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Abstract

MATTHEW W. WHEELER: Bayesian Nonparametric Differential
Equation Models for Functions

(Under the direction of Dr. Amy H. Herring and Dr. David B. Dunson)

Bayesian nonparametric methods develop priors over a large class of functions that

essentially allow any continuous function to be modeled. Though these methods are

flexible, they are black box approaches that do not explicitly incorporate additional

information on the shape of the curve. In many contexts, though the exact parametric

form of the curve is unknown, additional scientific information is available in the form

of differential operators. This dissertation develops nonparametric priors over func-

tion spaces that are specified by differential operators. Here two novel approaches to

nonparametric function estimation are considered. In the first approach the prior is

specified by a linear differential equation. The Mechanistic Hierarchical Gaussian pro-

cess defines a prior over functions consistent with a differential operator. The method

is applied to muscle force tracings in a functional ANOVA context, and is shown to

adequately describe the between subject variability often seen in such tracings. In the

second case a novel spline based approach is considered. Here prior information is spec-

ifies the maximum number of extrema (changepoints) for an arbitrary function located

on an open set in R. The Local Extrema (LX) spline models the first derivative of

the curve and puts a prior over the maximum number of changepoints. This method

is applied to animal toxicology studies, human health surveys, and seasonal data; and

it is shown to remove artifactual bumps common to other nonparametric methods.

It is further shown to superior in terms of estimated squared error loss in simulation
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studies.
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Chapter 1

Literature Review

Bayesian data analysis proceeds by positing that, given a sequence of data Y =

(y1, . . . , yn), one can learn about the underlying generating mechanism through a series

of simplifying assumptions. This is done by assuming data arise from a sampling model

P (Y |Θ) controlled by parameter vector Θ. In a Bayesian analysis one assumes that Θ

is a random quantity, and that its uncertainty can be quantified a priori by P (Θ), a

probability measure over possible values of Θ. The quantity P (Θ) is prior knowledge

on Θ, and we wish to update this prior belief given new information. Learning is

accomplished through the use of Bayes Rule

P (Θ|Y ) =
P (Y |Θ)P (Θ)∫
P (Y |Θ)P (Θ)dΘ

,

which updates the distribution for Θ in the presence of new information Y.

Bayesian analyses often proceed by assuming that the data vector Y comes from

a known distribution, and that Θ enters into this distribution with parametric form

known a priori. For example linear regression assumes Y = XΘ + ε where ε ∼

N(0, σ2In). This implies that Y ∼ N(XΘ, σ2In), which forces explicit structure on

the mean and all higher level moments of Y. Given typical prior assumptions, that is

θ ∼ N(a, b) and σ−2 ∼ Ga(c, d), on puts strong prior structure on the system under



study. Strong assumptions may not be warranted, and may not fully encapsulate the

uncertainties in the system of interest. In the above example multiple assumptions

may be called into question. First the normality assumption may be unrealistic as it

assumes that the data arise from a unimodal distribution having relatively light tails.

Also the linearity assumption may also be called into question as it is overly restrictive

of the functional form. Such analyses may lead to unrealistic inference.

An alternative to such restrictive assumptions is to develop priors which are more

reflective of the uncertainty in the system of interest. Such approaches put priors over

a rich class of both probability measures and function spaces that better reflect the

uncertainties in the system. For example, the Dirichlet prior (Ferguson 1973; 1974)

and other stick breaking priors (Sethuraman 1994; Ishwaran and James 2001) can be

used to define priors over the space of probability measures. As these priors are almost

surely discrete, they are frequently used in combination with mixing kernels such as the

Dirichlet mixing process (DPM) (Lo 1984), which can then be used to develop priors

over the space of distribution functions that do not assume a specific parametric form

on P (Y |Θ).

Similarly, priors over functional forms can be developed to circumvent the use of

simplifying assumptions such as linearity in the mean response, i.e., E[Y ] = XΘ. Here

versatile priors, such as the Gaussian process (GP) (Rasmussen and C. 2006), can be

used to define a prior over a large set of smooth functions in Rp. Such an approach, when

combined with the DPM approach, allows one to define priors having large support over

possible generating mechanisms. These approaches may be better in encapsulating the

uncertainties in the system under study.

In what follows many aspects of non-parametric Bayesian inference are reviewed.

Section (1.1) reviews stick breaking priors such as the Dirichlet process, and section

(1.2) reviews non-parametric Bayesian regression methods.
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1.1 The Dirichlet process prior and other stick-breaking priors

Much of the recent work in Bayesian non-parametrics has focused on the use of the

Dirichlet process (Ferguson 1973; 1974; Sethuraman 1994), and other stick-breaking pri-

ors (Ishwaran and James 2001). Given a complete and separable metric space (Θ,B),

a stick-breaking prior G defines a prior over P , the collection of probability measures

on (Θ,B). In other words, if one defines C to be the smallest σ−field generated by sets

of the form {P : P (θ) < k} where θ ∈ B, P ∈ P and k ∈ [0, 1], then the stick-breaking

prior G, defines a probability measure over (P , C). Given any finite measurable parti-

tion {θ1, θ2, . . . , θL} of Θ, G defines a prior probability measure over sets of the form

{P (θ1), P (θ2), . . . , P (θL)}. Such priors allow one to learn about an arbitrary probability

measure P given Y using Bayesian methods.

Stick-breaking priors are unique in that they admit a specific construction on G. A

prior G has a stick-breaking representation if and only if

G(·) =
L∑
h=1

whδθh(·), (1.1)

where δθh(·) is a discrete measure concentrated at θh ∈ Θ, and {wh}h=1 are weights

such that 0 ≤ wh ≤ 1 and
∑L

h wh = 1. Each weight is constructed from a set of

random variables {Vh}Lh=1 defined on (0, 1) where Vh ∼ H, and H is a known probability

measure. The stick breaking construction defines {wh}Lh=1 through

w1 = V1 (1.2)

and

wk = Vk

k−1∏
h=1

(1− Vh). (1.3)

3



In this construction the first few weights (i.e w1, w2, . . . etc.) receive a large portion

of the prior mass, with each subsequent weight receiving a geometrically diminishing

probability. This implies only a few atoms θi ∈ Θ receive a large prior probability of

being selected. Note that the total number of atoms L may be finite, or countably infi-

nite. This construction in (1.1) is completed by noting that {θh}Lh=1 are independently

drawn from a base line measure G0 and are independent from the weights.

In applications the Vk are often taken as independent Beta(ak, bk) random variables.

Both the Dirichlet (Ferguson 1973) and Pittman-Yor processes (Pitman 1996; Pitman

and Yor 1997) can be shown to be stick-breaking processes as in (1.1). By taking L =∞,

ak = 1, and letting bk = b for all k, one arrives at the Dirichlet process (Sethuraman

1994). Also by taking L = ∞, setting ak = 1 − a and bk = b + ka), for 0 ≤ a < 1

and b > −a, one constructs the Pittman-Yor PY(a, b) process (Pitman 1995). The

Vk are not necessarily limited to beta random variables, and other possibilities have

been explored (e.g., Rodriguez and Dunson (2011)). Rodriguez and Dunson (2011)

defined the probit stick-breaking process using standard normal random variables, and

constructed weights using Vk = Φ(ak) where ak ∼ N(0, 1).

The stick-breaking construction is almost surely discrete, which limits its usefulness

for most applications. Instead of being used as a prior for observed data, it is frequently

employed as a prior over weights in mixture modeling. That is, given some parametric

density g, a prior over possible data generating mechanisms is specified as

fG(y) =

∫
g(y; θ)dG(θ). (1.4)

Such a mixture distribution was originally proposed by Lo (1984) with G is defined as a

Dirichlet process. This approach defines a rich prior over a variety of distributions and

can be used in for continuous density estimation as well as repeated measures data.

4



Direct estimation of the posterior distribution of such stick-breaking mixture mod-

els is unavailable in closed form, and various MCMC methods have been developed

to sample from the posterior distribution. These methods generally can be divided

into two categories. The first marginalizes over the stick-breaking process relating the

process to the Polya urn model. The second approach samples the full conditional

distribution. Here the weights and the unique atoms {θ∗h}Lh=1 are sampled conditionally

on the other terms of the model.

Generalized Polya-Urn Sampling

This sampling method is related to the Polya urn model that Blackwell and MacQueen

(1973) connected to the Dirichlet process. It was later shown by Pitman (1996) that

when Vk ∼ Beta(ak, bk) the stick-breaking process can be characterized in term of a

generalized Polya-Urn mechanism, and can be used when the Vk are drawn from a

Beta(ak, bk) distribution. For clarity the sampling method is first described in relation

to the Dirichlet process and then generalized in relation Pittman-Yor model.

In the Polya-Urn model colored balls are drawn from an urn in succession. After

each draw, the drawn ball is put back in the urn along with C balls of the same color.

Once a ball is drawn there is an increased probability of it being drawn in the future.

Blackwell and MacQueen (1973) noted that by marginalizing over the Dirichlet process

one arrives at the Polya urn model. As draws from this model can be shown to be

exchangeable, any draw in the process can be taken conditionally with respect to the

other draws.

Given a Dirichlet process G ∼ DP(bG0) where b is the weight parameter, and G0

is the base measure, the atoms of G can be sampled using the following construction.

Let θ1, θ2, . . . be the successive ordered draws from G Blackwell and MacQueen (1973)

5



showed that the conditional distribution drawing θi given the previous draws is

θi|θ1, θ2, . . . , θi−1 ∼
b

b+ i− 1
G0 +

i−1∑
k=1

1

b+ i− 1
δθk(·).

Here Individual atoms can be thought of as being drawn from the urn in succession.

For each draw there is a uniform probability of the next atom drawn as being any one

of the previous draws, and a positive probability proportional to G0 of the next draw

being drawn from the base measure. As there may be ties (i.e., θi = θj for i 6= j) one

can equivalently define θ∗1, θ
∗
2, . . . , θ

∗
L as the L unique atoms that have been drawn from

the urn. Letting defining m1,m2, . . . ,mL be the number of times each atom has been

drawn, the probabilities specified above can be re-expressed as

θ∗i |θ∗1, . . . , θ∗i−1, θ
∗
i+1, . . . , θ

∗
L ∼

b

b+ i− 1
G0 +

i−1∑
k=1

mk

b+ i− 1
δθ∗k(·).

With this representation it one can see that successive draws of the same atom

increases the probability the atom is drawn in the future. Observations tend to cluster

around distinct atoms often resulting in fewer atoms than observations. This clustering

of draws can be seen as a feature of the stick-breaking process where there exists a high

probability of the next atom being drawn from one of a small number of atoms.

Such conditional probabilities can be generalized to any PY(a, b,G0) process. The

probability of the current draw, conditional on the previous draws, is

Pr(θi = θ∗j |θ∗1, . . . , θ∗L) =


mj−a
b+i−1

j ≤ L

b+aL
b+i−1

G0 otherwise

(1.5)

The Polya-urn scheme can be used to sample from mixture distribution as in (1.4).

This connection was first utilized by Escobar (1994) and Escobar and West (1995) to
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formulate MCMC sampling methods for Dirichlet mixture processes, under the con-

jugate assumption that g(·) and G0 are both Gaussian. It can further be applied to

priors on G0.

I focus on an general algorithm that includes both the conjugate and non-conjugate

cases. Given observed data vector (y1, y2, . . . , yn)′, we wish to sample θ = (θ1, θ2, . . . , θn)′,

which are the n latent quantities distributed G, which is a vector of quantities defining

the relation yi|θi ∼ g(yi; θi). Letting {θ∗k}Lk=1 to be the set of unique draws from the

urn, and θ−i the vector θ without entry i, the algorithm proceeds for any PY(a, b,G0)

as follows:

1. For each i, i = 1, . . . , n draw θi from

θi|θ−i ∼
b+ aL

b+ i− 1
q0G0 +

i−1∑
k=1

mk − a
b+ i− 1

g(yi; θ
∗
k)δθ∗k(·). (1.6)

where q0 =
∫
g(yi; θ)dG0(θ). It is possible that θi is the only member in the cluster

implying that the set {θ∗k}Lk=1 should be recomputed for each draw.

2. For each k, k = 1, . . . , L and each yi allocated to cluster k draw θ∗k from

θ∗k ∝ G0(θ∗k)
∏

{yi:θi=θ∗k}

g(yi; θ
∗
k) (1.7)

In cases where G0 is non-conjugate with the kernel g(·; θ) the integral representation

of q0 may be intractable. Various computational methods to ease (MacEachern and

Müller 1998; Neal 2000) have been developed.

The Polya urn sampler has a tendency to mix slowly, and it may take many iterations

before any new θ∗’s are generated. MacEachern (1994) proposed an acceleration method

to increase the efficiency of the Gibbs sampler (Gelfand 1990; Geman and Geman

1993). Here one introduces membership variables {ξi}ni=1, such that ξi = k if subject
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i is assigned to θ∗k. One proceeds by first sampling the augmented cluster membership

variable and then updating {θ∗k}Lk=1 given this membership variable.

Conditional Methods

As mixing for the Polya-urn sampler is often poor and non-conjugate sampling can be

difficult, various methods have been developed to sample from the posterior conditional

on knowledge of the weights. These methods, which are often termed conditional

methods, frequently provide better mixing than methods based upon the Poly-urn

scheme. The first of such methods described are the block Gibbs sampling methods of

Ishwaran and Zarepour (2000) and Ishwaran and James (2001).

These methods approximate the infinite stick breaking process G through a finite

dimensional truncation of the posterior distribution. Given the proper truncation level,

these methods define a prior that can be shown to be arbitrarily close to the desired

countably infinite stick breaking process. Let L be the number of elements in the

truncation. To create an truncation of an infinite stick breaking process one discards

the wL+1, wL+2, · · · weights by setting wL = 1−w1 −w2 − · · ·wL−1. This construction

can be shown to have a marginal density µL(Y ) that is arbitrarily close to µ∞(Y ) for

large L. Define ‖ · ‖ to be the L1 distance, then (Ishwaran and James 2001) showed

that

‖µL(Y )− µ∞(Y )‖ ≤ 4

(
1− E

[(
L−1∑
k=1

pk

)n])
. (1.8)

This implies that if the stick breaking weights are constructed such thatE
[(∑L−1

k=1 wk

)n]
→

1 as L → ∞ there should be little difference between the finite truncation model and

the countably infinite stick breaking process. It can be shown for both the Dirichlet

and Pittman-Yor processes that accurate truncations exist. For the PY(a, b) process
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one has

‖µL(Y )− µ∞(Y )‖ ≤ 4(1− E[1− (
∞∑
k=L

wk)
n]) (1.9)

and for the Dirichlet process this expression simplifies to

‖µL(Y )− µ∞(Y )‖ ∼ 4 n exp(−(L− 1)/b). (1.10)

As a consequence on can create a finite truncation that is virtually indistinguishable

from the infinite stick-breaking prior when L is moderately large.

As sampling from GL is computationally simpler than sampling from G, block sam-

pling can accurately approximate the infinite stick breaking process. We describe the

algorithm in terms of Vk ∼ Beta(ak, bk), noting that for general Vk ∼ H slight modifi-

cations are needed. The algorithm introduces a latent variable ξi for each observation.

Here ξi = k if and only if observation yi is allocated to cluster k.

