
Co-scheduling Real-time Tasks and Non Real-time Tasks Using Empirical Probability Distribution of
Execution Time Requirements

Abhishek Singh

A dissertation submitted to the faculty of the University ofNorth Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill
2009

Approved by:

Kevin Jeffay, Advisor

Sanjoy Baruah, Reader

Ketan Mayer-Patel, Reader

Alan Burns, Reader

Don Smith, Reader

c© 2009
Abhishek Singh

ALL RIGHTS RESERVED

ii

ABSTRACT

ABHISHEK SINGH: Co-scheduling Real-time Tasks and Non Real-time Tasks Using
Empirical Probability Distribution of Execution Time Requirements.

(Under the direction of Kevin Jeffay)

We present a novel co-scheduling algorithm for real-time (RT) and non real-time response time sensitive (TS)

tasks. Previous co-scheduling algorithms focussed on providing isolation to the tasks without considering the

impact of scheduling of the RT tasks on the response times of the TS tasks. To best utilize the available processing

capacity, the number of jobs qualifying for acceptable performance should be maximized. A good scheduling

algorithm would reduce the deadline overrun times for soft real-time tasks and the response times for the TS

tasks, while meeting deadline guarantees for the RT tasks. We present a formulation of optimal co-scheduling

algorithm and show that such an algorithm would minimize theexpected processor share of RT tasks at any

instant. We propose Stochastic Processor Sharing (SPS) algorithm that uses the empirical probability distribution

of execution times of the RT tasks to schedule the RT tasks such that their maximum expected processor share

at any instant is minimized. We show theoretically and empirically that SPS provideds significant performance

benefits in terms of reducing response times of TS jobs over current co-scheduling algorithms.

iii

Table of Contents

LIST OF TABLES vii

LIST OF FIGURES viii

1 Introduction 1

1.1 Motivation 1

1.2 Execution Time Variability 2

1.3 A Novel Approach - Smart, Adaptive and Learning Scheduler 4

1.4 The Co-Scheduling Problem 6

1.4.1 Task Model 6

1.4.2 s(t) andA(t) . 7

1.5 Performance Gains 12

1.6 Scheduler Evolution - From Simple Deadline Driven EDF toIntelligent SPS 15

1.6.1 Scheduling Network Flows with Bandwidth Guarantees 15

1.7 Organization 16

2 Literature Survey 17

2.1 Real-Time Scheduling 17

2.2 Earliest Deadline as Late as Possible 18

2.3 Generalized Processor Sharing 19

2.3.1 Constant Bandwidth Server and Total Bandwidth Server. 19

2.3.2 Slack Reclamation 20

2.4 Modeling Task Criticalness 21

2.4.1 TUFs and Imprecise Computation 22

2.5 Predicting Execution Requirement 24

2.6 Feedback Scheduling 25

iv

2.7 Probabilistic Analysis vs Probabilistic Scheduling . .. 26

2.8 Requirement Variability and Dynamic Voltage Scaling . .. 27

3 Coscheduling Real-time and Response Time Sensitive Tasks 29

3.1 Motivation - Single RT Media Decoding Task System 29

3.1.1 Definings(t) . 30

3.1.2 Understanding A(t), s(t) and g(.) 33

3.1.3 Problem with Priority 33

3.1.4 Problem with EDL 34

3.1.5 Problem with GPS 34

3.2 Probability and Scheduling - Stochastic Processor Sharing . 34

3.2.1 Calculatingg Proposed(.) for a Single RT Task System 35

3.2.2 Schedule Illustration - Media Decoding Task Example 37

3.2.3 Handling Multiple RT Tasks 38

3.3 Performance Comparison 41

3.4 Quantum-Based Scheduler 43

3.4.1 The Algorithm 44

3.4.2 Simulation Results 45

3.5 Summary 46

4 Soft Real-time Scheduling 47

4.1 SRT Tasks 48

4.2 TS Tasks 50

4.3 What makes a Good Co-Scheduling Algorithm? 50

4.4 TS Job Size and Impact on Response Time 52

4.5 The SPS Scheduler 53

4.6 Measuring and Reporting Response-times -Φ(.) Function . 54

4.7 Online Profiling - ConstructingχRT . 55

4.8 LearningχRT . 60

4.9 Putting All the Pieces Together - Design of a Practical Scheduler 61

4.9.1 Periods and Reservation 61

v

4.10 Possible Application Scenarios 62

4.10.1 Server System Supporting Large Number of Clients 62

4.10.2 Supporting Bandwidth Reservations on a Network Node. 66

4.11 Summary 70

5 Experimental Setup 71

5.1 Experiment Parameters 71

5.1.1 SRT Tasks Generation 72

5.1.2 TS Tasks Generation 73

5.2 Simulation Platform 73

5.3 Typical Experiment 79

5.4 Experiments and Observations 84

5.4.1 Impact of SRT Utilization on SRT Overruns 84

5.4.2 Impact of SRT Utilization on TS Response Times 88

5.4.3 Impact of SRT Requirement Variability 93

5.4.4 Impact of Mean TS Utilization 95

5.4.5 Impact of Size of SRT Jobs 97

5.4.6 Impact of Size of TS jobs 99

6 Conclusion 101

6.1 Co-scheduling Algorithm Performance 101

6.2 Contributions 105

6.3 Limitations and Future Work 107

6.4 Workload Consolidation and Power Savings 109

6.5 Conclusions 110

BIBLIOGRAPHY 112

vi

LIST OF TABLES

1.1 Notation summary 6

2.1 Task setup . 23

4.1 Summary statistics for (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40) 63

4.2 Summary statistics for (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15) 67

5.1 Summary statistics for (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) 79

5.2 Experiment sets 84

6.1 Very lightly loaded processor 102

6.2 Lightly loaded processor 103

6.3 Moderately loaded processor 103

6.4 Overloaded processor 104

6.5 Variation with TS jobs sizes 105

vii

LIST OF FIGURES

1.1 Execution time variation 3

1.2 Prioritys(t) . 9

1.3 GPSs(t) . 10

1.4 EDLs(t) . 10

1.5 s(t) and Expected s(t) 12

1.6 A(t) . 13

1.7 SampleΦ(.) . 14

3.1 g(.) functions .. . 31

3.2 g(.) ands(.) functions . 37

3.3 Schedule for a task with period 40ms, worst case execution time requirement of 24ms and mean execution

time requirement of 12ms. The execution time is assumed to beuniformly distributed between 0 and 24ms.

The quantum size is assumed to be 1ms.. 45

4.1 SRT Execution time variation 48

4.2 NaiveχRT . 56

4.3 Naive TS response timeΦ(.) . 57

4.4 χRT discounting idle allocation 58

4.5 TS response timeΦ(.) after discounting idle allocation .. 58

4.6 χRT discounting idle time 59

4.7 TS response timeΦ(.) after discounting idle time . 60

4.8 Online profiling to constructχRT . 60

4.9 (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40) execution time requirement distribution 64

4.10 (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40)Φ(.) values for SRT and TS tasks 64

4.11 (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40) g(.) functions for the four schemes 65

4.12 (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15) execution time requirement distribution 68

4.13 (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15)Φ(.) values for SRT and TS tasks 68

4.14 (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15) g(.) functions for the four schemes 69

5.1 Java GUI input form 73

viii

5.2 Java GUI summary statistics at the end of simulation. 75

5.3 Java GUI RT requirement distribution 76

5.4 Java GUIΦ(.) functions . 77

5.5 Java GUIg(.) functions . 78

5.6 (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) execution time requirement distribution 81

5.7 (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)Φ(.) values for SRT and TS tasks 82

5.8 (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) g(.) functions for the four schemes 83

5.9 Cumulative SRT utilization histogram and RT requirement distribution 85

5.10 Overrun times andg(.) for SPS . 86

5.11 SPSg(.) and RT requirement distribution 87

5.12 Low utilization system, TS response timeΦ(.) and SPSg(.) 88

5.13 Medium utilization system,g(.) function . 89

5.14 Medium utilization system, TS response time and SRT overrun timeΦ(.) 90

5.15 SPSg(.) trend from EDL like for low overall system utilization to GPSlike for high overall

system utilization 91

5.16 High utilization system, TS response time and SRT overrun timeΦ(.). TS jobs may be starved. . 92

5.17 Impact of difference betweenUsrt andR on TS response times 94

5.18 Impact of TS Workload 95

5.19 Impact of Number of SRT Tasks on TS response times 97

5.20 Impact of size of TS jobs on TS response times 99

ix

CHAPTER 1
Introduction

Scheduling real-time (RT) tasks is a well studied problem. For example, Earliest Deadline First (EDF) is known

to be optimal scheduling algorithm for uniprocessor systems, for the Liu and Layland periodic task model where

task deadlines same as their period. If the cumulative worstcase utilization of the task set is not greater than

1 then the task set is schedulable [LL02]. While this scheduling model is suitable for task sets composed of

just hard RT tasks, many practical task sets are composed of tasks with varying timeliness requirements. For

example, a General Purpose Operating System (GPOS) runs a wide variety of tasks with different response time

sensitivities –

• Interrupts that require “instant” service (a response timeof a fewµs to a few ms)

• Media playback, computer games, interactive tasks like document editing that require response times in

the range of 30-200ms.

• Web servers or databases servicing a large number of concurrent clients, whose performance depend on

the response time of the service.

• Large response time tasks that are not sensitive to slight variation in response times. These tasks include

tasks submitted to grid systems, media encoding, scientificproblem solving tasks, downloading large files

etc.

The scheduling problem for such task sets is neither purely deadline based nor one of response time min-

imization. The goal is to schedule tasks so that the responsetimes are reduced by a factor of 2-3 times as

compared to current predominant scheduling algorithms over a wide range of practical scenarios.

1.1 Motivation

A solution to the problem of GPOS scheduling would require a task model where the tasks may have deadlines

(RT tasks) or response time constraints. (time sensitive orTS tasks). The goal of the scheduler would then be to

provide deadline guarantees to RT tasks while minimizing response times of TS tasks.

However, realizing such a scheduler in a GPOS is difficult. Most current GPOS are based on multilevel

feedback queue schedulers which give preference to shorterjobs and i/o jobs over compute intensive jobs. Mul-

tilevel feedback queues fall in the category of best effort scheduling, where there are no scheduling guarantees

provided, but the average response times for the jobs are better than using scheduling schemes like FIFO or pure

round-robin.

Most GPOS provide mechanisms to assign priorities to tasks.In this setup, RT tasks can be given priority

over the non-RT tasks. But this is the worst possible way to co-schedule RT and non-RT tasks because the

non-RT tasks are blocked whenever any RT task is active, hence may experience unnecessary long response

times.

This raises an important question why current GPOS support priority based schedulers, even though it is the

worst possible way to co-schedule RT and non-RT TS tasks. There are two main reasons for this –

• A lack of suitable schedulers for co-scheduling RT and response time sensitive non-RT tasks

• No pressing need for new schedulers

For underutilized systems, the scheduling algorithm has little impact on the response times because there

are enough computing resources for all the tasks to finish within reasonable time. Problems arise when there is

resource contention. When the processor utilization of thetask set is high, inefficient scheduling may lead to RT

tasks missing their deadlines and non-RT tasks getting delayed unnecessarily.

1.2 Execution Time Variability

Current real-time schedulers, though appropriate for scheduling tasks with constant execution time requirements,

do not handle variable requirement RT tasks well. In fact, they schedule variable requirement RT tasks by

assuming that each job may require its worst case execution time requirement, which is not efficient.

For example, consider a MPEG playback task. The frame decoding times have large variation. For example,

it is not uncommon for the maximum decoding time to be more than 3 times the minimum decoding time). Even

the variation between the decoding time from one frame to another is very large (Fig 1.1).

The deadlines for decoding a frame are not hard. Thus, if a frame misses its deadline by a small amount then

it may not lead to any performance degradation at all. Therefore, each job of the MPEG decoding task can be

2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ill

io
n

cp
u

cy
cl

es

#frame

Execution requirement

(a) MPEG frame decoding

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000

M
ill

io
n

cp
u

cy
cl

es

#frame

CPU Cycles (millions)

(b) Quake software rendering times

Figure 1.1: Execution time variation for an MPEG frame decoding task and Quake I software rendering task.
The frame decoding times for a StarWars trailer using mpegplay are reported. Note that the minimum execution
time frame requires around 5 million cycles, some frames requirement more than 20 million cycles. Some frames
require more than 20 million cycles. Even from frame to frame, the execution time variation is significant. For
Quake I software rendering task, though frame to frame execution time variation is not as substantial as MPEG
decoding task and the execution time between adjacent frames is similar, the overall execution time variation is
large, with mean requirement of around 5M cycles and maximumof more than 15 M cycles.

allocated less than its worst case execution time requirement, and if a job requires more than what it is allocated,

then its the duty of the scheduler to keep the deadline overrun time small to avoid performance degradation.

For task sets composed of many soft real-time (SRT) tasks, even if the cumulative worst case utilization is

greater than 1, the task set may be schedulable with acceptable performance. For example, consider a task set

with 3 tasks, each with worst case utilization of 0.5 and meanutilization of 0.2. Now, while the cumulative

worst case utilization is 1.5, the cumulative mean utilization is just 0.6. Also, the probability of ever reaching

the theoretical worst case utilization may be very low. Current scheduling algorithms would call for reserving

less than the worst case utilization for each job of the tasks([AB98a], [APLW02], [RH95]), but in that case

some jobs may miss their deadlines and in this case the deadline overrun time determines the performance of the

algorithm.

Broadly, the scheduling algorithm’s responsibilities are–

• Determining the amount of execution time that is guaranteedto each job (the reservation), which may be

less than the worst case execution time requirement

• Minimizing deadline overrun times in case of deadline miss.

While many solutions have been proposed for the first problem(like feedback control [APLW02] [LSST02]),

few solutions, if any, exists for the second problem.

3

As mentioned earlier, for underutilized systems, any reasonable scheduling algorithm (like multilevel feed-

back queues) provides decent performance. This is because there is no actual resource contention and all tasks

can finish within reasonable time frame. Though a scheduler giving priority to RT tasks over non-RT tasks may

be highly inefficient even for underloaded systems. For example, consider a task set with single RT task with

period 100 ms and constant execution time requirement of 50 ms. The utilization is 0.5. Now, suppose a very

small requirement non-RT job arrives every 100 ms. The RT jobs also arrive every 100 ms. So each of the

non-RT job has to wait for 50 ms, before it is serviced. The response time of each of the non-RT job is at least

50 ms, even though the processor utilization is just 50%. This problem becomes more serious as the processor

utilization increases, and the non-RT jobs are delayed evenmore due to the RT jobs.

In the following sections, we introduce a co-scheduling algorithm that provides hard deadline guarantees to

the RT tasks while minimizing response times of the non-RT tasks.

1.3 A Novel Approach - Smart, Adaptive and Learning Scheduler

We focus on the problem of co-scheduling RT and TS tasks such that RT tasks meet their deadlines while

reducing response time of TS tasks. This is an important problem with significant practical implications. For

example, for a task set with a large number of variable requirement SRT tasks, the cumulative utilization of the

tasks at any instant is not very variable (due to statisticalmultiplexing), and hence the reservation required is

significantly less than the cumulative worst case requirement of the task system. But if the task set is allocated

less processing time as compared to its worst case requirement, then there may be deadline overruns in some

cases when the cumulative processing time requirement of the task set is greater than what is allocated to them.

For example, suppose the cumulative mean utilization of SRTtasks is 0.8, cumulative worst case utilization is 3

and suppose one of the constituent tasks has mean utilization of 0.1 and worst case utilization of 0.2. Suppose

the task gets a reservation of 0.12. Then any job of this task with greater utilization than 0.12 may potentially

miss its deadline. But as mentioned earlier, the cumulativemean utilization of all tasks is 0.8, so on average

there is 0.2 processor utilization which is free to be used byany of the tasks. If this free utilization is distributed

properly and in a timely manner to the overrun jobs then the potential deadline misses may be avoided. Also, if

there are non-RT tasks in the system, then the RT jobs can be delayed such that they do not miss their deadline,

but this delaying of RT jobs significantly improves the non-RT response times.

The RT jobs can only be delayed by certain amount without missing their deadlines. Whenever RT jobs

4

are active they compete for processor time with the other tasks. But if the processor has enough idle time such

that all the RT jobs can finish using just the idle processor time, then the RT jobs can be scheduled at lowest

priority and still they would meet all their deadlines without interfering with the execution of other tasks. If the

processor is busy on the other hand, then the RT jobs would interfere and compete for resources with the jobs

of other tasks in the system. For practical task sets, the RT jobs may get some part of their allocation as idle

allocation and the remaining because of the scheduling algorithm. Also, the actual execution time requirements

of the RT jobs may be variable, so some jobs may require very less execution time, while other jobs may require

their worst case execution time. An algorithm can proactively take into account this execution time variability

of RT jobs and ensure that the lesser requirement jobs are treated differently from the jobs that require greater

execution time, can provide performance benefits to the other tasks in the system. But the execution time of the

RT jobs may not be available beforehand, and guessing the execution time is not an option because that may lead

to deadline misses. To gracefully handle the variability inexecution time requirement of the RT jobs we propose

varying the processor share of RT jobs such that the RT jobs get a lower processor share in the beginning but this

processor share progressively increases, but the intervals of higher processor share are rarely reached because

most jobs would finish before reaching that phase of execution. To achieve this kind of behavior, the probability

distribution information of the RT requirements would be needed to ensure that the higher processor share phase

of RT jobs is reached only rarely.

Note that our goal is not to find what reservation utilizationis required for attaining certain performance

level, instead, the goal is to minimize the TS response timeswhile providing reservation guarantees to the RT

jobs, whatever they may be. This formulation of the problem is useful as well as practical because the problem

of finding the reservation requirement for SRT task has been addressed before but the problem of co-scheduling

RT and non-RT tasks efficiently for given reservations for the SRT tasks has largely been unaddressed.

The way our work fits in practical systems is as follows. Algorithms like feedback-control focus on deter-

mining the minimum reservation required for SRT tasks to attain acceptable performance. Using our scheduling

algorithm would yield the minimum reservation (calculatedthrough feedback-control) required for the SRT tasks

to attain given performance in terms of jobs finishing withincertain response time. So while the feedback-control

loop remains the same, the internal scheduling is changed touse our algorithm that provides RT guarantees while

minimizing response times. In the next section we present a formal definition of the problem we are addressing

along with key contributions and results.

5

Notation Meaning
RT Task Real-time task with a deadline.
non-RT Task Non real-time task.
SRT Soft real-time, task with non-critical deadline. In case ofdeadline miss,

deadline overrun time determines performance.
TS Time sensitive task, response time determines performance.
EDL Earliest Deadline as Late as Possible
GPS Generalized Processor Sharing
GPOS General Purpose Operating System
SPS Stochastic Processor Sharing
WCET Worst-Case Execution Time Requirement for a job of a task
Worst-case utilization WCET divided by task period
Mean utilization Mean execution time requirement divided by task period
Cumulative worst-case uti-
lization

Sum of worst-case utilizations of all the tasks

Cumulative mean utilization Sum of mean utilizations of all the tasks. This may be considerably less
than the cumulative worst case requirement.

Task reservation utilization Execution time requested by each job of the task divided by its period.
The scheduler has to guarantee this execution time to each job of the
task. The reservation utilization is usually between the mean utilization
and the worst case utilization of the task.

Cumulative reservation uti-
lization

Sum of reservation utilizations of all the tasks.

Scaled response-time Response time of a job of a task divided by its period.
Scaled overrun-time Overrun time of a job of a task divided by its period.

Table 1.1: Notation summary

1.4 The Co-Scheduling Problem

Table 1.1 briefly describes the notation.

1.4.1 Task Model

A task is represented as the tuple(Pi, χi, Ci, Ri), wherePi is the period (jobs arrive everyPi time units),χi

is the random variable representing the execution time requirement of a job of this task,Ci is the worst case

execution time requirement of this task (WCET) and any job ofthe SRT task should receiveRi execution time

before its deadline. We callRi the reservation of the SRT task. Our scheduling algorithm schedules the SRT

tasks in the best possible manner such that the each SRT tasksis guaranteed its allocation ofRi execution time

by its deadline (Pi time units), while minimizing the response times of TS tasks.

A task with Ri < Ci, is a SRT task and some jobs of this task may miss their deadline and the goal of

the scheduling algorithm is to minimize the deadline overrun time for jobs missing their deadline. A task with

6

Ri = Ci is RT task where no job should miss its deadline. A task withRi = 0 is a TS task with no deadline,

rather the performance is determined by its response time. Response time is defined as the difference between

the job finish time and its arrival time. Overrun time for a SRTjob is the difference between its response time

and its period. If a SRT job finishes before its deadline, thenits overrun time is considered to be 0.

A SRT job of taski arriving at timet is guaranteedRi execution time during the interval[t, t + Pi]. If the

job does not finish after it has received its allocation shareof Ri, then this job is scheduled as a TS job for the

remaining duration of its execution.

The goal of scheduler is to allocateRi execution time to each job of taski before its deadlinePi, and do so

while minimizing the response times of TS jobs.

We assume that the only information available to scheduler is the periodPi and reservationRi for each SRT

task in the system. The execution time of any job of a task is a random variable, denoted asχi, that is the

scheduler has no information about the actual execution time requirement of any job (non clairvoyance). For a

clairvoyant scheduler, the optimal schedule would be different than that given by proposed approach. Assuming

non clairvoyance is very useful , because for most practicalsystems, the actual execution time requirements of

a jobs are neither known nor easily available. The usual way to get around this problem is that the scheduler

fixes the reservation valueRi for each SRT task, and the scheduling is done assuming each SRT job requiresRi

execution time units, neglecting the variability in execution time requirement. This is a serious flaw with current

schedulers, and we will show through this work that substantial performance gains are possible if the execution

time distribution is accounted for by the scheduling algorithm.

This brings us to the thesis statement.

The empirical probability distribution of execution time requirements of tasks can be effectively used by

an online scheduling algorithm to improve response-times of the non real-time tasks while meeting deadlines

for the real-time tasks.

1.4.2 s(t) and A(t)

The goal of our scheduling algorithm is to minimize the TS response times. For doing that, we first need to know

what are the best possible response times for the TS jobs. If the TS jobs are scheduled in FIFO order, then the

scheduling algorithm that provides optimal response timesis known [RCGF97]. But FIFO is not a good policy

to schedule TS jobs if the job sizes are variable. Shortest Job First (SJF) minimizes the mean response time if the

execution time requirements for the jobs are known beforehand, Least Attained Service first (LAS) minimizes

7

the mean response time if the execution time requirements are not known beforehand.

Now the TS jobs share the processor with RT jobs. LetA(t) denote the cumulative allocation to the TS jobs as

a function of time. Now depending upon the co-scheduling algorithm the value ofA(t) may vary. The algorithm

that schedules the TS jobs gets a cumulative allocation ofA(t) by time t, and this allocation is dependent upon

the co-scheduling algorithm and independent of the algorithm used to schedule the TS jobs.

A co-scheduling algorithm that gives greaterA(t) by timet, in general can provide better response times to

the TS jobs.

But A(t) alone does not characterize the TS response times fully. Forexample, consider a task set with a

single RT task with period 100 ms and constant execution timerequirement of 50 ms. Now suppose there is a

very large execution time requirement TS job that arrives attime 0, and a very small execution time requirement

TS job arrives every 100 time units starting at timet = 50. Now the co-scheduling algorithm that maximizes

A(t) is one that maximally delays the RT jobs. So the RT job arriving at time 0, is scheduled at timet = 50ms,

and RT job arriving at timet = 100ms is scheduled at timet = 150ms and so on. The problem with this

co-scheduling algorithm is that any TS job arriving at timet = 50ms or t = 150ms is delayed for50ms before

it gets any service. This is because, the RT jobs needs to execute from timet = 50 till time t = 100 and from

time t = 150 to t = 200 in order to meet their deadlines. On the other hand, giving RTjobs priority over the TS

jobs would give a schedule where the RT jobs are scheduled from timet = 0 till time t = 50, and fromt = 100

till time t = 150 and so on. So the small requirement TS jobs arriving at timet = 50, t = 150 and so on, get

serviced as soon as they arrive.

This example shows that to provide better TS response times,the small TS jobs should not be made to wait.

To model this requirement we introduce the measures(t) which represents the processor share of RT jobs at

time t. So, at timet, the TS jobs get a processor share of(1 − s(t)). The valueE[s(t)] represents the expected

processor share of RT jobs at timet, and keeping this value small rather thans(t) is more useful. This is because

if the intervals whens(t) is high are rare, then their performance impact is less. And this is particularly useful,

if havings(t) high (though rarely), reduces the value ofs(t) for more probable cases.

Formally,

• s(t) is a number in the range[0, 1] and denotes the cumulative RT processor share at timet. Correspond-

ingly (1 − s(t)) denotes the cumulative processor share available to TS tasks at timet.

• While (1 − s(t)) is the instantaneous processor share available to TS tasks,A(t) =
∫ t

0
(1 − s(t))dt is the

8

cumulative allocation to TS tasks in the interval[0, t].

Figure 1.2:s(t) for a job with requirement equal to the worst case execution time requirement under Priority
scheduling. Note that the RT job gets the full processor during the time it is active. We label this curve asg(.).
The reasons for this will be explained in the later chapters,but for now understanding the shape of the curve is
sufficient.

To understand the meaning ofs(t), let us work through some simple examples. Consider a task system with

a single unit period RT task with mean requirement of 0.3, worst case requirement of 0.65. Suppose all the other

tasks in the system are non-RT. The goal of the scheduling algorithm is to finish each job of the RT task before

its deadline (which is same as period and equal to one time unit). There are many ways to achieve this. What we

are looking for is the way that best benefits the non-RT tasks in the system.

