proven useful in areas in computer graphics, including

rendering, lighting, character animation, and dynamics simulation. With promising results that

are transferable to virtual objects of different geometry, sizes, and interactions, this work is the

first rigorous treatment of the problem on automatically determining the material parameters for

physically based sound synthesis using a single sound recording, and it offers a new direction for

combining example-guided and modal-based approaches.
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CHAPTER 5: WAVE-RAY HYBRID SOUND PROPAGATION

The previous chapters focused on sound synthesis techniques that I have developed for liquid

sounds and rigid body sounds. The aim of this chapter is to describe a technique that I have developed

for sound propagation, which is a hybird technique combining wave simulation and ray-tracing

based acoustic techniques. The chapter is organized as follows: first I give an overview to our hybrid

sound propagation technique, followed by an in-depth discussion of the key component, the tw-way

coupling procedure. Then I describe the implementation of the sound propagation system, the results

obtained from it, and the performance and error analysis. Finally, I conclude with a summary of my

contribution and a discussion of possible future work.

5.1 Overview

In this section we give an overview of sound propagation and our proposed approach.

5.1.1 Sound Propagation

For a sound pressure wave with angular frequency ω, speed of sound c, the problem of sound

propagation in domain Ω in the space can be expressed as a boundary value problem for the Helmholtz

equation :

∇2 p +
ω2

c2 p = f ; x ∈ Ω, (5.1)

where p(x) is the complex valued pressure field, ∇2 is the Laplacian operator, and f (x) is the source

term, (e.g. = 0 in free space and δ(x′) for a point source located at x′). Boundary conditions are

specified on the boundary ∂Ω of the domain (which can be the surface of an solid object, the interface

between different media, or an arbitrarily defined surface) by a Dirichlet boundary condition that

specifies pressure, p(x) = 0; x ∈ ∂Ω, a Neumann boundary condition that specifies the velocity of

medium, ∂p(x)
∂n = 0; x ∈ ∂Ω, or a mixed boundary condition that specifies a complex-valued constant

Z, so that Z ∂p(x)
∂n + p(x) = 0; x ∈ ∂Ω.



Figure 5.1: Overview of spatial decomposition in our hybrid sound propagation technique: In the
precomputation phase, a scene is classified into objects and environment features. This includes
near-object regions (shown in orange) and far-field regions (shown in blue). The sound field in
near-object regions is computed using a numerical wave simulation, while the sound field in far-field
region is computed using geometric acoustic techniques. A two-way coupling procedure couples
the results computed by geometric and numerical methods. The sound pressures are computed at
different listener positions to generate the impulse responses. At runtime, the precomputed impulse
responses (IR0-IR3) are retrieved and interpolated for the specific listener position (IRt) at interactive
rates, and final sound is rendered.

The pressure p at infinity must also be specified, usually by the Sommerfeld radiation condi-

tion (Pierce, 1989), lim||x||→∞
[
∂p
∂||x|| + ĵωcp

]
= 0, where ||x|| is the distance of point x from the origin

and ĵ =
√
−1.

Different acoustic techniques aim to solve the above equations with different formulations.

Numerical acoustic techniques discretize Equation (5.1) and solve for p numerically with boundary

conditions. Geometric acoustic techniques model p as a discrete set of rays emitted from sound

sources which interact with the environment and propagate the pressure.

5.1.2 Acoustic Transfer Function

When modeling the acoustic effects due to objects or surfaces in a scene, it is often useful to

define the acoustic transfer function. Many different acoustic transfer functions have been proposed

to simulate different acoustic effects. In sound propagation problems, the acoustic transfer function

maps an incoming sound field to an outgoing sound field. For example, Waterman developed a

transition-matrix method for acoustic scattering (Waterman, 2009) and maps the incoming and

outgoing fields in terms of the coefficients of a complete system of vector basis functions. Antani

et al. (2012) compute an acoustic radiance transfer operator that maps incident sound to diffusely

reflected sound in a scene. Mehra et al. (2013) model the free-field acoustic behavior of an object, as
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well as pairwise interactions between objects. In sound radiation problems, James et al. (2006b) map

the vibration mode of an object to the radiated sound pressure field.

5.1.3 Hybrid Sound Propagation

We describe the various components of our hybrid sound propagation technique. Our approach

uses a combination of frequency decomposition and spatial decomposition, as shown schematically

in Figure 5.2. Since frequency decomposition is a standard technique (Granier et al., 1996), we

mostly focus on spatial decomposition and our novel two-way coupling algorithm (see Figure 5.1).

Figure 5.2: Frequency and spatial decomposition. High frequencies are simulated using geometric
techniques, while low frequencies are simulated using a combination of numerical and geometric
techniques based on a spatial decomposition.

Frequency Decomposition: We divide the modeled frequencies to low and high frequencies, with a

crossover frequency νmax. For high frequencies, geometric techniques are used throughout the entire

domain. For low frequencies, a combination of numerical and geometric techniques is used based

on a spatial decomposition described below. Typical values for νmax are 0.5-2 kHz, and a simple

low-pass–high-pass filter combination is usually used to join the results at the crossover frequency

region.

Spatial decomposition: Given a scene we first classify it into small objects and environment features.

The small objects, or simply objects, are of size comparable to or smaller than the wavelength of the
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sound pressure wave being simulated. The environment features represent objects much larger than

the wavelength (like terrain). The wavelength that is used as the criterion for distinguishing small or

large objects is a user-controlled parameter. One possible choice is the maximum audible wavelength

(17 m), corresponding to the lowest audible frequency for human (20 Hz). When sound interacts with

objects, wave phenomena are prominent only when the objects are small relative to the wavelength.

Therefore we only need to compute accurate wave propagation in the local neighborhood of small

objects. We call this neighborhood the near-object region (orange region in Figure 5.1) of an object,

and numerical acoustic techniques are used to compute the sound pressure field in this region. The

region of space away from small objects is called the far-field region and is handled by geometric

acoustic techniques (blue region in Figure 5.1).

The spatial decomposition is performed as follows: For a small object A, we compute the offset

surface ∂A+ and define the near-object region, denoted as ΩN , as the space inside the offset surface.

The offset surface of an object is computed using discretized distance fields and the marching cubes

algorithm similar to James et al. (2006b). If the offset surfaces of two objects intersect then they are

treated as a single object and are enclosed in one ΩN . The space complementary to the near-object

region is defined as the far-field region, and is denoted as ΩG.

Geometric acoustics: The pressure waves constituting the sound field in ΩG are modeled as a

discrete set of rays. Their propagation in space and interaction with environment features (e.g.

reflection from walls) are governed by geometric acoustic principles. We denote the pressure value

defined collectively by the rays at position x as pG(x),

pG(x) =
∑
r∈R

pr(x), (5.2)

where pr is the contribution from one ray r in a set of rays R.

Numerical acoustic techniques: The sound pressure field scattered by objects in ΩN is treated

by wave-based numerical techniques for lower frequencies, in which the wave phenomena such

as diffraction and interference are inherently modeled. We denote the pressure value at position x

computed using numerical techniques as pN(x).

Coupling: At the interface between near-object and far-field regions, the pressures computed by

the two different acoustic techniques need to be coupled (Figure 5.3). Rays entering a near-object
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(a) ΩG → ΩN (b) pinc (c) psca (d) ΩN → ΩG

Figure 5.3: Two-way coupling of pressure values computed by geometric and numerical acoustic
techniques. (a) The rays are collected at the boundary and the pressure evaluated. (b) The pressure on
the boundary defines the incident pressure field pinc in ΩN , which serves as the input to the numerical
solver. (c) The numerical solver computes the scattered field psca, which is the effect of object A to
the pressure field. (d) psca is expressed as fundamental solutions and represented as rays emitted to
ΩG.

region define the incident pressure field that serves as the input to the numerical solver. Similarly, the

outgoing scattered pressure field computed by the numerical solver must be converted to a set of rays.

The two-way coupling are modeled as transfer functions between incoming and outgoing rays. The

process is detailed in Section 5.2.

Pressure computation: At each frequency lower than νmax, the coupled geometric and numerical

methods are used to solve the global sound pressure field. All frequencies higher than νmax are

handled by geometric techniques throughout the entire domain.

Acoustic kernel: The previous stages serve as an acoustic kernel, which computes the impulse

responses (IRs) for a given source-listener position pair. For each sound source, the pressure value at

each listener position is evaluated for all simulated frequencies to give a complete acoustic frequency

response (FR), which can in turn be converted to an impulse response (IR) through Fourier transform.

IR’s for predefined source-listener positions (usually on a grid) are precomputed and stored.

Auralization: At runtime, the IR for a general listener position is obtained by interpolating the

neighboring precomputed IR’s (Raghuvanshi et al., 2010), and the output sound is auralized by

convoluting the input sound with the IRs in real time.

5.2 Two-Way Wave-Ray Coupling

In this section, we present the details of our two-way coupling procedure. We also highlight the

precomputation and runtime phases. The coupling procedure ensures the consistency between pG

and pN , the pressures computed by the geometric and numerical acoustic techniques, respectively.
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Any exchange of information at the interface between ΩG and ΩN must result in valid solutions to

the Helmholtz equation (5.1) in both domains ΩG and ΩN .

5.2.1 Geometric→ Numerical

From the pressure field pG, we want to find the incident pressure field pinc, which serves as the

input to the numerical solver inside ΩN . The incident pressure field is defined as the pressure field

that corresponds to the solution of the wave equation if there were no objects in ΩN .

Mathematically pinc is the solution of the free-space Helmholtz Equation (5.1) with forcing term

f = 0. Since there is no object in domain ΩG,

pinc(x) = pG(x); x ∈ ΩG. (5.3)

This equation defines a Dirichlet boundary condition on the interface ∂A+:

p = pG(x); x ∈ ∂A+, (5.4)

The uniqueness of the acoustic boundary value problem guarantees that the solution of the

free-space Helmholtz Equation, along with the specified boundary condition, is unique inside ΩN .

The unique solution pinc(x) can be found by expressing it as a linear combination of fundamental

solutions. 1 If ϕi(x) is a fundamental solution, and pinc(x) is expressed as a linear combination,

pinc(x) =
∑

i

ciϕi(x) x ∈ ΩN , (5.5)

then the linearity of the wave equation implies that pinc(x) is also a solution. Furthermore, if the

coefficients ci are such that the boundary condition (5.4) is satisfied, then pinc(x) is the required

unique solution to the boundary value problem (Section 3 in Ochmann (1995)). Therefore, the

resultant pressure field is a valid incoming field in the numerical domain. The numerical solver takes

the incident pressure field, considers the effect of the object inside ΩN , and computes the outgoing

scattered field. Figures 5.3(a) and 5.3(b) illustrate the process.

1A fundamental solution F for a linear operator L (in this case the Helmholtz operator L = ∇2 + ω2

c2 ) is defined as the
solution to the equation LF = δ(x), where δ is the Dirac delta function (Vladimirov, 1976).
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5.2.2 Numerical→ Geometric

In order to transfer information from ΩN to ΩG, a discrete set of rays must be determined to

represent the computed pressure pN . These outgoing rays may be emitted from some starting points

located in ΩN and carry different information related to the modeled pressure waves (strength, phase,

frequency, spatial derivatives of pressure, etc.) The coupling procedure thus needs to compute the

appropriate outgoing rays, given the numerically computed pN .

