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ABSTRACT

Shangbang Rao: Spatially Regularizing High Angular Resolution Diffusion Imaging
(Under the direction of Joseph G. Ibrahim and Hongtu Zhu )

Many recent high angular resolution diffusion imaging (HARDI) reconstruction tech-

niques have been introduced to infer ensemble average propagator (EAP),describing the

three-dimensional (3D) average diffusion process of water molecules or the angular struc-

ture information contained in EAP, orientation distribution function (ODF). Most of these

methods perform reconstruction independently at each voxel, which essentially ignoring the

functional nature of the HARDI data at different voxels in space. The aim of my thesis

is to develop methods which can spatially and adaptively infer the EAP, or ODF of water

diffusion in regions with complex fiber configurations.

In Chapter 3, we propose a penalized multi-scale adaptive regression model (PMARM)

framework to spatially and adaptively infer the ODF of water diffusion in regions with com-

plex fiber configurations. We first represent DW-MRI signals using Spherical Harmonic (SH)

basis, then apply PMARM on advanced statistical methods to calculate the coefficients of

SH representation, from which ODF representation is calculated using Funk-Radon transfor-

mation. PMARM reconstructs the ODF at each voxel by adaptively borrowing the spatial

information from the neighboring voxels. We show in the real and simulated data sets that

PMARM can substantially reduce the noise level, while improving the ODF reconstruction.

In Chapter 4, we propose a robust multi-scale adaptive and sequential smoothing (MASS)

method framework to robustly, spatially and adaptively infer the EAP of water diffusion in

regions with complex fiber configurations. We first calculate spherical polar Fourier basis

representation of the DW-MRI signals, and then apply MASS adaptively and sequentially

updating SPF representation by borrowing the spatial information from the neighboring
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voxels. We show in the real and simulated data sets that MASS can reduce the angle

detection errors on fiber crossing area and provides more accurate reconstructions than

standard voxel-wise methods and robust MASS performs very well with the presence of

outliers.

In Chapter 5, we extend multi-scale adaptive method framework to dictionary learning

methods, and show that by adding smoothing technique, we can significantly improve the

accuracy of EAP reconstruction and reduce the angle detection errors on fiber crossing, even

in very low signal-to-noise ratio situation.
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CHAPTER 1: INTRODUCTION

How can we get information about the human brain anatomy and in particular,about

cerebral white matter? Cerebral dissection used to be the only way to access the neural

architecture (Dejerine 1895, Gray 1918). Then, anatomists started using chemical mark-

ers to do neuronography (MacLean and Pribram 1953, Selden et al. 1998). More recently,

neural fiber tractography based on local injection of chemical markers and subsequent ob-

servation of the induced propagation yielded high-quality connectivity mapping in the cat

and monkey cerebral cortex (Selden et al. 1998). As of today, diffusion-weighted (DW) mag-

netic resonance imaging (MRI) is the unique noninvasive technique capable of quantifying

the anisotropic diffusion of water molecules in biological tissues like the human brain white

matter.

The great success of DW-MRI comes from its capability to accurately describe the ge-

ometry of the underlying microstructure. DW-MRI captures the average diffusion of water

molecules, which probes the structure of the biological tissue at scales much smaller than the

imaging resolution. The diffusion of water molecules is Brownian under normal unhindered

conditions, but in fibrous structure such as white matter, water molecules tend to diffusion

along fibers. Due to this physical phenomenon, DW-MRI is able to obtain information about

the neural architecture in vivo.

Shortly after the first acquisitions of diffusionweighted images (DWI) in vivo (Moseley

et al. 1990, Osment et al. 1990), Basser et al (Basser et al. 1994b;a) proposed the rigorous

formalism of the diffusion tensor (DT) model. Diffusion tensor imaging (DTI) describes

the three-dimensional(3D) nature of anisotropy in tissues by assuming that the average

diffusion of water molecules follows a Gaussian distribution. DTI has now proved to be
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extremely useful to study the normal and pathological human brain. However, the Gaussian

assumption is over-simplifying the diffusion of water molecules and thus has some limitations.

While the Gaussian assumption is adequate for voxels in which there is only a single fiber

orientation (or none), it breaks down for voxels in which there is more complicated internal

structure. In fact, it is currently thought that between one third to two thirds of imaging

voxels in the human brain white matter contain multiple fiber bundle crossings (Behrens

et al. 2007).

High Angular Resolution Diffusion Imaging (HARDI) is a category of reconstruction

methods proposed to avoid the Gaussian EAP assumption and resolve the complex fiber

configurations. In this thesis we are interested in the reconstruction and processing of

the Ensemble Average Propagator (EAP), describing the diffusion process to obtain richer

information on the complex microstructure of biological tissues, and its various features

like Orientation Distribution Functions (ODF).HARDI methods can be separated into two

classes, i.e. single shell HARDI (sHARDI) and multiple shell HARDI (mHARDI). sHARDI

methods like the most famous one Q-Ball Imaging (QBI) (Tuch 2004, Anderson 2005, Hess

et al. 2006, Descoteaux et al. 2007). mHARDI methods like Spherical Polar Fourier Imaging.

Most of these methods perform reconstruction independently at each voxel, which essentially

ignoring the functional nature of the HARDI data at different voxels in space. The aim of my

thesis is to develop methods which can spatially and adaptively infer the ensemble average

propagator (EAP), or EAP features such as orientation distribution function (ODF) of water

diffusion in regions with complex fiber configurations.

Chapter 2:This chapter provides literature review for some HARDI methods in DW-MRI,

especially analytical Q-Ball Imaging(QBI) and Spherical Polar Fourier Imaging(SPFI), and

some important statistical estimation methods.

Chapter 3: This chapter proposes a penalized multi-scale adaptive regression model

(PMARM) framework to spatially and adaptively infer the orientation distribution function

(ODF) of water diffusion in regions with complex fiber configurations.

Chapter 4: This chapter proposes a robust multi-scale adaptive and sequential smoothing

2



(MASS) method framework to robustly, spatially and adaptively infer the EAP of water

diffusion in regions with complex fiber configurations.

Chapter 5: This chapter extends multi-scale adaptive framework to SPFI via dictionary

learning.
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CHAPTER 2: LITERATURE REVIEW

2.1 Diffusion Magnetic Resonance Imaging (dMRI)

Diffusion Magnetic Resonance Imaging (dMRI) is a widely used in-vivo imaging tech-

nique to explore the information of neural micro-structure by probing the diffusion of water

molecules. So far it is still the unique non-invasive method to reveal the micro-geometry of

nervous tissues noninvasively and to explore the neural connectome in living human sub-

jects. The diffusion of water molecules is constrained by the surrounding structures including

nerves, cells and surrounding tissue Figure 2.1. For example, qualitatively water molecules

diffuse fast along fibers and slowly cross fibers. Thus measuring the diffusion process quan-

titatively is crucial to understanding the neural micro-structure and fiber directions.

2.1.1 Magnetic Resonance Imaging (MRI)

The principles of Magnetic Resonance Imaging (MRI) are based on spin which is the

rotation of a particle around some axis. Spin is a fundamental quantum characteristic of

elementary particles like protons, electrons. Some nuclei have the property to align with a

magnetic field B0 if their mass number, i.e. the summation number of protons and neutrons,

is odd. Essentially their spin aligned along B0. Without the external stimulus by magnetic

field B0, the macroscopic magnetization M = 0. In MRI, the particles considered are

hydrogen nucleus because human body is largely composed of water molecules. Each water

molecule has two hydrogen nuclei or protons. When a person is inside the magnetic field

B0 of the scanner, the average magnetic moment of many protons becomes aligned with the

direction of the field B0 which is assumed as the z-axis by convection, in the meanwhile, the

magnetization vector of spins precesses around B0 with an angular frequency known as the
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Figure 2.1: The water diffusion in biological tissues may be hindered by biological cells
and other environment surrounding tissues. The figure is from (Johansen-Berg and Behrens
2009)

Larmor frequency. See Figure 2.2. When a Radio-Frequency (RF) is applied to the spins

with the resonance frequency, the energy of RF is absorbed by the spins with low energy

configuration and changes them into high energy configuration. Then the spins change their

alignments. After RF is turned off, the spins begin to recover the alignment with B0, and

finally return to the thermal equilibrium with low energy configuration. This is called as the

relaxation phase. See Figure 2.3. Normally 90◦ and 180◦ RFs are used, which change the

direction of spin with 90◦ and 180◦. The Spin-lattice relaxation is the mechanism by which

Mz, the longitudinal component of the magnetization vector comes into thermodynamic

equilibrium with its surroundings (the "lattice") in NMR and MRI. It is characterized by

the spin-lattice relaxation time, a time constant known as T1. The spin-spin relaxation

is the mechanism by which Mxy, the transverse component of the magnetization vector,

exponentially decays towards its equilibrium value in MRI, it is characterized by the spin-

spin relaxation time, known as T2.
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Figure 2.2: When inside the magnetic field B0 of the scanner, the average magnetic moment
of many protons becomes aligned with the direction of the field B0 and the magnetization
vector of spins precesses around B0. The figure is from the imaging course offered by Dr.
Hongtu Zhu, UNC Chapel Hill

Figure 2.3: When a Radio-Frequency (RF) B1 is applied to the spins with the resonance
frequency, the spins change their alignments. The figure is from the imaging course offered
by Dr. Hongtu Zhu, UNC Chapel Hill
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2.1.2 Diffusion Weighted Imaging (DWI)

Diffusion imaging is an MRI method that produces in vivo magnetic resonance images

of biological tissues sensitized with the local characteristics of molecular diffusion, generally

water (but other moieties can also be investigated using MR spectroscopic approaches).

Regular MRI acquisition utilizes the behaviour of protons in water to generate contrast

between clinically relevant features of a particular subject. The versatile nature of MRI is

due to this capability of producing contrast related to the structure of tissues at microscopic

level. In a typical T1-weighted image, water molecules in a sample are excited with the

imposition of a strong magnetic field. This causes many of the protons in water molecules

to precess simultaneously, producing signals in MRI. In T2-weighted images, contrast is

produced by measuring the loss of coherence or synchrony between the water protons. When

water is in an environment where it can freely tumble, relaxation tends to take longer. In

certain clinical situations, this can generate contrast between an area of pathology and the

surrounding healthy tissue.

To sensitize MRI images to diffusion, instead of a homogeneous magnetic field, the

homogeneity is varied linearly by a pulsed field gradient. Since precession is proportional to

the magnet strength, the protons begin to precess at different rates, resulting in dispersion

of the phase and signal loss. Another gradient pulse is applied in the same magnitude

but with opposite direction to refocus or rephase the spins. The refocusing will not be

perfect for protons that have moved during the time interval between the pulses, and the

signal measured by the MRI machine is reduced. The classical diffusion gradient sequence

used in dMRI is the Pulsed Gradient Spin-Echo (PGSE) sequence proposed by Stejskal and

Tanner (Stejskal and Tanner 1965). See Figure 2.4 for the sketch map of this sequence. This

sequence uses two gradient pulses G(t) with duration time δ. The 90◦ RF pulse is applied to

flip the magnetization in the transverse plane. Due to local magnetic field inhomogeneities,

some spins slow down and some spins speed up. After a time ∆ separating the two gradient

pulses, the 180◦ pulse combined with the second gradient pulse is applied to refocuses the

phase of spins so that slower spins lead ahead and the fast ones trail behind. The spin echo
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process occurs when the spins recover their net magnetization.

Diffusion Weighted Imaging (DWI) signals, i.e. S(b) with the diffusion weighting factor

b = γ2δ2(∆ − δ/3)||G||2 introduced by Dr. Lebihan in (LeBihan et al. 1986), and S(0)

with b = 0 is the baseline signal without any gradient, where γ is the proton gyromagnetic

ratio, G = ||G||u is the diffusion sensitizing gradient pulse, τ = ∆ − 1
3δ is normally used

to describe the effective diffusion time (LeBihan et al. 1986, Basser et al. 1994b). The

signal intensity at each voxel in DWI is dependent on both surrounding structures and

given weighted magnetic gradient (LeBihan et al. 1986). See Figure 2.5 for the DWI images

S(b) with different b values and different gradient directions u. It can be seen that the DWI

images are very noise, especially for large b values.

The diffusion weighted signal attenuation E(b) = S(b)
S(0) is given by Stejskal-Tanner equa-

tion(Stejskal and Tanner 1965)

E(b) =
S(b)

S(0)
= exp(−bD) (2.1)

Where D is known as the Apparent Diffusion Coefficient (ADC) which reflects the property

of surrounding tissues. In general case, ADC D is also dependent on G in a complex way,

however free diffusion assumes D is only dependent on the direction of G, i.e. u = G/||G||.

Under narrow pulse condition, i.e. the duration time δ is much smaller than the sepa-

ration time between two pluses ∆ , G(t) is a constant G during δ. Then we introduce q

vector as

q = qu = (2π)−1γ

ˆ δ

0
G(t)dt = (2π)−1γδG (2.2)

which can be seen as a vector in q-space. Then the diffusion weighting factor can be

represented by q, i.e.

b = γ2δ2(∆− δ/3)||G||2 = 4π2τq2 (2.3)

The early works in dMRI reported that the ADC D depends on gradient direction u

and used two or three DWI images in different directions to detect the properties of tissues
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Figure 2.4: Pulsed Gradient Spin-Echo (PGSE) sequence introduced by Stejskal and Tan-
ner(Stejskal and Tanner 1965). δ is the duration of the diffusion gradient pulses and ∆ is
the time between two diffusion gradient pulses.

(Moseley et al. 1990, Douek et al. 1991). Then Dr. Basser introduced diffusion tensor

(Basser et al. 1994b) to represent ADC as

D(u) = uTDu (2.4)

D is called as the diffusion tensor, which is a 3 × 3 symmetric positive definite matrix

independent of u. This method is called as Diffusion Tensor Imaging (DTI). See Section

2.1.3 for more details.

2.1.3 Diffusion Tensor Imaging(DTI)

Dr. Basser proposed to model the ADC as a quadratic form parameterized by the

diffusion tensor D in 2.4 (Basser et al. 1994b). Then the Stejskal-Tanner equation becomes

E(b) =
S(b)

S(0)
= exp(−buTDu) (2.5)
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b = 0s/mm2 b = 1000s/mm2

u = (−0.283, 0.630, 0.723)T

b = 1000s/mm2 b = 3000s/mm2

u = (−0.454,−0.861, 0.230)T u = (−0.283, 0.630, 0.723)T

Figure 2.5: DWI images for different b-values and gradients.The data is from UNC BIAS
lab.
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Figure 2.6: Diffusion tensor representation from (Descoteaux 2008).

The diffusion tensor D ∈ Sym+
3 is independent of b value and gradient direction u, where

Sym+
3 is the space of 3× 3 symmetric positive definite matrix. D can be eigendecomposed

into three positive eigenvalues and corresponding eigenvectors, which is useful to define some

scalar indices containing biological meaning.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 = λ1v1v
T
1 + λ2v2v

T
2 + λ3v3v

T
3 (2.6)

SinceD is symmetric it has six unknown coefficients that we need to estimate.Hence, DTI

needs at least six DW images and one unweighted diffusion image (b = 0s/mm2) to solve

the system of equations. DTI estimation methods go from classical linear and non-linear

least-squares (Basser et al. 1994b) or more complex methods which consider positive definite

constraint or Rician noise(Tschumperlé and Deriche 2003, Chefd’hotel et al. 2004, Koay et al.

2006, Fillard et al. 2007). See Figure 2.6 for the sketch map of tensor representation and

free diffusion along fibers.

Some useful scalar indices can be obtained from tensor D. The most important two
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indices are Fractional Anisotropy (FA) and Mean Diffusivity (MD) Pierpaoli and Basser

(1996) defined as

FA =

√
3||D− 1

3Trace(D)I||
√

2||D||
=

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(2.7)

MD =
1

3
Trace(D) =

λ1 + λ2 + λ3

3
(2.8)

Mixture of tensor model is a natural generalization of tensor model, where the signal is

assumed to be a mixture of signals generated from tensors {Di}Ki=1

E(b) =
K∑
i

wiexp(−buTDiu) (2.9)

Based on some biological priors, the number of tensors is normally less than 3, typically

K = 2. People normally use gradient descent method (typically the Levenberg-Marquardt

minimization) Tuch (2002) to find a local minimum of the cost function in

min{wi,Di}
∑ Ns∑

j=1

(
Ej −

K∑
i

wiexp(−bjuTj Diuj)

)
(2.10)

which is unstable and the result is sensitive to the initial point.

2.1.4 High Angular Resolution Diffusion Imaging(HARDI)

The term High Angular Resolution Diffusion Imaging (HARDI) was first proposed by

Tuch (Tuch et al. 1999, Tuch 2002), where a finer angular resolution sampling scheme than

conventional DTI sampling scheme was considered. The original HARDI term in (Tuch

et al. 1999, Tuch 2002) means single shell sampling (only one b value).See Figure 2.7(c).

However the mixture of tensor model in (Tuch et al. 1999, Tuch 2002) actually can be

also used in Cartesian sampling in Figure 2.7(b) and sparse sampling (multiple b values)

in Figure 2.7(d). With the development of MRI scanner, the acquisition time is reduced,

which makes multiple shell data more practical and maybe available in clinical study in the
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Figure 2.7: Several kinds of sampling in q-space.The black dot in q = (0,0,0)T the baseline
image without diffusion gradient.(a) sampling used in DTI, normally less than 20 DWI
images are used; (b) dense Cartesian sampling used in DSI. Note in practice the Cartesian
samples inside a given Ball are used; (c) single shell sampling used in sHARDI methods, e.g.
QBI, DOT etc; (d) sparse sampling used in mHARDI methods, e.g. DPI, SHORE,SPFI.

near future. Some research works proposed to estimate Orientation Distribution Functions

or EAPs in multiple shell sampling (Liu et al. 2004, Assemlal et al. 2009, Özarslan et al.

2009, Descoteaux et al. 2010). Thus in this thesis, the term HARDI methods include all

modeling methods beyond DTI. The HARDI methods which only can be used in single shell

data are called as sHARDI methods. The HARDI methods which can be used in multiple

shell data are called as mHARDI methods.

We usually acquire n normalized HARDI data with each image containing N voxels for

each subject. Thus, we observe n normalized HARDI measurements {(E(bi;v),gi, bi) : i =

1, · · · , n} at voxel v ∈ V, where gi = (gi,1, gi,2, gi,3)T is the gradient vector. These HARDI

measurements can be also represented as q-space measurements {E(qi) : i = 1, · · · , n}. We

usually omit putting voxel v, if no confusion in context. See Figure 2.8.

2.1.5 Diffusion Spectrum Imaging (DSI)

The EAP formalism provides a powerful framework to describe and predict the diffusion

behavior in complex materials (Tuch 2002). Under the narrow pulse assumption(Stejskal

and Tanner 1965), the relationship between the diffusion signal attenuation,E(q), in q-space

and the EAP, p(R), in real space at each voxel in a common space V, where q = qu ∈ R3
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DWI voxels in DWI

Figure 2.8: A set of diffusion-weighted (DW) images acquired with different gradient direc-
tions gi and bi.

and R = Rr ∈ R3, is given by a Fourier transform (FT) relationship (Callaghan 1991) such

that

p(R) =

ˆ
q∈R3

E(q)e−2πiq·Rdq (2.11)

A straightforward idea is to estimate p(R) using fast Fourier transform from exhaustive

signal samples (Callaghan 1991, Tuch 2002, Wedeen et al. 2000; 2005). This technique is

called as Diffusion Spectrum Imaging (DSI). In practice, only limited number of samples are

obtained and narrow pulse assumption is not always satisfied. (Wedeen et al. 2005) used

515 DWI images in a Cartesian sampling lattice in q-space and the signal in q-space was

premultiplied by a Hanning window to obtain smooth attenuation of the signal at high q

values. See Fig. 2.7(b) for the sketch map of the Cartesian sampling. In (Wedeen et al.

2005), the narrow pulse assumption is violated, the results are still exciting and show clearly

some crossing fibers, which means that even though the narrow pulse assumption is violated,

the Fourier transform can still obtain meaningful EAPs.

(Wedeen et al. 2005) visualized the EAP profile, or called iso-surface of EAP, which is

the EAP with given radius R0, i.e. p(R0r) = p(Rr)|R=R0 The maxima of EAP profile were

used to describe fiber directions later in many HARDI works (Assemlal et al. 2009, Özarslan

et al. 2006; 2009, Descoteaux et al. 2010) See Figure 2.9 for the EAP profile with different

radius R. The larger the radius R, the sharper the EAP profile is. However, EAP profile

with large R has more estimation error. Thus normally R = 15µmis used in EAP profile
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Figure 2.9: Fiber directions and ADC profiles with different b values, two kinds of ODFs,
EAP profiles with different radius R.

to detect the fiber directions (Özarslan et al. 2006, Descoteaux et al. 2010). (Wedeen et al.

