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ABSTRACT 

 

Sunita Sayeram 

Evaluation of 4D Reconstruction Methods for 

Gated Cardiac SPECT Imaging in Obese Patients 

(Under the direction of David S. Lalush) 

 

The purpose of this study is to evaluate 4D reconstruction methods for the 

processing of gated cardiac single photon emission computed tomography (SPECT) 

images from obese patients. Gated SPECT on obese patients is extremely noisy and often 

clinically useless; it is hypothesized that 4D reconstruction methods may help. The 

methods compared are the ordered-subsets expectation-maximization (OS-EM) algorithm 

with a 3D Gaussian filter, OS-EM with a 3D Gaussian combined with a time-domain 

Butterworth filter, and the rescaled block-iterative maximum a posteriori (RBI-MAP) 

algorithm with Gibbs priors for spatial and time-domain smoothing.  Clinical gated 

SPECT data were used to derive a table of Tc-99m tetrofosmin activity uptake ratios.  

Moderately and morbidly obese male and female phantom models were created for the 

4D NURBS-based Cardiac Torso (NCAT) phantom, and mild and severe motion defects 

were generated in addition to a normal heart model. A blood pool phantom study enabled 

optimization of reconstruction parameters for the methods so they result in similar noise 

statistics in the heart.  Poisson noise was added to the projection data (including the 

effects of detector response, attenuation and scatter) generated from the phantoms.  The 

noisy phantom and patient projection data were reconstructed with the three methods, and 

imported onto the clinical workstations, to be analyzed with the Quantitative Gated 
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SPECT (QGS) software.  Quantitative parameters (chamber volumes) were recorded for 

the phantom and patient data.  Statistical analysis led to the conclusion that OS-EM with 

4D filtering was markedly different, a result confirmed in the normal phantom models, 

with better quantitation.  Visually, RBI-MAP appeared to result in smoother, more 

realistic cardiac motion.  A preference study was performed with four physicians who 

read the patient images using QGS and rated them on a 7-point scale to indicate which 

method most improved their confidence in the diagnoses.  The one-way ANOVA showed 

no significant difference in preference for the processing methods. The conclusion is that 

the choice of reconstruction method may make more of a difference in patients with 

greater heart motion, and that the OS-EM method with 4D filtering may have an 

advantage over the other methods when it comes to LV chamber volume quantification.   
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Chapter 1 

 

Introduction 

 
1.1 Significance 

Cardiovascular disease is the leading cause of death in North America, and it is 

very prevalent in the obese population.  Obesity, defined as a body mass index (BMI) of 

30 kg/m
2
 or greater (Bigaard et al.), is fast reaching epidemic proportions in the U.S. 

with nearly 70% of adults being classified as obese or overweight compared with fewer 

than 25% around 40 years ago (LavieMilani, 2003, Manson, 2003 #118).  Excessive 

weight is an established risk factor for cardiovascular disease, type 2 diabetes mellitus, 

osteoarthritis and several medical conditions, and can lead to premature mortality 

(MansonBassuk, 2003).  With regards to cardiovascular disease, obese patients are more 

likely to be hypertensive than lean patients, leading to increased arterial pressure and 

increased risk of left ventricular hypertrophy.  Obesity is proven to have adverse effects 

on both diastolic and systolic ventricular function (LavieMilani, 2003).   

Early diagnosis of disease can improve the prognosis for the patient.  Given the 

prevalence of obesity and its cardiovascular effects leading to premature mortality, obese 

patients make up increasing numbers of the population being evaluated for cardiovascular 

disease (CAD) with the aid of various imaging modalities.  Myocardial single photon 

emission computed tomography (SPECT) is a technique frequently used to evaluate left 

ventricular (LV) perfusion, which with the addition of gating, can evaluate LV function 

as well.   



 

2 

 

Obesity causes some challenges in the interpretation of these studies.  Hansen et 

al. (Hansen et al.)studied the effects of obesity (including patient weight and body 

surface area) on the accuracy of quantitative SPECT Thallium-201 (Tl-201) perfusion 

imaging, and found that the accuracy was significantly reduced.  It has been suggested 

that the use of Technetium-99m (Tc-99m) agents may improve the accuracy of 

myocardial perfusion imaging.  Prone imaging has been shown to reduce inferior wall 

attenuation artifacts, and results in improved specificity and accuracy for CAD diagnosis 

as compared to supine imaging (Perault C, 1995).  There are also challenges from the 

artifacts produced by the excess soft-tissue attenuation in obese patients, which can affect 

the diagnostic accuracy of myocardial perfusion SPECT.  An approach that minimizes 

the impact of soft-tissue attenuation by adding useful information for the interpretation of 

attenuation artifacts, is the technique of using echocardiography (ECG) to gate the 

SPECT acquisition (Lima et al., 2003).  However, even with this technique, there are 

challenges due to the noisy nature of the images, which can reduce the utility of gated 

SPECT imaging in obese patients.  This dissertation will explore the problem, and look at 

three-dimensional (3D) versus four-dimensional (4D) reconstruction methods for gated 

SPECT imaging of obese patients. 