1. Sample θ∗|Y, ξ : For each K, such that 1 ≤ k ≤ L sample from the density

θ∗k|Y, ξ ∝ G0(θk)
∏
i:ξi=k

g(yi|θ∗k)

2. Sample ξ|θ∗, p: For each i = 1, . . . , n sample ξi from

ξi|θ∗, ξ, Y ∼Multinomial(p1i, · · · , pLi) (1.11)

where pki ∝ pkg(yi|θki)

3. Sample Vk|ξ: As the stick-breaking probabilities are conditionally-conjugate to
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the multinomial distribution we have

Vk ∼ Beta(ak +Mk, bk +
L∑

l=k+1

Ml), (1.12)

where Mk =
∑n

i=1 1(ξi ≥ k). Given V1, . . . , VL−1 one can calculate the p′ks as in

(1.2) and (1.3).

As the value of the finite truncation level is chosen a priori some caution is needed

when using a block sampler. Values of L that are too small may lead to inference

from a posterior that does not closely approximate the infinite stick-breaking process.

Conversely values of L that are too large unnecessarily increase the computational

burden.

Other methods have been developed to avoid the truncation problem, which allow

sampling from the exact distriution G. Papaspiliopoulos and Roberts (2008) proposed

one such method. This algorithm modifies the above by letting L change across MCMC

iterations. Again letting L be the current number of atoms in the sampler a retrospec-

tive sampler introduces an auxiliary variable Ui ∼ Uniform(0, 1) setting ξi = j if∑j−1
k=1 pk < Ui <

∑j−1
k=1 pk, with more weights/atoms introduced if

∑L
k=1 pk < Ui. This

method allows one to sample from a countably infinite stick breaking process using

only a finite number of atoms at any given iteration. As the method requires main-

taining a detailed balance condition, it is non-trivial in many cases, and, consequently,

Walker (2007) developed an equivalent method for sampling mixture models formed

from infinite stick-breaking processes that is much simpler computationally.

1.1.1 Extensions to stick-breaking process

The stick-breaking process is a versatile prior over probability measures distribu-

tions, and can be used in many situations to develop rich prior distributions. It is
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however defined assuming the base measures for the atoms and weights are indepen-

dent. As there are various situations where one may want to pool information across

repeated observations considerable work has been devoted to extending stick-breaking

to situations where the atoms and/or weights are dependent MacEachern (1999).

In defining priors over rich function spaces Gelfand et al. (2005) developed the

functional Dirichlet process. This process modeled spatial data over some compact

domain D. The functional Dirichlet process puts a non-parametric prior, such as those

described in (1.2), on the base measure G0, and puts a rich non-parametric prior over

function spaces.

The functional Dirichlet process induced global clustering for each observation yi.

Other methods have been developed to add dependence in the weights induce local

clustering of observations. Duan et al. (2007) and Petrone et al. (2009) extended the

functional Dirichlet process to allow for local clustering. In Petrone et al. (2009) the

weight corresponding to selecting atom at location si is spatially dependent. This

results in defining fi as a patchwork of functions made up of a set of global species

{f ∗i }Li=1. Closely related to these approaches is that of Nguyen and Gelfand (2011) who

developed the Dirichlet labeling process for clustering functional data.

1.2 Regression Methods

Consider modeling the function f : X → Rp, p ≥ 1, where X is an index set.

Simple parametric assumptions on the form of f may fail to adequately characterize

the curve of interest. Various methods exist that define priors over a large class of

smooth functions. In what follows we consider two closely related approaches: basis

function approximation and Gaussian Processes (GP).
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Basis approximations assume f(·) can be approximated through a linear combina-

tion of functions, i.e.,

f(x) =
J∑
j=1

θjbj(x), (1.13)

with x ∈ X . Given an appropriately specified basis, and prior over {θj}Jj=1, one can

model essentially any continuous function. There are many types of basis functions

that one can consider, and each one puts increased prior probability over a certain

class of functions. Consequently, the choice of basis contributes to the efficiency of the

estimate. With a poorly chosen basis greatly increasing the uncertainty when estimaing

f.

Closely related to basis function approach is the Gaussian process (GP). The GP

is a stochastic process that, when given the appropriate covariance kernel, can approx-

imate essentially any continuous function in Rp. GP priors define f as a realization

of a stochastic process having continuous sample paths. Like the basis approximation

approach a poorly chosen covariance kernel may put low probability on sample paths

similar to f. Consequently the choice of the covariance kernel may impact the effi-

ciency in estimating f. We consider the problem of estimating f from both the basis

approximation perspective as well through the use of Gaussian process regression.

1.2.1 Basis Regression

Assume that one observes the vector Y = (y1, . . . , yn)′ at (x1, . . . , xn)′ where xi ∈ X .

Here Y are observations of f, i.e, (f1(x1), . . . , fn(xn))′, made with error. In the following

discussion we assume that

yi = f(xi) + εi, (1.14)
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where εi ∼ N(0, σ2). As in (1.13) one approximates f assuming that it is well approx-

imated by a linear combination of basis functions. These functions are defined on the

knot set T = {τ1, . . . , τJ}, defined by a specific basis. For example the natural cubic

spline basis is defined to be b1(x) = 1, b2(x) = x, b3(x) = x2 and

bj(x) = (x− τj)3
+,

for j ≥ 4, where (x)+ = x for x ≥ 0 and 0 otherwise. Other examples of basis functions

include the B-spline, kernel convolutions, and wavelet bases. With a basis function

chosen, one completes a Bayesian specification by pacing a prior over {θj}Jj=1, and

possibly the number and location of the knots.

Fully nonparametric approaches (Denison et al. (1998); Biller (2000) and Dimatteo

et al. (2001)) put priors over {θj}Jj=1 as well as the the number and location of the

knots. These methods develop different reversible jump MCMC (RJMCMC) (Green

1995) algorithms for posterior computation, and are usually dependent on the type

of basis chosen. For example Biller (2000) develops an algorithm for B-splines that

considers only three types of moves on knots: the addition, deletion or movement of

knots during any iteration. This method allows for a highly flexible framework in

which f can be represented through a function whose knot locations are unknown.

Though these methods put priors over essentially any continuous function, the added

computational burden often does not significantly improve estimation of f for most

applications.

As it is often difficult to develop efficient RJMCMC algorithms, other methods have

been developed to allow a high degree of flexibility when specifying a prior over f. These

methods rely on penalized smoothing splines, see for example Eilers and Marx (1996)

or Brumback and Rice (1998). Smoothing splines assume that the number and location

of the knots are fixed, with a prior defined over {θj}Jj=1 that controls the smoothness of
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the curve. By appropriately defining the proper prior the model can adapt to varying

amounts of curvature in f .

One example of such a smoothing approach is the Bayesian P-Spline (Lang and

Brezger 2004). Here priors for the coefficients {θj}pj=1 are defined using first or second

order random walks, i.e.:

θj ∼ N(θj−1, τ
−1)

or

θj ∼ N(2θj−1 − θj−2, τ
−1),

where τ−1 ∼ Ga( r
2
, r

2
) and r > 1. Placing such a prior over {θj}Jj=1 and τ−1 allows the

model to adapt to the appropriate level of smoothing. P-splines have been shown to be

only slightly inferior to that that of Biller (2000), with the computational advantage

that RJMCMC algorithms need not be employed.

1.2.2 Gaussian Process

The literature on Gaussian processes (Rasmussen and C. 2006) is vast. This review

focuses on the use of the GP in regression. A GP f ∼ GP(0, σ(·, ·)) is a stochastic

process defined on a compact domain X . It is defined such that for any finite set of

points X = {x1, . . . , xn} ⊂ X , the points {f(xi)}ni=1 are distributed as a multivariate

normal with mean 0 and cov(f(xi), f(xj)) = σ(xi, xj). GPs are often described in terms

of a zero mean process. Extensions that allow the mean to vary across the domain are

straightforward.

For the regression problem defined in (1.14) the GP specifies a prior over f through

the mean process and covariance kernel σ(x, x′). For f observed locationsX, the prior on
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f(X) is specified as a finite dimensional multivariate normal distribution, i.e., f(X) ∼

N(0,Σ(X,X)), where

Σ(X,X) =



σ(x1, x1) σ(x1, x2) · · · σ(x1, xn)

σ(x1, x2) σ(x2, x2) · · · σ(x2, xn)

...
. . .

...

σ(x1, xn) · · · σ(xn, xn).


This defines the equivalent prior on Y :

Y ∼ N(0, K),

where, K = Σ(X,X) + τ−1I, I is the n × n identity matrix, and τ ∼ Ga(a, b). In a

Bayesian analysis one computes the posterior for F (X)|Y. Then, using the conditional

properties of a multivariate normal distribution, one can calculate the posterior for any

set of unobserved points X ′ = (x1, . . . , xm)′. That is, assuming a zero mean GP, one

has:

F (X ′)|Y ∼ N(F̂ (X ′), Σ̂(X′,X)),

where

F̂ (X ′) = Σ(X,X′)K
−1Y,

and

Σ̂(X′,X) = Σ(X′,X′) − Σ(X,X′)K
−1Σ(X′,X).
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Here it is seen that the covariance kernel function σ(·, ·) is used to form a linear com-

bination of basis functions to predict values of f. This is seen to be related to the basis

function expansion if one sets Θ = K−1Y, and one uses the knot set T = X.

As in the basis function case the covariance kernel is crucial in guaranteeing large

support over the class of functions of interest. Examples of two such commonly used

kernel functions include the Gaussian,

σ(x, x′) = σ2
f exp(−1

2
c |x− x′|2), (1.15)

, where σ2
f is the function variance, and c is the bandwidth parameter; and the Matern

class of covariance kernels

σ(x, x′) = σ2
f

21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
(1.16)

with parameters ν and l, where Kν is a modified Bessel function. Given the proper

kernel, with appropriate prior support over the hyperparameters a GP can be shown

to have sample paths that are dense in the space of continuous functions (Tokdar and

Ghosh 2007). Again given the proper hyperparameter on the covariance kernel Ghosal

and Roy (2006) showed that such a GP puts positive support within an ε probability

on any function in the in the reproducing kernel Hilbert space (RKHS) of the kernel

covariance function σ(x, x′), which given (Tokdar and Ghosh 2007) implies a prior

within an ε distance of all continuous functions.

Other results show that the GP is a consistent estimator for the underlying true

curve. This has been shown for both continuous (Mardia and Marshall 1984), and

dichotomous regression (Ghosal and Roy 2006).

Posterior computation for GP regression proceeds in a relatively straightforward
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manner. Conditional on knowledge of τ and the covariance kernel the posterior distri-

bution of f can be computed by sampling from a multivariate normal distribution as

described above. The hyperparameters in the covariance kernel are often more difficult

to sample from, and require a metropolis within Gibbs sampling step, and mixing is

usually poor. Another caveat to posterior computation is that the computations re-

quire inversion of a n dimensional covariate matrix. As inversion of such matrices are

computationally demanding, requiring an algorithm of O(n3), GP computations are

often computationally intractable for moderate to large problems.

Given the computational demands a GP can be approximated using basis function

regression Higdon (2002); Rasmussen and C. (2006). For example the choice of Gaussian

basis function, i.e, b(x) ∝ exp(−1
2
‖x‖2) can be shown to be related to the covariance

kernel σ(s, s′) ∝ exp(−1
2

∥∥∥ s−s′√
2

∥∥∥2

). Such approximations are often accurate, which

greatly reduces the computational burden of GP posterior estimation.
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Chapter 2

Mechanistic Hierarchal Gaussian
Processes

2.1 Introduction

Studies of physiologic response to muscle stress are important in developing treat-

ment protocols to combat work-, athletic-, and age related injury. In order to investigate

muscle adaptation and maladaptation following repetitive resistance-type exercises, sci-

entists often obtain a series of functional measures (often at the beginning and end of

a multi-session exercise protocol) on the force produced by the muscle as it moves

through its range of motion. These force curves can be compared to determine the

benefit/harm of an exercise routine to a population of interest.

In our application we investigate one such study conducted on a rodent popula-

tion. In this study scientists are interested looking at physiologic response between

young (3 month) and old (30 month) animals exposed to the same resistive exercise

protocol. Here animals underwent 13 training sessions on the dorsiflexor (lower leg)

muscle group. At the beginning and end of the training regimen the muscles under-

went isometric- (muscle activation without movement) and stretch shortening-( muscle

activation with joint movement) contractions. Each force tracing was recorded, as il-

lustrated in Figure 2.1. This figure is divided into five sections where each section



is separated by a vertical line. The first and last sections represent force generation

when the muscles are not contracting. The second and fourth sections represent the

force generated during an isometric contraction; with the third section denoting the

stretch shortening contraction. Note that in the stretch shortening contraction there

is an isometric component to force generation, and modeling should estimate both the

isometric and stretch shortening components.

We have 86 such force tracings, and investigators wish to model the isometric and

stretch shortening force generation. The data are defined as follows: for an individual

measurement, 565 evenly spaced functional observations were taken. This measurement

was taken two times (pre and post excersize protocol) resulting in 2 × 565 = 1130

functional measurements per animal. All 43 animals (28 old and 15 young) underwent

the same resistive exercise protocol resulting in 48, 590 total measurements. Our intent

is to investigate possible differences in response, between groups (young/old), as well

as differences in response pre- and post-training. We are interested in comparing the

individual and group level force tracings for isometric as well as stretch shortening

contractions.

Current methods for functional analysis are insufficient to analyze such data as

they do not take into account the detailed scientific information already available on

the responses. Further, without extensive modification, they are unable identify the

stretch shortening and isometric components. Parametric models, based upon ordinary

differential equations (ODEs) do exist but are known to be inadequate for character-

izing muscle force tracings. We develop Bayesian nonparametric methods that favor

shapes consistent these parametric models, but are flexible enough to account for devia-

tions from parametric assumptions. As we are primarily interested in mean differences

between groups we further extend these methods to a hierarchical setting allowing

functional ANOVA style comparisons.
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2.1.1 Skeletal Muscle Force

Statistical methods for functional data analysis cannot easily incorporate mecha-

nistic information and often produce results that are challenging to interpret. There is

a large literature on muscle force output based on differential equations. Such models

are easily interpretable and incorporate mechanistic information but are not flexible

enough to realistically characterize available data. Motivated by the need to quantify

differences in physiological muscle force output as a biomarker of muscle adaptation

or pathology (Erdemir et al. 2007), we develop a non-parametric Bayesian modeling

approach.

The force generated by muscle activation, illustrated in Figure 2.1, is nonlinear

(Maffiuletti 2010; Parsaei and Stashuk 2011) and is associated with complex physiol-

ogy, such as motor systems and muscle twitch dynamics. The current lack of accurate

statistical models for characterizing force tracings has made effective statistical com-

parisons challenging.

Models for isometric force measurements date back to Hill (1938). A popular ap-

proach uses first order differential equations relating muscle force output to a series

of motor, damper, spring systems (Wexler et al. 1997; Ding et al. 1998; Phillips et al.

2004). Such models may reasonably describe areas of observed data across the force

activation curve but do not represent important aspects of the response. Other model-

ing approaches (Geronilla et al. 2006) attempt to characterize the response curve using

a time-varying combination of basis functions, leading to improvements in prediction

but a lack of interpretability and accommodation of prior mechanistic knowledge.

