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ABSTRACT

Wenjing Huang: Three-way Interactions with Latent Variables:
A Maximum Likelihood Approach

(Under the direction of Patrick J. Curran)

Two-way interaction in latent variables has been a topic of considerable theoret-

ical and practical interest among psychological methodologists. Since the seminal

work of Kenny and Judd (1984), much research has focused on the use of product

indicators for the estimation of latent moderation effects. These methods are usually

difficult to use, and many popular approaches lack solid statistical justification. In

recent years, the development of full-information maximum likelihood for nonlinear

latent variables models provided a new approach to the estimation of latent variable

interaction effects. However, a particular kind of three-way interaction, i.e., two-way

latent variable interactions over an observed grouping variable, has received little

attention. In this thesis, existing literature is reviewed and studied to arrive at a

derivation of the full-information maximum likelihood estimator for three-way inter-

actions in latent variables. It is also shown that this new method of estimation and

testing can be implemented in Mplus (Muthén & Muthén, 1998–2007) using mixture

modelling. To study the properties of this new estimation method, a simulation study

is conducted, and the new method is shown to have superior performance than an

existing method proposed by Marsh, Wen, and Hau (2004).
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CHAPTER 1

Introduction

1.1 Interaction in Regression

Just as Aiken and West (1991) pointed out in their influential work on the statis-

tical analysis of interaction effects in multiple regression, interactions arise naturally

in many branches of psychology. For instance, in Baron and Kenny’s (1986) semi-

nal treatment of the distinction between moderators and mediators, their statistical

framework for moderation analysis is linear regression with polynomial interactions.

Developmental trajectory analysis is another area in which time-by-covariate inter-

actions occur frequently when predictors are added into conditional latent curve

models (Bollen & Curran, 2006). In industrial and organizational psychology, moder-

ated regression has also received much attention (see e.g. Aguinis, 2002). In the parts

of psychology where multilevel modelling is heavily used, interactions between vari-

ables measured at different levels of nesting units often provide answers to important

research questions (Raudenbush & Bryk, 2002).

The interaction between two observed variables can be handled within the stan-

dard regression framework (see Aiken & West, 1991). Suppose there are three vari-

ables x, y and z. Let x and z be the predictors, and let y be the outcome variable.

Consider the simple example given by Cudeck, Harring, and du Toit (in press), here-

inafter CHD, in which x is a measure of reasoning ability, z a measure of quantitative

ability, and y a measure of academic achievement at school. It is natural to hypoth-



esize that the two different facets of cognitive ability interact when they are used to

predict achievement. Let us assume for now that both x and z are free of measure-

ment error. The regression model (for subject i) that contains an interaction term

between x and z can be written as

yi = β0 + β1xi + β2zi + β3xizi + εi, (1.1)

where εi is an error term, β0 the intercept, β1 the effect of x, and β2 the effect of z.

The interaction term between x and z is simply the product of the two variables and

β3 is the coefficient for the interaction effect. By rearranging Equation (1.1), it is clear

that the relationship between x and y depends on z,

yi = (β0 + β2zi) + (β1 + β3zi)xi + εi. (1.2)

Hence z can be interpreted as a moderator of the relationship between the focal

predictor x and the outcome y. By symmetry, x can also be viewed as a moderator of

the relationship between z and y. The parameters in model (1.1) can be conveniently

estimated with the ordinary least squares (OLS) method as shown by Cohen (1968).

1.2 The Kenny-Judd Model

However, when the assumption of no measurement error in the predictors is vio-

lated, it is a well known result that the estimates of regression coefficients are biased

under the OLS method (Mardia, Kent, & Bibby, 1979). When multiple indicators of a

variable are available, a solution is to use factor analysis in a latent variable structural

equation modelling framework.

Continuing with the CHD example, suppose there are two latent predictor vari-

ables: ξ1 as reasoning ability, and ξ2 as quantitative ability. Now the two ξ’s interact

to produce a nonlinear structural regression in explaining the variability in an ob-
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served outcome variable y

yi = α + γ1ξ1i + γ2ξ2i + γ3ξ1iξ2i + ζi, (1.3)

where ζ is the so-called equation disturbance.

Equation (1.3) is representative of a line of work initiated by Kenny and Judd

(1984). They considered a case when there are two observed indicators for each

latent variable. Let x1 and x2 be the indicators of ξ1. In the CHD example cited

above, they can be test scores of verbal reasoning and nonverbal reasoning. Let x3

and x4 be the indicators of ξ2. In the CHD example, x3 may be arithmetic skill, and

x4 computation skill. In Kenny and Judd’s (1984) method, there is a product latent

variable that is measured by four product indicator variables: x1x3, x1x4, x2x3, x2x4.

They reasoned that information about the product latent variable can be obtained

from exhaustive pairwise products of the original indicators. In factor analytic terms,

the measurement model for ξ1, ξ2 and ξ1ξ2 may be written as




x1

x2

x3

x4

x1x3

x1x4

x2x3

x2x4




=




0

τ1

0

τ2

0

τ3

τ4

τ5




+




1 0 0

λ1 0 0

0 1 0

0 λ2 0

0 0 1

0 0 λ3

0 0 λ4

0 0 λ5







ξ1

ξ2

ξ1ξ2




+




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8




, (1.4)

where the τ’s are measurement intercepts, the λ’s are factor loadings, and the ε’s are

error terms. It is clear that x1, x3 and x1x3 are made reference indicators (see e.g.

Bollen, 1989) to set the scale for ξ1, ξ2, and ξ1ξ2.

3



However, there exist complicated nonlinear dependence among the parameters

shown above. For example, let φ11 and φ22 denote the variances of ξ1 and ξ2 and let

φ21 represent the covariance between them. The means for ξ1, ξ2 and ξ1ξ2 may be

written as κ1, κ2 and κ3. It can be derived that κ3 is equal to φ21, which is the covari-

ance between ξ1 and ξ2, and that the variance of ξ1ξ2 is equal to φ2
21 + φ11φ22, which

completely depends on the variances and covariance of ξ1 and ξ2. Therefore one

must be able to derive and impose those constraints in order to use methods based

on product indicators, which gives rise to a number of complications in estimation

and inference that will be discussed in further detail in Chapter 2.

1.3 Fully Latent Regression with Interaction

In recent years, methodologists have focused their attention on an extension of

Kenny and Judd’s (1984) model, where the outcome variable is also latent (e.g. Marsh

et al., 2004). This is the model that will be discussed extensively in the sequel, so it is

useful to describe it in some detail here.

The structural part of the fully latent regression model with interaction is

ηi = α + γ1ξ1i + γ2ξ2i + γ3ξ1iξ2i + ζi, (1.5)

where η is the latent outcome variable. The usual assumptions are made: ξ1 and ξ2

are jointly normally distributed; and ζ is normally distributed with mean zero and it

is uncorrelated with ξ1 and ξ2.

Without loss of generality, let each latent variable be measured by three indica-

tors. Instead of using all possible cross products of the original indicators as Kenny

and Judd (1984) did, Yang Jonsson (1998) used matched pair indicators. That is, the

first indicator x1 of the first latent predictor variable ξ1 is multiplied by the first indi-

cator x4 of the second latent predictor variable ξ2 to form the first product indicator

x1x4 of the latent interaction variable ξ1ξ2 and so on. The measurement model is an
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expanded form of Equation (1.4) to accommodate the additional indicators:




y1
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x1
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


=




0

τ1

τ2

0

τ3

τ4

0

τ5

τ6

0

τ7

τ8




+




1 0 0 0

λ1 0 0 0

λ2 0 0 0

0 1 0 0

0 λ3 0 0

0 λ4 0 0

0 0 1 0

0 0 λ5 0

0 0 λ6 0

0 0 0 1

0 0 0 λ7

0 0 0 λ8







η

ξ1

ξ2

ξ1ξ2




+




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12




. (1.6)

Clearly, y1, x1, x4 and x1x4 are the reference indicators. The measurement errors

are jointly normal with zero means and a diagonal covariance matrix. Specifications

(1.5) and (1.6) makes the model an example of a nonlinear structural equation model.

To estimate the parameters in this model, one can follow the family of product indica-

tor methods that are initiated by Kenny and Judd (1984), formalized by Jöreskog and

Yang (1996), and empirically tested by Marsh et al. (2004). Alternatively, one can also

use the full information maximum likelihood method without ever forming product

indicators (Klein & Moosbrugger, 2000). More details of parameter estimation will

be discussed in the next chapter.

