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ABSTRACT 

MELISSA JO WOOLLS.  Hemogenic Endothelium within the Zebrafish Caudal 
Hematopoietic Tissue illustrates the Common Ties of the Vascular and 

Hematopoietic Systems. 
(Under the direction of Suk-Won Jin) 

 
 Hemogenic endothelium involves the specification of a hematopoietic stem 

cell (HSC) from an existing endothelial cell.  It, along with common developmental 

origins, co-regulation, and shared niches are examples of the close ties the 

hematopoietic and endothelial lineages share in development.  As a significant 

portion of total HSCs are generated via a hemogenic endothelium intermediate, 

modulation of this pathway is expected to impact both hematopoietic and endothelial 

development.  Currently, our understanding of how endothelial cells transition to the 

HSC lineage is still limited.  We found that non-aortic endothelial cells, specifically 

venous endothelial cells, can undergo the transition to an HSC lineage, suggesting 

that hemogenic capacity is a more general characteristic of endothelial cells then 

previously appreciated.  Upon further analysis, we found that they were positive for 

venous specific markers and hematopoietic transcription factors.  We identified a 

potential homolog of Platelet Endothelial Cell Adhesion Molecule 1 (PECAM1) in 

zebrafish, characterized its expression during development.  It is expressed in a 

manner consistent with PECAM1 and is involved in flow-dependent process.  Finally, 

we find that loss of this PECAM1-like molecule is capable of modulating 

hematopoiesis, suggesting that the vascular and hematopoietic share common 

machinery responsible for the observed response to blood flow.     
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CHAPTER 1 

Hematopoietic and Vascular Systems Overlap to Coordinate Function 

The endothelial and hematopoetic lineages share a close developmental 

relationship, characterized by a common progenitor, close development, shared 

signaling cues, and even the ability of endothelial cells to transdifferentiate into 

hematopoietic progenitors[1-6].  The interdependence of the hematopoietic and 

vascular systems was first demonstrated by detailed studies of the vascular mutant 

cloche which lacks all endothelial and hematopoietic cells[7].  Though these mutants 

lack all cells of both lineages, the defect in endothelial cells is cell-autonomous, 

while the defect in hematopoietic cells is non-cell autonomous[7].  This suggests that 

in cloche mutants, the hematopoietic system is suffering from the lack of an intact 

vascular system.  Understanding the interconnectedness of these two systems has 

significance, as dysfunction in either system has the ability to perturb human health.  

The cardiovascular system is responsible for the delivery of blood, nutrients, and 

oxygen to all tissues and organs of the body.  Dysfunction of the vascular 

endothelium has been tied to diabetes, atherosclerosis, and tumor angiogenesis[8-

11].  The blood carried by the cardiovascular system includes erythrocytes and 

immune cells produced by the hematopoietic system.  Specific misregulation of the 

hematopoietic system can result in leukemias and auto-immune disease as well as 

generally perturb nutrition and health[12, 13].  Given the necessity of endothelial 

cells in regulation of the hematopoietic system, it is likely that better understanding 

of the interaction between these two lineages will aid our current knowledge of the 
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role of endothelial cells in regulating hematopoietic cells, and add significantly to our 

knowledge about organism health. 

 

Vascular Development of Zebrafish 

The vascular system is characterized by a lumenized vessel lined with 

endothelial cells carrying blood to the tissues of an organism.  The endothelial cells 

lining the vessels have a stereotypic morphology, polarized and aligned in the 

direction of blood flow.  They are identified by expression of specific vascular genes, 

including Platelet Endothelial Cell Adhesion Molecule-1 (PECAM1), Vascular 

Endothelial Growth Factor Receptor-2 (VEGFR2, or kdrl in zebrafish), and Vascular 

Endothelial Cadherin (VE-Cadherin).  In zebrafish, expression of vascular markers, 

such as kdrl and ve-cadherin, is detectable as early as 12 hours post fertizlization 

(hpf)[14].  However, the predisposition of certain cells towards endothelial (and 

hematopoietic) lineages begins much earlier than that, starting during gastrulation of 

the embryo[1].  During gastrulation, endothelial cells are specified from the ventral 

mesoderm.  These cells migrate to the lateral plate mesoderm at 12hpf, where they 

coalesce to form a vascular cord.  By 18hpf, these endothelial cells have formed a 

single vessel throughout the length of most of the organism[15].  As the endothelial 

cells coalesce, an additional subset of endothelial migration occurs[15].  These two 

waves of endothelial specification and migration are followed by the lumenization of 

the vascular cord and the determination of arterial or venous identity.  Within the 

vascular cord, individual endothelial cells begin to express either Ephrin Type-B 

Receptor 4 (EphB4) in veins or Ephrin-B2 in arteries[16].  Once arterial/venous 
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identity is determined, venous endothelial cells are separated from their arterial 

neighbors and migrate to form the cardinal vein[16].  By 24hpf, the initial wave of 

vascular patterning is complete.  Embryos have a dorsal aorta spanning the length 

of the embryo, carrying blood flow away from the heart, a cardinal vein, also 

spanning the length of the embryo, carrying blood back to the heart, and intersomitic 

vessels (ISVs) have sprouted dorsally from the aorta and are beginning to 

anastomoze to form the dorsal longitudinal anastomotic vessel (DLAV) (Figure 

1.1)[15, 17, 18]. 

At 24hpf, the 2-chambered zebrafish heart has formed and begins contracting 

which pushes blood throughout the body of the embryo.  Though, at this early stage, 

the flow is primarily of plasma, it allows a flow-dependent remodeling of the venous 

vascular plexus.  In the caudal-most region of the vascular system, the cardinal vein 

sprouts ventrally to form a second venous vessel[19, 20].  This second vessel, 

termed the ventral vein, is mostly intact by 36hpf, and by 48hpf, it carries an equal 

share of the venous blood flow.  As blood flow is transferred to the ventral vein, the 

dorsal vein constricts and carries less blood.  By 72hpf, the dorsal vein is no longer a 

significant carrier of blood flow and has become predominantly a site of 

hematopoietic development (Figure 1.1). 

As remodeling of the caudal plexus is occurring, differentiation of endothelial 

cell identity is stabilizing, such that markers of venous and arterial identity are 

detectable in specific vessels.  EphB4, Disabled homolog 2 (Dab2), and Fms-related 

tyrosine kinase 4 (Flt4) are all expressed in venous endothelial cells, whereas Notch, 

T-box 20 (Tbx20), and EphrinB2 are expressed in arterial cells.  An additional third 
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class of molecules is expressed heterogeneously throughout all endothelial cells, 

such as SRY-related HMG-box transcription factor SOX17 (Sox17), and even within 

arteries, Delta like ligand 4 (Dll4) and Flt-4 levels vary depending on tip or stalk cell 

identity. Thus, endothelial cells are a diverse set of cells as they are specified at 

varied timepoints, have different identities, and different subsets of gene expression 

within those identities.  Though it seems that endothelial cells are a heterogeneous 

population, for these studies, a uniform cell identity of kdrl expression was used to 

define endothelial cells (Figure 1.1).  

 

Hematopoietic Development in Zebrafish 

The hematopoietic system is also a diverse set of cells.  Erythrocytes, 

macrophages, myeloid cells, thrombocytes, and lymphocytes (both B and T-cells) 

are all derived from the same hematopoietic stem cells (HSCs)[21, 22].  Thus the 

development and specification of HSCs is of incredible interest to the fields of 

immunity, nutrition, and health.  Multiple studies have sought to characterized the 

HSCs, and have identified multiple markers of hematopoietic potential, including c-

myb, runt-related transcription factor 1 (runx1), CD41, c-kit and VE-cadherin.  

Unfortunately, many of these markers have limitations as to their usefulness for 

scientific investigation.  For instance, CD41 is expressed on lymphocytes, and VE-

Cadherin is a marker of endothelial cells[21, 23-25].  Runx1 expression is more 

variable, due to being expressed more transiently during hematopoietic 

specification[26, 27].  Though c-myb is expressed in some neuronal tissues, it 
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remains as the most reliable single marker of hematopoietic stem cell fate for 

experiments where more than one marker cannot be utilized.   

During development, hematopoietic cells have heterogeneous in origin.  Most 

notably, hematopoiesis is initiated two different forms[28-30].  The first wave of 

hematopoiesis, termed primitive hematopoiesis, initializes in the yolk sac by 16hpf.  

It occurs primarily in the ventral mesoderm and intermediate cell mass (ICM) of 

zebrafish, similar to the ventral mesoderm and the yolk sac blood islands in mice.  

This form of hematopoiesis does not self-renew and only produces erythrocytes and 

myeloid cells[21, 30, 31].  In zebrafish, it is replaced starting at about 24hpf, by 

definitive hematopoiesis.  By 36hpf, definitive hematopoiesis is the primary form of 

hematopoiesis occurring in the embryo and will continue throughout the life of the 

organism.  Definitive hematopoiesis is distinguished from primitive hematopoiesis in 

that it: 1) produces all blood lineages including erythrocytes, lymphocytes, 

macrophages, and myeloid cells, and 2) includes HSCs capable of self-renewal, 

which allows them to be maintained throughout the life of the organism (Figure 

1.1)[21, 32].   