2005) also proposed another important feature of EAP, i.e. the Orientation Distribution

Function (ODF), defined as

Φw(r)
def
=

ˆ ∞
0

p(R)R2dR (2.12)

It is called as ODF by Wedeen, denoted by Φw(r). Φw(r) is the marginal distribution of

EAP p(R), so the integration of Φw(r) over S2 i naturally 1. (Wedeen et al. 2005) proposed

to first estimate EAP via numerical Fourier transform, then estimate the ODF in Eq.2.12

by numerical integration. Like the EAP profile, the maxima of ODFs are also normally

assumed to be the directions of underlying fibers. Please see Figure 2.10 for EAP in 3D

space and its two features, i.e. EAP profile and ODF.

2.1.6 Q-Ball Imaging (QBI)

Q-Ball Imaging (QBI) is the most widely used HARDI method. DSI needs a dense

Cartesian sampling with a large range of b value, which makes it impractical (Wedeen et al.

2000; 2005). QBI was proposed to estimate the several kinds of ODFs, not EAP, from single

shell sampling demonstrated in Figure 2.7(c), rather than Cartesian sampling inside a given
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Figure 2.10: EAP in 3D R-space, and its two features, i.e. EAP profile (or called iso-surface
of EAP) and ODF. The figure is from (Hagmann et al. 2006)

ball used in DSI in Figure 2.7(b).

Original Q-Ball Imaging

QBI was first proposed by Dr. Tuch in (Tuch 2002; 2004) in a numerical way and then

was improved by an analytical way based on Spherical Harmonic basis in (Anderson 2005,

Hess et al. 2006, Descoteaux et al. 2007). Instead of estimation of EAP, Dr. Tuch proposed

to estimate a kind of ODF defined as

Φt(r)
def
=

1

Z

ˆ ∞
0

p(Rr)dR (2.13)

where Z is the normalization factor which makes
´
S2 Φt(r)dr = 1. This ODF is called as

ODF by Tuch and denoted by Φt(r). Note Φt(r) is different from the ODF Φw(r) defined

in Eq.2.12. Φw(r) is the marginal PDF of EAP which does not need artificial normalization

factor, however, Φt(r) needs the normalization factor Z to make it as a PDF. Dr. Tuch

proposed to estimate Φt(r) directly from samples of E(q) in single shell data based on Funk-

Radon Transform (FRT). The estimation of Φt(r) through FRT is calculated numerically.
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The numerical QBI was later replaced by analytical QBI based on the representation of

E(q) using SH basis. There were several groups which independently proposed the same

analytical QBI using SHs. (Anderson 2005) obtained the analytical solution by considering

the rotation property of SHs. (Hess et al. 2006) used addition theorem and rotation property

of SHs, and considered Tikhonov regularization in least square estimation. (Descoteaux et al.

2007) applied 3D Funk-Hecke theorem to find the analytical solution of FRT. (Descoteaux

et al. 2007) also proposed a simple and useful Laplace-Beltrami regularization scheme in

least square estimation, which was shown to outperform the simple Tikhonov regularization

and later became very popular for general least square estimation of spherical functions in

HARDI domain.

Analytical QBI represents the signal E(q) as SH basis, i.e.

E(q0u) =

L∑
l=0

l∑
m=−l

clmY
m
l (u) (2.14)

where Y m
l (u) is the symmetric real spherical harmonic with order l and degree m. See

(Descoteaux 2008) for more information on SHs. The coefficients {clm} are normally esti-

mated from signal samples by minimizing a least square cost function with Laplace- Beltrami

regularization in (Descoteaux et al. 2007)

||BMc−E||2 + cTΛc (2.15)

Where c = (c00, · · · , cLL)T is the coefficient vector with (L + 1)(L + 2)/2 elements, E =

(E1, · · · , ENs)
T is the signal vector with Ns samples, BM is the Ns × (L + 1)(L + 2)/2

basis matrix generated by SHs, and Λ is the diagonal matrix with elements Lambdalm =

λl2(l + 1)2. cTΛc is the Laplace-Beltrami regularization term. The least square problem

has the closed form solution as

c = (BT
MBM + Λ)−1BT

ME (2.16)
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Based on Funk-Hecke theorem, the estimated ODF from FRT of E(q) can be analytically

obtained from the estimated {clm} by:

Φt(r) =
1

Z
FRT{E(q0u)}(r) =

1

Z

L∑
l=0

l∑
m=−l

2πPl(0)clmY
m
l (u) (2.17)

where Pl(0) is the Legendre polynomial of order l evaluated at 0.

Note in practice the ODF by Tuch Φt(r) is much smooth. The peaks of the ODF are

only a little higher than the baseline values. Dr. Tuch proposed a minmax normalization

method for visualization of Φt(r) to enhance the peaks of ODFs. Min-max normalization is

a linear scaling to transform the ODF values into [0; 1], and it has been a commonly used

way to visualize Φt(r) in literature. However, the minmax normalization also enhances the

peaks of the ODFs in the area with isotropic diffusion.

Dr. Tuch also proposed a useful scalar index, named Generalized Fractional Anisotropy

(FA), to describe the anisotropy of the ODFs, which can be seen as a generalization of

previous FA in DTI model.

GFA{Φt(r)} def
=

√
N
∑N

i=1(Φt(ri)− 〈Φt(r)〉)2

(n− 1)
∑N

i=1 Φt(ri)2
(2.18)

where 〈Φt(r)〉 is the mean of Φt(r). If the ODF is represented by SH basis with coefficients

{clm},the GFA can be represented by

GFA{Φt(r)} =
||Φt(r)− 〈Φt(r)〉||

||Φt(r)||
=

√
1− c2

00∑L
l=0

∑l
m=−l c

2
lm

(2.19)

This is because of the orthogonality of SHs.

Exact Q-Ball Imaging

The ODF by Tuch is approximated by circle integration in original QBI, which has

intrinsic limitations as we have discussed above. Exact QBI was proposed by several groups
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independently (Wu et al. 2008, Canales-Rodrıguez et al. 2009, Aganj et al. 2010, Tristán-

Vega et al. 2009a, Tristán-Vega et al. 2010) to estimate ODFs through a plane integration,

not a circle integration.

Based on the famous projection-slice theorem in Fourier transform, the projection of

p(Rr) along direction r r, i.e. the radial integration, equals to the integration of E(q) in the

orthogonal plane Πr

In (Aganj et al. 2009; 2010), it is shown that if E(q) follows the radial mon-exponential

model, then we can use the single shell data to approximate Φw(r) by using

Φw(r) ≈ 1

4π
+

1

16π2
FRT{∆bln(−ln(E(u)))}, (2.20)

where ∆b is the Laplace-Beltrami operator. In (Aganj et al. 2010), one may consider a

model given by

ln(−ln(E(qu))) =

L∑
l=0

l∑
m=−l

clmY
m
l (u) + ε. (2.21)

and considering ∆bY
m
l (u) = −l(l + 1)Y m

l (u), we have

Φw(r) =
1

4π
− 1

8π
l(l + 1)Pl(0)clmY

m
l (u) (2.22)

The coefficients {clm} can be estimated through a least square fitting from the samples of

ln(−ln(E(q0u))) Note based on the above formula the first coefficient is c00 = 1√
4π
,then

the integration of the estimated ODF is
´
S2 c00Y

0
0 (u)du = 1. Thus the estimated Φw(r) is

naturally normalized.

2.1.7 Spherical Deconvolution (SD)

Spherical Deconvolution (SD) methods generalize the mixture model from discrete case

to continuous case. In previous mixture of tensor model, E(q) is assumed to be generated

from K tensors. (Tournier et al. 2004; 2007) proposed to consider the continuous mixture
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model as

E(qu) =

ˆ
S2

Φf (r)R(rTu)dr (2.23)

where Φf (r) is called as the fiber ODF (fODF) which needs to be estimated andR(rTu) is the

typical signal generated from one fiber. The spherical deconvolution is a modelbased method

because it assumes the typical signal R(rTu) and linear combination in the convolution.

Mixture of tensor model is suffering from the model selection of the number of tensors and

local minima of cost function. However, SD can be solved analytically by considering the

Funk-Hecke theorem and representing the E(qu and R(rTu) using SHs (Descoteaux et al.

2008a). The continuous weighting function Φf (r) avoids the limitation of mixture of tensor

model in discrete case.

Note the SD method can be also used in some EAP features generated from signal. For

example, consider Φt estimated from FRT, then based on the linearity of FRT we have

Φt(r) = FRT{E(qu)} =

ˆ
S2

Φf (w)FRT{R(wTu)}dw =

ˆ
S2

Φf (w)ΦR
t (rTw)dw (2.24)

Thus, if we use FRT to estimate Φt(r), the SD performed on E(qu) is equivalent with SD

performed on estimated Φt(r) (Descoteaux et al. 2008a). Since Φt(r) estimated from FRT

is normally very smooth. SD becomes a good option to obtain the sharpened fiber ODF

Φf (r).

2.1.8 Diffusion Propagator Imaging (DPI)

Diffusion Propagator Imaging (DPI) was proposed to model the signal E(q) as the

solution of Laplace’s equation (Descoteaux et al. 2009; 2010). In DPI, the signal is assumed

to be

E(qu) =
L∑
l=0

l∑
m=−l

(
clm
ql+1

+ dlmq
l)Y m

l (u) (2.25)
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Then the EAP is estimated from incomplete 3D integration inside the ball with a given

radius qmax, because the complete integration in R3 does not converge.

p(R0r) =
1

Z

ˆ qmax

0

ˆ
S2
E(qu)q2e−2πiqR0uTrdqdu

=
1

Z

L∑
l=0

m=l∑
m=−l

(p0l(R0)clm + p1l(R0)dlm)Y m
l (r) (2.26)

Where p0l(R0) and p1l(R0 are given in (Descoteaux et al. 2010), Z is the normalization

factor, qmax is the maximum q value used in DPI acquisition. The coefficents {clm} and

{dlm} can be calculated from DWI samples via a standard least square estimation, then we

have the representation for EAP. However DPI is a model-based method, because it assumes

∆E(q;v) = 0

After obtaining the coefficients, DPI also proposed several EAP features analytically

from incomplete radial integration, such as two ODFs.

Φt(r) =
1

Z

ˆ Rmax

0
p(Rr)dR =

1

Z

L∑
l=0

l∑
m=−l

(−1)l/2(t0lclm − t1lclm + t2ldlm)Y m
l (r) (2.27)

t0l =
2lπl−1

(2l − 1)!!

(
Rl−1
max

l − 1

)
, t1l =

π(l + 1)!!

2ql−1
max(l/2 + 1)!

, t2l =
(−1)l/2q2

max(l − 1)!!

2l/2+2(2π)3/2(l/2 + 1)!

Φw(r) =

ˆ Rmax

0
p(Rr)R2dR =

L∑
l=0

l∑
m=−l

(−1)l/2(m0lclm −m1lclm +m2ldlm)Y m
l (r) (2.28)

m0l =
2lπl−1

(2l − 1)!!

(
Rl+1
max

l + 1

)
,m1l =

(l − 1)!!

2πql+1
max(l/2− 1)!

,m2l =
(l + 1)!!

2π2l/2(l/2)!

2.1.9 Spherical Polar Fourier Imaging (SPFI)

Spherical Polar Fourier Imaging (SPFI) was first proposed by Dr. Assemlal in (Assemlal

et al. 2008; 2009, Assemlal 2010). The diffusion signal E(q) is represented by Spherical Polar

Fourier (SPF) basis. SPF basis has SHs in spherical part and Gaussian-Laguerre functions

in radial part and is a 3D orthonormal basis. Spherical polar Fourier imaging (SPFI) is a
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model-free and fast HARDI method for multiple-shell data (Cheng et al. 2010).Let Gk(q)

be the Gaussian-Laguerre function and Bk,l,m(q) = Gk(q)Y
m
l (u) be spherical polar Fourier

basis. The SPFI is to fit a model given by

E(q) =

K∑
k=0

L∑
l=0

l∑
m=−l

ak,l,mBk,l,m(q), (2.29)

In (Assemlal et al. 2008),{ak,l,m} was proposed to be estimated by two methods, a

least square fit and a nonlinear robust estimation which considers the Rician noise. After

estimating {ak,l,m},a linear transformation was used to obtain the coefficeints {ck,l,m} of

EAP profile p(R0) represented by SH for a given R0.

p(R0r) =
L∑
l=0

l∑
m=−l

{
4(−1)l/2

ζ0.5l+1.5πl+1.5Rl0
Γ(l + 1.5)

K∑
k=0

fk,l,m(ζ,R0)ak,l,m

}
Y m
l (u) =

L∑
l=0

l∑
m=−l

cl,mY
m
l (u)

(2.30)

fk,l,m(ζ,R0) = κk(ζ)
k∑
i=0

(−1)i

k + 0.5

k − i

 1

i!
20.5l+i−0.5Γ(0.5l+i+1.5)1F1(

2i+ l + 3

2
; l+

3

2
;−2π2R2

0ζ)

(2.31)

Gk(||qi||) = κk(ζ)exp(−||qi||
2

2ζ
)L

1/2
k (
||qi||2

ζ
) κk(ζ) =

[
2

ζ3/2

n!

Γ(n+ 3/2)

]
(2.32)

1F1(a; b;x) =
∞∑
k=0

(a)kx
k

(b)kk!
, (a)k = (a(a+ 1)...(a+ l − 1)),with(a)0 = 1 (2.33)

The linear transform from {ak,l,m} to {cl,m} could be implemented as an matrix multipli-

cation. This transformation is independent with the data, since {fk,l,m(ζ,R0)} only depends

on ζ and R0. Once a R0 and the basis are given, trasformation matrix can be calculated.

And since in SPFI, Only the value of 1F1 at the fixed value −2π2R2
0ζ is needed, so the

transformation matrix only needs to be calculated once.
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2.2 Estimation methods

Most of the methods reviewed in previous sections assume that for each voxel v,

f(E(qi;v)) = xTi β(v) + εi(v), (2.34)

where f(·) is a given transformation function (e.g., f(s) = s or f(s) = log(s)), xi is a p× 1

vector of covariates, which depends on qi (or (bi, ri)), β(v) is a p × 1 vector of regression

coefficients, and εi(v) is an error term with mean zero and variance σ2
i (v).

These methods focus on reconstructing β(v) by solving a regularized linear least-squares

optimization problem

β̂(v) = minimizeβ(v)||y(v)−Xβ(v)||2 + ρ(β(v);λ(v)), (2.35)

where y(v) = (f(E(q1;v)), · · · , f(E(qn;v)))T , X is an n×pmatrix with the i−th row being

xi, and ρ(β(v);λ(v)) is a penalty function with λ(v) being a tuning parameter. Different

penalty functions have been proposed in the literature. For instance, for analytical Q-ball

imaging, the Laplacian-Beltrami regularization assumes

ρ(β(v);λ(v)) = λ(v)

L∑
l=0

l∑
m=−l

l2(l + 1)2β2
lm = λ(v)β(v)TΛβ(v), (2.36)

where Λ = diag(0, 4, 4, 4, · · · , L2(L + 1)2, · · · , L2(L + 1)2). Alternatively, we may consider

other penalty functions, such as LASSO or generalized LASSO. Specifically, the penalty

function of the generalized LASSO (Tibshirani and Taylor 2011) is given by

ρ(β(v);λ(v)) = λ(v)||Dβ(v)||1, (2.37)

where || · ||1 is the L1 norm and D is a specified p× p filter matrix.
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Low-dimensional projections estimator

We review low-dimensional projections estimator (Zhang and Zhang 2014) as follows.

Consider the linear model of y = Xβ + ε, where ε ∼ N(0, σ2I). The low-dimensional

projections estimator (LDPE) of β can be obtained as a one-step self bias correction from

the initial estimator,

β̂j := β̂j
(init)

+
zTj {y −Xβ̂

(init)
j }

zTj xj
, (2.38)

where zj = x⊥j is the residual of the least squares fit of xj on X−j = (xk, k 6= j). For QBI,

X is the Spherical Harmonic representation of the signal directions, which are uniformly

distributed on the sphere, and the SH basis is an orthonormal basis, so zj = xj in this case.

Moreover, β̂(init) is obtained from the scaled LASSO (Sun and Zhang 2012) procedure as

follow:

{β̂(init), σ̂} = argminβ,σ

{
|y −Xβ|22

2σn
+ σ/2 + λ0|β|1

}
(2.39)

where λ0 =
√

(2/n)logp, n is the number of the sampling directions, and p is the number

of SH basis functions.

Robust Regression

The linear regression loss function, ρ(e) = ||e||22 increases sharply with the size of the

residual. Least squares estimates for regression models are highly sensitive to (not robust

against) outliers. One alternative is to use ρ(e) = ||e||1, the absolute value as a loss function

instead of squaring the residual. This achieves robustness, but is hard to work with in

practice because the absolute value function is not differentiable.
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(Huber 1964) proposed a compromise between these two loss functions

ρ(ei) =


e2
i if |ei| ≤ c

c(2|ei| − c) if |ei| > c

(2.40)

Where c is a parameter that controls the robustness level, and a smaller value of c usually

leads to more robust estimation. Huber argued that c = 1.345 is a good choice, and showed

that asymptotically, it is 95% as efficient as least square if the true distribution is normal

and much more efficient in many other cases.(Huber and Ronchetti 1975)

Huber’s estimators can be obtained by minimizing a loss function , or equivalently solving

∑
i

ρ′(ei)xi = 0 (2.41)

There are closed form solutions and fast algorithms for solving the least squares problem

as well as the weighted least squares problem: Huber’s estimators can be obtained by mini-

mizing a loss function , or equivalently solving

∑
i

ωieixi = 0 (2.42)

Thus, a convenient way to solve for 2.41 is to use an iteratively reweighted least squares

(IRLS) algorithm, in which we calculate ωi = ρ′(ei)/ei, solve the weighted least squares

problem, re-calculate the weights, re-solve, and so on until convergence.

The preceding derivations are slightly oversimplied, in that the arguments for setting

c = 1.345 are based on the assumption that the response variable has known variance 1.

In reality, of course, this is not true, and we must apply the loss functions to the scaled

residuals, i.e. replace every
∑

i ρ(ei) with
∑

i ρ(ei/s), and
∑

i ρ
′(ei) with

∑
i ρ
′(ei/s), where

s is an estimated scale parameter. While a number of other estimators have been proposed,
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the simplest is based on the median absolute deviation of the residuals:

MAD = median{|ei|} (2.43)

where ŝ = MAD/0.6745, based on the idea that, for the standard normal, E(MAD) =

0.6745.

2.3 Spatial Regularization

A key feature in HARDI is its spatial constraint. Specifically, the orientation and

anisotropy of any single fiber bundles change smoothly from one voxel to the next, par-

ticularly along the dominant fiber orientation, whereas it may change dramatically at the

boundaries between tracts and interfaces with gray matter structures and cerebrospinal fluid

(CSF) spaces. Moreover, ODF or EAP is expected to change smoothly from one voxel to the

next in the same fiber crossing region, whereas it may change dramatically at the boundaries

of fiber crossing regions and surrounding fiber bundles. This is a very important and power-

ful constraint that can be exploited to improve the reconstruction in HARDI. However, most

of current estimating methods are voxel-wise methods and do not make use of the spatial

constraint of HARDI. To explicitly exploit such spatial constraint, we develop multiscale

adaptive smoothing technique to spatially and adaptively update {β(v) : v ∈ V}. (Li et al.

2011)

26



CHAPTER 3: SPATIALLY REGULARIZING HARDI VIA SPHERICAL
HARMONICS

High angular resolution diffusion imaging (HARDI) has recently been of great interest

in mapping the orientation of intra-voxel crossing fibers, and such orientation information

allows one to infer the connectivity patterns prevalent among different brain regions and

possible changes in such connectivity over time for various neurodegenerative and neuropsy-

chiatric diseases. The aim of this chapter is to propose a penalized multi-scale adaptive

regression model (PMARM) framework to spatially and adaptively infer the orientation dis-

tribution function (ODF) of water diffusion in regions with complex fiber configurations.

In PMARM, we reformulate the HARDI imaging reconstruction as a weighted regularized

least-squares regression (WRLSR) problem. Similarity and distance weights are introduced

to account for spatial smoothness of HARDI, while preserving the unknown discontinuities

(e.g., edges between white matter and grey matter) of HARDI. The L1 penalty function is

introduced to ensure the sparse solutions of ODFs, while a scaled L1 weighted estimator

is calculated to correct the bias introduced by the L1 penalty at each voxel. In PMARM,

we integrate the multiscale adaptive regression models (Li et al. 2011), the propagation-

separation method (Polzehl and Spokoiny 2000), and Lasso (least absolute shrinkage and

selection operator) (Tibshirani 1996) to adaptively estimate ODFs across voxels. Experi-

mental results indicate that PMARM can reduce the angle detection errors on fiber crossing

area and provide more accurate reconstruction than standard voxel-wise methods.

