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ABSTRACT 

 

Jennifer Winston:  Hypospadias and Prenatal Exposure to Atrazine via Drinking Water:  A 

Geographic Analysis 

(Under the direction of Michael Emch) 

 

 This dissertation uses a disease ecology framework to investigate the etiology of 

hypospadias, a relatively common birth defect affecting the male genitourinary tract.  It begins 

by considering the spatial distribution of hypospadias in North Carolina and whether that spatial 

distribution can be explained by either compositional or contextual risk factors.  It then focuses 

on a potential contextual risk factor of interest: atrazine, one of the most widely used herbicides 

in the United States.  An endocrine disruptor, atrazine breaks down slowly in soils and water, 

suggesting that mothers could be exposed to atrazine via contaminated drinking water. 

 This research uses data from the North Carolina Birth Defects Monitoring Program and 

the National Birth Defects Prevention Study.  Three different methods are used to estimate 

maternal exposure to atrazine via drinking water:  total atrazine applied to maternal county of 

residence; sampling data maintained by the United States Environmental Protection for 

compliance monitoring; and outputs from surface water and groundwater models from the 

United States Geological Service.  After concluding that the surface and groundwater modeling 

metric is most appropriate for our dataset, this research concludes by incorporating maternal 

population and behavioral characteristics into analyses of hypospadias and maternal exposure to 

atrazine via drinking water. 
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 Results indicate statistically significant spatial autocorrelation of hypospadias in eastern 

central North Carolina, which persists when controlling for compositional risk factors, and which 

suggests that contextual factors may influence the spatial distribution of hypospadias.  Results 

further suggest possible role played by atrazine in a multi-factorial etiology of hypospadias.  

When controlling for maternal demographic and behavioral characteristics, hypospadias is found 

to be marginally significantly associated with daily maternal atrazine consumption during the 

critical window of genitourinary development (odds ratio = 1.03;  p = 0.054).  This reinforces the 

utility of a disease ecology framework in research of diseases of unknown or multifactorial 

etiology.  It also suggests that further research is needed to evaluate the potential teratogenic 

properties of atrazine.  
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CHAPTER 1 

INTRODUCTION 

 

Background 

Hypospadias is a relatively common congenital urinary tract defect affecting between 4 

and 6 per 1,000 male infants (1).  It is characterized by having the opening of the urethra located 

on the underside of the penis (2), and surgery is often needed to reposition the urethral opening.  

Left untreated, hypospadias can lead to difficulty in using a toilet, as well as sexual and fertility 

problems in adults (3).  Hypospadias is believed to have a multifactorial etiology where both 

genetic susceptibility and environmental exposures may play a role (4).   

This dissertation explores the spatial distribution of hypospadias in North Carolina, as 

well as the factors that might help explain this distribution.  It then builds on this foundation by 

examining a possible association between hypospadias and atrazine, one of the most widely used 

agricultural herbicides in the United States.  It does so by developing a novel approach for 

estimating environmental exposure to atrazine via drinking water, and comparing it to other 

previously used exposure estimation techniques.  It is hoped that research may contribute to our 

understanding of a relatively common, but still poorly understood, birth defect, and thereby have 

the potential to improve birth outcomes.  It is further hoped that the methodology developed in 

this study may also be applicable to other studies considering human health and atrazine 

exposure via drinking water. 

 



2 

Disease Ecology 

Disease ecology is a medical geography theory that posits that population, behavior, and 

environment all play a role in determining disease outcomes (5).  In fact, most risk factors for 

hypospadias can be organized into these three categories.   

Population level risk factors for hypospadias include maternal characteristics including 

maternal health, parity, and genetics.  Among maternal characteristics, untreated hypertension 

(6-8), thyroid disease (9), and diabetes (10) all seem to lead to higher risk.  There is some 

evidence that maternal nutritional status may play a role, with certain vitamins (B12, choline, 

and methionine) perhaps reducing risk (11).  There is conflicting evidence regarding maternal 

BMI, with Carmichael et al (12) finding greater risk amongst mothers with a BMI above 26, but 

with Adams et al (13) finding no evidence of an increased risk.  Risk also increases with age (10, 

14, 15), and is also highest among whites (10).  First-borns are at a higher risk than higher-parity 

children (12, 16).  Genetics also likely plays a role, as boys with a family history of hypospadias 

are also more likely to be born with the defect (17).   

Behavioral factors include maternal use of progestins (18) and other assisted reproductive 

technology (17), which seem to increase risk.  Fathers in certain occupations, including forestry 

and logging workers, firemen, policemen, guards, and vehicle manufacturers, may also be at an 

increased risk (19).   

The role of environmental factors is the least well understood.  There is some evidence to 

suggest that exposure to certain pesticides may be associated with urogenital defects.  A potential 

mechanism for such defects may be interference with male genital development because of their 

ability to mimic or interfere with the function of certain hormones (20).   
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Supporting this hypothesis, Fernandez et al (21) and Giordano et al (22) find a 

relationship between urogenital defects and endocrine-disrupting chemicals, as well as to 

maternal occupational exposure to agriculture.  Similarly, Brouwers et al (17) find that paternal 

exposure to pesticides increases hypospadias risk.  The pathway for this exposure is not clear, 

but it may include maternal exposure via seminal fluid (1).  Winchester et al. (23) find that 22 

birth defects, including genital defects, are more likely to occur in live births with a last 

menstrual period during the time of peak annual agrichemical use.  Rocheleau et al (24) also find 

evidence of a modest link between hypospadias and pesticide exposure, although a later study 

led by Rocheleau finds no association between occupational exposure to pesticides and 

hypospadias (25).  There is also weak evidence of increased risk associated with proximity to 

landfill sites (26, 27).  

Within a disease ecology framework, these risk factors can be summarized in a triangle, 

with population, behavioral and environmental risk factors each forming a vertex of the triangle.  

Each vertex then interacts with the others to describe the multi-factorial etiology of hypospadias.  

This mechanism is illustrated in Figure 1.1. 



4 

Figure 1.1:  Disease ecology triangle describing risk factors for hypospadias 

 

Theoretical Approach: 

Neighborhoods and Health Framework 

A neighborhoods and health framework suggests that the geographic distribution of a 

disease may be explained by the composition of the people who live in a place or by the context, 

or the unique environment, of a place (28, 29).  Within disease ecology theory, this dissertation 

therefore uses a neighborhoods and health framework to investigate the spatial distribution of 

hypospadias, as well as the factors that might lead to that distribution.  In the context of this 

dissertation, the population and behavioral risk factors for hypospadias identified above can be 

considered compositional effects, while the environmental risk factors can be considered 

contextual effects.   

The first question examined by this dissertation therefore asks how hypospadias clusters 

in space.  It then draws upon the neighborhoods and health framework to control, to the extent 

Population: 

Maternal health:  untreated hypertension +
     thyroid disease + 

     BMI +/? 

Maternal nutritional status (Vitamins B12, 
Choline, Methionine)  - 

Maternal characteristics: age; white race + 

Parity:  first born + 

Genetics:  family history + 

Behavior: 

Progestins and Assisted reproductive 
technology + 

Paternal occupation:  forestry and logging 
workers, firemen, policemen, guards, and 
vehicle manufacturers + 

Environment: 

Proximity to landfill sites +/? 

Pesticide exposure +/? 
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possible for compositional effects.  Any remaining unexplained variation will suggest that 

contextual effects are playing a role in the geographic distribution of hypospadias. 

 

 

Watershed Modeling  

To help identify what these contextual factors might be, this study uses a number of 

exposure estimation techniques, including watershed modeling.  These models can be used to 

estimate contaminant concentrations in groundwater and streams when continuous monitoring 

data is unavailable.  Root et al (31) was one of the first to incorporate watershed modeling into a 

medical geographical study of birth defects by considering whether gastroschisis risk was 

influenced by maternal residence downstream from textile mills.  This dissertation builds upon 

that work via a novel adaptation of two hydrological models developed by the US Geological 

Survey (USGS) to estimate contaminant concentrations in groundwater and drinking water.  It 

also compares the estimates provided by these models against water quality sampling conducted 

by the US Environmental Protection Agency (EPA), as well as data about pesticide use at the 

county level.  It then compares the strengths and weaknesses of using these exposure estimation 

techniques to predict hypospadias risk.   

This dissertation focuses on the potential environmental risk posed by exposure to 

atrazine via drinking water.  Atrazine is one of the most widely used agricultural pesticides in the 

US, and is applied mainly to corn, sorghum, and sugarcane, both before and after planting (32).  

Bioaccumulation of this pesticide seems to be negligible (33, 34), but it is relatively mobile in 

soil and breaks down very slowly in water, with a half-life greater than 200 days in lakes and 

streams (35).  Because atrazine remains for a long period time if washed into streams or 
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groundwater, exposure from contaminated wells or public drinking water supplies fed by these 

sources is possible. 

Some animal studies suggest that atrazine may be associated with genitourinary 

malformations in frogs at concentrations as low as 0.1 parts per billion (33), although the US 

EPA concluded in 2007 that atrazine does not adversely affect amphibian gonadal development 

(32).  In human studies, Meyer et al (36) find no statistically significant association between 

atrazine and hypospadias in their study of agricultural pesticides in eastern Arkansas.  On the 

other hand, the Agency for Toxic Substances and Disease Registry (35) notes that maternal 

exposure to atrazine in drinking water has been associated with a number of adverse birth 

outcomes, including urinary system defects.   

This dissertation will draw upon two watershed models in estimating maternal exposure 

to atrazine via drinking water:  Stone et al’s 2013 watershed regressions for pesticides (WARP) 

models for predicting stream concentrations of multiple pesticides (37) and Stackelberg et al’s 

2012 regression models for estimating concentrations of atrazine plus deethylatrazine in shallow 

groundwater in agricultural areas of the United States (38). 

