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ABSTRACT 

 

Christopher Brooke 

Evaluation of the Protective Roles of Complement Activation and T cells During 

Venezuelan Equine Encephalitis Virus Infection 

(Under the direction of Robert E. Johnston) 

 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that 

can cause a potentially lethal encephalomyelitis in humans and equids.  There is 

currently no licensed vaccine available for use in humans.  Efforts to understand the 

host requirements for successfully controlling VEEV infection have been limited by 

the extreme lethality of the virus in small animal models.  Here we describe the use 

of the V3533 mutant of VEEV as a model for successful control of VEEV infection.  

Following peripheral inoculation of a mouse, V3533 behaves similarly to lethal 

strains of VEEV.  Rapid replication of V3533 in secondary lymphoid organs results in 

the development of a serum viremia, followed by viral invasion of the central nervous 

system (CNS).  The infection is short-lived, however, as the development of an 

adaptive immune response results in clearance of infectious virus from all tissues by 

day 8 post-infection.  Using this model we identified previously unappreciated roles 

for complement activation and T cells in promoting recovery from VEEV infection.  
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Complement activation within the first 24 hours of infection enhanced serum 

clearance and delayed viral invasion of the CNS, preventing the development of 

overt encephalomyelitis.   This effect was independent of anti-VEEV antibody 

induction or inflammatory cell recruitment.  In addition, we showed that T cells, 

particularly CD4+ T cells, were capable of controlling V3533 infection in the CNS and 

facilitating recovery from severe encephalomyelitis in the absence of antibody.  

Together, these results provide a starting point for future efforts to identify the 

requirements of a protective host response to VEEV infection. 
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Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the 

genus alphavirus that is responsible for a significant disease burden in Central and 

South America through sporadic outbreaks into human and equid populations (256).  

VEEV infection in humans causes a spectrum of disease that ranges form 

asymptomatic to mild, flu-like illness to overt encephalomyelitis, with an overall case 

mortality rate of about 0.5-1%.  In equid populations, the development of overt 

encephalomyelitis is more common, and the overall mortality rate often exceeds 

50% (252).  Much of our current understanding of VEEV pathogenesis and immunity 

comes from studies carried out in a well-characterized mouse model of infection.  

Typically, VEEV infection of mice results in the development of a lethal 

encephalomyelitis within 6-8 days of infection, however, one unique VEEV mutant 

called V3533 invades and replicates within the central nervous system (CNS) of 

mice without inducing severe morbidity or mortality.  This virus has provided an 

excellent model for understanding the viral and host factors that determine whether 

infection progresses to death or successful immune control and recovery.  

Specifically, the studies described here reveal previously unappreciated roles for T 

cells and the complement system in controlling VEEV infection and influencing 

disease outcome.  In order to provide the pertinent background, the following 

sections review the current literature concerning VEEV biology, the host complement 

system, and the regulation of immune responses within the CNS. 

 

VENEZUELAN EQUINE ENCEPHALITIS VIRUS BIOLOGY 

GENOMIC ORGANIZATION 
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Venezuelan equine encephalitis virus (VEEV), a member of the genus alphavirus, is 

encoded by a single positive-sense RNA of approximately 11,400 nucleotides that is 

capped with a 5’ terminal 7-methylguanosine as well as polyadenylated at its 3’ 

terminus (119).  The 5’ two-thirds of the viral genome encodes the four non-

structural proteins (nsp1-4) in a single open reading frame.  The 3’ third of the 

genome contains a second open reading frame that encodes a subgenomic, 26S 

RNA that yields the three major structural proteins, capsid and the E1 and E2 

glycoproteins, as well as the 6K polyprotein (232).  In between these two regions lies 

a ~38 nucleotide junction region that contains the transcriptional promoter, start site, 

and non-translated leader sequence for the 26S subgenomic mRNA encoding the 

structural polyprotein.  Four conserved sequence elements (CSE) that are important 

for replication have been identified, two near the 5’ end of the genome, one in 

between the nonstructural and structural gene cassettes, and one immediately 

upstream of the poly(A) tail (125-127).  Finally, the VEEV genome is flanked by short 

nontranslated regions (NTR) at the 5’ and 3’ termini, 44 and 121 nucleotides in 

length respectively, both of which are required for replication of the genomic RNA 

(232).     

 

REPLICATION STRATEGY  

While the molecular mechanisms underlying VEEV replication have not been 

extensively examined, a great deal of research has been performed using related 

alphaviruses, including Sindbis virus (SIN) and Semliki Forest virus (SF), and it is 

thought that findings obtained in those systems apply generally across the genus 
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Alphavirus.  Therefore, findings from various alphaviruses will be discussed below 

with the assumption that they apply to VEEV as well. 

 

ENTRY AND UNCOATING 

Alphavirus attachment and entry are mediated primarily by the viral E1 and E2 

glycoproteins. These two proteins form stable heterodimers on the surface of the 

virion particle that are further organized into trimeric spikes by E1-E1 interactions 

(198, 232).  The E2 protein, which protrudes from the virion surface, is thought to 

mediate target cell recognition via interaction with an unidentified host protein 

receptor (43, 198).  The exact mechanism by which alphaviruses transmit their 

genomic RNA into the cytoplasm remains unclear.  A series of studies have 

suggested that entry occurs through virus-cell membrane fusion in the early 

endosome.  Following E2-mediated attachment, viral particles rapidly enter the cell 

via endocytosis, demonstrated by the disappearance of viral glycoproteins from the 

cell surface following SIN infection (47).  The acidification of the early endosome to 

pH ≤ 5.5 causes the reduction of glycoprotein disulfide bridges, leading to a 

conformation change in E1 that exposes the fusion domain (1, 57, 115, 150).  With 

SF, this process has been shown to occur within five minutes of attachment (89).  

Exposure of the hydrophobic, 17-amino acid fusion domain then triggers fusion of 

viral and host lipid bilayers by an as-yet undescribed mechanism, releasing the viral 

nucleocapsid into the cytoplasm (232).  Alternatively, Brown and others have 

suggested that SIN infection can occur through a membrane fusion-independent 

mechanism (191).  They showed that, following a low pH-induced conformational 
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change in the viral glycoprotein coat, SIN could bind the cell surface and release the 

viral genomic RNA into the cytoplasm without inducing membrane fusion or 

disassembling the viral protein shell.  Other studies have demonstrated SIN infection 

in the presence of weak bases, calling into question the low pH requirement for 

alphaviral entry (23, 30).   

 

The process of nucleocapsid uncoating has also best been described in the Sindbis 

virus and Semliki Forest virus systems.  Following release into the cytoplasm, 

incoming nucleocapsids rapidly associate with the large 60S subunit of host 

ribosomes (222, 258).  Binding of viral capsid protein to the 60s subunit was shown 

to require exposed rRNA sequence, as RNase pretreatment abolished binding, 

potentially a 400 nucleotide stretch of the 28S rRNA molecule that shares 54% 

sequence homology with the SIN encapsidation sequence (222, 257).  The 

association with ribosomes has been demonstrated to be both necessary and 

sufficient for the uncoating of SF virus capsid protein from the viral RNA in vitro 

(222).  Singh and Helenius hypothesized that uncoating resulted from capsid 

molecules being stripped away from the viral RNA by higher affinity binding sites on 

the 60S subunit.  This hypothesis was supported by the findings that the uncoating 

process required no energy input, occurred in a stoichiometric rather than catalytic 

fashion, and resulted in the long-term association of un-degraded capsid with the 

60S subunit (222, 232).  One problem that has kept this hypothesis from being 

universally accepted is that it does not explain how newly synthesized capsid 
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proteins are able to stably associate with viral RNA during assembly in the continued 

presence of ribosomes. 

 

TRANSLATION AND REPLICATION 

 Much of what is known about alphavirus protein translation and RNA replication was 

described in the SIN system (232).  Once released from the nucleocapsid structure, 

the incoming viral genomic RNA acts as a messenger RNA for the translation of the 

four nonstructural proteins (230).  In the case of VEEV, as well as many other 

alphaviruses including Sindbis virus, the nonstructural proteins are translated as two 

distinct polyproteins (119, 232).  The predominant species produced is the P123 

polyprotein that eventually gives rise to nsP1, nsP2, and nsP3.  Translation of the 

P123 polyprotein is terminated by an opal codon at the nsP3-nsP4 junction.  

Readthrough of the opal codon, which is estimated to occur with a frequency of 

about 10-20% in SIN, results in the production of the second polyprotein, P1234 

(139).  Upon translation of the P1234 polyprotein, cis cleavage at the nsP3/4 

junction by the protease domain of nsP2 occurs rapidly, yielding P123 and nsP4 as 

products (132, 133).  Subsequent cleavage of P123 at the nsP1/2 and nsP2/3 

junctions to yield mature nsP1, nsP2, and nsP3 is dependent upon the viral protease 

acting in trans and thus occurs with slower kinetics than the nsP3/4 cleavage (219).   

 

The four mature nsPs are multifunctional proteins that are all required for viral 

replication (232).  The nsP1 protein contains the viral guanine-7-methyltransferase 

and guanylyltransferase activities necessary for capping genomic and 26S RNA 
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(128, 164).  In addition, nsP1 is the only alphavirus nonstructural protein that has 

been shown to directly associate with cellular membranes (194).  This association, 

which is thought to occur through the combined effects of a palmitoylated cysteine 

residue at residue 420 (position in SIN) and an amphipathic α-helix between 

residues 245 and 264 (position in SF), is probably responsible for anchoring 

replication complexes to cellular membranes (127, 130).  As mentioned earlier, the 

viral papain-like serine protease is contained within the C terminus of nsP2 (229).  At 

its N-terminus, nsP2 contains helicase, NTPase, and RNA triphosphatase activities 

that are required for viral RNA replication (67, 205, 246).  The exact function of the 

nsP3 protein in viral replication remains unclear, though mutational studies have 

made it clear that it does play a role (131).  Finally, the nsP4 protein provides the 

viral RNA-dependent RNA polymerase activity (76).   

 

Productive infection of a cell by an alphavirus requires the highly orchestrated 

production of three distinct RNA species: plus-strand genomic RNA, the 

complementary minus-strand RNA, and the plus-strand subgenomic 26S RNA.  This 

process, which takes place on the cytoplasmic side of endosomal and lysosomal 

membranes, is initiated by cleavage of the P1234 polyprotein into P123 and nsP4 by 

nsP2 (55, 132).  The resultant P123+nsP4 complex catalyzes minus-strand RNA 

synthesis beginning from the 3’ CSE of the parental genome, possibly with 

unidentified host proteins serving as co-factors (62, 79, 132, 133).  Due to the 

initially small pool of both positive-sense template RNA (ostensibly a single molecule 

at first) and nsP4 (due to inefficient readthrough of the opal codon at the nsP3/4 
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junction), minus strand RNA is not produced to great abundance during infection 

(254).  Meanwhile, as P123 and P1234 continue to be translated from the input 

genomic RNA and their local concentration increases, the reaction velocity of nsP2-

mediated trans cleavage of nsP1/2 and nsP2/3 also increases, giving rise to 

nsP1+nsP2+nsP3+nsP4 complexes (232).  The transition from a P123+nsP4 

conformation to an nsP1+nsP2+nsP3+nsP4 conformation apparently alters the 

initiation template specificity of the replicase complex, converting it irreversibly to an 

efficient producer of plus-strand, but not minus strand viral RNAs (134).  Thus, the 

alphaviral replicase complex acts as a feedback switch that allows for tight temporal 

control of both plus-strand and minus-strand RNA synthesis, regulated by the 

concentration of nsPs.    

 

Once the replicase complex has converted from minus-strand to plus-strand 

synthesis, two distinct RNA species are produced: the full-length genomic 49S RNA 

and the subgenomic 26S RNA.  The genomic and subgenomic RNAs utilize different 

promoters, located in the minus-strand 3’ NTR and the junction between the 

nonstructural and structural gene cassettes, respectively (232).  Roughly ten times 

as much subgenomic RNA is produced, compared with genomic RNA, during 

infection, though the mechanism underlying this disparity is not fully understood 

(203).  A panel of mutations in nsP2 of SIN result in less subgenomic RNA being 

produced relative to genomic RNA, suggesting that nsP2 might play some role in 

determining promoter choice during plus-strand synthesis (232).  Additionally, 

differential binding of host factors to the two promoters may also play a role (44). 
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PACKAGING AND EGRESS 

Translation of the subgenomic 26S RNA results in production of the capsid-PE2-6K-

E1 structural polyprotein.  The capsid precursor is located at the N-terminus of the 

polyprotein and is thus translated first.  Once the ribosome has cleared the junction 

between capsid and PE2, a serinelike protease domain within the C-terminus of 

capsid triggers the release of mature capsid from the polyprotein by cis-cleavage 

(75).  Upon cleavage from the polyprotein, capsid remains associated with the 

ribosome and appears to rapidly assemble into core complexes around genomic 

RNA (223, 244).  This assembly process is dependent upon capsid binding of a 

specific structural element within the genomic RNA molecule called the 

encapsidation signal (141, 248).  This process has been demonstrated to occur very 

rapidly in vitro, with nothing but purified genomic RNA and capsid protein, yielding 

nucleocapsid core-like particles with T=4 icosahedral symmetry similar to cores 

purified from mature virion particles (170).   

 

Following release of the capsid protein by self-cleavage, the resultant N-terminus of 

the remaining nascent structural polyprotein acts as a signal sequence that directs 

translocation of the PE2 sequence into the ER lumen (60).  Additional downstream 

stop-transfer and signal sequences result in the structural polyprotein being stitched 

through the ER membrane such that long stretches of PE2 and E1, as well as the N-

terminus of the 6K polyprotein, are translocated into the ER lumen as well (232).  

Immediately upon translocation into the ER lumen, the envelope proteins begin a 
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complex sequence of folding and conformational changes that is dependent upon 

host chaperones and disulfide bonding (18, 19, 41, 123, 172-174).  In parallel with 

this process, the VEEV envelope proteins contain 4 N-linked glycosylation sites, one 

on E1 and three on E2, that are glycosylated within the ER lumen (118).  In the case 

of SIN, N-linked glycosylation sites on the viral envelope proteins initially receive 

high mannose chains that are then trimmed and further processed into complex 

sugars based on their physical availability to the host glycosylation machinery (218, 

255).  The glycosylation of PE2 and E1 is thought to be essential for their proper 

folding, possibly by increasing their solubility, as inhibition of the host glycosylation 

machinery prevents transport to the cell surface (155).  At an undefined stage in the 

glycoprotein folding process, PE2 begins to oligomerize with a folding intermediate 

of E1, triggering egress from the ER into the Golgi network (144).  As the viral 

glycoproteins pass into the trans-Golgi network, host furin cleaves the N-terminus of 

PE2, yielding the mature E2 glycoprotein (38).    

 

Budding of virus particles requires direct interaction between the glycoproteins and 

the nucleocapsid core (235).  Studies using cryo-EM as well as viral genetics have 

suggested that the association of the viral glycoprotein and newly formed 

nucleocapsids is mediated by interactions between the cytoplasmic tail of E2 and a 

hydrophobic pocket located within capsid (171, 234, 235, 264).  Nucleocapsids are 

thought to diffuse freely through the cytoplasm until they encounter and bind the E2-

E1 complex at the plasma membrane, at which point the actual process of 

membrane extrusion required to produce viral particles is driven by lateral 
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interactions between the glycoproteins (249).  The interactions between the 

nucleocapsid and the glycoproteins are thought to induce a further maturation of the 

nucleocapsid, as nucleocapsids isolated from mature particles sediment more 

rapidly and are more sensitive to RNase treatment, compared with nucleocapsids 

isolated fom infected cells (29).  The 6K protein, of which about five to ten molecules 

are incorporated into virions, also plays some undefined role in the budding process, 

as deletion of 6K or substitution of a heterologous 6K from another alphavirus results 

in budding defects with SF or SIN, respectively (140, 261).      

 

HOST CELL EFFECTS 

TRANSCRIPTION/TRANSLATION SHUTOFF 

One of the most studied effects of alphavirus infection is the virus-induced shutoff of 

host protein synthesis that can occur as early as three hours after infection (232).  

This process, which does not affect the production of viral protein, is primarily 

considered as a means to limit the induction of a type I interferon response by the 

infected cell (69).  Viral mutants that lack the ability to induce shutoff of host protein 

synthesis are less cytopathic, and are often capable of establishing a persistent 

infection in vitro (54).  During SIN infection, shutoff of host protein synthesis results 

from viral inhibition of host transcription and translation by discrete mechanisms 

(69).  Mechanisms of host protein synthesis shutoff differ between Old World and 

New World alphaviruses, so findings obtained with SIN or SF may not apply to 

VEEV (59).  Most of the work on VEEV-mediated host protein synthesis shutoff has 

focused on inhibition of host transcription by the capsid protein.  Residues 33-68 of 
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the VEEV capsid protein have been demonstrated to be sufficient to induce 

transcriptional shutoff, and full-length virus lacking this sequence was shown to be 

non-cytopathic, suggesting that it was incapable of mediating shutoff (58).  Both the 

full-length VEEV capsid protein, as well as the 33-68 domain by itself, associate with 

nuclear pore complexes and inhibit importin-mediated nuclear import, though no 

direct connection between this function and shutoff of host transcription has been 

demonstrated (6).  Finally, full-length VEEV virus with mutations in the 33-68 domain 

of capsid were shown to be less virulent in neonatal mice than wild-type VEEV (58).  

 

INHIBITION OF IFN SIGNALING 

Like many viruses, VEEV is sensitive to the effects of type I interferon (IFN) 

signaling (102, 260). The sensitivity of VEEV to type II IFN has not been reported, 

however SIN is quite sensitive to type II IFN treatment (12, 15, 16).  While the 

inhibition of host protein synthesis can serve as a potent means of preventing IFN 

induction in response to infection, Simmons et al. have described a separate, 

shutoff-independent mechanism by which VEEV is able to antagonize the host IFN 

response (221).  Expression of the viral nonstructural genes by non-propagating 

VEEV replicon particles (VRP) prevented the induction of IFN-stimulated gene (ISG) 

expression in response to exogenous IFN-αβ and IFN-γ by preventing the activation 

and nuclear trafficking of STAT1.  The existence of multiple viral mechanisms for 

antagonizing the induction of the host IFN response underscores how critical this 

system is in restricting VEEV infection.    
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APOPTOSIS 

Alphavirus infection of mammalian cells frequently results in apoptosis in vitro, and it 

is thought that the induction of apoptosis in infected cells in vivo plays an important 

role in determining infection outcome (136).  Much of what is known about apoptosis 

induction by alphavirus infection comes from studies of SIN infection of mouse 

neurons.  In vitro induction of apoptosis by SIN has been demonstrated to be 

dependent upon caspase activity and Ras signaling, and can be inhibited in some 

cell types by overexpression of the host anti-apoptotic protein Bcl-2 (105, 114, 178).  

Additional studies have demonstrated that the susceptibility of neurons to SIN-

induced apoptosis depends on both the strain of virus used and the age of the 

animal, with neurons from neonatal mice (≤14 days of age) being much more 

susceptible than those from weanling or adult mice (72, 73, 243).  The ability to 

induce apoptosis in adult neurons is associated with increased neurovirulence in 

mice (243).  This pattern might help explain the extreme neurovirulence of VEEV, as 

it can induce apoptosis in adult neurons in vivo as well (99).  Whether VEEV induces 

apoptosis in other in vivo cell targets, such as dendritic cells, remains unknown. 

 

The exact mechanism(s) by which VEEV is able to induce apoptosis in neurons, or 

other cell types for that matter, is not known.  SIN has been demonstrated to induce 

apoptosis in a neuronal cell line by a fusion-dependent, but replication-independent 

mechanism, suggesting that the viral glycoproteins are involved (103, 104).  Entry of 

SIN rapidly activated acidic sphingomyelinase, which in turn hydrolyzed 

spingomyelin in the plasma membrane to release ceramide, a potent inducer of 
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apoptosis (103, 183).  In fact, overexpression of acid ceramidase was sufficient to 

prevent SIN-induced apoptosis (103).  In addition to the clear effects of the viral 

glycoproteins, there is almost certainly a role for the nonstructural proteins as well, 

as mutations in nsP2 result in a virus that is incapable of inducing apoptosis in vitro 

(54).     

 

VEEV MOUSE MODEL 

Efforts to understand the pathogenesis of VEEV infection are aided by the fact that 

experimental infection of rodents closely mirrors many aspects of disease observed 

in humans and equids (66, 100).  Infection of mice with molecularly cloned VEEV 

viruses, as well as the use of non-propagating VEEV replicon particles (VRP), have 

allowed the elucidation of multiple stages in the progression of VEEV infection and 

the development of disease (4, 28, 34, 35, 148).   

 

Sub-cutaneous (s.c.) inoculation into the footpad of a mouse is used in the lab to 

mimic the bite of an infected mosquito.  Following s.c. injection, non-propagating, 

GFP-expressing VRP (GFP-VRP) were used to identify the initial targets of VEEV 

infection in vivo.  By immune-fluorescence, the first cells to be infected by VEEV, as 

determined by GFP expression, stained positive for both DEC-205 and MHC class II, 

leading Macdonald et al. to conclude that they were Langerhans cells (148). 