Now the most straightforward way to guarantee no deadline misses to the RT task is to give the RT jobs

priority over the non-RT jobs in the system. That is, whenever there is an RT job in the system, it preempts all

other non-RT jobs and executes on the processor until it finishes. Clearly, such a schedule guarantees that all the

RT jobs meet their deadlines. Figure 1.2 shows the processorallocation to the RT job requiring its worst case

execution time requirement as function of time since its arrival. We call this thePriority scheduling approach.

The height of the shaded region is the value ofs(t), and the area of the shaded region is the allocation to the RT

job.

Another way to schedule the RT job is to give the RT job a constant processor share of 0.65. Clearly, even in

this case no RT job misses its deadline. But this is a better processor allocation scheme than before, because in

this case the non-RT jobs may get some processor allocation even when the RT job is active, which gives better

A(t). This schedule is shown in the Fig 1.3. We call this theGPSscheduling approach, where GPS is short form

for Generalized Processor Sharing model [PG93].

Still another way to schedule the RT job is to delay its execution until the latest time such that it still meets

9

Figure 1.3: s(t) for a job with requirement equal to the worst case execution time requirement under GPS
scheduling. Note that the RT job gets the processor share equal to its worst case utilization during the time it is
active.

Figure 1.4: s(t) for a job with requirement equal to the worst case execution time requirement under EDL
scheduling. Note that the RT job gets the full processor share starting from time 0.35 till its deadline of 1 time
unit. Since the RT job is delayed maximally, soA(t) is maximum for this scheme for any value oft.

its deadline in the worst case execution time requirement case. In particular, a RT job arriving at time 0, is not

scheduled until time 0.35. And once it is scheduled at time 0.35, it alone gets the entire processor. Also, it can

be seen that no RT job misses its deadline in this case also. And this schedule has the added advantage of giving

the best possibleA(t) function, because delaying the RT job any more may lead to deadline overruns. Fig 1.4

shows such a schedule. We call this the EDL scheduling approach, where EDL stands for theEarliest Deadline

as Late as possiblescheduling algorithm, because this algorithm is based on the notion of delaying the execution

of the RT job by as much as possible, thereby giving better timely allocation to the non-RT jobs. In fact, this will

be the optimal algorithm if the TS jobs are scheduled in FIFO order.

So is EDL the best solution ? No! This is because of two main reasons. First, note that a non-RT job arriving

10

when the RT job is scheduled is blocked for the entire duration during which the RT job is active under EDL. In

this scenario, EDL performs as badly as Priority scheduling, even though EDL has betterA(t) than Priority. In

fact, EDL may lead to arbitrary long intervals when non-RT jobs are blocked. For example, consider a task set

with a single RT task with period 100 seconds and constant execution time requirement of 50 seconds. Suppose

there is a constant streams of TS jobs arriving, then under EDL class of algorithms, from timet = 0 till t = 50

seconds non-RT jobs are scheduled while RT job waits. From timet = 50 seconds tillt = 100 seconds, the RT

job is scheduled and non-RT jobs arriving during this time are blocked. In worst case, a very small requirement

(and probably highly response time sensitive) non-RT job arriving at time t = 50 seconds is blocked for 50

seconds (fromt = 50 until t = 100). In such a scenario, a GPS based schedule would provide better response

times to small TS jobs. Second, note that even though the worst case execution time requirement of the job is

0.65, as we mentioned before the mean requirement is just 0.3. The above three scheduling algorithms plainly

neglect this information, and schedule irrespective of it.

This is where we enter. We propose a scheduling algorithm, which we call Stochastic Processor Sharing or

SPS, and this scheduling algorithm provides guarantees to the RT tasks while taking into account their execution

time requirement variability to provide better response times to the non-RT tasks in the system. How can it do

that ? Figures (Fig 1.5) give a general idea on what actually SPS does, and in the following chapters, SPS is

explained in detail. Note that SPS continuously varies the processor share allocated to the RT job with progress

(the shape of the function is determined by the probability distribution of the execution time requirement of

the RT job). Under SPS, the RT job starts with a lesser processor share as compared to GPS, and gets the

full processor share near its deadline. And the shape of the functions(t) is such that the maximum expected

processor share of the RT jobs at any timet, represented asE[s(t)] is minimized.

In terms of theA(t) functions, the algorithms fare as shown in the figure Fig 1.6.As can be seen from the

figure, EDL performs the best in terms ofA(t), followed by SPS, GPS and Priority in that order. In fact, giving

priority to the RT jobs over the non-RT jobs in the system is the worst possible way to schedule RT jobs from the

point of view of non-RT jobs, and still it remains the most widely implemented scheduling algorithm in current

General Purpose Operating Systems (GPOS).

11

(a) Priority (b) GPS

(c) EDL (d) SPS

Figure 1.5: This figure shows thes(t) function for the worst case requirement job (as before) for each of the
scheduling algorithms (Priority, GPS, EDL and SPS), and it also shows the expected processor share as a function
of time. Note that under EDL and Priority, the maximum expected processor share of RT job may be 1, while
under SPS it is 0.4 (mean is 0.3 and worst case is 0.65). This also gives insight into the shape ofs(.) for SPS.
Basically, for SPS, the shape ofs(.) is such that the maximum expected processor share of RT job isminimized.

1.5 Performance Gains

All that said and done, the performance gains should be tangible or quantifiable. Now, what we are doing is to

improve response times of non-RT or TS jobs while meeting deadlines for the RT jobs. So the obvious measure

of performance is the response times of the non-RT jobs.

We started with the definition ofs(t) andA(t) which give a good theoretical model to compare performance

of various algorithms in terms of these measures without worrying about the actual non-RT workload and its

scheduling. In the following chapters we present theoretical proofs that SPS performs better than GPS and

Priority in terms of the measureA(t), and better than all three (EDL, GPS and Priority) in terms ofthe maximum

value ofE[s(t)].

To translate these results, which are in terms ofs(t) andA(t), into actual measurements, more groundwork

12

Figure 1.6: This figure showsA(t) for a job with requirement equal to the worst case execution time requirement
under the four scheduling schemes. Note that EDLA(t) is the maximum , followed by SPS, GPS and Priority in
that order. In fact, Priority gives the worst possibleA(t) for any scheduling schemes because under Priority the
non-RT jobs are blocked by RT jobs.

needs to be done. First, note that measuring improvement in response times of non-RT jobs is a very open

problem. For example, what kind of non-RT workload should beused to measure performance upon. Once the

workload is decided, what should be measured – the mean response time perhaps. But the mean response time

may be strongly biased in the favor of jobs with large response times. Also, the mean response time is just a

number and it does not give information about how actually the response times are distributed.

To understand this consider a MPEG decoding application playing at 30 frames per second. Now, a frame

needs to be decoded every 33 ms. If a frame takes 35 or 38 ms to decode, the impact on perceived performance

is minimal. For frames taking say 50 ms to 100 ms, the is some perceived delay but not serious performance

degradation. For frames taking more than say 200 ms to decode, the impact is visible and there is little difference

if the decoding time is 150 ms or 170 ms. In particular, jobs with response time close to the period have

little performance impact, while jobs with considerably greater response time all have negative impact on the

performance.

Thus, there is a need to formulate a measure that can quantifyand compare performance of scheduling algo-

rithms that combine hard deadlines with softer ones. Thoughworks like Time Utility Functions (TUFs) [JLT85]

tie response time to performance. We use a much simpler measure, which is easy to understand and can provide

important understanding and insights into the scheduler performance. Basically, to properly express the behavior

of scheduling algorithms, we propose theΦ measure, whereΦ(x) denotes the number of jobs whose response

time scaled by their period is greater thanx. And instead of reporting one value, a curveΦ(x) for x > 0 is

reported, which gives the distribution of response times for all the TS jobs.

13

Figure 1.7: This figure showsΦ(.) function for a task set with 50 SRT tasks and 50 TS tasks. The cumulative
mean utilization of SRT tasks is 0.50 and their cumulative reservation is 0.65, and the cumulative mean utilization
of the TS tasks is 0.35. The execution time requirement for all the tasks are normally distributed. Note that
EDL/SPS perform nearly equally while outperforming GPS by afactor of 2 and Priority by a factor of 3.

Fig 1.7 shows the response timeΦ(.) function for a task set with 50 SRT tasks with cumulative meanuti-

lization of 0.50 and cumulative reservation of 0.65. There are 50 TS tasks in the system, with cumulative mean

utilization of 0.35. Also, all the tasks have normally distributed execution time requirements. To understand

this graph, note that the lesser the value ofΦ(x) for given value ofx, the better the performance of scheduling

algorithm in terms of TS response times. AlsoΦ(x) is a decreasing function. BecauseΦ(x) denotes the number

of jobs with scaled response time greater thanx. Also, note that we plot the values for x from 0.1 to 3.0, this is

because, all TS jobs will have their scaled response times greater than 0, soΦ(0) would report the number of TS

jobs for all the scheduling algorithms.

For SRT tasks,Φ(x) represents the scaled overrun time. SoΦ(0.4) represents the number of SRT jobs with

their deadline overrun times greater than 0.4 times their respective periods. The usefulness of theΦ(.) measure

is that even ifΦ(x) is high for small values ofx (say0 ≤ x ≤ 0.4), the performance may be acceptable if few

RT job have their deadline overrun time greater than say 0.4 times their period (Φ(0.4) is the number of such RT

jobs).

14

1.6 Scheduler Evolution - From Simple Deadline Driven EDF toIntelli-

gent SPS

EDF has been known to be optimal RT scheduling algorithm for along time now. But current workloads are

complex and their timeliness requirements are not plain deadline based but a mixture of fuzzy deadline and re-

sponse time sensitiveness. These workloads require scheduling algorithms that specifically address these issues.

SPS not only handles these issues, but does so intelligentlywith minimal information about the task workload.

The only information it requires is the periods and the reservations for the SRT jobs, and it finds the best sched-

ule automatically by constantly profiling the execution time requirements of the SRT jobs. It does not rely on

schemes predicting execution time requirement or fancy feedback mechanism to adapt to changing execution

times of the application.

Most current GPOS are based on quantum based schedulers, andas we will show in later chapters, SPS can

be easily mapped to quantum based schedulers. But the quantum size on current GPOS is large (around 10 ms).

Though over the years, the scheduling quantum has come down from 100ms to 10ms or less, still for an efficient

SPS implementation the quantum size should be in the range offew ms if the minimum SRT periods are in the

range of 20ms. A positive development in this regard is the arrival of parallel hyper-threaded processors. Hyper-

threaded processors can service multiple tasks concurrently, and this model of processor service is closer to

GPS and hence more suited to SPS than the sequential single task processing model. SPS formulation requires

just two tasks to be run concurrently on the processor (one RTjob with processor shares(t) and one TS job

with the remaining processor share). While current processors can run multiple tasks concurrently (as in hyper-

threading), this is neither true parallel service model nordoes it allow tasks to given a fraction of processor. Still,

it is a positive development, and probably soon in future processors may support weighted concurrent sharing by

multiple tasks.

1.6.1 Scheduling Network Flows with Bandwidth Guarantees

Though the analysis done in this document is based on operating system task model, it can be easily applied to

the case of scheduling variable requirement network flows with bandwidth guarantees while providing smaller

response times to other flows. This scenario may arise in cases like booking network bandwidth for video con-

ferencing application, or supporting massively multi-player online video games. In such a setup, the bandwidth

booking would be useful on the bottleneck network node. The constituent TCP flows can be considered as SRT

15

tasks with their periods depending on the RTT (actually the timeout value for the individual connections). If we

define the response time for a packet as the time spent by the packet on the network node then the network node

should limit the response time of packets on it belonging to the reserved bandwidth flows, while keeping the

response times for packets of other flows small. It should be noted that GPS as a concept was introduced in the

domain of network bandwidth sharing, and SPS is closely related to GPS, barring the fact that it does not assign

fixed share to the tasks (or flows), instead their share may vary with progress/time. In the following chapters we

present examples on how SPS can be used to schedule variable bandwidth requirement flows with bandwidth

guarantees on network nodes.

1.7 Organization

The organization of this thesis is as follows. We start with abroad literature survey of RT scheduling algorithms

and SRT scheduling algorithms. The scheduling approach we follow is significantly different from the current

RT scheduling algorithms, so that makes direct comparison difficult. Still, the problem of co-scheduling has

been frequently addressed, and we hope to provide the readerwith a broad perspective on the approaches used.

In the next chapter we present the theoretical framework, and use this as the basis for proofs that SPS has good

performance in terms of the measuress(t) andA(t), as compared to current scheduling algorithms. In this

chapter, we show how a quantum based scheduler can support SPS. In the next chapter we expand the domain

of SPS to SRT tasks and also bring about the importance of profiling the RT requirements correctly. Since the

s(t), function is directly dependent upon the RT requirement distribution, hence measuring them reasonably well

is the key factor impacting the performance. In particular,we show that taking into account the processor idle

time is very useful to get good performance using SPS. In thischapter we also formally introduce and explain

the notion ofΦ(x) measure and present some preliminary results to understandhow to interpret it. Finally, the

conclusions, limitations and future work are presented.

16

CHAPTER 2
Literature Survey

2.1 Real-Time Scheduling

In real-time scheduling, tasks are required to finish beforedeadline. For a non clairvoyant scheduler, this implies

that every job is allocated for Worst Case requirement. The scheduling is concerned with allocating such that all

jobs of all the real time tasks meet their deadline.

For periodic task systems, where jobs arrive periodically,the cumulative system utilization should be less

than one for schedulability. ConsiderPi represents the period ofith task andWi its worst case requirement,

then, for schedulability,
∑ Wi

Pi

≤ 1

Static priority scheduling like Rate Monotonic [LL02], provide deadline guarantees if the cumulative worst

case system utilization is less than 0.69.

Commercial real-time systems often use frame based scheduling [Hor74], which is again based on worst

case requirements.

Though allocating for worst case is essential for real-timetasks, this may cause serious system underutiliza-

tion. For example consider a two task system, where both tasks have unit period, and the mean utilization of the

tasks is0.2 and0.3 respectively, while the worst case utilization is0.5 and0.5. Thus, on average only50% of

computing resources are used, but since the worst case system utilization is 1, hence no more real-time tasks can

be supported.

In classic real-time scheduling theory, the remaining 50% of system utilization goes to waste on average.

Note that this is not problem of knowing the execution requirement, but a more basic problem due to requirement

variability. That is even if the exact execution requirement are known, no more tasks can be added to this system

because the worst case utilization with the two tasks is 100%. Hence, if more workload is added to this system

then there is a risk of missing deadline.

Now, often missing deadlines may not be serious if the deadline miss time is small. It may be the case that the

task does not have a clear deadline but a range of acceptable values, so while some jobs may miss deadline, they

may still finish within acceptable time, and hence not counting as deadline miss. Another scenario is when real-

time tasks are composed of multiple steps. If the deadline ismissed by a small amount in one step, the task may

still finish on time if it finishes early enough in following steps or stages. Thus alongwith providing deadline

guarantees, minimizing response time in case of deadline miss is critical in minimizing resources required to

build real-time systems. For general tasks like media decoding etc, the deadline is not a clear value instead it is a

range of values which may be viewer dependent. That is some people may notice even slight frame decode time

variation, while others may not notice small variations at all. Thus keeping response time close to deadline leads

to better perceived performance for these tasks, while meeting all deadlines is not necessary. Through this work

we address these issues and provide solutions for them.

And the goal of scheduling is to minimize the deadline overrun time, so that even in case of deadline miss,

the likelihood of having response time within acceptable range is maximized. Thus task reservations may be

significantly smaller than the worst case values, with jobs missing deadline having high likelihood of not causing

performance degradation.

2.2 Earliest Deadline as Late as Possible

The problem of response time minimization while maintaining deadline guarantees for RT tasks have been

addressed before. If the response time sensitive tasks are scheduled in FIFO order, then either Earliest Deadline

as Late as possible (EDL) [CC89] or aperiodic deadline assignment [BS99] provides optimal solution. Both

are based on the notion of delaying RT jobs to the latest possible instant such that they can still be scheduled

without missing their deadlines. Dual priority [DW95] extends this notion of delaying RT jobs to static priority

systems. By delaying RT jobs, the other jobs (TS jobs) in the system get allocated earlier thereby reducing their

response times. But the drawback with this approach is that if the FIFO restriction on response time sensitive

tasks is removed, then delaying RT jobs for any response timesensitive job is no longer optimal. In particular, it

may happen that a relatively response time insensitive taskmay delay the RT jobs, and a more sensitive task may

be blocked by RT jobs which cannot be preempted because they are already maximally delayed. In this scenario,

the more sensitive TS job is blocked for the duration in whichRT jobs are active. Also this blocking time may be

arbitrarily long. While actual EDL schedule is calculated for hyper-period based on worst case execution time

18

requirement estimate, we use a coarse approximation to EDL schedule, which would be described in the next

chapter. From hereon, EDL would refer to this approximation.

In the following sections we look at how current work in real-time scheduling handles requirement variability.

But first we begin by giving a brief introduction to Generalize Processor Sharing (GPS) [PG93] model, because

in the following sections we would use this model of processor sharing to analytically analyze our proposals.

2.3 Generalized Processor Sharing

GPS [PG93] is resource sharing model which is frequently used in network flow scheduling. The basic idea is

that the tasks which are referred to as flows, can be concurrently allocated a fraction of processing capacity as

if they were executing on a separate processor with that capacity. So for example, consider two tasks. Each is

given half fraction of the processor. So it is as if, both of them were executing on a different processor with

processing capacity half of the original processor.

On sequential processors, GPS can be optimally invoked using quantum based algorithms like Earliest Eligi-

ble Virtual Deadline First (EEVDF) algorithm [SAWJ+96]. In EEVDF, each task is characterized by a positive

integerwi, called its weight, and getswi
P

wj
fraction of processing capacity at any time.

∑

wj represents the

sum of weights of all active tasks. EEVDF guarantees that theallocation to task with weightwi, lies within
∫ t

0
wi

P

j∈A(t) wj
dt± q, whereq is the quantum size. HereA(t) represents the set of active tasks at timet, and it is

assumed that taski was active in the interval from 0 tillt.

If the set of active tasks is constant, and the sum of weights is one, then the relation can be expressed simply

by saying that allocation till timet is betweenwi ∗ t± q. Each task is allocated a quantumq units of computation

at a time, and EEVDF determines the order in which the jobs areexecuted, giving the allocation guarantees

mentioned above.

2.3.1 Constant Bandwidth Server and Total Bandwidth Server

Constant bandwidth server (CBS) proposed by Abeni et al [AB98a], is characterized by budgetci, and a tuple

(Qi, Ti), whereQi represents the maximum budget andTi represents the time period. The server utilizationUi

is given byQi/Ti.

Whenever a job arrives it is assigned deadline equal to the current server deadline. And is run till its budget

does not run out. When the server runs out of its budget, it is recharged to the maximum valueQi, and its

19

deadline is advanced byTi, in effect maintaining utilization ofUi over any interval. At any moment the server

with the earliest deadline is executed.

A constant bandwidth server decouples the notion of jobs andreservation. That is, the task is provided a

constant reservation ofUi, and the allocation granularity is determined by the serverperiodPi. If the task period

is equal to the server period, then CBS is similar to a periodic task with periodPi and worst case requirement

Qi. In case of mismatch, the allocation guarantees are provided at everyPi time units, that is during firstPi

time units the task is guaranteed cumulative allocation ofQi computation units and so on. The smaller the server

periodPi, the better the allocation guarantee.

A Total Bandwidth server (TBS) proposed by [SBS95] is different from a constant bandwidth server in the

following way. Suppose a job arrives for a TBS, then it is assigned deadline which is maximum of previous job

response time and previous server deadline plus the termci/Ui, whereci is the worst case execution requirement

of arriving job andUi is the TBS bandwidth. Note that if a job requires greater thanci computation units

than it gets allocated at rate higher thanUi. This is because, it misses deadline and then becomes the earliest

deadline task with its deadline in the past. CBS overcomes this problem by allocating the task at a constant rate

irrespective of other factors.

But both of them suffer from the problem that they allocate for the Worst case requirement. That is, even

though most of jobs may require substantially less computation, they are allocated at rate which is determined

by the worst case requirement. So for example, consider a task which requiresx units of computation 99% of

time and2x units of computation for the remaining1% of jobs, still it is allocated at rate2x/P , whereP is the

period. Thus, over-allocating by twice for 99% of the jobs.

2.3.2 Slack Reclamation

If the task’s requirement are variable then frequently jobswould finish without consuming the full allocation

provided to them, leading to slack. Then, it is the job of the scheduler to distribute this extra available computa-

tion time amongst the other jobs in the system. Many slack reclamation schemes have been proposed [LB00],

[BBB04] etc. Slack reclamation is a passive scheme, that is,once the slack appears the scheduler distributes it.

In this work we do not address the issue of handling slack, instead we address the issue of pro-actively adjusting

task schedule according to the probability distribution ofits execution requirement such that other tasks in the

system get greater processor share while the variable requirement real-time task is still active.

The goals of our approach are similar to that of dual priorityscheduling discussed in next section.

20

2.4 Modeling Task Criticalness

The prevalent measure of criticalness of a task is deadline miss ratio. For example, a task with acceptable

deadline miss ratioρ of 0.01 implies 1% of deadline may be missed. Note that usually there is no specification of

the scheduling behavior in case of deadline miss. More elaborate guarantees, like in anyk consecutive deadlines

atmostm deadline may be missed have been proposed [RH95].

While these schemes reduce the utilization requirement of tasks, by allowing some jobs to miss deadline. The

scheduling is still done for the boundary case value. That is, consider a task with 90% probability of requiring

x computation units and 9% probability of requiring2x computation units and 1% probability of requiring3x

computation units.

Now to attain a deadline miss ratio of 1%, each job would have to be allocated atleast2x units of computation.

Thus even though 90% of the time the computation requirementis x units, each job is allocated for2x units of

computation. Thus even though the reservation requirementfor the task is decreased, jobs are still overallocated

in most cases.

Usually, the response time of jobs missing deadline are not considered. Why is response time important ?

As discussed earlier, to increase average utilization of a system containing variable requirement tasks, implies

overloading. That is there may be intervals where jobs miss deadline. But by keeping these intervals rare, the

likelihood of any serious performance loss can be minimized.

Consider a sensor network, where information of certain event needs to reach a monitoring station. Now

there may be a critical deadline, which gives the monitoringstation enough time to provide the best response for

the event. But what if the event notification process misses deadline. In that scenario, the earliest the notification

reaches the monitoring system, the better.

Or consider a media playback application, there is no clear value of deadline, instead a range of response

times which may be acceptable. That is a frame missing deadline by 1-5 ms does not deteriorate performance,

and may not even be noticed by a user. Note that at frame rate of25fps, frames are shown at 40ms interval. So if

a frame is shown 45ms after previous frame there is little performance loss if any. Also note that even if 50% of

frames miss deadline and finish by say 41ms, there is little performance loss. So deadline miss ratio is a useful

performance indicator but the response time in case of deadline miss is also an important factor.

21

2.4.1 TUFs and Imprecise Computation

While for hard real-time tasks, even a single deadline miss may be critical, there is a large class of tasks for

which occasional deadline misses are not critical. A general way to cover the task deadline characteristics is to

use Time Utility Functions (TUF) proposed by Jensen et al [JLT85]. The basic idea behind TUF is to specify

the utility of finishing by certain time for a job for all possible response times. Hard real-time task can then

be represented as having maximum utility for response timesless than deadline and maximum negative utility

otherwise. Non critical tasks may have different utility functions where there may be some positive utility for

response times greater than deadline.

While this is a general approach, practically it is not easy to associate utility with tasks. Consider for example

a multimedia task. Specifying a utility function for frame decoding task deadline is not easy. Even if some such

function is specified, it is not clear how this will compare with utility function of rest of the tasks. For example,

consider a media decoding task and a web-server task. There is no single right way to assign TUF to these two

different tasks. In some cases, the user might desire good media playback at expense of web-server task. In

other cases, the user might want to strike a balance between the two tasks, but expressing this in terms of utility

functions is not straightforward.

Jane Liu et al [LLS+91] considered imprecise computation or reward based scheduling model. A task is

characterized by a mandatory part denoted bymi and optional part denoted byoi. The scheduling goal is to

finish the mandatory part before deadline and finish maximum part of the optional computation. Reward is

associated with the amount of optional computation done. That is, the optional computation done for a job may

be any value between 0 andoi, whereoi is the maximum computation requirement of optional part. This model

is different from Time Utility Functions (TUF) in the sense that the optional part has no concept of response

time associated with it. That is the reward is just a functionof how much of the optional part is done. This

simplifies the analysis for maximizing rewards and for some reward functions it can be easily calculated by

solving a linear optimization problem. This solution was proposed by Aydin et al [AMMMA01]. The solution

requires knowledge of amount of slack available in hyper period (LCM of all task periods) interval. For variable

requirement tasks this value is not known. Because the slackin a hyperperiod is not a discrete value but a random

variable, thus probability is attached to each value.

The other and more significant difference of our work from imprecise computation model is that, for us the

response time of job is important and not the amount of computation done for the optional part. That is, in

22

Task Worst Case Uti-
lization

Average Case
Utilization

Boundary value ρ at Boundary
value

A 0.7 0.3 0.5 5%
B 0.7 0.3 0.5 5%
Cumulative 1.4 0.6 1.0 10%

Table 2.1:Task setup

imprecise model of computation the optional part can be doneanytime to obtain reward, but in our model the

goal is to minimize response time of optional computation. Also in our model the optional computation is not

exactly optional rather it has low priority than the computation of jobs whose deadline is in future.