The scattered field in the numerical domain due to the object can be simply written as,

psca(x) = pN(x); x ∈ ΩN . (5.6)

We need to find the scattered field outside of ΩN , and model it as a set of rays. As before, Equa-

tion (5.6) defines a Dirichlet boundary condition on the interface ∂A+,

p = pN(x); x ∈ ∂A+. (5.7)

The free space Helmholtz Equation, along with this boundary condition, uniquely defines the scattered

field psca outside ΩN . We again express psca as a linear combination of fundamental solutions ϕ j:

psca(x) =
∑

j

c jϕ j(x); x ∈ ΩG, (5.8)

and then find the coefficients c j by satisfying the boundary condition (5.7). This gives us a unique

solution for scattered field psca(x) outside ΩN . We then use a set of rays Rout
j to model the fundamental

solutions ϕ j(x) such that

ϕ j(x) =
∑

r∈Rout
j

pr(x), x ∈ ΩG. (5.9)

These rays correctly represent the outgoing scattered field in ΩG. Figure 5.3(c) and 5.3(d) illustrate

the process.

The coupling process described above is a general formulation and is independent of the

underlying numerical solver (BEM, FEM, etc.) that is used to compute pN as long as the pressure

on the interface ∂A+ can be evaluated and expressed as a set of fundamental solutions. Depending
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on the mathematical formulation of the selected set of fundamental solutions ϕ j(x), different rays

(starting points, directions, information carried, etc.) can be defined. However, a general principle is

that if ϕ j(x) has a singularity at y j, then y j is a natural starting point from which rays are emitted.

The directions of rays sample a unit sphere uniformly or with some distribution function (e.g. guided

sampling (Taylor et al., 2012)). The choice of fundamental solutions will be discussed in the next

section.

Note that if the fundamental solutions ϕi and ϕ j used to express the incident field (Equation (5.5))

and outgoing scattered field (Equation (5.8)) are predetermined, then the mapping from ϕi to ϕ j can

be precomputed. This precomputation process will be discussed in section 5.2.4.

5.2.3 Fundamental solutions

The requirement for the choice of fundamental solution ϕ j is that it must satisfy the Helmholtz

Equation (5.1) and the Sommerfeld radiation condition.

Equivalent Sources: One choice of fundamental solutions is based on equivalent sources (Ochmann,

1995). Each fundamental solution is chosen to correspond to the field due to multipole sources of

order L (L = 1 is a monopole, L = 2 is a dipole, etc.) located at y j:

ϕ j(x) = ϕ jlm(x), (5.10)

for l ≤ L − 1 and −l ≤ m ≤ l, and

ϕ jlm = Γlmh(2)
l (ωρ j/c)ψlm(θ j, φ j), (5.11)

where (ρ j, θ j, φ j) corresponds to the vector (x − y j) expressed in spherical coordinates, h(2)
l (·) is the

complex-valued spherical Hankel function of the second kind, ψlm(θ j, φ j) is the complex-valued

spherical harmonic function, and Γlm is the real-valued normalizing factor that makes the spherical

harmonics orthonormal (Arfken et al., 1985). We use a shorthand generalized index h for (l,m), such

that ϕ jh(x) ≡ ϕ jlm(x).
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For pressure fields outside of ∂A+ (i.e. in ΩG), these equivalent sources are placed inside of ∂A+

(i.e. in ΩN). In a similar fashion, for pressure fields inside ΩN , the equivalent sources must be placed

outside ΩN .

We model the outgoing pressure field from these equivalent sources using rays (Equation (5.9))

as follows. Rays are emitted from the source location y j. For a ray of direction (θ, φ) that has traveled

a distance ρ, its pressure is scaled by ψlm(θ, φ) and h(2)
l (ωρ/c).

Note that we can use equivalent sources to express a pressure field independently of how

the pressure field was computed. For a computed pN , we only need to find the locations y j and

coefficients c j of the equivalent sources. This is performed by satisfying the boundary condition (5.8)

in a least squared sense.

Boundary Elements: If the underlying numerical acoustic technique of choice is the boundary

element method (BEM), then another set of fundamental solutions which is directly based on the

BEM formulation is possible. For a domain with boundary ∂Ω, the boundary element method solves

the boundary integral equation of the Helmholtz equation. The boundary ∂Ω is discretized into

triangular surface elements, and the equation is solved numerically for two variables; the pressure p

and its normal derivative ∂p
∂n on the boundary. Once the boundary solutions p and ∂p

∂n are known, the

sound pressure in the domain can be found for any point x by summing all the contributions from the

surface triangles:

p(x) =

∫
∂Ω

(
G(y, x)

∂p(y)
∂n

−
∂G(y, x)
∂n

p(y)
)

d
(
∂Ω(y)

)
, (5.12)

where y is the approximated position of the triangle and G is the Green’s Function G(y, x) =

exp( ĵω|x − y|/c)/4π|x − y| (Gumerov and Duraiswami, 2009).

Note that the discretization of Equation (5.12) also takes the form of Equation (5.8) as a linear

combination of fundamental solutions:

p(x) =
∑

j

(
c1

jϕ
1
j(x) + c2

jϕ
2
j(x)

)
, (5.13)
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where the two kinds of fundamental solutions are

ϕ1
j(x) = G(yj, x)

∂p(yj)
∂n

; ϕ2
j(x) = −

∂G(yj, x)
∂n

p(yj). (5.14)

Under this formulation, we can represent the pressure field as two kinds of rays emitted from

each triangle location yj, each modeling ϕ1
j(x) and ϕ2

j(x) respectively. Then for a point in ΩG the

pressure field defined by the rays is computed according to Equation (5.12).

5.2.4 Precomputed Transfer Functions

If we consider what happens in ΩN as a black box, the net result of the coupling and the numerical

solver is that a set of rays enter ΩN and then another set of rays exit ΩN :

Rin M−−→ Rout, (5.15)

where Rin is the set of incoming rays entering ΩN , Rout is the set of outgoing rays, andM is the ray

transfer function. In this case, the functionM is similar to the bidirectional reflectance distribution

function (BRDF) for light (Ben-Artzi et al., 2008). In our formulation,M encodes all the operations

for the following computations:

1. Collect pressures defined by Rin to form the incident field on the interface (Equation (5.4));

2. Express the incident field as a set of fundamental solutions (Equation (5.5));

3. Compute the outgoing scattered field using the numerical acoustic technique;

4. Express the outgoing scattered field as a set of fundamental solutions (Equation (5.8); and

finally,

5. Find a set of rays Rout that model these functions (Equation (5.9).

A straightforward realization of hybrid sound propagation technique is possible: from each

sound source rays are traced, interacting with the environment features, entering and exiting the

near-object regions transfered by different M’s, and finally reaching a listener. However, as the

first step ofM depends on the incoming rays Rin, a differentM must be computed each time the

rays enter the same near-object region. Moreover, the process must be repeated until the solution
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converges to a steady state, which may be too time-consuming for a scene (e.g. an indoor scene) with

multiple ray reflections causing multiple entrances to near-object regions.

While previous two-way hybrid techniques do not consider this problem (Barbone et al., 1998;

Jean et al., 2008), we address this problem by observing that if the fundamental solutions in Step 2

(denoted as ϕin
i ) and Step 4 (denoted as ϕout

j ) are predefined, then we can precompute the results of

Step 2-Step 5 for an object. Similar to the BRDF for light, one can define the BRDF for sound. The

mapping of ϕin
i to ϕout

j for an object is called the per-object transfer function. For different Rin that

define an incident field pinc on the interface, we only need to compute the expansion coefficients

di of the fundamental solutions ϕin
i ; the outgoing rays are computed by applying the precomputed

per-object transfer function.

The outgoing scattered field that is modeled as outgoing rays from an object A may, after

propagating in space and interacting with the environment, enter as incoming rays into the near-

object region of another object B. For a scene where the environment and relative positions of

various objects are fixed, we can precompute all the propagation paths for rays that correspond to

A’s outgoing basis functions ϕout
j,A and that reach B’s near-object region. These rays determine the

incident pressure field arriving at object B, which can again be expressed as a linear combination of a

set of basis functions ϕin
i,B. The mapping from ϕout

j,A to ϕin
i,B, called the inter-object transfer function,

which is a fixed function and can also be precomputed. Interactions between multiple objects can

therefore be found by a series of applications of the inter-object transfer functions.

Based on the per-object and inter-object transfer functions, all orders of acoustic interaction

(corresponding to multiple entrance of rays to near-object regions) in the scene can be found for the

total sound field by solving a global linear system, which is much faster than the straightforward

hybridization, where the underlying numerical solver is invoked multiple times for each order of

interactions. The trade-off is that the transfer functions have to be precomputed. However, the

pre-object transfer functions can be reused even when the objects are moved. This characteristic

is beneficial for quick iterations when authoring scenes, and can potentially be a cornerstone for

developing sound propagation systems that supports fully dynamic scenes.
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5.3 Implementation

In this section we discuss the implementation aspect for our technique.

5.3.1 Implementation details

The geometric acoustics code is written in C++, based on the Impulsonic Acoustect SDK2,

which implements a ray-tracing based image source method. For the numerical acoustic technique we

use a GPU-based implementation of the ARD wave-solver (Raghuvanshi et al., 2009b). Per-object

transfer functions, inter-object transfer functions, and equivalent source strengths are computed using

a MATLAB implementation based on (Mehra et al., 2013).

Table 5.1 provides the detailed timing results for the precomputation stage. The timings are

divided into two groups. The first group, labeled as “Hybrid Pressure Solving,” consists of all the

steps required to compute the final equivalent source strengths. These computations are performed

once for a given scene. The second group, labeled as “Pressure Evaluation,” involves the computation

of the pressures contributed by all equivalent sources at a listener position. This computation is

performed once for each sampled listener position.

The timing results for “wave sim.” (simulation time of the ARD wave solver), and “Pressure

Evaluation” are measured on a single core of a 4-core 2.80 GHz Xeon X5560 desktop with 4GB of

RAM and NVIDIA GeForce GTX 480 GPU with 1.5 GB of RAM. All the other results are measured

on a cluster containing a total of 436 cores, with sixteen 16-CPUs (8 dual-core 2.8GHz Opterons,

32GB RAM each) and forty-five 4-CPU (2 dual-core 2.6GHz Opterons, 8GB RAM each).

We assume the scene is given as a collection of objects and terrains. In the spatial decomposition

step, the offset surface is computed using distance fields. One important parameter is the spatial

Nyquist distance h, corresponding to the highest frequency simulated νmax, h = c/2νmax, where c is

the speed of sound. To ensure enough spatial sampling on the offset surface, we choose the voxel

resolution of distance field to be h, and the sample points are the vertices of the surface given by the

marching cubes algorithm. The offset distance is chosen to be 8h. In general, a larger offset distance

means a larger spatial domain for the numerical solver and is therefore more expensive. On the other

hand, a larger offset distance results in a pressure field with less detail (i.e. reduced spatial variation)

2http://impulsonic.com/acoustect-sdk/
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on the offset surface, and fewer outgoing equivalent sources are required to achieve the same error

threshold.

5.3.2 Collocated equivalent sources

The positions of outgoing equivalent sources can be generated by a greedy algorithm that

selects the best candidate positions randomly (James et al., 2006b). However, if each frequency

is considered independently, a total of 1M or outgoing equivalent sources may arise across all

simulated frequencies. Because we must trace Nr rays, (typically thousands or more) from each

equivalent source, this computation becomes a major bottleneck in our hybrid framework. This may

cause a computation bottleneck in our hybrid framework, because we need to trace Nr rays (typically

thousands or more) from each equivalent source.