This wave of definitive hematopoiesis will continue past development and into 

adulthood, in specialized niches.  During development, these niches are transient 

and colonized successively.  In zebrafish, definitive hematopoiesis is initiated in the 

Aorta-gonad-mesonephros (AGM), however, it progresses to the caudal 

hematopoietic tissue (CHT), and finally to the kidney (Figure 1.1)[30].  This is very 

similar to the situation in mammals, where the onset of definitive hematopoiesis is 

also in the Aorta-Gonad-Mesonephros (AGM) region, and later it can be detected in 
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the fetal liver, and then finally in the bone marrow[21].   Post-development, 

hematopoietic stem cells settle into a final specialized vascular niche, and 

hematopoiesis continues.  For mammals, this adult niche is the bone marrow, and 

for zebrafish it is the kidney marrow[21].  This may be due to the lack of bone 

marrow in zebrafish to provide the microenvironment for HSCs.  Interestingly, it is 

not clear if these niches are capable of producing hematopoietic progenitors de novo 

from the surrounding tissue and/or endothelium, or if the HSCs arising from the AGM 

colonize each successive niche. This is especially pertinent as reports have 

documented the de novo development of definitive hematopoiesis in tissues outside 

of the AGM, such as the placenta.   

 

Association between the endothelial and hematopoietic lineages during 

development 

Though it is interesting to note the many of instances of heterogeneity 

occurring within endothelial and hematopoietic lineages, it is also noteworthy that 

while these two lineages are quite diverse within their cell type, they also have many 

ties common to both lineages.  They can arise from a common progenitor, termed a 

hemangiobast.  They are specified in close spatial and temporal proximity, and they 

have multiple common signaling pathways, including Notch, Bone Morphogenic 

Proteins (BMPs), and hemodynamic force.  Moreover, specific subtypes of 

endothelial cells can trans-differentiatiate as hematopoietic progenitors (Figure 1.2). 

The hemangioblast is a progenitor cell capable of giving rise to both 

hematopoietic and endothelial lineages.  It was originally hypothesized to exist due 
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to the close spatial and temporal development of blood and endothelial cells, as is 

seen in blood islands.  Lineage tracing studies and single cell derived colony forming 

assays have since demonstrated that such progenitors do exist[1, 33].  As 

endothelial cells are being specified during gastrulation, a small subset of those cells 

specified will give rise to both endothelial and hematopoietic cells[1, 15].  However, 

this cell type is rare, and most specified cells will produce either hematopoietic or 

endothelial cells, but not both[1].  The significance of this population is not yet clear 

(Figure 1.2A).  

One potential regulator of the hemangioblast ‘switch’ is Notch signaling, which 

has been shown to modulate the number of endothelial or hematopoietic cells at the 

expense of the other cell type[2].  Thus, Notch can drive the endothelial-

hematopoietic balance.  Notch signaling has emerged as a key regulator of multiple 

facets of hematovascular biology.  Within endothelial cells, Notch signaling promotes 

arterial fate[34].  Increased notch activity promotes tip cell identity and loss of the 

inhibitory ligand, dll4, results in increased sprouting and ectopic angiogenesis[35, 

36].  Within hematopoietic cells, Notch activity is required for cell identity.  Notch 

mutants, mindbomb, fail to specify HSCs[2, 29, 37-39].  Interestingly, these roles for 

Notch appear to be distinct in that arterial specification is not required for 

hematopoietic development (Figure 1.2B). 

Other than Notch signaling, multiple other signaling cues are shared between 

the hematopoietic and vascular systems.  BMPs, wnts, and Fibroblast Growth 

Factors (FGFs) have all been shown to elicit responses on both the hematopoietic 

and vascular fields[40-44].   In each of these cases, specificity appears to be 
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achieved by modulation of the specific ligand/receptor complex.  For example, BMP2 

signaling acts specifically on veins to promote angiogenesis of existing vessels, 

while BMP4, which is structurally similar to BMP2, has been shown to drive 

activation of hematopoietic cells from the hematopoietic niche (Figure 1.2B)[19, 20, 

45, 46]. 

 

Hemodynamic Force 

In addition to diverse signaling pathways which influence both lineages, 

environmental factors also substantially affect the development of both endothelial 

and hematopoietic lineages.  For instance, blood flow appears to modulate both 

hematopoietic and endothelial cells[47-49].  The flow of blood through a vessel, 

whether arterial or vein, has been shown to elicit responses from the endothelium.  It 

is thought that the movement of the blood over the endothelial cells exposes the 

endothelium to a shear stress, resulting in a pulling on the endothelium via PECAM 

and Integrin dependent mechanisms[50].  This stress promotes the polarization of 

endothelial cells and their alignment in the direction of blood flow.  The effects of 

shear stress can be clearly observed in the area where the endothelial cells are 

exposed to disturbed flow.  In areas of disturbed or turbulent flow, endothelial cells 

fail to align and are prone to atherosclerotic lesions[51].  Molecularly, this is 

characterized by changes in endothelial Nitric Oxide Synthase (eNOS) activity, 

integrin activation, and alignment of stress fibers[52, 53].  Though the biological 

mechanism of this response remains elusive, the significance of it has been 

demonstrated in its involvement in atherosclerosis and inflammation (Figure 1.2B).   
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Multiple recent reports have documented the role of blood flow in regulation of 

the hematopoietic system.  Loss of blood flow in zebrafish impairs hematopoietic 

development, resulting in decreased cmyb and runx1 expression.  In experiments 

where blood flow was blocked via morpholino knockdown of the cardiac Troponin 

Type 2 (tnnt2) gene, decreased cmyb expression was observed in all hematopoietic 

tissue observed[47].  This approach is limited in that it cannot distinguish between 

effects on hematopoietic specification and hematopoietic maintenance.  If HSCs 

were correctly specified but quickly recruited to downstream cmyb- compartments, 

these experiments would yield the same result.  However, from these studies, it is 

clear that blood flow is providing some biological regulation of the HSC 

compartment.  Additionally, it has been shown that exposure of FACS sorted HSCs 

increases HSC marker expression, such as cmyb and runx1[54].  The mechanism 

by which this regulation occurs is almost completely unknown, though it is presumed 

that it would be similar to the mechanisms observed already in endothelial cells. 

 

Hemogenic Endothelium 

In 1926, Florence Sabin and Charles Doan noted the appearance of apparent 

endothelial cells derivatives in the blood[3].  These cells were seen nearly constant 

and could be considered a normal constituent of the blood.  Though they could not 

know the significance of these cells, they hypothesized that they were upregulated 

during pathogenic conditions.  The possibility that endothelial cells could produce 

hematopoietic cells has persisted.  In 2008, Iruela-Arispe’s group undertook 

extensive lineage tracing experiments using VE-Cadherin:Cre mice and observed 
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that endothelial cells in the dorsal aorta of mice appeared to be ‘budding’ into the 

lumen of the vessel[55].  This was direct evidence that endothelial cells were 

capable of producing non-endothelial, blood components.  

Since those studies, multiple reports have furthered our understanding of the 

hemogenic endothelium.  Hemogenic endothelial cells have been shown to express 

c-myb, runx1, and c-kit[56].  Runx1 has been shown to be required transiently for the 

actual budding, but not to be required for the maintenance of the HSC population 

once it is specified[26, 57].  Recently, direct imaging experiments have shown 

budding of c-myb positive progenitors from the dorsal aorta of both zebrafish and 

mice[6].  It is now a broadly accepted phenomenon that endothelial cells are capable 

of producing HSCs and that these HSCs will contribute to hematopoiesis for the life-

span of the organism.  Currently, one question that remains in the field is the extent 

to which all endothelial cells are hemogenic.  Most studies have focused on the 

aorta as the site of hemogenic endothelium, but given that definitive hematopoiesis 

is observed in non-embryonic tissues, it is possible that other vascular populations 

retain hemogenic ability[58, 59] (Figure 1.2C). 

 

The Caudal Hematopoeitic Niche 

The common ties between hematopoietic and endothelial cells are especially 

interesting when considering the hematovascular niche, which consist of 

hematopoietic stem cells surrounded by a vascular bed.  HSCs must migrate 

through the endothelial layer during the process of differentiation to their 

downstream lineages[21].  The signaling cues which regulate this process, such as 
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blood flow, would be received from the lumen of the vessel.  Thus, it seems that 

direct communication of the endothelial and hematopoietic cells would be necessary 

to coordinate HSC recruitment.  Given the common signaling pathways between 

endothelial and hematopoietic lineages, it would be likely that the signaling cues 

controlling this process in the HSCs also affect the endothelium, and that the 

responses are coordinated and synergistic.  Dysfunction in the niche can result in 

skewed populations or dysfunctional components (T-cells that don’t fight infection).  

Within the series of vascular niches colonized by HSCs in the zebrafish, the 

caudal hematopoietic niche is of particular interest (Figure 1.3).  By 24hpf, the 

zebrafish has a contracting heart, driving blood flow through the vascular system[15, 

17].  In the caudal tissue of the embryo, an aorta carries blood away from the heart 

and a single vein returns blood flow to the heart.  However, starting about 24hpf, the 

vein of the caudal tissue begins BMP-driven sprouting angiogenesis[20].  

