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Abstract

KARTHIK V. NATARAJAN: Managing Humanitarian Operations: The Impact of
Amount, Schedules, and Uncertainty in Funding

(Under the direction of Dr. Jayashankar M. Swaminathan)

Global health spending has increased manyfold in the last few decades reaching US$6.5 trillion

in 2012. Despite these increases, humanitarian organizations from around the world, working

on different diseases including Malaria and Tuberculosis, have warned about potential fund-

ing shortfalls in the near future. Facing a growing need for health services and commodities,

resource–constrained organizations are constantly looking for ways to maximize health outcomes

through efficient and effective use of available resources. In this dissertation, we develop ap-

proaches to make efficient operational decisions under variable and unpredictable donor funding,

a situation that is commonly faced by many humanitarian organizations. In the first chapter,

we study the problem of managing inventory of a nutritional product under variable funding

constraints. Despite the complexities associated with funding, we show that the optimal replen-

ishment policy is easy to compute and straightforward to implement. We also provide several

insights into how the funding amount, funding schedules and uncertainty in funding impact

operating costs in this setting. In chapter 2, we look at the problem of dynamically allocat-

ing a limited amount of donor funding to patients in different health states in a humanitarian

health setting. We show that the optimal allocation policy is state–dependent and prove several

structural properties of the optimal policy that would help simplify its computation. Due to

the complexity involved in calculating the optimal policy, we develop two heuristics to handle

real–size problems with longer planning horizons. Computational results suggest that both

heuristics perform well in many cases but one of the heuristics is more robust across a wide

variety of settings. In addition to the allocation policy, we also provide some interesting insights

into the impact of funding level and funding uncertainty in the multiple health states setting.
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In the third chapter, we focus on the supply– vs. demand–side investment dilemma frequently

faced by public health managers who have a limited budget at their disposal. First, we consider

a centralized setting where a single entity, referred as the principal, makes both supply– and

demand–side investment decisions. We determine the principal’s optimal investment mix in this

budget constrained environment and provide insights into how the investment mix varies with

the different supply– and demand–side parameters. We then consider a decentralized setting

where the principal invests in improving the supply chain while demand mobilization activities

are contracted to an agent, who is a profit maximizer. For the decentralized setting, we identify

two contracts that ensure that the coverage in the decentralized setting is at least as high as

the centralized case.
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Chapter 1

Introduction

Against the backdrop of escalating costs, growing demand for health commodities, and tight-

ening budgets, humanitarian organizations have come under increasing pressure to target aid

financing effectively and justify the enormous levels of aid spending. Consequently, there is a

growing interest within the humanitarian community to look at ways to improve the efficacy

and efficiency of their operations. Although global health spending has increased tremendously

in the last decade, many organizations like The Global Fund to Fight AIDS, Tuberculosis and

Malaria, the Global Alliance for Vaccines and Immunization (GAVI Alliance) and the World

Health Organization (WHO) face serious funding shortfalls. This situation is expected to fur-

ther deteriorate in the current economic climate with many governments, including the U.S.

and Spain, cutting down their foreign aid. In addition, global health funding is highly volatile

and unpredictable — this is partially driven by the budget and funding cycles of the donors,

some aspects of which are often outside their control.

In light of the above mentioned problems with global health funding, managing operations

in the humanitarian health sector is a complex task. Currently, there is lack of knowledge,

training and oversight required to operate humanitarian supply chains, resulting in significant

inefficiencies — the WHO estimates the associated losses to be between 20–40% of the total

health funding. The first two chapters of this dissertation are aimed at bridging this knowledge

gap by (i) determining ways to make effective and efficient operational decisions, given the

inherent uncertainties associated with global health funding, and (ii) shedding light onto the

impact of funding uncertainty and variability in humanitarian operations. The motivation for



the problems studied in the first two chapters comes from the ready–to–use–therapeutic–food

(RUTF) supply chain in the Horn of Africa but the problems we study and the underlying issues

are also relevant to many other humanitarian organizations operating in the global health sector.

In the first chapter, we study the problem of managing inventory of a health commodity

in the presence of funding constraints over a finite planning horizon. Funding from donors,

which finances the procurement, is received in installments throughout the planning period with

uncertainty around both the timing and amount received. In the problem that motivated this

study, the country office of UNICEF, which managed the RUTF procurement, was constrained

by the timing of receipt of previously promised funding from donors. Given the highly variable

and unpredictable nature of the inflow of funds, we (i) identify the optimal procurement strategy

taking into account the current financial position as well as the funding due to arrive in the

future, and (ii) quantify the impact of funding timing, funding level and funding uncertainty

on the operating costs.

We model this problem using a stylized multi–period inventory model with financial con-

straints. Among other results, we show that a capital–dependent modified base stock policy

is optimal. Remarkably, we are able to show that the capital–dependent modified base stock

policy can be simplified to a state independent policy, which greatly simplifies the implemen-

tation of the optimal policy and enhances its appeal. We also prove several analytical results

regarding the impact of funding uncertainty and increased variability in the funding timing.

Through an extensive numerical study, we also capture the magnitude of impact of both

funding amount and funding timing on operating costs. Among other results, we provide the

following insights. (1) When there is no uncertainty with respect to funding timing, avoiding

delays in funding should be one of the top priorities. We find that, contrary to popular belief,

receiving funding in equal installments is not the optimal funding pattern due to its inability

to accommodate large demand surges upfront; (2) An all–out effort focusing solely on raising

as much capital as possible is not likely to be very effective — raising sufficient capital is

important but so is the funding timing. Our results indicate that even with less overall funding,

performance may be better if the funding is received earlier or more steadily. (3) There is

a nonlinear increase in costs with increased uncertainty in funding timing but this effect is

2



moderated by the uncertainty in demand.

A key message of this research is that humanitarian supply chain managers need to consider

the funding level as well as the operating environment while undertaking initiatives to improve

the funding situation.

In the first chapter, one simplifying assumption we make is that a single dose/unit of

the product suffices to meet the needs of a patient/customer. This assumption makes the

model general enough to be applicable to a wide variety of products — e.g., malaria bed nets

and reproductive health supplies like contraceptives — but a multi-dose framework is more

appropriate in certain other settings. For example, in the outpatient treatment of severely

malnourished children, the affected children are given Plumpy’Nut for several weeks until they

are deemed fit. This multi-dose framework is also common in the treatment/prevention of many

other diseases including certain types of vaccines.

In Chapter 2, we extend the work in the first chapter by relaxing the single dose assumption,

and allow for the possibility that patients enrolled in a humanitarian health program could be

in different health states requiring treatment over different lengths of time (corresponding to

different amounts/doses of the product) before they are completely cured. The treatment

duration and the response to treatment or non–treatment could also vary depending on the

health state. In this setting, the problem of dynamic allocation of a scarce resource, which in

our case is funding, between patients in different health states assumes significance. Given that

the total available funding is limited and funding inflow is unpredictable, in certain situations,

it might be beneficial to reserve a portion of the funding available on–hand to serve more severe

patients in the future periods.

Using a two health states model, we study the problem of dynamic allocation of a limited

amount of donor funding to patients in different health states over a finite horizon, with the

objective of minimizing the number of disease–adjusted life months lost. Of the two health

states, one is assumed to be less severe and the other one is more severe. Funding is received

in installments throughout the planning period with uncertainty around the timing as well as

how much funding is received in each installment. New patients of both health states enter the

program in every period and we also make certain assumptions regarding how patients in the

3



two health states respond to treatment and non–treatment in every period.

We use a multiperiod stochastic dynamic programming framework with health–state depen-

dent per–period and terminal penalty costs to analyze the allocation problem. We characterize

the optimal policy to be a state–dependent policy and we prove several monotonicity prop-

erties that could help reduce the computational burden involved in determining the optimal

policy. Despite the potential simplifications offered by the monotonicity results, determining

the optimal policy is time–intensive for problems with long planning horizons. So we develop

two heuristics (referred as PNS and FCFS heuristics) that can solve real–size problems fairly

quickly. Our computational results suggest that the PNS heuristic performs well in terms of

the solution quality and running time across a wide range of scenarios. The FCFS heuristic

also performs well in many cases but it is less robust than the PNS heuristic and in certain

settings, there is a noticeable performance gap between the two heuristics.

Our computational study also provides several insights regarding the impact of funding

level and uncertainty in funding. We find that the impact of uncertainty in funding timing

could be very different depending on the length of the planning horizon and the system funding

level. For short–planning horizons, uncertainty in funding leads to a loss of disease–adjusted

life months while in case of longer planning horizons, receiving the funding in fewer, lumpy

installments involving more uncertainty in funding timing might be preferable only in under–

financed systems ( < 100% funding level). In well–funded systems ( ≥ 100% funding level),

having a smooth and predictable funding pattern is always preferred. This finding highlights

the importance of taking into account the system characteristics when making funding–related

decisions so as to maximize the per–dollar impact of funding provided to global health programs.

Regarding the system funding level, we find that low funding availability leads to a significant

loss of disease–adjusted life months in under–financed systems. Hence, it might be beneficial

to receive additional funding even at the cost of increased funding uncertainty. In well–funded

systems, the losses from the increased funding uncertainty outweigh the potential benefits from

the additional funding, and hence less overall funding should not be traded for larger but more

uncertain funding.

The third chapter of this dissertation focuses on the the supply– vs. demand–side investment
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dilemma faced frequently faced by in–country public health managers. Low aid effectiveness

and poor coverage have often been attributed to a combination of failures on both the demand

and supply side. Supply–side factors determine the availability of essential health supplies

and services when and where they are needed, and supply–side investments are geared to-

wards reducing or eliminating supply chain inefficiencies that could lower product availability.

Demand–side factors focus on the consumer, and investments on the demand–side are aimed

at mobilizing demand for the service or product by increasing community awareness and elim-

inating or reducing the social, economic and cultural barriers to access. While countries would

ideally like to invest as much as possible on both sides, oftentimes they only have a limited

budget to spend on interventions aimed at improving health outcomes. In light of the limited

funding availability, choosing the right investment mix is critical since too much or too little

supply could significantly affect program coverage.

We address this question in the third chapter using a simple one–period model with stochas-

tic demand. We assume that the fraction of the procured quantity available to meet demand

increases linearly in the investments in the supply chain, and the deterministic part of the

demand is also assumed to increase linearly with the demand–side investment. We first con-

sider a centralized model where a single entity (e.g., Ministry of Health at a host government)

that manages the health program makes both supply– and demand–side investments. The cen-

tralized setting helps us to understand the effect of the operating environment on the optimal

investment mix, and it also acts as a benchmark for the decentralized case that we consider later

in the chapter. For a given budget level, we identify the optimal mix of investments to maximize

coverage and also analyze how the investment mix changes with respect to the different supply–

and demand side parameters. We find that the optimal investment strategy is threshold type in

both supply– and demand–side investment effectiveness. Some interesting insights emerge when

we consider the impact of expected demand and variability in the demand. Our analysis shows

that investment in demand mobilization activities need not necessarily go down in anticipation

of a higher expected demand. With respect to demand variability, we prove that demand–side

investment may increase or decrease in response to increased variability, depending on whether

or not a critical ratio that we identify in the chapter is below a threshold point. In addition to

the investment strategies, we also analyze the impact of mean demand and demand variability
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on the program coverage. We find that higher mean demand may not necessarily imply higher

coverage but a higher variability in the demand always leads to a lower coverage for many of

the commonly used demand distributions.

In the second part of the third chapter, we consider a decentralized setting where the

principal, the decision maker in the centralized setting, is not physically present on ground,

and as such, cannot directly engage in demand–related activities. In this case, the principal

invests only in the supply–side and contracts with a third–party, who we refer to as the ‘agent’,

to carry out community mobilization efforts on her behalf. Contracting with third–parties to

carry out certain services or activities occurs frequently in the public health sector for several

reasons including a low efficiency of public health systems, lack of expertise, and human resource

constraints. In the decentralized case, the agent makes the demand–side investments but his

objective is to maximize profits, which creates incentive issues that could lower coverage levels.

Motivated by the growing interest in performance–based funding in the humanitarian sector, we

explore the use of contracts that depend only on the program coverage to create incentives for

the agent to invest in demand mobilization. We identify two types of contracts that guarantee

that the expected coverage level under the decentralized case is at least as high as the centralized

case but one of them has some important advantages over the other from an implementation

standpoint.

6



Chapter 2

Inventory Management in Humanitar-
ian Operations

2.1 Introduction

Financial flows play an important role in humanitarian operations and impact their scope, ef-

fectiveness and efficiency. While the total amount of donations received can impact the efficacy

of such operations, the timing, predictability, and flexibility of usage around those funds also

have a strong influence (Wakolbinger and Toyasaki 2011). In a global health context, unpre-

dictability and delays in donor funding are often cited as the reasons behind impaired supply

chain management and reduced coverage (Fininnov 2011). A recent study by the Brookings

Institution (Lane and Glassman 2008) estimates that for every dollar received in funding, 7 to

28 cents is lost due to funding delays.

Innovative financing mechanisms reduce funding delays and improve predictability in hu-

manitarian operations. For example, IFFIm that supports the GAVI Alliance programs, issues

bonds against long–term pledges from donors to convert the pledges into “readily–usable” funds

in an effort to achieve front–loading, i.e., push forward the time of receipt of funding for the

program. While there is a general consensus that innovative financing mechanisms hold the key

to increasing aid–effectiveness, they come at a cost. Moreover, the magnitude of the benefits

from front–loading and reducing the uncertainty around the funding timing are not known.

With too much front–loading, the costs might outweigh the benefits while very little front–

loading could lead to a potential loss of benefits. Celasun and Walliser (2007) make a related

observation: “Although predictability has been highlighted as a key issue for aid effectiveness,



little systematic information is available on the magnitude of the predictability problem and

thus its potential impact on aid recipients.”

Motivated by the ready–to–use therapeutic food (RUTF) supply chain in Africa, we study

the problem of managing inventory of a nutritional product in the presence of funding con-

straints over a finite horizon (Swaminathan 2009, 2010). Funding is received in installments

throughout the planning period with uncertainty around the timing and amount. This un-

predictable nature of donor funding is typical of the funding situation in many global health

programs. Even in the best of situations there might be uncertainty in terms of timing of the

receipt of those installments. In the problem that motivated this study, the country office of

UNICEF that had to procure RUTF were constrained by the timing of the receipt of previously

promised funding from donor agencies. Given the highly variable and unpredictable nature of

the inflow of funds, an important question that arises is how to effectively manage inventory,

taking into account both the current financial position as well as the funds that are due to

arrive in the future periods.

In this chapter, we model the above situation with a multi–period stochastic inventory

model with financial constraints. Our goal is to (i) determine the optimal ordering policy

given the complexities associated with the funding and (ii) characterize the impact of funding

timing, funding level, and funding uncertainty on the operating costs. Among other results,

we show that despite the uncertainty in funding, the optimal replenishment policy is a state–

independent modified base stock policy, which greatly enhances the appeal and implementation

of the optimal policy. We also prove that uncertainty in funding timing (in comparison to a

deterministic financial schedule) increases operating costs and so does the stochastically domi-

nated late arrival of funds. Finally, we also show that increased variability in the funding timing

(as measured by convex ordering) leads to higher costs.

Our work explicitly captures the impact of both funding amount and funding timing on

operating costs. Through an extensive numerical study, we offer insights into several issues

including (1) the impact of funding patterns on the operating costs by comparing different types

of funding patterns ranging from front–loaded funding (where a majority of the total funding

is received in the initial periods) to evenly–spread funding (equal installments) to back–loaded
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funding (where a major chunk of the total funding is received in the later periods), (2) the

interaction between funding level (total funding received as a % of the amount required to meet

total expected demand) and funding pattern, (3) the effect of uncertainty in funding timing

and, (4) the relative importance of funding level and pattern vis a vis funding uncertainty.

Among other results, we provide the following computational insights. (1) Avoiding funding

delays should be a top priority for humanitarian supply chain managers. In case of deterministic

funding schedules, while evenly–spread funding facilitates planning, it is not the optimal funding

pattern due to its inability to accommodate large demand surges upfront; (2) Front–loading

the funding brings significant benefits in under–financed systems ( < 100% funding level) while

avoiding back–loading is critical in fully–financed systems (100% funding level). (3) Front–

loaded funding at 75% funding level is better than back–loaded funding at 100% funding level.

Depending on the level of front– and back–loading at 75% and 100% funding levels, the operating

costs under back–loaded funding at 100% funding level vary between 1.5–5.5 times the operating

costs under front–loaded funding at 75% funding level; (4) There is a non-linear increase in costs

with increased uncertainty in funding. Further, this effect decreases with demand uncertainty.

2.1.1 Literature Review

Our work is related to three streams of literature.

The Interface between Operations and Finance: In this stream of literature, a firm’s

available capital at the start of any given period is endogenously dependent on the revenues

generated in the previous period. Papers that study the interaction between operational and

financial decisions include Archibald et al. (2002), Babich and Sobel (2004), Xu and Birge

(2004), Gaur and Seshadri (2005) and Chao et al. (2008). Our work is more closely related to

Chao et al. (2008). They study a periodic–review inventory replenishment problem faced by

a self–financing retailer whose objective is to maximize the terminal wealth at the end of the

planning horizon. For their model, they show that a capital–dependent base stock policy is

optimal. One aspect that distinguishes our work from the existing literature is the presence of

a donor funding stream that is exogenous to realized demand. In our work, demand fulfilled in

the previous periods does not generate any revenue due to the non–profit nature of the business.
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Inventory Management under Capacity Constraints: Financial constraints on pro-

curement are somewhat similar to supply–capacity constraints and a lot of work has been done

on inventory management under capacity constraints (see Federgruen and Zipkin 1986 a,b, Ka-

puscinski and Tayur 1998, Aviv and Federgruen 1997, Ciarallo et al. 1994, Wang and Gerchak

1996). The main difference between these models and ours is that while physical capacity

constraints are rigid, financial constraints can be made flexible. Unlike production capacity,

unused capital does not go waste and can be utilized in the future periods.

Humanitarian Operations: Our paper also contributes to the growing body of work on

humanitarian operations. Within humanitarian operations, a majority of the papers focus on

disaster relief, e.g., Duran et al. (2011) and Beamon and Kotleba (2006) focus on inventory

management during emergencies. In recent years, long-term public health issues have also

received attention from the operations management community, e.g., Taylor and Yadav (2011),

Rashkova et al. (2011) and Deo and Sohoni (2011). However, we believe that ours is the first

work to look at inventory management from a humanitarian health perspective. In addition,

to the best of our knowledge, Rashkova et al. (2011) and our work are the only ones to focus

explicitly on the role of funding in humanitarian operations.

The rest of the chapter is organized as follows: In section 2, we introduce the model and

provide analytical results regarding the optimal policy and the impact of funding. In section 3,

we present the results of our numerical study and discuss the impact of funding on operating

costs. In section 4, we demonstrate that the inventory replenishment policy established in

section 2.2 is optimal under more general settings. We offer some managerial insights and

conclude the chapter in the last section.

2.2 Model

We consider a finite–horizon, periodic–review inventory model for a single product. The plan-

ning horizon is divided into N periods with the time indexing done in the reverse order, i.e., the

first period is period N , followed by N -1, N -2 and so on. Demands in successive periods, ζt,

t = N,N − 1, ..., 1 are independent but not necessarily identically distributed with probability
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distribution function ft and cumulative density function Ft. The system is financed through

external funding received in m ≤ N installments. The installment sizes (amount received in

each installment) are known beforehand but the time of receipt of each installment could be

uncertain. We refer to a funding scenario with uncertain funding timing as a stochastic funding

schedule. A special case of the stochastic funding schedule is a scenario where both the install-

ment amounts and timing are known beforehand. We refer to this special case scenario as a

deterministic funding schedule.

We denote the funding vector by Z = (z1, z2, z3, ..., zm) where zm and z1 are the first and

last installments received respectively. Therefore, the total funding received over the planning

horizon is

m∑
j=1

zj . For our analysis, we do not impose any restrictions on the installment sizes

— the amount received in each installment could be very different from one another. Let c be

the unit purchase cost, h denote the unit holding cost per period and b be the penalty cost per

unit per period for any unsatisfied demand. We make the following assumptions in our model.

1. Unmet demand is completely backlogged. While this is an approximation in the RUTF

context, the backlogging assumption is valid for a variety of health commodities, e.g.,

malaria bed nets and reproductive health supplies like contraceptives.

2. All the installments are received before the end of the planning horizon. As we mentioned

before, donors make a commitment based on the funding proposals and while the amount

in the individual installments may vary based on the donors’ budget cycles, in most cases,

the committed amount is received in full before the end of the planning period for which

the donation was sought.

3. Borrowing capital is not an option. In the application that motivated this study, country

offices place procurement orders only when they have raised enough money from the

donors to fund the procurement. Currently, they neither borrow money to finance the

procurement nor do they have access to a credit line.

In addition to the above–mentioned assumptions, we also assume that one dose/unit of

the product is sufficient to meet the needs of a customer/patient. Again, this is a simplifying
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assumption in the context of the problem that motivated this study but it makes the model

general enough to be applicable to a wide variety of humanitarian health programs.

The sequence of events in any given period t is as follows: 1. Funding (if any) is received at

the start of period t. 2. Procurement decisions are made, subject to capital available on–hand.

We assume that replenishments arrive instantaneously. (This assumption is only for simplicity

and in section 4, we demonstrate that relaxing this assumption does not change the structure

of the optimal replenishment policy.) 3. Finally, demand is realized and holding and backorder

costs are calculated based on the ending inventory.

Let xt, yt denote the on–hand inventory before and after ordering in period t and rt be the

capital available at the start of period t, after receiving installments (if any) in period t. The

state variable Ot keeps track of the number of outstanding installments as of the beginning

of period t, after receiving installments (if any) in that period. The recursive equation for

rt is thus given by rt = rt+1 − c(yt+1 − xt+1) +

Ot+1∑
j=Ot+1

zj . We let Pt(i) denote a random

variable corresponding to the number of outstanding installments at the beginning of period

t − 1, given that the number of outstanding installments at the beginning of period t is i.

PN+1(m) is the number of outstanding installments at the beginning of period N . Also, define

Pt(i, j) ≡ Pr(Pt(i) = j).

The objective is to come up with an optimal ordering policy that minimizes the total

cost incurred over the planning horizon subject to the funding constraints. Since we assume

self–financing, the order quantity in period t must satisfy the constraint c(yt − xt) ≤ rt.

Let Jt (xt, rt, Ot|Zt) be the minimum expected cost with t periods to go, given state vari-

ables xt, rt, Ot and the future funding vector Zt. Given Ot = k for some constant k, Zt =

(z1, ..., zk, 0, 0..., 0) where the last m−k components of Zt are zeroes. For brevity, we will write

the conditioning on Zt explicitly only when we are comparing two different funding vectors.
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Then, for a fixed funding vector Z, the optimality equations are given by

Jt(xt, rt, Ot) = min
yt∈[xt,xt+ rt

c ]


c(yt − xt) + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+EOt−1EζtJt−1(yt − ζt, rt − c(yt − xt) +

Ot∑
j=Ot−1+1

zj , Ot−1)


(2.1)

Since all the installments are received before the end of the horizon, O1=0 always. The terminal

cost is J0(x0, r0, 0) = 0 ∀(x0, r0).

Some intuitive properties of the cost–to–go function can be readily proven. For example,

given xt, Ot and funding vector Zt, Jt(xt, rt, Ot) is monotone decreasing in rt. Additionally, if

Ot = k for some constant k, z1
i = z2

i ∀ i = 1, 2, ..k − 1 and z2
k − z1

k = r1
t − r2

t = K ≥ 0, then

Jt
(
xt, r

2
t , Ot|Z2

t

)
≥ Jt

(
xt, r

1
t , Ot|Z1

t

)
, i.e., it is more valuable to have an extra dollar today than

receiving it in the next installment.

Our first key result is the joint convexity of the value function in state variables xt and rt

for fixed Ot and Zt. We prove this in Lemma 1. The proofs for all the results in this chapter

can be found in Appendix A.

Lemma 1. Jt(xt, rt, Ot) is jointly convex in xt and rt for fixed Ot and funding stream Zt.

In our analysis, we find it convenient to use a modified value function expressed in terms of

variables xt and Rt = rt + cxt. Define

Ĉt(yt, Rt, Ot) = cyt + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+ EOt−1EζtJt−1(yt − ζt, Rt − cyt +

Ot∑
j=Ot−1+1

zj , Ot−1) (2.2)

Then, in terms of Ĉt, we have

(P1) J̃t(xt, Rt, Ot) = Jt(xt, rt, Ot) = −cxt + min
yt∈

[
xt,

Rt
c

]
{
Ĉt(yt, Rt, Ot)

}
(2.3)

Using the modified value function J̃t, it is straightforward to show that a (Rt, Ot)–dependent

modified base stock policy is optimal in period t. However, we go one step further and demon-
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strate that the optimal replenishment policy is actually simpler — the optimal policy is a

state–independent modified base stock policy where the order up–to levels depend only on t

and not on Rt, Ot or the future funding stream Zt.

To be precise, consider a multi–period inventory management problem with the same cost

and demand parameters as problem P1 (see equation (2.3)), but no financial constraints. Let

NVt(xt) be the minimum expected cost with t periods to go, corresponding to this setting with

no financial constraints. Then,

(P2) NVt(xt) = min
yt≥xt

{
c(yt − xt) + bEζt [ζt − yt]+ + hEζt [yt − ζt]+ + EζtNVt−1(yt − ζt)

}

Let NV0(x0) = 0 ∀ x0. It is well known that a base stock policy is optimal for problem P2

and there exists an optimal base stock level y∗t in each period such that if the inventory level

in period t is below y∗t , it is optimal to order up–to y∗t , and not order otherwise. In Theorem 1,

we prove that the unconstrained base stock levels y∗t , y
∗
t−1, ..., y

∗
1, optimal for problem P2, are

optimal for problem P1 with funding constraints as well.

Theorem 1. Let y∗t , y
∗
t−1, ..., y

∗
1 be the optimal base stock levels corresponding to problem P2.

Let (xt, Rt, Ot) be the state of the system in problem P1 at the beginning of period t. Then, the

optimal ordering policy for problem P1 has the following simple structure.

Order up–to Rt/c if Rt/c ≤ y∗t

Order up–to y∗t if Rt/c > y∗t , xt < y∗t and

Do not order if xt ≥ y∗t .

(2.4)

Theorem 1, which demonstrates the optimality of a state-independent base–stock policy for

a stochastic funding schedule, raises the question: why are the base–stock levels independent

of state variables Ot and Rt? To answer this question, recall that Ot, which keeps track of the

number of outstanding installments, determines both the total outstanding amount and the

level of uncertainty in the future funding. However, the uncertainty in the future funding does

not impact the total demand that can be met between period t and the end of the planning

period, since unsatisfied demand is completely backlogged. How much demand is met between
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period t and the end of the horizon is solely determined by the sum: c×(on–hand inventory)

+ capital available on–hand + future funding. A closer look reveals that this sum is also

independent of Ot. Hence, while the actual costs incurred might vary depending on the number

of outstanding installments Ot, the incremental difference in costs obtained by changing the

order quantity remains the same, irrespective of how many installments are outstanding.

A related question is why is the base–stock level independent of Rt? Recall that Rt(=cxt+rt)

determines the maximum inventory level attainable in period t. From a single–period perspec-

tive, Rt acts like a production capacity constraint. In the presence of capacity constraints, it

is well known that the (capacity–dependent) order up–to levels in each period are higher than

the corresponding unconstrained base stock levels (see e.g., Federgruen and Zipkin 1986 a,b).

So why is the optimal policy different for our problem with funding constraints ? The key

reason is that, although both funding and capacity constraints place an upper bound on the

order quantity in each period, there is a fundamental difference between the two. While unused

capacity goes waste, unused capital can be used in the later periods, i.e., it acts like transferable

capacity. Intuitively, this is the reason why the unconstrained base stock levels continue to be

optimal even in the presence of funding constraints. This greatly enhances the appeal and im-

plementation of the optimal policy since the state–independent base stock levels can be easily

computed using techniques like IPA (see Glasserman and Tayur 1995). Additionally, the fact

that the target inventory level is not tied to the future inflow of funds also makes operations

planning easier since purchasing decisions depend only on the current state of the system and

not on any future unobservable quantities.

