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ABSTRACT 
 

Trisha J. Grevengoed: Fatty acid activation in cardiac mitochondria: The role of ACSL1 in phospholipid 

formation and remodeling, substrate switching, and autophagic flux 

(Under the direction of Rosalind A. Coleman) 

 

Cardiovascular disease is the number one cause of death worldwide. In the heart, mitochondria 

provide up to 95% of energy, with most of this energy coming from metabolism of fatty acids (FA). FA 

must be converted to acyl-CoAs by acyl-CoA synthetases (ACS) before entry into pathways of β-

oxidation or glycerolipid synthesis. ACSL1 contributes more than 90% of total cardiac ACSL activity, 

and mice with an inducible knockout of ACSL1 (Acsl1T-/-) have impaired cardiac FA oxidation.  The 

effects of loss of ACSL1 on mitochondrial respiratory function, phospholipid formation, or autophagic 

flux have not yet been studied.  

Acsl1T-/- hearts contained 3-fold more mitochondria with abnormal structure and displayed lower 

respiratory function.  Because ACSL1 exhibited a strong substrate preference for linoleate (18:2), we 

investigated the composition of mitochondrial phospholipids.  Acsl1T-/- hearts contained 83% less 

tetralinoleoyl-cardiolipin (CL), the major form present in control hearts.  Modulating ACSL1 expression 

in cell lines confirmed that ACSL1 is necessary for linoleate incorporation into CL.  To determine 

whether increasing content of linoleate in CL would improve mitochondrial respiratory function, control 

and Acsl1T-/- mice were fed a high linoleate diet, which normalized amount of tetralinoleoyl-CL, but did 

not improve respiratory function.   

The metabolic switch from FA use to high glucose use activates mechanistic target of rapamycin 

complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and FA 

metabolism while decreasing autophagy.  Short-term mTORC1 inhibition normalized mitochondrial 

structure, number, and maximal respiration rate in Acsl1T-/- hearts but not ADP-stimulated oxygen 
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consumption, which was likely caused by lower ATP synthase activity present in both vehicle- and 

rapamycin-treated Acsl1T-/- hearts.  The autophagic rate was 88% lower in Acsl1T-/- hearts.  mTORC1 

inhibition increased autophagy to a rate that was 3.1-fold higher than in controls, allowing clearance of 

damaged mitochondria.  ACSL1 deficiency in heart activated mTORC1, thereby inhibiting autophagy and 

increasing the number of damaged mitochondria with impaired respiratory capacity.   

ACSL1 is required for the normal composition of phospholipid species and maintenance of FA 

oxidation to prevent low autophagic rate.  Loss of ACSL1 causes impaired mitochondrial respiratory 

function, which can be partially improved by clearing damaged mitochondria but not by normalizing CL.  
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CHAPTER 1: BACKGROUND 

 

Partitioning of fatty acids and the formation of fatty acyl-CoAs 

Long-chain FAs derived from either de novo synthesis, dietary sources, or from the turnover 

of triacylglycerol, phospholipids, and cholesterol esters have multiple metabolic fates.  These fates 

include the entry of FAs into pathways of degradation, incorporation or reincorporation into complex 

lipids, esterification to proteins, and the synthesis of eicosanoids.  Long-chain FAs have additional 

roles in activating transcription factors, functioning as intracellular signals, and allosterically 

modulating enzyme reactions (Fig. 1.1).  Each of these outcomes except for some of those related to 

signaling and eicosanoid formation require the formation of a long-chain acyl-CoA by one of least 13 

acyl-CoA synthetases (ACS) that use long-chain and very-long-chain FAs (ACSL, ACSVL, ACSBg).  

The 13 ACS isoforms are part of the 26-member ACS family, all of which contain related nucleotide 

(AMP/ATP) and FA binding motifs, and most of which include a transmembrane domain anchor at 

the N-terminus.   

The long-chain ACS isoforms activate FA of 16-22 carbons (2,3) in an energetically costly 

two-step reaction that uses the equivalent of two high-energy bonds: 

Fatty acid + ATP  acyl-AMP + PPi 

Acyl-AMP + CoASH  acyl-CoA + AMP 

In addition to their uses in β-oxidation and glycerolipids synthesis (Fig. 1.2), acyl-CoAs are 

critical signaling molecules as allosteric inhibitors of adenosine nucleotide translocase (ANT) (4,5), 

liver glucokinase (6), acetyl-CoA carboxylase (ACC) (7,8), HMG-CoA reductase (9), 

phosphofructokinase-1 (10), and hormone sensitive lipase (HSL) (10).  Acyl-CoAs can also stimulate 

the release of transport vesicles (11,12).  Long-chain acyl-CoAs are excellent detergents that form 
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micelles in aqueous solutions with the CoA groups exposed to the water phase (13).  The measured 

critical micellar concentrations (CMC) for the most common long-chain acyl-CoAs, 18:1-CoA and 

16:0-CoA are about 32 and 42 µM, respectively (14,15).  However, within cells, acyl-CoAs are 

probably bound to proteins and membranes so that the concentration of acyl-CoAs would be too low 

to self-aggregate.  Because of their amphipathic nature, acyl-CoAs can interfere with membrane 

integrity by acting as detergents; when high concentrations of acyl-CoAs are present, the permeability 

of membranes to small molecules like sucrose and citrate is altered (16).  Myristoylation or 

palmitoylation of proteins requires acyl-CoAs, but to our knowledge, no changes in protein acylation 

have been found in mice or cells with a deficiency of an ACS.   

Because most mammalian cells contain several different long-chain ACS isoforms, it has 

been hypothesized that each isoform may partition or channel its long-chain FA substrates into 

specific downstream pathways.  In addition, several of the isoforms have two different start sites, one 

of which lacks an N-terminal transmembrane anchor, or have alternative internal exons that result 

from differential splicing (17).  Hypothesized differences in cell function include the use of the 

activated FA for pathways that synthesize glycerolipids and cholesterol esters, for pathways of FA 

elongation or desaturation, for degradative pathways in the mitochondria, ER, and peroxisomes, for 

protein acylation, and for transcriptional regulation.   

Fatty acid use by acyl-CoA synthetases 

FAs are carboxylic acids with long-chain hydrocarbon side groups.  In animals, the 

predominant long-chain FAs are those of 16 and 18 carbons with varying degrees of saturation.  FAs 

of 20 carbons, like 20:4ω6 and 20:5ω3 form a small percent of the total FA content in animals, but 

are precursors for multiple subfamilies of eicosanoids.  The question of how FAs are transported into 

cells remains controversial, but whether FAs enter via transport proteins or flip-flop across the plasma 

membrane, their thioesterification to coenzyme A almost certainly prevents their exit.  It has been 

variously speculated that entry might occur via junctions between the plasma membrane and the ER. 
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Alternatively, entry might be mediated by fatty acid binding protein (FABP) isoforms (18), or 

facilitated by the FA transport proteins (FATP) (19) that are themselves acyl-CoA synthetases.  

Several groups, however, have shown that the rapidity of FA entry or “vectorial transport” is driven 

by intracellular metabolism of the FA (18,20,21).   

Understanding the process that channels FAs into specific metabolic pathways requires 

consideration of the physical chemistry of hydrophobic FAs which must move in an aqueous 

environment.  Further, in order to minimize futile cycles, synthetic and degradative pathways must be 

separated from one another both spatially and temporally.  Cells overcome the problem of 

hydrophobicity by converting the FA to an amphipathic molecule by the thioesterification of 

Coenzyme A to the carboxyl group.  The ability of the cell to vectorially channel fatty acyl-CoAs 

towards or away from a metabolic pathway forms the basis of partitioning, and is likely to vary with 

cell type, intracellular location of carriers and enzymes, cellular energy status, and hormonal signals.   

Acyl-CoA binding protein and fatty acid binding proteins 

 Selective partitioning of acyl-CoAs within cells requires methods of overcoming hydrophobicity, 

because the amphipathic fatty acyl-CoAs can move freely both in the aqueous cytosol and in 

membrane monolayers.  Two protein families, FABPs and acyl-CoA binding protein (ACBP), aid in 

FA and acyl-CoA movement within cells and are believed to protect cell membranes from the 

detergent effects of the acyl-CoAs.  FABPs are isoforms of a 10 member intracellular lipid-binding 

protein family which reversibly binds hydrophobic ligands and, in theory, traffics them throughout 

the cytosol to various organelles (22).  A recent comprehensive review of FABP isoforms identifies 

metabolic alterations in knockout models, but definitive functions have not been established (23).  

FABP isoforms are ubiquitously expressed, but differ in stoichiometry, affinity and specificity toward 

related ligands that include FAs, acyl-CoAs, eicosanoids, and peroxisome proliferator-activated 

receptor ligands.  The amount of an FABP isoform in any tissue appears to reflect the tissue’s lipid-

metabolizing capacity.  For example, in hepatocytes, adipocytes and cardiomyocytes, which 
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specialize in lipid metabolism, FABPs make up 1–5% of all cytosolic proteins (24).  Evidence for the 

importance of FABPs in lipid metabolism comes from loss-of-function studies in mice.  FABP1, 

which is strongly expressed in liver and intestine, is the only isoform that binds both FA and fatty 

acyl-CoA; the other FABP isoforms bind only FA (24,25).  Two independent Fabp1-/- mouse models 

have been generated but, despite the importance of lipid metabolism in liver and intestine, neither 

model has an overt phenotype (26,27).  When mice are fed low fat chow, Fabp1-/- liver appears 

normal histologically, and serum TAG and total free FA levels are unchanged, although alterations in 

specific FAs are observed (28).  In one of the Fabp1-/- models, the hepatic content of phospholipid, 

cholesterol, and cholesterol ester is greater than in the controls (28).  Although the loss of Fabp1 

reduces hepatic FA binding capacity, total liver lipid content, including TAG and free FA, is 

unchanged.  Only under extreme fasting conditions (48 hours) does the reduced FA binding capacity 

in the knockout mice cause a reduction in hepatic FA uptake, FA oxidation, and TAG levels (27).  

Although differences were observed in the effects of knockouts of the FABP1 and the intestinal 

FABP isoform, information related to acyl-CoAs was not provided (29).  The adipose-type FABP4 

(also known as aP2) is the major isoform in white and brown adipose tissue and macrophages (30,31).  

Because disruption of the Fabp4 gene in mice increases the cytosolic content of free FA, FABP4 is 

generally thought to facilitate FA transport between intracellular compartments for storage or export 

(32,33), however this model provides no evidence for mistargeted intracellular FA.  The heart-type 

FABP3, which is most abundantly expressed in heart, skeletal muscle, and brain, is induced by acute 

cold exposure in rat brown adipose tissue (BAT) (34,35), by a 5-day cold exposure, or by a β3-

adrenergic receptor agonist in mouse subcutaneous white adipose as cells became “beiged” (36).  

Physiologically, the Fabp3-/- model is the one knockout that most strongly supports a specific 

function for FABP in FA partitioning; Fabp3 deficient mice have defective FA oxidation and are 

more reliant on glucose as a substrate for energy production in both cardiomyocytes and muscle 

(37,38).  In addition, Fabp3-/- mice are extremely cold intolerant (39).   
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ACBPs bind medium- and long-chain acyl-CoAs with high affinity, but does not bind free 

FA, acyl-carnitine, or cholesterol (40).  The affinity for acyl-CoAs is so much higher for ACBP than 

for liver-type FABP1 that it was suggested that ACBP is the major carrier of acyl-CoA in all cells 

including hepatocytes (41).  ACBP expression and concentration are highest in liver, but ACBP is 

also present in high levels in the adrenal cortex, testis and epithelial cells.  Because these tissues and 

cells specialize in secretion, they have high energy needs and may require ACBP to shuttle fatty acyl-

CoAs towards energy producing oxidative pathways (42).  Disruption of the ACBP homologue in 

yeast (ACB1), does not affect phospholipid synthesis or turnover, indicating that ACBP is not 

required for glycerolipid synthesis in yeast.  However, yeast deficient in ACB1 have disordered 

plasma membrane structures as a result of aberrant and reduced sphingolipid synthesis (43).  

Highlighting the importance of ACBP in in vivo metabolism are studies from two separate Acbp 

deficient mouse models.  In the first model, the authors concluded that ACBP is an essential protein 

required for embryonic development because an implantation defect results in embryonic lethality 

(44).  The second knockout was viable, but did not indicate a role for ACBP in trafficking acyl-CoAs, 

although liver acyl-CoA levels were ~40% lower than in controls; instead, the main effect of the 

knockout was an impaired skin barrier and the development of alopecia (45). In addition to their skin 

phenotype, Acbp-/- mice undergo a crisis around the weaning period, exhibiting weakness and poor 

weight gain (46).  At this time point, SREBP maturation is impaired and SREBP target genes 

involved in cholesterol biogenesis are not appropriately upregulated.  It is unclear why two separately 

generated Acbp knockout models express these two disparate phenotypes, but these models indicate 

that ACBP and the acyl-CoAs they bind are essential for normal growth and development.  

Complex lipid synthesis and degradation 

Exogenous FAs and those synthesized de novo primarily enter pathways of complex lipid 

synthesis to produce stored energy depots and phospholipid membranes or they enter degradative 

pathways; degradation includes mitochondrial β-oxidation, peroxisomal β- or α-oxidation (47), and 
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ER ω-oxidation (48,49).  Evolutionarily, the cell has developed organelles that perform each of these 

processes, evidence of an additional level of fatty acyl-CoA partitioning.  Further evidence for this 

type of partitioning lies in the organelle localization of synthetic and oxidative enzymes.  However, 

although one generally thinks of each organelle as specializing in a single function, in fact, both 

glycerolipid synthesis and ω-oxidation occur in the ER, both alkyl lipid synthesis and β-oxidation 

take place in peroxisomes, and both FA synthesis and β-oxidation occur in mitochondria.  It is not 

known how FA and acyl-CoAs are independently directed into these separate pathways.   

Glycerolipid Synthesis 

The initial and committed step for the de novo synthesis of TAG and all glycerophospholipids 

is the acylation of sn-glycerol-3-phosphate with a fatty acyl-CoA to form 1-acyl-sn-glycerol-3-

phosphate (lysophosphatidic acid) catalyzed by glycerol-3-phosphate acyltransferase (GPAT) (50).  

GPAT isoforms are present in the outer mitochondrial membrane (GPAT1 and -2) and in the 

endoplasmic reticulum (GPAT3 and -4) (51).  Overexpression of GPAT1 in either isolated primary 

rat hepatocytes or in vivo in rats causes steatosis, confirming the important  role of GPAT in initiating 

hepatic TAG synthesis (52,53).  Mouse knockout models of the GPAT isoforms have provided clues 

as to the partitioning of acyl-CoAs towards synthetic or oxidative pathways.  In studies comparing 

Gpat1-/- and Gpat4-/- mice, for example, GPAT1, but not GPAT4, is required to incorporate de novo 

synthesized FA into TAG and to divert FA away from oxidation (54).  The ER GPATs are likely to 

channel exogenously derived acyl-CoAs towards TAG or phospholipid synthesis.  It is possible that 

the location of GPAT1 at the outer mitochondrial membrane serves to divert de novo synthesized 

fatty acyl-CoAs away from carnitine palmitoyltransferase-1 (CPT1)-mediated entrance into the 

mitochondria where they would be oxidized.  This hypothesis makes sense from a cellular 

homeostatic standpoint in that newly synthesized FA would not be oxidized but, instead, stored for 

later use when energy stores are low.  This example of acyl-CoA partitioning at the level of the 

mitochondria is at least partly controlled by the energy status of the cell and by the animal’s hormonal 
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status.  With low cellular energy, activated AMP-activated kinase inhibits GPAT1 and favors 

mitochondrial β-oxidation, whereas dietary carbohydrate and insulin upregulate GPAT1 and promote 

TAG synthesis (54,55). 

After lysophosphatidic acid is synthesized, it is used in synthesis of TAG for storage or 

phospholipids for membrane synthesis (Fig. 1.3). In the next step, an acyl-CoA:1-acylglycerol-3-

phosphate acyltransferase (AGPAT) will add a second acyl-CoA to form phosphatidic acid (PA). At 

this point, the PA can either be hydrolyzed by PA phosphatase (lipin) to form diacylglycerol (DAG) 

or be combined with cytidine triphosphate (CTP) to form cytidine diphosphate DAG (CDP-DAG). 

CDP-DAG is then combined with an inositol by phosphatidylinositol synthase (PIS) to form 

phosphatidylinositol (PI) at the ER. In the mitochondria, CDP-DAG is converted by 

phosphatidylglycerophosphate synthase (PGPS) to phosphatidylglycerophosphate, which is then 

converted to phosphatidylglycerol (PG) by phosphatidylglycerophosphate phosphatase (PGPP). To 

form cardiolipin (CL), PG is combined with the phosphatidyl group of CDP-DAG by CL synthase in 

the mitochondrial matrix.  

In the other branch of the synthesis pathway, DAG can be used by diacylglycerol 

acyltransferase (DGAT) to form TAG. DAG is also used to form phosphatidylserine (PS), 

phosphatidylcholine (PC), or phosphatidylethanolamine (PE). To make PC, the most abundant 

mammalian phospholipid, CDP-choline is combined with DAG by diacylglycerol 

choline/ethanolamine phosphotransferase (CEPT) on the ER. PC can also be synthesized from PE by 

phosphatidylethanolamine N-methyltransferase (PEMT) at the mitochondria-associated membrane. 

PE is synthesized from DAG and CDP-ethanolamine by CEPT. PS is made from PE or PC by 

exchange of the headgroups by phosphatidylserine synthase 1 and 2 (PSS1 and PSS2). In the 

mitochondria, PS can be converted to PE by decarboxylation by phosphatidylserine decarboxylase 

(PSD) (56). Understanding where these synthesis reactions takes place helps us see how lipid 

metabolism is compartmentalized within the cell (Table 1.1).  
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CL is highly remodeled after synthesis, typically to contain polyunsaturated fatty acids (Fig. 

1.4). In heart, the predominant fatty acid is linoleate (18:2).  Because CL synthase lacks a preference 

for phosphatidylglycerol or CDP-diacylglycerol species that contain linoleate (57,58), the acyl-chains 

of the nascent CL are more highly saturated than those of mature cardiac CL.  CL is remodeled by 

successive removal of acyl-chains by a phospholipase, the identity of which is currently unknown, 

followed by replacement via transacylation from donor phospholipids, such as PC and PE, or by 

acyltransferase-mediated esterification of an acyl-CoA. Mutations in tafazzin cause Barth syndrome, 

an X-linked disorder characterized by skeletal muscle weakness and heart failure in childhood and 

low tetralinoleoyl-CL and high MLCL (59). In mammalian cells, two additional enzymes, 

lysocardiolipin acyltransferase 1 (ALCAT1) and MLCL acyltransferase 1 (MLCL AT-1), can use 

acyl-CoAs to esterify MLCL (60).  ALCAT1, however, is located on the ER, which would prevent its 

interaction with most CL (61), but MLCL AT-1 is found in mitochondria (62).  Although 

overexpressing MLCL AT-1 in tafazzin-deficient lymphoblasts increases both linoleate incorporation 

into CL and total CL content (62), the importance of MLCL AT-1 for normal CL remodeling in heart 

cells remains unclear.   

Acyl-CoA degradation 

The regulation of mitochondrial β-oxidation depends on cellular energy status.  When ATP 

levels are low, acyl-CoAs are transported into the mitochondria by carnitine palmitoyltransferase-1 

(CPT1).  Mitochondrial β-oxidation of fatty acyl-CoAs is the major route of FA degradation, but 

very-long-chain FAs and branched-chain FAs are poorly oxidized in mitochondria, and, instead, are 

degraded in peroxisomes.  The β-oxidation capability of peroxisomes terminates at medium-chain 

acyl-CoAs and produces chain-shortened acyl-CoAs and acetyl- and propionyl-CoAs, which are 

transported out of the peroxisome as short- to medium-chain acyl-carnitines to be completely 

oxidized in the mitochondria (63).  Depending on its chain length, the acyl-CoA is converted to the 
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corresponding carnitine ester by one of two peroxisomal enzymes, carnitine acetyltransferase or 

carnitine octanoyltransferase (CRAT and CROT) (64).   

Despite the high-energy cost of acyl-CoA synthesis, numerous acyl-CoA thioesterases 

(ACOT) reverse this reaction.  Because several ACOTs are upregulated by PPARα under the same 

conditions that promote acyl-CoA synthesis and oxidation, their physiological function remains 

unclear.  The requirement for free CoASH within mitochondria is very high, reflecting the importance 

of CoASH in both the citric acid cycle and β-oxidation, so it is possible that ACOT operates to ensure 

free CoASH sufficient to maintain optimal mitochondrial function.   

Two distinct types of ACOT proteins (type I and II) have arisen by convergent evolution 

(65).  Type I ACOTs (ACOTs 1–6) contain N-terminal β-sandwich and C-terminal α/β hydrolase 

domains.  Type II ACOTs (ACOTs 7–13) use N-terminal hotdog-fold thioesterase domains (66).  The 

organelle distribution is distinct for each type.  Of the type I ACOTs, ACOT1 is located in the 

cytosol, ACOT2 in mitochondria, and ACOT3-6 in peroxisomes.  Of the type II ACOTs, ACOT8 is 

located in peroxisomes, ACOTs 7, -11, -12 and -13 are in the cytosol, and ACOT9, -10, and -13 are 

mitochondrial (66).  Each of the ACOT isoforms has an acyl-chain length preference; recombinant 

ACOT3 prefers long-chain acyl-CoAs (12 - 18 carbons), whereas ACOT5 prefers medium-chain 

acyl-CoAs (C10-CoA) (67).  ACOT8 uses acyl-CoA substrates ranging from 2 to 20 carbons, both 

saturated and unsaturated (63,68), and is strongly inhibited by CoASH (68).  This broad substrate 

specificity and CoASH inhibition suggest that ACOT8 may sense CoASH content and regulate intra-

peroxisomal acyl-CoA levels in order to ensure optimal flux through the cellular β-oxidation system.  

