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Abstract 

Bruce Desmarais: Discrete Measurement, Continuous Time and Event History Modeling 
(Under the direction of Thomas Carsey, James Stimson and Georg Vanberg) 

 
Most even history models used in political science assume the time being 

analyzed is continuous. Discrete measurement causes this assumption to be violated. The 

violation of this assumption is shown to introduce non-trivial bias to parameter estimates. 

Analysis of discrete-measured data as interval-censored is shown to greatly reduce this 

bias. The empirical properties of the bias introduced by discrete measurement and the 

interval-censoring correction are explored through Monte-Carlo simulations and a 

replication of the analysis of civil war duration from (Fearon 2004). I also demonstrate 

that analyzing discrete-measured continuous-time data as interval-censored is a better 

approach than the discrete-time models proposed in (Box-Steffensmeier and Jones 2004). 

The conclusion of the analysis is that event-history analysis of continuous-time variables 

should always be implemented as interval-censored estimation.     
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I. Discrete Measurement 

Time-to-event models have come to play an important role in empirical political 

research. The majority of the estimators used in these studies, whether parametric or 

semi-parametric, assume that the time being modeled follows a continuous distribution.  

Though this continuity assumption may hold in theory, in practice time is always 

measured discretely. This discrete measurement means that the value of the temporal 

variable as measured is indicative of a possible range of the continuous variable. Discrete 

measurement of a continuous time variable creates an interval-censored duration sample, 

meaning the true values of the durations are unknown, but it is known what interval in 

which they lie. Neglect of this sampling limitation causes biased parameter estimates. In 

this paper I demonstrate this bias, illustrate the use of interval censored survival 

estimators to correct for this bias, and re-analyze data previously published to 

demonstrate the effect of the correction. 

The Problem 

 In this section I develop the problem that derives from imposing discrete 

measurement on a continuous-time process.  In the usual manner, the duration that serves 

as the time under study is constructed by subtracting a start time from an end time. These 

start and end times are approximated by a discrete measurement process. That is, the 

researcher has some measurement tool, a calendar or stopwatch for instance, and the time 

that the tool reads when the event starts and ends are the values assigned to the start and 
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end times respectively. If the precision of the measurement tool is annual then all events 

that start between January, 1 2000 and December, 31 2000, and end between January 1, 

2001 and December, 31 2001 will be assigned a duration of one (2001-2000 =1). Note 

that the duration that leads to this measurement of one year could actually be as short as 

one day (12/31/2000-1/1/2001) or as long as one day short of two years (1/1/2000-

12/31/2001). Discrete measurement can cause major distortions related to the ordering of 

measured durations. Given discrete measurement, if two durations (A and B) are 

measured to be equal or adjacent, it is possible that A > B, B >A, or B = A. It was 

demonstrated above that events of different length can be falsely assigned the same 

duration. The following is an example of how the order of durations can actually be 

opposite of that measured. Consider one conflict (A) that begins in 1991 and ends in 

1992, thus receiving a duration of one, and another (B) that starts in 1991 and ends in 

1993, receiving a duration of two. If A starts on 1/1/1991 and ends on 12/31/1992, its 

daily duration is 730 days, and if B starts on 12/31/1991 and ends on 1/1/1993, it has a 

daily duration of 367 days. In annual terms, A is only one half the duration of B, but in 

daily terms, A is nearly twice as long as B. This example demonstrates the most extreme 

distortion that can be introduced via discrete measurement. 

 More generally, the discrete measurement of the duration of an event leads to a 

known interval within which the actual duration falls.1 This interval arises from the two 

intervals indicated by the discrete measurement of the start and end times. If an event is 

measured to start at time ts, its exact start time is between ts and ts +1. If it is measured to 

                                                 
1 In all of the examples and derivations discussed hereon it is assumed that the precision of measurement 
has been scaled to the integer level (e.g. if the precision is daily and event that lasts one day is of duration 
one, not 1/365 years. This assumption retains the generality of results and reduces the amount of jargon in 
the discussion.   
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end at time te, the actual end time te is known to be in te and te+1. These two intervals can 

be used to construct the known upper and lower bounds within which the actual duration 

lies. The longest possible duration, given (ts, te) is given by the latest possible end time 

minus the earliest possible start time ((te+1)-ts) and the shortest possible duration is given 

by the earliest end time minus the latest start time (te – (ts +1)). This gives an interval 

within which the exact duration lies. The interval for the true duration D is given in (1).  