Langerhans cells are a skin-resident dendritic cell population that is thought to play a 

key role in surveilling the epidermis for microbial insult (13, 87, 162).  This result is 

complicated somewhat by the absence of detectable CD11c, a universal dendritic 
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cell marker, on these cells (61).  Given recent studies defining at least three distinct 

skin-resident dendritic cell populations, further work is needed to more rigorously 

define the initial targets of VEEV infection in the skin (45, 87).  Regardless, the 

MacDonald et al. study clearly showed that GFP-positive cells with a dendritic 

morphology rapidly traffic to the draining popliteal lymph node following infection, 

with infected cells appearing in the draining lymph node by 30 minutes post-infection 

(148).  This observation is in line with multiple studies describing the rapid migration 

of Langerhans and other tissue resident dendritic cell populations to draining lymph 

nodes upon encounter of microbial stimulus (85-87, 162).      

 

Following migration of infected skin-resident cells to the draining lymph node, 

subsequent rounds of viral replication rapidly lead to extremely high viral titers (up to 

107 pfu/g) being detectable by 6 hours post-infection (4, 70, 148).  The pool of lymph 

node-resident cells that are susceptible to VEEV infection remains poorly defined, 

though a fraction have been shown to be DEC-205+, suggesting that they are 

dendritic cells (148).  Efficient replication within the draining lymph node then feeds 

into a serum viremia that is detectable by 12 hours post-infection (4, 70).   

 

The development of a sufficiently high concentration (≥104 pfu/mL) of infectious virus 

within the serum is required for viral invasion of the central nervous system (CNS) 

(K. Bernard, unpublished results).  The concentration-dependence of this process 

supports the hypothesis that neuroinvasion occurs when the diffusion of infectious 

virus through the permeable tight junctions of fenestrated capillary endothelial cells 
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facilitates infection of nearby cells of the peripheral nervous system (28).  Following 

infection of peripheral nerves, VEEV is then thought to disseminate to the CNS via 

centripetal spread (28).  The anatomical site where this process is thought to occur 

most efficiently is the olfactory neuro-epithelium, a unique mucosal surface that is 

densely innervated with the dendritic cilia of olfactory sensory neurons (28, 262).  

Using in situ hybridization, Charles et al. were able to demonstrate that olfactory 

sensory neurons within the neuro-epithelium were susceptible to VEEV infection 

(28).   The axons of these cells directly synapse with CNS neurons within the 

olfactory bulb, thus providing a potential route for the virus to circumvent the blood 

brain barrier and gain entry to the CNS (262).  Chemical ablation of this tissue 

delayed entry of the virus into the CNS, but did not prevent it, indicating that CNS 

entry via olfactory nerves is merely the most efficient of multiple possible entry 

routes (28).  One of the implications of this particular mechanism is that the 

efficiency of neuroinvasion is a function of the ability of the host to control the 

amount of infectious virus present in the serum in the first 24 to 48 hours following 

infection. 

 

Once VEEV has crossed from the serum into the CNS, it replicates predominately 

within neurons (28, 70, 217).  Consistent with neuroinvasion occurring via olfactory 

sensory neurons, virus is first detectable in the CNS by in situ hybridization within 

the glomerular layer of the olfactory bulb within 30 hours of peripheral infection (28).  

The glomerular layer of the olfactory bulb is where the axons of olfactory sensory 

neurons connect with post-synaptic cells of the CNS and thus would serve as the 
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entry point for virus entering the CNS via the olfactory neuro-epithelium (195).  

Subsequent spread throughout the olfactory bulb is followed by gradual 

dissemination to other areas of the brain connected through the olfactory network, 

including the pyriform cortex, entorhinal cortex, hypothalamus, amgdala, 

hippocampus, supraoptic nucleus, cerebellum, and brain stem, by day 6 post-

infection (28, 70).   

 

The neuropathology observed in mice infected with VEEV results from a 

combination of virus-induced cell death in infected neurons as well as the 

detrimental effects of the host immune response (27).  Neuropathology following 

infection with other encephalitic alphaviruses such as Sindbis virus and Semliki 

Forest virus is predominately driven by an immunopathic host response to the virus 

(48, 117, 135).  In SCID mice, however, which lack functional B and T cells, VEEV 

infection results in extensive neuropathology, characterized by progressive 

vacuolation of the neuropil and spongiosis, which eventually results in the death of 

the animal despite the absence of inflammation (27, 149).  This suggests that VEEV 

replication alone is sufficient to induce a lethal amount of neuronal pathology.  A 

potential mechanism for this effect is provided by the observation that, unlike many 

strains of Sindbis virus or Semliki Forest virus, VEEV infection of CNS neurons in 

adult mice can trigger apoptotic cell death (27, 99, 226).  One caveat with studies 

carried out in SCID mice is that microglial and other innate immune cell populations 

are intact and might be contributing to the observed pathology. 
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In immunocompetent mice, VEEV infection of the CNS results in the development of 

neuropathology that is distinct from that observed in SCID mice (27).  By 6 days 

post-infection, large numbers of mono- and polynuclear cells are seen in 

perivascular regions as well as within the parenchyma (27).  Meningitis and 

scattered micro-hemorrhaging are also characteristic.  In studies by Charles et al., 

SCID mice infected with VEEV showed an average survival time (AST) of 8.9 ± 0.9 

days compared with immunocompetent CB17 mice which survived an average of 6.8 

± 1.2 days, demonstrating that while the direct pathology induced by viral replication 

within the CNS is sufficient to induce mortality, the effects of the host inflammatory 

response exacerbate this process.   

 

IMMUNITY TO VEEV 

Efforts to identify the host immune mechanisms required for the successful 

development of immunity against VEEV have been hampered by the extreme 

lethality of the virus in small animal models.  Our current understanding of VEEV 

immunity comes primarily from in vitro studies, mouse studies using vaccination or 

transfer of immune serum or cells, and extrapolation from SIN experiments.  

Correlates of protection in humans remain poorly understood, and no licensed 

vaccine exists for human usage. 

 

The importance of the innate immune system in controlling VEEV infection has been 

clearly demonstrated by studies examining the interaction of the virus with the type I 

IFN system in mice.  Following infection of a mouse with VEEV, large amounts of 
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IFN-α/β are detectable in the serum within six hours, though the mechanism of this 

induction remains unknown (27, 215, 260).  In mice lacking the IFN-α/β receptor, the 

AST of VEEV-infected mice is shortened significantly in the absence of an intact 

type I IFN system, to 30 hours versus 7.7 days in control mice in one study (260).  

The dramatically reduced survival time of these animals appears to result from an 

inability to control viral replication and dissemination in the periphery, resulting in 

rapid (<14 hours) entry of the virus into the CNS (260).  Additionally, treatment of 

VEEV-infected mice with pegylated IFN-α was shown to prevent mortality and 

facilitate viral clearance, demonstrating the in vivo IFN sensitivity of VEEV (147). 

 

Antiviral antibodies can act to limit viral infection by multiple mechanisms.  Antibody 

binding to virus particles can prevent them from binding or entering target cells either 

through direct steric interference with cellular receptors or indirectly by preventing 

conformational changes within the viral envelop proteins required for infectivity (77).  

Non-neutralizing antibodies can also limit viral spread by facilitating clearance of 

virus from the blood by Fc- or complement receptor bearing cells in the 

marginal/sinusoidal zones of secondary lymphoid organs (77, 184).  Finally, virus-

specific antibody can directly bind and trigger the destruction of infected cells (214).  

In the case of infection with a neuronotropic RNA virus, the production of anti-viral 

antibodies, particularly neutralizing antibodies, is thought to be the key determinant 

of immunity (71).  
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The advent of hybridoma technology facilitated the identification of antigenic sites 

within the E1 and E2 glycoproteins of VEEV (208).  Analysis of a panel of 

neutralizing and non-neutralizing monoclonal antibodies (MAb) using a combination 

of competitive-binding and neutralization-escape assays allowed the identification of 

the major neutralization domains in E1 and E2 (208, 209).  For E2, the key 

neutralization domain was reported as lying between residues 182 and 207, based 

on the location of in vitro-generated neutralization escape mutations.  Neutralizing 

anti-E1 antibodies appear to also act by obscuring this domain, as an anti-E1 

neutralizing MAb competed with neutralizing anti-E2 MAbs for binding (208).  This 

finding mirrors work with SIN that showed binding competition between anti-E1 and 

anti-E2 neutralizing MAbs (231).    

 

In vitro neutralizing activity has been shown to be highly predictive of in vivo 

protective effect in mice infected with VEEV, as well as a variety of other viruses (77, 

209).  In fact, two different neutralizing anti-E2 MAbs were shown to protect mice 

against death when administered up to 24 hours after infection with aerosolized 

VEEV, an extremely rigorous challenge (197).  Non-neutralizing MAbs have been 

demonstrated to be protective in vivo as well.  An MAb against epitope b of VEEV 

E1 exhibited no neutralizing activity in vitro, and yet was highly protective against 

extremely high doses of multiple strains of VEEV in three week old mice when given 

prior to infection (154).  This result, as well as similar results obtained with non-

neutralizing anti-SIN MAbs, underlines the fact that anti-viral antibodies can limit viral 
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infection in vivo by numerous mechanisms that are not assessed by the standard in 

vitro neutralization assay.   

 

Studies by Levine and Griffin using SIN suggested an additional mechanism by 

which anti-viral antibodies may mediate protection during encephalitic alphavirus 

infection (135).  They showed that neutralizing anti-E2 MAbs could non-cytolytically 

clear infectious virus from the CNS of SCID mice persistently infected with SIN.  

Recapitulating this effect in vitro using rat dorsal root ganglion cultures, they showed 

that MAb treatment inhibited viral protein production, though the molecular 

mechanism involved remains unknown.  Though intriguing, the strain of SIN used 

was avirulent and it remains to be seen if anti-viral antibodies can exert a similar 

effect on neurons infected with a more pathogenic virus such as VEEV.       

 

αβ T cells are thought to play a minimal role in mediating protection or recovery from 

encephalitic alphavirus infection, compared with antibody (71, 189).  In the case of 

SIN, mice deficient in αβ T cells had lower mortality rates, compared with control 

mice, indicating that αβ T cells were playing no significant role in mediating 

protection (212).  For VEEV, the literature is contradictory.  In a study by Jones, L.D. 

et al., no anti-VEEV CTL activity was detectable in the spleen or draining lymph 

node of mice infected with two different live VEEV vaccines, TC-83 and CAAR 508, 

suggesting that significant CTL activity was not induced during VEEV infection and 

was likely unimportant in mediating recovery (107).  In contrast, Paessler et al. 

demonstrated that αβ T cells were required for protection against lethal VEEV 
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challenge following vaccination with a live SIN/VEEV chimeric vaccine (190).  

Additionally, the same group showed that CD4+, but not CD8+ T cells isolated from 

mice vaccinated with the same SIN/VEEV chimera could protect αβ T cell-deficient 

mice from an otherwise lethal VEEV challenge (263).  A key difference between 

these two studies is that the conclusions of Jones, L.D. et al are based on the 

absence of data (no detectable CTL activity), while those of Paessler et al. are 

based on a positive phenotype (protection), thus making them more convincing. 

 

ANTI-VEEV VACCINES 

Despite decades of effort, there is currently no anti-VEEV vaccine licensed for use in 

humans.  Early attempts to vaccinate equids during the middle of the 20th century 

using formalin-inactivated tissue from VEEV-infected animals resulted in short-lived 

immunity, and may potentially have served as the causative agent of some 

outbreaks due to live-virus contamination of vaccine stocks (256).  In order to 

produce a more immunogenic live attenuated anti-VEEV vaccine, the virulent 

Trinidad donkey strain (TD) was serially passaged 83 times through guinea pig heart 

cells (10).  The resulting vaccine strain, TC-83, has since been shown to be safe and 

highly immunogenic in equids and is currently in use in Central and South America 

(251, 256).  In humans, TC-83 has only been approved for at-risk laboratory 

personnel under the supervision of the U.S. Army Special Immunizations Program 

due to a high rate of adverse side effects and a relatively low seroconversion rate 

(256).  In an effort to produce a safer, more immunogenic vaccine for use in 

humans, several attenuating mutations were engineered into a cDNA clone of the 
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TD strain.  The vaccine produced by this method, V3526, is safe and immunogenic 

in mice and non-human primates (50, 81, 200, 204).  Unfortunately, human clinical 

trials with V3526 revealed an unacceptably high rate of adverse side effects (152).  

Thus, the development of a safe VEEV vaccine candidate for use in humans 

remains an active area of research.       

 

USE OF VEEV REVERSE GENETICS 

The study of VEEV-host interaction has been greatly aided by the development of an 

easy to use reverse genetics system.  The system was originally developed by Davis 

et al. by generating a full-length cDNA from viral genomic RNA isolated from the TD 

strain of VEEV (37).  This cDNA was cloned into a plasmid under the control of the 

T7 promoter, for easy in vitro synthesis of full-length, infectious viral genomic RNA.  

In vitro-transcribed RNA can then be introduced into permissive cells, allowing the 

production of virus stocks.  The plasmid encoding the wild-type TD sequence was 

named pV3000, and the virus generated from pV3000-derived RNA, which should 

be genetically identical to the original TD virus, was called V3000 to indicate that it is 

clone-derived.  With the viral cDNA fixed into a stable clone, it is possible to 

introduce desired mutations into the viral sequence using standard molecular biology 

approaches, and reliably produce viral stocks that incorporate the desired genomic 

sequence.  In effect, one can use the system to mutate any site in the viral genome, 

and then precisely track the effect of that mutation on any and all aspects of virus 

biology. 
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This system was used in a series of studies to dissect the early stages of VEEV 

infection of the mouse.  These studies began with work by Johnston and Smith that 

took TD as a starting point, and then selected viral mutants that could rapidly 

penetrate baby hamster kidney (BHK) cells (106).  Those mutants that were able to 

rapidly penetrate BHK cells were then demonstrated to be avirulent in adult mice, 

compared with the parental TD virus as well as other slowly penetrating mutants.  

The attenuated mutants were sequenced, and the sequence changes, all within E2 

or E1, were then cloned either singly or in combinations into the pV3000 infectious 

clone, to yield a panel of genetically defined, attenuated VEEV mutants (36).  When 

introduced into mice by s.c. injection, these mutants exhibited defects at various 

early stages of the infection (4, 11, 34, 70, 148).  By directly linking changes in the 

viral glycoprotein sequence to specific defects in viral spread and pathogenicity, 

these mutants provided excellent tools for defining mechanisms of in vivo 

attenuation.      

  

Characterization of several of these attenuated glycoprotein mutants revealed the 

importance of heparan sulfate binding affinity as a determinant of in vivo attenuation 

(4, 11).  Four of the attenuating mutations were found to be substitutions of positively 

charged lysine for negatively charged glutamic acid (E->K) at positions 3, 4, 76, and 

209 in the E2 protein, each of which resulted in a higher affinity for negatively 

charged heparan sulfate (11).  The E76K and E209K mutations resulted in viruses 

that were unable to efficiently spread from the inoculation site or early lymphoid sites 

of replication, respectively, resulting in an absence of detectable serum viremia or 
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neuroinvasion (70).  Heparan sulfate and other related glycosaminoglycans are 

ubiquitous on the surfaces of every cell type as well as the extracellular matrix, and it 

has been hypothesized that increased affinity for heparan sulfate might limit the 

ability of a virus to disseminate in vivo (17, 121, 216).  Additionally, Bernard et al. 

showed that viruses with these mutations were more efficiently cleared from the 

blood following intravenous injection (11).  Despite showing profound defects early in 

the infection process and inducing little to no morbidity in mice, the heparan sulfate-

binding mutants replicated to a sufficient degree in vivo to generate protective 

immunity against subsequent lethal VEEV challenge (36).  This suggests that 

mutations that confer high heparan sulfate affinity should be considered as part of an 

attenuation strategy when engineering future live attenuated vaccines.   

 

Attenuated VEEV mutants have also been useful in exploring the roles of viral 

variation and selection in pathogenesis.  One example involves the mutant, V3010, 

which is identical to wild-type V3000 except for the E76K mutation in E2 that 

conveys heparan sulfate binding.  When introduced into the footpad of a mouse, 

V3010 is unable to spread efficiently from the site of inoculation or the draining 

lymph node, ostensibly due to its affinity for heparan sulfate (4, 70). In effect, the 

ubiquity of heparan sulfate was acting as a bottleneck that prevented further 

dissemination and infection.  Virus was, however, sporadically detected outside of 

the draining lymph node, and when these viruses were sequenced, they were found 

to contain reversion mutations (4).  Many of these were single-site revertants, 

containing a K76E mutation that resulted in wild-type V3000 sequence, but a 
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proportion of them were second-site revertants that maintained the lysine at position 

76 but gained an additional K116E mutation.  These revertant viruses were 

detectable by 24 hours post-infection, suggesting that VEEV was able to generate 

sufficient genetic variability within the first 24 hours of infection to overcome a potent 

host bottleneck. 

 

An infectious clone containing both the E76K and K116E mutations in the TD 

background was generated, and the resultant virus, V3533, was shown to have low 

affinity for heparan sulfate, similar to the wild-type V3000 virus (11).   Having lost the 

ability to bind heparan sulfate, V3533 was no longer subject to the early bottleneck 

that inhibited infection with the attenuated, heparan sulfate-binding mutants.  This 

was clearly demonstrated when mice were infected in the footpad with V3533.  

V3533 spread from the inoculation site to the draining lymph node to other 

secondary lymphoid organs with similar kinetics to wild-type V3000 (4).  In addition, 

V3533 infection resulted in the development of a serum viremia and viral invasion of 

the CNS, though to lower titers than V3000.  Unlike V3000, however, V3533 was 

cleared from the CNS in most infected animals, resulting in a significantly lower 

mortality rate (4).  Because of these unique properties, V3533 has been used in the 

studies described here as a model for successful recovery from VEEV-induced 

encephalomyelitis.    

 

COMPLEMENT SYSTEM OVERVIEW 
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The host complement system is an ancient network of over thirty soluble and cell-

associated proteins that can be activated by conserved molecular patterns of 

infection or injury to restrict microbial infection through multiple distinct mechanisms.  

These mechanisms range from opsonization and/or direct killing of pathogens to 

recruitment and activation of downstream cellular responses (21, 111, 210, 265).  

Predating the evolutionary split between vertebrates and invertebrates, and thus the 

development of the adaptive immune system, the complement system is considered 

part of the innate immune system (56).  However, during the evolution of the 

adaptive immune system, the complement system was co-opted to mediate 

regulatory cross-talk between the innate and adaptive systems (21).  Due to its wide 

range of effector and regulatory capabilities, the complement system appears to play 

a role in influencing every stage of the host response to viral infection.  Depending 

on the virus, the effects of complement activation can be protective or pathogenic.  

 

COMPLEMENT ACTIVATION PATHWAYS 

There are three major pathways that mediate complement activation: the classical 

pathway, the lectin pathway, and the alternative pathway.  Each of these pathways 

terminates in the formation of a C3-convertase complex that can catalyze the 

cleavage of C3.  The classical pathway is typically initiated by the binding of soluble 

C1q to complement-fixing antibody-antigen complexes, though binding of C1q by the 

C-type lectin SIGN-R1 can also activate the classical pathway in an antibody-

independent manner (109).  Each C1q molecule has six globular head domains that 

can bind the Fc portion of complement-fixing IgG and IgM.  The affinity of any single 
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globular head for an Fc portion is relatively low, so it takes the aggregation of 

several Fc portions within an immune complex to stably bind C1q (120).  Stable C1q 

binding then activates two serine proteases, C1r and C1s, that in turn cleave C4 and 

C2 to yield the C4b-C2a C3 convertase (167).  The lectin pathway is activated by 

soluble collectin proteins, primarily mannose-binding lectin (MBL) and members of 

the ficolin family (213).  These proteins act as pattern recognition receptors that bind 

specific sugar groups displayed on the surface of invading pathogens or apoptotic 

cells (53, 213).  This binding results in the recruitment and activation of the MBL-

associated serine proteases MASP-1 and MASP-2, which, similar to C1r and C1s, 

then cleave C4 and C2 to generate the C4b-C2a C3 convertase (238).  Finally, 

activation through the alternative pathway can occur independently of any 

recognition event.  Spontaneous hydrolysis of C3 produces the cleavage product 

C3b, which can indiscriminately bind to plasma membranes.  Bound C3b then 

recruits factor B, and the resultant C3bB is cleaved by the soluble serine protease 

factor D to produce the C3bBb C3 convertase.  This cascade also provides an 

amplification loop for C3 cleavage following activation through the other pathways.  

While the alternative activation cascade is capable of occuring in the absence of any 

specific recognition event, there is growing evidence that recognition of invading 

microorganisms or apoptotic cells by properdin can significantly enhance the 

efficiency of the pathway (112). 

 

COMPLEMENT CASCADE 
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All of the activation pathways converge at the cleavage of C3 into C3a and C3b.  

C3b contains a highly reactive thiolester that binds with nearby surfaces, resulting in 

rapid opsonization.  This opsonization process can occur extremely rapidly, as up to 

107 C3b molecules can be deposited within 5 minutes under ideal conditions (186). 

Further cleavage of C3b by factor I produces iC3b, C3c, C3d, and C3g (111).  Newly 

produced C3b can bind to either of the C3 convertases, C3bBb or C4bC2a, and 

convert them into C5 convertases, C3bBbC3b and C4bC2aC3b, that can efficiently 

cleave C5 into C5a and C5b.  C5b production initiates the terminal complement 

cascade, in which C5, C6, C7, C8, and C9 are recruited to form the membrane 

attack complex (MAC) (111).  