This dissertation therefore uses these watershed modeling techniques to explore whether 

maternal exposure to atrazine via drinking water helps to explain any disease clustering that 

remains after controlling for composition.  It also considers what similarities and or differences 

characterize the results of estimating maternal exposure to atrazine via drinking water via three 

different approaches: county-level atrazine use, US EPA water quality monitoring data, and 

output from USGS surface and groundwater models. 
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Conclusion 

In conclusion, this dissertation seeks to understand the disease ecology of hypospadias, 

including the interaction of population (socioeconomic and biological), behavioral, and 

environmental factors in its etiology by analyzing birth defects data from North Carolina, Iowa, 

Arkansas and Texas.  This dissertation is organized around three empirical papers.  Chapter 2, “A 

geographic analysis of compositional and contextual risk factors for hypospadias births,” begins 

by considering how hypospadias clusters in space.  It then asks what compositional factors 

predict hypospadias risk throughout North Carolina, and whether any identified disease clusters 

remain after controlling (to the extent possible) for these effects.  Chapter 4, “Comparison of 

exposure metrics for estimating maternal exposure to atrazine,” describes three different 

exposure metrics for estimating exposure to atrazine via drinking water, and considers their 

strengths and limitations in estimating hypospadias risk.  Finally, Chapter 6, “Hypospadias and 

maternal exposure to atrazine,” returns to the disease ecology triangle and examines whether 

maternal exposure to atrazine via drinking water, either in isolation, or in combination with other 

factors, may help explain hypospadias risk. 
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CHAPTER 2 

A GEOGRAPHIC ANALYSIS OF COMPOSITIONAL AND CONTEXTUAL RISK 

FACTORS FOR HYPOSPADIAS BIRTHS 

 

Introduction 

Hypospadias is a relatively common urinary tract defect affecting approximately 0.3 to 0.7% 

of live male births.  It is characterized by a urethral opening on the underside of the penis, and can 

vary in degree according to the location of the urethral opening. Without surgery to repair the defect, 

it can result in urinary or sexual problems, particularly in more severe cases (1).  It is believed to 

have a multifactorial etiology where population level and environmental level risk factors, as well as 

genetic influences, may play a role (4).     

The present study seeks to identify spatial clustering of hypospadias in North Carolina from 

2003 to 2005.  Guided by the neighborhoods and health framework, it further seeks to disentangle 

risk factors contributing to that spatial clustering.  Researchers of neighborhood effects on health 

have long noted variations in the spatial distribution of morbidity, mortality, and health behavior, and 

that these variations may be explained by either compositional or contextual effects.  Neighborhood 

compositional effects result from differences among people who live in different places, while 

neighborhood contextual effects result from external environmental influences (28).   

Within a neighborhoods and health framework, compositional risk factors for hypospadias 

may be broken into two categories:  population factors and behavioral factors.  Population factors 

include maternal health and other characteristics, parental genetics, and infant characteristics.  

Among maternal health factors, untreated hypertension (6-8), thyroid disease (9), and diabetes (10) 
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all seem to increase risk.  There is conflicting evidence regarding maternal BMI, with some 

researchers finding greater risk among mothers with a BMI above 26 (12), but with others finding no 

evidence of an increased risk (13).  Risk increases with maternal age (10, 14, 15), and is also highest 

among non-Hispanic whites (10, 39).  Parental genetics also likely plays a role, as boys with a family 

history of hypospadias are also more likely to be born with the defect (17).  Among infant 

characteristics, first-borns are at a higher risk than higher-parity children (12, 16), although this may 

be related to sub-fertility at the parental level (40).   

Behavioral risk factors include maternal use of progestins (18) and other assisted 

reproductive technology (17), which seem to increase risk.  There is some evidence that maternal diet 

may play a role, with certain dietary factors (B12, choline, and methionine) perhaps reducing risk (9).  

Some studies suggest that maternal smoking may be associated with decreased risk, especially for 

primiparous women (40), while others find no association between smoking and hypospadias (18).  

Infants born to fathers in certain occupations, including forestry and logging workers, firemen, 

policemen, guards, and vehicle manufacturers, may be at an increased risk (19).   

The potential role played by contextual, or environmental, factors is less well understood.  It 

has been hypothesized that endocrine-disrupting chemicals, including some pesticides, could 

interrupt normal urethral closure and lead to hypospadias.  The evidence to support this hypothesis is 

mixed, however.  A meta-analysis of studies conducted between 1966 and 2008 found a modest 

association between hypospadias and pesticide exposure (24), but another review of environmental 

and genetic contributors to hypospadias concluded that a clear association cannot be made between 

endocrine-disrupting exposures and hypospadias, and called for further study of environmental 

factors and hypospadias (1). 

This study seeks to build on the current knowledge of population, behavioral, and 

environmental risk factors for hypospadias.  Compositional risk factors for hypospadias considered 

by this study include maternal age, race/ethnicity, marital status, smoking, diabetes, socioeconomic 
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status, and parity.  To help address the remaining ambiguity associated with endocrine-disrupting 

chemicals, including pesticides, the contextual risk factors included in this study focus on land use, 

including agriculture.  We use an alternative approach to investigating the geographic distribution of 

hypospadias in North Carolina from 2003-2005 by examining clustering of residuals.  To our 

knowledge, we are the first to examine compositional and contextual factors affecting the spatial 

distribution of birth defects using this novel approach.  

 

Methods 

Data were collected by the North Carolina Birth Defects Monitoring Program (NCBDMP), 

which is a population-based, active surveillance system.  NCBDMP field staff review hospital 

medical records and discharge reports and regularly report malformations to the Registry.  NCBDMP 

also links data about cases and controls to vital records to provide demographic information about 

both mother and infant and geocodes maternal address at birth.   

This study population included all North Carolina resident women who delivered a live-born 

infant with hypospadias, and a 10% random sample of women who delivered a male infant without a 

known birth defect and who delivered in North Carolina in 2003-2005.  Of these, 89% of cases and 

93% of males without a known birth defect were successfully geocoded.   

Hypospadias varies in severity – we included first, second, and third degree cases, or all 

successfully geocoded cases (n = 1,044), in this analysis.  First-degree cases may be more prone to 

differing diagnoses by different doctors.  However, hypospadias screening is a routine element of 

regular newborn assessments (41), which should reduce the number of overlooked cases.  Further the 

mechanism by which environmental factors affect hypospadias risk may be subtle, so we wanted to 

include cases of all levels of severity.  This is consistent with other authors studying environmental 



11 

effects on hypospadias risk (36, 42, 43).  While we also had access to all successfully geocoded male 

births without a known birth defect, we randomly selected a 10% sample as controls (n = 16,477).   

Compositional variables considered in this analysis were linked to cases and controls from 

vital records.  These characteristics included age at delivery, race/ethnicity (classified for this study 

as non-Hispanic white, non-Hispanic black, Hispanic, and other), marital status, smoking, diabetes, 

parity, and two proxies for socioeconomic status (maternal education and month prenatal care 

began). 

Contextual variables focused on land use characteristics and the total number of live births 

per block group during the study period.  We used the 2006 National Land Cover Database from the 

US Geological Survey to classify the percent of each block group used by various land classes 

(developed land, crops, pasture, and forest).  Due to the large number of block groups with no crops, 

we used the natural logarithm of this variable to normalize its distribution.  We also aggregated the 

total number of live births per block group during the study period to control for the background birth 

population in geographic analyses.  These contextual variables were created using ArcGIS v. 10. 

To consider the geographic distribution of hypospadias, we estimated local Moran’s I 

statistics for hypospadias cases to identify statistically significant clustering of high values (cases).  

We then mapped the location of “high-high” births, which signify hypospadias cases clustered near 

other hypospadias cases.  The results of the local Moran’s I analyses were validated with SaTScan’s 

Bernoulli model, which uses a moving circular window of varying sizes to identify the location and 

size of disease clusters (44).    

To consider the effect of compositional variables on hypospadias risk in North Carolina, we 

conducted backward stepwise logistic regression analyses in Stata 12.1.  All available compositional 

characteristics from the NCBDMP were tested.  In order to maximize prediction performance, we 
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retained variables significant at p-value ≤ 0.2.  To estimate the remaining unexplained variation in 

hypospadias risk, we calculated standardized residuals for the final compositional regression model 

by dividing individual raw residuals by their standard deviation.  We repeated local Moran’s I 

statistics using the standardized residuals and mapped the location of remaining high-high values.   

We then added contextual variables measuring land use and the number of male births per 

block group into the final regression model.  Only statistically significant land-use variables were 

retained.  We estimated a multilevel model to consider any potential nesting within block groups, but 

the group level effect was not significant, so we returned to the single-level model.  Finally, we 

calculated standardized residuals on the final model, repeated local Moran’s I statistics on the 

standardized residuals, and mapped the high-high values in order to consider whether inclusion of 

these contextual variables helped to better explain the spatial variation of hypospadias risk. 

  

Results  

Descriptive statistics suggest that, on average, mothers of hypospadias cases tend to be 

slightly older, more likely to be non-Hispanic white, lower parity, and have a higher socioeconomic 

status (as measured by educational attainment and prenatal care) (Table 2.1). 
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Table 2.1:  Descriptive statistics for hypospadias cases and controls 

 Cases Controls  

Characteristic N % N % P-value 

Maternal age     0.01 

<20 108 10.9 1,834 11.5  

20-24 219 22.0 4,206 26.3  

25-29 274 27.6 4,448 27.8  

30-34 249 25.1 3,608 22.6  

35+ 144 14.5 1,907 11.9  

Maternal race/ethnicity     <0.01 

Non-Hispanic white 700 70.4 9,560 59.7  

Non-Hispanic black 213 21.4 3,506 21.9  

Hispanic 56 5.6 2,254 14.1  

Other race 25 2.5 683 4.3  

Maternal education      <0.01 

Less than high school 157 15.9 3,560 22.3  

High school 280 28.3 4,603 28.8  

More than high school 553 55.9 7,795 48.9  

Marital status     0.15 

Married 656 66.0 10,195 63.7  

Unmarried 338 34.0 5,805 36.3  

Smoking     0.24 

No 885 89.0 14,048 87.8  

Yes 109 11.0 1,955 12.2  

Diabetes     0.48 

No 964 97.0 15,580 97.4  

Yes 30 3.0 423 2.6  

Received first trimester prenatal 

care 

    0.01 
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No 133 13.4 2,627 16.4  

Yes 861 86.6 13,376 83.6  

Previous live births     <0.01 

No 490 49.3 6,674 41.7  

Yes 504 50.7 9,329 58.3  

 

 

Local Moran’s I statistics for hypospadias cases and controls show significant high-high 

clustering in the eastern central portion of North Carolina (Figure 2.1, Panels A and B).  SaTScan 

analyses (not shown) confirmed that the Census tract with 7 high-high cases also contained the center 

of the only statistically significant primary cluster (p-value 0.003), with 18 observed hypospadias 

cases falling within a 10.3 km radius where only 3.4 cases would have been expected.  This Census 

tract is located in Johnston County.  From a compositional standpoint, Johnston County has a very 

rapidly growing population, and a greater proportion of its population is white (80.1% vs. 71.9% 

statewide) and Hispanic (13.1% vs 8.7% statewide.  From a contextual standpoint, Johnston County 

has historically been farmed.   