We resolve this issue by reusing equivalent sources positions across different frequencies as much

as possible. First, the equivalent sources for the highest frequency νmax, which requires the highest

number of equivalent sources, Pmax, are computed using the greedy algorithm. For lower frequencies,

the candidate positions are drawn from the Pmax existing positions, which guarantees that a total of

Pmax collocated positions is occupied. Indeed, when the path is frequency-independent, rays emitted

from collocated sources will travel the same path, which reduces the overall ray-tracing cost. The

frequency-independent path assumption holds for paths containing only specular reflections, in which

case the incident and reflected directions are determined. We observe a 60 − 100X speedup while

maintaining the same error bounds over methods without the collocation scheme. All the timings

results in this section are based on this optimization.

5.3.3 Auralization

We compute the frequency responses using our spatial decomposition approach up to νmax =

1 kHz with a sampling step size of 2.04 Hz. For frequencies higher than νmax, we use a ray

tracing solution, with diffractions approximated by the Uniform Theory of Diffraction (UTD)

model (Kouyoumjian and Pathak, 1974). We join the low- and high-frequency responses in the region

[800, 1000] Hz using a low-pass–high-pass filter combination.

The sound sources in our system are recorded audio clips. The auralization is performed using

overlap-add STFT convolutions. A ”dry” input audio clip is first segmented into overlapping frames,
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Scene #IR samples Memory Time

Building+small 960 19 MB 3.5 ms
Building+med 1600 32 MB 3.5 ms
Building+large 6400 128 MB 3.5 ms

Reservoir 17600 352 MB 1.8 ms

Table 5.2: Runtime Performance on a Single Core. For each scene, “#IR samples” denotes the
number of IR’s sampled in the scene to support moving listeners or sources; “Memory” shows the
memory to store the IR’s; “Time” is the total running time needed to process and render each audio
buffer.

and a windowed (Blackman window) Short-Time Fourier transform (STFT) is performed. The

transformed frames are multiplied by the frequency responses corresponding to the current listener

position. The resulting frequency-domain frames are then transformed back to time-domain frames

using inverse FFT, and the final audio is obtained by overlap-adding the frames. For spatialization

we use a simplified spherical head model with one listener position for each ear. Richer spatialization

can be modeled using head related transfer functions (HRTFs), which are easily integrated in our

approach.

For the interactive auralization we implemented a simplified version of the system proposed

by Raghuvanshi et al. (2010). Only the listener positions are sampled on a grid (of 0.5m-1m grid

size), and the sound sources are kept static. The case of moving sound sources and a static listener

is handled using the principle of acoustic reciprocity (Pierce, 1989). The interactive auralization is

demonstrated through integration with Valve’s Source™game engine. Audio processing is performed

using FMOD at a sampling rate of 44.1 kHz; the audio buffer length is 4096 samples, and the FFTs

are computed using the Intel MKL library. The runtime performance statistics are summarized in

Table 5.2. The parking garage scene is rendered off-line and not included in this table.

5.4 Results and Analysis

In this section we present the results of our hybrid technique in different scenarios and error

analysis.
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5.4.1 Scenarios

We demonstrate the effectiveness of our technique in a variety of scenes as shown in Figure 5.4.

These scenes are at least as complex as those shown in previous wave-based sound simulation

techniques (James et al., 2006b; Raghuvanshi et al., 2009b; Mehra et al., 2013) or geometric methods

with precomputed high-order reverberation (Tsingos, 2009; Antani et al., 2012). Please refer to

the supplementary video for the auralizations. In each scene, we compare the audio generated

by our method with existing sound propagation methods: a pure geometric technique is used for

comparison (Taylor et al., 2012), which models specular reflection as well as edge diffraction

through UTD; a pure numerical technique, the ARD wave-solver (Raghuvanshi et al., 2009b).

Comparisons with ARD are done only in a limited selection of scenes (Building), while the other

scenes (Underground Parking Garage and Reservoir) are too large to fit in the memory using ARD.

Building. As the listener walks behind the building, we observe the low-pass occlusion effect

with smooth transition as a result of diffraction. We also observe the reflection effects due to the

surrounding walls. We show how sound changes as the distance from the listener to the walls and the

height of the walls vary.

Underground Parking Garage. This is a large indoor scene with two sound sources, a human and

a car, as well as vehicles that scatter and diffract sound. As the listener walks through the scene,

we observe the characteristic reverberation of a parking garage, as well as the variation of sound

received from various sources depending on whether the listener is in the line-of-sight of the sources.

Reservoir. We demonstrate our system in a large outdoor scene from the game Half-Life 2, with

a helicopter as the sound source. This scene shows diffraction and scattering due to a rock; it also

shows high-order interactions between the scattered pressure and the surrounding terrain, which is

most pronounced when the user walks through a passage between the rock and the terrain. Interactive

auralization is achieved by precomputing the IRs at a grid of predefined listener positions. We also

make the helicopter fly and thereby demonstrate the ability to handle moving sound sources and

high-order diffractions.
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Figure 5.4: Our hybrid technique is able to model high-fidelity acoustic effects for large, complex
indoor or outdoor scenes at interactive rates: (a) building surrounded by walls, (b) underground
parking garage, and (c) reservoir scene in Half-Life 2.

5.4.2 Error Analysis

In Figure 5.5 we compare the results of our hybrid technique with BEM on a spatial grid of

listener locations at different frequencies for several scenes: two parallel walls, two walls with

a ground, an empty room, and two walls in a room. BEM is one of the most accurate wave-

based simulators available, and comparing with high-accuracy simulated data is a widely adopted

practice (Barbone et al., 1998; Jean et al., 2008; Hampel et al., 2008). BEM results are generated by

the FastBEM simulator3. A comparison with a geometric technique for the last scene is also provided.

The geometric technique models 8 orders of reflection and 2 orders of diffraction through UTD.

We also compute the difference in pressure field (i.e. the error) between our hybrid technique

with varying reflection orders and BEM, as shown in Figure 5.6 for the “Two Walls in a Room”

scene. The error between the pressure fields generated by the reference wave solver and by our

hybrid method , is computed as ||Pref − Phybrid||
2/||Pref||, where Pref and Phybrid are vectors consisting

of complex pressure values at all the listener positions and || · || denotes the two-norm of complex

values, summed over all positions x (the grid of listeners as shown in Figure 5.5). Higher reflection

orders lead to more accurate results but require more rays to be traced.

5.4.3 Complexity

Consider a scene with κ objects. We perform the complexity analysis for frequency ν and discuss

the cost of numerical and geometric techniques used.

Numerical Simulation and Pre-Processing: The pre-processing involves several steps: (1) per-

forming the wave simulation using numerical techniques, (2) computing per-object and inter-object

3http://www.fastbem.com/
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transform matrix, and (3) solving linear systems to determine the strengths of incoming and out-

going equivalent sources (Mehra et al., 2013). In our system, the equivalent sources are limited to

monopoles and dipoles, and the complexity follows:

O(κnQP2 + κ2nPQ2 + κ(u log u) + κ3P3), (5.16)

where Q, P are the number of incoming and outgoing equivalent sources respectively, n is the number

of offset surface samples, and u is the volume of an object. The number of equivalent sources P and

Q scale quadratically with frequency.

Ray Tracing: Assume the scene has T triangles, and from each source we trace Nr rays to the scene.

The cost for one bounce of tracing from a source is O(Nr log T ) on average and O(NrT ) in the worst

case. If the order of reflections modeled is d, then the (worst case) cost of ray-tracing is O(NrT d).

This cost is multiplied by the number of sources (sound sources and equivalent sources) and the

number of points where the pressure values need to be evaluated. The total cost is dominated by

computing inter-object transfer functions, where the pressure from P outgoing equivalent sources

from an object needs to be evaluated at n sample positions on the offset surface of another object.

This results in

O(κ2PnT d) (5.17)

for a total of κ2 pairs of objects in the scene.

In our collocated equivalent source scheme, however, the P outgoing sources for different

frequencies share a total of Pcol positions. The rays traced from a shared position can be reused, so

for all frequencies ν, we only need to trace rays from Pcol positions instead of
∑
ν P(ν) positions .

The choice of Nr is scene-dependent. In theory, in order to discover all possible reflections from

all scene triangles without missing a propagation path, the ray density along every direction should

be high enough so that the triangle spanning the smallest solid angle viewed from the source can

be hit by at least one ray. The problem of missing propagation paths is intrinsic to all ray-tracing

methods. It can be overcome by using beam-tracing methods (Funkhouser et al., 1998), but they are

considerably more expensive and are only practical for simple scenes.
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The order of reflection d also depends on the scene configuration. For an outdoor scene where

most reflections come from the ground, a few reflections are sufficient. In enclosed or semi-enclosed

spaces more reflections are needed. In practice it is common to stop tracing rays when a given bound

of reflection is reached, or when the reflected energy is less than a threshold.

Scalability Although the computation domain of the numerical solver, ΩN , is smaller than the

entire scene, the size of the entire scene still matters. Larger scenes require longer IR responses and

therefore more frequency samples, which affect the cost of both numerical and geometric components

of our hybrid approach. Larger scenes in general require more triangles, assuming the terrain has

the same feature density. For a scene whose longest dimension is L, the number of IR samples (and

therefore frequency samples) scales as O(L), and the number of triangles scales as O(L2), - giving

overall numerical and ray-tracing complexities of - O(L) and O(L3 log L) respectively. This is better

than most numerical methods; for example, the time complexity of ARD are O(L4 log L) and FDTD

scale O(L4).

We tested the scalability of our method with the building scene by increasing the size of the

scene and measuring the performance. The results are shown in Figure 5.7. Since the open space is

handled by geometric methods, whose complexity of the geometric method is not a direct function of

the total volume, it is not necessary to divide the open space into several connected smaller domains,

as some previous methods did (Raghuvanshi et al., 2009b).

5.4.4 Comparison with Prior Techniques

Compared with geometric techniques, our approach is able to capture wave effects such as

scattering and high-order diffraction, thereby generate sound of higher quality. When compared with

performing numerical wave-based techniques such as ARD and BEM, over the entire domain, our

approach is much faster as we use a numerical solver only in near-object regions, as opposed to the

entire volume. We do not have a parallel BEM implementation, but extrapolating from the data in

Figure 6, FastBEM would take 100+ hours for Underground Parking Garage and 1000+ hours for

Reservoir on a 500-core cluster to simulate sound up to 1 kHz, assuming full parallelization. In

comparison, our method can perform all (numeric, geometric, and coupling) precomputations in a

few hours for these two scenes (as shown in Table 5.1) to achieve interactive runtime performance

(see Table 5.2). Moreover, numerical techniques typically require memory proportional to the third

103



or fourth power of frequency to evaluate pressures and compute I’s at different listener positions. As

shown in Table 5.3, our method requires orders of magnitude less memory than several standard

numerical techniques. We have also highlighted the relative benefits of our two-way coupling

algorithms with other hybrid methods used in acoustic and electromagnetic simulation (see Section

2.3). In many ways, our coupling algorithm ensures continuity and consistency of the field computed

by numeric and geometric techniques at the artificial boundary between their computational domains.