3.1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a popular imaging technique for tracking

the effective diffusion of water molecules, which is constrained by the surrounding structures,
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such as nerves or cells, in the human brain in vivo. Because water molecules tend to diffuse

fast along the pathways of white matter fibers and slow cross fibers, tracking its diffusion with

dMRI allows one to map the microstructure and organization of those pathways (Basser and

Pierpaoli 1996). Measuring the diffusion process quantitatively is critical for a quantitative

assessment of the integrity of anatomical connectivity in white matter. A reconstruction

step to dMRI is to estimate the normalized signal attenuation E(q;v), the orientation

distribution function (ODF) O(r;v), and Ensemble Average Propagator (EAP) p(R;v) at

each voxel v in a common space V, where q = qu ∈ R3, q = ||q||2 and R = Rr ∈ R3, R =

||R||2, respectively, represent the effective gradient direction and displacement direction.

Raw HARDI images, as a result of elevated b-factor and decreased voxel size, suffer

from depressed signal-to-noise ratio (SNR) levels, which make the problem of reconstructing

HARDI data be of particular practical importance and challenging. Many existing methods

perform reconstruction independently at each voxel, which essentially ignores the functional

nature of the HARDI data at different voxels in space. Most of these methods model E(q;v)

or O(r;v) as a linear combination of some known or unknown basis functions and then

computes the model parameters by using a regularized linear least-squares optimization.

Recently, there has been a great interest in incorporating spatial smoothness constraints

into the HARDI reconstruction algorithm. The key assumption of this approach is that

the orientation and anisotropy of any single fiber population are expected to vary smoothly

along the dominant fiber orientation, except at the boundaries between tracts and interfaces

with gray matter structures and cerebrospinal fluid spaces. Until recently, a few number

of different approaches have been developed starting from smoothing raw HARDI images

(Descoteaux et al. 2008b, Becker et al. 2012b;a), smoothing procedures in ODF space (Kim

et al. 2009, Goh et al. 2011), spatial DTI (Tabelow et al. 2008, Yu et al. 2013, Yu and Li 2013,

Liu et al. 2013), to spatial HARDI, which reconstructs and denoises all ODFs simultaneously

(Raj et al. 2011).

The aim of this chapter is to develop a penalized multi-scale adaptive regression model

(PMARM) framework to spatially and adaptively infer ODFs across all voxels. Similar to
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(Raj et al. 2011), PMARM is also a simultaneous reconstruction and denoising procedure.

However, PMARM differs significantly from the method in (Raj et al. 2011) in two major

ways. First, we use similarity and distance weights to account for local spatial smoothness

of HARDI, while preserving the unknown local discontinuities. In contrast, the spatial

HARDI method uses a single smoothness regularization term to control global smoothness.

Thus, PMARM should be more robust to heterogenous noise levels across different locations.

Second, PMARM uses the L1 regularization to ensure the sparse solutions of ODFs, wheres

the spatial HARDI enforces Tikhonov regularization with several global tuning parameters

in order to stabilize the estimated ODFs.

3.2 Methods

3.2.1 Model Formulation

We usually acquire n normalized HARDI data with each image containing N voxels

for each subject. Thus, we observe n normalized HARDI measurements {(E(bi;v),gi, bi) :

i = 1, · · · , n} at voxel v ∈ V, where gi = (gi,1, gi,2, gi,3)T is the gradient vector. Based

on (2.3), these HARDI measurements can be also represented as q-space measurements

{E(qi) : i = 1, · · · , n} We usually omit putting voxel v, if no confusion in context. See

Figure 2.8.

Q-ball Imaging (QBI) is the most widely used HARDI method (Tuch et al. 1999; 2002),

since it only needs single shell data to estimate the ODF, whose maxima agree with the

fiber directions, and is very easy to be implemented. Q-Ball imaging, which is based on

the Funk-Radon Transform (FRT) (Tuch 2004), was first proposed in a numerical way and

then was improved by an analytical way based on spherical harmonics (Anderson 2005, Hess

et al. 2006, Descoteaux et al. 2007). In Tuch (2004), a FRT approximation is proposed to

estimate a kind of ODF defined as

Φt(r;v)
def
=

1

Z

ˆ ∞
0

P (Rr;v)dR ≈ FRT{E(qu;v)}(r), (3.1)
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where FRT is the Funk-Radon transform and Z is the normalization factor which makes
´
S2 Φt(r;v)dr = 1. Recently, analytical QBI is proposed by representing E(q) as a linear

combination of SH bases. Specifically, the analytical QBI is to fit a model given by

E(qui;v) =
L∑
l=0

l∑
m=−l

clm(v)Hm
l (ui) + εi(v), (3.2)

where Hm
l (u) is the symmetric real spherical harmonic with order l and degree m (Aganj

et al. 2010, Descoteaux et al. 2007).

In Wedeen et al. (2005; 2000), another representation of ODF is given by

Φw(r;v)
def
=

ˆ ∞
0

P (Rr;v)R2dR, (3.3)

which is the marginal distribution of EAP such that it does not need the artificial normal-

ization factor Z. One may estimate Φw(r;v) by calculating the numerical radial integration

of a pre-estimated EAP estimated from diffusion spectrum imaging (DSI). In (Aganj et al.

2009) and (Aganj et al. 2010), it is shown that if E(q;v) follows the radial multi-exponential

model, then we can use the single shell data to approximate Φw(r;v) by using

Φw(r;v) ≈ 1

4π
+

1

16π2
FRT{∆bln(−ln(E(u;v)))}, (3.4)

where ∆b is the Laplace-Beltrami operator. In (Aganj et al. 2010), one may consider a

model given by

ln(−ln(E(qui;v))) =

L∑
l=0

l∑
m=−l

clm(v)Hm
l (ui) + εi(v). (3.5)

This method is called constant solid angle QBI, denoted by cQBI in this paper, it can

be further generalized to multiple q−shells based on the multi-exponential model (Aganj

et al. 2010). Φw(r;v) has better angular resolution than Φt(r;v) normally used in original

QBI, although normally Φt(r;v) is more robust to noise. Φw(r;v) normally does not need
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the artificial normalization, sharpening technique like min-max normalization or spherical

deconvolution. That is the main reason why we focus on reconstructing Φw(r;v) using cQBI

for this chapter

3.2.2 Estimation Procedures

We reconstruct β(v) by solving a regularized linear least-squares optimization problem

β̂(v) = minimizeβ(v)||y(v)−Xβ(v)||2 + ρ(β(v);λ(v)), (3.6)

where y(v) = (f(E(q1;v)), · · · , f(E(qn;v)))T , f(·) = ln(−ln(·)), X is an n×p matrix with

the i−th row being xi, and ρ(β(v);λ(v)) is a penalty function with λ(v) being a tuning

parameter. Different penalty functions have been proposed in the literature. For instance,

for analytical Q-ball imaging, the Laplacian-Beltrami regularization assumes

ρ(β(v);λ(v)) = λ(v)

L∑
l=0

l∑
m=−l

l2(l + 1)2β2
lm = λ(v)β(v)TΛβ(v), (3.7)

where Λ = diag(0, 4, 4, 4, · · · , L2(L + 1)2, · · · , L2(L + 1)2). Alternatively, we may consider

other penalty functions, such as LASSO, adaptive LASSO, generalized LASSO, or smoothly

clipped absolute deviation (SCAD) (Fan and Li 2001, Tibshirani and Taylor 2011, Zou 2006b,

Tibshirani 1996). Specifically, the penalty function of the generalized LASSO (Tibshirani

and Taylor 2011) is given by

ρ(β(v);λ(v)) = λ(v)||Dβ(v)||1, (3.8)

where || · ||1 is the L1 norm and D is a specified p× p filter matrix. However, the standard

LASSO assumes D to be an identity matrix. Following the Laplacian-Beltrami regulariza-

tion, we may set D = Λ1/2 in order to give different weights to the coefficients at different

orders for Q-ball imaging. In this case, β̂(v) is close to an adaptive LASSO estimator (Zou

2006b).
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Many estimation methods have been developed to solve the regularized linear least-

squares optimization (3.6). For instance, it is computationally easy to compute β̂LB(v) =

(XTX+λ(v)Λ)−1XTy(v) for the Laplacian-Beltrami regularization (Descoteaux et al. 2007),

but it is very sensitive to noise. As shown in the second row of Figure 3.1, there are many false

maxima in ODF based on β̂LB(v). Although the LASSO method has been widely used and

yields a sparse estimate of β(v), denoted by β̂LO(v), LASSO can introduce substantial bias in

the estimation of β(v) Figure 3.1, even though the estimated ODF from LASSO seems to be

slightly better than the one based on β̂LB(v). In (Zhang and Zhang 2014), a low-dimensional

projections estimator (LDPE), denoted by β̂LE(v), is developed to address such bias issue

Figure 3.1. The LDPE estimator is included section 2.2. From here on, we primarily consider

the three estimation methods including the Laplace-Beltrami regularization, LASSO, and

LDPE, even though extension to other cases is definitely feasible. After calculating β̂(v),

we can calculate ODFs and infer their maxima.

A key feature in HARDI is its spatial constraint. Specifically, the orientation and

anisotropy of any single fiber bundles change smoothly from one voxel to the next, par-

ticularly along the dominant fiber orientation, whereas it may change dramatically at the

boundaries between tracts and interfaces with gray matter structures and cerebrospinal fluid

(CSF) spaces. Moreover, the ODF is expected to change smoothly from one voxel to the

next in the same fiber crossing region, whereas it may change dramatically at the boundaries

of fiber crossing regions and surrounding fiber bundles. This is a very important and pow-

erful constraint that can be exploited to improve the reconstruction in HARDI. However,

the methods in (3.6) of estimating ODF are voxel-wise methods and do not make use of the

spatial constraint of HARDI.

To explicitly exploit such a spatial constraint, we develop a penalized multiscale adaptive

regression model (PMARM) to spatially and adaptively update {β(v) : v ∈ V} by integrat-

ing various penalization methods (Fan and Li 2001, Tibshirani and Taylor 2011, Zou 2006b,

Tibshirani 1996, Zhang and Zhang 2014), multiscale adaptive regression models (Li et al.

2011), and the propagation-separation method (Polzehl and Spokoiny 2000). The key idea of

32



PMARM is to combine HARDI signals in a neighboring sphere of voxel v to make inference

on β(v) at voxel v. Specifically, let B(v, h) be a sphere with radius h centered at voxel v

and ω(v,v′;h) be a weight function of triple (v,v′, h) such that

∑
v′∈B(v,h)

ω(v,v′;h) = 1 and ω(v,v′;h) ≥ 0 for all h ≥ 0.

PMARM is based on a set of weighted penalization functions, denoted by Pn(β(v);ω, h),

which is defined as follows:

Pn(β(v);ω, h) =
∑

v′∈B(v,h)

ω(v,v′;h)||y(v′)−Xβ(v)||2 + ρ(β(v);λ(v))

= ||yw(v;h)−Xβ(v)||2 + ρ(β(v);λ(v)) + constant, (3.9)

where yw(v;h) =
∑

v′∈B(v,h) ω(v,v′;h)y(v′). Given the current weights {ω(v,v′;h) :

v,v′ ∈ V}, we consider the weighted GEE estimator of β(v), denoted by β̂(v, h), which

satisfies

β̂(v, h) = argminβ(v)Pn(β(v);ω, h). (3.10)

It is critical to choose a good ω(v,v′;h) in preventing oversmoothing the estimates of

β(v) across voxels, while preserving the edges between different structures, such as fiber

bundles, crossing fibers, or gray matter regions. A good ω(v,v′;h) should quantify the

similarity between β(v) and β(v′) or their corresponding ODFs. Specifically, if β(v) and

β(v′) substantially differ from each other, then the HARDI signals in voxel v′ do not contain

too much information on β(v) and thus ω(v,v′;h) should be close to 0. However, if β(v)

and β(v′) are close to each other indicating that the HARDI signals in voxel v′ contain

useful information on β(v), then ω(v,v′;h) should be significantly larger than zero. See the

explicit expression of ω(v,v′;h) in Section 3.2.3.
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3.2.3 PMARM

We develop the PMARM procedure to adaptively determine w and estimate β(v) across

all voxels v ∈ V. Our multiscal adaptive strategy starts with building a sequence of nested

spheres with increasing radii h0 = 0 < h1 < · · · < hS = r ranging from the smallest scale

h0 = 0 to the largest scale hS = r at each voxel v. At the scale h0 = 0, we just calculate

β̂(v;h0) = β̂(v) voxel-wisely without using any spatial information. This corresponds to

setting w(v,v′;h0) = 1 if v = v′ and 0 otherwise. Then, based on the signals contained in

voxels d and d′, we use methods as detailed below to calculate the weights w(v,v′;h1) at

scale h1 for all voxels v. After getting the new weights w(v,v′;h1), we can update β̂(v;h1).

Then we can sequentially determine w(v,v′;hs) and then adaptively estimate β̂(v;hs). From

h0 = 0 to hS = r, a path diagram of the multiscale adaptive strategy is given below:

w(v,v′;h0) w(v,v′;h1) · · · w(v,v′;hS = r)

⇓ ↗ ⇓ ↗ · · · ⇓

β̂(v;h0) β̂(v;h1) · · · β̂(v;hS)

PMARM consists of three key steps: (I) an initialization step, (II) a weighted estimation

step, and (III) a stop checking step. In the initialization step, we prefix a geometric series

{hs = csh : s = 1, ..., S} of radii with h0 = 0, where ch ∈ (1, 2), say ch = 1.15 and

S = 10. We use a small ch in order to prevent incorporating too many neighboring voxels

at the beginning, and this improves the robustness of the procedure and the accuracy of the

parameter estimation. At h0 = 0, we solve the regularized linear least-squares optimization

problem (3.6) for different penalty functions in order to calculate β̂(v;h0) = β̂(v) across all

voxels v. We then set s = 1 and h1 = ch.

In the weighted estimation step, we first compute Dist(v,v′;hs−1) to characterize the

similarity between the two estimated ODFs based on β̂(v;hs) and β̂(v′;hs) at voxels v and

v′ and the adaptive weights ω(v,v′;hs), which are defined as

ω(v,v′;hs) =
Kloc(||v − v′||2/hs)Kst(Dist(v,v′;hs−1)/Cn)∑

v′∈B(v,hs)Kloc(||v − v′||2/hs)Kst(Dist(v,v′;hs−1)/Cn)
, (3.11)
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where Kloc(u) and Kst(u) are two nonnegative kernel functions with compact support, Cn is

a number associated with n, and || · ||2 denotes the Euclidean norm of a vector (or a matrix).

We compute Dist(v,v′;hs−1) as the similarity between the estimated ODFs in vox-

els v and v′ for HARDI as follows. For instance, for QBI in Example 1, we transform

β̂(v;hs−1) to its corresponding ODF representation, denoted as ÔDF (v;hs−1), which is a

linear combination of the SH basis functions. Since the SH basis is orthonormal, we may

set Dist(v,v′;hs−1) = ||ÔDF (v;hs−1)− ÔDF (v′;hs−1)||2.

The weights Kloc(||v − v′||2/hs) give less weight to the voxel v′ ∈ B(v, hs), whose

location is far from the voxel v. The Kloc(·) is a regular kernel function for smoothing the

smoothed curves or surfaces. Some common choices of Kloc(·) include the Gaussian kernel

and Epanechnikov kernel (Tabelow et al. 2006; 2008, Polzehl and Spokoiny 2000). We use

Kloc = (1−u2)+ throughout this paper. The weights Kst(·) downweight the voxels that are

dissimilar to voxel d. The Dist(v,v′;hs−1) takes large values if the ODFs in voxel v differ

significantly from those in voxel v′. We set Kst = exp(−u2/a), where a is a positive number.

After the calculation of ω(v,v′;hs), we calculate the weighted HARDI signals of voxel v,

denoted by yw(v;hs) =
∑

v′∈B(v,hs)w(v,v′;hs)y(v′). Then, we use yw(v;hs) to compute

β̂(d;hs) and ÔDF (v;hs) at voxel v. The computation of PMARM at each iteration is of

the same order as that for the voxel-wise approach. Thus, this multiscale adaptive method

provides an efficient method for adaptively exploring the neighboring voxels of each voxel.

Since PMARM sequentially includes more data at each iteration, it will adaptively increase

the statistical efficiency in estimating β(v) in a homogenous region, while decreasing the

variation of the weights w(v,v′;hs).

In the stop checking step, after the first iteration, we start to calculate a stopping

criterion based on the L2 distance between ÔDF (v;hs) and ÔDF (v;hs−1), denoted by

Dists(v). We use Dists(v) to determine whether ’bad’ HARDI signals from neighboring

voxels lead to a dramatic change in the estimated ÔDF (v;hs−1). If Dists(v) > Cs, where

Cs is a positive scalar, then we set ÔDF (v;hs) = ÔDF (v;hs−1) and s = S for voxel v. If

s = S for all voxels, we stop. If Dists(v) ≤ Cs, then we set hs+1 = chhs, increase s by 1,

35



and continue with the weighted estimation step. In practice, different voxels may stop at

different bandwidths, indicating that different degrees of smoothness are used to reconstruct

HARDI.

We set Cs = χ2(1)0.6/sD̄med to prevent oversmoothing, where χ2(1)a is the upper 1− a

percentile of the χ2(1) distribution. As s increases, Cs decreases to zero. Moreover, D̄med

is chosen to be the median of {Dist(v,v′;h0) : v 6= v′}, where v and v′ are M preselected

voxels {vi}Mi=1 from HARDI. Specifically, we select theseM voxels from regions with different

Generalized Fractional Anisotropy (GFA) values. For instance, for QBI, if the ODF Φ(r)

is represented by the SH basis with coefficients {clm}, it is shown in Özarslan et al. (2005)

that the GFA can be represented by

GFA{Φt(r)} =

√
1− β2

00∑L
l=0

∑m=l
m=−l β

2
lm

. (3.12)

Finally, we summarize the PMARM algorithm 1 for the adaptive estimation of the ODF

at voxel v below.

Algorithm 1: PMARM at voxel v
Input: Signals y(v) and design matrix X
Output: Estimated ODF ÔDF (v;hS)

1 Estimate β̂(v) from (3.6), λLB = 0.006, and λl1 = 0.02.
2 for s← 1 to S do
3 calculate the weights w(v,v′;hs) for d′ ∈ B(d, hs) by (3.11);
4 calculate the weighted signals of voxel v by using
5 yw(v;hs) =

∑
v′∈B(v,hs)w(v,v′;hs)y(v′);

6 calculate β̂(v;hs) based on (3.10);
7 calculate ÔDF (v;hs).
8 If Dists(v) > Cs, ÔDF (v;hS) = ÔDF (v;hs), and s = S,
9 else

10 hs+1 = chhs;

11 return ÔDF (v;hS).
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3.2.4 Maxima Extraction

Based on ÔDF (v;hS) at voxel v, we need to extract its maxima in order to infer fiber

directions. Although there are other more complicated methods for extracting ODF maxima,

such as the method presented in (Hlawitschka and Scheuermann 2005), spherical Newton’s

method (Tuch 2004), and Powell’s method (Jansons and Alexander 2003), we take a simple

thresholding approach in this paper. Specifically, we project the estimated ODF onto the

sphere tessellated with a triangle mesh, which has 2562 points on the unit sphere. If the

estimated ODF value at a mesh point is greater than the corresponding value at all its

neighboring mesh points and this estimated ODF value is greater than max(ODF)/2, then

the direction at this mesh point is regarded as a maximum. This thresholding method avoids

selecting small peaks that may appear due to noise.

3.3 Simulation Studies and Two Real Examples

In this section, we use Monte Carlo simulations and two real examples to evaluate

the finite-sample performance of PMARM and compare PMARM with other estimation

methods. All computations for these numerical examples were done in Matlab on an IBM

ThinkCentre M50 workstation. The computation for PMARM is relatively efficient. The

computational time for PMARM can be further reduced by using other computer languages,

such as C++.

3.3.1 Simulation Studies

We examined the finite sample performance of our PMARM on decting crossing fibers

by using synthetic HARDI data generated from the multi-tensor model (Alexander et al.