Of the eight compositional variables included in the backward stepwise logistic regression 

model, five were retained (Table 2.2).  Consistent with descriptive statistics, increased maternal age 

and non-Hispanic white race/ethnicity were associated with increased risk.  Being married and at 

higher parity were associated with reduced risk.  Smoking was retained in the model, with smokers at 

a decreased risk, but this variable was not statistically significant.  Diabetes and SES (as measured by 

maternal education and month prenatal care began) were not associated with hypospadias risk in the 

compositional model.  The local Moran’s I of the standardized residuals from the compositional 

model showed a very similar spatial pattern (Figure 2.1, Panel C) to that of the hypospadias cases, 

with the greatest number of high-high cases remaining in Johnston County.   
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Table 2.2:  Compositional risk factors retained by backward stepwise logistic regression model 

for hypospadias in North Carolina, 2003 – 2005. 

Characteristic Odds Ratio 95% Confidence 

Interval 

P-value 

Maternal age    

<20 1.0 Referent  

20-24 1.03 0.80 – 1.32 0.82 

25-29 1.24 0.96 – 1.60 0.10 

30-34 1.39 1.07 – 1.83 0.02 

35+ 1.54 0.15 – 2.06 <0.01 

Maternal race/ethnicity    

Non-Hispanic white 1.00 Referent  

Non-Hispanic black 0.83 0.69 – 0.99 0.03 

Hispanic 0.34 0.26 – 0.46 <0.01 

Other race 0.49 0.33 – 0.74 <0.01 

Marital status    

Unmarried 1.00 Referent  

Married 0.85 0.71 – 1.01 0.06 

Smoking    

No 1.00 Referent  

Yes 0.82 0.66 – 1.01 0.07 

Previous live births    

No 1.00 Referent  

Yes 0.71 0.62 – 0.82 <0.01 

Constant 0.08 0.07 – 0.10 <0.01 
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When contextual variables were incorporated into the compositional model, the natural 

logarithm of the percent crop cover per block group was found to be significantly associated with 

hypospadias risk (Table 2.3).  Other land use variables (developed land, pasture, and forest) were not 

significant and were excluded from the final model.  The number of male births per block group was 

not statistically significant, but was retained in the final model to control for background population 

size.  Overall model fit improved in the contextual model, with the Akaike information criterion 

(AIC) reducing from 7469.1 with the compositional model to 3828.3 with the contextual model.  The 

local Moran’s I of the standardized residuals from the final model shows somewhat less spatial 

clustering of unexplained risk in the eastern central portion of the state, although the primary cluster 

remains in Johnston County (Figure 2.1, Panel D).   

Table 2.3:  Results of logistic regression model including compositional and contextual risk 

factors for hypospadias in North Carolina, 2003 – 2005. 

Characteristic Odds Ratio 95% Confidence 

Interval 

P-value 

Maternal age    

<20 1.0 Referent  

20-24 0.99 0.71 – 1.38 0.96 

25-29 1.15 0.81 – 1.63 0.42 

30-34 1.41 0.97 – 2.03 0.07 

35+ 1.42 0.94 – 2.13 0.10 

Maternal race/ethnicity    

Non-Hispanic white 1.00 Referent  

Non-Hispanic black 0.78 0.61 – 1.02 0.07 

Hispanic 0.23 0.13 – 0.38 <0.01 

Other race 0.53 0.31 – 0.93 0.03 
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Marital status    

Unmarried 1.00 Referent  

Married 0.84 0.66 – 1.07 0.15 

Smoking    

No 1.00 Referent  

Yes 0.77 0.58 – 1.02 0.07 

Previous live births    

No 1.00 Referent  

Yes 0.84 0.66 – 0.98 0.03 

Natural log of % of block group 

in crops 

1.05 1.01 – 1.10 0.02 

Number of male births per block 

group 

1.00 0.99 – 1.00 0.29 

Constant 0.09 0.07 – 0.12 <0.001 
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Figure 2.1:  Local spatial autocorrelation of hypospadias cases and model residuals in North Carolina 2003-2005. 

Panel A shows local spatial autocorrelation of hypospadias cases by Census tracts statewide.  Panel B – D show spatial 

autocorrelation by Census block group in central North Carolina.  Panel B shows local spatial autocorrelation of cases; Panel C 

shows local spatial autocorrelation of standardized residuals from the compositional model; and Panel D shows local spatial 

autocorrelation of standardized residuals from the compositional model. 
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Discussion  

Moran’s I analysis identified significant local spatial autocorrelation of hypospadias risk in 

North Carolina between 2003 and 2005.  Backward stepwise logistic regression identified several 

important population-level factors contributing to hypospadias risk.  However, local spatial 

autocorrelation remained even when controlling for these effects, which suggested that contextual, or 

environmental, factors might be playing a role in the distribution of hypospadias in this area.   

Spatial autocorrelation of residuals was concentrated in eastern central North Carolina, which 

is known for its agricultural production, particularly hog farming, flue-cured tobacco, soybeans, and 

sweet potatoes (45).  In fact, logistic regression indicated that the natural logarithm of percent of land 

cover in crops per block group was positively associated with hypospadias risk.  Further, when crop 

cover and the number of live births per block group were included in the model, spatial clustering of 

the standardized residuals was somewhat diminished.  This suggests that exposure to agriculture may 

be associated with hypospadias risk and lends indirect support to the somewhat conflicting evidence 

that exposure to pesticides may play a role.   

This study only has access to information about maternal address at birth, not during the 

critical window of development.  It also does not have information about place of work, which means 

that if mothers moved during their pregnancy, or if they spent significant amounts of time outside the 

home, we may not be accurately capturing contextual effects.  Yet a study of exposure to air 

pollution using New York data found that only 16.5% of mothers moved during pregnancy, and most 

moved within such short distances that exposure assignments did not change substantially (46).  

Other studies have found much higher mobility during pregnancy – 33% of case and 31% of control 

mothers – but suggested that while maternal mobility may lead to exposure misclassification, any 
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such misclassification is likely to be non-differential, which would tend to bias the results toward the 

null (47).   

This study illustrates the potential contribution of mapping the spatial distribution of disease 

to generating hypotheses about disease etiology, and to investigating the relative contribution of 

contextual and compositional effects.  The associations found with hypospadias in this analysis 

should not be interpreted as implying causality, and further research is needed to evaluate these 

findings.  Future work will investigate the mechanism by which exposure to agriculture may be 

contributing to hypospadias risk in North Carolina.  This ultimately might help inform policy 

interventions to help reduce hypospadias risk. 
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CHAPTER 3 

USING GEOGRAPHIC CLUSTERING TO GENERATE HYPOTHESES ABOUT 

HYPOSPADIAS 

  

The previous chapter uses geographic clustering methods to explore the geographic 

distribution of hypospadias and generate hypotheses about contextual factors that might play a 

role in hypospadias risk.  As discussed, local Moran’s I identified significant spatial 

autocorrelation of hypospadias in eastern central North Carolina.  Backwards stepwise logistic 

regression found a number of compositional characteristics, including maternal race, maternal 

age, and parity that were associated with hypospadias.  These factors could not, however, fully 

explain the spatial autocorrelation observed in eastern central North Carolina.  This led to 

consideration of contextual factors unique to this area.  As can be seen in Figure 3.1, agriculture, 

including soybean production, is an important feature of this part of the state (48).  In fact, the 

natural logarithm of the percent of a block group in crops was found to be positively associated 

with hypospadias (p < 0.01).  Further, spatial autocorrelation diminished somewhat when 

accounting for crop cover. 
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Figure 3.1:  Distribution of soybean production in North Carolina, 2007 

 

 

 The remaining chapters of this dissertation will explore a potential mechanism for this 

correlation between hypospadias and crop cover.  It will focus on atrazine, one of the most 

widely used commercial herbicides in the United States.  Although atrazine is metabolized fairly 

quickly, it can remain in soils and groundwater for a long time, meaning that people might 

become exposed to atrazine via drinking water.  Chapter 4 will therefore consider three different 

metrics for estimating maternal exposure to atrazine via drinking water.  Chapter 6 will then use 

one of these metrics to investigate a possible association between hypospadias and exposure to 

atrazine.
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CHAPTER 4 

COMPARISON OF EXPOSURE METRICS FOR ESTIMATING MATERNAL EXPOSURE 

TO ATRAZINE  

 

Introduction 

Hypospadias is one of the most common birth defects in the United States, affecting 

approximately 1 in 125 live male births.  It is characterized by a urethral opening located on the 

ventral side of the penis, and is hypothesized to have a multifactorial etiology, where genetic 

susceptibility may combine with endocrine disrupting chemicals to lead to an increased risk (4).   

One endocrine disrupting chemical that has been examined for a possible association with 

hypospadias is atrazine, which is one of the most widely used herbicides in the United States.  It 

has been studied for potential teratogenic effects because it may disrupt normal functioning of 

the endocrine system and because it remains in the environment for long periods of time (35).  