 

1.2 Organization 

 This dissertation is structured into five chapters, with subsections for each of the 

three main projects.  Chapter Two covers background material introducing gated SPECT 

imaging and its techniques, the processing methods being evaluated, and tools that will 

be used to investigate the different methods.  Chapter Three describes in detail the 
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experimental design and methodology for each of the projects.  Chapter Four presents the 

results of the studies performed with the patient and simulated phantom data, with 

Chapter Five providing discussion and conclusions. 

 

 



 

 

 

Chapter 2 

Background  

 
2.1 Basic SPECT Theory and Myocardial Imaging in Obese Patients 

 

2.1.1 SPECT Imaging   

 The science of nuclear medicine involves the administration of radioactive-

labeled pharmaceuticals which emit gamma rays or positrons from within the patient as 

they decay.  The pharmaceuticals are chosen so as to concentrate the radioactivity within 

the organ of interest in the body.  A position-sensitive gamma camera designed to record 

the decays can then be used to capture images of the distribution of the radionuclide 

within the patient.  Single photon emission computed tomography (SPECT) and positron 

emission tomography (PET) are two broad classes of nuclear medicine imaging 

modalities. 

 SPECT employs gamma-ray emitting radionuclides, and is a tomographic mode 

of imaging where several equally spaced planar views are acquired from an 180
o
 or 360

o
 

orbit as the detector moves around the patient.  A lead collimator in front of the crystal 

limits the acceptance angle for photons hitting the detector.  There is a scintillation event 

in the crystal for each photon that has an interaction with it, and the light produced is 

transmitted to the photomultiplier tubes via a light pipe, where amplification of the signal 

occurs in the form of tens to hundreds of thousands of electrons per gamma photon.  

Circuits for pulse-height analysis and positioning behind the photomultiplier tubes 

provide the energy and position information for each gamma ray interaction in the 
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detector.  This information is then transmitted to the display and analysis station, the 

computer, for further processing of the multitude of planar views or projection data into 

cross-sectional images of the radioactivity distribution within the patient.  

 

 There are three commonly used radioactive tracers for myocardial perfusion 

imaging.  Thallium-201 has been available for over 25-30 years, and thus most 

experience has been gained with this tracer, but is not considered ideal because of a low 

gamma photopeak energy (69-83 keV) that limits resolution, and a relatively long half-

life that limits the activity administered (Higley et al., 1993).  Technetium-99m 

methoxyisobutylisonitrile (MIBI) and technetium-99m-1,2-bis[bis(2-ethoxyethyl) 

phosphino] ethane (tetrofosmin) have been introduced since then, and are used in an 

increasing proportion of studies (Higley et al., 1993; Kapur et al., 2002).  The three 

tracers have been compared in clinical studies, and while some reported no significant 

differences between the tracers for summed uptake scores (Reyes E, 2006), others 

 
 

Figure 2.1: Image from http://us.myoview.com/tech/diagtest.html depicts SPECT 

imaging 
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discovered that the differing statuses of myocardial viability caused variations in both 

initial uptake and delayed retention of the tracers, and that tetrofosmin showed the least 

amount of tracer redistribution over time (Takahashi et al., 1996).  Still others reported 

that overall image quality was superior with the technetium tracers which were deemed 

equal, and this was thought to be due to the reduced low-count artifact in the high-count 

resting images, and reduced attenuation artifact in women (Kapur et al., 2002).  This 

study also confirmed higher heart-to-liver ratios for thallium than technetium, but reports 

conflicting results in other studies where the time of imaging was found to matter as it 

was noted that tetrofosmin has faster clearance from the liver than MIBI.  The study 

reported higher heart-to-lung ratios for both technetium tracers over thallium, confirmed 

by other studies (Manka-Waluch et al., 2006) including preclinical trials in rat, guinea 

pig, and minipig (Higley et al., 1993).  Ultimately, several studies concluded that 

technetium is preferred for obese patients, in women with large breasts, and in patients 

with impaired ventricular function where ECG-gated myocardial SPECT is indicated. 