2002, Tuch 2004). We simulated the diffusion-weighted signals according to

E(qi;v) =

√√√√(

T∑
t=1

pte
−biuT

i Dt(v)ui + σεi1)2 + (σεi2)2 (3.13)
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for i = 1, · · · , n, where qi = qiui with ui being a unit vector, T is the number of fibers,

pt is the weight for t-th fiber, b is the b-value and Dt(v) is the tensor matrix for the

t-th fiber, SNR = 1/σ, and εi1 and εi2 are independently simulated from the standard

normal distribution. We used the multi-tensor model (3.13) to generate different 10 ×

10 phantoms with different regions of interest (ROIs) with 81 sampling directions on the

hemisphere for the 3rd order tessellation of the icosahedron and b = 2000s/mm2. Specifically,

voxels with a single fiber were generated from a single tensor model using diffusion tensor

profiles with eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s, voxels with two fiber directions were

generated by two-tensor model E(qi;v) = e−biu
T
i D1(v)ui/2 + e−biu

T
i D2(v)ui/2, and voxels

isotropic tensors were generated by the single tensor model using diffusion tensor profiles

with eigenvalues [1, 1, 1]× 10−3mm2/s. We estimated ODF at each voxel by using the three

voxel-wise estimation methods including cQBI, LASSO and LDPE, and their corresponding

three PMARMs including p-cQBI, p-LASSO and p-LDPE . For PMARM, we set Kst =

exp(−u2/4) , Cn = 1 and λ = 0.02 in LASSO. Then we extracted the ODF maxima aligned

with fiber directions.

Angle Detection in First Phantom with 90o crossing fibers

In the first phantom, we included four different ROIs including isotropic ROIs, two single

fiber ROIs with its direction going either along the x−axis (ROI1) or along the y−axis

(ROI2), and the 90o crossing fiber ROIs(ROI3); Figure 3.2 presents the estimated ODF

images for this type of phantom. The left panel on the top row presents the recovered ODF

from noise free data, whereas the other three panels on the top row present those from the

data with SNR=10 by using cQBI, LASSO, and LDPE, respectively. Three panels on the

bottom row present the recovered ODFs from the same dataset by using p-cQBI, p-LASSO

and p-LDPE. Generally, PMARMs outperform the voxel-wise methods in terms of detecting

the isotropic regions and consistently recovering the ODFs with fiber crossing.

To quantify the accuracy of detection angle, we generated 1,000 data sets for three

different SNRs including 10 ,15, and 20. We estimated the ODFs by using voxel-wise cQBI,
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LASSO and LDPE and their corresponding three PMARMs. Then we extracted the ODF

maxima aligned with fiber directions. For voxels with a single fiber, we calculated angle

detection errors by comparing recovered fiber directions with the ground truth. For voxels

with two crossing fibers, we calculated angle detection errors by comparing recovered crossing

angles with the ground truth. Mean angle detection errors at each voxel are calculated based

on the 1000 simulations using each estimation method. The average values of these detection

errors for each ROI are presented in Table 3.1.

Table 3.1 reveals that the mean angle errors are substantially reduced for the three

PMARM methods. It may indicate that PMARM can efficiently exploit spatial smoothness

for reconstructing ODFs, while reducing noise leading to better angle detection. Among

the three methods, LASSO and LDPE outperform cQBI in terms of the mean angle error,

since LASSO and LDPE force smaller ODF coefficients to be zero, leading to a more stable

recovery of ODFs. Moreover, LDPE outperforms LASSO in terms of the mean angle error,

since non-zero coefficients of LDPE are unbiased compared with LASSO estimators (Zhang

and Zhang 2014).

Angle Detection in Second Phantom with Four Quadrants of ROIs

In the second phantom, we included four different types of regions of interest (ROIs)

including isotropic ROIs, two single fiber ROIs with its direction going either along the

x−axis (ROI1) or along the y−axis (ROI2), and the 90o crossing fiber ROIs (ROI3). See

Figure 3.3 for details. We used the same estimation methods and SNRs based on 1,000

simulated data sets. Table 3.2 presents the mean angle errors for the voxel-wise methods

and their corresponding PMARMs.

Angle Detection in Third Phantom with 75o Crossing Fibers

In the third phantom, we included four different types of regions of interest (ROIs)

including isotropic ROIs, two single fiber ROIs with its direction from left to right going

up (ROI1) or from left to right going down (ROI2), and the 75o crossing fiber ROIs(ROI3);
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We used the same setting as previous two phantom images simulations. Figure 3.4 presents

the estimated ODF images for this phantom. Table 3.3 includes the average values of these

detection errors for each ROI, indicating substantial reduction in mean angle errors by using

PMARM.

Angle Detection in Fourth Phantom with Twisted Crossing

In the fourth phantom, we included a twisted crossing region in the middle, one fiber

along x−axis (ROI1), and the other fiber with changing angles with x−axis from 30o, 45o

, 60o, 75o, to 90o and then from 90o, 75o, 60o, 45o to 30o. We marked all region with

single fiber, which is not along x−axis as ROI2, and all regions with crossing fibers as ROI3.

We used the same setting as the previous phantom simulations. Figure 3.5 presents the

estimated ODF images. Table 3.4 includes the average values of these detection errors for

each ROI, indicating substantial reduction in mean angle errors by using PMARM.

3.3.2 Summary of Simulations

We have the following findings. First, the three PMARM methods outperform the three

voxel-wise methods in all ROIs, especially in ROIs with crossing fibers. Second, the esti-

mated ODFs in the single fiber ROIs are sharper and it is easier to detect the maxima. Third,

the L1 penalty based methods outperform the methods based on the Laplacian-Beltrami

regularization in the isotropic ROIs, since in the isotropic regions, the ODF coefficients are

small and tend to be suppressed to zero.

3.3.3 Pig Brain

The pig brain data set comes from a post-mortem porcine brain and was kindly provided

by Tim Dyrby from The Danish Research Centre for Magnetic Resonance, Copenhagen

University Hospital, Hvidovre, Denmark (Dyrby et al. 2011). The acquisition uses a spherical

acquisition scheme with 61 unique gradient directions and b-value of 3146 s/mm2. Each

diffusion weighted image has 10 slices with in-plane resolution 128 × 128 with voxel size
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0.5× 0.5× 0.5 mm3.

We used model 3.5 to estimate the ODF by using voxel-wise cQBI, LASSO and LDPE

and their corresponding three PMARMs. We set Kst = exp(−u2/4) and λ = 0.02 in

LASSO. The results are shown in Figure 3.6. All PMARM methods lead to better ODF

reconstruction results, in terms of smoother ODFs along the fiber tract. In the regions with

fiber crossings, the main fibers are easier to detect than less small noisy fibers. Since in

PMARM, we exploit the spatial constraints to estimate ODFs, PMARM can reduce the

noise level in HARDI, while improving the ODF reconstruction, especially in some ROIs.

Generally, PMARM can improve the recovery of crossing fibers.

3.3.4 Human Brain

We also tested our methods in a real human data set with b-value 3000 s/mm2, 140

gradients, dimension 128 × 96 × 60, and voxel size 2 × 2 × 2mm3. We used model 3.5 to

estimate ODF by using voxel-wise cQBI, LASSO and LDPE and their corresponding three

PMARMs. We set Kst = exp(−u2/4) and λ = 0.02 in LASSO. The results are shown in

Figure 3.7.

We can see from the figure that ODFs along the fiber tracts are smoother and regional

seperations are clearer in PMARMs results. Because all PMARM methods can achieve noise

reduction and obtain more accurate ODF reconstruction results in HARDI by exploiting the

spatial constraints to estimate ODFs, especially in some gray matter ROIs, PMARM can

improve the recovery of isotropic regions.

3.4 Conclusion

We have introduced a penalized multiscale adaptive model (PMARM) framework to

adaptively reconstruct the ODF across all voxels from HARDI signals. PMARM reconstructs

the ODF at each voxel by adaptively borrowing the spatial information from the neighboring

voxels. We have shown in the real and simulated data sets that PMARM can substantially

reduce the noise level, while improving the ODF reconstruction. We have shown that the
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L1 penalty function outperforms the Laplacian-Beltrami regularization and leads to sparse

ODF solution, and can better detect the isotropic regions.

3.5 Appendix

We review the Spherical Harmonics (SH), normally indicated by Hm
l , where l denotes

the order and m is the phase factor. The SH basis is a function basis for complex functions

on the unit sphere. Specifically, the SH basis functions are given as follows:

Hm
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ,

where θ ∈ [0, π], φ ∈ [0, 2π], and Pml is an associated Legendre polynomial. For k =

0, 2, 4, ..., l and m = −k, ..., 0, ..., k, we define the new index j : j(k,m) = (k2 + k+ 2)/2 +m

and define a modified SH basis as follows:

Yj =


√

2 ·Re(H |m|k ) if m < 0

H0
l if m = 0

√
2(−1)m+1Im(Hm

k ) if m > 0

where Re(Y m
k ) and Im(Y m

k ) represent the real and imaginary parts of Y m
k respectively. The

basis is designed to be symmetric, real, and orthonormal (Descoteaux et al. 2006).
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Table 3.1: Mean angle errors of different ROIs in the first phantom with 90 degree crossing.
1,000 simulated data sets were used.

ROI1: fibers along x−axis
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.48 1.47 2.06 0.17 0.58 0.31
2000 4 15 2.46 0.68 0.9 0.02 0.42 0.24
2000 4 20 1.92 0.34 0.42 0.003 0.41 0.13
2000 6 10 4.94 2.55 5.44 1.24 1.53 1.04
2000 6 15 3.69 1.64 3.36 0.31 1.02 0.63
2000 6 20 2.9 1.01 2.06 0.07 0.89 0.51

ROI2: fibers along y−axis
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.48 1.28 2.05 0.11 0.62 0.26
2000 4 15 2.47 0.55 0.85 0.01 0.45 0.16
2000 4 20 1.93 0.26 0.38 0.001 0.39 0.11
2000 6 10 4.95 2.34 5.51 1.07 1.56 1.02
2000 6 15 3.7 1.43 3.39 0.22 1.09 0.60
2000 6 20 2.92 0.84 2.04 0.05 0.92 0.49

ROI3: 90o crossing
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.61 1.63 2.52 0.1 2.14 0.19
2000 4 15 2.29 0.88 0.70 0.01 0.23 0.10
2000 4 20 1.78 0.41 0.21 0.001 0.12 0.07
2000 6 10 10.56 4.76 11.27 1.60 3.95 1.59
2000 6 15 7.12 2.99 5.57 0.16 1.66 0.66
2000 6 20 5.26 2.04 2.37 0.02 1.14 0.47
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Table 3.2: Mean angle errors of different ROIs in the second phantom with four quadrants.
1,000 simulated data sets were used.

ROI1: fibers along x−axis
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.48 1.33 2.05 0.79 0.56 0.26
2000 4 15 2.46 0.57 0.89 0.07 0.40 0.16
2000 4 20 1.92 0.27 0.41 0.01 0.39 0.064
2000 6 10 4.97 2.41 5.50 5.00 1.51 1.01
2000 6 15 3.70 1.53 3.42 2.09 1.04 0.55
2000 6 20 2.93 0.91 2.09 0.61 0.89 0.46

ROI2: fibers along y−axis
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.47 1.35 2.06 0.81 0.64 0.24
2000 4 15 2.47 0.58 0.84 0.07 0.45 0.13
2000 4 20 1.92 0.28 0.39 0.01 0.39 0.092
2000 6 10 4.91 2.37 5.46 4.96 1.54 1.05
2000 6 15 3.67 1.51 3.37 2.06 1.08 0.57
2000 6 20 2.89 0.89 2.05 0.60 0.92 0.46

ROI3: 90o crossing
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.63 1.95 2.56 0.84 2.05 0.19
2000 4 15 2.29 1.24 0.71 0.02 0.26 0.10
2000 4 20 1.79 0.71 0.22 0.001 0.13 0.08
2000 6 10 10.64 5.59 11.38 10.08 3.86 1.82
2000 6 15 7.13 3.64 5.67 2.50 1.69 0.75
2000 6 20 5.24 2.65 2.43 0.21 1.15 0.54
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Table 3.3: Mean angle errors of different ROIs in the third phantom with 75 degree crossing.
1,000 simulated data sets were used.

ROI1: from left to right going up
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.60 1.94 3.68 1.85 5.37 3.05
2000 4 15 2.73 1.33 2.72 1.14 3.95 1.55
2000 4 20 2.30 1.06 2.22 0.94 3.04 1.03
2000 6 10 4.97 2.82 6.65 3.58 6.42 4.44
2000 6 15 3.80 2.08 5.04 2.41 4.91 2.51
2000 6 20 3.10 1.62 4.00 1.66 3.92 1.96

ROI2: from left to right going down
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.61 1.88 3.69 1.81 5.37 2.99
2000 4 15 2.74 1.29 2.74 1.12 3.98 1.53
2000 4 20 2.31 1.03 2.23 0.93 3.02 1.07
2000 6 10 4.99 2.78 6.69 3.55 6.37 4.33
2000 6 15 3.82 2.05 5.06 2.34 4.91 2.50
2000 6 20 3.12 1.58 4.02 1.60 3.91 1.97

ROI3: 75o crossing
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 7.93 5.75 9.24 7.71 24.52 9.99
2000 4 15 6.01 5.61 7.64 6.94 10.08 8.44
2000 4 20 5.81 5.4 6.77 5.91 8.95 7.84
2000 6 10 9.19 4.77 10.95 6.52 25.27 11.37
2000 6 15 6.44 3.55 8.12 5.75 11.09 8.94
2000 6 20 5.14 3.08 6.73 5.80 9.43 8.17
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Table 3.4: Mean angle errors of different ROIs in the fourth phantom with twisted crossing.
1,000 simulated data sets were used.

ROI1: fibers along x−axis
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.47 2.08 2.03 1.10 2.77 1.26
2000 4 15 2.46 1.02 0.85 0.24 2.01 1.06
2000 4 20 1.92 0.59 0.39 0.08 1.61 0.65
2000 6 10 4.95 3.67 5.49 5.15 6.40 3.72
2000 6 15 3.69 2.14 3.36 2.42 5.06 4.69
2000 6 20 2.91 1.38 2.03 0.96 4.18 3.48

ROI2: single fibers except the ones along x−axis
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 6.03 4.46 6.83 5.31 6.91 4.46
2000 4 15 4.29 3.54 4.67 4.03 4.87 4.18
2000 4 20 3.94 3.35 4.47 3.92 4.68 4.14
2000 6 10 8.91 7.11 9.84 9.31 10.39 7.89
2000 6 15 6.49 4.51 6.49 5.08 8.06 7.49
2000 6 20 5.13 3.78 4.87 3.84 6.70 5.57

ROI3: twisted crossing
b value SH order SNR cQBI p-cQBI LASSO p-LASSO LDPE p-LDPE
2000 4 10 3.69 3.18 3.04 2.52 3.5 3.03
2000 4 15 2.85 2.61 2.00 1.9 2.63 2.5
2000 4 20 2.43 2.39 1.59 1.28 2.24 2.22
2000 6 10 5.05 4.31 5.87 5.55 6.67 4.82
2000 6 15 3.89 3.27 4.01 3.37 5.28 5.04
2000 6 20 3.22 2.83 2.85 2.28 4.41 4.02
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noise-free

cQBI(SNR=10) LASSO(SNR=10) LDPE(SNR=10)

Figure 3.1: Simulation results: in the first row, ODF reconstruction of noise-free data;
in the second row, ODFs of the data with noise(SNR=10) using cQBI, Lasso and LDPE,
respectively.

noise-free cQBI LASSO LDPE

p-cQBI p-LASSO p-LDPE

Figure 3.2: Simulation results for the first phantom: ODF reconstruction results of simulated
data with 90 degree crossing.
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noise-free cQBI LASSO LDPE

p-cQBI p-LASSO p-LDPE

Figure 3.3: Simulation results for the second phantom: ODF reconstruction results on
simulated data with four quadrants.

noise-free cQBI LASSO LDPE

p-cQBI p-LASSO p-LDPE

Figure 3.4: Simulation results for the third phantom: ODF reconstruction results on simu-
lated data with 75 degree crossing.
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noise-free cQBI LASSO LDPE

p-cQBI p-LASSO p-LDPE

Figure 3.5: Simulation results for the fourth phantom with: ODF reconstruction results on
simulated data with twisted crossing.
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cQBI LASSO LDPE

p-cQBI p-LASSO p-LDPE

Figure 3.6: ODF reconstruction results for the pig dataset: the first row shows the region of
interest on GFA map; the second row shows the ODF in the selected ROI without PMARM;
and the third row shows the ODF with PMARM. All the ODFs are min-max normalized.
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cQBI LASSO LDPE

p-cQBI p-LASSO p-LDPE

Figure 3.7: ODF reconstruction results for the human dataset: the first row shows the
region of interest on GFA map; the second row shows the ODF in the selected ROI with-
out PMARM; the third row shows the ODF with PMARM. All the ODFs are min-max
normalized.
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CHAPTER 4: ROBUST AND SPATIALLY ADAPTIVE EAP
RECONSTRUCTION

Many recent high angular resolution diffusion imaging (HARDI) reconstruction tech-

niques have been introduced to infer ensemble average propagator (EAP),describing the

three-dimensional (3D) average diffusion process of water molecules. Recently, several ana-

lytical EAP reconstruction schemes have been proposed, for example,Diffusion Orientation

Transform (DOT), Diffusion Specturm Imaging (DSI) and Spherical Polar Fourier Imaging

(SPFI) and so on. Among which, DSI and SPFI are two important methods to estimate the

EAP from the signal. Especially, SPFI is a model-free fast analytical EAP reconstruction

method, which does not need any assumption of data and does not need too many samplings.

However, current existing methods perform reconstruction independently at each voxel by

minizing the square error loss function, which is very sensitive to noise and outliers. This

essentially ignoring the functional nature of the HARDI data at different voxels in space.

The aim of this paper is to propose a robust multi-scale adaptive and sequential smooth-

ing (MASS) method framework to robustly, spatially and adaptively infer the EAP of water

diffusion in regions with complex fiber configurations. In robust MASS, we reformulate

the HARDI imaging reconstruction as a robust regression problem using Huber’s loss func-

tion. Similarity and distance weights are introduced to account for spatial smoothness of

HARDI, while preserving the unknown discontinuities (e.g., edges between white matter and

grey matter) of HARDI. We integrate robust regression estimation with the propagation-

separation method (Polzehl and Spokoiny, 2000) to adaptively estimate EAPs across voxels.

Experimental results indicate that MASS can reduce the angle detection errors on fiber

crossing area and provides more accurate reconstructions than standard voxel-wise methods

and robust MASS performs very well with the presence of outliers.
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4.1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a widely used in-vivo imaging tech-

nique to explore the information of neural micro-structure by probing the diffusion of water

molecules. So far it is still the unique non-invasive method to reveal the micro-geometry of

nervous tissues noninvasively and to explore the neural connectome in living human sub-

jects. The diffusion of water molecules is constrained by the surrounding structures including

nerves, cells and surrounding tissue. For example, qualitatively water molecules diffuse fast

along fibers and slowly cross fibers. Thus measuring the diffusion process quantitatively is

crucial to understanding the neural micro-structure and fiber directions.

The quest of diffusion-weighted (DW) imaging is to non-invasively recover information

about the diffusion of water molecules in biological tissues (Le Bihan et al. 2003). Many

recent high angular resolution diffusion imaging (HARDI) techniques (Descoteaux 2008,

Alexander 2005) have been proposed to recover the complex white matter geometry. How-

ever, these orientation functions derived from single-shell HARDI (one b-value) only cap-

ture the angular structure of the diffusion process and are therefore typically used for fiber

tractography applications. Full threedimensional (3D) ensemble average propagator (EAP)

describing the diffusion process to obtain richer information on the complex microstructure

of biological tissues.

The EAP formalism provides a powerful framework to describe and predict the diffusion

behavior in complex materials (Tuch 2002). Under the narrow pulse assumption(Stejskal and

Tanner 1965), the relationship between the diffusion signal attenuation,E(q;v), in q-space

and the EAP, p(R;v), in real space at each voxel v in a common space V, where q = qu ∈ R3

and R = Rr ∈ R3, is given by a Fourier transform (FT) relationship (Callaghan 1991) such

that

p(R;v) =

ˆ
q∈R3

E(q;v)e−2πiq·Rdq (4.1)

Various methods already exist to reconstruct the EAP or estimate EAP features. The most

common and famous model, is the diffusion tensor model (Basser et al. 1994b). Although

53



very successful in many neuroscience studies, diffusion tensor imaging (DTI) is limited by

the Gaussian assumption (free diffusion model) and cannot account for complex fiber con-

figurations. In free diffusion, diffusion behaves according to Fick’s first law, often called

Gaussian diffusion, and the diffusion tensor model is appropriate. However, such diffusion

excludes observed in vivo phenomena such as restriction, heterogeneity, anomalous diffusion,

and finite boundary permeability (Tuch 2002). Recent modeling techniques suggest the com-

posite and hindered restricted model of diffusion (CHARMED) (Assaf et al. 2004), the ”ball

& multi-stick” model (Behrens et al. 2007), or other more sophisticated models (Alexander

2008). Note that CHARMED is designed to use multiple spherical shell diffusion data.