1.4 A Model with Three-way Interaction

Here I consider a further extension of the model in (1.5). By three-way interaction,

I do not mean the interaction of three latent variables. Rather, the third variable is an
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observed grouping variable, over which the two-way interaction effects vary. That is,

in group g = 1, . . . , G, there is a fully latent regression with two-way interactions:

η
(g)
i = α(g) + γ

(g)
1 ξ

(g)
1i + γ

(g)
2 ξ

(g)
2i + γ

(g)
3 (ξ1iξ2i)(g) + ζ

(g)
i . (1.7)

The measurement model is the same as in (1.6). In other words, strict factorial

invariance, where loadings, intercepts, and unique variances are invariant over the

groups, is assumed as a simplifying condition for comparisons of the latent regres-

sion coefficients. The primary focus is on testing whether the regression coefficients

(especially γ
(g)
3 ’s) differ over g.

I propose a likelihood ratio test. Specifically, one first fits a model with the γ(g)’s

freely estimated, recording its log-likelihood, and then fits a model that constrains

the γ(g)’s equal across the G groups, also recording its log-likelihood. It is a well

known result (e.g. Wilks, 1938) that negative 2 times the difference in the two log-

likelihoods is distributed as a central chi-square variable under the null hypothesis

with G− 1 degrees-of-freedom.

In empirical research, models such as (1.7) can be very useful. In the CHD ex-

ample, suppose one hypothesizes that the two-way interaction between reasoning

ability and quantitative ability differs by gender, model (1.7) gives a direct test of this

hypothesis. In developmental psychopathology for another example, suppose one is

interested in predicting adolescents’ drug use with internalizing and externalizing

symptoms, as well as their interaction, but also suspects that the interaction effect

might be different for adolescents with or without alcoholic parents. Model (1.7) can

be directly applied in such situations and be of great use.

However, efficient parameter estimation for such a nonlinear latent variable

model is complex and has not yet been closely studied. I will next review these

issues in detail and propose a solution.
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CHAPTER 2

Parameter Estimation

2.1 Parameter Estimation by Discrepancy Functions

Here I introduce standard notation and terminology for parameter estimation

in structural equation modelling. Traditionally a (linear) structural equation model

refers to a parametric statistical model that specifies the mean and covariance struc-

ture of a set of observed variables. Hence the term structural equation model is

synonymous to mean and covariance structure model. Section 2.3 will extend this defi-

nition, but for now, the discussion is limited to classical discrepancy function based

estimators that rely on identifying parameters from sample moments such as the

sample mean vector and covariance matrix.

Generically, let there be a p× 1 random vector of observed variables, say y, whose

model-implied mean vector is µ(θ) and covariance matrix is Σ(θ), where θ is a q-

dimensional vector of parameters. It is understood that structural equation models

impose structure on the moments of the observed random vector. For a sample of

size N, let the sample mean vector be m and the sample covariance matrix be S. It

is assumed that there are no missing data, although this assumption can be relaxed

(Enders, 2003). To estimate θ, one tries to minimize the discrepancy between the sam-

ple moments and the model-implied moments. Different definitions of discrepancy

lead to different estimators.

Under multivariate normality of y, the most widely used estimation method is



maximum Wishart likelihood (MWL). The name Wishart comes from the fact that

the distribution of sample covariance matrix is scaled Wishart if the population is

normal. The MWL discrepancy function for mean and covariance structure models

is often written as

FMWL(θ) = log |Σ|+ tr(SΣ−1)− log |S| − q + [m− µ]′Σ−1[m− µ], (2.1)

where Σ and µ are functions of θ (see e.g. Bollen, 1989). If the model is correctly

specified and the distributional assumptions are met, minimization of FMWL leads to

the maximum likelihood estimate (MLE).

Another approach for defining discrepancy is the method of least squares. The

following weighted least squares (WLS) discrepancy function is often used

FWLS(θ) = (s− σ)′W−1(s− σ) + [m− µ]′S−1[m− µ], (2.2)

where s = vech(S) and σ = vech(Σ), and vech(·) is the half-vectorization operator

that stacks the non-duplicated elements of a symmetric matrix into a vector. The

matrix W is a symmetric positive definite weight matrix that is equal to a consistent

estimate of the asymptotic covariance matrix of s. This discrepancy function does

not assume multivariate normality of the indicator vector, but it does assume that the

sample mean vector and covariance matrix are independent.

Yet another approach is the method of weighted least squares for augmented

moments (WLSA; see Jöreskog & Yang, 1996). Instead of the central moments, e.g.,

covariances, WLSA works directly with the raw moments, e.g., cross-product mo-

ments. Specifically, an augmented moment matrix in the sample is defined as

A =
1
N




∑N
i=1 yiy′i ∑N

i=1 yi

∑N
i=1 y′i N


 , (2.3)

8



and in the population as

A =




Σ + µµ′ µ

µ′ 1


 . (2.4)

Let a = vech(A) and α = vech(A). The WLSA discrepancy function is defined as

FWLSA(θ) = (a− α)′W−
a (a− α), (2.5)

where Wa is a consistent estimate of the covariance matrix of a and W−
a is its Moore-

Penrose (generalized) inverse. A generalized inverse is required because Wa is rank

deficient. Note that this discrepancy function does not require the assumption of

independence between the sample mean vector and the covariance matrix, as is re-

quired by WLS, which will subsequently be important when latent variable interac-

tions are specified.

Extensions of discrepancy function based estimation methods to more than one

groups is straightforward. Take MWL for example. The vector of parameters is still a

q× 1 vector θ. In group g = 1, . . . , G, the model-implied mean vector and covariance

matrix is µ(g) and Σ(g), respectively. Both are still functions of θ. Similarly, the sample

mean vector and covariance matrix in group g are m(g) and S(g). Let the sample size

in group g be Ng so that N = ∑G
g=1 Ng. The discrepancy function for all G groups is

defined as a linear combination of group-specific discrepancy functions

FMWL(θ) =
G

∑
g=1

Ng

N
F(g)

MWL(θ), (2.6)

where

F(g)
MWL(θ) = log |Σ(g)|+ tr[S(g)(Σ(g))−1]− log |S(g)| − q

+ [m(g) − µ(g)]′(Σ(g))−1[m(g) − µ(g)].

9



2.2 Product Indicator Methods

Having defined the discrepancy functions, I next present the specifics of estimat-

ing models with latent variable interactions. As the name of this section suggests,

the class of these methods referred to in this section requires the formation of prod-

uct indicators. A distinguishing feature of product indicator methods is that stan-

dard structural equation modelling software can, in principle, be used to estimate

the parameters. Many authors have worked in this area and the literature is quite

substantial, sometimes with conflicting findings. A few important contributions are

reviewed here.

As mentioned earlier, Kenny and Judd (1984) considered a model with four

product indicators when each of the original latent variables is measured by

two indicators. But with more than two indicators for each latent variable,

the exhaustive pairing of the original indicators can become cumbersome. For

instance, the model in (1.6) would require 9 product indicators. Therefore,

one has to consider a structural equation model for the 18 × 1 vector y =

(y1, y2, y3, x1, x2, x3, x4, x5, x6, x1x4, x1x5, x1x6, x2x4, x2x5, x2x6, x3x4, x3x5, x3x6)′. In re-

sponse, Jöreskog and Yang (1996) proposed a method that uses only one product

indicator. The rationale is that there is a high degree of redundancy in the full set

of product indicators. Other researchers suggest the use of non-overlapping pairs of

product indicators (e.g. Marsh et al., 2004).

Importantly, even if the original variables are normally distributed themselves,

their products are not. This observation has important ramifications on the appro-

priate choice of estimation method. Estimation by MWL is, in general, inappropriate

because it assumes multivariate normality of the joint vector of original indicators

and product indicators. As I will show in section 2.3, it is not necessary to have a

product latent variable in the model because the product is simply a nonlinear term

in the latent variables, which can be handled easily if one does not confine oneself

10



within the linear structural equation modelling framework. Alternatively, one can

choose to utilize the robustness property of maximum likelihood, and argue that

even though MWL is not technically correct, it does give reasonable point estimates

and sufficiently accurate standard errors (Marsh et al., 2004).

Concerned about the potential inappropriateness of MWL, Jöreskog and Yang

(1996) suggested using WLSA as an alternative. WLSA does not have the multivari-

ate normality assumption and it gives asymptotically correct chi-square values and

standard errors. This method, however, is complicated and requires the model be set

up in a non-standard way. Jöreskog and Yang (1996) commented that a large sample

size is needed for the asymptotic distribution-free property of WLSA to be effective

because of the sheer size of Wa.

In addition to violating the assumption of multivariate normality, the use of prod-

uct indicators to define a product latent variable also leads to nonlinear dependence

among the parameters. This point is most clearly illustrated by the following obser-

vation. Suppose ξ1 and ξ2 have zero means and covariance matrix

cov




ξ1

ξ2


 =




φ11

φ21 φ22


 .