Because few knockout models have been reported, it is difficult to understand the specific roles of the 

ACOTs.  However, ACOT13 (Them2) deficient mice fed a high fat diet are protected from weight 

gain, hepatic steatosis and glucose intolerance, implying that ACOT13 is important for hepatic β-

oxidation and gluconeogenesis (69).  Additionally, ACOT13 deficient mice are better able to adapt to 

acute cold exposure, suggesting that ACOT13 in brown adipose (BAT) may diminish FA channeling 

into heat production or UCP1 activation (69). The studies involving both ACOT8 and ACOT13 
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suggest that ACOTs modulate acyl-CoA flux through oxidative pathways.  Thus, there may be a 

reciprocal relationship between the ACSLs and ACOTs to regulate the metabolic fates of acyl-CoAs 

via either mitochondrial or peroxisomal oxidation. 

In hepatocytes, the ω-hydroxylation of medium and long-chain saturated FAs, mediated by 

the family of Cyp450 4A fatty acid omega hydroxylases, represents an important secondary pathway 

for FA metabolism in liver under conditions in which hepatocellular fatty acid flux rates exceed the 

capacities of the normally dominant esterification and mitochondrial β-oxidation pathways (49).  This 

alternative pathway, which synthesizes dicarboxylic fatty acids, diminishes acyl-CoA flux through 

both the mitochondrial and peroxisomal β-oxidative pathways, perhaps preventing mitochondrial 

dysfunction.  The ω-oxidation of 20:4ω6 initiates the synthesis of the eicosanoid family of signaling 

molecules (70).  

Acyl-CoA synthetases and fatty acid transport proteins 

The 26 enzymes that comprise the ACS family have significant sequence homology with 

highly conserved domains that correspond to an ATP/AMP binding site and a FA binding site (2).  

Crystallization studies of bacterial and yeast acyl-CoA synthetases (71-73) suggest that the enzyme 

binds ATP, which induces a conformational change that opens a “gate” to the FA binding site (71).  

Once bound, the FA is converted to a FA-AMP intermediate.  Coenzyme A (CoA) is then bound to 

the FA-AMP, and AMP is removed. Finally, the acyl-CoA and AMP are released, and the enzyme 

reverts to its original form. 

Acyl-CoA synthetases are named for the FA chain length of the preferred substrate.  Short-

chain acyl-CoA synthetases (ACSS) activate acetate, propionate, and butyrate.  Medium-chain acyl-

CoA synthetases (ACSM) prefer FAs of 6-10 carbons, but can also activate longer-chain FAs.  Long 

chain acyl-CoA synthetases (ACSL) activate FAs of 12-20 carbons.  Very-long-chain acyl-CoA 

synthetases (ACSVL) can activate FAs longer than 20 carbons, but prefer 16 and 18 carbon FAs.  

ACSBg activate both long- and very-long chain fatty acids (74). Overlap in FA preference between 
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the groups is common, and within each subfamily, individual isoforms have preferences for a specific 

chain length or saturation.  The FA saturation and chain length preference of each ACS enzyme has 

been hypothesized to relate to the size and shape of the FA-binding site (71). Site-directed 

mutagenesis of ACSL4 confirmed the FA-binding site and showed that specific amino acids in this 

site help to determine FA preference (75).  In addition to FAs, certain ACSVL isoforms can use other 

molecules as substrates.  ACSVL6 (FATP5) activates bile acids (76,77), and ACSVL1 (FATP2) 

activates 3α, 7α, 12α-trihydroxy-5β-cholestanoate (78). 

Although it has been hypothesized that the subcellular location of each acyl-CoA synthetase 

determines acyl-CoA partitioning, several of the ACS isoforms have been found on multiple 

membranes.  For example, ACSL1 has been identified on the plasma membrane, ER, nucleus, 

mitochondria, peroxisomes, GLUT4 vesicles, and lipid droplets (79-84).  Several explanations are 

possible for the abundance of putative subcellular locations.  The location of ACSL1 may actually 

differ in different cell types, perhaps related to splice variants (17).  Alternatively, the localization 

studies may not have examined purified organelles.  With overexpression studies, the protein may 

have been mislocated.  Finally, the ACS may move from one location to another under different 

physiological conditions.  For example, FATP1 may translocate from ER to the plasma membrane 

after insulin stimulation (85). 

Supporting the relationship between location and function, the endogenous ACSL1 in liver 

has been found on ER and mitochondria, corresponding to its effects on neutral lipid synthesis and 

FA oxidation (86), and cardiac ACSL1 has been identified on mitochondria, consistent with its large 

effect on FA oxidation (87).  If one assumes that the identified location is accurate, one might suggest 

that ACSL3, which has been found on lipid droplets and ER, participates in FA uptake and 

glycerolipid biosynthesis (88,89).  In liver, FATP4 is located on the ER (90), ACSL4 is located on the 

ER, mitochondrial associated membrane, and peroxisomes (82,90), and ACSL5 has been found on the 

mitochondria (82,91).  Specific functions related to these sites have not been investigated. 
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Because changing the expression level of intracellular ACSLs or FATPs alters cellular FA 

retention, FA uptake may be an exception to the idea that location dictates function (18,90,92).  In 

3T3-L1 cells, overexpression of FATP1 or FATP4 on the ER or ACSL1 on the mitochondria 

increases FA uptake and retention by 40% (92). This result may be due to changing the concentration 

gradient as intracellular FAs are converted to acyl-CoAs or trapping of FAs in the cell with the 

addition of the CoA.   

A mechanism by which substrates are sequentially channeled through a pathway is via multi-

enzyme complexes (93).  Thus, the location of ACSL1 may dictate where fatty acyl-CoAs are next 

directed by allowing the ACSL to interact with proteins involved in downstream processing of fatty 

acyl-CoAs.  For example, ACSL1 co-immunoprecipitates with CPT1a and voltage-dependent anionic 

channel (VDAC) on the outer mitochondrial membrane (94).  CPT1a catalyzes the conversion of 

acyl-CoA to an acyl-carnitine, which is required for transport into the mitochondrial matrix for 

oxidation (95).  This complex of ACSL1, CPT1a, and VDAC could facilitate the transfer of the acyl-

CoA product to VDAC and then to CPT1 which would convert it to an acyl-carnitine.  Similar protein 

interactions could exist between ACSL1 or other ACS isoforms and acyltransferases on the ER.  An 

alternative to a direct protein-to-protein transfer might be an ACS-mediated increase in the local 

concentration of its acyl-CoA product, thereby effecting a localized increase in the amount of 

substrate available for the downstream pathway.   

Regulation of long-chain ACS isoforms 

ACSL expression is highly regulated by both nutrient status of the cell and by the 

developmental stage of the animal.  ACSL activity in rat liver increases 7-fold from birth to adulthood 

(96), suggesting a marked increase in fatty acid metabolism after birth.  In liver, Acsl1 and Acsl4 are 

upregulated with fasting and down-regulated with refeeding of a high sucrose diet. Acsl5 shows the 

opposite pattern with higher expression during fasting and lower expression with refeeding (97), 

indicating the potential for different functions or preference for endogenous or exogenous FA of the 
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different isoforms.  A high fat diet increases the expression of liver Acsl1 (97,98).  In liver, a 48-hour 

fast decreases the amount of ACSL1 on microsomes, whereas a fasting-refeeding regimen increases 

microsomal ACSL1 (82).  A fasting–sucrose refeeding protocol increases Acsl5 mRNA in liver, but 

not in intestine (99). In hamster liver, Acsl3 expression decreases with high fructose feeding (100) and 

increases with high fat, high cholesterol  diet (101). 

ACSL activity in adipose is decreased by exercise and noradrenaline, stimuli which increase 

lipolysis (102,103).   Fasting, a time of diminished TAG synthesis, decreases adipose ACSL activity 

52% (97).  PPARγ agonists increase Acsl1 expression in adipocytes (104).  PPARγ is necessary for 

adipocyte differentiation, a time of high lipid accumulation, indicating that ACSL1 may play a role in 

early lipid accumulation in adipocytes.  However, loss of ACSL1 does not prevent accumulation of 

TAG in adipocytes (105), indicating that the majority of TAG synthesis is not dependent on ACSL1.  

Acsl1 gene transcription in adipocytes is increased by overeating, insulin, triiodothyronine (T3), and 

PPARα and PPARγ agonists (102,104,106).   

In the heart, peroxisome proliferator-activated receptor α (PPARα) increases the transcription 

of Acsl1 (107).  Incubation with either insulin or oleate also increases Acsl1 and Acsl3 expression in 

rat cardiomyocytes (107). The predominant ACSL isoform in the heart changes with maturation. In 

the embryonic day 16 mouse heart, Acsl3 mRNA predominates, but decreases 3.5-fold by adulthood. 

Conversely, Acsl1 mRNA expression is low in the embryonic heart, but increases 2.5-fold with 

maturation. Acsl4, Acsl5, and Acsl6 mRNA abundances remain steady throughout development. 

During heart maturation, phospholipid acyl chains shift to a more unsaturated profile with 18:2 and 

22:6 increasing by 5% and 23%, respectively, of total acyl chains, and 16:0 and 18:1 decreasing by 

9% and 5%, respectively (108). Phospholipid acyl chain saturation and length are likely coupled to 

the fatty acid preference of the predominant ACSL isoform present. During this same period, the 

heart switches from primarily glucose to FA as the preferred substrate for energy production, 

consistent with ACSL1-mediated activation of FAs destined for oxidation (87). Acsl3 expression 



14 

 

decreases more than 2-fold between embryonic day 16 and post-natal day 7, indicating a potential 

importance in heart development (108).   

Acsl3 mRNA is upregulated under disparate conditions, including induction by poliovirus 

protein 2A infection of HeLa cells; the requirement of ACSL3 for viral proliferation appears to be 

related to the incorporation of activated FAs into phosphatidylcholine (109). ER stress via activated 

GSK-3b induces the expression of Acsl3 in the hepatocarcinoma cell line HuH-7 and in mouse liver, 

and knocking down Acsl3, but not Acsl1, with shRNA, blocks ER stress-related lipid accumulation 

(110).   

Norepinephrine or glucagon treatment rapidly decreases ACSL activity in adipocytes, and 

insulin quenches the effect of norepinephrine on ACSL activity within minutes (103). This rapid 

change in ACSL activity suggests that post-translational modifications occur to modulate ACSL 

activity in response to nutritional status and other stimuli.  Using mass spectrometry, 25 

phosphorylation and 15 acetylation sites were identified on ACSL1 in liver and brown adipocytes.  

When seven of these sites were mutated to mimic phosphorylation or acetylation, the activity of 

ACSL1 decreased, confirming the importance of post-translational modifications in regulating 

ACSL1 activity (111).  The phosphorylation of ACSL1 and ACSL4 is also altered by fasting and 

ob/ob genotype in the liver (112), but how these changes in phosphorylation affect activity has not 

been studied.   

Channeling. 

 Evidence that acyl-CoAs are channeled or partitioned into different pathways was first 

obtained in Saccharomyces cerevisiae, which expresses three well-studied long-chain ACS isoforms 

(termed Faa1-3p).  Analyses of null alleles showed that the ability to use exogenous FA required 

Faa1p, that Faa2p and Faa3p activate only endogenous FA, and that none of these Faa proteins 

channel FA towards β-oxidation (113).  Replacing yeast Faa null mutants with rodent ACSL or FATP 

isoforms showed that complementation varies for FA uptake and incorporation (114,115).  Similarly, 
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in ACS-deficient Escherichia coli complementation studies showed that each of the 5 rat ACSL 

isoforms differs in its ability to channel FA into phospholipid synthesis and β-oxidation (116).   

 The differential effects of inhibiting FA incorporation into triacylglycerol and phospholipid in 

cultured rat hepatocytes and human fibroblasts also suggested the possibility of channeling in 

mammalian cells.  Thus, the FA acid analog triacsin C decreases [1-14C]oleic acid incorporation into 

TAG relative to phospholipid and oxidation products (117,118).  Because triacsin C is a competitive 

inhibitor of ACSL1, ACSL3, and ACSL4 (119,120), inhibition studies could not identify specific 

roles for the individual ACSL isoforms.   

Knockout and knockdown of ACSL1 

 One way to learn about function is to observe the effect on animal or cell physiology and 

biochemistry in the absence of a particular gene.  Knockouts have been made for several of the genes 

that encode proteins able to activate long-chain fatty acids.  Multiple caveats impede firm conclusions 

based on knockout models.  Problems include the fact that many of the ACSL isoforms have splice 

variants or different start sites, that the expression or activity of other ACSL isoforms may increase to 

compensate for the absent enzyme, that the long-term absence of a particular enzyme may induce 

changes in the cell or animal that modify or distort the effect of the missing protein, and that an 

ACSL isoform may not only be located on several subcellular membranes, but its location and 

function may differ in different tissues.  Thus, the interpretation of function derived from knockout 

animals remains tentative. 

ACSL1, the most extensively studied isoform, is highly expressed in liver, heart, white and 

brown adipose, and skeletal muscle (107).  Multi-tissue and tissue-specific knockouts indicate that 

ACSL1 has different functions in different tissues (Table 1.2).  In liver, the knockout causes a 50% 

decrease in total ACSL activity and a 25-35% decrease in hepatic acyl-CoA content and a 20% 

decrease in the incorporation of [14C]oleate into TAG (86).  Although incorporation of oleate into 

phospholipids appeared to be unaffected, analysis of phospholipid species suggested that ACSL1 
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contributes specifically to the incorporation of 18:0-CoA (86).  Long-chain acyl-carnitines are 50% 

lower than controls, suggesting that trafficking of acyl-CoAs into both TAG and oxidation pathways 

is impaired by the knockout.  These data could be interpreted as consistent with an enzyme that either 

does not target its acyl-CoA product into a specific pathway or that, because of its dual location on 

both the mitochondria and the ER, ACSL1 partitions its product into both synthetic and degradative 

pathways. 

In contrast, tissue-specific knockouts of ACSL1 in highly oxidative tissues like heart (87) or 

white or brown adipose (105) strongly suggest that channeling towards β-oxidation is primary.  In 

these tissues, the knockout causes an 80-90% decrease in total ACSL activity and profound decreases 

in the oxidation of long-chain fatty acids, without altering the incorporation of [14C]oleate into TAG 

or phospholipid.  In Acsl1-/- heart, the uptake of the FA analog Br-[14C]palmitate is lower than 

controls, whereas uptake of 2-deoxy-[14C]glucose increases 8-fold.  In ACSL1-deficient brown 

adipose, the defect in FA oxidation impairs the ability of the mice to maintain a normal body 

temperature when placed at 4 ºC.  In both heart and brown adipose, although Acsl3 mRNA is 

upregulated, this isoform is apparently ineffective in supplying acyl-CoA for oxidation and 

thermogenesis.  Similarly, in white adipose, the loss of ACSL1 activity causes a 50% decrease in 

[14C]18:1 oxidation, but no alteration in FA incorporation into TAG or phospholipid; in fact, 

compared to controls, white adipose depots are 40% larger (105).  Interestingly, an shRNA-mediated 

knockdown of ACSL1 in 3T3-L1 adipocytes supported a role in FA re-esterification, suggesting that 

the function of ACSL1 in these cells may differ from that in mouse adipose tissue (121). 

In macrophages from diabetic mice and humans, ACSL1 is upregulated; it increases the 

metabolism of 20:4ω6 and enhances inflammation and atherosclerosis (122). Unlike the deficiency in 

liver, adipose, and heart, ACSL1 deficiency in macrophages did not impair either FA oxidation or the 

accumulation of neutral lipid (122).  Surprisingly, the deficiency caused a reduction in the levels of 

20:4ω6-CoA and prevented the increased production of PGE2 that is usually observed in mice with 

type-1 diabetes.  It was speculated that this finding was the result either of limited uptake and 
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activation of 20:4 and depletion of the membrane phospholipid pool available as a substrate for 

phospholipase A2 (123) or caused by lack of ACSL1-mediated activation of 18:2 as a substrate for 

the elongation and desaturation enzymes that convert 18:2-CoA to 20:4-CoA (124).  In addition, 

when macrophages are activated by a variety of inflammatory signals, Acsl1 mRNA and protein 

increase markedly, and the absence of ACSL1 reduced lipopolysaccharide (LPS)-stimulated increase 

in 16:0-, 18:1-, and 20:4-CoA levels, diminished multiple acyl- and alkyl-PC species, and reduced the 

turnover of 20:4 in several phospholipids, but did not affect the LPS-stimulated increase in ceramide 

species (125).  Similarly, the absence of ACSL1 in endothelial cells resulted in a >50% decrease in 

ACSL total activity, but no change in 16:0 oxidation (126).  These data show clearly that the function 

of ACSL1 in macrophages differs fundamentally from its function in oxidative tissues and liver.   

Overexpression of ACSL1 

 When a protein has been over-expressed, the interpretation of its function is problematic.  The 

transfected protein may be located in a membrane or organelle with which it is not normally 

associated.  If adenovirus-mediated over-expression is used, virus toxicity may cause cells to function 

abnormally and, ultimately, even to lyse.  With transgenic over-expression, the gene can insert into 

the DNA at a position that interrupts an unrelated function.  The situations most likely to present 

problems in interpretation are those in which an over-expressed enzyme synthesizes large amounts of 

a product for which the downstream cellular machinery is unprepared to handle.  Thus, the synthesis 

of a large amount of acyl-CoA may overwhelm downstream pathways that can neither use the acyl-

CoAs for synthetic purposes nor degrade them quickly (126).  The detergent properties of acyl-CoAs 

may then damage cell membranes and alter the functions of membrane-associated receptors, enzymes 

and transporters.  One example of such acyl-CoA toxicity occurs when ACSL1 is over-expressed in 

heart (127,128).  As might be expected, the resulting lipotoxic cardiomyopathy is ameliorated by 

cardiac over-expression of diacylglycerol acyltransferase, a downstream enzyme that can use the 
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accumulating acyl-CoAs to synthesize triacylglycerol and sequester the excess acyl-CoAs in 

cytoprotective lipid droplets (129). 

In other studies in which ACSL and FATP/ACSVL isoforms are over-expressed in cultured 

cells, a common result has been to increase the incorporation of FA into glycerolipids.  Thus, over-

expression of FATP1 causes an increase in FA incorporation into TAG in in HEK293 cells (130) and 

skeletal muscle (131) and the overexpression of ACSL1 increases FA incorporation into TAG.  These 

overexpression studies led to a radically different interpretation of function than subsequent studies, 

which showed that the absence of either FATP1 or ACSL1 impairs FA oxidation.  For a 

comprehensive review of ACSL over-expression studies, see (132). 

Role of acyl-CoAs in disease 

Cancer 

A hallmark of tumorigenesis is the upregulation of genes that encode enzymes that synthesize 

FAs and complex lipids (133,134).  Although lipids are required for enhanced membrane biosynthesis 

in rapidly proliferating cells, a role beyond that of simple cellular growth is suggested by the 

upregulation of isoforms that are specific for lipids with specialized properties.  For example, 

upregulated Acsl4 is particularly associated with hepatocellular carcinoma and aggressive cancers in 

breast, prostate, and colon (135-138).  ACSL4 prefers to activate 20:4ω6 (139) and promotes tumor 

cell survival by two separate mechanisms.  In colon cancer, ACSL4 overexpression may prevent 

apoptosis by depleting pro-apoptotic unesterified 20:4ω6 (140,141).  In hepatocellular carcinoma, 

ACSL4 overexpression generates 20:4ω6-CoAs that might promote cell proliferation and growth by 

regulating signaling molecules like atypical protein kinase C (aPKC) or by binding a transcription 

factor like hepatic nuclear factor-4α (HNF-4α), antagonizing its activity, and enhancing tumor growth 

(47,142,143).  In addition, chemical inhibition of ACS activity by triacsin C, which inhibits ACSL1, 

ACSL3, and ACSL4, but not ACSL5 or ACSL6, induces apoptosis in lung, colon and brain cancer 

cells (144).  Although it appears that 20:4ω6-CoA is important for tumorigenesis, cell growth, and 
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proliferation, more studies will be needed to elucidate the mechanism by which 20:4ω6-CoA 

enhances growth.  

Obesity and type 2 diabetes mellitus  

Obesity and type 2 diabetes mellitus are associated disorders that share the underlying features of 

insulin resistance and dyslipidemia.  The dyslipidemia is characterized by hypertriglyceridemia, low 

HDL, and elevated free FA.  Although the pathogenesis of the insulin resistance syndrome is 

controversial, three factors are held in common: 1) hypersecretion of insulin by pancreatic β-cells; 2) 

increases in intra-abdominal adiposity, with high circulating levels of free FA; and 3) insulin 

resistance in skeletal muscle.  All three of these factors are associated with disordered FA metabolism 

and, secondarily, with disordered acyl-CoA metabolism. 

In an attempt to mechanistically link the three commonly held factors, Prentki and Corkey 

hypothesized that elevated cytosolic long-chain acyl-CoAs cause the insulin resistance syndrome.  