Thus far, by identifying the optimal replenishment policy for any given funding scenario, we

have answered the first of our two main research questions: how to efficiently manage inventory

given the complexities associated with the funding? We now proceed to answer the second

question: how does the funding amount, funding schedule, and the uncertainty around the

funding timing impact operational performance? As a first step, we focus on understanding the

role of the uncertainty around the time of receipt of the installments.
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2.2.1 Impact of Funding Timing

Throughout this section, we fix the funding vector Z = (z1, z2, ..., zm) and vary only the time

of receipt of each installment. Recall that Pt(i) denotes a random variable corresponding

to the number of outstanding installments at the beginning of period t − 1, given that the

number of outstanding installments at the beginning of period t is i. Consider random variables{
P 1
t (i), i ∈ {0, 1, 2, ...,m}

}
and

{
P 2
t (i), i ∈ {0, 1, 2, ...,m}

}
corresponding to funding scenarios

1 and 2 such that

P 2
t (i) ≥st P 1

t (i) ∀ i ∈ {0, 1, 2, ...,m} and ∀ t ∈ {2, 3, ..., N} and (2.5)

Pnt (i′) ≥st Pnt (i) ∀ i ∈ {0, 1, 2, ...,m− 1}, i′ > i, n ∈ {1, 2} and ∀ t = 2, ..., N (2.6)

where ≥st means first–order stochastic dominance. The following is the definition of first–order

stochastic dominance.

Definition 1. (Shaked and Shanthikumar 2007) Let X and Y be two random variables such

that P (X > x) ≤ P (Y > x) for all x ∈ (−∞,∞). Then X is said to be smaller than Y in the

usual stochastic order.

Condition (2.5) implies that the number of outstanding installments at the beginning of

any period t is (stochastically) larger under funding scenario 2. Condition (2.6) says that,

under both funding scenarios, the number of outstanding installments at the beginning of t− 1

stochastically increases in the number of outstanding installments at the beginning of period

t. We denote the value functions associated with random variables P 1
t and P 2

t by J1
t and J2

t

respectively. In the following theorem, we demonstrate that the (stochastically) early arrival of

funds offers increased procurement flexibility, resulting in lower operating costs.

Theorem 2. If conditions (2.5) and (2.6) hold, then J2
t (xt, rt, j) ≥ J1

t (xt, rt, j) for every

j ∈ {0, 1, 2, ...,m}.
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2.2.2 Impact of Variability in Funding Timing

Having established that ‘earlier is better’ (in a stochastic sense) when it comes to the funding

timing, we now focus our attention on the variance aspect of the uncertainty in funding. For

a fixed funding vector, we compare two funding scenarios; in the first, there is high variability

around the number of outstanding installments at the beginning of any given period while

there is relatively less variability in the second. More specifically, we represent the two funding

scenarios by random variables
{
P 1
t (i), i ∈ {0, 1, 2, ...,m}

}
and

{
P 2
t (i), i ∈ {0, 1, 2, ...,m}

}
such

that

P 2
t (i) ≥cvx P 1

t (i) ∀ i ∈ {0, 1, 2, ...m} and t = 2, 3, ..., N (2.7)

{Pnt (i), i ∈ {0, 1, 2, ...m}} ∈ SICX, n = 1, 2 (2.8)

Condition (2.7) states that P 2
t (i) is larger than P 1

t (i) in the convex order. The following is

the definition of a convex order.

Definition 2. (Shaked and Shanthikumar 2007) Let X and Y be two random variables such

that E [φ(X)] ≤ E [φ(Y )] for all convex functions φ : R→ R. Then X is said to be smaller than

Y in the convex order.

Condition (2.7) implies that P 2
t (i) is more variable than P 1

t (i) but, EP 2
t (i) = EP 1

t (i). The

convex ordering helps us to isolate the impact of variability around the funding timing since

the mean number of outstanding installments remains the same under scenarios 1 and 2. Con-

dition (2.8) states that {Pnt (i), i ∈ {0, 1, 2, ...m}} , n = 1, 2 belong to the class of stochastically

increasing convex family of distributions.

Definition 3. (Shaked and Shanthikumar 2007) Let {X(θ), θ ∈ Θ} be a set of random variables.

Then

1. {X(θ), θ ∈ Θ} ∈ SI (stochastically increasing) if Eφ(X(θ)) is increasing in θ for all

increasing functions φ.

17



2. {X(θ), θ ∈ Θ} ∈ SICX (stochastically increasing and convex) if {X(θ), θ ∈ Θ} ∈ SI

and Eφ(X(θ)) is increasing convex in θ for all increasing convex functions φ.

The following property can be used to check the SICX property for discrete random vari-

ables.

Property 1. (Shaked and Shanthikumar 2007) Suppose that for each θ ∈ Θ, the support of

X(θ) is in N. Then, {X(θ), θ ∈ Θ} ∈ SICX if, and only if, {X(θ), θ ∈ Θ} ∈ SI and
∞∑
l=k

Pr{X(θ) ≥ l} is increasing convex in θ for all k ∈ N.

A number of known distributions satisfy the SICX property. For example, if X(µ, σ) is

a normal random variable with mean µ and standard deviation σ, then, for each σ > 0,

{X(µ, σ), µ ∈ R} ∈ SICX. Similarly, if X(λ) is a Poisson random variable with mean λ, then

{X(λ), λ ∈ [0,∞)} ∈ SICX. Another example could be a random variable X(n), which is

uniformly distributed on {0, 1, 2, ..., n− 1}. Then, {X(n), n ∈ N+} ∈ SICX.

In the following lemma, we demonstrate that, for any {Pt} satisfying condition (2.8), the

minimum expected cost with t periods to go is increasing and convex in the number of out-

standing installments at the beginning of t, provided the funding vector Z is front–loaded. We

refer to a funding vector Z as front–loaded if Zi ≤ Zi+1, i = 1, 2, ..., N − 1 and back–loaded if

Zi ≥ Zi+1. Notice that a funding vector with equal installments also satisfies the definition of

a front–loaded funding vector.

Lemma 2. Let Z be a front–loaded funding vector and condition (2.8) hold. Then, Jt(xt, rt +
i∑

k=j+1

zk, j) is increasing convex in j for j ≤ i where i ∈ {0, 1, 2, ...m}.

We should point out that front–loaded funding is a sufficient but not necessary condition for

the above result to hold. Our final result characterizes the impact of variability in the funding

timing—given that the expected number of installments received remains the same, a higher

variability around the number of outstanding installments at the beginning of any given period

drives up the operating costs and results in poor performance.

Theorem 3. Let Z be a front–loaded funding vector and conditions (2.7) and (2.8) hold. Then,

J2
t (xt, rt, i) ≥ J1

t (xt, rt, i) ∀ i ∈ {0, 1, 2, ...,m}.
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2.2.3 Deterministic Funding Schedule

As we mentioned before, the deterministic funding schedule is a special case of the stochastic

funding schedule where both the installment amounts and the time of receipt of each installment

are known. Under a deterministic funding schedule, without loss of generality, we can assume

that funding is received in every period (i.e., exactly in N installments) with some installments

possibly being 0. Let Vt (xt, rt|Zt) be the minimum expected cost with t periods to go under

a deterministic funding schedule, given state variables xt, rt, and the future funding vector Zt.

Since we receive an installment every period, there is no need to keep track of the number of

outstanding installments in case of a deterministic funding schedule. As with stochastic funding

schedules, we will explicitly condition on Zt only when we compare different funding schedules.

In sections 2.2.1 and 2.2.2, we fix the funding vector, and explored one part of our second

main research question: how does the uncertainty and variability in the funding timing impact

operating costs? Using deterministic funding schedules, our goal is to fix the funding timing

and explore the other part of our second research question: what is the impact of funding

amount and funding schedules as relates to operating costs? Specifically, we are interested in

answering the following questions: 1. Does an increase in the total funding received over the

horizon necessarily lead to better performance? 2. Given that the total funds received over the

horizon remains the same, does advancing additional funds to a certain period have the same

level of impact as delaying the same amount until the next period?

Consider two deterministic funding schedules Z1 and Z2 such that

N−i∑
j=N

z1
j ≥

N−i∑
j=N

z2
j , i = 0, 1, , ..., N − 1 (2.9)

In Proposition 1, we show that an increase in total funding is guaranteed to result in lower

operating costs if condition (2.9) holds.

Proposition 1. If condition (2.9) holds, then for any xN ∈ R, V 2
N (xN , r

2
N ) ≥ V 1

N (xN , r
1
N ).

Consider two funding vectors, Z1 and Z2 such that
N∑
i=1

Z1
i =

N∑
i=1

Z2
i . If Z1 is front–loaded
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and Z1
i = Z2

N−i+1, i = 1, 2, ..., N , then clearly, Z2 is back–loaded. In this case, a direct applica-

tion of the above proposition shows that for a fixed amount of total funding, the front–loaded

vector Z1 is guaranteed to perform at least as well as the back–loaded vector Z2. This result

is on expected lines — what would be more interesting is to compare the following two funding

scenarios: receiving less total funding, say $10 M, in a front–loaded fashion vs. receiving more

total funding, say $ 20 M, in a back–loaded fashion. In this case, it is not clear whether the ad-

ditional funding received leads to lower operating costs — we explore this in our computational

study.

Next, we compare three deterministic funding vectors, Z = (z1, z2, ..., zt−1, zt, ...zN ), ZA =

(z1, z2, ..., zt−1 − δ, zt + δ, ..., zN ) and ZD = (z1, z2, ..., zt−1 + δ, zt − δ, ..., zN ). Let Vt, V
A
t and

V D
t be the value functions associated with the three funding vectors respectively. We have the

following result.

Proposition 2. V D
N (xN , rN )− VN (xN , rN ) ≥ VN (xN , rN )− V A

N (xN , rN ) ∀ xN , rN .

Proposition 2 implies that the cost savings resulting from advancing additional funds to a

certain period does not match the extra cost incurred if the same amount were to be delayed

by one period. In essence, funding delays hurt more than the benefits from receiving funding

early.

2.3 Computational Study

For our computational study, we first consider deterministic funding schedules and analyze

how funding patterns impact operating costs. Subsequently, we consider stochastic funding

schedules to understand how uncertainty in funding affects system performance.
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2.3.1 Deterministic Funding Schedules

Experimental Setup:

The numerical study was conducted for planning horizon, N, of different lengths, N =2, 4, 6,

12 and 24. The unit purchase cost c was normalized to 1 in all numerical experiments. For

each N , we varied the following parameters.

Holding Cost: We chose four values for holding cost, h=0.01, 0.05, 0.1 and 0.25.

Penalty Cost: For each value of h, the penalty cost was varied so that the critical ratio

(CR), (b− c)/(b+ h), took on values 0.2, 0.4, 0.6, 0.8, 0.9 and 0.95 respectively.

Demand: In our work, we consider uniform and truncated normal demand distributions. To

test the impact of demand variability on the operating costs, we considered U ∼[70,130] and

U ∼[25,175] for the uniform demand case. For truncated normal demand, the mean was fixed

at 100 units and we used CV values of 0.1 and 0.25. The normal distribution was truncated at

3 standard deviations. Thus, for each N , we have 4*6*4=96 problem instances.

Funding Patterns: For each combination of N,h, b and demand distribution, we consider

five different funding patterns and four funding levels. The five funding patterns are extremely

front–loaded funding (EFL), moderately front–loaded funding (MFL), evenly–spread funding

(ES), moderately back–loaded funding (MBL) and extremely back–loaded funding (EBL). The

holding cost and the funding patterns were chosen so as to be consistent with an earlier study

that analyzes the state of the RUTF supply chain in the Horn of Africa (UNICEF 2009). For

the backorder costs, due to lack of precise estimates, we decided to carry out a sensitivity

analysis over a wide range of critical ratios. For all the funding vectors, the total funding

received remained the same and is equal to N*funding level*mean demand. In our experiments,

we consider 25%, 50%, 75% and 100% system funding levels and we label them as severely

under–financed, moderately under–financed, mildly under–financed and fully–financed systems

respectively. For example, a severely under–financed system receives N*0.25*mean demand

over the entire planning period. For illustration purposes, we use the specific case of N=4,

U ∼[70,130] demand distribution and 100% funding level to explain the difference between the
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different funding vectors.

EFL: The entire funding (=N*mean demand) is received upfront, i.e., the funding vector is

(0, 0, 0, 400). Recall that we count time in the reverse order.

MFL: In the firstN/2 periods, the installment size is 1.5*mean demand followed by 0.5*mean

demand in the last N/2 periods. For the specific case considered, the funding vector is (50, 50,

150, 150).

ES: Every installment is equal to mean demand, i.e., the funding vector is (100, 100, 100,

100).

MBL: In the firstN/2 periods, the installment size is 0.5*mean demand followed by 1.5*mean

demand in the last N/2 periods. The funding vector would be (150, 150, 50, 50).

EBL: The entire funding is back–loaded to the last period, i.e., the funding vector is (400,

0, 0, 0).

Notice that as we move from EBL to EFL funding, more and more funds are received in the

initial periods. Compared to ES funding, the front–loaded vectors can be considered as funding

advances and back–loading can be considered as a funding delay. By using ES funding as a

benchmark, we investigate how back–loading and front–loading the funding impacts operating

costs.

Impact of Funding Pattern

We use the cost incurred under ES funding as a benchmark and compute the relative percentage

cost difference for a particular funding pattern, say EBL funding, as follows: 100*(costEBL −

costES)/costES . Table 2.1 provides the relative percentage cost difference (relative to ES fund-

ing) for different funding patterns at 100% funding level, averaged over the 96 problem instances.

From Table 2.1, we can immediately make an important observation: operating costs in-

crease almost exponentially with funding delays (back–loading). By maintaining a consistent

and even flow of cash to fund its operations (ES funding), an organization can cut down on price
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EBL MBL MFL EFL

N=2 152.54 69.42 -13.23 -13.69
N=4 425.68 126.30 -23.10 -24.89
N=6 664.40 178.97 -28.63 -30.76
N=12 1269.97 318.55 -37.61 -39.86
N=24 2230.19 547.26 -46.22 -48.30

Overall average 948.56 248.10 -29.76 -31.5

Table 2.1: Average % cost difference for different funding patterns relative to ES funding

premiums due to funding delays and utilize valuable aid dollars to increase coverage. However,

it is not the optimal funding pattern since, under ES funding, there is very little flexibility to

deal with large demand surges upfront. This is where an additional funding influx in the initial

periods proves valuable. Relative to ES funding, the moderate shift in funds to the initial

periods (MFL funding) results in average (averaged over all N) savings of 29.8%. However,

pushing more and more funds to the initial periods yields little to no return and, even in case

of an extreme push (EFL funding), the average savings is only 31.5%.

Also, notice that the gulf between front–loaded and back–loaded vectors increases with hori-

zon length (Table 2.1) and critical ratio (Table 2.2) while it decreases with demand variability

(Table 2.3). More interestingly, Table 2.3 also tells us that the benefits from front–loaded

funding increase with the demand variance while the negative impact of a funding back–load is

mitigated by the increased demand variability.

critical ratio

0.2 0.4 0.6 0.8 0.9 0.95

EBL 265.88 342.74 476.63 726.81 1094.32 1385.91
MBL 71.89 92.84 129.35 196.14 297.75 377.25
MFL -9.50 -12.58 -17.99 -30.69 -43.13 -55.01
EFL -9.76 -12.94 -18.52 -31.92 -44.41 -56.65

Table 2.2: Average relative % cost difference as a function of CR for N=6, U ∼[70,130] demand
distribution and 100% funding level

EBL MBL MFL EFL

U ∼[70,130] 1020.73 268.76 -29.07 -29.85
U ∼[25,175] 554.96 133.46 -36.14 -40.52

N ∼[70,130] 1392.03 378.07 -21.90 -22.05
N ∼[25,175] 826.50 212.11 -31.92 -33.58

Table 2.3: Effect of demand variability on the average relative % cost difference for different
funding patterns at 100% funding level

23



Funding Level vs. Funding Pattern

Having analyzed the impact of funding pattern on operating costs, we now proceed to under-

stand the interaction between funding level and the funding pattern. We are mainly interested

in understanding the relative importance of level of funding vis–a–vis funding pattern. Fig-

ure 2.1 displays the relative percentage cost difference at different funding levels, ranging from

severely under–financed to fully–financed. Here, we use the cost incurred under no funding

constraints (NFC) as the benchmark to compute the relative percentage cost difference.

From Figure 2.1, we see that at very low funding levels (25% and 50% funding levels),

the funding pattern is inconsequential — 100% funding level almost always outperforms. For

a mildly under–financed system, the results are drastically different. From Figure 2.1, we see

that back–loaded funding at 100% funding level performs significantly worse compared to front–

loaded funding at 75% funding level. However, ES funding at 100% funding level outperforms

even EFL funding at 75% funding level. This demonstrates that, at reasonably high funding

levels, funding pattern is critical to system performance and a further increase in overall funding

should not be traded for a delay in funding.

(a) (b)

Figure 2.1: Average % cost difference for different funding patterns at different funding levels

Figure 2.1 also offers some additional insights into the interaction between funding levels

and funding patterns. Notice that the benefits of front–loading (the gap between the lines

corresponding to MFL/EFL and ES funding) are significantly higher in under–financed systems

when compared to a fully–financed system. However, the maximum benefits of front–loading

are not observed in severely under–financed systems as one would expect — for both EFL and

MFL funding, the benefits of front–loading follow a U–shaped pattern with the funding level,
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with maximum benefits seen either in moderately or mildly under–financed systems. The least

benefits of front–loading are observed at 100% funding level. An intuitive reasoning for the

U–shaped pattern is as follows: for severely under–financed systems, the total amount pushed

to the initial periods is relatively less and in fully–financed systems, there is sufficient cash

already available in the system for the additional funding to make a large impact.

In case of back–loaded funding, the additional cost incurred due to the delayed receipt of a

majority of the funds is monotonically increasing in the funding level. The monotonicity result

can be explained as follows: when funding is back–loaded, a major portion of the operating

costs can be attributed to backorders. As the funding level increases, the difference between the

funds available in each period under the evenly–spread and back–loaded funding scenarios also

increase. This implies that the additional backorders ascribed to a funding delay also increase

with the funding level.

Impact of Funding Constraints

Most global health programs are already financially constrained, a situation that is only ex-

pected to worsen in the near future (Stokes 2011). The numbers in Table 2.4 offer some

insights into the role of funding constraints. By taking difference of the relative percent-

age cost differences in Table 2.4, we get 100*(costEBL − costES)/costNFC=2805.93, while

100*(costES − costNFC)/costNFC=121.18. This demonstrates that, as we move from EBL

funding to NFC, a majority of the resultant benefits actually stem from reducing funding de-

lays (making the funding even) and only a relatively small portion of the cost savings are

attributed to the unlimited funding availability. Recall that NFC refers to a schedule where

funding is never a constraint. The same insight also holds for MBL funding.

EBL MBL ES MFL EFL

2927.11 834.39 121.18 27.70 21.34

Table 2.4: Average % cost difference for different funding patterns relative to NFC at 100%
funding level

Also, notice in Table 2.4 that the average increase in costs due to the presence of funding

constraints is less than 22 % for EFL funding and less than 28 % for MFL funding. Having
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access to unlimited funding is practically unrealistic and our study shows that front–loaded

funding compares favorably with unlimited funding. Thus, even with limited funding, it is

possible to achieve reasonable system performance as long as “enough” funding can be secured

in the initial periods.

2.3.2 Stochastic Funding Schedules

Experimental Setup

Except for funding patterns, all other elements of the experimental set up remain unchanged

from the deterministic funding case. As we mentioned in section 2.2, funding is received in

m ≤ N installments. For a fixed N , we consider several values of m for the stochastic funding

case, details of which are given in Table 2.5.

N m

2 1,2
4 1,2,3,4
6 1,2,3,4,6
12 1,2,3,4,6,12
24 1,2,3,4,6,12,24

Table 2.5: Number of installments considered for each N

For the stochastic funding case, we assume that the funding level is 100%, i.e., the total

funds received over the entire planning horizon is fixed and is equal to N*mean demand in each

period. To capture the uncertainty in the funding timing, we vary the number of installments.

Depending on the number of installments (m) received, the amount received in each installment

varies (=N/m*mean demand in each period).

We assume that the number of installments received in a period is uniformly distributed

between 0 and the number of outstanding installments. To understand what happens when

we increase the number of installments, consider the example of N=4, m=1, and U ∼[70,130]

demand. In this scenario, when m=1, any of the four extreme funding scenarios namely,

(400,0,0,0), (0,400,0,0), (0,0,400,0) and (0,0,0,400), are equally likely. When we increase m to

2, the probability of extreme funding scenarios like (400,0,0,0) reduce drastically from 1/4 to
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1/16 while the probability of a more evenly spread funding vector like (200,0,200,0) increases

to 1/8. Hence, the idea is that, as we increase the number of installments, the probability of

the funding being more smooth and evenly spread out increases, thereby reducing the volatility

in funding received until any given period.

Impact of Funding Uncertainty

We begin by discussing a result that is intuitive and holds true for all problem instances: reduc-

ing the funding volatility, and making the funding more smooth and evenly spread out lowers

operating costs (see Figure 2.2). However, such benefits of reducing the funding uncertainty

show diminishing rates of return, i.e., as the number of installments in which funding is cur-

rently received increases, the marginal value of receiving the funding in an additional installment

decreases.

To understand why reducing funding uncertainty leads to lower expected operating costs,

consider the case where m=1 and N=6. The single installment could be received in any of

the six periods and all possibilities are equally likely. Of course, there is nothing better than

receiving the installment in the very first period (probability 1/6) but we also need to take

into account the other possibilities (including an extreme back–loading with probability 1/6).

Considered together, receiving funding in one installment is no longer the ideal scenario —

in fact, it is the worst. In general, when the number of installments decreases, i.e., funding

becomes more uncertain, it increases the possibility of the funding vector being moderately

or severely back–loaded. Under uncertain funding, the possibility of the funding vector being

front–loaded also exists but the non–linear increase in costs as we move from front–loaded to

back–loaded funding means that the overall impact of the funding uncertainty is negative, i.e.,

in expectation, the operating costs increase.

From Table 2.6, we see that the benefits of reducing funding uncertainty increases with

the critical ratio. More importantly, Table 2.7 illustrates that the benefits of reducing funding

uncertainty decrease with demand variability. This result brings forth a very important insight:

the underlying demand situation has to be taken into account before embarking on initiatives

to reduce funding uncertainty. In highly volatile demand environments, the cost of reducing
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Figure 2.2: Average % cost difference due to funding timing uncertainty

the funding uncertainty might outweigh the benefits.

critical ratio

0.2 0.4 0.6 0.8 0.9 0.95

m=1 39.19 45.91 55.42 69.90 80.43 86.98
m=2 17.83 20.89 25.21 31.81 36.59 39.58
m=3 9.49 11.12 13.42 16.93 19.48 21.06
m=4 5.14 6.02 7.26 9.16 10.54 11.40

Table 2.6: Average relative % cost difference due to funding uncertainty (relative to a funding
schedule with m=N) as a function of CR for N=6 and U ∼[70,130] distribution

m=1 m=2 m=3 m=4 m=6 m=12 m=24

U ∼[70,130] 40.48 14.96 5.91 0 NA NA NA
N=4

U ∼[25,175] 31.11 11.07 3.69 0 NA NA NA

U ∼[70,130] 92.82 39.29 22.57 17.42 10.21 2.96 0
N=24

U ∼[25,175] 85.98 35.64 20.10 15.39 8.75 2.34 0

Table 2.7: Effect of demand variability on the average relative % cost difference due to funding
uncertainty (relative to a funding schedule with m=N)

Funding Level vs. Funding Uncertainty

In this section, we aim to address our last but nevertheless, an important question: which of the

two hurts system performance more — funding level or funding uncertainty ? To answer this

question, we compare deterministic funding patterns at different funding levels to stochastic

funding at 100% funding level. The results for N=24 are provided in Tables 2.8 and 2.9. The

results are very similar for other values of N .

Comparing rows 1 and 2 in Table 2.8 with Table 2.9, we see that at low (25% and 50%)

funding levels, the funding pattern is inconsequential. Receiving less overall funding severely
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hurts performance, making even the most uncertain funding (m=1) at 100% funding level

attractive in comparison in almost all cases (an exception being EFL funding at 50% funding

level).

Funding level EBL MBL ES MFL EFL

25% 8357.25 6894.14 6377.74 5861.40 4837.84
50% 8208.85 5282.63 4250.12 3220.79 2200.73
75% 8060.46 3671.19 2125.99 923.60 596.72

100% 7917.89 2086.40 213.73 26.65 16.80

Table 2.8: Average relative % cost difference for different deterministic funding patterns at
different funding levels

For 75% funding level, the results are very different (compare row 3 in Table 2.8 with Table

2.9). While the back–loaded vectors at 75% funding level perform significantly worse than even

the most uncertain funding at 100% funding level, front–loaded funding at 75% funding level

outperforms uncertain funding at 100% funding level, even when the uncertainty is considerably

reduced (m=24). This demonstrates that at relatively high funding levels, the choice between

deterministic funding and an even larger overall but uncertain funding is not obvious — the

answer depends on the deterministic funding pattern and the level of uncertainty in the larger

overall funding.

2.4 Generalization to Positive Lead Times and Uncertain In-
stallment Amounts

In this section, we demonstrate that one of the key results of our paper — the optimality of

a state–independent modified base stock policy — holds under more general settings than the

one we considered in Section 2.2. Consider a generalized version of the funding problem P1,

which we label problem P3, where the replenishment lead time λ could be ≥ 0. Furthermore,

the funding received in period t could be any random variable on [0, outstanding funding at

m=1 m=2 m=3 m=4 m=6 m=12 m=24

2800.83 1968.97 1710.29 1630.68 1518.65 1407.39 1363

Table 2.9: Average relative % cost difference (relative to NFC) due to funding timing uncer-
tainty

29



the beginning of period t], with no restriction on the specific shape or form of the distribution.

Notice that the funding dynamics described in Section 2.2 imply that the funding received in

period t − 1 would equal
Ot∑

j=Ot−1+1

zj with probability Pt(Ot, Ot−1). It is not hard to see that

this is a special case of the more general funding situation that we assume for problem P3.

Let Gλt (xt, w
1
t , w

2
t , ..., w

λ−1
t , Rt, OFt) be the minimum expected cost–to–go in this more gen-

eral setting given that xt is the on–hand inventory (after receiving shipments at the beginning

of the period), wit represents the order placed i periods ago, OFt is the outstanding funding

amount at the beginning of period t, and Rt = cIPt + rt. Here IPt = xt +
λ−1∑
j=1

wjt represents the

inventory position at the beginning of period t and rt is the capital available on–hand. Then,

(P3) Gλt (xt, w
1
t , w

2
t , ..., w

λ−1
t , Rt, OFt)

= min
0≤z≤ rt

c

 cz + bEζt [ζt − xt]+ + hEζt [xt − ζt]+

+EOFt−1|OFtEζtG
λ
t−1(xt − ζt + w1

t , w
2
t , ..., z, Rt − cζt + (OFt −OFt−1), OFt−1)


The terminal condition is Gλ0(x0, w

1
0, ..., w

λ−1
0 , R0, 0) = 0 ∀ (x0, w

1
0, ..., w

λ−1
0 , R0, 0).

Now consider a multi–period inventory management problem, which we label problem P4,

with the same cost and demand parameters and replenishment lead time as problem P3, but

no financial constraints. Let NV λ
t (xt, w

1
t , w

2
t , ..., w

λ−1
t ) be the minimum expected cost with t

periods to go corresponding to problem P4. Then,

(P4) NV λ
t (xt, w

1
t , w

2
t , ..., w

λ−1
t ) = min

z≥0

 cz + bEζt [ζt − xt]+ + hEζt [xt − ζt]+

+EζtNV
λ
t−1(xt − ζt + w1

t , w
2
t , ..., w

λ−1
t , z)


For problem P4, it is well known that there exists an optimal base stock level yλ∗t in each

period such that if the inventory position in period t is below yλ∗t , it is optimal to order up–to

yλ∗t , and not order otherwise. In Theorem 4, we prove that the unconstrained base stock levels

yλ∗t , y
λ∗
t−1, ..., y

λ∗
1 , optimal for problem P4, continue to be optimal for problem P3 with funding

constraints as well.

Theorem 4. Let yλ∗t , y
λ∗
t−1, ..., y

λ∗
1 be the optimal base stock levels corresponding to problem P4
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with replenishment lead time λ. Let (xt, w
1
t , w

2
t , ..., w

λ−1
t , Rt, OFt) be the state of the system in

problem P3 at the beginning of period t. Then, the optimal ordering policy for problem P3 has

the following simple structure.

Order up–to Rt/c if Rt/c ≤ yλ∗t

Order up–to yλ∗t if Rt/c > yλ∗t , IPt < yλ∗t and

Do not order if IPt ≥ yλ∗t .