Atrazine is commonly found in groundwater and surface water in the United States, (49) 

exposing humans via contaminated drinking water (35). 

Although there is some evidence to support a link between atrazine and urogenital 

defects, ambiguity about this relationship remains, in part because of the difficulty in measuring 

prenatal exposure.  Laboratory studies involving male genital malformations in rats (50) and 

amphibians (33, 51-53) have allowed researchers to carefully quantify exposure to atrazine.  

However, to our knowledge, only one study has directly measured atrazine and its metabolites 

via urinalysis in a human study of atrazine and congenital defects.  That study, conducted by 
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Chevrier et al, suggested a weak association between atrazine or atrazine metabolites and male 

genital anomalies, but the finding was not statistically significant, possibly due to the small 

sample size (54).  

Because of the expense associated with both urinalysis and prospective study design, and 

to ensure sufficient sample size, most other studies examining a possible relationship between 

atrazine and adverse birth outcomes have relied on a retrospective ecological exposure 

assessment.  Several of these studies have assigned mothers an atrazine concentration based on 

monitoring samples from their public water utility (55-58).  Other studies estimated exposure by 

assigning mothers the estimated amount of atrazine applied to their county of residence (43, 59, 

60). 

 Chevrier et al found atrazine metabolites in urine more frequently amongst women living 

in rural areas and amongst women living in municipalities with the highest level of atrazine 

contaminated tap water (54).  It is unclear, however, whether either of the commonly used 

ecological approaches to atrazine exposure assessment (water utility monitoring data or county-

level estimates) would accurately estimate atrazine or its metabolites in urine, or how well they 

would correspond to one another.  While this study does not have access to urinalysis data, it 

seeks to compare the two most common exposure assessment techniques, along with a third, 

novel, technique in order to consider the effects of different exposure assessment metrics on 

hypospadias risk estimates. 

 

Methods 

Data: 
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 This study used data from the North Carolina Birth Defects Monitoring Program 

(NCBDMP), which collects data on infants born with congenital abnormalities in North 

Carolina.  Trained field staff collect birth defect data from hospital medical records.  NCBDMP 

combines these data with other administrative data from hospital discharge data, vital records, 

and Medicaid claims, including geocoded maternal residential address at birth. 

 Hypospadias is classified by severity, based on the location of the urethral opening.  First 

degree cases are the mildest and most common, with severity increasing in second and third 

degree cases (4).  Because any potential role played by endocrine disrupting chemicals may be 

subtle, we included all levels of severity in this study.  Cases therefore included all successfully 

geocoded first-, second-, and third-degree hypospadias cases (n=1,172) born in North Carolina 

between 2003 and 2005.  Controls (n=17,635) consisted of a 10% random sample of all male 

births in North Carolina during the same time period. 

Exposure assessment metrics: 

Maternal exposure was estimated using three different methods in order to compare two 

exposure estimation techniques used by other studies of atrazine and birth defects, as well as a 

third exposure estimation technique.  All three methods used residential address at birth and year 

of conception, estimated by subtracting estimated gestational age from date of birth.  Because we 

did not have access to water quality monitoring data beyond public water supplies, women using 

private wells were excluded from this analysis. 

Exposure estimation using county-use data: 
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The first exposure estimation technique, referred to hereafter as the county metric, used 

the “Annual county atrazine use estimates for agriculture, 1992-2007” dataset from the US 

Geological Survey (USGS) (61).  This dataset was created by combining proprietary data from 

the DRMKynetic AgroTrak database on the total mass of atrazine applied annually to crops with 

data on harvested crop acreage from the US Department of Agriculture Censuses of Agriculture 

and the National Agriculture Statistics Service.   

We assigned mothers to a county by overlaying maternal residential address with 

polygons of North Carolina counties using ArcGIS version 10.  Mothers were assigned an 

exposure based on the estimated number of tons of atrazine per square mile applied to their 

county of residence during their estimated year of conception. 

The county metric was then divided into four categories based on the exposure 

distribution of the controls.  Because we had non-normally distributed data, we set cut points to 

maximize the interval between groups.  The first category (referent) was equal to the first decile 

of exposure in the controls; the second category was equal to the second through fifth deciles; the 

third category was equal to the sixth through eighth deciles; and the fourth category was equal to 

the ninth and tenth deciles.  

Exposure estimation using US Environmental Protection Agency monitoring data: 

The second exposure estimation technique, referred to hereafter as the monitoring metric, 

used data from the US Environmental Protection Agency’s (EPA) Six-Year Review Contaminant 

Occurrence Data (1998-2005) (62).  These data are based on monitoring data collected from 

public water supplies for compliance with Safer Drinking Water Act requirements for atrazine.  
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Samples collected with values less than or equal to EPA’s maximum residue limit (MRL) for 

atrazine were recorded as the MRL, or 0.1 micrograms per liter (µg/L).  Samples exceeding the 

MRL were recorded as the actual recorded concentration.   

We assigned mothers to a water utility by overlaying maternal residential address with 

public water system service area polygons from the North Carolina Center for Geographic 

Information and Analysis (63).  Mothers were assigned an atrazine concentration based on the 

mean value of all available monitoring samples for their water supply for the calendar year of 

their conception. 

Because of the high number of samples recorded at or below the MRL, the monitoring 

metric was categorized as a binary variable, with mothers at or below the MRL categorized as 

unexposed, and mothers above the MRL categorized as exposed. 

Exposure estimation using US Geological Survey atrazine models: 

The third method, referred to hereafter as the watershed modeling metric, combined 

estimates from USGS models estimating atrazine concentrations in streams and in groundwater.  

For streams, we used the estimated annual mean atrazine concentration predicted by the 

Watershed Regressions for Pesticides (WARP) model, which estimates stream concentrations of 

atrazine in stream reaches throughout the US.  The model is a function of watershed atrazine use 

intensity, as estimated by annual agricultural atrazine use in the watershed divided by watershed 

area; the percentage of the watershed agricultural land with a soil-restrictive layer within the top 

25 cm of the soil surface; total precipitation during May and June of the sampling year; the 

rainfall erosivity factor from the Universal Soil Loss Equation; and the percentage of total 

streamflow caused by precipitation on saturated soil (Dunne overland flow) (37).   
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For groundwater estimates, we used site-variable model predictions from the “Regression 

Models for Estimating Concentrations of Atrazine plus Deethylatrazine in Shallow Groundwater 

in Agricultural Areas of the United States.”  This model is derived from a residence-time 

indicator, atrazine use intensities, artificial drainage, depth to the seasonally high water-table, 

organic matter content of the uppermost soil layer, permeability of the least permeable soil layer, 

rate of recharge, and well depth. (38). 

We then used geographic coordinates for surface and groundwater intakes from the North 

Carolina Division of Environmental Health to link atrazine concentrations to public water 

utilities (64).  For surface water intakes, we used WARP estimates from the nearest stream reach 

to assign an annual mean atrazine concentration to the intake.  For groundwater intakes, we used 

gridded atrazine predictions from the USGS groundwater model and bilinear interpolation to 

estimate atrazine concentrations based on the grid cell where the intake was located and the 

adjacent grid cells.  Each public water utility was then assigned an atrazine concentration equal 

to the mean of the predicted atrazine concentrations for all of the intakes for that utility.  Mothers 

were assigned an atrazine concentration using public water supply polygons as outlined for the 

monitoring metric.   

The watershed modeling metric was categorized according to the distribution of the 

controls.  The distribution was non-normally distributed, and cut points were selected to 

maximize the interval between groups.  For the watershed metric, the first category (referent) 

was equal to the first decile of exposure in the controls; the second category was equal to the 

second through fourth deciles; the third category was equal to the fifth through ninth deciles; and 

the fourth category was equal to the tenth decile. 
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Comparison of exposure metrics: 

The three exposure metrics were compared both as continuous and as categorical 

variables to consider the differences between each exposure assessment metric.  The categorized 

county and watershed modeling metrics and the binary EPA metric were first mapped to 

visualize the geographic distribution and degree of missingness for the three metrics.  

Continuous metrics were then compared using Pearson correlation coefficients.   

Categorized and binary metrics were compared using weighted kappa statistics.  The 

kappa statistic measure of agreement is 0 when the amount of agreement is what would be 

expected due to chance and 1 when there is perfect agreement.  The weighted kappa statistic is 

used for comparing ranked categories.  It assigns categorizations that agree completely a weight 

of 1; categorizations that are near one another a weight closer to 1; and categorizations further 

apart a weight closer to 0.  For example, if a mother was placed in the third category by the 

county metric and in the fourth category by the watershed modeling metric, she would receive a 

weight of 0.667, but if she was placed in the second category by the county metric and in the 

fourth category by the watershed modeling metric, she would receive a weight of 0.333. 

We also calculated risk estimates for hypospadias using both the continuous and 

categorized metrics using logistic regression.  We then compared how different exposure metrics 

influenced risk estimates for hypospadias.  The purpose of these analyses was not to estimate the 

risk associated with exposure to atrazine, per se, but rather to examine if and how the exposure 

assessment metrics performed differently in epidemiologic models.  We performed all 

geographic analyses using ArcGIS version 10 and all statistical analyses using Stata version 

13.1. 
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Results 

 Figure 4.1 illustrates the geographic distribution of each of the three metrics.  The county 

metric has the most comprehensive geographic distribution.  While the monitoring and 

watershed modeling metric both display a large degree of missingness, there is at least some 

geographic overlap between the watershed modeling metric and the county metric and between 

the watershed modeling metric and the monitoring metric.  The water utilities classified as highly 

exposed generally seem to fall in counties classified in the third and fourth categories of 

exposure.  Similarly, where data is available, the watershed modeling metric seems to identify as 

more highly exposed water utilities that are classified as exposed in the monitoring metric.   
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Figure 4.1:  Map of exposure metrics in North Carolina.  Panel A illustrates the county metric; 

Panel B illustrates the monitoring metric; Panel C illustrates the watershed modeling metric. 
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 Table 4.1 presents the distribution of each of the continuous exposure metrics.  The mean 

and median values for the county metric are 12.9 and 6.8 lbs/mi
2
, respectively (interquartile 

range = 2.7-14.8).  The mean and median values for the watershed modeling metric are 0.05 and 

0.04 µg/L, respectively (interquartile range (0.03-0.05).  The distribution for the monitoring 

metric is highly skewed, however, with the minimum, mean, median, and 75
th

 percentile values 

all equal to 0.1.   