Remodeling of the vein in this tissue drives the formation of a second vein and the 

initial vein, now termed the dorsal vein, constricts.  At the same time this caudal vein 

plexus (CVP) is remodeling, HSCs are colonizing the tissue previously occupied by 

the dorsal vein.  By 72hpf, the dorsal vein is almost completely constricted, 

permitting little blood flow, the ventral vein is the primary conduit of blood flow, and 

HSCs have robustly populated the tissue.  Though the colonization by HSCs occurs 

concurrently with the venous remodeling, little is known about the relationship 

between the two processes and whether hematopoietic colonization could occur in 

the absence of the venous remodeling.  Interestingly, blood flow has been shown to 

regulate both the hematopoietic development of the CHT and vascular 
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remodeling[47].  In the absence of blood flow, cmyb fails to be expressed in the 

CHT, and while the sprouting from the vein occurs, the dorsal vein fails to constrict, 

and both veins dilate to such an extent that it appears as one large vessel occupying 

the CHT[47] (unpublished data).  The failure of the dorsal vein to constrict and the 

concurrent venous dilation has confounded attempts to understand the role of blood 

flow in regulation of this remodeling process.  What is clear is that in the absence of 

blood flow, vascular remodeling is aberrant and HSC colonization does not occur, 

further strengthening the ties between these two processes. 

In this thesis, I present evidence that non-aortic endothelial cells can also 

serve as hemogenic sources for HSCs.  Specifically, I show that venous endothelial 

cells within the zebrafish CHT can be hemogenic.  This suggests that hemogenic 

ability may be a more general property of endothelial cells than previously 

appreciated.  Furthermore, I show that HSCs are responsive to blood flow, even 

after the development of the niche.  This indicates that blood flow is a regulator, not 

merely of hematopoietic development, but of the hematopoietic niche.  Finally, I 

identify a PECAM1-like molecule in zebrafish as a potential mediator of this 

response.  Together, these findings increase our understanding of the endothelial 

identity, and the potential role of PECAM1 in hematopoietic regulation.  The need for 

careful term definition in vascular biology occurs because both blood and endothelial 

lineages can be diverse in nature, markers, and function.  For the purposes of this 

report, hematopoietic cells will refer to hematopoietic stem cells capable of self-

renewel and producing the major blood lineages, while endothelial cells will be 

vascular cells lining the lumen of blood-carrying vessels.   
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FIGURES 

Figure 1.1:  Concurrent development of the hematopoietic and vascular 

systems. 

   

The hematopoietic and vascular systems develop alongside each other, both 

concurrently (A) and spatially (B).  Prior to one day post fertilization, vascular (vasc) 

patterning is occurring during primitive hematopoiesis (hem) development.  After one 

day post fertilization, the Caudal Hematopoietic Tissue (CHT) is remodeling, while 

definitive hematopoiesis is occurring the the Aorta-Gonad-Mesonephros (AGM) and 

CHT.  
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Figure 1.2:  Common hematovascular ties.   

 

Endothelial and hematopoietic cells have many common ties.  They can be specified 

by a common progenitor, termed the hemangioblast (purple cells in A).  They share 

many of the same niches and signaling cues, such as Notch and blood flow in the 

Aorta-Gonad-Mesonephros (AGM) and BMPs and blood flow in the Caudal 

Hematopoietic Tissue (CHT), (B).  Certain endothelial cells, hemogenic endothelium 

(green cell in C) can produce hematpoietic stem cells. 
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Figure 1.3:  The caudal hematopoietic niche.   

 

 

The caudal hematopoietic niche is both a site of hematopoietic development and 

vascular remodeling.  A confocal micrograph of a Tg(cmyb:GFP;kdrl:mCherry) 

embryo is shown (A) with a budding c-myb+ progenitor (arrow).  A schematic 

representation of this specialized niche is shown (B).  Cmyb+/kdrl+ cells are shown 

as yellow, while cmyb+/kdrl- cells are shown as green. 
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CHAPTER 2 

Hematopoietic Potential of Venous Endothelial Cells1 

 

OVERVIEW 

Since 1926, the existence of blood-producing endothelial cells has been 

suggested by scientific investigation[1].  These cells have been termed hemogenic 

endothelial cells--endothelial cells capable of producing the hematopoietic stem cells 

responsible for all hematopoietic lineages.  Current evidence suggests that this 

ability is limited to a specialized subset of endothelial cells, residing in particular 

niches[1-5].  In this study, we identify the zebrafish Caudal Hematopoietic Tissue 

(CHT) as a vascular bed capable of producing hematopoietic stem cells (HSCs).  

We examined the co-expression of hematopoietic and venous markers within the 

zebrafish cardinal vein during development, using in situ, immunofluorescence, and 

time-lapse imaging.  We found that venous endothelial cells in the cardinal vein co-

expressed hematopoietic markers, that these cells were capable of budding to 

produce hematopoietic progenitors, and though most previously identified 

hemogenic vascular beds have been arterial, we find that hemogenic venous 

endothelial cells also exist and are present throughout development.  We also find 

that blood flow exerts not only a developmental effect, but that it regulates these 

cells beyond specification of the cell type.   

1 Assistance was provided with Dab2 immunofluorescence by Jun-Dae Kim.  
Caroline Burns, Yong Zhou, and Neal Chi provided key reagents. 
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INTRODUCTION 

The hematopoietic and vascular systems share several extensive ties 

throughout development, such that they can be collectively referred to as the 

hematovascular system.  The relationship between these two systems is complex 

and intricate, involving common progenitors, similar signaling pathways, and multiple 

molecular switches between the two lineages.  Additionally, transitions between the 

two systems appears to be possible in the existence of hemogenic endothelium—

specialized endothelial cells which retain the ability to produce hematopoietic stem 

and progenitor cells (HSCs/HPCs)[2, 4-15].  Hemogenic endothelial cells reside 

precisely at the intersection of the hematopoietic and vascular systems.  The 

possible existence of hemogenic endothelium was first documented in 1926 by 

Florence Sabin and Charles Doan, who noticed that endothelial cells occasionally 

appeared in the blood of certain individuals[1].  Further studies since then have 

elucidated molecular markers of these endothelial cells, such as c-myb, runt-related 

transcription factor 1 (runx1), Vascular Endothelial Cadherin (VE-Cadherin), and 

more recently, c-kit[16].  It has also become clear, that in vivo, not all endothelial 

cells are hemogenic at the same time.  Multiple lines of evidence have indicated that 

the dorsal aorta is a site of definitive hematopoiesis, and given the importance of this 

region, many of investigations into hemogenic endothelium have focused on the 

aorta-gonad-mesonephros (AGM) as an early site of definitive hematopoiesis and 

hemogenic endothelium.  Others have identified other sites of hematopoiesis, such 

as the placenta, the yolk sac, and the vitelline and umbilical arteries[17-23].  Though, 

these investigations have revealed that the AGM is not the only source of 
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hemogenic endothelium, whenever examined, the hemogenic endothelium was 

arterial in nature.  As hematopoiesis appears to be a migratory process, colonizing 

several distinct niches temporarily before finally settling in the mammalian bone 

marrow or the teleost kidney, we sought to determine if these different niches were 

capable of producing their own hemogenic endothelium, or if each niche was 

sequentially colonized by a migrating population, all arising from the same initial 

niche. The implications that defects in the hematopoietic system could be regulated, 

impacted, or resolved by modulation of endothelial signaling has huge clinical 

relevance in the treatment of hematopoietic disorders, transplant rejections, etc.   

Though the ability of endothelial cells to produce hematopoietic progenitors 

has been well documented across multiple species, the nature of this process 

remains unclear, and multiple studies have focuses on determining the sites of 

hemogenic endothelial cells.  Here, we expand upon existing knowledge about 

hemogenic endothelium and show for the first time, that a non-arterial vascular bed 

retains the ability to become hemogenic.  Further, we elucidate the regulation of 

these venous hemogenic endothelial cells by blood flow, a common regulator of both 

hematopoietic and vascular cells. 
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EXPERIMENTAL PROCEDURES 

Zebrafish husbandry, microinjection, and immunohistochemistry 

Zebrafish were maintained according to IACCUC-approved protocols. The 

following transgenic lines were used: Tg(kdrl:ras-mCherry)s896, Tg(cmyb:GFP)zf169, 

Tg(ubb:LoxP-AmCyan-LoxP-ZsYellow)fb5, and Tg(ubb:loxP-EGFP-loxP-

mCherry)cz1701. 

Embryos were injected into the yolk sac at the one-cell stage as previously 

described[24]. To block heart beat, cardiac Troponin Type 2 (tnnt2) MO was used 

(5- CATGTTTGCTCTGATCTGACACGCA-3’)[25]. Immunohistochemistry were 

performed as previously described[26], using mouse anti-Disabled homolog 2 

(Dab2) antibody (Abcam, 1:500). 

 

FACS Analysis and qRT-PCR 

28hpf Tg(kdrl:ras-mCherry)s896;Tg(cmyb:GFP)zf169 embryos were dissociated 

using liberase at 37°C. Subsequently, suspension of dissociated cells were sorted 

on a Fluorescence-activated cell sorting (FACS) Aria. Four distnict populations of 

cells (GFP-/mCherry-, GFP-/mCherry+, GFP+/mCherry- and GFP+/mCherry+) were 

collected and RNA was extracted to perform qRT-PCR to determine their molecular 

identities. 

For qRT-PCR, the following primers were used:  

cmyb-f, TCCCGGCTCCATCCCTAGAGC; cmyb-r 

TTGTTGGCCCAGACTGATGGGG; c-kit-f, ACAAGTGCGCTGTGTGGCCG; c-kit-r, 

GGCTCTCCACTGCGCCTTTCC; runx1-f, CGCTGAGCTCCGCAACGCTA; runx1-r, 
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ATCCGGCTTCTGTCGGTGGC; gata1a-f,  CGAGATGGGACAGGCCACTACCT; 

gata1a-r, GCAGTTGGCGCACTGCGTTC; 18s-f, cacttgtccctctaagaagttgca; 18s-r, 

ggttgattccgataacgaacga; b-actin-f, AAGCTGTGACCCACCTCACGC; b-actin-r, 

TCAACGACCAGGGCAGCGATT. 