 

EFFECTOR MECHANISMS 

One of the best studied anti-viral effects of the complement system is its ability to 

enhance the ability of antibodies to reduce viral infectivity. This effect has been 

demonstrated with a variety of RNA and DNA viruses, though the exact mechanisms 

remain poorly understood (33, 142, 163, 233).  Suggested mechanisms include 

MAC-mediated lysis of viral particles, C1q-mediated enhancement of antibody 

avidity, and steric hindrance of entry resulting from opsonization.  In the case of 

parainfluenza virus or HIV, complement can reduce infectivity of antibody-bound 

virus through direct virolysis, probably due to MAC formation (225, 245).  For 

vaccinia virus, West Nile virus, and influenza A virus, the neutralization-

enhancement effect of complement was mediated by the coating or opsonization of 

viral particles, rather than virolysis (9, 49, 160).  In the case of West Nile virus, the 
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presence of C1q was shown to reduce the number of bound antibody molecules 

required to neutralize a virion particle, potentially through a steric hindrance 

mechanism (160).  Complement-mediated enhancement of neutralizing antibody 

activity may play a key role in controlling infection by limiting viral dissemination and 

spread from early sites of replication (169, 184).    

 

The complement system also acts to limit viral dissemination through antibody-

independent mechanisms.  At least seven distinct complement receptors (CR1, 

CR2, CR3, CR4, C1qR, CRIg, and SIGN-R1) have been identified as binding and 

facilitating clearance of complement component-bound pathogens from the blood 

(64, 90, 94, 109, 111, 122).  These receptors are expressed by macrophage and 

dendritic cell populations at sites of blood and lymph filtration, such as the liver, 

splenic marginal zone, and the subcapsular sinus of lymph nodes.  Collectively, 

these receptors can bind and trigger the phagocytosis of viruses or cell debris 

opsonized by MBL, C1q, C3b, iC3b, or C4b.  In addition to clearing virus from 

circulation, complement receptor-mediated uptake can also result in efficient 

presentation of viral antigen to B cells.  This effect has been shown to be required 

for maximal antibody induction during infection with both VSV and influenza A virus 

(68, 108).  

 

The complement cascade produces several cleavage products that act to recruit 

innate immune cells to sites of complement activation.  The cleavage of C3, C4, and 

C5 during the complement cascade results in the production of the anaphylatoxins 
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C3a, C4a, and C5a.  These protein fragments act through the receptors C3aR and 

C5aR to recruit inflammatory cells such as neutrophils, macrophages, and dendritic 

cells to sites of complement activation (32, 74, 157, 181, 250).  Signalling through 

C3aR and C5aR, as well as other complement receptors such as CR3, can also 

enhance the activation and effector function of NK cells, macrophages, neutrophils, 

and eosinophils (138, 165, 181, 211).  The roles of these receptors in the context of 

viral infection have been poorly studied, though that is beginning to change.  

Morrison et al. recently showed that the majority of the pathology observed following 

Ross River virus infection was dependent upon CR3 expression and its role in 

regulating the activation of tissue-infiltrating inflammatory cells (168).   

 

In addition to its role during the innate response to viral infection, host complement is 

an important regulator of the T cell response, both through effects on antigen 

presenting cells (APC) as well as directly on T cells (111).  Maximal T cell responses 

to West Nile virus, influenza A virus, and lymphocytic choriomeningitis virus (LCMV) 

have all been shown to be dependent upon complement activation (125, 159).  

Release of C3a and C5a can induce the migration of APC populations, such as 

dendritic cells, to sites of infection (224, 259).  APCs express a range of complement 

receptors and can thus respond to the presence of MBL, C1q, C3b, and C4b bound 

to antigen at the site of infection (145, 166).  In fact, C1q and C3 were shown to be 

essential for optimal antigen uptake and maturation by dendritic cells (24, 101).  

Additionally, signaling through C3aR, C5aR, and/or CD46 (recognizes C3b and C4b) 

can either positively or negatively modulate IL-12 production by APCs, depending on 
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the model and specific cell population, thus affecting the Th1-Th2 skew of the 

downstream T cell response (42, 84, 110).   

 

As is the case with different APC populations, C5a can attract T cells to sites of 

complement activation (177).  While signaling through the primary complement 

receptors, CR1, CR2, CR3, and CR4, does not appear to play a significant role in 

directly regulating mouse T cells, signaling through the complement regulatory 

receptors CD46, CD55, and CD59 during priming can modulate downstream 

proliferation and effector phenotype (5, 88, 113, 146).  CD59 signaling in particular 

was shown to significantly blunt the CD4+ T cell response to vaccinia virus (146).             

 

Finally, the complement system has been demonstrated to promote the induction of 

anti-viral antibody responses through several mechanisms (21).  B cells express 

both CR1 and CR2, and signaling through these receptors following uptake of 

antigen coated with C3b, iC3b, C3d, or C4b synergizes with B cell receptor 

signaling, thus lowering the threshold for B cell activation (22).  CR1/CR2 expression 

by follicular dendritic cells is thought to enhance antibody induction through retention 

of complement-coated antigen within the B cell follicle (8).  During West Nile virus 

infection, CR1/CR2 signaling is absolutely required for the induction of a protective 

antibody response, though it remains unclear what CR1/CR2-dependent 

mechanisms are important (161).  CR1/CR2 expression, along with myeloid cell-

derived C3, was also required for the humoral response to herpes simplex virus 

(HSV) infection (31, 247).  In contrast, during influenza A virus infection, CR1/CR2 



 

 33 

signaling was dispensable for virus-specific IgG production, though complement-

dependent priming of CD4 T cells was required, demonstrating the potential 

importance of indirect effects of complement on B cell function (125).  Additionally, 

the capture of viral particles by SIGN-R1 expressed by dendritic cells within the 

lymph node medulla was also recently shown to be important for the humoral 

response to influenza A virus, though it remains to be seen whether this effect is 

dependent upon complement activation (68). 

            

OVERVIEW OF CNS IMMUNITY 

The CNS has long been considered an “immune-privileged” site based on the 

scarcity of immune cells within the brain and spinal cord parenchyma, as well as the 

exclusion of circulating immune cells and soluble mediators by the blood brain 

barrier (BBB).  Studies demonstrating the rapidity of the response to infection within 

the brain, as well as systemic inflammatory signals, have made clear that the CNS is 

not immunologically inert (25, 78, 129, 202).  Instead, the CNS is uniquely regulated 

in order to facilitate control of infection while maintaining the functional integrity of a 

delicate and vital tissue (71, 206, 227).  

 

RESTING STATE 

There are four major cell types present within the CNS parenchyma, though further 

functional subdivision is probable.  Neurons are the essential cells responsible for 

transmitting and processing electrical signals within the CNS.  For the most part, 

these cells are terminally differentiated and not easily replaced, thus the protection 
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of individual cells from infection-associated damage is important for maintaining host 

viability (143).  Neuronal viability is sustained by three major supporting cell 

populations: astrocytes, oligodendrocytes, and microglia.  Astrocytes help maintain 

neuronal health by producing various neuroprotective factors and metabolizing 

excess neurotransmitters and toxins.  They also play a role in regulating the integrity 

of the BBB (237).  Oligodendrocytes are responsible for producing the myelin 

sheathing that insulates neuronal axons and enhances electrical signal conduction.  

Microglia are macrophage-lineage cells that serve as the primary immune cells of 

the CNS (78).  In the resting state, these cells remain mostly stationary, constantly 

scanning the surrounding environment with long, highly mobile processes (180).  It is 

through this scanning process that microglia are able to rapidly detect and initiate 

the response to infection or other distress. 

 

The generally immune-suppressive environment within the CNS is maintained 

through several mechanisms.  Within the parenchyma, microglia are normally 

maintained in a resting state by constitutive interaction with healthy neurons via the 

ligand-receptor pairs CD200-CD200R, CX3CL1-CX3CR1, and SIRPα-CD47 (78, 93).  

Expression of major histocompatibility complex (MHC) molecules is low to 

undetectable, especially on neurons, in the absence of inflammation (117, 240).  In 

addition, several other factors, such as TGF-β and various gangliosides and 

neurotrophins, are constitutively produced by astrocytes and neurons and help 

suppress inflammation (46, 71).  Glucocorticoids released from the adrenal cortex 

can antagonize IRF-3-, TBK1-, and NF-κB-dependent pro-inflammatory signaling 
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through multiple mechanisms (175, 182, 185).  Under normal conditions, most 

immune cells are excluded from entering the CNS from circulation by a combination 

of BBB-mediated exclusion and the low level of adhesion molecule expression by 

CNS endothelial cells (7, 91).  The BBB mainly consists of specialized tight junctions 

between CNS endothelial cells, supported and regulated by the end-feet structures 

of perivascular astrocytes (7).  These specialized tight junctions normally prevent the 

entry of cells, cytokines, antibodies, viruses, and other large hydrophilic bodies from 

the blood.  This exclusion is not absolute, as activated T cells can cross the intact 

BBB during normal surveillance, partially though the expression of P-selectin by the 

CNS endothelium (20, 92).  The impermeability of the BBB is not uniform, however, 

as permeability is much higher in certain regions of the brain involved in regulating 

the autonomic nervous and endocrine systems, specifically the circumventricular 

organs and choroid plexus (7).  The enhanced permeability in these regions allows 

CNS-resident cells to detect and respond to some systemic inflammatory signals, 

and suggests that the immuno-regulatory environment may differ between different 

regions of the CNS (129).       

 

IMMUNE INDUCTION 

Despite the immuno-suppressive environment, CNS-resident cells are capable of 

quickly responding to viral infection. A variety of pattern recognition receptors (PRR) 

are expressed with the CNS, including those that recognize signs of viral replication, 

such as toll-like receptors (TLR) and RIG-I-like receptors (RLR) (206, 236).  Viral 

infection causes neurons to rapidly produce IFN-β through both TLR3- and RLR-
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dependent pathways (201, 236).  The CNS is unique in that IFN-β, rather than IFN-

α, is the predominant type I IFN produced in response to infection (71).  This may be 

due to the fact that IFN-β appears to have neuro-protective effects in vivo, while IFN-

α is highly toxic to neurons (2, 14, 156).  Microglia can be activated in response to 

viral infection either by direct sensing of virus associated PAMPs or complement 

activation, loss of CD200R or CX3CR1 signaling due to neuronal distress, or by 

cytokines produced by other activated microglia or astrocytes (26, 93, 176, 187).  

Activated microglia upregulate surface expression of MHC class I and II, and can 

express a number of pro-inflammatory cytokines, depending on the specific virus 

infection, including IL-1, IL-6, IL-12, TNFα, MIP1β, MCP1, MCP3, RANTES, and 

IP10 (71, 117, 199).  The production of pro-inflammatory cytokines by CNS resident 

cells can rapidly override many of the immune-suppressive factors that protect the 

CNS.  Inflammation within the CNS can induce an increase in permeability of the 

BBB, as well as increased expression of adhesion molecules such as ICAM1 and 

VCAM1 on the CNS endothelium, facilitating entry of immune cells from circulation 

(3, 196, 253).  Exposure to type I and type II IFN induces neurons to express MHC 

class I (179). 

 

REGULATION OF CNS IMMUNE RESPONSES 

Another attribute of the CNS that has contributed to its description as 

immunologically inert is the lack of lymphatic drainage from the CNS parenchyma 

(228).  This is most likely of little consequence, as all viral infections are initiated in 

the periphery prior to neuroinvasion, and thus the adaptive response would be 
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primarily initiated in the lymph nodes draining those early sites of replication.  Once 

the BBB has been opened by CNS inflammation, circulating innate effector cells, as 

well as adaptive lymphocytes primed in the periphery, are free to enter the CNS 

parenchyma and traffic to sites of infection and inflammation.  Usually, the first 

inflammatory cells to enter the CNS from the periphery are myeloid-lineage, 

inflammatory monocytes, characterized as CD11b+ Ly6c+ MHC class II+, typically 

within a few days of infection (63, 71, 116).  The recruitment of these cells is 

dependent upon MCP1-CCR2 signaling, with possible additional roles for CCR5, 

TNFα, and IL-23 (65, 126, 220, 239).  The cells within this population most likely 

exhibit some phenotypic variation, and have been described as playing either 

pathogenic or protective roles depending on the specific virus infection (63, 116, 

239).  Within the CNS, these cells likely function as they do elsewhere in the body, 

secreting pro-inflammatory cytokines, clearing cellular debris, and regulating the 

activity of other infiltrating cell populations. 

 

B and T cells appear later, following priming in the periphery.  Not much is known 

about CNS-specific regulation of B cells during viral infection.  In the case of mouse 

hepatitis virus (MHV) infection, CNS-infiltrating B cells showed a delay in the onset 

of antibody secretion, compared with peripheral B cells, suggesting some CNS-

specific regulation (241).  Virus-specific, antibody-secreting B cells are retained 

within the CNS parenchyma long after infectious virus has been cleared (241, 242).  

CNS-specific regulation of the T cell response has been more thoroughly examined.  

The abundance of gangliosides within the CNS can inhibit T cell responses at the 
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level of antigen presentation, by inhibiting MHC class I and II expression by 

astrocytes (153).  More importantly, exposure to gangliosides inhibits NF-κB 

activation and Rb phosphorylation within T cells, resulting in an inability to produce 

IL-2 and limited ability to survive and proliferate (97).  This effect was demonstrated 

in the context of SIN infection where T cells isolated from the brain, but not the 

spleen, were incapable of producing IL-2, an effect recapitulated in vitro using brain-

derived lipids (98).  Microglia may also play a role in restricting T cell IL-2 production 

and proliferation, as T cells primed ex vivo by primary microglia, but not other APC 

populations, exhibit defects in IL-2 production, proliferation, and survival (52).  In 

addition to the effects of gangliosides on T cell survival and proliferation, neurons 

constitutively express FasL, which can trigger apoptosis in Fas-expressing activated 

T cells (51, 158).  Given the potential destructive effects of activated T cells, it is 

likely that additional mechanisms of control remain to be described. 

 

CLEARANCE FROM NEURONS  

Infection of CNS neurons with a cytopathic virus presents a unique problem to the 

host.  These cells are essential for host function, and yet are for the most part 

irreplaceable (143).  As a result, the immune response must curtail viral replication 

and spread without destroying the infected cells in the process.  This requirement 

should preclude the widespread use of standard cytolytic methods of viral clearance, 

such as CTL-mediated cell killing.  As a consequence of this limitation, “clearance” in 

many cases may result from a host-mediated shutdown of viral replication within 

infected cells, rather than a total eradication of all viral protein and nucleic acid.  
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Support for this possibility comes from numerous studies in which viral RNA or 

antigen was found to persist for long periods of time within the CNS following 

apparent clearance of infectious virus (40, 83, 151, 242).   

 

Host strategies for mediating neuronal clearance differ somewhat between different 

viruses, and are probably partially dependent upon the specific biology of the virus in 

question (71).  As described earlier, studies using SIN have suggested an important role 

for virus-specific antibody in mediating non-cytolytic clearance of virus from neurons 

(135).  A similar effect has been described during rabies virus infection (95).  For many 

neuronotropic viruses, including Borna disease virus, Theiler’s murine 

encephalomyelitis virus, SIN, MHV, and measles virus, clearance appears to be 

primarily mediated by the effects of T cell-delivered IFNγ (12, 82, 192, 193, 207).  In the 

case of vesicular stomatitis virus, inducible nitric oxide might also play a role (124).  In 

these models, IFNγ appears to block viral replication while maintaining the viability of 

the infected neurons, though the exact molecular mechanisms by which IFNγ signaling 

exerts these effects remain unclear.  Interestingly, different CNS neuron populations 

vary in their sensitivity to the anti-viral effects of IFNγ.  Following SIN infection, spinal 

cord motor neurons, but not cortical neurons in the brain, were susceptible to IFNγ-

mediated clearance (12).   

 

Recent studies with SIN have suggested a role for autophagy in neuronal clearance 

(188).  Autophagy is a cellular process in which intracellular material is packaged within 

double-membrane enveloped structures that are then targeted to the autolysosome for 
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destruction (137).  This pathway has been shown to be critically involved in cellular 

survival, development, carcinogenesis, and host defense (39, 137).  Orvedahl et al. 

showed that mice in which the autophagy pathway has been inactivated by an induced 

deletion in the essential Atg5 gene are defective in their ability to clear SIN from 

neurons, resulting in a higher mortality rate (188).  They went on to show that the SIN 

capsid protein interacted with the cellular protein p62, an adaptor protein that targets 

cytosolic proteins for autophagic degradation.  IFNγ signaling has previously been 

demonstrated to induce autophagy in macrophages (80, 96).   It will be interesting to 

see if the same is true in neurons, possibly providing a specific mechanism for the 

antiviral effects of IFNγ signaling in neurons.   
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CHAPTER 2: 

EARLY INTERACTIONS WITH THE HOST COMPLEMENT SYSTEM DETERMINE 

DOWNSTREAM DISEASE OUTCOME FOLLOWING VENEZUELAN EQUINE 

ENCEPHALITIS VIRUS INFECTION 
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ABSTRACT 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the 

genus Alphavirus that is responsible for a significant disease burden in Central and 

South America through sporadic outbreaks in human and equid populations.  In 

mice, the virus initiates a biphasic disease course in which initial replication within 

lymphoid tissue seeds a serum viremia that in turn facilitates virus invasion of the 

CNS.  Replication within CNS neurons leads to a paralyzing, consistently lethal 

encephalomyelitis due to the combined detrimental effects of virus-mediated 

cytopathology and the host inflammatory response within the brain.  The host 

complement system is capable of playing both protective and pathogenic roles 

during viral infection.  In order to ascertain the role that complement plays in 

resolving VEEV-induced encephalomyelitis, we infected complement deficient C3-/- 

mice with a VEEV mutant (V3533) that causes mild, transient disease in immune-

competent mice.  In the absence of a functional complement system, peripheral 

inoculation with V3533 induces a much more severe encephalomyelitis, 

characterized by substantial weight loss, ataxia, and hind limb paresis.  This 

enhanced pathology is associated with a delay in clearance of infectious virus from 

the serum and more rapid invasion of the CNS in C3-/- mice, despite the presence of 

an intact anti-VEE antibody response.  If V3533 is directly inoculated into the brain, 

however, disease outcome in wild-type and C3-/- mice is identical.  These results 

indicate that early interactions of VEEV with the host complement system in the 

periphery can have dramatic effects on downstream disease outcome.
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INTRODUCTION 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that is 

endemic to Central and South America (18).  Though normally maintained in an 

enzootic transmission cycle between various rodent host species and the Culex 

mosquito vector, VEEV periodically emerges from its natural cycle to cause local 

epidemics in human and equid populations (57).  The most recent major outbreak 

occurred in 1995 in Columbia and Venezuela, where 75,000 to 100,000 human 

cases were reported (59).  VEEV infection in humans causes a spectrum of disease 

that ranges from asymptomatic to mild, flu-like illness to overt encephalomyelitis, 

with an overall case mortality rate of about 0.5-1% (58).  In equid populations, the 

development of overt encephalomyelitis is more common, and the overall mortality 

rate often exceeds 50% (56).  Though specific viral sequence determinants 

associated with epidemic emergence have been identified, outbreaks remain 

unpredictable (1).  As a result, VEEV remains a significant public health threat in the 

region.      

 

Much of our current understanding of VEEV pathogenesis and immunity comes from 

studies carried out in a well-characterized mouse model of infection.  VEEV infection 

of the mouse closely replicates many aspects of infection in humans and equids 

(15).  Subcutaneous injection of VEEV into a mouse  

is followed by efficient replication in the skin-draining popliteal lymph node and rapid 

dissemination to other secondary lymphoid organs (2, 35).  Replication at these sites 

leads to the development of a serum viremia within the first 12 hours of infection.  
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Viral invasion of the CNS first occurs through the olfactory neuro-epithelium, a 

mucosal surface that is densely innervated with olfactory sensory neurons (9).  It is 

thought that these cells are infected following diffusion of virus through the 

permeable tight junctions of adjacent capillaries.  The virus then disseminates into 

the olfactory bulb of the brain by centripetal spread, usually within 36 hours of 

infection (9).  Once the virus has crossed into the CNS, it replicates predominately 

within neurons, triggering the death of the animal from a paralyzing 

encephalomyelitis within 6 to 8 days post-infection (8, 17).  The mortality rate in mice 

is 100%, and results from a combination of virus-mediated cytolysis of infected 

neurons and the detrimental effects of the host immune response within the CNS (8, 

56). 

 

Engagement of both the innate and adaptive arms of the immune response are 

required for successful control of VEEV infection.  The type I interferon (IFN) system 

plays a critical role in limiting early viral replication and dissemination (60).  In mice 

with a genetic deficiency in this system, VEEV invades the CNS much earlier, 

resulting in a dramatically shorter time to death, compared with control mice.  Anti-

viral antibodies can limit viral dissemination in the periphery, as well as aid in 

clearance of virus from infected neurons (33, 37).  The role of αβ T cells during 

VEEV infection is unclear, as they can contribute both to control of VEEV infection 

within the CNS, as well as VEEV-induced immune-pathology (4, 8, 49).  Further 

efforts to identify the components of a successful immune response to VEEV 

infection have been limited by the extreme lethality of the virus in mice. 
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The host complement system is a complex network of over 30 soluble and cell-

associated factors that contribute to both innate and adaptive control of microbial 

infection (6).  Activation of the complement system in response to infection or injury 

can occur through three major pathways, classical, lectin, and alternative, all of 

which result in the cleavage of the complement factor C3.  C3 cleavage products act 

to limit infection through a number of mechanisms ranging from opsonization and/or 

direct killing of pathogens to recruitment and regulation of innate and adaptive 

effector cells (6, 29, 51).  Complement plays a critical protective role during infection 

with a number of viruses, including influenza A virus, West Nile virus, ectromelia 

virus, and herpes simplex virus (32, 39, 45, 54).  In contrast, complement activation 

enhances virus-induced pathology following infection with the alphaviruses Ross 

River virus and Sindbis virus (22, 43). 