The method proposed by Mehra et al. (2013) is also able to simulate the acoustic effects of

objects in large outdoor scenes. Their formulation, however, only allows objects to be situated

in an empty space or on an infinite flat ground, and therefore cannot model large indoor scenes

(e.g. parking lot) or outdoor scenes with uneven terrains. If an outdoor scene has a large object,

the algorithm proposed in (Mehra et al., 2013) would slow down considerably. The coupling with

geometric propagation algorithm, on the other hand, enables us to model acoustic interactions with all

kinds of environment features. It is relatively easier to extend our hybrid approach to inhomogeneous

environments by using curved ray tracing. Furthermore, geometric ray tracing is also used to perform

frequency decomposition and this results in improved sound rendering.

Scene air vol. surf. area FDTD ARD BEM/ Ours
(m3) (m2) FMM

Bldg+small 1800 660 0.2 TB 5 GB 6 GB 12 MB
Bldg+med 3200 1040 0.3 TB 9 GB 9 GB 12 MB
Bldg+large 22400 3840 2.2 TB 60 GB 34 GB 12 MB
Reservoir 5832000 32400 578 TB 16 TB 307 GB 42 MB
Parking 9000 2010 0.9 TB 24 GB 2 GB 9 MB

Table 5.3: Memory Cost Saving. The memory required to evaluate pressures at a given point
of space. This corresponds to the same operation shown in the rightmost column of Table 5.1.
Compared to standard numerical techniques, our method provides 3 to 7 orders of magnitude of
memory saving on the benchmark scenes.

5.5 Limitations, Conclusion, and Future Work

We have presented a novel hybrid technique for sound propagation in large indoor and outdoor

scenes. The hybrid technique combines the strengths of numerical and geometric acoustic techniques

for the different parts of the domain: the more accurate and costly numerical technique is used to

model wave phenomena in near-object regions, while the more efficient geometric technique is used
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Figure 5.5: Comparison between the magnitude of the total pressure field computed by our hybrid
technique and BEM for various scenes. In the top row, the red dot is the sound source, and the blue
plane is a grid of listeners. Errors between our method and BEM for each frequency are shown in
each row. For our hybrid technique, the effect of the two walls are simulated by numerical acoustic
techniques, and the interaction between the ground or the room is handled by geometric acoustic
techniques. For BEM, the entire scene (including the walls, ground, and room) is simulated together.
The last column also shows comparison with a pure geometric technique (marked as “GA”).

to handle propagation in far-field regions and interaction with the environment. The sound pressure

field generated by the two techniques is coupled using a novel two-way coupling procedure. The

method is successfully applied to different scenarios to generate realistic acoustic effects.

Our approach has a few limitations. The diffraction due to objects is currently handled completely

by the numerical component in the near-object regions of our hybrid system. It is possible to also

include geometric approximations of the diffraction effect, such as the UTD or BTM methods, in

the far-field regions. This approach offers flexibility to determine how accurately the diffraction

effects should be modeled, where and when numerical methods should be approximated by geometric

methods.

The performance of our spatial decomposition depends greatly on the size of ΩN . Although it

size is smaller than the entire simulation domain, an individual ΩN may still be too large, especially

when the wave effects near a large object need to be computed and this increases the complexity of

our algorithm. One interesting topic to investigate is the possibility of not enclosing the whole object,

but only parts of it (e.g. small features) in ΩN .

We currently compare our simulation results with simulated data from a high-accuracy BEM

solver. It would be an important future work to validate these results with recorded audio measure-

105



Figure 5.6: Error ||Pref − Phybrid||
2/||Pref|| between the reference wave solver (BEM) and our hybrid

technique for varying maximum order of reflections modeled. The tested scene is the ”Two walls in
a room” (see also Figure 5.5, last column).

ments, when accurate measurements with binaural sound recordings and spatial sampling in complex

environments are available.

Additionally our approach and system implementation is currently limited to mostly static scenes

with moving sound sources and/or listeners. Nonetheless the use of transfer functions lays the

foundation for future extension to fully dynamic scenes, as the per-object transfer functions of an

object can be reused even when the object is moved. In order to recompute inter-object transfers as

multiple objects move in a dynamic scene, a large number of rays (the number of outgoing sources

for all frequency samples multiplied by thousands of rays emitted per source) need to be retraced. We

would like to explore the use of the Fast Multipole Method (FMM) (Gumerov and Duraiswami, 2004)

to reduce the number of outgoing sources for far-field approximations. The computation of transfer

function is currently implemented with unoptimized MATLAB code, and using high-performance

linear solvers (CPU- or GPU-based) can greatly improve the performance.

5.6 Extension to Inhomogeneous Media

In previous sections, my geometric technique assumes homogeneous media and traces straight

ray paths. In real world, however, the media in which sound travels is usually not homogeneous:
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Figure 5.7: Breakdown of Precomputation Time. For a building placed in terrains of increasing
volumes (small, medium, and large walls), the yellow part is the simulation time for the numerical
method, and the green part is for the geometric method. The numerical simulation time scales linearly
to the largest dimension (L) of the scene instead of the total volume (V).

there is wind, temperature difference, turbulence in the atmosphere, as well as salinity difference

underwater – all cause the speed of sound to vary in space. The deviation from the homogeneous

approximation becomes non-negligible for large scenes (e.g. spanning kilometers). In this section

I discuss the extension to inhomogeneous medium, where the speed of sound is not constant and

the rays may travel in curved paths. A curved ray-tracing module must be integrated into my hybrid

system instead. The major challenge of extending from homogeneous to inhomogeneous medium

is the presence of a kind of irregularities called caustic points. The standard Ray Theory fails to

predict physically meaningful results around these irregularities and special treatments need to be

taken. Even the first step–identifying their locations in space is challenging. Previously several

methods that aim to locate these points and introduce correction terms to the standard Ray Theory are

proposed (Ludwig, 1966; Salomons, 2001), but even if they only solve the reduced two dimensional

problem (which is useful if the media variation is azimuth-symmetrical) the methods are quite

intricate. The problem only worsen in the case of full three-dimensional problem, which is actually

needed in many real-world sound propagation applications (Tolstoy, 1996).

The rest of this section is therefore mostly devoted to overcome such challenges and are organized

as follows. First, in order to understand the difficulties and necessary theoretical modifications when

extending to inhomogeneous medium, the standard Ray Theory is revisited in Section 5.6.1. I show

that the Ray Theory originates from solving the acoustic wave equation,which can be decomposed to
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two equations under high-frequency approximation: the eikonal equationand the transport equation.I

will show that the eikonal equation determines the ray trajectory, which has analytical solutions in

some special cases. The transport equation, on the other hand, is related to the pressure amplitude on

a ray. By introducing several coordinate transforms, I examine some geometrical properties of rays

(e.g. the cross-sectional area of a ray tube) and establish the relationship between these properties

and the amplitude. Under this mathematical framework, it is then clear what a caustic point is, where

it would occur, and why it causes the standard Ray Theory to fail. The failure can be discussed in

two aspects: one is related to the infinite (and therefore unphysical) amplitude that the standard Ray

Theory predicts at caustic points; the other is related to the phase inversion across caustic points. The

first problem is treated in Section 5.6.3 and 5.6.4, and the second is solved in Section 5.6.2.

With the theoretical background of Section 5.6.1, I then discuss the computational aspect in

detail in Section 5.6.2, namely how to solve the eikonal equation and the transport equation by

tracking extra variables (mostly related to the geometrical properties of rays) along ray paths. The

computation of coordinate transforms that are necessary for obtaining these geometrical properties

are explained step by step.

After Section 5.6.2, the pressure field at any point (with the exception of a caustic point) along

a ray can be computed. In theory if I wish to evaluate the pressure field at any point in space,

I must find the exact ray passing through this point. The search for such rays, however, is very

challenging in a three-dimensional space. Therefore I adopt a mathematical tool called Gaussian

Beams which is developed in the seismology field (Popov, 1982; Červenỳ et al., 1982) and then

extended to the acoustics field (Porter and Bucker, 1987). The Gaussian Beam method essentially

associates a non-zero width to each ray, and thereby extends the pressure field to points not on a ray.

It also eliminates the problem of infinite amplitude at caustic points. The pressure field at any given

point can thus be computed by first finding the nearby rays passing through the vicinity of the point

(avoiding the search of the ray passing exactly through that point), and then computing the weighted

sum of their contributions, The weighting function, as well as the computation of other necessary

components, are carefully investigated in Section 5.6.4.1. Combining all these components, the final

pressure field can be computed using Equation (5.77).

I adopted most of the mathematical results from works by Červený (Červený, 2000, 2005).

Detailed derivations are omitted here, and interested readers are referred to his works. His theory is
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intentionally presented in a very general form so that it can be applied many kinds of mechanical

waves, including acoustic and seismic waves. In my discussion I present specialized forms tailored

to acoustic applications and also elaborate the computational considerations that comes with these

applications.

Due to the complicated nature of the problem at hand, and the necessity to introduce several

coordinate transforms as discussed previously, there are many mathematical symbols in this section.

A list of symbols and their meanings is provided in Table 5.4. Please note that cases and styles

all matter, so P, p, ~p, and P all have different meanings. In order to improve readability, however,

I follow a set of strict, consistent conventions for the mathematical notations as suggested by

Červený (Červený, 2005). Matrices are all bold-faced (M), and vectors are denoted with arrows

(~v). To distinguish between 2 × 2 matrices and matrices of other dimensions, the circumflex (ˆ)

are used for 3 × 3 and 3 × 2 matrices. Components of matrices or vectors are always indexed in

the form of suffixes. The uppercase suffixes take the values 1 and 2, lowercase indices 1, 2, and

3. In this way, MIJ denote elements of M and Mi j elements of M̂. Sometimes when referring to

components, I use a shorthand of xi instead of writing all 3 components out, so that f (xi) actually

means f (x1, x2, x3). The Einstein summation convention is used throughout this part of my thesis,

where repeated indices imply that a summation is taken. Thus MIJqJ = MI1q1 + MI2q2 (I = 1 or 2),

Mi jq j = Mi1q1 + Mi2q2 + Mi3q3 (i = 1, 2 or 3).

5.6.1 Ray Theory

In order to modify the ray-tracing module to incorporate inhomogeneous media, I shall revisit

the theoretical background of ray tracing as a sound propagation method, what problem it tries to

solve and how it should be modified.