Invoking the normality assumption on the ξ’s, it can be shown that the mean of ξ1ξ2

is equal to φ21, the covariance between ξ1 and ξ2, and that the variance of the product

latent variable ξ1ξ2 is φ2
21 + φ11φ22. Therefore one must be able to derive and impose

nonlinear equality constraints on the parameters in order to use methods based on

product indicators. In addition to the relatively simple nonlinear constraints shown

above, there are other far more complicated constraints on the residual variances and

measurement intercepts in the full model (1.6). The illustration above also rules out

the use of the WLS estimator because the sample mean vector and sample covariance

matrix are clearly not independent.
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Even if the nonlinear constraints can be imposed, it is important to note that most

of these constraints require normality of the latent variables. Equation (1.5) implies

that η is a linear combination of ξ1 (normal), ξ2 (normal), their product (nonnor-

mal), and ζ (normal). Thus the assumption of latent (and hence observed) variable

normality is not met.

To fix the problem of having far too many and also far too complicated nonlin-

ear constraints, Marsh et al. (2004) proposed an unconstrained approach, wherein

the parameters that would have been nonlinear functions of other parameter in the

model were simply left freely estimated. After an extensive set of simulations, Marsh

and colleagues concluded that their unconstrained MWL approach was not only ro-

bust but also much easier to implement. I do not argue against the unconstrained

approach based on existing empirical evidence about its usefulness. What I find un-

appealing about this approach is that it essentially tries to mask important problems

by over-parameterizing a model. There is also little theoretical evidence that the good

performance of the unconstrained approach will generalize to conditions other than

those covered by simulations.

There are many other similar approaches that uses product indicators (see e.g.

Cortina, Chen, & Dunlap, 2001 for a survey) and a whole book discussing similar

approaches (Schumacker & Marcoulides, 1998). Other recent developments that use

the MWL discrepancy function include methods by Ping (1996a, 1996b), Algina and

Moulder (2001), and Batista-Foguet, Coenders, and Saris (2004). There is also the

2-stage least squares (T2LS) estimator by Bollen and Paxton (1998). According to

a number of studies (Coenders, Batista-Foguet, & Saris, 2006; Moulder & Algina,

2002; Schermelleh-Engel, Klein, & Moosbrugger, 1998), T2LS has the disadvantage

of having low power and also being a limited information estimator, even though it

does not require multivariate normality. Wall and Amemiya (2001) proposed a par-

tially constrained generalized appended product indicator (GAPI) approach and they
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showed that it was much more effective than the traditional constrained procedures

for non-normal data. However their new GAPI approach still required complicated

nonlinear constraints on the parameters, which made it difficult to implement in

applied research.

One issue that has been rarely discussed in the literature on product indicator

methods is missing data. When one of the original observed variables contains miss-

ing values, all product indicators that involve this variable are affected. Related to the

missing data problem is the multiple group analysis that is necessary for three-way

models of the kind in Equation (1.7). To my knowledge there has been no system-

atic investigation, empirical or theoretical, of three-way interactions, whether or not

one focuses on product indicators or not. For instance, a salient question relates to

the performance of the likelihood ratio test statistic that is central to the three-way

interaction hypothesis. Is the statistic sufficiently close to being a central chi-square

variable under the null hypothesis? Does the test have enough power to be useful in

empirical research? Theoretically, answers to the above questions are all positive, so

long as one abandons the product indicator approach for the full-information maxi-

mum likelihood method that will be discussed in the next section.

2.3 Full Information Maximum Likelihood

The full information maximum likelihood (FIML) approach identifies the param-

eters directly from raw data, without product indicators. Although technically more

complicated when compared with the product indicator methods, FIML provides a

far more flexible, coherent, and theoretically justified statistical framework for esti-

mating and testing such nonlinear structural equation models. Furthermore, FIML

can accommodate the presence of missing data. The main drawback of FIML is its

computational complexity, which is becoming less of an issue with the availability of

high speed computers of today.

To describe the FIML estimator in detail, it is useful to make some notational
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simplifications based on Equations (1.5), (1.6), and (1.7). For subject i in group g =

1, . . . , G that consists of Ng subjects, let y(g)
i be the 9× 1 vector of observed variables,

i.e., consisting of observations on y1, y2, y3, x1, x2, x3, x4, x5, and x6 (the left hand

side of 1.6). Let τ be the vector of measurement intercepts in (1.6) and let Λ be the

factor loading matrix in (1.6). Let ε
(g)
i be the 9× 1 vector of measurement error terms

for that subject, whose covariance matrix is ∆, a diagonal matrix. The parameter

matrices for the measurement model are τ, Λ, and ∆. They are invariant over the

groups to provide a stable measurement model for meaningful comparisons at the

latent level. For the purpose of identification and user-defined constraints, these

parameter matrices are really functions of a parameter vector in matrix-forms θ =

(τ1, . . . , τ6, λ1, . . . , λ6, δ11, . . . , δ99), i.e., τ = τ(θ), Λ = Λ(θ), ∆ = ∆(θ).

The derivation of the FIML estimator begins with the specification of the condi-

tional model that defines the distribution of the observed variables given the latent

variables. In the case of (1.6), the conditional distribution of y(g)
i is multivariate nor-

mal with mean vector

µ
(g)
i = τ + Λ




η
(g)
i

ξ
(g)
1i

ξ
(g)
2i




,

and conditional covariance matrix ∆. Therefore one can write down the conditional

density function as

f (y(g)
i |η(g)

i , ξ
(g)
1i , ξ

(g)
2i ; θ) = |2π∆|−1/2 exp

{
−1

2
(y(g)

i − µ
(g)
i )′∆−1(y(g)

i − µ
(g)
i )

}
. (2.7)

The next step in the derivation is to realize that conditional on ξ
(g)
1i and ξ

(g)
2i , η

(g)
i

is also normally distributed, with mean

ν
(g)
i = α(g) + γ

(g)
1 ξ

(g)
1i + γ

(g)
2 ξ

(g)
2i + γ

(g)
3 ξ

(g)
1i ξ

(g)
2i ,
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and conditional standard deviation σ(g). Let us next stack the following parameters

into a vector: ω(g) = (α(g), γ
(g)
1 , γ

(g)
2 , γ

(g)
3 , σ(g))′. The conditional density of η

(g)
i given

ξ
(g)
1i and ξ

(g)
2i can be written as

f (η
(g)
i |ξ(g)

1i , ξ
(g)
2i ; ω(g)) =

1√
2πσ(g)

exp



−

1
2

(
η

(g)
i − ν

(g)
i

σ(g)

)2
 . (2.8)

Next, the distribution of ξ
(g)
i = (ξ

(g)
1i , ξ

(g)
2i )′ must be specified. According to

the assumptions in section 1.3, the unconditional distribution of ξ
(g)
i is multivariate

normal with mean vector κ(g) = (κ
(g)
1 , κ

(g)
2 )′, and covariance matrix

Φ(g) =




φ
(g)
11

φ
(g)
21 φ

(g)
22


 .

Let $(g) = (κ
(g)
1 , κ

(g)
2 , φ

(g)
11 , φ

(g)
21 , φ

(g)
22 )′ be the vector of parameters that are involved in

specifying the distribution of ξ
(g)
i . The density function of ξ

(g)
i is

f (ξ
(g)
1i , ξ

(g)
2i ; $(g)) = |2πΦ(g)|−1/2 exp

{
−1

2
(ξ

(g)
i − κ(g))′(Φ(g))−1(ξ

(g)
i − κ(g))

}
. (2.9)

Finally, Equations (2.7), (2.8), and (2.9) are assembled together. The joint distri-

bution of the observed and the latent variables can be written as the product of three

density functions

f (y(g)
i , η

(g)
i , ξ

(g)
1i , ξ

(g)
2i ; θ, ω(g), $(g))

= f (y(g)
i |η(g)

i , ξ
(g)
1i , ξ

(g)
2i ; θ)× f (η

(g)
i |ξ(g)

1i , ξ
(g)
2i ; ω(g))× f (ξ

(g)
1i , ξ

(g)
2i ; $(g)).

However, the latent variables are not observable. Therefore, one must integrate
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the latent variables out of the joint distribution to obtain the marginal density of y(g)
i :

f (y(g)
i ; θ, ω(g), $(g)) = (2.10)

∫

R2

[∫

R
f (y(g)

i |η(g)
i , ξ

(g)
1i , ξ

(g)
2i ; θ) f (η

(g)
i |ξ(g)

1i , ξ
(g)
2i ; ω(g))dη

(g)
i

]
f (ξ

(g)
1i , ξ

(g)
2i ; $(g))dξ

(g)
i ,

where the outer integral is over two dimensions: ξ
(g)
1i and ξ

(g)
2i . This three-fold integral

can be reduced to a two-dimensional integral in a fairly straightforward way. Note

that the inner integral over η essentially corresponds to a normal-normal mixture,

conditional on ξ. The assumption of ∆ being diagonal as well as the fact that Λ

is assumed to be block-diagonal (perfect simple structure) in Equation (1.6) can be

utilized to solve the inner integral in closed-form. However, the outer integral over ξ

is not so easy to simplify. Numerical integration methods must be used instead.