2.5 Conclusions and Managerial Insights

Incorporating funding flows into operational decisions is necessary for making optimal and

operationally feasible decisions. In this chapter, we study the problem of managing inventory

of a health commodity subject to variable funding constraints. Our work brings out several

important insights that would be valuable to humanitarian supply chain managers. To begin

with, we find that preventing funding delays should be the top–most priority for humanitarian

organizations. Our results regarding the benefits of front–loaded funding are timely in light of

the on–going efforts within the global health community to achieve front–loaded funding. Our

study suggests that such initiatives to front–load the funding need to be reconciled with the

system funding level. Moderate front–loading brings significant benefits at all funding levels,

but extreme front–loading, while it looks promising, brings little to no additional benefits in

a fully–financed system. Hence, managers need to exercise caution and use careful judgement

when deciding the level of front–loading. We believe that our model can serve as a cost–benefit

analysis tool to facilitate such decisions.

Often times, humanitarian organizations make an all–out effort to raise as much funding as

possible to support the various programs but our analysis shows that such an approach is not

the most effective one. Our results indicate that even if the funding level is lower, performance

may be better if the funding is received earlier or in a steady fashion.

Finally, managers also need to pay close attention to their operating environment when

taking steps to improve the funding situation. One such aspect is the volatility of the underlying
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demand. While the magnitude of the benefits of front–loading increase with demand volatility,

the opposite is true regarding the savings resulting from reducing the funding uncertainty.

Given such contrasting results, a good understanding of the operating environment would help

in steering the funding–related efforts in the right direction. Front–loading initiatives are likely

to yield significant benefits in highly unpredictable environments like HIV/AIDS programs

while reducing the funding uncertainty can be expected to result in substantial savings in case

of health commodities like reproductive supplies which have a stable and predictable demand

pattern.

One of the limitations of our study is the assumption that each patient/customer requires

only one dose/unit of the product. In the problem that motivated this study, children diag-

nosed with severe acute malnutrition are given RUTF for several weeks. Typically, the child’s

condition improves with every dose while non–provision could lead to health deterioration.

Capturing this disease progression would require a more sophisticated model that the one we

considered in this chapter. Given that it might take several weeks before a child completely

recovers from malnutrition, there will be groups of children in different stages of malnutrition

enrolled in the program at any given point in time. An important issue that arises in this

context is the allocation of a limited quantity of a scarce resource, e.g. inventory or funding,

amongst people in different health states. This will be the focus of our analysis in the next

chapter.
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Chapter 3

Resource Allocation in Humanitarian
Health Settings

3.1 Introduction

In Chapter 2, we analyzed the impact of funding in humanitarian operations in the context

of managing inventory of a nutritional product in the presence of funding constraints over

a finite horizon. We studied the inventory management problem under the assumption that

each customer/patient requires only one dose/unit of the product, and unfulfilled demand is

completely backlogged. We characterized the optimal inventory replenishment policy and also

offered several insights into the impact of amount, schedule, and uncertainty in funding. The

single–dose assumption made in Chapter 2 makes the model general enough to be applicable to a

variety of humanitarian health programs but it is a simplifying assumption in view of the specific

malnutrition context that motivated the work, since children who suffer from malnutrition are

typically treated using RUTF for several weeks before they are declared fit and discharged from

the program.

In this chapter, we extend the work in Chapter 2 by relaxing the single dose assumption and

allow for the possibility that patients in different health states might require treatment over

different lengths of time (corresponding to different amounts/doses of the product) before they

are completely cured. In the context of the malnutrition program that motivates our work,

children who are screened by the program and diagnosed as malnourished could be of either

type: moderately malnourished or severely malnourished. The treatment duration depends

on whether they are moderately or severely malnourished and the response to “treatment”



or “non–treatment” in any given period could also be different between the two groups. We

point out that the multi–dose framework, allowing for different lengths of treatment time, is

not specific to our context and is appropriate in many other health care settings as well.

Using a two–health states model, we study the problem of dynamic allocation of a limited

amount of resource, which in our case is donor–funding, to patients in different health states

over a finite horizon with the objective of minimizing the number of ‘disease–adjusted life

months’ lost. One of the two health states is assumed to be a less severe health state and the

other one is more severe. Funding is received in installments throughout the planning period

with uncertainty around the timing and amount. New patients of both health states enter the

program in every period. In this setting, a key decision facing public health managers is: how

to allocate funding between people in the two health states and in anticipation of a shortage

in funding in the near future, should they reserve a certain amount of funding for the more

severe patients who might show up in the future periods? Answering this question assumes

significance in light of the variable and unpredictable nature of the funding in the humanitarian

health sector but the decision is significantly complicated by the fact that in the absence of

treatment, patients in the less–severe health might deteriorate to the more–severe state. Our

goals for this chapter are two–fold: (i) to determine ways to efficiently allocate funding between

the two health states in every period, taking into account the current funding availability and

future financial inflows, and (ii) characterize the impact of system parameters, funding level

(total funding received as a % of the funding required to completely cure the total expected

state 1 and state 2 patients), and uncertainty in funding on the number of disease–adjusted life

months lost.

Among other results, we show that the optimal allocation policy is state–dependent, which

significantly complicates the computation of the optimal policy. We prove several monotonicity

results that can help reduce the computational burden. However, despite the simplifications,

determining the optimal policy is challenging for longer planning horizons and it may not be

practical for realistic–size problems. Hence we propose two heuristics, FCFS heuristic and the

PNS heuristic, that are easy to understand and implement. Our computational results show

that PNS performs well in terms of the solution quality and running time across a wide range
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of scenarios. The FCFS heuristic also performs well in many cases but it is less robust than the

PNS heuristic and in certain settings, there is a noticeable performance gap between the two

heuristics.

Our computational study also provides several insights regarding the impact of funding level

and uncertainty in funding. For example, our analysis shows that the impact of uncertainty in

funding varies depending on the funding level and the length of the planning horizon. For short–

planning horizons, uncertainty in funding leads to a loss of disease–adjusted life months while

in case of longer planning horizons, receiving the funding in fewer, lumpy installments involving

more uncertainty in funding timing might be preferable only in under–financed systems ( <

100% funding level). In well–funded systems ( ≥ 100% funding level), having a smooth and

predictable funding pattern is always preferred. Our analysis also shows that the trade–off

between receiving less overall funding in a more predictable fashion and receiving additional

funding with increased uncertainty is not straight forward — in under–financed systems, in

general, it is preferable to go for the additional funding while in systems with buffer funding

( > 100% funding level), the losses from the increased uncertainty outweigh the benefits of

additional funding.

3.1.1 Literature Review

Our work is mainly related to two streams of literature. 1. Inventory management with multiple

demand classes 2. Resource allocation in humanitarian health settings.

Inventory management with multiple demand classes: The Operations Management

(OM) literature is rich with papers studying the problem of managing the inventory of a product

when facing demand from multiple customer classes. The customer classes could be different

from one another in terms of their penalty costs, and whether unfulfilled demand from each

class is lost or backordered. Klejin and Dekker (1998) provide an excellent overview of inventory

systems with multiple demand classes. Within the multiple demand class literature, many

authors have studied the inventory management problem under both periodic review (e.g.,

Evans 1968, Kaplan 1969, Veinott 1965, Topkis 1968, Frank et al. 2003) and continuous–review

(e.g., Nahmias and Demmy 1981, Deshpande et al. 2003, Arslan et al. 2007) settings. A key
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differentiating factor between our work and this stream of literature is that, in our work, patients

transition between the two health states (due to either treatment or non–treatment) while

customers do not switch or move between the classes in the multiple demand class literature.

The transition of patients between the two health states complicates the allocation decision

further since the number of patients in the two health states in the future periods now depend

on the allocation levels to both the health states in the current period.

Resource allocation in humanitarian health settings: A few papers within the OM

literature have looked at resource allocation problems from a global health perspective. Deo at

al. (2012) study a model of community–based health care delivery system with limited capacity

with the objective of maximizing health outcomes through better capacity allocation across

multiple patients. In their work, the available capacity is fixed and unlike funding, unused

capacity cannot be utilized in the later periods. Deo and Corbett (2010) consider the dynamic

allocation of a scarce resource, ARV drugs, used in the management of HIV/AIDS. In their

model, the trade–off is between continuing treatment for current patients and initiating treat-

ment for new patients. A key differentiating factor between our work and their model is that,

in Deo and Corbett (2010), the supply of ARV drugs in every period is an i.i.d random variable

while in our case, funding received is correlated across periods. Yang et al. (2013) develop an

optimization model to choose which children (from among a group) should receive ready–to–use

therapeutic or supplementary food, based on a child’s sex, age, height–for–age and weight–for–

height scores, to minimize the mean number of disease–adjusted life years (DALYs) lost. In

their model, however, the total funding for the entire planning horizon is available upfront

while we study the allocation problem in a setting where funding is received in installments

throughout the planning period.

The rest of the paper is organized as follows. In Section 3.2, we describe the model in

detail. In Section 3.3, we present results regarding the optimal allocation policy. In Section

3.4, we develop two heuristics to handle realistic–size problems. Section 3.5 provides some

analytical results regarding the impact of funding. In Section 3.6, we discuss the results of our

computational study to evaluate the performance of the heuristics and also analyze the impact

of system parameters and changes in funding. The last section concludes the paper.
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3.2 Model

We consider the problem of dynamic allocation of a scare resource, which in our case is donor–

funding, to patients in different health states over a finite horizon. The planning horizon is

divided into T periods, with time indexing done in the reverse order, i.e., period T is the first

period, followed by T -1, T -2,..., and so on. At the start of any period t, we assume that there are

n1
t patients in the less–severe health state, labeled ‘state 1’ and n2

t patients in a more–severe

health state, labeled ‘state 2’. In the malnutrition context, state 1 could be thought of as

representing children suffering from moderate acute malnutrition and state 2 to be representing

severe acute malnutrition. While it is possible that there could be more than two health states

depending on the disease, we believe that the two–state model captures the key trade–offs

inherent in resource allocation problems faced by public health managers, while keeping the

model tractable for computational purposes. Before we get into the dynamics concerning n1
t

and n2
t , let us first explain the distinguishing factors between health states 1 and 2.

The two states differ from one another along three key dimensions: 1. how the health state

changes in response to “non–treatment” in any given period. 2. the per–period costs associated

with being in state i, i = 1, 2, and 3. the terminal cost. Let us first discuss the evolution of

the patients’ health states in the absence of treatment. In any given period, when treatment is

not provided, we assume that α11 fraction of the patients in state 1 will continue to remain in

state 1, while the remaining α12 = 1− α11 fraction deteriorate to state 2. In case of state 2, in

the absence of treatment, we assume that α22 fraction of the patients will continue to remain

in state 2, while the remaining α2E=1 − α22 fraction exit the system. Patients could exit the

system for a variety of reasons, e.g., death, defaulting, loss of confidence in the program etc. In

our analysis, we do not distinguish between the different reasons (since in practice it is often

difficult to ascertain the exact reason) and assume that for every patient who exits the system

in period t, we incur a fixed penalty of lEt . In the traditional Operations Management literature,

lEt is often the lost revenue from not being able to satisfy customer demand. In the health care

literature, there exist several approaches to quantify lEt , the most popular one being “Years of

Life Lost” (YLL) due to premature death. YLL is typically calculated as the “life expectancy”

at the age of death, a population–wide estimate that is published and regularly updated by the
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World Health Organization (WHO). Variants of the life–expectancy measure include “healthy

life expectancy” (HLE) and “disease–adjusted life expectancy” (DALE). In our work, we use

DALE (see Mathers et al. 2000) in the calculation of lEt . Treating one period of our analysis as

roughly a month, we compute lEt as follows: lEt = (t+1)+DALE×12, i.e., lE disease–adjusted

life months are lost when a person exits the system. Notice that the addition of the t+ 1 term

in the calculation of lEt implies that there is a higher penalty incurred for early exits from the

system.

Next, consider the per–period costs. Since people in both states 1 and 2 suffer from a

“less than ideal” health state, we assume that there is a per–period (penalty) cost bi, i = 1, 2

associated with being in health state i, i.e., it captures the burden of not being in a perfectly

healthy state. The penalty for being in a perfect health state is 0. Naturally, 0 ≤ b1 ≤ b2.

Again, there exist several approaches in the health care literature to quantify the per–period

penalty bi. One such approach is the use of “disability weights” employed in the calculation of

disease–adjusted life years (DALYs). The disability weights for several diseases and conditions

are published and regularly updated by WHO (see WHO 2004). To better understand how the

disability weights can be used, let us suppose that a person suffers from a particular disease

which has a disability score of 0.2. The disability scores for perfect health and death are 0

and 1 respectively. Then, for every year lived with the disease (with a disability score of 0.2),

0.2×1=0.2 DALYs are lost. Notice that the disability weights offer a natural way of quantifying

the per–period cost bi, since they explicitly capture the relative impact of being in a particular

health state in any given period.

In addition to the per–period costs, we also consider terminal costs t1 and t2 associated

with health states 1 and 2 respectively. In contrast to the per–period costs, which capture the

short–term effects of being in a particular health state, the terminal costs capture the long–term

impact. The long–term impact could be very different depending on the disease. For certain

diseases, there is very little to no long–term impact while in case of diseases like HIV/AIDS, and

stunting due to chronic malnutrition, the impact could be life–long. In our work, we calculate

ti, i = 1, 2 to be mortality ratei× DALE × 12 where mortality ratei refers to the mortality

rate in health state i. We provide additional details regarding the calculation of the per–period
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and terminal costs in Section 3.6.

So far, we have not discussed the effect of treatment on patients belonging to the two health

states. We assume that treatment is perfect for both the health states, i.e., after receiving

treatment, patients in state 2 transition to state 1 and patients in state 1 are completely cured

and discharged from the system (not to be confused with exiting the system).

3.2.1 Patient Entry Dynamics

New patients belonging to both health states enter the system in every period. We use an

incidence model to capture the patient entry dynamics — in every period t, we assume that

a random number, denoted by nNt , of people enter the catchment population. For example, in

the malnutrition context, this could represent the number of newborns in a particular month.

We assume that nNt is independent and identically distributed with a probability distribution

function gt and cumulative density function Gt. A fixed fraction, β1 +β2, of the people entering

the catchment population are assumed to be infected/suffering from the disease, with β1 fraction

belonging to state 1 and β2 fraction belonging to state 2. The remaining fraction, 1− β1 − β2,

are healthy and do not require any treatment. β1 and β2 can be thought of as the “disease

incidence rates”, i.e., the number of new cases of the disease divided by the number of people

at risk over a given time period.

3.2.2 Funding Inflows

The system is funded by external donor–funding, received in multiple installments over the

planning horizon. Typically, donors make a commitment at the beginning of the fiscal year

after a careful evaluation of the funding proposals received from the recipient countries. The

total promised amount, which we denote by TPF , is then dispersed in installments of various

sizes throughout the year, depending on the budget and funding cycles of the donor. We should

remark that, while the amount in the individual installments may vary, in most cases, the

committed amount is received in full before the end of the planning period for which funding

was sought.
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We capture the funding inflow using a very general model of ‘outstanding funding’, denoted

by OFt, at the beginning of every period. OFt indicates the amount that is yet to be received

as of period t, after receiving funding, if any, at the beginning of that period. Of course,

OFT+1 = TPF . Given OFt, let OFt−1 |OFt denote the random variable corresponding to the

outstanding funding amount at the beginning of period t−1. We do not impose any specific

restrictions on the shape or form of OFt−1 |OFt , but we will introduce conditions that OFt−1 |OFt

needs to satisfy for certain results to hold, as and when required. Note that OFt − OFt−1 is

the funding received at the beginning of period t-1. Also, in light of our earlier comment that

donors typically disburse the committed amount in full before the end of the planning period,

we assume that OF1=0 always.

3.2.3 Objective Function

Before we state our objective function, let us specify the sequence of events in any given period.

1. First, funding (if any) is received at the start of period t and simultaneously, new patients

enter the system. 2. Decisions concerning allocations to states 1 and 2 are made, subject to

capital available on–hand and the number of patients in the two health states. 3. Based on

the allocation decisions, state–transitions take place. We assume that the transitions happen

instantaneously. 4. Finally, per–period penalties are incurred based on the number of patients

in every health state and the number of people exiting the system.

Let rt represent the funding available on–hand at the beginning of period t, after receiving

funding (if any) at the beginning of the period. Given state variables n1
t , n

2
t , rt and OFt,

let Vt(n
1
t , n

2
t , rt, OFt) denote the ‘minimum expected disease–adjusted life months lost’ with t

periods–to–go. Then, the optimality equations are given by

Vt(n
1
t , n

2
t , rt, OFt) = min

0 ≤ a1 ≤ n1
t

0 ≤ a2 ≤ n2
t

a1 + a2 ≤ rt

 b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2)

+EnNt−1
EOFt−1|OFtVt−1(n1

t−1, n
2
t−1, rt−1, OFt−1)



(3.1)
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where n1
t−1 = a2 + α11(n1

t − a1) + β1n
N
t−1, n2

t−1 = α12(n1
t − a1) + α22(n2

t − a2) + β2n
N
t−1 and

rt−1 = rt−a1−a2+(OFt−OFt−1). In equation (3.1), b̂1 = α11b
1+α12b

2, b̂2t = α22b
2+α2El

E
t , and

a1 and a2 represent the allocations to states 1 and state 2 respectively. The optimal allocation

levels are denoted by a1∗ and a2∗. The boundary condition is given by

V0(n1
0, n

2
0, r0, 0) = (b1 + t1) min{r0, n

2
0}

+ (b̂1 + α11t
1 + α12t

2)(n1
0 − (r0 − n2

0)+)+ + (b̂20 + α22t
2)(r0 − n2

0)+ (3.2)

In our analysis, we assume that no new patients enter the system at t=0. Relaxing this

assumption would not alter any of our results. For convenience, also define

Ct(a
1, n1

t , n
2
t , rt, OFt) =

 b1 min{n2
t , rt}+ b̂1(n1

t − a1) + b̂2t
(
n2
t −min{n2

t , rt}
)

+EnNt−1
EOFt−1|OFtVt−1(n1

t−1, n
2
t−1, rt−1, OFt−1)

 (3.3)

In the above equation, a2 is replaced with min{n2
t , rt} in the definitions of n1

t−1, n
2
t−1 and

rt−1 as well. Some intuitive properties of the function Vt can be readily proven. For example,

for fixed n1
t , n

2
t and OFt, Vt is monotone decreasing in rt.

Our first key result is the joint convexity of Vt in state variables n1
t , n

2
t and rt, for fixed

OFt. We prove this in Lemma 3. For brevity, we use the following notation in our analysis:

Nt = (n1
t , n

2
t ), St = (n1

t , n
2
t , rt). The proofs for all the results in this chapter can be found in

Appendix B.

Lemma 3. Vt(St, OFt) is jointly convex in St for fixed OFt.

In section 3.3, we use the convexity of Vt to establish several structural results concerning

the optimal allocation policy.

3.3 Optimal Allocation Policy

Throughout our analysis, we will assume that the following intuitive condition holds: b1δ +

Vt−1

(
n1
t−1 + δ, n2

t−1 − α22δ, rt−1 − δ,OFt−1

)
≤ b̂2t δ + Vt−1

(
n1
t−1, n

2
t−1, rt−1, OFt−1

)
, i.e., it is
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never optimal in any period t to not serve state 2 patients in that period and instead, re-

serve that funding to treat potential future state 1 and/or state 2 patients. This implies that

a2∗(St, OFt) = min{n2
t , rt}. Determining the optimal allocation level for state 1 patients is

more challenging and will be the focus of our analysis going forward. The following theorem

offers a first step in determining the optimal allocation policy in period t.

Theorem 5. Fix OFt. Then, given state vector St, the optimal allocation level for state 1

patients in period t is the following:

1. If n2
t ≥ rt, then a1∗ = 0.

2. If n2
t < rt, then a1∗ = max{a1 : ∂Ct

∂a1
≤ 0, 0 ≤ a1 ≤ min{n1

t , rt − n2
t }} where Ct is given by

equation (3.3).

Theorem 5, while offering a first–step in determining a1∗, demonstrates that the optimal

allocation policy is state–dependent. The state–dependency significantly complicates the com-

putation of the optimal policy due to the so–called “curse of dimensionality”, especially for long

planning horizons. In an effort to simplify the computation of the optimal policy, we explore

additional structural properties of the optimal policy that would help narrow down the search

space for a1∗.

3.3.1 Monotonicity of the Optimal Policy

In Theorem 5, we established that a1∗ is a function of St = (n1
t , n

2
t , rt). The following proposition

demonstrates that the optimal allocation level a1∗ is monotone increasing in St\{n2
t } = (n1

t , rt)

for fixed n2
t . We refer to a state vector as increasing if all components of the vector are at least

weakly increasing.

Proposition 3. For fixed n2
t and OFt, a

1∗(St\{n2
t }, n

2
t , OFt) is (at least weakly) increasing in

St\{n2
t }.

The monotonicity of a1∗ established in Proposition 3 can be exploited to reduce the com-

putational effort required to identify the optimal allocation policy for a range of values of rt.

The following corollary collects the relevant results.
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Corollary 1. Let Nt and OFt be fixed. Then, the following results regarding the optimal

allocation policy hold.

1. Let rt > n1
t + n2

t and suppose that it is optimal to allocate a2 = n2
t and a1 = n1

t . Then,

a2 = n2
t and a1 = n1

t are also optimal for every r̂t ≥ rt.

2. Let n2
t ≤ rt ≤ n1

t +n2
t and suppose that it is optimal to allocate a2 = n2

t and a1 = rt−n2
t .

Then, a2 = n2
t and a1 = r̂t − n2

t are optimal for all r̂t such that n2
t ≤ r̂t ≤ rt ≤ n1

t + n2
t .

3. Let rt > n1
t + n2

t and suppose that it is optimal to allocate a2 = n2
t and a1 < n1

t . Then,

a2 = n2
t and â1 ≤ a1 < n1

t are optimal for all r̂t such that n1
t + n2

t < r̂t ≤ rt.

4. Let n2
t ≤ rt ≤ n1

t + n2
t and suppose that it is optimal to allocate a2 = n2

t and a1 <

rt − n2
t ≤ n1

t . Then, a2 = n2
t and â1 ≤ min{a1, r̂t − n2

t } are optimal for all r̂t such that

n2
t ≤ r̂t ≤ rt ≤ n1

t + n2
t .

Proposition 3 and Corollary 1 could prove to be useful in narrowing the search space

for a1∗. However, both results, which demonstrate the monotonicity of a1∗ with respect

to rt, are somewhat restrictive in terms of their applicability due to the requirement that

OFt be fixed. What could potentially be more useful is to characterize how a1∗ changes

when we increase rt by δ, while simultaneously decreasing OFt by the same amount. To

see why such a result could be useful, notice from equation (3.3) that, to determine a1∗,

we are essentially looking for a value of a1, 0 ≤ a1 ≤ min{n1
t , (rt − n2

t )
+}, that minimizes

the expression b̂1(n1
t − a1) + EnNt−1

EOFt−1|OFtVt−1(n1
t−1, n

2
t−1, rt−1, OFt−1). In order to evaluate

EnNt−1
EOFt−1|OFtVt−1(n1

t−1, n
2
t−1, rt−1, OFt−1), we need to compute a1∗(n1

t−1, n
2
t−1, rt−1, OFt−1)

for different realizations of nNt−1 and OFt−1. However, given the relation rt−1 = rt − a1 − a2 +

(OFt −OFt−1), it is easy to see that an increase (decrease) in OFt−1 is always associated with

a corresponding decrease (increase) in rt−1. Hence, if we could characterize how a1∗ changes

when we increase rt−1 by δ, while simultaneously decreasing OFt−1 by the same amount, then

a1∗(n1
t−1, n

2
t−1, rt−1, OFt−1) for one particular realization of OFt−1 could be used to narrow

down the search space for a1∗(n1
t−1, n

2
t−1, rt−1, OFt−1) for other possible realizations of OFt−1.

In order to establish structural results concerning a1∗ while simultaneously increasing rt
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and decreasing OFt by the same amount, we require some additional assumptions regarding

the funding inflow. We discuss the necessary conditions and associated results in Section 3.3.2.

3.3.2 Additional Monotone Properties of the Optimal Policy

Define a new state variable TFt = rt + OFt. TFt reflects the total funding that is available

to treat patients who are already in the system, and new patients who might enter the system

between period t and the end of the planning period. Now, rewriting equation (3.1) in terms

of TFt, we have

Jt(n
1
t , n

2
t , rt, TFt) = min

0 ≤ a1 ≤ n1
t

0 ≤ a2 ≤ n2
t

a1 + a2 ≤ rt

 b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2)

+EnNt−1
EOFt−1|OFtJt−1(n1

t−1, n
2
t−1, rt−1, TFt−1)



(3.4)

where TFt−1=TFt − a1 − a2 and n1
t−1, n

2
t−1 and rt−1 are the same as defined earlier following

equation (3.1). Let ft−1 = OFt−OFt−1 denote the funding received at the beginning of period

t − 1. Notice that ft−1 is a function of OFt, the amount that is outstanding as of period t.

Then we can rewrite equation (3.4) in terms of ft−1 as

Jt(n
1
t , n

2
t , rt, TFt)

= min

0 ≤ a1 ≤ n1
t

0 ≤ a2 ≤ n2
t

a1 + a2 ≤ rt

 b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2)

+EnNt−1
ETFt−rt−ft−1|TFt−rtJt−1(n1

t−1, n
2
t−1, rt−1, TFt−1)

 (3.5)
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In the above equation, rt−1 = rt−a1−a2 +(OFt−OFt−1) = rt−a1−a2 +ft−1. For convenience,

also define

C̃t(a
1, n1

t , n
2
t , rt, TFt) =

 b1 min{n2
t , rt}+ b̂1(n1

t − a1) + b̂2t
(
n2
t −min{n2

t , rt}
)

+EnNt−1
ETFt−rt−ft−1|TFt−rtJt−1(n1

t−1, n
2
t−1, rt−1, TFt−1)

 (3.6)

In equation (3.6), a2 is replaced by min{n2
t , rt} in the definitions of n1

t−1, n
2
t−1 and rt−1 as

well. Before we present the structural results established in this section, let us introduce the

assumptions concerning ft−1 that we use to prove the results.

r̂t + ft−1 |TFt−r̂t ≥st rt + ft−1 |TFt−rt for fixed TFt and r̂t ≥ rt (3.7)

{ft−1 |TFt−rt , TFt − rt ∈ R} ∈ SSCV (3.8)

Condition (3.7) states that the total funding available on–hand to treat patients in periods

t and t-1 is stochastically decreasing in the outstanding amount at the beginning of period

t. Condition (3.8) states that ft−1 belongs to the class of distributions satisfying the ‘strong

stochastically concave’ (SSCV) property.

Definition 4. (Shaked and Shanthikumar 2007) Let {X(θ), θ ∈ Θ} be a family of random

variables. The family {X(θ), θ ∈ Θ} satisfies the strong stochastically concave property,

denoted by SSCV, if there exist {X̂(θ), θ ∈ Θ} such that X̂(θ) =st X(θ) for each θ ∈ Θ and

X̂(θ) is concave in θ almost surely.

While the SSCV assumption might appear to be restrictive at first sight, the interpretation

of the requirement that ft−1 be strong stochastic concave in OFt is quite intuitive and natural

in our setting: the funding received at the beginning of t-1 is increasing and concave in the

amount that is outstanding as of period t. Recall that OFt indicates the outstanding amount

as of the beginning of period t, after receiving funding, if any, at the beginning of that period.

In Section 3.2.3, we proved that Vt is jointly convex in St = (n1
t , n

2
t , rt) for fixed OFt. That

result, however, neither implies nor guarantees the joint convexity of Jt in (St, TFt). A property

that is sufficient to guarantee the convexity of Jt is the strong stochastic concavity of ft−1 in
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OFt. We prove this in Lemma 4.

Lemma 4. If (3.8) holds, then Jt (St, TFt) is jointly convex in St and TFt.

The joint convexity established in Lemma 4 can be used to establish the following mono-

tonicity result concerning a1∗. Again, recall that St\{n2
t } = (n1

t , rt).

Proposition 4. If (3.7) and (3.8) hold, then, for fixed n2
t and TFt, a

1∗(St\{n2
t }, n

2
t , TFt) is (at

least weakly) increasing in St\{n2
t }.

Before proceeding further, it is illustrative to compare the monotonicity properties implied

by Propositions 3 and 4. Proposition 3 demonstrates that a1∗ is monotone increasing in rt for

fixed n1
t , n

2
t and OFt. Proposition 4 expands the scope of Proposition 3 by requiring only the

total remaining funding, TFt, to be fixed while allowing for simultaneous (equal and opposite)

changes in rt and OFt. The following corollary, derived from Proposition 4, is analogous to

Corollary 1.

Corollary 2. Let Nt and TFt be fixed. Then, the following results regarding the optimal

allocation policy hold.

