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ABSTRACT 

 

Marie Camerota: Birth weight, birth length, and gestational age as indicators of favorable fetal 

growth conditions in a US sample 

(Under the direction of Martha J. Cox) 

 

The "fetal origins" hypothesis suggests that fetal conditions affect not only birth 

characteristics such as birth weight and gestational age, but also have lifelong health 

implications.  Despite widespread interest in this hypothesis, few methodological advances have 

been proposed to improve the measurement of fetal conditions. A Statistics in Medicine paper by 

Bollen, Noble, and Adair examined favorable fetal growth conditions (FFGC) as a latent 

variable. Their study of Filipino children from Cebu provided evidence consistent with treating 

FFGC as a latent variable that mediates the effects of mother's characteristics on birth weight, 

birth length, and gestational age. Our study assesses whether the FFGC model of Cebu replicates 

and generalizes to a population of children from North Carolina and Pennsylvania. Using a series 

of structural equation models, we find that key features of the Cebu analysis replicate and 

generalize while we also highlight differences between these studies.  
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BIRTH WEIGHT, BIRTH LENGTH, AND GESTATIONAL AGE AS INDICATORS OF 

FAVORABLE FETAL GROWTH CONDITIONS IN A US SAMPLE 

Introduction 

Few hypotheses have received more attention than Barker’s fetal origins hypothesis 

(1995), both in recent work (e.g. Fabricius-Bjerre, 2011; Zhang et al., 2013) and in the fields of 

medicine and social science more broadly (Almond & Currie, 2011). Much of the existing work 

is focused on replicating Barker’s original finding that birth weight is inversely related to adult 

risk of cardiovascular disease, using different populations, different health outcomes, or both. 

Almost all studies of which we are aware use birth weight as a proxy variable for fetal growth 

conditions. Despite sustained interest in Barker’s hypothesis over the past two decades, few 

methodological advances have been proposed to improve our measurement and modeling of fetal 

growth conditions. A notable exception is recent work by Bollen, Noble, and Adair (2013), 

which demonstrates a latent variable approach to modeling favorable fetal growth conditions 

(FFGC). FFGC are not directly observable or measurable, which implies that they are latent.   It 

is this latent variable that is the force behind the fetal origins hypothesis.  Given the potentially 

large impact of this improved measurement and modeling approach, the current study examines 

whether the FFGC latent variable model replicates and generalizes to a different country and 

time period.  

The fetal origins hypothesis (Barker, 1995), suggests that favorable (or unfavorable) fetal 

growth conditions have life-long health consequences for outcomes such as adult blood pressure 

(Huxley, Neil, & Collins, 2002; Huxley, Shiell, & Law, 2000) and diabetes risk (Whincup et al., 

2008). Favorable fetal growth conditions (FFGC) is an abstract variable that encompasses all of 
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the environmental, genetic, and epigenetic factors that program prenatal development. It is FFGC 

that is hypothesized to affect adult health outcomes. However, little time has been devoted to 

testing whether FFGC exist. Until now, empirical analyses have tended to use birth weight as a 

proxy for fetal conditions, assuming rather than testing the plausibility of a FFGC latent variable. 

The use of a single observed measure as a proxy variable is problematic, as this approach 

assumes that birth weight is a perfectly reliable indicator of fetal conditions, thus ignoring any 

possible measurement error. In their original analyses, Bollen et al. (2013) improve upon this 

technique by explicitly testing whether FFGC can be modeled as a latent variable, an approach 

that appropriately accounts for measurement error in each observed indicator.  A key result from 

their analyses is that a model with a FFGC latent variable mediating the effects of maternal 

characteristics on birth outcomes (Fig 1b and Appendix) fits better than a model without it (Fig 

1a). Full details on the model specification and variables are in the original publication, but an 

important characteristic of the model is that birth weight, birth length, and gestational age are 

indicators of latent FFGC and that most maternal characteristics affect these by influencing 

FFGC. These results are an important first step in providing evidence for the existence of FFGC. 

However, there are reasons to be cautious when interpreting these findings on their own. 

Bollen et al.’s (2013) sample was drawn from a metropolitan region of the Philippines (Cebu). In 

the interest of applying this model to future studies on the fetal origins hypothesis, it is next 

important to test whether birth weight, birth length, and gestational age function similarly as 

indicators of FFGC in different populations. The current study tests whether there is evidence of 

a FFGC latent variable in a sample of mother-infant dyads drawn from two different states, 

North Carolina and Pennsylvania. While many variables are the same across the Cebu and the 

US samples, important differences include the industrialization status (developing versus 
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developed), culture (Asian versus Western), the source of maternal and infant data (prospective 

measurement versus retrospective report; Table 1), and the decade in which the births occurred 

(1980s versus 2000s). Due to these differences in population, time period, and variables, the 

results reported here represent a rigorous test of the FFGC model, as we are assessing the degree 

to which Bollen et al.’s (2013) results both replicate and generalize while adding information on 

the treatment of FFGC as a latent variable in these different contexts. 