The following discussion explains our model. To maximize average processor utilization, variable require-

ment resilient tasks would often have worst case processor utilization greater than 1. Now the performance of

resilient tasks is not only determined by number of deadlines missed but also by the amount of time by which

deadlines are missed. So minimizing the deadline miss time becomes an unimportant performance criterion and

indicator. Current scheduling schemes focus on providing deadline guarantees and no action is taken to minimize

response time in case of deadline misses. The following example illustrates this problem.

Consider two tasks tasks A and B with variable execution requirement and unit period. Let both have worst

case requirement of 0.7 and mean requirement of 0.3. This implies cumulative worst case utilization is0.7/1 +

0.7/1 = 1.4 (since period is 1). And cumulative mean utilization is 0.6.Clearly, running a single task on the

processor leads to gross underutilization of resources. Sowhat can be done ?

Suppose the minimum requirement of these tasks 0.5 computation units, which gives a deadline miss ratio of

5%. So both these tasks can be scheduled concurrently while each incurring 5% deadline misses.

Let jA
i represent theith job of A andjB

i represent theith job of B. Consider the following scenario. At

time 0,jA
1 andjB

1 arrive with requirement 0.6 and 0.5 respectively. Since theperiod is 1 time unit, so on unit

speed processor only 1 unit of computation is finished till time 1. Since both tasks are allocated 0.5 fraction of

processing power hencejB
1 has 0.1 unit of computation remaining and suffers a deadlinemiss.

Now at time 1,jA
2 andjB

2 arrive say with execution requirement 0.3 each. Now the two tasks together reserve

0.5 + 0.5 = 1 full fraction of processor capacity so the pending 0.1 unitsof jB
1 would have to wait for either of

jA
2 or jB

2 to finish. This is because if it is serviced before the new jobsthen the new jobs may miss deadline even

if both the new jobs required less than 0.5 computation, violating the deadline guarantee. Now at 0.5 processor

share, 0.3 requirement job finishes in0.3/0.5 = 0.6 time units. Thus,jB
1 misses deadline by 0.7 time units.

But if the job requirementsjA
2 andjB

2 are known in advance then two things can be done. One approachis

23

the dual priority approach which would run the second jobs ofthe tasks starting at time 1.4 with full priority,

which would let them finish on deadline, and from time 1.0 tilltime 1.4 the jobs are run at lowest priority, so the

pending computation ofjB
1 gets serviced between time 1.0 and 1.1 giving deadline miss time of 0.1 units.

Another approach is to allocate 0.6 fraction of processor tothe real-time tasks, thereby giving the pending

computation of jobjB
1 0.4 fraction of processor. This impliesjB

1 misses deadline by0.1/0.4 = 0.25 time units.

While the dual priority approach gives the best solution it necessitates a priori information of exact execution

requirement information, which may not be available. The other issues with dual priority scheduling have also

been pointed out. Basically, in dual priority scheduling there are periods when real-time tasks run at lowest

priority and periods when they run at highest priority, thusthe service time is dependent upon arrival time. Also

in case of unaligned periods and large number of tasks, calculating the time at which real-time tasks have to be

promoted becomes complicated and would require timing analysis. This leaves us with the solution of running

the real-time tasks at reservation rate such that they finishon deadline. Using this approach the real-time tasks

can be treated independently and simple utilization based feasibility analysis determines schedulability.

But to attain this solution, the knowledge of execution requirement is required beforehand, which is hard to

come by. In the following sections we look at problems with prediction execution requirement.

2.5 Predicting Execution Requirement

Predicting execution requirement of a piece of code is a difficult problem. First, for arbitrary piece of code it is

not possible (Halting problem). Second, even for relatively simple code, the actual execution path information

(if conditions), and time spent in loops may not be predictable beforehand. Though, upper bounds may be used,

but they give the worst case values, which is not what we set out to find out.

Even for straight line piece of code, the actual execution time on modern processor depends on a host of

factors like cache state, pipeline state, branch predictions etc. This makes the problem of predicting execution

requirement difficult for applications.

Here it is important to mention that there exists some heuristics for specific applications, specifically MPG

decoding. MPEG stream is composed of Intra (I), Predicted (P), Bidirectional (B) frames. I frames are most

computationally intensive, P frames lesser and B frames theleast. These frames usually occur in a pattern

like IBBPBB called Group of Pictures (GOP). Bavier et. al. [BMP98] showed that there is a high degree of

correlation between frame size and decoding time for each frame types. That is, the frame size and computation

24

time required for I frames have a linear relation and same holds for P and B frames too. But this approach

is highly encoding dependent and may not hold for different encoding standards. Also, to implement such a

scheme, the applications would need to be changed to appropriately communicate the execution requirement to

the operating system.

But the prime problem is that for most other applications, there are no such heuristics available. This leads

us to explore other ways to handle requirement variability.One of the more discussed about ways is feedback-

control scheduling, which is discussed in next section.

2.6 Feedback Scheduling

As the name suggests feedback scheduling is a reactive mechanism that responds to changes inobserved value

throughactuator, which permits to apply feedback action. So for example to minimize reservation for any

job, theobserved valueis actual reservation required, which is available after job completes execution and the

actuatorcontrols the reservation provided for the next job. Most feedback theory is based on linear relation

between actuator and observed value. Non linear feedback-control is not a well understood problem. Thus the

feedback-control mechanism relies ontrends in execution cost. That is, if there is an increase in execution

requirement for the latest job, then feedback would predictincrease in execution requirement for the next job

and so on. How much increase is predicted is dependent upon choice of feedback function. The underlying

theory relies on convergence (usually exponential), that is successive approximations yield better results. But

this underlying assumption does not hold for predicting a noisy signal like execution cost, where there is little

linear trend in execution cost variation.

This approach has the following major drawbacks. First, there is an assumption that the job execution

requirements are dependent. Second, for feedback control,it is assumed that the dependence can be expressed

in terms of linear transfer functions. This is because non-linear feedback control is cumbersome, and closed

form solutions may not exist. Third, even if the job requirements are assumed to be dependent, feedback control

does not provide a way to capture that dependence, but relieson ad hoc selection of feedback control function to

model the relation.

In MPEG decoding there are frequent computation spikes due to the MPEG encoding structure containing

I,B and P frames, occurring inIB . . . BPB . . . B order, i.e. I and P frames are surrounded by multiple B

frames. I frames have substantially larger computation requirement than B or P frames. To decode I frames

25

before deadline, a reactive mechanism like feedback would have to allocate for them always, because linear

feedback-control cannot predict/accommodate spikes in computation requirement.

In this regard, Abeni et al [APLW02] analyzed performance offeedback-control scheduling for MPEG task.

They came up with the notion of fast and slow feedback-controller which basically determines the reaction speed

of feedback. Thus a fast controller reacts quickly to changes while a slow controller reacts slowly. As pointed

out earlier, reacting fast does not help in case of noisy signal. A slow controller works much less same as worst

case reservation, but over reserves for low requirementB frames and under-allocates forI frames. In fact there

is a trade-off, that is if the feedback controller tries to optimize forB frames (i.e. it needs to react fast to decrease

in execution cost), it loses out onI frames, the execution spike followingB frames. And a feedback controller

that optimizes forI frame (i.e. react slowly to the multiple low requirement contiguousB frames), ends up

over-allocating for theB frames.

In this work, we show that without requiring dependence between execution requirement of jobs, the reser-

vation rate requirement can be minimized nearly to that achieved by an ideal clairvoyant scheduler, by just using

the probability distribution of execution requirements.

2.7 Probabilistic Analysis vs Probabilistic Scheduling

But before discussing that, we bring to attention the field ofprobabilistic analysis of schedule of variable require-

ment tasks. The probabilistic analysis approach entails using well known algorithms like Rate Monotonic (RM)

or EDF and estimate system performance like deadline miss probability and the response time distribution of

variable requirement tasks under the given algorithm. The representative example of this approach is Real Time

Queuing Theory [Leh97]. The goal of this approach is to probabilistically quantify performance of algorithms

like FIFO and EDF. In this work, we use the probability distribution information to construct schedule that sat-

isfies certain constraints, like guaranteeing bounded deadline miss ratio and minimizing response time in case of

deadline miss.

Tia et al [TDS+95] proposed semi-periodic task model for scheduling taskswhose jobs have highly varying

execution times. They extended time demand analysis [LSD89] for static priority systems to consider execution

times as random variables instead of fixed values. In such a scenario, the cumulative execution requirement of

random variables in not their sum but a convolution. This is because the probability distribution of sum of random

variables is their convolution. By calculating this convolution, the distribution of response time of jobs can be

26

calculated and using this probability distribution, the probability that a job will miss deadline can be calculated.

Diaz et al [DGK+02] proposed using Discrete Time Markov Chains (DTMC), to model priority based systems

with variable requirement tasks. They showed that the response time distribution can be determined by analyzing

this DTMC. Stochastic Rate Monotonic Scheduling (SRMS) proposed by Atlas and Bestavros (1998) [AB98b]

provides statistical deadline guarantees to schedule periodic tasks using Rate Monotonic (RM) algorithm. It uses

approach similar to timing analysis to bound the amount of interference that a task at priorityi can receive from

all the higher priority tasks. By finding the cumulative demand distribution of higher priority tasks and taski,

the probability that demand exceeds the capacity can be calculated. This probability gives the probability that

taski misses deadline. To provide statistical guarantees, the value of allocation needed to limit the deadline miss

probability to a given value can be calculated. For every task the minimum such value is calculated. Thus each

task reserves for minimum utilization that would guaranteegiven deadline miss probability.

The goal of these approaches is again to probabilistically quantify performance of algorithms like Rate Mono-

tonic (RM) which are essentially based on boundary or worst case values. That is the reservation or the utilization

value chosen for a task is basically the boundary value that would give guarantee that deadline miss probability

is not greater than the specified value. But choosing this boundary value still leaves space for improvement.

For example, the average requirement of a job may be substantially less than the chosen boundary value, and

scheduling should use this fact to improve performance likeminimizing response time of tasks.

2.8 Requirement Variability and Dynamic Voltage Scaling

Processor power consumption is proportional to square of voltage multiplied by frequency i.e.E ∝ V 2 ∗f . Also

the processor frequency is proportional to voltage, givingV ∝ f . So the energy consumption rate of a processor

can be written asE = K ∗ f3, whereK is a constant of proportionality. To finishx units of computation, the

processor consumesE ∗ x/f energy, which from the derived relation is equal tof2 ∗ x.

For variable requirement tasks, running the processor at a constant speed such that the task finishes on

deadline in worst case, is not efficient. For example, if the job required half of its worst case requirement, then

running it at half the worst case speed is sufficient to meet the deadline and in that case, energy consumption is

reduced by 1/4.

The problem of processor energy consumption has received much attention but we focus on a specific ap-

proach proposed by Lorch et al [LS04] called Processor Acceleration to Conserve Energy (PACE). The basic

27

idea behind this approach is that instead of predicting execution requirement of job, the schedule is calculated

based on the probability distribution of execution requirement such that the expected energy consumption is min-

imized. Though this approach was proposed for a system containing a single task, subsequently heuristics were

proposed for extending this approach to multiple task systems [YN04] [YN03]. The extension to multiple task

system is done by dividing the execution time amongst the tasks in the ratio of their worst case requirement. And

then schedule is calculated for each task independently as in the single task case proposed by Lorch et al [LS04].

For this work, we do not go into details of Dynamic Voltage Scaling and processor energy considerations.

Instead our focus is on the approach of using probability distribution to minimize the expected value of energy

consumed. Note that the nothing is assumed about the actual per job execution requirement except for the fact

that the jobs’ execution requirement has the same distribution, which is a pretty general assumption. So this

approach does not suffer from the drawbacks of predictive schemes like feedback which rely on knowledge of

interdependence between execution requirement of jobs.

This is an important concept. The probability distributionof execution requirement is a information which

can be easily made available in practical systems. Its usefulness has already been shown in processor energy

conservation schemes. Through this work, we hope to bring out the usefulness of probability distribution of

execution requirement in real-time scheduling of variablerequirement tasks.

Specifically, we assume a task model where deadline misses may not lead to total performance loss, instead

if the response time is withing some acceptable range, then the there is little or no performance loss. This

task model allows for specifying the worst performance level, and then optimizing for the average case system

performance. The importance of our work lies in the fact thatthe real-time scheduling of variable requirement

tasks has largely been based on worst case or boundary values, without taking the actual variability into account.

So while the system is designed for worst case guarantees itsaverage case performance is not optimized for. But

this was not required in task models which assumed that missing deadlines is critical. As we move into task

model, where deadlines are no longer concrete instead fuzzyvalues, that is under some circumstances, deadline

miss by small amount may be accommodated by the system, factors like deadline miss time become important

performance criterion. And using the probability distribution information of execution requirement is a practical

and effective choice to guide efficient scheduling of variable requirement tasks. In the following sections the

approach is explained.

28

CHAPTER 3
Coscheduling Real-time and Response Time Sensitive Tasks

3.1 Motivation - Single RT Media Decoding Task System

We start our discussion of SPS with an example. Consider a system with one variable requirement periodic RT

task, and other non-RT tasks. Assume that at any instant at least one non-RT task is active.

A periodic RT taskτ is characterized by periodP and a new job arrives everyP time units. Any job may

have a worst case execution time requirement ofC, which is referred to as its WCET. Letχ be a random variable

denoting the execution time of a job.

For example, for a MPEG decoding task, the periodP is 40ms (25 fps), the WCETC is 24ms and the

average execution time requirementE[χ] is 10ms. These values were obtained by counting CPU cycles required

to decode the frames in Star Wars movie trailer usingmpeg play. As can be seen the execution time requirement

for the media decoding task is highly variable, with the worst case requirementC being more than twice the mean

requirement ofE[χ].

We look at following scheduling approaches to schedule thisRT task.

• Priority - The RT task gets priority over non-RT tasks.

• GPS - This algorithm is derived from Generalized Processor Sharing (GPS) [PG93]. The RT task gets a

constant processor share given by its worst case utilization

• EDL - Earliest Deadline as Late as possible (EDL) [CC89]. TheRT task is delayed as much as possible

such that it still finishes by its deadline.

We compare these algorithms using the measuresA(t) ands(t).

• s(t) denotes the processor share of a RT task as a function of time

• A(t) is the cumulative allocation to other tasks in the system until time t (in the interval [0,t], assuming

RT tasks arrived at time 0), and is given by(t −
∫ t

0 s(t)dt).

3.1.1 Definings(t)

The s(t) function is defined in terms of a functiong(.) which represents the processor share for a job of the

corresponding RT task as a function of time duration since the job’s arrival. So functiong(x) is defined for

0 ≤ x ≤ P . Also sinceg(.) represents processor share, its value lies between 0 and 1.

Formally,

Definition

s(t) =

g(t − ⌊ t
P
⌋P) if task active

0 otherwise

Note that for a RT task arriving at time 0 and with periodP , (t − ⌊ t
P
⌋P) represents the time duration since

arrival of the job active at timet. From hereon we would represent the arrival time of job active at timet asa(t)

anda(t) = ⌊ t
P
⌋P . Furthermore functiong(.) should satisfy the following property,

∫ P

0

g(x)dx ≥ C

That is, the job should finish C execution time units on or before its deadline which isP time units after its

arrival.

The function g(t) where (t is between 0 and P) for the above mentioned scheduling algorithms can be written

as follows. We represent theg(.) function for a particular scheduling algorithm asg followed by the scheduling

algorithm name to differentiate between various scheduling algorithms. Figure 3.1 illustrates theg(.) functions

for Priority GPS and EDL algorithms as well as the Proposed algorithm. The shaded area represent the allocation

to the RT job, while the height of the shaded area represents the actual processor share of the RT job at that time.

The curveg Proposed(.) is unique in the sense that it is continuously varying and in the following sections we

see how to determine the shape of curveg Proposed(.) based upon given optimization criterion.

• Priority

g Priority(t) = 1

• GPS

g GPS(t) = C/P

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
ro

ce
ss

or
 s

ha
re

Time in ms (period 40 ms)

g(t)

(a) Priority Schedule (g(t) = gPriority(t))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
ro

ce
ss

or
 s

ha
re

Time in ms (period 40 ms)

g(t)

(b) GPS Schedule (g(t) = gGPS(t))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
ro

ce
ss

or
 s

ha
re

Time in ms (period 40 ms)

g(t)

(c) EDL Schedule (g(t) = gEDL(t))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
ro

ce
ss

or
 s

ha
re

Time in ms (period 40 ms)

g(t)

(d) Proposed Schedule (g(t) = gProposed(t))

Figure 3.1:These figures show a job schedule for MPEG task with period 40ms, WCET 24 ms and mean requirement of
10ms. The filled curves g(t) shows the processor share of any RT job. The shaded area represents the allocation to the RT job
as function of the time duration since its arrival. The height of curveg(t) represents the actual processor share of the RT job
as a function of its time since arrival. The total work done under each scheduling policy is equal to the WCET (24ms). While
the Priority, GPS and EDL g(t) functions are constant, the proposed g(.) function (g Proposed(.)) varies with job progress.
In the following sections we describe howg Proposed(.) is calculated and its properties.

• EDL

g EDL(t) =

1 if t ≥ P − C

0 otherwise

Lemma 3.1.1 For any given t between 0 and P,

∫ t

0

g EDL(t)dt ≤

∫ t

0

g GPS(t)dt ≤

∫ t

0

g Priority(t)dt

Proof Under Priority, the RT job is scheduled as soon as it arrives and is given the full processor share (gPriority(t)=1)

31

until it finishes. Under GPS, the RT job is given a constant processor share of C/P (≤ 1) from its arrival un-

til it finishes. Hence
∫ t

0
g GPS(t)dt ≤

∫ t

0
g Priority(t)dt. Under EDL, the RT job starts getting allocation

only when the time remaining is just enough to finish the job ondeadline under its worst case execution time

requirement. Hence,
∫ t

0 g EDL(t)dt ≤
∫ t

0 g GPS(t)dt �

Lemma 3.1.2 For anyt,

Priority A(t) ≤ GPS A(t)

≤ EDL A(t)

Proof By definition, for a single RT media task and a set of non-RT tasks,

A(t) = t −

∫ t

0

s(t)dt

Break this integral until the arrival time of latest job (or the deadline of the latest job finished),

A(t) = (a(t) −

∫ a(t)

0

s(t)dt)

+((t − a(t)) −

∫ t

a(t)

s(t)dt)

Now the cumulative allocation to the RT task until the arrival time of latest joba(t) is same under any

scheduling algorithm where all jobs meet their deadline, hence the first term is same for Priority, GPS and EDL.

The difference is caused by the second term. Now note the second term can be written as

((t − a(t)) −

∫ t

a(t)

s(t)dt)

The negative term
∫ t

a(t)
s(t)dt represents the allocation to the RT job as function of time. From Lemma 3.1.1,

the allocation to RT job as a function of time since its arrival is greatest under Priority, lesser under GPS and

least under EDL. So the cumulative term((t − a(t)) −
∫ t

a(t)
s(t)dt) is least under Priority, greater under GPS

and greatest under EDL.�

32

Lemma 3.1.3 For any RT job, let max s(.) denote the maximum value of s(t).

GPS max s(.) ≤ Priority max s(.), EDL max s(.)

Proof Note that under GPS, the maximum value ofs(t) is (C/P ≤ 1) , while it is 1 under Priority and EDL. This

is because under EDL and Priority scheduling, the RT job is assigned full processor share when it is scheduled.

�

3.1.2 Understanding A(t), s(t) and g(.)

Both A(t) ands(t) are important because whileA(t) denotes the cumulative allocation to other tasks in the

system in the interval[0, t], (1 − s(t)) denotes the instantaneous processor share available to other tasks in the

system at time t.

As pointed out earlier,A(t) is same for all scheduling algorithms on job deadlines because the allocation to

RT task by any the deadline is same under any scheduling algorithm. The variation is caused when the job is

active. EDL delays the RT job such that the other tasks in the system get scheduled before the RT task, and hence

maximizesA(t).

s(t) is the processor share of RT task with time. A good schedulingalgorithm would be one for which the

value ofs(t) is small for all values of t. GPS keeps the value ofs(t) constant at the worst case utilization of the

RT task whenever it is active. Under EDL and Priority,s(t) is 1 while the RT job is active.

s(t) is based on functiong(.) which gives the processor share for a RT job as a function of time duration

since its arrival (for RT task arriving at time 0 and job arriving every P time units,t − a(t)). The g(.) function is

dependent upon the scheduling algorithm used.

3.1.3 Problem with Priority

If an RT task is given priority over other tasks in the system,then the other tasks are blocked whenever the RT

task is active. This gives the worst value ofA(t) (minimum) amongst all algorithms guaranteeing that the RT

task does not miss any deadline. Also, the value of(1 − s(t)) is 0 while the RT task is active and hence this

algorithm does not perform well on both measures.

33

3.1.4 Problem with EDL

Even thoughA(t) is maximized by EDL, the value of(1 − s(t)) may be 0 while the RT job is active, that is

the other tasks arriving when RT job is active are blocked until RT job finishes as in Priority. Furthermore, this

blocking time may be arbitrarily long.

For example, consider a RT task with period 1000ms and execution time requirement of 500ms. Let there

be non-RT tasks active at any time. In such a scenario, under Priority and EDL, the RT task is active for 500ms,

thereby blocking all non-RT tasks for the entire duration of500ms. The period of the RT task can be chosen

arbitrarily long, thereby leading to blocking of non-RT tasks for arbitrarily long intervals.

3.1.5 Problem with GPS

The advantage of GPS is that the processor share available toother tasks in the system is at least(1 − C/P)

at any time. The problem with GPS is that the processor is reserved based on the worst case execution time

requirement of the RT task. Thus, even though on average the media decoding task requires just under 10ms of

execution time, any job is given a processor share of 24/40 = 0.6, which is more than twice the mean processor

share requirement of 10/40 = 0.25.

3.2 Probability and Scheduling - Stochastic Processor Sharing

In this section, we start with discussion for a system with single RT task.

As pointed out above, variability in execution time requirement of RT tasks poses unique challenges. First,

the scheduling algorithm should provide deadline/allocation guarantees to the RT tasks. Second, to provide

guarantees, a non clairvoyant scheduler schedules each jobof the RT task assuming that it would require its

worst case execution time.

In this section we describe how the variability in executiontime requirement can be efficiently handled.

We first introduce the notion of expected processor share,E[s(t)]. This is the key notion in our analysis. Its

importance lies in the fact that for variable requirement RTtasks, the values(t) is dependent upon whether the

RT job has finished or not. If the RT job has finished then it doesnot require any processor share, but if it is

active then it is allocated processor share given by its correspondingg(.) function. So, while the values(t) at a

timet can be thought of as a random variable which may be either 0 org(.) depending on whether the RT job has

finished or not. If the probability distribution of the execution time requirement of the RT task is known, then the

34

probability that RT job is active after it has finishedx units of execution time can be written asPr[χ > x], where

χ is the random variable denoting the execution time requirement. Thus,E[s(t)] can be expressed in terms of

theg(.) function and the probability distribution of the random variable. Next, we formally defineE[s(t)].

Definition E[s(t)] represents the expected value ofs(t) for the RT task at timet. Formally,

E[s(t)] = g(t − a(t)) ∗ Pr[χ >

∫ t−a(t)

0

g(x)dx]

That is,E[s(t)] at timet is the probability that the RT job is active at timet multiplied by the processor share

given by its correspondingg(.) function.

Let maxE[s(.)] denote the maximum expected value ofs(t) at any timet.

In this paper, we propose the novel notion of choosing the function g(.) (now we would refer to theg(.)

function asg Proposed(.)) for a RT task such that it satisfies the following key properties. For anyt, wheret is

the time duration since arrival of RT job andx lies between 0 and P:

•
∫ P

0 g Proposed(x)dx ≥ C , whereC is the WCET

• g Proposed(.) is chosen such thatmaxE[s(.)] is minimized

3.2.1 Calculatingg Proposed(.) for a Single RT Task System

In this section we show howg Proposed(.) can be calculated which satisfies the above mentioned properties for

a system containing single a RT task. At any time some non-RT task is assumed to be active.

Suppose we want to calculate a schedule whereE[s(t)] ≤ K for anyt. SinceE[s(t)] is a periodic function

with periodP , it is sufficient to enforce this relation in the interval[0, P].

For t between0 andP , E[s(t)] can be written asg Proposed(t)Pr[χ >
∫ t

0 g Proposed(x)dx]. Thus the

constraints can be expressed as,

g Proposed(t)Pr[χ >

∫ t

0

g Proposed(x)dx] ≤ K

and,
∫ P

0

g Proposed(t)dt ≥ C

35

This constraint enforces the fact that any job should finish atmostC execution time by its deadline.

In this section assume0 ≤ t ≤ P . Now, a schedule withE[s(t)] at mostK would do maximum work by any

time t if E[s(t)] = K for anyt. This is because ifE[s(t)] ≤ K for some timet, the the functiong Proposed(t)

can be increased at that timet thereby leading to greater processor share to the RT task.

The first solution to functiong Proposed(.) can then be written recursively as

g Proposed(0) = K/Pr[χ > 0]

g Proposed(t + δt) =
K

Pr[χ >
∫ t

0 g Proposed(x)dx]

But this may lead tog Propose(t) outside the range[0, 1] (specifically as the probability approaches 0,

g Proposed(.) approaches infinity). So we limit the valueg Proposed(.), which gives the solution tog Proposed(.)

as,

g Proposed(0) = K/Pr[χ > 0]

g Proposed(t + δt) = min(1,
K

Pr[χ >
∫ t

0 g Proposed(x)dx]
)

Note that ifg Proposed(t) is reduced the1 because K

Pr[χ>
R

t

0
g Proposed(x)dx]

is greater than 1, thenE[s(t)]

is less thanK.

So now the functiong Proposed(.) is defined in terms of a constantK which represents the maximum value

of E[s(t)] for this schedule at any timet. What remains is to find the minimumK for which a job of this RT

tasks meets its deadline under worst case execution time requirement ofC, i.e.

minimum K s.t.

