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ABSTRACT

ELIZABETH L. BOUZARTH: Regularized Singularities and Spectral Deferred

Correction Methods: A Mathematical Study of Numerically Modeling Stokes Fluid

Flow

(Under the direction of Michael L. Minion)

Regularized Stokeslets and spectral deferred correction methods are used to model

variations of a rigid body precessing in Stokes flow. Numerical solutions are compared

to exact and asymptotic closed form solutions for a spheroid precessing about its center.

This provides the opportunity to perform careful error analysis and identify different

numerical errors in regard to the motion of both slender and non-slender precessing

spheroids. The error has components relating to quadrature, asymptotics, regulariza-

tion, and time integration. Often, the quadrature error and time integration error are

small with respect to the other error contributions, all of which are discussed. The

motion of both slender and non-slender spheroids is studied to find the parameter and

boundary condition choices that minimize velocity error. A system of regularized image

singularities is developed to create a no-slip plane that mimics the effect of a nearby

wall in the experiment setup. A temporal integration strategy based on spectral deferred

correction (SDC) methods using an explicit treatment with different time steps for dif-

ferent components of the physical system is discussed. Multi-explicit SDC (MESDC)

ii



methods provide an increase in efficiency for stiff problems by allowing non-stiff parts of

the physical setup to use a larger time step requiring fewer expensive computations. The

numerical methods are used to study experimental fluid dynamics phenomena relating to

precessing rods that are not described by an exact closed form solution. This work has

biological motivations resulting from the study of pulmonary cilia in conjunction with

cystic fibrosis research as well as the motion of primary nodal cilia in developing embryos

whose motion plays a critical role in developing left-right asymmetry in mammals.
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CHAPTER 1

Introduction

Fluid flow generated on small spatial scales is a topic of current computational, math-

ematical, and experimental research that extends beyond mathematics into many biolog-

ical applications. Areas of active research include microorganism locomotion [3, 19, 23,

24] and feeding [55], pulmonary mucociliary transport [32, 44, 47], and left-right asym-

metry development of internal organs in mammals [14, 15, 34, 49, 50]. The Virtual

Lung Project at the University of North Carolina at Chapel Hill is an interdisciplinary

research effort aimed at investigating many aspects of the human lung to develop an

integrative model that can aid in the development and testing of treatments and cures

of pulmonary diseases like cystic fibrosis [5]. One research focus within the Virtual Lung

Project is the study of hydrodynamics of cilia, which is a fluid-structure interaction on

a small spatial scale. This effort incorporates mathematical models [10, 11, 42], low

Reynolds number fluid dynamics experiments on the micro- and macro-scales [7, 37],

and the numerical solutions constructed in this dissertation along with the numerical

simulation work of Mitran [47].

Incompressible fluid flow on small scales is governed by the Stokes equations, a simpli-

fication of the Navier-Stokes equations in the low Reynolds number regime. The Reynolds

number is a dimensionless quantity that compares inertial and viscous forces. The small

length scales of the biological flows in question contribute to the low Reynolds number



resulting in the fluid regime where viscous forces dominate inertial forces. The Stokes

equations are a desirable simplification of the Navier-Stokes equations for many reasons.

First, the Stokes equations are linear in fluid velocity, allowing for the construction of

solutions by superimposing fundamental solutions. Second, solutions of the three dimen-

sional Stokes equations can be found analytically. Third, the Stokes equations are easier

to solve numerically than the full Navier-Stokes equations. These facts will be utilized

frequently throughout this discussion to build numerical solutions to the Stokes equations

that will be compared to analogous closed form exact solutions.

In general, the modeling of arbitrary fluid-structure interactions is difficult. How-

ever, Camassa et. al. and Leiterman [10, 11, 42] constructed closed form exact and

asymptotic solutions for a useful simplified geometry: a precessing spheroid. The fluid

flow generated by slender precessing spheroids in Stokes flow provides common ground

for the mathematical models of Camassa et. al., the fluid dynamics experiments of the

Rotational Mixing Experiment (RMX) group, Bouzarth et. al. [7, 8], and the numer-

ical solutions presented in this dissertation to coalesce. While these research findings

developed out of the Virtual Lung Project, the physical scenario to which they are more

closely related is that of primary nodal cilia rather than pulmonary cilia. Primary nodal

cilia are more rigid than the whip-like motile cilia in the lung; primary nodal cilia beat in

a conical fashion [34]. The motion of primary nodal cilia has been linked to the breaking

of left-right symmetry in developing mammalian embryos [34, 49, 50]. Both pulmonary

and primary nodal cilia are discussed in more detail in Section 1.1.

A common method to study cilia, flagella, or other immersed slender objects is to use

singularity theory to relate forces and resulting fluid velocities [16, 56, 57]. Camassa

et. al. and Leiterman developed exact and asymptotic closed form mathematical solutions
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using singularity theory and slender body theory that describe the fluid flow generated

by a precessing prolate spheroid in both infinite and semi-infinite fluids [10, 11, 42].

While these closed form representations of exact and asymptotic solutions are valuable

to this research, they also have limitations. For instance, the exact closed form solution

only applies to a prolate spheroid in free-space. However, as experiments develop and

new questions arise, the need to model more complicated features increases. The study of

the exact solution in relation to the numerical solution for the prolate spheroid provides

the foundation for using the numerical solutions to develop asymptotic solutions and to

model the experimental data.

The numerical solutions developed in this dissertation utilize the method of regu-

larized Stokeslets, developed by Cortez [18, 19], and other regularized singularities to

calculate the fluid flow due to a collection of nonsingular regularized forces. A collec-

tion of such forces can be used to represent a structure interacting with the fluid (e.g. a

spirochete [19] or a spheroid). When using singular Stokeslets to model fluid flow, the

Stokeslets must be placed outside of the fluid domain (e.g. along the centerline of a spher-

oid) to avoid infinite velocities at the locations of the imposed point forces. However,

when nonsingular regularized forces are implemented with the method of regularized

Stokeslets, this restriction no longer exists. The regularization process creates finite

velocities at the location of the regularized forces. As such, the regularized Stokeslets

may be placed anywhere within the fluid domain. This allows for more flexibility in the

physical scenarios for which regularized singularities can be used but singularities cannot.

To model a cilium using regularized Stokeslets, there are choices regarding where to

distribute the Stokeslets. For example, placing them on the surface of a slender rigid

body as well as only along its centerline will be investigated in this work, showing how
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these choices affect numerical error. Choosing to distribute the regularized Stokeslets

along a curve rather than a surface in the slender body case provides a way to reduce the

size of the system. Chapter 3 explores the case where a one dimensional line of regular-

ized singularities is used to model a thin three dimensional structure. The effectiveness

of different parameter and boundary condition choices with the method of regularized

Stokeslets in relation to the exact mathematical solution of Camassa et. al. are discussed.

The exact mathematical solution of Camassa et. al. for the flow generated by a prolate

spheroid precessing about its center in free space serves as a nontrivial exact solution to

which the results of the numerical solutions discussed in this dissertation utilizing regu-

larized singularities can be scrutinized. This provides the rare and desirable opportunity

to study a current numerical method (the method of regularized Stokeslets) against a

nontrivial exact solution. As such, careful error analysis is performed in Chapters 3 and

4 that reveals components of the error due to regularization, quadrature, body slender-

ness, and time integration. It is shown that the quadrature and time integration errors

are negligible with respect to the regularization and slenderness errors. Hence, the reg-

ularization and slenderness errors will be a focus of the discussion in Chapters 3 and 4.

Another benefit of having a nontrivial exact solution with which to compare the numer-

ical solutions is that a careful study of the effects that parameter choice has on velocity

error in the case of precessing rigid spheroids is possible. Again, this careful analysis is

desired in a numerical method, but is often lacking due to the complexity of many of

the systems modeled with current numerical methods such as the immersed boundary

method [24, 51], the immersed interface method [41, 43], or the method of regularized

Stokeslets before this study [19].
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While studying slender spheroids is useful in biological applications involving cilia

and flagella, studying non-slender spheroids numerically with regularized Stokeslets in

comparison with the exact solution of Camassa et. al. is also beneficial. In the slender

case discussed in Chapter 3, to reduce the number of regularized Stokeslets needed,

regularized Stokeslets are placed only along the centerline of a slender spheroid to model

the fluid velocity resulting from the spheroid’s precessing motion. In contrast, when

modeling a non-slender spheroid in Chapter 4, the regularized Stokeslets are initially

placed on the surface of the spheroid, rather than its centerline. Placing regularized

Stokeslets on the surface of the body is a somewhat intuitive and traditional step [19].

In fact, when regularized Stokeslets are placed distributed on the surface of a body,

the method of regularized Stokeslets can be considered a discretized boundary integral

method, or similarly a boundary element method [19, 56]. However, unlike with the

boundary integral method, the method of regularized Stokeslets is still viable when the

regularized forces are not distributed over a closed surface (e.g. distributing regularized

Stokeslets along a line to model a slender spheroid). Thus, the method of regularized

Stokeslets has an additional realm of physical scenarios that standard boundary integral

methods can not accommodate.

Since regularized Stokeslets represent the exertion of regularized forces on a fluid,

it seems like a natural beginning to exert the forces where the body contacts the fluid.

However, further analysis of the numerical solution in contrast to the exact solution re-

veals that placing the regularized Stokeslets along a spheroidal surface slightly smaller

and inset from the original spheroid produces smaller error. The effect of where the

boundary conditions are enforced is also studied in both the slender and non-slender

cases. It is shown in Chapters 3 and 4 that there are parameter and boundary condition
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choices that minimize the velocity error in both the slender and non-slender cases. While

these choices are somewhat sensitive to the specific geometry of a prolate spheroid, these

findings can still be used as guidelines for parameter and boundary condition implemen-

tation in applications that are not as idealized as that used to compare the numerical

and exact solutions in this work. Hence, the result of these studies generates guidelines

for choosing numerical parameters in other situations.

One application where modeling a sphere with regularized Stokeslets is helpful is in

determining what physically significant effects spherical tracer beads used in some RMX

fluid dynamics experiments have on both the micro- and macro-scale results. This phys-

ical configuration is implemented in the numerical solution with an additional collection

of regularized Stokeslets connected pairwise with virtual springs. Incorporating springs is

a common technique utilized in modeling elastic and flexible structures immersed in fluid

[19, 22, 47]. The error analysis of parameter and boundary condition choices for the

non-slender spheroid discussed in Chapter 4 is used to choose parameters for the rigid

sphere implementation. The introduction of spring forces into the numerical solution

creates stiffness in the system of differential equations. Thus, in this work and other

applications involving the temporal integration of localized stiff systems, an effective nu-

merical integration technique is needed. A novel variation of spectral deferred correction

methods [27], termed the multi-explicit spectral deferred correction (MESDC) method,

is developed here and discussed in Chapter 5. This method integrates the fluid velocity

in a stable, accurate, and efficient manner treating different parts of the physical system

with different time steps. Specifically, the MESDC method uses a small time step for

the stiff portion of the system pertaining to the spring forces of the sphere, and a larger

time step for the remainder of the fluid calculations. One benefit of using the MESDC
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method is that expensive linear solves can be executed less frequently than when using

standard time integration techniques. The MESDC method is applicable to other classes

of fluid-structure interactions, e.g. solving the Navier-Stokes equations with the Blob

Projection Method [20].

While much attention is given to the comparison of the numerical solutions with the

exact mathematical solution of Camassa et. al., Chapter 6 discusses the results of two

classes of RMX experiments in conjunction with the numerical results. The numerical

solutions developed and tested in this dissertation are used to model and predict exper-

imental results for which exact mathematical solutions do not exist. The two physical

scenarios are a straight rod precessing about a tilted axis (rather than a vertical axis) and

a bent rod precessing in different configurations. The tilted rod scenario more closely

matches the biological application of the primary nodal cilia as they sweep out tilted

cones, as discussed in Section 1.1. The numerical solution plays a critical role in both

analyzing and predicting the results of the RMX experiment when a bent rod is used in

place of a straight one. The results of modeling tilted and bent rods with regularized

singularities are also used to help develop closed form asymptotic solutions that continue

to incorporate more advanced features of the experimental design [8].

With the study of cilia in the context of the Virtual Lung Project as initial mo-

tivation, a collection of mathematical models, numerical solutions, and experimental

results emerges that has a common ground in modeling a physical scenario of a slender

rigid rod precessing in a conical fashion that mimics the motion of primary nodal cilia.

This common ground provides a valuable benchmarking opportunity where closed form

solutions, numerical simulations, and experimental results support, predict, and verify
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each other. Developing numerical solutions that utilize regularized Stokeslets and multi-

explicit spectral deferred correction methods in this environment provides the unique

opportunity for careful error analysis and parameter studies for nontrivial fluid flows

with an exact solution. The intuition and tools developed in the benchmarking process

between the mathematical models, numerical solutions, and experiments greatly aid in

adapting these methods to study more complicated physical systems that incorporate

increasingly more features of the motivating biological problems.

This manuscript will discuss the aforementioned exact and asymptotic mathemati-

cal solutions, fluid dynamics experiments, and numerical solutions in the context of a

precessing rigid body and the fluid flow it generates. The remainder of this chapter fur-

ther introduces the motivating biological applications, the fluid dynamics experiments

on both the micro- and macro-scales, and the closed form exact and asymptotic math-

ematical models. Chapter 2 discusses the fundamental fluid dynamics associated with

this problem, specifically Stokeslets, regularized Stokeslets, and systems of image singu-

larities (singular and regularized) that produce a no-slip plane. Chapters 3 and 4 dis-

cuss the numerical errors and parameter choices when modeling slender and non-slender

spheroids, respectively, with regularized Stokeslets in reference to the exact solution. The

multi-explicit spectral deferred correction method is developed in Chapter 5. Chapter 6

contains a discussion of the numerical solution in comparison with RMX experimental

results and Chapter 7 presents conclusions and topics for future work.

1.1. Biological Applications

This section contains a brief introduction to two biological examples of cilia that are

of particular interest in the current context; conventional motile cilia are discussed in the
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context of mucus transport mechanisms in the human lung, followed by a discussion of

primary nodal cilia in mammalian embryos. These examples provide motivating questions

and applications of the closed form solution discussed in Section 1.3 and the numerical

method discussed throughout the remaining chapters of this manuscript.

As mentioned above, one motivation for this research originates from the Virtual

Lung Project at the University of North Carolina at Chapel Hill [36]. This is an in-

terdisciplinary effort to study different components of the human lung that incorporates

researchers from applied mathematics, physics, computer science, chemistry, biochem-

istry, biophysics, and the medical school’s Cystic Fibrosis Center. The ultimate goal is

to develop an integrated computational model to aid in developing and testing cures and

treatments for cystic fibrosis. The research discussed here falls under one goal of the

Virtual Lung Project: to understand the hydrodynamics of cilia.

Cilia are slender protrusions from cells that are ubiquitous in nature. Cilia can be

classified into two main categories: conventional motile cilia and primary cilia. Conven-

tional motile cilia are flexible, whip-like protrusions whereas primary cilia are more rigid

and in most cases immotile. Cilia in the lung belong to the conventional motile cilia

category. See [30] for a review of fluid mechanics research involving cilia and flagella.

The structure of the lung immediately surrounding the cilia can be described as

follows. Cilia protrude from the epithelial cells that line the lung. Immediately above

the epithelial cells, there is a liquid layer referred to as the periciliary liquid (PCL) layer

that surrounds the cilia and supports a mucus layer resting atop the PCL layer. The

PCL layer is more watery than the mucus layer, which is in contact with the air [44].

The mucus layer is responsible for trapping contaminants in the lung while the cilia try

to expel the contaminant-ridden mucus from the lung to prevent infection. Figure 1.1
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shows a simplification of the structure of the lung. The bottom of the figure corresponds

to the top of the epithelial cells.

Figure 1.1. Cross-section of the human lung above the epithelial cells

(not shown). This sketch shows a few representative cilia, the periciliary

liquid (PCL) layer, the mucus layer, and the airway.

The cilia use a whip-like motion to agitate the surrounding fluid in the PCL layer

and ultimately transport the mucus out of the lung (see e.g. [44]). The cycle is broken

up into two strokes, the recovery stroke and the power stroke. The cilium moves quickly

during the power stroke in an effort to propel the PCL and mucus layers and returns to its

original position during the recovery stroke. It is not fully understood how neighboring

cilia coordinate their beat to collectively move mucus. In recent work, Mitran presents

a three dimensional numerical study of cilia which suggests the coordination develops

when cilia interact only with the surrounding fluid. The beat patterns are coordinated

in such a way that a metachronal wave is created at the top of the cilia layer. Mitran

presents a three dimensional numerical model of the formation of metachronal waves

[47]. Modeling the hydrodynamics of this situation will give researchers insight into how

the cilia coordinate their beat and create this metachronal wave.

Investigating the hydrodynamics of pulmonary cilia and other biological factors will

help researchers learn more about cystic fibrosis and other pulmonary and cilia-related
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diseases. One cause of infection occurs when mucus and contaminants cannot be trans-

ported out of the lung in a timely manner. The failure of timely contaminant clearance

could be due to a number of factors, such as defective or absent pulmonary cilia, a change

of the viscoelastic properties of the mucus layer, or a reduction in the volume of the PCL

layer. Cystic fibrosis depletes the PCL layer and changes the properties of the mucus

layer making the mucus thicker and more viscous than in the healthy case [5]. These

changes increase the likelihood of serious infections in cystic fibrosis patients due to the

reduced contaminant clearance out of the lung. It is not completely known how the

mechanisms regulating mucus clearance relate. As such, current research investigating

regulation of the PCL volume, mucus properties, and cilia interactions in a variety of

experiments, mathematical models, and numerical simulations is a central focus of the

Virtual Lung Project and the pulmonary health community at large.

Besides pulmonary diseases like cystic fibrosis, where cilia are involved in a breakdown

of pulmonary function, other health problems can manifest as a result of dysfunctional

cilia. For instance, Kartagener’s syndrome bears the symptoms of chronic sinusitis,

bronchiectasis, and situs inversus [60]. While these symptoms can all be explained

by immotile cilia, Afzelius discovered the connection between immotile cilia and situs

inversus [1]. Situs inversus refers to the condition where one’s internal organs are located

on the opposite side of his or her body, e.g. the heart is on the right side rather than

the left. Nonaka et. al. found evidence that the motion of primary nodal cilia is the

first point where left-right symmetry is broken in mammalian embryonic development

[34, 49, 50].

In contrast to conventional motile cilia, primary cilia are more rigid, more sparsely

packed, and move differently. Where primary cilia are present, there is only one cilium
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per cell. Many researchers believed that primary cilia are immotile and either serve no

function or act as mechanical sensors [60]. However, Nonaka et. al. discovered primary

cilia that were motile in the nodal region of developing embryos [49]. The nodal region is

a ciliated pit on an embryo. Each cell in this pit has a single cilium on it that precesses

in a conical fashion. That is, each cilium is affixed to the cell at its base but its tip

is sweeping out a circle. Figure 1.2 displays a simplified version of this motion for one

cilium (see [34] for additional visual descriptions of this motion in the nodal region).

Figure 1.2. Simplification of primary nodal cilia motion. The rectangle

at the bottom of the figure represents a cell in the nodal region. The slender

rigid body precesses about its base in an upright conical configuration.

As Hirokawa et. al. suggest, the primary nodal cilia do not precess about a vertical

axis, rather an axis that tilts toward the posterior. This is due to the fact that they

are not attached at the center of each curved cell, rather their base is located on the

posterior side. As such, the curvature of the cell generates a posterior tilt and a leftward

flow is generated in the nodal region. This flow is believed to be the earliest point

where the development of the left-right asymmetry in mammals [34]. Modeling the

hydrodynamics of primary nodal cilia will begin with the simplification shown in Figure

1.2. This represents a slender rigid body sweeping out a vertical in the Stokes regime.

One tip of the rod is in contact with a plane and the other tip sweeps out a circle. In

the mathematical and numerical solutions the plane is an infinite no-slip plane whereas
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in the RMX fluid experiments, the plane represents the bottom surface of the fluid tank.

The discussion in Section 6.1 incorporates a tilted axis of precession in the numerical

solution to more closely represent the motion of primary nodal cilia.

Gaining insight into the two cilia applications mentioned here, beating whip-like con-

ventional motile cilia in the lung and conically precessing primary nodal cilia in developing

embryos, serves as a motivating factor in studying the motion of precessing rods with

experiments, mathematical models, as well as numerical simulation.

1.2. Fluid Experiments

This section will introduce the fluid dynamics laboratory experiments that are used

in conjunction with the closed form asymptotic solutions of Camassa et. al. [10, 42]

and numerical solutions described in this work as both motivation for and validation of

different aspects of this research. The experiments that are discussed here mimic the

motion of primary nodal cilia. Two classes of experiments are discussed; both have the

common element of a slender rigid body precessing about its tip, which is affixed to a

no-slip plane. The first class of experiments discussed studies this motion on the micro-

scale. The second looks at variations of this motion on a larger spatial scale, keeping the

same Reynolds number1 and hydrodynamic characteristics.

Research collaborators at the University of North Carolina at Chapel Hill are involved

in a variety of experiments that serve as a link between mathematical modeling and

biological applications. In one study of hydrodynamics on the cilia, Jing [37] fabricates

magnetic rods that measure approximately 10µm in length and 200nm in diameter.

He uses a three dimensional force microscope (3DFM) developed by Fisher et. al. [31]

1See Section 2.1 for a discussion of Reynolds number.
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to manipulate the small rods so that they precess in a conical fashion, mimicking the

motion of primary nodal cilia. The resulting fluid motion is tracked by following the

location of micron-sized tracer beads from digitized movies. This work is compared with

the mathematical models of Camassa et. al. and Leiterman in an effort to determine if

macro-scale boundary conditions are appropriate to consider on this small length scale.

The experimental results show evidence of an epicyclic orbit whose period is roughly

commensurate with that of the precessing rod as well as a larger orbit about the rod on

a longer time scale. Bouzarth et. al. compare micro-scale trajectories with predictions

of the model of Camassa et. al. and Leiterman [7, 11, 42]. While the model captures

some characteristics of the experimental trajectory, like the epicyclic period and radial

amplitude, there is some discrepancy between the model and experiment and motivation

for further study.

While the microfluidic research of Jing accomplishes many things, its shortcomings

in comparison with the mathematical theory contributed to the development of another

laboratory research project, the Rotational Mixing Experiment (RMX). Due to the fact

that Jing’s experiments are performed on the micro-scale, it is difficult to determine if

discrepancies between the mathematical models of Camassa et. al. and the experimental

trajectories are due to confounding experimental factors or limitations of the model. Since

the experiment is performed on such a small scale, the effects from thermal fluctuations

and Brownian motion are noticeable. Secondly, since the diameter of the rod is smaller

than the wavelength of visible light, it is difficult to obtain a clear image depicting the

rod’s geometry with the cameras used to visualize the experimental results. Finally,

due to the experimental design using the 3DFM, images are only collected from the top

of the experiment. As such, vertical position information cannot be extracted from the
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experimental data. These three limitations can be eliminated by considering experiments

on a larger spatial scale.

To try to eliminate these concerns with the micro-scale experiment, dynamic similarity

is used as an argument for scaling up the experiment to a size where the design elimi-

nates the three aforementioned concerns. The idea behind dynamic similarity is that the

hydrodynamic behavior will be similar for situations with similar flow geometry. That is,

flows with the same Reynolds numbers will exhibit the same behavior. Jing’s experiments

are run in a low Reynolds number regime. By keeping a similar low Reynolds number

in the larger scale RMX experiments, they capture the same hydrodynamic effects and

gain better insight into the agreement of the experiment and mathematical theory by

eliminated the concerns of noticeable thermal fluctuations, visualization problems, and

limited view points for data collection.

The first RMX experiments started with a magnetic rod in Karo corn syrup driven

by a motor-mounted magnet. With this setup, the rod undergoes the same motion

as in Jing’s experiment, a conical precession about a vertical axis, but the pin and

fluid environment are larger (the pin length does not exceed 1cm). In both the micro-

and macro-scale experiments the Reynolds number does not exceed 10−3. The macro-

scale RMX experiments provide cleaner data sets than the micro-scale experiment with

which the mathematical theory can be compared. Bouzarth et. al. demonstrate that the

mathematical solutions of Camassa et. al. and Leiterman capture the characteristics of

the RMX experimental trajectories [7]. In an interdisciplinary effort, the research of the

RMX group shows that the asymptotic models of Camassa et. al. and Leiterman agree

well with both the micro- and macro-scale experiments [7]. However, questions arise

that extend beyond the realm of the analytical solution, making a numerical simulation
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of the experiment that can be applied to a more general physical configuration desirable.

For instance, how do the trajectories change when the geometry of the rod changes to

something other than a spheroid or straight rod precessing about a vertical axis? The

introduction of a tilted axis of precession and a bent rod will be discussed as two examples

for which an exact solution does not exist, but the numerical solutions discussed in this

dissertation provide valuable insight. The experiments and results of the RMX project

in conjunction with the numerical results discussed in this work will be explored further

in Chapter 6.

1.3. Exact and Asymptotic Solutions for Precessing Spheroids

As mentioned above, the mathematical solutions by Camassa et. al. and Leiterman

[10, 11, 42], play an important role in the development of the numerical solution that

utilizes regularized singularities. In terms of the larger picture of trying to gain some

global understanding of biologically motivated fluid dynamics phenomena, the closed

form solutions of Camassa et. al. provide exact and asymptotic mathematical models.

In terms of this study of numerical methods, certain incantations of the mathematical

models will provide a non-trivial exact solution with which the numerical results can be

compared.

The work of Camassa et. al. and Leiterman uses singularity theory and slender body

theory to construct solutions to the Stokes equations for the flow generated by a precessing

spheroid. There are three different solutions that will be referred to throughout this

manuscript:

(1) An exact solution for a prolate spheroid

(2) An asymptotic solution for a slender prolate spheroid
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(3) An asymptotic solution for a slender prolate spheroid in the presence of a no-slip

plane (referred to as the Blakeslet solution).

Figure 1.3 depicts the three spheroid scenarios used in the exact and asymptotic closed

form theoretical solutions. In Figures 1.3(a) and 1.3(b), the spheroid precesses about its

center and in Figure 1.3(c) the spheroid precesses about its tip. The first two solutions

are constructed in an infinite fluid in free space, so the only boundary conditions imposed

are on the surface of the spheroidal body. In the third case, there is an additional no-slip

boundary condition imposed on the plane perpendicular to the axis of precession at the

base of the rod. In all three cases, the spheroid is precessing about a vertical axis with

a constant angular velocity.

(a) (b) (c)

Figure 1.3. (a) Sketch of a non-slender prolate spheroid used in the exact

free space solution. (b) Sketch of a slender prolate spheroid used in the

free space asymptotic solution. (c) Sketch of a slender prolate spheroid

precessing about its tip near a no-slip plane used in the Blakeslet solution.

Each of these solutions is useful in different ways. The exact solution is beneficial

because it is an exact closed-form solution to the Stokes equations for an arbitrary pro-

late spheroid precessing about its center. Comparing the numerical results against this
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solution provides a two-fold benefit. First, it allows the method of regularized Stokeslets

to be tested against a non-trivial exact solution. Second, it provides insight pertaining

to the construction of physical objects within the numerical model that are spherical or

non-slender in nature. While this deviates from the slender body focus of the cilia ap-

plication, there are benefits in the experimental and numerical comparisons to studying

non-slender bodies that will be discussed further in Section 5.2.1.