 

In this study, we used an established model of acute, non-lethal VEEV infection to 

ascertain the role of the complement system in VEEV pathogenesis and immunity.  

Sub-cutaneous infection of wild-type C57BL/6 mice with the V3533 strain of VEEV 

results in the development of a mild febrile illness with minimal signs of CNS 

complications.  In contrast, infection of complement deficient C3-/- mice with V3533 

resulted in the development of a severe encephalomyelitis, suggesting that the 

complement system plays an important role in limiting VEEV-induced pathology.  No 

differences in disease outcome were observed following intracranial infection, 

however, indicating that complement was acting at a step prior to neuroinvasion.  
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Further studies revealed delayed serum clearance and earlier neuroinvasion in C3-/- 

mice that could not be explained by defects in inflammatory cell recruitment or anti-

VEEV antibody induction.  Together, these results demonstrate that early 

interactions with the host complement system can have profound effects on 

downstream disease outcome. 

 

MATERIALS AND METHODS 

Viruses 

The isolation of the V3533 mutant of VEEV, as well as the generation of the pV3533 

molecular clone has been described previously (2).  Virus stocks of V3533 were 

generated by in vitro transcription from a linearized plasmid, pV3533, which encodes 

the full-length V3533 cDNA, using a T7-specific mMessage mMachine in vitro 

transcription kit (Ambion).  In vitro-generated transcripts were then electroporated 

into BHK-21 cells using a Bio-Rad electroporator as described previously (2, 12).  

Culture supernatants were harvested 18 hours after electroporation, clarified by 

centrifugation at 3000 rpm for 20 min, and stored as single use aliquots at -80° C.  

Viral titers were determined by standard plaque assay on BHK-21 cells, as 

previously described (53). 

Mouse studies 

C3-/- and µMT mice (both on the C57BL/6J background) were obtained from The 

Jackson Laboratory (Bar Harbor, ME) and bred in house under specific pathogen-

free conditions. C57BL/6J mice were purchased from The Jackson Laboratory as 

needed.  All experimental manipulation of mice was performed in a biosafety level 3 
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animal facility following a 7 day acclimatization period.  For infections, 6-10 week old 

female mice were anesthetized via intra-peritoneal (i.p.) injection with a mixture of 

ketamine (50 mg/Kg body weight) and xylazine (15 mg/Kg body weight) and then 

inoculated either in the left rear footpad with 106 PFU of virus in diluent [phosphate 

buffered saline (PBS) + 1% donor calf serum, Ca2+, Mg2+] for sub-cutaneous (s.c.) 

infections, or directly into the brain with 103 PFU of virus in diluent for intracranial 

(i.c.) infections.  Mock-infected mice received diluent alone.  Weight loss and 

disease score were assessed daily in infected animals.  The scale used for disease 

scoring was as follows: (0) no signs; (1) hunched posture; (2) mild motor 

dysfunction, altered gait; (3) moderate motor dysfunction, ataxia; (4) hind limb 

paresis; (5) hind limb paralysis; (6) moribund.  Mice that lost more than 35% of their 

starting weight or became moribund were euthanized according to UNC Institutional 

Animal Care and Use Committee guidelines.  

Virus titers 

To assess VEEV titers in vivo, infected mice were sacrificed, bled, and then 

perfused through the heart with 10 mL of PBS.  Spleen, draining popliteal lymph 

node, brain and spinal cord were then removed, weighed, and frozen at -80°C in 

diluent.  Tissues were thawed, homogenized, and used to infect BHK-21 cells in a 

standard plaque assay.  

Antibody analysis 

VEEV-specific IgG and IgM levels were assessed by standard indirect ELISA.  

Purified, intact VEEV particles (2.5 µg/mL) were used to coat 96-well NUNC 

Immulon 4HBX plates (Thermo Scientific) overnight at 4˚C.  After washing, plates 
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were incubated with serial dilutions of heat inactivated mouse serum + 10% Sigma 

Blocking Buffer (Sigma) overnight at 4˚C.  Plates were washed again, incubated with 

HRP-conjugated goat anti-mouse IgM or IgG (Southern Biotech) for 2 hours at 4˚C, 

and then developed using o-phenylenediamine dihydrochloride tablets (Sigma) in 

equal parts 0.1M citric acid and 0.1M sodium citrate.  Development proceeded for 30 

minutes before the reaction was terminated with 0.1M NaF.  The OD450 values were 

measured using a FLUOstar Omega microplate reader with Omega software v1.02 

(SPSS, Inc.).  Log10 half-maximum ELISA titers were calculated using GraphPad 

Prism software v5.0 (GraphPad) and represent the log of the reciprocal dilution at 

which the half-maximum absorbance values were achieved. 

   

To assess anti-VEEV neutralizing activity, serum was collected and either left 

untreated or heat inactivated at 56˚C for 1 hour.   Serum was then diluted in diluent 

and coincubated with gfp-expressing VEEV viral replicon particles [gfp-VRP, 

described in (50)] for 1 hour at 37˚C.  VRP-serum mixtures were then used to infect 

BHK-21 cells.  18 hours post-infection, infected cells were harvested by 

trypsinization, washed, and fixed with 2% paraformaldehyde in PBS and analyzed 

on a CyAn flow cytometer using Summit 5.2 software (Dako).  IC50 titers were 

calculated using GraphPad Prism software v5.0 (GraphPad) and represent the log of 

the reciprocal dilution at which 50% inhibition of infectivity was achieved. 

Flow Cytometry 

Mock- and V3533-infected mice were sacrificed by exsanguination and perfused 

with PBS.  Draining popliteal lymph nodes were harvested, minced, and then 
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incubated for 30 minutes with shaking at 37°C in digestion media [RPMI, 1% fetal 

calf serum, 25mM HEPES, 1 mg/mL Collagenase A (Roche)].  Homogenates were 

then passed through a 40 µm strainer, washed with media, and the absolute number 

of live cells in each sample was then determined by trypan blue exclusion.  Cells 

were washed in flow cytometry wash buffer (1 x Hank’s balanced salt solution, 1% 

fetal calf serum, 0.1% sodium azide) and then stained with the following antibodies: 

anti-CD11c-PE-Texas red (Invitrogen), anti-Ly6G-FITC (clone 1A8), anti-B220-FITC, 

anti-CD3ε-PE, anti-Gr1-PE, anti-CD49b-APC, anti-MHC class II-APC, anti-CD11b-

PE-Cy7 (all eBioscience). Following staining, samples were washed, fixed in 2% 

paraformaldehyde in PBS and analyzed on a CyAn flow cytometer using Summit 5.2 

software (Dako).  Absolute numbers of each specific cell type were calculated by 

determining the number of total live cells within a sample by trypan blue exclusion 

and then multiplying that number by the percentage of live cells within the sample 

bearing the appropriate surface staining profile. 

IFN Bioassay 

Total amounts of biologically active type I IFN were determined by bioassay as 

described previously (11).  Briefly, murine L929 cells were plated in 96-well plates.  

Experimental samples, as well as IFN standards of a known IU/mL concentration 

(Chemicon), were acidified to pH=2 overnight, neutralized to pH=7.4, and then UV-

inactivated for 10 minutes.  Samples were then added to L929 cells in serial 2 fold 

dilutions.  After 24 hours of incubation, cells were infected with 2 x 105 pfu of 

encephalomyocarditis virus (EMCV).  24 hours later, the sample dilution that 
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protected 50% of L929 cell culture from EMCV-induced cytopathic effect was 

determined and compared to the IFN standard to determine the IU/mL value.   

 

RESULTS 

C3-/- mice develop more severe encephalomyelitis following V3533 infection 

Previous work has demonstrated that sub-cutaneous infection of C57BL/6 mice with 

V3533 results in the development of mild disease, associated with viral 

neuroinvasion and replication within the CNS, followed by clearance and recovery 

(4).  Using V3533 infection of C57BL/6 mice as a model of successful control of 

VEEV infection, we used complement deficient C3-/- mice to ask what role, if any, the 

host complement system played during VEEV infection.  C3-/- and C57BL/6 mice 

were infected with 106 pfu of V3533 sub-cutaneously in the footpad.  Over the first 4 

days, both mouse strains responded similarly, with a slight loss of weight but no 

other outward signs of disease.  By day 6 post-infection, however, responses in C3-/- 

and C57BL/6 mice began to diverge (Fig. 1.1).  Weight loss in C57BL/6 mice was 

minimal, and clinical signs of disease were mild, consisting of hunched posture, 

ruffled fur, and mild motor dysfunction in a subset of infected animals.  In contrast, 

C3-/- mice uniformly lost significantly more weight, and developed more severe signs 

of encephalomyelitis, with all infected animals developing pronounced ataxia and in 

some cases, hind limb paresis or paralysis.  In both C57BL/6 and C3-/- mice these 

signs of disease were transient, however, and all mice infected went on to recover.  

The significantly enhanced severity of encephalomyelitic disease observed in  C3-/- 
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mice compared with C57BL/6 clearly demonstrated that the host complement 

system was playing a protective role during V3533 infection. 

 

Enhanced disease severity in C3-/- mice is associated with more extensive 

inflammation and pathology within the brain 

VEEV-induced encephalomyelitis in mice is associated with extensive inflammatory 

cell infiltration within the brain parenchyma (8).  To determine whether the 

differences in weight loss and clinical course of wild-type and C3-/- mice following 

V3533 infection correlated with differences in inflammation and neuropathology 

within the brain, we examined H&E stained brain sections from V3533-infected mice 

(Fig. 1.2).  In both wild-type and C3-/- mice, comparable amounts of inflammatory cell 

infiltration were apparent within the olfactory bulb and meninges by day 4 post-

infection.  By day 6 post-infection, when weight loss and clinical signs began to 

diverge between wild-type and C3-/- mice, focal and diffuse inflammation were 

observed in the cerebellum and brain stems of C3-/-, but not wild-type mice.  

Inflammation was associated with occasional micro-hemorrhaging.  Inflammatory 

foci were occasionally observed within the cerebellum and brain stems of wild-type 

mice by day 8, though these were not nearly as extensive as those observed in C3-/- 

mice (data not shown).  In all V3533-infected mice examined inflammation and 

observable neuropathology were limited to the olfactory bulb, meninges, cerebellum, 

and brain stem.  Thus, the differences in outward disease signs between wild-type 

and C3-/- mice following V3533 infection correlated with the extent and severity of 

inflammation within the cerebellum and brain stem. 
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Viral burdens within the CNS of C3-/- mice are higher and less variable than 

those of wild-type mice 

V3533 infection of C57BL/6 mice results in viral replication within the brain and 

spinal cord, followed by clearance of infectious virus by day 8 post-infection.  Given 

the differences in disease outcome between C57BL/6 and C3-/- mice following 

V3533 infection, we next asked whether the more severe disease in C3-/- mice was 

associated with a larger viral burden within the CNS or a defect in viral clearance.  

To answer this question, C57BL/6 and C3-/- mice were infected s.c. in the footpad 

with 106 pfu of V3533, animals were sacrificed at 0.5, 1, 2, 4, 6, and 8 days P.I., and 

viral burdens in serum, spleen, draining popliteal lymph node, brain and spinal cord 

by were assessed by plaque assay (Fig. 1.3).   

 

In C57BL/6 mice, virus was first detected in the brain at day 2, with peak titers being 

reached between day 4 and day 6.  At day 4 titers were highly variable, ranging from 

below the limit of detection up to 106 pfu/g, but by day 6 titers were much more 

consistent, with a mean of about 104 pfu/g.  In the spinal cord, virus was detectable 

only on days 4 and 6, with no virus being detectable in a subset of mice at each 

time-point (2/9 at day 4, 3/7 at day 6).  In both brain and spinal cord, infectious virus 

was undetectable by day 8.  In contrast, C3-/- mice had detectable virus in both the 

brain and spinal cord within 24 hours of infection.  Viral titers in both tissues peaked 

at day 4, with mean titers in both brain and spinal cord significantly higher than those 

observed in C57BL/6 mice (p<0.05, Mann Whitney).  Viral titers in the brains of C3-/- 
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mice at day 4 were also much less variable than observed in C57BL/6 mice, as all 

mice tested had titers of at least 105 pfu/g.  Clearance kinetics were similar between 

C57BL/6 and C3-/- mice, though at day 8, some C3-/- animals still had detectable viral 

titers in the brain (4/7) and spinal cord (1/7).  Thus, the more severe disease 

observed in C3-/- mice was associated with more rapid neuroinvasion, and higher 

and more consistent viral burdens within the CNS. 

 

C3-/- mice exhibit delay in viral clearance from the serum relative to wild-type 

mice 

To assess the effect of host complement on early replication of V3533 in the 

periphery, we compared viral burdens within the serum of C57BL/6 and C3-/- mice, 

as well as the draining popliteal lymph node and spleen, two anatomical sites of 

replication thought to contribute to serum viremia (Fig 1.3).  In the serum, peak titers 

in both C57BL/6 and C3-/- mice occurred at 12 hours post-infection and were similar, 

but clearance kinetics were quite different.  Serum titers in C57BL/6 were reduced 

about 10-fold between 12 and 24 hours post-infection, and by day 2 virus was 

undetectable in all but one animal tested.  In contrast, C3-/- mice sustained 

significantly higher serum titers at days 1 and 2 compared with C57BL/6, and virus 

was still detectable in 3 of 6 animals at day 4.  In both lymph node and spleen of 

both mouse strains, viral titers were statistically indistinguishable, except for the 

spleen at day 1 where the mean titer was actually higher in C57BL/6 mice.  Though 

not achieving statistical significance, mean titers in C3-/- mice trended higher in the 

draining lymph node at all times tested and in the spleen at days 2 and 4.   
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Host complement plays no significant protective role following intra-cranial 

introduction of V3533 

Given that C3-/- mice were deficient in their ability to control V3533 in both the 

periphery and the CNS, it was possible that the effect of host complement that 

resulted in reduced neuropathology could be occurring prior or subsequent to viral 

invasion of the CNS.  In order to address where in the infection process host 

complement was acting to limit pathology, we introduced 103 pfu of V3533 directly 

into the CNS of C57BL/6 and C3-/- mice by i.c. injection.  By circumventing peripheral 

infection, we were able to directly assess the importance of host complement within 

the CNS.  Following i.c. infection, both C57BL/6 and C3-/- mice behaved similarly 

(Fig. 1.4).  Both groups began losing weight within 24 hours of infection, and rapidly 

began exhibiting clinical signs of ascending encephalomyelitis.  Peak weight loss 

and disease scores were observed at days 7-8 in both groups, and were followed by 

protracted recovery.  In both the kinetics of disease onset and recovery, as well as 

magnitude of peak weight loss and disease score, C57BL/6 and C3-/- mice were 

indistinguishable, indicating that once V3533 has entered the CNS, the host 

complement system no longer plays a significant role in influencing disease 

outcome.  

 

Complement is required for maximum anti-VEEV neutralizing activity of 

normal serum 
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One possible explanation for the defect in serum clearance and more rapid spread 

to the CNS that was observed in the C3-/- mice is that the anti-VEEV antibody 

response was diminished in the absence of complement.  During an acute, 

cytopathic viral infection, the induction of a virus-specific antibody response occurs 

2-4 days post-infection (20).  During V3533 infection, significant differences in viral 

titers in the serum and CNS between C57BL/6 and C3-/- mice were apparent by 24 

hours post-infection, suggesting that complement was acting prior to anti-VEEV 

antibody induction.  This led us to examine the effect of complement on the anti-

VEEV activity of natural antibody.  Serum was collected from uninfected C57BL/6, 

C3-/-, or B cell-deficient µMT mice, left untreated or heated to 56˚C for one hour to 

inactivate complement, and then assayed for in vitro anti-VEEV neutralizing activity 

on BHK-21 cells. 

 

Normal serum from C57BL/6 mice exhibited a surprising amount of anti-VEEV 

neutralizing activity (Fig. 1.5).  Wild-type serum at a concentration of only 2.5% was 

sufficient to neutralize nearly 70% of VEEV infectivity, with an IC50 of 1:49.  In the 

absence of functional complement, either due to heat inactivation or genetic 

deficiency in C3, neutralizing activity was reduced ~45-50%, demonstrating that the 

anti-VEEV neutralizing activity of normal serum was partially complement-

dependent.  

 

Anti-VEEV antibody responses are intact in C3-/- mice 
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Complement activation is a requirement for the induction of anti-viral antibody 

responses following infection with several different viruses.  While the similar results 

following i.c. infection of C57BL/6 and C3-/- mice suggested that the protective effect 

of complement was not related to antibody induction, we wanted to directly confirm 

this.  C57BL/6 and C3-/- mice were infected sub-cutaneously in the footpad with 106 

pfu of V3533, and serum was collected at days 2, 4, 8, and 12 post-infection to 

assay anti-VEEV binding and neutralization activity.   

 

In both C57BL/6 and C3-/- mice, VEEV-specific IgM was induced between days 2 

and 4 post-infection, while VEEV-specific IgG appeared between days 4 and 8 post-

infection (Fig. 1.6A).  At all time points examined, VEEV-specific IgM titers were 

similar between C57BL/6 and C3-/- mice, with the exception of day 12 post-infection 

where titers were higher in the C3-/- mice.  IgG induction in C3-/- mice appeared to be 

slightly delayed, as titers were slightly lower at day 8, compared with C57BL/6.  

While this difference was statistically significant (p=0.0159, Mann Whitney), titers in 

both groups were quite high.  By day 12, IgG levels in both groups were equivalent.  

In addition to ELISA, which measures the amount of anti-VEEV antibody but not its 

biological activity, we assessed the anti-VEEV neutralizing activity of serum 

collected at day 4 post-infection, the timepoint when viral burdens within the CNS 

were most divergent (Fig. 1.6B).  Similar to the ELISA results, no difference was 

seen in neutralizing activity between C57BL/6 and C3-/-.  Together, these results 

demonstrated that complement was not required for the development of an anti-

VEEV antibody response. 
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Recruitment of inflammatory cells to early sites of V3533 replication is similar 

between wild-type and C3-/- mice 

Complement activation can play a role in the recruitment and activation of 

inflammatory cells to sites of infection. It was possible that the sustained viremia 

observed in the C3-/- mice resulted from an inability to restrict the production of virus 

at early sites of replication, rather than a defect in removing virus from circulation.  

Thus regulation of the inflammatory response at early sites of replication might 

influence the duration of viremia.  To assess whether the absence of complement 

affected the recruitment of inflammatory cells to early sites of viral replication, we 

examined the draining popliteal lymph node at 48 hours post-infection as a 

representative early site of VEEV replication.  Single cell suspensions were 

generated from the lymph nodes, and inflammatory cells were identified based on 

their surface staining profile. 

 

As would be expected, B and T lymphocytes were by far the most numerous cell 

populations present, and were found in similar numbers in both groups (data not 

shown).  Looking at cell populations more associated with an inflammatory 

response, we observed no major differences in the numbers of NK cells (CD3-, 

CD49b+), NKT cells (CD3+, CD49b+), neutrophils (Ly6G+, CD11b+, MHC class II-), 

macrophages (CD11b+, CD11c-, MHC class II+), or conventional dendritic cells 

(CD11c+, B220-) between C57BL/6 and C3-/- mice (Fig. 1.7A).  We did observe 

~50% fewer plasmacytoid dendritic cells (CD11c+, B220+) in the C3-/- mice, though 
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our group sizes were too small to determine whether the difference was significant.  

As the primary function of plasmacytoid dendritic cells during viral infection is 

thought to be the production of type I IFN, we used a bioassay to compare the 

amount of IFN present in the draining lymph nodes of C57BL/6 and C3-/- mice at 24 

hours post-infection, the first time point at which serum titers were divergent.  Using 

this approach, we saw no difference in the amount of IFN present in the draining 

lymph nodes at 24 hours post-infection, suggesting that there was no significant 

difference in plasmacytoid dendritic cell activity between the two groups (Fig. 1.7B).      

 

DISCUSSION 

The complement system has been reported to play a key protective role in the host 

response to a number of viral pathogens, though the specific mechanisms involved 

differ between viruses.  For many viruses, including West Nile virus, influenza A 

virus, and vesicular stomatitis virus, complement acts by enhancing B and T cell 

responses, thus facilitating adaptive control of the infection and clearance (32, 41, 

45, 47).  In the cases of Sindbis virus and ectromelia virus, complement appears to 

act within the first hours of infection, limiting viral dissemination and thus 

downstream pathology (23, 45).  In this study, we assessed the role of the host 

complement system in a model of recovery from acute VEEV infection.  Together, 

our results demonstrate that the complement system plays an important role in 

limiting neuropathology following VEEV infection.  This protective effect resulted 

from complement function in the periphery during the first 24 hours of infection, and 

appeared to be independent of inflammatory cell recruitment or anti-VEEV antibody 
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induction.  While the exact mechanism responsible for this effect remains unclear, 

our results suggest that complement-mediated enhancement of natural antibody 

activity might be involved.    