( 1 1)e s e st t D t t− − ≤ ≤ − +     (1) 

On each side of the inequality in (1) is given the expression that amounts to the standard 

discrete measurement of a duration; that is, the subtraction of the discrete measured start 

time from the discrete measured end time. Consider the expression (te – ts) to be equal to 

the discrete measured duration M. Then, given a discrete measurement M, the known 

interval for D is given in (2). 

( 1 1)

( 1, 1)

M D M

D M M

− ≤ ≤ +

⇔ ∈ − +      (2) 

The General Solution 

 Interval censoring is the condition where the value of a variable is known to lie 

within a specific interval, but its exact value cannot be determined. The likelihood 

function of discretely measured continuous duration data can be constructed as an 

interval censored likelihood function. Derived from the interval given in (2), if the 

measured duration M > 0 the probability of observing the duration M is equal to the 

probability of the true duration D being between (M-1) and (M+1) (assuming the 

measurement precision has been scaled to the integer level), and the likelihood of 
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observing M = 0 is the probability of D being between zero and one. The probability of 

observing M is given by (3).2 

 
( ) ( ( 1, 1))

( ) ( 1) ( 1)

P M P D M M

P M F M F M

= ∈ − +

⇔ = + − −
    (3) 

 
Where F() is the cumulative distribution function of the true event times D. Where θ is a 

vector of parameters to be estimated, the likelihood function for discretely measured 

continuous time duration data, derived from (3) is given in (4).  

 

( | ) ( 1| ) ( 1| )
i i

i

L M F m F mθ θ θ= + − −∏    (4) 

The likelihood function where the discrete-measured durations are treated as exact 

measurements is given in (5), where f() is the PDF of the assumed distribution of the 

durations. The parameter vector that maximizes (5) is different from that which 

maximizes (4).   

( | ) ( | )
i

i

L M f mθ θ= ∏     (5) 

Midpoint imputation occurs when it is assumed that the value of a variable is the 

midpoint of the interval within which it is known to lie. Since observing a duration M 

amounts to gaining the knowledge that the true duration D is between M-1 and M+1, 

assuming the value is actually M (the midpoint between M-1 and M+1) amounts to 

midpoint imputation. The literature that deals with the general case of interval censoring 

in general has addressed the use of midpoint imputation in the case of imprecise 

measurement of a duration. This work has demonstrated that non-trivial bias is 

introduced to interval censored estimation in event-history models, both parametric and 

                                                 
2 When the measured duration is zero, it is known that the even begins and ends in the same measurement 
interval, and thus the interval within which the duration is known to lie is (0,1).  
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semi-parametric, when midpoint imputation is utilized (Goggins and Finkelstein 2000; 

Odell, Anderson and D’Agostino 1992; Goggins, Finkelstein, Schoenfeld and Zaslavsky 

1998; Kim 1997). The current analysis demonstrates that techniques developed to deal 

with interval-censored data can help to mitigate limitations imposed by discrete 

measurement.  

A Case Study; the Exponential Distribution 

 To provide a simple analytic demonstration of bias in parameter estimation due to 

midpoint imputation, here I study the likelihood function and maximum likelihood 

estimator for the exact and interval-censored estimation of the scale parameter of the 

exponential distribution. The bias in using the exact estimator (midpoint imputation) 

when interval-censoring is present, is given as the difference between the MLE’s under 

interval censoring and exact estimation. The PDF of the exponential distribution is given 

in (6). 

t
e

λλ −
      (6) 

Where (t) is the duration and λ > 0 is the scale parameter to be estimated. The likelihood 

function is the product over the PDF evaluated at each duration in the sample, and 

follows directly from (6).  

( | ) it

i

L T e
λλ λ −= ∏                                                      (7) 

The CDF of the exponential distribution is given in (8). 

1 te λ−−                                                               (8) 

Scaling the measurements to the integer level of precision, the interval-censored 

likelihood function is derived by substituting (8) for F() in (4).  
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( 1) ( 1)( | ) (1 ) (1 )i it t

i

L T e e
λ λλ − + − −= − − −∏     (9)   

The MLEs for (7) and (9) are derived in Appendix I. Comparison of these demonstrates 

that the parameter estimated from (7) does not equal that estimated from (9). The 

difference between the estimated parameters is the bias introduced by using the exact 

likelihood function (7), when the interval-censored likelihood function (9) is appropriate. 