 At UNC’s Memorial Hospital, there is a choice between the Lantheus Medical 

Imaging product Cardiolite® labeled with Tc-99m sestamibi, or the GE Healthcare 

imaging agent Myoview® used with Tc-99m tetrofosmin, for gated myocardial SPECT 

imaging.  The latter product is more often chosen for its rapid lung and liver clearance as 

compared to Tc-99m sestamibi, combined with a similar heart uptake and retention, and 

blood clearance kinetics, which offers the option of earlier imaging or higher quality 

images in earlier sessions (Higley et al., 1993; Jain, 1999).  There currently is not a 

model for tetrafosmin uptake in the computerized phantom populations that have been 

used in myocardial imaging studies, so this dissertation aims to develop one.  
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2.1.2 ECG-Gated Myocardial SPECT Imaging 

Left ventricular (LV) function is a very important diagnostic and prognostic 

indicator in patients with coronary artery disease (CAD).  The assessment of LV volumes 

and LV ejection fraction (LVEF) is of great importance in the evaluation of CAD, and in 

determining the prognosis.  LVEF is important enough to be used as an initial measure in 

clinical decision making, as well as being used to monitor LV remodeling after 

myocardial infarction, and to select patients for various kinds of therapies (Baur, 2008; 

CacciabaudoSzulc, 2001).  Thus, evaluation of left ventricular function, particularly in 

quantifying the extent and degree of left ventricular defects, is crucial in providing the 

physician with the information needed to stratify risks and develop a therapeutic strategy 

best suited to the disease (PaulNabi, 2004). 

 There are several techniques that are of use in acquiring different facets of 

information about left ventricular function.  Echocardiography, nuclear imaging, 

magnetic resonance imaging (MRI), computed tomography (CT) of the heart and contrast 

angiography, in particular, are useful in measuring left ventricular ejection fraction.  

Echocardiography is the most commonly used technique as it is widely available, costs 

the least, imparts no radiation, has moderate spatial resolution and is easily performed, 

but is highly operator and patient-dependent.  LV function is frequently measured with 

three-dimensional structure extrapolated with measurements using two-dimensional 

techniques, which leads to sub-optimal accuracy and reproducibility for quantitative 

measurements.  There are also acoustic window limitations and the analysis is highly 

subjective, which are all reasons that contribute to this technique being less than ideal 

(Baur, 2008; CacciabaudoSzulc, 2001; Sciagra, 2007).  While the cardiac CT technique 
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measuring left ventricular function is very reproducible in 3D, acquired in 10-15 seconds 

and yields high spatial resolution, it comes with a considerable radiation exposure.  MRI, 

by contrast, imparts no radiation to the patient and has good spatial resolution, but is 

more difficult to perform and more expensive, in addition to requiring long acquisition 

times (difficult for claustrophobic patients) and being contraindicated in patients with 

pacemakers and implantable cardioverter defibrillators (Baur, 2008; Sciagra, 2007).  

There are two main nuclear imaging techniques that can be used, radionuclide 

angiography being one, and gated myocardial SPECT being the other.  First-pass 

radionuclide angiography (FPRNA) and equilibrium-gated radionuclide angiography 

(ERNA) are two of the former kind of technique used to measure left ventricular 

function.  FPRNA is preferred for assessing peak-exercise ventricular function and 

measuring right ventricular function, while ERNA is an equilibrium technique considered 

to be the most accurate for estimating left ventricular systolic function.  Gated myocardial 

SPECT imaging is the preferred imaging method for the simultaneous assessment of 

ventricular perfusion and function (PaulNabi, 2004).  Gated SPECT is widely available 

and is considered the only technique that allows reliable evaluation of myocardial 

perfusion during dynamic exercise (Sciagra, 2007).  

 The stress technique used in the rest-stress study may involve either maximal 

dynamic exercise, which is physiological and provides hemodynamic data with 

prognostic value, or pharmacological stress using a vasodilator agent (like adenosine or 

dipyridamole) or beta-agonist, which is useful in patients with restricted exercise 

tolerance (Prvulovich, 2006).  Commonly used rest-stress study protocols are shown in 

Figure 2.2, where the gated SPECT study is shown to be administered either after the rest 
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or the stress portion of the study, depending on the protocol used.  Patients are imaged 

supine with arms raised above the head to avoid causing attenuation in lateral projections, 

and to allow greater proximity of the camera to the chest wall.  Homogeneous myocardial 

uptake in the rest and stress images is typical of normal perfusion, while a defect in the 

stress images that normalizes in the rest images (i.e. a reversible defect) indicates an 

inducible perfusion abnormality which may be caused by a coronary stenosis 

(Prvulovich, 2006).  The presence of a defect in both the stress and rest images (a fixed 

defect) corresponds to an area of infarction in the heart.  The location of the defect is 

symptomatic of the vessels involved, and the physician has to distinguish true defects 

from artifacts arising from raised diaphragms in men and attenuation artifacts from large 

breasts in women.  