 

Image acquisition, quantification and statistical analyses 

For time lapse imaging, wild-type embryos were anesthetized in 640μM of 

tricaine methanesulfonate (Tricane) and embedded on glass-bottom dishes in 1% 

low-melt agarose dissolved in Tricaine and embryo medium (1mM NaCl). 

Subsequently, embryos were imaged on a Zeiss 710 two-photon microscope for 12 

hours at 4 minute intervals starting at 24hpf. For lineage tracing, spectral imaging 

using Zeiss 510 with Meta-detection was performed. The acquired images were 

analyzed using Volocity. 

To quantify cmyb+ cells contained within the CVP, embryos were imaged at 

40x magnifications through the caudal vascular plexus (CVP) starting at the end of 

the yolk extension (approximately correlating to somites 16-20). Individual z-slices 

were exported to Photoshop, and GFP expression (labeled by cmyb:GFP transgene) 

which persisted for at least three z-slices (approx. 30μm) was defined as a cmyb+ 

cell. Individual cmyb+ cells were numbered and then assessed for mCherry 

expression (labeled by kdrl:mCherry transgene). At least ten embryos per condition 

were examined to provide statistical analyses. 

To assess the distribution of cmyb+ cells within the CVP, a cartograph was 

generated by tracing all cmyb+/kdrl- and cmyb+/kdrl+ cells within the CVP of each 
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24hpf or 72hpf embryo. These individual cartographs were overlayed onto a single 

composite, which was divided into five segments, corresponding to somites. 

To determine the statistical significance of differences between percentages of 

cmyb+/kdrl+ cells in control and tnnt2 MO injected embryos, one-tailed, student t-

tests were performed. 

 

Chemical Treatment 

(2,3)-Butanediomemonoxime (BDM) and epinephrine(EPI) were obtained 

from Sigma Aldrich.  Starting at either 67hpf or 69.5hpf, zebrafish embryos were 

treated for either 5 hours or 2.5 hours, respectively, with BDM or epinephrine.  For 

BDM treatments, embryos were pulsed with 30uM BDM to cause cessation of the 

heartbeat and then maintained in 25uM BDM for the duration of the experiment.  For 

epinephrine treatments, embryos were maintained in 10ug/mL epinephrine for the 

duration of the experiment.  Both drugs were dissolved directly in egg water to 

permit the use of egg water as the control treatment. 

 

Plasmid construction and transient lineage tracing 

To perform transient lineage tracing, kdrl:Cre-ERt2 construct was generated 

by subcloning Cre-ERt2 under the regulation of the kdrl promoter in a Tol2 based 

vector[26-28]. To generate somatic mosaicism, 

Tg(cmyb:EGFP)zf169;Tg(kdrl:mCherry)s896 double transgenic individuals were crossed 

with Tg(ubb:LoxP-AmCyan-LoxP-ZsYellow)fb5 transgenic individual. The resulting 

embryos were co-injected at the one-cell stage with transposase mRNA and 
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kdrl:Cre-ERt2. Embryos were reared at 28°C and treated with 4μM tamoxifen from 18 

to 24hpf as previously described, and analyzed at 36 and 48hpf.[29]  Similarly, 

embryos were treated 4μM tamoxifen from 66hpf to 72hpf and imaged at 84hpf and 

96hpf.  
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RESULTS 

Venous endothelial cells express hematopoietic markers 

Using transgenic zebrafish expressing GFP under control of the 

hematopoietic stem cell marker, cmyb, and mCherry under control of the kdrl 

promoter, we first sought to determine whether non aortic endothelial cells could 

express hematopoietic markers during development.  The Caudal Vein Plexus 

(CVP) of Tg(cmyb:EGFP)zf169;Tg(kdrl:mCherry)s896 zebrafish embryos was examined 

by confocal microscopy at 24hpf (Figure 2.1A).  HSCs were detected of two 

fluorescent profiles, cmyb+/kdrl+ and cmyb+/kdr- cells (GPF+/mCherry+ and 

GFP+/mCherry-, respectively).  As nascent hematopoietic progenitors quickly lose 

the expression of vascular genes after delamination, the cmyb+/kdrl+ population 

likely represents a population originating from endothelial cells within the CVP 

(Figure 1.1A).[5, 30]  Given that the caudal hematopoietic tissue (CHT) is a later 

developing niche, we hypothesized that, if it had hemogenic activity, there would be 

nascent hematopoietic progenitors present later in development.  To examine this 

possibility, the cardinal vein of zebrafish was imaged at different points in 

development.  Double transgenic zebrafish Tg(kdrl:mCherry);Tg(cmyb:GFP) 

embryos were imaged at 24hpf and 72hpf.  At all timepoints examined, cmyb 

expression could be detected within venous cells of the zebrafish caudal 

hematopoietic tissue (Figure 2.1A, B).  At 24hpf, an average of six cells within the 

wall of the caudal vein were cmyb+/kdrl+ (n=10, s=4) (Figure 2.1C). The number of 

cmyb+/kdrl+ cells significantly increased to an average of 12 cells (n=10, s=7) by 
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72hpf (Figure 2.1C).  This indicates that this population of cells is present through 

the development and patterning of this endothelial niche.   

To further substantiate that cmyb expression was within the endothelial cells 

population, embryos were dissociated and cell populations were assessed via 

Fluorescence Activated Cell Sorting (FACS) analysis.  

Tg(kdrl:mCherry);Tg(cmyb:GFP) embryos at 28hpf and 72hpf were dissociated and 

analyzed by sorting on a FACS Diva.  In the total embryo at 28hpf, cmyb+ 

endothelial cells were 20 percent of the endothelial population.  Consistent with 

confocal results, this population was maintained as a percentage of total endothelial 

cells (Figure 2.1E).  At 72hpf, cmyb+ endothelial cells were 7% of the total 

endothelial population (Figure 2.1E).  However, when only the CHT was used for 

dissociation, cmyb+ endothelial cells were 19 and 21 percent of the kdrl+ population 

at 24hpf and 72hpf, respectively, confirming that a kdrl+/cmyb+ population of 

endothelial cells is present within the zebrafish CHT cells throughout development 

(Figure 2.1E).  Together, this data shows that cmyb is expressed in a subset of 

endothelial cells within venous endothelial cells of the zebrafish CHT and that this 

population of cells persists later into development than previously reported.  FACS 

analysis corroborated our finding that CVP contains cmyb+/kdrl+ cells both before 

and after the proposed colonization of the AGM-derived hematopoietic progenitors 

(Figure 2.1E).  Taken together, the data support that the cmyb+/kdrl+ population 

persists at 72hpf after the dissolution of the AGM.  

Given that these HSCs were located outside of the typical AGM 

hematopoietic niche, we sought to determine if they were in fact not arterial, but 
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instead venous in nature.  To test this, we examined co-expression of the venous 

marker, Disabled homolog 2 (Dab2), at 36hpf.  To confirm that these endothelial 

cells were venous in nature, embryos were fixed and stained for the venous marker, 

Dab2.  Dab2 expression is restricted to the vein by 36hpf in the developing 

zebrafish.  Transgenic embryos, Tg(cmyb:GFP) were fixed at 36hpf and co-stained 

for GFP and Dab2.  Co-expression of GFP and Dab2 was observed, consistent with 

the live-imaging results and further demonstrating that venous endothelial cells are 

capable of expressing hematopoietic markers (Figure 2.1F).  The cmyb+/kdrl+ cells in 

the CVP strongly expressed venous specific marker, dab2, indicating their venous 

identity (Figure 2.1F).  

To rule out the possibility that the cmyb+/kdrl+ cells within the CVP are the 

previously described GATA-binding factor 1 (gata1)+/pu.1+ erythromyeloid 

progenitors (EMP), we examined the expression of gata1 from the 

isolated cmyb+/kdrl+ cells. [31]  While the expression of cmyb and c-kit were strongly 

detected, the expression of gata1 was not detected in this population, suggesting 

that cmyb+/kdrl+ cells within the CVP are not likely to be the EMPs, but are more 

likely to be HSCS capable of producing all hematopoietic lineages (Figure 2.2). 

 

cmyb+ cells within the zebrafish CHT are located in the wall of the vessel  

To confirm that cmyb+/kdrl+ cells are within the vessel wall, Z axes of each 

confocal image were analyzed (Figure 2.1A, B). Three-dimensional reconstructions 

of the vein confirmed that the observed cmyb expression was within the wall of the 
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vessel, suggesting the ability of venous endothelial cells to become hemogenic 

(Figure 2.3A-D).   