The MLEs of (7) and (9) are given in (10) and (11) respectively. 

                     
1

exactλ
µ

=         (10) 

1 2
ln( 1)

2 1
ICλ

µ
= +

−
                                                    (11) 

Where µ is the sample mean, the bias introduced by using midpoint imputation is given 

by the difference between the MLE’s. 

1 1 2
ln( 1)

2 1
exact ICλ λ

µ µ
− = − +

−
              (12) 

The difference between the two estimators (12) is not zero, and thus bias is introduced via 

midpoint-imputed estimation of the scale parameter of the exponential distribution with 

data that is interval-censored through discrete measurement. Unfortunately, many of the 

more common distributions used to model duration data (weibull, lognormal, gamma 

etc.) do not permit a closed form derivation of the interval-censored MLE, though the 

exponential is not completely without application as it is a special case of both the 

weibull and gamma distributions (Box-Steffensmeier and Jones 1997). 

Right Censoring and Time-Varying Covariates   
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 The likelihood functions in (4), (5), (7) and (9) are appropriate for estimating the 

parameters in a sample where all of the observations end and all of the covariates 

included in the model are constant over time. A major advantage of event-history 

modeling is that it is possible to analyze observations that either do or do not fail by some 

observed time (M) (Box-Steffensmeier and Jones 1997). Observations that have not 

failed at the time of observation are said to be right-censored.  The analysis of right-

censored observations permits the inclusions of covariates that change over time for each 

observation (time-varying covariates). For instance, if one were modeling the survival of 

democratic states, an event-history model would allow the annual survival of a state to be 

conditioned on that state’s annual gross domestic product.  

The likelihood-functions presented above need to be augmented to accommodate 

right-censored observations. When a right-censored observation (at time M) is included 

in a sample it contributes the information that its measured duration is greater than M, 

since it has not failed by time M. The probability that a duration D is greater than M can 

be expressed as one minus the probability that D is less than or equal to M. The 

probability that D is less than or equal to M is the cumulative distribution (F()) of D 

evaluated at M. One minus the cumulative distribution is the survival distribution (Box-

Steffensmeier and Jones 1997). The contribution of a right-censored observation, 

observed at time M, to the likelihood function is the survival distribution (S()) evaluated 

at time M. Where θ is a vector of parameters to be estimated, the contribution of a right-

censored observation to the likelihood function is given in (13).  

( | ) 1 ( | )S M F Mθ θ= −      (13) 
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This contribution is integrated with the likelihood contribution of an uncensored 

observation in (5) to create the likelihood function that accommodates both right-

censored and uncensored observations. Where δ is an indicator that assumes a value of 

one if the observation fails and zero otherwise, the likelihood function that 

accommodates right-censoring is given in (14).  

1( | ) ( | ) ( | )i i

i i

i

L M f m S m
δ δθ θ θ −= ∏   (14) 

This likelihood needs to be altered further to accommodate discrete measurement. 

With discrete measurement, there are no uncensored observations. An observation is 

either right or interval-censored. It was developed above that when an observation is 

observed to fail at time M with discrete measurement, its exact duration is known to fall 

within (M-1) and (M+1). This uncertainty exists because the exact observed time in the 

life of the event under study is known to lie in (M-1, M+1), but is not known exactly. If 

the end of the event does not occur at time M, it is known that its end occurs at some 

observation point between (M+1) and ∞. Thus, given that an observation does not fail by 

time M, it is known that its failure occurs only as soon as (M+1). If the duration were 

recorded at (M+1), from (2) it is known that the actual duration would be in (M, M+2). 