A large family of techniques, mostly based on different mathematical representation

of the signal, use multiple q-shell acquisitions in order to reconstruct signal features or

EAP features, such as generalized high order tensors (Liu et al. 2004) based on cumulant

expansions; or the diffusion orientation transform (DOT) (Özarslan et al. 2006); or a fourth

order Cartesian tensor representation of the probability profile (Barmpoutis et al. 2008);or

better diffusion ODFs (Aganj et al. 2009, Tristán-Vega et al. 2009b) than obtained from

q-ball imaging (QBI) (Tuch et al. 2002). Unfortunately, for most of these methods, many

DW measurements are still needed. Moreover, most of these methods do not recover the

full EAP but features of it, making several assumptions that remain to be validated

Diffusion Propagator Imaging (DPI) was proposed to model the signal E(q;v) as the

solution of Laplace’s equation (Descoteaux et al. 2009; 2010). In DPI, the signal is assumed

to be

E(qu;v) =

L∑
l=0

l∑
m=−l

(
clm
ql+1

+ dlmq
l)Y m

l (u) (4.2)

Then the EAP is estimated from incomplete 3D integration inside the ball with a given

radius qmax, because the complete integration in R3 does not converge.

p(R0r;v) =
1

Z

ˆ qmax

0

ˆ
S2
E(qu;v)q2e−2πiqR0uTrdqdu

=
1

Z

L∑
l=0

m=l∑
m=−l

(p0l(R0)clm + p1l(R0)dlm)Y m
l (r) (4.3)
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Where p0l(R0) and p1l(R0) are given in (Descoteaux et al. 2010), Z is the normalization

factor, qmax is the maximum q value used in DPI acquisition. The coefficents {clm} and

{dlm} can be calculated from DWI samples via a standard least square estimation, then we

have the representation for EAP. However DPI is a model-based method, because it assumes

∆E(q;v) = 0

Then (Cheng et al. 2010) proposed a Model-free and Analytical EAP Reconstruction

via Spherical Polar Fourier Diffusion MRI. Spherical Polar Fourier Imaging (SPFI) was first

proposed by Dr. Assemlal in (Assemlal et al. 2008; 2009, Assemlal 2010). It represents the

diffusion signal E(qu;v) with Spherical Polar Fourier basis denoted by BSPF
klm

The aim of this paper is to develop a robust multi-scale adaptive and sequential smooth-

ing (MASS) framework to spatially and adaptively infer EAPs across all voxels. Similar to

(Raj et al. 2011), robust MASS is also a simultaneous reconstruction and denoising proce-

dure. However, MASS differs significantly from the method in (Raj et al. 2011). First, we use

similarity and distance weights to account for spatial smoothness of HARDI, while preserv-

ing the unknown discontinuities. In contrast, the spatial HARDI method use a smoothness

regularization term. Second, robust MASS uses robust method to estimate the EAPs, which

is more stable again the outliers, wheres the spatial HARDI enforces Tikhonov regularization

in order to stabilize the estimated EAPs. Third, robust MASS integrates WRLSR with the

propagation-separation method to sequentially and adaptively estimate EAP at each voxel.

Section 4.2 of this paper presents MASS for HARDI reconstruction. In Section 4.3, we

conduct simulation studies with the known ground truth to examine the finite sample perfor-

mance of MASS on robust regression and least square estimators. Section 4.4 illustrates an

application of the proposed methods in a real neuroimaging dataset. We present concluding

remarks in Section 4.5.
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4.2 Methods

4.2.1 Model Formulation

We usually acquire n normalized HARDI data with each image containing N voxels

for each subject. Thus, we observe n normalized HARDI measurements {(E(bi;v),gi, bi) :

i = 1, · · · , n} at voxel v ∈ V, where gi = (gi,1, gi,2, gi,3)T is the gradient vector. Based

on (2.3), these HARDI measurements can be also represented as q-space measurements

{E(qi) : i = 1, · · · , n}. We usually omit putting voxel v, if no confusion in context. See

Figure 2.8. Most HARDIs assume that

f(E(qi;v)) = xTi β(v) + εi(v), (4.4)

where f(·) is a given transformation function (e.g., f(s) = s or f(s) = log(s)), xi is a p× 1

vector of covariates, which depends on qi (or (bi, ri)), β(v) is a p × 1 vector of regression

coefficients, and εi(v) is an error term with mean zero and variance σ2
i (v). In practice,

E(qi;v) equals the ratio of magnetic resonance signal measured at qi, denoted by S(qi;v),

to the magnetic resonance signal measured at 0, denoted by S(0;v). Since the signal-

to-noise ratio in S(0;v) is very high, we ignore the noise component of S(0;v). Model

4.4 is general enough to cover many existing HARDIs. In the literature, for generalized

DTI and high order tensor (HOT), it is common to set f(E(qi;v)) = log(E(qi;v)) and

represent log(E(qi;v)) as a polynomial function of qi, whereas for most other HARDIs,

such as Q-ball imaging (QBI) or diffusion orientation transform (DOT), it is common to

set f(E(qi;v)) = E(qi;v) and approximate E(qi;v) by a linear combination of some basis

functions.

Spherical polar Fourier imaging (SPFI) is a model-free and fast HARDI method for

multiple-shell data (Cheng et al. 2010). Let Bk,l,m(q) = Gk(q)Y
m
l (u) be spherical polar

Fourier basis, where Y m
l (u) is the l order m degree Spherical Harmonic (SH) basis and

Rk(q) is the Gaussian-Laguerre polynomial basis. It was proposed to sparsely represent
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E(q;v) (Assemlal et al. 2009). The SPFI is to fit a model given by

E(qi;v) =
K∑
k=0

L∑
l=0

l∑
m=−l

ak,l,m(v)Bk,l,m(qi) + εi(v), (4.5)

where K and L are large integers.

Bk,l,m(qi) = Gk(||qi||)Y m
l (u) (4.6)

Rk(||qi||) = κk(ζ)exp(−||qi||
2

2ζ
)L

1/2
k (
||qi||2

ζ
) (4.7)

κk(ζ) =

[
2

ζ3/2

k!

Γ(k + 3/2)

]1/2

(4.8)

In this case, if we set xi = (B0,0,0(qi), · · · , BK,L,L(qi))
T and β(v) = (a0,0,0(v), · · · , aK,L,L(v))T ,

then SPFI can be regarded as a special case of model (4.4). Moreover, it can be shown that

p(R0r;v) can be written as

p(R0r;v) =

L∑
l=0

l∑
m=−l

{
4(−1)l/2

ζ0.5l+1.5πl+1.5Rl
0

Γ(l + 1.5)

K∑
k=0

fk,l,m(ζ,R0)ak,l,m

}
Y m
l (u) =

L∑
l=0

l∑
m=−l

cl,mY
m
l (u)

(4.9)

fk,l,m(ζ, R0) = κk(ζ)

k∑
i=0

(−1)i

k + 0.5

k − i

 1

i!
20.5l+i−0.5Γ(0.5l + i+ 1.5)1F1(

2i+ l + 3

2
; l +

3

2
;−2π2R2

0ζ)

(4.10)

1F1(a; b;x) =

∞∑
k=0

(a)kx
k

(b)kk!
, (a)k = (a(a+ 1)...(a+ l − 1)),with(a)0 = 1 (4.11)

The Implementation includes two steps. The first step is to estimate coefficients {ak,l,m}

of the signal. The second step is the linear analytical transform {ak,l,m} to {cl,m} of EAP

profile p(R0), and the second step is independent of the first step.

The linear transform from {ak,l,m} to {cl,m} could be implemented as an matrix multipli-

cation. This transformation is independent with the data, since {fk,l,m(ζ,R0)} only depends

on ζ and R0. Once a R0 and the basis are given, trasformation matrix can be calculated.

And since in SPFI, Only the value of 1F1 at the fixed value −2π2R2
0ζ is needed, so the

transformation matrix only needs to be calculated once.

The basis matrix is calculated using q = b1/2 and ζ = 700 where b values are from image
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acquisition. The reasoning for this choice is that considering E(q) = exp(−4π2τq2D),

b = 4π2τq2, and a typical diffusion coefficient of D = 0.7 × 10−3mm2/s, a typical b-

value b = 3000s/mm2, we set ζ = 1
8π2τ×0.7×10−3 . If 4π2τ = 1, then ζ is about 700. The

transformation matrxi from {ak,l,m} to {cl,m} will be calcuated by setting R0 = 15µm.

4.2.2 Estimation Procedures

(Cheng et al. 2010) used lease square (LS) estimation with regularization terms for spher-

ical and radial parts. For LS estimation, denote signal vector by Y = [E(qi)]n×1, the basis

matrix by X = [Bk,l,m(qi)]n×(L+1)(L+2)(K+1)/2, and the spherical and radial regularization

diagonal matrices respectively by L = [l(l + 1)] and K = [k(k + 1)]. Then the coefficient

vector β = [ak,l,m] = (XTX + λlLTL + λkKTK)−1XTY , where λl and λk are the regular-

ization terms for spherical and radial parts. The implementation is very fast, but the LS

estimation is highly sensitive to (not robust against) outliers. Figure 4.1 shows that with

the presence of outliers, LS estiamtion with regularization may not recover the underlying

structure correctly.

In this paper, we are considering a robust estimation by minizing Huber’s loss function∑
i ρ(εi(v)), or equivalently solving

∑
i ρ
′(εi(v))xi = 0, with

ρ(εi(v)) =


εi(v)2 if |εi(v)| ≤ c

c(2|εi(v)| − c) if |εi(v)| > c

(4.12)

Where c is a parameter that controls the robustness level, and a smaller value of c usually

leads to more robust estimation. Huber argued that c = 1.345 is a good choice, and showed

that asymptotically, it is 95% as efficient as least square if the true distribution is normal

and much more efficient in many other cases.(Huber and Ronchetti 1975)

There are closed form solutions and fast algorithms for solving the least squares prob-

lem as well as the weighted least squares problem: Huber’s estimators can be obtained by
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minimizing a loss function , or equivalently solving

∑
i

ωiεi(v)xi = 0 (4.13)

Thus, a convenient way to solve for 4.13 is to use an iteratively reweighted least squares

(IRLS) algorithm, in which we calculate ωi = ρ′(εi(v))/εi(v), solve the weighted least squares

problem, re-calculate the weights, re-solve, and so on until convergence.

The preceding derivations are slightly oversimplied, in that the arguments for setting

c = 1.345 are based on the assumption that the response variable has known variance 1. In

reality, of course, this is not true, and we must apply the loss functions to the scaled residuals,

i.e. replace every
∑

i ρ(εi(v)) with
∑

i ρ(εi(v)/s), and
∑

i ρ
′(εi(v)) with

∑
i ρ
′(εi(v)/s),

where s is an estimated scale parameter. While a number of other estimators have been

proposed, the simplest is based on the median absolute deviation of the residuals:

MAD = median{|εi(v)|} (4.14)

where ŝ = MAD/0.6745, based on the idea that, for the standard normal, E(MAD) =

0.6745.

A key feature in HARDI is its spatial constraint. Specifically, the orientation and

anisotropy of any single fiber bundles change smoothly from one voxel to the next, par-

ticularly along the dominant fiber orientation, whereas it may change dramatically at the

boundaries between tracts and interfaces with gray matter structures and cerebrospinal fluid

(CSF) spaces. Moreover, the EAP profile or ODF is expected to change smoothly from one

voxel to the next in the same fiber crossing region, whereas it may change dramatically

at the boundaries of fiber crossing regions and surrounding fiber bundles. This is a very

important and powerful constraint that can be exploited to improve the reconstruction in

HARDI. However, the methods mentioned in previous sections are voxel-wise methods and

do not make use of the spatial constraint of HARDI.

To explicitly exploit such spatial constraint, we develop a robust multi-scale adaptive
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and sequential smoothing (MASS) to spatially and adaptively update {β(v) : v ∈ V}. The

key idea of MASS is to combine HARDI signals in a neighboring sphere of voxel v to make

inference on β(v) at the voxel v. Specifically, let B(v, h) be a sphere with radius h centered

at voxel v and ω(v,v′;h) be a weight function of triple (v,v′, h) such that

∑
v′∈B(v,h)

ω(v,v′;h) = 1 and ω(v,v′;h) ≥ 0 for all h ≥ 0.

MASS is based on a set of weighted quadratic function, denoted by ln(βj(v);ω, h) for j-th

component of β(v) as follows:

ln(βj(v);ωj , h) =
∑

v′∈B(v,h)

ωj(v,v
′;h)(β̂j(v

′)− βj(v))2 (4.15)

β̂j(v) =
∑

v′∈B(v,h)

ωj(v,v
′;h)β̂j(v

′) (4.16)

It is critical to choose a good ω(v,v′;h) in preventing oversmoothing the estimates of

β(v) across voxels, while preserving the edges between different structures, such as fiber

bundles, crossing fibers, or gray matter regions. A good ω(v,v′;h) should quantify the

similarity between β(v) and β(v′) or their corresponding EAPs. Specifically, if β(v) and

β(v′) substantially differ from each other, then the HARDI signals in voxel v′ do not contain

too much information on β(v) and thus ω(v,v′;h) should be close to 0. However, if β(v)

and β(v′) are close to each other indicating that the HARDI signals in voxel v′ contain

useful information on β(v), then ω(v,v′;h) should be significantly bigger than zero. See the

explicit expression of ω(v,v′;h) in Section 4.2.3.

4.2.3 Multi-scale Adaptive and Sequential Smoothing (MASS)

We develop the MASS procedure to adaptively determine w and estimate β(v) across

all voxels v ∈ V. Our multiscal adaptive strategy starts with building a sequence of nested

spheres with increasing radiues h0 = 0 < h1 < · · · < hS = r ranging from the smallest

scale h0 = 0 to a large scale hS = r at each voxel v. At the scale h0 = 0, we just calculate
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β̂(v;h0) = β̂(v) voxel-wisely without using any spatial information. It corresponds to setting

w(v,v′;h0) = 1 if v = v′ and 0 otherwise. Then, based on the signals contained in voxels d

and d′, we use methods as detailed below to calculate weights w(v,v′;h1) at scale h1 for all

voxels v. After getting the new weights w(v,v′;h1), we can update β̂(v;h1). Then we can

sequentially determine w(v,v′;hs) and adaptively update β̂(v;hs). From h0 = 0 to hS = r,

a path diagram of the multiscale adaptive strategy is given below:

w(v,v′;h0) w(v,v′;h1) · · · w(v,v′;hS = r)

⇓ ↗ ⇓ ↗ · · · ⇓

β̂(v;h0) β̂(v;h1) · · · β̂(v;hS)

MASS consists of three key steps: (I) an initialization step, (II) a weighted estimation

step, and (III) a stop checking step. In the initialization step, we prefix a geometric series

{hs = csh : s = 1, ..., S} of radii with h0 = 0, where ch ∈ (1, 2), say ch = 1.15 and

S = 10. We use small ch in order to prevent incorporating too many neighboring voxels

at the beginning, and thus it improves the robustness of the procedure and the accuracy of

parameter estimation. At h0 = 0, we obtain β̂(v;h0) = β̂(v) across all voxels by minimizing

4.13. We then set s = 1 and h1 = ch.

In the weighted estimation step, we first compute Dβj (v,v
′;hs−1) to characterize the

similarity between β̂j(v;hs−1) and β̂j(v′;hs−1) at voxels v and v′ and the adaptive weights

ωj(v,v
′;hs), which are defined as

Dβj (v,v
′;hs−1) = (β̂j(v

′;hs−1)− β̂j(v;hs−1))2/Σ(β̂j(v;hs−1)) (4.17)

Σ(β̂j(v;hs−1)) =
∑

v′∈B(v,hs−1)

ωj(v,v
′;hs−1)2Σ(β̂j(v

′;h0)) (4.18)

ωj(v,v
′;hs) =

Kloc(||v − v′||2/hs)Kst(Dβj (v,v
′;hs−1)/Cn)∑

v′∈B(v,hs)Kloc(||v − v′||2/hs)Kst(Dβj (v,v
′;hs−1)/Cn)

, (4.19)

where Kloc(u) and Kst(u) are two nonnegative kernel functions with compact support, Cn is

a number associated with n, and || · ||2 denotes the Euclidean norm of a vector (or a matrix).
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We then calculate

β̂j(v;hs) = argminβj(v)ln(βj(v);ωj , hs−1) =
∑

v′∈B(v,h)

ωj(v,v
′;hs−1)β̂j(v

′;hs−1) (4.20)

The weights Kloc(||v−v′||2/hs) give less weight to the voxel v′ ∈ B(v, hs), whose location is

far from the voxel v. TheKloc is a regular kernel function for smoothing the smoothed curves

or surfaces. Some common choices of Kloc(·) include the Gaussian kernel and Epanechnikov

kernel (Tabelow et al. 2006; 2008, Polzehl and Spokoiny 2000). We use Kloc = (1 − u2)+

throughout this paper. The weights Kst(·) downweight voxel v′ with large Dβj (v,v
′;hs−1)

which indicates a large difference between β̂j(v;hs−1) and β̂j(v′;hs−1). Although differnet

choice of Kst(·) have been suggested in the propagation-separation method (Polzehl and

Spokoiny 2000; 2006, Polzehl et al. 2010), we have tested these kernel functions and found

that Kst = exp(−u) performs reasonably well.

The scale Cn is used to penalize the similarity between any two voxels v and v′ in a

similar manner to bandwidth, and an appropriate choice of Cn is crucial for the behavior of

the propagation-separation method. As discussed in (Polzehl and Spokoiny 2000; 2006), a

propagation condition independent of the observations at hand can be used to specify Cn,

The basic idea of the propagation condition is that the impact of the statistical penalty in

Kst(Dβj (v,v
′;hs−1)/Cn) should be negligible under a homogeneous model βj(v) ≡ constant

yielding almost free smoothing within homogeneous regions. However, we take an alternative

approach to choose Cn here. Specifically, a good choice of Cn should balance between the

sensitivity and specificity of MASS. We choose Cn = n0.4χ2
1(0.8), where χ2

1(a) is the upper

a-percentile of the χ2
1 distribution.

In the stop checking step, after the first iteration, we start to calculate a stopping criterion

based on a normalized distance between β̂j(v;hs) and β̂j(v;h0) given by

Dβj (v;hs, h0) = (β̂j(v;hs)− β̂j(v;h0))2/Σ(β̂j(v;h0)) (4.21)
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Then, if Dβj (v;hs, h0) is greater than Cs, where Cs = χ2
1(0.8/s) in our implementation,

then we set β̂j(v;hS) = β̂j(v;hs−1) and s = S for the j-th component and voxel v. If s = S

for all voxels, we stop. If Dβj (v;hs, h0) ≤ Cs, then we set hs+1 = chhs, increase s by 1, and

continue with the weighted estimation step. It should be noted that different components of

β̂(v;hS) may stop at different bandwidths, indicating that different degrees of smoothness

are used to reconstruct HARDI.

We usually set the maximal stop S to be relatively small, say between 10 and 20, and

thus each B(v;hS) only contains a relatively small number of voxels. As S increases,the

number of neighboring voxels in B(v;hS) increases exponentially. It increase the chances

of oversmoothing βj(v) when v is near the edge of distinct regions. Moreover, in order to

prevent oversmoothing βj(v), we gradually decrease Cs with the number of iteration.

Finally, we summarize the MASS algorithm 2 for the adaptive estimation of ODF at

voxel v below.

Algorithm 2: MASS at voxel v
Input: Signals Y(v) and design matrix X
Output: Estimated EAP profile at Radius R0 = 15µm, p̂(v;hS)|R0

1 Estimate β̂(v) from (4.13).
2 for j-th component in β̂(v) do
3 for s← 1 to S do
4 calculate the weights wj(v,v′;hs) for d′ ∈ B(d, hs) by (4.19);
5 calculate β̂j(v;hs) by minizing (4.15).
6 if Dβj (v;hs, h0) > Cs, then
7 β̂j(v;hS) = β̂j(v;hs−1), and s = S,

8 else
9 hs+1 = chhs;

10 return p̂(v;hS)|R0 .

4.2.4 Maxima Extraction

Based on p̂(v;hS)|R0 at voxel v, we need to extract its maxima in order to infer fiber

directions. Although there are other more complicated methods for extracting maximal

directions, such as the method presented in (Hlawitschka and Scheuermann 2005), spherical
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Newton’s method (Tuch 2004), and Powell’s method (Jansons and Alexander 2003), we take

a simple thresholding approach in this paper. Specifically, we project the estimated EAP

onto the sphere tessellated with a triangle mesh, which has 2562 points on the unit sphere.