A key question is how we will know whether we have replicated or not. Our approach 

reflects the idea that there are degrees of replicability. In the context of FFGC, a fundamental 

aspect of replicating is to test whether a model using FFGC as a latent variable fits as well or 

better than one without it, as it did for the Cebu data. A second level of replication is whether the 

signs and significance of the primary coefficients are the same across these different samples. 

Finally, the highest level of replication tests whether the most important coefficients are of the 

same magnitude across studies. To the degree that we find evidence of replicability and 

generalization, we will accumulate evidence that either supports or opposes the plausibility of a 

FFGC latent variable, which will undoubtedly inform future research and theory on the fetal 

origins hypothesis. 

Methods 

Data come from the Family Life Project, a longitudinal study conducted in two of the 

four rural regions of the United States with the highest rates of child poverty (Dill, 2001). 

Specifically, three counties in eastern North Carolina (NC) and three counties in central 

Pennsylvania (PA) were chosen as representing the Black South and Appalachia, respectively. 

While full recruitment and enrollment details have been documented elsewhere (Burchinal, 

Vernon-Faeagans, Cox, & Key Family Life Project Investigators, 2008) trained research 
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assistants had contact with all women who gave birth in the selected counties between September 

2003 and September 2004 (N=5471). Families were excluded if they did not live in the selected 

counties, spoke a primary language other than English in the home, or intended to move out of 

the area in the next three years. These criteria may have resulted in the exclusion of some high-

risk families. Of those families eligible to participate, 68% consented, and of these, 58% were 

invited to participate.  

Complex sampling methods utilizing population weight and stratification variables 

yielded a representative sample of 1,292 families. The current analyses include 1,199 infants in 

NC (N=705) and PA (N=494) where the biological mother was the primary caregiver at 2 

months of age. An additional 15 cases in NC and 8 cases in PA were excluded after being 

identified as multivariate outliers, using a Mahalanobis distance measure. Another 1 case was 

excluded in NC because the mother’s reported height was more than 5 standard deviations below 

the mean.    

All data on maternal traits and infant birth measures were collected via maternal report at 

a home visit when infants were 2 months of age. The Institutional Review Board at the 

University of North Carolina at Chapel Hill approved all data collection activities. Written 

consent was obtained from primary caregivers at the beginning of the home visit. Data from the 

Family Life Project may be accessed via the Inter-University Consortium for Political and Social 

Research. 

Mother’s Traits. Trained research assistants conducted structured interviews with 

mothers at the two month home visit. Mothers reported on their height in feet and inches 

(MOMHT) as well as their pre-pregnancy weight in pounds (MOMWT). MOMHT was 

converted to centimeters. Mothers’ height and pre-pregnancy weight were chosen as our indices 
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of maternal nutritional stores, as they were the closest comparable variables to the measures of 

maternal arm muscle (AMA) and arm fat (AFA) in the Cebu data (Appendix). Pre-pregnancy 

weight was chosen, as opposed to pregnancy weight, because the latter measure is potentially 

confounded with infant birth weight. 

Mothers also reported the frequency and number of cigarettes they smoked during each 

trimester of pregnancy. Smoker status was dichotomized into smokers and non-smokers 

(SMOKERS), consistent with Bollen et al. (2013). Based on mothers’ self-reported age in years, 

we created groups of women < 20 years of age (YOUNGER) or > 35 years of age (OLDER). For 

these dichotomous variables, the referent category was women aged 20-35 years of age. Finally, 

parity was dichotomized as first pregnancy or not (FIRSTPRG). These four dichotomous 

variables (SMOKERS, YOUNGER, OLDER, FIRST) were identical in the Cebu and NC/PA 

samples. Finally, mothers self-reported their primary race as either White or African-American. 

We dichotomized this variable to represent whether women were African-American (AA) or not, 

where White women served as the reference group.  

Birth Measures. At the two month home visit, mothers were asked to recall their infant’s 

birth weight (BW) in pounds and ounces, as well as birth length (BL) in inches. Weight was 

converted into grams and length was converted into centimeters. To aid model convergence, 

birth weight was divided by 100 in all analyses. Mothers were also asked to recall their infant’s 

due date and birth date. Using these two dates, we calculated infant gestational age (GA) in 

weeks. All three birth outcomes were retained as continuous variables. To reduce skewness and 

kurtosis, and to remain consistent with the measure of GA in Bollen et al. (2013), we used the 

natural log of GA in our analyses. Infant sex was dichotomized (GIRL), with male infants 

serving as the reference group. 



 

6 

Unlike in the Cebu data, we had only one measure each for BW, BL, and GA in NC/PA. 