 

cmyb+ progenitors arise de novo in the CHT  

It is known that hematopoietic progenitors bud from the hematopoietic tissue 

of the AGM and enter circulation to colonize other tissues.  To rule out the possibility 

that the cmyb+/kdrl+ cells detected in the CHT were the result of cells budding from 

the AGM, we blocked circulation using a morpholino targeting cardiac Troponin Type 

2 (tnnt2) which would prevent colonization by HSCs from other tissues, such as the 

aorta-gonad-mesonephros (AGM).  We examined whether both cell types could be 

detected in the CHT in the absence of blood flow.  The morpholino targeting tnnt2 

was injected into the one-cell embryos, and embryos were screened at 24hpf.  We 

found that cmyb+/kdrl+ cells could be detected in the tnnt2-MO injected embryos 

(Figure 2.4A-B).  Furthermore, cmyb+/kdlr- cells, which, as previously reported, are 

rapidly depleted in the absence of blood flow, represent a lower percentage of the 

overall population.  cmyb+/kdrl+ cells were 50% and 75% of the total cmyb+ 

population in control and tnnt2-MO injected embryos respectively (Figure 2.4C).  The 

total number of cmyb+/kdrl+ cells actually increased from 4 cells in control injected to 

41 cells in tnnt2-MO injected embryos (Figure 2.4D).  The reason for this transient 

increase is not yet clear.  As previously reported, the majority of cmyb+/kdr- cells are 

lost in the absence of flow.  It remains a possibility that blood flow required for the 

controlled regulation of these cell subtypes.   We found that in the absence of 

circulation, as previously reported, cells from the AGM do not colonize the CHT.  
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However, cmyb expression could still be detected within the endothelial cells of the 

CHT.  Due to the lack of additional progenitors from the AGM, most of the cmyb+ 

cells observed were positive for kdrl, suggesting that they are new progenitors, just 

being derived from the endothelial cells in the CHT. 

 

cmyb+/kdrl+ progenitors preferentially localize in the CHT 

We next investigated whether cmyb+/kdrl+ cells in the CHT had a 

preferentially localization in this niche.  To examine the spatiotemporal pattern of 

cmyb+/kdrl- and cmyb+/kdrl+ within the CVP, we generated cartographs at 24 and 

72hpf and placed the localization of cmyb+/kdrl+ and cmyb+/kdrl- cells onto each 

cartograph at 24hpf or 3dpf as appropriate.  We found that at 24hpf, the cmyb+/kdrl+ 

cells were preferentially located in the anterior regions of the CHT (Figure 2.5A, C).  

While the cmyb+/kdrl- and cmyb+/kdrl+ cells are clustered anteriorly at 24hpf (Figure 

2.5A, C), they become more dispersed within the CVP (n=10) at 72hpf (Figure 2.5B, 

D).   

The distribution of HSCs within the different vessels of the CVP was also 

examined.  Interestingly, the dorsal wall of the cardinal vein and the dorsal wall of 

the dorsal vein were the most prominent sites to detect cmyb+/kdrl+ cells—41% of 

cmyb+/kdrl+ cells resided in association with these surfaces at either 24hpf or 72hpf 

(Figure 2.5E, F).  That this percentage was constant at 24hpf and 3dpf suggests a 

stable characteristic of the dorsal vein. 
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cmyb+ cells within the CHT bud from the endothelium. 

 To confirm that hematopoietic progenitors arise directly from venous 

endothelial cells of the CHT, we performed time-lapse imaging.  Fish were 

immobilized in agarose and imaged for 12 hours beginning at 24hpf.  cmyb+/kdrl+ 

cells could be observed to bud from the dorsal vein (Figure 2.7, 2.8).  This budding 

was abluminal in nature and was sometimes followed by the nascent progenitor 

entering circulation.  Interestingly, this is at the same time which this tissue is 

remodeling and the dorsal vein of the cardinal tissue is constricting, suggesting a 

possible fate for the endothelial cells of the dorsal vein.  To exclude the possibility 

that the cmyb+ cell migrates and is incorporated into the vessel wall within the area 

of observation, we analyzed the z-slices 20μm above and below the forming 

cmyb+/kdrl+ cell (Figure 2.8A). We found that kdrl+ cells within the wall of vein initiate 

the expression of cmyb, and a subset of these cells subsequently delaminate from 

the vessel wall and enter into the circulation (Figure 2.7, 2.8), suggesting that 

cmyb+/kdrl+ cells in the CVP undergo similar transition as those in the dorsal aorta.   

To further delineate the ontogeny of the cmyb+/kdrl+ cells in the CVP, we 

examined performed short-term lineage tracing (Figure 2.9).  cmyb+/kdrl+ cells were 

observed to lose kdrl expression and produce cmyb+/kdrl- cells.  Thus, single cell 

lineage tracing supports that these venous endothelial cells can differentiate as 

hemogenic endothelium and eventually contribute to the hematopoietic progenitor 

population, suggesting that hemogenic potential is not restricted to only arterial 

endothelial cells (Figure 2.9).   
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cmyb+ cells within the CHT display unique behaviors 

We performed time-lapse imaging of the tissue to observe the behavior of 

these cmyb+/kdrl+ cells.  While the majority of the cmyb+/kdrl+ cells within the CVP 

maintain stereotypic endothelial morphology, time-lapse imaging revealed dynamic 

behavior of these cells.  HSCs within the vessel wall were capable of proliferating 

(Figure 2.10A), and a subset of cells occasionally protruded toward the luminal side 

of the vein and buds off from the vein wall (Figure 2.10B), as observed in the AGM 

region.  We found that cmyb+/kdrl+ cells within the dorsal vein were capable of 

proliferating within the wall of the vessel with a cell division perpendicular to the 

vessel lumen (Figure 2.10A).  Furthermore, these cells were capable of protruding 

into the vessel lumen, and a diverse range of migratory behaviors, including crawling 

along the vessel, or rolling in circulation (Figure 2.10B).  Together, this suggests that 

the behavior of these cells is dynamic and exposes them to a wide variety of 

environments within the niche. 

 

cmyb+/kdrl+ cells respond distinctly to the loss of blood flow   

Previous reports have shown that blood flow acts as a regulator for both 

endothelial and hematopoietic cells.  Interestingly, no reports have specifically 

addressed the effect of blood flow on hemogenic endothelium.  We investigated by 

confocal microscopy the ability of blood flow to regulate the hemogenic endothelium 

within the zebrafish CHT.  To eliminate possible effects on development of the 

hematopoietic tissue, embryos were raised to 68hpf.  Definitive hematopoiesis 

begins at 24hpf, with highest detectable activity at 36-48hpf.  By waiting until 68hpf, 



- 35 - 
 

we hoped to only observe effects on the hemogenic endothelium of the CHT.  At 

68hpf, embryos were incubated in either BDM or epinephrine, to either block or 

increase blood flow, respectively.  We found that blood flow tightly regulated cmyb 

expression within the CHT.  We found that BDM treatment resulted in the rapid 

depletion of cmyb expression within the CHT.  By 5hr of BDM treatment, both the 

number of cmyb+ cells and the expression levels had decreased.  By contrast, 

stimulation of blood flow by epinephrine had the opposite effect, and increased cmyb 

expression could be detected (Figure 2.11). Loss of blood flow resulted in loss of the 

cmyb expression, while increased blood flow, as caused in the epinephrine 

treatment, caused increased cmyb expression (Figure 2.11). 
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DISCUSSION 

To our knowledge, this is the first detailed study of a non-aortic bed of 

hemogenic endothelium.  We demonstrate that endothelial cells outside of the AGM 

are capable of producing cmyb+ progenitors, that these cells can be venous in 

nature, and that they respond distinctly to changes in blood flow.  Previous reports 

had focused on the dorsal aorta as a site of hemogenic endothelium.  Because of 

this, these studies have not been able to elucidate the ability of all endothelium to 

become hemogenic.  Though our study falls short of demonstrating that 

hematopoietic potential is an intrinsic property of most endothelial cells, we broaden 

the scope of hemogenicity in endothelial cells by examining that property in venous 

endothelial cells.  Furthermore, we demonstrate the ability of blood flow to regulate 

hematopoietic potential of endothelial cells.  Though flow has been implicated in the 

development of hematopoietic niches and specification of hematopoietic stem cells, 

this is the first report that demonstrates that blood flow is a regulator of the HSCs 

post-development.  
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FIGURES 

Figure 2.1:  Detection of cmyb in venous endothelial cells throughout 

development.   

 

Tg(cmyb:GFP;kdrl:mCherry) embryos were imaged by confocal microscopy for the 

existence of co-postive cells within the vessel wall at 24hpf (A) and 72hpf (B).  The 

number of cmyb+ cells within the vessel wall is quantified (C) as is the total number 

of cmyb+ progenitors within the CHT (D).  FACS analysis was done on embryos or 

CHTs of 28hpf and 72hpf embryos to determine if co-positive progenitors were 

detected (G). Tg(cmyb:GFP) embryos were fixed at 36hpf and stained for the 

venous marker, Dab2 (F).  
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Figure 2.2  cmyb+/kdrl+ cells express hematopoietic markers. 

 

Endothelial cells were sorted for Tg(cmyb:GFP) expression.  FACS sorted cells were 

subjected to QPCR for c-kit, cmyb, and gata1. 
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Figure 2.3  Detection of cmyb within the venous vessel wall. 

 

Three-dimensional reconstructions were created of cmyb:GFP+ cells within the 

vessel wall of 24hpf (A-B) and 72hpf (C-D) embryos. 
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Figure 2.4  cmyb+ endothelial cells arise de novo from the cardinal 

vein. 

 

Tg(cmyb:GFP;kdrl:mCherry) double transgenics were examined by confocal 

microscopy.  Control embryos (A) and tnnt2-MO injected embryos (B) both showed 

cmyb+/kdrl+ double positive cells at 24hpf.  The results are quantified by number of 

co-postive cells (D) and the percentage of total cmyb cells expressing kdrl (C). 
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Figure 2.5:  Preferential distribution of cmyb+ endothelial cells.  

 

The location of cmyb+/kdrl+ and cmyb+/kdrl- cells was plotted on detailed 

cartographs.  Representative cartographs are shown for 24hpf (A) and 72hpf (B).  