Table 4.1:  Distribution of continuous exposure metrics 

Exposure metric Mean Median Interquartile range Min, Max values 

County metric (in 

lbs/mi
2
) 

12.9 6.8 2.7, 14.8 0.04, 287.0 

Monitoring metric (in 

µg/L) 

0.1 0.1 0.1, 0.1 0.1, 1.2 

Watershed modeling 

metric (in µg/L) 

0.05 0.04 0.03, 0.05 0.01, 0.5 

 

 

Table 4.2 presents Pearson correlation coefficients between the three continuous 

exposure metrics.  Correlation coefficients range from 0.23 to 0.62, with the county and 

monitoring metrics least correlated with each other and the monitoring and watershed modeling 

metrics most correlated with one another. 

Table 4.2: Pearson correlation coefficients between continuous exposure metrics assigned to 

women who delivered a baby in North Carolina (N) 

 

Exposure metrics compared N Pearson Correlation  

County and monitoring 6,933 0.23 

Monitoring and watershed modeling 2,930 0.62 

County and watershed modeling 6,313 0.58 
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 Comparisons between categorized exposure assessment metrics are presented in Tables 

4.3 - 4.5.  Weighted kappa values are all significantly different from 0.  Agreement is lower 

when comparing the monitoring metric to either the watershed modeling metric or county 

metrics, with weighted kappa values of 0.01 and agreement at between 47% and 56% (Tables 

4.3-4.4).  Agreement is slightly higher when comparing the watershed modeling and county 

metrics, with a weighted kappa value of 0.29, and 77% agreement (Table 4.5). 

Table 4.3:  Comparison of categorized watershed modeling metric and binary monitoring metric 

 Watershed modeling category 

1 2 3 4 Total 

Monitoring (unexposed) 462 1163 878 248 2751 

Monitoring (exposed) 0 10 102 66 178 

 Total 462 1173 980 314 2929 

Weighted kappa = 0.01 (p <0.01).  Percent agreement = 55.65% 

 

 

Table 4.4:  Comparison of categorized county metric and binary monitoring metric  

 County category 

1 2 3 4 Total 

Monitoring (unexposed) 1236 2146 1591 1781 6754 

Monitoring (exposed) 0 72 87 20 179 

  Total 1172 3089 1713 959 6933 

Weighted kappa = 0.01 (p< 0.01).  Percent agreement = 47.95% 

 

 

Table 4.5:  Comparison of categorized watershed modeling and county metrics 

 Watershed modeling category 

1 2 3 4 Total 
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County category 1 198 200 0 0 598 

County category 2 215 520 1013 23 1771 

County category 3 54 690 1332 260 2336 

County category 4 65 411 798 333 1307 

 Total  732 1821 3143 616 6312 

Weighted kappa = 0.29 (p < 0.01).  Percent agreement = 77.0% 

 

 

 Table 4.6 compares crude risk estimates for hypospadias for the county and watershed 

modeling exposure metrics on a continuous scale.  Crude risk estimates could not be computed 

for the monitoring metric due to the lack of variability as described in Table 4.1.  The odds ratio 

from the county level metric is 0.97, and the odds ratio from the watershed modeling metric is 

2.29.  The odds ratio greater than one from the watershed modeling metric suggests a positive 

relationship, while the odds ratio near one for the county level metric suggests no association; 

however, neither of the estimates is statistically significant. 

Table 4.6: Comparison of crude risk estimates from continuous scale exposure assessment 

metrics. 

Exposure Metric N (cases) OR 95% Confidence 

Interval 

County level metric
a 17,536 (1,046) 0.995 0.95 – 1.06 

Watershed modeling 

model metric
b 

6,313 (362) 1.02 0.97 – 1.06 

a 
increment of change = 12.1 lb/mi

2 
IQR 

b 
increment of chang e= 0.02 µg/L IQR 

 Table 4.7 presents crude risk estimates for hypospadias from the categorized county and 

watershed modeling exposure metrics.  The monitoring metric is again omitted due to lack of 

variation in exposure estimates.  Both the county metric and watershed modeling metric suggest 
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a slightly elevated risk in the highest categories of exposure, with odds ratios of 1.14 and 1.23 

respectively, but again, neither of the estimates is statistically significant. 

Table 4.7:  Comparison of risk estimates from categorized exposure assessment metrics 

Exposure Metric Estimated Atrazine 

Level 

N (cases) Odds 

Ratio 

95% Confidence 

Interval 

County metric Category 1  

(<1.6 lbs/mi
2
) 

1,940 (102) 1.0 Referent 

Category 2  

(1.6 – 5.2 lbs/mi
2
) 

4,964 (291) 1.12 0.89 – 1.41 

Category 3  

(5.2 – 14.1 lbs/mi
2
) 

5,362 (340) 1.22 0.97 – 1.53 

Category 4  

(>14.1 lbs/mi
2
) 

5,270 (313) 1.14 0.90 – 1.43 

Watershed 

modeling metric 

Category 1  

(0.006 – 0.017 µg/L) 

732 (43) 1.0 Referent 

Category 2  

(0.017 – 0.033 µg/L) 

1,821 (92) 0.85 0.59 – 1.24 

Category 3  

(0.033 – 0.074 µg/L) 

3,143 (183) 0.99 0.70 – 1.40 

Category 4  

(0.076 – 0.50 µg/L) 

606 (44) 1.23 0.80 – 1.90 

 

 

Discussion 

 A number of studies have attempted to estimate prenatal exposure to atrazine via drinking 

water in order to evaluate possible teratogenic effects of atrazine (43, 55-60).  These studies have 

generally used residential address to either assign mothers to counties or to drinking water 

supplies and then to estimate exposure based on the amount of atrazine applied in a county or 

sampled via monitoring.  In the absence of urinalysis, however, it is impossible to know whether 

these studies are accurately estimating prenatal exposure.   
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This study considers how different exposure metrics might influence estimated exposure 

to atrazine by comparing two metrics used by other studies – the county metric and the 

monitoring metric – as well as a third metric which uses USGS model outputs to estimate 

atrazine in drinking water.  The three metrics are compared using maps, Pearson correlation 

coefficients and kappa statistics.  The county metric and the watershed modeling metric are also 

compared using and unadjusted odds ratios of hypospadias risk. 

The maps and Pearson correlation coefficients found the watershed modeling metric to be 

more similar to the county and monitoring metrics, with the monitoring metric to be less similar 

to the county metric.  The kappa statistic found the watershed modeling and county exposure 

metrics to be more similar than either the monitoring metric and county metric or the monitoring 

metric and watershed modeling metric.  Because the watershed modeling metric includes 

atrazine use at the county level, and estimates exposure for water utilities, it makes sense that the 

watershed modeling metric has more in common with the county metric and the monitoring 

metric than county metric and monitoring metric have in common with one another. 

We estimated odds ratios for hypospadias for the county metric and the watershed 

modeling metric to consider the effect of different exposure estimates on risk estimates.  There 

was not enough variation in the monitoring metric to include it in this portion of the analysis.  

The continuous county level metric suggested no association between atrazine exposure and 

hypospadias.  The continuous watershed modeling metric, the categorical watershed modeling 

metric, and the categorical county metric suggest a small, but statistically non-significant, 

increase in risk at higher levels of exposure.  These odds ratios are not adjusted for any potential 

confounders, so should not be interpreted as representing the actual risk between atrazine and 
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hypospadias.  However, they do illustrate the differences in odds ratios produced by different 

exposure metrics.   

Although it is impossible to know whether any of the exposure metrics explored in this 

study approximate the “true” level of atrazine exposure, there are trade-offs associated with each 

of the exposure metrics.  Because the vast majority of monitoring samples at public water 

utilities in North Carolina during the study period were at or below the MRL, and because North 

Carolina does not report data about atrazine concentrations at or below the MRL, the monitoring 

metric provided very little variation in estimated exposure, which prevented us from estimating 

odds ratios for hypospadias using this metric.  Some states do report values for concentrations 

below the MRL, so it is possible that these data might provide more useful estimates of exposure 

in other states.  For North Carolina, however, a lack of data prevents us from considering effects 

that might occur below the 0.1 µg/L threshold set by EPA.   

 The county metric provides exposure estimates to a much larger proportion of the study 

population and provides greater variation in estimated exposure.  It may also be more prone to 

the ecological fallacy, however, because average pesticide use at the county level may not be an 

accurate indicator of individual exposure. 

 The watershed modeling metric attempts to address some of these shortcomings by 

providing a wider range of estimated exposure, and by incorporating the way that surface water 

flows through a watershed or groundwater moves through soils.  On the other hand, the USGS 

models are not designed to address residence time in reservoirs or lakes, so therefore may not be 

accurately estimating atrazine concentrations in public water utilities.   

Kappa statistics showed very little correlation between any of the three exposure metrics, 

which suggests that each of the metrics is capturing something different.  This could indicate that 
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only one of the metrics is a good surrogate for estimating atrazine exposure, although it is 

impossible to confirm which one is the “good” one without knowledge of the actual amount of 

atrazine to which women were exposed.  On the other hand, it could also indicate that none of 

the metrics is a good surrogate for estimating atrazine exposure, but simply that each is 

measuring something different. 

A limitation of all of the metrics explored in this study is the use of a calendar year cut-

off to assign exposure.  Because the exposure metrics relied on annual mean atrazine estimates, 

the exposure estimate for a baby conceived in December would be based on mean estimates for 

the prior year, while the exposure estimate for a baby conceived in January would be based on 

mean estimates for the coming year.  This may lead to exposure misclassification, particularly 

for winter births. 