Therefore, whereas in Cebu we could treat BW, BL, and GA as latent variables with multiple 

indicators (Fig 1), in the following models, they will be manifest, or directly observed, variables 

(Fig 2). Table 1 provides a comparison of descriptive statistics for all maternal and child 

characteristics included in analyses in the NC/PA and the Cebu samples.  

Models. A central goal of the current investigation is to test whether BW, BL, and GA 

are indicators of a common latent variable we call FFGC, as concluded in Bollen et al. (2013) or 

whether they are three distinct outcomes with distinct predictors. If we conclude that a model 

with a latent FFGC variable fits the data better than a direct-effects only model, then we will 

move to stricter tests of replication, which includes comparison of signs and significance patterns 

of coefficients in Cebu and NC/PA, as well as an examination of the magnitude of the factor 

loadings across samples. Because of the strikingly different contexts of the two samples, we will 

also explore theoretical and empirical modifications that result in improved model fit, using the 

NC sample. Finally, we will replicate any modifications using the PA sample, to test whether 

these additional paths are robust to changes in sample characteristics.  

Model 1: Direct Effects Model. Our first model allows each predictor variable to have a 

direct effect on BW, BL, and GA (Fig 2a). Unlike in the Cebu sample, the NC/PA sample has 

only one indicator of each birth outcome; thus they are treated as manifest, rather than latent 

variables, and are indicated by rectangles as opposed to ovals. All other observed variables 

(GIRL, MOMHT, MOMWT, SMOKERS, FIRSTPRG, YOUNGER, OLDER) are exogenous 

and are allowed to correlate with one another, as indicated by the long bar with the short arrows 

connecting them. In addition, the set of exogenous observed variables directly influence BW, 

BL, and GA, as indicated by single-headed arrows. The errors of BW, BL, and GA are also 
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allowed to correlate, to indicate that there is a residual association among them when the impact 

of maternal variables and GIRL are accounted for. 

Model 2: FFGC Latent Variable Model. Our second model contains a latent variable 

(FFGC) that mediates the effect of maternal characteristics on the three birth outcomes (Fig 2b). 

The existence of the latent variable in this model implies that there is an unobserved variable 

comprised of the genetic, environmental, and epigenetic conditions that program fetal growth, 

and which gives rise to our observed measures of BW, BL, and GA. The single-headed arrows 

from FFGC to BW, BL, and GA indicate that if FFGC increases, we would expect all three birth 

outcomes to increase; if FFGC decreases, then all birth outcomes would decrease.  

To assign a scale to the latent variable, the path from FFGC to BW is set to 1. Like in 

Bollen et al. (2013), GIRL does not have an effect on FFGC; rather, it directly exerts its 

influence on BW, BL, and GA. Additionally, MOMHT has an effect on FFGC as well as a direct 

effect on BL, given the likely direct genetic relationship between a woman’s height and the 

length of her baby at birth. 

This model, which is more parsimonious than Model 1, does not allow for correlated 

errors among BW, BL, and GA; this specification hypothesizes that the association between 

them is explained by their common dependence on the FFGC latent variable and that there is no 

residual relationship among the three birth outcomes after we account for FFGC. Like in Model 

1, all exogenous variables are allowed to correlate, with the exception of GIRL.  

Model 3: Modified FFGC Latent Variable Model. Using the NC data, we explored 

theoretical and empirical modifications to Model 2. Theoretical modifications were made based 

on the different contexts of births in the US, as opposed to in Cebu. The main theoretically 

modification explored was the addition of maternal race; while the NC/PA sample included both 
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European American and African American women, the Cebu sample did not. As African 

American race is associated with higher rates of low birthweight and preterm births in the US 

(Martin et al., 2005), we tested whether including African American race (AA) as an additional 

predictor of birth outcomes improved model fit. AA was allowed to directly influence BW, BL, 

and GA, instead of having indirect effects via FFGC, because of a lack of theory suggesting why 

women of AA race would have poorer fetal growth conditions overall.  

Empirical modifications were also explored, using modification indices (MI) provided by 

statistical software (Mplus; Muthén & Muthén, 2007). While all MI with values above 10 were 

requested, we only considered modifications that were theoretically justifiable. Although MI are 

a useful tool for detecting omitted paths, they are also data driven, and must be used with caution 

(Bollen, 1989; Kline, 2005). Therefore, any empirical modifications were evaluated carefully to 

ensure that they were substantively plausible. The only plausible path suggested by this method 

was the addition of a direct path from FIRST to GA (Fig 3), which is consistent with the finding 

that primiparous women in the U.S. are more likely to carry their infants past their due date 

(Caughey, Stotland, Washington, & Escobar, 2009). 