∫ P

0

g Proposed(t)dt ≥ C

Now the value ofK (the maximum expected processor share) lies between 0 and 1.As the value ofK is

increased from 0, the execution time allocation to the RT jobincreases. Therefore a reasonable approximation

to K can be efficiently calculated using binary search on the value ofK in the interval[0, 1].

36

3.2.2 Schedule Illustration - Media Decoding Task Example

Here we present the application of proposed approach on the media decoding task example. The processor cycles

used to decode Star Wars trailer using mpegplay were calculated on a FreeBSD 4.8 machine with 800 MHz Intel

Pentium III processor. The worst case execution time requirement was found to be 24ms and the mean execution

time requirement was 10ms. To run the movie at 25fps, frames need to be decoded every 40ms. Thus the RT

task has a period of 40ms, worst case utilization if 24/40=0.6 and mean utilization of 10/40=0.25.

TheK calculated for this RT task was 0.34 which is near the mean utilization 0.25 and nearly half the worst

case utilization of 0.6 (Refer Fig 3.2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ce
ss

or
 s

ha
re

/P
ro

ba
bi

lit
y

Time in ms (period 40ms)

g(t) E[s(t)] p(t)

(a) Priority Schedule (g(t) = gPriority(t))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ce
ss

or
 s

ha
re

/P
ro

ba
bi

lit
y

Time in ms (period 40ms)

g(t) E[s(t)] p(t)

(b) GPS Schedule (g(t) = gGPS(t))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ce
ss

or
 s

ha
re

/P
ro

ba
bi

lit
y

Time in ms (period 40ms)

g(t) E[s(t)] p(t)

(c) EDL Schedule (g(t) = gEDL(t))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ce
ss

or
 s

ha
re

/P
ro

ba
bi

lit
y

Time in ms (period 40ms)

g(t) E[s(t)] p(t)

(d) Proposed Schedule (g(t) = gProposed(t))

Figure 3.2:Figure showing job schedules for a MPEG task with period 40ms, WCET 24 ms and mean requirement of 10ms.
The filled curvesg(t) and E[s(t)] represent the fraction of processor share given to the RT jobas a function of the time
duration since its arrival. Whileg(t) curve shows the processor share function corresponding to the scheduling algorithm,
E[s(t)] curve shows the expected value ofs(t) for a job (E[s(t)] = g(t)Pr[χ >

R t

0
g(x)dx], for t in the range[0, P], where

χ is the random variable representing job execution times.

37

3.2.3 Handling Multiple RT Tasks

The analysis so far considered a system with only a single RT task. In this section we extend the above methodol-

ogy to a system with multiple RT tasks. But this extension is not trivial. The primary reason being that schedule

of one RT task impacts the schedule of other RT tasks. That is,if a job of RT taski is allocated processor share

given by functionsi(t), then for a different RT taskj, its corresponding processor share functionsj(t) cannot

be independent of the value ofsi(t) since the total processor share available to all RT jobs is atmost 1 (full

utilization).

For the case when all tasks have same period and arrival time,the analysis as done for a single task system

can be used, the only difference being the random variableχ will now be
∑n

i=0 χi whereχi is the random

variable for the execution time of taski and there aren tasks in the system.

If the tasks have different periods then the problem gets tougher. Calculatingsi(.) are dependent because

they are constrained by the relation
∑n

i=1 si(t) ≤ 1.

Though this is a serious problem, we propose a novel and efficient solution.

Consider a setT of RT tasks withn tasks. Let taskτi ∈ T has periodPi, , worst case execution time

requirement ofCi andχi the random variable representing job execution time.

We form a virtual taskτvirtual with period as 1 time unit, worst case execution time requirement ofU =

∑n

i=1 Ci/Pi, and the random variable representing the execution time requirement of a job asχ =
∑n

i=1 χi/Pi.

The schedule minimizing the maximum expected processor share is calculated for this virtual task. Let

gvirtual(.) be the resulting job function which is defined in the interval[0, 1] and
∫ 1

0 gvirtual(t)dt = U .

Now the tasks are scheduled as follows. The functionsi(t) for taskτi is defined as

si(t) =

gvirtual(
t−ai(t)

Pi
) if τi active

0 otherwise

Note that the functiongvirtual(.) is such that for a taskτi with periodPi, the cumulative allocation available to

RT tasks while a job of taskτi is active is
∫ Pi

0 gvirtual(t/Pi)dt = Pi ∗
∫ 1

0 gvirtual(x)dx = Pi ∗ U (note the

integral was transformed by the substitutionx ∗ Pi = t).

At any moment the RT tasks are given a processor share ofs(t) = max1≤i≤n si(t), and this processor share

is allocated to the earliest deadline active job.

The intuition behind this approach is as follows. Suppose the tasks are given a constant processor share of

38

U when active (U =
∑n

i=1 Ci/Pi). Then all jobs meet their deadline. And in the worst case a jobj may finish

exactly on its deadline. In this scenario, the cumulative allocation to RT tasks from the time of arrival ofj until

its deadline isU ∗ Pi wherePi is the period of task corresponding task for jobj. So, in this scenario if the

cumulative allocation available to RT tasks from the arrival of job j until its deadline isU ∗ Pi, then the jobj

does not miss its deadline.

Next we formally show that using the proposed scheduling approach all RT jobs meet their deadlines.

Lemma 3.2.1 Consider a setT of RT tasks withn tasks. Let taskτi ∈ T has periodPi, worst case requirement

Ci andχi be the random variable denoting the execution time requirement of a job. Letg(.) be an an increasing

function such that
∫ 1

0 g(t)dt = U , whereU =
∑n

i=1 Ci/Pi. The jobs are scheduled using preemptive EDF and

the processor share at timet is given bys(t) = max1≤i≤n si(t) , where

si(t) =

g(t−ai(t)
Pi

) if τi active

0 otherwise

All jobs meet their deadline.

Proof For this proof, we would assume that all the RT tasks are released at time 0, and SRT taskτi releases a

job everyPi time units.

If the tasks were given a constant processor share ofU then all jobs meet their deadline (preemptive EDF

schedulability). Suppose all tasks are scheduled in EDF order and the processor share at time t is given by

g(t−ai(t)
Pi

) i.e. s(t) = g(t−ai(t)
Pi

).

Now consider taskτi. It can be easily seen that ifs(t) = g(t−ai(t)
Pi

) then all jobs ofτi meet their deadline.

To see this consider at timekPi,
Z kPi

0

s(t)dt =

Z kPi

0

g(
t − ai(t)

Pi

)dt

This gives,
Z kPi

0

s(t)dt =

Z Pi

0

g(
t − 0

Pi

)dt + · · · +

Z kPi

(k−1)Pi

g(
t − (k − 1)Pi

Pi

)dt

Z kPi

0

s(t)dt = (
N

X

j=1

Rj/Pj)Pi + · · · + (
N

X

j=1

Rj/Pj)Pi

Z kPi

0

s(t)dt = (
N

X

j=1

Rj/Pj)kPi

Thus
∫ kPi

0
s(t)dt is same as what GPS allocation for integer values ofk. This implies all jobs ofτi meet their

39

deadlines (remember jobs are scheduled in EDF order) while jobs of other tasks may miss their deadlines.

Similarly, usings(t) = g(t−am(t)
Pm

) would lead to all jobs ofτm meeting their deadlines. Now, ifs(t) =

max1≤i≤N g(t−ai(t)
Pi

), then all RT jobs meet their deadlines.

Once a RT job is finished, it no longer requires processor share till next job of this task arrives. Thus,

s(t) = max1≤i≤N si(t) would imply that all the RT jobs meet their deadlines.�

Lemma 3.2.2 If gvirtual(.) is used as theg(.) function, then the maximum value ofE[s(t)] for any timet is K,

whereK is the maximum expected processor share ofτvirtual.

Proof Consider at some timet, job j of taskτi has maximumsi(t).

Now job j is scheduled using preemptive EDF, so jobs with deadlines earlier thanj are scheduled before it.

From the arrival of jobj until it finishes, the maximum execution time required by RT tasks isU ∗ Pi, whereU

is the cumulative worst case utilization andPi is period of taskτi.

Now the cumulative utilization of RT tasks is represented asa random variableχ. The cumulative allocation

to RT tasks from arrival of jobj until its deadline can be approximated by this random variable χ. This is

because, jobj is scheduled after all earlier deadline jobs and in the worstcase all the active jobs may have a

deadline earlier than jobj, in which case jobj is scheduled last. In general, letta be the arrival time ofj and

tf its finish time, then the cumulative utilization of RT tasks in this interval is at least
R tf

ta
si(t)dt

Pi
(since during

some intervalssi(.) may not be maximum). This utilization is approximately upper bounded by the cumulative

utilization of all active tasks during the interval[ta, tf] which we already represent asχ.

Coming back to the functionsi(t), the expected processor shareE[si(t)] is given as,

E[si(t)] = gvirtual(
t − ai(t)

Pi

) ∗ Pr[χ >

∫ t−ai(t)

0
gvirtual(x/Pi)dx

Pi

]

which gives,

E[si(t)] = gvirtual(
t − ai(t)

Pi

) ∗ Pr[χ >

∫

t−ai(t)

Pi

0

gvirtual(y)dy]

The RHS can be simply written asgvirtual(z) ∗ Pr[χ >
∫ z

0 gvirtual(y)dy]. And as explained before, for

a single task system with taskτvirtual with unit period,χ as execution time, andU as worst case utilization

requirement, the minimum value ofK (maximum expected processor share) is calculated such thatgvirtual(z) ∗

Pr[χ >
∫ z

0 gvirtual(y)dy] ≤ K and
∫ 1

0 gvirtual(y)dy ≥ U .

HenceE[si(t)] ≤ K.

40

�

3.3 Performance Comparison

In this section we theoretically compare the performance ofour algorithm to Priority, GPS and EDL in terms of

the measuresA(t) ands(t). A(t) represents the cumulative allocation to non-RT tasks by time t and is given by
∫ t

0 (1 − s(t))dt. An algorithm with greaterA(t) for any t provides better response time to large non-RT tasks,

while an algorithm with lower maximum expected value ofs(t) for any t provides better instant service and

hence improves responsiveness of shorter non-RT tasks.

The processor share functions for Priority, GPS, EDL and Proposed algorithm for a multiple RT task system

are approximated by followingg(.) functions. Note that as before, we represent theg(.) function for certain

algorithm by prefixingg before the algorithm name. Sog Priority(.) represents theg(.) function for Priority

algorithm.

Note that0 ≤ t ≤ 1, sinceg(.) functions are assumed to be defined for unit period task. Assume as

before we haven RT tasks, where theith task is represented asτi and its period, worst case requirement and

execution time requirement are represented asPi, Ci andχi respectively. For feasibility
∑n

i=1 Ci/Pi ≤ 1. Let

U =
∑n

i=1 Ci/Pi. Let χ =
∑n

i=1 χi/Pi which is the random variable representing the combined utilization of

all RT tasks.

• Priority, g Priority(t) = 1

• GPS,g GPS(t) = U

• EDL, g EDL(t) =

1 if t ≥ 1 − U

0 otherwise

• Proposed,g Proposed(t) = min(1, K/p(t)), wherep(t) is the probability that the cumulative RT uti-

lization is greater than
∫ t

0 g Proposed(t)dt.

Note that for all these algorithms,
∫ 1

0 g(t) ≥
∑n

i=1 Ci/Pi and theg(.)’s are increasing functions. So from

Lemma 3.2.1, all these algorithms correctly schedule a given set of RT tasks. Thus all can schedule set of RT

tasks.

For the GPS processor share functiong GPS(t) = U is an approximation since processor share of cumu-

lative worst case utilizations of just the active RT tasks issufficient to correctly schedule the RT tasks. But the

41

simpler formulation is assumed to simplify the proof, though it penalizes GPS in terms of the measureA(t).

Note that the maximum expected value ofsi(t) remains unchanged.

For the EDL processor share function, a simplified approximation is again used. This approximation reduces

A(t) (the cumulative allocation to non-RT tasks in the system by time t) as compared to theA(t) attainable

using the true EDL scheme (as in Chetto and Chetto [CC89]), where the schedule calculation is done offline for

the hyper-period. Despite this simpler EDL formulation, EDL still achieves betterA(t) than the the other three

algorithms (so the simpler formulation does not skew the results). Again, the maximum expected value ofsi(t)

for any task remains unchanged.

Lemma 3.3.1 For any givent between 0 and 1,

∫ t

0

g EDL(t)dt ≤

∫ t

0

g Proposed(t)dt

≤

∫ t

0

g GPS(t)dt ≤

∫ t

0

g Priority(t)dt

Proof First, note that
∫ t

0
g Proposed(t)dt ≤

∫ t

0
g GPS(t)dt. This is becauseg Proposed(t) is a non decreas-

ing function andg GPS(t) is a constant function. And
∫ 1

0
g Proposed(t)dt =

∫ 1

0
g GPS(t)dt = U . This

implies that
∫ t

0 g Proposed(t)dt ≤
∫ t

0 g GPS(t)dt for t ≤ 1.

For
∫ t

0
g EDL(t)dt ≤

∫ t

0
g Proposed(t)dt, note that while gEDL(t) is 0 for t less than (1-U), while

g Proposed(t) is non zero during the interval.

Thus the RT task execution is delayed for the maximum amount in EDL. However, as pointed out earlier,

this leads to blocking of non-RT tasks when RT tasks are scheduled. Under the proposed algorithm, RT tasks

are delayed lesser than in EDL but their schedule is determined by the execution time requirement probability

distribution, thereby reducing blocking of non-RT tasks.�

Lemma 3.3.2

Proposedmax E[s(.)] ≤ GPS maxE[s(.)]

≤ EDL/Priority maxE[s(.)]

Proof The maximum value ofE[s(.)] for Priority and EDL is1 ∗ Pr[χ > 0] = Pr[χ > 0] and for GPS, it is

42

U ∗ Pr[χ > 0], where U is the worst case cumulative utilization of RT tasks. This is attained when a RT job

begins execution. As proved earlier in Lemma 3.2.2, Proposed maxE[s(.)] is K.

What remains to show is thatK ≤ U ∗Pr[χ > 0]. To see this note that,g Proposed(0) ≤ g GPS(0). This

is because whileg GPS(.) is constant and equal toU , g Proposed(t) is a non decreasing function, so it can

start with processor share less thanU while still finishingU execution time in a unit sized interval. This gives,

g Proposed(0) ∗ Pr[χ > 0] = K ≤ g GPS(0) ∗ Pr[χ > 0]. �

Lemma 3.3.3 The cumulative allocation to non-RT tasks follows the following relation -

Priority A(t) ≤ GPS A(t) ≤ Proposed A(t)

≤ EDL A(t)

Proof Under Priority, the RT tasks get full processor share whenever active and the non-RT tasks are blocked

while RT tasks are active, giving the worst value ofA(t). Under EDL RT tasks are maximally delayed so EDL

has the maximumA(t) value for anyt.

What remains to show is the order between GPS and proposed approach. For a single task system, the

proposed approach clearly provides largerA(t) for anyt. For multiple RT task system, under GPS the RT tasks

always get a constant processor share ofU whenever active. Under the proposed approach, the RT task may get

a smaller value of processor share during some intervals leading to delayed RT task execution thereby increasing

A(t). �

In summary the proposed scheme delays execution of RT tasks to increase allocation to non-RT tasks by any

time t, but at the same time it maintains the maximum expected processor share of RT tasks at any time to be

bounded by its minimum value. Thus, under the proposed scheme, larger non-RT tasks get better response times

(due to betterA(t) than GPS and priority), and smaller non-RT tasks get better response time because of low

maximum expected value ofs(t) at any timet.

3.4 Quantum-Based Scheduler

Here we propose a generic approach to schedule RT tasks if thes(t) function is given.

In particular, we want the allocation to approximates(t) over reasonably long intervals, while over shorter

intervals the allocation may be off by some value.

43

We propose a quantum-based algorithm that keeps the allocation to RT tasks within one quantum of the

allocation given by the functions(t). As the quantum size is decreased, the allocation accuracy increases.

Making the quantum size too small is not efficient because at each quantum boundary, the tasks are switched

which may lead to cache flushes and reading for the new task from memory, which is a slow process. Also,

context-switch overhead is encountered on every task switch. Current GPOS have quantum size in the range of

10ms. Older systems had quantum size in the range of 100ms. Sowhile the current quantum size is still larger

than what we would like for our algorithm, but it is decreasing.

3.4.1 The Algorithm

Consider a system with RT tasksT and the functions(t), that is the cumulative processor share of RT tasks is

known.

The following approach is then used to map this schedule to a quantum based scheduler. First, the RT tasks

are allocated execution time in discrete units each of size one quantum orq.

Each quantum allocation unit to RT tasks is characterized byits arrival time and deadline. The arrival time

of a quantum is the deadline of previous quantum. The deadline of a quantum arriving at timeta is calculated as

follows. Find the value of∆ for which the cumulative allocation to RT tasks in the interval [ta, ta + ∆] is q time

units.

Formally, find∆ such that the following equation holds.

∫ ta+∆

ta

s(t)dt ≥ q

Then the deadline of this quantumtd is given byta + ∆.

Lemma 3.4.1 The allocation error that is the difference between allocation to RT tasks under the quantum based

schedule and under a schedule which can allocate a shares(t) of the processor to RT tasks at timet is at mostq

at any timet, whereq is the quantum size.

Proof As can be seen from the algorithm formalization, the allocation under both schedules matches at any

quantum deadline. And for any time in between, the allocation difference can be at mostq, the quantum size.�

Lemma 3.4.2 If the worst case requirement of all RT tasks is a multiple ofq, the quantum size, then all deadlines

are met.

44

Proof Since the RT tasks are allocated in discrete quantum execution time units, and the allocation at quantum

boundaries is equal to∈t
0 s(t)dt for anyt such thatt is a quantum deadline.�

3.4.2 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
qu

an
tu

m
 u

til
iz

at
io

n

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
qu

an
tu

m
 u

til
iz

at
io

n

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)
(a) Priority Schedule

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
qu

an
tu

m
 u

til
iz

at
io

n

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
qu

an
tu

m
 u

til
iz

at
io

n

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)
(b) GPS Schedule

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
qu

an
tu

m
 u

til
iz

at
io

n

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

E
xp

ec
te

d
qu

an
tu

m
 u

til
iz

at
io

n

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)
(c) Proposed Schedule

Figure 3.3:Schedule for a task with period 40ms, worst case execution time requirement of 24ms and mean execution time
requirement of 12ms. The execution time is assumed to be uniformly distributed between 0 and 24ms. The quantum size is
assumed to be 1ms.

45

Fig 3.3 shows the quantum based schedule for a task whose requirement is uniformly distributed between 0

and 0.024. The period is assumed to be 0.040 seconds and the quantum size is1ms.

The first schedule is for the case when this task is given highest priority. In this case the task executes until

completion when it arrives. The second schedule is for the case when the task is allocated at constant worst

case rate, that is0.024
0.04 = 0.6 for all quanta. Note that the mean requirement of task is 0.012. The last schedule

represent the quantum based schedule for the proposed reservation scheme. Note that initially the quanta are

more spaced and towards the end they are closer together. Thedark shade represents the probability that the task

would actually require that quantum and not finish before or in between it. Thus, though the proposed schedule

has closer quanta towards the schedule end, the probabilityof requiring them is very small, given by the low

height of the dark shaded region.

3.5 Summary

In this work we proposed the novel notion of varying the processor share of the RT tasks with their progress.

What this achieves is that the RT job starts off requiring lesser processor share than its worst case utilization, and

its processor share increases as the RT job progresses, and so does the probability that the RT job will finish. So

while some RT jobs which require execution time requirementnear the WCET may end up consuming greater

processor share near their deadline, the probability that this scenario arises is less. And the functions(t) is

calculated using the probability distribution of execution time of RT task obtained through online profiling such

that the maximum expected value ofs(t) for any timet is minimized.

In this work we assumed the GPS model of processor sharing. The RT jobs get a shares(t), and the non-RT

tasks get the remaining processor share(1 − s(t)). Most current processors execute tasks sequentially and use

a quantum based scheduler to schedule multiple tasks concurrently. Our proposed scheduling algorithm can be

adapted to a quantum-based scheduler, and the quantum size would determine the allocation accuracy. Smaller

the quantum size better the allocation accuracy.

While current scheduling algorithms like Priority, EDL or GPS may perform arbitrarily in terms of response

time to non-RT tasks, the proposed scheduling algorithm works well for both measuresA(t) and(1 − s(t)).

Our work opens new doors in the area of scheduling variable requirement RT tasks and we believe that many

more exciting applications are possible using this approach. From hereon we would refer to this algorithm as

Stochastic Processor Sharing or SPS.

46

CHAPTER 4
Soft Real-time Scheduling

In the previous chapter we addressed the problem of scheduling variable requirement RT jobs while providing

better timely allocation to the non-RT tasks in the system. RT task model is useful for critical applications like

medical instruments, space missions etc., but frequently,the tasks encountered in a GPOS are not exactly time

critical, even though they may have a notion of deadline. An example of such a task is media (audio/video)

playback, and other examples are computer games and any sortof interactive application. Though, these tasks

can be assigned deadline (based on frame rate for media playback and animation, and based on human sensitivity

to response time for interactive jobs), but the performanceis not affected by response times in close vicinity of

the deadline. This means that SRT tasks need not be allocatedbased on their worst case requirement values

(which is required for critical RT tasks), and they may be guaranteed a smaller allocation for each job (which we

would call its reservation) and the burden falls upon the scheduler to provide good response times for the SRT

jobs that require greater execution time than their reservation.

One of the common approaches used in scheduling SRT tasks is to bound their deadline miss ratios. In

this approach, only a certain fraction of jobs are allowed tomiss their deadline (say 1%), and no assumption is

made about the response times of these1% of jobs. Now, consider the execution time requirement distribution

for MPEG decoding and Quake I software frame rendering (Fig 4.1). For the MPEG decoding task, giving 14

Million cycles to each job leads to around 2% deadline missesand still most frames may require less than 11

Million cycles. The other important observation here is that a deadline miss ratio of 2% means that approximately

one frame in every fifty frames misses its deadline. At 25 fps,one frame every 2 seconds misses its deadline by

an unspecified amount of time. In the worst case, each of thesedeadline misses may contribute to performance

degradation.

This brings out the importance of taking into considering the overrun times of the SRT jobs. For example,

even if the deadline miss ratio is 10%, if 99% of the jobs missing their deadlines finish within reasonable times,

then the performance degradation may not be visible. And at the same time the processor share committed to

the task is reduced drastically (by allocating just enough so that 90% jobs are guaranteed to finish before their

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ill

io
n

cp
u

cy
cl

es

#frame

Execution requirement

(a) MPEG frame decoding

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000

M
ill

io
n

cp
u

cy
cl

es

#frame

CPU Cycles (millions)

(b) Quake software rendering times

Figure 4.1: Execution time variation for an MPEG frame decoding task and Quake I software rendering task.
The frame decoding times for a StarWars trailer using mpegplay are reported. Note that the minimum execution
time frame requires around 5 million cycles, some frames requireme more than 20 million cycles. Some frames
require more than 20 million cycles. Even from frame to frame, the execution time variation is significant. For
Quake I software rendering task, though frame to frame execution time variation is not as substantial as MPEG
decoding task and the execution time between adjacent frames is similar, the overall execution time variation is
large, with mean requirement of around 5M cycles and maximumof more than 15 M cycles.

deadline). But to achieve these gains, the 99% of the 10% jobsmissing deadline should have small overrun time.

And current scheduling algorithms do not address this problem. SPS does exactly that. The goal of SPS is to

guarantee allocation to RT jobs while minimizing response times of the non-RT jobs. Thus irrespective of the

value of reservation chosen, using SPS to guarantee that reservation would provide smaller overrun times to the

non-RT jobs in the system.

In the following sections, we formally describe the task model for SRT tasks and show how SPS can be

adopted to better handle SRT tasks.

4.1 SRT Tasks

We address the problem of scheduling overrun time sensitivevariable requirement soft real-time (SRT) tasks.

We break each job of the SRT task into two parts, real-time (RT) component and non-RT time sensitive (TS)

component. The goal of scheduling is to provide timely allocation guarantees to the RT component while re-

ducing response times for the TS components. The response time of a SRT job is the time when its RT and TS

component both have finished execution. The deadline overrun time for a SRT job is defined as its response time

minus its period.

Formally, a SRT taskτi is represented by the tuple(Pi, χi, Ci, Ri).

48

• Pi is the period. Jobs ofτi arrive everyPi time units.

• χi is the random variable representing the execution time requirement of a job of this task

• Ci is the worst case execution time requirement of this task (WCET)

• Ri is the reservation, that is any job of the SRT task should receive Ri execution time before its deadline.

For schedulability,
∑N

i=1 Ri/Pi ≤ 1, whereN is the number of tasks in the system. Note that
∑N

i=1 Ci/Pi

may be greater than 1, i.e. the system may be overloaded.

Any SRT job starts as a RT job. If the SRT job does not finish after receivingRi execution time, then it is

scheduled as a TS job for its remaining duration. The SRT job finishes when the RT as well as the TS component

(if any) have finished. SRT jobs requiring not greater thanRi execution time are guaranteed to finish withinPi

time units of their arrival. Jobs requiring greater thanRi execution time may miss their deadline, and the goal of

scheduling is to reduce their deadline overrun time.

The question of howRi is chosen is left open.Ri may be prespecified or adaptively determined using algo-

rithms like feedback-control [APLW02] [LSST02]. The problem we are addressing is that the RT component

may require execution time anywhere between 0 andCi, and this variability can be leveraged to provide better

response times to the TS components, thereby reducing SRT jobs’ deadline overrun times.