Ray-tracing aims to solve the acoustic wave equation. Let us consider an acoustic wave equation

for pressure p without source term,

∇ ·
1
ρ
∇p =

1
ρc2 p̈. (5.18)

For inhomogeneous media, both the sound velocity c and density ρ are variable. I can find an

approximate time-harmonic (i.e. frequency-dependent) high-frequency solution of this equation in
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symbol meaning
p pressure

xi, (x1, x2, x3) components of Cartesian coordinates
ρ density of the medium
c speed of sound
P pressure amplitude
ω angular frequency of a sound wave
T travel time function
~p slowness vector
pi components of a slowness vector

V(xi) speed of sound written explicitly in a space-varying form
H Halmitonian
u an arbitrary monotonic parameter along a ray
s arclength along a ray
σ a monotonic parameter chosen so that dσ = V ds
~A gradient of V−2

γ1, γ2 abstract parameters describing a ray; for example the initial take-off angles
i0, φ0 initial take-off angles of a ray

q1, q2, q3 components of the ray-centered coordinates
~e1, ~e2, ~e3 unit basis vectors of the ray-centered coordinates

Ĥ a 3 × 3 transformation matrix from ray-centered coordinates to Cartesian
coordinates

Hik matrix elements of matrix Ĥ
p(q)

i components of slowness vector in ray-centered coordinates
Q, P 2 × 2 matrices; see Equation (5.31) for definition

J ray Jacobian
L geometrical spreading; defined as |J|1/2
~t unit vector tangent to the ray

k(R, S ) KMAH index from point S to point R
M 2 × 2 matrix; the second derivative of the travel-time field with respect to q1

and q2

Q̂(x), P̂(x) 3 × 2 transform matrices; see Equation (5.41) for definition
Σ∥ plane where a ray lies

~n1, ~n2, ~n3 a set of orthonormal unit vectors defined in relationship with a ray and the
plane Σ∥ that it lies in

T c(R, S ) phase shift due to caustics between point S and R
Pray ray amplitude

Φ(γ1, γ2) weighting function of the contribution of a ray described by parameters γ1, γ2
D domain of ray parameters under consideration
M 2 × 2 matrix defined by Equation (5.68)

M̂(x) 3 × 3 matrix related to M; see Equation (5.71)

Table 5.4: Symbol Table.
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the following form (Jensen et al., 2011):

p(xi, ω, t) = P(xi) exp[−iω(t − T (xi))]. (5.19)

ω is the angular frequency of the sound wave. xi is a short-hand for (x1, x2, x3) and denotes a point

in space. T (xi) is a smooth scalar functions of coordinates, representing the time for the wave to

travel from source to point xi in space, and is often referred to as the travel time function. P(xi) is a

time-independent pressure amplitude function, which is also space-varying. Notice Equation (5.19)

is just performing separation of variables for the pressure function p(xi, ω, t), I have not introduce

any physics yet.

Substituting this equation to Equation (5.18), I obtain:

− ω2
[
(∇T )2 −

1
c2

]
+ iω

2∇P · ∇ + P∇2T −
(

P
ρ

)
∇T · ∇ρ


+ ρ∇ ·

1
ρ
∇P = 0. (5.20)

Because Equation (5.20) must be satisfied for any frequency ω, the expressions with ω2, ω1, and ω0

must vanish. For high frequencies, ω � 0. the most important terms will be the term with ω2 and

ω1, corresponding to the first and second terms in Equation (5.20). These two terms should vanish,

thus giving us the eikonoal equation,

(∇T )2 = 1/c2, (5.21)

and the transport equation,

2∇P · ∇T + P∇2T − (P/ρ)∇T · ∇ρ = 0. (5.22)

These two equations are fundamental in the ray theory for solving the acoustic wave equation. The

eikonal equation is a nonlinear partial differential equation of the first order for travel time T (xi). It

is usually solved by ray tracing. The transport equation is a linear partial differential equation of the
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first order in P(xi) and can be solved quite simply along the rays. In the following two subsections I

shall discuss how to solve these two equations respectively.

5.6.1.1 Solving the Eikonal Equation

The eikonal equation (∂T )2 = 1/c2 is a nonlinear partial differential equation of the first order

for travel time T (xi). I introduce a slowness vector ~p = ∇T (not to be confused with pressure p),

which is the spatial derivative of the travel time field T . The name slowness is from the seismology

literature (Červený, 2005) and comes from the fact that its magnitude is the inverse of the speed of

sound, |~p| = 1/c. In Cartesian coordinates the components are pi = ∂T/∂xi, and the eikonal equation

reads

pi pi = 1/V2(xi). (5.23)

Here V(xi) = c is the space-varying sound speed. Equation (5.23) can be written in the Hamiltonian

form:

H(xi, pi) = pi pi − 1/V2(xi) = 0. (5.24)

The name Hamiltonian comes from classical mechanics, where it represents the canonical equations

of motion of a particle moving in the field governed by the Hamiltonian functionH(xi, pi) and has

energyH = 0 (Goldstein, 1980).

In mathematics, the nonlinear partial differential equation is usually solved in terms of char-

acteristics. The characteristics of Equation (5.24) are 3-D space trajectories xi = xi(u) for u some

parameter along the trajectory, along whichH(xi, pi) = 0 is satisfied. The detailed derivation of the

characteristic system shall be neglected here, the reader is referred to textbooks (Bleistein, 1984).

The characteristic system of the nonlinear partial differential equation (5.24) reads

dxi

du
=
∂H

∂pi
,

dpi

du
= −

∂H

∂xi
,

dT
du

= pk
∂H

∂pk
, i = 1, 2, 3. (5.25)

The solution of xi = xi(u) is the characteristic curve as a 3-D trajectory, which is defined as a ray.

The solution pi = pi(u) are components of the slowness vector along the ray, and the travel time

T = T (u) can be solved along the ray. The system of ordinary differential equations (5.25) are called
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ray tracing system. It shall be easy to see that onceH(xi, pi) = 0 is satisfied at one reference point of

the characteristic (ray), it is satisfied along the whole ray.

The choice of parameter u depends on the specific form of functionH , and may take the form of

travel time T , arclenght s along the ray, or a monotonic parameter σ, where dσ = V ds. A useful

case is that if we choose u to be σ in the formulation ofH (Equation (5.24)), then the ray tracing

system reads
dxi

dσ
= pi,

dpi

dσ
=

1
2
∂

∂xi

(
1

V2

)
,

dT
dσ

=
1

V2 . (5.26)

In this specially chosen case, I shall make a remark that if the media has a constant gradient of the

square of slowness, V−2, the ray tracing system (Equation (5.26)) has an analytical solution. Assume

that V−2 is described by V−2(x) = A0 + ~A · ~x, or written in components

V−2(xi) = A0 + A1x1 + A2x2 + A3x3. (5.27)

A0 is a the reference value of V−2 at the origin x1 = x2 = x3 = 0, and ~A is the gradient of the square

of slowness. In acoustics literature this corresponds to a n2 − linear media profile (Jensen et al.,

2011), where n is the refraction index and is proportional to V−1.

Plugging Equation (5.27) into Equation (5.26), the readers can verify that the analytical solution

is then

xi(σ) = xi0 + pi0(σ − σ0) + 1
4 Ai(σ − σ0)2,

pi(σ) = pi0 + 1
2 Ai(σ − σ0),

T (σ) = T (σ0) + V−2
0 (σ − σ0) + 1

2 Ai pi0(σ − σ0)2 + 1
12 AiAi(σ − σ0)3. (5.28)

Here the parameterσ along the ray is related to travel time T and to arclength s by dσ = V2 dT = V ds.

Hence, the ray is a parabolic curve.

The analytical solutions of the special case inspire cell methods (Jensen et al., 2011; Červený,

2005). The philosophy of cell methods is to divide the domain into subdomains called cells, typically

tetrahedrons. Within each cell the media is fitted by some simple form, like the constant gradient

V−2 described above, for which an analytic solution of the ray trajectory is possible. The ray can

thus be traced inside a cell, and when it reaches the boundaries it would enter another cell. The
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Figure 5.8: Initial take-off angles i0 and φ0 as ray parameters. i0 is the angle between the ray direction
and the x3-axis, while φ0 is the angle between the ray direction and the x1-x3 plane. 0 ≤ i0 ≤ π and
0 ≤ φ0 < 2π. A possible choice of the initial basis vectors ~e1, ~e2, ~e3 of the ray-centered coordinate
system are also plotted on the unit sphere.

whole trajectory of the ray can thus be analytically traced segment-by-segment within contiguous

cells. In the tetrahedral cells, the velocity is continuous across the boundaries of the cells, therefore

the ray trajectories are smooth (with C1 continuity) across boundaries. I adopt this method, and the

following discussion I assume cells are already fitted within which V−2 has a constant gradient.

5.6.1.2 Solving the Transport Equation

Before solving the transport equation (5.22), it is useful to discuss important concepts and

properties of the ray field, such as ray parameters, the Jacobians, the ray tube, and geometrical

spreading.

Consider an orthonormal system of rays from the same source, parameterized by two ray

parameters γ1, γ2 (if the source is fixed, a ray’s direction has two degrees of freedom). The

parameters are used to discriminate each ray in a system of rays, and can be introduced in many

ways. For example, for rays emitted from a point source, I may use the two take-off angles i0 and φ0
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𝑅

𝑒1

𝑒2

𝑒3 =  𝑡
ray 𝛀

Figure 5.9: Basis vectors ~e1, ~e2, ~e3 of the ray-centered coordinate system qi connected with ray Ω.
Ray Ω is the q3-axis of the system. At any point on the ray, unit vector ~e3 equals ~t, the unit tangent to
Ω. Unit vectors ~e1 and ~e2 are perpendicular to Ω and are mutually perpendicular.

as the ray parameters (see Figure 5.8). It would be possible to consider any other two parameters that

specify the initial direction of the ray as the ray parameters.

At any point of ray Ω, I may also introduce the ray-centered coordinates q1, q2, q3, with its

origin at that point. Ray Ω is the q3-axis of the system. I denote its unit basis vectors by ~e1, ~e2, ~e3.

Unit vector ~e3 equals ~t, the unit tangent to Ω. Unit vectors ~e1 and ~e2 are situated in a plane (shown as

the shaded plane in Figure 5.9) , perpendicular to Ω at a given q3, and are mutually perpendicular.

The 3×3 transformation matrix from the ray-centered cooridnates qk to the Cartesian coordinates

xi is denoted by Ĥ, whose elements are

Hik = ∂xi/∂qk = ∂qk/∂xi = eki, (5.29)

where eki is the i-th Cartesian component of the unit vector ~ek. The 3 × 3 matrix Ĥ can be used to

express the slowness vector ~p in ray-centered components, denoted as p(q)
i ,

p(q)
i = Hki pk. (5.30)
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The superscript (q) is used to hint that it is expressed in the ray-centered coordinates q1, q2, q3. Note

that since vector ~p is tangent to the ray and thus parallel to ~e3, I have p(q)
1 = p(q)

2 = 0.

Having defined the ray parameters and ray-centered coordinates, I am able to introduce the 2 × 2

matrices Q and P, with elements

QIJ = (∂qI/∂γJ)T=const., PIJ = (∂p(q)
I /∂γJ)T=const.. (5.31)

These matrices are very useful, and can be computationally determined along ray Ω once they are

known at one point on Ω. The actual computation of these matrices will be discussed in detail in

Section 5.6.2.

The determinant of Q is often denoted as J,

J = det Q (5.32)

which is called ray Jacobian. It is the Jacobian of transformation from ray parameters γ1, γ2 to

ray-centered coordinates q1, q2.

Jacobian J is closely connected with certain geometrical properties of the system of rays,

particularly with the density of rays. Consider a ray tube, which is a family of rays, whose parameters

are within the limits (γ1; γ1 + dγ1) and (γ2; γ2 + dγ2). See Figure 5.10. The cross-sectional area

of ABCD is proportional to |J|1/2. The amplitudes of sound pressures are inversely proportional to

|J|1/2, as amplitudes are high in regions where the density of rays is high (small J), and in regions

where the density of rays is low (high J), the amplitudes are low. Function |J|1/2 is often called the

geometrical spreading in the literature, and I denote it by L.