The asymptotic solution is beneficial to study because its slender body more closely

resembles that of a cilium or the rods used in the micro- and macro-scale fluid dynamics

experiments introduced in Section 1.2. The slender asymptotic solution also has the

added benefit that the solution is simpler; it only utilizes Stokeslets while the exact

solution contains a collection of singularities. Cortez’s method of regularized Stokeslets

[18, 19] similarly builds solutions only using regularized Stokeslets and will be invoked

frequently. Stokeslets and regularized Stokeslets are introduced in Sections 2.2 and 2.4,

respectively.

The third solution, referred to as the Blakeslet solution in [11, 42], is the most useful

when comparing with experimental results. This is due to the presence of the no-slip

plane in the asymptotic solution that represents the floor of the fluid tank where the

experiments are conducted.

1.3.1. Exact Solution for a Prolate Spheroid. This section explores the details of

the exact closed form solution of Camassa et. al. and Leiterman [11, 42] for a prolate

spheroid precessing about its center in free space (see Figure 1.3(a)). The exact solu-

tion for a prolate spheroid precessing about its center in Stokes flow is an integral of

three types of singularities placed along the centerline of the spheroid between its foci.
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Throughout this discussion, the centerline refers to the major axis of the spheroid. The

singularities in the exact solution include stresslets, rotlets, and point-source dipoles,

which are introduced in Section 2.2. Consider the equation of a prolate spheroid:

x2

a2
+
y2 + z2

b2
= 1(1.1)

for a > b. Recall the equation to determine the distance from the center to either focus:

c =
√
a2 − b2. The eccentricity is then defined as

e =
c

a
.(1.2)

While c and e appear in the equations for the solutions discussed in this section, a pa-

rameter that will be more widely used throughout this manuscript will be the slenderness

parameter, σ. Define the slenderness parameter as the ratio of the spheroid’s diameter to

its length, which can also be expressed in terms of the semi-major and semi-minor axes

of the spheroid, a and b:

σ =
b

a
.(1.3)

In the body frame, where the rod is fixed and the fluid rotates around it, Camassa

et. al. show the velocity at a point x is given by:

u(x) = RT
κU(Rκx) +

ω̇ sin(κ)

∫ c

−c
(c2 − s2) [αuSS(x− s; ex, ey) + γ̃1uR(x− s; ez)] ds+

ω̇β sin(κ)

∫ c

−c
(c2 − s2)2 ∂

∂y
uD(x− s; ex)ds+

ω̇γ̃2 cos(κ)

∫ c

−c
(c2 − s2)uR(x− s; ex)ds,(1.4)
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where uSS, uR, and uD are the velocities due to a stresslet, rotlet, and point-source

dipole, respectively, and

γ̃1 =
2− e2

−2e+ (1 + e2) ln
(

1+e
1−e

)(1.5)

γ̃2 =
1− e2

2e− (1− e2) ln
(

1+e
1−e

)(1.6)

α =
e2

−2e+ (1 + e2) ln
(

1+e
1−e

)(1.7)

β =
1− e2

4
(
−2e+ (1 + e2) ln

(
1+e
1−e

))(1.8)

are constants where e is the spheroid’s eccentricity, as given in (1.2) [11, 42]. Expressions

for uSS, uD, and uR are given in Section 2.2. Notationally in (1.4), the singularities are

located at s with strengths given by the unit vectors denoted after the semicolon in each

velocity function argument. To obtain the velocity in the lab frame, one must change

variables from x in the body frame to x∗ in the lab frame, where x∗ = RωRκx:

u∗(x∗) = −U(x∗) +RωRκu(RT
κR

T
ωx∗)(1.9)

Rκ and Rω are rotation matrices about the y and z axes, respectively, that adjust for

the tilt of the rod and its rotation in time. The integrals in (1.4) all have closed form

solutions, as shown in [42].

The exact solution for a prolate spheroid precessing about its center in free space is

used in comparison with numerical results to study the behavior of the velocity error in

Chapters 3 and 4.

1.3.2. Asymptotic Solution for a Slender Prolate Spheroid. This section dis-

cusses the details of the solution of Camassa et. al. that uses singularity theory and

slender body theory to model a slender spheroid precessing about its center in free space.
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The slender asymptotic free space solution only utilizes Stokeslets rather than a collec-

tion of singularities as in the exact solution discussed in the previous section. Leiterman

finds the velocity at x due to a distribution of Stokeslets along the centerline of the rod

of length 2L is

(1.10) u(x) =

∫ L

−L
uS(x− xS(s); α)ds.

where xS(s) = (s sin(κ), 0, s cos(κ)), s ∈ [−L,L], κ represents the cone angle, and uS

represents a Stokeslet of strength α that will be introduced in Section 2.2 [42]. Here the

cone angle κ is the acute angle measured from the z-axis to the centerline of the spheroid.

Throughout this manuscript, the complement of κ may also be referred to as the cone

angle. When this occurs, it will be labeled as θ, such that κ+ θ = π
2

and θ represents the

angle from the xy-plane to the centerline of the spheroid. The asymptotic slender free

space solution prescribes the singularity strength as

α(s) = (0, αs, 0),(1.11)

where s parameterizes the length of the body and

α =
ωβ sin(κ)

2
.(1.12)

By choosing α from (1.12), the velocity solution has errors of order β =
[
log
(

2
σ

)]−1
.

Provided that σ � 1 and L± s� r

uexact = u +O(β),(1.13)

where uexact denotes the exact solution from Section 1.3.1 and u represents the velocity

due to the distribution of Stokeslets in (1.10). This demonstrates the magnitude of the

error that arises from representing a slender body with only Stokeslets in the slender
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asymptotic solution rather than stresslets, quadrupoles, and rotlets, as in the exact so-

lution. This error will be discussed further in Section 3.2, where the numerical error

is dissected into its different error components, one of which is the slenderness error

discussed here.

1.3.3. Blakeslet Solution for a Slender Prolate Spheroid in a Semi-Infinite

Fluid. The Blakeslet solution uses the slender asymptotic solution discussed in Section

1.3.2 as well as a system of image singularities to construct a Stokes flow solution which

matches a no-slip boundary condition on the surface of the spheroid as well as a plane.

The Blakeslet solution models a slender rod precessing about its tip rather than its center,

as shown in Figure 1.3(c). This solution includes a no-slip plane that models the floor

of a fluid tank, making this solution useful when comparing mathematical results with

laboratory results. Besides Stokeslets, the system of image singularities includes point-

source dipoles and Stokes doublets. These singularities are introduced in Section 2.2 and

the construction of the image singularities are discussed in Section 2.3 in more detail.

In [42], Leiterman compares an RMX experimental trajectory with both the exact free

space solution (from Section 1.3.1) and the Blakeslet solution described in this section

and finds that the Blakeslet solution is more accurate than the exact free space solution

in capturing the trajectory characteristics of the experiment.
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CHAPTER 2

Method of Regularized Stokeslets

While the study of fluids is a robust area of mathematical and experimental research,

there are areas where recent developments contribute to the knowledge base in funda-

mental ways. The study of Newtonian fluids at low Reynolds numbers is an established

field dating back decades. The singularity theory invoked in the mathematical models of

Camassa et. al. and Leiterman [10, 11, 42], discussed in Section 1.3, has also been in

circulation for quite some time with many works in the 1970’s using singularity methods

[4, 16]. However, newer methods like the method of regularized Stokeslets, developed in

the past decade by Cortez [18, 19], provide new tools to construct solutions to the Stokes

equations. This dissertation also develops other regularized singularities in addition to

those implemented in the method of regularized Stokeslets.

This chapter discusses how concepts of fluid dynamics are utilized in the singularity

theory of the closed form solutions of Section 1.3. It also shows how to regularize the

singularities and use the method of regularized Stokeslets to build solutions to the Stokes

equations. In both the singular and regularized cases, the image singularities required to

satisfy a no-slip boundary condition on a plane bounding a semi-infinite fluid are intro-

duced. A section is devoted to exploring how regularized singularities are implemented

to model precessing rod problems and beyond. Sections 2.2 and 2.3 present fundamental



solutions based on singularities; Sections 2.4 and 2.5 present the same concepts, but the

derived quantities rely on regularized singularities rather than singular expressions.

2.1. Stokes Equations

This section discusses the governing equations of Newtonian fluid dynamics and the

assumptions necessary to study the quasi-steady Stokes regime. The equations governing

incompressible Newtonian fluid motion are the incompressible Navier-Stokes equations:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ F + µ∇2u(2.1)

∇ · u = 0,(2.2)

where u is the fluid velocity, ρ is the fluid density, µ is the dynamic viscosity, p is the

pressure, and F = ρg is the body force. It is assumed throughout this manuscript that the

density and viscosity remain constant and uniform throughout the fluid. By considering

dimensionless variables, one can nondimensionalize (2.1). Let

û =
u

U
, x̂ =

x

L
, t̂ =

t

T
, p̂ =

pL
µU

, ĝ =
g

g
,(2.3)

where U represents a characteristic velocity, L a characteristic length, T a characteristic

time scale, and g is the gravitational constant [57]. The details of the nondimension-

alization are shown in Appendix A. The nondimensionalized Navier-Stokes equations

become

β
∂û

∂t̂
+Reû · ∇̂û = −∇̂p̂+ ∇̂2û +

Re

Fr2
ĝ,(2.4)
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where β = L2

νT is the unsteadiness parameter1, Re = UL
ν

is the Reynolds number, Fr = U√
gL

is the Froude number, and ν = µ
ρ

is the kinematic viscosity. When β � 1 and Re � 1,

the time derivative and the nonlinear velocity term become negligible with respect to

the terms on the right hand side of (2.4). As shown in Appendix A, in this limit, the

Navier-Stokes equations become the quasi-steady incompressible Stokes equations:

µ∇2u = ∇p− F(2.5)

∇ · u = 0.(2.6)

Under these assumptions, viscous forces dominate inertial forces. The absence of the

time derivative in the Stokes equations does not necessarily imply that the velocity is

constant with respect to time, rather the forces applied to the fluid, which may vary in

time, are in a state of dynamic equilibrium.

2.2. Stokeslets and Other Singularities

The numerical comparisons discussed in this work rely heavily on the exact and as-

ymptotic solutions of Camassa et. al. and Leiterman [10, 11, 42] as a basis for careful

numerical error analysis. This section reviews the singularities that contribute to the ex-

act, asymptotic, and Blakeslet solutions discussed in Section 1.3. This section will define

singularities that produce fundamental solutions of the Stokes equations. Specifically,

Stokeslets will be introduced in addition to the other singularities used in the exact and

Blakeslet solutions discussed in Sections 1.3.1 and 1.3.3.

1In [57], β is used as the coefficient of the time derivative. This quantity can also be expressed as
the product of the Reynolds and Strouhal numbers. The Strouhal number St = ωL

ν is a measure of the
oscillatory nature of the flow, where ω is the frequency associated with the flow.
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2.2.1. Stokeslets. The linearity of the Stokes equations allows solutions of (2.5) and

(2.6) to be constructed by a linear combination of fundamental solutions. Consider

applying a point force to the fluid at some location x0. That is, F = fδ(x − x0), where

δ represents the Dirac delta function and f describes the direction and magnitude of the

force. The Stokeslet2 is a fundamental solution to the singularly forced Stokes equations:

µ∆u = ∇p− fδ(x̂)(2.7)

∇ · u = 0.(2.8)

The velocity at x due to a Stokeslet of strength f located at x0 is

(2.9) uS(x) =
f

r
+

x̂(x̂ · f)

r3
,

where x̂ = x− x0 and r = |x̂|. Using Einstein summation notation3, the Stokeslet can be

represented as

(2.10) Sij =
δij
r

+
x̂ix̂j
r3

,

and the velocity at x due to a singular force f located at x0 can be represented as [56, 57]

(2.11) uSi =
1

8πµ
Sijfj.

This form of the velocity will be used frequently throughout the remainder of this dis-

cussion.

Other solutions to the Stokes equations can be formulated from derivatives of fun-

damental solutions. As mentioned in Section 1.3.1, the exact free space solution for a

2The Stokeslet is also referred to as the Oseen-Burgers tensor [56].

3Depending on the circumstances, either (x1, x2, x3) or (x, y, z) may be used to refer to the compo-
nents of a position vector x.
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prolate spheroid precessing about its center requires point-source dipoles, stresslets, and

rotlets, which are introduced in Sections 2.2.2 and 2.2.3.

2.2.2. Point-Source Dipoles and Quadrupoles. A point source is an fundamental

solution for irrotational incompressible flow, derived as a solution of the singularly forced

Laplace equation:

(2.12) ∇2Φ = mδ(x̂),

where Φ is a scalar velocity potential and m is the strength of the point source. In three

dimensions,

Φ = − m

4πr
,(2.13)

and the fluid velocity due to a point source is [57]

ui =
∂Φ

∂xi
(2.14)

=
mx̂i
4πr3

.(2.15)

A point-source dipole4 results from differentiating a point source with respect to its

singular point:

(2.16) Dij =
∂Si
∂x0,j

=
∂

∂x0,j

(
x̂i
r3

)
= −δij

r3
+ 3

x̂ix̂j
r5

,

where Si is a point source. The velocity due to a point-source dipole is

(2.17) uDi =
1

4π
Dijdj,

4Also referred to as a potential dipole in [57].
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where d = (d1, d2, d3) is the point-source dipole strength [56]. Upon inspection of (1.4),

one may notice that the point-source dipole appears within a spatial derivative. As such,

consider a derivative of the point-source dipole, which will be referred to as a quadrupole.

The quadrupole is the derivative of a point-source dipole with respect to x0:

Qijk =
∂Dij

∂x0,k

(2.18)

=
∂

∂x0,k

(
−δij
r3

+ 3
x̂ix̂j
r5

)
(2.19)

=
−3(δijx̂k + δikx̂j + δjkx̂i)

r5
+

15x̂ix̂jx̂k
r7

.(2.20)

As such, the velocity induced by a quadrupole is:

uQi =
1

4π
Qijkαjβk,(2.21)

where α is the strength of the dipole and β is a constant [56]. The remaining singularities

used in the exact solution are derived from the Stokes doublet.

2.2.3. Stokes Doublets, Stresslets, and Rotlets. The Stokes doublet5 is found by

differentiating a Stokeslet with respect to its location x0:

SDijk =
∂Sij
∂x0,k

(2.22)

=
∂

∂x0,k

(
δij
r

+
x̂ix̂j
r3

)
(2.23)

=
δijx̂k − δikx̂j − δjkx̂i

r3
+ 3

x̂ix̂jx̂k
r5

.(2.24)

The velocity due to a Stokes doublet is

(2.25) uSDi =
1

8πµ
SDijkαjβk,

5Also referred to as a point-force dipole in [57].
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where α and β are singularity strength coefficients, with α being the strength of the

Stokeslet [56].

The stresslet and rotlet are derived as the symmetric and anti-symmetric parts of the

Stokes doublet, respectively. A rotlet is the rotational analog to a Stokeslet. That is,

a rotlet calculates the fluid velocity resulting from a point torque exerted on the fluid.

Define the stresslet6, SSijk, and the rotlet, Rijk as

SSijk =
1

2
(SDijk + SDikj)(2.26)

=
−δjkx̂i
r3

+
3x̂ix̂jx̂k
r5

(2.27)

Rijk =
1

2
(SDijk − SDikj)(2.28)

=
δijx̂k − δikx̂j

r3
.(2.29)

Then, the velocity due to the stresslet and rotlet, respectively, are [42, 56]:

uSSi =
1

8πµ
SSijkαjβk(2.30)

uRi =
1

8πµ
Rijkαjβk.(2.31)

Since the Stokes equations are linear, the superposition of fundamental solutions also

represents a solution. This fact is exploited in building the solutions discussed here. The

quadrupole, stresslet, and rotlet singularities discussed in this section are used to build

an exact solution, but the slender asymptotic solution only uses the Stokeslets that were

introduced in Section 2.2.1. This solution is the starting point for building the system of

image singularities used in the Blakeslet solution discussed in Section 1.3.3.

6In [57], the stresslet is defined as the symmetric part of the Stokes doublet without the point source
term. In [42] (which cites [16]), the stresslet is defined as the symmetric part of the Stokes doublet. In
this discussion, the latter definition will be used to remain analogous to the derivation of the theoretical
solution.
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2.3. Image Singularities

This section discusses constructing solutions to the Stokes equations for a semi-infinite

fluid. That is, it will be shown how singularities are strategically placed outside of a semi-

infinite fluid domain to create a no-slip boundary condition on the plane bounding the

fluid.

Models incorporating the no-slip plane more closely match experimental results than

free space solutions due to the proximity of the fluid tank floor to the rod. In [42],

Leiterman demonstrates that the Blakeslet solution captures the behavior of the fluid

better than the exact free space solution with respect to an RMX experiment with a

straight slender rod.

Singularities will be placed outside of the fluid domain that will analytically satisfy

the no-slip boundary condition on the plane. For each Stokeslet in the fluid domain, a

Stokeslet, Stokes doublet, and point-source dipole will be placed at the image location

to create the desired boundary conditions [4, 42]. This system is duplicated for each

Stokeslet placed in the fluid.

Let x0 be the location of the Stokeslet located in the flow domain, and let y0 be

the location of the image singularities outside of the fluid domain, as shown in figure

2.1. If the location of the wall is at x3 = w, then y0 = (x0,1, x0,2, 2w − x0,3) for x0 =

(x0,1, x0,2, x0,3). Consider x on the wall, such that x = (x1, x2, w). Let r = |x − x0| =

|x − y0|. The goal is to come up with a combination of singularities whose net velocity

evaluates to zero for x = (x1, x2, w). As calculated in Appendix B, the combination of

velocities that satisfies the desired boundary condition is:

ui = uSi − uS∗i + 2h(2δi3 − 1)

(
uSD∗i − h

2
uD∗i

)
,(2.32)
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Figure 2.1. The image singularities are placed at y0 for a Stokeslet lo-

cated at x0 to create a no-slip plane at x3 = w. The blue region (x3 > w)

represents the fluid domain.

where uSi is the original Stokeslet placed in the fluid at x0 and the remaining singularities

are placed at y0 outside of the fluid domain (denoted by asterisks) and h = x0,3 − w.

Equations (2.11), (2.17), and (2.25) give the velocities due to the Stokeslet, point-source

dipole, and Stokes doublet, respectively, that are used in (2.32).

The singularities discussed in this section are singular expressions, so the fluid velocity

cannot be evaluated at the location of any of these singularities. In addition, dealing with

singularities numerically is undesirable in the implementation of the numerical solution

because the singular nature of the velocity fields can lead to ill-conditioned matrices.

Cortez proposed the method of regularized Stokeslets, a numerical method that uses

regularized forces rather than singular forces to find the fluid velocity [18, 19]. This

concept will be used extensively in building numerical models of precessing rods in this

dissertation.
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2.4. Method of Regularized Stokeslets

The method of regularized Stokeslets, developed by Cortez [18, 19], calculates the

fluid velocity in Stokes flow due to a collection of regularized forces. Cutoff functions

are introduced as a way to regularize a point force. Since the regularization removes the

singular nature from the velocity field, the velocity can be evaluated at the location of a

regularized Stokeslet. That is, u(x0) is finite, whereas u(x0) is infinite for a Stokeslet or

other singularities, as discussed in Section 2.2. This small difference between the velocity

generated by a regularized Stokeslet versus a Stokeslet is fundamental to the method of

regularized Stokeslets. Now there is a linear relationship between a force anywhere in

space and a velocity anywhere in space. By utilizing the linearity of Stokes flow, one can

superimpose the regularized Stokeslets solutions to build more complicated solutions.

Instead of representing the point force with a delta function, consider regularizing

the forces using a radially symmetric cutoff function, φε. It is assumed that the cutoff

function is a smooth approximation to the delta function that satisfies

∫
φε(x)dx = 1(2.33)

limε→0φε(x) = δ(x),(2.34)

where ε is the spreading parameter that controls the extent of the distribution. This

discussion will primarily use the cutoff function

(2.35) φε(r) =
15ε4

8π(r2 + ε2)7/2
,

where r = |x − x0| [18]. Depending on the demands of a particular application, it may

be advantageous to choose a different cutoff function that satisfies the aforementioned
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properties listed in (2.33) – (2.34). For instance, the calculation of the system of regu-

larized image singularities to create a no-slip plane presented in Section 2.5 will require

regularized singularities that are derived from a second cutoff function, ϕε [17]:

(2.36) ϕε(r) =
6ε2

8π(r2 + ε2)5/2
.

Figure 2.2 displays the normalized cutoff functions φ̂ε(r) = φε(r)
φε(0)

and ϕ̂ε(r) = ϕε(r)
ϕε(0)

.

Figure 2.2. Normalized cutoff functions φ̂ε(r) = φε(r)
φε(0)

and ϕ̂ε(r) = ϕε(r)
ϕε(0)

used to create regularized singularities.

2.4.1. Regularized Stokeslets. Rather than solving the singularly forced Stokes equa-

tions as in previous sections, consider solving the Stokes equations with a regularized
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forcing term at x0, again with x̂ = x− x0:

µ∆u = ∇p− fφε(x̂)(2.37)

∇ · u = 0.(2.38)

In an analogous manner to previous sections, one can represent a solution to (2.37) –

(2.38) with a regularized Stokeslet constructed from the cutoff function φε [19]:

(2.39) Sφεij = δij
r2 + 2ε2

(r2 + ε2)3/2
+

x̂ix̂j

(r2 + ε2)3/2
.

Notice that in the limit as ε→ 0, one recovers the expression for the Stokeslet, given in

(2.10):

lim
ε→0

Sφεij =
δij
r

+
x̂ix̂j
r3

= Sij.(2.40)

The velocity due to a regularized point force can be represented as

(2.41) uS,φεi (x) =
1

8πµ
Sφεij fj,

where Sφεij is the regularized Stokeslet derived from the cutoff function φε. Appendix C

contains a detailed derivation of the regularized Stokeslet.

Equation (2.41) provides a way to calculate the velocity at a location x due to a

regularized point force located at x0. Now, consider calculating the velocity at a point x

due to a collection of N regularized Stokeslets located at xn:

uS,φεi (x) =
1

8πµ

N∑
n=1

Sφεij (x− xn)fj,n.(2.42)

To calculate the fluid velocity at M locations due to N regularized Stokeslets, this rela-

tionship can be expressed in matrix form:

u(x) = Sφε(x,x0)f ,(2.43)
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where u is a 3M ×1 vector containing the velocity components at the locations x (3M ×

1), x0 is a 3N × 1 vector of regularized Stokeslet locations, f is a 3N × 1 vector of

force coefficients, and Sφε is a 3M × 3N matrix incorporating the regularized Stokeslet

information. When M = N , the matrix Sφε can be inverted to compute the forces

necessary to satisfy a given velocity boundary condition. This is the basis of the method

of regularized Stokeslets. Besides regularized Stokeslets, one can also develop analogous

regularized singularities to those discussed in Section 2.2 to be used in the system of

regularized image singularities and also in a an effort to regularize the exact solution.

2.4.2. Regularized Dipoles and Quadrupoles. The details of the regularized dipole

derivation are shown in Appendix F. A regularized point-source dipole using the cutoff

function ϕε is

Dϕε
ij = − δij

(r2 + ε2)3/2
+

3ε2δij

(r2 + ε2)5/2
+

3x̂ix̂j

(r2 + ε2)5/2
.(2.44)

The velocity resulting from such a regularized dipole is

uD,ϕεi =
1

4πµ
Dϕε
ij dj,(2.45)

where d = (d1, d2, d3) is the dipole strength [17]. Again, as in the singular case, the

regularized quadrupole is obtained by differentiating the regularized dipole with respect
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to its location:

Qϕε
ijk =

∂Dϕε
ij

∂x0,k

(2.46)

=
∂

∂x0,k

(
− δij

(r2 + ε2)3/2
+

3ε2δij

(r2 + ε2)5/2
+

3x̂ix̂j

(r2 + ε2)5/2

)
(2.47)

= − 3x̂kδij

(r2 + ε2)5/2
− 3x̂iδjk

(r2 + ε2)5/2
− 3x̂jδik

(r2 + ε2)5/2
+

15ε2x̂hδij

(r2 + ε2)7/2

+
15x̂ix̂jx̂k

(r2 + ε2)7/2
.(2.48)

The velocity produced by a regularized quadrupole is given by

uQ,ϕεi =
1

4πµ
Qϕε
ijkαjβk.(2.49)

The remaining regularized singularities necessary to construct regularized versions of

the exact and Blakeslet solutions, regularized stresslets and rotlets, are derived from a

regularized Stokes doublet, as discussed in Section 2.4.3.

2.4.3. Regularized Stokes Doublets, Stresslets, and Rotlets. To find the expres-

sion for the regularized Stokes doublet, differentiate a regularized Stokeslet with respect

to its location. The regularized Stokes doublet will utilize φε as its cutoff function:

SDφε
ijk =

∂Sφεij
∂x0,k

(2.50)

=
∂

∂x0,k

(
δij

r2 + 2ε2

(r2 + ε2)3/2
+

x̂ix̂j

(r2 + ε2)3/2

)
(2.51)

=
x̂kδij

(r2 + ε2)3/2
− x̂iδjk

(r2 + ε2)3/2
− x̂jδik

(r2 + ε2)3/2
+

3ε2x̂kδij

(r2 + ε2)5/2

+
3x̂ix̂jx̂k

(r2 + ε2)5/2
.(2.52)

The velocity produced by a regularized Stokes doublet is

uSD,φεi =
1

8πµ
SDφε

ij αjβk,(2.53)
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where α and β are strength coefficients [17]. Again, the regularized stresslet and the

regularized rotlet are derived from the symmetric and anti-symmetric parts, respectively,

of the regularized doublet:

SSφεijk =
1

2

(
SDφε

ijk + SDφε
ikj

)
(2.54)

= − x̂iδjk

(r2 + ε2)3/2
+

3ε2x̂kδij

2(r2 + ε2)5/2
+

3ε2x̂jδik

2(r2 + ε2)5/2
+

3x̂ix̂jx̂k

(r2 + ε2)5/2
(2.55)

Rφε
ijk =

1

2

(
SDφε

ijk − SD
φε
ikj

)
(2.56)

=
x̂iδij

(r2 + ε2)3/2
− x̂jδik

(r2 + ε2)3/2
+

3ε2x̂kδij

2(r2 + ε2)5/2
− 3ε2x̂jδik

2(r2 + ε2)5/2
.(2.57)

The velocity due to a regularized stresslet is

uSS,φεi =
1

8πµ
SSφεijkαjβk,(2.58)

and the velocity due to a regularized point torque (rotlet) is given by [17]

uR,φεi =
1

8πµ
Rφε
ijkαjβk.(2.59)

The calculation in Section 2.5 will also require a regularized rotlet derived from ϕε, which

is derived in Appendix E.

Now that the framework is set to find the velocity due to a variety of regularized

singularities, Section 2.5 will discuss how to implement a no-slip plane using a system of

regularized image singularities.

2.5. Regularized Image Singularities

Analogous to developing the image singularities used in the Blakeslet solution in

Section 2.3, this section will discuss how to implement a system of regularized image

singularities, first formulated by Cortez [18]. Again, the goal is to create a no-slip
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boundary condition on a plane at x3 = w. The setup is similar to that described in

Section 2.3. Consider a regularized Stokeslet in the flow domain at x0 = (x0,1, x0,2, x0,3).