Several features of Equation (2.10) need additional comments. First, the marginal

distribution of y is specified as a continuous mixture density, where the conditional

density corresponding to the measurement model is first integrated over η, condi-

tional on ξ, and then integrated over the distribution of ξ. Due to the presence of

nonlinear terms in the mixture distribution, analytical simplifications of the integrals

beyond what are outlined above are difficult. Second, though I wrote the conditional

density f (y(g)
i |η(g)

i , ξ
(g)
1i , ξ

(g)
2i ; θ) for the full vector of observed variables, missing data

in y pose no significant difficulty. In that case, one simply takes the standard ap-

proach in full-information estimation by using all available information in y. Third,

the current derivation easily permits extensions to the case of categorical observed

variables (or mixture of continuous-categorical variables). One changes the form of

the conditional density associated with the measurement model to an appropriate

one according to the type of the observed variables. This point will not be pursued

further, but it is in principle a solvable problem.

At this point, the likelihood function becomes straightforward to derive. The
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marginal likelihood for one observation is

L(θ, ω(g), $(g)|y(g)
i ) = f (y(g)

i ; θ, ω(g), $(g)). (2.11)

Let the full vector of parameters be ϑ = (θ, ω(1), . . . , ω(G), $(1), . . . , $(G))′. Let Y(g) be

the matrix of observations from group g. The log-likelihood for group g is

log L(θ, ω(g), $(g)|Y(g)) =
Ng

∑
i=1

log L(θ, ω(g), $(g)|y(g)
i ). (2.12)

The log-likelihood for the full sample is a sum of the contributions from each group

log L(ϑ|Y) =
G

∑
g=1

log L(θ, ω(g), $(g)|Y(g)), (2.13)

where Y = (Y(1), . . . , Y(G)).

Numerical maximization of log L(ϑ|Y) leads to the full information maximum

likelihood estimate ϑ̂ of all parameters. At the same time, the inverse of the negative

of the second derivative matrix of log L(ϑ|Y), evaluated at the MLE, gives the large

sample covariance matrix of ϑ̂. The square root of the diagonal elements of the

covariance matrix of ϑ̂ provides estimated standard errors for all parameters. Finally,

the maximized value of the log-likelihood function itself is obtained as a by-product

with which likelihood ratio tests can be conducted.

2.4 Implementations of Full Information Methods

The implementation of FIML estimation can take various forms in practice. Five

important implementations are reviewed here. They are called implementations

rather than estimators because in principle, they all lead to the same set of estimates,

which is the MLE.

The latent moderated structural equations LMS is the first approach without
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using product indicators or non-linear constraints on the parameters (Klein & Moos-

brugger, 2000; Schermelleh-Engel et al., 1998). The original derivation by Klein and

Moosbrugger (2000) considered a slightly more general structural equation model

with quadratic effects. A distinguishing feature of the LMS approach is that it is ex-

plicitly based on approximating a continuous mixture distribution by a finite mixture

of normal densities. Referring back to the derivations in section 2.3, this is equivalent

to using numerical integration methods for approximating the integrals in Equation

(2.10). An EM algorithm is developed by Klein and Moosbrugger (2000) to obtain the

parameter estimates. Currently there is no commercially available software for LMS.

Klein (2007) later developed the Quasi Maximum Likelihood (QML) estimation

method, which is computationally less intensive than LMS. This approach is available

in the form of free software QML (Klein, 2007). The QML method provides approx-

imate maximum likelihood estimates of model parameters. The QML software itself

can handle multiple latent interaction and quadratic effects. However, the software

is a prototype version that has limitations. The number of observed indicators is

limited to 10; the number of latent exogenous variables (ξ’s) is limited to 4; only one

latent endogenous variable (η) is permitted; and the maximum sample size is limited

to 2000. QML does not support multi-sample analysis, nor equality constraints on

the parameters that are both crucial to the three-way interaction model that I consider

here.

The availability of flexible software for nonlinear mixed-effect modelling in SAS

(SAS Institute Inc., 2004) provides a more “brute-force” approach. That is, one first

converts the latent variable model into an equivalent nonlinear mixed model, and

then estimate the parameters using PROC NLMIXED. There are two reasons why it is

a brute-force method. First, because of the generality of NLMIXED, it does not have

hard-coded derivatives for the log-likelihood. Numerical derivatives (finite differ-

ence) are used instead. This results in many more likelihood function evaluations in
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the estimation procedure and a dramatic decrease in efficiency that takes a long time

for the program to converge, assuming that it converges at all. Second, unlike some

of the other more specialized methods that will be discussed next, NLMIXED does

not take advantage of the possibility of further analytical simplifications to the inte-

grals in Equation (2.10). It never reduces the dimensions of integration and always

performs strictly three-dimensional integration for this model. Even with modern

adaptive numerical quadrature methods implemented in NLMIXED, the total run

time is often several hours when compared with more specialized methods which

takes just a few seconds. Furthermore, the user must be able to write down the like-

lihood function (2.11) completely as NLMIXED programming statements before one

can start fitting the model. This may be a dauntingly high requirement for a typical

researcher, which in turn made this approach nearly inaccessible.

Recently Cudeck et al. (in press) proposed a new method that is specifically tar-

geted at reducing the dimension of integration for latent variable interaction models.

With an ingenious conditioning argument often found in the nonlinear regression

literature, they were able to simplify the three dimensional integral to a one dimen-

sional integral. Their development is based on the assumption that all indicators are

continuous, and they provide SAS/IML programs that implement the method. How-

ever, these programs are not easy to use and require significant modifications before

they can be adapted to fit models a researcher would want with three-way interac-

tions. Though somewhat limited due to software distribution, it is a truly original

and promising method for investigating nonlinear effects in latent variable models.

Finally, the implementation that I have chosen to pursue is the one currently im-

plemented in Mplus (Muthén & Muthén, 1998–2007). The Mplus command language

provides a convenient way to specify product interactions via the XWITH keyword.

The program seems to be efficient. Because this feature is embedded within a gen-

eral statistical modelling package that supports multi-sample analysis, models with
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three-way interactions can be tested. However, few details are given in the soft-

ware manual or technical white papers. Given the fact that Mplus reports the use

of adaptive numerical quadrature for approximating two-dimensional integrals (as

opposed to three-dimensional) in the model-fitting process, I suspect that a dimen-

sion reduction technique like the one that was outlined in section 2.3 was employed.

In addition, I noticed that when the outcome variable becomes categorical, Mplus

turns back to three-dimensional numerical integration. This is in accordance with

what was discussed earlier, dimension reduction by direct solution of the inner inte-

gral in Equation (2.10) is only possible when the outcome variables are continuous

(conditionally normal to be exact).

2.5 Multiple Groups as Mixtures with Known Class Membership

Due to current restrictions in Mplus, multiple group analysis cannot be specified

in conjunction with maximum likelihood estimation. However, I have developed

a work around through the use of the mixture modelling option. Maximizing the

multiple group log-likelihood in (2.13) is equivalent to maximizing a mixture model

log-likelihood with known class membership.

To show this, consider the following mixture density for observed variables y:

f (y; ϑ) =
G

∑
g=1

π(g) f (g)(y; ϑ), (2.14)

where π(g) is the mixing probability and f (g)(y; ϑ) is the within-class density. The

fact that ϑ is shared across classes means that cross-class (i.e., cross-group) constraints

are permitted. With unknown class membership, the mixing probabilities must be

estimated. However, if the class membership is known, as is the case here, the vector

(π(1), . . . , π(G)) becomes a Bernoulli vector with zeroes everywhere except on the
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location for the class to which the observations in y belong. This is equivalent to

f (y(g)
i ; ϑ) = f (g)(y(g)

i ; ϑ),

where y(g)
i denotes observation i from group g, so that the π(g)’s that are zero drop

out of the mixture density (details on mixture modeling can be found in Bauer &

Curran, 2004). In Mplus, this approach is implemented with the KNOWNCLASS

option for mixture models. It is important to note that this is currently the only

practical method available for estimating the model discussed above.

2.6 Non-normal Latent Variables

Based on the theory developed in Chapters 1 and 2, FIML performs well with nor-

mally distributed latent variables (Lee & Zhu, 2002). However, its performance when

the exogenous latent variables are non-normal is still unknown. Existing knowledge

is mostly on the robustness of product indicator methods. For example, Marsh et

al. (2004) compared four methods using product indicators, the constrained MWL

approach, the unconstrained MWL approach, the GAPI method (Wall & Amemiya,

2001), and QML (Klein, 2007). They pointed out that all four approaches were rel-

atively unbiased for normally distributed latent variables with large sample sizes.