This hypothesis is based on the work of McGarry and Foster who showed that malonyl-CoA, the 

“signal of plenty,” inhibits CPT1, thereby blocking acyl-CoA transport into the mitochondria for β-

oxidation (145,146).  Prentki and Corkey hypothesize that with nutrient surfeit, glucose metabolism 

increases in pancreatic β-cells, liver, and muscle, causing cytosolic malonyl-CoA levels to rise, which 

then inhibits the mitochondrial β-oxidation of acyl-CoAs, allowing acyl-CoAs to accumulate (147).   

The accumulation of cytosolic long-chain acyl-CoAs in β-cells can modify the acylation state 

of key regulatory proteins involved in the regulation of ion channels and exocytosis of insulin (148).   

Indeed, in both cultured β-cells and rodent pancreatic islets, adding exogenous FA and glucose 

increases long-chain acyl-CoA content concomitantly with increased insulin secretion, basal 

hyperinsulinemia, and reduced prandial insulin release (149-151).  It is unclear whether the resultant 

hyperinsulinemia results from insulin resistance or is the driver of insulin resistance (152). 

Insulin resistance in liver and muscle has been attributed to long-chain acyl-CoA activation of 

protein kinase Cθ, which phosphorylates the insulin receptor and/or insulin receptor substrate-1 (IRS-
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1) and reduces the cells’ ability to respond to insulin (153).  Despite an associative study linking 

elevated hepatic long-chain-acyl-CoA content and plasma insulin levels (154), two knockout mouse 

models have not confirmed a direct link between elevated hepatic acyl-CoA content and hepatic 

insulin resistance.  In mice with liver-specific deficiency of Acsl1, a 25-35% decrease in hepatic acyl-

CoA content does not protect the mice from developing diet-induced insulin resistance (86), and in 

Gpat1 deficient liver, which has a nearly 2-fold increase in acyl-CoA content, the mice are protected 

from diet-induced insulin resistance (155).  Thus, at least in liver, acyl-CoA accumulation does not 

necessarily result in insulin resistance.   

Evidence for muscle acyl-CoA accumulation as a cause of insulin resistance is better 

supported by studies in both rats and humans, in which high fat feeding or direct lipid infusion 

increases intramuscular acyl-CoA levels and diminishes muscle uptake of glucose in response to 

insulin (154,156).  Conversely, when morbidly obese subjects lose weight, insulin sensitivity 

improves together with a reduction in intramuscular acyl-CoA levels (157).  This indirect evidence 

associates the accumulation of cytosolic long-chain acyl-CoAs in muscle with the development of 

insulin resistance. 

These studies do not support a direct role for long-chain acyl-CoA accumulation in the 

development insulin resistance.  While it is appealing to identify a single molecule as a unifying cause 

for the development of insulin resistance, it is more likely that long-chain acyl-CoAs are merely a 

marker for metabolically dysfunctional tissues. 

Cardiovascular Disease 

The normal heart obtains 60-90% of its energy from fatty acids (158), but excess acyl-CoA 

formation causes lipid accumulation that can cause heart failure (159), implying that the balance 

between energy production and storage is critical. Several disease states alter the ratio of fatty acid 

use to glucose use.  Glucose use increases with heart failure and pathologic hypertrophy caused by 

pressure overload (160-163). The diabetic heart uses high amounts of fatty acid because glucose 
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uptake is low (164,165). Diabetic cardiomyopathy is defined as contractile dysfunction that cannot be 

accounted for exclusively by arterial hypertension or coronary artery disease in individuals with 

diabetes (166). Diabetic cardiomyopathy is also associated with impaired insulin signaling and 

mitochondrial dysfunction (166). In heart, mitochondria produce up to 95% of the total ATP (167). In 

addition to energy production, mitochondria are a site of phospholipid synthesis (56), calcium uptake 

(168), and induction of apoptosis (168). Therefore, these organelles are critical to heart health.  

Mitochondria are the site of both the TCA cycle and the electron transport chain. Whereas 

glycolysis can produce 2 net ATP from a glucose molecule, oxidative phosphorylation can produce 

up to 36 ATP molecules, showing the importance of mitochondria to energy production. The high 

efficiency of ATP production from glucose or fatty acids is especially important in the heart, which is 

constantly beating and thus in demand of continuous ATP. When one acetyl-CoA, the end product of 

both glycolysis (after conversion of pyruvate by pyruvate dehydrogenase (PDH)) and fatty acid 

breakdown, is used in the TCA cycle, 3 NADH  and 1 FADH2 molecules are formed, which can be 

used by the electron transport chain. The electron transport chain (ETC) consists of five complexes (I-

V) on the inner mitochondrial membrane. These complexes form a proton gradient by transferring 

electrons to acceptors, such as oxygen, and coupling this gradient to ATP production in the complex 

V, which is also known as ATP synthase (Fig. 1.4).  

Impairments to any part of the ETC can be catastrophic for energy production. Complex I 

receives 2 electrons from NADH, which are then transferred through iron-sulfur clusters to form 

ubiquinol and transports 2 hydrogen ions across the inner mitochondrial membrane to the 

mitochondrial matrix. Deficiency of complex I is the most common childhood-onset mitochondrial 

disease and typically results in death in childhood (169). The disease can present with lactic acidosis, 

mitochondrial encephalomyopathy, hypertrophic cardiomyopathy, or an optic neuropathy (169). 

Complex II forms ubiquinol using energy from conversion of FADH2 to FAD+. Complex II 

deficiency is very rare, accounting for 2% of human respiratory chain deficiencies and has been 

associated with cardiomyopathy, leukoencephalopathy, and neurological disorders (170). Complex III 
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oxidizes ubiquinol to pump 4 hydrogen ions across the inner mitochondrial membrane. Deficiency of 

complex III can cause hearing loss, acidosis, liver disease, encephalopathy, and death (171). Complex 

IV transfers electrons to oxygen, which then combines with two hydrogen ions on the inside of the 

membrane to form water. Four hydrogen ions are pumped across the membrane, further contributing 

to the proton gradient.  Complex IV deficiency is the second most common respiratory chain 

deficiency and can present with severe myopathy, cardiomyopathy, liver failure, and encephalopathy 

(172). Complex V uses the proton gradient formed to produce ATP.  Deficiency of complex V is 

found in about 1% of mitochondrial disorders, and this deficiency is associated with neuropathy, 

ataxia, and early death (173). Deficiency of any mitochondrial complex has the potential to decrease 

ATP synthesis and increase reactive oxygen species formation (174).  

Cardiolipin in Mitochondrial Function 

In the inner mitochondrial membrane, CL closely associates with the ETC complexes, and a 

small number of CL molecules are tightly bound to the complexes (175,176) (Fig. 1.4). Complexes 

III and IV are found in CL-rich portions of the inner mitochondrial membrane, and this high amount 

of CL is necessary for their normal function (175,177,178). Providing CL to the ischemic rat heart 

using liposomes can improve complex III activity (179). CL is necessary for cristae membrane 

curvature, dimerization of complex V, and normal ATP synthase activity (180,181).  Mitochondrial 

complexes also aggregate in the membrane to form supercomplexes, and CL is necessary for their 

stability (182,183). In addition to ETC complexes, adenine nucleotide translocase (184), carnitine 

palmitoyltransferase-I (185), mitochondrial phosphate carrier (186), and carnitine acyltransferase 

(187)  interact with CL and display increased activity when these enzymes are in CL-containing 

membranes compared to CL-deficient liposomes or membranes.  

The acyl-chain composition of CL, which is primarily linoleate (18:2) in mammalian heart, 

increases membrane fluidity, potentially improving ETC function (188). These unsaturated acyl 

chains act as acceptors of electrons from reactive oxygen species formed by the ETC, forming lipid 



23 

 

peroxides, or have oxygen added via action of lipoxygenases or peroxidases (189). Impaired ETC 

function, blocking electron flow, can increase formation of reactive oxygen species and oxidize CL 

(179). The peroxidation of CL may cause apoptosis (190) and excess formation of MLCL if not 

counteracted by remodeling (191). CL is especially prone to oxidative damage if linoleate acyl chains 

are replaced with arachidonate or DHA, such as occurs with heart failure and aging (189).  Thus, the 

acyl chain composition may be important in CL’s function in mitochondria.  

CL content and acyl chain composition are altered in several heart diseases. Total CL content 

decreases during regional ischemia (192). Linoleate content of CL is diminished with pressure 

overload in mice and in spontaneously hypertensive rats (193,194). Due to the high amount of 

linoleate in CL and its loss in disease states, it has been hypothesized that a specific acyl-chain 

composition is necessary for normal mitochondrial function. However, recent studies in 

Saccharomyces cerevisiae in which CL is not remodeled nor converted to MLCL, contain acyl chains 

with a mixture of lengths and degrees of unsaturation and retain normal mitochondrial function 

(195,196). These studies suggest that the respiratory defect in S. cerevisiae was caused by the 

accumulation of MLCL and/or the decrease in the mitochondrial content of CL, but not to changes in 

the saturation of the CL acyl chains.  

Mitochondrial quality control 

Cardiomyocytes are at high risk of damage because of their high metabolic rate and long 

lifespan. Mitochondria are the source of the majority of reactive oxygen species, and due to this 

proximity can be greatly damaged. Therefore, the cell must remove these damaged mitochondria by 

either general autophagy or specific mitophagy. Impaired removal of damaged mitochondria can 

exacerbate damage after ischemia (197) or myocardial infarction (198) and cause heart failure 

(199,200).  Generalized autophagy is highly regulated to prevent degradation of key cellular 

components. Autophagy can be triggered by inflammation, reactive oxygen species, hypoxia, ER 

stress, and nutrient deprivation (201). Under normal conditions, mechanistic target of rapamycin 
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complex (mTORC1) binds unc-51-like protein (ULK1), preventing formation of the autophagosome 

(202) (Fig. 1.6). When mTORC1 is inactivated by AMPK or low nutrient status, ULK1 is 

dephosphorylated and activated, allowing it to activate autophagy proteins (Atg) for autophagosome 

formation. LC3 is a protein involved in the formation of the autophagosome and in cargo recognition. 

LC3-I is inactive and must be cleaved and lipidated by the addition of a phosphatidylethanolamine 

(PE) to form LC3-II. The ratio of active to inactive LC3 is a commonly used measure of autophagic 

rate. Once the autophagosome is fully formed, the autophagosome  fuses with lysosomes, forming the 

autophagolysosome, in which enzymatic degradation of proteins, nucleic acids, lipids, and 

carbohydrates occurs (201).  

When mitochondria are subjected to stress, CL translocates to the outer mitochondrial 

membrane and acts as a signal for mitophagy or fission (203,204). Mitochondrial fusion and fission 

allow the damaged portions to be combined and sequestered into one small mitochondria with a low 

membrane potential to be degraded by mitophagy. CL contributes to this process because it can 

strongly bind proteins necessary for these processes. For mitochondrial fission, CL on the outer 

mitochondrial membrane anchors dynamin-related protein 1 (DRP1), a fission protein normally found 

in the cytosol (205). Once on the outer mitochondrial membrane, DRP1 can be activated and initiate 

mitochondrial fission. CL also binds LC3, (203), and this CL-LC3 conjugation acts as a signal for 

degradation of the mitochondria (203).  Under more extreme stress, oxidation of CL by Cytochrome c 

can induce the formation of a pore in the mitochondrial membranes to allow the release of 

Cytochrome c and induces apoptosis (206). 

The Pink1-Parkin pathway is another way to specifically degrade damaged mitochondria. In 

healthy mitochondria, Pink1 is imported into the mitochondria and proteolytically degraded. In 

damaged mitochondria with low membrane potential, Pink1 accumulates at the outer mitochondrial 

membrane, where it can recruit Parkin. Parkin then ubiquitinates mitochondrial proteins such as 

mitofusin 1/2 (Mfn 1/2), voltage-dependent anion channel (VDAC), and translocase of the outer 

mitochondrial membrane (TOM). The ubiquitination of these proteins prevents their normal function 
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and allows binding of the cytosolic autophagy adaptor p62 (sequestome 1, SQSTM1), which can then 

bind LC3 to recruit the autophagosome for degradation of the damaged mitochondria (207). Having 

two pathways for specifically targeting mitochondria for degradation allows the cell to clear out 

damaged mitochondria without removing healthy mitochondria, which could compromise the energy-

producing capabilities of the cell.  

 In summary, acyl-CoA trafficking is necessary to maintaining cellular viability through 

providing substrate for both ATP production and glycerolipid synthesis. It has been hypothesized that 

each ACS isoform is able to target the acyl-CoA to a specific fate, potentially based on its subcellular 

location or fatty acid preference. By altering the amount of ACS isoforms in cells and tissues, we 

have begun to understand the function of these enzymes. The expression and activity of different 

ACS isoforms are altered in different disease states, prompting us to question the importance of ACS 

enzymes in the development of these diseases. This dissertation work focuses on how loss of ACSL1, 

the major ACSL isoform in the heart, impacts heart health with an emphasis on mitochondrial 

respiratory function.   
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Background Figures 

Figure 1.1 Metabolic fates of long-chain fatty acids. Long-chain fatty acids from exogenous or 

endogenous sources are activated to acyl-coenzyme As (CoAs) by one of 13 acyl-CoA synthetase 

isoforms. The free fatty acids are ligands for nuclear transcription factors, and 20-carbon fatty acids 

can be converted to a variety of signaling eicosanoids. The acyl-CoAs are transcriptional ligands and 

substrates for β- and ω-oxidation, and can be incorporated into complex lipids or used to modify 

proteins. Abbreviations: ACS, acyl-CoA synthetase; CoA, coenzyme A; EETs, epoxyeicosatrienoic 

acids; ER, endoplasmic reticulum; FA, fatty acid; HETEs, hydroxyeicosatetraenoic acids; HNF4, 

hepatic nuclear factor-4; PPAR, peroxisome proliferator-activated receptor. Published in (1). 
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Figure 1.2 Acyl-CoA metabolism. The major initial enzymatic steps in the metabolism of long-chain 

acyl-CoAs include 13 independent thioesterases to hydrolyze acyl-CoAs, fatty acyl-CoA reductase, 

which converts the acyl-CoA to a fatty alcohol that will be incorporated into ether lipids, and ATs, 

which incorporate fatty acids into complex lipids and acylated proteins. In the major degradative 

pathways, CPT1 converts acyl-CoAs to acylcarnitines that enter the mitochondria for β-oxidation, 

whereas very-long-chain acyl-CoAs begin to be oxidized in peroxisomes, releasing acetyl-CoAs, until 

they are chain-shortened to eight carbons, which complete their oxidation in the mitochondria. 

Abbreviations: ACSLs, long-chain acyl-CoA synthetases; AMP, adenosine monophosphate; ATP, 

adenosine triphosphate; ATs, acyl-CoA acyltransferases; CoA, coenzyme A; CPT1, carnitine 

palmitoyltransferase-1; ER, endoplasmic reticulum; FA, fatty acid; NADP, nicotinamide adenine 

dinucleotide phosphate; NADPH, reduced NADP. Published in (1). 
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Figure 1.3 Glycerolipid synthesis. Abbreviations: AGPAT - acyl-CoA:1-acylglycerol-3-phosphate 

acyltransferase; CDP-DAG - cytidine diphosphate-DAG; CEPT - diacylglycerol 

choline/ethanolamine phosphotransferase; CL – cardiolipin; DAG – diacylglycerol; DGAT – 

diacylglycerol acyltransferase; MAM- mitochondria-associated membrane; PA – phosphatidic acid; 

PC- phosphatidylcholine; PE – phosphatidylethanolamine; PEMT - phosphatidylethanolamine N-

methyltransferase; PG – phosphatidylglycerol; PGPP - phosphatidylglycerophosphate phosphatase; 

PGPS - phosphatidylglycerophosphate synthase; PI – phosphatidylinositol; PIS - phosphatidylinositol 

synthase; PS – phosphatidylserine; PSD - phosphatidylserine decarboxylase; PSS - 

phosphatidylserine synthase; TAG - triacylglycerol. Adapted from (56). 
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Table 1.1 Site of phospholipid synthesis.  

Phospholipid Enzyme Precursor 

Site of 

Synthesis 

PC 

CEPT CDP-choline + DAG ER 

PEMT PE ER 

(MAM) 

PE 

CEPT CDP-ethanolamine + 

DAG 

ER 

PSD PS Mito 

PS 
PSS PC + serine ER 

PSS PE + serine ER 

PG PGPP PGP Mito 

CL 
CL synthase PG + CDP-DAG Mito 

Tafazzin; MLCL AT1; ALCAT1 MLCL Mito 

PI PIS CDP-DAG + inositol ER 
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Figure 1.4. Cardiolipin remodeling in mammalian cells. After synthesis, CL contains shorter, more 

saturated fatty acids than are found in mature CL. To remodel CL, a lipase cleaves an acyl chain to 

form MLCL. Tafazzin can then transacylate CL using a different phospholipid as an acyl-chain 

donor. An acyl-CoA can be directly added to MLCL by MLCL AT-1 or ALCAT1. After several 

cycles, cardiac CL contains four linoleates (18:2). Abbreviations: CL- cardiolipin; MLCL- monolyso-

cardiolipin; PC- phosphatidylcholine; PE- phosphatidylethanolamine; MLCL AT1- MLCL 

acyltransferase 1; ALCAT1- lysocardiolipin acyltransferase 1. Adapted from (208). 
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Table 1.2.  Evidence for partitioning from loss of function studies  Published in (1). 
 

Gene Tissue FA partitioning information Phenotype Ref. 

Acsl1  KO Liver-specific Decreased FA incorporation into 

TAG & oxidation 

none (86) 

Adipose-specific Decreased FA oxidation Increased adipose mass; 

defective thermogenesis 

(105) 

Multi-tissue- heart Decreased FA oxidation none (87) 

Heart-specific Decreased FA oxidation none (87) 

Macrophage-

specific 

Altered 20:4 metabolism and PGE2 Protects macrophages against 

diabetes-mediated 

inflammation 

(122) 

Endothelial cell- 

specific 

No information none (126) 

Acsl3  KD Rat hepatocytes Glycerolipid synthesis on lipid 

droplets? 

Regulation of transcription factors 

__ (209) 

Acsl4 KD Cultured cells, 

various 

Altered eicosanoid metabolism Human X-linked mental 

retardation 

(210,

211) 

Acsl5 KD 

 

 

Acsl5 KO 

Primary hepatocytes 

 

Total KO 

Decreased FA incorporation into 

glycerolipids and cholesterol esters 

 

No information 

Decreased lipid droplet 

formation  

 

none 

(212) 

 

 

(213) 

Acsl6 KD Neuroblastoma cells 22:6ω3 metabolism? Inhibited neurite outgrowth (214) 

Fatp1/ 

Acsvl4 KO 

Skeletal muscle, 

BAT, L6E9 cells 

 

Retina 

Decreased FA oxidation  

 

 

? Decreased FA oxidation 

Defective thermogenesis 

 

Accelerated retinal ageing 

(215) 

 

 

(216) 

Fatp2/Acsv

l1 KO 

Total KO ? Decreased oxidation of 24:0 none (217) 

Fatp3/Acsv

l3 KD 

Glioma No information Decreased anchorage-

dependent growth 

(218) 

Fatp4/Acsvl

5 KO 

  

Human mutation 

 

Keratinocytes 

Decreased type II diester wax in 

the sebum 

 

Decreased long-chain ceramides  

Ichthyosis prematurity 

syndrome 

 

Postnatal restrictive skin 

(219) 

 

 

(220) 

Fatp5/Acsvl

6 KO 

Gall bladder bile Decreased conjugated bile acids Low weight gain on a high fat 

diet 

(76) 

Fatp6/Acsv

l2 

--- No information --- --- 

AcsBg1 

KD 

 

     KO 

Neuro2a cells 

 

Various tissues 

Decreased β-oxidation 

 

Increased amounts of some long-

chain fatty acids 

--- 

 

none 

(221) 

 

(222,

223) 

AcsBg2 

 

--- No information --- --- 
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Figure 1.5 Cardiolipin in ETC function. Cardiolipin is necessary for normal curvature of the cristae 

of the inner mitochondrial membrane. The complexes of the ETC are found in CL-rich areas of the 

inner mitochondrial membrane, and CL binding is necessary for normal function of complexes III, 

IV, and V. CL also stabilizes supercomplexes, which are important for normal mitochondrial 

respiration. Abbreviations: IMM- inner mitochondrial membrane; CL- cardiolipin. Adapted from 

(189,224). 
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Figure 1.6. Mitochondrial quality control through fission and fusion, autophagy, or apoptosis. 

Damaged mitochondria are cleared by general autophagy, controlled by mTORC1 or by mitophagy 

controlled by the Pink/Parkin pathway or by CL externalization. Abbreviations: mTORC1- 

mechanistic target of rapamycin complex 1; CL- cardiolipin; oxCL- oxidized CL; PE- 

phosphatidylethanolamine; ATG- autophagosome proteins. Adapted from (204,207)  



34 

 

Specific Aims 

Mitochondria produce up to 95% of ATP made in cardiomyocytes, making these critical 

organelles to heart health. Loss of mitochondrial respiratory function is seen in many cardiac 

diseases, such as heart failure, Barth syndrome, and aging (225,226), which could render these hearts 

less able to respond to stressors such as low energy availability or exercise.  Understanding the causes 

and consequences of cardiac mitochondrial dysfunction can have a large impact on how heart disease 

is treated.  