The distribution anterior to posterior is quantified for 24hpf (C) and 72hpf (D).  The 

distribution of arterial versus venous associations is quantified for 24hpf (E) and 

72hpf (F).   
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Figure 2.6  Cartographs reveal preferential localization of cmyb+ endothelial 

cells.  

 

The location of cmyb+/kdrl+ and cmyb+/kdrl- cells was plotted on detailed 

cartographs.  Nine cartographs are shown for 24hpf (A) and 72hpf (B).   
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Figure 2.7 cmyb+ endothelial cells bud from the vascular wall. 

 

Tg(cmyb:GFP,kdrl:mCherry) double transgenic embryos were examined by time-

lapse confocal microscopy.  Cells were observed to bud (arrow) and exit the vessel 

(asterisk). 
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Figure 2.8:  cmyb+ endothelial cells bud from the vascular wall and enter 

circulation. 

 

Tg(cmyb:GFP,kdrl:mCherry) double transgenic embryos were examined by time-

lapse confocal microscopy.  A schematic of the z-slices is shown (A).  Cells were 

observed to bud from the vessel (arrow, B) and enter circulation. 
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Figure 2.9:  cmyb+/kdrl+ cells give rise to cmyb+/kdrl- cells. 

 

Tg(ubb:LoxP-AmCyan-LoxP-ZsYellow);Tg(kdrl:mcherry);Tg(cmyb:GFP) embryos 

were injected with kdrl:CreERt2 plasmid.  The experimental design is diagrammed 

(A).  The injected embryos were treated with tamoxifen for six hours and imaged by 

confocal microscopy (B). 
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Figure 2.10:  cmyb+ endothelial cells proliferate and migrate in the CHT. 

 

Tg(cmyb:GFP,kdrl:mCherry) double transgenic embryos were examined by time-

lapse confocal microscopy.  Cells were observed to undergo mitosis (A), budding 

(arrow, B).   
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Figure 2.11:  Blood flow regulates venous hemogenic endothelium. 

 

Tg(cmyb:GFP;kdrl:mCherry) double transgenic embryos were treated for 5 hours 

with vehicle, (2,3)-BDM, or epinephrine at 67 hpf.  Embryos were examined at 72hpf 

by confocal microscopy (A).  RNA was extracted on used to perform QPCR of 

hematopoietic (B) or vascular (C) genes.  
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CHAPTER 3 

PECAM1-mediated Regulation of Hematopoietic Potential within Endothelial 

Cells 

 

OVERVIEW 

Both the hematopoietic and vascular systems have flow-sensitive 

mechanisms of development.  In endothelial cells, multiple aspects of the response 

to blood flow have been shown to be regulated by the association of including 

Platelet Endothelial Cell Adhesion Molecule-1 (PECAM1) with Vascular Endothelial 

Cadherin (VE-Cadherin).  This association has been shown to be induced in 

response to blood flow and triggers activation of endothelial Nitric Oxide Synthase 

(eNOS) and an alignment of endothelial cells in the direction of blood flow.  In this 

report, we sought to identify a zebrafish homolog of PECAM1 and to investigate a 

potential role of PECAM1 in hematopoietic development.  We find that the zebrafish 

gene XP_697859.3 has homology with mammalian PECAM1, has a vascular 

expression profile, and that loss of XP_697859.3 has hematopoietic and va 

remodeling defects, consistent with a role for PECAM in hematopoietic and vascular 

function. 

INTRODUCTION 

The response of endothelial cells to blood flow is an area of intense 

investigation.  It has been shown to include alignment of endothelial cells in the 

direction of blood flow, increased endothelial Nitric Oxide Synthase (eNOS) activity, 

and Krueppel-like factor 2 (klf2) regulation[1-6].  Within the organisms, there are two 
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types of blood flow, depending on the nature of the vessel.  Elongated, straight 

vessels experience a constant, uniform blood flow, termed laminar flow.  Endothelial 

cells in areas of the vessel where bifurcations or turns occur experience a less 

uniform flow, where blood can be pushed in different directions as the vessel turns.  

This is termed turbulent or disturbed flow.   

The importance of this response is shown in susceptibility to atherosclerosis.  

Areas of the endothelium under sustained laminar flow, align, polarize, and are less 

prone to develop atherscolerotic lesions.  Alternatively, areas of the endothelium 

under disturbed or turbulent blood flow do not align and are much more susceptible 

to develop atherosclerotic plaques[7, 8].  Though the initial sensor of blood flow 

remains unidentified and the subject of intense research, one of the mediators of this 

response has been shown to be including Platelet Endothelial Cell Adhesion 

Molecule-1 (PECAM1), which within endothelial cells exposed to blood flow, 

becomes associated with Vascular Endothelial Cadherin (VE-Cadherin) and 

Vascular Endothelial Growth Factor Receptor-2 (VEGFR2, or kdrl in zebrafish) in a 

‘mechanosensory complex.[1]’  Endothelial cells lacking PECAM1 fail to align in the 

direction of blood flow and fail to increase eNos production in response to blood 

flow[1, 3, 4].  Additionally, PECAM1 loss promotes the development of 

atherosclerotic lesions in areas of laminar flow—areas normally protected from the 

development of atherosclerosis[1, 9-11]. 

Interesting, in mammalian systems where PECAM expression is known, it is 

not restricted to endothelial cells, but is also expressed in hematopoietic stem cells 

(HSCs), as is VE-Cadherin[12, 13].  This is given more significance by the discovery 
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that HSCs are also regulated by blood flow.  Exposure of HSCs to blood flow was 

shown to increase expression of hematopoietic stem cell markers[14].  Concurrently, 

it was shown that loss of blood flow in the organism results in loss of HSC 

development, either by lack of specification of lack of adequate maintenance[15].   

Given that both endothelial cells and hematopoietic cells respond to blood 

flow, we hypothesized that PECAM1 or PECAM1-like signaling would mediate this 

flow response in hematopoietic, as well as endothelial, cells in the zebrafish.  We 

investigated this possibility by first identifying a zebrafish homolog of PECAM1, 

characterizing its expression in development, and then examining its role in the 

response of HSCs to blood flow.   
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EXPERIMENTAL PROCEDURES 

 

Zebrafish husbandry 

Zebrafish were maintained according to IACCUC-approved protocols in an 

Aquatic Habitats (AHAB) facility.  The following transgenic lines were used:  

Tg(kdrl:ras-mCherry)s896, Tg(cmyb:GFP)zf169.  Embyros were raised at 28degC until 

the specified timepoints. 

 

Identification of XP_697859.3 

An amino acid blast was performed of mmPECAM1 against all putative open 

reading frames (ORFs) of the zebrafish genome, www.zfin.org .  Reciprocal best hits 

were assessed using the identified best zebrafish hit as a query in the ensemble 

blast against mammalian, both human and mouse, genomes. 

 

Syntenic and Phologenic Analysis 

Syntenic analysis was performed using Cinteny, the server for synteny 

identification and analysis of genome rearrangement, http://cinteny.cchmc.org/ . 

Human chromosome 17, containing PECAM1, and danio rerio chromosome 3, 

containing XP_697859.3, were compared.  A minimum syntenic length of 70kb was 

used to define a syntenic block.  Phylogenic analysis was performed 

using http://www.phylogeny.fr/. 

 

 

http://www.zfin.org/
http://cinteny.cchmc.org/
http://www.phylogeny.fr/
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In situ hybridization 

In situ analysis was performed as previously described[16].  Briefly, embryos 

at the appropriate timepoint were fixed overnight at 4degC in 4% paraformaldehyde.  

Embryos were dehydrated in methanol overnight at -20degC.  The full-length 

transcript of XP_697859.3 was cloned into pCS2+ and anti-sense, dig-labeled probe 

was synthesized using a Dig-labeling kit, Ambion Cat#1234. 

 

Morpholino Injection 

Embryos were injected into the yolk sac at the one-cell stage as previously 

described[17]. To block heart beat, tnnt2 MO was used (5- 

CATGTTTGCTCTGATCTGACACGCA-3’).  Two morpholinos were used targeting 

XP_697859.3:  MO1 and MO2.  MO1 targeted the start codon.  The sequence of 

MO1 is: (5’-CCGCTCCCATCCTCACAGGTGAA-3’).  MO2 targeted the splice site 

from exon3 to intron3.  The sequence of MO2 is: 

(5’AACGCAGTGTTTCTGCTCACCTGTG-3’).  A standard 1x concentration 

of .4pmol morpholino per embryo was injected.    

 

mRNA Injections 

The coding sequence of XP_697859.3 was cloned into pCS2+.  Capped 

mRNA was synthesized using a SP6 polymerase kit from Ambion.  For rescue, .1ng 

coding mRNA was injected at the one cell stage.  For over-expression analysis, 

either .1ng or .2ng coding mRNA was injected at the one cell stage. 
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RESULTS 

By an amino acid blast of mammalian PECAM1 against all putative open-

reading-frames (ORFs) in the zebrafish genome, we isolated XP_697859.3.  