As an additional test of the robustness of the added paths in the model for NC, we re-ran 

Model 3 using the PA sample. Because the data from PA are independent from the NC data, this 

strategy allows us to assess the generalizability of the NC modifications. If the modified model 

shows similar fit in the PA sample, we next plan to compare the estimates from NC and PA 

using a multiple group analysis to quantify the extent of agreement between the two samples. 

Finally, we will interpret the coefficients from the best fitting model, first comparing the patterns 

of signs and significance of model parameters, and finally testing the statistical equivalence of 

key model parameters across NC/PA and Cebu. 
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Results 

All models were estimated in Mplus using full-information, robust maximum likelihood 

(MLR) as our estimator. MLR was chosen because it is distributionally robust, allowing for 

possible non-normality in the errors of the model. The scaled chi-square test statistic that results 

from MLR cannot be used for chi-square difference testing in the normal manner. Therefore, an 

adjusted calculation was used when comparing nested models in future analyses (Satorra & 

Bentler, 2001). Our full-information estimation technique makes use of all cases that have at 

least partial data, and assumes that any missing data are missing at random (MAR), a less 

restrictive assumption than missing completely at random.  In addition, we have a relatively 

small proportion of data missing (Table 1). 

Descriptive statistics for Cebu, NC, and PA are presented in Table 1. Babies in the NC 

and PA samples tended to have higher BW than those in Cebu, but mean values of BL and GA 

were within sampling fluctuation of one another across the samples. Turning towards mother’s 

characteristics, mothers in the US tended to be taller, and were more likely to smoke, compared 

to their counterparts in Cebu. Finally, mothers in NC were much more likely to be African 

American compared to mothers in PA (48% versus 3%). It was not possible to compare mean 

levels of maternal nutritional stores across the two samples, since different variables were used 

in Cebu and NC/PA (AMA, AFA, MOMWT). 

Our first model comparison addressed whether a model with a mediating FFGC latent 

variable fit the data better than a model with mother’s characteristics directly influencing birth 

outcomes. Figs 1a and 1b present Model 1 and Model 2 in Cebu, while Figs 2a and 2b present 

Model 1 and Model 2 in NC/PA. For this first comparison, we attempted to keep our model as 

similar to the Cebu analyses as possible. Table 2 contains comparisons of overall model fit 
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statistics for Cebu, NC, and PA. Like in Bollen et al. (2013), we report the MLR chi-square test 

statistic with its corresponding degrees of freedom (df) and p-value, as well as the IFI, [1-

RMSEA], and BIC. A non-significant chi-square, a value of IFI and [1-RMSEA] close to 1, and 

a large, negative BIC value all indicate good model fit.  

Turning to the overall fit statistics for Model 1 and Model 2, several points are apparent. 

As opposed to the Cebu sample, which had multiple indicators of BW and GA, NC/PA had only 

one indicator each for BW, BL, and GA. As a result, Model 1 is fully saturated in both NC and 

PA, which means that all available degrees of freedom are used up1. Because a saturated model 

imposes no restrictions on the data, the model-estimated parameters will perfectly reproduce the 

covariance matrix of the data. However, this seemingly perfect fit to the data is true for any 

saturated model and tells us nothing about the overall fit.  

 In contrast to Model 1, Model 2 is overidentified, with 11 degrees of freedom with which 

to judge the fit of the model. In both the NC and PA samples, we obtain statistically significant 

chi-square test statistics, which is typical in moderate to large sample sizes (N=689 and N=486 

in NC and PA, respectively). Both our IFI and our [1-RMSEA] values are below their ideal fit of 

1. However, both models have negative BIC values. According to the Jeffreys-Raftery guidelines 

(Raftery, 1995), a BIC value that is negative and larger in magnitude than 10 suggests strong 

evidence in support of the model, compared to a saturated model. Using this guideline, Model 2 

provides good fit to the data in both the NC and PA samples, which have BICs of -13 and -23, 

respectively. 

Given the mixed evidence provided by the overall fit statistics, we next consider 

modifications to Model 2. As discussed previously, the first modification we considered was the 

                                                           
1All other fit statistics are inapplicable as well, since they are derived from calculations that are based on degrees of 

freedom. 
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addition of a direct path from AA to BW, BL, and GA, consistent with the notion that AA 

women are at higher risk of low birthweight and premature births. Next, an examination of the 

empirical modifications suggested that we allow a direct path from FIRST to GA. Model 3 was 

estimated with these two modifications, first in NC, and then in PA, as a check of robustness (Fig 

3). 

Fit statistics for Model 3 are presented in Table 2. The addition of these paths improved 

model fit in NC. Although the chi-square test statistic is still significant, both the IFI and [1-

RMSEA] are closer to their ideal fit of 1. Additionally, the BIC for Model 3 is even more 

negative than for Model 2. The paths from AA to BW (β = -3.414), BL (β = -1.123), and GA (β 

= -.001), as well as the path from FIRST to GA (β = .015) are also all significant at p < .05, 

indicating that the modifications were empirically justified. 