1. Let rt > n1
t + n2

t and suppose that it is optimal to allocate a2 = n2
t and a1 = n1

t . Then,

a2 = n2
t and a1 = n1

t are also optimal for every r̂t ≥ rt.

2. Let n2
t ≤ rt ≤ n1

t +n2
t and suppose that it is optimal to allocate a2 = n2

t and a1 = rt−n2
t .

Then, a2 = n2
t and a1 = r̂t − n2

t are optimal for all r̂t such that n2
t ≤ r̂t ≤ rt ≤ n1

t + n2
t .

3. Let rt > n1
t + n2

t and suppose that it is optimal to allocate a2 = n2
t and a1 < n1

t . Then,

a2 = n2
t and â1 ≤ a1 < n1

t are optimal for all r̂t such that n1
t + n2

t < r̂t ≤ rt.

4. Let n2
t ≤ rt ≤ n1

t + n2
t and suppose that it is optimal to allocate a2 = n2

t and a1 <

rt − n2
t ≤ n1

t . Then, a2 = n2
t and â1 ≤ min{a1, r̂t − n2

t } are optimal for all r̂t such that

n2
t ≤ r̂t ≤ rt ≤ n1

t + n2
t .

Propositions 3 and 4, and the implied Corollaries 1 and 2, combined, could significantly

reduce the computational effort required to calculate the optimal allocation level a1∗ in every
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period. However, despite the (potential) simplifications offered by these results, we expect the

computation of the optimal policy to be challenging and computationally–intensive, especially

for problems with long planning horizons. This motivated us to look at the use of heuristics in

order to handle realistic–size problems in a reasonable amount of time.

3.4 Heuristics

We consider two heuristics for our model. The first heuristic, which we call FCFS, reflects

the allocation policy commonly used by global public health managers. The second heuristic,

which we refer to as PNS (standing for probability of no shortfall), computes the probability

that all state 2 patients will treated in the next period and uses that information to make the

allocation decision for state 1 patients in the current period. In what follows, we discuss the

two heuristics in greater detail.

3.4.1 Heuristic FCFS

The FCFS heuristic is very simple to understand and easy to implement. In every period,

a2 = min{rt, n2
t } and a1 = min{(rt−n2

t )
+, n1

t }, i.e., after treating state 2 patients, treat as many

state 1 patients as possible with the funding available on–hand. Notice that the FCFS heuristic

is naive since it does not take into account future funding availability for state 2 patients when

making the allocation decision for state 1 patients in the current period. Nevertheless, it remains

a popular approach in the humanitarian health sector and we are interested in evaluating its

performance relative to the PNS heuristic and the optimal policy.

3.4.2 Heuristic PNS

The PNS heuristic is based on the calculation of the probability that all state 2 patients would

be treated in period t-1, given that the allocation for state 1 patients in period t is a1. Of

course, 0 ≤ a1 ≤ (rt−n2
t )

+. When rt ≥ n2
t , for any a1, this probability can be easily computed
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as shown below.

Pr{all state 2 patients will be treated in t− 1} |a1

= Pr{rt−1 ≥ n2
t−1} |a1

= Pr{rt − n2
t − a1 + (OFt −OFt−1) ≥ α12(n1

t − a1) + β2n
N
t−1}

= Pr{OFt−1 ≤ rt − n2
t − a1 +OFt − α12(n1

t − a1)− β2n
N
t−1}

Then, the PNS heuristic chooses the allocation level a1 as follows: max{a1 : Pr{rt−1 ≥

n2
t−1} |a1 ≥ K, 0 ≤ a1 ≤ (rt − n2

t )
+} where K is a threshold value between 0 and 1. If no

such a1 exists, then a1=0. In our numerical experiments, we optimize over the range [0,1] to

determine the optimal value of K.

The PNS heuristic is appealing to us for two reasons. First, notice that the PNS heuristic

is the same as FCFS if we set K=0. Thus, by optimizing over the set of possible values for K,

the PNS heuristic offers a natural and intuitive way to improve upon the performance of the

FCFS heuristic.

To understand the other reason why we are interested in the PNS heuristic, consider expres-

sions (3.9) and (3.10), which represent the minimum expected disease–adjusted life months lost

corresponding to allocations a1 and a1− δ in period t. We are only interested in small values of

δ since our aim is to capture the impact of making incremental changes to the allocation level

a1. In writing these equations, we assume that rt ≥ n2
t since it is only under this situation that

the question of how much to allocate to state 1 patients arises.

b1n2
t + b̂1(n1

t − a1) + EnNt−1
EOFt−1|OFtVt−1(n1

t−1, n
2
t−1, rt−1, OFt−1) (3.9)

b1n2
t + b̂1(n1

t − a1 + δ) + EnNt−1
EOFt−1|OFtVt−1(n1

t−1 + α11δ, n
2
t−1 + α12δ, rt−1 + δ,OFt−1)

(3.10)

In the above expressions, n1
t−1 = n2

t +α11(n1
t−a1)+β1n

N
t−1, n2

t−1 = α12(n1
t−a1)+β2n

N
t−1 and

rt−1 = rt−n2
t −a1 +OFt−OFt−1. Notice that when we look at the difference between (3.9) and

(3.10), we are essentially considering the expected value of −b̂1δ+Vt−1(n1
t−1, n

2
t−1, rt−1, OFt−1)−
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Vt−1(n1
t−1 + α11δ, n

2
t−1 + α12δ, rt−1 + δ,OFt−1), with the possibility of either rt−1 ≥ n2

t−1 or

rt−1 < n2
t−1, i.e., funding available at the beginning of period t-1 may or may not be sufficient

to treat all state 2 patients in that period. Now, if Vt−1(n1
t−1, n

2
t−1, rt−1, OFt−1)− Vt−1(n1

t−1 +

α11δ, n
2
t−1 + α12δ, rt−1 + δ,OFt−1) ≤ 0 when rt−1 ≥ n2

t−1, then we can reasonably expect the

difference between (3.9) and (3.10) to be negative if the probability of rt−1 ≥ n2
t−1 is greater than

some threshold value. Let us analyze the difference Vt−1(n1
t−1, n

2
t−1, rt−1, OFt−1)− Vt−1(n1

t−1 +

α11δ, n
2
t−1 + α12δ, rt−1 + δ,OFt−1) when rt−1 ≥ n2

t−1.

Vt−1(n1
t−1, n

2
t−1, rt−1, OFt−1) = b1n2

t−1

+ min

0 ≤ a1 ≤ n1
t−1

a1 ≤ rt − n2
t−1

 b̂1(n1
t−1 − a1)

+EVt−2(n1
t−2, n

2
t−2, rt−2, OFt−2)

 (3.11)

and

Vt−1(n1
t−1 + α11δ, n

2
t−1 + α12δ, rt−1 + δ,OFt−1) = b1(n2

t−1 + α12δ)

+ min

0 ≤ a1 ≤ n1
t−1 + α11δ

a1 ≤ rt − n2
t−1 + α11δ

 b̂1(n1
t−1 + α11δ − a1)

+EVt−2(n1
t−2 + ∆1, n

2
t−2 + ∆2, rt−2 + ∆3, OFt−2)

 (3.12)

In equations (3.11) and (3.12), the expectation is taken with respect to nNt−2 andOFt−2|OFt−1 ,

and in (3.12), ∆1 = (α12 + α2
11)δ, ∆2 = α12α11δ, ∆3 = α11δ. If α11=0, then, clearly, (3.11)-

(3.12)≤0. When α11 > 0, let â1 be the optimal solution for expression (3.12). Now, if â1 ≥ α11δ,

then using â1−α11δ as a solution for expression (3.11) again yields Vt−1(n1
t−1, n

2
t−1, rt−1, OFt−1) ≤

Vt−1(n1
t−1 + α11δ, n

2
t−1 + α12δ, rt−1 + δ,OFt−1). While it is not possible to guarantee that

â1 ≥ α11δ will always hold, it is clear that the possibility of the condition holding increases as

the value of α11 goes down. This suggests that the PNS heuristic may perform well for low val-

ues of α11 but the performance may be sensitive to α11. In Section 3.6, we test this hypothesis

and more broadly, evaluate the performance of the two heuristics relative to the optimal policy.
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So far, we have focused on answering the first of our two main research questions: how to

optimally allocate funding between the two health states in every period, taking into account

the current funding availability and future financial inflows. In the next section, we turn our

attention to the second research question: what is the impact of system parameters and funding

changes on the number of disease–adjusted life months lost? Specifically, we focus on the impact

of funding changes.

3.5 Impact of Funding Changes

In this section, we are mainly interested in exploring the impact of funding timing along two

dimensions: 1. changes to the expected time of receipt of funds 2. changes to the variability in

funding timing.

3.5.1 Expected Funding Timing

Consider funding scenarios 1 and 2 such that

OF 2
t−1 |OFt=i ≥st OF 1

t−1 |OFt=i ∀ i ∈ R+ and ∀ t ∈ {3, ..., T} (3.13)

where ≥st means first–order stochastic dominance. Condition (3.13) implies that for any given

value of outstanding funding at the beginning of period t, the outstanding funding at the

beginning of period t − 1 is (stochastically) larger under funding scenario 2, i.e., funds arrive

earlier under scenario 1 with probability 1 (and hence in expectation as well). Furthermore,

assume that condition (3.7), introduced in Section 3.3.2, continues to hold under both funding

scenarios. We denote the value functions associated with funding scenarios 1 and 2 by V 1
t and

V 2
t respectively. The following proposition demonstrates that the increased allocation flexibility

afforded by the (stochastically) early arrival of funds results in lower loss of disease–adjusted

life months.

Proposition 5. If condition (3.7) holds for both funding scenarios, and condition (3.13) holds,

then V 2
t (St, OFt) ≥ V 1

t (St, OFt).
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3.5.2 Variability in the Funding Timing

Next, we investigate the impact of variability in the funding timing. When examining the role

of variability, we look at the variance of the random variable OFt−1 |OFt . First, we compare

funding scenarios 1 and 2 where the variance of OFt−1 |OFt is higher under scenario 2 relative

to scenario 1, but the expected value remains the same across the two scenarios.

Higher Variability with Equal Means: Consider funding scenarios 1 and 2 such that

OF 2
t−1 |OFt=i ≥cvx OF 1

t−1 |OFt=i ∀ i ∈ R and ∀ t = 3, ..., T (3.14)

where ≥cvx represents the convex ordering. Condition (3.14) implies that the variability of

OF 2
t−1 is higher than the variability of OF 1

t−1 but E(OF 2
t−1 |OFt=i) = E(OF 1

t−1 |OFt=i). Thus

the convex ordering helps in isolating the impact of variability while keeping the expected value

the same. Also, assume that conditions (3.7) and (3.8), introduced in Section 3.3.2, continue to

hold under both funding scenarios. Then, the following result shows that increased variability

in the outstanding funding at the beginning of a period leads to a higher loss of disease–adjusted

life months.

Proposition 6. If conditions (3.7) and (3.8) hold for funding scenarios 1 and 2, and condition

(3.14) holds, then V 2
t (St, OFt) ≥ V 1

t (St, OFt).

Higher Variability with Unequal Means: Next, we compare funding scenarios 1 and

2 where the variance of OFt−1 |OFt is again higher under scenario 2 relative to scenario 1, but

without the restriction that the expected value of OFt−1 |OFt remain the same across the two

scenarios. In this case, we use the ‘dispersive ordering’ of random variables to characterize the

impact of variability.

Definition 5. (Shaked and Shanthikumar 2007) Let X and Y be two random variables with

distribution functions F and G respectively. Let F−1 and G−1 be the right continuous inverses

of F and G respectively, and assume that

F−1(β)− F−1(α) ≤ G−1(β)−G−1(α) whenever 0 < α ≤ β ≤ 1.
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Then, X is said to be smaller than Y in the dispersive order (denoted by X ≤disp Y ) .

The dispersive ordering leads naturally to a comparison of the variability of X and Y . In

fact, Y ≥disp X implies that V ar(Y ) ≥ V ar(X). The following property, connecting the ≤disp

and ≤st orderings, is useful in understanding the impact of variability.

Property 2. (Shaked and Shanthikumar 2007) Let X and Y be two random variables such that

X ∼ (lX , uX) and Y ∼ (lY , uY ), where lX , uX are the endpoints of the support of X and lY , uY

are the endpoints of the support of Y . The following results hold.

1. If lX = lY > −∞, then Y ≥disp X ⇒ Y ≥st X.

2. If uX = uY <∞, then Y ≥disp X ⇒ Y ≤st X.

Consider funding scenarios 1 and 2 such thatOF 1
t−1 |OFt=i ∼ (Lt−1(i), U1

t−1(i)) andOF 2
t−1 |OFt=i

∼ (Lt−1(i), U2
t−1(i)), i.e., OFnt−1 |OFt=i is distributed between Lt−1(i) and Unt−1(i), n=1,2, with

both boundaries included in the support. Suppose that

U2
t−1(i) > U1

t−1(i) ∀ i ∈ R+ and ∀ t ∈ {3, ..., T} and (3.15)

OF 2
t−1 |OFt=i ≥disp OF 1

t−1 |OFt=i ∀ i ∈ R+ and ∀ t = 3, ..., T (3.16)

where ≥disp indicates stochastic ordering according to the dispersive order. Condition (3.15)

states that the maximum possible outstanding funding at the beginning of period t − 1 is

higher under funding scenario 2. Condition (3.16) indicates that the outstanding funding at

the beginning of period t−1 is more variable under funding scenario 2. When conditions (3.15)

and (3.16) are combined, intuitively, it appears that funding scenario 2 would perform poorly

in comparison to scenario 1. We confirm this intuition in Proposition 7.

Proposition 7. If condition (3.7) holds for both funding scenarios, and conditions (3.15) and

(3.16) hold, then V 2
t (St, OFt) ≥ V 1

t (St, OFt).

Now, we consider an alternative funding scenario involving higher variability. Consider

funding scenarios 1 and 2 such that OF 1
t−1 |OFt=i ∼ (L1

t−1(i), Ut−1(i)) and OF 2
t−1 |OFt=i ∼
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(L2
t−1(i), Ut−1(i)). Suppose that

L2
t−1(i) < L1

t−1(i) ∀ i ∈ R+ and ∀ t ∈ {3, ..., T} (3.17)

Condition (3.17) states that the least possible outstanding funding at the beginning of period

t− 1 is lower under funding scenario 2.

Proposition 8. If condition (3.7) holds for both funding scenarios, and conditions (3.16) and

(3.17) hold, then V 1
t (St, OFt) ≥ V 2

t (St, OFt).

Propositions 7 and 8, viewed together, provide interesting insights into the impact of vari-

ability in funding timing. The results demonstrate that when E(OFt−1 |OFt=i) does not remain

the same, the effect of a change in the variability in funding timing is not easy to predict. In

fact, the results dispel the commonly held notion that variability is always bad. Whether more

variability is good or bad depends on whether the ‘variability’ is a favorable one as in condition

(3.17) or an ‘unfavorable’ one as in (3.15).

3.6 Computational Study

The goal of our computational study is to (i) evaluate the performance of the FCFS and PNS

heuristics relative to the optimal policy and (ii) to understand the impact of system parameters

and funding changes on the number of disease–adjusted life months lost.

Experimental setup: For our computational study, we vary a variety of parameters while

keeping other parameters fixed. First, we discuss about the parameters that are fixed through-

out the computational study.

Per–period penalties: We use the disability weights published by WHO (see WHO 2004)

to calculate the per–period penalties b1 and b2. One difficulty in estimating b1 and b2 is that

WHO (2004) publishes only the “average” disability score (=0.053) associated with wasting

from malnutrition without specifying the weights associated with moderate and severe acute

malnutrition in calculating the average. One way of overcoming this difficulty is to consider
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combinations of the per–period penalties satisfying the expression λb1 + (1 − λ)b2=0.053 for

different values of 0 ≤ λ ≤ 1. However, in our pilot runs, we observed that the number of

disease–adjusted life months lost over the planning period are not sensitive to changes in the per–

period penalties since the bulk of the contribution to the life months lost comes from the terminal

cost. Hence, we fix the per–period penalties to b1=0.0486 and b2=0.0632, corresponding to

λ=0.67. We chose λ to be roughly 2/3 since the proportion of moderately malnourished children

in the population is likely to be higher than the proportion of severely malnourished children.

Terminal costs: We estimate the terminal cost ti associated with health state i, i = 1, 2 to

be mortality ratei× DALE × 12 where mortality ratei refers to the mortality rate in health

state i and DALE is the disease–adjusted life expectancy. We use Bachmann (2009), a study

of the cost–effectiveness of community–based therapeutic care of severe–acute malnutrition in

Zambia, to guide our choice of mortality ratei and the value of DALE. Based on Bachmann

(2009), the disease–adjusted life expectancy of a child who recovers from malnutrition is 33.3

years and mortality rate2=0.181. There are conflicting views regarding mortality rate1, since

some studies in public health suggest that the mortality rate among children suffering from

moderate acute malnutrition is the same as the overall under–five mortality rate while others

suggest that mortality risk is slightly elevated in the presence of moderate acute malnutrition.

Based on Chen at al. (1980), an influential work on assessing the impact of nutritional status

on morality rates, we set mortality rate1=0.0364, which is the overall under–five mortality rate

in Zambia (Bachmann 2009).

New patient entry: Due to the computational complexity involved in determining the opti-

mal policy, and to facilitate comparisons between the heuristics and the optimal policy, we make

nNt , the number of new patients entering the system in any given period t, to be deterministic

throughout the numerical study. We fix nNt =50 ∀ t = 1, 2, ..., T . Garcia (2012) indicates that

on average, 30% of children in Sub-Saharan Africa are malnourished. Based on this estimate,

we assume incidence rates of β1=0.2 and β2=0.1 (totalling to 30%), since the proportion of

children who are severely malnourished is likely to be less than the proportion of moderately

malnourished children.

So far, we focused on the parameters that are fixed throughout our numerical study: the
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per–period penalties, terminal costs and new patient entry. Next, we proceed to discuss about

the parameters that are varied.

Transition rates: In our computational study, we vary both transition rates α11 and α22.

We considered three values of α11, α11=0.2, 0.5 and 0.8 and three values for α22, α22=0.2, 0.5

and 0.8.

Funding: We assume that the total promised funding is received in m ≤ T installments.

For each T , we consider several values of m details of which are given in Table 3.1.

T m

2 1,2
4 1,2,3,4
6 1,2,3,4,6
8 1,2,3,4,6,8
12 1,2,3,4,6,8,10,12
24 1,2,3,4,6,8,10,12,16,20,24

Table 3.1: Number of installments considered for each T

To capture the uncertainty in the funding timing, we vary the number of installments.

Depending on the number of installments (m) received, the amount received in each installment

varies (=total funding/m). We assume that, in each period, either zero or one installment is

received. Therefore, for fixed T and m, the total number of possibilities in terms of the time of

receipt of the m installments is T !
m!(T−m)! and we assume that all possibilities are equally likely.

Notice that, for a fixed T , as m increases from 1 to T , the variability in the funding received

until any given period decreases and hence, the funding becomes more even and predictable.

In the case of m = T , there is no uncertainty with respect to the funding timing.

We assume that the total funding received over the entire planning period is equal to funding

level×(β1 × nNt + 2 × β2 × nNt ) × T . Notice that (β1 × nNt + 2 × β2 × nNt ) × T is the total

funding required to completely cure the state 1 and state 2 patients who seek treatment over

the entire planning horizon, assuming that funding is available when required, and there is no

health state deterioration due to non–treatment. However, if state deteriorations occur due to

non–receipt or shortage of funds in certain periods, (β1 × nNt + 2 × β2 × nNt )× T may not be

sufficient to completely cure all state 1 and state 2 patients who seek treatment, since there is

no buffer funding available to meet the increased resource requirements due to state transitions.
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In our study, we consider funding levels of 25%, 50%, 75%, 100%, 125% and 150%. At 25%,

50% and 75% funding levels, the total funding received is clearly not sufficient to completely

cure the state 1 and state 2 patients who seek treatment over the planning horizon. At 100%

funding level, when there is no uncertainty in funding, the total funding received would be

sufficient to meet the state 1 and state 2 demand over the horizon. However, if there is funding

uncertainty and funding is not received in any period, the total funding received may not be

sufficient due to the increased resource requirements brought about by transitions to a more

severe health state. At 125% and 150% funding levels, there is buffer funding available to deal

with transitions to a more severe health state and hence, the total funding received might be

sufficient to completely cure all patients who seek treatment, even in the presence of funding

uncertainties.

Before we proceed to discuss the performance of the heuristics, we point out that all our

reported results are in terms of the equivalent disease–adjusted life years (DALYs) lost rather

than disease–adjusted life months lost.

3.6.1 Performance of the Heuristics

Table 3.2 displays the average and maximum percentage error of the FCFS and PNS heuristic

relative to the optimal allocation policy. Notice that in Table 3.2, we only report the results

for T ≤ 6 since computing the optimal policy is time–intensive and solving for longer planning

horizons was not practically feasible. We report the average percentage error for different

values of α11 separately since the error percentages vary significantly with α11. For each T ,

the numbers displayed in the table are averages over (3 α22 values)×(6 funding levels)×I(T )

problem instances where I(T ) represents the number of different m values considered for that

particular T . For example, we consider m=1,2,3,4 and 6 for T=6 so I(6)=5.

From Table 3.2, we see that for very low values of α11 (i.e., low probability of remaining in

state 1 in the absence of treatment), both the FCFS and PNS heuristics perform very well with

an average error of less than 0.5% and maximum error less than 5%. This is not surprising since

at α11=0.2, 80% of the people in state 1 will deteriorate to state 2 in the absence of treatment

and hence the expected benefit of not treating state 1 patients in the current period and instead
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T=2 T=4 T=6

α11 = 0.2
FCFS

Avg 0.02 0.01 0.43
Max 0.09 0.03 4.84

PNS
Avg 0.02 0.01 0.35
Max 0.09 0.03 4.84

α11 = 0.5
FCFS

Avg 0.20 0.17 1.24
Max 2.09 1.56 11.53

PNS
Avg 0.03 0.02 0.70
Max 0.13 0.26 11.53

α11 = 0.8
FCFS

Avg 1.44 3.41 6.10
Max 16.65 23.08 20.26

PNS
Avg 0.05 0.83 2.42
Max 0.25 9.31 10.85

Table 3.2: Performance of the heuristics: % error relative to the optimal allocation policy

T=2 T=4 T=6 T=8 T=12 T=24

α11 = 0.2
Avg 0.00 0.00 0.08 0.05 0.00 0.00
Max 0.00 0.00 0.48 0.15 0.03 0.00

α11 = 0.5
Avg 0.17 0.14 0.55 0.23 0.10 0.00
Max 1.04 0.84 2.02 0.69 0.32 0.01

α11 = 0.8
Avg 1.39 2.50 3.58 2.35 1.30 0.25
Max 8.31 10.95 11.94 6.45 3.11 0.42

Table 3.3: Performance of the FCFS heuristic: % error relative to the PNS heuristic

rationing those resources for future state 2 patients is likely to be limited.

At a moderate value of α11 (=0.5), both the heuristics still perform well on average. How-

ever, the maximum error of 11.5% for T=6 suggests that performance of both the heuristics

may be sensitive to system parameters and the particular funding scenario on hand.

As we increase α11 to 0.8, the PNS heuristic appears robust with an average error of less than

3%. The performance of the FCFS heuristic is reasonable although there is now a noticeable

difference between the performance of the two heuristics. The maximum error percentage

associated with the FCFS heuristic is also significantly higher when compared to the PNS

heuristic.

To further compare the performance of the FCFS and PNS heuristics, consider Table 3.3

which displays the error percentage of the FCFS heuristic relative to the PNS heuristic for

planning horizons of different lengths ranging from 2–24 periods. From the table, it is clear

that for α11=0.2 and 0.5, the performance of the FCFS heuristic closely matches that of the
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PNS heuristic. However, for α11=0.8, there is a significant difference in performance between

the two heuristics both in terms of the average and maximum error percentage, especially

for short–medium length planning horizons (4–8 periods). For very long horizons (T=24), the

performance gap narrows down and there is no noticeable difference between the two heuristics.

Running times: Table 3.4 shows the average running times for the two heuristics and the

optimal allocation policy. The numbers displayed here are averages over I(T )×3×3×6 problem

instances corresponding to different combinations of T and m, α11, α22 and funding levels

respectively.

T=2 T=4 T=6 T=8 T=12 T=24

Opt.Pol 0.04 1.38 3737.66 NA NA NA
FCFS 0.01 0.01 0.03 0.13 1.40 7.12

PNS 0.02 0.03 0.11 0.53 5.45 26.10

Table 3.4: Average running time in seconds

From the table, it is evident that the running times in case of the FCFS and PNS heuristics

are almost negligent in comparison to the optimal policy. The running time under the optimal

policy for T > 6 exceeded an hour during our pilot study. Thus, computing the optimal

policy may not be practically feasible for real–size problems with longer planning horizons.

The table also demonstrates that the PNS heuristic, albeit slower than the FCFS heuristic, is

computationally very efficient with an average running time of less than 5 seconds for problems

with 12 periods. For 24–period problems, given that the performance gap between the two

heuristics is very small (see Table 3.3), it might be beneficial to use the faster FCFS heuristic.

Overall, we make the following observations based on our computational study: 1. De-

termining the optimal policy is time–intensive and it may not be practically feasible except

for short planning horizons (2–4 periods). 2. For α11 ≤ 0.5, both FCFS and PNS heuristics

perform well and the performance gap between the two heuristics is narrow. Hence, it might be

beneficial to use the faster FCFS heuristic in this case. 3. For higher value of α11, it is better

to use the PNS heuristic, especially for short–medium length planning horizons (4-8 periods).

In what follows, we use the PNS heuristic to understand how the different system parameters

and funding impact performance. We use the PNS heuristic since it is guaranteed to perform

at least as well as the FCFS heuristic and it also appears to be more robust than the FCFS

58



heuristic across a wide range of parameter values. Nevertheless, we verified that all the insights

that we obtain using the PNS heuristic are consistent with the results for the FCFS heuristic

as well as the optimal policy (for T ≤ 6). Also recall that in case of the PNS heuristic, we

optimize over the value of the threshold K, i.e., the optimal threshold value could be different

for different problem instances. A question that naturally arises is: are the results obtained

using the PNS heuristic consistent with policies using a fixed threshold value? We compare

the results of the PNS heuristic with policies using a fixed threshold for different values of

K (=0,0.2.0.4,0.6,0.8,1). Barring a few exceptions, the results presented in section 3.6.3 are

generally consistent with the results for fixed threshold value policies. For the results in section

3.6.2, most of the insights are consistent, but there are few differences between the PNS heuristic

and the fixed threshold value policies and we highlight the differences as and when they arise.

3.6.2 Impact of Transition Rates

Tables 3.5, 3.6 and 3.7 display the average DALYs lost for different combinations of (α11, α22)

at 50%, 100% and 150% funding levels. We chose these three funding levels to present the

insights since they are representative of what happens when we increase the funding level.

Here, the averages are taken over 36 problem instances corresponding to different combinations

of T (ranging from 2 to 24 periods) and m. (see Table 3.1.)

α22

0.2 0.5 0.8

α11

0.2 4657.70 4581.87 3983.51
0.5 4236.21 4157.07 3598.29
0.8 3072.69 2973.91 2533.37

Table 3.5: Average DALYs lost for different combinations of (α11, α22) at 50% funding level

α22

0.2 0.5 0.8

α11

0.2 1307.04 1325.70 1264.13
0.5 1027.16 1014.91 936.06
0.8 687.74 610.46 454.40

Table 3.6: Average DALYs lost for different combinations of (α11, α22) at 100% funding level

From the tables, we see that for fixed α22, the DALYs lost are monotone decreasing in

α11. This is to be expected since a higher value of α11 means that a larger fraction of the
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α22

0.2 0.5 0.8

α11

0.2 737.25 636.92 439.90
0.5 673.53 579.51 384.83
0.8 542.66 465.26 303.80

Table 3.7: Average DALYs lost for different combinations of (α11, α22) at 150% funding level

untreated state 1 patients will continue to remain in state 1 and hence, the expected benefits

from rationing funding to treat future state 2 patients is likely to be higher in this case.

Now let us consider what happens when we fix α11 and increase α22. For medium and high

values of α11 (α11=0.5 and 0.8), the DALYs lost are monotone decreasing in α22 for all three

funding levels, as one would expect. However, notice that for α11=0.2, the monotone property

holds at 50% and 150% funding levels but not at 100% funding level. At 100% funding level,

the DALYs lost first increase and then decrease as we increase α22. To ensure that the same

pattern holds for other low values of α11, we ran additional experiments with α11=0.05, 0.10

and 0.15 and the results were consistent.