The image singularities will be placed at y0 = (x0,1, x0,2, 2w − x0,3), which is outside of

the physical fluid domain of interest (see Figure 2.1). Let x = (x1, x2, w) be an arbitrary

point on the no-slip plane and let r represent the distance from that point to the locations

of the regularized Stokeslet and the images, r = |x − x0| = |x − y0|. Notationally, let

x̂ = x− y0.

As done previously in Section 2.3, start the collection of regularized image singularities

with a regularized Stokeslet at x0 and a regularize Stokeslet, dipole, and doublet at y0

(denoted by asterisks):

unet = uS,φε − uS,φε∗ + 2h

(
uSD,ϕε∗ − h

2
uD,φε∗

)
(2δi3 − 1)(2.60)

=
1

8πµ

[
6ε2xjhδi3

(r2 + ε2)5/2
− 6ε2h2δij

(r2 + ε2)5/2

]
fj,(2.61)

where h = x0,3−w. The calculation details of the system of regularized image singularities

are shown in Appendix F. As shown in (2.61), there are two non-zero terms remaining.

Thus, the system of regularized singularities requires more components than the system

built in Section 2.3. Specifically, including rotlets produced from both φε and ϕε will

eliminate the extra terms in (2.61). Appendix F contains the details involved with

calculating the desired combination of regularized image singularities.

The appropriate combination of regularized image singularities to create a no-slip

plane at z = w is [17]:

ui = uS,φεi − uS,φε∗i − 2h (1− 2δi3)

(
uSD,φε∗i − h

2
uD,ϕε∗i

)
+ (1− 2δi3)

(
uR,φε∗i − uR,ϕε∗i

)
.(2.62)
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The velocity due to this collection of regularized singularities can be expressed in a linear

fashion, similar to (2.41):

(2.63) ui(x) =
1

8πµ
Mij(x,x0)fj.

Here Mij contains the collective singularity information for the entire system of image

singularities. This will provide for the same implementation as the solution using only

regularized Stokeslets in free space, but with a different matrix.

2.6. Implementation

The mathematical relationship between forces and velocity in (2.43) and (2.63) is

used extensively in the models discussed in this manuscript. Consider using regularized

Stokeslets to model a rigid rod precessing with a prescribed angular velocity. Regular-

ized Stokeslets will be placed in the fluid to mimic the precessing rod. The manner of

distributing the regularized Stokeslets to represent a rod varies depending on whether

one is trying to model a slender or non-slender spheroid. This will be discussed further

in Chapters 3 and 4. Regardless, since the velocity is known at any point on the rod,

the linear relationship can be used to solve for the forces required to satisfy the velocity

at the specified locations on the rod. Consider u(x) = A(x,x0)f , where A is a matrix

containing regularized singularity information. For example, A = Sφεij from (2.43) when

modeling a rod in free space or A = Mij from (2.63) when implementing a no-slip plane.

The force is:

f =
[
Sφε(xrod,xrod)

]−1
u(xrod),(2.64)

where xrod is a 3N × 1 vector containing the locations of N regularized Stokeslets on

the rod. This matrix is not always invertible, as Cortez discusses in [19]. The condition
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number of this matrix will be discussed further in Sections 3.5 and 4.4. In the models

discussed in the coming chapters, the general minimal residual method (GMRES) [21, 58]

is used to solve for f in (2.64).

Once the forces for the regularized Stokeslets on the rod to satisfy the rod boundary

condition are known, they can be used to calculate the fluid velocity anywhere in the

fluid:

u(x) = Sφε(x,x0)f .(2.65)

Thus, the regularized singularity information is used to solve for both the forces on the

rod to satisfy the desired boundary condition and the fluid velocity anywhere in the

fluid domain. The calculation in (2.65) to evaluate the fluid velocity at M locations due

to N regularized forces is O(NM) at each time step, as Sφε is dense. As such, when

the system becomes large, the inversion of the matrix becomes expensive. Similarly,

implementing an efficient temporal integration method such as the multi-explicit spectral

deferred correction method discussed in Chapter 5 is advantageous because it reduces

the number of expensive dense linear system solves without a significant reduction in

temporal accuracy. It may be desirable to implement fast summation techniques, e.g. the

Fast Mulitpole Method [33] which is O(N +M), because this calculation is done in each

iteration of the GMRES method. Exploring this calculation in a more efficient manner

is a topic of future consideration.
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CHAPTER 3

Slender Prolate Spheroids

This chapter discusses the accuracy of using regularized singularities to model the

velocity generated by a slender spheroid precessing about its center. The different com-

ponents of the velocity error relating to regularization, quadrature, and slenderness will

be emphasized throughout this chapter. A consideration of the condition number of

the matrix relating fluid velocity with imposed regularized forces is also included. One

benefit of studying the numerical simulation built with regularized singularities with re-

spect to the exact closed form mathematical solution of Camassa et. al. and Leiterman

[11, 42] is to carefully study how the parameters of the computational model affect the

error between the two solutions.

With any numerical model, a complete picture of parameter choices and their relation

to numerical error with respect to an exact solution is desired. However, with many cur-

rent numerical methods, exact mathematical models are lacking for nontrivial problems.

As such, the work presented in this dissertation utilizes the exact mathematical solu-

tion of Camassa et. al. in comparison with the numerical model built with the method

of regularized Stokeslets to perform careful error analysis on a nontrivial flow problem.

Conducting a careful study of the relationship between the model parameters and the

error develops a sense of the best way to model a given situation. In other words, given

a physical situation one wants to model using regularized singularities, what is a good



(a) (b)

Figure 3.1. A slender spheroid precessing about its center in an infinite fluid.

distribution of singularities? Where should they be placed? How should the singular-

ity strengths be chosen? Where should boundary conditions be imposed? This chapter

explores these questions in the context of modeling a slender three dimensional spher-

oid. Regularized Stokeslets are placed along a one dimensional curve to represent the

spheroid. In Chapter 4, regularized Stokeslets are placed on a two dimensional surface

to model a non-slender spheroid.

3.1. Physical Setup

Consider the task of modeling a slender prolate spheroid of length 2L and radius

R with cone angle θ (measured from the horizontal to the centerline of the spheroid).

Figure 3.1 depicts the variables used to describe a slender spheroid precessing about its

center in free space. Define a slenderness parameter, σ, as the ratio of the spheroid’s

diameter to its length:

(3.1) σ =
R

L
.
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The assumption that the spheroid is slender implies σ � 1. Although this is a three

dimensional object, it is desirable to represent the spheroid with a one dimensional line

of regularized Stokeslets to reduce computational cost. Consider spacing the regularized

Stokeslets evenly along the major axis of the spheroid. If all regularized Stokeslets have

the same spreading parameter, the effective shape of the collection of singularities is

cylindrical. However, one can also consider varying the spreading parameter along the

length of the rod in an ellipsoidal fashion, for example, to more closely mimic a prolate

spheroid. The numerical explorations in Section 3.3 include results where the spreading

parameter both remains constant and varies ellipsoidally along the length of the body.

This chapter addresses how to choose the number of regularized Stokeslets and the

spreading parameters to model a slender spheroid of a given slenderness so as to minimize

the velocity error with respect to the exact solution that is discussed in Section 1.3.1.

First, the effect of varying the spreading parameter proportionally to the radius of the

spheroid will be compared to keeping the spreading parameter constant will be discussed.

Second, the component of the regularization error due to the discrepancy between the

Stokeslet strengths imposed in the slender asymptotic solution of Section 1.3.2 and the

regularized Stokeslet strengths solved for in the numerical solution will be discussed.

Third, the difference between evaluating the boundary condition at the location of the

regularized Stokeslets and the surface of the slender spheroid will be investigated. Lastly,

the condition number of the matrix relating regularized forces to fluid velocities will be

discussed. The results of this chapter show that there are choices one can make in

the numerical solution that provide more accurate results than the slender asymptotic

solution and provide guidance on how to minimize the velocity error.
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3.2. Quantifying Error

This section identifies different components of the velocity error between the numerical

solution for a slender spheroid precessing about its center in free space and the exact

solution of Camassa et. al. and Leiterman [11, 42] that is discussed in Section 1.3.1.

The error has contributions due to quadrature, regularization, slenderness, and time

integration. The slenderness error arises because the numerical solution only utilizes

regularized Stokeslets, but the exact solution uses stresslets, quadrupoles, and rotlets.

This error depends on slenderness, as was shown in the case of the slender asymptotic

solution in Section 1.3.2. The temporal integration error will be discussed separately

in Chapter 5. It will be shown that the quadrature error is often smaller than the

regularization and slenderness error. In Chapters 3 and 4, the error analysis is always

conducted at the initial time step to eliminate the temporal integration error from the

present discussion.

Chapters 3 and 4 focus on the numerical results for modeling two different classes of

spheroids: slender and non-slender. The numerical velocity results will often be compared

to the exact analytical solution that was discussed in Section 1.3.1. While the error will be

plotted as |uexact−uS,φε|, where uS,φε represents the velocity calculated with regularized

Stokeslets, it is important to recognize that there are multiple components of the error,

as will be discussed here.

Consider starting with the velocity error represented by the exact solution in (1.4)

and working towards the velocity calculated with a collection of regularized Stokeslets,

referred to as the numerical solution. A compressed representation of the ith component
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of the exact velocity generated by a prolate spheroid is

uexacti =

∫ c

−c

[
K1u

SS
i +K2u

Q
i +K3u

R1
i +K4u

R2
i

]
ds,(3.2)

where K1, K2, K3 and K4 are functions of s and represent the velocity coefficients from

(1.4). The velocity due to a collection of N regularized Stokeslets can be represented as

uS,φεi =
N∑
n=1

uS,φεi,n qn,(3.3)

where uS,φεi,n is the velocity due to the nth regularized Stokeslet, as given in (2.41), and

qn is a quadrature weight. Note that uS,φεi can also be represented without the sum

as uS,φεi = 1
8πµ

Sφεij fj, where f has dimensions 3M × 1, Sφε is 3M × 3N , and M is the

number of places where the velocity is calculated. The first representation will be used

for the purposes of this discussion, but the second is how the velocity is implemented, as

discussed in Section 2.6.

The error between the exact solution and the numerical solution can be expressed as:

∣∣∣uexacti − uS,φεi

∣∣∣ =

∣∣∣∣∣
∫ c

−c

[
K1u

SS
i +K2u

Q
i +K3u

R1
i +K4u

R2
i

]
ds−

N∑
n=1

uS,φεi,n qn

∣∣∣∣∣(3.4)

=

∣∣∣∣∫ c

−c

[
K1u

SS
i +K2u

Q
i +K3u

R1
i +K4u

R2
i

]
ds−

∫ L

−L
uSi ds

+

∫ L

−L
uSi ds−

N∑
n=1

uSi,nqn +
N∑
n=1

uSi,nqn −
N∑
n=1

uS,φεi,n qn

∣∣∣∣∣ .(3.5)

Using the triangle inequality, one obtains

∣∣∣uexacti − uS,φεi

∣∣∣ ≤ ∣∣∣∣∫ c

−c

[
K1u

SS
i +K2u

Q
i +K3u

R1
i +K4u

R2
i

]
ds−

∫ L

−L
uSi ds

∣∣∣∣
+

∣∣∣∣∣
∫ L

−L
uSi ds−

N∑
n=1

uSi,nqn

∣∣∣∣∣+

∣∣∣∣∣
N∑
n=1

uSi,nqn −
N∑
n=1

uS,φεi,n qn

∣∣∣∣∣ .(3.6)
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For discussion purposes, define

ξ1 =

∣∣∣∣∫ c

−c

[
K1u

SS
i +K2u

Q
i +K3u

R1
i +K4u

R2
i

]
ds−

∫ L

−L
uSi ds

∣∣∣∣(3.7)

ξ2 =

∣∣∣∣∣
∫ L

−L
uSi ds−

N∑
n=1

uSi,nqn

∣∣∣∣∣(3.8)

ξ3 =

∣∣∣∣∣
N∑
n=1

uSi,nqn −
N∑
n=1

uS,φεi,n qn

∣∣∣∣∣ .(3.9)

As mentioned in Section 1.3, the slender asymptotic solution is represented by an

integral of Stokeslets (see (1.10)). Thus, ξ1 represents the error between the exact solution

for a prolate spheroid and the asymptotic solution for a slender prolate spheroid discussed

in Sections 1.3.1 and 1.3.2, respectively. As Camassa et. al. and Leiterman report in

[11, 42], the asymptotic solution is asymptotic in slenderness with order β =
[
ln
(

2
σ

)]−1
,

where σ is the slenderness of the spheroid defined in (3.1).

The second error term, ξ2, represents quadrature error. Using either the midpoint rule

or trapezoid rule, ξ2 is second order in h, where h represents the regularized Stokeslet

spacing. Consider studying the quadrature error with respect to a reference solution

for both the exact solution that utilizes stresslets, quadrupoles, and rotlets (Section

1.3.1) and the asymptotic solution that only invokes Stokeslets (Section 1.3.2). Figure

3.2 shows the velocity error as a function of singularity spacing h. For both solutions,

the reference solution is computed with the exact solution. To simplify notation, let

χexacti = K1u
SS
i +K2u

Q
i +K3u

R1
i +K4u

R2
i . Then, the velocity error for the exact solution

is

∣∣∣∣∣
N∑
n=1

χexactn qn −
1000∑
n=1

χexactn qn

∣∣∣∣∣ .(3.10)
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Figure 3.2. Velocity error between the exact and slender asymptotic so-

lutions averaged over the marker locations shown in Figure 3.3. The error

is calculated with respect to a reference solution of the exact solution com-

puted with many singularities.

Similarly, define the velocity error for the slender asymptotic solution as∣∣∣∣∣
N∑
n=1

uSi qn −
1000∑
n=1

χexactn qn

∣∣∣∣∣ .(3.11)

Again, notice that in both cases, the reference solution for the exact solution is being used

to compare the results of the Stokeslet solution as well. As such, one would expect to see

second order convergence in the exact solution as a result of visualizing the quadrature

error. In studying the velocity error in (3.11) for the slender asymptotic solution, one

might anticipate that the error will depend on slenderness with the initial convergence

rate due to quadrature, but then the error will stabilize and decrease with σ. Figure

3.2 demonstrates second-order behavior in the exact solution. This figure also shows

that the error decreases for the slender asymptotic solution as the slenderness parameter

decreases, which justifies the earlier claim that the quadrature error is small with respect

to the other errors discussed here.
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The third error term, ξ3, represents the regularization error created by replacing

singular Stokeslets with regularized Stokeslets. Cortez reports that the regularization

error is O(ε) in the near field and O(ε2) in the far field [19]. Replacing uSi and uS,ϕεi with

their definitions from (2.11) and (2.41), the regularization error can be further divided

as follows:

ξ3 =

∣∣∣∣∣
N∑
n=1

Sijαj,nqn −
N∑
n=1

Sφεij fj,nqn

∣∣∣∣∣(3.12)

=

∣∣∣∣∣
N∑
n=1

Sijαj,nqn −
N∑
n=1

Sφεij αj,nqn +
N∑
n=1

Sφεij αj,nqn −
N∑
n=1

Sφεij fj,nqn

∣∣∣∣∣(3.13)

≤

∣∣∣∣∣
N∑
n=1

Sijαj,nqn −
N∑
n=1

Sφεij αj,nqn

∣∣∣∣∣+

∣∣∣∣∣
N∑
n=1

Sφεij αj,nqn −
N∑
n=1

Sφεij fj,nqn

∣∣∣∣∣ .(3.14)

Define

ξ3a =

∣∣∣∣∣
N∑
n=1

Sijαj,nqn −
N∑
n=1

Sφεij αj,nqn

∣∣∣∣∣(3.15)

ξ3b =

∣∣∣∣∣
N∑
n=1

Sφεij αj,nqn −
N∑
n=1

Sφεij fj,nqn

∣∣∣∣∣ .(3.16)

The error in ξ3a is only due to the fact that a regularized Stokeslet is used in place of

a Stokeslet while the strengths are prescribed by the asymptotic solution. As shown in

(2.40), Sφε → S as ε → 0. This error will be negligible away from the spheroid. The

error in ξ3b is the dominant component of ξ3. This is due to the discrepancy between the

prescribed Stokeslet strengths in the closed form asymptotic solution α and the forces

solved for to match the boundary condition in the numerical solution, f . This will be

studied further in Section 3.3, specifically discussing the convergence of fn(ε,N) to αn.

All three components of the velocity error, ξ1, ξ2, and ξ3, are present in the numerical

studies in the remainder of this discussion, but it is often the case that some of these
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errors are subdominant to others. Most often, the quadrature error ξ2 will be smaller

than the other errors.

In addition to the aforementioned types of error, for time dependent problems there

is also time integration error to take into account, which will be discussed further in

Chapter 5. Spectral deferred correction methods provide an efficient time integrator so

that time integration error is kept small. In the error discussions in this chapter and

Chapter 4, the velocity error is computed at the initial position of the fluid particle.

Small time integration errors are not introduced into the solution until the position of

the fluid particle is updated.

3.3. Varying the Spreading Parameter

A natural question that might arise is: How should the spreading parameter vary

based on the geometry of a slender three dimensional object? Alternatively, what is the

best way to distribute regularized Stokeslets and choose the spreading parameter to best

model a spheroid of a given slenderness? First consider placing regularized Stokeslets

along the centerline of the spheroid and varying the spreading parameter, ε, ellipsoidally

along the length of the body. To gauge how well this models a spheroid of a given

slenderness, consider comparing the velocity calculated with regularized Stokeslets for a

range of spreading parameters and spacing against the velocity from the exact solution

generated by a spheroid of slenderness σ = 0.01. The velocity will be calculated at 14

locations away from the rod, as shown in Figure 3.3. The rod, shown in blue, initially lies

in the xz-plane as do the 14 initial marker positions, shown in red. Figure 3.4 shows the

velocity error as a function of spreading parameter, where the velocity error is measured

as |u(x, σ) − ũ(x, ε, N)|. u(x, σ) represents the initial velocity calculated at x with the
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Figure 3.3. Initial position of regularized Stokeslets and fluid markers

where velocity is calculated.

exact solution for a spheroid of radius σ, and ũ(x, ε, N) is the initial velocity calculated

at x with N regularized Stokeslets and spreading parameter ε. While the spreading

parameter actually varies as

ε(s) = ε

√
1− s2

L2
,(3.17)

where s ∈ [−L,L] parameterizes the rod length, the reported value of spreading parame-

ter in plots and discussions is the ε coefficient from (3.17)1. The cone angle is θ = 3π
10

and

the rod length in both the exact and numerical cases is 2 (L = 1). For the data shown

in Figure 3.4, one would expect the error to approach that of the slender asymptotic so-

lution as ε→ 0 and N →∞. As shown later in this section, that indeed is the case, but

the minimum in the error for moderate spreading parameters shows that another choice

1It should be noted that the spreading parameter need not vary with rod geometry as in (3.17). This
is a particular case, not an exhaustive description. Other variations of distributing ε along the length of
the spheroid are discussed later in this section.
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Figure 3.4. Velocity error between the exact and regularized Stokeslet

solutions (|u(x, σ)− ũ(x, ε, N)|) averaged over the marker locations shown

in Figure 3.3. The spreading parameter varies along the length of the body

according to (3.17). Notice that the error is minimized for ε such that

ε ≈ 4.3σ.

of ε can further reduce the error beyond the slenderness error mentioned in Section 3.2.

Figure 3.5 shows a zoomed in view of the local minima in Figure 3.4. Notice that the

error is minimized for ε ≈ 0.043, N = 250, and σ ≈ 0.233ε. This provides evidence

that there are scenarios where modeling the spheroid with regularized Stokeslets is more

accurate than the slender asymptotic solution with respect to the exact solution. Recall

from Figure 3.2 that the error in the slender asymptotic solution of Camassa et. al. is

on the order of 10−3, while the error resulting from the numerical model using regular-

ized Stokeslets can reach 10−5, as shown in Figure 3.5. Thus, it is possible to decrease
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the velocity error by a few orders of magnitude in the numerical solution depending on

parameter choice.

Figure 3.5. Alternate view of the velocity error between the exact and

regularized Stokeslet solutions shown in Figure 3.4.

The relationship between the spreading parameter that produces a local minima in

the velocity error and the number of regularized Stokeslets is summarized in Figure 3.6.

The data is fit with a fourth degree polynomial relating ε and h. Notice that as h → 0,

ε→ 0.042758 according to the equation reproduced from the legend in Figure 3.6.

Now consider looking at the velocity error resulting from a slender rod precessing

about its center with spreading parameters that do not vary along the body length.

That is, let

ε(s) = ε.(3.18)

Figure 3.7 shows the velocity error again, but with constant spreading parameter for each

regularized Stokeslet as in (3.18). The axes are scaled the same as in Figure 3.4, but a
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Figure 3.6. Spreading parameter versus singularity spacing that generate

the local minima in velocity error from Figure 3.4 for a slender spheroid

with tapered spreading parameters.

Figure 3.7. Velocity error between the exact and regularized Stokeslet

solutions (|u(x, σ)− ũ(x, ε, N)|) averaged over the marker locations shown

in Figure 3.3. The spreading parameter is the same for each regularized

Stokeslet comprising the spheroid, as in (3.18).
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larger range of spreading parameters are shown in Figure 3.7. Notice that the minimum

velocity error is not as small as when the spreading parameters are tapered in Figure

3.4. This suggests that incorporating tapered spreading parameters with appropriately

chosen parameters can be more accurate than either using regularized Stokeslets with

the same spreading parameters or the slender asymptotic closed form solution of Section

1.3.2, as will be shown in Section 3.4. Also, the minima do not converge as nicely

as N increases in the constant spreading parameter case (Figure 3.7) as in the tapered

spreading parameter case (Figure 3.4). This makes it more difficult to suggest a spreading

parameter to model a general physical configuration. Figure 3.8 shows the spreading

parameter versus singularity spacing for the local minima in the constant spreading

parameter case in Figure 3.7. Notice as h → 0, ε → 0.016659, which is approximately

σ = 0.01. This suggests that to model a spheroid of a given slenderness, when one uses

tapered singularity strengths, the ε that minimizes velocity error is approximately four

times larger than σ, but when the spreading parameter is constant, ε should be chosen

only slightly larger than the actual slenderness of the rod. When ε is chosen properly,

the initial velocity error is smaller for the tapered case than the constant case, suggesting

that tapering the spreading parameter is a desirable choice.

Now consider the form of the singularity strengths for each of the cases where the

spreading parameter is tapered or constant, as in 3.17 and 3.18, respectively. As men-

tioned in Section 3.2, there is a component of the velocity error that is due to the fact

that the strength of the regularized Stokeslets solved for in (2.64) may not match the

Stokeslet strengths prescribed by (1.12) in the slender asymptotic solution discussed in

Section 1.3.2. This error component is labeled ξ3b in Section 3.2. As shown in Figure 3.3,

the centerline of the spheroid lies in the xz-plane. Its initial velocity is in the y-direction
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Figure 3.8. Spreading parameter versus singularity spacing that generate

the local minima in velocity error from Figure 3.7 for a slender spheroid

with constant spreading parameters.

in this configuration. As such, the x- and z-components of the singularity strengths will

intuitively be zero since the strength correlates to the magnitude of the force exerted on

the fluid. In other words, since the velocity of the rod is initially in the y-direction, it only

exerts a force on the fluid in the y-direction at that time. As such, only the y-component

of the singularity strength is plotted in Figure 3.9 as a function of s, which parameterizes

the length of the spheroid. This figure shows the imposed Stokeslet strength from (1.12)

for the slender asymptotic solution as well as the regularized Stokeslet strengths that

are computed to satisfy the no-slip boundary condition at the centerline of the spheroid.

The strengths are shown for both aforementioned cases where the spreading parameters

vary along the body length and as well as remain constant ((3.17) and (3.18), respec-

tively). Observe that the behavior near the tips of the spheroid differs for the tapered

and constant spreading parameter cases.
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Figure 3.9. Computed regularized Stokeslet strengths versus position

along rod for the tapered and constant spreading parameter scenarios with

N = 50 regularized Stokeslets, slenderness σ = 0.01, and spreading pa-

rameter ε = 0.01. The dashed line represents the Stokeslet strengths from

(1.12) used in the slender asymptotic solution.

Figure 3.10 shows the regularized Stokeslet strengths for the tapered (Figure 3.10(a))

and constant (Figure 3.10(b)) cases for a variety of spreading parameters with fixed num-

ber of regularized Stokeslets N = 50 and slenderness σ = 0.01. Notice that for these

figures where the singularity spacing h is fixed, as the spreading parameter decreases

the regularized Stokeslet strength approaches the Stokeslet strength for the slender as-

ymptotic solution. Alternatively, as ε increases for fixed h, oscillations appear in the

strength, particularly in the constant spreading parameter case compared to the tapered

ε case. For plots of this nature made with more regularized Stokeslets (smaller h), the

oscillations become more pronounced in both the tapered and constant cases and appear

for smaller ε values. This behavior may be related to the condition number of the matrix
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(a)

(b)

Figure 3.10. Computed regularized Stokeslet strengths versus position

along rod for (a) tapered and (b) constant spreading parameter scenarios

with N = 50 regularized Stokeslets and slenderness σ = 0.01 for a variety of

spreading parameters. The dashed line represents the Stokeslet strengths

from (1.12) used in the slender asymptotic solution.

that is inverted in solving for the regularized Stokeslet strength. As will be discussed in

Section 3.5, the condition number of the matrix increases as h
ε

decreases.
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Consider varying the spreading parameter, ε, along the length of the spheroid as

follows:

(3.19) ε = R

(√
1− s2

L2

)ζ

,

where s ∈ [−L,L] parameterizes the length of the body and ζ is a parameter that controls

the tapering of the spreading parameters. When ζ = 0, the spreading parameters will

be constant along the length of the rod and when ζ = 1, ε will vary with the radius of

the spheroid itself. The two cases when ζ = 0 and ζ = 1 correspond to the constant and

tapered spreading parameters discussed in Section 3.3. The discussion in this section

samples for a wider range of ζ values.

The asymptotic analytical solution for a slender prolate spheroid rotating about its

center in free-space only uses Stokeslets to calculate the fluid velocity. This solution,

asymptotic in σ, derives Stokeslet strengths that vary linearly with position along the

body. Thus, in addition to solving for the regularized Stokeslet strengths that satisfy

a given boundary condition, the calculated Stokeslet strengths will be imposed on the

regularized Stokeslets to gain insight into the different components of error.

In the error plots shown in Figure 3.11, the results of the regularized Stokeslet

solution for a sampling of ζ ∈ [0, 1] are compared with the results of the regular-

ized Stokeslet solution imposed with the asymptotic singularity strengths. The er-

ror plotted for the regularized Stokeslet solution with computed singularity strengths

is ηC = 1
Nt

∑Nt
i=1 |ue(xi) − uRS(xi; q, ζ, f)|, while the error for the imposed singularity

strength from the slender asymptotic solution is ηI = 1
Nt

∑Nt
i=1 |ue(xi)− uRS(xi; q, ζ,α)|.