Therefore, if an event is known to not end by discrete-measured time M, its true duration 

is known to be at least M.  This leads to a convenient result; the survival distribution of a 

right-censored, exactly-measured variable is equivalent to the survival distribution of a 

right-censored, discrete-measured variable. Therefore, the likelihood function (15) for a 

sample of right and interval-censored discrete-measured observations is created by 

combining (13) and (4), where δ is again the indicator of failure. 
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1( | ) ( ( 1| ) ( 1| )) ( | )i i

i i i

i

L M F m F m S m
δ δθ θ θ θ −= + − −∏  (15) 

 To provide an example of the likelihood function with accommodation for right-

censored observations, I again use the exponential distribution. F() and f() for the 

exponential distribution are given in (8) and (6) respectively. Substituting these into (14) 

and (15) gives the likelihood function for exponentially distributed uncensored and right-

censored observations (16) and the likelihood for interval-censored and right-censored 

discrete-measured observations (17).  

1( | ) ( ) ( )i i i im m

i

L M e e
λ δ λ δθ λ − − −= ∏    (16) 

1 1 1( | ) ( ) ( )i i i i im m m

i

L M e e e
λ λ δ λ δθ − − − + − −= −∏           (17)    

The above derivations demonstrate analytically that event-history models are 

biased due to discrete measurement and that this bias is efficiently corrected. I note the 

efficiency of this correction because the interval-censored estimator does not require any 

more parameters to be estimated than the midpoint imputed estimator. The empirical 

properties of interval-censoring through discrete measurement have yet to be explored. 

Through a simulation study and a replication of a previously published analysis, the next 

two sections explore the problems that discrete measurement imposes upon more 

common estimators used in political science. In section IV, I discuss the application of 

interval-censoring methods to discrete-time models.   

 



 

 

 

II. Simulation Study 

Simulation Design 

 In this section I compare the performance of midpoint imputation and interval 

censored estimation, also performing pseudo-continuous estimation as a baseline for 

comparison.3  The three different sampling/estimation techniques are compared within 

the context of three models common to the use of duration models in political science; 

the Cox proportional-hazards, the weibull (Accelerated failure time metric), and the 

lognormal models (Regan 2002; Bennett and Stam 1996; Bolks and Al-Sowayel 2000; 

Kadera, Crescenzi and Shannon 2003). The Cox PH model is the standard semi-

parametric model employed in political-science. Researchers are drawn to this model 

because no assumption regarding the distribution of failure-times is made. The only 

assumption is that covariates affect the duration multiplicatively. The weibull and 

lognormal models are popular parametric estimators that rely upon distributional 

assumptions, but have the strength that they explicitly model duration dependency and 

allow for precise predicted durations. The weibull model allows for the hazard rate to be 

either monotonic increasing or monotonic decreasing in time, and the lognormal model 

estimates a hazard rate that is non-monotonic in time. The simulations executed are 

applicable to much of the empirical political science literature.   

                                                 
3 The pseudo-continuous variates are generated at double-byte precision, which means values are precise to 
sixty-four digits, as close as most statistical software can come to exact accurracy.   
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For each model, a distribution conditional upon a single, standard-normally-

distributed covariate is generated. The pseudo-continuous estimation is performed on this 

simulated distribution. Further manipulation is needed to produce the discrete-measured 

variable. Discrete measurement is simulated by adding a uniform(0,1) disturbance to this 

simulated distribution and rounding the sum down to the nearest integer.4 The integer can 

be thought of as the day, month, year etc. at which the precision of the measurement tool 

is calibrated, and the decimal values can be thought of as the partial day, month year etc. 

that are lost through discrete measurement (e.g. if the measurement precision is annual, 

any event that occurs between the beginning 1991 and 1992 is measured as 1991). The 

uniform disturbance is the simulated start time within the first interval. Midpoint imputed 

estimation proceeds by analyzing the rounded variable, and interval censored estimation 

analyzes the dependent variable as if it lies within an interval of two, centered around the 

rounded variable.5 Table 1 gives the details of the simulated distributions. The parameter 

values chosen are intended to impose duration dependence on the data and produce 

distributions that resemble daily, monthly and annual measures, with values centered 

around 1000, 300, and 30 respectively.  