The reason behind this nonintuitive behavior with respect to α22 is subtle. First, let us look

at what happens when we increase α22. As we increase α22, a lower fraction of the untreated

state 2 patients exit the system and an increased fraction of them continue to remain in state

2. While this seems beneficial, it also has a potential downside — the increased fraction of

untreated state 2 patients remaining in the system implies lesser funding availability for state

1 patients in the next period (since state 2 receives priority over state 1). This results in fewer

state 1 patients getting completely cured in the next period, and at low values of α11, a majority

of the untreated state 1 patients deteriorate to state 2. The combination of low α11 and higher

α22 leads to a temporary increase in the number of state 2 patients in the system, which, in

turn, further reduces the funding availability for state 1 patients in the subsequent periods.

Now let us reconcile this discussion of the effect of increasing α22 with the funding level.

At a low funding level (50%), the funding received is barely sufficient to meet new state

2 demand. Hence, irrespective of the value of α22, only a low fraction of state 1 patients are

treated and a majority of them transition to state 2. Given that only a small number of state 1

patients are treated to begin with, the reduction in the number of state 1 patients treated (and
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the associated increase in the number of state 2 patients) that is attributable to an increase in

α22 is likely to be minimal. Thus, increasing α22 would have very little impact on the number of

state 2 patients in the system but the fraction of untreated state 2 patients exiting the system

decreases with α22. This explains why the monotone property holds at 50% funding level.

Now let us consider 100% and 150% funding levels. If the system has buffer funding available

(as in the case of 150% funding level) to handle the temporary increase in the number of state

2 patients, the buffer funding can be used to treat the additional state 2 patients without

impacting the funding availability for state 1 patients in the subsequent periods. Hence, in

this case, the monotone property holds as one might expect. However, in the absence of buffer

funding (as with 100% funding level), the system does not have the flexibility to cope up

with the increased state 2 demand, leading to a gradual build up of state 2 patients in the

system (due to increasingly less funding availability for state 1). The rate of buildup of state 2

patients increases with α22. Given limited total funding, the gradual build up of state 2 patients

implies that, after a certain number of periods, an increasing number of state 2 patients are

also left untreated. This complex interaction between the number of people completely cured,

the magnitude of build up of state 2 patients in the system and the fraction of those patients

exiting the system results in the increase followed by a decrease in the number of DALYs lost

as we increase α22 at 100% funding level.

At 100% funding level, the insights regarding the effect of increasing α22 obtained using the

PNS heuristic are also somewhat different from the insights obtained using the fixed threshold

value heuristics. In case of the fixed threshold policies, we find that, depending on the value of

K, the DALYs lost could exhibit a non–monotone pattern even for medium and high values of

α22 (α22=0.5, 0.8) whereas in case of the PNS heuristic, we observe the non–monotone pattern

only for low values of α22(=0.2).

In summary, we see that the effect of a change in the transition rates is on expected lines

for the most part. However, as our results demonstrate, the relationship between transition

rates and DALYs lost is not always straightforward due to the complex interaction between

α11, α22 and funding availability in the system. Hence, any conclusions regarding the impact

of a change in the transition rates should be drawn only after taking into account the specific
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system parameters and the funding scenario on hand.

In addition to the impact of increasing α11 and α22 while keeping the other transition rate

fixed, Tables 3.5, 3.6 and 3.7 also throw light onto the relative impact of α11 vis–a–vis α22. From

the tables, we see that the DALYs lost at (α11, α22)=(0.2,0.8) are significantly higher when

compared to the DALYs lost at (α11, α22)=(0.8,0.2) for 50% and 100% funding levels while the

opposite is true at 150% funding level, i.e., the relative impact of α11 and α22 change as we

increase the funding level. The same insight holds for similar comparisons of (α11, α22). At 50%

and 100% funding levels, there is no buffer funding to deal with state 1 patients transitioning

into state 2 and hence α11 has a significant impact. With buffer funding available at 150%

funding level, the transition rate from state 1 to state 2 becomes less impactful while α22

assumes significance since α22 determines the number of people exiting the system in periods

when funding is not received.

3.6.3 Impact of Funding

Having investigated the impact of transition rates, we now look at how changes in funding

impact performance. Specifically, we investigate the impact of number of funding installments

(m) and funding level on the number of DALYs lost. First, we focus on the number of funding

installments.

Number of Funding Installments: Recall that for fixed T , the funding received until any

given period becomes more smooth and predictable as we increase the number of installments.

When m=T , there is no uncertainty with respect to the funding timing.

Tables 3.8, 3.9 and 3.10 display the average DALYs lost for different combinations of T and

m at 50%, 100% and 150% funding level respectively. The numbers displayed in the tables

are averages over 3×3=9 problem instances corresponding to different values of α11 and α22.

From the tables, it is clear that for very short horizons (T ≤ 4), the DALYs lost decrease with

the number of installments, i.e., it is preferable to have a relatively smooth funding situation.

For medium to long horizon lengths (N=6, 8, 12), at low funding levels (50%), it might be

beneficial to receive the funding in fewer, lumpy installments while a smoother funding pattern is
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preferable at 100% and 150% funding levels. At 50% funding level, when there is no uncertainty

in funding, the amount received in every period is sufficient to meet new state 2 demand and

only a part of the new state 1 demand. The untreated state 1 patients deteriorate to state 2

and this leads to an increase in the number of state 2 patients who may not receive treatment.

When funding is lumpy, there is a possibility that no funding is received until later in the

horizon, in which case there would be a significant increase (relative to the case where there is

no uncertainty in funding) in the number of state 2 patients who may not receive treatment.

However, it is also equally likely that a majority of the funding is received early in the planning

horizon, which could be used to prevent state 1 patients from deteriorating into state 2 in the

earlier periods. In expectation, at 50% funding level, the benefits of lumpy funding outweigh

the potential losses while the opposite is true at 100% and 150% funding levels.

For very long planning horizons (N=24), the optimal number of installments increases with

the funding level. At low funding levels (50%), it might be beneficial to receive the funding

in fewer, lumpy installments. The reasoning is similar to our earlier discussion for medium

to long horizon lengths. At 100% funding level, notice that when there is no uncertainty in

funding, the amount received in every period exactly matches the funding required to satisfy

state 1 and state 2 demand. Hence, if it is possible to receive the funding in T evenly–spread

installments, that should always be preferred. However, in situations where it is not possible

to completely eliminate the uncertainty the funding, it is better to receive the funding in a

moderate number of installments. The reasoning is as follows: with uncertain funding, the

funding received in every period does not exactly match the funding required to meet state 1

and state 2 demand. This mismatch between funding received and funding required decreases

with the number of installments. However, on the downside, the amount received in each

installment also decreases as we increase the number of installments, resulting in less flexibility

to deal with situations where funding is not received in the earlier periods. Given the trade–offs

associated with increasing the number of installments, our results show that it is better to avoid

the extremes and receive the funding in a moderate amount of installments. At 150% funding

level, the additional amount received in each installment (when compared to 100% funding

level) mitigates the potential value of flexibility afforded by fewer, lumpy installments and in

this case, we see that it is preferable to have a relatively smooth funding situation. The same
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insight also holds at 125% funding level.

Overall, our analysis provides the following insights regarding the impact of uncertainty in

funding: 1. For short planning horizons (T ≤ 4), reducing the funding uncertainty is always

beneficial. 2. For T ≥ 6, the optimal number of installments increases with the funding level.

The flexibility provided by fewer, lumpy installments is beneficial in under–financed systems

(<100% funding level) while a smooth funding pattern is preferable in well–funded systems

(≥100% funding level).

Interaction between funding level and uncertainty in funding: In this section, we

explore the interaction between funding level and uncertainty in funding. Specifically, we are

interested in answering questions of the following type: does altering the level of uncertainty in

funding lead to better performance even if the overall funding received is lower?

Due to space considerations, we do not provide the tables illustrating how changes in the

number of installments affect the DALYs lost at 25%, 75% and 125% funding levels, and discuss

only the insights. Our computational results indicate that the number of DALYs lost at 25%

(50%) funding level is significantly higher than the DALYs lost at all higher funding levels with

one exception — for very long horizons (T=24), receiving 25% (50%) funding in fewer, lumpy

installments (m ≤ 2) is better than receiving 50% (75%) funding in a relatively smooth fashion

(m > 12). At 75% funding level, again, the number of DALYs lost is significantly higher than

the DALYs lost at all higher funding levels except in situations where funding at 100%, 125%

and 150% funding are highly unpredictable (m=1) for very long horizons (T=24). Barring these

exceptions, in general we see that at 25%, 50% and 75% funding levels, insufficient funding hurts

performance and obtaining additional funding could significantly reduce the number of DALYs

lost.

More interesting insights emerge when compare the DALYs lost at 100% and 150% funding

levels. (A comparison between 100% and 125% funding level yields identical insights.) Notice

that for T ≤ 4, it is better to receive 100% funding in a less uncertain fashion (larger number of

installments) rather than receive additional but more uncertain funding. However, the insights

change when we increase the length of the planning horizon. For T ≥ 6, we see that less

uncertain funding at 100% funding level is preferable to relatively more unpredictable funding
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at 150% funding level only when the unpredictability in funding at 150% funding level is very

high (m ≤ 2). Otherwise, the buffer funding available at 150% funding level proves valuable

even if it comes at the cost of increased uncertainty in funding.

A comparison of 125% and 150% funding levels shows that it is better to receive 125%

funding in a less uncertain fashion rather than receive additional 25% funding but with more

uncertainty (except when the funding at 150% funding level is relatively smooth (m > 8) for

T=24). Intuitively, the reasoning is the following: at 125% funding level, there is already buffer

funding available to deal with health state deteriorations occurring due to non–treatment in

certain periods. Hence, in this case, the potential losses due to the increased uncertainty in

funding outweighs the marginal benefit of receiving an additional 25% in funding.

In summary, we see that, insufficient funding generally hurts performance in under–financed

systems (<100% funding level) and an additional influx of funds could bring significant benefits.

At 100% funding level, receiving additional but more uncertain funding is beneficial only for

medium to long planning horizons (T ≥ 6) and at 125% funding level, where there is buffer

funding available, additional funding should not be traded for more uncertain funding.

3.7 Conclusions and Managerial Insights

In this chapter, we study the problem of dynamic allocation of a scare resource, which in our

case is donor–funding, to patients in different health states over a finite horizon. We characterize

the optimal policy to be a state–dependent allocation policy and prove several monotonicity

properties of the optimal policy that could help reduce the computational burden involved in

determining the optimal policy. However, despite the potential simplifications offered by the

monotonicity results, determining the optimal policy may not be practical for problems with

long planning horizons. This motivated us to consider two heuristics that can handle real–size

problems. Our computational results suggest that the PNS heuristic compares favorably with

the optimal policy across a wide range of settings and it is easy to understand and use in

practice. The FCFS heuristic also performs well for many problem instances but it appears to

be less robust than the PNS heuristic, especially when α11 is large.
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Our analysis also provides several interesting insights into the impact of uncertainty in fund-

ing timing. For example, our analytical results show that increased variability in the funding

timing is not necessarily bad — in fact, we demonstrate that increased variability in funding

can be of both types, favorable and unfavorable. Our computational results demonstrate that

the impact of uncertainty in funding timing could be very different depending on the length

of the planning horizon and the system funding level. Hence, it is important to take into ac-

count the system characteristics when making funding–related decisions so as to maximize the

per–dollar impact of funding provided to global health programs. We believe that our model

can be valuable tool in this regard by demonstrating the impact of alternate funding patterns

to donors. In addition to uncertainty in funding, our work also throws light onto the impact

of funding level. We find that when there is no buffer funding available, it might be beneficial

to receive additional funding even at the cost of increased funding uncertainty but as the sys-

tem funding level increases and buffer funding becomes available, the losses from the increased

funding uncertainty outweigh the potential benefits from the additional funding.
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Chapter 4

Supply Vs. Demand Side Investment
in Humanitarian Operations

4.1 Introduction

Over the last two decades, international aid commitments and more importantly, development

assistance for health (DHA) has increased from $2.5 billion in 1990 to over $13 billion in 2005.

Over that time, DHA’s share of overall development assistance has increased from 4.6% in 1990

to almost 13% in 2005 (WHO 2007). However, despite the increased funding, the progress

on health outcomes has been disappointing with many countries falling significantly short of

the Millenium Development Goals (MDGs). While numerous factors contribute to the low aid

effectiveness, supply– and demand–side factors have been identified as one of the key reasons

behind low coverage levels and poor uptake of health services. Supply–side factors include

effectiveness and efficiency of the distribution systems, availability of qualified, trained and

motivated health personnel at service delivery points, and adequate planning, monitoring and

oversight of public health supply chains. Viewed together, supply–side factors determine the

availability of essential health supplies and services, and addressing constraints on the supply–

side is critical to strengthening health systems. Some examples of supply–side investments that

can improve the delivery of health services and products include employee training, investment

in physical infrastructure like warehouses and cold–storage systems, health information systems,

policy planning support, and general budget support to the Ministry of Health.

While supply–side factors focus on the availability of a product or service, demand–side

factors look at the consumer angle of health delivery. Demand–side factors include community



awareness of the availability and benefits of using a particular health commodity/service, and

social, economic and cultural barriers to access. The combination of the different demand–side

factors significantly impact the community uptake of the health services and hence, investing in

initiatives that would raise community awareness and reduce the barriers to access is an impor-

tant step in increasing aid effectiveness. Some examples of demand–side investments include

community mobilization activities, informational workshops, and voucher schemes, subsidies

and conditional cash transfer programs to remove the economic barriers to access.

Addressing both supply– and demand–side constraints are vital to increasing coverage levels

and improving aid effectiveness, but the balance between the two is a delicate one. Stimulating

community interest and providing better access would be of little use if there is insufficient

capacity or shortage of essential health commodities. For example, in Sierra Leone, the demand

for maternal health services increased dramatically after the launch of free public health services

for pregnant women and children under the age of five (IPS 2010). However, the public health

system faced severe challengies in implementing the free health care program due to a shortage

of resources, creating unintended consequences. Similarly, focusing solely on improving the

health delivery systems has not yielded the desired results since in many cases, clinics are not

acceessible and the opportunity cost of seeking treatment is too high.

The problem of deciding how much to invest in the supply–side as opposed to the demand–

side becomes even more significant in light of the fact that countries have a limited budget

for interventions aimed at improving health outcomes. Often times, the external aid received

is earmarked for procuring health commodities and funding to strengthen health systems and

improve uptake typically comes from the host government. In some cases, external development

assistance is also available for technical assistance and systems strengthening, but these funds

cannot be used for procurement. In this context, a key question faced by in–country public

health managers and policy makers is: given the limited funding available to strengthen supply

systems and stimulate demand for a health service or product, what is the optimal mix of

supply– and demand–side investments to maximize coverage?

We address this question in this chapter using a stylized model with stochastic demand

to capture the impact of supply– and demand–side investments on the expected number of

71



people served. We first consider a centralized model where a single entity (e.g., Ministry

of Health at a host government) that manages the health program makes both the supply–

and demand–side investments. For ease of reference, we refer to this entity as the ‘principal’

throughout the chapter. Note that in the centralized case, the principal must be physically

present on ground to engage in community outreach and mobilization efforts. For a given

budget level, we identify the principal’s optimal mix of investments to maximize coverage and

also present several results regarding how the investment mix changes with respect to the

different supply– and demand side parameters as well as the demand distribution. Interestingly,

we show that both the supply–side investment and the program coverage may not necessarily

increase with expected demand. With respect to the demand variability, we provide a clean

characterization that demonstrates that whether or not supply–side investments increase with

demand variability depends solely on the value of a critical ratio that we identify in our model.

While the supply–side investments may increase or decrease with variability, we show that

program coverage, which is the objective of interest, always decreases with demand variability.

We believe this result is valuable since it identifies an additional investment opportunity for

humanitarian organizations in their quest to improve program coverage. In addition to the

centralized setting, we also consider a decentralized model where the principal is not physically

present on ground and as such cannot directly engage in demand–related activities. In this

case, the principal invests only in the supply–side and contracts with a third–party (a private

firm or a local NGO), who we refer to as the ‘agent’, to carry out community mobilization

efforts on her behalf. The agent makes the demand–side investments and his objective is to

maximize profits, which creates incentive issues that could lower coverage levels. Motivated by

the growing interest in performance–based funding within the humanitarian sector, we explore

the use of performance–based contracts to create incentives for the agent to invest in demand

mobilization. We identify two types of contracts that guarantee that the expected coverage

level under the decentralized case is at least as high as the centralized case.
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4.2 Literature review

Our work is related to three streams of literature. The first stream related to our work is

concerned with supply chain inefficiencies mainly arising due to inventory misplacement. Due

to inventory misplacement, only a fraction of the ordered quantity is available to meet de-

mand. Several authors have studied the benefits of implementing RFID in such settings and

some papers have also looked at supply chain coordination issues that arise due to fixed and

variable costs of implementing RFID (e.g., Rekik et al. 2007, Rekik et al. 2008, Camdereli and

Swaminathan 2010). In our work also, only a fraction of the procured quantity is available to

meet demand but we broadly attribute this to supply chain inefficiencies that could arise due

to reasons different from inventory misplacement. Moreover, in our setting, the supply–side

investment required to increase the fraction of the procured quantity available remains the

same irrespective of the actual procurement quantity, which makes it different from the RFID

literature, where the cost of tagging depends on the quantity procured. Furthermore, papers

focusing on supply chain efficiencies typically consider demand as given while in our work, both

supply and demand can be influenced through appropriate investments.

The second stream related to our work is concerned with the operations–marketing inter-

face. In this stream of literature, the focus is on making effective operational (e.g., inventory

replenishment, production scheduling) and marketing (e.g., product pricing, advertising bud-

get, sales effort) decisions by explicitly considering the interplay between the two decisions.

Examples of papers that focus on the interplay between inventory and sales effort decisions

include Khouja and Robbins (2003), Heese and Swaminathan (2010), Wei and Chen (2011)

and Xue et al. (2013). These papers differ from our work in two important ways. First, all

the four papers jointly optimize the inventory and sales effort decisions with the objective of

maximizing profits while our interest is in maximizing program coverage. Second, none of these

papers consider budget constraints, which is often a major factor in non–profit operations.

Our work is also related to the literature on contracting and principal–agent models. Principal–

agent models have a long history of applications in different fields. See Hart and Holmstron

(1987) for an overview of the agency theory. Several papers in OM have used the principal–agent
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paradigm to study contracting issues in a variety of settings, focusing mostly on the problem of

supply chain coordination, e.g., Tsay and Lovejoy (1999), Bassok and Anupindi (2008), Cohen

and Agarwal (1998) and Cachon and Lariviere (2005) to name a few. Many papers within

the marketing literature have used the agency theory framework to design optimal sales force

compensation schemes to maximize profits, taking into account the demand environment and

risk–seeking behavior of the sales personnel (see Basu et al. 1985 and Joseph and Thevaranjan

1998). In our work, we consider the problem of a principal contracting with an agent to engage

in demand–enhancing activities. Our setting is unique in terms of the nature of the objective of

the principal and agent (as opposed to the traditional setting of both being profit maximizers)

and also the presence of budget constraints which dictate the feasibility of the contracts offered

to the agent.

The rest of the chapter is organized as follows. In section 4.3, we present the centralized

model where the principal makes both supply– and demand–side investments subject to a

budget constraint. We determine the optimal investment levels for the supply and demand

sides and analyze how the investment levels change with respect to a variety of supply– and

demand–side parameters. Next we consider the decentralized setting and explore the use of two

performance–based contracts to ensure that the coverage in the decentralized setting matches

or exceeds the coverage in the centralized setting. The last section concludes the chapter.

4.3 Centralized model

We consider a simple one–period model with stochastic demand. As we discussed earlier,

funding for procurement is typically earmarked and hence, for our purposes, we assume that

the procurement quantity Q is fixed. However, due to supply chain inefficiencies, only α0,

0 ≤ α0 ≤ 1, fraction of the procured quantity is available to meet demand in the absence

of any supply–side investment. The source of inefficiencies could include inventory loss and

misplacement due to lack of supply chain visibility, products perished due to improper storage

and handling, or shipment delays resulting in non–availability of products when they are needed.

Of course, some of the misplaced items and late shipments could be available at a later date
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and if we assume that those items could be used to satisfy demand, then α0 forms an upper–

bound on the product availability fraction in the absence of any supply chain investments.

The principal can influence the fraction of procured quantity available by investing si dollars

in supply chain strengthening initiatives and we assume that the available fraction increases

linearly in si, i.e., min {(α0 + θsi), 1}Q products are available if si dollars are invested in the

supply–side. The parameter θ captures how supply chain investments translate into increased

product availability.

We assume that the base demand D (without taking into account the effect of any efforts

to increase demand) is a continuous random variable with mean µ, variance σ2, pdf f(.), cdf

F (.) and inverse cdf F̄=1-F . The principal can influence demand by investing oi dollars in

demand–enhancing activities, and we assume that demand increases linearly in oi resulting in a

total demand of oeoi+D. Notice that oe captures the effectiveness of demand–side investments.

The principal has a limited budget B available and the objective is to identify the optimal

mix of supply– and demand–side investments so as to maximize expected coverage, i.e., the

principal’s problem is

Max E min{D + oeoi,min {(α0 + θsi), 1}Q} subject to si + oi ≤ B (4.1)

Notice that for any given oi, the expected coverage, E min{D+ oeoi,min {(α0 + θsi), 1}Q}

is increasing in si and similarly, for any given si, the expected coverage is increasing in oi.

Therefore the constraint in expression (4.1) is always binding. Hence the problem can be

reformulated as an optimization problem with only one decision variable as shown below.

Max E min{D + oe(B − si),min {(α0 + θsi), 1}Q} subject to si ≤ B (4.2)

Using standard techniques, it can be easily verified that the expected coverage in (4.2) is

concave in si. This implies that s∗i is the maximum possible si, 0 ≤ si ≤ min{B, (1 − α0)/θ},
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such that

F ((α0 + θsi)Q− oe(B − si)) ≤
θQ

θQ+ oe
. (4.3)

Notice that the optimality condition bears resemblance to the well–known “critical fractile”

solution for the newsvendor problem. In the newsvendor problem, the critical ratio is a ratio

of the underage cost to the sum of underage and overage costs. We have a similar structure

in equation (4.3). The right hand side of (4.3) is the essentially a ratio of the effectiveness of

supply–side investments to the effectiveness of supply– plus demand–side investments. In case

of the newsvendor problem, the left–hand side of the optimality condition is the probability that

the stochastic demand is less than the order quantity. Typically, the range of possible values for

the order quantity is unrestricted and it does not depend on the underage and overage costs.

For the investment problem that we study, the left–hand side of the optimality condition is

the probability that the stochastic demand is less than the quantity made available to meet

demand. Unlike the newsvendor problem, the quantity that can be made available is restricted

by the procurement quantity Q and it is also dependent on both the supply–side and demand–

side investment effectiveness. This linkage between the supply– and demand–side effectiveness

and the quantity made available makes it more difficult (when compared to the newsvendor

problem) to explicitly compute the optimal solution to equation (4.3), except for some special

demand distributions like the uniform distribution.

In the next section, we use the characterization in equation (4.3) to understand how the

optimal investment mix changes depending on the supply– and demand–side parameters and

the procurement budget available to the program. Throughout the discussion, we focus on s∗i

since all the insights concerning o∗i are just the opposite of the insights for s∗i .

4.3.1 Impact of supply– and demand–side parameters

In this section, we analyze how the optimal investment mix changes with respect to α0, θ, Q

(supply–side parameters) and oe, which is a demand–side parameter. In the next section, we

will focus exclusively on the impact of demand D. Since the different parameters in our model
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interact in a complicated way, a complete analytical characterization of the sensitivity of s∗i

with respect to all four parameters is not possible. Hence, we first consider the parameter

α0 for which a full characterization is possible and present the results. Then, for the other

three parameters, we present analytical results for the special case of uniform demand and

then verify if the results can be generalized to other demand distributions like normal and

exponential through a numerical study.

Impact of α0

To understand the impact of α0, consider the first derivative of the expected coverage with

respect to si. Notice that F̄ ((α0 + θsi)Q− oe(B − si)) is (at least weakly) decreasing in α0.

Therefore, it follows that s∗i is non–increasing in α0. This result is on expected lines since

the base product availability (in the absence of any supply–side investment) increases with α0

and hence, a lower supply–side investment would be sufficient to maintain a pre–determined

product availability level.

Now let us consider the other three parameters. In what follows, all the analytical results

presented correspond to uniform demand U ∼ [0, Du]. In obtaining the results, we assume that

there exists an interior solution to problem (4.2). However, in general, that need not be the case

and hence, the terms increasing and decreasing in the following results should be interpreted

as non–decreasing and non–increasing respectively.

Impact of θ

The parameter θ captures how supply chain investments translate into increased product avail-

ability. As θ increases, investing in the supply–side becomes increasingly more attractive and it

may be beneficial to increase si to take advantage of the higher impact and reap the maximum

benefits. However, it is also important to keep in mind that the principal is operating in a bud-

get constrained environment and consequently, investment on the demand–side will decrease

with s∗i . Depending on D and oe, the reduction in oi could result in a situation where there

may not be sufficient demand for the product, in which case increasing the product availability
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further would only be detrimental. Given the two effects, the act of balancing supply and

demand is a delicate one as the following lemma demonstrates. The proofs for all the results

in this chapter can be found in Appendix C.

Lemma 5. s∗i increases with θ if and only if θ < oe(Du−Boe+α0Q)
Q(Du+Boe−α0Q) and decreases otherwise.

Lemma 5 demonstrates that the relation between s∗i and θ is threshold–type. When θ

is below a threshold, we see that additional funds should be invested on the supply–side as

θ increases. The idea is to take advantage of the higher supply–side investment impact to

ramp up product availability. However, as s∗i increases and we continue to invest additional

funds on the supply–side, the supply–demand balance shifts, while continually lowering the

marginal benefit of additional supply–side investments. At the threshold point, the scales tip in

favor of increasing demand since continuing to further invest in increasing product availability

would lead to a situation where there is too much supply but insufficient demand. Hence,

in this case, investment on the supply–side should be scaled back and the funds should be

diverted to stimulate demand. Note that a lower s∗i does not necessarily mean reduced product

availability — the increase in θ can compensate for the reduction in supply–side investment

without impacting product availability.

We numerically checked to see if the threshold result holds true for normal and exponential

distributions. To facilitate better comparison, we also plot the results for the uniform dis-

tribution. For the experiments, we assume the following parameters: α0=0.6, Q=75, B=35.

The demand distributions considered are normal (50,5), uniform [0,100] and exponential(1/50)

distributions, i.e., all distributions have a mean value of 50. To ensure the robustness of the

results, we also considered mean demand values of 30 and 70, and the results were consistent.

All the distributions were truncated at a lower limit of 0 and upper limit 100.

Figure 4.1 displays how s∗i varies with θ for different values of oe. From the graphs, we see

that the threshold result holds true for all three distributions, consistent with Lemma 5. The

actual value of the threshold, however, varies with the demand distribution and oe but this is

to be expected given the specific nature of the threshold in Lemma 5.
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(a) (b) (c)

Figure 4.1: Impact of θ on s∗i for different values of oe

Impact of oe

As oe increases, the additional demand created for every dollar invested in the demand–side

increases. The higher return on investment suggests that investing additional funds to stimulate

demand would be a cost–effective method of increasing coverage, or in other words, s∗i should

decrease with oe. However, the additional demand would translate into increased coverage only

if a sufficient quantity of products are available to serve people who show up, which in turn

depends on θ and Q. At a higher level, it appears that the relationship between s∗i and oe

would depend on supply and demand considerations similar to the one that we discussed earlier

when analyzing the impact of θ. Therefore, it is reasonable to expect a threshold–type result

connecting s∗i and oe. Lemma 6 confirms that this is indeed the case.

Lemma 6. s∗i increases with oe if and only if oe ≥ 2Duθ−(α0+Bθ)Qθ
(α0+Bθ) and decreases otherwise.

Comparing Lemmas 5 and 6, it is apparent that the effect of θ and oe on s∗i are the opposite

from a qualitative perspective. However, the results need to be interpreted with caution since

Lemmas 5 and 6 do not imply that the effect of a unit increase in θ and oe on s∗i are the

opposite for any given set of parameter values. In fact, at a given θ and oe, s
∗
i could increase

(or decrease) with both θ and oe. Hence, the relationship between θ and s∗i should not be used

to make specific inferences regarding how s∗i would vary with oe.

We numerically checked to see if the threshold–type result proved in Lemma 6 holds under

normal and exponential distributions. Figure 4.2 provides the results for different values of θ.