XP_697859.3 has 35% identity and 40%similarity with mammalian PECAM1 (Figure 

3.1A).  When blasted against the mammalian genome, XP-697859.3 showed the 

highest similarity to PECAM1.  To further investigate the evolutionary relationship 

between these two genes, the chromosomes containing each of them was 

compared using syntenic alignment (Figure 3.1B).  Though there is a break in 

synteny right at the XP_697859.3 locus, the chromosome including XP_697859.3 is 

syntenic to the mammalian chromosome including PECAM1 at multiple other loci, 

spaced throughout the chromosomes.  When phylogenic analysis was performed 

using the mouse, frog, and zebrafish potential homologs, the zebrafish gene was the 

most diverged from the mouse gene (Figure 3.1C).  Taken together, this suggests 

that though the amino acid sequences show some homology, and they are likely 

descendents from the same ancestral gene, the DNA sequence in teleosts has 

diverged significantly from that in mammalian systems, and demonstration of their 

relationship will require functional conservation. 

To further determine if XP_697859.3 is a functional homolog of PECAM1, we 

characterized its expression by RT-PCR and in situ hybridization.  RNA was 

extracted from embryos at 3 hours post fertilization (hpf), 18hpf, 24hpf, 3 days post 

fertilization (dpf), and one week.  XP_697859.3 was detectable by RT-PCR starting 

at 18hpf.  Expression increased until 72hpf and was still present at one week (Figure 

3.2E).  This expression profile is consistent with a vascular gene, as vascular 
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patterning begins just prior to 18hpf.  VE-Cadherin and VegfR2 have similar 

expression profiles[18, 19].  RT-PCR of XP_697859.3 in cloche, a mutant lacking 

both endothelial and hematopoietic cells, showed loss of XP_697859.3 expression in 

the cloche background (Figure 3.2F).  In wild-type embryos, in situ hybridization of 

XP_697859.3 showed a vascular pattern at 24hpf and 48hpf (Figure 3.2A-D).  

Interesting at 48hpf, by in situ, XP_697859.3 expression appeared to be increased 

within the caudal vein plexus (CVP)—a vascular and hematopoietic niche, 

undergoing extensive remodeling at that timepoint (Figure 3.2 B, D).  To further 

determine the endothelial expression of XP_697859.3, QPCR of sorted endothelial 

cells was performed.  Briefly, Tg(cmyb:GFP);Tg(kdrl:mCherry) embryos were 

dissociated and sorted for GFP or mCherry expression.  A 15-fold induction was 

seen in the endothelial (mCherry+/GFP-) specific population only (Figure 3.2 G).  

This is similar to the expected fold change for known endothelial markers (kdrl).  In 

situ analysis of XP_697859.3 expression in the avascular mutants, cloche and 

groom of cloche, both of which lack endothelial cells, though groom of cloche retains 

hematopoietic cells, was not as informative.  Though XP_697859.3 expression 

appeared reduced in cloche, groom of cloche appeared to express higher levels of 

XP_697859.3, either due to the presence of hematopoietic cells, the remnants of 

some endothelial cells, or increased background expression (data not shown). 

To further determine the function of XP_697859.3, we designed two 

morpholinos.  Morpholino 1 (MO1) targeted the start codon of XP_697859.3 while 

morpholino 2 (MO2) targeted the splice site of exon 2-intron 2, potentially resulting in 

incorporation of intron 2, and 9 termination codons.  As MO1 blocks the ATG start 
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site of the transcript, it is anticipated that it should block all translation of the 

XP_697859.3 gene, resulting in loss of most, if not all protein, from this transcript.  

To determine if XP_697859.3 was involved in a flow response, it was injected 

alongside a morpholinos targeting cardiac troponin, tnnt2.  Tnnt2 is expressed 

specifically in cardiac muscle, and when silenced using a morpholinos, results in 

specific lack of a beating heart.  Development is unperturbed and vascular 

patterning is retained, but the heart fails to contract and the endothelial cells are 

never exposed to blood flow.  This has become a useful tool to understanding the 

effects of blood flow on the vascular system.  As previously reported, loss of tnnt2 

resulted in dilation of the cardinal vein, and failure of hematopoietic cells to colonize 

the tissue.  To test the role of XP_697859.3 in these same processes, MO1 was 

injected into Tg(cmyb:GFP);Tg(kdrl:mCherry) embryos, and the embryos were 

screened at 36hpf.  When injected at the 1x concentration, MO1 recapitulates the 

tnnt-morpholino injections.  The cardinal vein is dilated, indicated a failure of the 

tissue to remodel, and decreased cmyb expression is detected in the CHT (Figure 

3.3A).  This phenotype could be rescued by co-injection of wild-type mRNA, 

indicating that it is the result of specific targeting of the XP_697859.3 transcript 

(Figure 3.3A).   

Interestingly, injection of the MO2 morpholino, which targets the splice site of 

exon 1 to intron 1, did not have the same result.  Injection of MO2 at the 1x 

concentration consistently resulted in no remodeling defect of the cardinal vein and 

furthermore, consistently resulted in the upregulation of c-myb expression within the 

CHT (Figure 3.3B).  To determine the effect of MO2 on XP_697859.3 transcript 
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levels, mRNA was extracted at 24hpf, and QPCR was performed of the 

XP_697859.3 transcript.  We found that MO2 resulted in a slight upregulation of the 

XP_697859.3 transcript (Figure 3.3E).  Thus, it is likely that MO2 causes either 

increased stability of the mRNA, or otherwise results in the altered splicing of the 

transcript such that it is expressed at higher levels.  To confirm that increased 

expression of XP_697859.3 could result in the observed phenotype, mRNA was 

injected at .1ng and at .2ng per embryo, similar to the concentrations used to 

ectopically expressing other genes, and the embryos were screened at 36hpf.  

When mRNA was injected to overexpress XP_697859.3, there was no defect of 

vascular remodeling in the CHT and increased c-myb expression was observed 

(Figure 3.3B).  Thus, injection of MO2 is consistent with an overexpression 

phenotype of XP_697859.3.  Concurrent with this possibility is that co-injection of the 

wild-type XP_697859.3 transcript does not restore the normal phenotype. 

To further investigate these somewhat contradictory phenotypes, MO1 was 

coinjected with MO2.  We found that coinjection of the two morpholinos resulted in 

the rescue of the vein dilation and restoration of the c-myb expression within the 

CHT (Figure 3.3C).  Thus, it is likely that both morpholinos are targeting the same 

gene, but with different effects on protein levels.  Interesting, co-injection of MO1 

with a morpholinos targeting p53 also rescued the MO1, loss of flow phenotype 

(Figure 3.3C).  This is possibly due to a known role of PECAM1 in apoptotic 

signaling.  In mammalian systems, PECAM1 has been shown to protect from 

apoptosis by acting through p53.  It is possible that loss of XP_697859.3 activates a 

p53-dependent pathway and that cell death is partially responsible for the observed 
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phenotype.  Finally, to test how these two morpholinos were interacting, QPCR was 

performed of vascular and hematopoietic genes on mRNA from embryos injected 

with one or both of the morpholinos (Figure 3.3D).  Injection of MO1 resulted in 

upregulation of both hematopoietic and vascular markers, while injection of MO2 

only resulted in increased cmyb transcript.  Again, co-injection of either the p53 

morpholino or MO2 with MO1 suppressed the MO1 phenotype, suggesting that the 

two morpholinos cause opposing phenotypes and that MO1 acts through p53. 
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DISCUSSION 

Though Pecam1 is often used as a stereotypic marker for endothelial cells, its 

expression profile includes multiple hematopoietic cell types including platelets, 

lymphocytes, and hematopoietic stem cells[12, 13].  Its role in many of these tissues 

remains unclear, and though the knock-out mouse is viable, Pecam1 has been 

shown to have important roles in angiogenesis, and the response of endothelial cells 

to blood flow[1, 20].  As both endothelial and hematopoietic stem cells respond to 

blood flow and both express Pecam1, we sought to determine if Pecam1 could be a 

mediator in the hematopoietic response to blood flow.  To do this, we first identified a 

potential homolog of Pecam1 in zebrafish and then characterized its role in 

hematopoietic development.  We found that danio rerio XP_697859.3 displayed 

homology to PECAM1, was located on a chromosome syntenic to the human 

chromosome containing PECAM1, and the furthermore, modulation of XP_697859.3 

affected known flow sensitive pathways.  Interestingly, modulation of XP_697859.3 

was sufficient to also alter hematopoietic development, suggesting that indeed, 

PECAM1 could be involved in the response of HSCs to blood flow.  Though the 

mechanism by which this occurs remains uninvestigated, it is interesting to 

speculate that it is similar to the pathway in endothelial cells.   

In endothelial cells, Pecam1 becomes associated with the mechanosensory 

complex in response to hemodynamic force[1].  Interestingly, the mechanosensory 

complex within endothelial cells consists of PECAM1, VE-Cadherin, and VegfR2.  

Given that both PECAM1 and VE-Cadherin are expressed in hematopoietic stem 

cells which also respond to changes in blood flow, there is the possibility of a second 
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mechanosensory complex which exists in hematopoietic stem and progenitor cells.  

In this scenario, it would be interesting to consider that either the mechanosensory 

complex in HSCs responds differently than in endothelial cells, either due to the 

absence of VegfR2 or because of the inclusion of a different receptor tyronsine 

kinase. 

Recently, an additional gene has been identified in zebrafish that has 

homology to PECAM1.  This newly isolated gene, still identified as si:dkey-2370.8 

has 27% identity and 44% similarity to murine PECAM1.  Additionally, at least one of 

the ITIM phoshorylation sites appears to be conserved in this homolog.  It is possible 

that closer inspection of these genes will yield interesting divergent roles for 

PECAM1-like molecules in zebrafish.  Clearly, it is necessary to further investigate 

these genes, as well as the possible overlap and divergence of their functions before 

making any claims as to their effects on hematopoiesis in zebrafish. 
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FIGURES 

Figure 3.1:  Identification XP-697859.3 as a potential homolog to PECAM1. 