Long chain acyl-CoA synthetases (ACSLs) catalyze the addition of coenzyme A (CoA) to 

long chain fatty acids, the predominant dietary fatty acids, thereby activating and enabling them to 

enter into pathways of either oxidation or incorporation into complex lipids.  ACSL1 is the major 

ACSL isoform in heart, contributing 90% of total ACSL activity.  Loss of ACSL1 has profound 

effects on cardiac metabolism.  In heart, loss of ACSL1 causes an 80-90% loss of fatty acid oxidation 

and an 8-fold increase in glucose use (105,227,228).  With loss of 90% of ACSL activity, which is 

required for glycerolipids synthesis, hearts lacking ACSL1 may also have altered phospholipid and 

TAG synthesis. Alterations in saturation and chain length of fatty acids incorporated into membrane 

lipids can change membrane dynamics, movement of substrates and solutes across membranes, and 

lipid raft composition (229-231) .  Loss of ACSL1 also causes activation of mTORC1, which can 

increase growth and inhibit autophagy (87).  These changes to substrate use, membrane composition, 

cell growth, and autophagy can all affect mitochondrial function.  

Preliminary experiments using transmission electron microscopy of hearts from multi-tissue 

Acsl1 knockouts (Acsl1T-/-) showed many swollen and vacuolated mitochondria with disrupted cristae.  

Compared to floxed littermate controls, the oxygen consumption response of Acsl1T-/- heart 

mitochondria to ADP-stimulation was diminished (47-60% lower respiratory control ratio (RCR) 

with pyruvate/malate and 56% lower with palmitoyl-carnitine), indicating that loss of ACSL1 caused 

an impaired ability to respond to a stimulus of low energy. Acsl1T-/- heart mitochondria also took up 

34% less calcium than controls before the permeability transition, potentially causing increased 
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susceptibility to apoptosis.  Therefore, loss of ACSL1 causes mitochondrial dysfunction, which could 

predispose Acsl1T-/- hearts to failure if stressed.   

 

Overall aim: Determine why loss of ACSL1 in heart causes mitochondrial dysfunction.  

Aim 1. Determine if loss of ACSL1 alters cardiac phospholipids. 

1a. Determine whether ACSL1 determines acyl-chain composition of membrane 

phospholipids, specifically focusing on mitochondrial cardiolipin.  

1b. Determine whether alterations to mitochondrial phospholipids alters 

mitochondrial function.  

Aim 2. Determine if activation of mTOR in Acsl1T-/-hearts impairs mitochondrial function. 

2a. Determine whether activation of mTORC1 in Acsl1T-/- hearts prevents clearance 

of damaged mitochondria through inhibition of autophagy. 

2b. Determine whether mTORC1 activation in Acsl1T-/- hearts impairs mitochondrial 

function. 
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CHAPTER 2: ACYL-COA SYNTHETASE 1 DEFICIENCY ALTERS CARDIOLIPIN 

SPECIES AND IMPAIRS MITOCHONDRIAL FUNCTION  

 

Trisha J. Grevengoed1, Sarah A. Martin2, Lalage Katunga3, Daniel E. Cooper1, Ethan J. 

Anderson3, Robert C. Murphy2, Rosalind A. Coleman1 

Summary 

Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL 

activity, but its role in phospholipid synthesis has not been determined.  Mice with an inducible 

knockout of ACSL1 (Acsl1T-/-) have impaired cardiac fatty acid oxidation and rely on glucose for ATP 

production.  In Acsl1T-/- mice, cardiac mitochondria were dysfunctional.  Because ACSL1 exhibited a 

strong substrate preference for linoleate, we investigated the composition of heart phospholipids.  

Acsl1T-/- hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control 

hearts.  A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of 

linoleate into CL, as well as diminished incorporation of palmitate and oleate into other phospholipids.  

Overexpression of ACSL1 in both H9c2 and HEK-293 cells increased incorporation of linoleate into 

CL and other phospholipids.  To determine whether increasing the content of linoleate in CL would 

improve mitochondrial respiratory function, control and Acsl1T-/- mice were fed a high linoleate diet; 

this normalized the amount of tetralinoleoyl-CL, but did not improve respiratory function.  Thus, 

ACSL1 is required for the normal composition of several phospholipid species in heart.  Although 

ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not 

be required for normal function.  

                                                
1 Department of Nutrition, University of North Carolina at Chapel Hill, NC 27599 
2 Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 
3 Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27858 
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Introduction 

 In order to metabolize long-chain fatty acids in pathways of β-oxidation or the synthesis of 

complex lipids, they must first be activated to acyl-CoAs by long-chain acyl-CoA synthetases (ACSL).  

Five mammalian ACSL isoforms have been identified, each with a specific substrate preference, 

subcellular location, and tissue distribution (232).  In the heart, the ACSL1 isoform predominates, such 

that with deficiency, total ACSL specific activity and fatty acid oxidation decrease by more than 90% 

(87).  Because ACSL activity is required for the incorporation of fatty acids into phospholipids, we 

asked whether the ACSL1 isoform is also required for the synthesis and remodeling of cardiac 

phospholipids, particularly cardiolipin (CL). 

 The mitochondrial phospholipid CL contributes to many aspects of mitochondrial function, 

including energy production through oxidative phosphorylation (233,234), mitochondrial fission and 

fusion (235,236), and cellular apoptosis (237).  Tetralinoleoyl-CL is the predominant CL species in the 

mammalian heart (238), but the mechanism by which this species is formed is unclear.  Because the 

enzymes of CL synthesis lack acyl-chain specificity, nascent CL contains a mixture of acyl chain 

lengths and degrees of unsaturation (58).  To obtain mature CL, most remodeling occurs within the 

mitochondria by sequentially removing each acyl chain to form monolyso-CL (MLCL) and then 

replacing the missing fatty acid with linoleate (18:2),  added by the transacylation from a donor 

phospholipid (239)  or by direct incorporation of a linoleoyl-CoA (62,240). 

Tafazzin is the enzyme believed to be responsible for the transacylase pathway of cardiolipin 

remodeling. Mutations in tafazzin cause Barth syndrome, an X-linked cardiomyopathy characterized 

by skeletal muscle weakness and heart failure in childhood (59).  Hearts with tafazzin loss-of-function 

mutations contain low levels of tetralinoleoyl-CL and have a high ratio of MLCL to CL.  Because 

tafazzin does not have a substrate preference for linoleate, it has been proposed that the linoleate 

enrichment must be caused by either an alteration in the physical shape of CL or by the action of an 

additional enzyme (239).  
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Here we show that ACSL1, which has a distinct preference for linoleate, significantly 

contributes to CL remodeling.  Because fatty acids must be converted to acyl-CoAs, both to be available 

for the initial steps in the synthesis of phospholipids, as well as to enter the mitochondrial matrix where 

CL remodeling occurs, we asked whether ACSL1 might be responsible for activating linoleate destined 

to be incorporated into CL.  We found that hearts lacking ACSL1 are deficient in tetralinoleoyl-CL, but 

that normalizing the CL species cannot ameliorate the mitochondrial dysfunction in these hearts.  These 

findings call into question the idea that the acyl-chains of CL are important for cardiac and 

mitochondrial respiratory function.  

Methods 

Animal care and diets: All protocols were approved by the Institutional Animal Care and Use 

Committee at University of North Carolina at Chapel Hill.  Mice were housed under a 12 h light/dark 

cycle with free access to food and water.  Unless otherwise specified, mice were fed a purified low-fat 

diet (Research Diets, DB12451B).  A multi-tissue knockout of ACSL1 was achieved by mating mice 

with loxP sequences flanking exon one of the Acsl1 gene to animals expressing a tamoxifen-inducible 

Cre driven by a ubiquitous promoter enhancer (87).  Between six and eight weeks of age, Acsl1T-/- and 

littermate control Acsl1flox/flox (control) mice were injected intraperitoneally on four consecutive days 

with 20 mg/mL (75 μg/g body weight) tamoxifen dissolved in corn oil.  All studies were performed 20 

weeks after tamoxifen was injected, unless otherwise specified.  Cardiac echocardiography was 

performed (blinded to mouse type) on conscious mice using a VisualSonics Vevo 770 or Vevo 2100 

ultrasound biomicroscopy system (VisualSonics, Inc.).  A model 707B (30 MHz) or model MS-550D 

(22-55 MHz) scan head was used on the Vevo 770 and Vevo 2100, respectively, as previously described 

(241).  Two-dimensional guided M-mode echocardiography was performed in the parasternal long-axis 

view at the level of the papillary muscle on loosely restrained conscious mice.  Wall thickness was then 

determined by measurements of epicardial to endocardial leading edges.  For the diet study, mice were 
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fed a high-linoleate safflower oil diet (Research Diets, D02062104, 45% kcal fat (75% linoleate)) for 

4 weeks.  

ACSL activity assay: ACSL specific activity was measured in heart membranes and cell 

homogenates (87). Briefly, homogenized tissues were centrifuged at 100,000 x g for 1 h at 4°C to isolate 

total membrane fractions.  Between 1 and 6 µg of protein was incubated with 50 µM [1-14C]fatty acid 

(unless otherwise indicated), 10 mM ATP, 250 μM CoA, 5 mM dithiothreitol, and 8 mM MgCl2 in 175 

mM Tris, pH 7.4 at RT° for 10 min.  The enzyme reaction was stopped with 1 mL of Dole’s solution 

(heptane:isopropanol:1M H2SO4; 80:20:1; v/v).  Two mL of heptane and 0.5 ml of water were added 

to separate phases.  Radioactivity of the acyl-CoAs in the aqueous phase was measured using a liquid 

scintillation counter.  

Mitochondrial function studies: Mitochondrial function was measured in permeabilized 

myofibers and in isolated mitochondria prepared from portions of the left ventricle and septum.  After 

dissection, muscle samples were placed in ice-cold (4C) Buffer X containing (in mM): 7.23 K2EGTA, 

2.77 CaK2EGTA, 20 imidazole, 20 taurine, 5.7 ATP, 14.3 phosphocreatine, 6.56 MgCl2-6H2O and 50 

MES (pH 7.1, 295 mOsm).  Fibers were delicately separated in ice-cold Buffer X using fine forceps 

under a dissecting scope.  Cardiac fibers were then permeabilized in Buffer X with 50 µg/mL saponin 

for 30 min, then washed in ice-cold wash buffer Z (110 mM K-MES, 35 mM KCl, 1 mM EGTA, 5 mM 

K2HPO4, 3 mM MgCl2·6H2O, 5 mg/ml bovine serum albumin, pH 7.1, 295 mOsm) to remove 

endogenous substrates.  To prevent Ca2+ independent contraction of the permeabilized fibers, 20 M 

blebbistatin was added to Buffer Z during wash and experiments. All mitochondrial O2 consumption 

(JO2) measurements were performed at 30°C using the Oroboros O2K Oxygraph system (Oroboros 

Instruments).  The H2O2 and Ca2+ uptake measurements were performed in a spectrofluorometer 

(Photon Technology Instruments or Horiba Jobin Yvon), equipped with a thermo-jacketed cuvette 

chamber.  All mitochondrial experiments were performed in Buffer Z plus 5 mg/mL bovine serum 

albumin.  O2 consumption was measured with either 5 mM pyruvate plus 2 mM malate or 125 µM 
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palmitoyl-carnitine plus 2 mM malate.  State 3 respiration was induced by adding ADP as indicated in 

the Figure Legends.   

The rate of ATP production within the permeabilized myofibers was continuously recorded 

alongside the O2 consumption in real time, by monitoring the increasing fluorescence in the respiration 

chamber coming from NADPH (340ex/460em) with a spectrofluorometer, as described  (242).  To 

maintain this reaction, 2.5 U/mL of glucose-6-phosphate dehydrogenase (Roche), 2.5 U/mL yeast 

hexokinase (Roche), 5 mM nicotinamide adenine dinucleotide phosphate (NADP+) (Sigma-Aldrich), 

and 5 mM D-glucose (Sigma-Aldrich) were added to the assay media.  P1,P5-Di(adenosine-

5’)pentaphosphate (Ap5A) (Sigma-Aldrich) was included in the respiration medium to inhibit 

adenylate kinase and to ensure that ATP production was solely due to mitochondrial oxidative 

phosphorylation.  An absolute amount of ATP generated across a given time frame was then calculated 

using a standard curve of fixed concentrations of ATP added to the saturating amounts of hexokinase, 

glucose, G6PDH, and NADP+.  Mitochondrial H2O2 emission was detected using Amplex UltraRed 

reagent (Invitrogen) in the presence of 1 U/mL horseradish peroxidase and 25 U/mL superoxide 

dismutase.  The rate of H2O2 produced from the mitochondrial electron transport system supported by 

125 µM palmitoyl-L-carnitine, 5 mM glutamate, and 5 mM succinate oxidation was determined in 

permeabilized fibers with 100 µM ADP, 5 mM glucose, and 1 U/mL hexokinase present to maintain 

the mitochondria in a permanent, submaximal phosphorylating state. 

To isolate mitochondria, hearts were minced in 0.125 mg/mL trypsin in homogenization buffer 

(0.25 M sucrose, 10 mM HEPES, 1 mM EDTA, pH 7.4).  Soybean trypsin inhibitor (0.65 mg/mL) was 

added, and tissues were homogenized and centrifuged at 500 x g for 5 min to remove nuclei and 

unbroken cells.  Mitochondria were isolated by centrifuging at 10,000 x g for 15 min and washed twice 

with homogenization buffer.  Calcium uptake was measured in Buffer Z, using 1 µM Calcium Green 

5-N  with 1 µM thapsigargin (Sigma-Aldrich) added to inhibit SERCA, a calcium transport ATPase.  

In separate experiments, the function of isolated mitochondria was assessed using a Seahorse XF24 
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Analyzer.  Mitochondria (15 µg protein) were stimulated sequentially with 100 µM ADP, 1.26 µM 

oligomycin, 4 µM FCCP, and 4 µm antimycin A (Sigma-Aldrich).   

Phosphate quantification: Lipids were extracted from approximately 15 mg of ventricular 

myocardium, and phospholipids were separated by thin-layer chromatography on LK5D silica gel 150 

Å plates (Whatman) in chloroform:ethanol:water:triethylamine (30:35:7:35; v/v) with authentic 

standards (243).  Phosphate was quantified in the scraped silica regions for each phospholipid.  The 

reaction was initiated by adding 30 µL 10% Mg(NO3)2 in ethanol to each sample and heating over an 

open flame (244).  After adding 300 µL 0.5 N HCl, samples were boiled for 15 min.  Then, 700 µL of 

a solution of 1.43% ascorbic acid and 0.36% ammonium molybdate in 0.86 N sulfuric acid was added, 

and the mixture was incubated at 45°C for 20 min.  The absorbance of samples and a standard curve of 

sodium phosphate was measured at 605 nm. 

Sample preparation for mass spectrometry: Samples of left ventricle were homogenized on 

ice using a Dounce homogenizer in 50 mM phosphate buffer pH 7.2, 0.1 M NaCl, 2 mM EDTA, 1 mM 

dithiothreitol, and protease inhibitors (Roche).  Protein was determined by the bicinchoninic acid 

method (Pierce Biotechnology).  Preparations of heart mitochondria (180 µg protein) or total left 

ventricle (300 µg protein) were diluted with 50 mM PBS to a total volume of 200 µl.  An internal 

standard mixture was made in 100% methanol containing: 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-

phosphate (PA-12:0/13:0), 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine (PC-12:0/13:0), 

1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphoethanolamine (PE-12:0/13:0), 1-dodecanoyl-2-

tridecanoyl-sn-glycero-3-phosphoglycerol (PG-12:0/13:0), 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-

phosphoinositol (PI-12:0/13:0), 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphoserine (PS-

12:0/13:0), and 1’–[1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phospho], 3’–[1-(9Z-tetradecenoyl), 2-

(10Z-pentadecenoyl)-sn-glycero-3-phospho]-sn-glycero (CL- (14:1) x3/15:1).  Then 750 µl of 

methanol:chloroform (2:1; v/v) and an internal standard mixture (for mitochondrial preparations and 

left ventricles on low-fat diet, 50 ng of each phospholipid class and 100 ng of CL; for left ventricles on 

safflower oil diet, 25 ng of each phospholipid class and 100 ng of CL) was added, and products were 
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extracted (245).  The samples were dried under a stream of nitrogen and were then resuspended in 100 

µl of 75% solvent A (isopropanol:hexanes; 4:3; v/v) and 25% solvent B (isopropanol:hexanes:water; 

4:3:0.7; v/v, containing 5 mM C2H3O2NH4).  Samples were analyzed by liquid chromatography coupled 

to tandem mass spectrometry (LC/MS/MS) as described below. 

Liquid chromatography/mass spectrometry: For normal phase separation, samples were 

injected onto an Ascentis-Si HPLC column (150 x 2.1 mm, 5 µm; Supelco) at a flow rate of 0.2 ml/min 

with 25% solvent B and 75% solvent A.  Solvent B was maintained at 25% for 5 min, increased to 60% 

over 10 min, and then to 95% over 5 min.  The system was held at 95% Solvent B for 20 min before 

re-equilibration at 25% for 14 min.  Phospholipids were measured using an API3200 triple quadrupole 

mass spectrometer (AB Sciex).  Positive ion mode was used to detect phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) lipids with quadrupole 1 scanning a m/z range from 250 to 1100 in 0.1 

Da increments over 2 sec.  Negative ion mode was used to detect CL, phosphatidic acid, 

phosphatidylinositol (PI), phosphatidylglycerol, and phosphatidylserine with quadrupole 1 scanning an 

m/z range from 150 to 1600 in 0.1 Da increments over 4 sec.  Quantitation was performed using AB 

Sciex MultiQuant software and using the internal standards for each phospholipid analyzed.  Quantified 

data were corrected for isotope abundance.  Fragmentation of endogenous lipids of m/z 818.5, 842.6, 

844.6, 846.5, 864.5, and 890.5 (PC), 742.5, 738.5, 790.5, 762.5 (PE), 885.5 (PI), and 1448.0 (CL) was 

performed as described above, except for the following details.  In the MS/MS experiment, the parent 

ions listed above were selected in quadrupole 1, subjected to collision-induced decomposition using N2 

gas, and quadrupole 2 was allowed to scan the product ions in the m/z range from 150 to 900 (m/z 818.5, 

842.6, 844.6, 846.5, 864.5, 890.5, 742.5, 738.5, 790.5, 762.5, 885.5) or 150 to 1450 (m/z 1448.0).  After 

each of these specific phospholipid molecular species was identified, the number of acyl carbons and 

double bonds present in the set of fragment molecule was confirmed.  From these data, the other 

phospholipids were converted from mass-to-charge to number of acyl carbons and double bonds.   

Preparation and Analysis of Tissue for Matrix Assisted Laser Desorption 

Ionization/Imaging Mass Spectrometry (MALDI-IMS): A modified optimal cutting medium 
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(mOCT) was made by heating a 10% solution of Mowiol 6-98 in MilliQ H2O. Once in solution, 8% 

Poly (propylene glycol) average MW 2000 was added until mixed thoroughly. A heart from a control 

animal and an Acsl1T-/- animal was placed in the mOCT mixture and stored overnight at -20°C. Hearts 

were sectioned at -17°C at 20 μm, placed on glass cover slips, and stored at -20°C until used. DHAP 

(2' 5'-dihydroxyacetophenone) matrix (150 mg) was sublimated onto the tissue. In brief detail, an AB-

Sciex qTOF XL using a solid state laser (355 nm) at and energy of 7.6 μJ and a pulse rate of 500 Hz in 

negative ion mode was used to capture the MALDI/IMS data. The laser was moved in a horizontal 

pattern with a resolution of approximately 50 μm. At each point, the negative ion spectrum from 600 – 

1700 m/z was captured. The data set was analyzed using TissueView software (AB-Sciex). 

Generation of stable ACSL1-knockdown H9c2 cells: Acsl1 rat shRNA or scrambled control 

shRNA constructs in pGFP-C-shLenti vector (Origene) were co-transfected with pHR-CMV-Δ8.2 and 

pCMB-VSV-G vectors in HEK293T cells to generate lentivirus.  H9c2 cells (rat cardiomyocytes; 

ATCC) were incubated with media containing lentivirus for Acsl1 shRNA or scrambled shRNA for 24 

h.  Cells were treated with 1 µM puromycin for 7 d to select cells that contained the shRNA.  

Knockdown of ACSL1 was confirmed by mRNA, protein, and ACSL enzyme activity.   

Cellular phospholipid incorporation: H9c2 cells were cultured to confluence in 25 mM 

glucose DMEM with 10% fetal bovine serum.  Cells were differentiated for 4 d in 5 mM glucose 

DMEM with 1% horse serum.  For overexpression experiments, cells were infected with adenovirus 

containing either GFP or Acsl1-FLAG (multiplicity of infection of 150) for 24 h.  Cells were incubated 

with 0.5 µCi [1-14C]palmitate, [1-14C]oleate, or [1-14C]linoleate for 6 h and then washed twice with 1% 

bovine serum albumin. For etomoxir studies, cells were preincubated with 40 µM etomoxir for 1 h 

before incubating with 40 µM etomoxir and [1-14C]linoleate for 6 h.  HEK-293 cells were grown to 

50% confluence in 25 mM glucose DMEM with 10% fetal bovine serum and then infected with 

adenovirus containing either GFP or Acsl1-FLAG (multiplicity of infection of 2.5) for 24 h.  Cells were 

then incubated with a mixture of 30 µM oleate, 15 µM palmitate, and 5 µM linoleate with 0.5 µCi [1-

14C]palmitate, [1-14C]oleate, or [1-14C]linoleate for an additional 24 h.  For oxidation measurements, 
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0.4 mL media was collected in a tube containing 20 µL 15% bovine serum albumin and then incubated 

with 100 µL 20% perchloric acid overnight at 4°C.  The acidified media was centrifuged at 20,000 rpm 

for 5 min, and radioactivity in the supernatant was counted to determine acid soluble metabolites 

(ASM).   For pulse-chase experiments, H9c2 cells were incubated with 0.5 µCi [1-14C]linoleate for 2 h 

and then either collected (pulse) or washed and incubated with 10 µM unlabeled linoleate (chase).  