In an effort to develop better training/rehabilitation protocols tailored to individ-

ual needs, recent studies have investigated how age affects muscle adaptation and mal-

adaptation following specific non-injurious, repetitive, resistance-type loading protocols

designed to induce increases in performance and muscle mass. Initial investigations
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(Cutlip et al. 2006; Murlasits et al. 2006) and subsequent validations (Ryan et al.

2008; Baker et al. 2010; Hollander et al. 2010) have supported the use of supramaxi-

mal, electrically-evoked stretch-shortening contractions precisely prescribed for induc-

ing adaptation (increases in performance and muscle mass) in young animals following

repetitive exposures of resistive muscle contractions. We use such data to study the ef-

fects of age on resistive muscle training sessions to better understand the benefits/harm

of training across age groups.

Complexities arise when modeling the force tracings of a stretch-shortening con-

traction. The force output is a product of the isometric force at time t and a function

related to joint movement. That is, the total force h(t) measured at time t is thought

to be

h(t) = Q(t)F (t), (2.1)

where F : R+ → R+ is the isometric force at time t and Q : R+ → R+ is a function

representing the increase (1 < Q(t)) or decrease (0 < Q(t) < 1) in isometric muscle

force generation during a stretch shortening contraction. Scientific interest focuses on

differences in Q(t) and F (t) across experimental conditions. Interest in F (t) stems from

the fact it is the ’baseline’ force produced by the muscle. Differences are related to the

general health of the muscle. Interest in Q(t) is based upon the fact that it represents

the ’potential’ force that is released when the muscle moves; differences here relate to

the ability of the muscle to adapt. Our focus is on developing nonparametric Bayesian

methods that incorporate prior information using ODEs that can estimate both Q(t)

and F (t) using minimal assumptions.
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2.1.2 Relevant Literature

From a Bayesian perspective there has been some work on estimation of parameters

from ODEs. Lunn et al. (2002) develops a framework for parameter estimation in phar-

macokinetic/pharmocodynamic models. Putter et al. (2002) developed methods based

on partial differential equations to estimate HIV infection, and Huang et al. (2006) de-

veloped a hierarchical framework to investigate the antiviral response for HIV infection

in a population of individuals. The methods assume that the differential equations are

characterized through finitely-many parameters, with posterior computation relying on

Metropolis-Hastings steps.

Alternatively, one can rely on a Gaussian process (GP) emulator (Kennedy and

O’Hagan 2000; 2001). In the first stage, a solver is used to obtain the differential equa-

tion solution on a finite grid of points. Then, uncertainty and bias are accommodated

in the second stage through centering a GP prior on the differential equation solution.

Mechanistic information is not included in the Gaussian process and hence, unless one

assumes a very small deviation from the differential equation solution, the resulting

trajectories may be quite unrealistic, leading to poor predictive performance. Our

goal is to obtain mechanistic hierarchical Gaussian processes, which favor realizations

that inherit the behavior of the ODE, while also allowing variability among individual

trajectories across subjects.

Recent work (Lawrence et al. 2007; Alvarez et al. 2009; Honkela et al. 2010) devel-

ops latent force models, which embed mechanistic information into a GP prior. Here

the GP has a mean function and covariance kernel derived from a differential equation

similar to that of a simple motor, damper, spring system. This is accomplished by spec-

ifying a GP prior with squared exponential covariance function and integrating this GP

over the Greens function corresponding to the specified ODE. In our experience, this
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approach cannot be applied directly to our motivating application due to extreme ill-

conditioning problems in the covariance matrix. Hence, instead of directly using their

methods, we develop an alternative approach that relies on accurately approximating

solutions to the differential equations. This method is then extended to a hierarchical

Gaussian process (Behseta et al. 2005) allowing for sharing of information among sub-

jects in the population. By using the hierarchical Gaussian process we model individual

experimental group effects as well as individual subject effects.

2.2 Mechanistic Gaussian Process

Consider modeling an unknown functional response h : T → R, with T = [t0, t1] ∈ R

and data consisting of error-prone measurements (y1, . . . , yn)′ of h at locations (t1, . . . , tn)′.

A common approach lets

y(tl) = h(tl) + εl, (2.2)

where h ∼ GP(0, R(·, ·)), a zero mean GP with covariance kernel R(·, ·), and εl
iid∼

N(0, τ−1), with l = 1, . . . , n. The covariance kernel R(·, ·) is frequently chosen as

squared exponential, exponential, Matern or some default form that leads to flexi-

ble realizations. Although prior information about h can potentially be incorporated

through the mean of the Gaussian process and choice of the covariance kernel, it can

be difficult to choose appropriate values in practice.

We incorporate prior information by defining a covariance kernel favoring shapes

consistent with mechanistic information specified by differential equations. We assume

the information is expressible in the form of a linear ordinary differential equation

Lh(t) =
dmh(t)

dtm
+ am−1(t)

dm−1h(t)

dtm−1
+ . . . a1(t)

dh(t)

dt
+ a0(t)h(t) = r(t). (2.3)
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Given {a0(t), . . . , am−1(t)} are non-zero on T , the solution to (2.3) exists and, given

initial values, can be expressed as

h(t) =

∫ t

t0

G(t, ξ)r(ξ)dξ. (2.4)

Here G(t, ξ) is Green’s function, and the integral operator
∫
G(t, ξ)dξ, described in

shorthand as G below, is a linear operator, and is the inverse of the differential operator

L in (2.3). As G is linear, if r(t) ∼ GP(0, R(·, ·)), then h(t) is also a Gaussian process

with a new covariance kernel dependent on G and R(·, ·). This defines a GP over h

whose covariance kernel favors shapes consistent with (2.3).

Unfortunately, in many cases the resulting covariance matrix is extremely ill condi-

tioned resulting in computational instability. We tried a wide variety of existing meth-

ods for addressing ill-conditioning problems in GP regression with no success. The

induced covariance of h(t) tends to be substantially more subject to ill-conditioning

than even the squared exponential covariance. Alternatively, by relying on a Runge-

Kutta approximation (Asaithambi 1995), we develop an approach that allows direct

modeling of r(t) for an arbitrary covariance kernel R(·, ·). In our experience this in-

creases the numerical stability of the approximation, while bypassing the cumbersome

calculations necessary to compute the covariance kernel.

2.2.1 Approximation of the Process

There is a large literature on approximate solutions to differential equations. Given

a set of initial conditions corresponding to h(t0) as well as the first m−1 derivatives of h

evaluated at the initial point t0, Runge-Kutta (RK) methods (see chapter 9 Asaithambi

(1995)) offer efficient algorithms that approximate the solution to an mth order ODE.

When L is linear, RK methods express the numerical solution to the ODE as a linear
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combination of the forcing function r(t) evaluated at a finite set of points, {tl}nl=1, along

with the initial conditions h∗ = {h∗1, . . . , h∗m}. We illustrate the approach using the

Euler-Cauchy second order approximation, though other RK approximations proceed

in much the same way.

The Euler-Cauchy approximation recursively defines a solution to h(t) at {tl}nl=1,

by approximating the function as a linear combination of r = (r(t1), . . . , r(tn))′ and

h∗. As an example, consider a first order differential equation (i.e., m = 1 in (2.3))

where points are equally spaced with ∆ = 2(tj − tl−1). The approximate Euler-Cauchy

solution is formed recursively by:

ĥl = hl−1 + ∆ {g(tl−1, hl−1)} (2.5)

hl = hl−1 +
∆

2

{
g(tl−1, hl−1) + g(tl, ĥl)

}
. (2.6)

Here g(tl−1, hl−1) is a function of the derivative evaluated at tl−1 and hl−1 for l > 1 (e.g.,

for (2.3) with m = 1 one has g(tl−1, hl−1) = [r(tl−1) +A0(tl−1)hl−1]). As long as g(t, f)

is linear the approximation is a linear function of r(t) and the initial conditions h∗.

Consequently the solution can alternatively be expressed as a product of a matrix G and

a vector of elements r∗ = (h∗, r′)′. We form the matrix recursively as above, with row

l corresponding directly to each function evaluation described above. Continuing with

the example, one defines the matrix G as follows: first set the first row to 〈1 0 · · · 0〉 ,

which corresponds to h∗1. Then for l ≥ 1 the approximation proceeds by specifying a

row vector

Ĝ{l,:} = [1 + ∆A0(tl−1)]G{l−1,:} + K̂,

where K̂ is a row vector of zeros except at the entry l, which is set to ∆, and G{l−1,:}
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is the previous row. One then defines row l of G as

G{l,:} = G{l−1,:} +
∆

2

[
A0(tl−1)G{l−1,:} + A0(tl−1)Ĝ{l,:}

]
+K,

where K is a row vector of zeros except at entries l and l+1, which are set to ∆
2
. Through

this alternate expression one arrives at the approximation h(t) ≈ Gr∗, and h(t) is seen

in the context of a linear regression where h∗ and r are unknown. Though we describe

the method using the Euler-Cauchy approximation (a second order method), a similar

G matrix can be constructed using higher order RK methods. Higher order methods do

form better approximations but require more functional evaluations of r(t). This may

require r(t) to be evaluated at points on the index set that have not been observed and

may greatly increase the computational complexity when sampling from the posterior.

Before implementation this trade off should be evaluated, as in many situations a lower

order approximation is adequate. For example numerical experiments produced results

that in most cases had a maximum difference of 10−3 between the actual and numerical

solution, indicating higher order solutions were not needed.

2.2.2 Posterior Sampling

For the above approximation, sampling from the mechanistic GP proceeds us-

ing a series of conditionally conjugate Gibbs steps. The discussion assumes model

(2.2) with Y ∼ N(h, τ) where Y = (y1(t1), . . . , yn(tn)) and h = (h(t1), . . . , h(tn))′,

with τ ∼ Ga(a0, b0). Following the above discussion, the matrix G is formed from

A = (A1(t), . . . , An(t))′, which are parameters in (2.3). Further we assume the initial

conditions are specified as h∗ ∼ N(A0, B0), which is independent of r(t).
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Sampling algorithm 1

1. Sample r∗ ∼ N(E,W ) where W = (τG′G + Ω−1)−1 and E = W (τG′Y + Ω−1ρ).

Here Ω = block-diag(B0,Σ) is an (n + m) × (n + m) matrix, ρ is the the prior

mean of r∗, and Σ is the n× n covariance matrix, formed from R(·, ·).

2. Sample τ from Ga(a0 + n/2, b0 + (Y −Gr∗)′(Y −Gr∗)/2).

3. Marginalizing out r∗, i.e., Y ∼ N(0, GΩG′ + τ−1I) where I is a (n × n) identity

matrix, sample the parameters A using a Metropolis-Hastings or griddy Gibbs

(Ritter and Tanner 1992) sampling step.

2.3 Adaptation to Muscle Force Application

The mechanistic GP is not directly applicable to the muscle force application, which

has the additional complication of decomposing h(t) as

h(t) =

 F (t) t /∈ [ta, tb]

F (t)Q(t) t ∈ [ta, tb]
(2.7)

where F (t) and Q(t) are describable through first and second order differential equa-

tions, respectively. Additional constraints are needed to separately identify F (t) and

Q(t). For F (t), shape constraints are needed that rule out Gaussian processes, so we

use restricted splines; and Q(t) is known to equal one at the beginning and end of the

stretch shortening contraction, so we modify the GP to include this information. In

what follows, we describe the individual ODEs governing F (t) and Q(t) and outline an

extension of the posterior sampling algorithm of Section 2.2.
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2.3.1 Prior Extended to Muscle Force Data

We define an ODE for F (t) and Q(t) using generalizations of models from the

muscle force literature. The isometric force function F (t) is historically related to the

first order differential equation (Hill 1938)

dF (t)

dt
−BF (t) + p(t) = 0. (2.8)

Here B represents the damping constant of the muscle fibers and p(t) corresponds to

the joint action of muscle at time t. We assume that the form of the motor activation

function is unknown but is linear shortly after activation.

Placing a linearity assumption on p(t) only during the SS contraction, we let

p(t) =
S∑
s=0

βsbs(t)

where b0(t) = 1 and bs(t), for s ≥ 1 are defined as piecewise polynomial splines on the

interval Ts = [τs−1, τs+1]. For s 6= s′ we use cubic splines defined to be 0 prior to the

interval and 1 after the interval. Here for all s 6= s′ these intervals are defined outside

of the range of the SS contraction. For the interval including the SS contraction we let

bs′ be a linear spline on the interval, 0 prior to, and 1 after the SS contraction. In order

to model a flexible curve we use a large number of splines in estimating p(t).

When the joint is moved through its range of motion the force on the joint is related

to the angle of the joint and other factors. Angular motion is often described using

a second order differential equation, and we follow this approach. As the exact form

of the differential equation is unknown (i.e., damping constant etc.) we specify this
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function through the fully specified second order differential equation:

d2Q(t)

dt2
+ λ

dQ(t)

dt
− AQ(t) + g(t) = 0, (2.9)

where g(t) ∼ GP(0, R(·, ·)), A > 0 and the damping constant λ ≤ 0. Note that when

g(t) = 0 this defines a periodic function with a period of π
√
A.

It is further known that the multiplicative effect ofQ(t) should be 1 prior to and after

the joint is moved through a stretch shortening contraction. We add the constraint that

at the beginning ta, and end tb, of the stretch shortening contraction Q(ta) = Q(tb) = 1.

One can easily sample from this using the conditional properties of the multivariate

normal distribution.

2.3.2 Posterior Sampling Extensions

The RK approximation is used to sample both F (t) and Q(t). Analogous to h∗

above, we define F∗ = (F0)′ and Q∗ = (Q0, Q1)′, initial value vectors for F (t) and Q(t)

respectively. Similarly let p = (p(t1), . . . , p(tn))′, and g = (g(t1), . . . , g(tn)),′ which,

as above, are vectors of the latent forcing functions evaluated at a finite set of points

for F (t) and Q(t) respectively. Further define p∗ = (F∗
′
,p′)′ and g∗ = (Q∗

′
,g′).′ For

convenience we refer to G as the Euler-Cauchy approximation to either (2.8) or (2.9).

For all references to F (t), G is the solution to (2.8), and for all references to Q(t), G is

the solution to (2.9).

In sampling F (t) we note p = Xβ, where X is the n × (S + 1) matrix of spline

basis functions {bs(t)}Ss=0 evaluated at (t1, . . . , tn) and β = (β0, β1, . . . , βS). Letting

β ∼ N(0,Σβ), step 1 of sampling algorithm 1 is modified as follows:
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Sampling algorithm 2

1. Putting the prior F∗ ∼ N(A0, B0) over the initial conditions, define V = GX,

ρ = (A′0 0)′, and Ω = block-diag(B0,Σβ). Then sample p∗ ∼ N(E,W ), where

W = (τV ′V + Ω−1)−1 and E = W (V ′Y + Ω−1ρ).

We modify algorithm 1 to sample g∗ given Q(ta) = Q(tb) = 1. This is done using

the conditional properties of the multivariate normal distribution, i.e., for

 X1

X2

 ∼ N


 µ1

µ2

 ,
 C11 C12

C12 C22


 ,

one has

X1|X2 ∼ N
(
µ1 − C12C

−1
22 [µ2 −X2] , C11 − C12C

−1
22 C21

)
(2.10)

In the above approximation Q(ta) = Q0 and Q(tb) = G{n,:}g
∗, where G{n,:} is the last

row of G, we modify step one of sampling algorithm 1 as follows:

Sampling algorithm 3

1. Calculating g∗ ∼ N(E,W ) as in algorithm 1, define the following quantities

E∗ =

 I

G{n,:}

E, W ∗ =

 I

G{n,:}

W [
I G{n,:}

]
.