The transport equation Equation (5.22) can be solved along rays for pressure amplitude P in

terms of the ray Jacobian J. Using P/
√
ρ instead of P in Equation (5.22), and noting that along the

ray ∇T = c−1~t, where c is the space-varying sound speed and ~t is the unit vector tangent to the ray,

thus ~t · ∇(P/
√
ρ) = d(P/

√
ρ) ds, the transport function read can be rewritten as

d
ds

 P
√
ρ

 +
c
2

P
√
ρ
∇2T = 0. (5.33)
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Figure 5.10: Ray tube. Ray A0A corresponds to ray parameters (γ1, γ2), ray B0B corresponds to
(γ1 +dγ1, γ2), ray C0C corresponds to (γ1 +dγ1, γ2 +dγ2), and ray D0D corresponds to (γ1, γ2 +dγ2).

The detailed derivation can be found in Červený (Červený, 2005). The solution of this equation is

P(s) =

[
ρ(s)c(s)J(s0)
ρ(s0)c(s0)J(s)

]1/2

P(s0). (5.34)

The amplitude P(s) can be determined along the ray using Equation (5.34), once P(s0) is known at

some reference point s = s0 of the ray.

Equation (5.34) also gives us an insight of where caustic points appear. Caustic points, or simply

caustics, are points of the ray, at which the ray Jacobian vanishes (J = 0), and the cross-sectional

area of the ray tube shrinks to zero.

Since J = det Q, I can specify the position of caustic points along the ray by det Q = 0, which

happens when the rank of the 2 × 2 matrix Q is less than 2. There are two types of caustic points

along the ray, which are called caustic points of the first and second order.

At a caustic point of the first order,

rank(Q) = 1, (5.35)
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Figure 5.11: Two types of caustic points. At a caustic point of the first order (a), the ray tube reduces
to an arc. At a caustic point of the second order (b), the ray tube shrinks to a point.

and the ray tube shrinks to an arc, perpendicular to the direction of propagation. See Figure 5.11(a).

At a caustic point of the second order,

rank(Q) = 0, (5.36)

and the ray tube shrinks to a point. See Figure 5.11(b).

At caustic points, standard ray theory gives an infinite amplitude as the denominator in Equa-

tion (5.34) becomes zero, which is not a physical solution. Moreover, when passing through the

caustic point of the first order, ray Jacobian J changes sign, and the argument of J1/2 takes the phase

term ±π/2. Similarly, when passing through the caustic point of the second order, the phase term is

±π.

The phase shift due to caustics is cumulative. The total phase shift when the ray passes through

several caustic points is the sum of the individual phase shifts. Consider ray Ω from S to R. The

phase shift due to caustics along ray Ω from S to R is given by

T c(R, S ) = −1
2πk(R, S ), (5.37)
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the superscript c denotes that it is induced by caustics. Here k(R, S ) is called the KMAH index from

S to R. In isotropic media, it equals the number of caustic points along ray trajectory Ω from S to

R, caustic points of the second order being counted twice. The term KMAH index is introduced

by Ziolkowski and Deschamps (Ziolkowski and Deschamps, 1980) acknowledging the work by

Keller (Keller, 1958), Maslov (Maslov, 1965), Arnold (Arnold, 1967), and Hörmander (Hörmander,

1971).

The treatment of the infinite amplitude problem will be discussed in detail in Section 5.6.3,

while the treatment of phase shifts and the determination of the KMAH index will be discussed in

Section 5.6.2.1. Next I shall discuss dynamic ray tracing, namely how the 2× 2 matrices Q and P are

computed along a ray.

5.6.2 Dynamic Ray Tracing

Dynamic ray tracing is the practice of solving a system of several ordinary differential equations

along a known ray Ω and yields the first derivatives of position ~x and slowness vector ~p in various

coordinate systems (e.g. ray-centered coordinates, ray parameters, Cartesian coordinates) with respect

to their initial values. The name is from seismology (Červenỳ and Hron, 1980), and the term dynamic

should not be confused with the common use in computer graphics where it usually means the scene

is moving.

If I consider a two-parametric orthonormal system of rays, specified by ray parameters γ1 and

γ2, I can use the dynamic ray tracing system to compute the 2 × 2 matrices Q and P, with elements

specified in Equation (5.31) along Ω. Note that matrix Q represents the transformation matrix from

ray parameters γ1 and γ2 to the ray-centered coordinates q1 and q2 and can be used to compute the

geometrical spreading. Matrices Q and P can be used to compute the 2 × 2 matrix M of the second

derivative of the travel-time field with respect to q1 and q2:

M = PQ−1. (5.38)

In the following discussion the ray parameters are chosen to be the take-off angles i0 and φ0 of the

rays; see Figure 5.8.
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I illustrate the steps of computing Q and P from point S to another point R on ray Ω in the

following schematic diagram:

(a) Initial Conditions: P(S ),Q(S ) P(R),Q(R)

P̂(x)(S ), Q̂(x)(S ) P̂(x)(R), Q̂(x)(R)

(b) Transform: Ĥ(S )

(c) Continuation

(d) Transform: ĤT (R) (5.39)

The important steps are:

(a) First the initial conditions for Q and P are given, particularly for the case where S is a point

source.

(b) Then matrices Q and P are transformed to another coordinate system using a transformation

matrix Ĥ at point S .

(c) The continuation of the transformed matrices from point S to point R is solved. An analytical

solution is given for the special case that I am concerned (Section 5.6.1)

(d) Finally the matrices are transformed back to Q and P at point R using the transformation

matrix ĤT (R)

Next I shall elaborate these steps respectively.

(a) Initial conditions for Q and P. If S is a point source, then the matrices Q(S ) and P(S ) are given

in the following equations:

Q(S ) = 0, P(S ) =
1

V(S )

1 0

0 sin i0

 . (5.40)

Here i0 is the take-off angle between the ray and the x3-axis; see Figure 5.8.

(b) Transformation matrix Ĥ at point S . I would like to transform Q and P to the 3 × 2 matrices

Q̂(x) and P̂(x), with components:

Q(x)
iJ = (∂xi/∂γJ)σ=const., P(x)

iJ = (∂p(x)
i /∂γJ)σ=const. (5.41)
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From Equation (5.29), Equation (5.31), Equation (5.30) and Equation (5.41), it is simple to see

that

Q̂(x) = ĤQ, P̂(x) = ĤP. (5.42)

Here Ĥ is a 3× 2 transformation matrix from the ray-centered coordinate system q1, q2 to the general

Cartesian coordinate system x1, x2, x3:

Ĥ =


H11 H12

H21 H22

H31 H32


=


e11 e21

e12 e22

e13 e23


. (5.43)

e1 j and e2 j are Cartesian components of the basis vectors ~e1, ~e2 of the Cartesian coordinates.

The two unit vectors, ~e1 and ~e2 can be chosen arbitrarily at the point source S in the plane

perpendicular to the ray direction. I chose the following form:

~e1 ≡
[
cos i0 cos φ0, cos i0 sin φ0,− sin i0

]
,

~e2 ≡
[
− sin φ0, cos φ0, 0

]
. (5.44)

The direction of ~e1 and ~e2 is demonstrated in Figure 5.8 on a unit sphere with its center at S . ~e1 is

oriented along the meridian (constant φ0) and is positive in the direction of positive x3; ~e2 is oriented

along the parallel (constant i0). Notice that once the ray-centered coordinates has been specified at

any reference point of the ray (here at point source S ), then they are uniquely determined along the

whole ray Ω.

Plugging Equation (5.44) into Equation (5.43) I obtain

Ĥ(S ) =


e11 e21

e12 e22

e13 e23


=


cos i0 cos φ0 − sin φ0

cos i0 sin φ0 cos φ0

− sin i0 0


. (5.45)

Then using Equation (5.42) I am able to find Q̂(x)(S ) and P̂(x)(S )
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(c) Continuation of Q̂(x) and P̂(x). I would like to determine the 3 × 2 matrices

Q̂(x) =


Q(x)

11 Q(x)
12

Q(x)
21 Q(x)

22

Q(x)
31 Q(x)

32


, P̂(x) =


P(x)

11 P(x)
12

P(x)
21 P(x)

22

P(x)
31 P(x)

32


, (5.46)

from one point S to another point R on ray Ω.

The simplest dynamic ray tracing system is obtained for monotonic parameter σ along the ray

(see Section 5.6.1.1), which can be determined by:

d
dσ

Q(x)
i = P(x)

i ,
d

dσ
P(x)

i =
1
2

∂2

∂xi∂x j

(
1

V2

)
Q(x)

j . (5.47)

Here I omit the subscript J for γ. A special case that I am concerned about is when V−2 is a linear

function of coordinates xi, as shown in Equation (5.27). The dynamic ray tracing system can be

simply solved analytically:

P(x)
iJ (R) = P(x)

iJ (S ), Q(x)
iJ (R) = Q(x)

iJ (S ) + σ(R, S )P(x)
iJ (S ), (5.48)

where σ(R, S ) = σ(R) − σ(S ).

Transformation matrix Ĥ at point R. I would like to transform the 3 × 2 matrices Q̂(x)(R) and

P̂(x)(R) back to the 2 × 2 matrices Q(R) and P(R). Reversing Equation (5.42), the transforms are

Q(R) = ĤT (R)Q̂(x)(R), P(R) = ĤT (R)P̂(x)(R), (5.49)

since Ĥ is an orthonormal transform, Ĥ−1 = ĤT . Thus the problem becomes determining Ĥ at point

R. Remember from Equation (5.29), I have HiJ(R) = ~eJi(R), so my goal is to find the evolution of the

basis vectors ~e1 and ~e2 of the ray-centered coordinates from point S to R.

Within a cell I assume V−2 has a constant gradient ~A (5.27). Taking the cross product of

Equation (5.28) and the gradient vector ~A I can see that the ray, which is a parabolic curve, completely

lies in a plane whose normal is defined by ~p0 × ~A. I call this plane Σ∥; see Figure 5.12.
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Figure 5.12: Computing Ĥ along the ray Ω. Ĥ is determined by the basis vectors ~e1, ~e2, and ~e3 of the
ray-centered coordinate system. For a ray lying on plane Σ∥, I may define a set of unit vectors ~n1, ~n2,
~n3 = ~t. ~n2 is chosen to be perpendicular to Σ∥. The evolution of ~ei follows ~ni, where the angle θ0
between ~e1 and ~n1 (which is also the same between ~e2 and ~n2) is kept fixed.

A set of unit vectors ~n1, ~n2, ~n3 = ~t orthonormal with each other can be defined with respect to

ray Ω and plane Σ∥. I define ~n3 to be tangent to the ray curve

~n3(σ) = ~t = V(σ)~p(σ) (5.50)

and select ~n2 to be perpendicular to Σ∥, then ~n1 is defined by ~n1 = ~n2 ×~n3. ~n2 does not change in this

cell:

~n2(σ) = ~n2(σ0), (5.51)

where σ0 is the value of σ when entering this cell. See Figure 5.12.

If V−2 has a constant gradient, then from Equation (5.28 the slowness vector is

~p(σ) = ~p(σ0) + 1
2
~A(σ − σ0). (5.52)
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Then

~n1(σ) = ~n2(σ) × ~n3(σ)

= ~n2(σ) × V(σ)~p(σ)

= ~n2(σ0) × V(σ)
(
~p(σ0) + 1

2
~A(σ − σ0)

)
. (5.53)

Thus ~e1(σ), ~e2(σ) can be determined from ~e1(σ0), ~e2(σ0) and the evolution of ~n1, ~n2 from σ to σ0:

~e1(σ) =
[
~e1(σ0) · ~n1(σ0)

]
~n1(σ) +

[
~e1(σ0) · ~n2(σ0)

]
~n2(σ),

~e2(σ) =
[
~e2(σ0) · ~n1(σ0)

]
~n1(σ) +

[
~e2(σ0) · ~n2(σ0)

]
~n2(σ) (5.54)

For point R within this cell, Ĥ(R) can be found by plugging σ(R) into Equation (5.54) and

Equation (5.43), and Q(R) and P(R) can be found by Equation (5.49).