Cellular lipids were extracted and phospholipids were separated by thin layer chromatography as 

described above.  

Microscopy: H9c2 cells grown on glass coverslips were incubated with MitoTracker CMXRos 

(Life Technologies; 200 nM) for 30 min, fixed with 3.7% paraformaldehyde, and permeabilized with 

0.2% Triton X-100.  Cells were incubated with primary antibody (FLAG (Sigma) and/or Grp78 (Novus 

Biologicals)) for 2 h, then secondary antibody (Alexafluor 488 or 568; Life Technologies) for 1 h.  Cells 

were then incubated with DAPI (Life Technologies) for 5 min, mounted on glass slides with Prolong 

Gold (Life Technologies), and then visualized with a Zeiss 710 confocal microscope.   

Statistics: Data are presented as the mean ± SE for each group.  Differences between genotypes 

were evaluated by Student’s t-test.  For experiments with multiple treatments or diets, differences 

between groups were evaluated by two-way ANOVA with Tukey multiple-comparison posttests.  

Differences between means with p < 0.05 were considered statistically significant. 

Results: 

ACSL1 was located on cardiac mitochondria and preferred to activate linoleate.  Cardiac 

ACSL1 protein and ACSL specific activity were enriched in the mitochondrial fraction, compared to 

whole tissue (Fig. 2.1A, B).  Purified recombinant ACSL1 from rat liver shows a broad fatty acid 

substrate preference with varying chain lengths and degrees of unsaturation (246).  To determine the 

fatty acid substrate preference in mouse heart, long-chain acyl-CoA synthetase (ACSL) activity was 

assayed with different fatty acid substrates in total membrane preparations from control and Acsl1T-/- 

hearts.  Control hearts exhibited the highest ACSL activity with linoleate (18:2) (Fig. 2.1C).  This clear 
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substrate preference was lost in Acsl1T-/- hearts, which lack  more than 90% of total ACSL activity with 

all fatty acids (Fig. 2.1D), indicating that the preferential activation of linoleate was due to ACSL1 

activity.  

Loss of ACSL1 caused mitochondrial dysfunction.  Acsl1T-/- and littermate control mice were 

injected with tamoxifen at 6-8 week to produce ACSL1 deficiency.  Ten weeks after tamoxifen 

injection, Acsl1T-/- hearts were enlarged but had normal systolic function (87).  To determine whether 

function worsened with time, echocardiography was performed 20 weeks after initiating the ACSL1 

knockout.  Acsl1T-/- hearts remained hypertrophied with no impairment in contractile function (Fig. 

2.2A, B, C).  To determine whether loss of ACSL1 caused mitochondrial dysfunction, O2 consumption 

in saponin-permeabilized cardiac muscle fibers was measured using palmitoyl-carnitine and malate 

(Fig. 2.2D) or pyruvate and malate (Fig. 2.2E) with increasing concentrations of ADP or succinate.  

Basal O2 consumption rate was normal in Acsl1T-/- mitochondria, but compared to controls, the 

mitochondrial response to ADP stimulation was 56% lower.  In addition to impaired ADP-stimulated 

oxygen consumption, Acsl1T-/- mitochondria produced less ATP for each O2 molecule consumed, 

indicative of inefficient energy production (Fig. 2.2F).  Many models of mitochondrial dysfunction 

produce increased amounts of H2O2, but Acsl1T-/- mitochondria did not, possibly due to their lower 

metabolic rate (Fig. 2.2G).  Isolated Acsl1T-/- mitochondria took up less calcium than controls before 

reaching the permeability transition (Fig. 2.2H), suggesting that Acsl1T-/- mitochondria may be more 

susceptible to stress and apoptosis.  Calcium uptake into mitochondria increases oxygen consumption 

and NADH production, but once calcium uptake exceeds the permeability transition, mitochondria are 

more likely to become disrupted, release cytochrome c into the cytosol, and undergo apoptosis (247).  

Despite severely impaired respiratory function, Acsl1T-/- hearts do not develop failure under unstressed 

conditions.  

Loss of ACSL1 altered the acyl-chain composition of mitochondrial cardiolipin and 

phospholipids.  Cardiolipin associates closely with complexes of the electron transport chain and is 

highly important for mitochondrial function (233,234).  Cardiac cardiolipin normally contains a high 
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amount of linoleate (238).  Because ACSL1 has a distinct preference for linoleate, we questioned 

whether the loss of ACSL1 would affect the composition of cardiolipin and other phospholipids in 

cardiac mitochondria.  The content of individual phospholipid species in cardiac ventricles did not 

differ between genotypes (Fig. 2.3A); however, mass spectrometry analysis revealed that loss of 

ACSL1 caused large changes in the acyl-chain composition of the major phospholipid species.  As has 

been reported previously (238), the major cardiolipin (CL) species in control mouse hearts contained 

four linoleate acyl-chains (tetralinoleoyl-CL; 72:8-CL) (Fig. 2.3B). In the Acsl1T-/- mitochondria, 

however, this species was 83% lower and compared to controls, the CL species containing 2 linoleate 

and 2 arachidonate acyl chains (76:12-CL) was 80% lower (Fig. 2.3B).  Acsl1T-/- heart mitochondria 

contained larger amounts of CL species containing stearate (18:0) and oleate (18:1), indicating either 

impaired remodeling of the CL or decreased availability of linoleate.  

To determine whether the loss of ACSL1 impaired linoleate incorporation into other 

phospholipids, several species were fragmented to identify the acyl chains present.  Linoleate-

containing species of PC and PE (36:3-PC, 36:2-PC, and 36:2-PE) were approximately 2- to 4-fold 

higher in Acsl1T-/- hearts than in controls (Fig. 2.3C, D, E; Table 2.1).  Excess linoleate in these species 

suggests that ACSL1, which is primarily located on the mitochondrial outer membrane, normally plays 

a role in the initial synthetic reactions which occur on the endoplasmic reticulum, but that its absence 

alters the availability of acyl-CoA species at this site.  Furthermore, the excess linoleate could indicate 

impaired transacylation between CL and donor phospholipids, such as PC and PE.  Compared to 

controls, the expression of the transacylase tafazzin was 31% lower in Acsl1T-/- hearts (Fig. 2.3F).  Loss 

of tafazzin impairs tetralinoleoyl-CL formation (37). Thyroxine treatment lowers tafazzin expression 

(248), but increases total CL without favoring tetralinoleoyl-CL formation (249).  Heart failure 

diminishes both tafazzin expression (250) and tetralinoleoyl-CL content (251), demonstrating a 

physiological relationship between tafazzin expression and CL species. The excess linoleate in PC and 

PE together with the decrease in tafazzin suggests that impaired remodeling of CL through tafazzin-

mediated transacylation may have resulted in diminished tetralinoleoyl-CL.  
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Loss of ACSL1 altered other mitochondrial phosphatidylinositol (PI), PC, and PE species (Fig. 

2.3C, D, E), but no differences were seen in phosphatidylglycerol or phosphatidylserine (data not 

shown).  In control mitochondria the most abundant mitochondrial PI was 18:0, 20:4-PI.  This species 

was 64% lower in the Acsl1T-/- hearts, and was compensated for by higher content of multiple minor PI 

species, so that the total content of PI was unchanged in the two genotypes.    For PC, the major species 

in control hearts contained docosahexaenoic acid (DHA; 22:6) together with either palmitate (38:6-PC) 

or stearate (40:6-PC).  These species were 53% and 48% lower, respectively, in Acsl1T-/- hearts.  PC 

species that contained DHA were replaced with oleate in the Acsl1T-/- mitochondria so that 16:0-18:1-

PC (34:1-PC) was 2-fold higher and 18:0-18:1-PC (36:1-PC) was 3-fold higher than in control hearts.  

The major PE species in control hearts also contained DHA and stearate (40:6-PE) and was 

approximately 30% lower in the Acsl1T-/- hearts.  Impaired activation of α-linolenate due to loss of 

ACSL1 at the peroxisomal membrane may result in decreased uptake into peroxisomes where DHA 

synthesis occurs (252).  The compositions of PC and PE in isolated mitochondria from control and 

Acsl1T-/- ventricles were similar to those in total membranes (data not shown), suggesting that ACSL1 

influences phospholipid synthesis in the endoplasmic reticulum where these phospholipids are 

synthesized and remodeled (253).   

Knockdown of Acsl1 in H9c2 cardiomyocytes impaired both the oxidation of fatty acid 

and its incorporation into complex lipids.  To further investigate how loss of ACSL1 affects 

phospholipid formation, we made a stable knockdown of Acsl1 in H9c2 cells, a rat cardiomyocyte cell 

line.  The knockdown caused a 67% loss of Acsl1 mRNA, a 55% reduction of ACSL1 protein, and a 

26% decrease in total ACSL activity (Fig. 2.4A, B, C).  To avoid high concentrations of fatty acid 

which drive triacylglycerol synthesis, cells were incubated with trace amounts of individual [1-14C]fatty 

acids (palmitate, oleate, or linoleate) to measure their incorporation into phospholipids.  As measured 

by acid soluble metabolites (ASM) in the media, the oxidation of these fatty acids was 80% lower in 

the Acsl1 knockdown cells than in controls (Fig. 2.4D), consistent with the requirement for ACSL1 in 



48 

 

channeling long-chain fatty acids into the pathway of β-oxidation (87).  Decreased ACSL1 also caused 

approximately 40% lower incorporation of fatty acids into total glycerolipids (Fig. 2.4E).  

ACSL1 knockdown greatly diminished incorporation of fatty acids into neutral lipids and PC 

(Fig. 2.4F, H).  The incorporation of linoleate into CL was 32% lower in Acsl1 knockdown cells (Fig 

2.4G), which is consistent with the low content of tetralinoleoyl-CL in the Acsl1T-/- hearts.  Compared 

to control cells, the incorporation of palmitate into PC, PE, PS, and CL was lower by 43%, 34%, 17%, 

and 46%, respectively (Fig. 2.4H).  In contrast to highly oxidative cardiomyocytes in vivo, cultured 

cells rely minimally on fatty acid oxidation for energy.  Thus, in cultured cells, ACSL1 may activate 

more palmitate destined for esterification into phospholipids, unlike heart, in which palmitate is more 

readily oxidized.  Other than PC in which 37% less oleate was incorporated, no differences in the 

incorporation of oleate into phospholipids were observed between control and Acsl1 knockdown cells.  

Therefore, in cultured cardiomyocytes, as in liver (86), loss of ACSL1 impaired activation of fatty acids 

for both neutral and phospholipid synthesis, with the largest effects found with palmitate and linoleate.  

Overexpressed ACSL1 increased linoleate metabolism.  To confirm that ACSL1 

preferentially activates linoleate that is incorporated into CL, ACSL1 was overexpressed in H9c2 

cardiomyocytes (Fig. 2.5A).  As in heart, ACSL1-FLAG localized primarily to mitochondria (Fig. 

2.5B), and Ad-Acsl1 infection increased ACSL specific activity 3.3-fold (Fig. 2.5C).  After a 6 h 

incubation with trace amounts of each of the [1-14C]fatty acids, overexpressed ACSL1 increased the 

oxidation of linoleate by 28%, but not palmitate or oleate (Fig. 2.5D).  ACSL1 overexpression increased 

both palmitate and linoleate incorporation into total lipids by 17% and 26%, respectively (Fig. 2.5E).  

ACSL1 overexpression increased linoleate incorporation into neutral lipid by 48%, cardiolipin by 28%, 

PC by 28%, and phosphatidylserine by 22% (Fig. 2.5F, G, H).  Palmitate incorporation was less 

influenced by overexpressed ACSL1; its incorporation into PC, PI, and phosphatidylserine increased 

17-18%, similar to the increase seen in total lipid incorporation of 17% (Fig. 2.5F).  In heart and skeletal 

muscle which both contain high proportions of tetralinoleoyl-CL (86,87), the predominance of the 

ACSL1 isoform may underlie their enrichment in tetralinoleoyl- CL.   
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To determine whether the source of the linoleate in CL occurred via esterification of acyl-CoAs 

or from transacylation from donor phospholipids, we conducted a pulse-chase experiment.  

Overexpressed ACSL1 did not alter total labeled linoleate incorporation or incorporation into neutral 

lipids during the 2 h pulse (Fig. 2.6A, B).  After a 4 h chase with unlabeled linoleate, labeled linoleate 

in CL in control cells increased 4-fold, suggesting that the majority of the linoleate incorporated into 

CL came from lipids already present within the cell (Fig. 2.6C).  In the ACSL1 overexpressing cells, 

in comparison, 14% less labeled linoleate was incorporated into CL during the 4 h chase. This finding, 

coupled with the high linoleate incorporation during the 6 h labeling (Fig. 2.5G), suggests that more 

new unlabeled linoleate was being activated to form an acyl-CoA which was then esterified to CL. To 

determine if entry of linoleoyl-CoA into mitochondria was necessary for ACSL1-mediated increases in 

CL incorporation, H9c2 cells were incubated with etomoxir, an inhibitor of carnitine 

palmitoyltransferase-1 (CPT1).  As anticipated, etomoxir treatment decreased linoleate oxidation to 

ASM by more than 80% in both control and ACSL1-overexpressing cells (Fig. 2.6E).  The diminished 

entry of linoleoyl-CoA into the mitochondria also resulted in equivalent linoleate incorporation into CL 

in ACSL1-overexpressing cells and controls (Fig. 2.6H). However, overexpression of ACSL1 did not 

increase the amount of linoleate incorporated in other phospholipids (Fig. 2.6I). Without an increase 

[14C]linoleate incorporation into phospholipids that donate acyl chains to CL, no conclusion about the 

source of linoleate in CL can be made from this experiment.  

ACSL1 overexpression increased linoleate incorporation into CL in HEK-293 cells.  To 

determine whether the ability of ACSL1 to increase linoleate incorporation into CL was specific to 

cardiomyocytes, we overexpressed ACSL1 in HEK-293 cells, which normally contain little 

tetralinoleoyl-CL (254).  Twenty-four h after the Ad-Acsl1 infection, ACSL1 protein was present, and 

total ACSL specific activity increased 9-fold (Fig. 2.7A, B).  At this time, cells were incubated for an 

additional 24 h with a mixture of fatty acids to mimic the percentages in a physiological mixture of 

monounsaturated, saturated, and polyunsaturated fatty acids (30 µM oleate, 15 µM palmitate, and 5 µM 

linoleate plus the addition of 0.5 µCi [1-14C]-labelled oleate, palmitate, or linoleate).  ACSL1 
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overexpression increased palmitate incorporation into total lipids by 43%, oleate incorporation by 49%, 

and linoleate incorporation by 75% (Fig. 2.7C).  The Ad-Acsl1 infection did not alter the esterification 

of these fatty acids into neutral lipids (Fig. 2.7D), showing that the differences in total lipid 

incorporation were due to integration into phospholipids.  ACSL1 overexpression resulted in 41% and 

94% higher incorporation of palmitate and linoleate into CL, respectively, but no difference was seen 

in oleate incorporation (Fig. 2.7E).  ACSL1 increased the incorporation of each of the fatty acids into 

PC, PE, and PI/PS (Fig. 2.7F), phospholipids that are synthesized at the endoplasmic reticulum.  The 

high incorporation of labeled fatty acids into these phospholipids is likely due to increased fatty acid 

uptake and elevated acyl-CoA concentrations in the cytosol.  ACSL1 specifically increased linoleate 

incorporation into CL, which is remodeled within mitochondria, suggesting that the synthesis of 

linoleoyl-CoA is sufficient for preferential incorporation of linoleate into CL, even in non-

cardiomyocytes.  

Dietary linoleate enrichment normalized tetralinoleoyl-CL content but did not improve 

mitochondrial function in Acsl1T-/- hearts.  The relevance of CL acyl-chain composition to normal 

oxidative phosphorylation is controversial (195,255).  In order to determine whether the impaired 

respiratory function of mitochondria from Acsl1T-/- hearts resulted from the presence of linoleate-

deficient mitochondrial CL, we fed control and Acsl1T-/- mice a high safflower oil diet, in which 75% 

of fatty acids are linoleate, for 4 weeks.  In spontaneous hypertensive rats, safflower oil feeding 

normalizes CL species and improves mitochondrial function (256).  In our study, safflower oil feeding 

markedly increased the total amount of linoleate in CL in both control and Acsl1T-/- hearts and 

specifically increased the amount of tetralinoleoyl-CL in Acsl1T-/- hearts 4-fold compared to the low-fat 

diet.  Importantly, the tetralinoleoyl-CL content of hearts from Acsl1T-/- mice fed safflower oil diet was 

equal to that of hearts from control mice fed the low fat diet (Fig. 2.8A).  The normalization of 

tetralinoleoyl-CL content was not due to increased tafazzin expression, as this gene remained 25% 

lower in the safflower oil-fed Acsl1T-/- hearts compared to controls (Fig. 2.8B). Tafazzin expression was 

not altered by diet. To determine the effect of normalized tetralinoleoyl-CL content, we measured the 
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function of the electron transport chain in isolated mitochondria using pyruvate and malate as 

substrates.  Basal O2 consumption did not differ between groups (Fig. 2.8C).  Similar to the data from 

permeabilized cardiac fibers, Acsl1T-/- hearts contained functionally defective mitochondria, as shown 

by impaired responses to ADP and FCCP (Fig. 2.8D).  In control mitochondria, safflower feeding 

increased respiration after oligomycin treatment but did not change the response to ADP or FCCP.  

Despite the normalization of tetralinoleoyl-CL content, safflower oil feeding did not improve the 

respiratory function of mitochondria from Acsl1T-/- hearts, and responses to both ADP and the 

mitochondrial uncoupler FCCP remained 30-44% lower than controls (Fig. 2.8D).  Thus, normalizing 

the content of CL species in Acsl1T-/- hearts was not sufficient to improve mitochondrial respiratory 

function.  

Discussion 

CL is synthesized and remodeled within the mitochondria, but its precursors, phosphatidic acid 

and CDP-diacylglycerol, are formed primarily on the endoplasmic reticulum and are imported into the 

mitochondria where phosphatidylglycerol is synthesized.  CL synthase then combines 

phosphatidylglycerol with the phosphatidyl group from a second CDP-diacylglycerol (60).  Because 

CL synthase lacks a preference for phosphatidylglycerol or CDP-diacylglycerol species that contain 

linoleate (57,58), the acyl-chains of the nascent CL are more highly saturated than those of mature 

cardiac CL.  CL is remodeled by successive removal of acyl-chains by a phospholipase, followed by 

replacement via tafazzin-mediated transacylation from donor phospholipids or by acyltransferase-

mediated esterification using an acyl-CoA.   

Cardiac CL is highly remodeled after synthesis, but the functional significance of the 

remodeling is, as yet, unknown.  In Saccharomyces cerevisiae lacking tafazzin, the additional deletion 

of the CL-specific phospholipase, Cld1, prevents the accumulation of MLCL, inhibits CL remodeling, 

and rescues the mitochondrial respiratory defect, strongly suggesting that the respiratory defect was 

due to the accumulation of MLCL and/or the decrease in the mitochondrial content of CL (195).  In 
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mammalian cells, two additional enzymes, lysocardiolipin acyltransferase 1 (ALCAT1) and MLCL 

acyltransferase 1 (MLCL AT-1), can use acyl-CoAs to esterify MLCL (60).  ALCAT1, however, is 

located on the ER, which would prevent its interaction with most CL (61), but MLCL AT-1 is found in 

mitochondria (62).  Although overexpressing MLCL AT-1 in tafazzin-deficient lymphoblasts increases 

both linoleate incorporation into CL and total CL content (62), the importance of MLCL AT-1  for 

normal CL remodeling in heart cells remains unclear.   

With its preference for linoleate, ACSL1 appears to be critical in maintaining the abundance of 

the tetralinoleoyl-CL species in the heart.  ACSL1-derived linoleoyl-CoA could be incorporated into 

donor phospholipids and then transacylated into CL or directly incorporated by an acyltransferase into 

MLCL.  Mitochondrial ACSL1 could increase the concentration of linoleoyl-CoA to be imported into 

mitochondria for β-oxidation or CL remodeling.  Alternatively, because ACSL1 overexpression 

increased linoleate incorporation into PC, PE, and phosphatidylserine, its enhancement of CL species 

that contain linoleate could occur via transacylation from these phospholipids to CL or MLCL.  Thus, 

it seems surprising that higher linoleate was also present in PC and PE in Acsl1T-/- hearts.  We believe 

that when ACSL1 is absent, linoleate increases within the cell and becomes available for activation by 

other ACSL isoforms present on the endoplasmic reticulum where the resulting linoleoyl-CoA would 

be used during the synthesis of PC and PE.  Because ACSL1 deficiency also results in a reduced 

expression of tafazzin mRNA, transacylation may be impaired and result in the diminished 

tetralinoleoyl-CL observed in the Acsl1T-/- hearts.  The substrate preference of mitochondria-located 

ACSL1 for linoleate is therefore important for both the transacylase and the acyltransferase pathways 

of CL remodeling (Fig.2.9).  

Because the composition of the major CL species varies in different tissues, it is likely that the 

CL species formed depends on the fatty acid preference of the ACSL isoforms present. The ER-

localized ACSL isoforms would dictate which acyl-CoAs are incorporated into PC and PE, and the 

ACSL isoforms present on the outer mitochondrial membrane may determine if the acyl-CoA is 

incorporated directly into CL. For instance, ACSL1 accounts for more than 90% of ACSL activity in 
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both heart (87) and skeletal muscle (257) in which more than 75% of CL is tetralinoleoyl-CL (238).  In 

contrast, tetralinoleoyl-CL is  ~50%  of the total CL species in liver (238), a tissue in which ACSL1 is 

responsible for only about 50% of the total ACSL activity (86).  Similarly, ACSL1 is minimally 

expressed in brain (258) in which the major CL acyl-chains are oleate and arachidonate (259).  An 

analysis of the fatty acid preferences of other ACSL isoforms may explain tissue differences in CL 

composition.   