We found that giving RT jobs higher priority over other jobs in the system is very inefficient, yet most current

General Purpose Operating System (GPOS) rely on priority based schedulers. Reserving processor share for RT

jobs (Generalized Processor Sharing (GPS)) or delaying RT jobs (Earliest Deadline as Late as possible (EDL))

provides smaller overrun times to SRT jobs in some scenariosbut may perform badly in others (as explained

in next Section). We propose Stochastic Processor Sharing (SPS) algorithm that uses the empirical probability

distribution of execution time requirements of the SRT jobsto determine the processor share of the RT jobs as a

function of time. In particular, the RT jobs start with a lesser processor share than they would in GPS, but may

end up using greater processor share as they approach their deadline. The probability distribution of execution

time requirement is used to determine how the processor share increases with progress, in particular, the higher

processor share requirement phases are rare. That is, most jobs finish while in the smaller processor share

phase. We show that our algorithm consistently provides small overrun times to SRT jobs, closely matching (or

outperforming) the best performing algorithm (out of GPS, EDL or Priority) in any given scenario.

49

4.2 TS Tasks

Practical systems would consist of non-RT response time sensitive tasks, which we call Time Sensitive (TS)

tasks, along with SRT tasks. While these tasks do not requireany allocation guarantees, their performance

depends upon their response times. In a system containing a mix of SRT tasks and TS tasks, the response times

of TS tasks would be dependent upon how the SRT tasks are scheduled because the SRT tasks require guaranteed

allocation by their deadline.

To evaluate the impact of SRT scheduling on response time of TS tasks, we consider a system containing

mixed task set i.e. SRT and TS tasks. The SRT tasks have a RT component and a TS component, as defined in

previous section. The RT components are scheduled in EDF order while getting processor share of at leasts(t)

at timet. The TS (overrun) components if any, are scheduled in LAS order i.e. the TS job which has received

the least service till a given time gets allocated before other TS jobs. This selected TS job is scheduled for at

most one quantum time, after which again the TS job with leastreceived allocation is selected.

When scheduling SRT and TS tasks together, there are two waysthat SRT overrun jobs and TS jobs can be

scheduled. One way is that the SRT overrun jobs are treated atpar with the other TS jobs. The other scenario

is when the SRT overrun jobs are given priority over the TS jobs. We assumed a system where the SRT overrun

jobs are given priority over the other TS jobs in the system. This is because the SRT overrun jobs may actually

end up finishing before their deadline in this scenario whichreduces the number of deadline misses. Thus, lesser

RT reservation would achieve the desired deadline miss ratio, as compared to the scenario when SRT overrun are

treated at par with other TS tasks.

One important area that needs more work is to come up with a continuous priority range between SRT

overrun and other TS tasks. This may be dependent upon the utilities of each of the tasks, and scheduling would

be based on these utility functions, on the lines of those proposed by Jensen et. al. [JLT85]. This is an important

problem because if the SRT overrun jobs require a lot of computation on average, then scheduling them at higher

priority than TS jobs may not be efficient, because the SRT overrun jobs would block the TS jobs and themselves

not benefit much.

4.3 What makes a Good Co-Scheduling Algorithm?

The notion of optimality in co-scheduling algorithm is difficult to define in a general sense. Task sets can be

constructed such that any one of Priority, GPS, or EDL may perform better than the others.

50

For example, consider a single RT task with period1 time unit, and utilization of 0.5. Now, assume that

there are two TS tasks – one very large requirement TS task with very large period and the other a very small

requirement TS task with period 1 time unit. Now, depending upon the arrival time of the small requirement TS

task, either Priority or EDL or GPS may be optimal. For example, if the small requirement TS task arrives at

time 0, then EDL is optimal. If the the small requirement TS task arrives at time 0.5 then Priority is optimal. If

the small requirement TS task arrives at time 0-0.5, then GPSprovides better response times than Priority, and if

the small requirement task arrives at time 0.5-1, then GPS provides better response times than EDL.

One way to define optimality would be to define the worst case response time distribution for a very small

requirement TS task with period equal to hyper-period of thetask-set over all possible arrival times between

0 and hyper-period. The optimal scheduling algorithm then would be the one that minimizes the maximum

expected processor share of RT tasks at any instant. And for any other scheduling algorithm, there would be

intervals during hyper-period where the expected processor share of RT task is higher than that under the optimal

algorithm. And choosing any of these intervals as arrival time for the very small requirement TS task with period

equal to hyper-period would give worst response times underthe other algorithm as compared to the optimal

algorithm.

Now, for a single RT task system, with no idle allocation to RTjobs, the SPS schedule is the optimal schedule.

Note that idle allocation i.e. allocation received by the RTjobs outside of their RT share, impacts the expected

value of processor share. This is because the functiong(.) is calculated assuming the only allocation available

to RT jobs is the one obtained through RT shares(t). To see this note that,E[s(t)] is defined ass(t) ∗ Pr[χ >
∫ t−a(t)

0 g(x)dx]. If the RT jobs get idle allocation then

E[s(t)] = s(t) ∗ Pr[χ > (idle allocation +

∫ t−a(t)

0

g(x)dx)]

For a system with multiple tasks, minimizing the maximum expected processor share of RT jobs may be

costly. For example, consider a two task system. When one task completes, the distribution of execution time

requirements is no longer the sum of the execution time requirement distributions of the two tasks, rather it is

the execution time requirement distribution of the active task. So theg(.) function minimizing the maximum

expected processor share of RT jobs is different now. As the number of tasks increases, for each unique set

of active tasks, the cumulative execution time requirementdistribution may be different, and hence the optimal

g(.) function would be different in each of these cases. Maintaining separateg(.) function for each possible

51

combination of active tasks may not be feasible. This, combined with RT jobs getting idle allocation makes the

problem more complicated. Part of the problem here is adjusting to changing requirement distribution (due to

idle allocation or job completions).

It is important to note here that algorithms other than SPS have intervals when theE[s(t)] is smaller than

that in SPS, so the TS jobs arriving during these intervals get better response times. But, reducingE[s(t)]

during some intervals meansE[s(t)] is higher in some other intervals. And having higherE[s(t)] has a two-fold

negative impact. First, during the interval whenE[s(t)] is high, the TS jobs get lesser processor share. And

second, during these intervals, the TS jobs may get queued up, leading to greater delays and during the intervals

whenE[s(t)] is small, these queued up TS jobs compete with the fresh TS jobs, thereby diluting the impact of

intervals whenE[s(t)] is small.

4.4 TS Job Size and Impact on Response Time

At this point it is important to mention that the response time benefits are greater for tasks that operate at smaller

time scales (small period or small requirement) and decrease as the time scale increases (large requirement tasks).

To understand this consider the following example.

Consider a task system with one RT task. Suppose the period ifthis task is 1 time unit, mean requirement is

0.3 time units and worst case requirement is 0.6 time units. Let xi represent the execution time requirement of

job i of this task.

Now suppose this RT task and a TS job enter the system at time 0.Let the requirement of TS job be y time

units. Now, under Priority scheduling the TS job finishes during thekth job of RT task wherek is the minimum

integer for which,
k

∑

i=1

xi + y ≤ k

That is the cumulative execution time requirement ofk RT jobs (
∑k

i=1 xk−1) and the TS joby, should be at

most the total execution time available, which isk.

Now consider for the jobk − 1 of the RT task (assumek > 1). From the discussion above,

k−1
∑

i=1

xi + y > k − 1

Becausek is the minimum integer for which the execution time requirement ofk RT jobs plus the execution time

52

requirement for the TS job is not greater thank.

This is important because irrespective of the scheduling algorithm used to schedule the RT task (i.e. irrespec-

tive of choice ofs(t)), the TS job finishes during thekth RT job. The RT scheduling algorithm dictates when

actually during thekth RT job will the TS job finish. The TS job would finish the earliest under EDL, later in

SPS, still later under GPS and latest under Priority scheduling.

Thus, the response time benefit is most visible for TS jobs that finish within the period of the RT job that is

active on their arrival (which is the case ify << 0.3, where 0.3 is the mean execution time requirement of the

RT job).

In general, small TS jobs see greater benefits depending uponthe way RT tasks are scheduled. For our case,

we will focus on task systems with a large number of tasks (both SRT and TS), so the individual job requirements

are small, hence the benefits seen are large.

In the later sections we discuss the case when the system has relatively large requirement TS jobs, in which

case, all scheduling algorithms perform equally.

4.5 The SPS Scheduler

The scheduler has the following key components -

• EDF ordered queue of RT jobs

• LAS ordered queue of SRT Overrun jobs

• LAS ordered queue of TS jobs

• SPSShare functions(t),

s(t) = max
1≤i≤Nsrt

si(t)

This choice ofs(t) ensures that the allocation requirements for the SRT tasks are guaranteed always, as

proved in previous chapter.

We assume a GPS capable processor. The scheduling is done in time steps of∆ (for simulations we assumed

∆ = 1ms). At the end of each time step, the RT shares(t) (O(Nsrt)) is calculated. The RT jobs are allocated

s(t) ∗ ∆ execution time in EDF order. The remaining allocation, which is ∆(1 − s(t)) plus any allocation

remaining from thes(t) ∗ ∆ (if all RT jobs finish without consuming all the available allocation), is allocated

53

first to the overrun jobs in LAS order and then to the TS jobs in LAS order. If the overrun and TS jobs do not

consume the allocation available to them (all overrun and TSjobs have finished), then the remaining allocation

is given to RT jobs in EDF order and this allocation is theidle allocation.

4.6 Measuring and Reporting Response-times -Φ(.) Function

Quantifying the scheduler performance is not an easy problem. because there are too many variable that can

impact the performance. The response times depend on the following factors –

• Choice of SRT workload

• Choice of TS workload

As proved theoretically in the previous chapter, irrespective of what the RT task set is, SPS minimizes the

maximum expected RT processor share at any instant. What this means that our problem is not to quantify

scenarios where SPS works and where it does not work, this is because SPS provides a better RT schedule

irrespective of the RT task set characteristics in terms of the measuresE[s(t)] and A(t). The problem we

address is what is the performance benefits that can be achieved using SPS. In some cases, the performance

benefits would be less and more in other cases. And our goal is to conduct a broad enough range of experiments

to give a good understanding so as to when SPS would provide significant performance benefits and when it

would perform at par with other algorithms.

For the SRT task set, for simulations we assumed normally distributed execution time requirement SRT jobs

with random mean utilizations and periods randomly distributed between 30 and 200 time units. The cumulative

mean SRT utilization is specified as a parameter and a task setwith large number of SRT tasks is generated (50 in

our case). The reason of choosing large number of SRT tasks isbecause, as the number of SRT tasks increases,

their cumulative distribution approached normal distribution and hence the simulations are of greater practical

relevance to actual workloads.

While choice of SRT task set (and their requirement distribution) is one problem, the choice of TS task

set is another similar problem. But, the choice of TS task setis limited by remembering that the performance

benefits are most visible when the TS jobs are small requirement jobs and they finish within the duration in

which currently active RT jobs are still active. This is because, irrespective of the scheduling algorithm used,

the cumulative RT and TS allocation at RT job deadline is equal in case of single RT task system, and nearly the

54

same in case of multiple RT task system. The only difference in RT allocation is because SPS/EDL delay the

currently active RT job. For TS tasks with large execution time whose execution lasts over several periods of RT

jobs is not impacted by SPS and their response time distribution is just slightly improved by using SPS/EDL as

compared to GPS/Priority. Thus, for our case we would focus on TS task set with small jobs. The TS tasks are

generated exactly like the SRT tasks, and the only difference is that the TS tasks have zero reservation while the

SRT tasks have a cumulative reservation ofR.

Now that we have the SRT task set and the TS task set, what remains is to present the simulation results such

that they can be easily visualized and understood. Now, whatwe are optimizing is for the TS response times

while providing RT guarantees. So, it is natural that we report the SRT overrun times and the TS jobs response

times to quantify the performance of the various algorithms(EDL, Priority, GPS, SPS). Now, the most natural

measure is to report the mean response times, but this measure is biased in favor of jobs requiring large response

times. Also, the impact of response time of a job can be thought of as being dependent upon its period. So

we chose to report the response times scaled by their respective period. Note that in this model, TS tasks with

smaller period are more sensitive to response time than TS tasks with greater period. But the scaling is essential

to find common ground to compare all the results. Even the SRT overrun times are scaled by their respective

period.

So we report the mean scaled SRT overrun time and mean scaled TS response time. But this does not give the

complete picture. This is because for SRT overrun jobs, the jobs with small overrun time (less than say 0.3 times

their period) may not actually incur any performance degradation. So, it would be nice to have a quantification

which tells how many SRT jobs missed their deadline by more than say 0.3 times their period. We represent this

measure as theΦ(x) measure.Φ(x) denotes the number of jobs with response time greater than x times their

respective period. So for the discussion above SRT overrunΦ(0.3) would give the number (or percentage) of

SRT jobs with overrun time greater than 0.3 times their respective period.

Now we have most things in place to get into presenting actualsimulation results. But before that there is an

important topic which needs attention and that is how to getχRT .

4.7 Online Profiling - Constructing χRT

As pointed out earlier,χRT is tightly coupled with the SPS scheduling algorithm. The cumulative execution

time distribution which is represented asχRT forms the eyes of SPS algorithm in determining the appropriate

55

g(.) function.

Now, the simplest interpretation ofχRT would be

χRT =
∑ χi

Pi

To construct this distribution using online profiling, we follow the following approach. At time 0, we assume

that the previous (hypothetical) job of each RT task required its respective reservationRi amount of execution

time. Now whenever a RT job finishes, its utilization is updated and the sum of the utilizations of all the RT

tasks in the system is taken as a value in histogram for distribution ofχRT . As time progresses, the histogram

becomes a better approximation ofχRT .

To understand the impact ofχRT on the actual performance, lets run through an actual example.

Suppose we have a task set [Nsrt=50,Usrt=0.40,R=0.65,Nts=50,Uts=0.30]. Now assuming that theχRT is

calculated as mentioned above (sum of distributions of individual RT tasks), the schedule looks as in Fig 4.2.

(a) (1-CDF) forχRT (b) g(.) for SPS

Figure 4.2: These figures show theχRT obtained using just summing the individual SRT task distributions. We
call this the naive version ofχRT the reasons for which will become clear in the next figure.

All looks well and good, theg(.) function for SPS has a nice shape, starting with lesser processor share and

increasing its processor share with progress. Now lets lookat the TS response time distribution. Figure 4.3

shows theΦ(.) function for the four scheduling algorithms. As can be seen,EDL is significantly better than the

other three scheduling algorithms. The reason for this is that the cumulative mean system utilization is just 0.30

+ 0.30 = 0.60. Hence there is lot of idle time, so while the RT component jobs of the SRT tasks are waiting for

execution under EDL, they get idle allocation and hence finish without requiring any RT allocation. While under

SPS, the RT jobs start with certain processor share and theirshare keeps increasing with progress. Hence, even

though SPS performs better than GPS, because the RT jobs start off with lesser processor share, it gets beaten

56

well by EDL.

Figure 4.3: TS response timeΦ(.). As can be seen from the figure, EDL outperforms the other algorithm by
significant margin. So why does SPS not perform well ?

Is this it for SPS ? Well not actually. Note that, if there is enough idle time in the system, the the RT jobs may

not require any RT allocation at all. That is there is no actual need for an RT scheduling algorithm if the RT jobs

can finish before their deadline even if they are scheduled after TS jobs (though in EDF order). How can this

fact be incorporated in SPS. Well, its not that difficult after all. Note that SPS scheduling algorithm would give a

schedule like EDL (RT jobs wait for maximum possible time) ifthe requirement distribution (χRT) is such that

there is very high probability that the RT job requires 0 execution time and insignificantly small probability that

the RT job requiresR execution time. Since SPS needs to guarantee theR execution time, hence, it would come

up with a schedule that looks like EDL. The RT job starts with minimal processor share, and as in EDL, it gets

full processor share later in the schedule to ensure that no RT job misses its deadline.

This raises the question so as to what needs to change in the profiling to account for the idle time in the

system. The first avenue for improvement comes from the scheduler. Note that the way we defined the SPS

scheduler, it first allocatess(t) ∗ q execution time to the RT jobs and then allocates(1 − s(t)) ∗ q time to the TS

jobs and if there is some execution time still remaining thenthe remaining execution time is allocated to the RT

jobs as idle allocation. Now, we change theχRT distribution construction as follows. When a RT job finishes,

instead of using the sum of utilizations of all the RT jobs as avalue ofχRT , we use the sum of RT allocation

divided by the respective periods for the finished RT jobs as the value to be used for constructingχRT .

What does it mean to leave out the idle allocation to RT jobs inconstruction theχRT schedule? Well,

intuitively it means, that if the RT job actually required only the RT allocation worth of computation, and rest of

57

the computation was available to it as idle allocation so that does not need to be included in the RT requirement

of the RT job.

So what does this buy us ?

(a) (1-CDF) forχRT (b) g(.) for SPS

Figure 4.4: These figures show theχRT obtained after discounting the idle allocation to the RT jobs in construct-
ing χRT histogram. Their is a slight change in the schedule from the naive approach discussed before.

Figure 4.5: TS response timeΦ(.). As can be seen from the figure, EDL still outperforms the other algorithm by
significant margin. SPS improves, but slightly.

Fig 4.4 and Fig 4.5 show the impact of discounting idle allocation in construction ofχRT . Though, there is

slight improvement in SPS performance but it is too small to account for anything significant. The reason for this

is that SPS is not able to capture the idle time fully. This is because, under SPS, the RT jobs start off with certain

processor share and even after discounting the idle allocation, the RT jobs usually finish quickly. And once the

RT jobs are finished, the idle time in the system goes unnoticed by SPS. On the other hand, EDL delays RT

jobs maximally, hence they are active for the greatest duration and hence they have increased chance of finishing

while using idle time.

58

So how can we account for the idle time in the system when no jobs are active. Well, to do this we just

maintain the total duration of time during which the processor is idle. This duration divided by the total elapsed

time give the mean idle time in the system. And theχRT now approximately equals

χRT ≈
∑ χi

Pi

− (1 − Usrt − Uts)

whereUsrt is the mean SRT utilization andUts is the mean TS utilization and hence(1 − Usrt − Uts) is the

mean idle system utilization. What this means is that we retroactively assign the mean idle utilization to the RT

jobs, assuming that they used it and hence we subtract that much utilization from their cumulative utilization

to construct the histogram forχRT . Note that this technique of retroactively assigning computation to job has

use in other scenarios, specifically for slack reclamation under static priority systems where it is referred to as

history rewriting [BBB04].

Does this help ? Actually very much. Fig 4.6 and Fig 4.7 show the impact of discounting idle time in

construction ofχRT . Note that now SPS and EDL perform at par, outperforming GPS/Priority by considerable

margin. From this point on, theχRT distribution will be calculated discounting the idle allocation and idle time

in the system, which gives

χRT ≈
∑ χi

Pi

− (1 − Usrt − Uts)

(a) (1-CDF) forχRT (b) g(.) for SPS

Figure 4.6: These figures show theχRT obtained after discounting the idle time in constructingχRT histogram.
Note that theg(.) function nearly resembles EDL which is what was needed.

59

Figure 4.7: TS response timeΦ(.). As can be seen from the figure, SPS now matches EDL, which is not
surprising since the SPSg(.) function closely matches that of EDL.

4.8 Learning χRT

Fig 4.8 shows the impact of continuous online profiling on theshape ofg(.) function for SPS.

(a) g(.) after 65 RT jobs, calcu-
lated once at t=0

(b) g(.) after 142 RT jobs, calcu-
lated at t=100

(c) g(.) after 194 RT jobs, calcu-
lated at t=200

(d) g(.) after 248 RT jobs, calcu-
lated at t=300

(e) g(.) after 602 RT jobs, calcu-
lated at t=1000

(f) g(.) after 57953 RT jobs, cal-
culated at t=100000

Figure 4.8: These figures show theχRT obtained through online profiling as time progresses for task set
(Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35). Theg(.) function is recalculated every 100 time units. As the
histogram becomes richer and more accurate, theg(.) function becomes nearly constant.

60

4.9 Putting All the Pieces Together - Design of a Practical Scheduler

Our claim is that SPS is a practical algorithm that can provide performance gains in actual systems. In this

chapter, we address this problem in detail. We start with a discussion of how our scheduling model of specifying

g(.) function and using it to schedule RT jobs in EDF order can be mapped onto actual practical systems. In

particular, theg(.) function may vary continuously, so there needs to be a mapping mechanism to map theg(.)

function to sequential processors. Second, there are issues regarding how to find the period boundaries of a task.

in particular, current applications do not inform the OS when a job finishes, instead they might just call sleep

function. But in order to provide timeliness guarantees, itis required that the job arrival time and deadline be

known. Third, for systems with very large number of tasks, like web servers, the periodic task model for each

task may not be applicable. Because on these servers, the number of active tasks at any instant may be variable.

So, it is required that we come up with a scheduling model for systems with a large number of tasks, where the

number of tasks may be variable. Fourth, large scale p2p networks are useful architectures with wide application

domain from content distribution to massively multi-player video games. Our scheduling model handles systems

with cooperative tasks well.

4.9.1 Periods and Reservation

The only information that is required of the SRT jobs is theirperiods and reservation. Though minimal, these re-

quirements are still difficult to meet in current applications. For example, most applications do not communicate

their job arrival time and deadline to the OS. There are two ways that can be used to get around this problem.

First, for applications like media decoding, animation their is an implicit notion of period if the frames displayed

per second is known. For interactive applications, the response time range of 50-200 ms is usually considered

good. In a similar fashion, the time sensitivities of various applications can be approximated.

This leaves us with two problems –

• The actual arrival times and deadlines may still be unavailable

• We still need to figure out the value of reservation

But this kind of problem has already been addressed for taskslike media playback (Abeni et. al. [AB98a]

[APLW02]), where the Constant Bandwidth Server (CBS) is used in conjunction with feedback scheduling to

provide predictable service to media playback tasks.

61

For our purpose, the only thing that needs to change is the waythe allocation is guaranteed. So while the

remaining system components remain the same – a feedback-control loop to determine the reservation required

using deadline miss ratio or frame decoding time as the control variable – instead of using CBS, SPS is used to

guarantee the reservation to the RT component of the SRT media playback jobs.

While this is one possible path that can be taken, there are other possibly better ways to address this problem.

For example, instead of using just the deadline miss ratio orcontrolling the frame decoding time to be equal

to the period as in [APLW02], the reservation may be determined using the entire response time distribution

(Φ(.)) function to check if the performance requirement of the application are satisfied. But this would require

the application programmers to provide a metric for their applications acceptable performance response times.

The feedback-control loop design methodology proposed by Lu et. al. [LSST02] can then be used to determine

the actual reservation required by the application to satisfy its performance requirements.

These are important problems and should be addressed for therealization of a practical system using SPS

scheduler. And this becomes one of the important componentsof our future work.

In the following sections we look at some possible application scenarios.

4.10 Possible Application Scenarios

To understand how SPS would fit into practical systems, we work through two examples – one of a server (like

web-server) supporting large number of concurrent clients, and the second scenario is a network node supporting

large number of flows with bandwidth guarantees.

4.10.1 Server System Supporting Large Number of Clients

We consider a simple model, there is a set of premium clients who pay greater money for the service and require

assured service rates and then there is a set of normal clients who do not pay as much (or may not pay at all)

and get the remaining execution time. Now, the goal of the scheduling algorithm is to keep the paying customers

satisfied while supporting as many of the less paying customers as possible.

Suppose through some magic or oracle, we come up with 0.65 as the cumulative reservation provided to the

premium customers as a whole. Now Let the mean cumulative utilization of the premium customers be 0.30.

That is, due to variation in number of premium clients and thetasks they do, their cumulative utilization may vary

but the mean is 0.30 and suppose that the actual cumulative utilization of the premium customers is normally

62

distributed with mean 0.30 and standard deviation of 0.057.This means that probability that the cumulative

utilization of premium customers is greater than 0.30 + 3*0.057 = 0.47 is less than 0.15%. Hence no premium

customers miss their deadline.

Assume that the premium customers are scheduled together asa single task, with a period of 150ms, so if

premium customers arrive only on this period boundary then they are guaranteed a response time of at most

150ms. Now suppose there are 100 non premium customers that we would like to support (since the mean

utilization of the system with premium customers is just 0.3). We model these customers are 100 TS tasks with

periods uniformly distributed in the range 30-200 ms and, and a job arrives every period time units and the job

requirements are normally distributed and their cumulative mean utilization is 0.40.

The Table 4.1 shows the summary of simulation results for such a task system.

Stats Scheduler
Priority GPS EDL Proposed

Simulation time 100002 100002 100002 100002
SRT jobs completed 667 667 667 667
SRT job overruns 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Mean scaled overrun time 0.0000 0.0000 0.0000 0.0000
OverrunΦ(0.0) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
OverrunΦ(0.10) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
OverrunΦ(0.20) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
OverrunΦ(0.40) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
OverrunΦ(0.80) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
OverrunΦ(1.6) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
TS jobs completed 117472 117472 117472 117472
Mean scaled TS response time 0.2134 0.0854 0.0560 0.0363
TS response timeΦ(0.10) 43357 (36.91%) 20451 (17.41%) 15529 (13.22%) 9428 (8.03%)
TS response timeΦ(0.20) 35599 (30.30%) 12359 (10.52%) 8962 (7.63%) 3462 (2.95%)
TS response timeΦ(0.40) 22690 (19.32%) 6429 (5.47%) 3793 (3.23%) 960 (0.82%)
TS response timeΦ(0.80) 9157 (7.80%) 2181 (1.86%) 771 (0.66%) 185 (0.16%)
TS response timeΦ(1.6) 1389 (1.18%) 426 (0.36%) 35 (0.03%) 25 (0.02%)

Table 4.1: Summary statistics for (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40).