A further limitation of all of the metrics is the lack of information about maternal water 

consumption.  If hypospadias risk increases when genetic susceptibility combines with endocrine 

disrupting chemicals exceeding some threshold, it would be important to know both the 

concentrations the chemicals of interest in drinking water, as well as the amount of drinking 

water consumed in estimating a threshold.   

On the other hand, given the expense associated with prospective studies of birth 

outcomes including urinalysis for a given exposure, ecological exposure estimation techniques 

may be useful for identifying potential teratogens for further study.  Difference in the magnitude 

and direction of odds ratios the importance of exposure measurement in estimating disease risk.  

Further research is needed to better understand the potential role played by atrazine in 

hypospadias risk. 
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CHAPTER 5 

SELECTING AN EXPOSURE METRIC TO EXAMINE A RELATIONSHIP BETWEEN 

ATRAZINE AND HYPOSPADIAS 

 

 The previous chapter compared three different metrics for estimating maternal exposure 

to atrazine via drinking water:  the county metric, which uses the amount of atrazine applied to a 

mother’s county of residence; the monitoring metric, which uses water quality samples collected 

for compliance monitoring; and the watershed modeling metric, which uses output from USGS 

surface water and groundwater models to estimate atrazine concentrations in public water 

utilities.  Although there are limitations associated with each of these metrics, the county metric 

does not provide an estimate of concentrations in drinking water, and may be more subject to the 

ecological fallacy than the other metrics.  Further, the monitoring metric does not provide 

information about atrazine concentrations below EPA’s MRL.  The watershed modeling metric 

overcomes the shortcomings associated with the other two metrics because it is able to estimate 

concentrations in individual water supplies, and at a full range of exposures.  The next chapter 

will therefore use the watershed modeling metric to examine a possible association between 

atrazine and hypospadias risk. 

 The previous chapters used data from the North Carolina Birth Defect Monitoring 

Program (NCBDMP) in order to explore the etiology of hypospadias and to compare different 

exposure estimation techniques.  Although NCBDMP data contains information about 

demographic characteristics, it does not have information about maternal behavior or about 
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residential address throughout pregnancy.  In order to consider a possible association between 

atrazine and hypospadias within a disease ecology framework, the next chapter will use data 

from the National Birth Defects Prevention Study (NBDPS), which includes behavioral 

covariates and detailed information about residence throughout pregnancy.  This will provide us 

the unique opportunity to incorporate maternal water consumption and residence during the 

critical window of exposure for genitourinary development into our estimates of exposure to 

atrazine.  It will also allow us to incorporate maternal demographic and behavioral characteristics 

in a multi-factorial consideration of atrazine and hypospadias.  
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CHAPTER 6 

HYPOSPADIAS AND MATERNAL EXPOSURE TO ATRAZINE 

 

Introduction 

 Hypospadias is a relatively common birth defect of the male urinary tract, affecting 

between 4 and 6 out of every 1,000 male births.  It occurs as a result of abnormal urethral closure 

during gestational weeks 8-14, and manifests with a urethral opening on the underside of the 

penis (1).  It has a significant public health impact, as surgical repair is often needed to allow for 

normal urinary and sexual function, and even after correction, hypospadias may result in 

psychosocial and sexual problems later in life (3).   

Normal urethral closure during fetal development depends upon binding of testosterone 

to the androgen receptor and subsequent androgen receptor.  It has therefore been suggested that 

endocrine disrupting chemicals might increase hypospadias risk (1).  One potential endocrine 

disrupting chemical that has been examined for an association with genitourinary malformations 

is atrazine, one of the most widely used agricultural herbicides in the United States (38).  A 

possible mechanism for atrazine to disrupt genitourinary development would be if atrazine could 

block the channel to the testosterone binding site on the androgen receptor.  This would prevent 

testosterone from traveling through the necessary channel to bind to the androgen receptor and 

could thereby prevent complete urethral closure (See Figure 6.1).



 

 

4
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Figure 6.1:  Illustration of possible mechanism for atrazine to prevent testosterone from binding to the active site of androgen 

receptor.  Panel A illustrates a cross-section of the androgen receptor including the mouth and channel leading to the testosterone 

binding site.  Panel B illustrates atrazine blocking the mouth of the channel leading to the active site. (65) 
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There is experimental evidence to support a link between atrazine and genitourinary 

malformations in both rats (50) and amphibians (33, 51-53).  The evidence to document a 

specific link between hypospadias and atrazine in humans is somewhat equivocal, however.  

Winchester et al found an elevated prevalence of “other urogenital anomalies,” but not of 

“malformed genitalia” among infants conceived during months of the highest concentrations of 

atrazine and other chemicals measured by the US Geological Survey’s National Water Quality 

Assessment Program (23).  Chevrier et al examined urinary biomarkers of atrazine and general 

male genital anomalies.  They found a non-significant increase in male genital anomalies 

amongst mothers with quantifiable atrazine or atrazine metabolites in urine, but their sample size 

was small (5 cases exposed and 18 case unexposed) (54).  To our knowledge, only two studies 

have looked specifically at atrazine and hypospadias in humans, with conflicting results.  The 

first study, by Meyer et al, 2006, assigned maternal exposure to several agricultural pesticides 

(including atrazine) by estimating the amount of pesticides applied within a 500 meter buffer of 

the mother’s home. They did not find evidence of an association between hypospadias and 

atrazine (36).  The second study, by Agopian et al, 2013, assigned atrazine levels to mothers 

based on their county of residence at birth.  They found some evidence of an increased risk of 

hypospadias for mothers in the 25
th

-75
th

 percentiles of exposure and for the 75
th

-90
th

 percentiles 

of exposure, but suggested that further research was needed to confirm the mechanism for an 

association between hypospadias and county level atrazine use (43).   

A number of studies have suggested that hypospadias has a multifactorial etiology (4, 8, 

17).  This would suggest that any role played by environmental exposures such as atrazine would 
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combine with other maternal demographic and behavioral characteristics to influence 

hypospadias risk.  A number of maternal characteristics have previously been linked to 

hypospadias risk.  From a demographic standpoint, risk increases with increasing maternal age 

(10, 14) and is higher amongst non-Hispanic white mothers (10, 39).  There is conflicting 

evidence about an association with maternal education (12, 39, 66), but evidence of an inverse 

association with maternal parity (12, 67, 68) and of a positive association with plurality (7, 12, 

69).  Amongst behavioral characteristics, maternal diet may influence risk, with higher dietary 

intake of choline, methionine, and vitamin B12 associated with lower risk (11).  Use of fertility 

medications and procedures, on the other hand, seems to increase risk (17, 69, 70). 

In this study, we seek to build on existing research examining the potential relationship 

between atrazine and hypospadias by incorporating information about maternal water 

consumption, as well as other known demographic and behavioral risk factors.  We use a novel 

technique to estimate maternal exposure to atrazine in drinking water, and take advantage of 

unique data that includes information about behavioral covariates and maternal residential 

address throughout pregnancy.  This allows us to investigate the role of atrazine in conjunction 

with other factors that may contribute to the multi-factorial etiology of hypospadias.  

 

Methods 

Data from this study comes from the National Birth Defects Prevention Study (NBDPS), 

which is a population-based case-control study conducted in ten states with the Centers for 

Disease Control and Prevention.  NBDPS identifies second- and third-degree hypospadias cases, 

which are considered moderate to severe (1), from birth defect surveillance registries and 

randomly selects controls from birth certificates or birth hospital records.  NBDPS does not 
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include first-degree, or mild, hypospadias cases due to variable medical documentation.  NBDPS 

also collects data on a wide number of covariates via computer-assisted telephone interview.  

Covariates include information about water consumption, maternal address throughout 

pregnancy, and a number of known risk factors for hypospadias, including maternal age, 

maternal race/ethnicity, parity, plurality, maternal choline intake, and use of fertility medications 

(71). 

The study included interviewed hypospadias cases (n= 343) and male controls (n=1,422) 

from North Carolina, Iowa, Arkansas, and Texas with estimated due dates between 1998 and 

2005.  These states were selected from the NBDPS study sites because atrazine concentrations in 

streams were predicted to be higher than in other study sites (72).  These years were selected 

because they were the years for which data were collected about water consumption. 

Mothers using a public water supply were assigned a water utility for each reported 

residential address by the University of Iowa Center for Health Effects of Environmental 

Contamination (CHEEC), using public water supply service area polygons where available, and 

Census place names and borders where service area polygons were unavailable.   

We estimated atrazine concentrations using two US Geological Survey (USGS) models.  

For water supplies using surface water, we used estimated annual mean atrazine concentrations 

in streams predicted by the Watershed Regressions for Pesticides (WARP) model.  WARP uses 

estimated watershed-level atrazine use, the percentage of the watershed’s agricultural land with a 

soil restrictive layer near the surface, total precipitation during May and June of the sampling 

year, rainfall erosivity for the watershed, and streamflow caused by precipitation on saturated 

soil in order to generate nationwide estimates of atrazine concentrations in streams (37).  For 
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water supplies using groundwater, we used site-variable model predictions from the “Regression 

Models for Estimating Concentrations of Atrazine plus Deethylatrazine in Shallow Groundwater 

in Agricultural Areas of the United States.”  This model uses groundwater residence time, 

atrazine use intensity, artificial drainage practices, depth to the seasonally high water-table, 

content of the uppermost soil content, soil permeability, groundwater recharge rates, and well 

depth to provide gridded estimates of atrazine concentrations in shallow groundwater (38). 

We assigned atrazine concentrations to public water supplies based on the type and 

location of the water intakes for each utility.  Geographic coordinates of surface and groundwater 

intakes for public water utilities were available for Iowa, Texas, and North Carolina (64, 73-75).  

For Arkansas, we used Google Earth to geocode water intakes using descriptions of intake 

locations available from the Arkansas Department of Health (76).   