In contrast to tafazzin-deficient mice, Acsl1T-/- hearts do not contain a low total CL content or 

excess MLCL.  Thus the Acsl1T-/- model allowed us to study CL remodeling in the presence of a normal 

CL content, as well as the impact of impaired tetralinoleoyl-CL formation on heart and mitochondrial 

function.  In Acsl1T-/- hearts, normalizing the amount of linoleate present in CL did not improve 

respiratory dysfunction.  Similarly in S. cerevisiae, CL remodeling was inhibited without impairing 

basal or ADP-stimulated mitochondrial O2 consumption (195,255).  Thus, in both yeast and Acsl1T-/- 

hearts, when total CL content is normal, mitochondrial function is independent of a specific CL species.  

In contrast, tafazzin-deficient mice and human hearts contain both an increased content of MLCL and 

a reduction in total CL (260,261).  These CL changes are associated with a dilated cardiomyopathy, 

cardiac respiratory dysfunction, and heart failure (262).  The Acsl1T-/- mice do not develop heart failure, 

suggesting that when total CL abundance is normal, the absence of a high content of tetralinoleoyl-CL 

does not cause heart failure.  Similarly, normalizing tetralinoleoyl-CL in Acsl1T-/- hearts was not 

sufficient to improve mitochondrial respiratory function.  Our data, together with the published yeast 

studies (195,255), suggest that the underlying difficulty in Barth syndrome and tafazzin-deficient mice 

is a deficiency in CL content and/or the accumulation of MLCL.  
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Figures 

 
Figure 2.1.  ACSL1 is located on cardiac mitochondria and activates linoleate preferentially.  A) 

ACSL1 protein from control heart homogenates and isolated mitochondria.  B) ACSL activity of 

heart homogenates and mitochondria measured with 50 µM palmitate (n=3).  C) ACSL activity in 

total membrane fractions from control hearts measured with 2 µg protein and varying amounts of 

[14C]-labeled fatty acids (n=3).  D) ACSL activity in total membrane fractions from control and 

Acsl1T-/- mouse hearts measured with 2 µg protein and 50 µM of [14C]-labeled fatty acids (n=3).  *, p-

value≤0.05 between control and Acsl1T-/-. 
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Figure 2.2.  Loss of ACSL1 caused mitochondrial dysfunction.  A) Left ventricle (LV) mass 

normalized to body weight (n=4).  Ejection fraction (B) and fractional shortening (C) as measured by 

echocardiography on conscious mice (n=4).  O2 consumption was measured in saponin-permeabilized 

cardiac muscle fibers with either (D) palmitoyl-carnitine + malate (PC/M) or (E) pyruvate + malate 

(Pyr/Mal) ± ADP and succinate (succ); (Respiratory control ratio: RCR).  F); ratio of ADP-stimulated 

O2 consumption to basal (n=4-6).  G) Ratio of ATP produced for each O2 molecule consumed (n=4-

5).  E) Hydrogen peroxide (H2O2) production (n=6).  H) Calcium uptake in isolated cardiac 

mitochondria before the permeability transition (n=3).  
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Figure 2.3.  Loss of ACSL1 alters acyl-chain composition of mitochondrial phospholipids.  A) 

Quantification of phosphate in ventricular phospholipids separated by thin layer chromatography 

(n=5).  B-E) LC/MS/MS analysis of phospholipid species in isolated mitochondria (n=5).  

Phospholipid species are shown as relative amounts normalized to an internal standard for each 

phospholipid.  Species that were fragmented are indicated with arrows and identified acyl-chains.  

Other species were detected but were omitted from graph if the isotope corrected ratio was lower than 

2 and no difference between genotypes was found. F) Ventricular tafazzin gene expression (n=4). G) 

Selected phospholipid species analyzed by MALDI-IMS (n=1). 
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Table 2.1. Phospholipid Species in Acsl1T-/- hearts.  

PL m/z 

Carbons: 

double 

bonds 

Percent 

change 
Number of each fatty acid per PL molecule 

    16:0 18:0 18:1 18:2 20:3 20:4 22:6 

CL 

1448 72:8 -83.4    4    

1496 76:12 -79.8    2  2  

PC 

819 34:1 106.4 1  1     

843 36:3 131.0 

  1 1    

1    1   

845 36:2 127.2 

  2     

1   1    

847 36:1 272.2  1 1     

865 38:6 -53.3 1      1 

891 40:6 -48.1  1     1 

PI 886 38:4 -64.1  1    1  

PE 

739 36:4 337.5 1     1  

743 36:2 284.6 

1   1    

  2     

763 38:6 -35.0 1      1 

791 40:6 -24.8  1     1 
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Figure 2.4.  Knockdown of ACSL1 impairs fatty acid oxidation and incorporation into lipids.  

H9c2 cells were infected with lentivirus to stably express shRNA for either scrambled control (Scr) or 

Acsl1 knockdown (KD).  A) mRNA abundance of Acsl isoforms (Acsl6 was not detected).  B) ACSL1 

protein.  C) ACSL activity measured with 50 µM palmitate.  D) Cells were incubated with trace [1-

14C]fatty acid (0.5 µCi) for 6 h.  Fatty acid oxidation was measured as acid soluble metabolites (ASM, 

a measure of incomplete fatty acid oxidation) in the media.  E) Radioactivity in total cellular lipid 

extract.  F-H) Lipids were separated by thin layer chromatography, and radioactivity was quantified.  

(n=3 independent experiments, each performed in triplicate.) *, p-value ≤0.05 between Scr and Acsl1 

KD.  
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Figure 2.5.  Overexpression of ACSL1 increases linoleate metabolism.  H9c2 cells were infected 

with either Ad-GFP or Ad-Acsl1-FLAG.  A) ACSL1 protein.  B) Subcellular localization of ACSL1-

FLAG.  C) ACSL activity measured using 50 µM [1-14C]palmitate.  D) After a 6 h incubation with 

trace amounts of [1-14C]fatty acid (0.5 µCi), fatty acid oxidation was measured in acid soluble 

metabolites (ASM, incomplete fatty acid oxidation) in the media.  E) Radioactivity in total lipid 

extract.  F-H) Lipids were separated by thin layer chromatography, and radioactivity in each species 

was quantified.  (n=3 independent experiments, each performed in triplicate) *, p-value≤0.05 between 

Ad-GFP and Ad-ACSL1-FLAG. 
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Figure 2.6. Pulse-chase and etomoxir treatment of H9c2 cells overexpressing ACSL1. H9c2 cells 

infected with Ad-GFP or Ad-Acsl1. A-D) Cells were incubated with [1-14C]linoleate for 2 h (pulse) 

and then incubated with unlabeled linoleate 4 h (chase). E-I) Cells were pre-incubated with or 

without etomoxir for 1 h, and then with or without etomoxir and [1-14C]linoleate for 6 h.  
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Figure 2.7.  ACSL1 overexpression increased linoleate incorporation into CL in HEK-293 cells.  

HEK-293 cells were infected with either Ad-GFP or Ad-Acsl1-FLAG.  A) ACSL1 protein.  B) ACSL 

specific activity measured with 50 µM [1-14C]palmitate.  C-F) Cells were incubated with 30 µM 

oleate, 15 µM palmitate, and 5 µM linoleate with 0.5 µCi [1-14C]oleate, [1-14C]palmitate or [1-

14C]linoleate for 24 h. C) Radioactivity in total lipid extract.   D-F) Lipids were separated by thin 

layer chromatography, and radioactivity was quantified (n=3 independent experiments, each 

performed in triplicate).  *, p-value ≤0.05 between Ad-GFP and Ad-ACSL1-FLAG. 
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Figure 2.8.  High linoleate diet partially normalized CL acyl-chain profile in Acsl1T-/- hearts but 

did not improve mitochondrial respiratory function.  For 16 weeks after tamoxifen injections, 

male mice were fed a low-fat (10% fat) control diet.  Mice were then either maintained on the low-fat 

diet or switched to a high safflower oil diet (Research Diets, D02062104, 45% kcal fat (75% 

linoleate)) for 4 additional weeks to increase dietary linoleate.  A) LC/MS/MS analysis of ventricular 

cardiolipin with low fat and safflower oil diets (n=5).  B) Ventricular tafazzin gene expression in 

safflower oil-fed mice (n=5). C-D) Mitochondrial respiratory function was measured in isolated 

mitochondria using a Seahorse XF24 Analyzer, which sequentially injected ADP, oligomycin, FCCP, 

and antimycin A (n=4-7).  O2 consumption rate: OCR.  *, p-value ≤0.05 between genotypes within 

diet.  #, p-value ≤0.05 between diets within genotype. 
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Figure 2.9. Proposed pathway for how ACSL1 increases linoleate incorporation into cardiolipin 

(CL). After linoleate (18:2) is converted to 18:2-CoA by ACSL1, it can enter 1 of 3 pathways. 1. 

18:2-CoA can be converted to 18:2-carnitine by CPT1 and then enter β-oxidation. 2. 18:2-CoA can 

enter the mitochondria through VDAC and be added to MLCL by MLCL-AT1 to form mature 

tetralinoleoyl CL (18:24-CL). 3. 18:2-CoA can be used at the ER to form phospholipids such as PC 

and PE. These phospholipids are then incorporated into the mitochondrial membrane where tafazzin 

can transfer acyl chains from PC or PE to CL or MLCL to form tetralinoleoyl-CL.  
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Rationale for Chapter 3 

In Chapter 2, we showed that mitochondria from hearts lacking ACSL1 have impaired 

respiratory function. A clear role for ACSL1 in activating fatty acids for esterification onto 

phospholipids was found in vivo and in vitro. Acsl1T-/- hearts display altered acyl chain composition of 

CL, PC, PE, and PI, and cells deficient in or overexpressing ACSL1 have different incorporation of 

fatty acids in phospholipids and neutral lipids. However, use of a dietary intervention to normalize the 

amount of tetralinoleoyl-CL in Acsl1T-/- hearts did not improve mitochondrial function. This finding 

showed that another defect was present in the Acsl1T-/- hearts that caused the mitochondrial 

dysfunction.  

In Chapter 3, we explore how alterations to cardiac metabolism, in terms of substrate choice, 

can impair mitochondrial function. Our lab previously showed that loss of ACSL1 impairs fatty acid 

oxidation, causing high glucose use. This transition to primarily using glucose for energy causes an 

accumulation of glucose-6-phosphate, a metabolite of glucose, which can activate mTORC1. 

mTORC1 then signals for growth of the cell by increasing RNA synthesis, protein translation, and 

fatty acid use while inhibiting degradation of cellular components. The next chapter examines how 

the chronic activation of mTORC1 impairs mitochondrial function in Acsl1T-/- hearts.  
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CHAPTER 3: LOSS OF ACSL1 IMPAIRS CARDIAC AUTOPHAGY AND 

MITOCHONDRIAL STRUCTURE THROUGH MTORC1 ACTIVATION 

 
Trisha J. Grevengoed1, Daniel E. Cooper1, Jessica M. Ellis1, Rosalind A. Coleman1 

Summary  

Because hearts with a temporally-induced knockout of acyl-CoA synthetase 1 (Acsl1T-/-) are 

essentially unable to oxidize fatty acids, glucose use increases 8-fold to compensate.  This metabolic 

switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by 

increasing protein and RNA synthesis and fatty acid metabolism while decreasing autophagy.  Acsl1T-

/- hearts contained 3-fold more mitochondria with abnormal structure and displayed 35-43% lower 

respiratory function.  To study the effects of mTORC1 activation on mitochondrial structure and 

function, mTORC1 was inhibited by treating Acsl1T-/- and littermate control mice with rapamycin or 

vehicle alone for two weeks. Rapamycin treatment normalized mitochondrial structure, number, and 

the maximal respiration rate in Acsl1T-/- hearts but did not improve ADP-stimulated oxygen 

consumption, which was likely caused by 33-51% lower ATP synthase activity present in both 

vehicle- and rapamycin-treated Acsl1T-/- hearts.  The turnover of LC3b in Acsl1T-/- hearts was 88% 

lower than controls, indicating a diminished rate of autophagy.  Rapamycin treatment increased 

autophagy to a rate that was 3.1-fold higher than in controls, allowing clearance of damaged 

mitochondria.  Thus, ACSL1 deficiency in heart activated mTORC1, thereby inhibiting autophagy 

and increasing the number of damaged mitochondria.   

 

                                                
1 University of North Carolina, Chapel Hill, NC, USA, Dept. of Nutrition 
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Introduction 

The normal heart obtains 60-90% of its energy from fatty acids, but can increase the use of 

other substrates such as glucose with feeding or hypoxia, or the use of amino acids and ketones with 

fasting (158).  Metabolic flexibility permits the heart to use different substrates to meet its constant 

high demand for energy (263).  Several disease states diminish the metabolic flexibility of the heart 

and compel the predominate use of a single substrate.  For instance, the diabetic heart uses high 

amounts of fatty acid because glucose uptake is low (164,165).  Conversely, glucose use increases 

with heart failure and pathologic hypertrophy caused by pressure overload (160-163).  Because it is 

unclear whether the switch in substrate use in each of these disease states is compensatory or 

pathologic, we asked whether predominant glucose use, in the absence of other cardiac dysfunction, 

would be detrimental.  

In the temporally-induced mouse model deficient in long-chain acyl-CoA synthetase isoform-

1 (Acsl1T-/-), the heart’s ability to oxidize fatty acids is severely diminished.  ACSLs convert fatty 

acids to acyl-CoAs, which can then be oxidized in the mitochondria to produce energy or 

incorporated into triacylglycerol (TAG) for storage or into phospholipids for membrane biogenesis.  

Of the five known mammalian ACSL isoforms, ACSL1 is the major isoform in heart, accounting for 

90% of the total ACSL activity.  When ACSL1 is temporally knocked out in the adult heart, fatty acid 

oxidation is diminished by more than 90%, and glucose use increases 8-fold to compensate for this 

loss (87).  

To study the consequences of the switch from fatty acid to glucose use, we focused on the 

effects of the mechanistic target of rapamycin complex 1 (mTORC1), which is activated by high 

glucose flux in hearts (264,265).  Within ten weeks of inducing the knockout, hearts lacking ACSL1 

develop mTORC1-dependent hypertrophy (266).  mTORC1 activation has many consequences in 

cells, including stimulation of growth and protein synthesis (267,268), regulation of lipid metabolism 

(269,270), and inhibition of autophagy (202).  Inhibition of mTOR is associated with longer lifespan 
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(271), but total loss of mTOR in the heart inhibits mitochondrial respiratory function and causes heart 

failure (270).  Although short-term activation of mTOR increases mitochondrial respiration and 

biogenesis in cultured cells (272-274), mTORC1 inhibits autophagy, which can allow damaged 

mitochondria to accumulate.  Cardiac mitochondrial DNA and proteins have half-lives of under one 

week, indicating a high rate of turnover (275,276). Removal of damaged mitochondria is particularly 

important in cardiomyocytes due to their high demand for energy and the long lifespan of these cells.  

Impaired removal of damaged mitochondria can exacerbate damage after ischemia (197) or 

myocardial infarction (198) and cause heart failure (199,200).  In the present study we examined the 

effects of chronic activation of cardiac mTORC1 on mitochondrial number and structure and on the 

function of the electron transport chain in ACSL1-deficient hearts.   

Materials and Methods 

Unless otherwise indicated, reagents were obtained from Sigma-Aldrich (St. Louis, MO, 

USA).  Radiolabeled substrates (2-Br-[1-14C]palmitate, [1-14C]palmitate, and [2-14C]pyruvate) were 

purchased from Perkin-Elmer (Waltham, MA, USA).  Trypsin and soybean trypsin inhibitor were 

from Worthington Biochemical (Lakewood, NJ, USA).   

Animal care and diets: All protocols were approved by the Institutional Animal Care and 

Use Committee at University of North Carolina at Chapel Hill.  Mice were housed under a 12 h 

light/dark cycle with free access to food and water.  Unless otherwise specified, mice were fed a 

purified low-fat diet (Research Diets Inc, New Brunswick, NJ, USA, DB12451B).  A multi-tissue 

knockout of ACSL1 was achieved by mating mice with LoxP sequences flanking exon 1 of the Acsl1 

gene to animals expressing a tamoxifen-inducible Cre driven by a ubiquitous promoter enhancer (87).  

Between 6 and 8 weeks of age, Acsl1T-/- and littermate Acsl1flox/flox (control) mice were injected 

intraperitoneally (i.p.) on 4 consecutive days with tamoxifen (75 μg/g body weight) dissolved in corn 

oil.  All studies were performed with male mice 20 weeks after tamoxifen administration, and tissues 

were collected after a 4 h fast, unless otherwise specified.  The mice were deeply anesthetized with 



70 

 

Avertin and tissues were snap frozen in liquid nitrogen.  For mTORC1 inhibition studies, rapamycin 

(1 mg/kg in phosphate buffered saline, pH 7.4/2% ethanol, 2.5% Tween 20/2.5% PEG-400) or vehicle 

alone was injected i.p. daily for 7 or 14 d, starting 18 or 19 weeks after tamoxifen treatment.  A short 

rapamycin treatment was chosen to lessen the impaired insulin secretion and glucose tolerance 

observed with chronic rapamycin treatment (266,277,278).  For autophagic flux studies, chloroquine 

(60 mg/kg in phosphate buffered saline, pH 7.4) was injected i.p. for 7 d.   

ACSL activity assay: ACSL specific activity was measured as described (87).  Briefly, 

homogenized tissues were centrifuged at 100,000 x g for 1 h at 4°C to isolate total membrane 

fractions.  Protein (1-6 µg) was incubated with 50 µM [1-14C]palmitate, 10 mM ATP, 250 μM CoA, 5 

mM dithiothreitol, and 8 mM MgCl2 in 175 mM Tris, pH 7.4 at RT for 10 min to measure initial 

rates.  The enzyme reaction was stopped with 1 ml of Dole’s solution (heptane:isopropanol:1M 

H2SO4; 80:20:1, v/v).  Two ml of heptane and 0.5 ml of water were added to separate phases.  

Radioactivity of the acyl-CoAs in the aqueous phase was measured using a liquid scintillation 

counter. 

Metabolic phenotyping: To quantify fatty acid uptake, 1.5 µCi 2-Br-[1-14C]palmitate 

complexed to bovine serum albumin was injected retroorbitally.  Tail blood was collected 5 min later, 

and tissues were collected 30 min after injection.  Tissues were homogenized in water and 

radioactivity per mg of tissue was quantified relative to radioactivity in blood.  To analyze fatty acid 

oxidation and TCA cycle activity, respectively, [1-14C]palmitate and [2-14C]pyruvate oxidation were 

measured in isolated mitochondria as described (87).  Ventricle TAG was measured using a 

colorimetric kit. Tissues for glycogen measurement were collected at 7 am (fed) or after 4 h of fasting 

and were homogenized in 1 N HCl.  A portion was immediately neutralized to measure free glucose.  

The remaining homogenate was heated to 95°C for 90 min to hydrolyze glycogen, then neutralized 

with 1 N NaOH and centrifuged at 14,000 x g for 10 min.  A colorimetric kit was used to measure 

glucose in the supernatant (Wako, Richmond, VA, USA).  
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Electron microscopy: Hearts were first perfused with phosphate buffered saline and then 

with freshly made 2.5% glutaraldehyde, 2% paraformaldehyde in 0.15 M sodium phosphate buffer, 

pH 7.4.  Left ventricular tissue was prepared for transmission electron microscopy and imaged (279).  

Mitochondrial area was quantified using ImageJ software in 4 to 7 images, counting at least 1000 

mitochondria per animal.  Abnormal mitochondria were defined as mitochondria with vacuoles, 

inclusions, or disrupted cristae.  

Mitochondrial function: To isolate mitochondria, hearts were minced in 0.125 mg/ml 

trypsin in homogenization buffer (0.25 M sucrose, 10 mM HEPES, 1 mM EDTA, pH 7.4).  Soybean 

trypsin inhibitor (0.65 mg/ml) was added, and tissues were homogenized with 10 up-and-down 

strokes in a Teflon-glass homogenizing vessel and then centrifuged at 500 x g for 5 min to remove 

nuclei and unbroken cells.  Mitochondria were isolated by centrifuging at 10,000 x g for 15 min and 

washed twice with homogenization buffer.  The mitochondrial pellet was resuspended in 

mitochondrial assay buffer (70 mM sucrose, 220 mM mannitol, 10 mM KH2PO4, 5 mM MgCl2, 0.2% 

bovine serum albumin, 25 mM BES, pH 7.0).  The function of isolated mitochondria was assessed 

using a Seahorse XF24 Analyzer (Seahorse Bioscience, North Billerica, MA, USA) with 5 mM 

pyruvate and 5 mM malate as substrates.  Mitochondria (15 µg of protein) were stimulated in 

succession with 100 µM ADP, 1 µg/ml oligomycin, 4 µM FCCP, and 4 µm antimycin A.  To measure 

mitochondrial electron transport chain complex formation and complex V activity, mitochondrial 

proteins were prepared and separated by clear native electrophoresis.  ATP hydrolysis activity of 

complex V was measured as described (280).  