Table 1) Simulated Distributions 

Model Simulated Model Parameter Value (β) 

Cox-PH Y~Weibull(ρ=3.5,
3.5(-.002+.03x)

eλ = ) 0.3 

Weibull AFT
6
 

2 2 6x
Y e

σ− + +=  2.0 

Lognormal
7
 

2 2 5x
Y e

π− + +=  2.0 

                                                 
4 Values of the simulated distribution plus the uniform disturbance below one are rounded to one. 
  
5 In the case that the simulated discrete-measured variable equals zero, the interval is (0,1) 
 
6 σ is a type-one extreme value disturbance 
 
7 π is a normal disturbance with mean = 0 and SD =1.  
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 In the simulation study, each model is simulated one thousand times under each 

sampling condition to ascertain the sampling distribution of the coefficient on the 

covariate (x). The simulation is performed for each model on a sample of one hundred 

and a sample of one thousand in order to compare the effect of sample size on the relative 

properties of the sampling schemes. Figure 1 provides a simple diagram of the study 

organization. This study is executed for the Cox PH, weibull and lognormal models. 

Table 2 presents descriptive statistics for the simulated distributions.  

Simulation Results 
 

Table 3 presents summary results from the eighteen simulations.8 The pseudo-

continuous results represent the performance of the respective models under the best 

possible conditions for the sample sizes simulated. The standard for comparison of the 

performance of the estimators is the root mean squared-error RMSE(β) (Casella and 

Lehmann, 1999). This statistic approximates, on average, how close the parameter 

estimated is to the true parameter, meaning the smaller the RMSE, the better the overall 

performance of the estimator.9 In each simulation, based on the RMSE, the interval-

censored estimator (ICE) outperforms the midpoint imputed estimator (MIE). The RMSE 

of the MIE ranges between 119% and 673% of the RMSE of the ICE. The difference in 

the RMSE of the ICE and MIE is larger in the samples of one thousand, indicating that as 

the sample size increases, the correction for interval censoring due to discrete 

                                                 
8 The simulations were executed in R 2.6.1. See the appendix for a sample of the simulation code.  
9 Where n is the number of estimated parameters, e is the value of the estimated parameter, and p is the true 
value of the parameter, the RMSE of an estimator is computed as:  

2

1

1
( )

n

i

i

e p
n =

−∑  
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measurement becomes more important in terms of retrieving the true parameter. For 

instance, in the Cox-PH simulation with sample size equal to 100, the RMSE of the 

midpoint-imputed estimator is 0.11 and that of the interval-censored estimator is 0.092. 

The corresponding values for the sample size of 1000 were 0.105 and 0.028 respectively. 

In terms of the RMSE, the ICE is clearly superior to the MIE.  

Table 2) Simulated Distribution Descriptive Statistics  

Distribution Mean Median SD 
Unique 
Values  

Weibull* 24.12 16.99 19.15 100 

Weibull* Discrete 24.2 17 19.1 48 

Weibull AFT 271.72 195.47 241.36 100 

Weibull AFT Discret 271.82 195 241.37 89 

Lognormal 1263.86 1018.75 801.17 100 

Lognormal Discrete 1263.89 1018 801.18 97 

Descriptive statistics are estimated for a distribution from a single run of the 
simulation. Statistics shown are for the sample size of 100. These statistics change 
little for the sample size of 1,000. * Distribution generated for estimation with Cox 
PH model.  

 

 

 

Model (CPH, Weib or LN) 

N=100 

Pseudo- 

Continuous 

Midpoint 

Imputed 

Interval 

Censored 

N=1000 

Pseudo- 

Continuous 

Midpoint 

Imputed 

Interval 

Censored 

Figure 1) Simulation Design 



 14 

 

An alternative measure of estimator performance is bias. In the six model/sample 

size combinations, the mean estimate produced by the pseudo-continuous estimator is 

different from the true parameter (based on a 0.05 level two-tailed z-test) in one 

simulation, the ICE differs in two simulations, and the MIE is different from the true 

parameter in every simulation. The bias of both the midpoint-imputed and interval-

censored estimators is worst in the lognormal model. In the sample size of 100, the bias 

in the ICE and MIE are 0.101 and -1.29 respectively, and the corresponding values for 

the sample size of 1000 are 0.12 and -1.29 respectively. To place the bias in relative 

terms, on average the distance between the mean of the ICE estimates and the true value 

of the parameter is 4.07% of the distance between the mean of the MIE estimates and the 

true parameter value. Overall, the potential for bias due to discrete measurement is much 

less with ICE than with MIE.    