Notice the difference between ηC and ηI is the singularity strength. f represents the
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regularized Stokeslet strengths that are computed by the numerical method and α rep-

resents the imposed Stokeslet strengths given in the slender asymptotic solution. Within

each subplot, each data series has a different value of ζ, from (3.19). Each subplot has a

different fixed value of q increasing from top left to bottom right, where q is defined as

the ratio of singularity spacing to spreading parameter:

q =
h

ε
.(3.20)

For small values of q, the error of the regularized Stokeslet solution becomes more than

an order of magnitude smaller than the error of the regularized Stokeslet solution with

imposed analytical Stokeslet strengths. This behavior occurs regardless of the ζ value,

allowing one to conclude that independent of the choice of spreading parameter ε, the

regularized Stokeslets can provide a more accurate solution than the analogous asymp-

totic solution. It should be noted that while this occurs for the range of ζ values shown

here, the h (and consequently ε) values that minimize the error do depend on ζ. However,

as q increases, the discrepancy becomes less noticeable to the point that the error in the

regularized Stokeslet solution increases beyond the level of the regularized Stokeslet so-

lution with imposed strengths as h decreases. When the spreading parameter ε is small,

the exponent ζ does not effect the error much. However, for larger spreading parameters,

ζ has a more significant effect.

Figure 3.12 displays the velocity error as a function of spreading parameter for the

largest and smallest q values sampled: q = 0.6 and q = 5, each shown in a different subplot

with ζ = 1. The data series within each subplot have fixed slenderness parameters.

Notice that for small h, the error decreases as the slenderness parameter σ decreases.

This is consistent with the idea that imposing the velocity boundary condition along the
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Figure 3.11. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed slenderness σ = 0.01 when the boundary condition is

imposed at the location of the regularized Stokeslets along the centerline.

Each subplot has a fixed q = h
ε

value and each data series has a fixed ζ

value (defined in (3.19)). The dashed line represents the error from the

solution with the singularity strength from the slender asymptotic solution

(α) imposed on the regularized Stokeslets.

centerline of the spheroid will become less accurate as slenderness parameter increases

as discussed earlier in this section. In the large q case, ε is small when compared to

h. As h → 0, ε → 0 as well, which creates a regime where the regularized solution

should approach the singular solution. Thus, it is not surprising that the error in the
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Figure 3.12. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed ζ = 1 when the boundary condition is evaluated at

the location of the regularized Stokeslets. Each subplot has a fixed q = h
ε

for a variety of slenderness parameters.

regularized Stokeslet solution approaches the error in the regularized Stokeslet solution

with the singular forces imposed.

3.4. Varying the Location of Boundary Conditions

This section will explore how imposing the no-slip boundary condition at different lo-

cations affects the velocity error. The exact solution is derived by analytically evaluating

the no-slip boundary condition on the surface of a spheroid where the solid body is in

direct contact with the fluid. When using regularized Stokeslets to model the spheroid,

consider three different ways of imposing the boundary condition, the first of which is

the traditional approach:

(1) Match the fluid velocity with the velocity along the centerline (major axis) of

the spheroid (Figure 3.13(a))
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(2) Match the fluid velocity with the velocity along a projection of the spheroid’s

centerline onto its surface (Figure 3.13(b))

(3) Match the fluid velocity with the velocity along a curve that lies on the surface

of the spheroid, but is not a projection of the centerline (Figure 3.13(c)).

The first method is the traditional approach often taken in applications of the method of

regularized Stokeslets in the sense that the velocity boundary conditions are imposed at

the locations of the regularized Stokeslets [19]. The second and third methods differ from

the first in the fact that the boundary conditions are imposed away from the regularized

Stokeslets. The effectiveness of each of these methods depends on σ. If σ is small, then the

rod is slender and the velocity at the centerline will not differ much from the velocity at

the surface. However, as σ increases, the discrepancy between the centerline and surface

velocities increases as the surface moves further away from the extent of the regularized

forces being exerted at the centerline. When the slenderness parameter increases to

the point when it is no longer reasonable to approximate the spheroid with a line of

regularized Stokeslets, one can transition to distributing the regularized Stokeslets along

the surface rather than on a curve. This will be discussed in further detail in Chapter 4.

The numerical explorations discussed in the remainder of this section have the fol-

lowing in common: the initial velocity of the numerical regularized Stokeslet solution is

compared with the initial velocity calculated with the exact, free-space analytical solu-

tion. The error plotted in the figures is calculated by averaging the difference in velocity

over multiple locations in the fluid. That is, if ue(x) represents the exact solution and

uRS(x) represents the regularized Stokeslet solution for the velocity at some location in

the fluid x, then the error, η, is calculated as η = 1
Nt

∑Nt
i=1 |ue(xi) − uRS(xi)|, where Nt
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(a) Method (1)

(b) Method (2)

(c) Method (3)

Figure 3.13. Three different methods for implementing the velocity

boundary condition for a slender spheroid. The blue dots along the cen-

terline represent the location of the regularized Stokeslets and the black

ellipse represents the surface of the spheroid used in the exact solution.

The red circles denote where the boundary condition is imposed in each of

the three cases: (a) on the centerline, (b) on a projection of the centerline

onto the surface, and (c) on curve that wraps around the surface of the

spheroid in a helical fashion.
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is the number of tracer locations in the fluid where the velocity is calculated and | · |

represents the Euclidean norm.

3.4.1. Projected Boundary Condition. Now consider implementing the boundary

condition using the second method mentioned above, namely matching the fluid velocity

with the velocity along a projection of the spheroid’s centerline onto its surface. In

this study, the centerline is projected orthogonally with respect to the xz-plane into the

positive y-direction. Thus, since the motion of the rod is counterclockwise when looking

down onto the xy-plane, this is the leading part of the spheroid as it rotates about the

z-axis. The locations to evaluate the boundary condition are given by:

(3.21) xbc = (s cos θ, r(s), s sin θ),

where

(3.22) r(s) = σ

√
1−

( s
L

)2

is the radius of the spheroid at a position s along the length of the body and θ describes

the tilt of the rod. θ is measured from the positive x-axis to the centerline of the spheroid,

as shown in Figure 3.1(b). Figure 3.14 shows the velocity error versus singularity spacing

for this scenario where the boundary condition is evaluated at the projection of the

centerline onto the surface of the spheroid. Each subplot has a fixed q value increasing

from top left to bottom right. Within each subplot, the data series correspond to fixed ζ

values, as described in (3.19). Notice that as h→ 0, the error no longer approaches that

of the asymptotic solution, rather it levels off almost an order of magnitude less. This is

evidence again of a way to choose the spreading parameters and implement the boundary

conditions to get a more accurate solution than the slender asymptotic solution discussed
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Figure 3.14. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed slenderness σ = 0.01 when the boundary condition is

imposed at the projection of the regularized Stokeslets onto the surface of

the spheroid. Each subplot has a fixed q = h
ε

value and each data series

has a fixed ζ value (defined in (3.19)). The dashed line represents the error

from the solution with the singularity strength from the slender asymptotic

solution (α) imposed on the regularized Stokeslets.

in Section 1.3.2. Figure 3.15 again shows the velocity error as a function of h for ζ = 1,

but only for two q values, each shown in different subplots. Each data series represents

a different slenderness. Notice again that the velocity error decreases as the slenderness

parameter decreases.

3.4.2. Helical Boundary Condition. Now consider the third method to implement

the boundary condition: match the fluid velocity with the rod velocity on the surface,
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Figure 3.15. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed ζ = 1 when the boundary condition is evaluated at the

projection of the regularized Stokeslets onto the surface of the spheroid.

Each subplot has a fixed q = h
ε

for a variety of slenderness parameters.

but not along a simple projection of the centerline. In this case, the points to evaluate

the boundary condition, xbc, are given by

(3.23) xbc = (s cos θ, r(s) cosφ, r(s) sinφ sin θ),

where

φ = 0, dφ, 2dφ, 3dφ, . . . , 2π − dφ,

dφ =
2π

N
,

r(s) is given by (3.22), θ measures the tilt of the spheroid, and N is the number of

regularized Stokeslets along the centerline of the spheroid. These points wrap around

the surface of the spheroid in a helical fashion. Figure 3.16 shows the velocity error as a

function of h for σ = 0.01 when the boundary condition is evaluated in a helical fashion

on the surface of the spheroid. Each subplot has a fixed q value, with q increasing from
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the top left subplot to the bottom right subplot. The data series within each subplot have

fixed ζ values. Again, the most striking feature of these plots is that for small h, the error

lies below the error from the imposed solution regardless of the value of q. This leads

to the conclusion that evaluating the velocity boundary condition on the surface of the

spheroid produces smaller errors for small h than prescribing the regularized Stokeslet

strengths from the closed form slender asymptotic solution presented in Section 1.3.1.

Figure 3.17 shows the velocity error as a function of singularity spacing with ζ = 1 for

q = 0.6 and q = 5, each shown in a different subplot. Each data series represents a

different spheroid slenderness. Notice again that for small h, the velocity error decreases

as the slenderness parameter decreases.

When evaluating the boundary condition along the centerline, there are choices of

h, ε, and ξ that can produce even smaller errors than when the boundary condition is

evaluated at the surface. Unfortunately, it is not obvious how to choose these values a

priori and they are somewhat sensitive. However, in the worst case scenario where the

parameters are not chosen to precisely minimize the velocity error, the accuracy of the

numerical method still matches that of the slender asymptotic solution.

Figure 3.18 summarizes the information discussed in this section. Again, this figure

shows the velocity error as a function of h for small and large q = h
ε

values with ζ = 1

and σ = 0.01. Each data series represents a different method of imposing the boundary

conditions, as discussed above. For q = 0.6, all three methods of imposing the boundary

condition with the numerical solution produce smaller error as h → 0 than the solution

with the singularity strengths imposed according to the slender asymptotic solution,

as given by (1.12). However, for some moderately larger h (and ε) values, the accuracy

improves for the case where the boundary condition is evaluated at the centerline (method
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Figure 3.16. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed slenderness σ = 0.01 when the boundary condition is

imposed in a helical fashion on the surface of the spheroid. Each subplot

has a fixed q = h
ε

value and each data series has a fixed ζ value (defined

in (3.19)). The dashed line represents the error from the solution with the

singularity strength from the slender asymptotic solution (α) imposed on

the regularized Stokeslets.

(1)), but not as much for the other two methods of imposing the boundary conditions.

When you evaluate the boundary conditions on the centerline, an effective radius appears

whereas this is not the case when the boundary conditions are evaluated at the surface.

This feature is not noticeable for the larger q = 5 case. One common feature that appears

to be independent of q is the fact that the velocity error decreases as the slenderness
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Figure 3.17. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed ζ = 1 when the boundary condition is evaluated in

a helical fashion on the surface of the spheroid. Each subplot has a fixed

q = h
ε

for a variety of slenderness parameters.

parameter decreases. That is, modeling a spheroid with regularized Stokeslets along its

centerline gains accuracy as the spheroid becomes more slender.

The data presented in this section suggests that there are options for choosing the

spreading parameter and where to impose the no-slip boundary conditions when using

regularized Stokeslets that produce smaller velocity error than the slender asymptotic

solution. The singularity strengths discussed in Section 3.3 along with the data shown

in this section may suggest more accurate methods of distributing regularized Stokeslet

strengths than (1.12) of the slender asymptotic solution.

3.5. Condition Number

Consider investigating the condition number of the matrix, A = 1
8πµ

Sφεij (from (2.39)),

relating the singularity strength, f , with the velocity computed at the collection of regu-

larized Stokeslets, u, by u = Af . There is a relationship between condition number and
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Figure 3.18. Error in initial velocity as a function of regularized Stokeslet

spacing, h, for fixed ζ = 1 and σ = 0.01 with the boundary condition im-

plemented three different ways (described at the beginning of Section 3.4).

The dashed line represents the error from the solution with the singularity

strength from the slender asymptotic solution (α) imposed on the regular-

ized Stokeslets.

q = h
ε

as evidenced by Figure 3.19. This figure shows the condition number of A as a

function of 1
q

= ε
h

for both the tapered and constant spreading parameter cases shown in

Figures 3.4 and 3.7, respectively.

To avoid potentially losing numerous significant digits in the accuracy of the com-

puted singularity strengths, one should consider h
ε
> c. The constant c can be chosen

appropriately to keep condition numbers within a desired range. A reasonable choice of c

is 0.5. This restriction makes computing reference solutions difficult for large values of ε

while remaining in the desired range of condition numbers. Despite the fact that efforts

are made to avoid choices of h
ε

that lead to ill-conditioned matrices, one can check the

extent to which the condition number indeed is affecting the accuracy of the singularity
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Figure 3.19. Condition number versus ε
h

for σ = 0.01 with varying ε and

N for the data shown in Figures 3.4 and 3.7.

strengths. Since u is prescribed, f is the remaining unknown quantity. Once the linear

system has been solved for f , consider the quantity u− Af as a measure of the effect of

the condition number.

3.6. Summary

The results of this chapter suggest how to choose the parameters of the numerical

solution to minimize the initial velocity error. Here are some observations discussed in

this chapter:

• The quadrature error is small with respect to the slenderness and regularization

errors.

• The dominant component of the regularization error comes from the discrepancy

between the imposed Stokeslet strengths α in the slender asymptotic solution

of Camassa et. al. in Section 1.3.2 (see (1.12)) and the regularized Stokeslet
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strength f solved for with the numerical method to satisfy the desired velocity

boundary condition.

• When the boundary condition is imposed at the centerline and the spreading

parameters are tapered according to the radius of the spheroid, the smallest

velocity error is produced. To achieve this, one should choose the spreading pa-

rameter at the center of the spheroid, ε, to be roughly four times the slenderness,

σ.

• Other choices of how to impose the boundary condition and choose the spreading

parameter and singularity strengths also show desirable error results. That is,

the velocity error from the numerical solution remains smaller than the velocity

error from the slender asymptotic solution.

The next chapter discusses the parameter choices that minimize the velocity errors asso-

ciated with modeling a non-slender spheroid with regularized Stokeslets.
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CHAPTER 4

Non-Slender Prolate Spheroids

This chapter discusses how to choose parameters to best model a non-slender spheroid

with regularized Stokeslets to minimize error. As was the case in Chapter 3, time inte-

gration error will not play a role in the discussion in this chapter since the instantaneous

velocity error is calculated at the initial time. The temporal error will be discussed in

Chapter 5. It will be shown that a change in the radius of the spheroid results in linear

convergence in the exact solution. Similarly, when regularized Stokeslets are placed on

the surface of a spheroid with q = h
ε

fixed, the error decreases linearly with ε. This

is indicative of an effective radius, i.e. the collection of regularized Stokeslets models a

spheroid of a slightly larger size than intended. However, to use this fact as an advantage,

Section 4.3 discusses placing the regularized Stokeslets on a slightly inset surface so that

the size of the effective spheroid matches the desired spheroid. When placing regularized

Stokeslets inside the spheroid, two choices of boundary condition implementation will be

discussed: evaluating the velocity at the regularized Stokeslet location and evaluating the

velocity at the effective surface. It will be shown how to choose the number and location

of inset regularized Stokeslets and their spreading parameters to minimize the velocity

error.

Parallels will be drawn between the slender and non-slender cases discussed in Chap-

ters 3 and 4 , respectively. The slender case provides information that not only relates



closely to the experimental data motivated by the biological applications concerning cilia,

but also allows for comparison with the slender asymptotic solution of Camassa et. al.

The non-slender spheroids are useful to concentrate on the exact solution as well as learn

proper parameter choices that minimize velocity error when looking at a sphere, for in-

stance, which may be acting as a fluid tracer. This chapter concludes with a discussion

of the condition number for the matrix relating regularized forces and the resulting fluid

velocities.

Consider using the exact free space solution for a prolate spheroid which is not slender,

unlike in Chapter 3. In some numerical methods that involve a choice of where to impose

forces to represent an object, like the immersed boundary method and the method of

regularized Stokeslets [19, 22, 51], it is conventional to exert the forces on the desired

surface. Recall from Chapter 3 that regularized Stokeslets placed along the centerline of a

spheroid create an effective radius that varies with the spreading parameter. Thus, in the

specific context of regularized Stokeslets, one might imagine the regularization process

can alter the effective location of the surface. As such, one may want to reconsider how

to distribute the regularized Stokeslets to minimize error.

A question of general interest is how the numerical solution converges to the exact

solution as parameters of interest vary, namely the number of regularized Stokeslets, N ,

and the regularization parameter, ε. Again let the slenderness parameter, σ, from (3.1)

describe the spheroid’s proportions. Now σ no longer remains small, but remains strictly

bounded by 1 for the spheroid to remain prolate. The exact solution described in Section

1.3.1 is only valid for 0 < σ < 1, so studies involving the exact solution will be restricted

to this range. However, the information obtained in this chapter will be advantageous
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in building spheres with regularized Stokeslets where σ = 1 in Section 5.2.1. Figure 4.1

shows the general spheroid setup for the scenarios discussed in this section.

(a) (b)

Figure 4.1. A non-slender spheroid precessing about its center in an in-

finite fluid.

Let ũ(x, r, ε, N) be the velocity at x computed with the numerical solution using N

regularized Stokeslets and spreading parameter ε on the surface of a spheroid of semi-

minor axis r. Unless stated otherwise, the slenderness parameter will remain constant σ =

0.75 throughout this chapter. Consider studying the velocity error |ũ(x, r, ε, N)−u(x, r)|

for a variety of parameters, where u(x, r) represents the velocity calculated with the exact

solution discussed in Section 1.3.1. Let h denote the singularity spacing on the surface

of a spheroid. In computing h, it is assumed that the spheroid is sufficiently spherical so

that the surface area of a sphere of radius r is a reasonable approximation to the surface

area of a spheroid of semi-minor radius r and slenderness σ:

h ≈
√

4πr2

N
.(4.1)
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The following labeling conventions will be used throughout the remainder of this

chapter:

• r: the radius (semi-minor axis) of the spheroid on the surface of which the

regularized Stokeslets are placed

• rexact: the radius of the spheroid used in the exact solution

• rbc: the radius of the spheroid where the no-slip boundary condition is imposed.

It is worth noting that these quantities are not radii referring to a sphere, rather they are

the length of the semi-minor axis of a spheroid. The radius/semi-minor axis is used along

with slenderness as a way to identify the size of the spheroid. Recall that the equation

of the spheroid whose centerline lies along the x-axis can be expressed in terms of r (or

rexact, or rbc) and σ as:

x2(
r
σ

)2 +
y2 + z2

r2
= 1.(4.2)

Centroidal Voronoi tessellations are used in the numerical model to evenly distribute reg-

ularized Stokeslets on the surface of a spheroid. Appendix G contains more information

on this aspect of the model [25, 26].

4.1. Dependence of Exact Solution on Radius

This section explores the dependence of the exact solution on spheroid radius when

compared to a reference solution also computed with the exact solution of Camassa et. al.

The numerical solution is not used in this section. Let u(x, r) be the velocity at a location

x generated by a spheroid rotating about an axis other than its axes of symmetry, with

semi-minor axis r and slenderness σ using the exact solution. Using r = 0.8, σ = 0.75,

and θ = 2π
5

(see Figure 4.1(b) for the definition of θ), consider the difference in velocity
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|u(x, r + γ)− u(x, r)| at the 14 locations noted in Figure 4.2. Figure 4.3 shows that the

velocity difference decreases linearly as γ decreases to 0.

Figure 4.2. Initial position of tracer locations where velocity is calculated

and an example of initial regularized Stokeslet placement.

This observation does not involve regularized Stokeslets, only the exact solution,

but it is helpful in identifying an error dependence on the spreading parameter. This

dependence on ε corresponds to an effective radius and is discussed in the remainder of

this chapter in the context of using regularized Stokeslets.

4.2. Regularized Stokeslets on the Surface

This section will discuss the numerical error in modeling a non-slender spheroid with

regularized Stokeslets located on the surface of the spheroid. It will be shown that this

results in linear convergence with respect to the spreading parameter, suggesting the

presence of an effective radius, as discussed in the slender case in Chapter 3.
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Figure 4.3. Difference in velocity between the exact solution computed

with a spheroid of radius r = 0.8 + γ compared to the exact solution

calculated with a spheroid of radius r = 0.8.

Consider using regularized Stokeslets placed on the surface of the spheroid keeping

the ratio of singularity spacing to spreading parameter, h
ε
, fixed. Define this ratio as

q =
h

ε
.(4.3)

Here r = rbc = 1, which corresponds to the standard practice of placing regularized

Stokeslets on the surface and enforcing the boundary conditions at the same locations.

The velocity will be compared to the exact solution for rexact = 1. Figure 4.4 shows

the velocity error |ũ(x, r, ε, N) − u(x, rexact)| averaged over 14 fluid markers for q =

0.5, 0.6, . . . , 1.9, 2. Notice that the convergence is linear as h decreases. Since q is fixed,

as h decreases, ε also decreases. The linear convergence in Figure 4.4 along with the

linear convergence of the exact solution in Figure 4.3 supports the idea that regularization

creates an effective radius. That is, when ε changes, the effective radius of the spheroid

itself changes, despite r remaining fixed.
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Figure 4.4. Initial velocity error between exact and regularized Stokeslet

solutions versus singularity spacing for fixed q = h
ε
. The regularized

Stokeslets are located at r = 1, the boundary condition is imposed at

rbc = 1, and the spheroid in the exact solution has rexact = 1. Notice the

convergence is linear suggesting the presence of an effective radius varying

linearly with spreading parameter ε.

Figure 4.5 again shows velocity error as a function of singularity spacing, but from

a slightly different view point than Figure 4.4. Now each curve corresponds to a fixed

ε = 0.1, 0.2, . . . , 0.9, 1. It should be noted that all of the parameters are the same between

the data in Figures 4.4 and 4.5 except the choice of spreading parameter. The behavior

is not linear because of the choice of ε with respect to h. The spreading parameter is

fixed along each curve in Figure 4.5, so as h decreases, ε remains constant. As such, the

effective radius is not changing, since it is related to ε. Notice that as was the case in

Chapter 3, there are local minima in the velocity error that do not equate to small h.

That is, there is a combination of singularity spacing h and spreading parameter ε that
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Figure 4.5. Initial velocity error between exact and regularized Stokeslet

solutions versus singularity spacing for fixed spreading parameter. The

regularized Stokeslets are located at r = 1, the boundary condition is

imposed at rbc = 1, and the spheroid in the exact solution has rexact = 1.

minimizes the velocity error. This will be explored in more detail in the remainder of

this chapter.

An important question that can now be addressed is how best to choose q when the

regularized Stokeslets are placed on the surface. Figure 4.6 shows the error in velocity

versus q for many h values. Note that the data shown in Figure 4.4 is for q ≤ 2, which

only comprises a portion of the graph in Figure 4.6. From this figure, the error appears

to be minimized for q ∈ (2.5, 3). Thus, the results of Figure 4.6 suggest that to model a

non-slender spheroid when the regularized Stokeslets are placed on the surface, a choice

of q ∈ (2.5, 3) will provide the best results, which differs from some values used in the

literature [19]. The velocity error as a function of singularity spacing h is shown in Figure

4.7 for fixed q = 2.7, which is in the interval of q values that minimizes the velocity error

in Figure 4.6. For smaller q, Figure 4.4 shows that the error decreases linearly with h,
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Figure 4.6. Velocity error between exact and regularized Stokeslet solu-

tions versus q = h
ε

for fixed N . The regularized Stokeslets are located at

r = 1, the boundary condition is imposed at rbc = 1, and the spheroid in

the exact solution has rexact = 1.

but as q increases, the error becomes noisier, although it still follows the general first

order trend. One should note that the choice of q discussed here may be sensitive to the

cutoff function used as well as the geometry of the problem.

4.3. Inset Regularized Stokeslets

Section 4.1 shows that the velocity difference for the exact solution decreases linearly

with radius. Section 4.2 demonstrates linear convergence of the numerical solution to

the exact solution, suggesting an effective spheroid radius due to regularization. In this

section, the effective radius will be taken into account with the goal of establishing a

connection between the location of the regularized Stokeslets and the effective radius,

which depends on the spreading parameter. These findings motivate the investigation
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Figure 4.7. Velocity error between exact and regularized Stokeslet solu-

tions versus h for fixed q = 2.7. The regularized Stokeslets are located at

r = 1, the boundary condition is imposed at rbc = 1, and the spheroid in

the exact solution has rexact = 1.

of the error when the regularized Stokeslets are no longer placed on the surface of the

spheroid, rather on a spheroid of a smaller radius inside the desired spheroid, both of

which are illustrated in Figure 4.8. The discussion in this section will provide quantitative

information about effective radius, as discussed in Section 4.2. Two different methods

of choosing where to impose the no-slip boundary condition will be discussed. Section

4.3.1 will explore evaluating the boundary condition at the location of the regularized

Stokeslets (rbc = r) and Section 4.3.2 will look at evaluating the velocity at the projection

of the regularized Stokeslet locations onto the surface of the spheroid in the exact solution

(rbc = rexact).

4.3.1. Boundary Condition at Regularized Stokeslets. First consider the rbc = r

case with rexact = 1 for varying r. Figures 4.9 – 4.11 show the velocity error versus r

for three different values of N . These figures show that for each value of the spreading
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(a) (b)

Figure 4.8. Visualization of regularized Stokeslets placed (a) on the sur-

face of and (b) inset from the surface of the spheroid. The shading demon-

strates how that the net effect of an arrangement of regularized Stokeslets

may have a larger effective radius than that of their placement at r. The

radius of the spheroid used in the exact solution is denoted rexact and the

radius of the spheroid where the regularized Stokeslets are placed is r. The

slenderness parameter remains fixed.

parameter, ε, there is a distinct radius, r, where the error is minimized. Define the

optimal radius ropt as:

ropt(ε, h) = {R : |u(x, rexact)− ũ(x, R, ε, h)| = min
r
|u(x, rexact)− ũ(x, r, ε, h)|},

(4.4)

where u(x, rexact) is the velocity at x calculated with the exact solution for a spheroid of

radius rexact and ũ(x, r, ε, h) is the velocity computed at x with N regularized Stokeslets

spaced approximately h apart (see (4.1)) with spreading parameter ε that are placed on a

the surface of a spheroid of radius r. That is, the error is minimized when the regularized

83



Stokeslets are placed on a surface of radius ropt. In Figures 4.9 – 4.11, this equates to

finding the r value of each local error minimum.

Figure 4.9. Velocity error averaged over 14 fluid locations away from the

precessing body generated by N = 100 regularized Stokeslets placed on a

spheroid of radius r.

One can derive a relationship between the optimal radius, the spreading parameter,

and the number of regularized Stokeslets by plotting ropt versus 1
q

= ε
h
, as shown in

Figure 4.12. There is a linear relationship between ropt and 1
q

= ε
h
, the parameters of

which depend on h. This relationship provides an analogous result to that of Chapter

3 for non-slender spheroids expressing the difference of the actual and effective spheroid

radii in terms of the spreading parameter. The discrepancy between the actual and

effective radii caused by regularization is the focus of the remainder of this section.

Consider a linear least squares fit of the data that has the form

ropt = a(h)
ε

h
+ b(h).(4.5)
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Figure 4.10. Velocity error averaged over 14 fluid locations away from

the precessing body generated by N = 400 regularized Stokeslets placed

on a spheroid of radius r.

Figure 4.11. Velocity error averaged over 14 fluid locations away from

the precessing body generated by N = 1000 regularized Stokeslets placed

on a spheroid of radius r.
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Figure 4.12. Optimal radius as a function of the ratio of spreading pa-

rameter to singularity spacing for various values of N . The plotted lines

ropt = a ε
h

+ b are linear least squares fits of the data for each N .