5.6.2.1 Phase Shift due to Caustics

The computation of Q and P allows us to compute the ray amplitudes using Equation (5.34) and

J = det Q. Moreover, it allows us to determine the argument of J1/2 due to phase shifts.

If I discard the parameter s and denote the point in space at s0 as S and point in space at s as R,

then Equation (5.34) can be rewritten as

P(R) =

[
ρ(R)c(R)J(S )
ρ(S )c(S )J(R)

]1/2

P(S ). (5.55)

Alternatively,

P(R) =

[
ρ(R)c(R)
ρ(S )c(S )

]1/2
L(S )
L(R)

exp
[
iT c(R, S )

]
P(S ), (5.56)

where T c(R, S ) is the phase shift due to caustics, and L is the geometrical spreading, L = |J|1/2.

In order to compute the phase shift due to caustics T c(R, S ), I have to compute the KMAH index

k(R, S ) in Equation (5.37). It can be determined by examining the 2×2 transformation matrix Q from

ray parameters γ1, γ2 to ray-centered coordinates q1, q2. Since Q can be computed at all points of Ω,

the caustic points of the first and second order can be located at points which det Q = 0, satisfying

Equation (5.35) or Equation (5.36.
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Consider two consecutive points O1 and O2 on ray Ω, where the 2 × 2 matrix Q takes values

Q1 = Q(O1) and Q2 = Q(O2). The following two criteria can be used to determine whether there is

a caustic point on Ω between O1 and O2.

a. If

det Q1 det Q2 < 0, (5.57)

there is a caustic point of the first order between O1 and O2.

b. Otherwise, if

tr
[
Q1(Q2)−1

]
det Q1 det Q2 < 0, (5.58)

there is a caustic point of the second order between O1 and O2. This can be written in a

form more useful in programming (Červený et al., 1988):

(
Q1

11Q2
22 − Q1

12Q2
21 + Q1

22Q2
11 − Q1

21Q2
12

)
det Q1 < 0. (5.59)

5.6.2.2 Ray Amplitudes

Having computed Q and T c(R, S ), then the pressure amplitudes on a ray can be computed using

(5.56) and L = |J|1/2 = | det Q|1/2. The only caveat is that for a point source, geometrical spreading

L(S ) vanishes at initial point S on ray Ω, and I need to specify a finite P0(S ) at S. By taking

lim
S ′→S
{L(S ′)P(S ′)} = P0(S ), (5.60)

where point S ′ is on ray Ω, I obtain the final equation for ray amplitudes:

Pray(R) =

[
ρ(R)c(R)
ρ(S )c(S )

]1/2 exp
[
iT c(R, S )

]
L(R)

P0(S ). (5.61)

5.6.3 Gaussian Beams

In previous sections, I construct the approximate high-frequency solutions of the acoustic

wave equation valid on rays. In this section, I shall extend the solutions so that they not only are

approximately valid along rays but also in the vicinity of these rays. These elementary solutions,
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connected with the individual rays, can be used in the superposition integrals to obtain more general

solutions of the acoustic wave equation. The summation of Gaussian beams passing in the vicinity of

the receiver, multiplied by some weighting functions, removes certain singularities of the standard

ray method (e.g. caustics).

Consider a point R situated on ray Ω, and a point R′ situated in the vicinity of R, possibly not on

Ω. Then the approximated pressure pappat R′ is given by the relation:

papp(R′) = Pray(R) exp
[
−iω(t − T (R′ − R))

]
. (5.62)

The amplitude Pray(R) is given in Equation (5.61). The travel-time function T (R′,R) represents

the approximated travel time at R′, expressed in terms of the travel time at R. In the ray-centered

coordinates system q1, q2, T (R,R′) reads:

T (R′,R) = T (R) + 1
2 qT (R′)M(R)q(R′). (5.63)

Here q = (q1, q2)T and M is the 2 × 2 matrix of the second derivatives of the travel-time field with

respect to ray-centered coordinates q1, q2; see Equation (5.38.

The approximate high-frequency solution (Equation (5.62)) of the acoustic wave equation can

be generalized by allowing solutions Q and P (and therefore M = PQ−1 and det Q of the dynamic

ray tracing system to take complex values. Thus,

M = Re(M) + i Im(M). (5.64)

Assuming that Im(M) is positive definite, then Equation (5.62) and Equation (5.63) becomes

pbeam(R′) =Pray(R) exp
[
−iω(t − T (R) − 1

2 qT (R′)M(R)q(R′))
]

=Pray(R) exp
[
−iω(t − T (R) − 1

2 qT (R′)Re(M(R))q(R′))
]

× exp
[
− 1

2ωqT (R′)Im(M(R))q(R′)
]
. (5.65)

The solution has an amplitude profile closely concentrated about the central ray and represents a

beam. As can be seen in the last term of Equation (5.65), the amplitude extends to the vicinity of
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ray Ω with non-zero q with a profile of a Gaussian function. This is why solutions as defined in

Equation (5.65) with Im(M(R)) , 0 are called Gaussian beams. Complex-valued matrices M and Q

must satisfy three conditions

a. Q is regular, i.e. det(Q) , 0 and det(M) , ∞.

b. M is symmetrical.

c. Im(M) is positive definite.

5.6.4 Summation Methods

Just like the spherical wave in a homogeneous medium can be expressed as the superposition

of the plane waves using the classical Weyl integral (Weyl, 1919), it is possible to construct useful

expressions for the wave field by integral superposition of asymptotic ray-based solutions. These

superposition integrals sum up individual contributions of Gaussian beams and are not exact. But

they provide a uniform asymptotic solution of the acoustic wave equation, valid even in certain

singular regions of the ray method.

Consider an acoustic wave propagating in a inhomogeneous medium and the relevant orthonormal

system of rays Ω(γ1, γ2), parameterized by two ray parameters γ1 and γ2. On each ray, I specify

one initial point S γ, at which some initial conditions are specified. I assume that the 2 × 2 matrices

Qa(S γ), Pa(S γ), and Ma(S γ) = Pa(S γ)Qa−1(S γ), corresponding to the actual ray field Ω(γ1, γ2),

are known at S γ. The superscript “a” is used to emphasize that these matrices correspond to the

actual ray field. These matrices are fixed for the acoustic wave under consideration. They should be

distinguished from the 2 × 2 complex-valued symmetric matrix M(S γ) used to describe Gaussian

Beams, which should be specified in some other way. See Section 5.6.4.4.

5.6.4.1 Superposition Integrals

I would like to determine the wavefield of the acoustic wave p(R, ω) at a fixed receiver R. I do

not have to identify the ray that exactly passes through R. Instead, the wavefield at R is calclulated

by a weighted superposition of Gaussian beams connected with rays Ω(γ1, γ2) passing in the vicinity

of R. See Figure 5.13.
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𝑆

ray 𝛀(𝜸𝟏, 𝜸𝟐)

𝑅𝛾

𝑅

𝑅𝛾′

ray 𝛀(𝜸′𝟏, 𝜸′𝟐)

Figure 5.13: Approximation of the wave field at R as a weighted sum of contributions from nearby
Gaussian beams. Two Gaussian beams connected to ray Ω(γ1, γ2) and Ω(γ′1, γ

′
2) are shown, where

points Rγ and Rγ′ close to R (not necessarily the closest) are situated.

In the frequency domain (neglecting the exp[−iωt] factor), the superposition integral reads as

p(R, ω) =

"
D

Φ(γ1, γ2)Pray(Rγ) exp[iωT (R,Rγ)] dγ1 dγ2. (5.66)

The integral is over the rays specified by ray parameters γ1 and γ2; D denotes the region of

ray parameters under consideration. Function Φ(γ1, γ2) is the weighting function, which will be

determined in Section 5.6.4.2. Point Rγ is situated on the same ray Ω(γ1, γ2) as S γ, and should

be chosen as close to the fixed point R as possible. The function Pray represents the pressure

amplitude computed by Equation (5.61) and may be complex-valued. The travel-time function

T (R,Rγ) represents the travel time at R, calculated by approximating from the travel time T (Rγ) at

Rγ situated on a near-by ray Ω(γ1, γ2); it will be discussed in Section 5.6.4.3.

5.6.4.2 Determination of the Weighting Function

The weighting function Φ(γ1, γ2) is determined by matching the approximate superposition

integral to a known standard ray-theory solution at point R in a regular ray region (i.e. no singularities).
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I shall not go into details here but merely presents the result. I refer the interested reader to

Červený (Červený, 2005).

The final expression of the weighting function Φ(γ, γ2) is given as follows:

Φ(γ1, γ2) = (ω/2π)
[
− detM(Rγ)

]1/2 ∣∣∣det Qa(Rγ)
∣∣∣ . (5.67)

Here the 2 × 2 matrixM(Rγ) is defined as

M(Rγ) = M(Rγ) −Ma(Rγ). (5.68)

The argument of [− detM(Rγ)]1/2 is given by the following relation for W a constant 2 × 2 matrix

with det W , 0:

Re[− det W]1/2 > 0 for Im W , 0,[
− det W

]1/2
= | det W|1/2 exp

[
−iπ4 SgnW

]
for Im W = 0.

(5.69)

Sgn W denotes the signature of the real-valued matrix W; it equals the the number of its positive

eigenvalues minus the number of its negative eigenvalues. Thus, it takes on values of 2, 0, or -2.

5.6.4.3 Travel-Time Function

Function T (R,Rγ) represents the travel time at R, approximated as the second order Taylor

expansion of the travel time around Rγ on ray Ω. Rγ may be chosen arbitrarily on rays Ω, but close

to R. The only requirement is that the distance
∣∣∣~x(R) − ~x(Rγ)

∣∣∣ is small and the terms higher than

quadratic may be neglected. Denote the Cartesian coordinates of points R and Rγ by xi(R) and xi(Rγ),

and introduce xi(R,Rγ) = xi(R) − xi(Rγ). Then the quadratic expansion in terms of xi(R,Rγ) is as

follows:

T (R,Rγ) = T (Rγ) + xi(R,Rγ)p(x)
i (Rγ) + 1

2 xi(R,Rγ)x j(R,Rγ)M(x)
i j (Rγ). (5.70)

T (Rγ) is the travel time for point Rγ on ray Ω, which can be computed using cell methods

segment-by-segment with Equation (5.28).
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M(x)
i j in Equation (5.70) are the elements in the 3 × 3 matrix M̂(x):

M̂(x)(Rγ) = Ĥ(Rγ)


M(Rγ)

M13(Rγ)

M23(Rγ)

M13(Rγ) M23(Rγ) M33(Rγ)


ĤT (Rγ). (5.71)

Here Ĥ is the 3 × 3 transformation matrix from the ray-centered coordinates to the Cartesian

coordinates, which is defined in Equation (5.29). The 2 × 2 matrix M(Rγ) in Equation (5.71) is free

and may be chosen in various ways. See Section 5.6.4.4. The other elements are

M13(Rγ) = −(3−2
3,1)Rγ ,

M23(Rγ) = −(3−2
3,2)Rγ ,

M33(Rγ) = −(3−2
3,3)Rγ . (5.72)

Here

3 =
[
V(q1, q2, s)

]
q1=q2=0,s=s(Rγ) ,

3,i =
[
∂V(q1, q2, s)/∂qi

]
q1=q2=0,s=s(Rγ) . (5.73)

Computing 3,i is easy, notice that

3,i = ∂V/∂qi = Hki∂V/∂xk. (5.74)

In a cell with constant gradient of V−2, ∂V/∂xk can be analytically solved by taking derivatives of

Equation (5.27),

∂V−2/∂xk = −2V−3∂V/∂xk = Ak, (5.75)

thus

∂V/∂xk = − 1
2 V3Ak. (5.76)

Combining Equation (5.70) through Equation (5.76), I am able to compute the travel-time

function T (R,Rγ) in Equation (5.66).
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5.6.4.4 Specification of Matrix M

Superposition integral (Equation (5.66)) is influenced by the choice of the 2 × 2 matrix M.