Another characteristic of the estimators that is clearly demonstrated by the 

simulations is that the variance of the ICE is greater than the variance of the MIE. The 

variance of the ICE is on average 1.96 times that of the MIE. In every simulation an F-

Variance-Ratio test rejects the null hypothesis of equal variances in favor of the ICE 

having the larger variance. The larger variance in the ICE accurately represents the 

uncertainty regarding the value of the dependent variable. The simulations indicate that 

the variance in the MIE is always lower than the variance in the ICE, and is statistically 

significantly lower than the variance of the pseudo-continuous estimator in five of the six 

simulations. What this means is that use of the midpoint-imputed estimator produces 

biased parameter estimates and exaggerated confidence in those estimates. To 
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demonstrate the practical applications of interval-censored estimation, in the following 

section, I use interval censored estimation on a duration dataset from a previously 

published analysis of discrete-measured data.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

III. The Duration of Civil War 

  

 A very common application of duration models in political science is in the 

analysis of the duration of war/peace (Balch-Lindsay and Enterline 2000; DeRouen and 

Sobek 2004; Hegre 2004; Cunningham 2006). In this section I replicate the statistical 

analyses from a study of the duration of civil war (Fearon 2004), using both the original 

midpoint-imputed estimator and an interval-censored estimator. In the original analysis, 

Fearon (2004) used the weibull AFT model to analyze the impact of a number of 

covariates on the annual duration of civil war. Table 4 describes the covariates used in the 

estimation.10  

  

 

 

 

 

 

 

 

Table 5 presents the estimates using midpoint imputation and interval-censoring 

for models I, II, and IV from the original Fearon (2004) article. For each model, the first 

column reports the midpoint imputed estimates (MIE), the second the interval-censored 

                                                 
10 See original article for the theoretical justification for the inclusion of the covariates 

Table 4). Description of the Predictors of Civil War Duration 

Variable Description 

Coup/Revolution Civil war is the result of a coup or revolution 

Eastern Europe War involves an Eastern European country 

Not Contiguous 
Civil war is between two parties that are not 
territorially contiguous (such as a colonial revolt) 

Sons of the Soil 
Dispute involves territorial or natural resource 
claims 

Ethnic Fractionalization 
Level of ethnic diversity in the country in which 
the war takes place  
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estimates (ICE) and the third column gives the percentage difference between the ICE 

and the MIE. All of the interval-censored parameter estimates and standard errors differ 

from the midpoint-imputed estimates. The coefficients have a straightforward 

interpretation; they represent the expected change in the natural log of the duration of 

civil war due to a one unit increase in the independent variable. The differences in the 

MIE and ICE coefficients and standard errors for the Eastern Europe covariate in model 

IV are typical of the differences across parameters and models. The ICE coefficient (-

0.375) is 7% larger (in absolute value terms) than that in the MIE (-0.349) and the ICE 

standard error (0.29) is 17% larger than that in the MIE (0.247). Most of the coefficients 

and all of the standard errors are biased towards zero in the midpoint imputed estimates, 

but the bias in the standard errors is much larger than that in the coefficients. The 

percentage difference between the interval censored and midpoint imputed estimates of 

the covariate effects varies between 5% and 15% and the difference in the standard errors 

of these effects ranges between 15% and 21%.  A final comparison of the midpoint 

imputed and interval censored estimates in table 5 shows that the interval censored 

estimator produces a considerably smaller log-likelihood value than the midpoint imputed 

estimator (approximately 65% lower). It cannot be interpreted that the higher log-

likelihood is indicative of a better fitting model. This difference is a result of the 

increased (yet false) certainty about the value of the dependent variable and thus the 

parameters that best describe its distribution in the midpoint imputed case. The same false 

certainty that causes the downward bias in the standard errors of the parameter estimates 

causes upward bias in the log-likelihood.  
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 Quantitative studies in political science primarily use critical values of Z or T 

statistics to test for the presence of the effect of a covariate on a dependent variable of 

interest. Table 6 in Appendix III presents the Z-statistics for the parameters estimated in 

the MIE and ICE models of civil war duration as well as the percentage difference 

between the two. In all cases, the Z-statistic is lower in the ICE than the MIE (a decrease 

of 10% on average for the covariate-effect parameters), supporting the conclusion that 

midpoint impuation biases results in the direction of a type I inference error (e.g. 

concluding there is an effect when one does not exist). In terms of covariate effects, there 

is one parameter that is significant at the 0.05 level in the MIE and not in the ICE in one 

model. In model II, the effect of contiguousness between civil war combatants is 

statistically significantly negative at the 0.05 level (two-tailed) in the MIE and not in the 