The quantities a(h) and b(h) are shown in Figure 4.13. A linear fit of these coefficients

(a) (b)

Figure 4.13. Coefficients (a) a and (b) b plotted as a function of h from

the linear fits in Figure 4.12.
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leads to the following relationships:

a(h) = −0.25683h+ 0.000064012(4.6)

b(h) = 0.0081158h+ 1.0048(4.7)

= 0.0081158h+ rexact + 0.0048.(4.8)

(4.5) along with a(h) and b(h) from (4.6) and (4.7) combine to produce a relationship

between ropt, ε, and h:

ropt(ε, h) = (−0.25683h+ 0.000064012)
ε

h
+ (0.0081158h+ 1.0048)(4.9)

= −0.25683ε+ 0.000064012
ε

h
+ 0.0081158h+ 1.0048(4.10)

or

rdiff (ε, h) = rexact − ropt(ε, h)(4.11)

= 0.25683ε− 0.000064012
ε

h
− 0.0081158h− 0.0048,(4.12)

when incorporating (4.8) and (4.10). Notice the dominant term on the right hand side

of (4.12) scales like ε. The remaining terms provide fine tuning in calculating rdiff , but

the relationship between ε and rdiff can be roughly approximated by

rdiff (ε, h) ≈ 0.257ε.(4.13)

That is, the distance one should inset the regularized Stokeslets is about one quarter of

the spreading parameter. To investigate and refine the relationship a bit further, consider

how ropt relates to h, as shown in Figure 4.14.
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Figure 4.14. Optimal radius as a function of regularized Stokeslet spac-

ing for a non-slender spheroid. The regularized Stokeslets are inset at the

optimal radius, ropt < rexact, as described in (4.4).

One can also define a different optimal radius by taking the minimum of ropt or the

global minimum for each N :

r∗opt(h) = min
ε
ropt(ε, h).(4.14)

Notice in Figures 4.9 – 4.11 that choosing r to be ropt(ε, h) is quite sensitive for a given

ε since a small variation in r can lead to a jump in error that could be an order of

magnitude or more. However, choosing r near r∗opt is of secondary importance because

for a small variation in r, the error does not increase as dramatically as when choosing

r with respect to ropt. To summarize, while a detailed relationship was found between

the optimal r that minimizes velocity error, spreading parameter, and the number of

regularized Stokeslets used, a leading order relationship rdiff = rexact − ropt ≈ 0.257ε.

As discussed in Chapter 3, when modeling a slender body with regularized Stokeslets

distributed along a curve, the effective radius of the spheroid is approximately one quarter

of the spreading parameter. Thus, the results of Chapters 3 and 4 reveal that regardless
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of whether a spheroid is modeled with regularized Stokeslets distributed along a line or a

surface, the regularization creates a larger effective geometry by a factor of one quarter

of the spreading parameter for the particular cutoff function used in this study.

4.3.2. Boundary Condition at Exact Solution Radius. Consider the scenario where

the velocity boundary condition is evaluated at the radius of the spheroid used in the

exact solution. That is, rbc = rexact and r < rexact. As shown in Figure 4.15, the velocity

error has a different character than those presented in Section 4.3.1. This data suggests

Figure 4.15. Velocity error averaged over 14 fluid locations away from

the precessing body generated by 300 regularized Stokeslets placed on a

spheroid of radius r for rbc = rexact = 1.

that to model a non-slender spheroid, the velocity error will decrease as you inset the

regularized Stokeslets farther within the surface of the spheroid in the exact solution.

At first this seems counterintuitive that for fixed ε and N , as r decreases, so does the

velocity error.
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Consider the velocity error on the surface of the spheroid used in the exact solution

with radius rexact. Let x0,bc represent the location of the boundary condition evaluation

for a regularized Stokeslet at x0 that is projected onto the surface of the spheroid. The

surface velocity error will be calculated at both x0,bc as well as locations between the

boundary condition evaluation points. Let x̂ represent the points that approximately

bisect the distance between neighboring x0,bc. These points are calculated by projecting

the midpoint between neighboring x0,bc points onto the surface of the spheroid. Figure

4.16 shows the velocity error on the surface at x0,bc as a function of r for various values

of ε. Notice that for r near rexact = 1, the error at x0,bc is small, but as r decreases, the

error jumps to approximately 10−4. This is not fully understood at this point, but seems

to be related to the convergence (or lack thereof) of GMRES.

Notice that the velocity error jumps dramatically when r ≈ 0.9. This is due to

the fact that GMRES did not converge in solving for the force exerted at the spheroid.

It is expected that the velocity error at x0,bc is small by definition, since the velocity

boundary conditions are imposed there. However, the value of the velocity error at x̂ is

not necessarily small since x̂ lies away from x0,bc where the velocity is imposed.

Figure 4.17 shows the velocity error on the surface at x̂ between boundary condition

locations. Notice that when the regularized Stokeslets are placed near rexact, the velocity

error is larger than when the regularized Stokeslets are set further in from the spheroid’s

surface. As the points where the velocity is evaluated on the surface move further away

from the regularized Stokeslets, the regularization effect diminishes on the surface, as

discussed in Section 3.2. Notice as r → 0, the velocity error at x̂ levels off around 10−4,

which is the same order of magnitude as the velocity error at x0,bc when GMRES fails

to converge. Again, it is not completely understood why GMRES fails to converge in
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Figure 4.16. Velocity error at projected regularized Stokeslet locations

on surface (x0,bc) versus radius of regularized Stokeslet placement r for

N = 300.

these cases. This is a topic of future investigation. The intriguing behavior in these plots,

particularly the sudden change in the convergence of GMRES, leads one to investigate the

condition number of the matrix in question, which will be discussed in Section 4.4. Before

discussing the condition number, it should be noted that while it appears advantageous

to inset the regularized Stokeslets within the spheroid in the exact solution and evaluate

the velocity boundary condition at the surface of the exact solution, this may not be

practical or logical when modeling a different geometry.
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Figure 4.17. Velocity error between neighboring projected regularized

Stokeslet locations on surface (x̂) versus radius of regularized Stokeslet

placement r for N = 300.

4.4. Condition Number

Consider investigating the condition number of the matrix, A = 1
8πµ

Sφεij (from (2.39)),

relating the singularity strength, f , with the velocity computed at the collection of reg-

ularized Stokeslets, u, by u = Af . Both scenarios that were discussed in sections 4.3.1

and 4.3.2 are discussed in this section. Regularized Stokeslets are placed on an inset

surface and the boundary condition is evaluated either at the location of the regular-

ized Stokeslets (rbc = r) or the projected location on the surface of the spheroid used

in the exact solution (rbc = rexact). When rbc = r, the condition number increases as h
ε

decreases, as shown in Figure 4.18 for N = 1000.
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Figure 4.18. Condition number versus q for varying ε and r.

To avoid potentially losing numerous significant digits in the accuracy of the com-

puted singularity strengths, one can consider q = h
ε
> c and eliminate concerns about the

condition number. Recall from Section 4.2 that the optimal choice of fixed q is approxi-

mately 2.75, as shown in Figure 4.6. As mentioned in Section 3.5, keeping q > 0.5 helps

avoid ill-conditioned matrices. Thus, when q ≈ 2.75 is used when regularized Stokeslets

are placed on the surface, the system is well-conditioned.

Figure 4.19 shows the condition number versus q for N = 300 with rbc = r (Figure

4.19(a)) and rbc = rexact (Figure 4.19(b)) when the regularized Stokeslets are inset from

the surface used in the exact solution. Notice in Figure 4.19(a) when the boundary

condition is evaluated at the location of the regularized Stokeslets, the condition number

decreases as q decreases and remains somewhat manageable in magnitude. However, as

shown in Figure 4.19(b), the decreasing trend is still somewhat visible, but the magnitude

of the condition number is significantly larger in this case where the boundary condition
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is imposed at the radius of the exact solution. Notice that for each value of ε there is a

consistent trend that the condition number varies dramatically within the ranges sampled.

For instance, when ε = 0.01 in the rbc = 1 case, the condition number changes by six

orders of magnitude, whereas the range of condition numbers for the same spreading

parameter value in the rbc = r case varies less than one order of magnitude. To compare

(a) (b)

Figure 4.19. Condition number versus q = h
ε

for N=300 regularized

Stokeslets with (a) rbc = r and (b) rbc = rexact.

the condition number of the matrix A with the velocity error on the surface of the spheroid

at x0,bc and x̂, consider the condition number as a function of regularized Stokeslet

placement, r. Figure 4.20 shows the condition number versus r for N = 300, rexact = 1,

and rbc = rexact. Notice that the condition number increases as r decreases, but there is

a small jump around r = 0.9. This corresponds to the region of Figure 4.16 where the

surface velocity error jumps to approximately 10−4, due to the fact that GMRES does
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Figure 4.20. Condition number versus r for various ε with rbc = rexact.

not converge for these parameters. It is not fully understood why the condition number

behaves as it does and why GMRES fails to converge in this instance.

For comparison, the surface velocity error at x0,bc and x̂ are shown in figures 4.21 and

4.22, respectively. These plots show that as the radius where the regularized Stokeslets

are placed decreases, the velocity error on the surface of the spheroid used in the exact

solution decreases despite a large condition number. This suggests that as you inset

the regularized Stokeslets by a larger distance, the error at the surface decreases. One

possible explanation for this is that the nuances of the choices of spreading parameter

and singularity spacing, for instance, are less noticeable at locations that are further

away from their locations. In some sense, this corresponds with the idea used in the

exact solution of Camassa et. al. discussed in Section 1.3.1. In these solutions, the

singularities are placed on the centerline of the spheroid to impose boundary conditions

on the surface of a prolate spheroid. The trend suggested in Figures 4.21 and 4.22 is

95



that the regularized Stokeslets should be concentrated near the center of the spheroid

to minimize the velocity error on the surface of the spheroid. However, this analysis

should be taken lightly due to the GMRES convergence issues that are not completely

understood. Figure 4.23 shows the condition number versus r for both rbc = r and

Figure 4.21. Mean surface velocity error at x0,bc versus r for various ε

with rbc = r.

rbc = rexact cases, but with a smaller r range on the horizontal axis than in Figure 4.20.

4.5. Summary

This chapter presents information on how to distribute regularized Stokeslets and

choose parameters to effectively model the fluid velocity resulting from a non-slender

spheroid precessing about its center in free space. The following observations are made

throughout the discussion:
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Figure 4.22. Mean surface velocity error at x̂ versus r for various ε with

rbc = r.

• When regularized Stokeslets are placed on the surface of a spheroid with fixed

q = h
ε
, linear convergence in ε results, suggesting the presence of an effective

radius related to the spreading parameter. Taking this into account, placing

the regularized Stokeslets on a surface slightly smaller than the desired spheroid

was studied to determine the parameter relationships that create an effective

spheroid that matches the size of the desired spheroid in the exact solution.

• It was found that the discrepancy between the radius of the spheroid in the

exact solution and the radius where the regularized Stokeslets should be placed

to minimize initial velocity error is approximately one quarter of the spreading

parameter. This is for the case when the boundary condition is evaluated at the

location of the regularized Stokeslets, but evaluating the boundary condition at
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(a) (b)

Figure 4.23. Condition number versus r for N=300 regularized Stokeslets

with (a) rbc = r and (b) rbc = rexact.

the projection of the inset regularized Stokeslets onto the larger surface of the

spheroid in the exact solution was also studied.

• The scenario where the regularized Stokeslets are inset and the boundary con-

dition is evaluated away from their location (rbc = rexact) is less desirable than

the two aforementioned scenarios due to condition number concerns that are not

fully understood.

In Chapter 3, the relationship between parameter choices and boundary conditions that

minimize the initial velocity error was determined for slender spheroids precessing about

their center in free space. This chapter achieved the same goal, except for non-slender

spheroids. In both cases, the effective radius of the slender and non-slender spheroids

increases by approximately one quarter of the spreading parameter used, as a result of

regularization.
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CHAPTER 5

A Multi-rate Numerical Integrator for Regularized Stokeslets

This chapter presents a new strategy for the temporal integration of regularized

Stokeslets velocities which can increase the efficiency of problems with stiff boundaries.

The use of a system of regularized singularities connected by virtual springs to model

flexible structures interacting with a surrounding fluid was popularized by the seminal

work of Peskin and Peskin and McQueen [51, 52, 53, 54]. In these works, the immersed

boundary method is used to model the dynamics of simplified models of the human

heart. The physical membranes of the heart are modeled by a collection of discrete delta

functions which transfer force to the surrounding incompressible fluid (that is discretized

with a standard projection method). To mimic the stiffness of the membranes, forces

are generated at the singularity positions through a linear spring law applied to pairs of

neighboring singularities. When the membranes are stiff, the underlying ODE governing

the discretized fluid/structure dynamics is also stiff. In many immersed boundary ap-

plications, this stiffness restricts the size of the maximum stable time step to be much

smaller than the CFL limit of the associated projection method.

The immersed boundary technique has since been widely applied in diverse applica-

tions ranging from the motion of molecular motors [2] to the unfolding of parachutes

[38]. The ease of implementation of the immersed boundary method has also led to the

use of stiff immersed boundaries to model rigid boundaries in incompressible fluids. The



advantage of this technique is that arbitrarily complex boundaries can be easily super-

imposed over a uniform computational grid on which the Navier-Stokes equations are

solved. The drawback is that in order to make a boundary virtually rigid, the spring

forces connecting the boundary points that enforce the rigidity must be made very stiff.

Although one could use the immersed boundary method for Stokes flow, the method of

Regularized Stokeslets is more attractive for many problems since it avoids the necessity

of solving the full fluid equations on an underlying numerical grid. However, the use

of spring forces to model stiff and rigid bodies interacting with the flow still introduces

(at times severe) stiffness into the underlying temporal ODE. Due to the nonlinear and

nonlocal coupling of the fluid velocity and singularity position in both the immersed

boundary and regularized Stokeslets methods, constructing efficient implicit temporal

integration methods for immersed boundary problems is a challenging task (see e.g. [45,

48, 59]). Therefore, a different approach to mitigate the time step constraint for stiff

systems based on an explicit multi-rate approach is considered here. This method will be

tested on a target application involving a rigid sphere moving in Stokes flow, although

the general idea is applicable to stiff flexible boundaries in both Stokes and Navier-Stokes

flows.

The multi-explicit spectral deferred correction (MESDC) method is a variation of

standard spectral deferred correction methods, developed by Dutt et. al. [27], that treats

different components of the physical system with a different time step. Section 5.2.1

discusses the physical context used in this work in more detail, but the general idea

is that a collection of regularized Stokeslets are implemented to model an object that

moves with the fluid in addition to the regularized Stokeslets that comprise the conically

precessing rigid rod discussed in previous sections.
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A rigid sphere is the object added to the flow in this discussion, but the framework

developed can be utilized to study other immersed objects, both rigid and flexible. A

dense linear system must be solved to impose the velocity boundary conditions on the

spheroid/rod, and the rigidity of the sphere is enforced by a collection of stiff springs.

This requires a smaller time step due to an increase in stiffness of the underlying ODE.

This means that the aforementioned linear solves (which are computationally expensive

for a large system of many regularized Stokeslets) need to be computed more frequently

in the stiff system compared to the original system. Thus, one goal in implementing the

MESDC method is to use a coarse time step for the non-stiff component which requires

expensive linear solves and a smaller time step to accommodate the stiff components of

the system. While implementing an implicit method may seem like a logical choice since

it allows for large time steps with stiff systems, implementing an implicit method in the

current context is undesirable due to the structure of the numerical method, so only an

explicit treatment is considered. It will be shown in the remainder of this chapter that

the MESDC method is an accurate, stable explicit method utilizing two different time

steps to accommodate the needs of different components of the physical system.

The MESDC method developed here is used to integrate the fluid velocity to update a

fluid particle’s position. After implementing regularized Stokeslets to find fluid velocities,

one must solve an ordinary differential equation to update the position of fluid particles:

dx

dt
= u(x, t).(5.1)

While (5.1) is a vector differential equation, in the remainder of this chapter the scalar

ODE dx
dt

= u(x, t) will be considered in place of (5.1). The resulting discussions in sections

5.1 and 5.2 apply to each component of the vector differential equation individually.
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For certain physical scenarios, like implementing a rigid sphere interacting with a fluid,

the system is stiff due to a collection of springs exerting forces on the fluid. Thus, using

standard explicit ODE solvers becomes undesirable because of the time step restriction.

Generally, when stiffness enters a system of differential equations, an implicit treatment

is used instead of an explicit method to reduce stability concerns. However, in this

implementation using regularized singularities, it is not efficient to solve for the required

position and velocity information needed to implement an implicit method due to the

nonlinear dependence of the regularized singularities at the location where the velocity

is evaluated.

5.1. Spectral Deferred Correction Method

The basic strategy of spectral deferred correction (SDC) methods developed by Dutt

et. al. [27] is to use a simple numerical scheme to compute a provisional solution for a

time step and then to solve correction equations during the time step to improve the

accuracy of the provisional solution. One advantage of using SDC methods is that one

can compute a solution to an arbitrarily high order of accuracy using a simple numerical

method.

For a general overview of the SDC method, consider this governing ordinary differ-

ential equation:

x′(t) = u(t, x(t))

x(a) = xa
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for t ∈ [a, b] where it is assumed xa, x(t) ∈ Cn, u : R × Cn → Cn, and u is sufficiently

smooth. Consider the Picard integral equation for the solution:

x(t) = xa +

∫ t

a

u(τ, x(τ))dτ .(5.2)

Let x̃(t) represent a provisional solution to the integral (5.2) and define the residual,

E(t, x̃), as

E(t, x̃) = xa +

∫ t

a

u(τ, x̃(τ))dτ − x̃(t).(5.3)

Also define the error, δ(t), as the difference between the solution and the provisional

solution:

δ(t) = x(t)− x̃(t).(5.4)

Substitute the error from 5.4 into the equation for the solution (5.2) to obtain

δ(t) + x̃(t) = xa +

∫ t

a

u(τ, x̃(τ) + δ(τ))dτ.(5.5)

Combining (5.5) with the residual (5.3) produces another form of the correction equation:

δ(t) =

∫ t

a

[u(τ, x̃(τ) + δ(τ))− u(τ, x̃(τ))] dτ + E(t, x̃).(5.6)

This form of the correction equation will be used in conjunction with the provisional so-

lution to update the solution. The following discussion demonstrates using SDC methods

with forward Euler.

The goal of SDC is to compute a solution in the ith time step, [ti, ti+1]. First split

the time step into Nm substeps such that ti = ti,0 < ti,1 < . . . < ti,m < . . . < ti,Nm = ti+1,

as shown in Figure 5.1. Since a spectral deferred correction method is being used, one

chooses the nodes of the substeps to correspond Gaussian quadrature rules. For the
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discussion and examples presented here, Lobatto nodes are used. Layton and Minion

explore other choices of quadrature nodes in detail in [40]. Thus, the size of each substep,

∆tm, is not uniform, but is naturally defined as ∆tm = ti,m+1 − ti,m. Now compute the

Figure 5.1. The ith time step [ti, ti+1] is split into Nm substeps [ti,m, ti,m+

∆tm], m = 0, 1, . . . , Nm − 1 for use with the SDC Method.

provisional solution within the ith time step at each node of the substep level, x̃k(ti,m),

which will be simplified notationally as x̃km (the superscript k denotes the iteration number

that will be discussed shortly). In addition, to help simplify notation, the i subscript

will be dropped when it is implied, so that tm = ti,m. Next, approximate the error

δkm = δk(tm) using the correction (5.6) and forward Euler:

δkm+1 = δkm + ∆tm
[
u(tm, x̃

k
m + δkm)− u(tm, x̃

k
m)
]

+ Em+1(x̃k)− Em(x̃k).(5.7)

Use the residual (5.3) to compute Em+1(x̃k)− Em(x̃k):

Em+1(x̃k)− Em(x̃k) =

∫ tm+1

tm

u(τ, x̃k(τ))dτ − x̃km+1 + x̃km.(5.8)

Since the solution and time values are discrete, consider replacing u in the integral in

(5.8) with an interpolating polynomial

(5.9) û(t) =
Nm∑
j=0

u(tj)lj(t),
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where lj(t) represents the jth basis polynomial that satisfies lj(ti) = δij. Let Im+1
m (x̃k)

approximate the integral in (5.8):

Im+1
m (x̃k) ≈

∫ tm+1

tm

u(τ, x̃k(τ))dτ.(5.10)

The choice of quadrature in Im+1
m (x̃k) corresponds to the choice of tm. (5.7) can now be

written as:

δkm+1 = δkm + ∆tm
[
u(tm, x̃

k
m + δkm)− u(tm, x̃

k
m)
]

+ Im+1
m (x̃k)− x̃km+1 + x̃km.(5.11)

Use (5.11) and x̃k+1 = x̃k + δk to update the provisional solution:

x̃k+1
m+1 = x̃k+1

m + ∆tm
[
u(tm, x̃

k
m + δkm)− u(tm, x̃

k
m)
]

+ Im+1
m (x̃k).(5.12)

Each iteration of the correction equation increases the order of accuracy by one, provided

the quadrature in (5.10) is accurate enough.

5.2. Multi-Explicit Spectral Deferred Correction Method

This section introduces the motivating application for developing the multi-explicit

spectral deferred correction method in Section 5.2.1 and develops the MESDC method in

Section 5.2.2. The motivating application for developing the MESDC method is modeling

a rigid sphere consisting of a network of stiff springs. In this case, as will be discussed

in Section 5.2.1, the regularized Stokeslets comprising the sphere exert forces on the

fluid to account for the fact that the sphere should remain rigid. The MESDC method

attempts to alleviate the time step restriction by exploiting the fact that the spring forces

are introducing stiffness into a localized region of the system of differential equations.

The stiff and non-stiff components will be treated with different time steps to optimize
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efficiency while maintaining accuracy. Section 5.2.2 discusses the MESDC method in

detail.

5.2.1. Rigid Sphere Implementation. Consider the case of a rigid rod precessing

about its center in free space with a prescribed angular velocity and a rigid sphere moving

and interacting with the fluid, as shown in Figure 5.2. The rigid sphere is constructed

Figure 5.2. A rigid rod precessing with a prescribed angular velocity

generates fluid flow moving a rigid sphere that also interacts with the fluid.

by regularized Stokeslets strategically placed within the fluid domain and connected

by springs to neighboring regularized Stokeslets. Regularized Stokeslets connected by

springs have been implemented in other works. For example, Cortez et. al. use regular-

ized Stokeslets connected by springs to model motile spirochetes [19]. The findings of

Chapter 4 can be used as a guide to choosing parameters for the regularized Stokeslets.

Specifically, the regularized Stokeslets are inset so that the effective radius matches that

of the desired rigid sphere and minimizes the velocity error, as discussed in Section 4.3.1.

The spring forces are responsible for adding stiffness to the system, requiring a reduction

in time step for an increase in the spring constant. Requiring the entire system to take
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small time steps is inefficient, motivating the development of a multi-explicit spectral

deferred correction method (MESDC). This method will separate the system into two

parts, one for the velocity due to points on the rod and one for the velocity due to points

on the sphere. Then, the rod and sphere can be treated with separate time steps using

the MESDC method, with the sphere having a smaller time step and the rod having a

larger time step.

Recall that the fluid velocity at x due to a regularized Stokeslet at x0 is given by

u(x,x0) = Sφε(x,x0)f(x0), where Sφε represents a regularized Stokeslet from (2.39). Let

xs represent a location on the sphere and let xr be a location on the rod. Similarly, let

fs and fr be forces located at xs and xr, respectively. For the sake of completeness in

notation, define the following:

• us = u(xs, ·): velocity at points on the sphere due to forces at any fluid location

• ur = u(xr, ·): velocity at points on the rod due to forces at any fluid location

• us,s = u(xs,xs) = Sφεssfs: velocity at points on the sphere due to forces at the

collective points on the sphere

• us,r = u(xs,xr) = Sφεsrfr: velocity at points on the sphere due to forces at the

points on the rod

• ur,r = u(xr,xr) = Sφεrrfr: velocity at points on the rod due to forces at the

collective points on the rod

• ur,s = u(xr,xs) = Sφεrsfs: velocity at points on the rod due to forces at the

points on the sphere.

Consider the following steps as an overview of the framework used to motivate the

MESDC method, discussed in Section 5.2. A central idea here is that the fluid velocity
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at an arbitrary location can be decomposed into two components, the velocity due to

regularized forces exerted at points on the rod and the velocity due to regularized forces

exerted at points on the sphere:

(5.13) u(x) = u(x,xr) + u(x,xs).

Step 1: Prescribe the velocity of the rod at time ti: ur,i = ur(ti).

Step 2: The rod and the sphere both exert forces on the fluid, so they will both

contribute to the velocity on the rod at time ti:

ur,i = ur,r,i + ur,s,i(5.14)

= Sφεrr,ifr,i + Sφεrs,ifs,i.(5.15)

Step 3: By assuming the sphere’s initial position dictates the resting length of its

springs, one concludes that fs,0 = 0.

Step 4: Solve (5.15) for the forces exerted at the rod, fr,i, using GMRES:

fr,i = (Sφεrr,i)
−1(ur,i − Sφεrs,ifs,i).(5.16)

Note that fr,i is the only unknown quantity.

Step 5: Use the forces at the rod to calculate the fluid velocity at each location

of interest on the sphere:

us,i = us,r,i + us,s,i(5.17)

= Sφεsr,ifr,i + Sφεss,ifs,i.(5.18)

Step 6: Find xs,i+1 according to dxs
dt

= us,i using MESDC.
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Step 7: Use Hooke’s Law to calculate the spring forces generated by the new

sphere locations. Let dji+1 be the new length of the jth spring and dj0 be its

resting length. For an arbitrary regularized Stokeslet location on the sphere,

xs, let m be the number of springs attached to xs and let êj be a unit vector

directed along the jth spring. Then the net force on the regularized Stokeslet

located at xs is given by:

fs,i+1 =
m∑
j=1

−k(dji+1 − d
j
0)êj.(5.19)

Step 8: Use fs,i+1 again in (5.15) to repeat the process for a new time interval.

This overview provides a glimpse into the interplay between solving for forces and cal-

culating velocities at various locations of interest in the fluid. When MESDC is used in

step 6 above for (5.18), notice the decomposition of the velocity evaluated at the sphere

into terms that are generated by regularized forces on both the rod and the sphere. This

decomposition becomes (5.20) in the discussion of the MESDC method in Section 5.2.2.

5.2.2. Multi-Explicit Spectral Deferred Correction Method. As mentioned in

the Section 5.2.1, the multi-explicit spectral deferred correction method is intended to

integrate a stiff ODE explicitly using different levels of time discretization. There are

other variations of SDC methods that treat components of an ODE with different substeps

and a mix of implicit and explicit treatments. Some of these methods are developed in the

context of advection-diffusion-reaction equations in gas dynamics where there are three

time scales present. In [46], Minion develops a semi-implicit SDC method allowing the

advective component of the advection-diffusion equations to be treated explicitly while

the diffusive component is treated implicitly. This idea is taken a step further in the work
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of Bourlioux et. al. and Layton et. al. [6, 39], where the advective term of the advection-

diffusion-reaction equations is still treated explicitly and the diffusive and reactive terms

are treated implicitly, but now each component has different time discretizations that

best accommodate the respective time scales.

In the case of the rigid sphere moving with the fluid flow created by a rod moving

in a prescribed motion, as introduced in Section 5.2.1, the implementation of the sphere

comprised of spring-connected regularized Stokeslets introduces stiffness into the system.