 

The results of this study clearly demonstrated that complement activity in the 

periphery, but not the CNS, had a profound effect on the extent of virus-induced 

neuropathology.  In the absence of complement, clearance of VEEV from the serum 

was less efficient, and virus appeared within the CNS within 24 hours of infection, 

compared with 48 hours in the presence of complement.  The earlier arrival of VEEV 

within the CNS of C3-/- mice, compared with wild-type mice, would allow the virus to 

replicate and spread to a greater degree prior to the generation of VEEV-specific B 

and T cell responses.  A larger viral burden would most likely trigger a more robust T 

cell response within the CNS, potentially resulting in more severe immune-

pathology.  While we feel that this is a likely explanation for the more severe 

encephalomyelitis and neuropathogy observed in C3-/- mice relative to C57BL/6, 

more work is clearly needed to examine the relationship between complement, viral 

spread within the CNS, and the magnitude of the T cell response. 

 

VEEV invasion of the CNS is thought to occur via diffusion of virus from the blood 

through fenestrated capillary endothelial tight junctions to nearby peripheral nerve 

endings, followed by centripetal spread to the brain (9).  One consequence of this 

route of neuroinvasion is that the efficiency of invasion is a direct function of 

infectious virus concentration within the serum.  This hypothesis is supported by the 
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observation that there was a minimum virus concentration in the serum of VEEV 

infected mice (≥104 pfu/mL) that was required for invasion of the brain (Bernard K., 

unpublished results).  Thus any host function that limits either the magnitude or 

duration of serum viremia would also reduce the efficiency of neuroinvasion.  While 

this connection has not been directly tested, a number of studies, with VEEV as well 

as Sindbis virus and western and eastern equine encephalitis viruses, have 

correlated the duration of serum viremia with virulence (5, 25-27, 36).              

 

In C57BL/6 mice, viral titers in the serum were significantly reduced from their peak 

by 24 hours post-infection, and were nearly absent by 48 hours post-infection, prior 

to the development of a VEEV-specific antibody response.  Thus, it appears likely 

that natural antibodies play a significant role in clearing VEEV from circulation.  One 

possible explanation for the delay in serum clearance observed in the C3-/- mice is 

that complement is required for the maximal anti-viral activity of natural antibodies.  

Natural antibodies are produced constitutively, independently of internal or external 

stimuli, and have a fairly wide range of binding avidities, depending on the antigen 

and host genetic background (48).  Despite being produced in a non-specific 

manner, the anti-viral neutralizing activity of natural antibodies can be high, ranging 

from titers of 1:8 to 1:32 for vesicular stomatitis virus between different mouse 

strains (16).  When we examined the anti-VEEV neutralizing activity of normal 

serum, we found that it was quite high, with an IC50 of about 1:50.  This could 

potentially explain why serum clearance occurs so rapidly in wild-type mice.  In the 

absence of complement, the neutralizing activity of normal serum was reduced 
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substantially, indicating that much of its activity was complement-dependent.  

Surprisingly, heat-inactivated µMT serum retained a significant amount of 

neutralizing activity, despite lacking both antibody and functional complement.  Heat 

inactivation at 56˚C prevents the subsequent activation of the complement system, 

but it is possible that some complement components, the collectins for instance, may 

retain the ability to bind viral particles and hinder attachment or entry.  Alternatively, 

serum may contain elements in addition to antibody and complement that exert 

some anti-VEEV neutralizing activity.    

 

While these results suggest a role for complement in enhancing the anti-VEEV 

neutralizing activity of normal serum, further studies are needed to pinpoint the exact 

mechanism.  The C1q protein has been shown to enhance antibody-mediated 

neutralization of West Nile virus by reducing the number of bound antibody 

molecules required to neutralize a single particle (40).  We feel that is it unlikely that 

a similar C1q-dependent mechanism is contributing to the effect that we observed 

with VEEV for two reasons.  First, the effect of C1q on West Nile virus neutralization 

was purely a function of soluble C1q protein, independent of complement activation 

or C3, whereas natural antibody-mediated neutralization of VEEV is C3 dependent.  

Second, infection of C1q-/- mice with V3533 did not result in the development of the 

overt encephalomyelitis that was observed in C3-/- mice, suggesting that C1q was 

not required for the protective effect of complement activation in our system (data 

not shown).  Studies with ectromelia virus using normal sera from a panel of mice 

with deficiencies in various complement components demonstrated that both the 
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classical and alternative pathways of complement activation were required for 

maximal in vitro neutralization (45).  Based on the absence of neutralization in the 

absence of C3 or C4, Moulton et al. concluded that neutralization was primarily the 

result of opsonization of viral particles by C3b and C4b.  A slight reduction in 

neutralizing activity in the absence of C5 suggested an additional role for the 

membrane attack complex.  Further work is underway to assess the relative 

contributions of the opsonins and the membrane attack complex to VEEV 

neutralization.          

 

In addition to enhancing natural antibody-mediated neutralization of circulating virus 

particles, complement activation might be facilitating serum clearance of VEEV by 

antibody-independent mechanisms.  Seven distinct complement receptors (CR1, 

CR2, CR3, CR4, SIGN-R1, CRIg, and C1qR) have been identified as binding and 

facilitating clearance of complement-bound pathogens from circulation (14, 21, 24, 

28-30).  These receptors are expressed by phagocytic cells such as marginal zone 

macrophages in the spleen and Kupffer cells in the liver, and could potentially act to 

eliminate complement-bound VEEV particles from the serum.  This mechanism 

could potentially explain the higher viral burdens observed in the spleens of wild-

type mice over the first 24 hours of infection, compared with C3-/- mice.  Further 

evaluation of serum clearance in mice lacking the various complement receptors is 

needed to assess the importance of this mechanism in controlling early VEEV 

infection.   
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The finding that anti-VEEV IgM and IgG responses were intact in the absence of 

complement was surprising given the complement-dependence of antibody 

responses to a variety of other viral infections.  Complement activation can enhance 

virus-specific antibody induction through multiple mechanisms.  Recognition of 

complement-coated antigen by CR1 and/or CR2 expressed on B cells can lower the 

signaling threshold required for activation, while CR1 and CR2 expressed by 

follicular dendritic cells can act to retain complement-coated antigen within B cell 

follicles, enhancing presentation to B cells (3, 7).  CR1 and CR2 have been 

demonstrated to be essential for the humoral response to both West Nile virus and 

herpes simplex virus, though it is not known which CR1/CR2 functions are involved 

(41, 54).  It is possible that the replication of VEEV to such high titers (106-107 

pfu/draining popliteal lymph node) in secondary lymphoid organs may provide 

enough concentrated viral antigen and inflammatory stimulus to render CR1/CR2 

function unnecessary.   Type I interferon, which is produced in large amounts during 

VEEV infection, can also act directly on B cells to promote antibody production and 

may thus compensate for the lack of CR1/CR2 signaling in C3-/- mice (10, 13, 60). 

 

Complement activation can play a major role in the recruitment and activation of NK 

cells, neutrophils, monocytes/macrophages, dendritic cells, and other inflammatory 

cell populations.  Thus, we felt that it was possible that at least some component of 

the early inflammatory cell response to VEEV would be complement dependent (19, 

34, 38, 42, 46, 52, 55).  While more thorough analysis is still needed, it appeared 

that inflammatory cell recruitment was comparable between V3533-infected wild-
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type and C3-/- mice.   This mirrors what has been described in mice infected with the 

arthritogenic alphavirus Ross River virus, where inflammatory cell recruitment was 

independent of complement activation (43, 44).  The robust recruitment of 

inflammatory cells in the absence of complement activation might be explained by 

the robust inflammatory cytokine and chemokine response that is induced early 

during VEEV infection (31).  Further work is still needed to rule out a role for 

complement activation in regulating the activation status and/or antiviral 

effectiveness of these inflammatory cell populations following recruitment to sites of 

infection. 

 

Together, the results described here demonstrate that interactions between VEEV 

and the host complement system during the first hours of peripheral infection can 

have profound effects on downstream disease outcome.  Furthermore, they suggest 

important roles for natural antibody and complement activation in limiting VEEV 

invasion of the CNS.       
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Figure 2.1 
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Figure 2.1:  Complement activation limits disease severity following V3533 

infection.  6-10 week old C57BL/6J or C3-/- mice (7-8 mice per group) were infected 

with 106 PFU of V3533 in the left rear footpad.  (A) Weight loss and (B) disease 

score following infection.  Mice were scored according to the following scale: 0 – no 

signs; 1 – hunched posture, ruffled fur; 2 – mild motor dysfunction, altered gait; 3 – 

moderate motor dysfunction, ataxia; 4 – severe motor dysfunction, hind limb 

paresis/paralysis; 5 – moribund.  Each data point represents the arithmetic mean ± 

standard error of the mean (SEM).  These results are representative of 3 

independent experiments.  *, P < 0.05; **, P < 0.01 by Mann-Whitney testing.   
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Figure 2.2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2:  V3533-induced brain inflammation in C57BL/6 and C3-/- mice. 6-10 

week old C57BL/6J or C3-/- mice were injected with either 106 PFU of V3533 or 

diluent alone in the left rear footpad.  At day 6 post-infection, mice were sacrificed 

and perfused with 4% paraformaldehyde.  5 µM sections paraffin-embedded sagittal 

sections were generated and stained with H&E.  Sections are representative of 2 

mice per group. 
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Figure 2.3 
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Figure 2.3:  V3533 tissue titers in C57BL/6 and C3-/- mice. 6-10 week old 

C57BL/6J or C3-/- mice were infected with 106 PFU of V3533 in the left rear footpad.  

At the indicated times post-infection (Day P.I.), serum, spleen, draining popliteal 

lymph node, brain, and spinal cord were collected and homogenized.  Viral burden in 

each tissue was determined by standard plaque assay on BHK-21 cells.  Data points 

represent individual titers pooled from three independent experiments, and bars 

indicate the geometric mean.  *, P < 0.05; **, P < 0.01 by Mann-Whitney testing.    
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Figure 2.4 
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Figure 2.4:  Disease outcome following intracranial inoculation of V3533. 6-10 

week old C57BL/6J or C3-/- mice (8 mice per group) were infected intracranially with 

103 PFU of V3533.  (A) Weight loss and (B) disease score following infection.  Mice 

were scored according to the following scale: 0 – no signs; 1 – hunched posture, 

ruffled fur; 2 – mild motor dysfunction, altered gait; 3 – moderate motor dysfunction, 

ataxia; 4 – severe motor dysfunction, hind limb paresis/paralysis; 5 – moribund.  

Each data point represents the arithmetic mean ± standard error of the mean (SEM).  

No statistically significant differences between C57BL/6J and C3-/- mice were 

detected at any time by Mann-Whitney testing.
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Figure 2.5 

  

 

Figure 2.5:  Anti-VEEV neutralizing activity of normal serum is partially 

dependent on complement activation.  Anti-VEEV neutralizing activity of normal 

serum from C57BL/6J, µMT, and C3-/- mice, untreated or heat-inactivated for 1 hour 

at 56°C, was assessed in vitro on BHK-21 cells.  Data represents the percentage of 

viral infectivity lost following 1 hour incubation with the indicated serum at a final 

concentration of 2.5%, compared with virus incubated in the absence of serum.  

Each bar represents the arithmetic mean of two replicates.    
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Figure 2.6 
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Figure 2.6:  Anti-VEEV antibody response is intact in C3-/- mice. 6-10 week old 

C57BL/6J or C3-/- mice were infected with 106 PFU of V3533 in the left rear footpad.  

(A) At the indicated times post-infection (Day P.I.), mice were bled, and the amount 

of VEEV-specific IgM and IgG was determined by anti-VEEV ELISA.  Data is 

presented as the log10 reciprocal dilution at which 50% of the maximal absorbance 

value was reached.  Individual data point represent single animals, and are pooled 

from two independent experiments.  (B) The anti-VEEV neutralizing activity of serum 

collected from C57BL/6J and C3-/- mice at day 4 post-infection.  Data is presented as 

the log10 reciprocal dilution at which 50% of infectivity was inhibited, and horizontal 

bars represent the arithmetic means of 3-5 animals per group. *, P < 0.05 by Mann-

Whitney testing. 
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Figure 2.7 

 

 

 

Figure 2.7:  Inflammatory cell recruitment to early sites of V3533 replication is 

complement-independent. 6-10 week old C57BL/6J or C3-/- mice were infected 

with 106 PFU of V3533 in the left rear footpad. (A) At day 2 post-infection, mice were 

perfused with PBS and single cell suspensions were generated from the draining 

popliteal lymph node, stained for various surface markers, and analyzed by flow 

cytometry.  Total numbers of NK cells (CD3-/CD49b+), NKT cells (CD3+/CD449b+), 

granulocytes (Ly6G+/CD11b+/MHC class II-), plasmacytoid dendritic cells (pDC) 

(CD11c+/B220+), and conventional dendritic cells (cDC) (CD11c+/B220-) isolated 

from lymph nodes.  Bars represent the arithmetic mean ± SEM of 2 mice per group.  

(B) At 24 hours post-infection, mice were perfused with PBS and draining popliteal 

lymph nodes were isolated and homogenized.  Amounts of type I IFN were 

determined by bioassay.  Bars represent the arithmetic mean of results form 3-4 

mice per group.  Results were statistically indistinguishable by Mann-Whitney 

testing.
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T CELLS FACILITATE RECOVERY FROM VENEZUELAN EQUINE 

ENCEPHALITIS VIRUS-INDUCED ENCEPHALOMYELITIS IN THE ABSENCE OF 

ANTIBODY 

 



 

 123 

Abstract 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the 

genus Alphavirus that is responsible for a significant disease burden in Central and 

South America through sporadic outbreaks into human and equid populations.  In 

humans, 2-4% of cases are associated with encephalitis, and there is an overall 

case mortality rate of approximately 1%.  In mice, replication of the virus within 

neurons of the central nervous system (CNS) leads to a paralyzing, invariably lethal 

encephalomyelitis.  However, mice infected with certain attenuated mutants of the 

virus are able to control the infection within the CNS and recover.  To better define 

what role T cells responses might be playing in this process, we infected B cell-

deficient µMT mice with a VEEV mutant that induces a mild, sub-lethal illness in 

immune competent mice.   Infected µMT mice rapidly developed the clinical signs of 

severe paralyzing encephalomyelitis, but were eventually able to control the infection 

and recover fully from clinical illness.  Recovery in this system was T cell-dependent, 

and associated with a dramatic reduction in viral titers within the CNS, followed by 

viral persistence in the brain.  Further comparison of the relative roles of T cell 

subpopulations within this system revealed that CD4+ T cells were better producers 

of IFNγ expression and were more effective at controlling VEEV within the CNS, 

compared with CD8+ T cells.  Overall, these studies suggest that T cells, especially 

CD4+ T cells, can successfully control VEEV infection within the CNS and facilitate 

recovery from a severe viral encephalomyelitis.
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INTRODUCTION 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the 

genus Alphavirus that is responsible for a significant disease burden in Central and 

South America through sporadic outbreaks into human and equid populations (20, 

57).  The most recent major outbreak occurred in 1995 with 75,000 to 100,000 

human cases spread between Columbia and Venezuela (59).  In humans, only 1-2% 

of cases progress to full-blown encephalitis, though roughly 50% of those cases are 

fatal (58).  In equid populations, however, the mortality rate is much higher, often 

over 50% (56).  Because of the high probability of future natural outbreaks, as well 

as its potential use as a bioterrorism agent, VEEV remains a significant public health 

concern (43).  Currently, there are no therapeutics or licensed vaccines available for 

human use.    

 

Work with multiple infection models has shown that both the innate and adaptive 

arms of the host immune response are involved in successful control of viruses that 

target CNS neurons (21).  Disruption of the type I interferon system dramatically 

decreases the average survival time of mice infected with VEEV, as well as Sindbis 

and West Nile viruses (45, 46, 60).  Studies with a variety of neuronotropic viruses, 

including Sindbis and West Nile, have clearly demonstrated that the development of 

a virus-specific antibody response is a critical step in both limiting viral spread and 

facilitating non-cytolytic clearance of infectious virus from neurons within the brain 

(14, 32).  αβ-T cell responses also help limit lethality in many of these models by 

directly killing infected cells, producing antiviral cytokines, and/or by enhancing the 
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production and quality of virus-specific antibody (4, 38, 52, 54).  In the case of 

Sindbis virus, the T cell compartment was able to dramatically restrict viral 

replication in the CNS in the absence of anti-viral antibodies, partially through an 

interferon-γ-dependent mechanism (5).  While numerous components of the host 

immune system play a role in mediating protection or recovery from neuronotropic 

virus infection, the specific mechanisms by which the host is able to eliminate virus 

from CNS neurons, while leaving these critical, irreplaceable cells intact, remain 

unknown.  

 

Our current understanding of VEEV pathogenesis comes primarily from work in a 

well-established mouse model of infection and disease that closely mirrors many 

aspects of disease in humans and horses (18).  Following peripheral inoculation into 

the footpad of a mouse, a delivery method that mimics the natural route of infection 

by mosquito bite, the virus initiates a biphasic course of infection in which initial 

replication within the skin-draining lymph node as well as other secondary lymphoid 

tissue seeds a high-titer serum viremia (35).  The viremia facilitates virus invasion of 

the CNS, initially through non-myelinated olfactory neurons within the nasal neuro-

epithelium (11, 35).  This leads to a second phase of infection characterized by rapid 

replication and spread though CNS neurons and the eventual development of 

paralyzing encephalitis (10, 19).  Infection of inbred mice with most strains of VEEV 

results in 100% mortality (56).  Due to the extreme lethality of the virus, efforts to 

understand the host mechanisms involved in mediating recovery from VEEV-
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induced encephalomyelitis have been hampered by the lack of a relevant model 

system in which such a recovery could be reliably observed.   

 

Using a fixed cDNA clone (pVR3000) of the Trinidad Donkey strain of VEEV as a 

starting point, our lab has generated a panel of genetically defined VEEV mutants 

that are attenuated in vivo, compared to virus derived from the parental pVR3000 

clone (1, 3, 12, 19, 60).  The use of these mutants, which are attenuated at various 

definable stages of in vivo infection, has facilitated the dissection of the sequence of 

host-virus interactions that give rise to pathogenesis and/or immunity during VEEV 

infection (1, 3, 35).  One of these lab-generated mutants, labeled V3533, differs from 

the parental V3000 virus at only two residues, both within the E2 glycoprotein (E76K, 

K116E), yet these changes are sufficient to convert an invariably lethal virus into one 

that is non-lethal in immune-competent C57BL/6 mice (1).  Sub-cutaneous infection 

of C57BL/6 mice with V3533 resulted in neuroinvasion followed by rapid clearance.  

This reduction in pathogenicity did not result from an alteration of CNS cellular 

tropism, as both V3000 and V3533 exclusively infected neurons within the brain 

(Data not shown).  Thus, infection with V3533 provided a model system to study 

successful control of VEEV infection within the CNS.  

 

In order to identify the components of a successful immune response to VEEV 

infection within the CNS, we infected a number of immunodeficient mouse strains 

with V3533 and assessed disease outcome.  Infection of Rag1-/- mice with V3533 

resulted in near total lethality while infection of B cell-deficient µMT mice resulted in 
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near total recovery, demonstrating that recovery from V3533 was dependent upon 

an adaptive immune response and that while antibody production contributed to 

recovery, it was not required.  Further studies demonstrated that both CD4+ and 

CD8+ T cells had direct anti-viral effects within the CNS, but that both were required 

for maximal control of V3533 infection.  

 

Materials and Methods 

Viruses 

The isolation of wild-type V3000 and the V3533 mutant of VEEV, as well as the 

generation of the pVR3000 and pVR3533 molecular clones have been described 

previously (1, 13).  Virus stocks of V3533 were generated by in vitro transcription 

from a linearized plasmid, pVR3533, which encodes the full-length V3533 cDNA, 

using a T7-specific mMessage mMachine in vitro transcription kit (Ambion).  In vitro-

generated transcripts were then electroporated into BHK-21 cells using a Bio-Rad 

electroporator as described previously (1).  Culture supernatants were harvested 18 

hours after electroporation, clarified by centrifugation at 3000 rpm for 20 min, and 

stored as single use aliquots at -80° C.  Viral titers were determined by standard 

plaque assay on BHK-21 cells, as previously described (53). 

Mouse studies 

Rag1-/- and µMT mice (both on the C57BL/6 background) were obtained from The 

Jackson Laboratory (Bar Harbor, ME) and bred in house under specific pathogen-

free conditions.  C57BL/6 mice were purchased from The Jackson Labs as needed.  

All experimental manipulation of mice was performed in a biosafety level 3 animal 
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facility following a 7 day acclimatization period.  For infections, 6-10 week old female 

mice were anesthetized via intra-peritoneal (i.p.) injection with a mixture of ketamine 

(50 mg/Kg body weight) and xylazine (15 mg/Kg body weight) and then inoculated in 

the left rear footpad with 103 PFU of virus in diluent [phosphate buffered saline 

(PBS) + 1% donor calf serum, Ca2+, Mg2+].  Mock-infected mice received diluent 

alone.  Weight loss and disease score were assessed daily in infected animals.  The 

scale used for disease scoring was as follows: (0) no signs; (1) hunching; (2) ruffled 

fur; (3) ataxia, imbalance; (4) conjunctivitis; (5) paralysis of one or both hind limbs; 

(6) moribund.  This scale was based on the temporal order of ascending symptoms 

in µMT mice following V3533 infection.  Mice that lost more than 20% (following 

V3000 infection) or 35% (following V3533 infection) of their starting weight or 

became moribund were euthanized according to UNC Institutional Animal Care and 

Use Committee guidelines.  