If the estimated EAP value at a mesh point is greater than the corresponding value at all

its neighboring mesh points and this estimated EAP value is greater than max(EAP)/2,

then the direction at this mesh point is regarded as a maximum. This thresholding method

avoids selecting small peaks that may appear due to noise.

4.3 Simulation Study

4.3.1 Data Generating

We examined the finite sample performance of our MASS on decting crossing fibers by

using synthetic HARDI data generated from the multi-tensor model (Alexander et al. 2002,

Tuch 2004). We simulated the diffusion-weighted signals according to

E(qi;v) =

√√√√(
T∑
k=t

pte
−biuT

i Dt(v)ui + σεi1)2 + (σεi2)2 for i = 1, · · · , n (4.22)

for i = 1, · · · , n, where qi = qiui with ui being a unit vector, T is the number of fibers,

pt is the weight for t-th fiber, b is the b-value and Dt(v) is the tensor matrix for the t-th

fiber, SNR = 1/σ, and εi1 and εi2 are independently simulated from the standard normal

distribution. We used the multi-tensor model 4.22 to generate different phantoms with

different regions of interest (ROIs) with 81 sampling directions on the hemisphere for the

3rd order tessellation of the icosahedron and b = 500, 1000, 2000, 3000s/mm2. Specifically,

voxels with a single fiber were generated from a single tensor model using diffusion tensor

profiles with eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s, voxels with two fiber directions were

generated by two-tensor model E(qi;v) = e−biu
T
i D1(v)ui/2 + e−biu

T
i D2(v)ui/2, and voxels

isotropic tensors were generated by the single tensor model using diffusion tensor profiles

with eigenvalues [1, 1, 1] × 10−3mm2/s. We estimated EAP at each voxel by using the two
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voxel-wise estimation methods including least square estiamtion (LS), Robust regression

(RR), and their corresponding MASS including LS-MASS, RR-MASS. For our smoothing

procedure, we set Kst = exp(−u), S = 10. For SPFI, we use all data in 4 shells and chose

SNR = 15, and K = 2 ,L = 4, λl = 1e− 7, λk = 5e− 8, ζ = 700 for all experiments. Then

we extracted the EAP maxima aligned with fiber directions.

4.3.2 Angle Detection in First Phantom with 90o crossing fibers

In the first phantom, we included four different ROIs including isotropic ROIs, two single

fiber ROIs with its direction going either along the x−axis (ROI1) or along the y−axis

(ROI2), and the 90o crossing fiber ROIs(ROI3); To add outliers to the data, we randomly

select 16 out of 81 directions, the data for these 16 directions are generated using different

underground structure, which is 45o degree rotation from that used for other directions.

Figure 4.2 presents the estimated EAP images for this type of phantom from different

settings. The left panel gives the EAP reconstruction from noise free and outlier free data;

The middle panel gives the LS result from noise free but outlier added data; the right panel

gives the RR result from noise free but outlier added data. We can see that LS estiamtion is

sensitive to outliers and RR estimation gives better EAP estimation for outlier added data.

Figure 4.4 gives the comparison of EAP estiamtions with and without MASS on data

with SNR=10, but NO outliers: The first column gives the EAP reconstruction results

using LS and LS-MASS. We can see that LS-MASS gives smoother result than LS. First two

panels in the second column gives the EAP reconstruction results using robust estimation

without (RR) and with MASS (RR-MASS); the third panel gives the ground truth. We can

see that RR-MASS is the closest to ground truth. Because MASS can reduce the noise by

incorporation useful neighborhood information into the estimation procedure.

Figure 4.5 gives the comparison of EAP estiamtions with and without MASS on outliers

added data with SNR=15. The first column gives the EAP reconstruction results using

LS and with LS-MASS. We can see that LS-MASS gives smoother result than LS, but it

still can not deal with the outlier. First two panels in the second column gives the EAP
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reconstruction results using RR and RR-MASS; the third panel gives the ground truth. We

can see that RR-MASS is the closest to ground truth. Because MASS can not only reduce

the noise by incorporation useful neighborhood information into the estimation procedure,

but also use robust estimation which is more stable agains the outlier.

To quantify the accuracy of detection angle, we generated 1,000 data sets without outliers

for three different SNRs including 10 ,15, and 20. We estimated the EAPs by using voxel-

wise LS, RR, LS-MASS and RR-MASS . Then we extracted the EAP maxima aligned with

fiber directions. For voxels with a single fiber, we calculated angle detection errors by

comparing recovered fiber directions with the ground truth. For voxels with two crossing

fibers, we calculated angle detection errors by comparing recovered crossing angles with the

ground truth. The mean of the angular errors at each voxel and the percentage of detecting

correct number of fibers are calculated based on the 1000 simulations using each estimation

method. The average values of these detection errors for voxels with one fiber and two fibers

are presented in Table 4.1.

Similarly, we generated 1,000 data sets with outliers for three different SNRs including

10 ,15, and 20. The mean of the angular errors at each voxel and the percentage of detecting

correct number of fibers are calculated based on the 1000 simulations using each estimation

method. The average values of these detection errors for voxels with one fiber and two fibers

are presented in Table 4.2.

Table 4.1 and Table 4.2 reveal that the mean of the angular errors are substantially

reduced and the percentage of detecting correct number of fibers are increased by adding our

adaptive smoothing techique. It may indicate that the proposed adaptive smoothing techique

can efficiently exploit spatial smoothness for reconstructing EAPs, while reducing noise

leading to better angle detection. LS type estimations outperform RR esitmations in terms

of the mean angle error on data without added outliers, while RR esitmations outperform

LS estimations on data with added outliers. This is because LS type of estimations are

sensitive to outliers and RR downweights the outliers in the data, leading to more stable

recovery of EAPs. The percentage of detecting correct number of fibers are similar from LS
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and RR estimations.

4.3.3 Angle Detection in Second Phantom with Twisted Crossing

In the second phantom, we included a twisted crossing region in the middle, one fiber

along x−axis (ROI1), and the other fiber with changing angles with x−axis from 30o, 45o ,

60o, 75o, to 90o and then from 90o, 75o, 60o, 45o to 30o. We marked all region with single

fiber, which is not along x−axis as ROI2, and all regions with crossing fibers as ROI3. To

add outliers to the data, we randomly select 13 out of 81 directions, the data for these 13

direcions are generated using different underground structure, which is 45o degree rotation

from that used for other directions.

Figure 4.3 presents the estimated EAP images for this type of phantom from different

settings. The left panel gives the EAP reconstruction from noise free and outlier free data;

The middle panel gives the LS result from noise free but outlier added data; the right panel

gives the RR result from noise free but outlier added data. We can see that LS estiamtion is

sensitive to outliers and RR estimation gives better EAP estimation for outlier added data.

Figure 4.6 gives the comparison of EAP estiamtions with and without MASS on data

with SNR=10, but NO outliers: The first column gives the EAP reconstruction results using

LS estimation without and with MASS. We can see that LS-MASS gives smoother result

than LS. First two panels in the second column gives the EAP reconstruction results using

robust estimation without and with MASS; the third panel gives the ground truth. We can

see that RR-MASS result is the closest to ground truth. Because MASS can reduce the

noise by incorporation useful neighborhood information into the estimation procedure.

Figure 4.7 gives the comparison of EAP estiamtions with and without MASS on outliers

added data with SNR=15: we rotated the underlying crossing 45o counterclockwisely in

randomly selected 13 out of 81 directions to mimic subject movement. The first column

gives the EAP reconstruction results using LS and LS-MASS. We can see that LS-MASS

gives smoother result than LS, but they still can not deal with the outlier. First two panels

in the second column gives the EAP reconstruction results using RR and RR-MASS; the
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third panel gives the ground truth. We can see that RR-MASS result is the closest to ground

truth. Because MASS can not only reduce the noise by incorporation useful neighborhood

information into the estimation procedure, but also use robust estimation which is more

stable agains the outlier.

To quantify the accuracy of detection angle, we generated 1,000 data sets without outliers

for three different SNRs including 10 ,15, and 20. We estimated the EAPs by using voxel-

wise LS, RR, LS-MASS and RR-MASS . Then we extracted the EAP maxima aligned with

fiber directions. For voxels with a single fiber, we calculated angle detection errors by

comparing recovered fiber directions with the ground truth. For voxels with two crossing

fibers, we calculated angle detection errors by comparing recovered crossing angles with the

ground truth. The mean of the angular errors at each voxel and the percentage of detecting

correct number of fibers are calculated based on the 1000 simulations using each estimation

method. The average values of these detection errors for voxels with one fiber and two fibers

are presented in Table 4.3.

Similarly, we generated 1,000 data sets with outliers for three different SNRs including

10 ,15, and 20. The mean of the angular errors at each voxel and the percentage of detecting

correct number of fibers are calculated based on the 1000 simulations using each estimation

method. The average values of these detection errors for voxels with one fiber and two fibers

are presented in Table 4.4.

Table 4.3 and Table 4.4 reveal that the mean of the angular errors are substantially

reduced and the percentage of detecting correct number of fibers are increased by adding our

adaptive smoothing techique. It may indicate that the proposed adaptive smoothing techique

can efficiently exploit spatial smoothness for reconstructing EAPs, while reducing noise

leading to better angle detection. LS type estimations outperform RR esitmations in terms

of the mean angle error on data without added outliers, while RR esitmations outperform

LS estimations on data with added outliers. This is because LS type of estimations are

sensitive to outliers and RR downweights the outliers in the data, leading to more stable

recovery of EAPs.
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4.4 Real Data Analysis

We tested our proposed method on public data from the NIH Human Connectome

Project (HCP). A full dMRI session includes 6 runs (each approximately 9 minutes and

50 seconds), representing 3 different gradient tables, with each table acquired once with

right-to-left and left-to-right phase encoding polarities, respectively. Each gradient table in-

cludes approximately 90 diffusion weighting directions plus 6 b = 0 acquisitions interspersed

throughout each run. Diffusion weighting consisted of 3 shells of b=1000, 2000, and 3000

s/mm2 interspersed with an approximately equal number of acquisitions on each shell within

each run. Figure 4.8 gives EAP recovery result using LS estimation. One slice is presented

and two ROIs are selected for furthur analysis.

In order to test our multi-scale adaptive and sequential smoothing (MASS) method, we

added racian noise with SNR = 15 to the HCP data, then recovered the EAPs using LS, LS-

MASS, RR and RR-MASS, where MASS is setup the same as simulation study, except here

λl = 5e− 9 and λk = 1e− 9. (Figure 4.9) shows the EAP recovery of ROI1 from Figure 4.8.

Panel (a) and (c) give the EAP results from noise added data using LS and LS-MASS; Panel

(b) and (d) give the EAP results from noise added data using RR and RR-MASS; Panel

(e) give EAP recovery from original HCP data, meaning without added racian noise. We

can see that results from LS-MASS and RR-MASS are closer to (e) when compared to LS

and RR respectively. In this data, LS-MASS and RR-MASS performly equally well. Similar

results are shown in Figure 4.10, the EAP recovery of ROI2 from Figure 4.8.

4.5 Conclusion

We have introduced a robust multi-scale adaptive and sequential smoothing (MASS)

framework to adaptively and sequentially reconstruct the EAPs across all voxels from

HARDI signals. In simulation data analysis, we have shown that adding MASS to the

regular LS estimation or robust estimation can substantially reduce the angle detection

error and increase the accuracy of detecting the correct number of fibers in each voxels.
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Because MASS reconstructs the EAPs at each voxel by adaptively borrowing the spatial

information from the neighbouring voxels, then can substantially reduce the noise level,

while improving the EAP reconstruction. This is also shown in the real data study. The

other important contribution of this paper is that we also show with the presence of the

outliers, like subject movement in the scanner, robust estimation works much better than

the regular LS estimation, as it downweights the abnormal signals, leading to more stable

reconstruction of the EAP.
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Table 4.1: The mean of anglular errors under given EAP configuration and the percentage
of correct number of detected EAP maximum in the first phantom. 1,000 simulated data
sets were used and NO outliers were added.

All voxels with one fiber
SNR LS LS-MASS RR RR-MASS
10 2.09 ( 100 %) 0.48 ( 100 %) 3.02 ( 100 %) 1.12 ( 100 %)
15 0.78 ( 100 %) 0.03 ( 100 %) 1.55 ( 100 %) 0.20 ( 100 %)
20 0.22 ( 100 %) 0.01 ( 100 %) 0.70 ( 100 %) 0.03 ( 100 %)

All voxels with two fibers
SNR LS LS-MASS RR RR-MASS
10 5.89 ( 99.08 %) 2.77 ( 99.87 %) 6.31 ( 95.25 %) 2.99 ( 99.52 %)
15 3.02 ( 99.99 %) 1.29 ( 100 %) 2.82 ( 99.93 %) 1.44 ( 99.99 %)
20 2.17 ( 100 %) 0.57 ( 100 %) 2.06 ( 100 %) 0.83 ( 100 %)
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Table 4.2: The mean of anglular errors under given EAP configuration and the percentage
of correct number of detected EAP maximum in the first phantom. 1,000 simulated data
sets were used and outliers were added.

All voxels with one fiber
SNR LS LS-MASS RR RR-MASS
10 7.21 ( 100 %) 6.40 ( 100 %) 6.53 ( 99.61 %) 5.20 ( 100 %)
15 6.78 ( 100 %) 5.83 ( 100 %) 5.07 ( 100 %) 4.26 ( 100 %)
20 6.59 ( 100 %) 5.30 ( 100 %) 4.47 ( 100 %) 3.94 ( 100 %)

All voxels with two fibers
SNR LS LS-MASS RR RR-MASS
10 22.77 ( 83.67 %) 13.60 ( 92.82 %) 16.99 ( 82.39 %) 11.82 ( 92.98 %)
15 12.62 ( 94.17 %) 5.92 ( 99.13 %) 10.25 ( 94.57 %) 5.34 ( 98.58 %)
20 7.23 ( 98.74 %) 3.89 ( 99.88 %) 5.83 ( 98.93 %) 3.16 ( 99.67 %)

Table 4.3: The mean of anglular errors under given EAP configuration and the percentage
of correct number of detected EAP maximum in the second phantom. 1,000 simulated data
sets were used and NO outliers were added.

All voxels with one fiber
SNR LS LS-MASS RR RR-MASS
10 2.42 ( 100 %) 1.36 ( 100 %) 3.22 ( 100 %) 1.99 ( 100 %)
15 1.43 ( 100 %) 0.84 ( 100 %) 2.03 ( 100 %) 1.10 ( 100 %)
20 1.00 ( 100 %) 0.74 ( 100 %) 1.39 ( 100 %) 0.85 ( 100 %)

All voxels with two fibers
SNR LS LS-MASS RR RR-MASS
10 6.26 ( 93.03 %) 4.74 ( 97.26 %) 5.72 ( 91.53 %) 4.20 ( 97.49 %)
15 3.98 ( 99.56 %) 2.62 ( 99.92 %) 3.73 ( 99.57 %) 3.06 ( 99.89 %)
20 2.74 ( 99.99 %) 1.56 ( 100 %) 3.18 ( 99.99 %) 2.85 ( 100 %)
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Table 4.4: The mean of anglular errors under given EAP configuration and the percentage
of correct number of detected EAP maximum in the second phantom. 1,000 simulated data
sets were used and outliers were added.

All voxels with one fiber
SNR LS LS-MASS RR RR-MASS
10 4.64 ( 100 %) 4.07 ( 100 %) 4.85 ( 99.61 %) 3.53 ( 100 %)
15 3.70 ( 100 %) 3.63 ( 100 %) 3.09 ( 100 %) 2.12 ( 100 %)
20 1.83 ( 100 %) 1.07 ( 100 %) 1.73 ( 100 %) 0.80 ( 100 %)

All voxels with two fibers
SNR LS LS-MASS RR RR-MASS
10 9.60 ( 71.37 %) 9.52 ( 75.05 %) 9.47 ( 78.04 %) 7.37 ( 82.68 %)
15 8.72 ( 81.85 %) 8.29 ( 87.84 %) 6.52 ( 89.42 %) 5.14 ( 93.69 %)
20 7.45 ( 92.21 %) 6.15 ( 97.57 %) 4.59 ( 97.89 %) 3.23 ( 99.36 %)

LS LS result with outliers RR result with outliers

Figure 4.1: Comparison of LS estiamtion with robust estimation: we rotated the underlying
crossing 45o counterclockwisely in randomly selected 16 out of 81 directions to mimic subject
movement. The left panel gives the EAP reconstruction from noise free data; The middle
panel gives the LS result from outlier added data; the right panel gives the Robust regression
result from outlier added data. We can see that LS estiamtion is sensitive to outliers and
robust regression gives better EAP estimation for outlier added data.

73



LS LS result with outliers RR result with outliers

Figure 4.2: Comparison of LS estiamtion with robust estimation on outliers added data: we
rotated the underlying crossing 45o counterclockwisely in randomly selected 16 out of 81
directions to mimic subject movement. The left panel gives the EAP reconstruction from
noise free and outlier free data; The middle panel gives the LS result from noise free but
outlier added data; the right panel gives the RR result from noise free but outlier added
data. We can see that LS estiamtion is sensitive to outliers and RR estimation gives better
EAP estimation for outlier added data.

LS LS result with outliers RR result with outliers

Figure 4.3: Comparison of LS estiamtion with robust estimation on outliers added data: we
rotated the underlying crossing 45o counterclockwisely in randomly selected 13 directions
to mimic subject movement. The left panel gives the EAP reconstruction from noise free
and outlier free data; The middle panel gives the LS result from noise free but outlier added
data; the right panel gives the RR result from noise free but outlier added data. We can see
that LS estiamtion is sensitive to outliers and RR estimation gives better EAP estimation
for outlier added data.
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LS RR

LS-MASS RR-MASS

ground truth

Figure 4.4: Comparison of EAP estiamtions with and without MASS on data with SNR=10,
but NO outliers: The first column gives the EAP reconstruction results using LS estimation
without and with MASS. We can see that LS with MASS gives smoother result than without.
First two panels in the second column gives the EAP reconstruction results using robust
estimation without and with MASS; the third panel gives the ground truth. We can see
that RR resutl with MASS is the closest to ground truth. Because MASS can reduce the
noise by incorporation useful neighborhood information into the estimation procedure.
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LS RR

LS-MASS RR-MASS

ground truth

Figure 4.5: Comparison of EAP estiamtions with and without MASS on outliers added
data with SNR=15: we rotated the underlying crossing 45o counterclockwisely in randomly
selected 16 out of 81 directions to mimic subject movement. The first column gives the
EAP reconstruction results using LS estimation without and with MASS. We can see that
LS with MASS gives smoother result than without MASS, but it still can not deal with the
outlier. First two panels in the second column gives the EAP reconstruction results using
robust estimation without and with MASS; the third panel gives the ground truth. We
can see that RR resutl with MASS is the closest to ground truth. Because MASS can not
only reduce the noise by incorporation useful neighborhood information into the estimation
procedure, but also use robust estimation which is more stable agains the outlier.
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LS RR

LS-MASS RR-MASS

ground truth

Figure 4.6: Comparison of EAP estiamtions with and without MASS on data with SNR=10,
but NO outliers: The first column gives the EAP reconstruction results using LS estimation
without and with MASS. We can see that LS with MASS gives smoother result than without.
First two panels in the second column gives the EAP reconstruction results using robust
estimation without and with MASS; the third panel gives the ground truth. We can see
that RR resutl with MASS is the closest to ground truth. Because MASS can reduce the
noise by incorporation useful neighborhood information into the estimation procedure.
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LS RR

LS-MASS RR-MASS

ground truth

Figure 4.7: Comparison of EAP estiamtions with and without MASS on outliers added
data with SNR=15: we rotated the underlying crossing 45o counterclockwisely in randomly
selected 13 out of 81 directions to mimic subject movement. The first column gives the
EAP reconstruction results using LS estimation without and with MASS. We can see that
LS with MASS gives smoother result than without MASS, but it still can not deal with the
outlier. First two panels in the second column gives the EAP reconstruction results using
robust estimation without and with MASS; the third panel gives the ground truth. We
can see that RR resutl with MASS is the closest to ground truth. Because MASS can not
only reduce the noise by incorporation useful neighborhood information into the estimation
procedure, but also use robust estimation which is more stable agains the outlier.
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Figure 4.8: EAP recovery result of data from the NIH Human Connectome Project using
LS estimation.
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(a)LS (b)RR

(c) LS-MASS (d)RR-MASS

(e)LS from original HCP

Figure 4.9: EAP recovery of ROI1 from Figure 4.8. Panel (a) and (c) give the EAP results
from noise added data using LS and LS-MASS; Panel (b) and (d) give the EAP results
from noise added data using RR and RR-MASS; Panel (e) give EAP recovery from original
HCP data, meaning without added racian noise. We can see that results from LS-MASS
and RR-MASS are closer to (e) when compared to LS and RR respectively. In this data,
LS-MASS and RR-MASS performly equally well.
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(a)LS (b)RR

(c) LS-MASS (d)RR-MASS

(e)LS from original HCP

Figure 4.10: EAP recovery of ROI2 from Figure 4.8. Panel (a) and (c) give the EAP results
from noise added data using LS and LS-MASS; Panel (b) and (d) give the EAP results
from noise added data using RR and RR-MASS; Panel (e) give EAP recovery from original
HCP data, meaning without added racian noise. We can see that results from LS-MASS
and RR-MASS are closer to (e) when compared to LS and RR respectively. In this data,
LS-MASS and RR-MASS performly equally well.
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CHAPTER 5: SPARSE MULTI-SCALE ADAPTIVE MODEL (SMAM)

Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-

invasive investigation of neural architecture of the brain. In Chapter 3 and Chapter 4,

we have proposed multi-scale adaptive framework to spatially and adaptively infer ODFs

and EAPs across all voxels, However the reconstruction results from signal with low SNR

(≤ 10) are still not satisfactory. In this chapter, we develop a sparse multi-scale adaptive

model (SMAM) to spatially and adaptively infer the EAP of water diffusion in regions with

complex fiber configurations using voxel-adaptive dictionary. We show SMAM can provide

great EAP reconstruction for signals with low SNR.