As such, it is advantageous to use a small time step for the velocity due to the forces

exerted by the sphere and a larger time step for the rest of the calculation that includes

forces exerted away from the sphere. The decomposition of the velocity evaluated at the

sphere into contributions from regularized forces exerted by both the rod and the sphere

(as in (5.18)) is the starting point to consider when discussing the details of the MESDC

method. Now focus on the components of the velocity at the sphere, from (5.17). To

simplify the notation introduced in Section 5.2.1, define uR = usr = Ssrfr to be the

velocity on the sphere due to the rod and uS = uss = Sssfs to be the velocity on the

sphere due to the forces at points on the the sphere. For locations on the sphere (xs)

and velocities on the sphere (us = u(xs)), the s subscript and vector notation will often

be suppressed to avoid clutter.

Now to repeat the general framework discussed in terms of the SDC method in Section

5.1, use the decomposed velocity from (5.18) to explore the MESDC method. Consider

xs
′(t) = us(t, xs(t)) = uR(t, xs(t)) + uS(t, xs(t))(5.20)

xs(a) = xs,a(5.21)
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for t ∈ [a, b], assuming xs,a, xs(t) ∈ Cn, u : R × Cn → Cn, and u is sufficiently smooth.

Then the Picard integral equation for the solution (dropping the s subscripts) is

x(t) = xa +

∫ t

a

u(τ, x(τ))dτ(5.22)

= xa +

∫ t

a

[uR(τ, x(τ)) + uS(τ, x(τ))] dτ.(5.23)

Given a provisional solution to the integral equation for the ith time step, t ∈ [ti, ti+1] ∈

[a, b], x̃(t), define the residual E(t, x̃) by

E(t, x̃) = x(ti) +

∫ t

ti

[uR(τ, x̃(τ)) + uS(τ, x̃(τ))] dτ − x̃(t).(5.24)

Next define the error, δ(t):

δ(t) = x(t)− x̃(t).(5.25)

Combining (5.23) and (5.25) generates

δ(t) + x̃(t) = x(ti) +

∫ t

ti

[uR(τ, x̃(τ) + δ(τ)) + uS(τ, x̃(τ) + δ(τ))] dτ.(5.26)

Moreover, incorporating the residual from (5.24) produces the correction equation:

δ(t) =

∫ t

ti

[uR(τ, x̃(τ) + δ(τ))− uR(τ, x̃(τ)) + uS(τ, x̃(τ) + δ(τ))

−uS(τ, x̃(τ))] dτ + E(t, x̃t).(5.27)

Now rewrite the integral (5.27) as a weakly coupled system of integral equations:

δR(t) =

∫ t

ti

[uR(τ, x̃(τ) + δR(τ))− uR(τ, x̃(τ))] dτ + E(t, x̃)(5.28)

δ(t) =

∫ t

ti

[uR(τ, x̃(τ) + δR(τ))− uR(τ, x̃(τ)) + uS(τ, x̃(τ) + δ(τ))

−uS(τ, x̃(τ))] dτ + E(t, x̃).(5.29)
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The expression for δR only contains terms relating to the rod, eliminating stiffness from

this portion of the system. Thus, a larger time step can be used to calculate δR. However,

δ in (5.29) incorporates velocity and error from both the rod and the sphere, so it must

be treated with a smaller time step. As such, each integral in (5.28) and (5.29) can

be treated with a different time step when discretized, as demonstrated in the following

example.

As in the discussion of SDC methods in Section 5.1, an example using MESDC with

forward Euler will be discussed here. Again, the goal is to find a solution on the ith

time step [ti, ti+1], which is split into Nm substeps: ti = ti,0 < ti,1 < . . . < ti,m < . . . <

ti,Nm = ti+1. Now further split each substep into Np substeps: ti,m = ti,m,0 < ti,m,1 <

. . . < ti,m,p < . . . < ti,m,Np = ti,m+1. Figure 5.3 shows the relationship between the

time step and both levels of substeps. As discussed in Section 5.1 with regard to SDC,

Figure 5.3. Time step [ti, ti+1] is split into substeps for the explicit rod

piece [ti,m, ti,m + ∆tm] and smaller substeps for the explicit sphere contri-

bution [ti,m,p, ti,m,p + ∆tp], where ∆tp ≤ ∆tm ≤ ∆t.

the size of each substep can vary depending on the quadrature method chosen. Again,

∆tm = ti,m+1 − ti,m and ∆tp = ti,m,p+1 − ti,m,p. To simplify notation, let tm = ti,m

and tp = ti,m,p when the deleted subscripts are understood. Now compute a provisional

112



solution, x̃p+1, as follows:

(5.30) x̃p+1 = x̃p + ∆tp [uR,m(x̃m) + uS,p(x̃p)] .

Note that this solution is computed on the fine substep level (indexed by p) but it

uses the velocity values due to the rod from the coarse substep (indexed by m) and

velocities due to the sphere on the fine substep. That is, uR is constant within each

coarse substep. Now approximate δkR,m+1 and δkP+1 from the correction equations (5.28)

and (5.29), respectively, with forward Euler:

δkR,m+1 = δkR,m + ∆tm
[
uR(tm, x̃

k
m + δkR,m)− uR(tm, x̃

k
m)
]

(5.31)

+Em+1(x̃k)− Em(x̃k)

δkp+1 = δkp + ∆tp
[
uR(tm, x̃

k
m + δkR,m)− uR(tm, x̃

k
m) + uS(tp, x̃

k
p + δkp)(5.32)

−uS(tp, x̃
k
p)
]

+ Ep+1(x̃k)− Ep(x̃k),

where Em+1(x̃k) − Em(x̃k) and Ep+1(x̃k) − Ep(x̃k) are computed by approximating the

residual (5.24):

Em+1(x̃k)− Em(x̃k) =

∫ tm+1

tm

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ − x̃km+1 + x̃km(5.33)

Ep+1(x̃k)− Ep(x̃k) =

∫ tp+1

tp

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ − x̃kp+1 + x̃kp.(5.34)

First consider approximating the integral from (5.33):

Im+1
m (uR + uS) ≈

∫ tm+1

tm

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ.(5.35)
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The form of Im+1
m (uR + uS) will be developed as follows, starting with the integral in

(5.35) :

∫ tm+1

tm

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ

=

∫ tm+1

tm

uR(τ, x̃k(τ))dτ +

∫ tm

tm

uS(τ, x̃k(τ))dτ(5.36)

=

∫ tm+1

tm

uR(τ, x̃k(τ))dτ +

Np−1∑
p=0

∫ tm,p+1

tm,p

uS(τ, x̃k(τ))dτ.(5.37)

Since uR is only known at the coarse substeps (tm’s) and the integration occurs from

tm to tm+1, use an interpolating polynomial to approximate the function values at all

Nm + 1 points on the coarse substep level. Integrating uS from tp to tp+1 also requires an

interpolating polynomial that matches the velocity value at each of the Np+1 nodes of the

mth fine substep. Use the known velocity values values to find interpolating polynomials

ûR ≈ uR and ûS ≈ uS that will be used shortly in quadrature:

ûR(t) =
Nm∑
m′=0

uR,m′lm′(t)(5.38)

ûS(t) =

Np∑
p′=0

uS,p′lp′(t),(5.39)
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where lj(t) represents basis polynomials that satisfy lj(ti) = δij for j = m′, p′. Continuing

from (5.37):

∫ tm+1

tm

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ

≈
∫ tm+1

tm

Nm∑
m′=0

uR,m′lm′(τ)dτ +

Np−1∑
p=0

∫ tm,p+1

tm,p

Np∑
p′=0

uS,p′lp′(τ)dτ(5.40)

≈
Nm∑
m′=0

∫ tm+1

tm

uR,m′lm′(τ)dτ +

Np−1∑
p=0

Np∑
p′=0

∫ tm,p+1

tm,p

uS,p′lp′(τ)dτ(5.41)

≈
Nm∑
m′=0

uR,m′

∫ tm+1

tm

lm′(τ)dτ +

Np−1∑
p=0

Np∑
p′=0

uS,p′

∫ tm,p+1

tm,p

lp′(τ)dτ.(5.42)

Defining the following

qm
′

m =

∫ tm+1

tm

lm′(τ)dτ(5.43)

qp
′

p =

∫ tm,p+1

tm,p

lp′(τ)dτ.(5.44)

allows (5.42) to become

∫ tm+1

tm

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ

≈
Nm∑
m′=0

uR,m′qm
′

m +

Np−1∑
p=0

Np∑
p′=0

uS,p′qp
′

p(5.45)

≈
Nm∑
m′=0

uR,m′qm
′

m +

Np∑
p′=0

Np−1∑
p=0

uS,p′qp
′

p(5.46)

≈
Nm∑
m′=0

uR,m′qm
′

m +

Np∑
p′=0

uS,p′

Np−1∑
p=0

qp
′

p(5.47)

≈
Nm∑
m′=0

uR,m′qm
′

m +

Np∑
p′=0

uS,p′qp
′
,(5.48)
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where

qp
′

=

Np−1∑
p=0

qp
′

p .(5.49)

Now the form of Im+1
m is defined as (5.48):

Im+1
m (uR + uS) =

Nm∑
m′=0

uR,m′qm
′

m +

Np∑
p′=0

uS,p′qp
′
.(5.50)

The choice of substep nodes tm and tp relate to the quadrature used in Im+1
m .

Similarly, consider approximating the integral from (5.34):

Ip+1
p (uR + uS) ≈

∫ tm,p+1

tm,p

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ.(5.51)

Again, to develop the form of Ip+1
p , begin with the integral in question and utilize inter-

polating polynomials:

∫ tm,p+1

tm,p

[
uR(τ, x̃k(τ)) + uS(τ, x̃k(τ))

]
dτ

≈
∫ tm,p+1

tm,p

Nm∑
m′=0

uR,m′lm′(τ)dτ +

∫ tm,p+1

tm,p

Np∑
p′=0

uS,p′lp′(τ)dτ(5.52)

≈
Nm∑
m′=0

∫ tm,p+1

tm,p

uR,m′lm′(τ)dτ +

Np∑
p′=0

∫ tm,p+1

tm,p

uS,p′lp′(τ)dτ(5.53)

≈
Nm∑
m′=0

uR,m′

∫ tm,p+1

tm,p

lm′(τ)dτ +

Np∑
p′=0

uS,p′

∫ tm,p+1

tm,p

lp′(τ)dτ(5.54)

≈
Nm∑
m′=0

uR,m′qm
′

m,p +

Np∑
p′=0

uS,p′qp
′

p ,(5.55)

where

qm
′

m,p =

∫ tm,p+1

tm,p

lm′(τ)dτ(5.56)

qp
′

p =

∫ tm,p+1

tm,p

lp′(τ)dτ.(5.57)
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(5.55) produces

Ip+1
p (uR + uS) =

Nm∑
m′=0

uR,m′qm
′

m,p +

Np∑
p′=0

uS,p′qp
′

p .(5.58)

Now that (5.50) and (5.58) define Im+1
m and Ip+1

p , respectively, all of the components of

the correction equations are known. Combining (5.33), (5.34), (5.50), and (5.58) into

(5.31) and (5.32) produces a new form of the correction equations:

δkR,m+1 = δkR,m + ∆tm
[
uR(tm, x̃

k
m + δkR,m)− uR(tm, x̃

k
m)
]

(5.59)

+Im+1
m (uR(x̃k) + uS(x̃k))− x̃km+1 + x̃km

δkp+1 = δkp + ∆tp
[
uR(tm, x̃

k
m + δkR,m)− uR(tm, x̃

k
m) + uS(tp, x̃

k
p + δkp)(5.60)

−uS(tp, x̃
k
p)
]

+ Ip+1
p (uR(x̃k) + uS(x̃k))− x̃kp+1 + x̃kp.

Finally, x̃k+1 = x̃k + δk is used in addition to (5.59) and (5.60) to update the provisional

solution:

x̃k+1
p+1 = x̃k+1

p + ∆tp
[
uR(tm, x̃

k
m + δkR,m)− uR(tm, x̃

k
m) + uS(tp, x̃

k
p + δkp)

]
(5.61)

∆tp
[
−uS(tp, x̃

k
p)
]

+ Ip+1
p (uR(x̃k) + uS(x̃k))

Each iteration (in k) of the correction equation increases the order of accuracy by one,

provided the quadrature used to calculate Ip+1
p is accurate enough.

5.3. Numerical Tests

The goal in implementing an MESDC method in place of a standard SDC method is

to be able to handle stiff systems with a larger time step for the non-stiff components

of the system than previously used with the SDC method. The stiff components will

have similar small time steps in both MESDC and SDC treatments. Specifically, in
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the stiff regularized singularity system outlined in Section 5.2.1, a dense linear system

must be solved to recompute the singularity strengths at each time step. Since the

size of the matrix involved in this linear system is 3N × 3N , where N is the number

of regularized Stokeslets placed in the fluid, for systems whose geometry requires large

N , solving the linear system becomes increasingly expensive. Thus, by implementing an

MESDC method, the possibility of being able to compute this linear solve less often while

maintaining accuracy will be studied. Another benefit of using MESDC instead of SDC

is an increase in the stability region. Hence, the manner in which the stability of this

system changes between MESDC and SDC implementations will also be investigated in

this section.

To study the convergence and stability of the MESDC method in comparison to the

SDC method, consider the previously mentioned system of a slender rigid rod precessing

about its center in free space moving a fluid that contains a rigid sphere, as shown

in Figure 5.2. To clarify, the rigid sphere is comprised of a collection of regularized

Stokeslets that are connected with a network of springs. Each regularized Stokeslet is

connected to its nearest neighbors by springs of spring constant k as well as the center of

the sphere (with spring constant kc). As the fluid moves these regularized Stokeslets, the

displacement of the springs generates a spring force that the singularities transfer back

to the fluid. This additional collection of forces then creates an additional velocity at the

rod, which no longer satisfies the no-slip boundary condition we are trying to maintain

on the rod. As such, the aforementioned linear system needs to be solved at each time

step to account for the additional velocity created on the rod by the sphere.

First consider studying the convergence rate. With both MESDC and SDC, Sections

5.1 and 5.2 claim that the order of the error relates to the number of correction iterations
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used, provided the quadrature choices are accurate enough. When k = 0, the correction

loop of the algorithms are not used, so the SDC and MESDC algorithms simplify to

forward Euler. As such, one would expect the error to decrease linearly with ∆t. As

claimed, each iteration will increase the order by one. Figure 5.4 shows the error versus

time step (∆t) for various numbers of iterations, niter = 0, 2, 3, 4, 5, for both SDC and

MESDC. Notationally, the iteration count niter begins with niter = 2 so that the order

Figure 5.4. Error in position versus time step using SDC and MESDC

for a variety of niter values (number of correction iterations). Notice that

the convergence rate increases as niter increases. Here k = 8 and kc = 0.8.

of the method will correspond with the niter value. For the data displayed in Figure 5.4,

the spring constants for the sphere are k = 8, kc = 0.8. The error here is the Euclidean

norm of the error in position at a fixed time1. Notice that for niter = 15, the convergence

1It should be noted that the error is not being compared to a system with an actual rigid sphere,
rather the numerical solution with a given set of stiffness parameters.
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rate seems to approach 8 rather than 15 before leveling off as ∆t→ 0. This is evidence

of the quadrature convergence from choosing j = 5 Lobatto nodes in each substep where

a convergence rate of 2j − 2 limits the convergence rate. By choosing more nodes, one

would expect this convergence rate to increase. This phenomenon is also visible in Figure

5.5 which shows the same data as Figure 5.4, except the spring constants are k = kc = 0.

Notice that for niter = 4, 5, 15, the convergence rate appears to be 8, rather than the

anticipated 4, 5, or 15, respectively. The niter = 15 case is the same as discussed above,

but the niter = 4 and niter = 5 cases are such that the convergence rate exceeds the

expected rate. This is a case that since the springs have no added effect to the system,

for many correction iterations the solution and provisional solution are close. Thus, the

error is subdominant to the quadrature error in this case.

Now to discuss stability, consider the niter = 5 case, which as shown in Figure 5.4,

should be 5th order. Consider sampling a variety of spring constants, k, allowing the

spring constant of the center springs, kc (which connect the center and each point on the

sphere’s surface), to vary proportionally to the spring constant among nearest neighbors

on the surface: kc = 0.1k. Consider the number of time steps Nt = 2n, for n = 2, 3, . . . , 8,

and spring constants k = 2n for n = 2, 3, . . . , 6. The k = 0 case will again be considered.

A reference solution with Nt = 512 time steps per rod revolution is used to compute

position errors. Figure 5.6 shows the position error versus time step for four chosen spring

constants, k = 0, 8, 16, 64, using both SDC and MESDC. Notice that for larger ∆t, as k

increases, the system becomes unstable. However, for fixed k, the instability occurs at a

smaller ∆t for the SDC case than MESDC. This indicates an increase in stability when

using MESDC over SDC. Also, notice that the MESDC error is consistently smaller than

the SDC error.
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Figure 5.5. Error in position versus time step using SDC and MESDC

for a variety of niter values (number of correction iterations). Notice that

the convergence rate increases as niter increases. Here k = kc = 0.

To view the same data in a slightly different context, consider plotting the error

as a function of effective ∆t rather than ∆t, where the effective ∆t takes into account

the fact that MESDC adds another level of substeps. Referring to Figure 5.3, letting

Nm = 5 and Np = 5, then each time step is broken into five substeps and each of those

substeps is divided into five smaller substeps. Then some portion of the calculation (the

contribution from the sphere on the sphere) is computed 25 times each time step with

MESDC, as opposed to the remaining contributions which are computed 5 times per time

step. Looking at this same scenario in terms of SDC, all contributions are computed five

times per substep. Thus, the effective ∆t refers to comparing the time step of the finest

level of calculation whereas just considering ∆t compares the time step of the coarsest
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Figure 5.6. Error in position versus time step using SDC and MESDC

for a variety of spring constants with niter = 5.

level of calculation (and consequently the first level of substeps which is the same size in

both SDC and MESDC). In this example where Nm = Np = 5, ∆teff = 1
5
∆t for MESDC

while ∆teff = ∆t for SDC. Figure 5.7 shows the same data as Figure 5.6, except the error

is plotted against the effective time step. One noteworthy feature is that the instability

occurs at approximately the same effective ∆t value.

When shifting perspectives to consider effective ∆t rather than ∆t, the finest substeps

are commensurate in size and the difference between SDC and MESDC is that the linear

solves happen less frequently in the MESDC case than in the SDC case. Thus, this can

either be viewed as a scenario where one might want to add a finer level of substeps for

a particular portion of a calculation or, conversely, one might want to eliminate a part

of a calculation on a coarser level.
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Figure 5.7. Error in position versus effective time step using SDC and

MESDC for a variety of spring constants with niter = 5.

Another perspective to consider when studying the rigid sphere moving in a fluid is

how spherical the points on the sphere remain throughout the course of the simulation.

Initially, the regularized Stokeslets are distributed on the surface of the sphere using

Centroidal Voronoi Tessellations (see Appendix G). There is also a regularized Stokeslet

placed at the center of the sphere. This initial configuration determines the resting

lengths of the springs. As time progresses, if the sphere were perfectly rigid, the springs

connecting adjacent regularized Stokeslets (and the center) would have a constant length

equal to the resting length. However, this would equate to an infinitely large spring

constant and a very stiff system. As such, finite spring constants must be used to com-

promise. To clarify terminology, rigid will be used to describe a collection of points whose

relative displacement to each other remains constant as a rigid body would. The term
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soft will be used to describe a collection of points which are passive tracers in the flow

(when k = 0). Let dji represent the length of the jth spring at time ti, then the resting

length of the jth spring is denoted dj0. For a rigid sphere, dji = dj0 for all i. For finite

spring constants, the normalized displacement
|dj−dj0|

dj0
will be viewed as a measure of the

sphere’s rigidity. The mean normalized displacement at time ti is represented by ηi:

ηi =
1

Ns

Ns∑
j=1

|dji − d
j
0|

dj0
,

where Ns is the number of springs used to construct the sphere. Figure 5.8 shows the

mean normalized displacement, η, as a function of time for a variety of spring constants.

The horizontal lines in Figure 5.8 represent the time average of the mean normalized

displacement, η̄:

η̄ =
1

NT

NT∑
i=1

ηi,

where NT is the total number of time steps2. Figure 5.9 displays η̄ as a function of time

step as well as spring constant. The magnitude of η̄ is much larger than the magnitude

of the error from the time integrator, so the rigidity remains relatively constant with

respect to ∆t. However, the rigidity varies linearly with spring constant, k.

5.4. Summary

The multi-explicit spectral deferred correction method is effective in the context of

modeling the flow generated by a precessing rod with an additional rigid object in the

flow. The MESDC method is a novel, accurate, stable, efficient explicit method which

allows the non-stiff components of a system to be treated with a larger time step than

the stiff components, reducing the number of necessary expensive linear solves. The time

2In Figure 5.8, the time average is over 5 rod revolutions, so NT = 5Nt, where Nt is the number of
time steps per rod revolution.
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Figure 5.8. Mean normalized displacement (η) of points on the sphere as

a function of time. The horizontal lines represent the time averaged mean

normalized displacement (η̄).

Figure 5.9. Time averaged mean normalized displacement versus time

step and spring constant.

integration error can easily be made small with respect to the error components in the
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system, such as regularization, slenderness, and quadrature error, that were discussed in

Section 3.2.
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CHAPTER 6

Rotational Mixing Experiments

This chapter focuses on using the numerical solution to model experimental results

from the Rotational Mixing Experiment (RMX)1. Two cases will be considered. First,

motivated by the primary nodal cilia introduced in Section 1.1, the hydrodynamics of

a rod precessing about a tilted axis in a semi-infinite fluid will be discussed. Second,

motivated by the micro-scale experiments of Jing [37] mentioned in Section 1.2, the

hydrodynamics of a bent rod precessing about a vertical axis in a semi-infinite fluid will

be presented [8]. Both of these discussions use the numerical solution to verify interesting

hydrodynamic behavior present in the laboratory experiments.

As mentioned in Section 1.2, challenges of the experimental work of Jing on the

micro-scale along with the mathematical theory of Camassa et. al. and Leiterman serve

as motivation for the Rotational Mixing Experiment (RMX) [7, 10, 42]. The RMX

experimental setup consists of a metal pin held to the bottom of a cubical tank of vis-

cous fluid by a magnet mounted on a motor below the tank. When properly calibrated,

the magnetic field causes the pin to precess about a vertical axis through its contact

point with the bottom of the tank. The viscous fluid used in the RMX experiments

is corn syrup. To visualize the fluid motion, small bubbles are inserted into the corn

1The discussion in this section often refers to the researchers involved with the RMX group. Please
see the acknowledgements section at the beginning of this dissertation for a complete listing of the people
involved in the various components of the RMX research effort.



syrup and then tracked during post-processing analysis. Bouzarth et. al. present more

details of the experimental setup in [7]. For a straight rod sweeping an upright cone,

the RMX trajectory results match fairly well with the predicted trajectories produced by

the Blakeslet solution discussed in Section 1.3.3. However, there are some experimental

questions which the asymptotic solution may not be able to describe or may lack valida-

tion to confidently use that solution as the only mathematical tool. A numerical solution

can provide insight into the fluid dynamics and also serve as a guide for building new

analytical solutions. The two cases beyond a straight pin sweeping out a vertical cone, a

rod precessing about a tilted axis and a bent rod, will be discussed in Sections 6.1 and

6.2, respectively.

6.1. Tilted rod

Studying the hydrodynamics of a tilted rod is valuable because it more closely corre-

sponds to the motion of primary nodal cilia than the vertical cone structures that have

been examined thus far. Hirokawa et. al. suggest that each primary nodal cilium beats

about a tilted axis. Figure 6.1 shows the tilted rod scenario discussed in this section,

including τ , the tilt angle of the axis of rotation from vertical. While Cartwright has

studied the hydrodynamics of this system using rotlets in free space [15] and full three

dimensional Navier-Stokes equations [14], this is a question that the RMX group desires

to study experimentally in conjunction with the numerical and asymptotic mathematical

models of Bouzarth et. al. [9].

The hydrodynamics of a tiled rod are of interest to the RMX research group as a

biologically relevant scenario to study in low Reynolds number macro-scale fluid dynamics

experiments. As part of the RMX group’s research effort, the fluid flow generated by a
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tilted rod was studied using the regularized singularity numerical solution discussed in

this dissertation. In addition, Bouzarth et. al. incorporated a tilted axis of precession into

the Blakeslet solution of Camassa et. al. and Leiterman, discussed in Section 1.3.3 [9,

10, 42]. The results using both of the mathematical and numerical modeling techniques

show qualitative agreement and interesting flow properties. The details of implementing a

single macro-scale pin precessing about a tilted axis experimentally are not fully worked

out yet, but the study of tilted rods experimentally is a future research plan for the

RMX group, augmented by the findings of the work of Bouzarth et. al. [9]. Another

experimental opportunity stemming from the RMX group comes from Evans et. al. and

Carstens et. al. who create arrays of biomimetic cilia on the micro-scale. They can

actuate these cilia so that each cilium’s motion approximately precesses about a tilted

axis. In this case, they observe directional flow, which is suggestive of the observed

nodal flow [13, 28, 29]. Their preliminary findings are consistent with the numerical

and mathematical observations of the RMX group thus far [9].

Figure 6.1. Sketch of a slender rod precessing about an axis tilted off

vertical by a tilt angle, τ , above a no-slip plane.
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The main question being considered here in conjunction with the aforementioned

models and experiments is if one tilted rod can generate fluid transport. The idea being

that if one rod can generate transport, then the hydrodynamics of a collection of rods

(as in the nodal region) may be able to generate a directional flow, as happens in the

nodal region. By studying this simplified case where experiment, mathematical models

and numerical simulations overlap, one can learn of the hydrodynamic effects and use

this information in conjunction with biological research to develop a fuller understanding

of this system.

Figures 6.2 and 6.3 show side and top views of fluid particle trajectories resulting

from modeling a tilted rod with regularized Stokeslets and the corresponding system

of regularized image singularities discussed in Section 2.5. The results are for three

different tilt angles are shown: τ = 0, τ = π
10

, and τ = π
5

in subplots (a), (b), and (c),

respectively. Note that τ = 0 corresponds to a standard vertical cone as discussed in

previous chapters. The following parameters are used: cone angle κ = π
6
, rod length

L = 1, spreading parameter ε = 0.025, and number of regularized Stokeslets N = 100.

The computed data is shown for a time span of 1000 rod rotations. There are nine fluid

locations sampled. The initial position of these locations stays fixed with respect to the

rod as it tilts in each case. That is, for the upright cone, the markers are placed in a

horizontal line and as the cone angle increases, the line of markers rotates so that the

line of markers is parallel to the top of the cone structure. The initial tracer locations

are marked by green circles in the side view images shown in Figure 6.2. The bottom of

each plot coincides with the bottom of the fluid tank where the no-slip velocity boundary

condition is imposed. For perspective of the rod position relative to the fluid markers,

the rod position is superimposed for a variety of time steps, denoted by the blue lines.
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(a) (b)

(c)

Figure 6.2. Side view of trajectories of nine initial conditions, fixed with

respect to the cone that the rod sweeps through. The tilt angle varies

from (a) τ = 0 to (b) τ = π
10

to (c) τ = π
5
. The initial positions are

marked by green circles. Each trajectory is shown for 1000 rod rotations.

Image produced in conjunction with Bouzarth et. al. (RMX group work in

preparation) [9].
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(a) (b)

(c)

Figure 6.3. Top view of trajectories of nine initial conditions, fixed with

respect to the cone that the rod sweeps through. The tilt angle varies

from (a) τ = 0 to (b) τ = π
10

to (c) τ = π
5
. The initial positions are

marked by green circles. Each trajectory is shown for 1000 rod rotations.