For surface water intakes, we used WARP estimates from the nearest stream reach to 

assign an annual mean atrazine concentration to the intake.  For groundwater intakes, and for 

mothers in NBDPS using private wells, we used gridded atrazine predictions from the USGS 

groundwater model and bilinear interpolation to estimate atrazine concentrations based on the 

grid cell where the intake was located and the adjacent grid cells.  (See Figure 6.2).  Each public 

water utility was then assigned an atrazine concentration equal to the mean of the predicted 

atrazine concentrations for all of the intakes for that utility.  
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Figure 6.2:  Illustration of assignment of atrazine concentrations to water intakes for public water utilities in Texas.  Panel A 

illustrates WARP stream estimates and concentrations assigned to surface water intakes.  Panel B illustrates USGS groundwater 

estimates and concentrations assigned to groundwater intakes.   



 

48 

We based our exposure assessment on maternal residential addresses during gestational 

weeks 6-16.  This window encompass the critical weeks for urethral development during 

gestational weeks 8-14 (42). Mothers using public water were assigned an atrazine exposure 

based on the estimated atrazine concentration in the public water utility assignments from 

CHEEC.  Mothers using well water were assigned an atrazine value based on bilinear 

interpolation of gridded atrazine predictions from the USGS groundwater model.  This 

assignment was conducted using ArcGIS version 10.  Mothers with more than one residential 

address during the critical exposure period were assigned a weighted value based on the atrazine 

concentration and the number of weeks at each address.  We excluded mothers without a full 

residential history, mothers using public water who were not successfully matched to a public 

water utility, and mothers using a utility that was not successfully assigned an atrazine 

concentration by one of the two USGS models.  This reduced our sample size to 123 cases and 

415 controls.  We conducted a sensitivity analysis to help characterize any selection bias that 

might be introduced by this loss of sample size. 

We then estimated the daily amount of atrazine consumed via drinking water by a mother 

by multiplying the estimated atrazine concentration in a mother’s drinking water by the self-

reported number of glasses of water drunk daily by the mother.  The self-reported number of 

glasses consumed ranged from 0 to 24 glasses of water daily.  Because it is unlikely that 

pregnant women are consuming no water, we converted the women who reported drinking 0 

glasses to missing prior to multiplying by estimated atrazine concentration. 

We tabulated the distributions of maternal socioeconomic, demographic, and behavioral 

characteristics and hypospadias cases and controls and compared them using chi-squared tests.  
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We then built unadjusted and adjusted logistic regression models for two predictors of interest:  

estimated concentration of atrazine in a mother’s drinking water supply; and for estimated daily 

maternal atrazine consumption.  We estimated crude and adjusted odds ratios for hypospadias for 

both predictors.  Covariates used for adjustment were selected based on existing literature, and 

included private well use, state of residence, maternal age, maternal race/ethnicity, plurality, 

parity, maternal education, choline use, and use of artificial reproductive technology as possible 

confounders.  Analyses were performed using Stata version 13.1. 

 

Results 

 We present the distributions of socioeconomic, demographic, and behavioral 

characteristics for mothers of hypospadias cases (n = 123) and male controls (n = 415) in Table 

6.1.  Significant differences in distribution between cases and controls were observed for state of 

residence, maternal race or ethnicity, maternal education, previous pregnancies, plurality, and 

use of fertility medications or procedures.  While controls were fairly evenly distributed amongst 

the four states, 79.6% of cases lived in Arkansas and North Carolina. Mothers of cases were 

more likely to be non-Hispanic white, more highly educated, and to have used fertility 

medications or procedures, and infants were more likely to be a result of a first pregnancy or a 

multiple birth.  Mothers of cases were slightly more likely to report drinking 5 or more glasses of 

water a day, but this was only marginally significant (p = 0.09).  Significant differences in 

distributions were not observed for reported use of a private well, maternal age, or maternal 

choline intake.  
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Table 6.1:  Characteristics of NBDPS hypospadias cases and controls with estimated atrazine 

exposure, 1998-2005 

 Cases Controls  

Characteristic N % N % P-value 

State of residence     <0.01 

Arkansas 49 39.8 85 20.5  

Iowa 17 13.8 103 24.8  

Texas 8 6.5 101 24.3  

North Carolina 49 39.8 126 30.4  

Private well use     0.72 

No  85 70.3 292 71.9  

Yes 36 29.7 114 28.1  

Reported water consumption     0.09 

0 glasses  3 2.4 22 5.3  

1-4 glasses  77 62.6 217 52.3  

5 or more glasses 43 35.0 176 42.4  

Maternal age     0.23 

<20 10 8.1 43 10.4  

20-24 27 22.0 89 21.5  

25-29 25 20.3 118 28.4  

30-34 42 34.2 105 25.3  

≥35 19 15.5 60 14.5  

Maternal race/ethnicity     <0.01 

Non-Hispanic white 94 76.4 242 58.3  

Non-Hispanic black 16 13.0 32 7.7  

Hispanic 8 6.5 106 25.5  

Other 5 4.1 35 8.4  

Maternal education     <0.01 

<High school 5 4.1 86 20.7  
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High school 30 24.4 111 26.8  

>High school 88 71.5 218 52.5  

Previous pregnancies     <0.01 

No 55 44.7 122 29.4  

Yes 68 55.3 293 70.6  

Plurality     0.01 

No 114 92.7 405 97.6  

Yes 9 7.3 10 2.4  

Maternal choline intake*     0.15 

<187.4 mg 27 22.0 72 17.4  

187.4 – 249.6 mg 30 24.4 85 20.5  

249.7 – 336.3 mg 34 27.6 104 25.1  

>336.4 mg 32 26.0 154 37.1  

Fertility medications or procedures     0.02 

No 111 90.2 393 95.6  

Yes 12 9.8 18 4.4  

 

*Categories for maternal choline intake from Carmichael et al (11) 

  

We present raw distributions for estimated concentrations of atrazine for a mother’s 

drinking supply and for estimated daily atrazine consumption in Table 6.2.  Mean and median 

concentrations are higher for controls than for cases for both estimated atrazine in water supply 

and estimated atrazine consumption.  In addition, the mean is greater than the median for all 

estimates.  The difference is greater for the estimated atrazine consumption because a small 

number of mothers consumed a large amount of water, increasing the skew of the data.   

 



 

52 

Table 6.2:  Distribution of estimated atrazine in water supply and estimated atrazine 

consumption 

 Cases Controls 

 Mean  Median  

 
IQR Min, 

Max 

Mean Median IQR Min, Max 

Estimated 

atrazine in water 

supply (µg/L) 

0.091 0.018  

 
0.001 – 

0.04 

0.0001, 

2.0 

0.17 0.019  

 
0.002 – 

0.051 

0.0001, 4.0 

Estimated 

atrazine 

consumption 

(µg/L) 

0.491 0.066  

 
0.004 – 

0.16 

0.0002, 

15.8 

0.61 0.073  

 
0.010 – 

0.274 

0.0003, 19.7 

 

 

We present crude and adjusted odds ratios for hypospadias for the estimated 

concentration of atrazine in a mother’s drinking supply and for a mother’s estimated daily 

atrazine consumption in Table 6.3.  Crude odds ratios fall below 1.0 for estimated concentrations 

of atrazine and for estimated atrazine consumption, but are not significant.  After adjustment for 

private well use, state of residence, maternal age, maternal race/ethnicity, plurality, parity, 

maternal education, choline use, and use of reproductive medications or procedures, both odds 

ratios exceed 1.0.  The adjusted odds ratio for estimated daily atrazine consumption is marginally 

significant (p = 0.054).  
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Table 6.3:  Association between atrazine and hypospadias in the National Birth Defects 

Prevention Study, 1998-2005 

 N (cases) Crude OR p-value Adjusted OR
b p-value 

Estimated atrazine in 

water supply
a 

538 (123) 0.97 (0.94, 1.00) 0.07 1.01 (0.98, 1.04) 0.57 

Estimated atrazine 

consumption
a 

513 (120) 0.99(0.96, 1.02) 0.53 1.03 (0.998, 1.06) 0.054 

 
a 
OR for interquartile range of 0.03 µg/L for estimated atrazine in water supply and 0.15 µg/L for 

estimated atrazine consumption. 
b
 ORs adjusted by private well use, state of residence, maternal age, maternal race/ethnicity, 

plurality, parity, maternal education, choline use, and use of artificial reproductive technology. 

  

Table 6.4 presents odds ratios for the final adjusted logistic regression model for 

hypospadias for daily estimated atrazine consumption.  When accounting for atrazine 

consumption, as well as other demographic and behavioral characteristics, residents of Arkansas 

are statistically significantly more likely to have a hypospadias birth than residents of Iowa or 

Texas.  In addition, more highly educated women, nulliparous women, and women with plural 

births have a statistically significantly greater likelihood of a hypospadias birth.  
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Table 6.4:  Final logistic regression model for estimated maternal atrazine consumption via 

drinking water and hypospadias, including covariates. 

Characteristic Odds Ratio 95% Confidence Interval P-value 

Estimated atrazine consumption
a 1.03 0.99 – 1.29 0.054 

State of residence    

Arkansas 1.00 Referent  

Iowa 0.21 0.10 – 0.43 <0.01 

Texas 0.16 0.05 – 0.54 <0.01 

North Carolina 0.62 0.36 – 1.07 0.09 

Private well use    

No  1.00  Referent  

Yes 1.58 0.92 – 2.71 0.10 

Maternal age    

<20 1.00 Referent  

20-24 1.01 0.38 – 2.71 0.98 

25-29 0.43 0.15 – 1.23 0.12 

30-34 0.88 0.31 – 2.51 0.81 

≥35 0.73 0.24 – 2.27 0.59 

Maternal race/ethnicity    

Non-Hispanic white 1.00 Referent  

Non-Hispanic black 1.15 0.54 – 2.45 0.72 

Hispanic 0.49 0.14 – 1.66 0.25 

Other 0.31 0.10 – 1.01 0.05 

Maternal education    

<High school 1.00 Referent  

High school 3.60 1.18 – 10.96 0.02 
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>High school 4.97 1.58 – 15.63 <0.01 

Previous pregnancies    

No 1.00 Referent  

Yes 0.76 0.63 – 0.92 <0.01 

Plurality    

No 1.00 Referent  

Yes 7.36 2.06 – 26.38 <0.01 

Maternal choline intake*    

<187.4 mg 1.00 Referent  

187.4 – 249.6 mg 1.22 0.62 – 2.42 0.57 

249.7 – 336.3 mg 1.41 0.72 – 2.79 0.32 

>336.4 mg 0.91 0.46 – 1.83 0.80 

Fertility medications or procedures    

No 1.00 Referent  

Yes 1.88 0.74 – 4.78 0.19 

Constant 0.23 0.65 – 0.80 0.02 

a 
OR for interquartile range of 0.03 µ/L for estimated atrazine in water supply and 0.15 µ/L for 

estimated atrazine consumption 

 

We present a sensitivity analysis comparing characteristics of women who were 

successfully assigned an atrazine exposure and women who were not successfully assigned an 

atrazine exposure in Table 6.2.  Mothers who were included in the USGS metric are more likely 

than mothers who were excluded to be mothers of hypospadias cases; to use private wells; to live 

in North Carolina; to be over age 30; and to be a race or ethnicity other than non-Hispanic white, 

non-Hispanic black, or Hispanic.   