In order to verify that the additions made to Model 3 were robust, we replicated our 

findings using the PA sample. Since the PA sample was not used to estimate the empirical 

modifications, it served as an independent check of the effect of the added paths. As seen in 

Table 2, Model 3 also fit the PA data better than Model 2. However, in PA, only the added paths 

from AA to BW (β = -1.726) and FIRST to GA (β = .006) were significant at p < .05. It is worth 

noting that the proportion of AA women in PA was small (3%) as compared to in NC, where AA 

women made up almost half the sample (46%). The small proportion of AA women in PA likely 

contributed to larger standard errors, leading to the different patterns of significance between NC 

and PA.  

Finally, we conducted a multiple group analysis to simultaneously fit Model 3 to the NC 

and PA samples. By testing a series of increasingly restrictive models, we are able to assess the 

equality of the parameters across groups, which give us a further test of the robustness of Model 
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3. If the relationship between our variables is truly the same in both samples, then setting our 

factor loadings, intercepts, and coefficients to be equal should not result in a significant 

decrement in model fit. Table 3 shows the chi-square change resulting from imposing increasing 

equality constraints on the NC and PA models. Setting the factor loadings and intercepts of BL 

and GA to be equal, as well as the paths from each maternal characteristic to FFGC, does not 

result in a significant decrement in model fit. However, forcing the direct effects of AA, FIRST, 

and GIRL on BW, BL, and GA to be equal does significantly worsen model fit. Given the 

differential patterns of significance for the effects of AA on each birth outcome in NC and PA, it 

is not surprising that imposing this equality constraint significantly worsens model fit. However, 

the equality of factor loadings, intercepts, and coefficients on FFGC between the groups provides 

evidence that Model 3 fits both samples adequately well.  

Complete fit statistics for the multiple group models are presented in Table 2. Although 

our chi-square test statistic is significant, all other fit statistics (IFI, [1-RMSEA], BIC) indicate 

good model fit. Moving to interpreting the coefficients of the model, we first examined the 

patterns of signs and significance for our parameters (see Table 4). In our model, like in Cebu, 

indices of maternal nutritional stores (AMA, AFA, and MOHT in Cebu; MOWT and MOHT in 

NC/PA) positively predicted FFGC, while SMOKERS negatively predicted FFGC. However, 

our measures of parity (FIRSTPRG) and maternal age (YOUNGER, OLDER) did not 

significantly predict FFGC, as they did in Cebu. Together, our set of covariates explained 8% of 

the variance in FFGC in NC and 11% of the variance in PA, compared to 11% of the variance in 

Cebu. 

As our final, strictest check of replication, we tested whether the factor loadings of BL 

and GA from these analyses (Table 5) were statistically equivalent to those obtained in the Cebu 
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analyses. Because the NC/PA and Cebu samples are independent, it was appropriate to use a z-

test to calculate the difference in coefficients between the two models, as well as the significance 

of the obtained z statistic (Paternoster, Brame, Mazerolle, & Piquero, 1998). For GA, the 

estimated factor loading of .005 was not significantly different than the Cebu factor loading of 

.004 (z = .196, p > .05). For BL, the estimated factor loading of .496 was significantly larger than 

the Cebu factor loading of .348 (z = 4.147, p < .05). Put into context, this finding means that for 

a 1 unit difference in FFGC we would expect a .50 cm difference in birth length in the NC/PA 

sample and a .35 cm difference in the Cebu sample. Whether this difference is substantively 

important remains to be determined, but it is a difference which if replicated in future studies 

would demand further investigation.  

Like in Bollen et al. (2013), we tested alternative model specifications to assess whether 

they had a superior fit. We first tested a model that included GA, rather than FFGC, as a 

mediator between mother’s characteristics and BW and BL. This model fit the data poorly. We 

also attempted to model a latent GA variable by setting the reliability of its one indicator 

(measured GA) to various values (e.g. 0.1, 0.3, 0.5). However, a model with latent GA as a 

mediator would not converge. Finally, we attempted to estimate a model that included both a 

FFGC latent variable and a direct path from GA to BW and BL; this model similarly would not 

converge. Therefore, we concluded that a model with FFGC as a latent variable was the most 

parsimonious and plausible alternative to the direct effects only model. 

Because of the stratified sampling design of the Family Life Project, stratification and 

weight values were assigned to each case in the NC/PA data. While our models were originally 

estimated without these variables, we re-estimated Model 3 in both NC and PA accounting for 

stratification and weight, and found our substantive conclusions unchanged. We also re-ran our 
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final analyses including all cases that were previously excluded as outliers. Although model fit 

decreased with the inclusion of these unusual cases, all substantive conclusions remained the 

same. 