Image produced in conjunction with Bouzarth et. al. (RMX group work in

preparation) [9].
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Figure 6.3 shows the same data as Figure 6.2, but viewed from the top rather than the

side. Notice as the tilt angle increases, the tracer trajectories change dramatically in

both their horizontal and vertical motion. These figures only capture the general trends

of the trajectories, but by zooming in, one can see that there is epicyclic structure on a

smaller scale. Figure 6.4 shows a portion of two trajectories for τ = 0 taken from Figure

6.3(a).

Figure 6.4. A zoomed in top view of a portion of two trajectories from

the τ = 0 top view shown in Figure 6.3(a). This demonstrates the fine

scale structure that is lost in the way the data is displayed in Figures 6.2

and 6.3. Image produced in conjunction with Bouzarth et. al. (RMX group

work in preparation) [9].

Another way to view the effect of a tilted cone is by looking at the radial and vertical

components of each trajectory with respect to time. The radial and vertical positions

are calculated in cylindrical coordinates with respect to the origin, defined as the contact

point of the rod with the floor. Figures 6.5 and 6.6 show the radial and vertical positions

as a function of time, respectively. Again, some structure is lost by viewing the data over
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such a long time scale. As such, Figure 6.7 shows the same data as Figure 6.6, except

over a shorter time interval.

Regardless of how one views this data, it is evident that tilting the axis of precession

with respect to the no-slip plane has a dramatic effect on the fluid flow. The trajectories

change in such a way that there are large vertical and horizontal departures from the

trajectories generated by the τ = 0 vertical case. As such, this supports the idea that a

system of tilted rods can generate bulk transport of a fluid. While the trajectories change

dramatically as the tilt angle increases, it appears that the trajectories eventually overlap

with themselves in such a way to suggest that a single rod does not produce transport by

itself. However, if one considers the case of primary nodal cilia where there are typically

tens of somewhat rigid cilia precessing about tilted axes (that are all tilted the same

direction), then one can imagine that the large vertical and horizontal excursions of fluid

particles in motion due to a tilted precessing rod might cause a fluid parcel to travel

into a neighboring cilium’s hydrodynamic influence. As such, fluid may get passed from

one tilted precessing rod to the next, to the next, etc., producing the net effect of fluid

transport. Using regularized singularities to model a tilted rod as shown here can be

adapted to model multiple tilted precessing rods. Exploring scenarios with multiple rods

that are more closely related to the physical setup of primary nodal cilia is a topic of

future work.

6.2. Bent rod

One of the questions resulting from studying Jing’s micro-scale experimental results

[37] is what effect a precessing bent rod would have on the resulting fluid particle tra-

jectories. The RMX group implemented a precessing bent rigid rod in the macro-scale
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(a)

(b)

(c)

Figure 6.5. Radial position versus time measured in rod rotations for the

nine markers depicted in Figures 6.2 and 6.3. The tilt angle varies from

(a) τ = 0 to (b) τ = π
10

to (c) τ = π
5
. Image produced in conjunction with

Bouzarth et. al. (RMX group work in preparation) [9].
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(a)

(b)

(c)

Figure 6.6. Vertical position versus time measured in rod rotations for

the nine markers depicted in Figures 6.2 and 6.3. The tilt angle varies from

(a) τ = 0 to (b) τ = π
10

to (c) τ = π
5
. Image produced in conjunction with

Bouzarth et. al. (RMX group work in preparation) [9].
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(a)

(b)

(c)

Figure 6.7. Vertical position versus time measured in rod rotations for

the nine markers depicted in Figures 6.2 and 6.3 over shorter time scales

to show the epicycle structure. The tilt angle varies from (a) τ = 0 to

(b) τ = π
10

to (c) τ = π
5
. Image produced in conjunction with Bouzarth

et. al. (RMX group work in preparation) [9].
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fluid dynamics experiments to explore the resulting fluid flow. The initial trajectory

results from the RMX experiments uncovered an interesting flow pattern. It appears

that a fluid particle can travel on a more complicated orbit in the presence of a bent rod

compared to a straight rod. The numerical model using regularized singularities verifies

that the interesting experimental results discovered by the RMX group are indeed vi-

able. In studying the bent rod scenario numerically, a more complete picture is obtained

pertaining to the effect of the orientation of the bent rod and the resulting trajectories.

The numerical model is also used to help develop and verify the asymptotic model of the

bent rod scenario from the Blakeslet solution implemented by Camassa et. al. [12]. The

nuances of the bent rod configurations and the resulting trajectories are discussed in the

remainder of this section. The focus of the discussion is on using the numerical methods

developed in this dissertation to explore the fluid flow generated by a precessing bent rod,

a problem motivated by the results of the aforementioned macro-scale fluid experiments

of the RMX group.

Figure 6.8 shows the initial bent pin used. Pins with constant curvature are currently

being incorporated into the experimental design. Besides investigating the bent rod

because of curiosities relating to the micro-scale experiments of Jing, bent rods may

also have biological contexts. For instance, there are microorganisms that use fluid flow

created by flagella for feeding purposes [55]. It may be applicable to model the motion of

these flagella with a bent rod. Also, as one can conclude from the images of primary nodal

cilia in the work of Hirokawa et. al., it is likely that primary nodal cilia are not completely

rigid and straight, as the mathematical and numerical models originally suppose; there

might be some bending of the cilia during their conical beat.
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Figure 6.8. Profile view of a bent pin used in RMX experiments. Image

courtesy of Bouzarth et. al. (RMX group work in preparation) [9].

When replacing the straight pin in the RMX experiments with a bent one, there are

multiple configurations that could produce different results. Define ρ ∈ [0, 2π) as the

scooping angle, which gives a measure of the orientation of the curve of the pin. For this

discussion, assume that when viewed from above, the pin precesses in a counterclockwise

manner. A scooping angle of ρ = 0 corresponds to the case we will term belly out. The

chord connecting the tips of the bent rod coincide with the location of a straight rod of

the same cone angle, but the bend falls below the chord. This is shown for a rod with

constant curvature of 1 in Figures 6.9(a) and 6.9(b) from the top and side, respectively.

A scooping angle of ρ = π
2

corresponds to the scooping configuration. In this case, the

tips of the bent rod lead the bend of the rod through the fluid, as shown in Figure 6.10

where the motion is counterclockwise in the top view. The ρ = π case is termed belly

in. In a similar fashion to belly out, when viewed from the top, the rod projects onto a

straight line, but the bend is above the chord connecting the rod tips, as shown in Figure

6.11. The last named configuration is slicing with ρ = 3π
2

. This configuration can be

viewed as the time reversal configuration of the scooping case. That is, the bend of the

rod leads the tips through the fluid, as shown in Figure 6.12 where again the motion is

counterclockwise in the top view. In Figures 6.9 - 6.12, the motion is counterclockwise

when viewed from the top. As mentioned, the scooping picture in Figure 6.10 can also

depict slicing if the motion of the rod is taken as clockwise in the top view.

139



(a) Top View (b) Side View

Figure 6.9. Top and side views of representative time snapshots of a

bent rod in the belly out configuration with scooping angle ρ = 0. Im-

age produced in conjunction with Bouzarth et. al. (RMX group work in

preparation) [9].

(a) Top View (b) Side View

Figure 6.10. Top and side views of representative time snapshots of a

bent rod in the scooping configuration with scooping angle ρ = π
2
. The rod

moves counterclockwise in the top view. Image produced in conjunction

with Bouzarth et. al. (RMX group work in preparation) [9].

When the RMX experiment initially used a bent rod in the scooping configuration, a

curious trajectory resulted, as mentioned above. From the side view, the trajectory had

a dramatic vertical descent, a feature not present in the previously studied straight rod
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(a) Top View (b) Side View

Figure 6.11. Top and side views of representative time snapshots of a

bent rod in the belly in configuration with scooping angle ρ = π. Im-

age produced in conjunction with Bouzarth et. al. (RMX group work in

preparation) [9].

(a) Top View (b) Side View

Figure 6.12. Top and side views of representative time snapshots of a

bent rod in the slicing configuration with scooping angle ρ = 3π
2

. The rod

moves counterclockwise in the top view. Image produced in conjunction

with Bouzarth et. al. (RMX group work in preparation) [9].

trajectories. Regularized singularities are used to model the bent rod experiments and

the results reveal the same qualitative behavior, suggesting the fact that the experiment
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reveals interesting fluid dynamics rather than a failed experiment. The side view exper-

imental and numerical trajectories are shown in Figure 6.13. With the caveat that the

(a) Experiment (b) Simulation

Figure 6.13. Side views of trajectories resulting from a scooping rod

in (a) an experiment and (b) a regularized singularity simulation. The

green circle denotes the starting position of the fluid particle and the red

square denotes its final position some time later. The parameters are not

exactly matched, so slight discrepancies exist, but the general structure is

the same. The bottom of the each figure coincides with the no-slip plane.

The contact point of the pin with the fluid tank floor is in the center of

the bottom edge of each plot. In the simulation plot, the blue dots denote

locations of the tip of the rod at different instances in time. Notice the

vertical descent and radial fluctuation trends in both cases, which are not

present for an analogous straight rod. Image produced in conjunction with

Bouzarth et. al. (RMX group work in preparation) [9].

model parameters were not specifically tuned to those of the experiment, this data with

similar parameters shows the dramatic shift from the straight rod case capturing the

qualitative motion. In both cases, the fluid particle starts above the cone structure and
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descends as time progresses. Then as the particle nears the floor, its radial position and

vertical position both increase as well. This experimental result supported by numerical

simulation results led the RMX team of researchers to hypothesize that there is a long

time scale structure induced by certain configurations of a bent rod that are not present

in the case of a precessing straight rod. For a scooping rod, particles that begin near

or above the cone structure tend to descend towards the floor, increase their radius and

vertical position and recirculate up further away from the rod. Conversely, since Stokes

flow is reversible, for a slicing rod, fluid should generally rise near the cone structure,

travel radially outward, then vertically downward, and back radially inward near the base

of the rod. This hypothesis will be further investigated numerically in the remainder of

this section.

The new trajectory characteristics suggest that a fluid particle travels on a long

time scale toroidal orbit in addition to the epicyclic precession exhibited in straight rod

trajectories. To determine if all bent rod configurations or just some have the interesting

long time scale toroidal behavior, consider looking at numerical simulation results for

four different scooping angles, ρ = 0, π
2
, π, 3π

2
. Figures 6.14 and 6.15 show the radial

and vertical positions2 versus time, respectively, for the four aforementioned scooping

angles. Data is also shown for a straight rod with the same parameters. The bend

has a constant curvature of 1. The parameters used are: rod length L = 1, spreading

parameter ε = 0.05, number of regularized Stokeslets N = 100, and initial position

(x, y, z) = (−0.75, 0, 1.25). This initial condition is above the cone structure, so from

previous observations, one would expect the scooping case to spiral down and in, which

2As in Section 6.1, these are taken from cylindrical coordinates using the contact point of the rod
with the floor as the origin.
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Figure 6.14. Radial position versus time for a variety of scooping an-

gles and a straight rod. Image produced in conjunction with Bouzarth

et. al. (RMX group work in preparation) [9].

Figure 6.15. Vertical position versus time for a variety of scooping an-

gles and a straight rod. Image produced in conjunction with Bouzarth

et. al. (RMX group work in preparation) [9].

is reflected by the decreasing trend in the time series plots. In the slicing case, one would

expect the opposite to occur as a sign of reversibility of Stokes flow. Indeed the figures

reveal this behavior in the data. The initially less intuitive cases are the belly in and

belly out scenarios. Notice that the radial and vertical positions both oscillate around a
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fixed height, unlike in the scooping and slicing cases. This is characteristic of a straight

rod trajectory. It is difficult to see in these figures, but the data is only slightly different

for the straight, belly in, and belly out cases, but the behavior trend is the same. The

belly in and belly out configurations produce trajectories that are similar to a straight

rod of slightly geometric parameters, namely rod slenderness.

Figure 6.16 gives a specific example of the effect of a scooping rod compared to a

straight rod on a fluid particle’s trajectory. In this case, the initial tracer position, rod

diameter, and cone angle are the same in both the bent and straight rod cases. The length

of the rod in the straight case matches the length of the chord connecting the tips of the

bent rod so that the tips of the bent rod and the straight rod coincide. One can notice

that the introduction of a slight bend in the scooping configuration produces dramatically

different trajectory results compared to the straight rod, as alluded to previously. Figures

6.16(a) and 6.16(b) show three dimensional views of the data in the lab frame for 100

rod rotations. Figure 6.16(c) shows the same data as Figure 6.16(b), except the time

duration is extended to 1000 rod rotations. While the difference between the straight and

scooping cases is evident from examining Figures 6.16(a) and 6.16(b) alone, extending

the duration of the scooping case shows an example of how the tracers behave once they

descend towards the floor and begin to recirculate. Figures 6.16(d) and 6.16(e) show the

same data as Figures 6.16(a) and 6.16(c), respectively, but viewed from the side in the

body frame. The body frame is the frame of reference where the rod is still and the fluid

is rotating around it. In contrast, the lab frame is the reference frame that is the most

intuitive, where the rod is precessing through the fluid that is at rest at infinity. The

following parameters are used to generate these plots: rod length L = 0.7879, spreading

parameter ε = 0.05, number of regularized Stokeslets N = 100, cone angle θ = 3π
10

, and
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(a) Lab frame (b) Lab frame (c) Lab frame, 1000 rotations

(d) Body frame (e) Body frame, 1000 rotations

Figure 6.16. (a) A trajectory generated by a straight rod in 100 rota-

tions. (b) A trajectory generated by a scooping bent rod in 100 rotations.

(c) Same trajectory as (b) except for 1000 rod rotations. (d) Trajectory

from (a) shown from the side in the body frame. (e) Trajectory from (c)

shown from the side in the body frame. The initial and final positions are

marked with a green circle and red square. In all plots, the initial positions

are (x, y, z) = (−0.25, 0, 1). Image produced in conjunction with Bouzarth

et. al. (RMX group work in preparation) [9].

initial position (x, y, z) = (−0.25, 0, 1). The curve of the bent rod matches that of the

bent pin shown in Figure 6.8 used in the initial RMX macro-scale fluid experiments.
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The straight rod case has rotation on two time scales. The first is a short time scale

that is roughly commensurate with the period of a rod rotation, referred to as an epicycle.

The second is the time scale it takes for a fluid particle to make an orbit around the cone

structure. This time scale varies greatly depending on the proximity to the rod. In the

scooping bent rod case, the third time scale is longer yet and also varies with respect to

location. This is a toroidal excursion in addition to the epicycles and orbits discussed in

the straight rod case.

To demonstrate the hypothesized long time toroidal structure present for scooping

bent rods, but not straight rods, consider Figure 6.17. These trajectories have an initial

position of (x, y, z) = (−1, 0, 1) shown for 1000 rod rotations. The rest of the parameters

are the same as in Figure 6.16. The trajectories in both the lab frame and the body

frame shown in Figure 6.17 show evidence of the long time scale toroidal structure in

addition to the epicyclic precession.

To further investigate the toroidal structure, consider taking a slice of the body frame

through y = 0 and plotting the trajectories as they penetrate this plane for a variety of

initial conditions. This result is shown in Figure 6.18. The plane is taken with a width

tolerance of tol = 0.01 to account for the discrete nature of numerical data. From this

view point, one can see a nested toroidal structure developing. Again, to compare with

the straight rod case, Figure 6.19 shows the same type of plot for a straight rod of similar

parameters. Notice there is no toroidal structure here. Figure 6.20 displays the data in

the same way for a variety of scooping angles. There are four data sets displayed for

ρ = π
2
, ρ = 3π

4
, ρ = 11π

12
and ρ = π. Notice as the scooping angle approaches the belly

in case (ρ = π), the plot resembles that of a straight rod. This gives further evidence

that bent rods in the belly in or belly out configuration produce trajectories that are
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(a) Lab frame (b) Lab frame

(c) Body frame (d) Body frame

Figure 6.17. (a) Three dimensional and (b) side views of a trajectory

generated by a bent rod in the lab frame. (c) Three dimensional and (d)

side views of the same trajectory viewed in the body frame. The initial and

final positions are marked with a green circle and red square, respectively.

In all plots, the initial position is (x, y, z) = (−1, 0, 1). Image produced in

conjunction with Bouzarth et. al. (RMX group work in preparation) [9].

characteristic of a straight rod, whereas bent rods with any degree of scooping or slicing

(ρ ∈ (0, π) ∪ (π, 2π)) exhibit the aforementioned long time scale toroidal structure.
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Figure 6.18. A slice through y = 0 in the body frame for 45 initial posi-

tions, marked by black squares. The blue regions of the plot denote where

the tips of the bent rod penetrate the plane. In this scooping configuration,

the bend of the rod comes out of the page. Image produced in conjunction

with Bouzarth et. al. (RMX group work in preparation) [9].

Figure 6.19. A slice through y = 0 in the body frame for 45 initial

positions, marked by black squares. The blue region of the plot denotes

where the straight lies in the plane. Image produced in conjunction with

Bouzarth et. al. (RMX group work in preparation) [9].
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Figure 6.20. A slice through y = 0 in the body frame for 45 initial

positions, marked by black squares. The black curve denotes where the

belly in bent rod lies in the plane for the ρ = π case. Data is shown for

four scooping angles, ρ = π
2
, ρ = 3π

4
, ρ = 11π

12
and ρ = π. Image produced

in conjunction with Bouzarth et. al. (RMX group work in preparation) [9].

The change in fluid flow structure for a belly in or belly out rod versus a bent rod

that is scooping or slicing can be explained by the rod configuration. Consider the belly

out case (the same argument holds for the belly in case as well). At each instance

of time, the rod lies in a vertical plane that includes the axis of rotation. From the

perspective of a fluid particle, the rod’s structure appears the same when the rod moves

towards the particle location as it does when it moves away from it. As such, the particle

trajectory behaves like a straight rod seeing as this symmetry is also present in that case.

However, when a bent rod is in a configuration that has any degree of slicing or scooping

(ρ ∈ (0, π) ∪ (π, 2π)), the plane of the rod is no longer vertical and a fluid particle does

not see the same rod configuration when the rod is coming towards it as it does when

the rod is moving away. For instance, when the rod is scooping and approaching a fluid
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particle, the fluid near the tip of the rod will be pushed downward by the rod. However,

when a rod is moving toward the same fluid particle in a slicing configuration, the fluid

near the tip will be pushed upward. By contrast, in the straight rod case (and belly

in and belly out cases), the rod exerts a horizontal force on the fluid with no vertical

components.

When studying the fluid flow generated by a bent rod, the macro-scale fluid dynamic

experiments of the RMX group first demonstrated the presence of an additional struc-

ture in a particle’s trajectory, a long time scale toroidal structure. The numerical model

developed in this dissertation provides a more complete understanding of the fluid dy-

namics that the experiments could not produce due to practical limitations (e.g. length

of an experiment). Although it was not discussed in detail here, Camassa et. al. [12]

are studying this behavior with their mathematical model derived from the Blakeslet

solution of Camassa et. al. [10]. Understanding the intricacies of the hydrodynamics of

a precessing bent rod is a topic of current research actively being pursued by the RMX

research group with experimental, mathematical, and numerical approaches.
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CHAPTER 7

Summary

With the study of cilia in the context of the Virtual Lung Project as initial motiva-

tion, this dissertation presents a collection of mathematical models, numerical solutions,

and experimental results that have a common ground in modeling a physical scenario

of a slender rigid rod precessing in a conical fashion that mimics the motion of primary

nodal cilia. This common ground provides a valuable benchmarking opportunity where

closed form solutions, numerical simulations, and experimental results support, predict,

and verify each other. Developing numerical solutions that utilize regularized Stokeslets

and multi-explicit spectral deferred correction methods in this environment provides the

unique opportunity for careful error analysis and parameter studies for nontrivial fluid

flows with an exact solution. The intuition and tools developed in the benchmarking

process between the mathematical models, numerical solutions, and experiments aid in

adapting these methods to study more complicated physical systems that incorporate

increasingly more features of the motivating biological problems. The remainder of this

chapter summarizes the discussion of the numerical solution in the body of this disserta-

tion.

The exact solution of Camassa et. al. and Leiterman [11, 42] for a spheroid precessing

about its center, as described in Section 1.3, provides the opportunity to perform detailed

error analysis on the method of regularized Stokeslets. As such, error contributions due



to slenderness, regularization, and quadrature were identified and explored in Section

3.2. Time integration error was considered separately in Chapter 5. The dominant

error contributions come from slenderness and regularization, as the quadrature and

time integration errors are often negligible.

The exact solution of Camassa et. al. and Leiterman is also used in conjunction with

the numerical solution to explore parameter and boundary condition choices that mini-

mize the velocity error. Two cases are considered in Chapters 3 and 4, slender and non-

slender spheroids, respectively. In the slender case, regularized Stokeslets are distributed

along the centerline of the spheroid and in the non-slender case, they are distributed

along the surface of a spheroid. In both cases, it is demonstrated that collections of

regularized Stokeslets exhibit an effective geometry which minimizes a physical volume.

In the slender case, a one dimensional line of regularized Stokeslets can model a three

dimensional slender spheroid due the effects of regularization. In the non-slender case, it

was found that by placing the regularized Stokeslets on the surface of a slightly smaller

spheroid than the one being modeled incorporates the increased effective radius in such a

way that the velocity error is reduced. In both cases, it was shown that the increase from

actual radius to effective radius is approximately one quarter of the spreading parameter

for the particular cutoff function used.

In the time domain, the multi-explicit spectral deferred correction (MESDC) method

is introduced in Chapter 5 as a numerical integrator that lends itself well for use with

the method of regularized Stokeslets. In particular, when modeling a stiff system, the

MESDC method allows for the explicit treatment of different components with different

time steps. In the case discussed in Section 5.2.1, there are two components, a rod and

a sphere that is represented by a collection or regularized Stokeslets connected by stiff
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springs. The rod is treated with a larger time step since it is not a stiff component

of the system. This is beneficial because calculating the force on the rod necessary to

satisfy the boundary conditions requires the solution of a dense linear system. Thus,

decreasing the frequency of this calculation improves efficiency. The MESDC method is

an accurate, stable, versatile, novel time integration method that is also applicable to

immersed boundary problems using the Blob Projection Method [20].

The results of the aforementioned error analysis, parameter study, and numerical

integration discussion are used in conjunction with the experimental results of the RMX

research group to predict and verify experimental results. Two areas of current research

are understanding the hydrodynamics of a rod precessing about a tilted axis and a bent

rod precessing about a vertical axis. In both of these cases, numerical and asymptotic

models are used to gain understanding of the hydrodynamics and to predict and verify

experimental results. In the tilted rod case, the numerical results presented here show

dramatic departures from the standard epicyclic orbits created by straight rods precessing

about a vertical axis, as shown in Section 6.1 [9]. The results are for one tilted rod, but

in the environment of primary nodal cilia which undergo this motion, there are multiple

rods whose collective motion generates directional flow. The results discussed here are

consistent with the idea that the hydrodynamics alone can create the observed transport

in the nodal region. It is a topic of future work to expand the tilted rod study to

incorporate multiple rods. This is feasible with the numerical solution discussed here.

In addition, Carstens et. al. , Evans, and Evans et. al. (members of the RMX group)

fabricate arrays of biomimetic cilia that are actuated in a motion similar to that of

primary nodal cilia [13, 28, 29]. Carstens et. al. have experimental evidence of directed
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fluid transport [13]. Hence, studying the hydrodynamics of fields of tilted precessing

rods in both the laboratory and numerical setting is desirable.

In the bent rod case, the numerical solution is used to verify an interesting experi-

mental discovery made by the RMX group [8], namely a precessing bent rod creates a

dramatic change in behavior from that of a straight rod. Specifically, for certain config-

urations of the bent rod, a third time scale is introduced into the trajectory of a fluid

particle. In addition to the epicyclic orbits generated by a straight rod, a fluid particle

also travels on the surface of a torus over long time scales. Bouzarth et. al. have verified

this phenomenon experimentally, numerically, and mathematically [8].
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APPENDIX A: Nondimensionalization of the Navier-Stokes

Equations

This appendix discusses the details of the nondimensionalization of the Navier-Stokes

equations and the assumptions made to derive the Stokes equations. Start with the

incompressible Navier-Stokes equations from (2.1) – (2.2):

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ F + µ∇2u(A.1)

∇ · u = 0,(A.2)

where ρ is the fluid density, u is the fluid velocity, p is the pressure, F = ρg is the body

force due to gravity, and µ is the dynamic viscosity. It is assumed that both ρ and µ are

constant and uniform throughout the fluid. Divide (A.1) by the fluid density to obtain

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g +

µ

ρ
∇2u.(A.3)

Use the variables defined in (2.3)

û =
u

U
(A.4)

x̂ =
x

L
(A.5)

t̂ =
t

T
(A.6)

p̂ =
pL
µU

(A.7)

ĝ =
g

g
(A.8)
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to find the following derivatives:

∂

∂t
=

1

T
∂

∂t̂
(A.9)

∇ =
1

L
∇̂(A.10)

∇2 =
1

L2
∇̂2.(A.11)

Substitute the derivatives and nondimensional variables from (A.4) – (A.11) into (A.2)

and (A.3) to obtain

1

T
∂

∂t̂
(U û) + (U û) ·

(
1

L
∇̂ (U û)

)
= −1

ρ

(
1

L
∇̂
(
µU p̂
L

))
+

µ

ρL2
∇̂2 (U û) + gĝ(A.12)

∇̂ · û = 0.(A.13)

After multiplying by L2

Uν and recognizing the kinematic viscosity ν = µ
ρ
, (A.12) becomes

(A.14)
L2

νT
∂û

∂t̂
+
UL
ν

û · ∇̂û = −∇̂p̂+ ∇̂2û +
gL2

νU
g.

Recognizing the unsteadiness parameter, β = L2

νT , the Reynolds number Re = UL
ν

, and

the Froude number, Fr = U√
gL , (A.14) becomes the nondimensionalized Navier-Stokes

equations [57]:

β
∂û

∂t̂
+Reû · ∇̂û = −∇̂p̂+ ∇̂2û +

Re

Fr2
ĝ.(A.15)

After considering β � 1 and Re� 1, (A.15) reduces further to

0 = −∇̂p̂+ ∇̂2û +
Re

Fr2
ĝ.(A.16)
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Converting (A.16) and (A.13) back to the original variables u,x, t and p, one arrives at

the incompressible quasi-steady Stokes equations originally presented in (2.5):

µ∇2u = ∇p− F(A.17)

∇ · u = 0.(A.18)
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APPENDIX B: Derivation of Image Singularities for a Stokeslet

This appendix presents a derivation of the system of image singularities required to

create a no-slip plane in the presence of one Stokeslet. This collection of singularities is

termed a Blakeslet in the work of Camassa et. al. and Leiterman, which is derived from

that of Blake [4, 10, 42]. Recall the notation from Section 2.3, specifically Figure 2.1, x0

is the location of the original Stokeslet and y0 is the location of the image singularities

outside of the fluid domain. Without loss of generality, assume the location of the wall

is at x3 = w, then x0 = (x0,1, x0,2, x0,3) and y0 = (x0,1, x0,2, 2w−x0,3). Consider x on the

wall, so x = (x1, x2, w). Define r as r = |x− x0| = |x− y0|.

The Stokeslet at x0 produces the following velocity:

(B.1) uS =
1

8πµ

[
f

r
+

[f · (x− x0)](x− x0)

r3

]
.

First place a Stokeslet at y0, which produces the velocity field

(B.2) uS∗ =
1

8πµ

[
f

r
+

[f · (x− y0)](x− y0)

r3

]
.