Then sample g∗|Q(ta)Q(tb) from a normal distribution whose mean and covari-

ance are derived from E∗ and W ∗ as in (2.10).

On the interval [ta, tb] sampling Q(t) and F (t) proceeds conditional on knowledge

of the other. To sample F (t) one uses algorithm 2 and multiplies each row of G by the
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corresponding value of Q(t) (i.e., for row l one multiplies each element in this row by

Q(tl)). Similarly we multiply by F (t) when sampling Q(t) and sample from algorithm

3.

2.4 Hierarchical Mechanistic Gaussian Process

We extend the mechanistic GP to hierarchical modeling (Behseta et al. 2005). This

allows modeling of individual curves as well as population means. The extension is

described in terms of our application but can be readily used in other settings.

Consider a study in which there is a single factor of interest having I levels. For

subject j a functional response hijk : T → R is measured K times. In our application

the factor is age, I = 2, K = 2 and represents measurements pre and post exercise rou-

tine, and hijk(t) is the time varying force function. Here, for all i, j, k, the n functional

measurements are taken at equally spaced points on the index set T . Data are modeled

as:

yijk(tl) = hijk(tl) + εijkl,

where εijkl
iid∼ N(0, τ−1

j ), and a mechanistic Gaussian process prior is defined over hijk(t)

as in (2.3).

For subject j, in group i, the pre and post functional measurements are modeled as

hijk(t) = h̃ij1(t)1(k ≥ 1) + h̃ij2(t)1(k ≥ 2), (2.11)

where 1(·) is an indicator function that takes the value of 1 if the argument is true, and
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0 otherwise. In terms of the mechanistic GP one models the latent forcing function as

rijk(t) = r̃ij1(t)1(k ≥ 1) + r̃ij2(t)1(k ≥ 2). (2.12)

Here one integrates (2.12) using (2.4) to get (2.11). For interpretability between obser-

vations and groups we use the same integral operator G across all i, j and k.

Extending (2.12) to account for variability between factors we define

r̃ijk(t) ∼ GP(r
(1)
ik , R

(1)
ik (·, ·))

r
(1)
ik ∼ GP(r

(2)
k , R

(2)
k (·, ·)),

with k = 1, 2 as in (2.12) and r
(2)
k ∼ GP(0, R(3)(·, ·)). Sampling from this hierarchy

proceeds in much the same way as algorithm 1. Analogous to the case of the single

curve we define r̃∗ijk, r
(1)∗
ik , and r

(2)∗
ik as above. Further, we define the individual vector

of observations Yijk = (yijk(t1), . . . , yijk(tn))′. Sampling from the posterior is specified

in terms of r̃∗ijk, r
(1)∗
ik , and r

(2)∗
ik , and proceeds as follows:

Sampling algorithm 4

1. For each i, j, k sample r̃∗ijk conditionally on r̃∗ijk′ where k′ = 1 if k = 2 and k′ = 2

otherwise. Here let Y ∗ = (Yijk − Gr̃∗ijk′) and sample r̃∗ijk ∼ N(E,W ) where

W = (τG′G+ Ω−1
ijk)
−1, E = W (τG′Y ∗+ Ω−1

ijkr
(1)∗
ik ). Here, as in sampling algorithm

1, Ωijk is subject specific (n+m)× (n+m) covariance matrix.

2. For each i, k pair r
(1)∗
ik ∼ N(E,W ) where in this case W = (

∑
j Ω−1

ijk + [Ω
(1)
ik ]−1)

and

E = W
(∑

j Ω̃−1
ijkr̃

∗
ij + [Ω

(1)
ik ]−1r

(2)∗
k

)
. Here Ω

(1)
ik is an (n+m)× (n+m) covariance

matrix as specified above, where R
(1)
ik (·, ·) is used to compute the finite dimensional

covariance for the latent forcing function.
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3. For r
(2)∗
k sample as in step 2 replacing r̃ijk with r

(1)∗
ik etc.

4. For each i, j sample τj from Ga(a0 + n, b0 +
∑

k(Yijk − Gr∗ijk)
′(Yijk − Gr∗ijk)/2),

where r∗ijk = r̃∗ij11(k ≥ 1) + r̃∗ij21(k ≥ 2).

5. Sample A similar to algorithm 1.

Note that inference on the group average curves h
(1)
ik (t) and the population average

curves h
(2)
k (t) proceed using the approximation Gr

(1)∗
ik and Gr

(2)∗
k respectively, and, as

G is the same across all i, j, k, the population averages have the same interpretation

as other curves in the hierarchy. Extending the above framework, i.e. adding more

hierarchies, is straightforward. Each additional hierarchy is sampled as in step 2 noting

that the previous level is used as the input vector.

2.4.1 Extensions to the Hierarchal Mechanistic Process

We extend the hierarchical mechanistic process to our application. Here

hijk(t) =

 Fijk(t) t /∈ [ta, tb]

Fijk(t)Qijk(t) t ∈ [ta, tb]

where Fijk(t) and Qijk(t) are defined using (2.8) and (2.9) respectively. For Fijk(t)

and Qijk(t) we define the hierarchy over the latent forcing function, with pijk(t) and

gijk(t) specified as in (2.12). This discussion uses the same notation as above, i.e.,

g̃ijk(t), g̃
∗
ijk, p̃ijk(t),p

∗
ijk etc.

For Qijk(t), the forcing functions g̃ijk(t), g
(1)
ijk(t), and g

(2)
ijk(t), are defined such that

Qijk(ta) = Qijk(tb) = 1 etc, and these constraints are implemented in exactly the same

way as above. To sample g̃∗ijk,g
(1)∗
ik ,g

(2)∗
k one proceeds by computing E and W as

in sampling algorithm 4, then sampling from the conditionally conjugate distribution

specified in sampling algorithm 3.
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Hierarchical extensions in modeling Fijk(t) are direct. Here we place multivariate

normal hierarchies over the spline coefficient vector β vector, i.e:

β̃ijk ∼ N(β
(1)
ik ,Σ

(1)
β,ik)

β
(1)
ik ∼ N(β

(2)
k ,Σ

(2)
β,k),

which in turn defines p̃ijk(t), p
(1)
ik (t), and p

(2)
k (t). Sampling each p̃∗ijk,p

(1)∗
ik , and p

(2)∗
k

proceeds by placing the modifications of sampling algorithm 2 into sampling algorithm

4.

2.5 Simulation

We conduct a simulation experiment based upon the model developed in (2.7). Here

curves, similar to those expected in a muscle force application are generated, and the

simulated curves are compared against posterior estimated curves. Similar to the muscle

force application the hierarchy was generated assuming I = 2, J = 30 and K = 2. The

group levels of the hierarchy, i.e., F
(1)
ik (t) and Q

(1)
ik (t), were generated to resemble muscle

force tracings of isometric and stretch shortening contractions respectively, and were

simulated based upon (2.8) and (2.9). The individual level data were generated at 565

equally spaced points, assuming ∆ = 1
260

. Here the first 80 observations represent the

force tracing prior to muscle activation. After activation 120 observations were taken

of Fijk(t). The next 201 observations were of Fijk(t)Qijk(t) with the 164 remaining

observations generated from Fijk(t). Similar to the real data, all data was generated

assuming little variability between observations; here τj = 1000 for all observations.

We chose weakly informative priors for all hyper parameters. We place a GP prior

over gijk(t) where the covariance kernel is specified using the squared exponential kernel

K(t, t′) = σ2exp(−`‖t− t′‖2). We set σ−2 ∼ Ga(1, 1) and let ` ∼ Ga(1000, 0.1), which
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reflects the assumption that gijk(t) is not expected to be very smooth. The same

assumptions are made for all other levels of the hierarchy. For pijk(t) we put normal

priors over the β coefficients, with diffuse priors specified at the topmost level. The

precision parameter for all other levels was assigned a Ga(0.1, 0.1) prior. Finally the

precision parameter τj was specified using a Ga(100, 0.1) prior. This is a vague prior

on τj centered approximately at the observed error found in muscle force tracings. For

the parameters in (2.8) and (2.9) we defined discrete uniform priors over a range of

plausible values. Here B is defined to be in [4.1, 5.2], based upon analyses of isometric

data with a parametric parametric model. Further the parameter A, which defines the

period of Qijk(t) is put in the range of [−2.3,−0.6]. This choice corresponds to a range

representing a half to a full period. Finally the damping constant was expected to be

negligible, and λ was given a plausible range of [0.01, 1]. Note λ can not take on values

at 0 due to the identifiability constraints on the ODE.

We collected 25, 000 MCMC samples disregarding the first 5, 000 as a burn-in. Every

other observation was then recorded, leaving 10, 000 samples for the analysis. Exami-

nations of trace plots for the quantities of interest, i.e., the individual curves, as well as

curves in the hierarchy, showed excellent mixing. Hyperparameters for the covariance

kernel as well as the parameters specified in (2.8) and (2.9), exhibited poor mixing.

This however did not affect the convergence for the quantities of interest.

For the quantities of interest (i.e., Fijk(t), Qijk(t), F
(1)
ik (t), and Q

(1)
ik (t))), which rep-

resents 125 total curves, the true curve was within the 95% credible region at the

specified level for these curves. Figure 2.2 shows the estimates of Q
(1)
i1 and Q

(1)
i2 , for one

of the groups. Here the true curve is given by the dashed line, the estimated curve is

shown in solid black, and the 95% credible intervals on the central estimate are given

by the dotted lines. One can see that the true curve, represented by the dashed line,

is estimated within these regions. This figure is representative of the other estimates,
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where truth is well described by the model.

2.6 Muscle Force Application

With the goal of investigating the effect of non-injurious, repetitive muscle contrac-

tions on muscle force generation, we apply our approach to data compiled from Cutlip

et al. (2006), Murlasits et al. (2006), and Baker et al. (2010). In these studies, 15

young (3 months), and 28 old (30 months), rats’ dorsiflexor muscles were exposed to a

resistive muscle contraction protocol that included thirteen sessions. At the end of each

session the dorsiflexor muscle group underwent isometric as well as stretch shortening

contraction (as described in Figure 2.1). Individual observations were taken at evenly

spaced intervals (∆ = 1
260

of a second). The entire measurement lasted just over 2

seconds, resulting in 565 total functional observations as in our above simulation study.

Our analysis looks at possible differences between muscle force measurements pre (after

the first resistive muscle contraction protocol) and post (after the last protocol) study,

between young and old animals. Priors for all parameters as well as computational

implementation was as specified in the simulation.

Figure 2.3 shows the individual fits of hijk(t) for one animal for their pre and post

observations. Here the central posterior estimated curve is shown in black, with the

observed data shown using gray hash marks. The credible intervals are not shown,

as they are too close to the central estimate to be visible in the figure. Figure 2.4

shows the expected mean isometric contraction for the pre (dashed line) and post

(solid line) exercise protocol in the old animals (top left) and the young animals (top

right). The difference (solid line) between the pre and the post training, as well as

the 95% pointwise credible interval (dashed line), is shown in the bottom row for

the old (bottom left) and young (bottom right) animals. Here it is seen that the

young animals, as a group, displayed increased muscle performance related to stretch
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shortening contractions; however, the old animals did not display a difference for much

of the curve. When there were differences, they were small and not seen as biologically

relevant. Likewise no difference was shown in the group average isometric contraction

(i.e., F
(1)
ik (t)). For the group level isometric contractions, figure 2.5 shows the estimated

posterior curves (top) and corresponding differences (bottom) for the young animals.

Here the pre treatment (dotted line) and post treatment(solid line) estimated isometric

contractions are shown in the top row, and, though the central estimates are different,

the bottom row shows that there is not enough evidence to suggest differences between

the two groups. Similar results (figure not shown) were observed for the older animals.

The model also allows one to look at individual estimates between curves. Here

though the old animals showed no significant differences at the group level for both iso-

metric and stretch shortening contraction force generation, individual differences were

seen. Figure 2.6 shows the stretch shortening contraction difference for an individual

animal. Here the pre and post treatment estimates are shown in the top graph with

the estimated differences being shown in the bottom graph. Here individual differences

can be seen, which is significant as it supports the idea that some some older animals

vary in their physiology related to dynamic responses.

Note that there is an additional advantage of modeling the latent forcing function

as it may be used to generate or support hypotheses. For example, for Fijk(t), the

latent forcing function pijk(t) represents the muscle motor action at time t. These

curves (figure not shown) show a steep increase right after activation, a sharp decrease

shortly thereafter, and then a stabilization to a near constant level. This is supportive

of the idea that large amounts of calcium influx the cytoplasm and bind rapidly to

troponin upon muscle activation (steep increase in force tracing), until finally calcium

is sequestered from the cytosol upon deactivation (return to baseline in force tracing).
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2.7 Discussion

This article proposes a flexible nonparametric Bayesian method that takes into ac-

count prior scientific information based upon an ODE. This method further develops

an approximate sampling algorithm using a Runge-Kutta approximation to the ODE.

The nature of the approximation allows for a hierarchical specification at the popula-

tion level estimates by modeling the latent forcing function directly. The goal was to

develop an inferential framework for muscle force tracings, and investigate the effect of

non-injurious resistive exercise protocols on different muscle types (i.e., young and old

muscles). It was important to accurately model both the overall functional response

and the two constituent functions, which themselves have scientific interest.

Given the results it may be that the dynamic force generated through the stretch

shortening contraction may be more informative and specific in showing adaptation and

maladaptation following non-injurious mechanical loading. Specifically, it can be seen

that the younger rats have an adaptive response in dynamic muscle force produced in

that the force generated is, at the population level, greater after the exercise protocol.

Whereas older rats have little if no response to the same muscle exercise protocol in

terms of the dynamic force generated. Further, the maximal force for older rats appears

to occur at a different joint angle, suggesting a physiologic differences in the length-

tension curve dynamics as the animals age.

The proposed approach can be extended to human muscle force tracings, and may

allow for in-depth study of human physiologic responses to exercise routine post train-

ing. Such an analysis, on the entire force output, has previously not been attempted.

For such a study the age response, as well as other variables, can be included in the hier-

archical framework. In this manner the efficacy of the current ’one size fits all’ approach

across the spectrum of prevention/intervention including, occupational medicine, phys-

ical therapy, strength conditioning, and wellness programs can be studied. If similar age
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results are seen in human populations, this may result in different treatment protocols

depending on age or other variables of interest.
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Figure 2.1: The first and second lines represent the beginning of the isometric and
stretch shortening contraction, respectively. The third and fourth lines represent the
end of the stretch shortening and isometric contractions, respectively.
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Figure 2.2: Estimated group level curves for the dynamic force in a stretch shortening
contraction. Solid line, and corresponding 95% credible region (dotted line), represent-
ing the estimated curve. Here truth is represented by the dashed line.
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Figure 2.3: The estimated mean isometric force generated for a single animal pre and
post treatment. The dark black line represents central estimates of Q(t)F (t), with the
dark gray hash marks representing the observed data. Here credible interval estimates
are not shown as they are very narrow.
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Figure 2.4: The estimated group level dynamic force multiplier generated by young
(right column) and old (left column) animals. The bottom row represents the 95%
pointwise credible interval for this difference.
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Figure 2.5: Estimated mean isometric muscle force generated for the young animals
pre (dashed line) and post (solid line). The bottom row gives the estimates, and 95%
pointwise credible intervals of the difference between the two.
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Figure 2.6: Estimated dynamic muscle force for an old animal. Here the top figure is
the central estimate for the pre (dash dotted line) and post (solid line), and the bottom
figure is the estimated difference between the two estimates.
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Chapter 3

Local Extrema Splines

In many applications there is interest in modeling an unknown function f : X → R.