Discussion 

The goal of the current investigation was to test whether Bollen et al.’s (2013) FFGC 

model, a novel approach to studying the fetal origins hypothesis, replicated and generalized to a 

new sample of infants born in the United States. In doing so, we demonstrated a graded approach 

to reproducibility, by describing and then proceeding through a series of increasingly strict tests 

of replication. Based on this series of tests, we conclude that the results first gleaned from a 

sample of Filipino infants do generalize to a sample of predominantly low-income American 

infants. Several theoretically-justifiable modifications were made in our analyses in order to 

improve model fit, but these modifications were small in number and did not lead to dramatic 

changes in other model parameters (e.g. factor loadings). Importantly, the final model, including 

all modifications, fit the data equally well in the two states that we tested (North Carolina and 

Pennsylvania), which suggests that these findings may be robust to variations in sampling 

characteristics.  

Our substantive conclusion on the generalizability of the FFGC approach is promising for 

future research on the fetal origins hypothesis, as a latent FFGC variable provides a metric with 

which to quantify the various environmental, genetic, and epigenetic influences on prenatal 

development that may program later human health. As opposed to the heretofore popular method 

of using birth weight as a proxy for prenatal conditions, the FFGC approach is unburdened by 

measurement error and allows researchers to take advantage of three commonly available birth 

outcomes. Importantly, the current replication demonstrates the feasibility of modeling FFGC 
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when only one measure each of BW, BL, and GA are available, as well as when these birth 

outcomes are reported by mothers retrospectively during the early postpartum period. Although 

there may be concerns about the accuracy of maternal report of these variables, previous work 

has shown no significant differences between hospital records and maternal report of BW and 

BL (Lederman & Paxton, 1998). In addition, treating these variables as indicators of FFGC 

permits random measurement error to enter the error term for each indicator.  The versatility of 

the FFGC latent modeling approach is promising, as it suggests that modeling FFGC may be 

appropriate under a wide range of methodological scenarios.   

The current study also contributes to the methodological literature by proposing and 

modeling a series of increasingly rigorous tests of replication. Our first step was to examine 

whether our substantive conclusions were consistent with those of Bollen et al. (2013), which 

found that a model with a latent FFGC variable fit the data better than a model without it. By 

comparing fit statistics from Model 1 and Model 2, we confirmed that Model 2 provided a better 

fit to our data, and thus there was evidence for a FFGC latent variable. Next, we examined the 

signs and significance of crucial coefficients in our model. Because a central goal was to test 

whether the relationship between FFGC and its indicators functioned similarly across the two 

samples, we focused on comparing the factor loadings for BW, BL, and GA. Although the 

coefficient on BW was set to 1 to scale the latent variable, we found that the freely estimated 

factor loadings for BL and GA were both positive, significant, and similar in magnitude to the 

results from Cebu. Our final, strictest test of replication was to test the equality of the factor 

loadings on BL and GA across the two samples. We found that we could not reject the null 

hypothesis that the factor loadings for GA were equal in NC/PA and Cebu, while this was not 

true for those for BL. This high, but not perfect level of agreement between the two studies 
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indicates a relatively strong replication success.  In light of our success, we encourage 

researchers to continue to test the generalizability of the FFGC model. If the FFGC model works 

similarly well in diverse samples, we will accumulate evidence for the existence of a FFGC 

latent variable, as well as for the fetal origins hypothesis. 

As a rule, science is concerned with conducting robust and reliable research. While recent 

years have seen a growing recognition of the importance of replication studies as well as a more 

receptive environment to encouraging their publication (Collins & Tabak, 2014; Moonesinghe, 

Khoury, & Janssens, 2007; National Science Foundation, 2015), the quantity and quality of 

published replication attempts remain low (Brandt et al., 2014). Contributing to this quandary is 

a lack of accepted guidelines on what constitutes a successful replication. We are hopeful that 

future research will adopt a graded approach to replication, as modeled in the current analyses. 

This attention to robustness is especially important for research on the fetal origins hypothesis, 

given its possible lifelong implications for human health and development. 

In sum, the current study confirms the existence of a latent variable representing 

favorable fetal growth conditions which underlies the relationship between maternal 

characteristics and child birth outcomes. However, the current study does not address whether 

this latent variable predicts adult health outcomes, as would be predicted by the fetal origins 

hypothesis. Future research should aim not only to confirm the existence of the FFGC latent 

variable among diverse populations, but also to test the relationship between FFGC and adult 

risk of metabolic or cardiovascular disease.  



 

 

Table 1. Descriptive Statistics for Cebu and NC/PA. 