 

 HsPECAM1 was aligned against danio rerio XP_697859.3 using multalign (A).  The 

synteny of the chromosomes containing human PECAM1 and danio rerio 

XP_697859.3 (chromosomes 17 and 3 respectively) were examined using cinteny 

(B).  The phylogenic analysis of the putative PECAM homologs is shown (C).     
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Figure 3.2:  Characterization of XP_697859.3.  

 

The full-length transcript of XP_697859.3 was used to probe for expression at 24hpf 

(A) and 48hpf (B).  Higher magnifcations of the 48hpf expression profiles are shown 

of the AGM (C) and the CHT (D).  RT-PCR was performed at multiple time-points to 

determine when XP_697859.3 was expressed (E).  RT-PCR was performed from 

wild-type and cloche mutants (F).  QPCR was performed on sorted endothelial 

populations (G). 
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Figure 3.3:  Characterization of XP_ 697859.3 morpholinos.   

 

Morpholinos were injected against control, tnnt2, or XP_697859.3.  The phenotype 

of MO1 or MO1 + wild-type transcript was compared with either control or tnnt2-MO 

injections (A).  The phenotype of MO2 was compared with mRNA injections (B).  

MO1 was co-injected with either MO2 or p53-MO (C).  QPCR was performed on 

morpholino-injected embryos (D, E).  
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CHAPTER 4 

Conclusions and Perspectives 

 The first observation of potential hematopoietic cells descending from the 

endothelium, made by Florence Sabin in the 1920s, was a powerful discovery for 

multiple reasons[1].  It suggested that endothelial cells were not completely a 

terminally differentiated cell, an idea that may have seemed contrary to conventional 

thinking but has since found more acceptance.  The idea that a differentiated 

endothelial cell could become undifferentiated and become something different, 

especially a hematopoietic stem cell (HSC) capable of self-renewal and 

differentiation into multiple other lineages, must have seemed an interesting concept 

at first glance.  What was this cell doing?  Why would an endothelial cell do that?   

As studies have progressed, scientists have been able to add substantial 

knowledge to the regulation of this process.  We now have multiple markers of 

hemogenic endothelium, we know that it is conserved across species, and we know 

that it occurs in more than one vascular bed[2-4].  However, there are still many 

questions unanswered.  It is still not clear why some endothelial cells are hemogenic 

and others are not.  The pathways that promote hemogenic behavior are being 

elucidated, but slowly, mostly due to complications in distinguishing changes in 

overall hematopoiesis from changes in specific descendents of hemogenic 

endothelium[5].  The biological significance of this phenomenon remains almost 

completely untested, due to the near impossibility of eliminating HSCs descending 

from endothelial cells while leaving other HSCs intact.  One interesting question is 
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whether all endothelial cells possess the ability to become hemogenic, and to what 

extent these endothelial cells are hemogenic.   

My work has helped to clarify that non-aortic endothelial cells also possess 

the ability to produce HSCs.  We have provided evidence that venous endothelium 

can provide HSCs.  Though previously described hemogenic endothelium has been 

arterial in nature, studies have suggested that arterial differentiation was not a 

necessary component of hemogenic activity[3, 6-11].  The ability of venous 

endothelial cells to be hemogenic confirms that the arterial nature is not an absolute 

requirement of hemogenic endothelium.  This is interesting, because it presents the 

possibility that hematopoietic activity may be a more general property of endothelial 

cells than previously appreciated.  Also, it suggests that the pathways promoting 

hemogenic activity occur alongside of, but independent from, those promoting 

endothelial differentiation.  This second idea is supported by reports on stem cell 

leukemia (scl) activity in endothelial and hematopoietic tissues.  Loss of scl was 

shown to cause lack of hematopoietic specification, while not affecting angioblast 

development until a later angiogenic stage[11, 12]. 

As hematopoietic activity does occur specifically in endothelial cell—as 

opposed to randomly occurring in any stromal cell available, the implication is that 

there is a common denominator between the endothelial and hematopoietic 

pathways or that endothelial cells are more capable of becoming hemogenic than 

another cell type.  The questions that arise are what are the common denominators 

and at what point do hemogenic endothelial cells diverge from the endothelial 

program?  Current reports suggest, though they do not conclusively demonstrate, 
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that while it uses some of the same mediators, it is mechanistically independent of 

the arterial/venous specification, though occurring concordantly temporally.  

The role of blood flow in regulation of this pathway is also still unclear[5, 13].  

We identify blood flow as a regulator of hematopoietic maintenance.  This suggests 

that previous reports, detailing the effects of blood flow on hematopoietic 

development may be over-simplified, confounded with changes of hematopoietic 

maintenance.  While our results support that at least some hemogenic endothelium 

may be specified in the absence of blood flow, there is no expansion of this 

population, it may not bud from the vessel wall, and instead the HSCs are rapidly 

depleted.  Furthermore, our data support the hypothesis that Platelet Endothelial 

Cell Adhesion Molecule-1 (PECAM1), a mediator of the flow response in endothelial 

cells, is also involved in the response within hematopoietic cells.  There are several 

reasons this could be the case.  It could be an instance of HSCs sensing and 

responding directly to the presence of blood flow.  As HSCs retain a close 

association with the endothelium, it is formally possible that they remain in some 

contact with the vessel lumen and can sense and respond directly to blood flow.  

Alternatively, the flow signal could be relayed through the endothelial cells, and in 

the absence of that signal from the endothelial cells, the HSCs become depleted.  

Given the uniform depletion of cmyb+ cells we observed, and that not all cmyb+ cells 

were in direct contact with the vessel, this is more likely to be the case.  In either 

case, the role of blood flow in regulation of HSC maintenance is instructive as to the 

cues directing HSC recruitment to the downstream lineages.  Resolving this 

quandary will require sophisticated cell-autonomy experiments and/or conditional 
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knock-outs.  Though it is possible, and likely, that PECAM1 is involved in the 

transendothelial migration of hematopoietic cells, the role this plays in our observed 

phenotype is unclear.  

 

Future directions 

 Our experiments demonstrate the existence of hemogenic endothelium 

outside of the aorta-gonad-mesonephros (AGM), suggesting that more endothelial 

cells may possess hemogenic ability than previously appreciated.  However, these 

studies were subject to several limitations.  First, due to the limited availability of 

hemogenic markers, we relied substantially on the Tg(cmyb:GFP) line.  Exhaustive 

studies would require the generation of multiple hemogenic markers.  Currently, 

candidates such as runt-related transcription factor 1 (runx1), provide the most 

promising alternatives, and we are actively working to generate transgenic lines 

utilizing the hematopoietic specific enhancers of the runx1 gene.  However, evidence 

has suggested that event his approach will have limitations, as the requirement of 

runx1 in hematopoiesis is unclear.  Multiple studies have suggested that loss of 

runx1 does not have irreparable deleterious effects on hematopoietic 

development[14, 15].  It is likely that there are better markers that have yet to be 

characterized.  Identification of these markers would be aided by array experiments 

on isolated hemogenic endothelium.   

 Further work, that would be instrumental in moving the field forward, would 

address the biological consequences of loss of hemogenic endothelium.  As reports 

have shown that HSCs can have endothelial or non-endothelial origins, it is possible 
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that loss of either of these populations would have no effect on overall organism 

health, or alternatively, both populations could be absolutely required.  To address 

this issue, a combination of lineage tracing with cell-ablation technology could be 

employed[16, 17].  This would allow for the specific ablation of endothelium-derived 

HSCs, and then the questions of biological significance could be addressed. 

 Once the characterization of pathways directly involved in production of 

hemogenic endothelium have been clearly elucidated and distinguished from other 

populations of HSCs, the benefits to human health could be significant.  In cases 

where hematopoiesis has failed, or has become dysfunctional at the expense of the 

individuals health, endothelial cells could be the reservoir from which normal 

hematopoiesis could be restored.   

In our experiments where blood flow was modulated using chemical 

treatments, we showed that transendothelial migration of HSCs across the 

endothelium was not required to occur before cmyb+ cells could become depleted.  

As the XP-697859.3 morpholino injected embryos displayed a similar hematopoietic 

defect, it is suggested that PECAM1’s involvement in this process may be more as a 

flow sensor/responder or signaling molecule, and less as a mediator of 

transendothelial migration.  There are several experiments necessary to validate 

these findings.  We would need to first determine if the zebrafish homolog of 

PECAM1 acts in a similar manner as mammalian PECAM1 has been shown to act.  

We would need to test whether it was involved in integrin activation, changes in b-

catenin association, and phosphorylation of Vascular Endothelial Growth Factor 

Receptor-2 (VEGFR2, or kdrl in zebrafish).  Furthermore, the demonstration that XP-
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697859.3 is a functional homolog of PECAM1 has remained elusive.  A clear 

demonstration that mammalian PECAM1 can rescue the changes we see in the XP-

697859.3 morpholino injected embryos would clarify the functional relationship 

between these two genes. 

Taken together, the data all suggest that these two systems, hematopoietic 

and vascular, are intrinsically linked: they develop concordantly, they are co-

regulated, and they cross-talk.  The idea of transdifferentiation of specified cell types 

is still unusual in many systems, though now we know, that in the correct conditions, 

many cell types can be undifferentiated and driven towards alternative cell fates[18, 

19].  What makes hemogenic endothelium still unique, is that it occurs normally in 

the organism, be it zebrafish or mice.     
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