ICE. Another substantive conclusion regarding the duration of civil war is changed by the 

implementation of interval-censored estimation. The weibull model estimates a parameter 

(ln(ρ)) that describes the way in which the risk of a civil war ending changes over time 

(duration dependency). When this parameter is statistically significantly greater (less) 

than zero, the risk of a civil war ending is monotonically increasing (decreasing) over 

time. If this parameter is not significantly different from zero, the risk of civil war ending 

does not change over time, and the distribution of the duration of war reduces to an 

exponential distribution. Over the three MIE models, this parameter is estimated to be 

around 0.19, and is significantly greater than zero in each model, suggesting that the risk 

of a civil war ending is increasing over time. This parameter is not significantly different 

from zero in any of the interval-censored models, implying both that the risk of a civil 

war ending does not change over time and that the duration of civil war is exponentially 
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distributed. In this particular case, the use of MIE produces falsities in our substantive 

understanding of the duration of civil war.    
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IV. Discrete Time or Discrete Measurement of Time? 

In this section I present an argument that discrete-time duration models should never be 

used for discretely measured continuous time models, but rather the data generated by discrete 

measurement of temporal variables should be treated as interval-censored continuous data. In 

their book on event history modeling, Box-Steffensmeier and Jones (2004) (BSJ) present a 

detailed chapter on the analysis of discrete-time. One motivation given for the use of discrete 

time models is the discrete measurement of truly continuous time. Specifically, BSJ present the 

monthly duration of cabinet governments as an appropriate sample for discrete-time survival 

analysis. The approach to discrete-time models they present is to use one of the familiar binary-

choice models (logit, probit, log-log etc.) to model the hazard rate (the simultaneous rate of 

failure at a given time). This involves keeping each event in the dataset with a value of zero for 

the dependent variable for each period up to the period where the event occurs, at which time the 

dependent variable assumes a value of one and the observation is subsequently removed from the 

dataset.11 If the variable under analysis is a discrete-measured continuous-time duration and not a 

truly discrete variable, this approach cannot accurately estimate the hazard rate. The hazard rate 

of a duration (d) is given by (18).  

( )
( )

( )

f d
h d

S d
=                 (18)  

                                                 
11 The observations are subject-time much like in a panel model, except here the subjects are removed from the 
dataset once the event occurs.   
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Where f() is the PDF and S() is the survival distribution or (1-CDF). The reasoning behind 

estimating the hazard rate via a binary choice model is that when the dependent variable is equal 

to one it is known that the event occurred at the time that corresponds with the dependent 

variable being equal to one, and it is known that the event did not occur prior to that (e.g the 

probability of failure at time M, due to the structure of the dataset, is conditioned by the 

knowledge that the duration is at least M) (Box-Steffensmeier and Jones 2004). The information 

conveyed when the dependent variable is equal to one at measured time (m) in a binary choice 

subject-time model is expressed in (19). 

Pr( )

Pr( )

M m

M m

=

≥
     (19)  

  If measurement is exact (19) is equivalent to (18) and the binary choice model can 

successfully estimate the hazard rate. If discrete measurement is used, the probabilities in (19) 

are not equivalent to those that comprise the hazard rate in (18). Under discrete measurement the 

probability in the numerator of (19) is given by (3), and that in the denominator is given by (13). 

The probability of a duration being equal to a discrete-measured time M that is estimated with a 

discrete choice model is constructed by dividing (3) by (13) and is given in (20). 

( 1) ( 1)

( )

F M F M

S M

+ − −
     (20) 

Subtracting (18) from (20) gives a factor by which the probability estimated in a binary-choice 

model with discrete measurement differs from the hazard rate (21). 

1
( ( 1) ( ( 1) ( )))

( )
F M F M f M

S M
+ − − +    (21) 
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To give an example of this difference I again use the exponential distribution. Substituting (6) 

and (8) into (18) gives the target quantity (22), (the true hazard rate). 

M

M

e

e

λ

λ

λ
λ

−

−
=      (22) 

Then substituting (6) and (8) into (21) gives the actual quantity estimated with discrete 

measurement (23).  