When the latent variables were non-normal, the unconstrained and GAPI approaches

were more robust.

Three general research questions arise. First, the quality of the FIML estimates

under both normality and non-normality must be studied. Second, the performance

of FIML, both in terms of parameter recovery and accuracy of the chi-square dif-

ference test, should be compared with product indicator based methods. Third, to

show that FIML is applicable in substantive research, one must investigate its sta-

tistical power, preferably also relative to product indicator methods. To investigate

these questions, a simulation study is necessary. I chose the unconstrained maximum
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likelihood approach by Marsh et al. (2004) (hereinafter UML) as representative of the

product indicator approaches because it is the easiest for an applied researcher to im-

plement and is among the best performing methods in existing simulation studies.
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CHAPTER 3

Methods

3.1 Simulation Design

I designed the simulation study to achieve two goals. The first is parameter

recovery and accuracy of standard error estimates under different conditions. The

second is the behavior of the chi-square difference statistic for testing the three-way

interaction hypothesis.

Particular emphasis is placed on finite sample performance. Maximum likeli-

hood performs optimally under large sample, but for realistic sample size in psycho-

logical research, the large sample results depend also on the degree of complexity of

the model under investigation (van der Vaart, 2000). It may be the case that a much

larger sample size than is usually needed would be required for the asymptotic re-

sults to hold in the three-way interaction model. It may also be the case that the

power of the proposed likelihood ratio test may be too low at the typical sample size

encountered in real data analysis where the thee-way model may be used.

In this simulation study, four design factors are manipulated: estimator (FIML

and UML), distribution of latent variables (normal and non-normal), sample size

(N = 150 and N = 500 per group) and three-way interaction effect (present and

absent). To retain focus, I only consider models with two groups (labelled as group

0 and group 1 hereinafter). However, the extension to more than two groups is

straightforward.



Crossing the two estimators (FIML and UML) with two conditions of latent

variables (normal and non-normal), two conditions of three-way effect (absent and

present), and the two sample sizes (150 and 500 per group) results in 16 simulation

conditions.

3.2 Generating Model

Under all conditions, for either group 0 or group 1, the generating measurement

model is




y1

y2

y3

x1

x2

x3

x4

x5

x6




=




0

1

1.4

0

1

1.4

0

1

1.4




+




1 0 0

0.8 0 0

0.5 0 0

0 1 0

0 0.8 0

0 0.5 0

0 0 1

0 0 0.8

0 0 0.5







η

ξ1

ξ2




+




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9




, (3.1)

where ε1 ∼ N (0, 0.7), ε2 ∼ N (0, 0.8), ε3 ∼ N (0, 1.5), ε4 ∼ N (0, 0.7), ε5 ∼ N (0, 0.8),

ε6 ∼ N (0, 1.5), ε7 ∼ N (0, 0.7), ε8 ∼ N (0, 0.8), ε9 ∼ N (0, 1.5).

The structural equation for group 0 is

η = −1.5 + 0.7ξ1 + 0.5ξ2 + ζ, (3.2)

where ζ ∼ N (0, 0.6). The interaction coefficient is set to zero in this group so that

the product term drops out. In group 1, when data are generated under the null

hypothesis (i.e., absence of three-way interaction effect), the structural equation is

exactly identical as Equation (3.2). Under the alternative hypothesis (i.e., when there
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is three-way effect), the structural equation for group 1 is

η = −1.5 + 0.7ξ1 + 0.5ξ2 + 0.125ξ1ξ2 + ζ, (3.3)

where ζ still has mean zero and error variance .6. In all conditions, ξ1 and ξ2 are

uncorrelated, with ξ1 having a mean of 2 and variance of 1.5, and ξ2 having a mean

of 1 and variance of .7. The squared multiple correlation for the structural equation

(3.3) is .70. The effect of ξ1, ξ2 and the interaction each account for 14.95%, 2.37%

and 0.79% of the variance of η, as measured by squared semi-partial correlations.

These effect sizes are commonly seen in applied research. Considering the fact that

the equation disturbance variance is equal to 0.6, the magnitude of the three-way

effect (i.e., the difference in the γ3’s between group 0 and 1) corresponds to a small

effect size (d = 0.16), when expressed in terms of Cohen’s (1992) d. Keeping the

three-way effect small is important because it will enable the simulation to provide

rough guidelines for the appropriate sample size in applied research.

The data were simulated in SAS (SAS Institute Inc., 2004). When the exogenous

latent variables ξ1 and ξ2 were normally distributed, the SAS RANNOR function was

used. Under the non-normal conditions, ξ1 and ξ2 were generated as independent

central chi-square variates each with 6 degrees-of-freedom, just as Marsh et al. (2004)

did in one of their studies. They argued that this chi-square distribution is a reason-

able representation of skewed data and has been used in Wall and Amemiya (2001)’s

simulations for the GAPI approach too.

Specifically, the RANGAM function was used to generate the chi-square variates.

The random numbers were then standardized by subtracting their mean (6 for chi-

square with 6 degrees-of-freedom) and dividing by their standard deviation (
√

12) to

produce standardized variates that are subsequently transformed to have the same

means and variances as the normal conditions. Figure 3.1 illustrates the density func-
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Figure 3.1: Density Function of χ2
6 Distribution
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tion of a chi-square distribution with 6 degrees-of-freedom. Note that its skewness is

equal to 1.15 and its kurtosis is 2.

The nine indicators (x1 to x6 and y1 to y3) were then generated with non-normal

latent variables and normal residuals. It is important to note that even though the

latent variable were distributed non-normally, the marginal distributions of some

of the indicators were only mildly non-normal. More will be said about this later.

To test the univariate normality of the nine indicators in group 0 where there is no

interaction effect and all the non-normality of the indicators comes from the non-

normal latent variables, I conducted the Shapiro-Wilk test (Shapiro & Wilk, 1965) for

one simulated data set. Univariate normality was rejected for all indicators in group

0 both at N = 500 and N = 150 (p < .001) except for x3, x6, y2 and y3. For example, x3

only has a skewness of 0.10 and excess kurtosis of 0.03. As a result, the distributions

of those indicators with non-significant univariate normality test results may look

very similar to a normal distribution. However, univariate normality alone does
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not imply multivariate normality. To test the multivariate normality of the indicator

vector, I conducted Mardia’s multivariate skewness and kurtosis tests (Mardia et al.,

1979). The results indicated that at N = 500 the multivariate skewness was 3.69

and the kurtosis was 104.38, both being highly significant (p < .001). Even under

small sample size at N = 150, multivariate normality was still rejected with highly

significant multivariate skewness of 10.39 and kurtosis of 109.38 (p < .001).

3.3 Methods for Summarizing Results

In the evaluation of potential biases of estimation, both the absolute bias and

the relative bias of the parameter estimates are examined. Let M be the number of

replications in a condition. Absolute bias (or raw bias) of point estimates, defined as

the Monte Carlo average of the point estimates minus the true parameter value,

B(θ) = M−1
M

∑
i=1

(θ̂i − θ),

can tell the difference between the true parameter value and the mean of parameter

estimates across replications. Relative bias of point estimates, defined as raw bias

divided by the true parameter value (when the ratio is well-defined),

Br(θ) = M−1
M

∑
i=1

(θ̂i − θ)
θ

,

is the proportion of absolute bias relative to the true parameter value.

To evaluate the standard errors, the mean of the estimated standard errors for

that parameter across the replications should be compared with the Monte Carlo

standard deviation of a given parameter estimate. Let

SE(θ̂) = M−1
M

∑
i=1

SE(θ̂i),
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be the mean of the estimated standard errors, where SE(θ̂i) is the estimated standard

error from replication i, and let

SD(θ̂) =

(
1

M− 1

M

∑
i=1

(θ̂i − ¯̂θ)

)1/2

be the Monte Carlo standard deviation of the point estimates, where ¯̂θ is the mean

of point estimates. As a comparable measure of accuracy of the standard error esti-

mates, the relative bias of the standard errors is also reported. It is defined as:

Br(SE) =
SE(θ̂)− SD(θ̂)

SD(θ̂)
.

Root Mean Square Error (RMSE), which can provide information of both the

distance of each parameter estimate from the true value and the variability of such

distances is also calculated. For a generic parameter θ, RMSE is defined as

RMSE =

(
1
M

M

∑
i=1

(θ̂i − θ)2

)1/2

,

where θ̂i is the estimate from replication i, θ is the true value.
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CHAPTER 4

Results

4.1 Convergence and Proper Solutions

After the raw data were generated in SAS and saved, all model fitting was con-

ducted in Mplus Version 5 (Muthén & Muthén, 1998–2007). For FIML, 15 quadra-

ture points per dimension of integration was used for all conditions. Due to non-

convergence and improper solution problems using UML, 800 to 1000 replications

per condition were conducted to ensure that there were at least 500 converged and

proper solutions (i.e., no negative variances or non positive definite covariance ma-

trices) in each condition. Default starting values were used.