Approaches such as splines or Gaussian processes (GP) typically do not incorporate

prior information on the number of extrema of the function, and often produce estimates

having many bumps. It is typical in many applications to have strong prior information

that the function under study has no more than a given number of local extrema. With

such a restriction, one can gain efficiency while producing a more appealing estimate

that agrees with prior knowledge and does not have artifactual bumps that are difficult

to interpret.

U-shaped or umbrella-shaped functions are particularly common in applications.

For example, in biomedical studies relating dose of an exposure to a response variable,

there can be hormetic relationships in which the exposure is beneficial at low doses and

is toxic at higher levels. This leads to a U-shaped function. More common are umbrella

shapes. These occur due to toxicity at high dose levels causing a downturn in an initially

monotone increasing dose response. Such umbrella or hill shapes are also common in

financial and engineering applications. Seasonal fluctuations can also lead to multiple

extrema, with such fluctuations often not well approximated by perfectly periodic basis

functions such as sine curves. We develop local extrema (LX) splines that allow one to

place an upper bound on the number of local extrema (changepoints), while otherwise



allowing highly flexible shapes through uncertainty in the location of the changepoints.

As a motivation, we focus on two examples through the paper. The first example

relates body mass index (BMI) to mortality. Several studies have reported a U-shaped

relationship between BMI and mortality, with very low and high BMI associated with

higher all-cause mortality. As there are limited data available for individuals with very

low and high BMIs it is useful to restrict the regression curve to have no more than one

(but possibly zero) interior extrema. This restriction bypasses the well know problem of

artifactual bumps in a completely unrestricted estimate, such as that produced by a GP

or unrestricted splines, while also substantially reducing uncertainty in interpolating

across sparse data regions. Our proposed LX spline method provides a simple and

computationally efficient way to include such constraints.

Our second motivating application is daily maximum temperature data from Al-

bany, NY. Though the daily temperatures can of course deviate substantially from this

average trend, due to seasonal trends, we expect the smoothed daily temperature curve

across the year to have a single nadir and single maximum. Although sin curves are

widely used to model such seasonal trends, such a parametric model may be insuffi-

ciently flexible to capture the real temperature data. Hence, it is appealing to consider

a nonparametric model that restricts the number of interior local extrema to be no

more than two, while allowing flexibility. Our LX spline method provides a simple

approach to accomplish this that conveys some practical gains.

Conceptually, when modeling an unknown curve with a finite number of local ex-

trema, one needs to constrain the function to have monotone segments with unknown

changepoints (local extrema). For strictly monotone functions, there is a rich litera-

ture on restricting functional forms from Bayesian (see for example Neelon and Dunson

(2004) and Shively et al. (2009)) and frequentist (Ramsay 1988; 1998) perspectives.

Ramsay (1988) proposed I-splines for isotonic regression. Given only positivity
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constraints on the basis function coefficients this approach effectively models monotone

curves. Alternatively he also (1998) uses penalization methods to enforce monotonicity.

Frequentist work on constraining curves to have single changepoint is sparse. Meyer

(2008) discussed methods for enforcing convexity restrictions, but, as many curves do

not fall into this space of functions, such a restriction is limited. More sophisticated

penalization methods have been developed (Heckman and Ramsay 2000), but these do

not guarantee enforcement of the shape constraint.

From a Bayesian perspective Neelon and Dunson (2004) develop a prior over piece-

wise linear splines for isotonic regression. This approach, given enough splines, was

shown to well approximate smooth monotone functions. More recently Shively et al.

(2009) developed an approach using free knot splines. For umbrella shape constraints,

Hans and Dunson (2005) developed a Bayesian model that allows a single discrete-

valued changepoint. As for other Bayesian changepoint models, posterior computation

can be challenging in considering extensions to more than one changepoint. Shively

et al. (2011) developed methods for fixed and free knot splines that model continuous

monotone segments having a single unknown changepoint. This model was specifically

developed for continuous U-shaped curves, and was not extended to the case of multiple

changepoints.

This article proposes a fundamentally different approach to the shape constrained

regression problem. Instead of only looking at the coefficients on the splines (Neelon and

Dunson 2004; Shively et al. 2009; 2011), or penalizations (Ramsay 1998), we develop a

novel spline construction similar in spirit to the I-spline construction of Ramsay (1988)

or C-spline construction of Meyer (2008). Our construction, when paired with positivity

constraints on the spline coefficients, enforces prior shape restrictions on the curve of

interest by limiting the number of local extrema. In our approach the resulting model

provides a flexible unified framework for inference when an upper bound on the number
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of changepoints is known.

3.1 LX Splines

3.1.1 Formulation

Let Y be a vector of noisy observations of an unknown function f : X → R, where

X = [γl, γb] ⊂ R. We wish to estimate f via

argmin
β∈R

‖A(X,β)− Y ‖2 + λg(β) (3.1)

where ‖ · ‖2 is the L2 norm, A(X,β) is a linear map, β is (K+ 1)× 1 vector and λg(β)

is a norm on β. We develop a spline based approach to the map A(X,β) that limits

the curve to at most H changepoints on X .

Consider the linear map

A(X,β) =
K∑
k=0

βkb
∗
k(x), (3.2)

where βk are basis coefficients, b∗0(x) = 1, and b∗k(x), for k ≥ 1, are basis functions

defined on the knot set T ∗ = {τk}Kk=1, with γl < τ1 ≤ τ2 ≤ . . . ≤ τK ≤ . . . ≤ τK+j,

where j is defined as the order of the spline. Given a well chosen basis, (3.2) can

approximate essentially any continuous function. To limit the forms of the functions

approximated, we restrict this function to have a most H changepoints by defining

b∗k(x), for k > 0, as:

b∗k(x) = CM

∫ x

−∞

∏H
h=1(ξ − αh)
τHk+j

B(k,j)(ξ) dξ, (3.3)

where B(k,j)(x) is a B-spline basis function of order j (De Boor 2001) defined on T ∗,

C ∈ {1,−1}, and M is a positive constant. As B-Splines are defined to be greater
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than or equal to zero, if all βk, for k ≥ 1, are constrained to be greater than zero,

then (3.2) can have at most H changepoints. These changepoints exist in X only

if αh ∈ (γl, γu). Note there can be less than H extrema if αh is equal to γl or γu.

Consequently to complete the LX-spline specification, we constrain βk ≥ 0 for all k ≥ 1

and αh ∈ X for all h. In what follows we describe how to estimate β = (β0, β1, . . . , βK)′

and α = (α1, . . . , αH)′ to enforce such constraints.

3.1.2 Spline Construction

In constructing the LX-spline we consider the B-spline order. Though higher order

B-spline constructions may offer smoother approximations, by choosing many lower

order splines with an appropriate penalty for smoothness and sparsity, one can eliminate

the need for higher order splines. Consequently, we use B-splines of order 2; these splines

are triangle distributions defined on [τk, τk+2] having mode τk+1, and allow for closed

form expressions of the LX-spline. In practice we have observed excellent performance

when a large number of splines are considered.

The spline is constructed to take into account the effect of the smoothing penalty.

The height of an individual spline is dependent on α, and when there are large differ-

ences between the height of individual splines this leads to over smoothing of certain

regions and under smoothing in others. Our implementation minimizes this effect by

using a two step estimation procedure fully discussed below. In the first stage α is con-

sidered unknown and splines are constructed as in (3.3). Here the term τHk in
∏H

h=1(ξ−αh)

τH
(k+2)

puts the absolute height of each spline roughly on the same scale, while keeping a poly-

nomial representation for b∗k(x). Without this term the height of the largest and smallest

spline can differ by an order of magnitude. In the second stage α is known and M is

used to make the height of each spline 1. Note that the τHk term produces splines that

may be undefined if 0 ∈ X . To avert this problem we map X to a closed set in R+ and
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construct all splines on this set.

Figure 4.1 shows the spline construction for H = 1 (left) and H = 2 (right) on

the interval X = [2, 3]. For H = 1 we set α1 = 2.5, and for H = 2 we let α1 = 2.33

and α2 = 2.66. Here one can see how α combined with the positivity constraint on β

controls the shape of the curve. For the right panel the curve shapes can be: monotone

increasing (α1 = 2), J-shaped (α1 ∈ (2, 3)), and monotone decreasing (α1 = 3). Note

if C = −1 the patterns invert, and an umbrella shaped ordering is considered. When

H > 1 more complicated shapes can be constructed. In each case if αh = γl then

(x − αh) is positive on X , if αh = γu the quantity is negative in this range, and if

αh ∈ (γl, γu) a changepoint exists in X . Here it is seen that the number of αh in (γl, γu)

defines the number of extrema of the curve.

3.1.3 Estimation

In our implementation we use a large number of equally spaced splines. Without

the term λg(β), the minimization problem is ill-posed. We regularize the problem

using a variant of the L2 penalty. This penalty is defined over the differences in the β

coefficients

g(β) = (β1)2 +
K∑
k=1

(βk − βk−1)2.

As the number of basis functions increase many of these differences will be small. This

results in minimal change in the derivative. Note that the derivative does change some

as
∏H

h=1(ξ−αh)

τH
(k+2)

is non-constant. In our experience this implementation performs well

across a wide array of functions.

As mentioned above we estimate f(x) through a two stage process. In the first stage

we estimate α using constrained minimization, with the smoothing penalty λ set near
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zero. Note that we allow αh = γl and αh = γu, which allows deletion of changepoints.

In the second stage α is known and the spline basis functions are normalized to have

a maximum absolute height of one. We then compute the optimal λ value using gen-

eralized cross-validation (GCV) (Golub et al. 1979), and estimate β using constrained

minimization.

3.2 Spline Properties

For the LX-spline to be useful in applications it is important that it can well ap-

proximate a large class of functions. In what follows let FH be the set of Lipschitz

functions on X , having no more than H changepoints. Further let F∗H be the space of

functions defined by the LX-spline in (3.3) having knot set T ∗. We give the following

approximation theorem.

Theorem 1 : Let f ∈ FH then for some knot set T ∗ there exists a f ∗ ∈ F∗H such

that:

‖f − f ∗‖ < ε,

where ‖ · ‖ is the sup-norm metric.

Proof:

Without loss of generality assume that the knot set T ∗ is a tight grid of evenly spaced

points. Further, recalling that a B-spline of order j is defined to be nonzero only on

[τk, τk+j−1], let ∆j be the width of this interval. It is enough to show for the case where

there are exactly H changepoints in X . When there are less one can always place a

αh = γl or αh = γu (depending on the pattern) and proceed as below. Finally we prove

when C = 1, as the construction is the same if C = −1.

Let f̃ be a taut B-spline approximation of f of order j+ 1. Note that this implies f̃

52



has only H changepoints in X . Further define f̃ such that its derivative is a linear map

of B-splines (all of order j) defined on the knot set T ∗. It is well known that such splines

approximations exist and can approximate f within a factor of ∆j+1 (see chapter X,

XII, and XVI in De Boor (2001)). As f̃ can be made arbitrarily close to f , assume

that f̃ approximates f close enough such that its changepoints {α̃1, · · · , α̃H} ∈ (γl, γu),

and let α1 = α̃, . . . αH = α̃h respectively making the location of the changepoints on f ∗

coincide with f̃ . Consider:

‖f − f ∗‖ = ‖f − f̃ + f̃ − f ∗‖

≤ ‖f − f̃‖+ ‖f̃ − f ∗‖.

As ‖f − f̃‖ can be made arbitrarily close to f we investigate ‖f̃ − f ∗‖. Consider:

‖f̃ − f ∗‖ = sup
x∈X
|f̃(x)− f ∗(x)|,

let β0 = f̃(γl), G(x) =
∏H

h=1(x−αh)

τHk+j
, and rewrite the RHS in a more convenient form

using the fundamental theorem of calculus. Here we have

sup
x∈X

∣∣∣∣∣
∫ x

−∞

K∑
k=1

κkB(k,j)(ξ)− βkG(ξ)B(k,j)(ξ) dξ

∣∣∣∣∣ ,
where the derivative of f̃ is based upon the derivative formula for B-Splines (see chapter

X - property (viii)- in De Boor (2001)). As B(k,j)(x) is non-zero only on [τk, τk+j] we

have:

≤
K∑
k=1

sup
x∈X

∣∣∣∣∫ x

τk

κkB(k,j)(ξ)− βkG(ξ)B(k,j)(ξ) dξ

∣∣∣∣ . (3.4)

Because f̃ is constructed to be a taut spline we know that for all k such that αk /∈
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[τk, τk+j] one has sgn(κk) = sgn(G(x)), where sgn(·) is the signum function. Conse-

quently on each of these intervals let:

βk =

∫ τk+j−1

τk
κkB(k,j)(ξ) dξ∫ τk+j

τk
G(ξ)B(k,j)(ξ) dξ

.

This is positive and implies

∫ τk+j

τk

κkB(k,j)(ξ)− βkG(ξ)B(k,j)(ξ) dξ = 0.

for all k such that x ≥ τk+j. Note that there are at most j intervals such that αk /∈

[τk, τk+j] and x ∈ [τk, τk+j], for all x ∈ X . Given the construction of βk these are

bounded and are dealt with below.

There are H × (j − 1) basis functions defined such that α ∈ [τk, τk+j] whose corre-

sponding βk has not been given a value. For these it is sufficient to let βk be zero, as

it can be shown that κkB(k,j)(ξ) goes to zero as ∆ is made small.

Note that

∫ x

−∞
κkB(k,j)(ξ)− βkG(ξ)B(k,j)(ξ) dξ (3.5)

is bounded for all k. Let M∆j
be the largest of the bound for all integrals in 3.4, for

a given ∆j. For any x ∈ X there is a finite sum of non zero integrals in (3.4). The

maximum number of non-zero integrals is H × (j − 1) + j. This implies that (3.4) is

less than or equal to

∣∣M∆j
(H × (j − 1) + j)∆

∣∣ .
This construction defines a valid f ∗ ∈ F∗H . As f is assumed to satisfy the Lipschitz

condition, one can show that for successive refinements of ∆j the bound M∆j
goes to
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zero. As (H × (j − 1) + j) is unchanged as one increases the number of knots, one can

make ∆j sufficiently small with proper choice of T ∗.

The proof offers a construction that shows the LX-spline can well approximate

any function in FH given enough knots. In practice we have found that defining T ∗

over a finite grid of knots (typically 20 to 100) is sufficient to well approximate many

continuous functions in FH . In these cases we have found that increasing the number

of knots does not substantially alter the approximations, but does come with the price

of increased computational burden.