Gene expression analysis: Total RNA and DNA were simultaneously isolated from heart 

ventricles (AllPrep RNA/DNA Mini kit, Qiagen, Valencia, CA, USA).  cDNA was synthesized 

(iScript cDNA Synthesis kit, BioRad, Hercules, CA, USA), and 10 ng of cDNA was added to each 

qPCR reaction with SYBR Green (iTaq Universal SYBR, BioRad, Hercules, CA, USA) and used to 

detect amplicons with primers specific to the gene of interest quantified using a qPCR thermocycler 
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(BioRad, Hercules, CA, USA).  Results were normalized to the housekeeping gene Gapdh and 

expressed as arbitrary units of 2-ΔΔCT relative to the control group.  

Immunoblots:  Total protein lysates were isolated in lysis buffer (250 mM sucrose, 20 mM 

Tris, 1% Triton X-100, 50 mM NaF, 50 mM NaCl, 5 mM Na4P2O7, plus protease and phosphatase 

inhibitor cocktail (Thermo Scientific, Walthan, MA, USA)).  Immunoblots were run under standard 

conditions. Primary antibodies were purchased from the indicated companies: phosphorylated-p70 S6 

kinase (Thr389), p70 S6 kinase (S6K), phosphorylated-4E-BP1 (Thr37/46), 4E-BP1, and ACSL1 

(Cell Signaling Technology, Danvers, MA, USA), GAPDH (Abcam, Cambridge, MA, USA), LC3B 

(Sigma-Aldrich, St. Louis, MO, USA), and p62 (Abnova, Taipei City, Taiwan). 

Statistics: Data are presented as the mean ± SE for each treatment group.  Differences 

between groups were evaluated by two-way ANOVA with Tukey multiple-comparison posttests.  All 

statistical analyses were performed using GraphPad Prism (GraphPad Software, La Jolla, CA, USA; 

version 6.0).  Differences between means with p < 0.05 were considered statistically significant. 

Results 

Loss of cardiac ACSL1 decreased the use of fatty acids and increased the use of glucose.  

Hearts lacking ACSL1 were previously characterized 2 and 10 weeks after induction of the knockout 

with tamoxifen (87);  in order to examine long term effects of ACSL1 deficiency, the present study 

used mice at 20 weeks after tamoxifen.  To confirm that the metabolic phenotype persisted, salient 

points were reexamined.  Similar to the previous report, ACSL1 protein and mRNA remained absent 

from Acsl1T-/- hearts 20 weeks after tamoxifen treatment (Fig. 3.1A, B). Acsl3 mRNA expression was 

4.5-fold higher and Acsl6 mRNA was 39% lower in Acsl1T-/- hearts (Fig. 1B), and ACSL specific 

activity was 86% lower in Acsl1T-/- ventricles (Fig. 3.1C), suggesting that any compensation by other 

ACSL isoforms had done little to increase ACSL activity.  We measured mitochondrial oxidation of 

[1-14C]palmitate to both CO2 and acid soluble metabolites (ASM), which are measures of complete 

and incomplete oxidation, respectively.  The diminished activation of fatty acids to acyl-CoAs 
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resulted in 94% lower [1-14C]palmitate oxidation than in control cardiac mitochondria (Fig. 3.1D).  In 

contrast to that of hearts deficient in carnitine palmitoyltransferase 1 (281), the minimal oxidation of 

fatty acids in Acsl1T-/- hearts did not result in cardiac TAG accumulation (Fig. 3.1E).  The lack of 

TAG accumulation in Acsl1T-/- hearts was likely due to diminished fatty acid uptake.  Uptake, as 

measured using the non-oxidizable fatty acid analogue 2-Br-[1-14C]palmitate, was 76% lower in 

Acsl1T-/- hearts (Fig. 3.1F), indicating that conversion of the fatty acid to an acyl-CoA was necessary 

for fatty acid retention in the cell.  Addition of coenzyme A to the fatty acid both traps the fatty acid 

in the cell and lowers its effective concentration, allowing additional transport into the cell (282).  

Even though fatty acid oxidation was low in Acsl1T-/- hearts compared to controls, phosphorylated 

(activated) AMPK was reduced in Acsl1T-/- hearts, consistent with the production of adequate energy 

to maintain a low AMP/ATP ratio (Fig. 3.1G).  

To compensate for low fatty acid oxidation, glucose use was increased in Acsl1T-/- hearts.  

Compared to controls, the oxidation of [2-14C]pyruvate was 2-fold higher in Acsl1T-/- cardiac 

mitochondria, consistent with increased flux through the TCA cycle (Fig. 3.1H).  Acsl1T-/- hearts 

stored 70% more glycogen than controls during feeding and used the extra glycogen during a 4 h fast.  

The Acsl1T-/- livers, which recover ACSL1 expression (87), contained normal amounts of glycogen 

with feeding, but after only a 4 h fast, glycogen diminished by 35% (Fig. 3.1I), suggesting that the 

rate of glycogen use was more rapid in Acsl1T-/- mice.  Together, these observations show that the 

metabolic changes previously detected in Acsl1T-/- hearts persist (87), and that 20 weeks after loss of 

ACSL1, cardiac metabolism vastly favored glucose metabolism.  

Two weeks of rapamycin treatment inhibited mTORC1 activation in Acsl1T-/- hearts.  

mTORC1 is activated in Acsl1T-/- 10 weeks after tamoxifen-mediated induction of the knockout (87).  

We examined phosphorylation of two mTORC1 targets, S6K and 4E-BP1, to confirm that mTORC1 

remained activated after an additional 10 weeks.  Treatment with the mTORC1 inhibitor rapamycin 

for 2 weeks repressed mTORC1-mediated phosphorylation of both S6K and 4E-BP1 in Acsl1T-/- 
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hearts (Fig. 3.2A) and decreased the size of both control and Acsl1T-/- hearts (Fig. 3.2B). Rapamycin 

treatment normalized heart size in Acsl1T-/- hearts, thereby confirming that the hypertrophy observed 

in Acsl1T-/- hearts had resulted from mTORC1 activation (266).   

mTORC1 inhibition improved mitochondrial structure in Acsl1T-/- hearts.  Acsl1T-/- 

ventricles contained more mitochondria 10 weeks after the knockout was induced with tamoxifen, but 

no difference in mitochondrial structure was observed at that time point (87).  Twenty weeks after 

tamoxifen, however, electron microscopy of Acsl1T-/- ventricles showed the presence of 3-fold more 

abnormal mitochondria, defined as those containing vacuoles, inclusions, or disrupted cristae (Fig. 

3.3A, B).  Because mTORC1 inhibits autophagy (202), we questioned whether the mitochondria with 

abnormal structure could be cleared by relieving a block on autophagy.  Mitochondrial structure was 

then examined in mice treated for one and two weeks with rapamycin. One week of rapamycin 

treatment had no observable effect on mitochondria in control hearts, but dramatically increased the 

number of autophagic vesicles in Acsl1T-/- hearts.  After two weeks of rapamycin treatment, most of 

the autophagic vacuoles had disappeared, and the Acsl1T-/- hearts contained significantly fewer 

abnormal mitochondria containing vacuoles, inclusions, or disrupted cristae (Fig. 3.3B).  These data 

strongly suggest that activated mTORC1 had inhibited autophagy, thereby impairing the removal of 

damaged mitochondria.  Quantification of mitochondrial area revealed that, compared to controls, 

Acsl1T-/- hearts contained twice as many very small mitochondria (area <5 AU) and fewer large 

mitochondria (area of 15-19.9 and 20-24.9 AU) (Fig. 3.3C), and rapamycin treatment normalized 

mitochondrial size in Acsl1T-/- hearts. Thus, loss of ACSL1 caused an accumulation of structurally 

abnormal mitochondria, and inhibition of mTORC1 normalized both the size and appearance of 

mitochondria.  

Rapamycin treatment normalized the high mitochondrial number in Acsl1T-/- hearts.  

Compared to controls, Acsl1T-/- hearts contained more mitochondria, as demonstrated by 30% higher 

mitochondrial DNA content (Fig. 3.4A), 18% greater mitochondrial area (Fig. 3.4B), and 54% higher 

mitochondrial number (Fig. 3.4C).  Rapamycin treatment normalized each of these measures in 
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Acsl1T-/- hearts, strongly suggesting that mTORC1 activation had caused the increase in mitochondrial 

number.  Although mTORC1 increases mitochondrial biogenesis (283), in the current study 

expression of the mitochondrial biogenesis genes Pgc1a and Erra were not altered with genotype or 

treatment (Fig. 3.4D), suggesting that the higher mitochondrial number in Acsl1T-/- hearts was not due 

to the formation of new mitochondria, but instead, to the inhibition of mitochondrial removal.  

Inhibition of mTORC1 activated autophagy in Acsl1T-/- hearts.  mTORC1 lowers the 

autophagic rate by inhibiting an early step in autophagosome formation (202).  To determine whether 

the normalization of mitochondrial number and structure in Acsl1T-/- hearts with rapamycin treatment 

was due to increased clearance of damaged mitochondria, we examined the rates of autophagy in 

vehicle- and rapamycin-treated mice.  Chloroquine raises the lysosomal pH, thereby inhibiting the 

degradation of the autophagolysosomes (284).  LC3b-I, a protein found on the outer membrane of the 

autophagosome, is activated by cleavage and lipidation with phosphatidylethanolamine to form 

LC3b-II, and then degraded within the autophagosome (285).  Because chloroquine inhibits 

degradation without affecting autophagosome formation or the activation of LC3b-I, comparing the 

amount of activated LC3b-II in basal and chloroquine-treated hearts indicates how quickly the 

autophagosome is normally degraded, i.e. autophagic flux.  In control hearts, chloroquine caused a 3-

fold increase in the accumulation of activated LC3b-II relative to the inactive LC3b-I.  The difference 

in these two ratios displays the rate of autophagy (284,286).  Basal activation of LC3b appeared high 

in Acsl1T-/- hearts, but treatment with chloroquine did not cause activated LC3b-II to increase, 

indicating very low autophagic flux (Fig 3.5A).  Thus, the large amount of active LC3b-II in Acsl1T-/- 

hearts was likely due to impaired clearance of the autophagosome because of  diminished long-term 

autophagic flux (284).  When mice were treated with both rapamycin and chloroquine, the 

accumulation of LC3b-II was greater in both genotypes.  The increase in LC3b-II in rapamycin-

treated Acsl1T-/- hearts with chloroquine was 3 times greater than controls, indicating a very high rate 

of autophagy when mTORC1 is inhibited.  This high rate of autophagic flux may have occurred to 

compensate for the low clearance of damaged mitochondria and proteins in the basal state.  The p62 
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(SQSTM1) scaffolding protein that binds to ubiquitin and LC3-II is specifically degraded by 

autophagy, making it a useful marker for a low autophagic rate (287,288).  The accumulation of p62 

in Acsl1T-/- hearts further demonstrated impaired autophagy.  Rapamycin treatment did not alter the 

amount of p62 in control hearts, but normalized p62 levels in Acsl1T-/- hearts (Fig 3.5B), showing that 

autophagy was no longer inhibited by mTORC1.  Together with the normalization of mitochondrial 

number and structure, these data suggest that by inhibiting mTORC1 in Acsl1T-/- hearts, the 

autophagic rate increased, allowing damaged mitochondria to be cleared.  

Rapamycin treatment partially normalized mitochondrial function in Acsl1T-/- hearts.  

To determine whether reducing mTORC1 activation and increasing autophagy would enable 

mitochondrial function to recover, we examined electron transport chain function in control and 

Acsl1T-/- cardiac mitochondria from vehicle- and rapamycin-treated mice.  No genotype or treatment 

difference was found in basal respiration (Fig. 3.6A).  When stimulated with ADP, Acsl1T-/- 

mitochondria consumed 35% less oxygen than controls, and rapamycin treatment did not improve 

ADP-stimulated oxygen consumption (Fig. 3.6B).  In response to the mitochondrial uncoupler FCCP, 

vehicle-treated Acsl1T-/- mitochondria consumed 43% less oxygen than controls.  Rapamycin 

treatment normalized FCCP-stimulated respiration in Acsl1T-/- mitochondria, indicating that the 

mitochondria had regained their capacity for maximal respiration.  To determine whether the loss of 

ACSL1 interfered with ATP synthesis, we examined complex V by measuring the activity and protein 

amount of ATP synthase in cardiac mitochondria.  After separating the mitochondrial complexes, the 

ATP hydrolysis activity of complex V was lower in both vehicle- and rapamycin-treated Acsl1T-/- 

mitochondria, without loss of total protein (Fig. 3.6C).  Thus, loss of ATP synthase activity had 

diminished ADP-stimulated oxygen consumption in Acsl1T-/- hearts independent of mTOR activation.  

Because maximal respiration, as measured in the presence of FCCP, was independent of ATP 

synthase and was normal in rapamycin-treated Acsl1T-/- mitochondria, it appears that short-term 

rapamycin treatment partially normalized mitochondrial function in Acsl1T-/- hearts.  
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Discussion  

The loss of ACSL1 in highly oxidative tissues such as heart results in a severe deficit in fatty 

acid oxidation and a marked increase in glucose use.  It has been questioned whether the substrate 

used by the heart for energy production is important for heart health.   An acute increase in workload 

causes the heart to preferentially increase carbohydrate metabolism (289), and the failing heart 

exhibits a low rate of fatty acid oxidation and a high glycolytic rate (163,290,291).  An increase in 

glucose metabolism compensates for the production of energy for contraction and other cellular 

operations in the absence of oxygen or with inadequate mitochondrial energy production.  During 

pressure overload, overexpression of the glucose transporter GLUT1 prevents the loss of heart and 

mitochondrial functions, presumably due to increased glucose use (292).  In heart, the deficiency of 

malonyl-CoA decarboxylase impairs fatty acid oxidation and enhances glycolysis and glucose 

oxidation, and the hearts are protected during ischemia-reperfusion (293).  Acute changes in 

metabolism may protect the heart from injury, but the question remains whether chronic glucose use 

is detrimental to the heart.  When GLUT1-overexpressing mice are fed a high fat diet, their hearts 

exhibit high oxidative stress and loss of contractile force (294).  Reduction of fatty acid oxidation 

itself can be detrimental to the heart if high amounts of lipids accumulate to cause lipotoxicity, as in 

hearts deficient in carnitine palmitoyltransferase 1b which are sensitive to heart failure induced by 

pressure overload (281).  Chronic use of glucose seems to be especially detrimental when fatty acids 

are also highly available (281).  Therefore, the lack of fatty acid retention in Acsl1T-/- hearts, as 

evidenced by low uptake of 2-Br-[14C]palmitate, may have protected the hearts from further 

dysfunction by limiting lipid accumulation.   

mTORC1 is activated by signals of high nutrient availability, including insulin and related 

growth factors, adequate energy levels, and amino acids (295).   It is inhibited by signals of low 

energy status such as activated AMPK.  Because Acsl1T-/- hearts are unable to oxidize fatty acids, it 

might be expected that these hearts would fail to produce enough energy to sustain life.  However, 



78 

 

Acsl1T-/- hearts increase glucose use to compensate to the point where phosphorylated AMPK was 

actually lower than that measured in controls.  Diminished phospho-AMPK enhances mTORC1 

activation, and the markedly increased use of glucose may also contribute.  In isolated, perfused 

working hearts, mTOR is activated when the rate of glucose uptake exceeds oxidation and causes the 

metabolite glucose-6-phosphate to accumulate (264).  Metabolism of glucose to glucose-6-phosphate 

is also required for insulin-mediated activation of mTORC1 (265), suggesting a mechanism by which 

cells sense the amount of glucose available to produce energy.   Because Acsl1T-/- hearts take up 8-

fold more 2-deoxyglucose and contain 3 times more glucose-6-phosphate than controls (87), the 

switch to a high rate of glucose metabolism is likely to underlie to the activation of mTORC1 in 

Acsl1T-/- hearts. Rapamycin treatment does not modify fatty acid or glucose metabolism in hearts 

lacking ACSL1 (266), indicating that altered substrate metabolism did not contribute to rapamycin-

induced normalization of mitochondrial structure and maximal respiration.  

In the heart, mTORC1 activation is necessary for growth, and both global and cardiac-

specific knockouts of mTOR are embryonic lethal (268,296).  A temporal knockout of mTOR in adult 

heart demonstrated that mTOR is necessary for normal mitochondrial function, fatty acid oxidation, 

and heart contraction (270).  However, the consequences of chronic mTORC1 hyper-activation in 

adult heart are less well understood.  Overexpression of wild-type mTOR (297,298) or a 

constitutively-active mTOR (299) in the heart activates mTORC1 signaling pathways but does not 

stimulate heart enlargement, suggesting that another factor such as high pressure or excess energy 

availability is required for the development of hypertrophy.  Pressure overload activates mTORC1, 

and this activation is necessary for overload-induced cardiac hypertrophy (300,301). Prolonged 

pressure overload causes heart failure and impaired mitochondrial oxidative phosphorylation (302).  

Thus, we aimed to determine whether chronic mTORC1 activation in the absence of pressure 

overload altered mitochondrial structure and function.  
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Treatment of Acsl1T-/- mice with rapamycin normalized mTORC1 signaling and heart size and 

relieved the block on autophagy.  Autophagy is critical for turnover of damaged organelles, proteins, 

and lipid droplets in non-adipose tissues.  This quality control process is indispensable in the heart, as 

impaired autophagy can trigger cell death during ischemia (303,304), cause a cardiomyopathy 

(305,306), and exacerbate overload-induced heart failure (307).  Conversely, activation of autophagy 

protects cardiomyocytes from mitochondrial stress induced by antimycin A treatment (308).  

Regulation of autophagy, therefore, is critical to maintain normal heart function and the ability to 

adapt to stress.  The high rate of autophagy that occurred after treating Acsl1T-/- mice with rapamycin 

suggests that chronically activated mTORC1 in these mice had inhibited autophagy.  When mTORC1 

activity was diminished for 1 week in Acsl1T-/- hearts, large numbers of autophagic vacuoles were 

observed. After 2 weeks of rapamycin treatment, the number of mitochondria decreased to that of 

control animals, fewer abnormal mitochondria were observed, and the maximal respiration rate was 

normalized, indicating that the high autophagic rate after rapamycin treatment cleared the damaged 

mitochondria.  

Whereas mTORC1 inhibition normalized maximal respiration in the Acsl1T-/- mitochondria, 

the improved clearance of damaged mitochondria did not improve ADP-stimulated respiration.  This 

continued impairment is likely due to a deficiency in ATP synthase activity. The ATP synthase 

complex produces ~ 95% of cellular ATP, using the proton gradient formed by the rest of the electron 

transport chain (167).  The proteins of the ATP synthase complex undergo numerous post-

translational modifications that can be altered by energy status or oxidative stress; these modifications 

can affect both the formation of the complex and its activity (309-312).  One recent example is 

inhibition of ATP synthase by acetylation in the absence of the mitochondrial deacetylase sirtuin 3, 

which is activated by NAD+ (310), showing that alterations in energy status can influence ATP 

synthase activity.  Despite low ATP synthase activity in Acsl1T-/- hearts, however, AMPK activation is 

lower than in controls and ATP content is normal (87), suggesting that these hearts are able to 
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produce sufficient energy.  In addition to complete oxidation of glucose, Acsl1T-/- hearts may also 

partially offset the deficit through both enhanced glycolysis and by the use of amino acids to obtain 

sufficient energy despite impaired mitochondrial function.   

In Acsl1T-/- hearts, high glucose use caused chronic mTORC1 activation, which inhibits 

autophagy and is detrimental to mitochondrial structure and maximal respiration capacity, but not to 

contractile function of the heart (Fig 3.7).  Low ATP synthase activity coupled with impaired 

maximal respiration suggests that Acsl1T-/- hearts were able to use glycolysis to augment ATP 

production.  Surprisingly, the defect in cardiac respiratory function does not diminish longevity or 

systolic function in unstressed Acsl1T-/- mice (87).  Under the stress of pressure overload, however, 

excessive reliance on glucose could prove to be incompatible with normal systolic function.  It will be 

of interest to determine if inhibiting mTORC1 can improve the response to these stresses in Acsl1T-/- 

hearts.  
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Figures 

 

Figure 3.1. Loss of cardiac ACSL1 decreased fatty acid use and increased the use of glucose. A) 

ACSL1 protein in ventricles 20 weeks after tamoxifen-induced knockout of Acsl1. B) Gene 

expression in ventricles (n=6). C) ACSL specific activity in ventricular membranes (n=3). D) [1-

14C]palmitate oxidation to CO2 or acid-soluble metabolites (ASM) in isolated cardiac mitochondria 

(n=4). E) Triacylglycerol content in ventricles (n=5). F) In vivo 2-Br-[1-14C]palmitate uptake in 

ventricles (n=5). G) Phosphorylated AMPK relative to total AMPK in ventricles (n=4-5). H) [2-

14C]pyruvate oxidation to CO2 in isolated cardiac mitochondria (n=5). I) Tissues were collected from 

female mice 10 weeks after tamoxifen at 7 am (fed), or at 11am after 4 h of fasting (fasting). Glucose 

from glycogen was measured after acid hydrolysis (n=4). *p-value<0.05  
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Figure 3.2. Two weeks of rapamycin treatment inhibited mTORC1 activation in Acsl1T-/- hearts. 

Control and Acsl1T-/- mice were treated with vehicle or 1 mg/kg rapamycin daily for 2 weeks. A) 

Representative immunoblot of phosphorylation of mTORC1 targets, S6K and 4E-BP1, in ventricles. 