From the figure, we see that for low and medium values of θ (0.005 and 0.02), the threshold
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(a) (b) (c)

Figure 4.2: Impact of oe on s∗i for different values of θ

pattern holds for all three distributions. For a higher value of θ (0.035), the threshold pattern

holds for the normal and exponential distribution, while in case of the uniform distribution,

the threshold pattern weakly holds since s∗i remains constant at a level where all the procured

quantities are available to meet demand.

Impact of Q

Before we present the results regarding the relationship between s∗i and Q, let us discuss how

Q might qualitatively impact s∗i . Note that Q is the maximum possible quantity available to

meet demand. For a given base–demand scenario, i.e., without taking into account the effect of

demand mobilization, there would be a “minimum” desired quantity below which supply would

be considered too low even to meet base demand. Hence, for very low values of Q, it is beneficial

to invest significantly on the supply–side to ensure that as much of the procured quantity is

available to meet demand as possible. Once Q is above the “minimum” desired quantity, the

cost–effectiveness aspect comes into play: is it better to increase coverage by increasing supply

or through increasing demand? The answer to this question naturally depends on the relative

effectiveness of the demand– and supply–side investments. As figure 4.3 demonstrates, there is

a cutoff point until which it is more cost–effective to increase coverage by increasing supply (by

maintaining the supply–side investment level), but beyond the cutoff point, we begin to reduce

investments in improving the supply chain efficiency. The idea is easy to visualize for the normal

distribution where from figure 4.3, we see that it is better to maintain 100% product availability

until Q is less than or equal to the mean expected demand. When Q is greater than expected
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demand, the supply chain investments begin to reduce. Notice however that investment in the

supply–side reduce only gradually (slope less than one) for all demand distributions, implying

that, despite the reduction in supply–side investment, product availability continues to increase

in conjunction with an increasing demand due to the additional demand–side investment.

The fact that supply chain investments either remain constant or decrease with Q, as seen

in figure 4.3, is analytically proven in Lemma 7.

Lemma 7. s∗i always decreases with Q.

(a) (b) (c)

Figure 4.3: Impact of Q on s∗i for different values of oe at θ=0.02

4.3.2 Impact of Demand Changes

In this section, we analyze how changes in the stochastic component of the demand impact

the investment decisions and also the program coverage, which is the objective of interest.

Specifically, we are interested in analyzing the impact of changes in mean demand as well as

the variability of the demand. In what follows, we first try to understand how changes in mean

demand and demand variance affect the investment decisions.

Impact of demand changes on investment decisions

Impact of mean demand: Let us begin with µ, which is the expected demand in the absence

of any demand–side investment. The key question here is: should investments targeted at

demand mobilization increase or decrease in anticipation of a higher expected demand? When

the demand is expected to be higher, organizations frequently tend to scale back on community
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mobilization activities since they believe that there would be a substantial demand for the

service or product even with little community outreach. Instead, they tend to invest more on

the supply–side to increase product availability in anticipation of a higher demand. However,

as Lemma 8 demonstrates, this strategy may not be always right and there could be situations

where it is optimal to lower the supply–side investment as µ increases. In the following lemma,

D|µ1 and D|µ2 represent the random variable D given means µ1 and µ2 respectively and F1 and

F2 are the cumulative distribution function associated with D|µ1 and D|µ2 respectively.

Lemma 8. For µ2 ≥ µ1, if D|µ2 ≥st D|µ1, then s∗i (µ2) ≥ s∗i (µ1). Otherwise, s∗i (µ2) could be

greater or less than s∗i (µ1) depending on F1, F2, α0, θ, oe, Q and B.

In the above lemma, ≥st implies first–order stochastic dominance. Lemma 8 is particulary

useful in practice since for common demand distributions like uniform, normal and exponential,

µ2 ≥ µ1 guarantees that D|µ2 ≥st D|µ1 . Hence, when demand follows one of these distributions,

simply knowing that the expected demand will be higher could direct the principal in the right

direction in the process of finding the optimal investment mix. However, while first–order

stochastic dominance implies µ2 ≥ µ1, unfortunately, the converse is not true and hence, s∗i

may not always increase with expected demand. Hence, the specific demand scenario needs to

be taken into account when responding to changes in the expected demand.

Impact of demand variability: Next, we look at how changes in demand variability

impact the investment decisions. Specifically, we are interested in answering the following

question: is it better to invest more or less in the supply–side as demand variability increases?

While the question appears tricky, nevertheless, as we will show, the answer is clear and it is

easy to use. We require the following definition for our analysis.

Definition 6. (Song 1994) Consider two random variables X and Y having distributions F

and G with densities f and g. Suppose that X and Y are either both continuous or both discrete.

We say X is more variable than Y , denoted X ≥var Y , if and only if E[X] = E[Y ] and S(f−g)=

2 with sign sequence +,-,+. That is, f crosses g exactly twice, first from above and then from

below.

The above variability ordering is a natural way of comparing the spread of densities of two
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random variables. It is stronger than the convex order but it is weaker than “mean preserving

spread”. In fact, many commonly used distributions like uniform, normal, truncated normal,

Weibull and gamma can be compared using the ≥var order. We are now ready to present our

main result concerning the impact of demand variability. In the following lemma, D|σ1 and

D|σ2 represent the random variable D given variances σ2
1 and σ2

2 respectively. The mean µ is

the same for D|σ1 and D|σ2 .

Lemma 9. Suppose that D|σ2 ≥var D|σ1 for σ2 ≥ σ1. Then, there exists a number δ, 0 ≤ δ ≤ 1,

such that if the ratio θQ
θQ+oe

> δ, s∗i (σ2) ≥ s∗i (σ1). Otherwise, s∗i (σ2) < s∗i (σ1).

Lemma 9 offers a clear and concise answer to the question of how investment decisions

change with demand variability. We see that the optimal response to a change in variability is

not unidirectional. Instead, the response depends critically on the effectiveness ratio θQ
θQ+oe

that

we identified in Section 4.3. From the lemma, we see that when the effectiveness ratio is high

(above δ), it is optimal to increase the supply–side investments in response to the increased

demand variability while the opposite is true when the effectiveness ratio is below the threshold.

The fact that the ratio is easy to calculate and applying the lemma is straightforward makes

the above result particularly appealing.

The following corollary, derived from the above lemma, characterizes the role of the different

supply– and demand–side parameters namely θ, Q and oe in determining how the investment

decisions change with demand variability.

Corollary 3. Let D|σ2 ≥var D|σ1 for σ2 ≥ σ1. Then the following results hold.

1. Given oe and Q, if θ > δoe
Q(1−δ) , then s∗i (σ2) ≥ s∗i (σ1). Otherwise, s∗i (σ2) < s∗i (σ1).

2. Given θ and Q, if oe ≤ Qθ(1−δ)
δ , then s∗i (σ2) ≥ s∗i (σ1). Otherwise, s∗i (σ2) < s∗i (σ1).

3. Given oe and θ, if Q > δoe
θ(1−δ) , then s∗i (σ2) ≥ s∗i (σ1). Otherwise, s∗i (σ2) < s∗i (σ1).

The above corollary provides a good understanding of how the different system parameters

dictate the optimal response to a change in the demand variability. From the corollary, we see

that for low values of θ (< δoe
Q(1−δ)), it is better to scale back the supply–side investment as
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demand variability increases. However, for higher values of θ, it is beneficial to instead scale

back the demand–side investments and invest more on increasing product availability. We can

make similar threshold–type conclusions with respect to the other two parameters from the

corollary.

Impact of demand changes on program coverage

In this section, we explore how changes to the mean demand and variance impact program cov-

erage. While it is important to understand how demand changes affect investment decisions, it

is of considerable interest to humanitarian organizations to understand how the demand changes

impact the ultimate outcome of these investment decisions, namely the program coverage.

Impact of mean demand: As the mean demand increases, intuition suggests that the

expected program coverage would also increase since more people are expected to access the

health service or product. This intuition is correct if the demand distribution belongs to the

family of commonly used demand distributions like uniform, exponential and normal but as the

following lemma demonstrates, higher expected demand need not necessarily translate into a

higher program coverage.

Lemma 10. For µ2 ≥ µ1, if D|µ2 ≥st D|µ1, then the program coverage increases with mean

demand w.p.1 and hence, also in expectation. Otherwise, the expected coverage could increase

or decrease with µ depending on F1, F2, α0, θ, oe, Q and B.

As we mentioned before, for uniform, exponential and normal distributions, a higher ex-

pected value implies stochastic dominance and hence, the program coverage is guaranteed to

increase with the expected demand.

Impact of demand variability: The operations management community has long been

interested in understanding the role of variability on operational performance. Several works

have attempted to understand the impact of demand variability on the bottom line in a vari-

ety of settings, and the general consensus is that higher demand variability results in higher

costs/lower profits or poor operational performance, in general. The next result shows that a
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similar conclusion is also valid in our setting — we find that an increase in demand variability

leads to lower program coverage.

Lemma 11. Suppose that D|σ2 ≥var D|σ1 for σ2 ≥ σ1. Then the program coverage always

decreases with σ.

By clearly characterizing the negative impact of variability, Lemma 11 identifies a third

way to increase coverage, in addition to the two that we have considered — supply chain

strengthening and demand mobilization. While it is out of the scope of this work, nevertheless,

an interesting question arises based on this finding: should we invest in creating additional

demand or should we invest in reducing demand variability since either approach could be

taken to increase the coverage, but the limited funding availability might preclude doing both.

This could certainly be an avenue for future research.

So far, we have focused on the centralized case where the principal makes both supply– and

demand–side investment decisions. Next, we consider a decentralized setting where demand

mobilization activities are contracted to a third–party. As we mentioned earlier, contracting

with third parties to carry out certain services or activities is a frequent practice in the public

health sector, reasons for which include lack of efficiency of public health systems, lack of

expertise, and human resource constraints. We discuss the decentralized setting in greater

detail in the next section.

4.4 Decentralized model

In the decentralized model, the principal invests in the supply chain and contracts with an

agent to carry out demand mobilization activities on her behalf. Since supply chain improve-

ments involve advance planning and long implementation times, we assume that the supply–side

investments are made well before the agent makes his decision regarding investment in demand–

related activities. We also assume that the agent is aware of the total quantity that will be

available to satisfy demand even though he may not aware of the principal’s specific supply–

side investment decision. This is a reasonable assumption since the agent is on the ground
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and more so, if the agent is directly involved in the program implementation. We denote the

effective quantity available by Q̃ where Q̃ = min{(α0 + θsi), 1}Q where si is the principal’s

investment decision. Notice that from the agent’s perspective, Q̃ is given and fixed. The agent

is interested in maximizing his profits, which is the difference of payments received from the

principal less any investments made to stimulate demand. The payment mechanism used by

the principal directly influences the investment decisions of the agent and in the decentralized

setting, a natural question that arises is: can the principal design a contract to ensure that the

program coverage in the decentralized setting is greater than or equal to the coverage in the

centralized model?

Traditionally, payments to agents in the humanitarian sector have been fixed price or cost–

reimbursement contracts without conditioning on the outcomes. This has resulted in poor

aid–effectiveness because under the fixed price contract, agents try to exert as little effort as

possible, and under the cost–reimbursement contract, agents do not have an incentive to engage

in cost–efficient activities, resulting in wastage of aid dollars. Moreover, oftentimes, the principal

who is providing the funding has no way to verify that the agent indeed carried out certain

activities and this creates mistrust and accountability issues. To overcome this problem, many

humanitarian organizations have started exploring the use of performance–based funding where

payments to agents are based on outcomes and outputs rather than inputs. For example, the

“Cash on Delivery” method developed and used by the Center for Global Development pays

agents a per–unit reward for every unit of output/outcome (Center for Global Development

2011). Another example is a performance–based funding initiative undertaken by USAID at

Haiti where the contracted NGOs were paid 94% of a mutually agreed amount upfront to deliver

a predefined health services package to the local population (USAID 2010). The remaining 6%

funding could be withheld if performance targets are not met and an additional 6% funding

could be provided as a bonus if the NGOs exceeded the target levels. Notice that in this

case, the payment is structured as a fixed–penalty, fixed–reward payment. The success of these

performance–based funding models has caught the attention of the global health community

and many organizations are beginning to make at least some portion of funding conditional on

outcomes.
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Motivated by the growing interest in results–based funding, we explore how performance–

based funding can be used in a setting like ours to influence the agent’s investment decisions.

Since the principal is not on ground, she cannot directly observe the level of investment by the

agent, or the realized demand. Hence, we use the program coverage as a measure of performance,

i.e., payments made to the agent can only be based on the actual number of people served.

Before we provide details of the contracts, let us look at the agent’s problem. To differ-

entiate the demand–side investment decisions under the centralized and decentralized models,

we denote the agent’s investment decision by õi. To allow for the possibility that the agent

might be able to increase demand in a more (or less) cost effective way, we assume that for

every dollar that the agent invests, demand increases by õeõi. Then the agent’s problem can

be formally stated as

Max E TP
(
min{D + õeõi, Q̃}

)
− õi, õi ≥ 0 (4.4)

where TP is the transfer payment to the agent that is contingent upon number of people

served.

We consider two specific forms of performance–based contracts based on the examples we

just provided. The first one is a per–unit reimbursement rate contract similar to the “Cash on

Delivery” model that we described earlier. The second one is a penalty–reward contract where

the agent incurs a fixed penalty for not meeting a pre–determined target coverage level and gets

a fixed reward if the coverage is above the target level. This contract is similar to the contract

offered in the USAID example. First, let us look at the per–unit reimbursement rate contract.

4.4.1 Per–unit reimbursement rate contract

Under this contract, the agent receives a payment of Cr for every unit of satisfied demand.

Thus, the agent’s problem is

Max E Crmin{D + õeõi, Q̃} − õi, õi ≥ 0 (4.5)
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It is straightforward to show that the objective function in (4.5) is concave in õi. Therefore

(assuming that an interior solution exists), the agent’s optimal investment decision õ∗i satisfies

the following condition.

F (Q̃− õeõ∗i ) =
1

crõe
(4.6)

When deciding the per–unit reimbursement rate, the principal’s goal is to ensure that cov-

erage level in the decentralized setting is at least as high as the centralized case. This would

happen only if õeõ
∗
i ≥ oeo

∗
i . Notice that the principal is not interested in the agent’s actual

investment decision — she cares only about the net effect of the agent’s investments.

To ensure that õeõ
∗
i ≥ oeo∗i holds, we look at condition describing o∗i . From equation (4.3),

we see that o∗i is the solution to

F (min{(α0 + θsi), 1}Q− oeo∗i ) =
θQ

θQ+ oe
(4.7)

If the principal invests s∗i , the optimal supply–side investment level in the centralized model,

then from equations (4.6) and (4.7) (recall that Q̃ = min{(α0 + θsi), 1}Q), we see that the

coverage under the centralized and decentralized models would be the same if

Cr =
θQ+ oe
õe(θQ)

(4.8)

We refer to the Cr identified in (4.8) as the coordinating per–unit reimbursement rate.

Having identified the coordinating per–unit rate, our next step is to check if offering the per–unit

reimbursement specified in (4.8) is actually feasible from the principal’s standpoint. Checking

the feasibility is critical since the principal has limited funding available (B − s∗i = o∗i to be

precise) to make payments to the agent. To begin with, notice that for equal expected coverage

under the centralized and decentralized models, õ∗i =
oeo∗i
õe

> o∗i for õe < oe. However, the

transfer payment from the principal to the agent cannot exceed o∗i . Thus, when contracting

with a less cost–efficient agent (õe < oe), the coverage level under a decentralized setting would

match the coverage in a centralized setting only if the agent’s expected profits are negative,
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which is obviously not practical. In fact, the previous statement is true for any contract

irrespective of the contract specifics. Hence, no coordinating contract exists in this case and

from now on, we will assume that õe ≥ oe.

Given the coordinating per–unit reimbursement rate, the expected payments from the prin-

cipal to the agent equals

θQ+ oe
õe(θQ)

E min{D + oeo
∗
i , (α0 + θs∗i )Q}

which is less than or equal to o∗i if and only if õe ≥ oTe where oTe =
θQ+oe
θQ

E min{D+oeo∗i ,(α0+θs∗i )Q}
o∗i

.

Of course, one could also impose the restriction that the maximum transfer payment should not

exceed o∗i instead of the expected payment. This can be easily handled and will not change our

results. Combining all the relevant results in this section so far, we have the following lemma.

Lemma 12. When õe ≥ oTe , there exists a per–unit reimbursement rate contract with Cr =

θQ+oe
õe(θQ) such that the expected coverage under the centralized and decentralized models are the

same. For õe < oTe , no such feasible per–unit reimbursement rate contract exists.

So far, our analysis focused on designing per–unit rate contracts that ensure that the cov-

erage under the centralized and decentralized models remain the same. However, the principal

can actually do better — she can make use of the fact that the agent is capable of influencing

demand in a more cost-effective way and design a per–unit rate contract that achieves a higher

coverage level than the centralized model. To see how, consider ôe ≥ oe. Then the principal

can solve the centralized problem given by equation (4.2) using ôe in place of oe. Naturally, the

expected coverage with ôe would be higher than the expected coverage with oe. Let ŝ∗i and ô∗i

be the optimal supply– and demand–side investment levels for this modified problem. Now if

õe ≥ ôTe where ôTe =
θQ+ôe
θQ

E min{D+ôeô∗i ,(α0+θŝ∗i )Q}
ô∗i

≥ ôe, then using Lemma 12, we see that it

is indeed possible to achieve a coverage level (=E min{D + ôeô
∗
i , (α0 + θŝ∗i )Q}) that is higher

than the coverage under the centralized model (=E min{D + oeo
∗
i , (α0 + θs∗i )Q}).

The only question remaining is: would õe ≥ ôTe hold so that the principal can achieve higher

coverage under the decentralized setting? The answer is yes, since for every õe > oTe , it is
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possible to find a ôe ≥ oe such that õe ≥ ôTe . Hence, the principal can actually use the agent’s

cost effectiveness to her advantage and achieve a higher coverage level in the decentralized

setting by offering a suitable contract.

Before we end the discussion regarding the per–unit reimbursement rate contract, we wish

to point out two drawbacks of using such a contract: 1. As stated in Lemma 12, a feasible

contract exists if and only if õe is greater than a threshold. Hence, when contracting with an

agent with õe < oTe , the principal needs to lower the desired investment level expected of the

agent to design a feasible contract. 2. The reimbursement rate Cr depends explicitly on õe.

Hence, implementing such a contract would require that the principal have accurate information

regarding how the agent’s investments influence demand, but obtaining such precise information

may not always be feasible in practice. The penalty–reward contract that we discuss next

overcomes both the shortcomings.

4.4.2 Penalty–reward contract

Under the penalty–reward contract, the agent incurs a fixed penalty P if coverage is less than

a predefined level T c and gets a fixed reward R if coverage exceeds T c. The principal sets the

penalty P , reward R and the target T c while the agent decides how much to invest in demand

mobilization. The agent’s problem under the penalty–reward contract is the following.

Max E− P 1{D+õeõi<T c} +R 1{D+õeõi≥T c} − õi, õi ≥ 0 (4.9)

Given that the principal chooses three contract parameters, she has significant flexibility in

designing a contract that guarantees that the coverage in the decentralized setting is at least

as high as the centralized case. In fact, there could be many such contracts that satisfy the

principal’s requirements but for our purposes, we are only interested in identifying at least one

such contract that can ensure a coverage level at least as high as the centralized setting.

To this end, suppose that the principal chooses the target level T c = oeo
∗
i . Choice of this

particular value of T c is vital since for demand realizations lower than oeo
∗
i , the principal can
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be sure that the low coverage can be attributed solely to the lower demand–side investment by

the agent. For any other choice of T c, the principal cannot be certain that the agent is indeed

responsible for the low coverage.

Now let us first consider õi such that õeõi ≥ oeo
∗
i . Given that T c = oeo

∗
i , the agent’s

objective function in this region of õi is

Max E R 1{D+õeõi≥oeo∗i } − õi, õi ≥
oeo
∗
i

õe

which is clearly decreasing in õi irrespective of the value of R. Hence the agent’s investment

would always be less than or equal to
oeo∗i
õe

. For õi such that õeõi < oeo
∗
i , the agent’s objective

function is given by

Max E− P F (oeo
∗
i − õeõi) +R 1{D+õeõi≥oeo∗i } − õi, õi <

oeo
∗
i

õe

Clearly R 1{D+õeõi≥oeo∗i } is increasing in õi. Depending on P , the other two terms could

increase or decrease with õi. As a next step, we choose a penalty P such that the agent would

either be indifferent or strictly prefer investing to paying the penalty. One such penalty is

P = 1
õefLB

where fLB = min{f(x) : 0 ≤ x ≤ oeo
∗
i }. With this penalty, the agent is always

either indifferent or prefers to invest until õeõi ≥ oeo
∗
i . Combined with our earlier observation

that the agent’s investment would always be less than or equal to
oeo∗i
õe

, we see that the agent

would invest õ∗i such that õeõ
∗
i exactly matches oeo

∗
i . A final step is to set R in such a way that

the agent’s expected profits are non–negative so that he would find the contract acceptable.

This can be achieved by setting R = o∗i since õ∗i =
oeo∗i
õe
≤ o∗i .

As with the per–unit reimbursement contract, if õe is known to the principal, she can

utilize this knowledge to achieve a higher coverage level in the decentralized setting than in the

centralized setting. Suppose that õe > ôe ≥ oe. Then the principal can solve the centralized

problem given by equation (4.2) using ôe in place of oe. Let ŝ∗i and ô∗i be the optimal supply– and

demand–side investment levels for this modified problem. Now, if the principal sets T c = ôeô
∗
i ,

R = ô∗i and sets fLB = min{f(x) : 0 ≤ x ≤ ôeô
∗
i }, then the agent’s investment decision would
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be such that õ∗i =
ôeô∗i
õe
≥ oeo∗i

õe
, i.e., the principal can achieve a higher coverage under the

decentralized setting.

4.4.3 Comparison of the contracts

The penalty–reward contract has some important advantages over the per–unit reimbursement

contract. First, a feasible per–unit reimbursement contract with õeõ
∗
i = oeo

∗
i exists only if

õe ≥ oTe > oe where oTe is as defined in section 4.4.1. However, with a penalty–reward contract,

the same can be achieved as long as õe > oe. The fact that õe can be arbitrarily close to oe also

has the important implication that the penalty–reward contract can be used to achieve strictly

higher coverage levels than can be obtained using the per–unit reimbursement contract.

Another advantage of the penalty–reward contract is that it can be used even when õe is

unknown to the principal. The only necessary condition is õe > oe. In this case, the principal

can set P = 1
oefLB

instead of P = 1
õefLB

. The higher penalty ensures that the agent is again

either indifferent or strictly prefers investing to paying the penalty until õeõi ≥ oeo∗i .

4.5 Conclusions

In this chapter, we study the problem of determining the optimal level of investments in the

supply– and demand–sides with the objective of maximizing the number of people served.

Investments in the supply–side increase the fraction of the procured quantity available to serve

demand, while community mobilization activities increase the demand for the service or product.

Given a limited budget, public health managers are frequently confronted with the dilemma

of how much funding to allocate to the two sides respectively. In this chapter, we answer this

question and also provide several insights into how the optimal invest mix varies with respect

to the procurement budget, the supply–side and demand side investment effectiveness, and the

underlying demand distribution. Contrary to common practice, we show that there could be

situations where it may be optimal to increase investment in demand–enhancing activities in

anticipation of a higher expected demand. In addition, we see that higher expected demand

leads to an increase in program coverage for many commonly used demand distributions but
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that need not always be the case. Our analysis also provides clear insights into the impact

of demand variability on the investment mix. We see that if the effectiveness ratio, which is

a function of the effectiveness parameters and the procurement quantity, is above a certain

threshold, then supply–side investments will go up in response to increased demand variability,

while the opposite is true if the critical ratio is below the threshold.

In addition to the results concerning the optimal investment mix, we also study a decen-

tralized setting where the principal is not on ground and contracts with an agent to carry out

demand mobilization. The agent is interested in maximizing his own profits while the principal’s

objective is to increase coverage resulting in an incentive misalignment. Motivated by the recent

interest in performance–based contracts among the global health community, we consider two

coverage–based contracts that can help achieve equal or better coverage than the centralized

setting. The penalty–reward contract is the attractive of the two since it can guarantee higher

coverage levels than the per–unit reimbursement contract and it can also be used in situations

where the agent’s investment effectiveness is unknown to the principal, a situation that could

arise in practice.
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Chapter 5

Conclusions and Future Research

This dissertation focuses on finding effective and efficient ways to manage humanitarian op-

erations and understand how funding impacts performance in such settings. Uncertain and

unpredictable donor funding is a major problem in the humanitarian sector and operations

planning in this environment is challenging due to the uncertainty in demand as well as the

funding required to satisfy demand. The first two chapters focus on inventory management and

resource allocation problems in an uncertain funding environment and contribute to an under-

standing of how funding timing and uncertainty in funding impact operational performance and

health outcomes. The third chapter studies the problem of identifying the optimal mix of in-

vestments in supply chain strengthening and demand mobilization activities with the objective

of maximizing coverage. Viewed together, this dissertation offers approaches to make efficient

operational and investment decisions in humanitarian settings and also provides insights into

how different aspects of the operating environment like funding and demand characteristics

impact aid effectiveness.

In the first chapter of the dissertation, we study the problem of managing inventory of a

health commodity in the presence of funding constraints over a finite planning horizon. Fund-

ing from donors, which finances the procurement, is received in installments throughout the

planning period with uncertainty around both the timing and amount received. We model this

problem using a stylized multi–period inventory model with financial constraints. Despite the

funding complexities, we show that the optimal replenishment policy is modified base–stock

type which is easy to implement. We prove analytically that a higher variability in funding
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timing and (stochastically) late arrival of funds both drive up operating costs.

Our numerical study provides several insights that would be valuable to humanitarian health

managers. Surprisingly, we find that receiving funding in equal installments is not the optimal

funding pattern due to its inability to accommodate large demand surges upfront. Our analysis

also shows that the benefits of receiving funding early are higher in under–financed systems

while avoiding funding delays is critical in fully–financed systems. Our work offers an interesting

insight that could be valuable in guiding fundraising efforts by humanitarian organizations. We

find that even with less overall funding, performance may be better if the funding is received

earlier or more steadily. Hence, humanitarian organizations should also pay attention to getting

the funding in a timely fashion rather than focusing solely on raising as much funding as possible.

Finally, our work also demonstrates that it is very important to take into account the operating

environment (e.g., demand characteristics) when undertaking initiatives to improve the funding

situation since the impact of different initiatives vary with the operating environment.

In the second chapter, we extend the work in the first chapter by allowing for the possibility

that patients enrolled in a program could be in different health states and they could require

treatment over different lengths of time. The treatment duration and the treatment response

could be different between the health states. The total available funding is limited and funding

inflow is unpredictable. In this setting, a key question is: how to dynamically allocate the

limited funding to patients in different health states over a finite horizon so as to minimize the

number of disease–adjusted life months lost.

We use a multiperiod stochastic dynamic programming framework with health–state depen-

dent per–period and terminal penalty costs to analyze the allocation problem. We characterize

the optimal policy to be a state–dependent allocation policy which makes computing the opti-

mal policy difficult. We prove several monotonicity properties to help reduce the computational

burden and we also develop two heuristics to handle large size problems in a reasonable amount

of time. Our computational results indicate that the impact of transition rates between the

health states on the health outcomes is not straightforward to characterize in such settings since

the underlying funding situation plays a critical role in determining how changes in transition

rates impact health outcomes. We also demonstrate that the impact of uncertainty in funding
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timing varies with the funding level and the length of the planning horizon. Finally, we find

that in under–financed systems, the low funding availability severely hurts performance and it

is beneficial to receive additional funding even if it comes at the cost of added funding uncer-

tainty. In well–funded systems, that is not the case and receiving additional but more uncertain

funding would be detrimental.

The third chapter addresses the problem of how much to invest in the supply–side as opposed

to the demand–side, given that countries often have a limited budget for interventions aimed

at improving health outcomes. Using a simple one–period model with stochastic demand,

we identify the optimal investment mix that maximizes coverage. We provide several results

regarding how the investment mix changes with respect to different system parameters, and

prove some surprising results regarding the impact of expected demand and demand variability

on the optimal investment decisions and program coverage. In particular, higher expected

demand does not necessarily lead to increased program coverage and it may also not be optimal

to lower demand–side investments in anticipation of a higher demand. We also provide a crisp

characterization of how the investment decisions change with respect to demand variability

and demonstrate that higher demand variability leads to low program coverage. In the second

part of the chapter, we consider a decentralized setting where demand mobilization activities

are contracted to an agent, who is a profit maximizer. We identify two performance–based

contracts that the principal can use to create incentives for the agent to invest in demand–

enhancing activities, and we show that both contracts ensure higher coverage levels than the

centralized setting.