When there are exactly H changepoints the quantity C guarantees f can be ap-

proximated by f ∗. For example consider the case where f has two changepoints and

is monotonic decreasing, increasing, decreasing in between the changepoints. When

H = 2 and C = 1, f ∗ can only represent functions having two changepoints where f ∗

is of the form: monotonic increasing, decreasing, increasing. However, when C = −1

such functions can be approximated. Though one can estimate C this is typically un-

necessary in practice. In many applications the shape of the function is assumed to

follow a specific shape, and C can be set accordingly. When f has fewer changepoints

estimating C is not necessary. Continuing the example where H = 2, consider the

case where f has one changepoints and follows an umbrella shape. Here the estimation

procedure can set one of the changepoints to the right end point, for example α1 is set

to γu. This removes a changepoint and allows for estimation of f.

3.3 Numerical Examples

In this section we assess the LX-spline in terms of squared error loss when analyzing

different curves. As no competing method exists for constraining the number of change-

points, we compare our method to the Gaussian process as well as smoothing P-splines

(Eilers and Marx 1996). The GP is fit using the software accompanying Rasmussen
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and C. (2006). For all examples we use the squared exponential kernel with unknown

length scale and dispersion parameters. For the smoothing spline estimates the penalty

coefficient is calculated using GCV. The model fits for the LX-spline are constructed as

above with knots chosen at equally spaced intervals, using the same number of knots

as observations. All LX-spline confidence limits are constructed using the bootstrap.

In our experiments we simulated data on the interval X = [2, 4] from a large number

of curves having one or two changepoints. In what follows we focus on three functional

forms as they are generally illustrative of the performance gains one may expect to see

in practice. For each form we varied the parameter η to investigate how the steepness

of the true curve affected estimation. For the first curve we simulate data from

f1(x) = −5 exp(−20(x− 2.2))− η1

(x− 4.5)3
,

where η1 ∈ {0, 0.1, 0.3}. For the second curve we chose a function having a single

minimum, but varied the smoothness of the area around the changepoint. We chose

this function to be

f2(x) = η2

[
1

(1− 1.5)3
− 1

(1− 4.5)3

]

where η2 ∈ {0.2, 0.5, 1.0}. For the final simulation example we chose a curve having two

changepoints:

f3(x) = −2.5 exp(−50(x− 2.5)2)

+ 4.5 exp(−50(x− 3.0)2)− η3(x− 2.75)3,

where η3 ∈ {0, 0.5, 1.0}. For each simulation condition we vary the number (n =

20, 30, 40, 60, 80, and 100) of sampled points.
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Though most conditions showed gains when using the LX-spline, these tended to

decrease as the curves became steeper relative to the noise. This is consistent with

the idea that the LX-spline removes artifactual bumps from the estimation, but the

number and frequency of these bumps decrease as the signal increases. In terms of bias

all of the methods were similar exhibiting little to no bias, and, in what follows, we

focus on squared error loss.

Figure 3.5 describes the estimated squared error loss under the first η condition for

curves f1, f2, f3 top to bottom respectively. Here it is seen that the LX-splines give gains

of between 20% − 45% over the competing methods when there are few observations

(n = 20). When the number of observations increase these gains decrease, but in most

cases we still observe gains. When the curves become steeper the gains do persist but

are much less pronounced and typically between 1% to 10%.

Figure 3.5 helps explain this phenomenon. It shows the third simulation condition

where η3 = 1.0, and compares the LX-spline (red), the smoothing spline (green), and

the true curve (black). Note the GP is not shown as it is nearly indistinguishable

from the smoothing spline estimate. Here one can see when f3(x) is changing the most

(between 2.2 and 3.3) the two estimates are very similar. However when the signal

decreases the uncertainty around the true curve increases, and the artifactual bumps

shown in the unconstrained estimate increase. The LX-spline tends to average out

these bumps. This is best illustrated between 3.5 and 4 in the same figure. Here the

smoothing splines are seen to oscillate. Alternatively, the LX-spline is flat in this region

which reflects the fact that the changepoint is not estimated to be in this region.

Figure 3.5 illustrates how this uncertainty in flat regions is reflected in the confidence

limits around the curve. Here we interpolate the curve in a very flat region for the first

simulation condition of f1, and compare the LX-spline (red) to the GP (blue)(the GP

was chosen as it had narrower confidence intervals as compared to the smoothing spline).
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The width of the confidence intervals increases in the region of the interpolation, and

they stay approximately the same width for the LX-spline.

3.4 Data Examples

3.4.1 Albany NY Temperature Data

We consider daily high temperature data in Albany NY from January 1 1997 to

December 31, 1999. As a convention, we reference the data relative to October 1st in

the analysis. We fit the LX-spline with H = 2, setting C = −1 which assumes the first

changepoint is a minimum. Daily temperatures have a high level of autocorrelation

that may impact the estimation. For example figure 3.5 shows the estimated curve

when smoothing splines (red line) and p-splines (blue line) are fit using the default

settings of the packages ‘smooth’ and ‘pspline’ in R. Much of this appeared due to the

failure of cross-validation or GCV to provide an appropriate smoothing parameter for

the data. Gaussian processes did perform better, but still had several areas with large

oscillations. Note we did try some methods that attempted to model the autocorrela-

tion (e.g. weighted least squares). These methods, though much smoother, produced

unrealistic estimates at the beginning and end of the year, and often underestimated

the high temperature peak by approximately 10 degrees.

Figure 3.5 shows the fit of the LX-spline (red), the Gaussian process (blue). Here

one can see that the GP estimate produces several artifactual bumps that are unrealistic

and caused by the high degree of autocorrelation in the data. The LX-spline’s estimate

is much more realistic with a much smoother estimate. This is also reflected in the

variability of the estimate, which, in some areas, is reduced by as much as 50%.
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3.4.2 BMI and Mortality

To illustrate our approach on data that is not continuous we take data from the third

National Health and Nutrition Examination Survey (NHANES III). Here we investigate

all cause mortality in n = 8448 adult males surveyed who had enough data to estimate

the body mass index (BMI). Though this study is cross sectional, death records for

each individual were obtained and linked to each observation, and time to event data

are recorded. In all a total of 2443 deaths occurred after the last linkage (December

2010).

Past studies have found that there is a U-shaped relationship to BMI and mortality,

but typically use step functions to estimate this functional relationship. The step

functions are specified arbitrarily by grouping BMIs into bins and it is difficult to

discern the relationship as the piecewise bins do not allow estimation of a smooth

curve. Smoothing based methods have had some difficulty estimating the curve at the

extremes. Specifically for our data set (as evident in figure 3.7) BMIs higher than 35

show oscillation in the risk. This is biologically unrealistic. We use LX-splines to study

BMI in relation to all cause mortality. The analysis is conducted with offsets for age,

smoking status, as well as education.

Figure 3.8 shows the LX-spline estimate of all cause mortality, as well as 95%

confidence intervals of that estimate. Here the oscilation from the higher end of the

BMI scale has been removed, with the same general pattern of the response estimated

in figure 3.8. This estimate is smooth for most of the BMI range, but there are two flat

regions at the high end of the BMI scale. These are artifacts of the LX-spline procedure

removing the oscillations seen in figure 3.7.

59



3.5 Conclusion

We have shown, in simulated and real data, that the LX-spline provides noticeable

advantages over existing smoothing approaches. The gains were both quantifiable (i.e.,

in terms of mean squared error), as well as qualitative (i.e., the plausibility of the

estimated curve). By specifying a maximum number of changepoints in the model the

LX-spline reduces the uncertainty in the estimated curve limiting changepoints to the

most plausible regions of the data.

For multivariate function estimation, the LX-spline can be used for additive struc-

tures. However, the LX-spline does not generalize in the case of tensor products. We

are currently investigating other ways in which variants of the LX-spline can be used

in higher dimensional data.
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Figure 3.1: LX splines with a single changepoint at 2.5 (left), and LX splines with two
changepoints at 2.33 and 2.66 (right).
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Figure 3.2: Estimated squared error loss between the GP and the LX-spline from
simulation condition 1, for the first condition of all three shapes investigated.
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Figure 3.4: Estimated curve (solid red line) and 95% confidence intervals (dashed
red line) for the LX-splines, and the Gaussian process ( blue solid and dashed lines
respectively) when estimating the true curve (black).
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Figure 3.5: Fit of the Albany, NY temperature data when using smoothing splines (red)
and P-splines (blue).
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Figure 3.6: Fit of the LX spline (red) as compared to the Gaussian process (blue) based
upon 3 years of daily high temperature data collected in Albany, NY.
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Figure 3.7: Relative risk of all cause mortality estimated using a spline based approach.
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Figure 3.8: Estimated relative risk of all cause mortality, and corresponding 95% con-
fidence intervals for different BMIs calculated using the LX spline only. Here risk is
relative to the BMI associated with the minimum risk (BMI = 30.03).
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Chapter 4

Bayesian Local Extrema Splines

4.1 Introduction

In many applications there is interest in modeling an unknown function f : X → R,

where it is reasonable to assume a maximum number of local extrema (changepoints in

X ). Approaches to modeling f based upon splines or Gaussian processes specify priors

over a large class of curves, many of which may be unrealistic for a given application.

As a result, their use may produce estimates having artifactual bumps. For a given

problem such estimates may be unrealistic and lead to a loss of efficiency when modeling

f.

For example, in toxicology studies investigating dose-response relationships data

may be hypothesized to have a J-shape. Here at low levels of exposure a chemical may

have a therapeutic (often termed hormetic) effect but at higher levels of exposure the

chemical produces an adverse response. More commonly an umbrella ordering is seen.

Here there is a noticeable decrease in the adverse response of interest at higher doses

due to acute toxicity and death. Such J-shapes and umbrella shapes are also common

in the social sciences, as well as financial or engineering applications.

Applications with more than one changepoint are also prevalent in the literature.

Seasonal fluctuations may lead to curves having a single nadir and single maximum



(something which is common when accounting for seasonal effects in time series data).

These curves may not be well approximated by perfectly periodic basis functions. In

both examples, putting strong prior knowledge on the form of the function may lead to

gains in efficiency when modeling the curve. We develop the local extrema (LX) spline

to put a prior over curves having at most H change points.

Further one may also wish to test if the function has a specified shape as compared

to an alternative. For example a recent manuscript by Myrskylä et al. (2009) suggested

that the well know decline in the fertility rate related to advances in human development

(measured by the the human development index (HDI)), can be seen to reverse in the

the most economically developed countries. This conclusion was subject to controversy,

and was based on a smoothed regression fit that suggested a J shaped curve. Testing

of the J-shaped hypothesis over a monotone decreasing alternative would allow one to

formally evaluate the strength of the author’s claims. We show how the LX-spline can

be used to construct tests.

Conceptually, when modeling a unknown curve with a finite number of local ex-

trema, one needs to place a flexible prior over monotone segments having unknown

change points (local extrema). From a Bayesian perspective there is a rich litera-

ture on restricting functional forms to be strictly monotone (Neelon and Dunson 2004;

Bornkamp and Ickstadt 2009; Shively et al. 2009). One approach (Neelon and Dun-

son 2004) develops a prior over piecewise linear splines for isotonic regression. This

approach, given enough splines, was shown to well approximate smooth monotone

functions. More recently Shively et al. (2009) developed an approach using free knot

splines. Here the authors place a novel prior over the spline coefficients to enforce

monotonicity.

In adding one change point Gunn and Dunson (2005) extended Neelon and Dunson

(2004) to model J-shaped curves in a hierarchical setting. This approach was not fully
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Bayesian as it lacked an explicitly specified prior distribution. Alternatively, Hans

and Dunson (2005), developed an explicit prior over umbrella shaped orderings. Most

recently Shively et al. (2011) developed methods for fixed and free knot splines that

model continuous monotone segments with a single unknown changepoint. They did

not extend this approach to consider multiple change points, and their methodology

was not used to test the shape of the curve.

This article proposes a fundamentally different approach to the shape constrained

regression problem. Instead of only looking at the coefficients on the splines and placing

an appropriate prior over these coefficients (Neelon and Dunson 2004; Shively et al.

2009; 2011), we develop a novel spline construction. This is similar in spirit to the

I-spline construction of Ramsay (1988) or the C-spline construction for convex splines

(Meyer 2008). Our construction, when paired with positivity constraints on the spline

coefficients, enforces prior shape restrictions on the curve of interest by limiting the

number of changepoints. Further one can test the location of these parameters to

test the shape of the response against a known alternative. In our approach we allow

the number of knots to be large, and use a smoothing approach similar to Bayesian

P-splines (Lang and Brezger 2004) for the spline coefficients. The resulting model

provides a flexible unified framework for Bayesian inference where one can place strong

prior knowledge on the maximum number of changepoints in X .

The outline of the manuscript is as follows: section 2 proposes the model and prior

structure. Section 3 proposes the MCMC sampling algorithm. Section 4 investigates

the models performance through a series of numerical experiments. Section 5 applies

the model to a variety of domains , and Section 6 discuses the results.
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4.2 Model

4.2.1 Spline Construction

Let Y = (y1, y2, . . . , yn)′ be a vector of error prone observations of an unknown

function f : X → R, where X = [γl, γu] ⊂ R. Here we observe f(x) at {xi}ni=1 ∈ X .

Assume that

yi = f(xi) + εi, (4.1)

with εi
iid∼ N(0, σ2). We develop a spline based approximation of f(x) that limits the

curve to at most H local extrema on X .

Consider the approximation

f(x) ≈
K∑
k=0

βkB
∗
k(x), (4.2)

where βk are basis coefficients, B∗0(x) = 1, and B∗k(x), for k ≥ 1, are basis functions

defined on some knot set T . Given a well chosen basis, (4.2) can approximate essentially

any continuous function. To limit the forms that f(x) may have, we restrict this

function to have a most H local extrema by defining B∗k(x) to be

B∗k(x) = M

∫ x

−∞

∏H
h=1(ξ − αh)
τHk+j

B(j,k)(ξ)dξ, (4.3)

where B(j,k)(x) is a B-spline basis function of order j (De Boor 2001) that is constructed

using the knot set T = {τk}K+j
k=1 , τ1 ≤ τ2 ≤ . . . ≤ τK ≤ . . . ≤ τK+j, and defined on

[τk, τk+j]. Further in (4.3) the quantity M is a constant. As B-Splines are defined to

be greater than or equal to zero, if all βk are constrained to be greater than zero the

derivative of (4.2) can only be zero when x = αh and there can be at most H change
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points in the approximation. These change points exist in X only if αh ∈ (γl, γu).

Consequently there can be fewer than H extrema if αh is outside of (γl, γu). In what

follows we specify flexible priors for βk that enforce the constraints βk ≥ 0 for k ≥ 1

and αh ∈ X for all h.

4.2.2 Prior Specification

We follow a Bayesian approach to allow: (1) curves to have at most H change points

in X , and (2) monotone regions having the possibility of flat segments. In this discussion

we assume that K is large, and knots are located at data points, or are chosen to be

on a tightly spaced grid. In defining an appropriate prior over β = (β0, β1, . . . , βK)′

we define the latent variables β∗ = (β∗1 , . . . , β
∗
K),′ such that βk = 1(β∗k>=δ)β

∗
k , for k ≥ 1,

with δ ≥ 0. We specify the prior over β∗

π(β∗) = π(β∗1)
K∏
k=2

π(β∗k ; β
∗
k−1, λ

−1
k )

= N(β∗1 ;A1, B1)
K∏
k=2

N(β∗k ; β
∗
k−1, λ

−1
k ),

where A1, and B1 are constants, N(·) is the normal distribution, and λk ∼ Ga( r
2
, r

2
),

for r ≥ 1. This prior defines a random walk of T-distributed variates having r degrees

of freedom.