As expected, there are no deadline overruns using any scheduling algorithm. But note the significant impact

on the TS response times. In terms of mean scaled TS response times, SPS reduces it by a factor of 6 as

compared to Priority and a factor of 2 as compared to GPS. Also, under SPS, less than1% of the non premium

customers have response time greater than 0.4 times their respective job periods. On the other hand, nearly 20%

under Priority, 5% under GPS and 4% under EDL have response times greater than 0.4 times their respective job

periods. If this was a performance threshold then SPS satisfies 99% of the non premium customers and Priority

satisfies only 80% of those. Note that all algorithms guarantee that the premium customers do not suffer any

63

performance loss.

(a) Cumulative SRT utilization histogram (b) Cumulative RT utilization (1-cdf)

Figure 4.9: (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40) execution time requirement distribution.

Fig 4.9 shows the execution time requirement distribution.The histogram represents the actual requirement

histogram of RT task, while the (1-CDF) curve represents theprobability that a RT job may have RT utilization

greater than the value on X-axis. Note that under EDL, the RT utilization is the least, which means that the RT

task gets the largest amount of idle allocation as compared to other algorithms.

(a) SRT overrunΦ(.) (b) TS response timesΦ(.)

Figure 4.10: (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40)Φ(.) values for SRT and TS tasks

64

(a) g(.) for Priority (b) g(.) for GPS

(c) g(.) for EDL (d) g(.) for SPS

Figure 4.11: (Nsrt=1,Usrt=0.30,R=0.65,Nts=100,Uts=0.40) g(.) functions for the four schemes. Theg(.) func-
tions for the four scheduling algorithms. Note that SPS has aexpected value ofs(t) nearly 0.3, which is the
mean utilization of the RT task. Hence, SPS does a good job in scheduling the RT task.

65

4.10.2 Supporting Bandwidth Reservations on a Network Node

Now consider another scenario. Suppose there are 100 clients who pay and get bandwidth reservation for them-

selves. Let the cumulative mean requirement of these clients be 0.65 fraction of available bandwidth. Suppose,

the oracle comes up with the figure 0.80 as the fraction of bandwidth to be reserved for these clients. Now

since there is 35% idle capacity, the network owner decides to support 20 more clients with cumulative mean

bandwidth utilization of at most 0.15 who pay based on the quality of service they receive. And the acceptable

performance for the paying 100 clients is that the probability that the packet spends more than the respective pe-

riod time at the network node should not be more than 1%. The periods for the premium clients may be chosen

based on the timeout values for their congestion control protocol (TCP). So the packets with deadline overrun

may actually be considered lost by TCP leading to decreased bandwidth. Also, the non paying customers only

pay for packets that are serviced within 0.4 times their respective period. That is forΦ(0.4) packets (or TS jobs)

do not pay.

The way the presence of TS jobs impacts the schedule of RT jobsis that a fraction of the idle allocation is

consumed by the TS jobs. This has a negative impact on GPS/EDLschedules where now there are longer periods

with high expected value of processor share of RT tasks (E[s(t)]). SPS on the other hand adapts to the available

idle time, coming up with a schedule for the RT jobs such that they encounter fewer deadline misses, while the

TS jobs also get smaller response times. So this is a win-win situation.

Let us construct the task set for this scenario. The 100 paying clients are represented as 100 SRT tasks.

Each SRT task has a mean utilizationMi and reservation utilizationRi. And let,
∑

Mi = Usrt = 0.65 and
∑

Ri = R = 0.80. The 20 other customers are represented as TS tasks, with cumulative mean bandwidth

requirement of 0.15 of available capacity. AndΦ(0.4) jobs do not pay for the service. Table 4.2 summarizes the

results.

Note that EDL performs significantly better than the other algorithms in terms of the measures TS response

timeΦ(0.10) andΦ(0.20), SPS nearly catches up with EDL atΦ(0.40). But in terms of deadline overruns for the

paying customers, EDL has nearly 0.2% deadline misses, which is twice more than SPS (0.1%). As compared

to Priority and GPS though, EDL and SPS reduce the number of non paying packets by nearly 3 times.

The important thing to note here is there may be a possibilityto improve TS response timeΦ(0.1) andΦ(0.2)

for SPS in this scenario by more aggressively assigning idletime to the RT jobs, so that the SPSg(.) function

resembles EDL more. But that would come with a price, in termsof more deadline overruns for the SRT tasks.

66

Stats Scheduler
Priority GPS EDL Proposed

Simulation time 100002 100002 100002 100002
SRT jobs completed 117469 117470 117467 117469
SRT job overruns 329 (0.28%) 221 (0.19%) 223 (0.19%) 118 (0.10%)
Mean scaled overrun time 0.0042 0.0034 0.0032 0.0026
OverrunΦ(0.0) 329 (0.28%) 221 (0.19%) 223 (0.19%) 118 (0.10%)
OverrunΦ(0.10) 274 (0.23%) 192 (0.16%) 192 (0.16%) 114 (0.10%)
OverrunΦ(0.20) 235 (0.20%) 169 (0.14%) 168 (0.14%) 109 (0.09%)
OverrunΦ(0.40) 186 (0.16%) 138 (0.12%) 137 (0.12%) 100 (0.09%)
OverrunΦ(0.80) 121 (0.10%) 100 (0.09%) 107 (0.09%) 88 (0.07%)
OverrunΦ(1.6) 81 (0.07%) 73 (0.06%) 72 (0.06%) 61 (0.05%)
TS jobs completed 22342 22343 22346 22342
Mean scaled TS response time 0.4802 0.4623 0.1830 0.2583
TS response timeΦ(0.10) 15533 (69.52%) 14789 (66.19%) 4981 (22.29%) 9195 (41.16%)
TS response timeΦ(0.20) 11725 (52.48%) 11126 (49.80%) 3503 (15.68%) 5625 (25.18%)
TS response timeΦ(0.40) 7392 (33.09%) 7043 (31.52%) 1946 (8.71%) 2838 (12.70%)
TS response timeΦ(0.80) 3265 (14.61%) 3123 (13.98%) 800 (3.58%) 1115 (4.99%)
TS response timeΦ(1.6) 1063 (4.76%) 1021 (4.57%) 314 (1.41%) 421 (1.88%)

Table 4.2: Summary statistics for (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15).

There is no clear way to handle this trade-off. And this is oneavenue for future work.

Note that EDL performs significantly better in terms ofΦ(0.1) andΦ(0.2) as compared to SPS. But SPS

catches up with EDL at aroundΦ(0.4). EDL pays the price for this performance in encountering more deadline

overruns. Now SPS schedule can be made to resemble EDL schedule by better accounting of idle times. But is

this required ? The reason why EDL performs better for in terms ofΦ(0.1) andΦ(0.2) is because when the RT

jobs are waiting under EDL, the TS jobs get serviced at a faster rate. While under SPS, the RT jobs take a certain

share of processor. It would be interesting to know if the TS response times can be further improved under SPS

without incurring additional SRT deadline overruns. And wewould like to address this problem in future.

67

(a) Cumulative SRT utilization histogram (b) Cumulative RT utilization (1-cdf)

Figure 4.12: (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15) execution time requirement distribution

(a) SRT overrunΦ(.) (b) TS response timesΦ(.)

Figure 4.13: (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15)Φ(.) values for SRT and TS tasks

68

(a) g(.) for Priority (b) g(.) for GPS

(c) g(.) for EDL (d) g(.) for SPS

Figure 4.14: (Nsrt=100,Usrt=0.65,R=0.80,Nts=20,Uts=0.15) g(.) functions for the four schemes

69

4.11 Summary

We propose a scheduling framework for variable requirementSRT tasks, where a SRT job has two execution

phases. In the first phase it is scheduled as a RT job with the requirement to finish certain execution (Ri or

reservation) before its deadline. If the RT job is still active afterRi RT allocation, then the SRT job is scheduled

as a TS job for the remainder of its execution time.

We examined four scheduling algorithms to schedule the SRT tasks - Priority which gives priority to RT jobs

over TS jobs,GPS which reserves constant processor share of
∑

Ri/Pi for the RT jobs, modified EDL which

delays RT jobs while still meeting their deadlines and the proposed SPS algorithm.

70

CHAPTER 5
Experimental Setup

In the previous sections we presented the theoretical analysis, which establishes the usefulness of SPS, but given

the unconventional nature of SPS and probabilities playingan important part in scheduling, it is difficult to form

a good intuitive understanding of how, why and by how much does SPS improve scheduling performance as

compared to current algorithms. To build this understanding, which is not only useful to build familiarity with

SPS but also to get insights into the factors determining jobresponse times while guaranteeing allocation to

RT jobs, we present a wide range of experiments, along with detailed discussion on why the experiments were

conducted and what were the performance benefits.

In this chapter, the simulation results are presented for a wide range of scenarios. We have a Java testbed

which is automated to run and document the results for the experiments. The experimental report contains

all relevant information about the experiment, and should be easy to follow once familiarity is built with the

reporting mechanism.

In the following sections, we first explain the experimentalsetup and the SPS scheduling algorithm. This is

followed by a in-depth discussion of the experiment reporting format by running through an example. This sec-

tion should build familiarity with the figures and tables explain in detail the factors impacting the performance of

SPS through relevant set of experiments. Finally, we present detailed experiment reports for all the experiments

discussed in this section.

5.1 Experiment Parameters

The task set was generated based on the following parameters.

• Nsrt – number of SRT tasks

• Usrt – mean cumulative utilization of SRT tasks

• R – cumulative reservation utilization of SRT tasks

• Nts – number of TS tasks

• Uts – mean cumulative utilization of TS tasks

• Pmin – minimum period of any task (30 ms)

• Pmax – maximum period of any task (200 ms)

The tuple (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) describes an experiment, whereNst is the number

of SRT tasks,Usrt is average cumulative SRT utilization,R is the cumulativeNts is the number of TS tasks and

Uts is the cumulative TS utilization.

The task set is generated usingNsrt, Usrt, R, Nts andUts. Each SRT and TS task is assumed to have nor-

mally distributed execution time requirement (bell shapeddistribution). The reason for this choice of workload

is that normal distribution has the properties where most values are near mean and there are fewer values away

from the mean. This kind of variability has he most scope for improvement since allocating for values greater

than mean may be necessary to provide allocation guarantees, but in most cases, the values are near the mean.

The other reason for considering normal distribution is that since for SPS, we require the cumulative re-

quirement of RT tasks rather than their individual requirements, and from Central Limit Theorem, the sum of a

large number of random variables follows normal distribution since the constituent random variables cancel out

each others variability. So, for large number of independent tasks, their cumulative execution time requirement

distribution is most likely to be normal.

5.1.1 SRT Tasks Generation

The mean utilizations of SRT tasks were chosen to beNsrt random numbers (normal distribution) with their sum

equalsUsrt. Denote the mean utilization for taskτi asMi. Then
∑

Mi = Usrt. The periods were chosen as

uniformly distributed integers in the range of[30, 200].

The individual reservations for SRT tasks were chosen as follows. Suppose SRT taskτi has mean utilization

of Mi. Then its reservationRi is given byMi ∗ (R/Usrt).

Note that,
∑

Ri =
∑

Mi ∗ (R/Usrt) = R

∑

Mi

Usrt

= R

72

5.1.2 TS Tasks Generation

The mean utilizations of TS tasks were chosen to beNts random numbers (normal distribution) with their sum

equalsUts. The periods were chosen as uniformly distributed integersin the range of[30, 200].

5.2 Simulation Platform

Figure 5.1: Java GUI input form

We implemented a Java based GUI to simulate task sets with Priority, GPS, EDL and SPS schedulers. The

interface looks like this Fig 5.1. The input parameters are -

• Nsrt – Number of SRT tasks

• Usrt – Cumulative mean utilization of SRT tasks

• R – Cumulative reservation utilization of SRT tasks

• Nts – Number of TS tasks

73

• Uts – Cumulative mean utilization of the TS tasks

• min Psrt – Minimum SRT period

• maxPsrt – Maximum SRT period

• min Pts – Minimum TS period

• maxPts – Maximum TS period

• Simulation time – This is the duration in time units for whichthe simulation is run.

As can be seen in Fig 5.1, the right panel shows summary statistics for the experiment. The last entry in

summary statistics is the allocation quantum size. We fixed this to be 1. This value represents the allocation

granularity for emulating GPS. The quantum size of 1 means that at the end of each quantum, the processor time

allocated to each task is what an ideal GPS schedule would have allocated.

74

Figure 5.2: Java GUI summary statistics at the end of simulation.

Fig 5.2 shows the summary statistics after the experiment isover. Along with these statistics, the other tabs

show the distribution of RT requirements, theΦ(.) functions for RT overruns and TS response times and the

g(.) functions for all the four scheduling algorithms. These graphs are dynamically updated as the simulation

progresses. There are also multiple tabs which show dynamicperformance graphs as the simulation progresses.

75

Figure 5.3: Java GUI RT requirement distribution

Fig 5.3 shows the RT requirement distribution for the four scheduling algorithms, as well as the profiled

and actual cumulative RT requirement histogram. The RT requirement distribution is the amount probability

of the amount of cumulative RT allocation that is required for the RT jobs. Note that the RT jobs can get idle

allocation, and this idle allocation does not count as RT allocation. In particular, note that the RT requirement

histogram for SPS and EDL shows that there is higher probability that the cumulative RT requirement of the RT

jobs is lower as compared to that for GPS/Priority. This is because under EDL/SPS, the RT jobs get more idle

allocation (because they are active longer and hence have greater chances of claiming idle time), hence there

RT requirements are lesser under EDL/SPS. The lower pair of graphs is just for verification purposes to visually

verify that the profiled SRT requirements match the actual (theoretical) cumulative requirement distribution.

76

Figure 5.4: Java GUIΦ(.) functions

Fig 5.4 shows the SRT overrun timeΦ(.) functions and the TS overrun timeΦ(.) functions. Note that for

given x, higher the value ofΦ(x) means there are greater number of jobs with their scaled response time or

overrun time greater thanx. Thus, lower values ofΦ(.) are better. Also, we maintain and show theΦ(.) function

over the range[0, 3]. This is not just for information, rather theΦ(.) measure would be useful in checking

whether the performance requirements of the applications are met or not.

77

Figure 5.5: Java GUIg(.) functions

Fig 5.5 shows theg(.) functions for the four scheduling algorithms, as well as theexpected value ofs(t).

This is the key graph showing the difference between the fouralgorithms. Understanding this graph is the key to

understanding all the results. The lighter shaded region istheg(.) function for a unit period job with execution

requirement distribution same as the cumulative RT utilization of all the RT jobs. The darker region shows the

expected cumulative processor share of the RT jobs. The shape of SPSg(.) function lies in between that of GPS

and EDL, matching EDL when the processor is under-loaded andGPS when the processor is heavily loaded. For

intermediate values, the SPSg(.) function is hybrid between the EDLg(.) function and the GPSg(.) function,

with maximum expected processor share of RT jobs lesser thanboth.

Our Java platform not only reports these dynamic graphs but also generates a latex report for the experiment.

In the following section we look at the generated report for typical experiment.

78

5.3 Typical Experiment

A typical experiment is reported as follows.

The tuple (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) represents the parameters for the experiment as

described in previous section.

Stats Scheduler
Priority GPS EDL Proposed

Simulation time 100002 100002 100002 100002
SRT jobs completed 57963 57962 57951 57953
SRT job overruns 20 (0.03%) 4 (0.01%) 67 (0.12%) 0 (0.00%)
Mean scaled overrun time 0.0002 0.0000 0.0002 0.0000
OverrunΦ(0.0) 20 (0.03%) 4 (0.01%) 67 (0.12%) 0 (0.00%)
OverrunΦ(0.10) 16 (0.03%) 2 (0.00%) 34 (0.06%) 0 (0.00%)
OverrunΦ(0.20) 13 (0.02%) 0 (0.00%) 24 (0.04%) 0 (0.00%)
OverrunΦ(0.40) 9 (0.02%) 0 (0.00%) 11 (0.02%) 0 (0.00%)
OverrunΦ(0.80) 7 (0.01%) 0 (0.00%) 1 (0.00%) 0 (0.00%)
OverrunΦ(1.6) 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
TS jobs completed 57939 57943 57952 57955
Mean scaled TS response time 0.4180 0.3775 0.2243 0.2143
TS response timeΦ(0.10) 33417 (57.68%) 28904 (49.88%) 15911 (27.46%) 17272 (29.80%)
TS response timeΦ(0.20) 23635 (40.79%) 20202 (34.87%) 10951 (18.90%) 9738 (16.80%)
TS response timeΦ(0.40) 14255 (24.60%) 12345 (21.31%) 6624 (11.43%) 4787 (8.26%)
TS response timeΦ(0.80) 6667 (11.51%) 5863 (10.12%) 3143 (5.42%) 2214 (3.82%)
TS response timeΦ(1.6) 2612 (4.51%) 2359 (4.07%) 1323 (2.28%) 1118 (1.93%)

Table 5.1: Summary statistics for (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)

Table 5.1 presents the summary statistics for the experiment.

• Simulation time - The time for which the simulation was run.

• SRT jobs completed - The number of SRT jobs completed under each of the scheduling algorithms. This

may differ between the scheduling algorithms, because while the RT components of all the SRT tasks finish

by their deadline, the overrun TS components have differentresponse times under different scheduling

algorithms.

• SRT job overruns - The number of SRT jobs missing their deadline. Note that all the RT components meet

their deadline. But if the job requirement is greater than its reservation then it may miss its deadline, and

this is the number of SRT jobs missing their deadline under each of the four scheduling algorithms.

• Mean scaled overrun time - This is the mean of overrun times ofall the jobs divided by their respective

periods. Note that SRT jobs finishing on or before their deadline have overrun time of 0.

79

• OverrunΦ(x) - This is the number (and percentage) of SRT jobs with scaled overrun time greater than

x. Note that SRT jobs with scaled overrun time between 0-0.4 may not have significant impact on perfor-

mance.

• TS jobs completed - The number of TS jobs completed under all the four algorithms. It may differ between

the four algorithms.

• Mean scaled TS response time - The mean of scaled response times of all the TS jobs. Smaller value is

better.

• TS Response timeΦ(x) - This is the number (and percentage) of all TS jobs with theirscaled response

time greater thanx.

This table provides the summary of key results, but it does not provide any explanation on the performance.

The next set of figures provide that explanation. This table serves to highlight the results, and provides a single

place where all the performance aspects of the experiment are available.

Note that smaller response time values are better, and smaller values ofΦ(.) functions are better. It should

also be noted that the response times are measured from time 0, and at time 0, the SPS schedule is like the GPS

schedule. In the absence of any information, the SPS schedule resembles that of GPS, because the SPS schedule

is calculated assuming constant execution time requirement of Ri for the SRT task. As time progresses, the

probability distributionχrt is constructed and the shape of SPS changes according to it. So in cases where GPS

does not perform well, SPS is at a disadvantage because it starts of as GPS. These experiments do not ignore

any response time values. So in steady state, the SPS performance would be better than what is reported here

because in steady state, SPS would have a more or less constant s(t) function.

The reason why scaled response times are compared is becausethere is no straightforward way to directly

compare response times of jobs with varying job sizes. So we made the implicit assumption that the response

time sensitiveness of tasks is proportional to their period. That is, smaller period tasks are more sensitive to

their response time as compared to tasks with greater period. This is a reasonable assumption if the tasks are

assigned periods based upon their time sensitiveness. Also, there is little meaning to period of TS tasks, but for

our simulations we assumed that TS jobs arrive as periodic jobs, just like SRT jobs with the only difference that

the TS tasks have 0 reservation and hence no RT component. In actual systems, the TS task time sensitiveness

may not be directly proportional to their period and also theTS jobs may not arrive periodically. But by choosing

80

periods randomly for the TS tasks we insure that the TS tasks arrive randomly and hence create a random arrival

time scenario, while arriving at fixed rates.

(a) Cumulative SRT utilization histogram (b) Cumulative RT utilization (1-cdf)

Figure 5.6: (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) execution time requirement distribution

The first set of figures (Fig 5.6) shows the cumulative utilization distribution histogram for the SRT tasks.

Note that since we generate SRT workload using normal distribution hence the cumulative histogram is also

normal. Also note that while the cumulative worst case utilization requirement may be considerably greater than

the mean utilization requirement the probability that the actual cumulative execution requirement is greater than

the mean decreases as the number of jobs in the system is increased. The second graph shows the tail distribution

of cumulative RT utilization of the RT components of the SRT tasks. Remember that the allocation to the RT

component of the SRT job is given by the processor time received by this job due to its RT share. If the RT job

receives any idle allocation then that does not count towards its RT allocation.

Also for given value of utilization on theX-axis, the height of the curve represents the probability that the

cumulative RT utilization of the RT components of the SRT jobs will be greater than that value ofx. Note that

for EDL, the probability distribution is such that the cumulative RT component finishes has greater probability

to use lesser utilization. This is because, under EDL, the RTjobs get maximum possible idle allocation which

does not count towards RT allocation. Thus, under EDL the RT jobs require minimum RT allocation. And hence

the shape of the distribution.

The reason why SPS resembles EDL is because for SPS we are using the cumulative RT requirement distri-

bution given by EDL. The actual cumulative RT requirement for SPS would be a curve which will lie between

the EDL and GPS curves. That is under SPS, the RT jobs get greater idle allocation as compared to GPS, but

lesser as compared to EDL. Idle allocation is the the allocation available to RT job outside its processor share if

81

there are no active TS jobs present.

(a) SRT overrunΦ(.) (b) TS response timesΦ(.)

Figure 5.7: (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)Φ(.) values for SRT and TS tasks

Fig 5.7 graphically shows theΦ(.) function for SRT overrun times as well as TS response times. The reason

these two are considered separately is because under the scheduling algorithm we used for simulation the SRT

overrun TS jobs are given priority over normal TS jobs. This is based on the assumption that the SRT overrun jobs

would usually be very small, and finishing them early is more important than TS response times. In comparison

to the approach of treating the SRT overrun jobs at par with other TS jobs, this approach provides much smaller

SRT overrun times. Also this formalization helps to bring about the problem with EDL scheduling where the

SRT deadline misses are increased if the mean processor utilization is high. If all the TS jobs are treated equally,

then this impact is diluted.

The other thing to note is that SPS provides response time benefits overx as high as 1, which is important,

because the jobs with scaled response time greater than 0.4 would have greater performance impact as compared

to jobs with their scaled response time in the range 0 to 0.4. This is because, tasks may not be very sensitive

to small increase in response times. Although, smaller response times may be better for some tasks, and as we

would show through the experiments, SPS performs the best interms ofΦ(0 − 0.4) measures, so that is no

problem.

Fig 5.8 shows theg(.) and E[s(.)] functions for the four scheduling algorithms. This is the key figure

representing the differences between the four scheduling algorithms. The first thing to note is that under SPS

the expected processor share of the RT jobs is nearly constant, and lesser as compared to any of the other three

algorithms. While under SPS, the processor share of RT jobs may vary with progress, under the other three

scheduling algorithms it is a constant value or 0. The SPSs(t) function also shows that the higher processor

share for RT jobs is reached only rarely, as seen by the expected value of processor share for the interval when

82

(a) g(.) for Priority (b) g(.) for GPS

(c) g(.) for EDL (d) g(.) for SPS

Figure 5.8: (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) g(.) functions for the four schemes

theg(.) function value is high. This is the novelty of our approach. Until now, the scheduling algorithms focused

on giving the RT jobs a constant processor share, but this approach though appropriate for constant requirement

RT jobs, does not perform well with variable requirement RT jobs. And varying processor share of RT jobs is an

effective tool in handling requirement variability.

83

5.4 Experiments and Observations

Experiments were conducted to study SPS performance in following setups (Table 5.2).

Name Description
Impact of SRT utilization on
SRT overrun times

Measure the impact of SRT overrun time with respect to cumulative
mean utilization of SRT tasks. It is assumed that there are noTS tasks
in the system.

Impact of SRT utilization on TS
response times

Measure the impact of cumulative mean SRT utilization on TS response
times.

Impact of SRT requirement
variability on TS response
times

Measure the impact of SRT reservation (for given SRT mean utilization)
on TS response times

Impact of TS utilization in TS
response Time

Measure the impact of TS workload on TS response times (for given
SRT mean and reservation utilization)

Impact of size of RT jobs on TS
response Times

Measure the impact of size of SRT jobs on TS response times.

Impact of size of TS jobs on TS
response Times

Measure the impact of size of TS jobs on TS response times.

Table 5.2: Experiment sets

5.4.1 Impact of SRT Utilization on SRT Overruns

• For cumulative mean SRT utilization of 0.30, 0.40 and 0.50, the probability that the system utilization is

greater than 1 is nominal (Fig 5.9). So while the cumulative reservation is 0.35, 0.45 and 0.55 respec-

tively, the SRT overruns finish before deadline, since the remaining processor share (after allocating the

reservation) is considerable.

Also not that EDL and SPS schedules are very similar, this is because RT jobs finish using just idle

allocation under both the schemes. So the probability that RT jobs require any RT allocation is nominal

under EDL or SPS, as seen in the tail distribution (1-cdf) of cumulative RT requirements (Fig 5.9)

• For cumulative mean SRT utilization between 0.6 and 0.8, theperformance benefits of EDL and SPS be-

come evident over Priority and GPS (Fig 5.10). This is because under EDL and SPS, the RT job execution

is delayed (Fig 5.10), giving better response times to the overrun jobs.