Virus titers 

To assess VEEV titers in vivo, infected mice were sacrificed, bled, and then 

perfused through the heart with 10 mL of PBS.  Spleen, draining popliteal lymph 

node, brain and spinal cord were then removed, weighed, and frozen at -80°C in 

diluent.  Tissues were then thawed, homogenized, and used to infect BHK-21 cells 

in a standard plaque assay.  

In vivo depletions  

µMT mice received i.p. injections of 0.5 mg of depletion antibody in 0.1 mL of PBS 

24 hours prior to V3533 infection, 24 hours following infection, and every 72 hours 

subsequently until the termination of the experiment at day 25 post-infection.  
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Depleting antibodies used were 17A2 (αCD3), GK1.5 (αCD4), 2.43 (αCD8), and 

LTF2 (isotype control) (all Bio X Cell).  At day 25 post-infection, mice were bled and 

then sacrificed by exsanguination.  Brains and spinal cords were collected for titering 

as described above, and spleens were collected to assess depletion efficacy by flow 

cytometry. 

Quantification of CNS leukocytes and flow cytometry 

Mock and V3533-infected mice were sacrificed by exsanguination and perfused with 

PBS.  Brains and spinal cords were harvested, minced, and then incubated for 1.5 

hours with vigorous shaking at 37°C in digestion media [RPMI, 1% fetal calf serum, 

25mM HEPES, 1.25 mg/mL Collagenase A (Roche)].  Homogenates were then 

passed through a 40 µm strainer and pelleted through 25% Percoll (GE Healthcare) 

in media (RPMI, 1% fetal celf serum, 25mM HEPES) for 20 min at 800g.  Resulting 

pellets were then resuspended in 30% percoll, overlayed above 70% Percoll, and 

centrifuged for 20 min at 800g.  The interface was collected and washed with media, 

and the absolute number of live cells in each sample was then determined by trypan 

blue exclusion.  Cells were washed in flow cytometry wash buffer (1 x Hank’s 

balanced salt solution, 1% fetal calf serum, 0.1% sodium azide) and then stained 

with the following antibodies: anti-CD45-biotin coupled with streptavidin-conjugated 

PerCP, anti-CD11b-PE-Cy7, anti-MHC Class II-APC, anti-Ly6G-FITC (clone 1A8), 

anti-CD3ε-PE (all eBioscience); anti-CD4-Pacific Blue, and anti-CD8-Pacific Orange 

(both Caltag).  All staining was done in the presence of anti-mouse FcγRII/III (clone 

2.4G2; BD Pharmingen) to prevent non-specific antibody binding.  Following 

staining, samples were fixed in 2% paraformaldehyde in PBS and analyzed on a 
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CyAn flow cytometer using Summit 5.2 software (Dako).  Absolute numbers of each 

specific cell type were calculated by determining the number of total live cells within 

a sample by trypan blue exclusion and then multiplying that number by the 

percentage of live cells within the sample bearing the appropriate surface staining 

profile.  

Ex vivo analysis of CNS leukocytes 

Leukocytes were isolated as described above.  For samples receiving no ex vivo 

stimulus, cells were cultured in T cell culture media (RPMI + 10% fetal calf serum, 50 

µM β-mercaptoethanol) with 3 µg/mL brefeldin A (eBioscience) for 4 hours at 37° C.  

For samples receiving stimulus, cells were cultured in T cell culture media with 50 

ng/mL PMA and 500 ng/mL ionomycin for 6 hours at 37° C, with brefeldin A added 

for the last 4 hours. CD107a staining was performed during brefeldin A treatment, in 

the presence of 2 µM monensin and 1:100 anti-CD107a-AF488 or isotype control 

(eBioscience).  Cells were then washed in flow cytometry wash buffer and stained 

with the following antibodies: anti-CD69-PE-Cy5, anti-CD3ε-PE (both eBioscience); 

anti-CD4-Pacific Blue, and anti-CD8-Pacific Orange (both Caltag).  Following 

surface staining, cells were washed twice and then simultaneously fixed and 

permeabilized in Cytofix/Cytoperm (BD Biosciences) for 30 min.  Permeabilized 

samples were stained for intracellular expression using the following antibodies: anti-

Ki-67-FITC, anti-IFNγ-PE-Cy7, anti-TNFα-FITC, anti-IL-2-APC, anti-IL-10-APC, anti-

IL-17-APC, or the appropriate isotype controls (all eBioscience).  All staining was 

done in the presence of anti-mouse FcγRII/III (2.4G2; BD Pharmingen) to prevent 
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non-specific antibody binding.  Samples were then washed twice in 

Cytoperm/Cytowash (BD Biosciences) and then analyzed on a CyAn flow cytometer.    

 

RESULTS 

V3533 provides a relevant model of viral clearance and recovery 

Following sub-cutaneous, footpad injection of C57Bl/6 mice with 106 pfu of V3533, 

the early stages of viral replication and spread were similar to those observed 

previously with the more virulent parental virus, V3000 (Fig 1A, data not shown) 

(19).  Virus was first observed in the draining popliteal lymph node, spleen, and 

serum by 24 hours post-infection.  The virus first became detectable in the brain by 

plaque assay at day 2 post-infection, while titers in secondary lymphoid organs and 

serum were reduced considerably by this timepoint.  Viral titers peaked within the 

CNS around day 4, but unlike wild-type virus that maintained high titers within the 

CNS until the inevitable death of the host (data not shown), titers of V3533 began to 

decline by day 6, and by day 8, infectious virus was no longer detectable by plaque 

assay.  Replication of V3533 within the CNS was associated with a small, but 

significant loss of weight relative to mock in multiple independent experiments (Figs 

1B, 2).  Upon clearance, infected mice began regaining weight and eventually 

stopped exhibiting outward signs of disease.  Thus, V3533 provides a model of 

VEEV infection in which the host is able to successfully clear the virus from the CNS 

and recover from clinical illness.     
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Antibody production is not required for recovery from V3533-induced 

encephalomyelitis 

The role of the adaptive component of the immune system in mediating protection or 

recovery during VEEV infection has been tested primarily in the context of 

vaccinated animals, or animals receiving passive transfer of immune sera.  While 

these studies have been instructive, we were interested in what role the adaptive 

response could play during the infection of a naïve animal.  To answer this question, 

we determined whether the observed control of V3533 by C57Bl/6 mice was 

dependent on the adaptive arm of the immune system.   

 

Rag1-/- mice, which lack functional B and T cells, as well as µMT mice, which lack 

functional B cells, were infected with 103 pfu of V3533 sub-cutaneously in the 

footpad.  Rag1-/- mice initially behaved similarly to wild-type mice, losing little or no 

weight, and showing no outward signs of disease for the first 4 days post-infection 

(Fig 2).  At day 4, infected Rag1-/- mice began losing weight, and by day 8 post-

infection had lost roughly 20% of their starting weight.  They also developed clinical 

signs of disease including hunched posture, ruffled fur, ataxia, and a marked 

reduction in cage exploration.  Weight loss and clinical signs of disease in infected 

Rag1-/- mice progressed rapidly between days 4 and 8 post-infection, but the clinical 

condition of the animals then stabilized, and over the next 10 days both weight and 

clinical score remained virtually unchanged.  Starting around day 18 post-infection 

however, infected Rag1-/- mice suffered further weight loss, culminating in death.  

V3533 infection of Rag1-/- mice resulted in 93% lethality (n=15) over 40 days of 
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observation, with an AST of 30+/-5 days.  The difference in disease outcome 

observed between C57BL/6 and Rag1-/- mice clearly demonstrated that successful 

control of V3533 infection is dependent upon an intact adaptive immune response.   

 

The importance of an intact antibody response was demonstrated by following 

V3533 infection of µMT mice.  Between days 4 and 9 post-infection, µMT mice lost 

about 30% of their starting weight and developed the outward signs of severe 

encephalomyelitis, including convulsions, conjunctivitis, and hind-limb paresis or 

paralysis.  This dramatically enhanced pathology, compared with the much milder 

disease observed in wild-type mice, illustrated the critical role that antibody 

production played in mounting a successful response to VEEV infection.  

Surprisingly, despite the extremely severe morbidity observed, the vast majority of 

these animals (92.7%, 64/69) went on to recover.  Recovery of µMT mice was 

somewhat protracted, with mice not regaining their full starting weights until weeks 

later.  Most outward signs of encephalomyelitis or febrile illness disappeared in 

recovered µMT mice, though these animals retained a slight tentativeness in their 

movements that was still observable 15 weeks after infection.  The stark contrast in 

disease outcome following V3533 infection in µMT mice versus Rag1-/- mice clearly 

demonstrated that other adaptive mechanisms in addition to antibody production 

could play a major protective role during VEEV infection. 

   

Recovery in µMT mice is associated with dramatic reduction of viral titers in 

the brain and clearance of infectious virus in the spinal cord  
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Persistent CNS infection by wild-type VEEV in mice has not been reported.  The 

unexpected recovery observed in V3533-infected µMT mice lead us to ask whether 

the observed recovery was associated with clearance of virus from the CNS or the 

establishment of viral persistence.  To answer this question, we infected µMT mice 

sub-cutaneously in the footpad with 103 pfu of V3533, and then sacrificed animals at 

various times post-infection and assessed viral burden in relevant tissues by plaque 

assay.   

 

The pattern of early V3533 replication and dissemination observed in µMT mice 

differed somewhat from the classic biphasic course of infection that has previously 

been seen in VEEV-infected immune-competent mice (1).  Virus was first seen in the 

draining popliteal lymph node within 12 hours of inoculation, and the spleen and 

serum by 24 hours.  Rather than being rapidly cleared from these compartments, as 

it is in C57BL/6 mice, infectious V3533 remained detectable in both serum and 

spleen for weeks following inoculation (Fig 3A).  Of 6 mice examined at 15 weeks 

post-infection, virus was still detectable in serum (4/6) and spleen (2/6) by plaque 

assay (Fig 3B).   

 

V3533 first appeared in the brains of µMT mice around 24 hours post-infection, and 

rapidly reached peak titers of around 106 pfu/gram by day 4.  The appearance of 

virus in the spinal cord was slightly delayed, with infectious virus first detectable at 

48 hours post-infection and peak titers being reached at day 6 (Fig 3A).  Thus, the 

kinetics of neuroinvasion and initial replication of the virus within the CNS were 
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similar to that observed in C57BL/6 mice.  Between days 6 and 8 however, titers in 

both brain and spinal cord began to fall, and by day 15 post-infection had been 

reduced to within a log of the limit of detection.  Following this initial reduction of viral 

titers within the CNS, infectious virus was cleared from the spinal cord between days 

15 and 30 post-infection, but continued to persist in the brains of the majority of 

animals tested through week 15 (day 105), indicating the development of a chronic 

infection (Fig 3B).  This divergence in the ability of the brain and spinal cord to clear 

virus in the absence of antibody mirrors what has been reported previously with 

Sindbis virus in these mice (5).   

 

Given that µMT mice were able to control V3533 infection within the CNS and 

recover from infection, we next asked whether the mortality observed in V3533-

infected Rag1-/- mice was due to an inability to control viral replication.  To answer 

this question, we directly compared both systemic and CNS titers between µMT and 

Rag1-/- mice at days 6 and 25 following sub-cutaneous infection with 103 pfu of 

V3533.  While viral titers were high at day 6 post-infection in both µMT and Rag1-/- 

mice, by day 25 µMT mice were able to reduce titers in both serum and brain 

substantially, while Rag1-/- mice continued to maintain extremely high titers in both 

tissues, potentially explaining the enhanced mortality rate in these mice (Fig 3C). 

 

Reduction in viral CNS titers is concurrent with influx of inflammatory 

monocytes and T cells  
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The dramatic reductions in CNS titers in the absence of anti-viral antibody led us to 

ask which immune cell populations were responsible.  We first identified leukocyte 

populations present in the brains and spinal cords of V3533-infected mice over the 

course of infection.  µMT mice were infected sub-cutaneously in the footpad with 103 

pfu of V3533.  At different times post-infection, infected animals were sacrificed and 

CNS-infiltrating leukocytes were isolated.  Different leukocyte populations were then 

identified by surface phenotype and quantified by flow cytometry (Fig 4A). 

 

The vast majority of leukocytes in the uninfected CNS were identified as resting 

microglia, defined as CD11b+ CD45loMHC class IIlo, with minimal numbers of other 

populations being detectable (17, 49).  Following invasion of the CNS by V3533, 

however, this picture changed dramatically.  Between days 4 and 10 post-infection, 

a massive expansion in a CD11b+ CD45hi Ly-6G- MHC class IIhi population, defined 

as inflammatory monocytes, was observed (16, 29, 49).  This population increased 

in both number and activation state, assessed by MHC class II expression, over this 

time period (Fig 4B, data not shown) (55).  Between days 6 and 10 post-infection, 

the number of CD4+ and CD8+ T cells within the CNS increased from barely 

detectable to 106 cells/brain and 105 cells/spinal cord. After peaking at day 10, these 

inflammatory cell populations began rapidly contracting, with inflammatory 

monocytes and T cell populations exhibiting a 5-10 fold decrease in numbers by day 

15 post-infection (Fig 4B).  Interestingly, the period during which infected µMT mice 

exhibited increasing severity of disease signs and weight loss corresponded in time 

precisely with the period during which inflammatory monocytes and T cell numbers 
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within the CNS expanded, while the onset of recovery in those animals 

corresponded with the contraction of those cell populations (Fig 2). 

 

Due to the persistence of low levels of infectious virus in the brains of recovered 

µMT mice, we asked whether different inflammatory cell populations were retained in 

the CNS during the chronic phase of the infection.  Comparing total cell numbers in 

the brains of µMT mice 70 days after infection with V3533 with those from mock 

infected µMT mice, we found significantly elevated numbers of inflammatory 

monocytes, CD4+, and CD8+ T cells, but not microglia, in the infected group.  In the 

spinal cord, all cell populations tested were significantly elevated above mock (Fig 

4C; p<0.05, Mann Whitney).  Additionally, microglia and inflammatory monocytes 

from the persistently infected mice showed significantly higher levels of MHC class II 

staining relative to mock, indicating that they retained an activated phenotype 

(p=0.0286, Mann Whitney, Data not shown).  

 

T cells are required for control of V3533 infection and recovery in µMT mice  

Numerous studies demonstrating the importance of T cells in mediating anti-viral 

immunity in other viral systems, as well as the dramatic difference that we observed 

in survival rates between µMT and Rag1-/- mice, suggested that T cells are required 

for the recovery observed in V3533-infected µMT mice.  It was also possible that the 

relative contributions of CD4+ and CD8+ populations to control of the infection and 

recovery differed.  To address these questions, we treated µMT mice with depleting 

antibodies against CD3, CD4, or CD8, or with an isotype control antibody.  Weight 
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loss and disease score were observed for 25 days following infection, at which point, 

surviving mice were sacrificed and assayed for viral burden in the CNS as well as 

serum.  The efficacy of the depletion treatments also was assessed at the 

termination of the experiment by flow cytometric analysis of splenocytes (Fig 5A). 

 

In terms of disease outcome, the antibody isotype control group was 

indistinguishable from untreated µMT mice following V3533 infection, with animals 

developing the same overt signs of severe encephalomyelitis and then recovering 

(Figs 2, 5B).  The CD3-depleted group immediately began exhibiting signs of illness 

upon infection, including weight loss, hunching, ruffling, and ataxia.  These disease 

signs closely mirrored what was observed in V3533-infected Rag1-/- mice, without 

the convulsions, conjunctivitis, and hind limb paresis observed in infected µMT mice.  

Also similar to the disease observed in Rag1-/- animals, illness in the CD3-depleted 

group was prolonged but generally sub-lethal, with 3 of 4 animals still alive at the 

termination of the experiment at day 25 post-infection.  Those surviving animals 

appeared to be nearing death, however, suggesting that lethality would have been 

100% had the experiment been allowed to continue.  The one significant difference 

observed between the CD3-depleted group and Rag1-/- was that the onset of 

disease was much more rapid in the CD3-depleted group, with signs of fever and 

weight loss easily observable by 24 hours post-infection (Figs 2, 5B, data not 

shown).  This is most likely not an artifact of the depletion as both the CD4 and CD8-

depleted groups exhibited the same delay between infection and disease onset as 

untreated µMT mice. 
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In order to more directly examine the role of T cells in controlling V3533 infection in 

µMT mice, we compared viral burdens at 25 days post-infection both within the CNS 

and systemically between the different depleted groups with those in the control 

group (Fig 5C).  As expected, based on infection of untreated µMT mice, the 

antibody isotype control treated group showed low to undetectable viral burdens in 

the brain and serum, and no detectable infectious virus in the spinal cord.  The CD3-

depleted mice however, demonstrated a complete inability to control the infection, 

with titers in all three compartments tested ranging from 105 pfu/mL in the serum to 

107 pfu/g in the brain.  These results clearly demonstrated a requirement for the T 

cell compartment in controlling V3533 infection in the absence of antibody. 

 

Both CD4+ and CD8+ T cells are required for effective control of V3533 

infection in µMT mice 

Initial disease severity in both CD4 and CD8-depleted groups appeared to be 

somewhat intermediate between the control and CD3-depleted groups.  During the 

time of peak disease severity (days 9-10), both CD4 and CD8-depleted groups lost 

significantly less weight than the antibody isotype control treated group (p<0.05; 

Mann-Whitney), and neither group developed the conjunctivitis and/or hind limb 

paresis that were characteristic of V3533 infection in untreated µMT mice (Fig 5B, 

data not shown).  This indicated that both CD4+ and CD8+ T cells together were 

required for the most extreme pathology observed in µMT mice following V3533 

infection.   
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While the CD4 and CD8 depletion treatments reduced the severity of V3533-induced 

disease during the early stages of infection, they also appeared to reduce the ability 

of those animals to recover compared with the control group (Fig 5B).  At the 

termination of the experiment, 25 days post-infection, one of five CD4-depleted mice 

had already succumbed to infection, and the survivors were steadily losing weight, 

indicating that they were not successfully controlling the infection.  The CD8-

depleted group, while appearing to have recovered more fully than the CD4-depleted 

group at first, also had begun to deteriorate again by the end of the experiment, 

resulting in significantly lower weights and significantly higher disease scores 

compared with the antibody isotype control group at day 25 (both p<0.05; Mann-

Whitney).  Although the experiment was not extended long enough to determine final 

survival rates for the different groups, the status of the CD4 and CD8-depleted 

groups at the termination of the experiment strongly suggested that both CD4+ and 

CD8+ T cell populations were required for complete recovery from V3533 infection. 

 

Having established the necessity of T cells for effective control of V3533 and 

recovery, the relative contributions of the CD4+ and CD8+ compartments to the 

control of the virus both systemically and within the CNS were determined (Fig 5C).  

In the serum at day 25 post-infection, mean virus titers in both CD4 and CD8 

depleted groups were roughly three logs lower than the CD3-depleted group, though 

still elevated above the antibody isotype control group, indicating that each 

population was able to exert substantial control over systemic replication of V3533, 
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but that both populations were required for maximal control.  In the brain, mean virus 

titers in mice depleted of CD8+ cells were statistically indistinguishable from those of 

the antibody isotype control group (p=0.1761; Mann-Whitney).  Brain titers in the 

CD8-depleted group were significantly lower than in the CD3-depleted group, 

however (p=0.0357; Mann Whitney).  In the CD4-depleted group, titers were 

significantly elevated above both the control and the CD8-depleted groups 

(p=0.0294, 0.0159 respectively; Mann Whitney), but were indistinguishable from the 

CD3-depleted group (p=0.0571; Mann Whitney). In the spinal cord, we observed a 

similar trend where titers in CD8-depleted mice were significantly lower than those of 

the CD3-depleted group, but titers in CD4-depleted mice were not statistically 

distinguishable from the CD3-depleted group (p=0.4, p=0.0357 respectively; Mann 

Whitney) (Fig 5C). Together, these results suggest that within the CNS, the CD4+ 

compartment contributes the majority of the T cell-associated anti-viral activity, but 

that both CD4+ and CD8+ cells are required for maximal control. 

 

CD4+ T cells are the primary source of T cell-associated IFNγ  within the brain 

The apparent difference in antiviral activity observed between CD4+ and CD8+ cells 

within the CNS might be explained by differences in expression of cytokines or other 

indicators of effector function.  To address this possibility, we isolated T cells from 

the brains of V3533-infected µMT mice at days 8, 15, and 70 post-infection and 

assessed expression of IFNγ, TNFα, IL-2, IL-10, and IL-17 by intracellular cytokine 

staining.  We also looked at surface expression of CD69 and CD107a as markers of 

recent activation and degranulation, respectively.  Day 8 was chosen to provide a 
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snapshot of T cell behavior during the peak of antiviral activity, as T cell numbers in 

the CNS were increasing and viral titers were decreasing at this time.  Day 15 

represented a point after which both viral titers and T cell numbers within the CNS 

had decreased substantially and recovery had begun.  Day 70 was chosen to 

represent a point well into the chronic phase of infection. 