This dissertation has looked at three problems involving operations and funding that are

motivated by humanitarian applications. Overall, I view this dissertation as a starting point

to use operations management techniques to address some interesting and important research

questions that would be of interest to humanitarian organizations. There are several avenues

for future research both within the operations–finance interface and the broader topic of hu-

manitarian operations. For example, in the first two chapters, we look at the problem of

managing inventory and making resource allocation decision given an uncertain donor funding

stream. However, with the growing popularity of performance–based funding, many donors
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make subsequent payments contingent on prior performance. In this scenario, the funding

stream becomes endogenous to performance and it would be interesting to study how the oper-

ational strategies of the recipients would change in the performance–based funding paradigm.

Another problem that would interesting to study is to explore the use of “supply chain segmen-

tation” approaches to manage health supply chains. Many humanitarian organizations manage

a broad variety of products, and these products exhibit varying characteristics along different

dimensions like demand, storage requirements, shelf–life etc. However, currently, they either

operate disease/program–specific supply chains or use a one–size–fits–all approach where all the

products share the same resources and procedures are standardized across products. This leads

to redundancies, poor service and excessive operating costs. An efficient approach to manage

this problem is to segment the supply chain, whereby products/health facilities with similar

characteristics are segmented and managed in groups. This approach is also currently being

explored by USAID but a key challenge is to determine the optimal grouping of products, since

the fixed and variable costs of operation depend on the product grouping.
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Appendix A

Proofs for results in Chapter 2

Proof of Lemma 1

From the definition of J0, it is clear that the joint convexity holds for t = 0. Let the

induction hypothesis be that Jt−1(xt−1, rt−1, Ot−1) is jointly convex in xt−1 and rt−1 for any

fixed value of Ot−1. For any (x1
t , y

1
t , r

1
t ), (x2

t , y
2
t , r

2
t ) and 0 ≤ λ ≤ 1, we have

Jt−1(λy1
t + (1− λ)y2

t − ζt, λ
(
r1
t − c(y1

t − x1
t )
)

+ (1− λ)
(
r2
t − c(y2

t − x2
t )
)

+

Ot∑
j=Ot−1+1

zj , Ot−1)

≤ λJt−1(y1
t − ζt, r1

t − cy1
t + cx1

t +

Ot∑
j=Ot−1+1

zj , Ot−1)

+ (1− λ)Jt−1(y2
t − ζt, r2

t − cy2
t + cx2

t +

Ot∑
j=Ot−1+1

zj , Ot−1)

The above inequality follows directly from the induction assumption. Since convexity is pre-

served under expectation EOt−1EζtJt−1

yt − ζt, rt − c(yt − xt) +

Ot∑
j=Ot−1+1

zj , Ot−1

 is jointly

convex in xt, yt and rt. The remaining terms cyt, bEζt [ζt− yt]+ and hEζt [yt− ζt]+ are convex in

yt and hence joint convexity in xt, yt and rt holds. The set C=
{

(x, y, r) : r ≥ 0, y ∈
[
x, x+ r

c

]}
is convex. Using proposition B-4 from Heyman and Sobel (1984), we see that Jt(xt, rt, Ot) is

jointly convex in xt and rt for a fixed Ot.

Proof of Theorem 1

The proof proceeds through induction on the number of periods. Recall that O1=0 always.

Since J̃0(x0, R0, 0) = 0 ∀(x0, R0), we have

J̃1(x1, R1, 0) = −cx1 + min
y1∈

[
x1,

R1
c

]
{
cy1 + bEζ1 [ζ1 − y1]+ + hEζ1 [y1 − ζ1]+

}
(A.1)



From NV0(x0) = 0 ∀ x0, we have

NV1(x1) = −cx1 + min
y1≥x1

{
cy1 + bEζ1 [ζ1 − y1]+ + hEζ1 [y1 − ζ1]+

}
(A.2)

Clearly, the function to be minimized in equations (A.1) and (A.2) is the same. Moreover,

it is well–known that the function is convex in y1 and there exists an optimal base stock level

y∗1 at which the function is minimized. Therefore, it follows directly that the replenishment

policy specified in Theorem 1 is optimal for t=1. Furthermore, ∂J̃1(x1,R1,0)
∂x1

=∂ÑV 1(x1)
∂x1

for any

given R1.

Now let the induction assumption be that replenishment policy specified in Theorem 1 is

optimal for t-1. Also, let ∂J̃t−1(xt−1,Rt−1,Ot−1)
∂xt−1

=∂ÑV t−1(xt−1)
∂xt−1

for any given (Rt−1, Ot−1). We have

J̃t(xt, Rt, Ot) = −cxt + min
yt∈

[
xt,

Rt
c

]


cyt + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+EOt−1,ζt J̃t−1(yt − ζt, Rt − cζt +

Ot∑
j=Ot−1+1

zj , Ot−1)


(A.3)

and

NVt(xt) = −cxt + min
yt≥xt

{
cyt + bEζt [ζt − yt]+ + hEζt [yt − ζt]+ + EζtNVt−1(yt − ζt)

}
(A.4)

The function to be minimized in equation (A.3) is Ĉt(yt, Rt, Ot) (see equation (2.2)). From

Lemma 1, we know that for fixed (Rt, Ot), Ĉt(yt, Rt, Ot) is convex in yt. It is also well known

that the function to be minimized in equation (A.4) is convex in yt and there exists an opti-

mal base stock level y∗t at which the function is minimized. Then, the induction assumption

∂J̃t−1(xt−1,Rt−1,Ot−1)
∂xt−1

=∂NV t−1(xt−1)
∂xt−1

for every (Rt−1, Ot−1) implies that the derivatives (with re-

spect to yt) of the functions to be minimized in equations (A.3) and (A.4) are the same.

Therefore, the replenishment policy specified in Theorem 1 is optimal for period t as well.

To prove the other part of the induction, i.e., ∂J̃t(xt,Rt,Ot)
∂xt

=∂NV t(xt)
∂xt

for any given (Rt, Ot),

consider the following cases.
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Case 1: Rt
c < y∗t . Then,

J̃t(xt, Rt, Ot) = −cxt + c
Rt
c

+ bEζt

[
ζt −

Rt
c

]+

+ hEζt

[
Rt
c
− ζt

]+

+ EOt−1Eζt J̃t−1

Rt
c
− ζt, Rt − cζt +

Ot∑
j=Ot−1+1

zj , Ot−1


and

NVt(xt) = −cxt + cy∗t + bEζt [ζt − y∗t ]
+ + hEζt [y∗t − ζt]

+ + EζtNVt−1 (y∗t − ζt)

Clearly, ∂J̃t
∂xt

=∂NV t
∂xt

=−c.

Case 2: Rt
c ≥ y

∗
t , xt < y∗t . Then,

J̃t(xt, Rt, Ot) = −cxt + cy∗t + bEζt [ζt − y∗t ]
+ + hEζt [y∗t − ζt]

+

+ EOt−1Eζt J̃t−1

y∗t − ζt, Rt − cζt +

Ot∑
j=Ot−1+1

zj , Ot−1


and

NVt(xt) = −cxt + cy∗t + bEζt [ζt − y∗t ]
+ + hEζt [y∗t − ζt]

+ + EζtNVt−1 (y∗t − ζt)

Again, ∂J̃t
∂xt

=∂NV t
∂xt

=−c.

Case 3: xt ≥ y∗t . Then,

J̃t(xt, Rt, Ot) = bEζt [ζt − xt]+ + hEζt [xt − ζt]+

+ EOt−1Eζt J̃t−1

xt − ζt, Rt − cζt +

Ot∑
j=Ot−1+1

zj , Ot−1


and

NVt(xt) = bEζt [ζt − xt]+ + hEζt [xt − ζt]+ + EζtNVt−1 (xt − ζt)
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Since, ∂J̃t−1

∂xt−1
=∂NV t−1

∂xt−1
for every (Rt−1, Ot−1), we have ∂J̃t

∂xt
=∂NV t

∂xt
in this case as well, com-

pleting the proof.

Proof of Theorem 2

We use a sample path approach to prove this result. For expositional clarity, let us de-

fine a new variable Z̄n = (z̄n1 , z̄
n
2 , ..., z̄

n
t ), n=1,2, where z̄ni is the amount received in period i

under funding scenario n, given that Ot=j. Of course, Z̄1 and Z̄2 are different for different

sample paths. Let ζ = (ζ1, ζ2, ..., ζt) be the vector of realized demands in periods 1, 2, ..., t

along a particular sample path. Given ζ and Z̄n, let Jn
t,ζ,Z̄n

(xt, rt, j) be the cost incurred in

periods 1, 2, ..., t along a particular sample path under funding scenario n, following the optimal

replenishment policy specified in (2.4). If random variables ζ, Z̄1, Z̄2, {P 1
t } and {P 2

t } are de-

fined on the same probability space, then Pr(P 2
t (i) ≥ P 1

t (i))=1. Also, Pr(Pnt (i′) ≥ Pnt (i))=1

for i′ > i and n = 1, 2. This implies that vector Z̄1 majorizes Z̄2 w.p. 1. Since replen-

ishment decisions depend only on the current state (xt, rt), every replenishment decision fea-

sible under scenario 2 is also feasible under scenario 1 along every sample path. Therefore,

J2
t,ζ,Z̄n

(xt, rt, j) ≥ J1
t,ζ,Z̄n

(xt, rt, j). w.p.1. Since, this result holds for every sample path, the

result also holds in expectation, i.e, J2
t (xt, rt, j) ≥ J1

t (xt, rt, j).

Proof of Lemma 2

The proof proceeds through induction. Throughout the proof, we work with the equivalent

function J̃t instead of Jt, as we find it convenient to do so. Recall that Rt = rt+ cxt. For t = 2,

J̃2(x2, R2 +

i∑
k=j+1

zk, j) = min

y2∈

x2,R2+
i∑

k=j+1
zk

c





c(y2 − x2)

+bEζ2 [ζ2 − y2]+ + hEζ2 [y2 − ζ2]+

+Eζ2 J̃1(y2 − ζ2, R2 − cζ2 +
i∑

k=1

zk, 0)


(A.5)

Notice that in equation (A.5), the function over which the minimization is done is −cx2+

Ĉ2(y2, R2, i) (see equation (2.2)). For a fixed i, we see from Lemma 1 that Ĉ2 is jointly convex
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in y2 and R2. This implies the convexity of Ĉ2 in y2 for a fixed R2. The desired result,

J̃2(x2, R2 +

i∑
k=j+1

zk, j) is increasing convex in j, then follows directly from the fact that zl+1 ≥

zl, l = 1, 2, ...,m− 1.

Now assume that the result holds for t− 1. Then, for j ≤ i, we have

J̃t(xt, Rt +
i∑

k=j+1

zk, j)

= min

yt∈

xt,Rt+
i∑

k=j+1
zk

c





c(yt − xt) + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+
i∑

j′=0

pt(j, j
′)Eζt J̃t−1(yt − ζt, Rt − cζt +

i∑
k=j′+1

zk, j
′)


(A.6)

where pt(j, j
′) = 0 for j′ > j. For brevity, we denote the function over which the minimization

is done in equation (A.6) by f(j). We know that for fixed Rt, f(j) is convex in yt for each j.

In the proof of Theorem 1, we showed that the derivative of J̃t−1(yt− ζt, Rt− cζt+

i∑
k=j′+1

zk, j
′)

with respect to yt is the same irrespective of the value of j′. Hence, functions f(j), j =

0, 1, 2, ..., i are parallel, convex functions in yt. Now, we make use of the SICX property. Since

{Pt(j), j ∈ {0, 1, 2, ...i}} ∈ SICX and J̃t−1(xt−1, Rt−1 +
i∑

k=j+1

zk, j) is increasing convex in j by

our induction assumption, from Definition 3, we see that
i∑

j′=0

pt(j, j
′)Eζt J̃t−1(yt − ζt, Rt − cζt +

i∑
k=j′+1

zk, j
′) is increasing and convex in j. This implies that f(j+1)−f(j) ≥ f(j)−f(j−1) ∀j =

1, 2, ..., i − 1. Combining this with the fact that the funding vector is front-loaded yields the

desired result.

Proof of Theorem 3

As with most other proofs, we prove the theorem through induction. We start the induc-

tion with t=2. Since P 1
2 (i) ≡ P 2

2 (i) ≡0, using equation (2.1), we directly get J2
2 (x2, r2, i) =
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J1
2 (x2, r2, i). Now, assume that the result holds for t− 1.

J1
t (xt, rt, i) = min

yt∈[xt,xt+ rt
c ]


c(yt − xt) + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+

i∑
j=0

p1
t (i, j)EζtJ

1
t−1(yt − ζt, rt − c(yt − xt) +

i∑
k=j+1

zk, j)


≤ min

yt∈[xt,xt+ rt
c ]


c(yt − xt) + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+

i∑
j=0

p1
t (i, j)EζtJ

2
t−1(yt − ζt, rt − c(yt − xt) +

i∑
k=j+1

zk, j)


(A.7)

The inequality in the second step follows from the induction assumption. Also,

J2
t (xt, rt, i) = min

yt∈[xt,xt+ rt
c ]


c(yt − xt) + bEζt [ζt − yt]+ + hEζt [yt − ζt]+

+
i∑

j=0

p2
t (i, j)EζtJ

2
t−1(yt − ζt, rt − c(yt − xt) +

i∑
k=j+1

zk, j)


(A.8)

Our proof would be complete if we can demonstrate that (A.7)≤(A.8). The convex ordering

of P 1
t (i) and P 2

t (i) implies that the desired inequality would hold if J2
t−1(yt−ζt, rt−c(yt−xt)+

i∑
k=j+1

zk, j) is convex in j. We already proved the convexity in Lemma 2. Hence J2
t (xt, rt, i) ≥

J1
t (xt, rt, i) holds.

Proof of Proposition 1

We use a sample path approach. We use superscript i when we are dealing with funding

vector Zi. On a fixed sample path, let the vector of realized demands in periods N,N − 1, ..., 1

be ζ=(ζN , ζN−1, ..., ζ1). Then,

RiN−t = RiN − c
t−1∑
j=0

ζN−j +

t∑
j=1

ziN−j + cxN , t = N − 1, N − 2, ..., 1.

Since
N−i∑
j=N

z1
j ≥

N−i∑
j=N

z2
j , i = 0, 1, , ..., N − 1, R1

N−t ≥ R2
N−t for t=1,2,...N . From Theorem 1, we

know that the replenishment decision in period t depends only on (xt, rt) and not on future fund-
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ing. Since R1
N−t ≥ R2

N−t, and the starting inventory xN is the same, every replenishment deci-

sion feasible under Z2 is also feasible under Z1. This implies that Ṽ 2
N,ζ(xN , R

2
N ) ≥ Ṽ 1

N,ζ(xN , R
1
N )

where Ṽ i
N,ζ(xN , R

1
N ) is the total realized cost in periods 1, 2, ..., N under funding vector Z2.

Taking expectation yields Ṽ 2
N (xN , R

2
N ) ≥ Ṽ 1

N (xN , R
1
N ).

Proof of Proposition 2

To begin with, notice that the amount received until period t+ 1 is the same under all the

three funding vectors. Since inventory decisions are made based on only the current state of

the system (according to (2.4)), the cost incurred under all three funding vectors is the same

until period t+ 1. Let (xt, rt) denote the state of the system at the beginning of period t under

vector Z. Then, the system state under vectors ZA and ZD are (xt, rt + δ) and (xt, rt − δ)

respectively. Similar to equation (2.3), we have

Vt(xt, rt + δ) = −cxt + min
yt∈

[
xt,

Rt+δ
c

]
{
Ct(yt, Rt)

}

Vt(xt, rt) = −cxt + min
yt∈

[
xt,

Rt
c

]
{
Ct(yt, Rt)

}

and

Vt(xt, rt − δ) = −cxt + min
yt∈

[
xt,

Rt−δ
c

]
{
Ct(yt, Rt)

}

where Ct(yt, Rt) = cyt + bEζt [ζt− yt]+ +hEζt [yt− ζt]+ +EζtVt−1(yt− ζt, Rt− cyt + zt−1). Notice

that Ct is a special case of Ĉt (see equation (2.2)). From Lemma 1, it follows that for fixed

Rt and Ot, Ĉt(yt, Rt, Ot) is convex in yt. Hence, Ct(yt, Rt) is convex in yt for fixed Rt. The

desired result, V D
N (xN , rN ) − VN (xN , rN ) ≥ VN (xN , rN ) − V A

N (xN , rN ), follows directly from

the convexity.

Proof of Theorem 4

The proof proceeds through induction on the number of periods to go. We know that

NV λ
0 (.) = Gλ0(.) = 0. For t ≤ λ, orders placed in period t will not be received before the end
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of the horizon and hence, no orders will be placed during these periods. Therefore, it follows

that for every (Rt, OFt), NV
λ
t (xt, w

1
t , w

2
t , ..., w

λ−1
t )=Gλt (xt, w

1
t , w

2
t , ..., w

λ−1
t , Rt, OFt) ∀ t ≤ λ.

Moreover,

NV λ
λ (xλ, w

1
λ, w

2
λ, ..., w

λ−1
λ ) = f̃λ(xλ) + Eζλ f̃λ−1(xλ + w1

λ − ζλ)

+ ...+ Eζλ,ζλ−1,...,ζ2 f̃1(IPλ − ζλ − ζλ−1 − ...− ζ2) (A.9)

where f̃i(x) = hEζi [x− ζi]+ + bEζi [ζi − x]+ and IPλ = xλ +w1
λ + ...+wλ−1

λ . From equation

(A.9), it follows directly that NV λ
λ is jointly convex in xλ, w

1
λ, w

2
λ, ..., w

λ−1
λ . Now,

NV λ
λ+1(xλ+1, w

1
λ+1, ..., w

λ−1
λ+1)

= min
zλ+1≥0

 czλ+1 + bEζλ+1
[ζλ+1 − xλ+1]+ + hEζλ+1

[xλ+1 − ζλ+1]+

+Eζλ+1
NV λ

λ (xλ+1 − ζλ+1 + w1
λ+1, w

2
λ+1, ..., w

λ−1
λ+1, zλ+1)

 (A.10)

From the convexity of NV λ
λ , we have that the expression to be minimized in equation (A.10)

is jointly convex in xλ+1, w
1
λ+1, ..., w

λ−1
λ+1 and zλ+1. Two important results follow: (i) NV λ

λ+1

is jointly convex in xλ+1, w
1
λ+1, ..., w

λ−1
λ+1. (ii) The specific form of equation (A.9) implies that

there exists a base stock level yλ∗λ+1, independent of xλ+1, w
1
λ+1, ..., w

λ−1
λ+1, such that z∗λ+1=max

(yλ∗λ+1 − IPλ+1,0) minimizes (A.10). In general, we can show through induction that NV λ
t is

jointly convex in xt, w
1
t , ..., w

λ−1
t and that there exists a base stock level y∗t , independent of

xt, w
1
t , ..., w

λ−1
t , such that z∗t =max (yλ∗t − IPt,0) is the optimal order quantity in period t.

Gλλ+1(xλ+1, w
1
λ+1, ..., w

λ−1
λ+1, Rλ+1, OFλ+1)

= min
0≤zλ+1≤

Rλ+1
c
−IPλ+1


czλ+1 + bEζλ+1

[ζλ+1 − xλ+1]+ + hEζλ+1
[xλ+1 − ζλ+1]+

+EGλλ(xλ+1 − ζλ+1 + w1
λ+1,

..., wλ−1
λ+1, zλ+1, Rλ+1 − cζλ+1 +OFλ+1 −OFλ, OFλ)


= min

0≤zλ+1≤
Rλ+1
c
−IPλ+1

 czλ+1 + bEζλ+1
[ζλ+1 − xλ+1]+ + hEζλ+1

[xλ+1 − ζλ+1]+

+ENV λ
λ (xλ+1 − ζλ+1 + w1

λ+1, w
2
λ+1, ..., w

λ−1
λ+1, zλ+1)

 (A.11)

where the second equality follows from the fact that NV λ
λ (.) = Gλλ(., Rλ, OFλ) ∀ (Rλ, OFλ).
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The expressions to be minimized in (A.10) and (A.11) are the same, implying that z∗λ+1=

max(min(yλ∗λ+1 − IPλ+1,
Rλ+1

c − IPλ+1),0) minimizes equation (A.11). Furthermore, for fixed

Rλ+1, C={(xλ+1, w
1
λ+1, ..., w

λ−1
λ+1, zλ+1) : 0 ≤ zλ+1 ≤ Rλ+1

c − IPλ+1} is a convex set. Using

proposition B-4 from Heyman and Sobel (1984), we see that Gλλ+1(xλ+1, w
1
λ+1, ..., w

λ−1
λ+1, Rλ+1,

OFλ+1) is jointly convex in xλ+1, w
1
λ+1, ..., w

λ−1
λ+1 for fixed (Rλ+1, OFλ+1).

Now consider the following cases.

Case 1.1: IPλ+1 ≥ yλ∗λ+1

NV λ
λ+1(xλ+1, w

1
λ+1, ..., w

λ−1
λ+1) = Gλλ+1(xλ+1, w

1
λ+1, ..., w

λ−1
λ+1, Rλ+1, OFλ+1)

= hEζλ+1
[xλ+1 − ζλ+1]+ + bEζλ+1

[ζλ+1 − xλ+1]+

+ Eζλ+1
NV λ

λ (xλ+1 + w1
λ+1 − ζλ+1, w

2
λ+1, ..., w

λ−1
λ+1, 0)

where we have again used the fact that NV λ
λ (.) = Gλλ(., Rλ, OFλ).

Case 1.2: IPλ+1 < yλ∗λ+1,
Rλ+1

c ≥ yλ∗λ+1

NV λ
λ+1(xλ+1, w

1
λ+1, ..., w

λ−1
λ+1) = Gλλ+1(xλ+1, w

1
λ+1, ..., w

λ−1
λ+1, Rλ+1, OFλ+1)

= hEζλ+1
[xλ+1 − ζλ+1]+ + bEζλ+1

[ζλ+1 − xλ+1]+ + c(yλ∗λ+1 − IPλ+1)

+ Eζλ+1
NV λ

λ (xλ+1 + w1
λ+1 − ζλ+1, w

2
λ+1, ..., w

λ−1
λ+1, y

λ∗
λ+1 − IPλ+1)

In cases 1.1 and 1.2, NV λ
λ+1(.) = Gλλ+1(., Rλ+1, OFλ+1). Therefore,

∂NV λλ+1

∂xλ+1
=
∂Gλλ+1

∂xλ+1
and

∂NV λλ+1

∂wiλ+1

=
∂Gλλ+1

∂wiλ+1

, i = 1, 2, ..., λ− 1.

Case 1.3:
Rλ+1

c < yλ∗λ+1

NV λ
λ+1(xλ+1, w

1
λ+1, ..., w

λ−1
λ+1) = hEζλ+1

[xλ+1 − ζλ+1]+ + bEζλ+1
[ζλ+1 − xλ+1]+

+ c(yλ∗λ+1 − IPλ+1) + Eζλ+1
NV λ

λ (xλ+1 + w1
λ+1 − ζλ+1, w

2
λ+1, ..., w

λ−1
λ+1, y

λ∗
λ+1 − IPλ+1)
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Gλλ+1(xλ+1, w
1
λ+1, ..., w

λ−1
λ+1, Rλ+1, OFλ+1) = hEζλ+1

[xλ+1 − ζλ+1]+ + bEζλ+1
[ζλ+1 − xλ+1]+

+Rλ+1 − cIPλ+1 + Eζλ+1
NV λ

λ (xλ+1 + w1
λ+1 − ζλ+1, w

2
λ+1, ..., w

λ−1
λ+1,

Rλ+1

c
− IPλ+1)

Using expression (A.9), we see that

∂NV λ
λ+1

∂xλ+1
= −c+ hFλ+1(xλ+1)− bF̄λ+1(xλ+1) + Eζλ+1

∂f̃λ(xλ+1 + w1
λ+1 − ζλ+1)

∂xλ+1

+ ...+ Eζλ+1,...,ζ2

∂f̃1(yλ∗λ+1 − ζλ+1 − ...− ζ2)

∂xλ+1

and

∂Gλλ+1

∂xλ+1
= −c+ hFλ+1(xλ+1)− bF̄λ+1(xλ+1) + Eζλ+1

∂f̃λ(xλ+1 + w1
λ+1 − ζλ+1)

∂xλ+1

+ ...+ Eζλ+1,...,ζ2

∂f̃1(
Rλ+1

c − ζλ+1 − ...− ζ2)

∂xλ+1

The last term is 0 in both the above equations. Therefore
∂NV λλ+1(.)

∂xλ+1
=
∂Gλλ+1(.,Rλ+1,OFλ+1)

∂xλ+1
.

Similarly,

∂NV λ
λ+1

∂w1
λ+1

= −c+ Eζλ+1

∂f̃λ(xλ+1 + w1
λ+1 − ζλ+1)

∂w1
λ+1

+ ...+ Eζλ+1,...,ζ2

∂f̃1(yλ∗λ+1 − ζλ+1 − ...− ζ2)

∂w1
λ+1

and

∂Gλλ+1

∂w1
λ+1

= −c+ Eζλ+1

∂f̃λ(xλ+1 + w1
λ+1 − ζλ+1)

∂w1
λ+1

+ ...+ Eζλ+1,...,ζ2

∂f̃1(
Rλ+1

c − ζλ+1 − ...− ζ2)

∂w1
λ+1

Again, the last term is 0 in both the above equations. Therefore,
∂NV λλ+1

∂w1
λ+1

=
∂Gλλ+1

∂w1
λ+1

. For any

given (Rλ+1, OFλ+1), following similar steps, it is easy to show that
∂NV λλ+1(.)

∂wiλ+1

=
∂Gλλ+1(.,Rλ+1,OFλ+1)

∂wiλ+1

∀ i = 1, ..., λ− 1.

Let the induction hypothesis be that Gλt is jointly convex in (xt, w
1
t , ..., w

λ−1
t ), given Rt and

OFt. Furthermore, let
∂NV λt (.)
∂xt

=
∂Gλt (.,Rt,OFt)

∂xt
and

∂NV λt (.)

∂wit
=
∂Gλt (.,Rt,OFt)

∂wit
for any given (Rt, OFt)

and i = 1, 2, ..., λ− 1. We will show that they hold true for t+ 1 as well.
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Fix (Rt+1, OFt+1). We know that

Gλt+1(xt+1, w
1
t+1, ..., w

λ−1
t+1 , Rt+1, OFt+1)

= min
0≤zt+1≤

Rt+1
c
−IPt+1


czt+1 + bEζt+1 [ζt+1 − xt+1]+ + hEζt+1 [xt+1 − ζt+1]+

+EOFt|OFt+1
Eζt+1G

λ
t (xt+1 − ζt+1 + w1

t+1,

..., wλ−1
t+1 , zt+1, Rt+1 − cζt+1 +OFt+1 −OFt, OFt)


(A.12)

Since Gλt is jointly convex in (xt, w
1
t , ..., w

λ−1
t ), it follows that the function to be minimized

in equation (A.12) is jointly convex in (xt+1, w
1
t+1, ..., w

λ−1
t+1 , zt+1). Again, using proposition B-4

from Heyman and Sobel (1984), we see that Gλt+1 is jointly convex in xt+1, w
1
t+1, ..., w

λ−1
t+1 for

fixed (Rt+1, OFt+1). This completes the first part of the induction.

From the convexity of Gλt+1 and the induction assumptions
∂NV λt
∂xt

=
∂Gλt
∂xt

and
∂NV λt
∂wit

=
∂Gλt
∂wit

, it

follows that z∗t+1=max(min( yλ∗t+1 − IPt+1,
Rt+1

c − IPt+1),0) minimizes equation (A.12).

To prove the other part of the induction for t+1, the following recursive equation for NV λ
t ,

t > λ+ 1, would be useful.

NV λ
t (xt+1 − ζt+1 + w1

t+1, w
2
t+1, ..., w

λ−1
t+1 , zt+1)

= c(max(yλ∗t − IPt, 0)) + f̃t(xt+1 − ζt+1 + w1
t+1)

+ Eζt f̃t−1(xt+1 + w1
t+1 + w2

t+1 − ζt+1 − ζt)

+ ...+ Eζt,...,ζt−λ+2
f̃t−λ+1(IPt+1 + zt+1 − ζt+1 − ζt − ...− ζt−λ+2)

+ Eζt,...,ζt−λ+1
NV λ

t−λ(xt−λ, w
1
t−λ, ..., w

λ−1
t−λ ) (A.13)

Now consider three cases similar to the ones we considered earlier for t = λ+ 1.