• For cumulative mean SRT utilization 0.9 or more, nearly all the schemes perform equally. This is because

the processor is busy most of the time with the RT jobs (which gives similarg(.) functions under all the

four schemes). Also note that the cumulative RT requirementdistribution is nearly same under all the

84

(a) (Nsrt=50,Usrt=0.30,R=0.35,Nts=0,Uts=0.0) (b) (Nsrt=50,Usrt=0.30,R=0.35,Nts=0,Uts=0.0)

(c) (Nsrt=50,Usrt=0.40,R=0.45,Nts=0,Uts=0.0) (d) (Nsrt=50,Usrt=0.40,R=0.45,Nts=0,Uts=0.0)

(e) (Nsrt=50,Usrt=0.50,R=0.55,Nts=0,Uts=0.0) (f) (Nsrt=50,Usrt=0.50,R=0.55,Nts=0,Uts=0.0)

Figure 5.9: This figure shows the cumulative SRT utilizationhistogram and RT requirement distribution for low
to medium loaded system. Note that under SPS/EDL, the probability that the RT jobs require any RT allocation
is nominal.

schemes (Fig 5.11) , and the processor is busy with RT jobs formajority of time, leaving little time for the

overruns under any scheme.

85

(a) (Nsrt=50,Usrt=0.60,R=0.65,Nts=0,Uts=0.0) (b) (Nsrt=50,Usrt=0.60,R=0.65,Nts=0,Uts=0.0)

(c) (Nsrt=50,Usrt=0.70,R=0.75,Nts=0,Uts=0.0) (d) (Nsrt=50,Usrt=0.70,R=0.75,Nts=0,Uts=0.0)

(e) (Nsrt=50,Usrt=0.80,R=0.85,Nts=0,Uts=0.0) (f) (Nsrt=50,Usrt=0.80,R=0.85,Nts=0,Uts=0.0)

Figure 5.10: Overrun times andg(.) for SPS

86

(a) (Nsrt=50,Usrt=0.90,R=0.95,Nts=0,Uts=0.0) (b) (Nsrt=50,Usrt=0.90,R=0.95,Nts=0,Uts=0.0)

Figure 5.11: SPSg(.) and RT requirement distribution

87

5.4.2 Impact of SRT Utilization on TS Response Times

While in the previous section we looked at a system with no TS tasks, in this section we look at a system which

has a mix of SRT and TS tasks. SRT overrun tasks are scheduled with the TS tasks in LAS order.

The aim of this set of experiments is to understand the impactof SRT utilization on TS response times. To

do this we fix the numberNsrt = 50, Nts = 50 andUts = 0.35, and varyUsrt (while choosing R=Usrt +0.05).

This will enable us to understand how much is the effect of SRTutilization on the response times of TS tasks.

(a) (Nsrt=50,Usrt=0.10,R=0.15,Nts=50,Uts=0.30) (b) (Nsrt=50,Usrt=0.10,R=0.15,Nts=50,Uts=0.35)

(c) (Nsrt=50,Usrt=0.20,R=0.25,Nts=50,Uts=0.35) (d) (Nsrt=50,Usrt=0.20,R=0.25,Nts=50,Uts=0.35)

(e) (Nsrt=50,Usrt=0.30,R=0.35,Nts=50,Uts=0.35) (f) (Nsrt=50,Usrt=0.30,R=0.35,Nts=50,Uts=0.35)

Figure 5.12: Low utilization system, TS response timeΦ(.) and SPSg(.)

88

Following are the key observations –

• Even for very low (0.1 - 0.3) cumulative SRT task utilization, the impact on TS response time is significant.

and independent of scheduling algorithm used. This is because no matter how small cumulative mean

utilization of SRT tasks be, the execution of RT job components of SRT tasks interferes with the execution

of TS jobs, more so under Priority and GPS as compared to SPS and EDL. This can be seen from theg(.)

functions (Fig 5.12). Under SPS, theg(.) function resembles the EDLg(.) function i.e. the RT allocation

is delayed maximally, thereby giving preference to TS taskswhich is evident from the TS response time

Φ(.) functions. Note that with high probability, the RT allocation is not actually required and the RT jobs

finish using just idle allocation.

(a) (Nsrt=50,Usrt=0.40,R=0.45,Nts=50,Uts=0.35) (b) (Nsrt=50,Usrt=0.60,R=0.65,Nts=50,Uts=0.35)

Figure 5.13: Medium utilization system,g(.) function

• For cumulative mean SRT utilization 0.4, 0.5 and 0.6, the cumulative mean overall utilization of the system

(SRT and TS) is 0.75, 0.85 and 0.95 respectively. Due to the high mean overall utilization, the RT jobs get

lesser idle allocation under all schemes. The effect of thiscan be seen on theg(.) function for proposed

algorithm (Fig 5.13). Note that their is a greater probability that the RT job requires its allocation, as

compared to the previous low utilization scenarios where the RT jobs finished using just the idle allocation.

Also, some SRT jobs miss their deadline under EDL and SPS. This is because under these two algorithms,

the RT execution is delayed, hence the RT jobs finish later as compared to under Priority and GPS. Thus,

the SRT overrun component is available later as compared to Priority and GPS, and it has to compete

with the (nearly always present) TS jobs for processor. Thus, there is a higher probability of missing SRT

deadline under EDL. SPS provides TS response times comparable to EDL scheme while keeping SRT

deadline misses substantially smaller. This is because, theg(.) function under SPS is a cross between GPS

89

and EDL, so while the RT allocation is delayed, it is not delayed by too much. As the overall system

utilization increases the SPSg(.) function morphs from being like that of EDL to being like thatof GPS.

(a) (Nsrt=50,Usrt=0.40,R=0.45,Nts=50,Uts=0.35) (b) (Nsrt=50,Usrt=0.40,R=0.45,Nts=50,Uts=0.35)

(c) (Nsrt=50,Usrt=0.50,R=0.55,Nts=50,Uts=0.35) (d) (Nsrt=50,Usrt=0.50,R=0.55,Nts=50,Uts=0.35)

(e) (Nsrt=50,Usrt=0.60,R=0.65,Nts=50,Uts=0.35) (f) (Nsrt=50,Usrt=0.60,R=0.65,Nts=50,Uts=0.35)

Figure 5.14: Medium utilization system, TS response time and SRT overrun timeΦ(.)

• For high cumulative mean SRT utilization (¿0.6), the cumulative mean system utilization is (¿1). Hence

there is little idle time in the system. This impacts theg(.) function, and SPSg(.) increasingly resembles

GPSg(.). This trend can be seen in the Fig 5.15.

Also, note in the TS response timeΦ(.) function that a bulk of TS jobs have response time greater than their

90

(a) (Nsrt=50,Usrt=0.10,R=0.15,Nts=50,Uts=0.35) (b) (Nsrt=50,Usrt=0.90,R=0.95,Nts=50,Uts=0.35)

Figure 5.15: SPSg(.) trend from EDL like for low overall system utilization to GPSlike for high overall system
utilization

period. In fact, many TS jobs are perpetually queued becausethey are starved (new smaller requirement

TS jobs keep coming in). Thus it is important to keep the cumulative mean system utilization to be less

than 1 (Fig 5.16).

91

(a) (Nsrt=50,Usrt=0.70,R=0.75,Nts=50,Uts=0.35) (b) (Nsrt=50,Usrt=0.70,R=0.75,Nts=50,Uts=0.35)

(c) (Nsrt=50,Usrt=0.80,R=0.85,Nts=50,Uts=0.35) (d) (Nsrt=50,Usrt=0.80,R=0.85,Nts=50,Uts=0.35)

(e) (Nsrt=50,Usrt=0.90,R=0.95,Nts=50,Uts=0.35) (f) (Nsrt=50,Usrt=0.90,R=0.95,Nts=50,Uts=0.35)

Figure 5.16: High utilization system, TS response time and SRT overrun timeΦ(.). TS jobs may be starved.

92

5.4.3 Impact of SRT Requirement Variability

The difference between SRT reservation and mean utilization directly impacts the allocation to TS jobs. The

choice of reservation may depend upon a variety of factors like perceived performance, response time distribution

etc. In this set of experiments we do not figure out how to choose the value of reservation, rather given a set

of RT tasks with given cumulative mean utilization, how doeschoice of reservation impact the response time of

TS tasks. Task sets with reservation considerably greater than their mean SRT utilization are task sets with high

variability in their execution time requirement.

To do this we run experiments for a system with 50 SRT tasks with with cumulative SRT reservation fixed

at 0.65, and cumulative TS utilization of 0.40 and 40 TS tasks. We vary the cumulative mean utilization of SRT

tasks from0.10 to 0.60 in steps of0.1, and observe its impact on the response time distribution ofTS tasks.

From the Fig 5.17 it can be seen that as difference between cumulative mean SRT utilization and cumulative

SRT reservation utilization decreases, so does the advantage of using SPS or EDL. This is understandable,

because ifUsrt is nearly equal toR, then the cumulative RT requirement of RT jobs is pretty muchconstant and

equal to the mean requirement. Note that if there is idle timein the system, then EDL and SPS will outperform

Priority or GPS, since RT jobs would use this idle time and thereby reduce their interference with TS jobs, as can

be seen from previous set of experiments detailing the impact of Usrt on SRT overrun and TS response times.

But if there is no idle time in the system, then all the schemesprovide near similar performance.

93

(a) (Nsrt=50,Usrt=0.10,R=0.65,Nts=50,Uts=0.40) (b) (Nsrt=50,Usrt=0.10,R=0.65,Nts=50,Uts=0.40)

(c) (Nsrt=50,Usrt=0.30,R=0.65,Nts=50,Uts=0.40) (d) (Nsrt=50,Usrt=0.30,R=0.65,Nts=50,Uts=0.40)

(e) (Nsrt=50,Usrt=0.60,R=0.65,Nts=50,Uts=0.40) (f) (Nsrt=50,Usrt=0.60,R=0.65,Nts=50,Uts=0.40)

Figure 5.17: Impact of difference betweenUsrt andR on TS response times

94

5.4.4 Impact of Mean TS Utilization

(a) (Nsrt=50,Usrt=0.5,R=0.64,Nts=50,Uts=0.10) (b) (Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.10)

(c) (Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.30) (d) (Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.30)

(e) (Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.60) (f) (Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.60)

Figure 5.18: Impact of TS Workload

While in the previous set of experiments, we looked at the impact of SRT utilization on TS response times

and SRT overrun times, in this section we look at the impact ofTS utilization on TS response times (Fig 5.18).

To do this we fix the number of SRT tasks to beNsrt = 50, their mean utilizationUsrt = 0.5, their reservation

R = 0.65, and the number of TS tasksNts = 50 and vary the mean TS utilizationUts.

• For small cumulative TS utilization (0.1-0.3), EDL and SPS perform significantly better than GPS or

95

Priority in terms of TS response times, withΦ(0.1) for SPS and EDL being more than 10 times smaller

than those for GPS/Priority. The reason for such huge performance benefit is twofold. First, due to small

TS utilization, the idle allocation to RT jobs is high (henceRT jobs under EDL and SPS can take advantage

of this fact by starting RT jobs with very low processor share(smallE[s(t)]). Second, for 50 TS tasks with

cumulative utilization of just (0.1-0.3), the individual job requirements are very small. Thus, the TS jobs

usually finish when they are scheduled. Under EDL/SPS the expected value of RT processor share is very

small for any time, and hence the small TS jobs get nearly instant service without any interference from

the RT jobs. Thus the key factor impacting the response timesof TS tasks is the measureE[s(t)]. As can

be seen fromg(.) function for SPS (which resembles that of EDL),E[s(t)] is an insignificant value at any

instant. Hence the drastic performance benefit over GPS or Priority schemes.

• As the cumulative TS utilization increases(0.3-0.5), there are two things happening. First, the idle alloca-

tion to RT jobs is decreasing leading to more and more RT jobs requiring their RT allocation (increasing

E[s(t)]). Second, the average requirement of TS jobs is higher and hence the TS jobs may not finish

whenever they are scheduled. Thus, there is greater probability that a TS job may encounter instances of

higher value ofE[s(t)] leading to larger response times.

• For TS utilization of 0.6, the system is overloaded on average (mean utilization is0.5+0.6 = 1.1, leading

to accumulation of high requirement TS jobs (which are starved by the small requirement TS jobs). Hence

nearly all schemes perform equally, since there is little scope for improvement.

96

5.4.5 Impact of Size of SRT Jobs

(a) (Nsrt=5,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) (b) (Nsrt=5,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)

(c) (Nsrt=30,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) (d) (Nsrt=30,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)

(e) (Nsrt=100,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) (f) (Nsrt=100,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)

Figure 5.19: Impact of Number of SRT Tasks on TS response times

97

In this section we look at the impact of size of SRT jobs on the TS response times.

To do this we vary the number of SRT tasksNsrt, while keeping mean SRT utilization to beUsrt = 0.5, SRT

reservation to beR = 0.65, the number of TS tasks to beNts = 50 and mean TS utilization to beUts = 0.35.

If number of SRT tasks is small (5-10), the duration of time during which a RT job is active is longer as

compared to the case when there are many SRT tasks in the system and the SRT jobs have lesser execution time

requirement. The way longer RT jobs impact the performance of TS jobs is that during the interval when RT

jobs are active TS jobs get processor share of(1−s(t)), and if this processor share is small then the TS jobs may

get queued up and even small requirement TS jobs may have to wait. The longer the duration of such interval

where RT jobs are active, the greater the queuing of TS jobs and correspondingly higher delays for them. On the

other hand, if RT jobs are small, then there may be intervals of low value ofs(t) when a RT job finishes, giving

greater processor share to the TS jobs under SPS/EDL. And this leads to improvements in TS response times.

Also, as the requirements of individual SRT jobs become muchsmaller, then EDL performance becomes

better than SPS. This is because, under EDL the RT jobs wait maximally and even when they are scheduled they

last for small duration thereby minimally impacting the TS jobs, on the other hand under SPS, the RT jobs are not

delayed as much as in EDL. For EDL to perform better than SPS, there should be a large number of SRT tasks

and also the processor should have enough idle time so that bulk of RT jobs can finish using just the idle time.

If there is no idle processor time then EDL performance suffers and EDL gives greater SRT deadline overruns

than all the other three scheduling algorithms.

On the other hand, SPS adjusts and adapts according to the available idle time, changing from EDL like to

GPS like as idle processor time decreases. But this adaptation may lead to EDL performing better than SPS by

small margins under certain scenarios specifically when there is processor idle time and the SRT job sizes are

small.

Note that SPS can be made more aggressive in delaying the RT jobs (more EDL like) by accounting for

the number of tasks in the system, but this will not be a general solution, and the performance benefits are also

marginal and not very significant. Also EDL is unstable in this scenario, in the sense that if a large requirement

TS job arrives leading to transient system overload, then EDL may incur greater SRT deadline overruns and also

increased TS response times. On the other hand SPS is much more robust and stable to transient overloads.

98

(a) (Nsrt=50,Usrt=0.50,R=0.65,Nts=5,Uts=0.35) (b) (Nsrt=50,Usrt=0.50,R=0.65,Nts=5,Uts=0.35)

(c) (Nsrt=50,Usrt=0.50,R=0.65,Nts=30,Uts=0.35) (d) (Nsrt=50,Usrt=0.50,R=0.65,Nts=30,Uts=0.35)

(e) (Nsrt=50,Usrt=0.50,R=0.65,Nts=100,Uts=0.35) (f) (Nsrt=50,Usrt=0.50,R=0.65,Nts=100,Uts=0.35)

Figure 5.20: Impact of size of TS jobs on TS response times

5.4.6 Impact of Size of TS jobs

While in the previous section we looked at the impact of the number of SRT tasks on the system performance,

in this section we fix rest of the parameters and just vary the number of TS tasks to describe the impact of size

of TS jobs on the system performance.

If the number of TS tasks is small, then the execution requirement of individual TS job is high. Large

requirement TS jobs have greater response times, and this diminishes the response time benefits seen, because

99

SPS is most beneficial for small requirement TS jobs. The reasons for this have been explained before, but

we would briefly explain them here again. The RT scheduling algorithm impact the performance of TS jobs

only in terms of currently active RT jobs. That is, until the previous deadlines of all the active RT jobs, all the

RT scheduling algorithm have equal cumulative allocation to the TS tasks. So the allocation difference comes

on time scale which is of the order of mean period of SRT tasks.Also, if a TS job finishes quickly then its

performance is impacted by instantaneousE[s(t)], which is minimized under SPS. A TS job that is active for

a longer duration sees reduction in the available processorshare as the active RT jobs progress and hence the

difference in response time between SPS and GPS/Priority decreases. Same line of reasoning also explains EDL

performance, which is just like SPS.

As the number of TS tasks is increased, the individual TS jobsbecome small. With smaller TS jobs, the

TS jobs finish once scheduled and hence their response time isa function of(1 − E[s(t)]), and as can be seen

E[s(t)] is nearly 0 for SPS/EDL.

In the next chapter, conclusions and future work is presented.

100

CHAPTER 6
Conclusion

Managing resources is an important problem faced by operating systems. Processor is one of the key resources

that is shared amongst multiple tasks, and properly managing it can bring significant performance benefits. The

tasks may have different timeliness requirements, for example some tasks may have deadlines and others may

have response time constraints. Through this work we address the problem of co-scheduling tasks with deadlines

and tasks whose response times need to be minimized. The problem of providing hard guarantees like deadlines

and minimizing response times have either been considered in isolation (for example, the real-time scheduling

is considered independent of the non-RT tasks in the system [AB98a] [RH95] [APLW02]) or in restricted

scenarios, for example EDL provides optimal response timesto the non-RT tasks if the jobs of the non-RT tasks

are scheduled in FIFO order.

In this work, we focused on task sets with RT tasks and response time sensitive TS tasks. The goal of the

scheduling algorithm is to provide deadline guarantees to the RT tasks while reducing response times of the TS

tasks. The performance of the scheduling algorithm is measured in terms of scaled response times of the SRT job

overruns and TS jobs. The goal is to reduce the number of TS jobs (or SRT job overruns) with scaled response

time (or SRT deadline overrun time) greater than any given fractionx. This value is represented asΦ(x). For

example, if the number of SRT overrun jobs with scaled deadline overrun time greater than say 0.4 leads to

performance degradation then the scheduling algorithm with least SRT overrunΦ(0.4) would be the best. For

TS jobs, a scheduling algorithm that keeps the response timeof TS jobs smaller is better. In terms of the TS

response timeΦ(.) function, the scheduling algorithm with smallerΦ(x) for any value ofx would be better.

6.1 Co-scheduling Algorithm Performance

We present a summary of the factors that most heavily impact the performance of a co-scheduling algorithm.

• Minimizing expected RT processor share - This is one of the key factors impacting the performance of

co-scheduling algorithms. If there is enough idle time suchthat all the RT jobs finish no later than their

Measure Scheduling Algorithm
Priority GPS EDL SPS

(Nsrt=50,Usrt=0.30,R=0.65,Nts=50,Uts=0.40)
SRT job overruns 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Mean scaled overrun time 0.0000 0.0000 0.0000 0.0000
Mean scaled TS response time 0.1113 0.1002 0.0357 0.0377

TS response timeΦ(0.10) 18398 (31.74%) 16280 (28.09%) 3617 (6.24%) 4036 (6.96%)
TS response timeΦ(0.20) 9101 (15.70%) 7954 (13.72%) 1155 (1.99%) 1077 (1.86%)

Table 6.1: Performance numbers for a very lightly loaded processor.

deadlines, then the RT jobs do not actually require any preference instead the RT jobs can be scheduled at

the lowest priority, and in this case the RT jobs do not interfere at all with the TS jobs.

Also, the RT jobs may have variable execution time, and so many RT jobs may require less than their

reservation execution time. The RT share can be calculated such that the expected processor share of RT

jobs is minimized.

So the RT execution time variability is the combined effect of the execution time variability and the idle

allocation that the RT jobs get. The RT execution time for a job is the actual execution time requirement

minus the idle allocation to this job. Both these factors together impact the co-scheduling performance.

Task set (Nsrt=50,Usrt=0.30,R=0.65,Nts=50,Uts=0.40) shown in Table 6.1 represents a scenario where

the mean SRT utilization is equal to the mean idle utilization of the processor. To see this note that the

mean SRT utilization plus the mean TS utilization is0.30 + 0.40 = 0.70, so on average 0.30 fraction of

time, the processor is idle. EDL/SPS perform significantly better than GPS/Priority in this scenario, which

follows from the fact that the expected RT processor share under EDL/SPS is nearly 0. That is, with high

probability the RT jobs finish using just the idle processor time without interfering with the jobs of TS

tasks.

Task set (Nsrt=50,Usrt=0.40,R=0.45,Nts=50,Uts=0.35) and (Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.20)

shown in Table 6.2 have substantial idle processor time, butlesser than the previous task set. SPS/EDL

take advantage of the idle time by delaying the RT jobs, henceincreasing the chances of RT jobs getting

idle allocation. GPS/Priority do not take advantage of thisfact and its impact can be seen on the response

times of TS jobs.

Task set (Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35) shown in Table 6.3 has little idle time, and as

before SPS/EDL take advantage of this idle time whereas Priority/GPS do not. The difference in the

TS response time distribution is not as significant as in the previous cases, but still the mean scaled TS

102

Measure Scheduling Algorithm
Priority GPS EDL SPS

(Nsrt=50,Usrt=0.40,R=0.45,Nts=50,Uts=0.35)
SRT job overruns 10 (0.02%) 0 (0.00%) 6 (0.01%) 0 (0.00%)

Mean scaled overrun time 0.0001 0.0000 0.0000 0.0000
Mean scaled TS response time 0.1714 0.1220 0.0337 0.0382

TS response timeΦ(0.10) 24594 (42.44%) 17008 (29.35%) 2331 (4.02%) 3331 (5.75%)
TS response timeΦ(0.20) 14415 (24.87%) 9386 (16.20%) 545 (0.94%) 695 (1.20%)

(Nsrt=50,Usrt=0.50,R=0.64,Nts=50,Uts=0.20)
SRT job overruns 20 (0.03%) 4 (0.01%) 17 (0.03%) 0 (0.00%)

Mean scaled overrun time 0.0002 0.0000 0.0001 0.0000
Mean scaled TS response time 0.1998 0.1461 0.0279 0.0280

TS response timeΦ(0.10) 27234 (46.99%) 19418 (33.50%) 1265 (2.18%) 1500 (2.59%)
TS response timeΦ(0.20) 16417 (28.33%) 11393 (19.66%) 589 (1.02%) 563 (0.97%)

Table 6.2: Performance numbers for a lightly loaded processor.

Measure Scheduling Algorithm
Priority GPS EDL SPS

(Nsrt=50,Usrt=0.50,R=0.65,Nts=50,Uts=0.35)
SRT job overruns 20 (0.03%) 4 (0.01%) 67 (0.12%) 0 (0.00%)

Mean scaled overrun time 0.0002 0.0000 0.0002 0.0000
Mean scaled TS response time 0.4180 0.3775 0.2243 0.2143

TS response timeΦ(0.10) 33417 (57.68%) 28904 (49.88%) 15911 (27.46%) 17272 (29.80%)
TS response timeΦ(0.20) 23635 (40.79%) 20202 (34.87%) 10951 (18.90%) 9738 (16.80%)

Table 6.3: Performance numbers for a moderately loaded processor.

response time for Priority and GPS is 0.4180 and 0.3775 respectively and for EDL and SPS, the mean

scaled TS response time is 0.2243 and 0.2143 respectively.

For task set (Nsrt=50,Usrt=0.80,R=0.85,Nts=0,Uts=0.0) shown in Table 6.4, the cumulative SRT utiliza-

tion is high. The number of SRT job overruns is high under EDL in this scenario as compared to SPS,

though EDL/SPS perform better as compared to GPS/Priority in terms of mean scaled overrun times. For

task set (Nsrt=50,Usrt=0.80,R=0.85,Nts=50,Uts=0.35), the system is overloaded. EDL performance suf-

fers in this case as compared to SPS in terms of SRT overruns. The expected processor RT share is high

under EDL for overloaded systems because delaying RT jobs does not bring much performance benefit if

the RT execution time variability is small.

• The performance benefits are more pronounced for smaller TS jobs rather than bigger ones. The difference

between the co-scheduling algorithms is only at RT jobs’ periods time scales. So, if a TS job has large ex-

ecution time then the TS job may have a response time extending over a few periods of RT jobs. Therefore

the response time benefit is only seen due to the allocation difference amongst the various algorithms for

103

Measure Scheduling Algorithm
Priority GPS EDL SPS

(Nsrt=50,Usrt=0.80,R=0.85,Nts=0,Uts=0.0)
SRT job overruns 1422 (2.45%) 1032 (1.78%) 651 (1.12%) 332 (0.57%)

Mean scaled overrun time 0.0228 0.0198 0.0119 0.0103
OverrunΦ(0.20) 1087 (1.88%) 807 (1.39%) 447 (0.77%) 275 (0.47%)
OverrunΦ(0.80) 426 (0.74%) 366 (0.63%) 201 (0.35%) 168 (0.29%)

(Nsrt=50,Usrt=0.80,R=0.85,Nts=50,Uts=0.35)
SRT job overruns 1422 (2.45%) 1092 (1.88%) 2052 (3.54%) 638 (1.10%)

Mean scaled overrun time 0.0228 0.0207 0.0262 0.0145
OverrunΦ(0.20) 1087 (1.88%) 851 (1.47%) 1430 (2.47%) 495 (0.85%)
OverrunΦ(0.80) 426 (0.74%) 383 (0.66%) 515 (0.89%) 253 (0.44%)

Mean scaled TS response time 34.6884 33.1181 31.6116 37.9978
TS response timeΦ(0.10) 16563 (88.93%) 16249 (86.93%) 16226 (86.32%) 16126 (83.23%)
TS response timeΦ(0.20) 15448 (82.94%) 15173 (81.18%) 15373 (81.78%) 15026 (77.55%)

Table 6.4: Performance numbers for a loaded and overloaded case.

the RT job during whose execution the TS job finishes execution. The following Table 6.5 shows the vari-

ation in performance benefits with the size of TS jobs. In thisset of experiments, the mean TS utilization

is kept constant at 0.35, and the number of TS tasks is increased. Greater the number of TS tasks, smaller

the TS job sizes. As can be seen, the mean scaled TS response time decreases and the difference between

the performance of SPS/EDL and Priority/GPS increases withdecreasing TS job sizes.