5.1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a widely used in-vivo imaging tech-

nique to explore the information of neural micro-structure by probing the diffusion of water

molecules. So far it is still the unique non-invasive method to reveal the micro-geometry of

nervous tissues noninvasively and to explore the neural connectome in living human sub-

jects. The diffusion of water molecules is constrained by the surrounding structures including

nerves, cells and surrounding tissue. For example, qualitatively water molecules diffuse fast

along fibers and slowly cross fibers. Thus measuring the diffusion process quantitatively is

crucial to understanding the neural micro-structure and fiber directions.

A central problem in dMRI is to estimate the Ensemble Average Propagator (EAP)

p(R;v), which describes fully the probability distribution of water molecule displacement

R from a limited number of measurements of the signal attenuation E(q;v). Under the

narrow pulse assumption(Stejskal and Tanner 1965), the relationship between the E(q;v)
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and p(R;v), at each voxel v in a common space V, where q = qu ∈ R3 and R = Rr ∈ R3,

is given by a Fourier transform (FT) relationship (Callaghan 1991) such that

p(R;v) =

ˆ
q∈R3

E(q;v)e−2πiq·Rdq (5.1)

Various methods already exist to reconstruct the EAP or estimate EAP features. The most

common and famous model, is the diffusion tensor model (Basser et al. 1994b). Although

very successful in many neuroscience studies, diffusion tensor imaging (DTI) is limited by the

Gaussian assumption (free diffusion model) and cannot account for complex fiber configura-

tions. A large family of techniques, mostly based on different mathematical representation

of the signal, use multiple q-shell acquisitions in order to reconstruct signal features or EAP

features, such as generalized high order tensors (Liu et al. 2004) based on cumulant ex-

pansions; or the diffusion orientation transform (DOT) (Özarslan et al. 2006); or a fourth

order Cartesian tensor representation of the probability profile (Barmpoutis et al. 2008);or

better diffusion ODFs (Aganj et al. 2009, Tristán-Vega et al. 2009b) than obtained from

q-ball imaging (QBI) (Tuch et al. 2002). Unfortunately, for most of these methods, many

DW measurements are still needed. Moreover, most of these methods do not recover the

full EAP but features of it, making several assumptions that remain to be validated. Some

attempts to sparsely represent the diffusion signal have already been performed. Spheri-

cal Polar Fourier Expression (SPFE) was proposed to sparsely represent to signal (Assemlal

et al. 2008; 2009). Based on SPFE, Spherical Polar Fourier Imaging(SPFI), a novel technique

for model-free analytical reconstruction of the EAP profile from the signals was proposed

(Cheng et al. 2010). This continuous representation is based on the Spherical Polar Fourier

(SPF) basis and provides closed-form expressions for EAP and ODF computation.

Recovering a latent function from a small number of samples in Fourier domain is a classic

problem in Compressed Sensing (CS) theory (Donoho 2006). A good basis that allows sparse

representation is crucial for the reconstruction. Although some analytic bases, including

discrete basis like wavelets (Menzel et al. 2011), and continuous basis like the SPF basis,
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have been proposed as sparse bases for EAP estimation, a sparser basis can be learned from

well chosen exemplars via Dictionary Learning (DL) techniques based on CS theory (Aharon

et al. 2006, Mairal et al. 2010). (Bilgic et al. 2012) learns a discrete dictionary via the K-

SVD (Aharon et al. 2006) approach and uses it in FOCal Underdetermined System Solver

algorithm for EAP estimation. This strategy dramatically reduces the number of samples

and scanning time required by DSI. However, because their dictionary is composed of a set

of discrete basis vectors, Bilgic et al.’s approach suffers from numerical errors similar to DSI.

(Merlet et al. 2012) learns a continuous dictionary, parametrized as a linear combination of

some atoms adopted from SPF basis, from synthetic Gaussian signals, where the learned

basis has the closed forms for ODF and EAP estimation due to the results of SPF basis

(Cheng et al. 2010). However, there are some inherent limitations in both theoretical analysis

and practical usage in (Merlet et al. 2012). For example, they learned the scale parameter

ζ associated with the SPF basis from the training data, instead of the testing data. In

addition, they have also neglected isotropic exemplars in the training data, causing over-

fitting problems in less anisotropic areas such as the grey matter.

(Cheng et al. 2013) Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI),

for effective compressed-sensing reconstruction of the diffusion signal and the EAP. This ap-

proach offers a number of advantages over (Merlet et al. 2012). First, DL-SPFI dramatically

reduces the dimensionality of the optimization problem by working in a small subspace of

the SPF coefficients, instead of q-space. Second, the dictionary learned using DL-SPFI can

be applied optimally and adaptively to each voxel by voxel-dependent determination of the

optimal scale parameter. Third, DL-SPFI considers the constraint E(0) = 1 during both

learning and estimation processes. However, all these DL methods perform reconstruction

independently at each voxel by minimizing the square error loss function, which is very

sensitive to noise and outliers. This essentially ignoring the functional nature of the HARDI

data at different voxels in space.

The aim of this chapter is to develop a sparse multi-scale adaptive model (SMAM) to
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spatially and adaptively infer the EAP of water diffusion in regions with complex fiber con-

figurations using voxel-adaptive dictionary. In SMAM, we reformulate the HARDI imaging

reconstruction as a regression problem using DL-SPFI. Similarity and distance weights are

introduced to account for spatial smoothness of HARDI, while preserving the unknown dis-

continuities (e.g., edges between white matter and grey matter) of HARDI. We integrate DL

estimation with the propagation-separation method (Polzehl and Spokoiny, 2000) to adap-

tively estimate EAPs across voxels. Experimental results indicate that SMAM can reduce

the angle detection errors on fiber crossing area and provides more accurate reconstructions

than the original DL-SPFI method and SMAM performs very well when the signals have

low signal to noise ratio.

5.2 Methods

5.2.1 Model Formulation

We usually acquire n normalized HARDI data with each image containing N voxels

for each subject. Thus, we observe n normalized HARDI measurements {(E(bi;v),gi, bi) :

i = 1, · · · , n} at voxel v ∈ V, where gi = (gi,1, gi,2, gi,3)T is the gradient vector. Based

on (2.3), these HARDI measurements can be also represented as q-space measurements

{E(qi) : i = 1, · · · , n}. We usually omit putting voxel v, if no confusion in context. See

Figure 2.8.

Most HARDIs assume that

f(E(qi;v)) = xTi β(v) + εi(v), (5.2)

where f(·) is a given transformation function (e.g., f(s) = s or f(s) = log(s)), xi is a p× 1

vector of covariates, which depends on qi (or (bi, ri)), β(v) is a p × 1 vector of regression

coefficients, and εi(v) is an error term with mean zero and variance σ2
i (v). In practice,

E(qi;v) equals the ratio of magnetic resonance signal measured at qi, denoted by S(qi;v),
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to the magnetic resonance signal measured at 0, denoted by S(0;v). Since the signal-

to-noise ratio in S(0;v) is very high, we ignore the noise component of S(0;v). Model

5.2 is general enough to cover many existing HARDIs. In the literature, for generalized

DTI and high order tensor (HOT), it is common to set f(E(qi;v)) = log(E(qi;v)) and

represent log(E(qi;v)) as a polynomial function of qi, whereas for most other HARDIs,

such as Q-ball imaging (QBI) or diffusion orientation transform (DOT), it is common to

set f(E(qi;v)) = E(qi;v) and approximate E(qi;v) by a linear combination of some basis

functions.

Spherical polar Fourier imaging (SPFI) is a model-free and fast HARDI method for

multiple-shell data (Cheng et al. 2010). Let Bk,l,m(q) = Gk(q)Y
m
l (u) be spherical polar

Fourier basis, where Y m
l (u) is the l order m degree Spherical Harmonic (SH) basis and

Rk(q) is the Gaussian-Laguerre polynomial basis. It was proposed to sparsely represent

E(q;v) (Assemlal et al. 2009). The SPFI is to fit a model given by

E(qi;v) =
K∑
k=0

L∑
l=0

l∑
m=−l

ak,l,m(v)Bk,l,m(qi) + εi(v), (5.3)

where K and L are large integers.

Bk,l,m(qi) = Gk(||qi||)Y m
l (u) (5.4)

Rk(||qi||) = κk(ζ)exp(−||qi||
2

2ζ
)L

1/2
k (
||qi||2

ζ
) (5.5)

κk(ζ) =

[
2

ζ3/2

k!

Γ(k + 3/2)

]1/2

(5.6)

In this case, if we set xi = (B0,0,0(qi), · · · , BK,L,L(qi))
T and β(v) = (a0,0,0(v), · · · , aK,L,L(v))T ,

then SPFI can be regarded as a special case of model (5.2). For each voxel v, the SPF coeffi-

cients β = (a0,0,0, · · · , aK,L,L)T can be estimated from the signal attenuation measurements

{E(qi)} via least square fitting with l2 or l1 regularization, where the constraint E(0) = 1

can be imposed by adding artificial samples at ||q|| = 0 (Cheng et al. 2010; 2011). It also
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can be imposed by the equality obtained from E(0) = 1,
∑K

k=0 ak,l,mGk(0) =
√

4πδ0
l , 0 ≤

l ≤ L,−l ≤ m ≤ l (Cheng et al. 2013). Based on this, we can separate the coefficient vector

β into β = (βT0 , β
′T )T , where β0 = (a0,0,0, · · · , a0,L,L)T , β′ = (a1,0,0, · · · , aK,L,L)T , then βT0

can be represented by β′T

a0,l,m =
1

G0(0)

(
√

4πδ0
l −

K∑
k=1

ak,l,mGk(0)

)
, 0 ≤ l ≤ L,−l ≤ m ≤ l (5.7)

Let qi = qiui, then the 5.3 can be written as

E(qi)−
G0(qi|ζ)

G0(0|ζ)
=

K∑
k=1

L∑
l=0

l∑
m=−l

ak,l,m

(
Gk(qi|ζ)− Gk(0|ζ)

G0(0|ζ)
G0(qi|ζ)

)
Y m
l (ui) + εi, (5.8)

X ′β′ = E′ (5.9)

where

X ′ =


(
G1(q1|ζ)− G1(0|ζ)

G0(0|ζ)G0(q1|ζ)
)
Y 0

0 (u1) · · ·
(
GK(q1|ζ)− GK(0|ζ)

G0(0|ζ) G0(q1|ζ)
)
Y L
L (u1)

...
. . .

...(
G1(qn|ζ)− G1(0|ζ)

G0(0|ζ)G0(qn|ζ)
)
Y 0

0 (un) · · ·
(
GK(qn|ζ)− GK(0|ζ)

G0(0|ζ) G0(qn|ζ)
)
Y L
L (un)


(5.10)

E′ =

[
E(q1)− G0(q1|ζ)

G0(0|ζ)
, · · · , E(qn)− G0(qn|ζ)

G0(0|ζ)

]T
β′ = (a1,0,0, · · · , aK,L,L)T

β′ can be calculated by the least square fitting with l2 or l1 regularization or some

robust methods. Then β0 can be obtained using 5.7, and the estimated β satisfies E(0) = 1.

Moreover, it can be shown that the EAP at radius R0, p(R0u;v) can be written as

p(R0r;v) =

L∑
l=0

l∑
m=−l

{
4(−1)l/2

ζ0.5l+1.5πl+1.5Rl
0

Γ(l + 1.5)

K∑
k=0

fk,l,m(ζ,R0)ak,l,m

}
Y m
l (u) =

L∑
l=0

l∑
m=−l

cl,mY
m
l (u)

(5.11)

fk,l,m(ζ, R0) = κk(ζ)

k∑
i=0

(−1)i

k + 0.5

k − i

 1

i!
20.5l+i−0.5Γ(0.5l + i+ 1.5)1F1(

2i+ l + 3

2
; l +

3

2
;−2π2R2

0ζ)

(5.12)
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1F1(a; b;x) =

∞∑
k=0

(a)kx
k

(b)kk!
, (a)k = (a(a+ 1)...(a+ l − 1)),with(a)0 = 1 (5.13)

The Implementation includes two steps. The first step is to estimate coefficients β′

of the signal, then calculate {ak,l,m} using 5.7. The second step is the linear analytical

transform {ak,l,m} to {cl,m} of EAP profile p(R0), and the second step is independent of the

first step. The linear transform from {ak,l,m} to {cl,m} could be implemented as an matrix

multiplication. This transformation is independent with the data, since {fk,l,m(ζ,R0)} only

depends on ζ and R0. Once a R0 and the basis are given, transformation matrix can be

calculated. And since in SPFI, Only the value of 1F1 at the fixed value −2π2R2
0ζ is needed,

so the transformation matrix only needs to be calculated once.

The basis matrix is calculated using q = b1/2 and ζ = 700 where b values are from image

acquisition. The reasoning for this choice is that considering E(q) = exp(−4π2τq2D),

b = 4π2τq2, and a typical diffusion coefficient of D = 0.7 × 10−3mm2/s, a typical b-

value b = 3000s/mm2, we set ζ = 1
8π2τ×0.7×10−3 . If 4π2τ = 1, then ζ is about 700. The

transformation matrix from {ak,l,m} to {cl,m} will be calculated by setting R0 = 15µm.

5.2.2 Dictionary Learning

Now let’s consider the l1 regularization problem

minB,Λ
∑
i

||Λβ′i||1 s.t. ||X ′β′j − E′j ||22 ≤ εDL ∀j (5.14)

⇔ minC,D
∑
i

||ci||1 s.t. ||X ′Dcj − E′j ||22 ≤ εDL ∀j (5.15)

Where B = (β′1, · · · , β′Q) is the SPF coefficient matrix. The transform matrix D will result

in a transformed SPF basis X ′D that can be used for even sparser representation of the

signal. C = (c′1, · · · , c′Q) is the new coefficient matrix in association with the transformed

basis.

(Bilgic et al. 2012) proposed to learn a dictionary from real data, as done in DL-FOCUSS,

but the learned dictionary may be significantly affected by noise and the samll sample size.

(Cheng et al. 2013) proposed an alternative solution to perform DL using some synthetic
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data that approximate well the real signal. They proposed to learn a continuous basis using

mixtures of Gaussian signals by solving

minC,D
∑
i

||ci||1 s.t. ||Dcj − β′j ||22 ≤ εDL ∀j (5.16)

which is equivalent to 5.15, due to the orthogonality of the SPF basis for large K and L.

Threshold εDL can be chosen simply as 0.01 for unit-norm normalized {β′j}. (Cheng et al.

2013) proved that (1) the single tensor model is sufficient to learn a dictionary which spar-

sifies the multi-Gaussian signals; (2)The parameter ζ should be determined adaptively from

testing signals. For signals generated from single tensor model with fixed mean diffusivity

(MD) d0, then for large enough K, fixed L, and small enough εDL, the optimal scale ζ for

the DL problem 5.16 is ζ∗ = (8π2τd0)−1. Signals were generated using the single tensor

model with d0 = 0.7 × 10−3mm2,ζ0 = (8π2τd0)−1, MD in range [0.5, 0.9] × 10−3, FA in

range [0, 0.9], 321 directions equally distributed on unit sphere. The corresponding SPF co-

efficients {β′j} in 5.16 were computed with K = 4, L = 8 via LS estimation. The dictionary

D was learned using the online method in (Mairal et al. 2010), with identity matrix as the

initial value. By solving 5.16, 254 atoms were learned in D, including the isotropic atoms

{Bk,0,0(qi)}Kk=1. Note that the isotropic atoms are important so that grey matter and the

CSF can be sparsely represented.

5.2.3 Estimation Procedures

After learning the dictionary D, we compute the estimation for voxel v using l1 regu-

larization. Let E denote the signal vector for voxel v, we can compute the scale parameter

ζ = (8π2τd)−1 based on the estimated MD value d for the signal vector. Then the new

basis matrix X ′ and new signal vector E′ can be computed base on ζ. The coefficients c by

computed by

minc||X ′Dc− E′||22 + λ

p∑
j=1

cj
|ĉj |γ

(5.17)
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where ĉ is the least square estimator using LB regularization. (λ, γ) can be selected by

two-dimensional cross-validation. Note that this is one type of adaptive lasso method (Zou

2006a), which has been proved to have oracle property. After estimating c, the SPF coeffi-

cients β = (βT0 , β
′T )T can be computed by β′ = Dc and 5.7

A key feature in HARDI is its spatial constraint. Specifically, the orientation and

anisotropy of any single fiber bundles change smoothly from one voxel to the next, par-

ticularly along the dominant fiber orientation, whereas it may change dramatically at the

boundaries between tracts and interfaces with gray matter structures and cerebrospinal fluid

(CSF) spaces. Moreover, the EAP profile or ODF is expected to change smoothly from one

voxel to the next in the same fiber crossing region, whereas it may change dramatically

at the boundaries of fiber crossing regions and surrounding fiber bundles. This is a very

important and powerful constraint that can be exploited to improve the reconstruction in

HARDI. However, the methods mentioned in previous sections are voxel-wise methods and

do not make use of the spatial constraint of HARDI.

To explicitly exploit such spatial constraint, we develop a sparse multi-scale adaptive

model (SMAM) to spatially and adaptively update {c(v) : v ∈ V}. The key idea of SMAM

is to combine HARDI signals in a neighboring sphere of voxel v to make inference on c(v)

at the voxel v. Specifically, let B(v, h) be a sphere with radius h centered at voxel v and

ω(v,v′;h) be a weight function of triple (v,v′, h) such that

∑
v′∈B(v,h)

ω(v,v′;h) = 1 and ω(v,v′;h) ≥ 0 for all h ≥ 0.

SMAM is based on a set of weighted penalization functions, denoted by Pn(c(v);ω, h),

which is defined as follows:

Pn(c(v);ω, h) = ||E′w(v;h)−X ′Dc(v)||22 + ρ(c(v);λ(v)) (5.18)

where E′w(v;h) =
∑

v′∈B(v,h) ω(v,v′;h)E′(v′). Given the current weights {ω(v,v′;h) :

90



v,v′ ∈ V}, we consider the weighted GEE estimator of c(v), denoted by ĉ(v, h), which

satisfies

ĉ(v, h) = argminc(v)Pn(c(v);ω, h). (5.19)

It is critical to choose a good ω(v,v′;h) in preventing oversmoothing the estimates of

c(v) across voxels, while preserving the edges between different structures, such as fiber

bundles, crossing fibers, or gray matter regions. A good ω(v,v′;h) should quantify the

similarity between c(v) and c(v′) or their corresponding EAPs. Specifically, if c(v) and

c(v′) substantially differ from each other, then the HARDI signals in voxel v′ do not contain

too much information on c(v) and thus ω(v,v′;h) should be close to 0. However, if c(v)

and c(v′) are close to each other indicating that the HARDI signals in voxel v′ contain

useful information on c(v), then ω(v,v′;h) should be significantly bigger than zero. See the

explicit expression of ω(v,v′;h) in Section 5.2.4.