 

T cell behavior within the brains of V3533-infected mice was described using two 

complementary approaches.  The first was to non-specifically stimulate brain-

infiltrating T cells with PMA and ionomycin for 6 hours ex vivo prior to flow cytometric 

analysis to determine how these cells were capable of responding (Fig 6A).  Using 

this approach, it appeared that both CD4+ and CD8+ cells were programmed to 

respond similarly to V3533 infection within the brain.  Large numbers of IFNγ and 

TNFα-producing CD4+ and CD8+ cells were detected, while IL-17 and IL-10-

producing cells were much less prevalent, indicating that both CD4+ and CD8+ cell 

populations appeared to be participating in a predominantly Th1-skewed response.    

IL-2 production was minimal, in accordance with previous findings during Sindbis 

infection (26).  The numbers of IFNγ and TNFα-producing CD4+ and CD8+ cells were 

roughly equivalent at day 8, but by day 15 the number of CD8+ cells producing both 

cytokines was approximately two-fold higher compared with CD4+ cells, reflecting an 

overall increase in the ratio of total CD8+ cells to CD4+ cells at this time-point.  At all 

time-points, a higher percentage of CD8+ cells stained positive for surface 

expression of the recent degranulation marker CD107a, compared with CD4+ cells.  

These results suggest that brain-infiltrating CD4+ and CD8+ T cells were similar in 
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their abilities to produce IFNγ and TNFα ex vivo during the acute phase response to 

V3533, and that the degranulation activity of CD8+ T cells was superior to that of 

CD4+ cells.  Both CD4+ and CD8+ T cells retained multiple effector capabilities well 

into the chronic phase of VEEV infection, indicating that the phenomenon of T cell 

exhaustion was not occurring in this system (Table 1).  The caveat with results 

obtained by PMA/ionomycin treatment however, is that they represent only how T 

cells are programmed to respond, not how they are actually behaving in vivo. 

 

A second approach gave a more direct measurement of how T cells were actually 

behaving in vivo.  Rather than treating with PMA and ionomycin following isolation, 

brain-infiltrating T cells were treated only with brefeldin A, with or without monensin, 

prior to flow cytometric analysis (Fig 6B).  No external stimulus was provided.  While 

this treatment probably resulted in artificially low levels of detectable expression due 

to the time lag between sacrifice of the animal and cell fixation, we feel that any 

results observed using this method are the direct result of the stimuli and regulatory 

signals present within the brains of V3533-infected mice.  Brain-infiltrating T cells 

analyzed in the absence of ex vivo stimulus exhibited a dramatically different pattern 

of IFNγ and CD107a expression compared to that observed following 

PMA/ionomycin treatment.  At days 8, 15, and 70 post-infection, significant IFNγ 

expression was detectable only within the CD4+ population.  IFNγ+ CD8+ T cells were 

undetectable at all timepoints.  In addition, a larger percentage of CD4+ cells 

expressing surface CD107a were detected, compared with CD8+ cells during the 

acute phase. Finally, IL-2, IL-17, and IL-10 expressing cells were sparse in both 
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CD4+ and CD8+ T cells.  Together, these results indicate that during the acute phase 

of the response to V3533 infection within the brain, CD4+ T cells produced more 

IFNγ and had higher levels of degranulation activity compared with CD8+ T cells, 

potentially explaining why these cells exhibited more potent anti-VEEV activity. 

 

While the lack of known T cell epitopes prevented us from directly examining VEEV-

specific T cells, we felt that the use of CD69 staining provided a reasonable 

alternative.  CD69 expression on T cells serves as a marker of recent encounter with 

cognate antigen, and should not be expressed on bystander T cells (47).  At each 

time point examined, CD69+ cells constituted roughly 50-80% of all CD4+ and CD8+ 

T cells within the brain (Fig 6C).  This is consistent with the majority of brain-

infiltrating T cells being VEEV-specific during both the acute and chronic phases of 

infection. 

 

Discussion 

While the important protective role of B cells and virus-specific antibodies during 

neuronotropic alphavirus infection has been well established, the role of T cells 

remains relatively ill-defined.  Work with avirulent Sindbis virus has suggested that T 

cells might directly act to limit viral infection within the CNS by non-cytolytic 

mechanisms; however, studies using virulent strains of Sindbis or VEEV were 

contradictory, suggesting instead that T cells might either act to enhance pathology 

or play no significant role whatsoever (5, 28, 44).  Previous studies evaluating the 

immune response to VEEV infection have been hampered by the lack of a model 
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system in which successful control of infection could be reliably observed.  To better 

understand the role of T cells during a successful immune response to acute VEEV 

infection, we utilized a mutant of VEEV, V3533, which is capable of invading the 

CNS from the periphery yet only induces a mild, transient disease in immune-

competent mice.  We feel that this provides a more relevant model of VEEV-induced 

disease in humans, compared with the universal lethality observed in mice infected 

with wild-type VEEV strains, as natural infections of humans very rarely progress to 

overt encephalomyelitis and death (58).  Using V3533 infection of mice as a model 

of successful recovery from VEEV-induced encephalomyelitis, we asked whether T 

cells played a significant role during recovery from VEEV infection, independent from 

any effect on antibody production.   We observed that B cell-deficient µMT mice 

were able to recover from V3533 infection while T cell-depleted µMT mice were not, 

clearly demonstrating that T cells could facilitate clinical recovery from VEEV-

induced encephalomyelitis in the absence of antibody.  

 

We chose to carry out these studies in µMT mice, rather than B-cell depleted 

immune-competent mice, in order to ensure that antibody production was completely 

absent.  Given the highly protective effects that antibodies demonstrated in other 

alphavirus infection models, we were concerned that even a small percentage of 

endogenous B cells that survived a depletion treatment might exert enough of an 

effect to confound the potentially subtle T cell-associated effects in which we were 

interested (32).  The use of µMT mice as a “B cell deficient mouse” is complicated by 

the observation that these mice exhibit various T cell deficiencies relative to wild-
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type mice (2).  We cannot rule out that these defects, which affect both expansion 

and function in CD4+ and CD8+ T cells, might contribute to the viral persistence that 

we observed.  However, the fact that T cells are able to control V3533 infection and 

facilitate recovery in µMT mice despite these strain-specific deficiencies strengthens 

our conclusion that T cells contribute a significant anti-viral effect during V3533 

infection.   

 

Viral infection of CNS neurons presents a unique problem for the immune system in 

that they are absolutely essential for host function, yet are not easily replaced (34).  

As a result, widespread immune-mediated cytolysis of infected cells can present a 

greater threat to host viability than the virus itself (10).  In the case of infection with a 

highly virulent virus, the benefits of cytolytic clearance mechanisms might be worth 

the cost in enhanced pathology; however, it appears that the mammalian immune 

system has also evolved non-cytolytic mechanisms of T cell-mediated clearance.  In 

particular, studies with Sindbis virus, Theiler’s murine encephalomyelitis virus 

(TMEV), and measles virus have all implicated T cell-associated IFNγ production in 

mediating noncytolytic clearance of virus from infected neurons (7, 38, 42).   The 

studies described here clearly demonstrated that, during V3533 infection, T cells 

were able to significantly restrict viral replication within the brain and clear infectious 

virus from the spinal cord, thus facilitating recovery from a severe viral 

encephalomyelitis.  While this reduction in CNS titers was clearly associated with 

more severe disease signs, compared with what was observed in Rag1-/- mice, the 

rapid onset of recovery and the absence of long-lived sequelae within the brain 
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suggest that control of the infection was not achieved simply by destruction of 

infected neurons.  

 

The failure of µMT mice to fully clear infectious virus from the CNS mirrors what has 

been previously observed in µMT mice infected with Sindbis virus (5).  The ability of 

these mice to recover from V3533-induced encephalomyelitis despite the continuing 

presence of infectious virus both within the CNS as well as systemically raises a 

number of questions.  The most obvious is, what are the cellular reservoirs of virus 

that prevent total clearance?  Studies with Sindbis virus have indicated that neuronal 

sub-populations within the CNS are differentially susceptible to IFNγ-mediated 

clearance (8).  Whether these differences are due to intrinsic differences in the IFNγ-

signaling network within these cells or some other mechanism remains to be 

determined.  If there is a stable reservoir of clearance-refractory neurons that are 

responsible for the observed persistence, how are those cells able to survive 

prolonged infection with a cytolytic virus?  Despite the presence of robust anti-

apoptotic programming within mature neurons, virulent strains of VEEV are able to 

induce widespread neuronal death (10, 22, 27).  It may be that V3533 is less 

efficient at overcoming these mechanisms, thus allowing long-term survival of 

infected neurons.  If this is the case, understanding the molecular basis of this 

difference will be of great interest.  Another issue that remains unresolved is the 

extent to which host neurological function is compromised by the ongoing persistent 

infection and accompanying low-level inflammatory response (40).  While µMT mice 

appear to recover fully from V3533-induced clinical disease, it is possible that a 
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more in-depth evaluation of cognitive function in the recovered animals might reveal 

subtle defects.   

 

Given the continuing presence of infectious virus within the CNS of recovered µMT 

mice, it is not surprising that activated T cells were retained within the brain and 

spinal cord.  What was somewhat surprising was that both CD4+ and CD8+ T cells 

retained functionality, as determined by IFNγ expression, as long as 70 days 

following infection.  The loss of T cell function, specifically IFNγ expression, has 

been well documented in other models of persistent viral infection and is thought to 

result from prolonged antigen exposure (6, 36, 51).  In this model of persistent VEEV 

infection however, long-term antigen exposure, as indicated by sustained CD69 

expression, was not sufficient to induce exhaustion.  A recent study that examined T 

cell responses to chronic mouse hepatitis virus infection of the CNS also observed 

long-term maintenance of T cell function despite ongoing antigenic stimulation, 

suggesting that some aspect of the CNS regulatory environment might prevent the 

development of the exhaustion phenotype observed in other systems (61).   

 

Another notable aspect of the T cell response that we observed during the sub-

clinical chronic phase of the infection was a shift in CD8+:CD4+ T cell ratios.  While 

this ratio was roughly 1:1 during the acute phase of the response within the CNS, by 

day 20 post-infection it had risen to about 3:1, and by day 70 had reached nearly 

10:1.  One possible explanation for this finding could be increased susceptibility to 

apoptosis among cells of the CD4+ population.  Studies performed in the context of 
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acute LCMV infection showed that CD4+ memory cells have lower levels of Bcl-2 

expression compared with CD8+ memory cells and that this corresponded with a 

more rapid decline in CD4+ T cells over time (24).  Another possible explanation is 

that MHC class I and MHC class II expression within the CNS might be differentially 

regulated during the development of viral persistence (39).  Since viral antigen 

presentation is likely to be required for maintenance of T cell populations during 

chronic infection, it may be that a reduction in MHC class II-restricted presentation 

could result in the gradually diminishing CD4+ T cell numbers that we observed (50).  

More work is needed to describe the dynamics of antigen presentation within the 

CNS during chronic viral infection.       

 

It has been firmly established that the CNS presents an especially unique 

microenvironment in which extremely tight regulation of host immune responses is 

essential for continued host viability (9, 37).  Numerous mechanisms, including 

restricted expression of MHC class I and class II by neurons, and the constitutive 

production of TGFβ and immune-suppressive gangliosides by glial cells, act to limit 

both the magnitude and duration of inflammatory responses, thereby protecting 

against excessive immune-pathology (15, 25, 30, 37, 48).  The complex regulatory 

environment within the CNS might explain our observation that CD4+ T cells appear 

to be providing the majority of T cell-associated antiviral activity in our system.  

Despite both T cell populations having been clearly primed to produce IFNγ, as 

evidenced by the response to PMA/ionomycin treatment, the absence of detectable 

IFNγ expression by unstimulated brain-infiltrating CD8+ T cells during the acute 
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response to V3533 suggests that CD4+ and CD8+ cells are subject to differential 

regulation within the brain.  This observation could be explained by a failure of 

infected neurons to upregulate MHC class I, preventing antigen encounter, but this is 

unlikely as the vast majority of CD8+ T cells retain a CD69+ phenotype both during 

the acute and chronic phases of the response to V3533, indicating recent encounter 

with cognate antigen.  It seems more likely that some environmental factor is 

specifically limiting IFNγ production by CD8+ cells within the brain.  There is 

precedent for this, as CNS-infiltrating CD4+ T cells responding to Sindbis virus 

infection appear deficient in IL-2 expression, compared with CD4+ T cells in the 

periphery (26).  Other studies have shown that T cells primed by brain-resident 

microglia take on a phenotype that is distinct from T cells primed by other APC 

populations (16).  Clearly, further work is needed to better define the regulatory 

elements within the CNS that dictate T cell function during VEEV infection.   

 

Our observation that, within this highly reductionist model, CD4+ cells played a 

significantly more potent anti-viral role in response to V3533 compared with CD8+ 

cells correlated with substantially higher levels of IFNγ expression and signs of 

recent degranulation.  This differs from results obtained in Sindbis virus-infected 

mice, where CD4+ and CD8+ T cells appeared to have equivalent effects on viral 

titers within the CNS (5).  Based on our CD8 depletion studies in µMT mice, CD4+ T 

cells appear to exert considerable anti-viral effect, independent of any role in helping 

B cell or CD8+ T cell responses.  This effect is most likely mediated primarily by IFNγ 

signaling within infected neurons, similar to what has been described with Sindbis 
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virus, Borna virus, TMEV, and measles virus (7, 23, 38, 42).  However, we cannot 

rule out additional mechanisms.  One possible alternative mechanism could involve 

the release of lytic granules as CD4+ T cells and, to a lesser extent, CD8+ T cell both 

exhibited signs of recent degranulation both during and after the acute phase 

response.  Lytic granule release could act to clear V3533 from infected neurons 

either by cytotoxic mechanisms (i.e. perforin release), as has been described during 

West Nile virus infection, or by non-lethal mechanisms, as has been described 

during HSV-1 infection (31, 52).  A second possible alternative mechanism is that 

CD4+ T cells, possibly through IFNγ expression, might act to enhance 

monocyte/microglia responses to the virus, as has been observed following LCMV 

infection of the CNS (33).  Obviously, these different mechanisms are not mutually 

exclusive.  Given that neurons do not express MHC class II, the mechanism by 

which CD4+ T cells recognize V3533-infected neurons also remains unclear (41).    

 

In summary, our results confirm the established importance of anti-viral antibodies in 

limiting disease following neuronotropic alphavirus infection, but also clearly 

demonstrate that T cells can facilitate recovery from severe viral encephalomyelitis 

in the absence of antibodies.  The recovery that we observed in V3533-infected µMT 

mice was associated with a dramatic reduction in viral titers within the CNS, followed 

by the establishment of a persistent sub-clinical infection.  These results 

demonstrate for the first time that T cells are able to directly control infection by a 

neuronotropic virus that causes encephalomyelitis in humans.  We also showed that, 

in the context of VEEV infection, the majority of T cell-associated antiviral activity 
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resides within the CD4+ population, possibly due to significantly enhanced IFNγ 

expression in these cells compared with CD8+ cells.  Taken together, these studies 

suggest that the promotion of T cell effector function, within both CD4+ and CD8+ 

populations, should be an important consideration when designing and evaluating 

new vaccines against encephalitic alphaviruses.   
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Figure 3.1 (Figure 1) 
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Figure 1:  V3533 induces mild, transient disease followed by clearance in 

C57BL/6. (A) 7-10 week old female C57BL/6 mice were inoculated with 106 pfu of 

V3533 by infection in the left rear footpad. At the indicated days post-infection (Day 

P.I.) serum, spleen, brain, and spinal cord were collected from V3533-infected mice 

and homogenized.  The amount of infectious virus present in serum, spleen, brain, 

and spinal cord was then quantified by plaque assay on BHK-21 cells.  Data is 

presented as the mean +/- standard deviation of results pooled from two 

independent experiments with 3-10 animals per timepoint.  Dotted line represents 

the limit of detection.  (B) 7-10 week old female C57BL/6 mice were inoculated with 

103 pfu of wild-type VEEV (V3000) or 106 pfu of V3533 by infection in the left rear 

footpad.  Mock-infected mice were infected with diluent alone.  Mice were weighed 

daily, with those losing more than 20% of their starting weight being euthanized as 

required by UNC IACUC regulations. *, p<0.05 by Mann-Whitney. 
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Figure 3.2 (Figure 2) 
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Figure 2:  Rag1-/- mice succumb to V3533 infection while µMT mice recover.  7-

10 week old female µMT or Rag1-/- mice were inoculated with 103 pfu of V3533 by 

injection in the left rear footpad.  C57BL/6 mice received 106 pfu of V3533. (A) Mice 

were weighed daily, with those losing more than 35% of their starting weight being 

euthanized as required by UNC IACUC regulations.  (B) Mice were scored for the 

development of encephalomyelitis based on the following scale: 1 – hunched 

posture; 2 – ruffled fur; 3 – ataxia, imbalance; 4 – conjunctivitis; 5 – hind limb 

paresis/paralysis; 6 – moribund.  Each data point represents the mean +/- SEM of 6 

animals per group from a single, representative experiment.
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Figure 3.3 (Figure 3) 
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Figure 3:  Recovery in µMT mice is associated with control of viral replication 

in the brain, clearance in the spinal cord.  7-10 week old female µMT or Rag1-/- 

mice were inoculated with 103 pfu of V3533 by injection in the left rear footpad.  (A) 

At the timepoints indicated serum, spleen, brain, and spinal cord were collected from 

infected µMT mice and homogenized.  The amount of infectious virus present in 

serum, spleen, brain, and spinal cord was then quantified by plaque assay on BHK-

21 cells.  Data points represent individual tissue titers pooled from two independent 

experiments.  (B) Tissue titers from infected µMT mice at day 105 post-infection.  (C) 

Comparison of tissue titers between µMT and Rag1-/- mice.   Data is presented as 

the mean +/- SEM of titer values from 3-4 animals per group.  In all cases, dotted 

line represents the limit of detection. 
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Figure 3.4 (Figure 4) 

 

 



 

 169 

Figure 4:  Reduction of viral titers in the CNS coincides with influx of T cells, 

inflammatory monocytes. 7-10 week old female µMT mice were inoculated with 

103 pfu of V3533 or diluent alone by injection in the left rear footpad.  At various 

timepoints post-infection, mice were perfused with PBS and CNS-infiltrating 

leukocytes were isolated.  Infiltrating cells were stained for various surface markers 

and analyzed by flow cytometry.  (A) Representative dot plots illustrating the gating 

scheme used to define cell populations.  (B) Total numbers of microglia 

(CD11b+/CD45lo), inflammatory monocytes (CD11b+/CD45hi), CD4+ T cells 

(CD3+/CD4+), and CD8+ T cells (CD3+/CD8+) isolated from brain and spinal cord.  

For each timepoint, data is presented as the mean +/- the standard error of 3-4 mice 

and is representative of 2 independent experiments.  (C) Comparison of total cell 

numbers of indicated infiltrating leukocyte populations between mock and V3533-

infected mice 70 days post-infection.  Data is presented as means +/- standard error 

of four animals per group.  *, p<0.05 by Mann-Whitney. 
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Figure 3.5 (Figure 5) 
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Figure 5:  T cells are required for control of infection, recovery in µMT mice. 7-

10 week old female µMT mice were treated with depleting antibodies against CD3, 

CD4, or CD8, or with an isotype control antibody, and then inoculated with 103 pfu of 

V3533 by injection in the left rear footpad.  Depletion treatments were continued for 

25 days post-infection, at which point the experiment was terminated.  (A) 

Representative dot plots of CD3+ splenocytes from each group, taken at day 25 

post-infection.  (B) Effect of T cell depletions on weight loss following V3533 

infection.  Data presented as mean +/- standard error of 4-5 animals per group.  (C) 

Infectious virus from tissues harvested 25 days post-infection, assessed by plaque 

assay on BHK-21 cells.  Each data point represents a single animal, with bars 

indicating the geometric mean.  *, p<0.05 compared to control by Mann Whitney. 
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Figure 3.6 (Figure 6) 
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Figure 6:  CD4+ T cells are the main producers of T cell-associated IFNγ  within 

the brains of V3533-infected µMT mice. 7-10 week old female µMT mice were 

inoculated with 103 pfu of V3533 by injection in the left rear footpad.  At the times 

indicated, mice were perfused with PBS and brain-infiltrating leukocytes were 

isolated.  Harvested cells were then pooled and either (A) cultured in the presence of 

PMA/ionomycin for 6 hours with brefeldin A +/- monensin added for the final 4 hours, 

or (B) cultured in the presence of brefeldin A +/- monensin with no additional 

stimulus for 4 hours.  Following treatment, cells were surface stained for CD3α, 

CD4, and CD8, and then stained for the intracellular presence of multiple cytokines.  

Each bar depicts the number of cells of a given cell type that stained positive for the 

indicated cytokine/surface marker per brain (days 8 & 15) or the percentage of 

pooled cells that stained positive (day 70).  (C) Percentage of T cells positive for 

CD69 surface expression in the absence of ex vivo stimulation.  Data shown was 

generated in a single experiment but is representative of 2-3 independent 

experiments.   
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Table 1.  Percentage of brain-infiltrating T cells expressing indicated cytokines at 

day 70 post-infection 

 

 

 CD4+ PMA/iono. CD8+ PMA/iono. CD4+ Unstim. CD8+ Unstim. 