We complete the prior specification on β, and β∗ through

π(β,β∗) = N(β0;A0, B0)π(β∗)
K∏
k=1

{
1(βk=0)1(β∗k<δ)

+ 1(βk=β∗k)1(β∗k≥δ)
}
,

where δ > 0. Note that β0 is the intercept parameter and is not constrained. For

a given βk, β
∗
k−1 and δ one can marginalize out β∗k arriving at the following mixture
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distribution for k ≥ 1:

π(βk|β∗k−1) = Φ
(

[δ − β∗k−1]
√
λk

)
1(βk=0) +N(βk; β

∗
k−1, λ

−1
k )1(βk>δ), (4.4)

where Φ(·) is the CDF of the standard normal distribution, with β∗0 = A1 and λ0 = B1.

This is a point-mass mixture prior for βk, and allows the coefficient to be exactly zero

or positive. The quantity δ controls the probability βk = 0. To define a prior over

Pr(βk = 0), we let δ ∼ Ga(c1, d1).

Without α = (α1, . . . , αH)′ the prior in (4.4) provides an inferential framework

similar to Neelon and Dunson (2004) and Nakajima and West (2012). We allow for at

most H changepoints by defining the following prior on α:

π(α) ∝
H∏
h=1

[
πl1(αh=γl) + πu1(αh=γu) + (1− πl − πu)N(αh;Ch, Dh)1(γl≤αh≤γu)

]
,

which defines a mixture over γl, γu or on the interval (γl, γu). If αh = γl or αh = γu this

is equivalent to removing a local extrema from the model. When considering J-shaped

curves H = 1, if M > 1 and α1 = γl, the curve is monotonic increasing, and if α1 = γu

it is monotonic decreasing. When α1 ∈ [γl, γu] this quantity is directly interpretable as

a minimum and Pr(αl /∈ [γl, γu]) is related to the hypothesis on the existence of the

J-shape.

4.2.3 Spline Construction

When constructing the LX-spline we consider the B-spline order. Though higher

order B-spline constructions may offer smoother approximations, by choosing many

lower order splines with an appropriate penalty for smoothness and sparsity, one can

eliminate the need for higher order splines. We use B-splines of order j = 2; these

splines are proportional to triangle distributions defined on [τk, τk+2] having mode τk+1.
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In practice we have observed excellent performance when a large number of splines are

considered.

We carefully construct the spline to achieve desirable smoothing properties. The

height of a spline is dependent on α. When there are large differences between the

height of individual splines, the prior over smooths certain regions and under smooths

others. The term τHk+2 in
∏H

h=1(ξ−αh)

τHk+2
makes the absolute height of each spline roughly

on the same scale, while keeping a polynomial representation for B∗k(x). Without this

term the height of the largest and smallest spline can differ by an order of magnitude,

and problems with smoothing may occur. Note that the τHk+2 term produces splines

that may be undefined if 0 ∈ X . This problem is easily averted by mapping the domain

to a closed set that does not contain zero and construct all splines on this set.

Figure 4.1 shows the spline construction when H = 1 (left) and H = 2 (right) on

the interval X = [2, 3]. For H = 1 we set α1 = 2.5, and for H = 2 we let α1 = 2.33

and α2 = 2.66. Here one can see how α combined with the positivity constraint on β

controls the shape of the curve. For the right panel the curve shapes can be: monotone

increasing (α1 = 2), J-shaped (α1 ∈ (2, 3)), and monotone decreasing (α1 = 3). Note

if M < 0 the patterns invert, and an umbrella shaped ordering is considered. When

H > 1 more complicated shapes can be constructed. In each case if αh = γl then

(x − αh) is positive on X , if αh = γu the quantity is negative in this range, and if

αh ∈ (γl, γu) a changepoint exists in X .

4.2.4 Inference on the change point parameters

As discussed above the change point parameters determine the shape of the curve.

When performing a Bayesian test on the shape of the curve one needs to monitor α.
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For example, in testing between

H0 :f(x) is monotone increasing

H1 :f(x) is J shaped,

if α1 = γl then the the change point is removed from the model, and the resulting

model is monotonic increasing. Though this is a sufficient condition to remove the

change point from X it is not necessary. There is positive probability
∑

k:τk≤α1
βk = 0

and this implies no changepoint in the interval. Continuing the J-shaped example above

the MCMC samples can be monitored for the above two conditions, and the posterior

probability of a monotone shape over a J-shape can be assessed.

Hypothesis testing when H ≥ 2 is similar to the case when H = 1. Note that the

labels on α are not identifiable and label switching may occur. For the LX-splines this

is not an issue as the sorted α′s maintain the same interpretation regardless of the label

switching. For example when H = 3, and M > 0 the smallest α is always interpretable

as the minimum. Consequently all one needs to do is sort the posterior sample each

iteration to guarantee the correct interpretation.

4.2.5 Extensions to Multiple Predictors

The LX-spline can be adapted to models where there are multiple predictors us-

ing an additive structure. In particular let (t1, . . . , tS)′ be vector of predictors with

corresponding covariates (θ1, . . . , θS), model (4.1) becomes:

yi =
S∑
s=1

θsts +
K∑
k=0

βkB
∗
k(xi) + εi.

Some of these parameters may be unconstrained or may represent another LX-spline

construction. Posterior sampling these parameters is discussed below and requires
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minimal modification from the LX spline formulation.

4.2.6 Extensions to Dichotomous Outcomes

The above model can be adapted to categorical responses by following the approach

of Albert and Chib (1993). Here one observes Z = (z1, . . . , zn) be independently

distributed Bernoulli random variables with

Pr(zi = 1|β,β∗,α, δ, yi) = Φ(Xi(α)β),

here Xi(α) is row i of X(α) a n × k design matrix that is a function of α (described

below), and yi is an random variable such that yi ∼ N(Xi(α)β, 1). This model is

equivalent to assuming zi = 1(yi>0). Posterior computation proceeds by alternating

between two steps. In the first step one samples from the algorithm below where τ is

set to 1; in the second step one samples each yi from its conditional density given β,

α, and zi. Here yi ∼ π(yi;β,α, zi)
d
= N(Xi(α)β, 1) truncated above by zero if zi = 0

and truncated below by 0 if zi = 1.

4.3 Posterior Computation

Posterior computation proceeds through a series of conditionally conjugate Gibbs

sampling steps. Here the joint posterior density is proportional to

L(y|β, τ,α, X(α))π(β,β∗,α,λ, τ),
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where π(β,β∗,α,λ, τ) = π(β,β∗|λ)π(λ)π(α)π(τ), and λ = (λ1, . . . , λk)
′. In outlining

the sampling algorithm we decompose X(α) as

X(α) = zr(α)Xr + . . . z0(α)X0.

Here Xr, 0 ≤ r ≤ H, is a n×k matrix where each element Xr
(i,k) from row i and column

k of the matrix Xr is computed using

Xr
(i,k) =

∫ xi

τk

ξr

τHk+1

B(k,j)(ξ) dξ.

Further zr(α) is a function of α corresponding to the coefficient of xr in the polynomial∏H
i=1(x−αh). For example when H = 2 one has z0(α) = α2α1, z1(α) = −(α1 +α2) and

z2(α) = 1. Note X(α) is used when sampling β and {Xr}Hr=0 is used when sampling

α. Finally TN(µ, σ2, a, b) specifies truncated normal distribution having parameters µ

and σ2 that is truncated below at a and above at b.

Sampling Algorithm

1. For 1 ≤ k ≤ K when sampling (β∗k , βk) let Y ∗ = Y −X(α)−kβ−k, where β−k is

β without entry k, and X(α)−k is the design matrix without column k. Letting

w = X(α)k, a n × 1 column vector representing column k in X(α). One can

show that

π(β∗k , βk) ∝1(βk=0)1(β∗k<δ)

[
N(β∗k , E(k,0), V(k,0))

N(0, E(k,0), V(k,0))

]
+ 1(βk=β∗)1(βk∗≥δ)

[
N(β∗k , Êk, V̂k)

N(0, Êk, V̂k)

]
,

where V(k,0) = [λk−1 + λk+1]−1 , E(k,0) = V(k,0)

[
λk−1β

∗
k−1 + λk+1β

∗
k+1

]
,

V̂k = [τ(w′w) + λk−1 + λk+1]−1 , and Êk = V̂k [τw′Y ∗ + λk−1 + λk+1]−1 .
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This expression has the following normalizing constant

C =
F (δ;E(k,0), V(k,0))

N(0;E(k,0), V(k,0))
+

1− F (δ; Êk, V̂k)

N(0; Êk, V̂k)
= A+B.

Where F (θ;µ, σ2) is the CDF of a normal distribution with mean µ and variance

σ2 evaluated at θ. Here one samples βk = 0, and β∗k ∼ TN(E(k,0), V(k,0),−∞, δ)

with probability A/C, and samples βk = β∗k and β∗k ∼ TN(Êk, V̂k, δ,∞) with prob-

ability B/C. Note that λK+1 = 0 and β∗K+1 = 0, when sampling from (βK , β
∗
K).

2. For the intercept, where k = 0, let Y ∗ = Y − X(α)−0β−0 and sample β0 ∼

N(E, V ) where V = (τn+B−1
0 )−1 and E = V (τY ∗ +B−1

0 A0).

3. For each αh in α define Y ∗ = Y −
{∑H

r=0 [z−r (α, αh)X
r]
}
β. Here z−r (α, αh) is

a function representing the terms in zr(α) that do not involve αh. For example

when H = 2 then z2(α) = 1 and z−2 (α, α1) = 1, z1(α) = −(α1 + α2) and

z−1 (α, α1) = −α2, and z−0 (α, α1) = 0 as all terms in z0(α) contain α1. Let

w =
{∑H

r=0 [z∗r (α, αh)X
r]
}
β, where z∗r (α, αh) is a function that contains only

the terms in zr(α) having αh factored out. Again when H = 2 for α1 one has

z∗0(α, α1) = α2, z∗1(α, α1) = −1, and z∗2(α, α1) = 0 as no term in z∗2(α) contains

α1. Given these quantities sample αh from a distribution proportional to

πlN(Y ∗; γlw, τ
−1)1(αh=γl) + πuN(Y ∗; γuw, τ

−1)1(αh=γu)+

(1− πl − πu)

√
D−1
h [N(αh;E, V )/N(0;E, V )] 1(γl<αh<γu)

Φ

[√
D−1
h (γu − Ch)

]
− Φ

[
(
√
D−1
h (γl − Ch)

] ,

where V =
[
τ(w′w) +D−1

h

]−1
and E = V

[
τw′Y ∗ +D−1

h Ch
]
, and Φ [·] is the CDF

of the standard normal distribution.

4. Sample τ from a Ga(A,B) where A = n
2

+A0 and B =
[Y−X(α)β]

′
[Y−X(α)β]

2
+B0.
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5. For k ≥ 2 sample λk from a Ga(A,B) where A = 1
2

+ r
2

and B = (βk−βk−1)2

2
+ r

2
.

6. Sample δ from a distribution proportional to Ga(c1, d1)1LB≤δ≤UB where LB =

max(0, {β∗k : βk = 0}Kk=0) and UB = min({β∗k : βk = β∗k}Kk=0).

In estimating the underlying curve we have observed adequate mixing with the

above algorithm. For 20, 000 samples the median effective sample size across 101 equally

spaced points along f(x) was 1, 875, and 80% of these points had effective sample sizes

greater than 500. We noticed a decrease in the effective sample size at the beginning

of the curve. Here there is a large amount of correlation with β0 and this increases

autocorrelation in the estimate of f(x). If one is performing inference on the shape of

the curve inference on α must be performed. In our experience α can mix much slower

with approximately 50, 000 samples frequently being adequate. When H = 1 we have

observed effective sample sizes of approximately 500 per 50, 000 samples. For both curve

estimation and shape testing the mixing greatly depended on the choice of the prior for

δ, and the number of knots. Mixing became markedly worse when δ was made diffuse,

or when there were a large number of knots relative to the number of observations. In

these cases the algorithm is relatively computationally inexpensive. Our testing was

done using unoptimized MATLAB code. Here, for most of our simulation examples, it

took approximately 13 seconds per 1, 000 samples on a 2.6ghz Intel processor.

Modifications to this algorithm to add multiple predictors are straightforward. Here

one adds a step to sample from the distribution of these predictors given the other

parameters. For example if a normal conjugate prior is used for θ, a block Gibbs step

can be used.
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4.4 Numerical Experiments

In evaluating the performance of this approach we conduct a series of simulation

studies designed to investigate certain aspects of the model. We compare the method

with the P-spline approach (Lang and Brezger 2004) in curve estimation. We also

conduct a small simulation study that investigates sample size for hypothesis testing

on the existence of a J-shaped curve. In these studies we estimate all curves on the

interval X = [2, 3]. The prior was specified letting β0 ∼ N(0, 100), β∗1 ∼ N(0, 100),

and by specifying r = 5 for λk ∼ Ga( r
2
, r

2
), k ≥ 2. Also we let δ ∼ Ga(1, 20). For

H ≥ 1 we let α1 ∼ N(2, 10), and α2 ∼ N(3, 10). Further we let πl = πu = 1/3. Finally

we specify τ−1 ∼ Ga(0.01, 0.01). Though we chose this specification based the data

examples the priors on δ,α, and λ were varied and the results were robust to prior

specification. When sampling from the posterior note that when inference on the curve

was of primary interest 25, 000 MCMC draws were taken from the posterior distribution

with the first 5, 000 discarded as burn in samples. When the location/hypothesis testing

of the change point was of interest 55, 000 MCMC draws were taken with the first 5, 000

disregarded as burn in. Trace plots showed convergence occurred quickly.

4.4.1 Curve estimation

We compare our method to the Bayesian P-spline approach of Lang and Brezger

(2004) using a number of simulated data sets having one or more change points. A

number of examples were considered. These examples included: cases where the true

number of change points were varied ( 0, 1, or 2 changepoints), H was set at or above the

true number of changepoints, the derivative of the curves was varied, and the sampling

variance was modified. In relation to the P-spline these results showed removal of

artifactual bumps, narrower credible regions, and little to no bias in estimating the true

underlying curve. The following examples are indicative of the increases in efficiency
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seen when using the LX-spline.

In the first example we set the true curve to be f(x) = 2.5exp(−100(x − 2.2)2) −

4.5exp(−100(x − 2.85)2). For the simulation 101 observations were taken at equally

spaced intervals on X . We show results when τ−1 = 2 (which we consider a high variance

condition) and τ−1 = 0.1 (which we consider a low variance condition). Figure 4.2 shows

the fit of our model (black line) with corresponding 95% credible intervals (black dotted

lines), as well as the P-spline approach (gray line), for the low variability condition (top

plot) and high variability conditions (bottom plot). Both methods performed similarly

in curve estimation. However, as expected, there were no artifactual bumps using

the LX-spline. For the P-spline the bumps are most noticeable for flat regions of the

curve in the higher variability condition. When there was a large signal relative to

variance the LX-spline and P-spline performed similarly often giving nearly identical

estimates. When the signal relative to variance decreased large gains in the LX-spline

were observed in terms of squared error loss.