Table 6.5:  Characteristics of women successfully assigned an atrazine exposure and women 

who were not successfully assigned an atrazine exposure.   
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 Included in USGS 

metric (N = 513) 

Excluded from USGS 

metric (N = 1,252) 

P-value 

Hypospadias   <0.01 

Controls 393 (76.6%) 1,029 (82.2%)  

Cases  120 (23.4%) 223 (17.8%)  

Private well use   <0.01 

No 367 (71.5%) 993 (98.5%)  

Yes 146 (28.5%) 15 (1.5%)  

State of Residence   <0.01 

Arkansas 131 (25.5%) 459 (36.7%)  

Iowa 106 (20.7%) 353 (28.2%)  

Texas 105 (20.5%) 324 (25.9%)  

North Carolina  171 (33.3%) 116 (9.3%)  

Maternal age   <0.01 

<20 50 (9.8%) 203 (16.2%)  

20-24 112 (21.8%) 313 (25.0%)  

25-29 134 (26.1%) 370 (29.6%)  

30-34 139 (27.1%) 252 (20.1%)  

≥35 78 (15.2%) 114 (9.1%)  

Maternal race/ethnicity   <0.01 

Non-Hispanic white 318 (62.0%) 810 (64.8%)  

Non-Hispanic black 47 (9.2%) 138 (11.0%)  

Hispanic 110 (21.4%) 262 (20.9%)  

Other race/ethnicity 38 (7.4%) 41 (3.3%)  

Maternal education   0.17 

Less than high school  87 (17.0%) 215 (17.8%)  

High school 135 (26.3%) 364 (30.2%)  

More than high school 291 (56.7%) 627 (52.0%)  

Previous pregnancies   0.50 

No  167 (32.6%) 426 (34.3%)  



 

57 

Yes 349 (67.4%) 826 (65.7%)  

 

 

Discussion 

 After adjusting for maternal socioeconomic, demographic, and behavioral characteristics, 

we observed a modest, and marginally significant, association between hypospadias and 

maternal consumption of atrazine via drinking water during gestational weeks 6-16.  This 

association was not observed in crude odds ratios, or when not accounting for the total amount of 

drinking water consumed.  This lends support to the hypothesis that hypospadias has a multi-

factorial etiology, wherein genetics, maternal characteristics, and environmental factors may 

interact to contribute to hypospadias risk.  It further provides some evidence to suggest that, 

when combined with other risk factors including state of residence, private well use, maternal 

education, parity, and plurality, atrazine may be associated with hypospadias. 

 Certain limitations should be considered when interpreting these results.  While the 

USGS models that we employed allowed us to estimate atrazine concentrations in drinking 

water, we cannot be sure that they accurately predict maternal exposure to atrazine without a 

validated, repeated measure of atrazine in maternal urine during pregnancy.  We did consider 

other exposure estimation techniques, however, first using monitoring data from the US 

Environmental Protection Agency, and then using the amount of atrazine applied at the county 

level (see Chapter 4).  Both of these alternatives proved problematic.  Monitoring data was not 

available for atrazine concentrations below the US Environmental Protection Agency’s Minimum 

Risk Level, which prevented us from considering associations between hypospadias and lower 

levels of atrazine.  Further, the total amount of atrazine applied at the county level would not 
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have allowed us to consider the interaction between atrazine concentrations in drinking water 

and maternal water consumption.   

 Another limitation was our inability to assign atrazine concentrations to many of the 

NBDPS women.  Sensitivity analyses revealed that women who were not successfully assigned 

an atrazine concentration were likely to be older and to use private wells, which were 

characteristics associated with increased risk study.  They were also more likely to be a race or 

ethnicity other than non-Hispanic white, non-Hispanic black, or Hispanic, and to live in North 

Carolina, which were characteristics associated with decreased hypospadias risk in this study.  It 

is therefore unclear how exclusion of these women may have influenced our results.     

This study also had several strengths.  Our selected modeled exposure estimates allowed 

us to consider a specific mechanism for a possible association between atrazine and hypospadias.  

It also took advantage of the unique water consumption and other covariate data available 

through the National Birth Defects Prevention Study (NBDPS), which allowed us to consider 

atrazine as part of a multifactorial etiology of hypospadias. While we were only able to 

successfully assign an exposure to 123 cases and 415 controls, the marginally significant 

association that we found suggests that when behavioral and demographic traits interact with 

exposure, the effect is strong enough to detect a signal even with a small sample size.   

This study provides additional support for the body of evidence suggesting that atrazine 

may be associated with male genitourinary malformations in humans. Further research including 

larger sample size and urinalysis for model validation is warranted in order to provide a clearer 

picture of this multifactorial disease.  This may help inform future birth defect prevention efforts. 
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CHAPTER 7 

CONCLUSION 

 

 This research uses disease ecology theory to shed light on the multifactorial etiology of 

hypospadias.  It also lends support to a possible association between this relatively common birth 

defect and agricultural pesticide use.  Chapter 1 discusses existing research about population, 

behavioral, and environmental risk factors for hypospadias.  Chapter 2 considers the spatial 

distribution of hypospadias in North Carolina in order to explore contextual factors that might 

play a role in hypospadias risk.  It illustrates that, even when controlling to the extent possible 

for compositional factors, spatial autocorrelation of disease incidence persists, which suggests a 

role being played by contextual factors.  Because this persistent spatial autocorrelation occurs in 

a part of North Carolina, where agriculture plays an important role, crop cover is then 

investigated as one potential contextual factor of interest.  The percentage of a block group in 

agriculture is, in fact, found to be significantly associated with hypospadias, and does explain a 

small amount of the remaining spatial autocorrelation of hypospadias in North Carolina. 

 The remaining chapters then build on this framework by focusing on one potential 

mechanism for an association between hypospadias and proximity to crop cover:  maternal 

exposure to the herbicide atrazine via drinking water.  Chapter 4 examines three different metrics 

for estimating maternal exposure to atrazine via drinking water.  It finds that different exposure 

assessment techniques yield different crude estimates of hypospadias risk.  After considering 

strengths and weaknesses of each of the exposure metrics, Chapter 5 concludes that using USGS 
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groundwater and surface water models to estimate atrazine concentrations in drinking water are 

the most appropriate for our dataset because they produce concentration estimates for individual 

water supplies (instead of use at the county level).  They also produce estimates at a range of 

concentrations, including those falling below the EPA’s MRL.   

 Chapter 6 then uses the watershed modeling metric, in conjunction with behavioral and 

demographic data collected by the National Birth Defects Prevention Study, to examine a 

possible association between hypospadias and maternal exposure to atrazine via drinking water.  

To our knowledge, this is the first study to consider atrazine in conjunction with survey data on 

water consumption and maternal address throughout pregnancy.  It is also the first to use USGS 

surface and groundwater models in a birth defects study.   

Consistent with the disease ecology framework, our research emphasizes the importance 

of incorporating behavioral and other maternal characteristics in the study of diseases.  As 

illustrated in Chapter 6, crude odds ratios do not find a significant association between atrazine 

and hypospadias, but logistic regression incorporating water consumption, maternal age, 

maternal race/ethnicity, maternal education, parity, plurality, maternal choline intake, and use of 

fertility procedures and medications yield an adjusted odds ratio of 1.14 (p = 0.054) for a 1 µg/L 

increase in daily maternal atrazine consumption during the critical window of exposure for 

genitourinary development.  This illustrates the utility of incorporating disease ecology theory 

into the study of hypospadias and other diseases with a multi-factorial etiology.  It also provides 

additional evidence for a role played by environmental factors in hypospadias births. 
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Study Limitations: 

 This research has a number of limitations, as described in the preceding chapters, which 

are generally a result of missing data.  The studies using NCBDMP data only have information 

about maternal address at birth.  If mothers moved during pregnancy, using maternal address at 

birth may lead to exposure misclassification, especially since the critical window for 

genitourinary development is relatively early in pregnancy, during gestational weeks 8-14.  

NCBDMP data also does not include information about maternal behavioral characteristics, 

which meant that we could not include potentially important risk factors such as use of fertility 

medications or procedures, maternal diet, and maternal drinking water consumption, in the 

compositional risk factors that we considered in our analysis of the geographic distribution of 

hypospadias in North Carolina. 

 In addition, in the absence of repeated urinalysis during early pregnancy, we do not know 

the “true” level of maternal exposure to atrazine.  Thus, while we are able to compare the three 

exposure metrics described in Chapter 4, we cannot evaluate which is the most accurate in 

estimating maternal exposure.   

 

Directions for further research: 

 The significant association between hypospadias and crop cover, as found in Chapter 1, 

as well as the marginally significant adjusted association between hypospadias and daily 

maternal atrazine consumption, as found in Chapter 6, suggests that further research on possible 

teratogenic effects of atrazine is warranted.  Such research should include urinalysis of pregnant 

women, which would enable validation of one or more exposure estimation techniques, and 

allow further research into the potential association between atrazine exposure and genitourinary 
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malformations.  Further research is also needed consider other endocrine disrupting chemicals 

which might function in the same way. 
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