 

 

   Cebu NC PA 

Infant’s Variables  Source  

N 

Mean or 

Proportion 

 

SD 

 

N 

Mean or 

Proportion 

 

SD 

 

N 

Mean or 

Proportion 

 

SD 

Birth Weight, g BW Maternal report    689 3287 531 486 3306 511 

 BW1 Measured at place of delivery 2615 3028 472       

 BW2 Measured by project staff 3031 2994 435       

Birth Length, cm BL Maternal report    664 51.20 3.38 484 49.50 2.95 

 HTCM Measured by project staff 3032 49.25 2.11       

Gestational Age, weeks 

Gestational Age, ln(weeks) 

GA Maternal report    683 39.25 

3.67 

1.04 

0.04 

481 39.25 

3.67 

1.04 

0.04 

 BALGA Ballard Assessment 597 38.86 

3.66 

1.04

0.04 

      

 LMPGA LMP Dating 2843 38.86 

3.66 

1.07

0.07 

      

Mother’s Variables            

Maternal Arm Muscle, cm2 AMA Measured during pregnancy 3058 34.10 

 

5.59  

 

     

Maternal Arm Fat, cm2  

 

AFA 

 

Measured during pregnancy 3058 14.73 5.67       

Maternal Weight, lbs 

Maternal Weight, kg 

MOMWT Maternal report    661 160.4  

72.8 

46.1 

20.9 

476 151.2  

68.6 

41.9 

19.0 

Maternal Height, cm MOMHT Maternal report 3059 150.56 5.00 682 164.2 6.93 486 164.1 7.10 

Mother was a smoker, 

proportion 

SMOKERS Maternal report 3059 0.13 0.34 684 0.18 0.38 486 0.32 0.47 

First Pregnancy, 

proportion 

FIRSTPRG Maternal report 3059 0.22 0.42 689 0.38 0.48 486 0.42 0.49 

Mother < 20, proportion  YOUNGER Maternal report 3059 0.13 0.34 689 0.17 0.37 486 0.14 0.34 

Mother > 35, proportion  OLDER Maternal report 3059 0.10 0.30 689 0.06 0.24 486 0.08 0.27 

Mother is African 

American, proportion 

AA Maternal report    690 0.65 0.48 486 0.03 0.18 

1
8
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Table 2. Global Fit Measures for Structural Equation Models from NC/PA Analyses. 

 Test Statistic df p-value IFI (1-RMSEA) BIC 

Model 1       

Cebu 118.569 40 <.001 0.994 0.975 -202.47 

NC 0 0 0 0 0 0 

PA 0 0 0 0 0 0 

Model 2       

Cebu 169.006 65 <.001 0.993 0.997 -352.67 

NC 57.443 11 <.001 0.842 0.919 -13.82 

PA 44.147 11 <.001 0.877 0.920 -23.63 

Model 3       

NC 24.734 10 <.01 0.942 0.952 -40.08 

PA 36.456 10 <.001 0.880 0.925 -25.20 

NC/PA 68.675 30 <.001 0.946 0.952 -142.20 

     The notation NC/PA is used to denote model results from the multiple group analysis.  
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Table 3. Chi-Squared Difference Testing of Multiple Groups Models. 

Because MLR was selected as the model estimator, chi-square difference testing could 

not be done in the usual manner. For more information on chi-square difference testing for MLR, 

see Satorra and Bentler (2001). 

 

  

 df Χ2 ΔΧ2 p 

No Constraints 20 61.006   

Factor Loadings  22 63.274 3.359 .186 

Factor Loadings + Intercepts  24 63.319 0.021 .986 

Factor Loadings + Intercepts + Beta (FFGC) 30 68.675 5.738 .453 

Factor Loadings + Intercepts + All Beta 38 134.318 75.439 <.001 
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Table 4. MLR Estimates of Direct Effects of Mother's Characteristics on Favorable Fetal Growth 

Conditions (FFGC). 

 

 

 

 

 

 

 

 

 

 

 

Coefficients for NC/PA are taken from the multiple group analysis. Although the 

coefficients are set to be equal across NC and PA, the multiple group analysis results in separate 

R2 values for each group. AMA was not measured in NC/PA. AFA was measured in cm2 in 

Cebu, but only MOMWT in pounds was measured in NC/PA. 

 

  

 Cebu NC/PA 

 

Exogenous Variable 

β 

[95 % CI] 

β 

[95 % CI] 

 FFGC FFGC 

Maternal Arm Muscle (AMA) .049 

[.022, .076] 

 

 

Maternal Arm Fat, cm2 (AFA)/  

Maternal Weight, lbs (MOMWT) 

.088 

[.059, .117] 

.129 

[.054, .204] 

Maternal Height, cm (MOMHT) 1.505 

[1.223, 1.787] 

.106 

[.063, .149] 

Mother was a smoker (SMOKERS) -.835 

[-1.262, -.408] 

-2.318 

[-3.036, -1.600] 

First Pregnancy (FIRSTPRG) -1.242 

[-1.642, -.842] 

-.033 

[-.634, .567] 

Mother < 20 (YOUNGER) -.766 

[-1.232, -.300] 

.149 

[-.735, 1.033] 

Mother > 35 (OLDER) -.121 

[-.629, .387] 

-.409 

[-1.653, .835] 

R2 .110 .082 (NC) 

.109 (PA) 



 

21 

Table 5. Factor Loadings for FFGC Indicators. 