The asterisk denotes that the singularity is placed at the image location y0. Thus the

net velocity so far due to the two Stokeslets is

uS − uS∗ =
1

8πµ

[
[f · (x− x0)](x− x0)

r3
− [f · (x− y0)](x− y0)

r3

]
.(B.3)

Notice that the Stokeslet at the image location y0 has opposite strength of the original

Stokeslet at x0, implemented as uS - uS∗ in (B.3)1. Using the fact that x is on the wall,

1Alternatively, (B.2) could be expressed as uS∗ = − 1
8πµ

[
f
r + [f ·(x−y0)](x−y0)

r3

]
to denote the opposite

strength. In that case, uS + uS∗ would be considered throughout the text in place of uS − uS∗.
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and letting h = x0,3 − w, then x0 = y0 + 2hê3 and uS − uS∗ becomes

uS − uS∗ =
1

8πµ

[
[f · (x− y0 − 2hê3)](x− y0 − 2hê3)− [f · (x− y0)](x− y0)

r3

]
(B.4)

=
1

8πµ

[
−2h[f · (x− y0)]ê3 − 2h[f · ê3](x− y0) + 4h2[f · ê3]ê3

r3

]
.(B.5)

Substituting x̂ = x− y0, (B.5) becomes

(B.6) uS − uS∗ =
1

8πµ

[
−2h[f · x̂]ê3 − 2h[f · ê3]x̂ + 4h2[f · ê3]ê3

r3

]
.

Switching to summation notation, the net velocity at the wall due to the original Stokeslet

and the image Stokeslet can be expressed as

(B.7) uSi − uS∗i =
1

8πµ

[
−2hx̂jδi3 − 2hx̂iδj3 + 4h2δi3δj3

r3

]
fj.

Since this is a non-zero velocity on the wall, more image singularities are required to

cancel the remaining velocity terms.

Consider the velocity due to an image point source dipole of strength f , from (2.17):

(B.8) uD∗i =
1

8πµ

[
−2δij
r3

+
6x̂ix̂j
r5

]
fj.

Also consider the velocity due to an image Stokes doublet of strength f , from (2.25):

uSD∗i =
1

8πµ

[
x̂kδij
r3
− x̂jδik

r3
− x̂iδjk

r3
+

3x̂ix̂jx̂k
r5

]
fk.(B.9)

Now reindex (B.9), letting j = 3, k = j, and x̂3 = h to obtain

uSD∗i =
1

8πµ

[
x̂jδi3
r3
− hδij

r3
− x̂iδ3j

r3
+

3hx̂ix̂j
r5

]
fj.(B.10)

From (B.8) and (B.10), one sees that

(B.11) uSD∗i − h

2
uD∗i =

1

8πµ

[
x̂jδi3
r3
− x̂iδj3

r3

]
fj.
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Observe each component of (B.7) and (B.11):

uS1 − uS∗1 =
1

8πµ

[
−2hx̂1δj3

r3

]
fj(B.12)

uS2 − uS∗2 =
1

8πµ

[
−2hx̂2δj3

r3

]
fj(B.13)

uS3 − uS∗3 =
1

8πµ

[
−2hx̂j + 2h2δj3

r3

]
fj(B.14)

uSD∗1 − h

2
uD∗1 =

1

8πµ

[
− x̂1δj3

r3

]
fj(B.15)

uSD∗2 − h

2
uD∗2 =

1

8πµ

[
− x̂2δj3

r3

]
fj(B.16)

uSD∗3 − h

2
uD∗3 =

1

8πµ

[
x̂j
r3
− hδj3

r3

]
fj.(B.17)

Now comparing (B.12) – (B.14) with (B.15) – (B.17), one can see the following combi-

nation of aforementioned velocities satisfies the no-slip boundary condition on the wall:

ui =
1

8πµ

[
Sij − S∗ij + 2h

[
SD∗ij −

h

2
D∗ij

]
(2δi3 − 1)

]
fj(B.18)

= uSi − uS∗i + 2h(2δi3 − 1)

[
uSD∗i − h

2
uD∗i

]
,(B.19)

which appears as (2.32).
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APPENDIX C: Derivation of a Regularized Stokeslet

This appendix shows the derivation of a regularized Stokeslet, which was developed

by Cortez [18]. To derive a regularized Stokeslet, Sφεij , consider the incompressible Stokes

equations with a regularized forcing term (from (2.38)):

µ∇2u = ∇p− fφε(r)(C.1)

∇ · u = 0,(C.2)

where φε is given by (2.35)

(C.3) φε(r) =
15ε4

8π(r2 + ε2)7/2
.

As in (2.41), one can write the fluid velocity u in terms of the regularized Stokeslet Sφεij

(C.4) ui =
1

8πµ
Sφεij fj.

Similarly, express the pressure p as

p =
1

8π
P φε
j fj.(C.5)

Substitute (C.4) and (C.5) into (C.1) and (C.2) to obtain

∇2Sφεij =
∂P φε

j

∂xi
− 8πδijφε(C.6)

∂Sφεij
∂xi

= 0.(C.7)

Now differentiate (C.6) with respect to xi and substitute (C.7), resulting in

∇2P φε
j = 8π∇φε.(C.8)
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Define Gφε and Bφε as follows:

∇2Gφε = φε(C.9)

∇2Bφε = Gφε .(C.10)

Substitute (C.9) into (C.8) to obtain

P φε
j = 8π

∂Gφε

∂xj
.(C.11)

Substituting this result into (C.6) produces

∇2Sφεij = 8π
∂2Gφε

∂xixj
− 8πδijφε.(C.12)

Inserting (C.9) and (C.10) into (C.12) for φε and Gφε , respectively, produces

∇2Sφεij = 8π
∂2∇2Bφε

∂xixj
− 8πδij∇2Gφε .(C.13)

Then

Sφεij = 8π

[
∂2Bφε

∂xixj
− δijGφε

]
.(C.14)

Once Bφε and Gφε are derived for a particular cutoff function (in this case φε), then

the form of the regularized Stokeslet will result. Since the cutoff function φε is only a

function of r, we can consider the radial dependence of the three dimensional Laplacian

in spherical coordinates:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
.(C.15)
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Since ∇2Gφε = 1
r2

∂
∂r

(
r2 ∂

∂r

)
Gφε = φε,

∂Gφε

∂r
=

1

r2

∫ r

0

s2φε(s)ds(C.16)

=
15ε4

8πr2

∫ r

0

s2

(s2 + ε2)7/2
ds.(C.17)

With the following trigonometric substitutions

s = ε tan θ(C.18)

ds = ε sec2 θdθ(C.19)

(s2 + ε2)1/2 = ε sec θ(C.20)

(C.17) becomes

∂Gφε

∂r
=

15

8πr2

∫ s=r

s=0

sin2 θ cos3 θdθ(C.21)

=
15

8πr2

[
sin3 θ

3
− sin5 θ

5

]∣∣∣∣s=r
s=0

(C.22)

=
15

8πr2

[
s3

3(s2 + ε2)3/2
− s5

5(s2 + ε2)5/2

]∣∣∣∣s=r
s=0

(C.23)

=
1

8π

[
5r

(r2 + ε2)3/2
− 3r3

(r2 + ε2)5/2

]
.(C.24)

Now integrate (C.24) to obtain

Gφε =
1

8π

∫ (
5r

(r2 + ε2)3/2
− 3r3

(s2 + ε2)5/2

)
dr.(C.25)

Again, use the trigonometric substitutions from (C.18) – (C.20):

Gφε =
1

8πε

[
5

∫
sin θdθ − 3

∫
sin3 θdθ

]
(C.26)

=
−1

8πε

[
2 cos θ + cos3 θ

]
(C.27)

=
−1

8π

[
2

(r2 + ε2)1/2
+

ε2

(r2 + ε2)3/2

]
.(C.28)
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Derive Bφε in a similar fashion to Gφε . Since ∇2Bφε = Gφε , begin with

∂Bφε

∂r
=

1

r2

∫ r

0

s2Gφε(s)ds(C.29)

=
−1

8πr2

[
2

∫ r

0

s2

(s2 + ε2)1/2
ds+ ε2

∫ r

0

s2

(s2 + ε2)3/2
ds

]
.(C.30)

Substituting (C.18) – (C.20) produces:2

∂Bφε

∂r
=
−ε2

8πr2

[
2

∫ s=r

s=0

sin2 θ

cos3 θ
dθ +

∫ s=r

s=0

sin2 θ

cos θ
dθ

]
(C.31)

=
−ε2

8πr2

[
sin3 θ

cos2 θ

∣∣∣∣s=r
s=0

−
∫ s=r

s=0

sin2 θ

cos θ
dθ +

∫ s=r

s=0

sin2 θ

cos θ
dθ

]
(C.32)

=
−ε2

8πr2

[
sin3 θ

cos2 θ

]∣∣∣∣s=r
s=0

(C.33)

=
−1

8πr2

[
s3

(s2 + ε2)1/2

]∣∣∣∣s=r
s=0

(C.34)

=
−r

8π(r2 + ε2)1/2
.(C.35)

Now integrate (C.35) to find Bφε :

Bφε =
−1

8π

∫
r

(r2 + ε2)1/2
dr.(C.36)

Again, substitute (C.18) – (C.20):

Bφε =
−ε
8π

∫
sec θ tan θdθ(C.37)

=
−ε sec θ

8π
(C.38)

=
−(r2 + ε2)1/2

8π
.(C.39)

2To progress from (C.31) to (C.32), the following integral identity was used:∫
sinn ax
cosm ax

dx =
sinn+1 ax

a(m− 1) cosm−1 ax
− n−m+ 2

m− 1

∫
sinn ax

cosm−2 ax
dx,

for m 6= 1.
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Now that expressions for Gφε and Bφε have been derived, substitute (C.28) and (C.39)

into (C.14) to find the equation for a regularized Stokeslet associated with the cutoff

function φε:

Sφεij = − ∂2

∂xixj

(
(r2 + ε2)1/2

)
+ δij

(
2

(r2 + ε2)1/2
+

ε2

(r2 + ε2)3/2

)
(C.40)

= − ∂

∂xi

(
x̂j

(r2 + ε2)1/2

)
+ δij

(
2

(r2 + ε2)1/2
+

ε2

(r2 + ε2)3/2

)
(C.41)

=
−δij

(r2 + ε2)1/2
+

x̂ix̂j

(r2 + ε2)3/2
+ δij

(
2

(r2 + ε2)1/2
+

ε2

(r2 + ε2)3/2

)
(C.42)

= δij

(
1

(r2 + ε2)1/2
+

ε2

(r2 + ε2)3/2

)
+

x̂ix̂j

(r2 + ε2)3/2
(C.43)

= δij
r2 + 2ε2

(r2 + ε2)3/2
+

x̂ix̂j

(r2 + ε2)3/2
,(C.44)

which matches (2.39).
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APPENDIX D: Derivation of a Regularized Dipole

This appendix shows the derivation of a regularized dipole, which is a component

of the image of regularized singularities introduced by Cortez that will be explored in

Appendix F [17]. As with all of the regularized singularities, the form of the regularized

dipole will depend on the chosen cutoff function. This derivation will use ϕε from (2.36)

because it will be useful in the derivation of the system of image singularities in Appendix

F. To derive a regularized dipole, consider the following Hodge decomposition from which

one wants to find uD,ϕε , the velocity induced by a regularized dipole:

(D.1) uD,ϕε +∇ψ = fϕε(x− x0),

assuming ∇ · uD,ϕε = 0. First, take the divergence of (D.1). This implies

∇2ψ = f · ∇ϕε.(D.2)

Combining (D.2) with the fact that ∇2Gϕε = ϕε produces:

ψ = f · ∇Gϕε(D.3)

and

uD,ϕε = fϕε − (f · ∇)∇Gϕε .(D.4)

In summation notation, (D.4) becomes:

uD,ϕεi =

[
δijϕε −

∂2Gϕε

∂xj∂xi

]
fj.(D.5)

Recall that Gϕε can be expressed as a function of r only, so

(D.6)
∂

∂xk
Gϕε(r(x̂)) =

∂Gϕε

∂r

∂r

∂xk
=
∂Gϕε

∂r

x̂k
r
.
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Incorporating (D.6) into (D.5) produces:

(D.7) uD,ϕεi =

[
δijϕε −

δij
r

∂Gϕε

∂r
− x̂ix̂j

r2

∂2Gϕε

∂r2
+
x̂ix̂j
r3

∂Gϕε

∂r

]
fj.

To derive ∂Gϕε

∂r
, start with ∇2Gϕε = ϕε in spherical coordinates as in Appendix F:

∂Gϕε

∂r
=

1

r2

∫ r

0

s2ϕεds(D.8)

=
3ε2

4πr2

∫ r

0

s2

(s2 + ε2)5/2
ds.(D.9)

Substituting the trigonometric expressions in (C.18) – (C.20) one finds:

∂Gϕε

∂r
=

3

4πr2

∫ s=r

s=0

sin2 θ cos θdθ(D.10)

=
1

4πr2
sin3 θ

∣∣s=r
s=0

(D.11)

=
1

4πr2

s3

(s2 + ε2)3/2

∣∣∣∣r
0

(D.12)

=
1

4π

r

(r2 + ε2)3/2
.(D.13)

Differentiating (D.13) with respect to r produces

∂2Gϕε

∂r2
=

1

4π

−2r2 + ε2

(r2 + ε2)5/2
.(D.14)

Substituting (D.13) and (D.14) into (D.7) results in the velocity resulting from a regu-

larized dipole:

(D.15) uD,ϕε∗i =
1

8πµ

[
6δijε

2

(r2 + ε2)5/2
− 2δij

(r2 + ε2)3/2
+

6x̂ix̂j
(r2 + ε2)5/2

]
fj,

as shown in (2.45).
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APPENDIX E: Derivation of a Regularized Rotlet

This appendix shows the derivation of a regularized rotlet, which will be utilized in the

system of regularized image singularities introduced by Cortez and discussed in Appendix

F [17]. A rotlet describes the resulting fluid flow due to a point torque (as opposed to the

flow due to a point force in the case of a Stokeslet). There are two ways one can derive

a rotlet. First, as discussed in Chapter 2, the rotlet is the anti-symmetric component

of a Stokes doublet. This is useful in deriving Rφε
ij , but not as useful with Rϕε

ij because

it requires beginning with a regularized Stokeslet derived from the corresponding cutoff

function. Since the only regularized Stokeslet derived here is with φε, we will consider

an alternative way of deriving a rotlet that does not explicitly depend on a regularized

Stokeslet. As a consistency check, it will be shown that both methods produce the same

results for Rφε
ij . For the sake of generality, let Φε represent any cutoff function. The

velocity due to a regularized rotlet can be expressed as

uR,Φε = L×∇GΦε(E.1)

=
1

r

∂GΦε

∂r
(L× x̂),(E.2)

where L denotes the rotlet strength coefficient. Then the components of the rotlet become

uR,Φε1 =
1

r

∂GΦε

∂r
(L2x̂3 − L3x̂2)(E.3)

uR,Φε2 =
1

r

∂GΦε

∂r
(L3x̂1 − L1x̂3)(E.4)

uR,Φε3 =
1

r

∂GΦε

∂r
(L1x̂2 − L2x̂1).(E.5)
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First consider building a rotlet from φε using a form of ∂Gφε

∂r
that is equivalent to (C.24):

uR,φε1 =
1

8π

[
2

(r2 + ε2)3/2
+

3ε2

(r2 + ε2)5/2

]
(L2x̂3 − L3x̂2)(E.6)

uR,φε1 =
1

8π

[
2

(r2 + ε2)3/2
+

3ε2

(r2 + ε2)5/2

]
(L3x̂1 − L1x̂3)(E.7)

uR,φε1 =
1

8π

[
2

(r2 + ε2)3/2
+

3ε2

(r2 + ε2)5/2

]
(L1x̂2 − L2x̂1)(E.8)

By choosing

L =
1

2µ
(α3β2 − α2β3, α1β3 − α3β1, α2β1 − α1β2),(E.9)

one can verify that the velocity produced by the rotlets in (E.6) – (E.8) is equivalent to

(2.59).

To derive the regularized rotlet from ϕε, begin again with (E.3) – (E.5). Using ∂Gϕε

∂r

given by (D.13) produces

uR,ϕε1 =
1

4π

L2x̂3 − L3x̂2

(r2 + ε2)3/2
(E.10)

uR,ϕε2 =
1

4π

L3x̂1 − L1x̂3

(r2 + ε2)3/2
(E.11)

uR,ϕε3 =
1

4π

L1x̂2 − L2x̂1

(r2 + ε2)3/2
.(E.12)

Both uR,φε and uR,ϕε are used in the derivation of the system of regularized image singu-

larities in Appendix F.
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APPENDIX F: Derivation of Regularized Image Singularities

for a Regularized Stokeslet

This appendix shows a derivation of the system of regularized image singularities

required to create a no-slip plane in the presence of one regularized Stokeslet. This

collection of regularized singularities was developed by Cortez [17]. Recall the notation

from Section 2.3, specifically Figure 2.1, where x0 is the location of the original regularized

Stokeslet and y0 is the location of the regularized image singularities outside of the

fluid domain. If the location of the wall is at x3 = w, then x0 = (x0,1, x0,2, x0,3) and

y0 = (x0,1, x0,2, 2w − x0,3). Consider x on the wall, so x = (x1, x2, w). Define r as

r = |x− x0| = |x− y0|.

As derived in Appendix C, the velocity due to the initial regularized Stokeslet located

at x0 is

(F.1) uS,φεi =
1

8πµ

[
δij

r2 + 2ε2

(r2 + ε2)3/2
+

(xi − x0i)(xj − x0j)

(r2 + ε2)3/2

]
fj.

To construct the system of regularized image singularities, again start by subtracting a

regularized Stokeslet at the image location, y0, and express the resulting net velocity

field3

uS,φε∗i =
1

8πµ

[
δij

r2 + 2ε2

(r2 + ε2)3/2
+

(xi − y0i)(xj − y0j)

(r2 + ε2)3/2

]
fj(F.2)

uS,φεi − uS,φε∗i =
1

8πµ

[
(xi − x0i)(xj − x0j)

(r2 + ε2)3/2
− (xi − y0i)(xj − y0j)

(r2 + ε2)3/2

]
fj.(F.3)

3As mentioned in Appendix B, (F.2) could be expressed as uS,φε∗i =

− 1
8πµ

[
δij

r2+2ε2

(r2+ε2)3/2
+ (xi−y0i)(xj−y0j)

(r2+ε2)3/2

]
fj to denote the opposite strength. In that case, uS,φεi + uS,φε∗i

would be considered throughout the text in place of uS,φεi − uS,φε∗i .
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Recognizing that x0 = y0 + 2hê3, letting x̂ = x− y0, and restricting x to be on the wall

so that x̂3 = h produces

uS,φεi − uS,φε∗i =

[
− 2hx̂iδj3

(r2 + ε2)3/2
− 2hx̂jδi3

(r2 + ε2)3/2
+

4h2δi3δj3
(r2 + ε2)3/2

]
fj.(F.4)

At this point of the derivation in the singular case discussed in Appendix B, a point-source

dipole and a Stokes doublet were included to complete the system of image singularities.

In an analogous fashion, consider the velocity contribution from a regularized dipole as

derived in Appendix D and a regularized doublet.

(D.15) describes the velocity due to a regularized dipole at y0:

(F.5) uD,ϕε∗i =
1

8πµ

[
6δijε

2

(r2 + ε2)5/2
− 2δij

(r2 + ε2)3/2
+

6x̂ix̂j
(r2 + ε2)5/2

]
fj.

The velocity induced by a regularized Stokes doublet at the image location, given in

(2.53), is

uSD,φε∗i =
1

8πµ

[
x̂kδij

(r2 + ε2)3/2
− x̂iδjk

(r2 + ε2)3/2
− x̂jδik

(r2 + ε2)3/2
+

3ε2x̂kδij

(r2 + ε2)5/2

+
3x̂ix̂jx̂k

(r2 + ε2)5/2

]
fj.(F.6)

As in Appendix B, let j = 3, k = j, and h = x̂3:

uSD,φε∗i =
1

8πµ

[
x̂jδi3

(r2 + ε2)3/2
− x̂iδ3j

(r2 + ε2)3/2
− hδij

(r2 + ε2)3/2
+

3ε2x̂jδi3

(r2 + ε2)5/2

+
3hx̂ix̂j

(r2 + ε2)5/2

]
fj.(F.7)

As in the singular case, examine uSD,φε∗i − h
2
uD,ϕε∗i from (F.5) and (F.7):

uSD,φε∗i − h

2
uD,ϕε∗i =

1

8πµ

[
x̂jδi3

(r2 + ε2)3/2
+

x̂iδ3j

(r2 + ε2)3/2
+

3ε2x̂jδi3

(r2 + ε2)5/2

− 3hε2δij

(r2 + ε2)5/2

]
fj.(F.8)
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At this point in the singular calculation, the collection of Stokeslets, dipoles, and

doublets are sufficient to satisfy the no-slip boundary condition on the plane, but this is

not the case with the regularized singularities:

uS,φε1 − uS,φε∗1 − 2h

(
uSD,φε∗1 − h

2
uD,ϕε∗1

)
=

1

8πµ

[
6hε2δ1j

(r2 + ε2)5/2

]
fj(F.9)

uS,φε2 − uS,φε∗2 − 2h

(
uSD,φε∗2 − h

2
uD,ϕε∗2

)
=

1

8πµ

[
6hε2δ2j

(r2 + ε2)5/2

]
fj(F.10)

uS,φε3 − uS,φε∗3 + 2h

(
uSD,φε∗3 − h

2
uD,ϕε∗3

)
=

1

8πµ

[
6hε2xj

(r2 + ε2)5/2

− 6h2ε2δ3j

(r2 + ε2)5/2

]
fj.(F.11)

A combination of the two rotlets derived from φε and ϕε in Appendix E will provide

the right form to cancel the remaining velocity terms. Let L = (L1, L2, 0). Then the

difference of regularized rotlets from (E.6) – (E.8) and (E.10) – (E.12) is

uR,φε∗1 − uR,ϕε∗1 =
1

8π

[
3ε2

(r2 + ε2)5/2

]
L2h(F.12)

uR,φε∗2 − uR,ϕε∗2 = − 1

8π

[
3ε2

(r2 + ε2)5/2

]
L1h(F.13)

uR,φε∗3 − uR,ϕε∗3 =
1

8π

[
3ε2

(r2 + ε2)5/2

]
(L1x2 − L2x1).(F.14)

Letting L =
fj
µ

(2hδ2j,−2hδ1j, 0), (F.12) – (F.14) become

uR,φε∗1 − uR,ϕε∗1 = − 1

8πµ

[
6h2ε2δ1j

(r2 + ε2)5/2

]
fj(F.15)

uR,φε∗2 − uR,ϕε∗2 = − 1

8πµ

[
6h2ε2δ2j

(r2 + ε2)5/2

]
fj(F.16)

uR,φε∗3 − uR,ϕε∗3 =
1

8πµ

[
6hε2(δ2jx2 + δ1jx1)

(r2 + ε2)5/2

]
fj.(F.17)

Comparing (F.9) – (F.11) with (F.15) – (F.17), one might notice that adding the respec-

tive first and second velocity components eliminates the first two velocity components,
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but the third component is not as obvious. Consider taking the difference of the third

velocity components and expanding the implied sum over j:

u3 = uS,φε3 − uS,φε∗3 + 2h

(
uSD,φε∗3 − h

2
uD,ϕε∗3

)
− (uR,φε∗3 − uR,ϕε∗3 )(F.18)

=
1

8πµ

[
6hε2xj

(r2 + ε2)5/2
− 6h2ε2δ3j

(r2 + ε2)5/2
− 6hε2δ2jx2

(r2 + ε2)5/2
− 6hε2δ1jx1

(r2 + ε2)5/2

]
fj(F.19)

=
1

8πµ

[(
6hε2x1

(r2 + ε2)5/2
− 6hε2x1

(r2 + ε2)5/2

)
f1

+

(
6hε2x2

(r2 + ε2)5/2
− 6hε2x2

(r2 + ε2)5/2

)
f2

+

(
6h2ε2

(r2 + ε2)5/2
− 6h2ε2

(r2 + ε2)5/2

)
f3

]
(F.20)

= 0.(F.21)

Thus, the following combination of regularized singularities satisfies the no-slip boundary

condition on a plane at x3 = w:

ui = uS,φεi − uS,φε∗i − 2h (1− 2δi3)

(
uSD,φε∗i − h

2
uD,ϕε∗i

)
+ (1− 2δi3)

(
uR,φε∗i − uR,ϕε∗i

)
,

(F.22)

which matches (2.62).
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APPENDIX G: Centroidal Voronoi Tessellations

Centroidal Voronoi tessellations (CVT) are used in this discussion to determine well

separated locations of regularized Stokeslets on a sphere, but there are many other appli-

cations of this technique. The potential applications are far-reaching, including numerical

meshing schemes, image compression, cellular biology, statistics, and animal behavior, to

name a few [25].

The following discussion follows closely from the work of Du et. al. [25, 26]. For an

open set Ω ∈ Rn, the collection of sets {Vi}ki=1 is a tessellation of Ω if ∪ki=1V̄i = Ω̄ and

Vi ∩ Vj = ∅ for i 6= j . For a collection of points {zi}ki=1 ∈ Ω̄, the Voronoi region V̂i

corresponding to zi is

V̂i = {x ∈ Ω : |x− zi| < |x− zj|, for j = 1, . . . , k, i 6= j} .(G.1)

The set {zi}ki=1 are generators. A Voronoi tessellation or Voronoi diagram refers to

{V̂i}ki=1 . For Vi ∈ Rn and density function ρ,

z∗ =

∫
Vi

yρ(y)dy∫
V=i

ρ(y)dy
(G.2)

is the mass centroid of Vi.

A centroidal Voronoi tessellation is a Voronoi tessellation whose generators coincide

with mass centroids (zi = z∗i ). From a set of generators, it is natural to find the associated

Voronoi region. Alternatively, from a Voronoi region, it is natural to compute its mass

centroid. The goal of centroidal Voronoi tessellations is to mesh these two processes to

find the set of generators that are also mass centroids.

In addition to using CVTs to find tessellations of a plane, a modification of centroidal

Voronoi tessellations, known as constrained centroidal Voronoi tessellations (CCVT),
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allows the same idea to be used to find well separated points on a surface. The regularized

Stokeslet locations for non-slender spheroids are produced with CCVT on a sphere. The

idea behind CCVT is similar to CVT except it is possible that the mass centroids do not

lie on the surface in question. As such, consider the constrained mass centroid

zci = min
z∈S

∫
Vi

ρ(x)|x− z|2dx|,(G.3)

where | · | represents the Euclidean norm. A Voronoi tessellation is a constrained cen-

troidal Voronoi tessellation if and only if the generators of the Voronoi tessellation are

the constrained mass centroids [26].

The CCVT algorithm used to place regularized Stokeslets on a sphere in the numerical

model presented in this dissertation is the SCVT (spherical CVT) routine written by

Burkhardt as a probabilistic CCVT routine [35]. Figures 0.1(a) and 0.1(b) show the

results of using Burkhardt’s code to generate 200 regularized Stokeslet locations on a

sphere and projected onto a spheroid, respectively.

(a) (b)

Figure 0.1. Results of using Burkhardt’s CCVT routine [35] to distribute

200 regularized Stokeslets on the surface of (a) a sphere and (b) a non-

slender spheroid.
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