It is common to specify M at points Rγ. The physical meaning of Re(M(Rγ)) is the geometrical

properties of the wavefront of the Gaussian Beam. Because ReM(Rγ) is always symmetrical, its

eigenvalues are always real. The eigenvalues times the speed V represent the principal curvatures

of the wavefront of the Gaussian beam. Also Im(M(Rγ)) determines the amplitude profile of the

Gaussian beams. Therefore, I may consider expanding the wave field into locally plane waves with a

Gaussain amplitude windowing by using Re(M(Rγ)) = 0 and Im(M(Rγ)) positive definite.

In general, I can choose a positive-definite 2 × 2 matrix Im(M(Rγ)) arbitrarily, which controls

the width of Gaussian beams under consideration. There are options that can minimize the error of

computations, and options that can suppress the quadratic terms from the expansion of Re(T (R,Rγ)).

I shall not discuss the problem of choice of M(Rγ) in details. For more details, see Červený (Červený,

1985) and Klimeš (KlimeÅ and PÅenk, 1989).

5.6.4.5 Summation Methods: Discussion

The final form of the superposition integral is as follows:

p(R, ω) =
ω

2π

"
D

Pray(Rγ)
[
− detM(Rγ)

]1/2

× | detQa(Rγ)| exp[iωT (R,Rγ)] dγ1 dγ2. (5.77)

When programming the computation, a simple alternative version of the superposition integral

(Equation 5.77)) can be used:

p(R, ω) =
ω

2π

"
D

Pray(Rγ)
[
− detN(Rγ)

]1/2
exp[iωT (R,Rγ)] dγ1 dγ2, (5.78)

where the 2 × 2 matrixN(Rγ) is given by the relation:

N(Rγ) = QaT (M −Ma)Qa = −QaT Pa + QaT MQa. (5.79)
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All the quantities are taken at Rγ. The argument of [− detN(Rγ)]1/2 is again given by Equation (5.69),

and the travel-time function T (R,Rγ) is given by Equation (5.70). Pressure amplitude Pray(Rγ)

can be computed by Equation (5.61), where L computed by | det Q| and phase shift T c given by

Equation (5.37), computed as discussed in Section 5.6.2.1.

The main disadvantage of the Gaussian beam summation solution is that it depends on the free

parameters (i.e. on the widths of the Gaussian beams) in singular regions. In the vicinity of caustic,

broad Gaussian beams (small ImM) are desired; in some other cases like computing edge diffractions,

very narrow Gaussian beams are required. The optimum choice of ImM that suits for every case is

not known and requires further research.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

The contribution of my dissertation lies in providing adaptive modeling of detail for the three

problems related to physically-based sound simulation, namely, Liquid Sounds, Rigid Body Sounds,

and Sound Propagation. In the area of liquid sounds, I have presented different techniques for

synthesizing liquid sounds depending on the level of detail of how bubbles are modeled, thus

enabling the control over the trade-off between realsim and computational cost. The system that

I have developed has been integrated with a real-time shallow-water fluid simulator and a full 3D

grid-SPH fluid simulator, to generate rich liquid sounds automatically.

The second part of my work is on improving the realism of rigid body sounds. First, I proposed

using prerecorded audio clips to estimate material parameters that capture the inherent quality of

the recorded material. Based on psychoacoustic principles, these estimated parameters allows linear

modal synthesis to generate sound that bears a perceptual similarity to the example recording on the

first level. On the second level, details from the example recording that are not captured by the linear

modal model are computed, transferred, and compensated in the final synthesized sound. We have

demonstrated the effectiveness of the system by estimating material parameters and residuals from

various objects of different materials and applying them on virtual objects of different geometries to

generate rich and complex contact sounds.

Finally, I have developed a hybrid sound propagation method that combines geometric and

numerical acoustic techniques. In regions far away from objects, sound propagation is modeled

by the more efficient ray-based, geometric technique. Then in limited regions near objects, wave

phenomena are modeled using the more accurate and costly numerical technique. This approach

allows allocating the computation resources on where it matters the most and is able to handle sound

propagation for large, indoor and outdoor complex scenes that are previously infeasible to simulate

accurately. I also discuss the extension of the geometric acoustics part to handle propagation in

inhomogeneous medium, the challenges that come with it, and how to overcome them.



Future Work: For each of the techniques that I have described in this thesis, there are many possible

improvements to be made and many future directions worth investigating, and I have described them

individually in the previous chapters. Here I would like to discuss the general research trend for

future in a larger scope.

Computer graphics has seen tremendous development in the past few decades. Many sub-areas

of computer graphics have benefitted from physics simulation, such as physically-based rendering

techniques and physically-based animation of fluid, rigid and deformable bodies, characters, etc.

These techniques have enabled stunning visual renderings in many different applications including

games, movies, and virtual reality. Can physically-based sound simulation achieve the same level

of maturity and wide application as its visual counterpart? In theory it should. Just as physics

determines how light travels in space and how objects deform and move, physics dictates how sound

is generated and propagates, and simulating the physics of sound should be an equally powerful tool

for generating realistic sound effects. But there are several challenges to be overcome.

One challenge is to improve the quality. While visual simulation has already been able to produce

images and animations so real that human eyes cannot tell whether they are computer-generated or

not, digitally-synthesized sounds still sound a little ‘artificial’ to human ears. One reason is that the

physical models that we used for sound simulation are not complete. For example, the Rayleigh

Damping model, which is widely used for simulating rigid body sounds, cannot describe all types of

materials– in fact, no one existing damping model can. When the model is not complete to allow a

forward synthesis of sounds, operating on recorded sounds and modifying them according to the

needs is another option. My work on example-guided modal synthesis follows this direction, and the

residuals are used to capture the difference between the recorded sounds and the model-synthesized

sounds. However, our residual transfer algorithm is still a heuristic, and a better understanding of the

the source and mechanism of the residuals can lead to a better transfer algorithm. Similarly, more

complete models must be used for sound propagation. For example in the case of outdoor acoustics,

wind, turbulence, temperature gradient, and many complicated physical processes all affect what

we hear in the end, and the sound propagation model should consider all these to produce realistic

acoustic effects.

Another challenge is to improve efficiency. This aspect involves developing better computational

techniques as well as perceptual approximations. For example, in recent years more and more gain in
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computing power comes from all kinds of parallelism, from CPU to GPU to cloud computing. Parallel

algorithms need to be designed and developed to fully utilize the computing power. Also, more

gross approximation and more aggressive simplification, perhaps based on better understandings of

psychoacoustics, need to be continuously investigated. For example, accurate sound propagation is

in many ways analogous to global illumination in visual rendering. A whole range of approximation

techniques such as ambient occlusion have been developed for visual rendering for interactive

applications, can we develop something similar in effect for sound rendering?

My work on adaptive modeling of details aims to balance the quality and efficiency of sound

simulation techniques. The proposed algorithms provide two to three levels of details that can be

chosen by the user. In the future more levels can be added on both ends to handle a wider range of

applications– more sophisticated models that are able to generate more realistic sounds on one end,

and more crude approximations that allow faster computation on the other end. Take the liquid sound

simulation for example. Currently the highest level decomposes bubbles to spherical harmonics,

which is limited to star-shaped bubbles, and we still treat each bubble independently from other

bubbles. In the future we could add a more general model for bubbles of arbitrary shapes having

complex interactions (popping, merging, acoustic-coupling, etc.) Similarly, the lowest level considers

only the properties of the surface and the statistical distribution of bubbles, but we still simulate one

sine wave for each bubble. And therefore it is still challenging to simulate sounds for large-scale

fluid motion like a flooding city or a waterfall (whose visual simulation are already possible), where

billions of bubbles emit sounds simultaneously. However in such scenes the final sound poses a

noise-like quality, and it might be more efficient to model the sound as a noise texture and apply

modifications in the spectral domain. It is an interesting research direction to explore more choices

of different level-of-detail modeling and how to combine them seamlessly for each application.

I also hope to see exploration of the space of sound effects that can be simulated. For example,

the synthesis of sounds of floors creaking, bottles buckling, papers crumpling and tearing, and shock

wave sounds such as explosion and thunder. The propagation of the shock wave sounds needs

nonlinear wave equation which is still an active research in the physics and acoustics community. In

computer graphics, almost all natural phenomena and physical interactions can be visually simulated,

at least to an extent of perceptual plausibility. Sound simulation has to cover a larger base than it

currently has to be widely used in graphics applications.
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I hope that in the future more researchers will devote themselves into advancing sound simulation

techniques and developing more tools, so that physically-based sound simulation will be used more

widely in many different applications.
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Kleiner, M., Dalenbäck, B.-I., and Svensson, P. (1993). Auralization - an overview. JAES, 41:861–
875.

KlimeÅ, L. and PÅenk, R. I. (1989). Optimization of the shape of gaussian beams of a fixed length.
Studia Geophysica et Geodaetica, 33(2):146–163.

Kouyoumjian, R. G. and Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an
edge in a perfectly conducting surface. Proc. of IEEE, 62:1448–1461.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1999). Convergence properties of the
Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1):112–147.
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Välimäki, V. and Tolonen, T. (1997). Development and calibration of a guitar synthesizer.
PREPRINTS-AUDIO ENGINEERING SOCIETY.

van den Doel, K. (2005). Physically based models for liquid sounds. ACM Trans. Appl. Percept.,
2(4):534–546.

van den Doel, K., Knott, D., and Pai, D. K. (2004). Interactive simulation of complex audiovisual
scenes. Presence: Teleoper. Virtual Environ., 13:99–111.

van den Doel, K., Kry, P., and Pai, D. (2001). FoleyAutomatic: physically-based sound effects
for interactive simulation and animation. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 537–544. ACM New York, NY, USA.

van den Doel, K. and Pai, D. K. (1998). The sounds of physical shapes. Presence: Teleoper. Virtual
Environ., 7:382–395.

van den Doel, K. and Pai, D. K. (2002a). Measurements of perceptual quality of contact sound
models. In Proc. of the International Conference on Auditory Display (ICAD 2002), pages
345—349, Kyoto, Japan.

van den Doel, K. and Pai, D. K. (2002b). Measurements of perceptual quality of contact sound
models. In In Proceedings of the International Conference on Auditory Display (ICAD 2002,
pages 345–349.

145



Van Duyne, S. and Smith, J. O. (1993). The 2-d digital waveguide mesh. In Applications of Signal
Processing to Audio and Acoustics, 1993. Final Program and Paper Summaries., 1993 IEEE
Workshop on, pages 177–180.
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Červený, V. (2005). Seismic ray theory. Cambridge University Press.
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