Case 2.1: IPt+1 ≥ yλ∗t+1.

Gλt+1(xt+1, w
1
t+1, ..., w

λ−1
t+1 , Rt+1, OFt+1) = bEζt+1 [ζt+1 − xt+1]+ + hEζt+1 [xt+1 − ζt+1]+

+ EOFt|OFt+1
Eζt+1G

λ
t (xt+1 − ζt+1 + w1

t+1, ..., w
λ−1
t+1 , 0, Rt+1 − cζt+1 +OFt+1 −OFt, OFt)
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and

NV λ
t+1(xt+1, w

1
t+1, ..., w

λ−1
t+1 ) = bEζλ+1

[ζλ+1 − xλ+1]+ + hEζλ+1
[xλ+1 − ζλ+1]+

+ Eζλ+1
NV λ

t (xλ+1 − ζλ+1 + w1
λ+1, w

2
λ+1, ..., w

λ−1
λ+1, 0)

Since
∂NV λt (.)
∂xt

=
∂Gλt (.,Rt,OFt)

∂xt
and

∂NV λt (.)

∂wit
=
∂Gλt (.,Rt,OFt)

∂wit
for i = 1, 2, ..., λ− 1, it follows that,

for fixed (Rt+1, OFt+1),
∂NV λt+1(.)

∂xt+1
=
∂Gλt+1(.,Rt+1,OFt+1)

∂xt+1
and

∂NV λt+1(.)

∂wit+1
=
∂Gλt+1(.,Rt+1,OFt+1)

∂wit+1
∀ i =

1, 2, ..., λ− 1.

Case 2.2: IPt+1 < yλ∗t+1, Rt+1

c ≥ yλ∗t+1.

Gλt+1(xt+1, w
1
t+1, ..., w

λ−1
t+1 , Rt+1, OFt+1)

= c(yλ∗t+1 − IPt+1) + bEζt+1 [ζt+1 − xt+1]+ + hEζt+1 [xt+1 − ζt+1]+

+ EOFt|OFt+1
Eζt+1G

λ
t (xt+1 − ζt+1 + w1

t+1, ..., y
λ∗
t+1 − IPt+1, Rt+1 − cζt+1 +OFt+1 −OFt, OFt)

and

NV λ
t+1(xt+1, w

1
t+1, ..., w

λ−1
t+1 )

= c(yλ∗t+1 − IPt+1) + bEζλ+1
[ζλ+1 − xλ+1]+ + hEζλ+1

[xλ+1 − ζλ+1]+

+ Eζλ+1
NV λ

t (xλ+1 − ζλ+1 + w1
λ+1, w

2
λ+1, ..., w

λ−1
λ+1, y

λ∗
t+1 − IPt+1)

Again, the induction hypothesis concerning the derivatives of NV λ
t and Gλt directly yields

∂NV λt+1(.)

∂xt+1
=
∂Gλt+1(.,Rt+1,OFt+1)

∂xt+1
and

∂NV λt+1(.)

∂wit+1
=
∂Gλt+1(.,Rt+1,OFt+1)

∂wit+1
∀ i = 1, 2, ..., λ− 1.

Case 2.3: Rt+1

c < yλ∗t+1

NV λ
t+1(xt+1, w

1
t+1, ..., w

λ−1
t+1 )

= c(yλ∗t+1 − IPt+1) + bEζt+1 [ζt+1 − xt+1]+ + hEζt+1 [xt+1 − ζt+1]+

+ Eζt+1NV
λ
t (xt+1 − ζt+1 + w1

t+1, ..., w
λ−1
t+1 , y

λ∗
t+1 − IPt+1)
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From equation (A.13), we get

NV λ
t (xt+1 − ζt+1 + w1

t+1, w
2
t+1, ..., w

λ−1
t+1 , y

λ∗
t+1 − IPt+1)

= c(max(yλ∗t − (yλ∗t+1 − ζt+1), 0)) + f̃t(xt+1 − ζt+1 + w1
t+1)

+ Eζt f̃t−1(xt+1 + w1
t+1 + w2

t+1 − ζt+1 − ζt)

+ ...+ Eζt,...,ζt−λ+2
f̃t−λ+1(yλ∗t+1 − ζt+1 − ζt − ...− ζt−λ+2)

+ Eζt,...,ζt−λ+1
NV λ

t−λ(xt−λ, w
1
t−λ, ..., w

λ−1
t−λ ) (A.14)

In equation (A.14), xt−λ=max(yλ∗t − (yλ∗t+1 − ζt+1), 0) + yλ∗t+1 − ζt+1 − ζt − ...− ζt−λ+1, i.e.,

it is a function only of yλ∗t+1, y
λ∗
t , ζt+1, ζt, ..., ζt−λ+1. wλ−1

t−λ , which is the order placed in t− 1, is

a function only of yλ∗t+1, y
λ∗
t , y

λ∗
t−1, ζt+1, and ζt. Following similar logic, it is easy to see that the

state variables (xt−λ, w
1
t−λ, ..., w

λ−1
t−λ ) are independent of (xt+1, w

1
t+1, ..., w

λ−1
t+1 ).

Gλt+1(xt+1, w
1
t+1, ..., w

λ−1
t+1 , Rt+1, OFt+1)

= Rt+1 − cIPt+1 + bEζt+1 [ζt+1 − xt+1]+ + hEζt+1 [xt+1 − ζt+1]+

+ EOFt|OFt+1
Eζt+1G

λ
t (xt+1 − ζt+1 + w1

t+1, ...,
Rt+1

c
− IPt+1, Rt+1 − cζt+1 +OFt+1 −OFt, OFt)

Since the derivatives of Gλt and NV λ
t are equal (for a given (Rt, OFt)) by the induction

hypothesis, to analyze the derivative of Gλt (xt+1 − ζt+1 + w1
t+1, ..., w

λ−1
t+1 ,

Rt+1

c − IPt+1, Rt+1 −

cζt+1 +OFt+1 −OFt, OFt) with respect to state variables xt+1, w
1
t+1, ..., w

λ−1
t+1 , we focus on the

following expression.

NV λ
t (xt+1 − ζt+1 + w1

t+1, w
2
t+1, ..., w

λ−1
t+1 ,

Rt+1

c
− IPt+1)

= c(max(yλ∗t − (
Rt+1

c
− ζt+1), 0)) + f̃t(xt+1 − ζt+1 + w1

t+1)

+ Eζt f̃t−1(xt+1 + w1
t+1 + w2

t+1 − ζt+1 − ζt)

+ ...+ Eζt,...,ζt−λ+2
f̃t−λ+1(

Rt+1

c
− ζt+1 − ζt − ...− ζt−λ+2)

+ Eζt,...,ζt−λ+1
NV λ

t−λ(xt−λ, w
1
t−λ, ..., w

λ−1
t−λ ) (A.15)

In equation (A.15), xt−λ=max(yλ∗t −(Rt+1

c −ζt+1), 0)+Rt+1

c −ζt+1−ζt−...−ζt−λ+1, i.e., it is a
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function only of Rt+1

c , yλ∗t , ζt+1, ζt, ..., ζt−λ+1. wλ−1
t−λ is a function only of Rt+1

c , yλ∗t , y
λ∗
t−1, ζt+1 and

ζt−λ. Using similar logic, we see that the state variables (xt−λ, w
1
t−λ, ..., w

λ−1
t−λ ) are independent of

(xt+1, w
1
t+1, ..., w

λ−1
t+1 ) in this case as well. Therefore it follows that the derivatives of NV λ

t (xt+1−

ζt+1 + w1
t+1, w

2
t+1, ..., w

λ−1
t+1 , y

λ∗
t+1 − IPt+1) and NV λ

t (xt+1 − ζt+1 + w1
t+1, w

2
t+1, ..., w

λ−1
t+1 ,

Rt+1

c −

IPt+1) with respect to xt+1 and wit+1, i = 1, 2, ..., λ − 1 are equal. This in turn implies that

∂NV λt+1(.)

∂xt+1
=
∂Gλt+1(.,Rt+1,OFt+1)

∂xt+1
and

∂NV λt+1(.)

∂wit+1
=
∂Gλt+1(.,Rt+1,OFt+1)

∂wit+1
for any given (Rt+1, OFt+1) and

i = 1, 2, ..., λ− 1. Hence the induction is complete.
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Appendix B

Proofs for results in Chapter 3

Proof of Lemma 3

The proof proceeds through induction. Let us begin with t=0. When r0 < n2
0, it is easy to

see from equation (3.2) that V0 is linear in S0. The linearity holds true for the other two cases

as well, i.e., n2
0 ≤ r0 < n1

0 + n2
0 and r0 ≥ n1

0 + n2
0. Hence the joint convexity holds for V0.

Now assume that Vt−1 is jointly convex in St−1 for fixed OFt−1. Since St−1 is a linear

function of St, a
1 and a2, and convexity is preserved under expectations, it follows that the

function to be minimized in equation (3.1) is jointly convex in (St, a
1, a2). Now consider the

constraint set C=
{

(a1, a2) : 0 ≤ a1 ≤ n1
t , 0 ≤ a2 ≤ n2

t , a
1 + a2 ≤ rt

}
. Clearly, C is a convex set.

Therefore, using proposition B-4 from Heyman and Sobel (1984), we see that Vt is jointly convex

in St for fixed OFt.

Proof of Theorem 5

When n2
t ≥ rt, the result follows directly from the fact that a2∗ = min{n2

t , rt} and a1 +a2 ≤

rt. If n2
t < rt, then, clearly a2∗ = n2

t . a
1∗ is the solution to the following problem.

min

0 ≤ a1 ≤ min{n1
t , rt − n2

t }

{
Ct
(
a1, St, OFt

)}

From Lemma 3, we have that Ct is jointly convex in a1 and St for fixed OFt. Then it follows

directly that a1∗ = max{a1 : ∂Ct
∂a1
≤ 0, 0 ≤ a1 ≤ min{n1

t , rt − n2
t }} is indeed the optimal

allocation in period t.

Proof of Proposition 3

To prove the monotonicity of a1∗ with respect to n1
t and rt, we vary them one at a time.

First fix n1
t and let r̂t > rt. Consider the following three cases.



Case 1.1: n2
t > r̂t. In this case, a1∗(r̂t)=a

1∗(rt)=0.

Case 1.2: rt ≤ n2
t ≤ r̂t. Then, a1∗(rt) = 0 ≤ a1∗(r̂t).

Case 1.3: n2
t < rt. Then,

Vt
(
n1
t , n

2
t , rt, OFt

)
= min

0 ≤ a1 ≤ min{n1
t , rt − n2

t }

{
Ct
(
a1, n1

t , n
2
t , rt, OFt

)}
(B.1)

and Vt
(
n1
t , n

2
t , r̂t, OFt

)
is obtained by replacing rt with r̂t in equation (B.1). From equation

(3.3), we see that

∂Ct
∂a1

= −b̂1 + EnNt−1
EOFt−1|OFt(−α11)

∂Vt−1

∂n1
t−1

+ (−α12)
∂Vt−1

∂n2
t−1

+ (−1)
∂Vt−1

∂rt−1

The convexity of Vt−1 implies that (α11)∂Vt−1

∂n1
t−1

+ (α12)∂Vt−1

∂n2
t−1

+ (1)∂Vt−1

∂rt−1
is increasing in rt−1 for

fixed n1
t−1, n

2
t−1 and OFt−1. This yields

∂Ct(a1,n1
t ,n

2
t ,rt,OFt)

∂a1
≥ ∂Ct(a1,n1

t ,n
2
t ,r̂t,OFt)

∂a1
, which then

directly implies that a1∗(r̂t) ≥ a1∗(rt).

We use a similar approach to prove the monotonicity of a1∗ with respect to n1
t . Fix rt and

let n̂1
t > n1

t . Consider the following cases.

Case 2.1: n2
t > rt. In this case, a1∗(n̂1

t )=a
1∗(n1

t )=0.

Case 2.2: n2
t ≤ rt. Then, Vt

(
n1
t , n

2
t , rt, OFt

)
is given by (B.1) while Vt

(
n̂1
t , n

2
t , rt, OFt

)
is

obtained by replacing n1
t with n̂1

t in equation (B.1). From the convexity of Vt−1, we have that

(α11)∂Vt−1

∂n1
t−1

+ (α12)∂Vt−1

∂n2
t−1

+ (1)∂Vt−1

∂rt−1
is increasing in n1

t−1 and n2
t−1 for fixed rt−1 and OFt−1.

Therefore,
∂Ct(a1,n1

t ,n
2
t ,rt,OFt)

∂a1
≥ ∂Ct(a1,n̂1

t ,n
2
t ,rt,OFt)

∂a1
, and hence a1∗(n̂1

t ) ≥ a1∗(n1
t ), completing

the proof.

Proof of Corollary 1

The first result follows directly from the following facts: a1∗ is monotone increasing with

respect to rt for fixed Nt (Proposition (3)) and 0 ≤ a1 ≤ n1
t . We move on to the second result.

The convexity of Ct, combined with our assumption that a2 = n2
t and a1 = rt− n2

t are optimal

113



for rt, lead to the following series of inequalities:

∂Ct
(
a1, Nt, r̂t, OFt

)
∂a1

|a1=r̂t−n2
t
≤
∂Ct

(
a1, Nt, rt, OFt

)
∂a1

|a1=r̂t−n2
t

≤
∂Ct

(
a1, Nt, rt, OFt

)
∂a1

|a1=rt−n2
t

≤ 0.

Hence, a1 = r̂t − n2
t is optimal for r̂t. The third result follows from Proposition (3), which

demonstrates that a1∗(rt) ≥ a1∗(r̂t). The fourth result is obtained by combining the following

facts: a1∗(rt) ≥ a1∗(r̂t) and 0 ≤ â1 ≤ r̂t − n2
t , since r̂t ≥ n2

t .

Proof of Lemma 4

The proof proceeds through induction and a sample path argument. We start with t=0.

Notice that TF0=r0 and J0 (S0, TF0)=V0 (S0, 0). Then, the convexity of V0 in S0 directly

implies the convexity of J0 in (S0, TF0).

Now, suppose that Jt (St−1, TFt−1) is jointly convex in St−1 and TFt−1. Pick any St =

(n1
t , n

2
t , rt), Ŝt = (n̂1

t , n̂
2
t , r̂t), TFt, ˆTF t, a

1, â1, a2, â2 and 0 ≤ λ ≤ 1. Analogous to n1
t−1, n

2
t−1, rt−1

and TFt−1, define n̂1
t−1, n̂

2
t−1, r̂t−1 and ˆTF t−1 in terms of n̂1

t , n̂
2
t , r̂t, â

1, â2. For brevity, also de-

fine n̄1
t−1 = λn1

t−1 + (1 − λ)n̂1
t−1, n̄2

t−1 = λn2
t−1 + (1 − λ)n̂2

t−1, r̄t−1 = λrt−1 + (1 − λ)r̂t−1,

¯TF t−1 = λTFt−1 + (1− λ) ˆTF t−1.

The first step in proving the convexity of Jt makes use of the SSCV property. Since

ft−1 |TFt−rt is SSCV, we have that ft−1 |λ(TFt−rt)+(1−λ)( ˆTF t−r̂t)≥ λft−1 |TFt−rt +(1−λ)ft−1 | ˆTF t−r̂t

w.p.1, provided all the three random variables are defined on a common probability space. This

results in the following series of inequalities.

Jt−1(n̄1
t−1, n̄

2
t−1, λ(rt − a1 − a2) + (1− λ)(r̂t − â1 − â2) + ft−1 |λ(TFt−rt)+(1−λ)( ˆTF t−r̂t),

¯TF t−1)

≤ Jt−1(n̄1
t−1, n̄

2
t−1, r̄t−1, ¯TF t−1)

≤ λJt−1

(
n1
t−1, n

2
t−1, rt−1, TFt−1

)
+ (1− λ)Jt−1(n̂1

t−1, n̂
2
t−1, r̂t−1, ˆTF t−1) w.p.1.

The first inequality stems from combining the following facts: (i) ft−1 |TFt−rt is SSCV and (ii)

Jt−1 is decreasing in rt−1 for fixed n1
t−1, n

2
t−1, n

D
t−1 and TFt−1. The second inequality comes
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from the induction assumption regarding the joint convexity of Jt−1. Since the above inequality

holds almost surely, we have that

b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2) + +EnNt−1

ETFt−rt−ft−1|TFt−rtJt−1

(
n1
t−1, n

2
t−1, rt−1, TFt−1

)
is jointly convex in

(
a1, a2, St, TFt

)
. Then, using proposition B-4 from Heyman and Sobel

(1984), we see that Jt is jointly convex in (St, TFt).

Proof of Proposition 4

To show that a1∗ is increasing with respect to n1
t and rt, we vary them one at a time. First

fix n1
t . Let r̂t > rt. We consider the following three cases.

Case 1.1: n2
t > r̂t. In this case, a1∗(r̂t)=a

1∗(rt)=0.

Case 1.2: rt ≤ n2
t ≤ r̂t. Then, a1∗(rt) = 0 ≤ a1∗(r̂t).

Case 1.3: n2
t < rt. Then,

Jt
(
n1
t , n

2
t , rt, TFt

)
= min

0 ≤ a1 ≤ min{n1
t , rt − n2

t }

{
C̃t
(
a1, n1

t , n
2
t , rt, TFt

)}
(B.2)

and Jt
(
n1
t , n

2
t , r̂t, TFt

)
is obtained by replacing rt with r̂t in equation (B.2). From expression

(3.6), we get

∂C̃t
∂a1

= −b̂1 + EnNt−1,TFt−rt−ft−1|TFt−rt(−α11)
∂Jt−1

∂n1
t−1

+ (−α12)
∂Jt−1

∂n2
t−1

+ (−1)

[
∂Jt−1

∂rt−1
+

∂Jt−1

∂TFt−1

]

From the convexity of Jt−1, we have that (−α11) ∂Jt−1

∂n1
t−1

+ (−α12) ∂Jt−1

∂n2
t−1

+ (−1)
[
∂Jt−1

∂rt−1
+ ∂Jt−1

∂TFt−1

]
is decreasing in rt−1 for fixed n1

t−1, n
2
t−1 and TFt−1. Now, we make use of the assumption that

rt+ft−1 is stochastically increasing in rt for fixed TFt. Given this assumption, r̂t+ft−1 |TFt−r̂t≥

rt + ft−1 |TFt−rt w.p.1, provided the random variables ft−1 |TFt−r̂t and ft−1 |TFt−rt are defined
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on the same probability space. This implies that

(−α11)
∂Jt−1

∂n1
t−1

+ (−α12)
∂Jt−1

∂n2
t−1

+ (−1)

[
∂Jt−1

∂rt−1
+

∂Jt−1

∂TFt−1

]
|(n1

t−1,n
2
t−1,rt−1,TFt−1)

≥ (−α11)
∂Jt−1

∂n1
t−1

+ (−α12)
∂Jt−1

∂n2
t−1

+ (−1)

[
∂Jt−1

∂rt−1
+

∂Jt−1

∂TFt−1

]
|(n1

t−1,n
2
t−1,r̂t−1,TFt−1) w.p.1.

Since the above inequality holds almost surely, we see that
∂C̃t(a1,Nt,rt,OFt)

∂a1
≥ ∂C̃t(a1,Nt,r̂t,OFt)

∂a1
.

Hence, a1∗(r̂t) ≥ a1∗(rt). To prove the second part of the result, fix rt and consider n̂1
t > n1

t . In

this case, a1∗(n̂1
t ) ≥ a1∗(n1

t ) follows using an approach identical to the one used in Proposition

3.

Proof of Corollary 2

Identical to proof of Corollary 1.

Proof of Proposition 5

We use a sample path approach to prove this result. To make the exposition clear, let

us define vector R̄nA = (r̄n1 , r̄
n
2 , ..., r̄

n
t ), n=1,2, where r̄ni is the funding available on–hand (for

a particular sample path) at the beginning of period i under funding scenario n. Here, A =

((a1
1, a

2
1), (a1

2, a
2
2), ..., (a1

t , a
2
t )) represents the vector of allocations (a1

t , a
2
t ) made in period t. Given

R̄nA, let V n
t,R̄nA

(St, OFt) be the cost incurred in periods 1, 2, ..., t along a particular sample path

under funding scenario n, following the allocation vector A. Let An∗ represent the optimal

allocation vector along a particular sample path for funding scenario n. Now, given conditions

(3.7) and (3.13), notice that A2∗ is also feasible under scenario 1 along every sample path, but it

may not be optimal. This implies that V 2
t, ¯Rn

A2∗
(St, OFt) = V 1

t, ¯Rn
A2∗

(St, OFt) ≥ V 1
t, ¯Rn

A1∗
(St, OFt)

w.p.1. Since, this result holds for every sample path, the result also holds in expectation, i.e,

V 2
t (St, OFt) ≥ V 1

t (St, OFt).

Proof of Proposition 6

We use the equivalent function Jt to prove the result. Since OF 1
1 =OF 2

1 =0, from equation

(3.4), it follows that J2
2 (n1

2, n
2
2, r2, TF2) ≥ J1

2 (n1
2, n

2
2, r2, TF2). Let the induction assumption be

J2
t−1(n1

t−1, n
2
t−1, rt−1, TFt−1) ≥ J1

t−1(n1
t−1, n

2
t−1, rt−1, TFt−1). Now we make use of conditions
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(3.7) and (3.8). Since the conditions hold for both funding scenarios, using Lemma 4, we see

that J1
t−1 and J2

t−1 are jointly convex in (St−1, OFt−1). Then,

J1
t (n1

t , n
2
t , rt, TFt) = min

0 ≤ a1 ≤ n1
t

0 ≤ a2 ≤ n2
t

a1 + a2 ≤ rt

 b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2)

+EnNt−1
EOF 1

t−1|OFtJ
1
t−1(n1

t−1, n
2
t−1, rt−1, TFt−1)



≤ min

0 ≤ a1 ≤ n1
t

0 ≤ a2 ≤ n2
t

a1 + a2 ≤ rt

 b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2)

+EnNt−1
EOF 1

t−1|OFtJ
2
t−1(n1

t−1, n
2
t−1, rt−1, TFt−1)



≤ min

0 ≤ a1 ≤ n1
t

0 ≤ a2 ≤ n2
t

a1 + a2 ≤ rt

 b1a2 + b̂1(n1
t − a1) + b̂2t (n

2
t − a2)

+EnNt−1
EOF 2

t−1|OFtJ
2
t−1(n1

t−1, n
2
t−1, rt−1, TFt−1)



= J2
t (n1

t , n
2
t , rt, TFt)

The first inequality follows from the induction assumption and the second inequality is

obtained by combining the facts that J2
t−1 is convex and OF 2

t−1|OFt ≥cvx OF 1
t−1|OFt.

Proof of Proposition 7

Using Property 2, we see that conditions (3.15) and (3.16), combined, imply condition

(3.13). The result then follows directly from Proposition 5.

Proof of Proposition 8

Using Property 2, we see that conditions (3.16) and (3.17), combined, imply OF 1
t−1 |OFt=i

≥st OF 2
t−1 |OFt=i. The result then follows from Proposition 5.
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Appendix C

Proofs for results in Chapter 4

Proof of Lemma 5

Assuming an interior solution exists, s∗i is the solution to

−oe + (θQ+ oe)F̄ ((α0 + θsi)Q− oe(B − si)) = 0.

When demand is U ∼[0,Du], s∗i is given by

s∗i =
θDuQ+ (Boe − α0Q)(oe +Q)

(oe +Qθ)2

Taking the derivative of s∗i with respect to θ, we have

∂s∗i
∂θ

=
Q(Duoe −Bo2

e + α0oeQ)−Qθ(DuQ− α0Q
2 +BoeQ)

(oe +Qθ)3

which is positive if and only if θ < oe(Du−Boe+α0Q)
Q(Du+Boe−α0Q) . Hence the result.

Proof of Lemma 6

The expression for s∗i is given in the proof of Lemma 5. Taking the derivative of s∗i with

respect to oe, we have

∂s∗i
∂oe

=
−
(
Q(2Duθ − oe(α0 +Bθ))−Q2(Bθ2 + α0θ)

)
(oe +Qθ)3

The above expression is positive if and only if oe ≥ 2Duθ−(α0+Bθ)Qθ
(α0+Bθ) , yielding the desired

result.



Proof of Lemma 7

Taking the derivative of s∗i with respect to Q, we have

∂s∗i
∂Q

=
−
(
o2
e(α0 +Bθ)− oe(θ(Du − α0Q)−BQθ2) +DuQθ

2
)

(oe +Qθ)3

The derivative is positive only if Q ≤ oe(Duθ−oe(α0+Bθ))
θ(Duθ+oe(α0+Bθ)) . However, o∗i = B − s∗i ≥ 0 implies

that this condition can never hold. Hence, s∗i always decreases with Q.

Proof of Lemma 8

From the concavity of the objective function in si, we have that s∗i is the maximum possible

si, 0 ≤ si ≤ min{B, (1− α0)/θ}, such that

−oe + (θQ+ oe)F̄ ((α0 + θsi)Q− oe(B − si)) ≥ 0.

This implies that for s∗i to increase with µ, F̄µ2 ≥ F̄µ1 for µ2 ≥ µ1. From the definition of

first–order stochastic dominance, it is easy to see that F̄µ2 ≥ F̄µ1 if D|µ2 ≥st D|µ1 . Hence when

D|µ2 ≥st D|µ1 for µ2 ≥ µ1, s∗i always increases with µ. However, when D|µ2 ≥st D|µ1 does not

hold, then whether or not s∗i increases depends on the specific values of F1, F2,α0,θ, oe, B and

Q. Hence s∗i is not guaranteed to increase in general.

Proof of Lemma 9

The proof uses the following property of the ≥var ordering.

Property 3. (Song 1994) Let X and Y be two random variables with distribution functions

F and G respectively. If X ≥var Y , then S(F-G)=1 with sign sequence +,-, i.e., F crosses G

exactly once and the cross is from above.

Let F1 and F2 be the CDFs corresponding to random variables D|σ1 and D|σ2 respectively.

From the above result, we have that F1 and F2 intersect exactly once with sign sequence

+,-. This implies that there exists a point z∗ such that F2(z) >= F1(z) for z < z∗ and

F2(z) <= F1(z) for z >= z∗. Let us denote F1(z∗) as δ. Then the result immediately follows
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from the fact that s∗i is the maximum possible si, 0 ≤ si ≤ min{B, (1− α0)/θ}, such that

F ((α0 + θsi)Q− oe(B − si)) ≤
θQ

θQ+ oe
.

Proof of Lemma 10

The expected program coverage is given by

oeoi +

∫ (α0+θsi)Q−oeoi

0
εf(ε)dε+ ((α0 + θsi)Q− oeoi)F̄ ((α0 + θsi)Q− oeoi)

which can be rewritten as

(α0 + θsi)Q−
∫ (α0+θsi)Q−oeoi

0
F (ε)dε

If we denote the optimal supply–and demand–side investments by s1∗
i , s2∗

i and o1∗
i , o2∗

i for

the demand scenarios with means µ1 and µ2 respectively, then coverage under scenario 2 minus

coverage under scenario 1 equals

(θs2∗
i − θs1∗

i )Q+

∫ (α0+θs1∗i )Q−oeo1∗i

0
F1(ε)dε−

∫ (α0+θs2∗i )Q−oeo2∗i

0
F2(ε)dε

≥
∫ (α0+θs1∗i )Q−oeo1∗i

0
F1(ε)dε−

∫ (α0+θs1∗i )Q−oeo1∗i

0
F2(ε)dε

The above inequality holds because in the second expression, we have replaced s2∗
i and o2∗

i

by s1∗
i and o1∗

i in the coverage term for scenario 2. Now, if Dµ2 ≥st Dµ1 , then F1 ≥ F2 always

and hence the coverage under scenario 2 would be higher than the coverage under scenario 1.

However, when D|µ2 ≥st D|µ1 does not hold, there does not appear to be a condition that can

guarantee that the coverage under scenario 2 would be higher than the coverage under scenario

1. Hence the result.

Proof of Lemma 11

From the proof of Lemma 10, we have that coverage under scenario 2 minus coverage under
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scenario 1 is greater than or equal to

∫ (α0+θs1∗i )Q−oeo1∗i

0
F1(ε)dε−

∫ (α0+θs1∗i )Q−oeo1∗i

0
F2(ε)dε

where F1 and F2 correspond to the CDFs under demand scenarios 1 and 2 with mean µ

and variances σ1 and σ2 respectively. Ridder et al. (1998) show that when D|σ2 ≥var D|σ1 ,

Hn(x) =

∫ x

0
(F1(x)− F2(x))dx ≥ 0 ∀ x ≥ 0

A direct application of this result proves the lemma.
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