FIML converged with proper solutions for all replications under all conditions,

while UML had significant convergence issues. Such problems were more severe

when the sample size is small (N = 150). The results for the rates of convergence

and proper solutions are summarized in Table 4.1. To make the results directly com-

parable across the two estimators, the first 500 replications in each condition where

both FIML and UML properly converged were used for all subsequent comparisons

of parameter estimates, standard errors, and likelihood ratio test statistics. In other

words, in any given condition, the results for FIML and UML were based on precisely

the same data set.

The results in Table 4.1 is striking on its own. For example, in the worst case

scenario, UML had only 57% proper solution rate when there is no interaction effect
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under normal condition at N = 150. This is in sharp contrast with the optimistic

results reported by Marsh et al. (2004), wherein UML converged properly in 88.8%

to 100% of the cases. Despite software difference (LISREL was used in their paper),

one plausible explanation is that Marsh et al. only considered one group. Another

plausible explanation is that the generating model used in the present investigation

had a much weaker interaction effect. The proportion of variance explained by the

interaction term in Marsh et al.’s (2004) model is over 5 times larger than the effect

size in the current simulation.

To further investigate the high rate of non-convergence and improper solutions

observed in the simulations, I conducted logistic regression analysis of the rate of

converged and proper solutions for UML (represented in Table 4.1 in the second

column but last), using the design factors (sample size, interaction effect, and latent

variable normality) as the predictors. The overall likelihood ratio chi-square for all

regression coefficients against the intercept only model is χ2(d f = 7) = 385.23, p <

.0001. The results showed that the single most important predictor for the rate of

convergence is sample size. For instance, the odds of non-convergence is 3.38 times

higher (β = 1.22, p < .001) for N = 150 than N = 500. The results also showed

that the rate of non-convergence can be partly attributed to the size of the interaction

effect. When the interaction effect is not present, the odds of non-convergence is 1.39

times higher (β = 0.33, p < .01) than the conditions where the interaction effect is

present. All subsequent analysis are based on 500 properly converged solutions for

both FIML and UML.

4.2 Likelihood Ratio Test of Interaction Effect

To test the significance of the three-way interaction effect, a constrained model

was fitted to each data set, where γ
(0)
3 and γ

(1)
3 were freely estimated but constrained

to be equal. Next, an unconstrained model was fitted to the same data, where γ
(0)
3

and γ
(1)
3 were not constrained to be equal. This was done for both FIML and UML.
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Then the three-way interaction effect was tested with the likelihood ratio test statistic

in reference to a chi-square distribution with 1 degree-of-freedom (i.e. a chi-square

change test).

Table 4.2 summarizes the results for the likelihood ratio test as well as additional

model fit information for UML. Note that because FIML identifies the parameters

directly from the raw data and a nonlinear model is fitted, there does not exist a

natural saturated model for FIML. Therefore, the chi-square test of the model is

undefined for FIML. In contrast, UML identifies the parameters from mean vectors

and covariance matrices, so a saturated model is clearly defined. For the restricted

model, the degrees-of-freedom for UML is 147, and for the unrestricted model, the

degrees-of-freedom for UML is 146.

Under all null conditions, i.e., where γ
(1)
3 = 0, the means of the estimated model

fit chi-squares are all sightly larger than the degrees-of-freedom. For example, under

normal condition at N = 150, the means of the chi-squares for the restricted and

unrestricted models are 155.93 and 154.72 respectively, both being larger than the

degrees-of-freedom (147 and 146 respectively). The standard deviations for the two

means are 22.14 and 22.04 respectively, and both are larger than the expected value,

which are equal to the square root of 2 times the degree-of-freedom (17.15 and 17.09

for restricted and unrestricted models, respectively).

Turning attention to the likelihood ratio statistic for the comparison of the re-

stricted and the unrestricted models, it can be seen from the last two columns in

Table 4.2 that under the null hypothesis, both UML and FIML provide essentially

unbiased chi-square statistics, at least when latent variables are normal. For exam-

ple, at N = 150, the mean of the FIML chi-squares (0.95) is close to the the expected

value of 1. In the same condition, the mean of the UML chi-square (1.21) is simi-

larly close. Under all normal and non-normal null conditions, the means of FIML

chi-squares are consistently closer to 1 than the UML chi-squares. The exception
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is normal data and N = 500, where the mean of FIML chi-square (1.12) is slightly

further from the expected value of 1 than the mean of UML chi-square (1.05). This

may be due to the fact that more quadrature points are needed as N increases so

that the error of integral approximation does not contaminate the calculation of the

marginal log-likelihood. Recall that there is one integral per subject and the marginal

log-likelihood is accumulated over the number of subjects. Minor inaccuracies for

individual integral approximations may become amplified as N increases.

When the latent variables are non-normal, both UML and FIML lead to biased

chi-square values, but the bias is more pronounced with UML. For example, at N =

150 and N = 500, the FIML chi-squares are 1.16 and 1.10 respectively, which are

closer to 1 than the UML chi-squares (1.21 in both sample sizes).

Under the alternative hypothesis, the mean and variance of chi-squares from

FIML are much larger than those of UML. This suggests that UML has low power

to detect the interaction effect than FIML. This point is clearly illustrated in Table

4.3, where the empirical Type I error rates and power estimates for the likelihood

ratio test of the restrictions on γ
(0)
3 and γ

(1)
3 are tabulated. Table 4.3 shows that both

UML and FIML have calibrated Type I error rates when latent variables are normal.

FIML’s type I error rates are closer to the alpha level than UML. For example, at the

traditional alpha level of .05, the type I error rate was .06 for UML and was .05 for

FIML. When latent variables are non-normal, both methods have slightly elevated

Type I error rates. For example, the type I error rates for UML and FIML are .07 and

.08 respectively at N = 150, and are .08 and .07 at at N = 500 respectively.

In Table 4.3 under the alternative hypothesis, the equality constraint rejection

rate represents power to detect the interaction effect. For both normal and non-

normal conditions, UML has substantially lower power than FIML. The difference in

the power between UML and FIML are striking for all conditions. For example, at

alpha level of .05 when N = 500, UML has a power of .28 under normal conditions
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and a power of .31 under non-normal conditions, whereas FIML’s power is 1 under

both normal and non-normal conditions. Note that when N = 150 under normal

condition, FIML had a power of .76 to detect the interaction effect at the conventional

alpha level of .05. In the same condition, UML’s power is .18. This is a practically

significant difference and implies that researchers who use FIML are more than four

times more likely to find a significant effect at this sample size.

It is interesting to see in Table 4.3 that UML’s power under non-normal conditions

is higher than its power under normal conditions. This is probably due to the higher

type I error rate at non-normal conditions than normal conditions. In comparison,

there is not much change in power for FIML when latent variables go from normal to

non-normal . At alpha level of .05, FIML’s power is 1 at N = 500 in both normal and

non-normal conditions. Even at N = 150, FIML’s power is still maintained above .73.

4.3 Parameter Recovery and Standard Errors

In the evaluation of potential biases of estimation, I will concentrate on parameter

estimates and standard errors of the interaction effect γ3, because all other parameters

are set to be equal across the two groups. Table 4.4 shows the means and Monte Carlo

standard deviations of the point estimates of γ
(0)
3 and γ

(1)
3 for both UML and FIML

in the first two columns. The raw bias, relative bias and RMSE of the point estimates

are also reported.

Several features in Table 4.4 are immediately evident. First, FIML recovers pa-

rameters better than UML, and in many cases, much better. The last two columns

in Table 4.4 present values of RMSE which provide aggregated information on pa-

rameter recovery of γ
(0)
3 and γ

(1)
3 for both UML and FIML. The results indicate that

there is not a single condition where UML has a smaller RMSE than FIML. In several

conditions, the RMSE of UML is over 4 times the RMSE of FIML.

Second, UML’s variability is much larger than FIML. Again, the Monte Carlo

standard deviations of FIML are smaller than those of UML in all conditions. For
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example, under the alternative conditions with normal latent variable, the standard

deviations for γ
(1)
3 using UML are .58 and .12 at N = 150 and N = 500 respectively,

whereas using FIML, they are only .10 and .05 at N = 150 and N = 500 respectively.

Under the non-normal conditions, the standard deviations for γ
(1)
3 using UML (.48

and .44 at N = 150 and N = 500 respectively) are still much larger than the standard

deviations using FIML (.11 and .06 at N = 150 and N = 500 respectively).