IFNγ  62.03 77.96 1.92 0.0 

TNFα  40.51 62.84 1.92 3.25 

IL-2 16.91 11.19 1.32 0.0 

IL-17 0.0 0.0 0.0 0.75 

IL-10 18.75 0.93 0.4 0.57 

CD107a 4.81 26.01 0.2 0.0 
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INTRODUCTION 

Once VEEV has invaded the CNS, it predominantly replicates within neurons (2, 4, 

6).  Viral replication within these critical, difficult to replace cells results in cell death, 

usually through the induction of apoptosis (4).  VEEV-induced killing of infected 

neurons is sufficient to induce mortality in mice (1).  Viral infection of neurons 

presents a unique problem for the immune system in that indiscriminate cytolysis of 

infected neurons would most likely present a greater threat to the host than allowing 

the virus to replicate unchecked.  Thus, non-cytolytic mechanisms of controlling viral 

replication and spread are thought to be favored within the CNS (3).  

 

The extreme lethality of VEEV in mice is thought to result from its ability to efficiently 

infect and kill neurons within the CNS.  One possible explanation for the outcome of 

V3533 infection, where viral replication within the CNS does not result in severe 

morbidity or mortality, is that the two mutations that differentiate V3533 from its 

parental virus V3000 alter the in vivo cellular tropism of the virus such that it no 

longer replicates in neurons.  This is quite plausible, given that the two mutations, 

E76K and K116E, occur in the protein responsible for host cell binding, E2 (7).  

Preferentially replication of V3533 in some other, less critical CNS resident cell 

population, such as astrocytes, could explain why the immune-competent mice are 

able to rapidly clear the virus in the absence of severe morbidity.  

 

Therefore, we asked whether the V3533 mutations altered the cellular tropism of 

VEEV within the mouse brain.  To answer the question we used eGFP-expressing 
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VEEV replicon particles (VRP) that were packaged with the glycoproteins from either 

V3000 or V3533 (5).  These VRP should exhibit the exact same cellular tropism as 

full-length virus bearing the same glycoproteins, but should be unable to propagate 

beyond the initially infected cells.  Following intracranial injection, we showed that 

cells infected with either V3000- or V3533-packaged VRP stained positively for the 

neuronal marker NeuN.  Thus, the V3533 mutations do not alter the neuronal 

tropism of VEEV in vivo.     

 

MATERIALS AND METHODS 

VRP production 

VEEV replicon particles (VRP) expressing the enhanced green fluorescence protein 

(eGFP) under the control of the 26S subgenomic reporter were packaged with either 

the V3000 or the V3533 mutant envelope proteins, as described previously (5).  For 

assembly, the appropriate replicon and packaging RNAs were electroporated into 

BHK-21 cells using a Bio-Rad electroporator.  After confirming the absence of 

propagating virus by passage in BHK-21 cells, VRP were concentrated by 

ultracentrifugation and titers were determined by immunohistochemistry on BHK-21 

cells. 

Mouse studies 

C57BL/6 mice were purchased from The Jackson Labs (Bar Harbor, ME) as needed.  

For virus infections, 6-10 week old female mice were anesthetized via intra-

peritoneal (i.p.) injection with a mixture of ketamine (50 mg/Kg body weight) and 

xylazine (15 mg/Kg body weight) and then injected directly in the brain with 106 
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infectious units of VRP in diluent [phosphate buffered saline (PBS) + 1% donor calf 

serum, Ca2+, Mg2+].  Mock-infected mice received diluent alone. 

Immunohistochemistry 

Mice were inoculated intracranially with VRP as described above.  At 24 hours post-

infection, mice were perfused with 4% paraformaldehyde (PFA).  Brains were 

removed and fixed in 4% PFA overnight, and then rehydrated for 24 hours in 30% 

sucrose in PBS.  Following rehydration, brains were frozen in Tissue-Tek OCT 

Compound (Sakura) using a histobath, and sectioned at 10 µm with a cryostat.  

Cryosections were mounted on poly-L-lysine-coated slides and air dried for 30 min.  

Slides were then stained with streptavidin-conjugated anti-NeuN (neuronal nuclei, 

clone A60; Chemicon), anti-GFAP (glial fibrillary acidic protein, clone GA5; 

Chemicon), and anti-CD11b (microglia, clone M1/70; eBioscience).  Following 

incubation with the appropriate biotinylated secondary antibodies (anti-mouse IgG 

and anti-rat IgG; Vector), slides were incubated with a streptavidin-conjugated Alexa 

Fluor 546, washed and dried, and examined with a Nikon FXA microscope.    

 

RESULTS  AND DISCUSSION 

The V3533 mutations do not significantly alter in vivo cellular tropism within 

the CNS 

The mechanism underlying the attenuation of V3533 relative to the V3000 parental 

virus is not yet known.  One potential explanation for how V3533 is able to replicate 

within the CNS without triggering death or even severe morbidity in immune-

competent mice is that the mutations in E2 have altered the in vivo cellular tropism 
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of the virus such that it no longer replicates predominantly in neurons.  If V3533 

instead replicated in non-neuronal cells, cytolytic clearance of the virus could occur 

without the widespread destruction of neurons.  To test whether the in vivo cellular 

tropism within the CNS of V3533 differed from that of V3000, we infected C57BL/6 

mice i.c. with 106 IU of eGFP-expressing VRP, packaged with either the V3000 or 

V3533 glycoproteins.  Animals were sacrificed at 24 hours post-infection, and the 

brains prepared as frozen sections.  Analysis of V3000-eGFP-VRP-infected sections 

by fluorescence microscopy revealed numerous eGFP+ cells within the brain 

parenchyma.  Staining of these sections with NeuN, a neuronal marker, GFAP, an 

astrocyte marker, and CD11b, a microglial marker, revealed that eGFP+ cells 

exclusively costained with the NeuN marker, indicating that the infected cells were 

neurons (Fig. 3.1).  Evaluation of V3533-eGFP-VRP-infected sections revealed a 

similar pattern, with eGFP+ cells exclusively costaining with NeuN.  Thus, V3533 

appears to predominantly target neurons within the CNS, similar to V3000.      

 

The fact that the V3533 mutations did not alter the neuronal tropism of VEEV in vivo 

rules out one potential explanation for the unique attenuation pattern of V3533.  By 

confirming the neuronal tropism of V3533, these results confirm the relevance of 

V3533 infection as a model for VEEV-induced disease and recovery.  Further work 

is needed to determine whether V3533 affects infected neurons differently than 

V3000.  The observation that V3533 is able to establish a persistent infection within 

CNS neurons while V3000 is not, suggests that such differences may exist (1).     
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Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  V3533 mutations do not alter the cellular tropism of VEEV within 

the CNS.  Representative sections from C57BL/6 mice infected intracranially with 

106 infectious units of either V3000-eGFP-VRP or V3533-eGFP-VRP in diluent.  At 

24 hours post-infection, brains were harvested and frozen sections generated.  

Sections were stained for NeuN (neuronal marker), and then evaluated on a Nikon 

FXA microscope.  Images were merged using ImageJ software.   
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All of the studies described here have taken advantage of the unique in vivo 

virulence pattern of the VEEV mutant V3533.  Similar to its lethal parental virus, 

V3000, V3533 replicates and spreads efficiently in the periphery, replicating to high 

titers in multiple lymphoid organs and producing a serum viremia.  This serum 

viremia is sufficient to facilitate viral invasion of the CNS, where V3533 replicates 

predominantly in neurons.  Unlike lethal strains of VEEV, however, V3533 infection 

is halted within the CNS and cleared, resulting in the development of a mild, 

transient febrile illness rather than the uniform lethality that occurs when other 

strains of VEEV make it into the CNS.  In many ways, this better replicates VEEV-

induced disease in humans, where most symptomatic cases present with generic 

“flu-like” symptoms such as fever and headache, and very few immune-competent 

patients progress to overt encephalitis (15).  In addition, as a model of a successful 

recovery from VEEV infection, V3533 infection of C57BL/6 mice allows the 

identification of host factors required for a successful immune response to VEEV 

using knock-out mice, in vivo depletions, and other standard immunological tools.  

Here, we have described studies that used this model to identify previously 

unappreciated protective roles for T cells and the complement system during VEEV 

infection.  A great deal of further work is needed to better understand the 

mechanisms of attenuation for V3533, the actions of complement and T cells during 

VEEV infection, and the requirements for a successful host response to VEEV 

infection. 

 

DETERMINATION OF THE MECHANISMS OF V3533 ATTENUATION 



 

 184 

The course of infection and disease outcome following V3533 infection of C57BL/6 

mice is unlike that of any other strain of VEEV.  Attenuated VEEV mutants are 

usually unable to spread beyond early sites of replication or invade the CNS (1, 2, 4, 

16).  Those strains of VEEV that do make it into the CNS are typically lethal. V3533 

is unique in its ability to replicate within the CNS without inducing the death of the 

animal.  Determining the mechanisms underlying this attenuation pattern would both 

expand our understanding of alphavirus pathogenesis and potentially provide new 

attenuation strategies for use in live attenuated vaccines. 

 

Efforts to determine where in the infection process V3533 differs from its lethal 

parental virus V3000 would have to start in the periphery.  Previous work has 

suggested that V3533 and V3000 targeted different cells within the draining popliteal 

lymph node (11).  Using a combination of GFP-expressing VRP and double 

promoter viruses, the in vivo cellular tropism of V3000 and V3533 at early sites of 

replication should be more rigorously compared.  Differences in the specific cell 

populations that VEEV infects, and potentially modulates the behavior of, could 

significantly affect the quality of the downstream immune response.  To further 

characterize the effects of the V3533 mutations on early interactions with the host, a 

luminex-based comparison of V3000 and V3533 induced cytokine/chemokine 

production at early sites of infection would also be useful.  An additional approach, 

that would also complement the targeting analysis, would be to compare the gene 

expression profiles of V3000- and V3533-infected cells both within the draining 

lymph node, as well as within cultured dendritic cells, using poly-A binding protein 
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(PABP)-expressing VRP (9).  This would illuminate any differences in the responses 

to these two viruses at the level of the infected cell.   

 

Of greater importance, most likely, would be an analysis of the interactions between 

V3533 and neurons.  The fact that V3533 is able to replicate to high titers within 

CNS neurons without inducing severe morbidity or mortality suggests that there are 

important differences in the ways that V3000 and V3533 interact with these cells.  

The primary function of the E2 glycoprotein is to facilitate cellular attachment, 

however studies with Sindbis virus have suggested an additional role for E2 as a 

determinant of apoptosis induction following infection (6, 10).  Thus, the E2 

mutations present in V3533 could influence replication and spread within CNS, or 

the eventual fate of infected neurons.  Preliminary studies could be carried out in 

primary cortical neuron cultures.  These cells could be used to compare the relative 

neuronal infectivities and replication kinetics of V3533 and V3000.  The use of 

PABP-expressing VRP would be useful for determining whether different patterns of 

neuronal gene expression are induced by the two viruses.  Another key experiment 

would be to compare the kinetics and magnitude of neuronal cell death following 

V3533 and V3000 infection.  One possible explanation for the attenuation of V3533 

is that it is less efficient at killing infected neurons in vivo.  

 

The limited anatomical distribution of inflammation within the brains of V3533-

infected C57BL/6 mice suggests that V3533 is restricted in its ability to disseminate 

within the brain.  Though the exact mechanism of cell-cell spread of VEEV between 
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neurons is not known, there is evidence that the virus follows established neural 

networks in vivo, suggesting a predominant role for trans-synaptic transmission (3).  

In vitro studies using compartmentalized neuronal cultures could shed more light on 

the exact mechanisms of neuron-neuron spread (13).  Infecting mice intra-nasally 

with V3533 and V3000, and then tracking dissemination within the CNS by in situ 

hybridization over short time intervals would indicate whether V3533 was defective 

in spread in vivo.    

 

Finally, the V3533 system remains a virtually untapped resource for dissecting the 

host response to VEEV infection.  Further screening of different knock-out mouse 

strains could identify further unappreciated components of a successful immune 

response to VEEV.      

 

FURTHER EXPLORATION OF VEEV-COMPLEMENT INTERACTIONS 

The infection of C57BL/6 and C3-/- mice with V3533 revealed a role for the 

complement system in limiting the severity of VEEV-induced disease.  More 

specifically, we showed that complement activation within the first 24 hours of 

infection limited the efficiency of neuroinvasion and the extent of downstream viral 

replication and inflammation within the brain.  These results demonstrated that early 

virus-immune interactions can significantly influence the outcome of infection days 

later at distal anatomical sites.  In addition, these studies suggested an important 

role for natural antibody in restricting VEEV-induced pathology.  Finally, in contrast 
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with what has been observed during infection with many other viruses, the induction 

of an anti-VEEV antibody response was not dependent upon complement activation.         

 

Our efforts to understand the complement-dependent mechanisms that are 

important in determining disease outcome following V3533 infection are still 

underway.  As a result, some of the data presented here is still preliminary.  The 

histopathology analysis shown in Figure 2 of the complement chapter grossly 

illustrates that there are differences in the extent of inflammation within the brains of 

wild-type and C3-/- mice, however blinded scoring of a more extensive time-course of 

sections is needed to present a more definitive picture of the effect of complement 

activation on CNS pathology and inflammation.  Efforts to assess the complement 

dependence of the anti-VEEV neutralizing activity of natural antibody still need quite 

a bit of work.  The in vitro anti-VEEV neutralization experiments using normal serum 

need to be repeated, with a tighter dilution curve to generate more robust IC50 

values for comparison.  In addition, the experiment comparing the inflammatory cell 

populations present in the draining lymph nodes of V3533-infected wild-type and C3-

/- mice needs to be repeated with larger group sizes and earlier timepoints.  Finally, 

the comparison of type I IFN levels at early replication sites needs to be repeated for 

earlier timepoints, starting just a few hours after inoculation.  The completion of 

these experiments will allow us to draw more definitive conclusions about the effect 

of complement activation on inflammatory cell recruitment and activation.         
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Our work to date strongly suggests a role for complement activation in facilitating the 

clearance of VEEV from the serum and, as a result, delaying the arrival of VEEV in 

the CNS.  Future work should aim to uncover the molecular interactions between 

VEEV, natural antibody, and complement that govern this effect.  Determining which 

complement activation pathways are being triggered by VEEV infection would be a 

good start.  Preliminary studies suggest that the protective effect of complement in 

vivo is dependent upon C4, but not C1q, suggesting that complement is primarily 

activated through the lectin pathway during VEEV infection (data not shown).  

Further in vitro experiments assessing complement activation and anti-VEEV 

neutralization using serum deficient in each of the three activation pathways could 

better address this question.  To determine which complement components are 

binding and potentially opsonizing VEEV particles, virus could be immuno-

precipitated either following serum incubation in vitro, or directly from the serum of 

viremic mice, and bound complement components could then be detected by 

western blot.  Additional in vivo examination of the effects of complement activation 

on VEEV serum clearance kinetics could either support or contradict our hypothesis 

that serum clearance and neuroinvasion are linked.  Comparing the actual clearance 

rate following intravenous injection of VEEV between wild-type and different 

complement component knock-out mice would be a good first step in this area.    

 

Though the recruitment of inflammatory cells to early sites of V3533 replication 

appears to be complement independent, we cannot yet rule out a role for 

complement-dependent regulation of the effector phenotypes of those cells.  The 
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importance of complement activation in regulating the activation status, but not the 

recruitment, of inflammatory cells during infection with another alphavirus, Ross 

River virus, highlights the importance of addressing this issue (12).  A good starting 

point would be to isolate inflammatory cells from wild-type and C3-/- mice within the 

first 24 hours of infection, and to compare gene expression levels by microarray.  

Candidate genes that are found to be regulated by complement activation could be 

further investigated for potential anti-VEEV activity.   

 

Additional work will be focused on determining the role of C5 cleavage during V3533 

infection.  Some preliminary work using C5-deficient mice has suggested that C5 

cleavage-dependent mechanisms play a role in limiting the development of overt 

encephalomyelitis following V3533 infection (data not shown).  Studies are currently 

underway to confirm that V3533-induced disease is more severe in the absence of 

C5, as well as to assess the effects of C5 on serum clearance and neuro-invasion 

kinetics.   The relevance of these studies to those performed in the C57BL/6 and C3-

/- mice is limited, however, by the fact that the C5-deficient mice are in a different 

genetic background.   

 

Finally, the complement-independent induction of a robust anti-VEEV antibody 

response raises the question of what other virus-induced factors enhance the anti-

VEEV antibody response.  This question could be addressed initially by shutting 

down the various signaling axes known to influence B cell activation through the use 

of knock-out mice and/or adoptive transfer of B cells from knock-out mice.  
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Answering this question could be useful in evaluating future live attenuated vaccine 

candidates.   

 

FURTHER INVESTIGATION OF T CELL RESPONSE DURING VEEV INFECTION 

AND VEEV PERSISTENCE 

Our studies of V3533 infection of µMT mice resulted in several intriguing findings.  

First, T cells can control VEEV replication within the CNS in the absence of antibody, 

facilitating recovery from infection.  Second, CD4+ T cells were better able to control 

VEEV infection within the CNS, relative to CD8+ T cells.  CD8+ T cells did not 

produce detectable amounts IFNγ within the brain during V3533 infection, despite 

being fully capable of producing large amounts in response to ex vivo 

PMA/ionomycin treatment.  Finally, in the absence of antibody, V3533 was able to 

establish a persistent infection in the brain in the absence of apparent morbidity. 

 

The persistent infection that we observed in the µMT mice was surprising, and 

raised a number of intriguing questions.  It would be interesting to determine which 

specific cell population is maintaining the infection.  This could possibly be 

determined through careful in situ hybridization experiments on brain sections taken 

late in infection.  If there is a specific subset of neurons that is completely refractory 

to T cell-mediated clearance, it would interesting to know why.  Additionally, it would 

be worthwhile to fully sequence virus isolates from different anatomical sites at late 

times post-infection.  This might reveal viral sequence elements that influence 

interaction with neuronal cells or viral susceptibility to T cell-induced effector 
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mechanisms.  Finally, while µMT mice persistently infected with V3533 appear 

outwardly normal in their behavior, more in depth examination of their cognitive 

function might reveal subtle defects.  This would allow us to better assess whether 

these mice have truly recovered from infection.    

 

One of the most surprising results of these studies was that CD4+ T cells, in the 

absence of B cells or CD8+ T cells, were able to significantly reduce VEEV titers 

within the CNS.  Neurons are not thought to express MHC class II, so the 

mechanism by which VEEV-specific CD4+ T cells were able to recognize infected 

cells is unclear.  Microglia and astrocytes are the only CNS-resident cells thought to 

express MHC class II, so one possibility is that these cells play some role in 

facilitating contact between VEEV-specific T cells and infected neurons (5).  

Identifying the mechanism by which CD4+ T cells are recognizing VEEV-infected 

neurons would be interesting, but quite difficult, and would probably require 

visualizing the interaction using labeled cells.  This could possibly be performed in 

either ex vivo brain slice cultures, or through live animal imaging (8, 14). 

      

Another interesting observation was the lack of IFNγ production by CD8+ T cells in 

the brains of V3533-infected µMT mice.  This was not due to a generalized defect in 

the CD8+ response in these mice, as CD8+ T cells produced significant amounts of 

another Th1-associated cytokine, TNFα, and were fully capable of producing IFNγ 

ex vivo following PMA/ionomycin treatment.  Instead, it suggests that IFNγ 

production by CD8+ but not CD4+ cells was being specifically suppressed in the 
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brain during V3533 infection.  This finding is similar to the observation that IL-2 

production was specifically repressed in the brains of Sindbis virus infected mice (7).  

To shed light on the mechanism underlying this phenomenon, CD8+ T cells isolated 

from the spleens and brains of V3533-infected µMT mice could be compared to 

determine whether the lack of IFNγ production was brain-specific.  If IFNγ production 

was detectable in the spleen, microarray-based comparisons of spleen- and brain-

infiltrating CD8+ T cells would indicate whether there were corresponding 

differences in gene expression.  The lack of reagents for identifying VEEV-specific T 

cells would complicate this and other potential experiments.  Regardless, pursuing 

this finding could potentially shed some light on the unique immune-regulatory 

environment within the CNS. 

  

Much has been made in the alphavirus field about the role of IFNγ in clearing virus 

from infected CNS neurons.  Our work here did not directly address this issue, but 

did find a correlation between IFNγ production and antiviral activity in T cells during 

V3533 infection.  Future studies should more directly address the relationship 

between IFNγ, VEEV, and neurons in vivo.  Effects seen in IFNγ- or IFNγR- knockout 

mice are complicated by an inability to separate the direct effects of IFNγ on infected 

neurons from other effects in the periphery.  Additionally, teasing apart the antiviral 

and immune-regulatory functions of IFNγ will be difficult.  A good starting point might 

be to use the transfer of IFNγ-knockout T cells prior to V3533 infection to ascertain 

the importance of T cell-derived IFNγ within the CNS.   
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The overall purpose of these studies was to determine whether T cells exerted any 

anti-VEEV effect, independent of antibodies.  While we were able to demonstrate 

that T cells could be quite potent in restricting VEEV replication within the CNS in 

µMT mice, more work is needed to determine the importance of T cell-mediated 

clearance mechanisms in immune-competent animals.  It is quite possible that the 

protective effects of anti-VEEV antibodies are so strong, they render T cell-mediated 

effects superfluous.  Additionally, the potential protective effects of memory T cells 

need to be better studied.  Efforts are currently underway to determine if memory T 

cells generated during V3533 infection can protect naïve mice from lethal VEEV 

challenge.  Answering these questions will help determine how important the 

development of T cell effector function should be as a criterion for evaluating future 

encephalitic alphavirus vaccine candidates.    
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