 

 

 

 

 

 

 

 

 

For NC/PA, the factor loadings, along with their 95% confidence intervals (in brackets), 

are taken from the multiple group analysis. Although the factor loadings are set to be equal 

across NC and PA, the multiple group analysis results in separate R2 values for each group.  

  

 Cebu NC/PA  

Indicator λ 

[95 % CI] 

R2 λ 

[95 % CI] 

R2 

(NC) 

R2 

(PA) 

 FFGC  FFGC   

Birth Weight (BW) 1 

[N/A] 

1.000* 1 

[N/A] 

.901 .845 

Birth Length (BL) .348 

[.315, .381] 

.684 .496 

[.435, .557] 

.505 .635 

Gestational Age (GA) .004 

[.0033, .0047] 

.710 .005 

[.004, .005] 

 

.332 .299 
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Figure 1. Structural Equation Models from Cebu Analyses. Structural equation model depicting 

(a) direct-effects only model (Model 1) and (b) favorable fetal growth conditions (FFGC) latent 

variable model (Model 2) for Cebu. BW=latent newborn weight; BL=latent newborn length, 

GA=latent gestational age; BW1=newborn weight measured by birth attendants; BW2=newborn 

weight measured by study staff; HTCM = newborn length; LMPGA=gestational age estimated 

from mother's report of date of her last menstrual period; BALGA=gestational age estimated 

from Ballard assessment of newborn; NOTPROJ=newborn not weighed on project scale; 

NOTONE= weight not measured day of birth; WHENBW2=infant age in days when measured 

by study staff; WHENBW2SQ=WHEN2BW squared; WHENBAL=age in days when Ballard 

assessment was done; NOTONE=newborn not weighed on day 1; GIRL=newborn is a girl; 

AMA=maternal arm muscle area during pregnancy; AFA=maternal arm fat area during 

pregnancy; MOHT=mother's height; SMOKERS=mother smoked during pregnancy; 
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FIRSTPRG=newborn was firstborn; YOUNGER=mother was <20 years old when pregnant; 

older=mother was >35 years old when pregnant. (Figures adapted from Bollen et al. (2013), p. 

13-14) 
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 Figure 2. Structural Equation Models from NC/PA Analyses. Structural equation model 

depicting (a) direct-effects only model (Model 1) and (b) favorable fetal growth conditions 

(FFGC) latent variable model (Model 2) for NC/PA. BW=birth weight; BL= birth length, GA= 

gestational age; GIRL=newborn is a girl; MOMWT=mother’s pre-pregnancy weight; 

MOHT=mother's height; SMOKERS=mother smoked during pregnancy; FIRSTPRG=newborn 

was firstborn; YOUNGER=mother was <20 years old when pregnant; older=mother was >35 

years old when pregnant. 
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Figure 3. Modified Structural Equation Model from NC/PA Analyses. Structural equation model 

relating mother’s traits to birth outcomes through the mediating favorable fetal growth conditions 

(FFGC) latent variable, following theoretical and empirical modifications (Model 3). BW=birth 

weight; BL= birth length, GA= gestational age; GIRL=newborn is a girl; MOMWT=mother’s 

pre-pregnancy weight; MOHT=mother's height; SMOKERS=mother smoked during pregnancy; 

FIRSTPRG=newborn was firstborn; YOUNGER=mother was <20 years old when pregnant; 

older=mother was >35 years old when pregnant; AA=mother is African-American. 
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APPENDIX: VARIABLES INCLUDED IN CEBU ANALYSIS 

 

Infant’s Variables Description 

BW1 Newborn weight at place of delivery, g 

BW2 Newborn weight measured by project staff, g 

HTCM Newborn length, cm 

NOTONE Weight not measured day of birth, proportion 

NOTPROJ Infant not weighed on project scale 

WHENBW2 Infant age at weighing by project staff, days 

BALGA Gestational age from Ballard assessment, weeks 

LMPGA Gestational age from last menstrual period date, weeks 

WHENBAL Infant age at Ballard assessment, days 

GIRL Infant sex=female, proportion 

Mother’s Variables Description 

MOHT Height, cm 

AMA Arm muscle area during pregnancy at baseline, cm2 

AFA Arm fat area during pregnancy at baseline, cm2 

SMOKERS Smoked during pregnancy, proportion 

FIRSTPRG Primiparous, proportion 

YOUNGER Age < 20 years 

OLDER Age > 35 years 
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