Third, the bias of FIML is also uniformly smaller than UML. For example, for

UML estimation under multivariate normality, the interaction effect γ
(1)
3 was overes-

timated by 55% at N=150 and was also overestimated by 23% at N=500. In compari-

son, for FIML under the same multivariate normality condition, the interaction effect

was only overestimated by 7% at N=150 and was underestimated by 1% at N=500.

Under non-normal conditions, the interaction effect in UML was overestimated by

46% and 41% at N=150 and N=500 respectively, whereas in FIML, it was only over-

estimated by 11% and 15% at N=150 and N=500 respectively. Thus it can be safely

concluded that FIML provides superior point estimates.

Table 4.5 examines another aspect of parameter recovery, namely, the accuracy

of the standard error estimates. For a standard error estimate to be valid, its mean

across Monte Carlo replications must be close enough to the empirically observed

Monte Carlo standard deviation of the point estimates. The first and second columns

in Table 4.5 shows the means and standard deviations of the standard error esti-

mates for both UML and FIML. These entries should be compared with the Monte

Carlo standard deviations reported in columns 3 and 4. It is clear that overall under

both normal and non-normal conditions, FIML standard errors are closer to the ex-

pected Monte Carlo standard deviations. For example, for UML under the normal

alternative conditions at N=150, the mean of the standard error estimates for γ
(1)
3

across Monte Carlo replications was .31, whereas the empirically observed Monte

Carlo standard deviation of the point estimates is .58. In comparison, under the

39



same conditions at N=150, the difference between the mean of the standard error es-

timates and the observed standard deviation of the point estimates is much smaller

for FIML, whose mean of the standard error estimates for γ
(1)
3 is .09, and the corre-

sponding observed standard deviation of the point estimates is .10. At large sample

size N=500, such difference is not that big as in the small sample size for UML, in

which the mean of the standard error estimates for γ
(1)
3 is .10 and is not so far from

the empirically observed Monte Carlo standard deviation of the point estimate (.12).

In comparison for FIML at N=500, the mean of the standard error estimates and the

observed standard deviation of the point estimates are both .05.

Table 4.5 also presents the relative bias of the standard error estimates for γ
(0)
3

and γ
(1)
3 . Under normal alternative conditions, FIML standard errors have a slight

downward bias when N = 150 (10% underestimated for γ
(1)
3 ), but the bias goes

away completely at N = 500. The downward bias of UML is more pronounced

(47% underestimated for γ
(1)
3 ) and does not go away completely at N = 500 (17%

underestimated for γ
(1)
3 ). For the non-normal alternative conditions, both UML and

FIML have biased standard errors, but the bias of FIML is much smaller. For example,

at N = 150, standard errors for γ
(1)
3 in UML was underestimated by 31%, but in

FIML, it was only underestimated by 18%. At N = 500, standard errors for γ
(1)
3 was

underestimated by 70% in UML, but was still only underestimated by 17% in FIML.

The observed rejection rates of the univariate z tests of γ
(0)
3 and γ

(1)
3 are reported

in the final columns in Table 4.5. Under normal conditions at a traditional alpha

level of .05, UML could detect the effect of γ
(1)
3 only 10% of the time at N = 150 and

27% of the time at N = 500, whereas FIML could detect the effect 34% of the time

at N = 150 and 73% of the time at N = 500. Under non-normal conditions at the

traditional alpha level of .05, UML could detect the effect of γ
(1)
3 12% of the time at

N = 150 and 33% of the time at N = 500, whereas FIML could still detect the effect

34% of the time at N = 150 and 80% of the time at N = 500.
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These results are in accordance with the empirical estimates of statistical power

for test of equality constraints on γ
(0)
3 and γ

(1)
3 represented in Table 4.3. Under

both the normal and non-normal conditions at alpha level of .05, power increases

as sample size increases. For UML at N = 150 and N = 500, power is higher for

non-normal conditions (.21 and .31 respectively) than normal conditions (.18 and .28

respectively). For FIML at N = 150 and N = 500, power is .76 and 1 respectively for

normal conditions and is .73 and 1 respectively for non-normal conditions. Similar

trend can be found in the observed rejection rates of the univariate z test of γ
(1)
3 in

Table 4.5. Overall, FIML has higher power than UML under both normal and normal

conditions, and this is verified by the observed rejection rates of the univariate z tests

of γ
(0)
3 and γ

(1)
3 reported in Table 4.5.

The empirical rejection rates for univariate z test of estimated γ
(1)
3 under the

alternative conditions are based on the Wald test. Comparing the power of the Wald

test represented in Table 4.5 and the power of the likelihood ratio test shown in Table

4.3, one can find the difference in the powers of the two tests. Specifically, the power

of the Wald test is lower than the likelihood ratio test. Such difference is due to the

testing of a different null hypothesis. The likelihood ratio test is evaluating a null

hypothesis that γ
(0)
3 and γ

(1)
3 are equal, where as the Wald test is evaluating that each

individual coefficient is equal to zero.
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CHAPTER 5

Discussion

The goal of this research is to propose a new estimation method for three-way

interactions with latent variables based on full information maximum likelihood.

Specifically, the three-way interactions under this study refer to the two-way interac-

tion of latent variables with multiple groups. There has been little discussion about

models with three-way interactions in the literature and this model aims to fill that

gap. The FIML likelihood is derived and it is shown that the model can be fitted in

commercially available software using mixture modelling. The performance of FIML

is compared with the UML method (Marsh et al., 2004) in a simulation study fo-

cusing on chi-squaredness of the likelihood ratio test of interaction effect, parameter

recovery and standard error estimation, and violations of the assumption of latent

variable normality. In the conditions covered by the simulation, FIML outperformed

UML in virtually all meaningful aspects of the comparison. Several notable features

emerged from the present research and will be addressed in the remainder of this

chapter.

5.1 On Model Assumptions

To date, most of the existing work on parameter estimation for models with latent

variable interactions has focused on methods involving product indicators. These tra-

ditional methods attempt to identify the parameters of a (nonlinear) model from the

means and covariance matrix alone. UML is one of the most successful candidates



among this class of methods. The key benefit of UML, from the standpoint of its

proponents, is its simplicity. Any standard structural equation modelling software

can be used to implement UML and very little programming is involved. In contrast

with earlier product indicator based methods such as those studied by Jöreskog and

Yang (1996), UML does not require complex nonlinear restrictions be placed on pa-

rameters. Marsh et al. (2004) argued that the nonlinear restrictions are based on the

assumption of latent variable normality, and by not imposing the restrictions, “there

are no such assumptions” in the UML approach (p. 295). The first part of their

statement is correct, but the second part is not.

The derivations presented earlier in Chapter 2 show that as long as the MWL dis-

crepancy function is used for estimating the parameters, the joint vector of observed

variables and product indicators has to be multivariate normal, regardless of whether

the interaction-induced nonlinear restrictions are imposed or not. Multivariate nor-

mality of the indicators, which is at the heart of the MWL theory, does not distinguish

between product indicators and directly observed indicators. By definition, the prod-

uct indicators cannot even be univariately normal, and thus multivariate normality

collapses. One has to appeal to the robustness properties of the MWL estimator to

justify the use of MWL under such assumption violations.

Current asymptotic robustness theory (e.g. Amemiya & Anderson, 1990) on

MWL for mean and covariance structure analysis suggests that for linear structural

models, the MWL is robust (in large samples) under latent variable non-normality,

with the important qualification that the measurement errors (unique factors) must

be normally distributed. Thus, the technical conditions set forth in asymptotic robust-

ness theory depend both on the observed data and on characteristics of the model

that are hard to verify. Existing robustness results that are based on asymptotic argu-

ments and derived under linear structural equations do not shed light on the extent

to which the model in UML is robust against assumption violations.
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Essentially, the UML approach is attempting to identify nonlinear relations in

the data that are only identifiable from the raw data points by forcing a linear model

upon the means and covariances. In this regard, UML is doubly misspecified. The

criticism in Marsh et al. (2004) against Jöreskog and Yang’s (1996) use of nonlin-

ear restrictions is therefore misguided. One cannot cover up one kind of potential

misspecification (exogenous latent variable non-normality) by introducing another

kind of misspecification (dropping nonlinear restrictions on the parameters) whose

impact is even harder to understand than the first kind of misspecification. Further-

more, leaving the nonlinear restrictions free leads to an over-parameterized model,

i.e., there are more parameters than is needed to describe the data. This is fundamen-

tally against the principle of parsimony in model building. The (consequently weak)

argument about UML’s ease of implementation is therefore unfounded. As Jöreskog

and Yang (1996) pointed out, the nonlinear restrictions help define the nonlinear

model, so the they are part of a model. Potential violations of the latent normal-

ity assumption must be addressed, but it must be addressed directly, as opposed to

indirectly as in Marsh et al. (2004) by masking it with over-fitting.