B) Heart weight normalized to body weight (n=5-8). *p-value<0.05 comparing genotype. #p-

value<0.05 comparing treatment.  
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Figure 3.3. mTORC1 inhibition improved mitochondrial structure in Acsl1T-/- hearts. A) 

Representative electron microscopy images of left ventricles for untreated mice and mice treated daily 

with rapamycin for 1 or 2 weeks. 5000x or 20,000x magnification. White arrows indicate autophagic 

vesicles. B) Abnormal mitochondria in untreated mice or mice treated with rapamycin for 1 or 2 

weeks relative to total mitochondria (n=3). Abnormal mitochondria were defined as those containing 

vacuoles, inclusions, or disrupted cristae. C) Number of autophagic vesicles relative to number of 

mitochondria in untreated mice or mice treated with rapamycin for 1 or 2 weeks (n=3). 

D)Mitochondrial area (n=3).Mitochondrial area was quantified using ImageJ software for at least 

1000 mitochondria per heart (4-7 images). *p-value<0.05 comparing genotype. #p-value<0.05 

comparing treatment. 
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Figure 3.4. Rapamycin treatment normalized high mitochondrial number in Acsl1T-/- hearts. 

Control and Acsl1T-/- mice were treated with vehicle or rapamycin daily for 2 weeks.  A) 

Mitochondrial DNA normalized to the nuclear gene H19 (n=8). B) Number of mitochondria per cell 

area (n=3). C) Mitochondrial area per cellular area (n=3).Mitochondrial number and area were 

quantified using ImageJ software for at least 1000 mitochondria per heart (4-7 images).  D) mRNA 

expression of genes controlling mitochondrial biogenesis (Pgc1a, Erra) (n=4). *p-value<0.05 

comparing genotype. #p-value<0.05 comparing treatment. 
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Figure 3.5. Inhibition of mTORC1 activated autophagy in Acsl1T-/- hearts. A) Control and Acsl1T-

/- mice were treated with vehicle or rapamycin for 14 d and vehicle or 60 mg/kg body weight 

chloroquine, a lysosome inhibitor, for the last 7 d (n=4). Representative immunoblot of LC3b-I and 

LC3b-II (n=4). B) p62 protein in ventricles from mice treated with vehicle or rapamycin for 2 weeks 

(n=4). *p-value<0.05 comparing genotype. #p-value<0.05 comparing treatment. 
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Figure 3.6. Rapamycin treatment partially normalized mitochondrial function in Acsl1T-/- 

hearts. Control and Acsl1T-/- mice were treated with vehicle or rapamycin daily for 2 weeks. A-B) 

Mitochondrial function was measured in isolated mitochondria using a Seahorse XF24 Analyzer, 

which sequentially injected ADP, oligomycin, FCCP, and antimycin A (n=4-5).  O2 consumption rate: 

OCR. C) Mitochondrial complexes were separated by native electrophoresis and stained for either 

complex V (ATP synthase) activity or total complex V (n=4). *p-value<0.05 comparing genotype. 

#p-value<0.05 comparing treatment. 
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Figure 3.7. Proposed pathway for how loss of ACSL1 causes impaired maximal respiration. 

Loss of ACSL1 in the heart prevents activation of fatty acids for β-oxidation. Consequently, glucose 

metabolism increases 8-fold, thus increasing the glucose-6-phosphate concentration in the cell. 

Glucose-6-phosphate activates mTORC1, causing hypertrophy and inhibiting autophagy. Inhibition of 

autophagy prevents clearance of damaged mitochondria, thus impairing maximal respiration. ADP-

stimulated oxygen consumption was not improved with rapamycin treatment and was likely due to 

impaired complex V activity. The cause of loss of ATP synthase activity is unknown.  
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CHAPTER 4: SYNTHESIS 

Overview of findings 

This dissertation demonstrates the importance of ACSL1 in several aspects of cardiac 

mitochondrial health, including respiratory function, lipid synthesis and remodeling, and clearance of 

damaged mitochondria. This work determined that loss of ACSL1 impaired oxygen consumption in 

cardiac muscle fibers and isolated mitochondria. To define the cause of the respiratory dysfunction, 

we examined two important factors in mitochondrial health: phospholipids of the membrane and 

clearance of damaged mitochondria. Loss of ACSL1 caused large changes in the length and degree of 

unsaturation of the acyl chains of PC, PE, PI, and cardiolipin. Because cardiolipin (CL) is necessary 

for formation of the electron transport chain complexes and other mitochondrial functions, we 

focused on this mitochondrial lipid. ACSL1-deficient hearts had a lower amount of the major CL 

species, which is thought to be important in maintaining heart and mitochondrial functions, but 

normal total CL amount. Systolic function of the heart was not compromised by reduction in 

tetralinoleoyl-CL, indicating that this species is not integral to heart function. By altering the 

expression of ACSL1 in H9c2 and HEK293 cells, we determined that ACSL1 is sufficient to 

preferentially increase linoleate incorporation into cardiolipin. When Acsl1T-/- mice were fed a diet 

that contained 75% of its fatty acids as linoleate, the amount of linoleate in cardiolipin was 

normalized, but mitochondrial respiratory function remained impaired. This finding indicated a 

different cause of the mitochondrial dysfunction found in the ACSL1-deficient hearts.  

Because loss of ACSL1 also impaired fatty acid oxidation, we set out to determine how the 

drastic change in metabolism to force glucose use affected mitochondrial health. Glucose metabolism 

to glucose-6-phosphate can activate mTORC1, and glucose-6-phosphate is elevated in Acsl1T-/- hearts 

(87). Activation of mTORC1 inhibits formation of the autophagosome, thus impairing mitochondrial 
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clearance. In Acsl1T-/- hearts, low clearance of damaged mitochondria caused an accumulation of 

mitochondria that were both structurally and functionally abnormal. With pharmacologic inhibition of 

mTORC1 in vivo, the autophagic rate increased greatly, mitochondrial number and structure were 

normalized, and maximal respiratory capacity was improved. Only ADP-stimulated oxygen 

consumption was not improved in the Acsl1T-/- hearts, and this impairment was likely caused by 

modification of complex V which inhibited its activity. We concluded that chronic high glucose 

metabolism activated mTORC1, which inhibited autophagy, preventing clearance of damaged 

mitochondria. This information points to the importance of maintaining metabolic flexibility in the 

heart.  

Public Health Significance 

ACSL1 is highly expressed in many tissues, including heart, skeletal muscle, and adipose 

tissue in mouse. Highly overexpressing ACSL1 causes heart failure due to lipid accumulation, and 

loss of ACSL1 impairs fatty acid oxidation, causes hypertrophy, and diminishes exercise capacity. 

Pharmacologically activating or inhibiting ACSL1 would likely be highly detrimental.  

ACSL1 has been implicated in the development of metabolic syndrome because of its role in 

fatty acid metabolism. A single nucleotide polymorphism (SNP) in the ACSL1 gene increases the 

likelihood of developing metabolic syndrome in a middle-aged European population (313). However, 

the increased risk is diminished by a low fat diet or a diet high in polyunsaturated fatty acids 

(PUFAs). High ACSL1 expression in adipose tissue from aged Swedish males correlates with 

decreased risk for insulin resistance markers and is associated with a lower amount of saturated fatty 

acids stored in adipose tissue (314). A genome-wide association study examining the response to 

exercise training in a Caucasian and African American population found that an ACSL1 SNP was 

positively associated with improved exercise performance (315). Further investigation into how these 

SNPs affect ACSL1 activity and expression is needed. Effects of these SNPs on heart function should 

also be determined, as increasing or decreasing ACSL1 expression can have large effects on the 
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metabolism of the heart. For instance, based on the current work, a SNP that diminished ACSL1 

expression or activity in the heart could cause mitochondrial respiratory defects and predispose the 

hearts to failure.  

 Analysis of hearts lacking ACSL1 caused us to question the importance of the acyl-chain 

composition of CL. ACSL1-deficient hearts contain normal total CL, but 83% less tetralinoleoyl-CL, 

a species that has been thought to be important in mitochondrial function and heart function. Acsl1T-/- 

hearts contract normally, and normalizing the amount of tetralinoleoyl-CL did not improve 

mitochondrial function. Therefore, research on diseases with low CL, such as Barth syndrome, heart 

failure, and age-related mitochondrial dysfunction, should focus on increasing the total amount of CL, 

instead of just the tetralinoleoyl-CL.  

 The presented research also showed that chronic mTORC1 activation can impair 

mitochondrial respiratory capacity through diminished clearance of damaged mitochondria. mTORC1 

is activated in pathologies, such as hypertension., in which the heart becomes enlarged. Because 

damaged mitochondria are not efficiently cleared with mTORC1 activation, care needs to be taken in 

treatment of these patients to prevent excess stress and damage to the mitochondria. This dissertation 

also showed the importance of maintaining cardiac metabolic flexibility, as chronic glucose use 

activates mTORC1, which can exacerbate preexisting defects.  

Future Directions 

Overexpression of ACSL1 in tafazzin- or MLCL AT1- deficient cells 

To determine if ACSL1 activates linoleate for direct incorporation into CL or if linoleate 

must be transacylated from a donor phospholipid, ACSL1 should be overexpressed in cells lacking 

the transacylase tafazzin or the acyltransferase MLCL AT-1. If ACSL1 is able to increase linoleate 

incorporation in the tafazzin-deficient cells, but not the MLCL AT-1 deficient cells, we could 

conclude that ACSL1 is important for the direct incorporation of linoleoyl-CoA into CL. The 

converse is also possible, which would implicate ACSL1 as important for activating linoleate first for 
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incorporation into a phospholipid which would then donate it to CL. The experiment could be 

performed in cell culture, as many stable knockdowns of tafazzin exist, and the knockdown of MLCL 

AT-1 has been characterized in HeLa cells. These experiments should be performed in a 

cardiomyocyte or myocyte cell line, such as H9c2 cells or C2C12 cells.  

In the tafazzin knockdown heart, mitochondrial ACSL1 is diminished by 68% whereas 

ACOT13 and ACOT2 are nearly 2-fold higher (316). A preliminary study in our lab, using tissue 

donated by Matthew Gillum, showed 20% lower ACSL specific activity in tafazzin knockdown hearts 

(controls: 8.1 ± 0.2 vs tafazzin knockdown: 6.4 ± 0.5 nmol/mg protein/min). Thus, low ACSL activity 

coupled with high ACOT activity could cause a deficiency of acyl-CoAs that could contribute to 

impaired CL remodeling seen in the tafazzin-deficient hearts (261). To determine if low acyl-CoA 

content is partially responsible for the phenotype, tafazzin-knockdown mice could be crossed with 

mice overexpressing ACSL1 in the heart (159). Using a model of moderate ACSL1 overexpression 

will prevent lipotoxicity. CL content and species, heart function, and mitochondrial function could be 

examined to determine if overexpression of ACSL1 can improve these measures in tafazzin-deficient 

animals. 

Effect of loss of ACSL1 on phospholipids in non-cardiac tissues 

ACSL1 is the major contributor of acyl-CoA synthetase activity in skeletal muscle, liver, and 

adipose tissue. Loss of ACSL1 impairs fatty acid oxidation in these tissues, but ACSL1 deficiency 

may also affect acyl chain composition of the phospholipids in these tissues. It will be especially 

important to determine if loss of ACSL1 alters the phospholipid species in skeletal muscle. Similar to 

heart, skeletal muscle normally contains a high proportion of linoleate in CL. If formation of 

linoleoyl-CoA at the mitochondria determines how much linoleate gets remodeled into CL, then 

ACSL1-deficient skeletal muscle should also be deficient in tetralinoleoyl-CL. Several caveats exist 

for this hypothesis, however. In heart, ACSL activity is about 8-fold higher than in skeletal muscle. 

Despite ACSL1 being the major isoform in both tissues, this disparity in total activity may affect the 



93 

 

rate of activation of fatty acids for phospholipid synthesis and remodeling. Another factor to consider 

is the age at which ACSL1 is lost from the tissue. In the current studies, we examined hearts in which 

ACSL1 was lost in fully developed adult heart. Use of a model in which ACSL1 is knocked out in 

skeletal muscle before birth may provide different results caused by compensation by other ACSL 

isoforms or in adaptation of the cell to the changes in metabolism. Whereas the heart is constantly 

beating, the mice used for most studies are sedentary, so the metabolic rate, and thus reactive oxygen 

species formation and CL damage, are lower. This low metabolic rate may diminish the need for 

turnover of CL and linoleate acyl chains and minimize a difference between controls and ACSL1-

deficient muscle. Analysis of muscle from mice allowed access to running wheels should be 

considered. Finally, the heart muscle is highly oxidative, whereas skeletal muscle exhibits degrees of 

oxidative capacity depending on fiber type. Therefore, the role of ACSL1 in these tissues may vary, 

and the need for linoleate in CL remodeling may also vary. Despite these potential confounders, it 

will be important to determine if and how ACSL1 affects phospholipid synthesis and remodeling in 

skeletal muscles. This information could confirm that ACSL1 is important for CL remodeling in non-

cardiac tissues, and thus may be important in diseases with impaired CL remodeling, such as Barth 

syndrome, heart failure, and age-related mitochondrial dysfunction.   

Effects of altered phospholipid acyl chains  

This dissertation focused on the effect of ACSL1 deficiency on the acyl chains of 

mitochondrial CL. The effects of altering the saturation and length of acyl chains of other 

phospholipids should be investigated in mitochondria and other organelles. Alterations in saturation 

and chain length of fatty acids incorporated into membrane lipids can change membrane dynamics, 

movement of substrates and solutes across membranes, and lipid raft composition (229-231).  Thus, 

permeability of the plasma membrane and mitochondrial membranes should be investigated. 

Permeability of the plasma membrane can be measured in vivo using Evans Blue dye which will enter 

cells when the plasma membrane is compromised. Several dyes are available to measure the 
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mitochondrial permeability transition, such as JC-1 and TMRM, but these would need to be used in 

vitro.  

Because large changes were seen in PI species, signaling pathways that use PI-(4,5) 

bisphosphate (PIP2) or PI-(3,4,5) triphosphate (PIP3) should be examined. PIP2 regulates many 

membrane proteins, including ion channels, transporters, and receptors, but little is known about the 

importance of the acyl-chain composition of its major species. The conversion of PIP2 to PIP3 

activates Akt, which mediates insulin signaling to regulate growth and energy storage.  Insulin 

signaling in ACSL1-deficient hearts should be measured using an ex vivo perfusion system, 

Langendorff perfusion, in which the heart is still beating. Attempting to measure insulin signaling in 

vivo led to variable results, probably because of the stress on the animals. The Langendorff perfusion 

system eliminates the stress and differences in endogenous insulin or blood metabolites. However, 

because the Acsl1T-/- hearts exhibit many changes in phospholipids, it may be difficult to tease out the 

effects of a specific change. Therefore, it will be important to find dietary, chemical, or genetic 

interventions that can normalize specific phospholipids to eliminate some of the variables and allow 

more decisive conclusions to be made. For instance, a diet high in DHA may help to normalize PC 

and PE species in the Acsl1T-/- hearts. Providing DHA to Acsl1T-/- hearts would bypass the need to 

synthesize DHA from linoleate, which is likely compromised in Acsl1T-/- hearts.  

Fatty acid preference in purified ACSL1 vs. tissue ACSL1 

This work shows that murine cardiac ACSL1 strongly prefers to activate linoleate. However, 

no preference for linoleate is found when recombinant rat ACSL1 protein is purified using a bacterial 

system. One potential cause is that the cardiac ACSL1 is in membranes, whereas purified ACSL1 

would be in solution, which may alter the protein’s structure in such a way as to alter the fatty acid 

binding site. Measuring ACSL activity with purified enzyme in the presence of phospholipids or 

liposomes is one potential way to determine if incorporation of ACSL1 into membranes alters its 

preference for linoleate. Another possible cause of the discrepancy in fatty acid preference is that 
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bacteria do not phosphorylate or acetylate ACSL1 in the same way as mammalian cells. ACSL1 has 

many potential sites of post-translational modifications, and some of these modifications can alter 

ACSL activity (111). Other modifications could potentially alter fatty acid preference by altering the 

shape of the fatty acid binding pocket. Modification of these sites to either mimic or prevent post-

translational modification would allow the analysis of fatty acid preference.  

Complex V activity in Acsl1T-/- hearts 

Inhibition of mTORC1 was unable to normalize ADP-stimulated oxygen consumption and 

complex V activity. The ATP synthase complex has multiple sites for post-translational 

modifications, such as acetylation and phosphorylation that can be altered by energy status or 

oxidative stress.  These modifications can affect both the formation of the complex and its activity 

(309-312).  Post-translational modifications of complex V can be measured by mass spectrometry 

after separation of complexes by native electrophoresis. The modifications can be compared between 

control and Acsl1T-/-hearts, and then differences can be linked to known modifications of complex V.  

An example of modifications affecting complex V activity is the inhibition of ATP synthase by 

acetylation in the absence of the mitochondrial deacetylase sirtuin 3, which is activated by NAD+ 

(310).  An inhibition of mitochondrial oxidative phosphorylation in the Acsl1T-/-hearts may cause an 

accumulation of mitochondrial NADH, as in ischemia (317), causing impaired deacetylase activity 

(318). Measurement of NADH and NAD+ in Acsl1T-/-hearts has previously shown a high amount of 

variability between animals, so this measurement needs to be repeated with freeze-clamped hearts to 

prevent loss of NADH. Sirtuin activity could also be measured directly using commercially available 

kits. Inhibition of sirtuins in the Acsl1T-/-hearts could predispose the hearts to damage by reactive 

oxygen species and apoptosis (319).  

mTORC1 activation in Acsl1T-/- hearts 

Loss of ACSL1 impairs cardiac fatty acid oxidation, causing increased glucose use. Glucose 

metabolism to glucose-6-phosphate can activate mTORC1, but there are many other activators of 



96 

 

mTORC1, such as insulin, amino acids, and low activation of AMPK. Future studies should confirm 

that glucose metabolism is the actual activator of mTORC1 in Acsl1T-/- hearts. Providing a different 

substrate, such as medium chain fatty acids, which can be used by Acsl1T-/- hearts, may help 

determine if mTORC1 is activated by high glucose-6-phosphate.  

ACSL1 and FA channeling 

We have hypothesized that ACSLs are able to channel their acyl-CoA products to specific 

pathways, such as β-oxidation or glycerolipid synthesis. Previous evidence showed that ACSL1 is 

necessary for β-oxidation in heart, skeletal muscle, and adipose tissue (87,105,228,320). My 

dissertation shows that ACSL1 also plays a role in activation of fatty acids for glycerolipid synthesis 

and remodeling. This information could point to a lack of acyl-CoA channeling by ACSL1, especially 

because ACSL1 accounts for 90% of total ACSL specific activity. However, ACSL1 is present on 

multiple organelles, including the ER and mitochondria in liver. It is likely that the localization to 

multiple organelles is also present in the heart. Thus, ER-localized ACSL1 could interact with 

enzymes of glycerolipids synthesis and activate fatty acids for incorporation into more complex 

lipids. Similarly, mitochondrial ACSL1 interacts with VDAC and CPT1a and may activate fatty acids 

for import into the mitochondria. Independent of protein-protein interactions, ACSL1 may increase 

the concentration of acyl-CoAs immediately around the organelle in which it is located. Work is 

currently being performed in our lab to determine which proteins ACSL1 interacts with under 

conditions to induce either β-oxidation or glycerolipid synthesis. Use of these different conditions 

will allow us to determine if ACSL1’s protein-protein interactions can be altered by energy demands 

of the cell.  

My previous work targeted ACSL1 to the ER or to the mitochondria by replacing the 

transmembrane domain of the enzyme, because no clear targeting sequence is known. However, these 

targeted proteins were unable to increase glycerolipid synthesis or β-oxidation to the same extent as 

wild-type ACSL1, indicating that the targeted proteins were not able to efficiently get the acyl-CoA 
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product into the downstream pathways. This finding is likely to have occurred because replacing the 

N-terminus and transmembrane domain altered protein-protein interactions. Future studies should 

determine the regions of the protein that target the protein to a specific organelle. This information 

would allow mutation of specific amino acids, instead of removing entire regions of the protein, to 

target ACSL1 to either the ER or the mitochondria.  

ACSL1 in heart maturation 

Within days after birth, a number of major metabolic changes occur in the mouse heart. Fatty 

acid oxidation becomes the dominant source of energy, and membranes change to increase more 

linoleate and DHA. At this same time, ACSL1 expression increases 2.5-fold. Current models cause 

loss of ACSL1 in adult hearts. ACSL1 may be necessary for the transition of the heart from fetal 

metabolism to the adult phenotype. The ability to use fatty acids for energy may be important as the 

newborn transitions through the early period of starvation after birth. Similarly, if mTORC1 is 

activated by ACSL1 deficiency, autophagy would be impaired, and this autophagy is necessary for 

energy production during the early period of starvation. Similarly, the change to more unsaturated 

acyl chains in the membrane phospholipids maybe important for development. Use of a Cre driven by 

a promoter that is turned on in utero would eliminate the Acsl1 gene before the large increase in its 

expression after birth. This kind of early knockout would allow the study of viability of the animals as 

well as heart function when the heart cannot switch from glucose to fatty acid use or remodel 

membranes to contain unsaturated acyl chains.  

Cardiomyocyte differentiation and growth could also be measured in the H9c2 

cardiomyocyte-like cells with ACSL1 knocked down. A hallmark of cultured cells and cancer cells is 

a high use of glucose, suggesting that glucose use is optimal for growth. The studies presented in this 

dissertation showed an 80% decrease in fatty acid oxidation with ACSL1 deficiency. Examining cell 

morphology and differentiation markers at several points during differentiation would help to 

determine if the switch to fatty acid oxidation is necessary for cardiomyocyte differentiation.   
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