5.2.4 SMAM

We develop the SMAM procedure to adaptively determine w and estimate c(v) across

all voxels v ∈ V. Our multiscal adaptive strategy starts with building a sequence of nested

spheres with increasing radiues h0 = 0 < h1 < · · · < hS = r ranging from the smallest

scale h0 = 0 to a large scale hS = r at each voxel v. At the scale h0 = 0, we just calculate

c(v;h0) = ĉ(v) voxel-wisely without using any spatial information. It corresponds to setting

w(v,v′;h0) = 1 if v = v′ and 0 otherwise. Then, based on the signals contained in voxels d

and d′, we use methods as detailed below to calculate weights w(v,v′;h1) at scale h1 for all

voxels v. After getting the new weights w(v,v′;h1), we can update c(v;h1). Then we can

sequentially determine w(v,v′;hs) and adaptively update c(v;hs). From h0 = 0 to hS = r,

a path diagram of the multiscale adaptive strategy is given below:

w(v,v′;h0) w(v,v′;h1) · · · w(v,v′;hS = r)

⇓ ↗ ⇓ ↗ · · · ⇓

c(v;h0) c(v;h1) · · · c(v;hS)
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SMAM consists of three key steps: (I) an initialization step, (II) a weighted estimation

step, and (III) a stop checking step. In the initialization step, we prefix a geometric series

{hs = csh : s = 1, ..., S} of radii with h0 = 0, where ch ∈ (1, 2), say ch = 1.15 and

S = 10. We use small ch in order to prevent incorporating too many neighboring voxels

at the beginning, and thus it improves the robustness of the procedure and the accuracy of

parameter estimation. At h0 = 0, we obtain c(v;h0) = ĉ(v) across all voxels by minimizing

(5.18). We then set s = 1 and h1 = ch.

In the weighted estimation step, we first compute Dist(v,v′;hs−1) to characterize the

similarity between the two estimated Signals based on X ′Dĉ(v;hs−1) and X ′Dĉ(v′;hs−1)

at voxels v and v′ and the adaptive weights ω(v,v′;hs), which are defined as

ω(v,v′;hs) =
Kloc(||v − v′||2/hs)Kst(Dist(v,v′;hs−1)/Cn)∑

v′∈B(v,hs)Kloc(||v − v′||2/hs)Kst(Dist(v,v′;hs−1)/Cn)
, (5.20)

where Kloc(u) and Kst(u) are two nonnegative kernel functions with compact support, Cn is

a number associated with n, and || · ||2 denotes the Euclidean norm of a vector (or a matrix).

We compute Dist(v,v′;hs−1) as the similarity between the estimated signals in vox-

els v and v′ for HARDI as follows, we may set Dist(v,v′;hs−1) = ||X ′Dĉ(v;hs−1) −

X ′Dĉ(v′;hs−1)||2/||X ′Dĉ(v;hs−1)||2.

The weights Kloc(||v − v′||2/hs) give less weight to the voxel v′ ∈ B(v, hs), whose

location is far from the voxel v. The Kloc(·) is a regular kernel function for smoothing the

smoothed curves or surfaces. Some common choices of Kloc(·) include the Gaussian kernel

and Epanechnikov kernel (Tabelow et al. 2006; 2008, Polzehl and Spokoiny 2000). We use

Kloc = (1 − u2)+ throughout this paper. The weights Kst(·) downweight the voxels that

are dissimilar to voxel d. The Dist(v,v′;hs−1) takes large values if the estimated signals in

voxel v differ significantly from those in voxel v′. We set Kst = exp(−u2/a), where a is a

positive number.

After the calculation of ω(v,v′;hs), we calculate the weighted HARDI signals of voxel v,

denoted by E′w(v;hs) =
∑

v′∈B(v,hs)w(v,v′;hs)E
′(v′). Then, we use E′w(v;hs) to compute
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ĉ(d;hs) at voxel v. The computation of SMAM at each iteration is of the same order

as that for the voxel-wise approach. Thus, this multiscale adaptive method provides an

efficient method for adaptively exploring the neighboring voxels of each voxel. Since SMAM

sequentially includes more data at each iteration, it will adaptively increase the statistical

efficiency in estimating c(v) in a homogenous region, while decreasing the variation of the

weights w(v,v′;hs).

In the stop checking step, after the first iteration, we start to calculate a stopping criterion

based on the normalized L2 distance between ĉ(v;hs) and ĉ(v;hs−1), denoted by Dists(v) =

||X ′Dĉ(v;hs)−X ′Dĉ(v′;hs−1)||2/||X ′Dĉ(v;hs−1)||2. We use Dists(v) to determine whether

’bad’ HARDI signals from neighboring voxels lead to a dramatic change in the estimated

ĉ(v;hs−1). If Dists(v) > Cs, where Cs is a positive scalar, then we set ĉ(v;hs) = ĉ(v;hs−1)

and s = S for voxel v. If s = S for all voxels, we stop. If Dists(v) ≤ Cs, then we set hs+1 =

chhs, increase s by 1, and continue with the weighted estimation step. In practice, different

voxels may stop at different bandwidths, indicating that different degrees of smoothness are

used to reconstruct HARDI. We set Cs = χ2(1)0.6/sD̄med to prevent oversmoothing, where

χ2(1)a is the upper 1 − a percentile of the χ2(1) distribution. As s increases, Cs decreases

to zero. Moreover, D̄med is chosen to be the median of {Dist(v,v′;h0) : v 6= v′}, where v

and v′ are M preselected voxels {vi}Mi=1 from HARDI.

Finally, we summarize the SMAM algorithm 3 for the adaptive estimation of the ODF

at voxel v below.

5.2.5 Maxima Extraction

Based on p̂(v;hS)|R0 at voxel v, we need to extract its maxima in order to infer fiber

directions. Although there are other more complicated methods for extracting maximal

directions, such as the method presented in (Hlawitschka and Scheuermann 2005), spherical

Newton’s method (Tuch 2004), and Powell’s method (Jansons and Alexander 2003), we take

a simple thresholding approach in this paper. Specifically, we project the estimated EAP

onto the sphere tessellated with a triangle mesh, which has 2562 points on the unit sphere.
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Algorithm 3: PMARM at voxel v
Input: Signals E(v) and SPF matrix X
Output: Estimated EAP profile at Radius R0 = 15µm, p̂(v;hS)|R0

1 Calculate the MD value d, and ζ = (8π2τd)−1.
2 Calculate X ′ and E′ from 5.10.
3 Estimate ĉ(v) from (5.19).
4 for s← 1 to S do
5 calculate the weights w(v,v′;hs) for d′ ∈ B(d, hs) by (5.20);
6 calculate the weighted signals of voxel v by using
7 E′w(v;h) =

∑
v′∈B(v,h) ω(v,v′;h)E′(v′);

8 calculate ĉ(v;hs) based on (5.19);
9 calculate Dists(v).

10 If Dists(v) > Cs, ĉ(v;hS) = ĉ(v;hs−1), and s = S,
11 else
12 hs+1 = chhs;

13 return p̂(v;hS)|R0 .

If the estimated EAP value at a mesh point is greater than the corresponding value at all

its neighboring mesh points and this estimated EAP value is greater than max(EAP)/2,

then the direction at this mesh point is regarded as a maximum. This thresholding method

avoids selecting small peaks that may appear due to noise.

5.3 Simulation Study

5.3.1 Data Generating

We examined the finite sample performance of our SMAM on decting crossing fibers by

using synthetic HARDI data generated from the multi-tensor model (Alexander et al. 2002,

Tuch 2004). We simulated the diffusion-weighted signals according to

E(qi;v) =

√√√√(
T∑
t=1

pte
−biuT

i Dt(v)ui + σεi1)2 + (σεi2)2 for i = 1, · · · , n (5.21)

for i = 1, · · · , n, where qi = qiui with ui being a unit vector, T is the number of fibers,

pt is the weight for t-th fiber, b is the b-value and Dt(v) is the tensor matrix for the t-th

fiber, SNR = 1/σ, and εi1 and εi2 are independently simulated from the standard normal
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distribution. We used the multi-tensor model (5.21) to generate different phantoms with

different regions of interest (ROIs) with 81 sampling directions on the hemisphere for the

3rd order tessellation of the icosahedron and b = 500, 1000, 2000, 3000s/mm2. Specifically,

voxels with a single fiber were generated from a single tensor model using diffusion tensor

profiles with eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s, voxels with two fiber directions were

generated by two-tensor model E(qi;v) = e−biu
T
i D1(v)ui/2 + e−biu

T
i D2(v)ui/2, and voxels

isotropic tensors were generated by the single tensor model using diffusion tensor profiles

with eigenvalues [1, 1, 1] × 10−3mm2/s. We estimated EAP at each voxel by using the

weighted l1 and its corresponding SMAM, weighted l1-SMAM. For our smoothing procedure,

we set Kst = exp(−u2), Cn = 1, S = 10. For SPFI, we use all data in 4 shells and chose

SNR = 5, 7, 10, 12, and K = 4 ,L = 8, λ = 1e − 8, γ = 0.5, ζ = 700 for all experiments.

Then we extracted the EAP maxima aligned with fiber directions.

5.3.2 Angle Detection in First Phantom with 90o crossing fibers

In the first phantom, we included four different ROIs including isotropic ROIs, two single

fiber ROIs with its direction going either along the x−axis (ROI1) or along the y−axis

(ROI2), and the 90o crossing fiber ROIs(ROI3).

Figure 5.1 presents the estimated EAP images for this type of phantom from different

settings. The first row gives the EAP reconstruction results using Weighted l1 estimation

without and with SMAM. We can see that Weighted l1 with SMAM gives smoother result

than without. The panel in the second row shows the EAP reconstruction from noise free

data. We can see that the resutl with SMAM is the closer to noise-free result. Because

SMAM can reduce the noise by incorporation useful neighborhood information into the

estimation procedure.

To quantify the accuracy of detection angle, we generated 1,000 data sets for three

different SNRs including 5 ,7, 10 and 12. We estimated the EAPs by using voxel-wise

weighted l1 and weighted l1-SMAM . Then we extracted the EAP maxima aligned with

fiber directions. For voxels with a single fiber, we calculated angle detection errors by
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comparing recovered fiber directions with the ground truth. For voxels with two crossing

fibers, we calculated angle detection errors by comparing recovered crossing angles with the

ground truth. The mean of the angular errors at each voxel and the percentage of detecting

correct number of fibers are calculated based on the 1000 simulations using each estimation

method. The average values of these detection errors for voxels with one fiber and two fibers

are presented in Table 5.1.

Table 5.1 reveals that the mean of the angular errors are substantially reduced and

the percentage of detecting correct number of fibers are increased by adding our adaptive

smoothing techique. It may indicate that the sparse multi-scale adaptive model can effi-

ciently exploit spatial smoothness for reconstructing EAPs, while reducing noise leading to

better angle detection. For the voxels with multiple fibers, adding SMAM can significantly

improve the The percentage of detecting correct number of fibers, especially in the data

with low SNR.

5.3.3 Angle Detection in Second Phantom with Twisted Crossing

In the second phantom, we included a twisted crossing region in the middle, one fiber

along x−axis (ROI1), and the other fiber with changing angles with x−axis from 30o, 45o ,

60o, 75o, to 90o and then from 90o, 75o, 60o, 45o to 30o. We marked all region with single

fiber, which is not along x−axis as ROI2, and all regions with crossing fibers as ROI3.

Figure 5.2 presents the estimated EAP images for this type of phantom from different

settings. The first row gives the EAP reconstruction results using Weighted l1 estimation

without and with SMAM. We can see that Weighted l1 with SMAM gives smoother result

than without. The panel in the second row shows the EAP reconstruction from noise free

data. We can see that the resutl with SMAM is the closer to noise-free result. Because

SMAM can reduce the noise by incorporation useful neighborhood information into the

estimation procedure.

To quantify the accuracy of detection angle, we generated 1,000 data sets for three

different SNRs including 5 ,7, 10 and 12. We estimated the EAPs by using voxel-wise

96



weighted l1 and weighted l1-SMAM . Then we extracted the EAP maxima aligned with

fiber directions. For voxels with a single fiber, we calculated angle detection errors by

comparing recovered fiber directions with the ground truth. For voxels with two crossing

fibers, we calculated angle detection errors by comparing recovered crossing angles with the

ground truth. The mean of the angular errors at each voxel and the percentage of detecting

correct number of fibers are calculated based on the 1000 simulations using each estimation

method. The average values of these detection errors for voxels with one fiber and two fibers

are presented in Table 5.2.

Table 5.2 reveals that the mean of the angular errors are substantially reduced and

the percentage of detecting correct number of fibers are increased by adding our adaptive

smoothing techique. It may indicate that the sparse multi-scale adaptive model can effi-

ciently exploit spatial smoothness for reconstructing EAPs, while reducing noise leading to

better angle detection. For the voxels with multiple fibers, adding SMAM can significantly

improve the The percentage of detecting correct number of fibers, especially in the data

with low SNR.

5.4 Real Data Analysis

We tested our proposed method on public data from the NIH Human Connectome

Project (HCP). A full dMRI session includes 6 runs (each approximately 9 minutes and

50 seconds), representing 3 different gradient tables, with each table acquired once with

right-to-left and left-to-right phase encoding polarities, respectively. Each gradient table

includes approximately 90 diffusion weighting directions plus 6 b = 0 acquisitions inter-

spersed throughout each run. Diffusion weighting consisted of 3 shells of b=1000, 2000, and

3000 s/mm2 interspersed with an approximately equal number of acquisitions on each shell

within each run. Figure 5.3 gives EAP recovery result using weighted l1 estimation. One

slice is presented and two ROIs are selected for furthur analysis.

In order to test our sparse multi-scale adaptive model(SMAM) method, we added racian

noise with SNR = 5 to the HCP data, then recovered the EAPs using weighted l1 and
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weighted l1-SMAM, where SMAM is setup the same as simulation study. Figure 5.4 shows

the EAP recovery of ROI1 from Figure 5.3. Panel (a) gives the EAP results from noise

added data using Weighted l1; Panel (b) gives the EAP results from noise added data using

Weighted l1-MASS; Panel (c) give EAP recovery from original HCP data, meaning without

added racian noise. We can see that results from Weighted l1-MASS is much closer to (c)

when compared to Weighted l1. Similar results are shown in Figure 5.5, the EAP recovery

of ROI2 from Figure 5.3.

Panel (a) gives the EAP results from noise added data using Weighted l1; Panel (b)

gives the EAP results from noise added data using Weighted l1-MASS; Panel (c) give EAP

recovery from original HCP data, meaning without added racian noise. We can see that

results from Weighted l1-MASS is much closer to (c) when compared to Weighted l1.

5.5 Conclusion

We have introduced a sparse multi-scale adaptive model (SMAM) framework to adap-

tively and sequentially reconstruct the EAPs across all voxels from HARDI signals using

SPFI dictionary learning. In simulation data analysis, we have shown that adding SMAM to

the weighted l1 estimation can substantially reduce the angle dectection error and increase

the accuracy of dectecting the correct number of fibers in each voxels. Because SMAM

reconstructs the EAPs at each voxel by adaptively borrowing the spatial information from

the neighboring voxels, then can substantially reduce the noise level, while improving the

EAP reconstruction. This is also shown in the real data study.
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Table 5.1: The mean of anglular errors under given EAP configuration and the percentage
of correct number of detected EAP maximum in the first phantom. 1,000 simulated data
sets were used .

All voxels with one fiber
SNR Weighted l1 Weighted l1-SMAM
5 5.41 ( 94.35 %) 2.050 ( 99.97 %)
7 3.25 ( 99.66 %) 1.25 ( 100 %)
10 1.93 ( 100 %) 0.70 ( 100 %)
12 1.47 ( 100 %) 0.49 ( 100 %)

All voxels with two fibers
SNR Weighted l1 Weighted l1-SMAM
5 16.18 ( 50.99 %) 6.95 ( 91.77 %)
7 9.00 ( 76.98 %) 3.56 ( 98.52 %)
10 4.87 ( 95.35 %) 1.93 ( 99.62 %)
12 3.85 ( 98.17 %) 1.52 ( 99.48 %)
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Table 5.2: The mean of anglular errors under given EAP configuration and the percentage
of correct number of detected EAP maximum in the second phantom. 1,000 simulated data
sets were used .

All voxels with one fiber
SNR Weighted l1 Weighted l1-SMAM
5 5.49 ( 94.77 %) 3.10 ( 99.99 %)
7 3.78 ( 99.73 %) 2.69 ( 100.00 %)
10 2.66 ( 100.00 %) 2.23 ( 100.00 %)
12 2.26 ( 100.00 %) 2.13 ( 100.00 %)

All voxels with two fibers
SNR Weighted l1 Weighted l1-SMAM
5 11.57 ( 50.87 %) 7.99 ( 90.95 %)
7 8.05 ( 76.83 %) 5.75 ( 98.55 %)
10 5.32 ( 94.81 %) 3.53 ( 99.46 %)
12 4.19 ( 98.04 %) 2.82 ( 99.48 %)

Weighted l1 Weighted l1 with SMAM

noise free

Figure 5.1: Comparison of EAP estiamtions with and without SMAM on data with 90 degree
crossing and SNR=5: The first row gives the EAP reconstruction results using Weighted
l1 estimation without and with SMAM. We can see that Weighted l1 with SMAM gives
smoother result than without. The panel in the second row shows the EAP reconstruction
from noise free data. We can see that the resutl with SMAM is the closer to noise-free result.
Because SMAM can reduce the noise by incorporation useful neighborhood information into
the estimation procedure.
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Weighted l1 Weighted l1 with SMAM

noise free

Figure 5.2: Comparison of EAP estiamtions with and without SMAM on data with twisted
crossing and SNR=5: The first row gives the EAP reconstruction results using Weighted
l1 estimation without and with SMAM. We can see that Weighted l1 with SMAM gives
smoother result than without. The panel in the second row shows the EAP reconstruction
from noise free data. We can see that the resutl with SMAM is the closer to noise-free result.
Because SMAM can reduce the noise by incorporation useful neighborhood information into
the estimation procedure.
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Figure 5.3: EAP recovery result of data from the NIH Human Connectome Project using
weighted l1 estimation.
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(a) Weighted l1 (b) Weighted l1 with SMAM

(c) noise free

Figure 5.4: EAP recovery of ROI1 from Figure 5.3. Panel (a) gives the EAP results from
noise added data using Weighted l1; Panel (b) gives the EAP results from noise added data
using Weighted l1-MASS; Panel (c) give EAP recovery from original HCP data, meaning
without added racian noise. We can see that results from Weighted l1-MASS is much closer
to (c) when compared to Weighted l1.

(a) Weighted l1 (b) Weighted l1 with SMAM

(c) noise free

Figure 5.5: EAP recovery of ROI2 from (Figure 5.3). Panel (a) gives the EAP results from
noise added data using Weighted l1; Panel (b) gives the EAP results from noise added data
using Weighted l1-MASS; Panel (c) give EAP recovery from original HCP data, meaning
without added racian noise. We can see that results from Weighted l1-MASS is much closer
to (c) when compared to Weighted l1.
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CHAPTER 6: DISCUSSION

In summary, we have introduced three multi-scale adaptive smoothing and denoising

procedures, PMARM, MASS and SMAM for improving ODF or EAP reconstructions from

DWI images. We have shown that adding these procedures to regular statistical estimating

methods can substantially reduce the angle detection error and increase the accuracy of

detecting the correct number of fibers in each voxels. Because these procedures reconstructs

the ODFs or EAPs at each voxel by adaptively borrowing the spatial information from the

neighboring voxels, then can substantially reduce the noise level, while improving the EAP

reconstruction. This is shown in both the simulation studies and real data studies.

However, these adaptive smoothing procedures are not perfect either. The most impor-

tant issue with these procedures is how to avoid over-smoothing, especially on the boundary

of anisotropic and isotropic regions, i.e. the boundary of white matter and grey matter.

PMARM and SMAM are denoising signals directly while MASS is smoothing the parameter

estimations. Based on our experiments, PMARM and SMAM are relatively easier over-

smooth the ODFs and EAPs compared to MASS. In order to avoid over-smoothing, a good

stopping criterion is required. In our future projects, we are planning to combine denoising

the signal and smoothing the parameter estimates together to possibly develope an more

intelligent stopping rule which can balance over-smoothing and under-smoothing.

In three procedures we proposed, q-space signals are represented by continuous bases,

such as Spherical Harmonics basis and Spherical Polar Fourier basis, which allow the closed

forms of EAP and the ODF estimation. Among these procedures, reconstructing 3D ensem-

ble average propagator (EAP) describing the diffusion process to obtain richer information

on the complex microstructure of biological tissues is more attractive than reconstructing
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the ODF, which only captures the angular structure of the diffusion process.

For two procedures using SPFI, dictionary learning method provide sparser represen-

tation for EAPs and handle signals with low signal-to-noise ratio. In SMAM, we denoise

the signal after removing the approximated isotropic Gaussian part calculated using voxel

specific parameter ζ, therefore the effectiveness of the denoising is more obvious than using

MASS. However, the learned dictionary used in SMAM is from synthetic single fiber data,

it may not be applied to every image data. In the future project, we want to combine this

learning technique and our smoothing technique to learn the dictionary from the real data.
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