To investigate this behavior a simulation study was performed that compared the

squared error loss for the LX-spline and the P-spline approaches. Here all data are

simulated from the line y = Ax + ε, with ε ∼ N(0, τ−1). For the simulation the slope

parameter A was given values 0, 5, 10, and 20, and the variance τ−1 was assigned values

of 0.5, 0.1, and 0.01. We report the ratio of the estimated loss for the LX-spline when

compared to the P-spline methodologies. Here values higher than one indicate the P-

spline has a higher squared error loss than the LX-spline method. Table 4.1 shows the

results for all conditions. The LX-spline’s estimated loss is lower for every simulation

condition. In the worst case - when truth is a flat curve- the estimated squared error

loss is approximately six and a half times greater when estimating with P-splines. The

table also shows a consistent pattern where the ratio decreases as the derivative/slope

increases and/or the variability decreases. This suggests that the efficiency gains in the
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LX-spline are greatest when there is a large amount of noise in relation to the slope.

We also note that in these simulations H = 1 even though the true curve had no

change points in the interval. With H = 1 there was little increase in noise when

adding an extraneous changepoint to the model. This observation was repeated in

other examples where there too was little difference in estimation when H was greater

than the number of changepoints in the model. In these cases one (or more) of the α

was estimated to be on the boundary of X effectively removing it from the model.

4.4.2 Power Simulation

To test the performance of the method when conducting a test on the shape of

the function we perform a simulation study when testing a J-shaped curve against a

monotone alternative. Here data was simulated assuming the model y = −exp(10(x−

a)2) + ε on the interval X = [2, 3], with ε ∼ N(0, 0.01). We investigated the behavior of

the test in relation to the number of points sampled. Initially we sampled 101 points

evenly spaced across the interval X . We then added 50, 100, and 150 evenly spaced

points across [22.3] which contained the minimum. In this study we looked at three

curves: one where the true shape was monotonic increasing a = 2, one where there was

a shallow minimum a = 2.15 and one where there was a well defined minimum a = 2.3.

Finally all data was simulated from independent draws of a N(0, 0.01) distribution.

This gave a moderate amount of noise given the signal to investigate the behavior of

the test in relation to the sample size. We simulate data from each condition 100 times

and look at the mean of the posterior probability of H1 : J-shaped curve.

Table 4.2 reports the average posterior probability of H1. When the curve was truly

monotone there was very little evidence that suggested the curve was J-shaped. Further

as n increased this evidence decreased. When the curve had a well defined minimum,

the opposite result was seen. Here there was consistently a large amount of evidence
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suggesting that there was a true minimum. Further, this minimum was in most cases

estimated to be close to the true minimum of 2.3. In the middle condition a relatively

large number of observations are required to increase the evidence in favor of H1. This

suggests that when the minimum is shallow a large number of data are required to

effectively test if the minimum exists.

4.5 Data Examples

4.5.1 HDI and Fertility

A recent article by Myrskylä et al. (2009) suggested the negative association between

human development and fertility reverses in countries that are the most economically

developed. The authors hypothesized that this upturn occurs after the human develop-

ment index (HDI) reaches 0.86. They concluded this based upon a LOESS regression

where formal hypothesis testing was not conducted. Supporting this hypothesis Fu-

ruoka (2009), used threshold models to test the location of the changepoint. They

estimate the critical HDI was 0.77. They used a linear threshold model. As only two

linear segments were used, the model can not effectively model smooth changes that

may occur. Other modeling approaches rely on other parametric assumptions, and do

not answer the question if there is enough evidence to suggest that the data support a

J-shape over a monotonic decreasing curve.

We use the LX-spline approach to test the J-shaped hypothesis against a monotonic

decreasing alternative. In this analysis we use K = 50 equally spaced knots and sample

the posterior using 105, 000 samples with the first 5, 000 samples disregarded as burn-

in. In this analysis we specify the prior as in the simulation conditions. We note that

we varied the number of the knots as well as the prior over λ and δ, and the results are

consistent with those reported here. This analysis investigates the 2005 fertility data
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as studied by Myrskylä et al. (2009). In all, 141 data points were analyzed. In this

dataset the minimum HDI score was 0.30, and the maximum HDI score was 0.97.

Figure 4.3 shows the posterior estimate of the LX-spline (solid black line) model and

corresponding 95% credible intervals (black dotted line) against the same LOESS spline

model fit in Myrskylä et al. (2009) for the HDI region of interest. This fit shows that

the LX and LOESS estimates are very similar across the HDI region of interest. Here

the minimum occurs at approximately the same location with the minimum calculated

to be at an HDI of 0.90 with a 95% CI of (0.86, 0.97). This is reflected in the observed

J shape of the posterior curve estimate. When compared against the probability the

curve is monotonic decreasing one finds Pr(α1 < γu) = 0.84. This suggest there is

relatively weak evidence in favor of the J-shaped hypothesis.

We caution that these results do not contradict the findings of Myrskylä et al.

(2009). Given the simulation study, there simply may not be enough observations

to show that there is a true minimum. Our analysis did produce a similar, though

shallower, J-shaped relationship as found in that work. This analysis does argue that

there are not yet enough data to discount the idea that the decrease in fertility may

merely be stabilizing to a constant, and not increasing for high HDI levels.

4.5.2 Seasonal Adjustments

Time series data often are assumed to be the sum of two deterministic components:

the trend Ti and the seasonal component Si, i.e.,:

yi = Ti + Si + εi, (4.5)

where εi ∼ N(0, τ−1). In many cases it is reasonable to assume that the seasonal

component has a single maximum and single nadir. Perfectly periodic basis functions
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may not appropriately describe the seasonal trend. We use LX-splines to adjust for the

seasonal component on data taken from monthly ambient air CO2 measurements taken

between 1980 and 1995. Due to the northern hemisphere having greater landmass (and

consequently more vegetation), ambient CO2 decreases between the summer months

of May and September, while increasing in the intervening months. There is expected

to be an overall increasing trend in CO2 concentrations due to economic development,

and we wish to model this trend without the seasonal component.

In modeling Si we use an LX-spline with H = 2, K = 12, and r = 5. Here the

the same prior specification was used as in the simulation. In estimating the trend,

Ti, we use 30 equally spaced B-splines where a diffuse prior is placed upon the basis

coefficients. We compare this approach in estimating the seasonally adjusted time

series to an ARIMA aproach. Here the seasonal component is removed using the X-12

ARIMA seasonal adjustment (Findley et al. 1998). The seasonally adjusted trend as

well as seasonal component is estimated using ‘PROC X12,’ in the SAS system.

Figure 4.4 shows the estimated seasonally adjusted trend (dashed line, top plot) and

the corresponding unadjusted estimate (solid line, top plot) fit to the observed data.

The bottom plot of this figure compares the seasonally adjusted estimate using the

LX-spline as an adjustment (dashed line) to a seasonally adjusted estimate using the

X-12 ARIMA method (solid line). As seen in the top portion of the plot the method

effectively describes the given data, and recovers the observed trend. The bottom

plot shows that the method’s seasonal adjusted trend estimate is nearly identical when

compared to the X-12 ARIMA method. Note the plot shows the years between 1980

and 1983, and not the entire range of data, as the lines are essentially indistinguishable

when the complete trend is shown. Figure 4.5 shows the estimated seasonal adjustment

(black line) and 95% credible intervals. Here it is seen that periodic basis functions

would not adequately describe this trend and that something more flexible, such as the
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LX-spline is necessary.

4.5.3 Benchmark Dose Risk Assessment

Human health risk assessment often utilizes toxicology data from studies having

relatively few dose groups. These studies estimate the adverse risk of disease (often

cancer) given exposure to some chemical. In many cases, where mode of action is un-

known, fitted dose response curves are used to interpolate the dose response between

dose groups. These interpolations allow estimation of risk for doses that are not ob-

served. Alternatively, given a specific risk level, these models allow estimation of a dose

associated with this risk. This dose, known as the benchmark dose (BMD), is often

used in regulatory decisions to determine an acceptable level of human exposure.

Dose response models often assume monotonic increasing responses; however, in

some cases, high doses produce acute toxicity and death, which occurs prior to tumori-

genesis. This high dose effect can result in downturns at the higher tested doses. Due

to the monotonic assumptions the higher dose data are often removed from the analy-

sis as standard models fail to adequately describe this phenomenon. Removal of such

information may lead to increased uncertainty in the BMD estimate. We investigate

data that come from a National Toxicology Program (NTP) long term bioassay study-

ing the health effects of exposure to tumeric oleoresin (NTP 1993). These data were

also studied by Peddada et al. (2004) and Hans and Dunson (2005) to test for possible

downturns at each dose group. Their methodologies only estimated the probabilities

of adverse response for an observed dose groups, and could not be extended to BMD

estimation as the models were not continuous. In this analysis we investigate the dose

response data using the 2 year female mice data. Here hepatocellular adenomas were

the response of interest. These data are described in Table 4.3. We estimate the BMD

using the LX-spline, and compare the results to another method based upon monotonic
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splines (Wheeler and Bailer 2012). The later monotonic method is fit using only the

first three dose groups. Further, as is often standard in regulatory contexts, we study

the dose response relationship without adjustment for the age of the animal at death.

Following Hans and Dunson (2005), we use three similar NTP studies control groups

in developing a prior on the background response rate.

For the LX-spline data were fit with K = 5 equally spaced splines. Again we set

r = 5. Further we set πl = 0 to restrict our analysis to only positive dose response

relationships. An informative prior was placed on β0 (i.e., the background rate), based

upon the mean and variance control data found in table 4.3. Here the prior mean was

set to the mean of the control data and the prior variance was made to equal 10 times

the variance of the data. The posterior was sampled 55, 000 times with the first 5, 000

removed as burn-in.

Figure 4.6 describes the fit of the LX-spline model to the data. The other model,

which assume only monotonicity, is not shown because it is indistinguishable in the

figure. This model estimates a slight downturn and is consistent with estimates from

other analyses (Peddada et al. 2004; Hans and Dunson 2005). For the LX-spline,

Pr(Downturn) = 0.935, which is lower than those reported in other analyses. These

analyses adjusted for the time to tumor, which might increase this probability. In terms

of BMD estimation, the LX-spline is similar to the other method when estimating the

BMD. Here the LX spline estimated the BMD to be 4350, while the monotonic method

estimated the BMD to be 4670 ppm. However, the 95% lower bound on the BMD, which

is the quantity often used in regulatory settings, was 1950 ppm for the LX-spline and

1640 ppm for the nonparametric method. This has important regulatory implications.

We believe that the narrower interval was a result of estimating the downturn. Here the

downturn reduced the probability of having very steep curves and resulted in narrower

confidence interval widths on the BMD.
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4.6 Conclusion

The LX-spline gives is a novel spline construction allowing for constrained functional

estimation where a maximum number of changepoints can be assumed. Given a proper

prior we show, both through simulation experiment and data example, that the method

can be used in a wide number of contexts, and that there are gains in efficiency that can

be expected when the LX spline is used. These gains efficiency increase as derivative,

in relation to the overall variability, increases.

As mentioned above the LX-spline can be used in additive structures for estimating

multidimensional surfaces. Here the total number of change points becomes a multiple

of all of the change points in the model. Note however that their properties do not

transfer in the case of tensor products. We are currently investigating methods that

are similar to the LX-spline and can be used for higher dimensional data.
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Figure 4.1: Order restricted splines with a single change point at 2.5 (left), and order
restricted splines with two change points at 2.33 and 2.66 (right).
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Figure 4.2: Fit of the LX-spline (black line) with corresponding 95% credible intervals
(dotted line) and Bayesian P-spline (red) for the top and bottom plots. The top plot
represents a simulation with lower variance and the bottom plot represents a higher
variance condition.
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solid black line, with corresponding 95% credible intervals of the LX-spline fit to the
same data.
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Figure 4.4: The top plot shows the seasonally adjusted world CO2 trend line (dashed
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Derivative
Variance 0 5 10 20

0.50 6.52 6.72 3.66 2.22
0.10 5.10 5.18 2.55 1.77
0.01 2.98 3.45 1.63 1.23

Table 4.1: Ratio of squared error loss between the LX-spline and the P-spline for line
segments on X = [2, 3] given a specified derivative and variance condition.
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Sample Size Monotone Shallow Well Defined
Increasing Minimum Minimum

n=100 0.12 (0.00,0.27) 0.24 (0.00,0.49) 0.99 ( 0.99,1.00)
n=150 0.09 (0.00,0.24) 0.38 (0.04,0.72) 0.99 ( 0.99,1.00)
n=200 0.09 (0.00,0.30) 0.66 (0.24,1.00) 0.99 ( 0.99,1.00)
n=250 0.07 (0.00,0.26) 0.89 (0.59,1.00) 0.99 ( 0.99,1.00)

Table 4.2: Results of a simulation study looking at the posterior probability (with
corresponding 95% confidence intervals) the estimated curve contains a single mini-
mum when compared to a monotone increasing curve for three simulation conditions.
The three conditions considered for the true curve were: monotone increasing (i.e., no
minimum), shallow minimum near the boundary of X , and a well defined minimum.
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NTP Study # dose obs n

394 control 3 49
419 control 5 50
439 control 6 49

427 control 7 50
427 2000 8 50
427 10000 19 51
427 50000 14 50

Table 4.3: Summary of hepatocellular adenomas data of female B6CF1 mice exposed
to tumeric oleoresin. The top three lines show control data for NTP studies that were
used to develop priors for the analysis.
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Chapter 5

Conclusion

This dissertation considered novel priors on functions f : X → R where X ⊂ R.

Here, rather than placing a prior over f directly, priors were developed through the

use of a differential operator applied to f. In the case of the mechanistic GP the prior

was applied using a linear differential operator L. This operator can be based upon

parametric scientific models, as was our case, or can be used to put a prior over curves

that one might expect in an application. The LX-spline was defined by placing a

prior over the maximum number of zeros in the first derivative, which in turn limited

the maximum number of changepoints in f. This prior produced flexible models that

removed artifactual bumps that are commonly seen in many applications.

Though the mechanistic GP develops a prior over functions having shapes consis-

tent with scientific information, more research is needed to understand how such a prior

may improve the efficiency of estimation. Specifically research on the rate of posterior

contraction similar to van der Vaart and van Zanten (2008), may be helpful in un-

derstanding the possible gains in efficiency when using such a prior. Further, though

the approximation used does allow for posterior computation, the problem of matrix

inversion in GP regression still holds. Consequently tractability issues may arise for

large data sets. Further efficient computational methods such as Banerjee et al. (2012)

may not be directly applicable due to the nature of the Runge Kutta approximation.



A further area of research would be to develop more efficient methods for large data

sets when using the mechanistic hierarchical GP

In terms of the LX-spline various extensions can be envisioned. The prior currently

supports single functions, and thus can not be used for longitudinal data. Development

of a prior that could be used for longitudinal data may aid in estimation of subject

specific curves, especially when there are few longitudinal observations. Further, the

prior is defined over a fixed knot set. Such a prior does not place prior probability

over an arbitrary function having at most H changepoints in X , and research on al-

ternative priors that allow the location and number of knots to be unknown may be

preferred. Such a prior would guarantee the prior positivity within an ε distance for

all functions having at most H changepoints. Finally the LX-spline was only defined

for one dimensional surfaces. It would be useful to extend it to multiple dimensions as

most covariates cannot be assumed to have an additive structure.
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