 

( 1) ( 1)M M

M

e e
e e

e

λ λ
λ λ

λ

− − − +
−

−

−
= −

   (23) 

The difference between the actual quantity estimated under discrete measurement and the true 

hazard rate of the continuous distribution is given in (24).  

( )e eλ λ λ−− +       (24) 

This expression does not reduce to zero and thus there is a non-zero difference between the 

probability estimated with a binary choice, subject-time model and the true hazard rate. 

 Given well developed methods for dealing with interval-censored data, if the researcher 

believes that the dependent variable is a continuous-time event-history variable, there is no 

reason to avoid the estimators, both parametric and semi-parametric, that are traditionally used to 

model such variables. Interval-censored data can be accommodated in the Cox proportional 

hazards model (Pan 1997), and in all of the familiar parametric event-history models (Kim 

1997). Since discrete-measured data is simply a special case of interval-censored data, a 

researcher can still use estimators developed for continuous-time to analyze discrete-measured 

data without sacrificing methodological rigor or legitimacy. Moreover, since all data are in fact 
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discrete-measured, interval-censored estimation with continuous-time models is the appropriate 

estimation choice in all applied settings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

V. Conclusion 

 Discrete measurement introduces bias to duration models when the discrete measured 

variable is treated as the exact continuous time value. Limited measurements indicate intervals 

within which a continuous time variable lies. Discrete measurement leads to an interval-censored 

variable. Statistical techniques for optimal parameter estimation under conditions of general 

interval-censoring are already well developed for both the Cox proportional hazard model and 

parametric estimators. In this study I demonstrate how duration models can be improved by 

analyzing the discrete measured variable as a systematically interval-censored variable. Through 

simulations, the superiority of the interval-censored to the midpoint-imputed estimator, in terms 

of both root mean-squared-error and bias, is established. Replications using an important study 

on the duration of civil war (Fearon 2004) demonstrate that the use of midpoint imputation can 

bias results in the direction of a type I inference error.  

 Continuous-time duration models should always be implemented as interval-censored 

estimators. First, at least for now, all measurements of duration are discrete, so the possibility 

that discrete measurement introduces bias to parameter estimation always exists. Second, the 

correction for bias due to discrete measurement is efficient in that it does not require the 

estimation of additional parameters. Third, the alternative to continuous-time models; so called 

discrete-time models (Box-Steffensmeier and Jones 2004), are shown in the current analysis to 

not be adaptable to discrete measurement. Lastly,  many statistical software packages including 
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STATA™ and R are capable of estimating interval-censored duration models.12 The analyst only 

needs to implement the estimation accounting for the specific interval censoring created by 

discrete measurement.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
12 In Stata the program INTCENS estimates interval-censored parametric duration models. There is currently no 
Stata program that estimates an interval-censored Cox-PH model. In R, the Survival package estimates parametric 
interval-censored duration models, and the INTCOX program estimates the interval-censored Cox –PH model. 
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Appendix I. Sample Simulation Code 
 

The following R code is that used to perform the interval-censored Cox Proportional Hazard 
simulation for the sample size of 1,000. 
  
1) Create a vector to store the simulation results. 

 cox_ic1000 <- numeric(1000) 
 for (i in 1:1000) { 
2) Generate the independent variable 

 x <- rnorm(1000) 
3) Generate the dependent variable 

 y <- (-log(1-runif(1000)))^3.5/(exp(-.002+.3*x))^(3.5) 
4) Generate the discrete measured dependent variable 

 tt <- floor(y+runif(1000)) 
5) Generate the lower-bound of the interval 

 for (n in 1:1000) { 
 if(tt[n] ==0) tl[n] <- .0000000001 else tl[n] <- tt[n]-.9999999999 
 } 
6) Generate the upper bound of the interval 

 for (m in 1:1000) { 
 if(tt[m] ==0) tu[m] <- 1 else tu[m] <- tt[m]+1 
 } 
 k <- data.frame(cbind(x,tl,tu)) 
7) Estimate and store results 

surv <-intcox(Surv(tl,tu,type="interval2")~x, data=k) 
 cox_ic1000[i] <- surv$coefficients["x"] 
}  
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Appendix II. MLE Derivation for the Exponential Distributions 

 
1) Derivation of mle for the exponential distribution: 
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2) Derivation of the mle for the interval censored exponential distribution:  
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Appendix III. Replication Z-Statistics 
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