The results in Table 6.5 are explained using our theoreticalframework as follows. If the TS jobs’ execu-

tions span over several jobs of the same RT tasks, then the measureA(.) better determines the response

time difference under the four scheduling algorithms. Thisis because, when the TS jobs finishes, most

of the active RT jobs saw this TS job as already active when they arrived and henceA(.) would represent

the allocation to the TS job as a function of time. EDL maximizesA(.) so the best response times are

seen under EDL, followed by SPS, GPS and Priority. As the average TS jobs sizes decrease with increas-

ing number of TS tasks making up the same mean cumulative utilization, the response time benefits with

EDL/SPS increase. This is because, the smaller TS jobs have greater probability of finishing before the

active RT jobs. So, the response time is determined more by
∫

(1 − s(t))dt rather than justA(.) because

the allocation received during the time when the RT job is active differs between the four algorithms. SPS

provides the most unbiased allocation, that is on average the TS job get similar allocation irrespective of

their arrival times. The performance of other algorithms depends upon the idle processor time. If there

the processor is idle for a large fraction of time then EDL performs better, and GPS performs better if the

processor idle time is small. SPS on the other hand adapts itself to the available idle time, changing from

104

Measure Scheduling Algorithm
Priority GPS EDL SPS

(Nsrt=50,Usrt=0.50,R=0.65,Nts=5,Uts=0.35)
Mean scaled TS response time 0.3008 0.2783 0.1302 0.1438

TS response timeΦ(0.10) 3763 (83.11%) 3694 (81.58%) 2823 (62.33%) 2986 (65.93%)
TS response timeΦ(0.20) 2769 (61.15%) 2687 (59.34%) 815 (18.00%) 1122 (24.77%)
TS response timeΦ(0.40) 1311 (28.95%) 1122 (24.78%) 105 (2.32%) 76 (1.68%)
TS response timeΦ(0.80) 121 (2.67%) 81 (1.79%) 4 (0.09%) 3 (0.07%)

(Nsrt=50,Usrt=0.50,R=0.65,Nts=10,Uts=0.35)
Mean scaled TS response time 0.2073 0.1808 0.0550 0.0631

TS response timeΦ(0.10) 6523 (63.07%) 5947 (57.50%) 1289 (12.46%) 1702 (16.45%)
TS response timeΦ(0.20) 4011 (38.78%) 3356 (32.45%) 210 (2.03%) 327 (3.16%)
TS response timeΦ(0.40) 1575 (15.23%) 1239 (11.98%) 25 (0.24%) 29 (0.28%)
TS response timeΦ(0.80) 100 (0.97%) 64 (0.62%) 6 (0.06%) 8 (0.08%)

(Nsrt=50,Usrt=0.50,R=0.65,Nts=100,Uts=0.35)
Mean scaled TS response time 0.1464 0.0907 0.0151 0.0176

TS response timeΦ(0.10) 46291 (39.41%) 25209 (21.46%) 1577 (1.34%) 1959 (1.67%)
TS response timeΦ(0.20) 24575 (20.92%) 12946 (11.02%) 257 (0.22%) 328 (0.28%)
TS response timeΦ(0.40) 9967 (8.48%) 5413 (4.61%) 94 (0.08%) 109 (0.09%)
TS response timeΦ(0.80) 2669 (2.27%) 1655 (1.41%) 50 (0.04%) 67 (0.06%)

Table 6.5: Performance numbers for varying TS jobs sizes. The number of TS tasks is varied while keeping the
cumulative mean TS utilization constant. As the number of TStasks increases, the individual tasks have lesser
mean execution time requirement.

being EDL like when there is large idle processor time to GPS like when there is little or no idle time. In

this particular scenario, there is some idle time, and EDL isable to take advantage of this fact giving the

best performance with SPS closely following it. Priority/GPS are not suited for this scenario and hence

their performance suffers.

6.2 Contributions

The key contributions are enumerated below –

• Current GPOS scheduling algorithms use multi-level feedback queues along with task priorities to sched-

ule the workloads. Through this work we have shown that as theGPOS move from best-effort to assured

service systems with guarantees, the scheduler would be required to provide more than just best-effort

service. We have exposed the inadequacies of current scheduling algorithms in dealing with workloads

with varying timeliness requirements. In particular, giving priority to RT jobs over non-RT jobs, which is

the most widely available scheduling option, is grossly sub-optimal. In fact, it is the worst possible way

to co-schedule RT and non-RT tasks and tremendous gains are possible by migrating to better scheduling

algorithms.

105

The prime reason why current GPOS still rely on giving Priorities to RT jobs is because the systems are

usually underutilized and hence the problems with Priorityscheduling are not exposed. As the attention

is shifting towards power efficiency and heat reduction, it is desirable to have higher system utilization.

This implies that there will be shift from underutilized systems to nearly fully utilized systems. And it

is in this scenario that task scheduling will become the single most important factor determining system

performance. And this is the scenario we address through this work.

• We propose Stochastic Processor Sharing (SPS) as a practical, efficient and smart scheduling algorithm,

that adapts itself based on the actual RT requirements distribution (obtained through online profiling), such

that the RT guarantees are maintained while the response times of the non-RT jobs are reduced. In fact,

under SPS the maximum expected utilization of the RT tasks atany time instant is minimized. This gives

an unbiased schedule and non-RT jobs get nearly same expected service rate irrespective of other factors

like their arrival times. In a way this is an optimal schedule, because any slight variation to this schedule

would give intervals during which the expected processor share of the RT jobs is greater than that ever

reached under SPS, and other intervals during which it is less. It is during the times of higher expected

processor share of RT jobs that the TS jobs would suffer as compared to SPS. It finishes if it is scheduled.

Under SPS, there is nearly equal probability of this job getting scheduled at any instant, while under any

scheduling algorithm other than SPS, there are intervals inwhich the probability is higher and others in

which it is lower, and this is not conducive for good responsetimes to the non-RT jobs.

• We evaluated SPS performance both analytically and empirically, and showed that it performs significantly

better than the current algorithms under a wide range of common scenarios under reasonable assumptions.

The extensive empirical analysis not only shows the performance gains achievable but it also provides

good understanding on the working of SPS algorithm, and how RT scheduling algorithms should behave

when they are co-scheduled with response time sensitive computation.

• The RT allocation guarantees are upheld irrespective of theprobability distribution (RT allocation guaran-

tee is provided on the basis ofR and does not depend uponχ). Thus, any reasonable approximation to the

RT execution time requirement probability distribution provides smaller response times to the TS jobs. In

fact, in the beginning (at time 0) it is assumed that the execution time requirement is of RT jobs is constant

and equal toR. As time progresses, the execution time probability distribution is created empirically.

• SPS is an intelligent algorithm, and it evolves and adapts asit gathers more information about the work-

106

load. It is independent of the application, and requires minimal information about the task set, basically

only the period and reservation information about each RT task. Current scheduling algorithms on the

other hand are fixed based on the task set parameters or require design of appropriate application dependent

feedback-control loop or other heuristics to handle workloads with variable execution time requirements.

All these advantages make SPS a good choice for practical systems.

6.3 Limitations and Future Work

• The primary limitation of SPS is that it is based on GPS processor sharing model. The accuracy of

emulation of GPS on a sequential processor is determined by the quantum size. Smaller quantum size gives

better allocation accuracy but increases the time spent in context switches ([Reg02]). Current GPOSes

have time quantum in the range of 10 ms, while the average period of RT tasks (interactive, media playback

, computer games) is in the range of (20ms - 200ms). Ideally, we would like the quantum size to be at

least less than the RT task period. Quantum size of 1ms would give good performance, but it may lead to

significant context switch overhead. This problems will notbe encountered by systems with a lot of tasks

(100 or more). This is because in such a scenario most jobs would be very small requirement and would

finish once scheduled and in less than 1ms (given 100 tasks with 50ms period and mean utilization of 0.8,

the mean utilization is 0.008 and the mean job requirement is0.4ms).

• While SPS requires only the periodPi and reservationRi information for the SRT task, the choice ofRi

is left open.Ri can be chosen using a feedback-control loop as described in [LSST02] [APLW02]. But a

better way would be to use a feedback-control loop based on theΦ(.) function, that is, the entire response

time distribution rather than focusing on a threshold value. But this would require information about

acceptable response time distributions for applications,which may vary considerably from application to

application. This kind of problem has been addressed beforeby Jensen et. al. [JLT85] in 1985, and later.

The primary difference from the approach followed by these with ours is that, Jensen et. al. looked at a

very general form of the problem where the utility functionsmay be arbitrary and the scheduling problem

is then to maximize the utility. In our case we focus on the problem of guaranteeing allocation to certain job

while providing timely allocation to the non-RT jobs in the system. Note that the constraints SPS handles

are more focused and simpler than maximizing utility. In fact, SPS focuses exclusively on how to schedule

the variable requirement RT jobs, and the scheduling of the non-RT jobs can be done in arbitrary fashion

107

(we used Least Attained Service First (LAS) scheduling which minimizes expected response times) based

on utility functions. The problem of utility arises in calculating the value of reservationRi for a RT task,

which would be the primary focus of our future work. And it should be noted that given any value ofRi,

SPS provides better response times to the non-RT jobs as compared to any other algorithm.

• An optimal co-scheduling algorithm would minimize the expected processor share of RT tasks at any

time. Though SPS minimizes the maximum expected processor share of RT tasks, during some intervals

the processor share of RT tasks may be greater than what an optimal algorithm can achieve. Currently, this

gap may be wide but it will shrink once slack reclamation is incorporated in SPS. For example, consider a

two RT task system with one very large requirement TS task. Atany time, atmost two RT jobs are active,

one belonging to each of the two RT tasks. During the intervals when only one RT job is active, theg(.)

function which determines the processor share of the RT tasks overallocates because theg(.) function was

defined such that the allocation in a unit interval would be equal to the cumulative reservation of all the RT

tasks present in the system. But, if only one RT task is active, clearly using thisg(.) function is overkill. To

find a schedule that minimizes the expected processor share of RT tasks would require the exact probability

distribution of execution time requirement known at any instant. Now, this distribution would depend upon

the active RT tasks. Maintaining probability distributionfor all possible combinations of active RT tasks

would be highly inefficient because for a task set withn tasks, it would require2n different execution

time distributions. Another avenue for improvement is whenthe RT tasks get idle allocation. If a RT job

receives greater allocation than required by theg(.) function by timet, then it can appropriately reduce its

processor share for its remaining time while still meeting the allocation guarantees. A RT job may receive

greater allocation than that given by itsg(.) function because it may get allocation when the processor is

idle.

Though incorporating these optimizations in SPS is not trivial, the complexity of the optimal solution

does not rule out the existence of efficient approximations that can match the performance of the optimal

solution without the associated computation complexity. We are currently working on a slack reclamation

scheme for SPS that would take into account the active RT tasks as well as idle allocation to compute the

processor share for RT tasks.

One more avenue for optimization is treating very large requirement TS jobs separately. The performance

impact of co-scheduling algorithm would be minimal on TS jobs whose execution spans several jobs of

108

the active RT tasks and these TS jobs can be scheduled at the absolute lowest priority, without incurring

performance loss. But handling large TS jobs like this wouldincrease the probability of the RT jobs getting

idle allocation, thereby reducing the real-time executiontime requirement for the RT jobs.

• We considered LAS (Least Attained Service time first) discipline to schedule TS jobs. This algorithm

gives optimal mean response time for the TS tasks if the execution time requirements of the TS jobs are not

known in advance. In practical systems, other scheduling policies for TS jobs may be more appropriate.

For example, some TS tasks may be given priority over others,or more elaborate measures like TUF

[JLT85] may be used to schedule the TS jobs. Even for these scheduling algorithms, SPS would provide

performance benefits because it performs well on bothA(t) andE[s(t)] measure, but quantifying them

would be essential for wide scale acceptance of SPS.

• This work addresses task set with independent tasks and issues like task inter-dependency and parallelism

are not addressed. Addressing these issues would be important for wide applicability of SPS. Simple share

transfer technique may work well, but this is just a conjecture and it needs to be verified. This would be

one avenue which requires further research in future.

6.4 Workload Consolidation and Power Savings

Power is becoming a significant resource in server installations. Big companies like Google are seeing a massive

increase in their energy bills [BDH03] [Bar05]. For any server that needs to support a large number of clients,

optimizing the system performance for power is becoming essential.

At the other hand of computing spectrum, for handheld devices operating on limited battery life, minimal

power consumption is essential to provide longer service times.

Datacenters are moving towards workload consolidation. This consolidation would require the operating

system to support allocation guarantees like processing time guarantees to the tasks. Also, frequently the tasks

would require variable execution time and this variabilitycan be effectively accommodated using a scheduling

algorithm like SPS. These workloads do not fall into hard real-time category, rather the allocation guarantee

requirements are soft. If the response times fall within some predefined reasonable range then the performance

can be considered acceptable. Our modeling allows to tacklethese kinds of problems where the performance is

dependent upon the response time distribution rather than fixed deadlines.

109

There is a whole research area on varying processor speed to save energy and reduce heat generation, in

particular the work done by Lorch et. al. [LS04] and Gruian [Gru01]. The theoretically optimal way to

schedule variable requirement RT tasks on a DVS capable processor is to continuously vary its speed with job

progress. Such a schedule minimizes the expected energy consumed by the processor. This approach applies

to task system with single RT task [LS04] or to each task independently for multiple task systems [YN03].

Second, in case of deadline overrun, the job missing its deadline is serviced at full processor speed [YN03].

Instead of varying processor speed, we propose varying processor share of the tasks to maintain their allocation

guarantees. Our approach better suits the problem requirements and warrants further study in this direction.

6.5 Conclusions

From application to research, to entertainment and gaming,computers have established themselves as an integral

part of the day to day lives of many. With the rich set of functionality that computers are providing today, their

performance is also becoming important. For example, for web servers the response times are important, for

hand-held devices power is important, for embedded devicesmeeting deadline is essential etc.

While there is a large body of works addressing the issues of RT scheduling and those addressing response

time minimization problems, a fusion of the these two works is required to provide an effective solution to

the scheduling problems faced by current operating systems. RT scheduling focuses on the worst case values,

providing deadline guarantees assuming the worst case scenario. Response time minimization approaches on the

other hand focus on the mean values and neglect the worst casevalues which may be too rare to be taken into

account.

Domains which are purely RT and those which are purely non-RTcan be found, but there is a large area in

between, where the task sets are composed of a mix of RT (hard and soft) and non-RT (and probably response

time sensitive) tasks. The co-scheduling of RT and non-RT tasks thus becomes an important problem.

The main difficulty faced by practical systems is the requirement variability in RT jobs and non-RT jobs.

Allocating for worst case may be essential in some scenariosbut it may be overkill in others. Ideal scenario

would be when the processor is nearly fully utilized on average while delivering acceptable performance (meeting

deadlines and keeping TS response times small). In this workwe propose a novel scheduling algorithm that

achieves precisely this goal. SPS automatically reaches a balance between GPS (constant processor share to RT

jobs) and EDL (delaying RT jobs), to achieve better performance than both GPS and EDL. The fact that SPS is

110

intelligent enough to reach this point, makes it stand apartfrom all the current scheduling algorithms.

One of the prime applications of SPS would be in the area of energy savings for task sets composed of

RT and non-RT tasks. As we have shown theoretically and empirically, SPS provides guaranteed allocation

to RT tasks while significantly improving response times of non-RT tasks as compared to current algorithms.

For energy efficiency, the processor needs to be run at minimum speed to satisfy the performance requirements

of the given task set. Given processor running at certain speed and servicing a given task set, by switching

to SPS scheduling algorithm, the overall system performance improves significantly while keeping the power

consumption constant. Most current GPOSes support just Priority scheduling, and as we have shown through

experiments, priority scheduling is very inefficient performing significantly badly as compared to SPS, and

substantial benefits can be reaped by switching to SPS algorithm.

111

BIBLIOGRAPHY

[AAA06] Eitan Altman, Konstantin Avrachenkov, and Urtzi Ayesta. A survey on discriminatory processor
sharing.Queueing Syst., 53(1-2):53–63, 2006.

[AABN04] Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown, and Eeva Nyberg. Differentiation between
short and long tcp flows: Predictability of the response time. In INFOCOM, 2004.

[AANO04] Samuli Aalto, Urtzi Ayesta, and Eeva Nyberg-Oksanen. Two-level processor-sharing scheduling
disciplines: mean delay analysis. InSIGMETRICS, pages 97–105, 2004.

[AB98a] Luca Abeni and Giorgio C. Buttazzo. Integrating multimedia applications in hard real-time systems.
In IEEE Real-Time Systems Symposium, pages 4–13, 1998.

[AB98b] Alia Atlas and Azer Bestavros. Statistical rate monotonic scheduling. InIEEE Real-Time Systems
Symposium, pages 123–, 1998.

[AMMMA01] Hakan Aydin, Rami G. Melhem, Daniel Mossé, and Pedro Mejı́a-Alvarez. Optimal
reward-based scheduling for periodic real-time tasks.IEEE Trans. Computers, 50(2):111–130, 2001.

[AMMMA04] Hakan Aydin, Rami G. Melhem, Daniel Mossé, and Pedro Mejı́a-Alvarez. Power-aware
scheduling for periodic real-time tasks.IEEE Trans. Computers, 53(5):584–600, 2004.

[APLW02] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. Analysis of a
reservation-based feedback scheduler. InIEEE Real-Time Systems Symposium, pages 71–80, 2002.

[Bar05] Luiz André Barroso. The price of performance.ACM Queue, 3(7):48–53, 2005.

[BBB04] Guillem Bernat, Ian Broster, and Alan Burns. Rewriting history to exploit gain time. InRTSS, pages
328–335, 2004.

[BCM98] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. InSODA ’98: Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, pages 270–279, Philadelphia, PA, USA, 1998. Society for Industrial
and Applied Mathematics.

[BDH03] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle.Web search for a planet: The google cluster
architecture.IEEE Micro, 23(2):22–28, 2003.

[BMP98] Andy C. Bavier, Allen Brady Montz, and Larry L. Peterson. Predicting mpeg execution times. In
SIGMETRICS, pages 131–140, 1998.

[BS99] Giorgio C. Buttazzo and Fabrizio Sensini. Optimal deadline assignment for scheduling soft aperiodic
tasks in hard real-time environments.IEEE Trans. Computers, 48(10):1035–1052, 1999.

[BZ96] Jon C. R. Bennett and Hui Zhang. Wf2q: Worst-case fair weighted fair queueing. InINFOCOM, pages
120–128, 1996.

[CC89] Houssine Chetto and Maryline Chetto. Some results ofthe earliest deadline scheduling algorithm.
IEEE Trans. Software Eng., 15(10):1261–1269, 1989.

[Che98] Ludmila Cherkasova. Scheduling strategy to improve response time for web applications. InHPCN
Europe 1998: Proceedings of the International Conference and Exhibition on High-Performance
Computing and Networking, pages 305–314, London, UK, 1998. Springer-Verlag.

112

[CKR96] Ludmila Cherkasova, Vadim E. Kotov, and Tomas Rokicki. The impact of message scheduling on a
packet switching interconnect fabric. InHICSS (1), 1996.

[CKZ01] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow time. In
STOC ’01: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages
84–93, New York, NY, USA, 2001. ACM Press.

[DGK+02] José Luis Dı́az, Daniel F. Garcı́a, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello, José Marı́a
López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic real-time systems. InIEEE
Real-Time Systems Symposium, pages 289–, 2002.

[DKS89] Alan J. Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation of a fair queueing
algorithm. InSIGCOMM, pages 1–12, 1989.

[DW95] Robert Davis and Andy J. Wellings. Dual priority scheduling. In IEEE Real-Time Systems
Symposium, pages 100–109, 1995.

[FH03] Eric J. Friedman and Shane G. Henderson. Fairness andefficiency in web server protocols. In
SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 229–237, New York, NY, USA, 2003. ACM
Press.

[GCW95] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithm for dynamic speed-setting
of a low-power cpu. InMobiCom ’95: Proceedings of the 1st annual international conference on Mobile
computing and networking, pages 13–25. ACM Press, 1995.

[GLIN00] Dirk Grunwald, Philip Levis, Charles B. Morrey III, and Michael Neufeld. Policies for dynamic
clock scheduling.OSDI 2000, 2000.

[Gru01] Flavius Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs processors. In
ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and design,
pages 46–51, New York, NY, USA, 2001. ACM Press.

[GVC97] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time fair queueing: a scheduling algorithm
for integrated services packet switching networks.IEEE/ACM Trans. Netw., 5(5):690–704, 1997.

[Hor74] W A Horn. Some simple scheduling algorithms.Naval Research Log. Qurt., 21, 1974.

[JLT85] E. Douglas Jensen, C. Douglas Locke, and Hideyuki Tokuda. A time-driven scheduling model for
real-time operating systems. InIEEE Real-Time Systems Symposium, pages 112–122, 1985.

[LB00] Giuseppe Lipari and Sanjoy Baruah. Greedy reclamation of unused bandwidth in constant-bandwidth
servers.ecrts, 00:193, 2000.

[Leh97] John P. Lehoczky. Real-time queueing network theory. In IEEE Real-Time Systems Symposium, pages
58–67, 1997.

[LL02] C. L. Liu and James W. Layland. Scheduling algorithmsfor multiprogramming in a hard-real-time
environment. pages 179–194, 2002.

[LLS+91] Jane W.-S. Liu, Kwei-Jay Lin, Wei Kuan Shih, Albert Chuang shi Yu, Jen-Yao Chung, and Wei
Zhao. Algorithms for scheduling imprecise computations.IEEE Computer, 24(5):58–68, 1991.

[LS04] Jacob R. Lorch and Alan Jay Smith. Pace: A new approachto dynamic voltage scaling.IEEE Trans.
Computers, 53(7):856–869, 2004.

113

[LSD89] John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. InIEEE Real-Time Systems Symposium, pages 166–171,
1989.

[LSST02] Chenyang Lu, John A. Stankovic, Sang Hyuk Son, and Gang Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms.Real-Time Systems, 23(1-2):85–126, 2002.

[MT03] Malena Mesarina and Yoshio Turner. Reduced energy decoding of mpeg streams.Multimedia Syst.,
9(2):202–213, 2003.

[PG93] Abhay K. Parekh and Robert G. Gallager. A generalizedprocessor sharing approach to flow control in
integrated services networks: The multiple node case. InINFOCOM, pages 521–530, 1993.

[PS01] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-power embedded
operating systems. InSOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems
principles, pages 89–102. ACM Press, 2001.

[RCGF97] Ismael Ripoll, Alfons Crespo, and Ana Garcı́a-Fornes. An optimal algorithm for scheduling soft
aperiodic tasks in dynamic-priority preemptive systems.IEEE Trans. Software Eng., 23(6):388–400,
1997.

[Reg02] John Regehr. Inferring scheduling behavior with hourglass. InUSENIX Annual Technical Conference,
FREENIX Track, pages 143–156, 2002.
http://www.usenix.org/publications/library/proceedings/usenix02/tech/freenix/regehr.html.

[RH95] Parameswaran Ramanathan and Moncef Hamdaoui. A dynamic priority assignment technique for
streams with (m, k)-firm deadlines.IEEE Trans. Comput., 44(12):1443–1451, 1995.

[SAWJ+96] Ion Stoica, Hussein M. Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes Gehrke, and
C. Greg Plaxton. A proportional share resource allocation algorithm for real-time, time-shared systems.
In IEEE Real-Time Systems Symposium, pages 288–299, 1996.
http://computer.org/proceedings/rtss/7689/76890288abs.htm.

[SBA+01] Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter Glynn, and Giovanni De Micheli. Dynamic
voltage scaling and power management for portable systems.In DAC ’01: Proceedings of the 38th
conference on Design automation, pages 524–529. ACM Press, 2001.

[SBS95] Marco Spuri, Giorgio C. Buttazzo, and Fabrizio Sensini. Robust aperiodic scheduling under dynamic
priority systems. InIEEE Real-Time Systems Symposium, pages 210–221, 1995.

[SJ07] Abhishek Singh and Kevin Jeffay. Co-scheduling variable execution time requirement real-time tasks
and non real-time tasks. InECRTS, 2007.

[TDS+95] Too-Seng Tia, Zhong Deng, Mallikarjun Shankar, M. Storch, Jun Sun, L.-C. Wu, and Jane W.-S.
Liu. Probabilistic performance guarantee for real-time tasks with varying computation times. InIEEE
Real Time Technology and Applications Symposium, pages 164–173, 1995.

[USR02] Bhuvan Urgaonkar, Prashant J. Shenoy, and Timothy Roscoe. Resource overbooking and application
profiling in shared hosting platforms. InOSDI, 2002.
http://www.usenix.org/events/osdi02/tech/urgaonkar.html.

[WWDS94] Mark Weiser, Brent Welch, Alan J. Demers, and ScottShenker. Scheduling for reduced CPU
energy. InOperating Systems Design and Implementation, pages 13–23, 1994.

114

[XXMM04] Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel Moss. Practical pace for embedded systems.
In EMSOFT ’04: Proceedings of the fourth ACM international conference on Embedded software, pages
54–63. ACM Press, 2004.

[YN03] Wanghong Yuan and Klara Nahrstedt. Energy-efficientsoft real-time cpu scheduling for mobile
multimedia systems. InSOSP, pages 149–163, 2003.

[YN04] Wanghong Yuan and Klara Nahrstedt. Practical voltage scaling for mobile multimedia devices. In
ACM Multimedia, pages 924–931, 2004.

115