This leads to a general question. When an existing modelling framework be-

comes incompatible with the data generating process, should we change the data

so that they fit into our familiar modelling framework, or should we change our

modelling framework? Latent variable interaction leads to nonlinearity. To model

it using standard linear tools, product indicators must be formed, so data must be

changed in the first place. Data can be changed in an infinite number of different

ways. This perhaps helps explain the abundance of seemingly contradictory findings

in the product indicator literature. Every change (no matter how small it may seem)

in the formation of product indicators, or the parameterization of the restrictions,

or the choice of discrepancy functions, leads to potentially important differences in

the quality of statistical inference regarding the interaction terms. At the same time,
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important contributions by Klein and Moosbrugger (2000) have been pushed to the

sideline due to the lack of software support and the lack of understanding of the

full generality of nonlinear structural equation models, of which the latent variable

interaction model is a special case.

As is shown in section 2.4, FIML can be implemented easily without fitting a mis-

specified model or violating the multivariate normality assumption of the indicators.

The fact that FIML still requires that the exogenous latent variables, measurement

errors and the equation disturbance terms be normal is a software restriction rather

than a restriction due to the lack of theoretical support. As noted earlier, FIML can

support arbitrary mixtures of measurement models by simply replacing the condi-

tionally normal measurement model density in Equation (2.7) with, say, a logistic

measurement model for Bernoulli data, or a cumulative logistic model for ordinal

data. To handle latent non-normality, one can conveniently replace the multivariate

normality assumption of the the disturbance terms mentioned above with multivari-

ate t assumption, or as Woods and Thissen (2006) showed in a slightly different con-

text, latent non-normality can be captured semi-parametrically using spline densities

or any other semi-parametric curve systems. These changes to FIML do not alter the

basic set up of the modelling framework and that is: a latent nonlinear structural

equation model can be directly identified from the raw data by forming a marginal

likelihood function and maximizing it over just as many parameters as it is necessary

to describe the nonlinearity. The resultant solution is asymptotically unbiased and

most efficient, and is based on the celebrated likelihood principle.

The only traditional approach that is “statistically correct” is the WLSA method

Jöreskog and Yang (1996) proposed. It is a true weighted least squares method that

does not require multivariate normality, and it gives asymptotically unbiased esti-

mates. However, it is still attempting to identify the parameters from the sample

moments, and it requires a very large sample size to be stable (Jöreskog & Yang,
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1996). To give due credit to Marsh et al. (2004), WLSA is extremely difficult to imple-

ment in practice, perhaps more so than FIML, thus leaving FIML the only practical

and theoretically justified candidate for use in applied research.

5.2 On Relative Performance

Given the fact that the present implementation of FIML still requires latent ex-

ogenous variable normality, its performance must be checked in comparison with

UML under both normality and non-normality. Via a simulation study, it is shown

that FIML significantly outperforms UML which has the best performance to-date in

simulations. In both normal and non-normal latent variable conditions, not only was

FIML able to recover the parameters more accurately, more honestly maintain Type I

error rates, but it also had much higher power than UML.

As expected from standard maximum likelihood theory, FIML’s performance be-

comes better with larger sample size, when normality of latent exogenous variables

is satisfied. Under normal latent variable conditions, it has a perfect proper con-

vergence record in the current study. The type I error rates are maintained at the

traditional .05 nominal alpha level. Its power for detecting the interaction effect is

estimated to be .76 at N = 150 (for alpha level of .05), and close to 1 at N = 500. It

only overestimates the coefficients of the interaction effect by 7% at N = 150, and is

almost unbiased at N = 500. In comparison, under the same normal latent variable

conditions, UML’s performance was unacceptable. It converged 57% to 82% of the

time with proper solutions; it has inflated type I error rate and low power (.18 to .28);

it overestimates the regression coefficients for the interaction effect by 23% to 55%.

Under non-normal latent variable conditions, bias resulted from assumption vi-

olations, which is expected, but unexpectedly UML performed worse than FIML,

despite claims made by Marsh et al. (2004) about its insensitivity to non-normality.

Specifically, FIML still converged 100% with proper solutions, but UML only con-

verged 57% to 82% of the time with proper solutions. Both FIML and UML have
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inflated type I error rates, but UML has much lower power (.21 and .31 at N = 150

and N = 500 respectively) than FIML (.73 and 1 at N = 150 and N = 500 respectively)

at the traditional alpha level of .05 for detecting the interaction effect. Regarding the

bias in the point estimates of the interaction effect, both FIML and UML are biased.

However, UML’s bias is much more severe (overestimated by 46% at N = 150 and

41% at N = 500) when compared with FIML (overestimated by 11% at N = 150 and

15% N = 500 respectively).

In retrospect, the lackluster performance of UML may not be completely unex-

pected. Marsh et al. (2004) only considered UML in one group, and the interaction

effect in their simulation study (.2 when interaction effect is present) is much higher

than the present study (.125 for the interaction effect in group 1). It is reasonable to

expect that UML’s performance appears better in their study when the interaction

effect is more pronounced and when there is no multiple groups involved. Above

all, UML involves a misspecified model. Convergence problems become more prob-

lematic as one increases the complexity of a model already misspecified. In this case,

adding more groups clearly increases the complexity, so that the previous problems

such as low rate of convergence become more serious.

5.3 Limitations and Future Research

As with all simulation studies, my findings only directly generalize to the con-

ditions studied here, and these may not fully represent those commonly found in

applied research settings. I will thus describe the potential limitations, attempt to

address the extent to which they threaten the external validity of the current study,

and outline directions for future research.

In the current study, the indicators were generated with non-normal common fac-

tors and normally distributed unique factors, resulting in some univariate marginal

distributions appearing to be only mildly non-normal, despite the fact that the vector

of indicators is still jointly multivariate non-normal. Under the current set of condi-
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tions, FIML performed better than UML, but its success requires further investigation

when both the common factors and the unique factors are more severely non-normal.

However, under a high degree of non-normality, perhaps the more fruitful avenue to

take is to utilize the inherent flexibility of the FIML method and implement it with

semi-parametric latent variable densities such as the ones discussed by Woods and

Thissen (2006).

Another limitation in the current study is that the indicators are all continuous.

In an applied setting, the observed variables could be of mixed types, such as binary

or ordinal. This points to some more directions for future research. As mentioned

in section 2.3, FIML can be readily extended to the case of categorical observed indi-

cators, or where there is mixed type indicators. Much is already known in standard

structural equation modelling for non-normal indicators, but relatively little has been

done for non-linear models. The proposed method laid out in this research should

be helpful in those future extensions.

A further limitation in the current design is that the covariance between the two

latent exogenous variables is set to zero in the generating model. The fitted model

does contain a parameter for the covariance, but it is rare in applied settings to have

two predictors completely uncorrelated. Future simulations are needed to investigate

whether the FIML estimator would perform differently when the covariance is non-

zero.

In the current generating model, all parameters except the interaction effect in

the second group are equal across the two groups. This also may be an unrealistic

condition in some areas of research. The unconditional effects of the two latent

variables could be different across groups. When more parameters are allowed to be

different across groups, the model becomes more complicated, but more realistic and

more generalizable at the same time. Future research will reveal how much more

complicated a model FIML could handle.
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Marsh et al. (2004) investigated much larger interaction effects than the current

study. They reported satisfactory rate of proper solutions (above 94%) as well as

power for UML. The small effect size in the current study is specifically chosen so

as to ensure a fair comparison between FIML and UML. As discussed in Chapter 4,

FIML’s power sometimes approaches 1.0 even with a small effect size. Choosing a

larger effect size could lead to no variability for FIML results, i.e. power consistently

equal to 1.0. In future simulations, effect size and sample size should be chosen

carefully to obtain a more detailed comparison of UML and FIML. The combination

should not result in lack of variability for one or both estimators.

In an applied research setting, one can easily extend the non-linear structural

equation model demonstrated here by adding more covariates. In the current model,

the set of covariates only contain latent variables. It would be advantageous in ap-

plied research to add more observed predictor variables into the structural equation.

Furthermore, the observed predictor variables can also potentially interact with other

observed or latent predictor variables. The resulting model would be far more com-

plex and realistic. FIML is ideally suited for such extensions because the addition

of more predictors does not change the scheme of parameter estimation already laid

out. The product indicator methods on the other hand, would have a more difficult

time handling more observed predictor variables in the structural model.

Despite these potential limitations, these simulation results provide a new and

unique insight into the promising method of FIML for estimating latent variable

interactions. Further, the implementation of FIML in applied research can be demon-

strated in future explorations with appropriate data sets where the model could be

more flexible and realistic as shown above.
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