Cardiac gating adds a vital dimension to myocardial imaging, enabling the 

diagnosticians to distinguish real defects from artifactual ones, in addition to empowering 

them to visualize cardiac motion and wall thickening (by means of cine-loop displays), 

and assess cardiac function quantitatively by means of calculations of chamber volumes 

by clinical software packages.  The most commonly used ones are Quantitative Gated 

SPECT (QGS) developed at Cedars-Sinai Medical Center (Germano et al., 1997; 

Germano et al., 1995), 4D-MSPECT from the University of Michigan Medical Center 

(Nakajima et al., 2001; Schaefer WM, 2004), and Emory University’s Emory Cardiac 

Toolbox (Faber et al., 1999).  The largest volume of the heart (which occurs when the 

myocardium relaxes in preparation for refilling) and the smallest volume (which occurs 

during myocardial contraction in the ejection phase) represent the end-diastolic volume 

(EDV) and end-systolic volume (ESV) respectively, while left-ventricular ejection 
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fraction (LVEF) is estimated using the formula (EDV – ESV) / EDV x 100 (PaulNabi, 

2004).  As seen in Figure 2.3, gating is accomplished by means of an ECG signal that is 

used to trigger acquisition of the images.  Acquisition starts with the R wave of the ECG,  

and images during one cardiac cycle (represented by the R-R interval) are divided into 

frames of equal duration – usually 8 or 16 (PaulNabi, 2004).  

An attempt to reach a consensus worldwide on the normal range of LV ejection 

fraction at rest and during exercise, that pooled data of 1200 subjects from 28 centers in 

nuclear cardiology, revealed that the lowest and highest normal values of EF were 

considered to be around 47-50% and 70-77% (Pfisterer ME, 1985).  During exercise, 

these numbers were expected to increase more than 5 absolute EF percent over a normal 

resting value.  Physicians in the Nuclear Medicine clinic at UNC Hospital also confirmed 

that they considered these ranges to be normal.   
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Figure 2.2: Figures from http://us.myoview.com/tech/diagtest.html and (PaulNabi, 

2004), show typical gated SPECT imaging protocols using Technetium-99m tetrofosmin 

(Myoview™). 
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2.1.3 Imaging of Obese Patients 

A principal problem with gated SPECT images is the increase in noise due to the 

division of total acquired counts for each view into time frames, and this issue is 

magnified in the case of obese patients, due to excess soft-tissue attenuation of the 

radioactivity that produces artifactual defects and can result in “flashing” artifacts that 

can appear as streak defects in reconstructed images (PaulNabi, 2004).  Obese patients 

are those with a body mass index (BMI) of greater than 30, in whom the gated SPECT 

data is found to be too noisy to be useful for diagnostic purposes.  Despite the additional 

information that ECG-gating can provide (toward distinguishing real defects from 

attenuation-related artifacts), and techniques like prone imaging that may be used (to 

 
Figure 2.3:  This schematic (PaulNabi, 2004) shows the principle of ECG-gating, tying 

the phases of the cardiac cycle to the SPECT image acquisition, and subsequent 

identification of the end-diastole (ED) and end-systole (ES) positions of the heart. 
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reduce inferior wall attenuation) (Berman et al., 2006), the increase in noise from gating 

can be substantial enough for clinicians to discount 4D data altogether in this population 

of patients.  Thus, physicians are rendered incapable of adequately assessing the left 

ventricular function in the population of patients who are at greatest risk for 

abnormalities in this area. 

 

2.2 Image Processing 

 

One place where the problem of noisy images can be compensated to some extent 

is the reconstruction process.  The projection data acquired during the SPECT imaging is 

reconstructed to provide a 3D distribution of activity (stack of two-dimensional transaxial 

slices) than can be viewed and assessed for defects.  In the case of gated SPECT studies, 

reconstruction yields 4D images (which are a collection of 3D images at each time 

frame), which depict the radioactivity distribution in the moving heart (when images 

from each of the frames are interleaved in a cine format), and thus allow the physician to 

view any motion defects that may be present. 

The reconstruction methods that will be evaluated in this dissertation are:  the 

iterative OS-EM algorithm (HudsonLarkin, 1994) combined with a 3D post-

reconstruction Gaussian filter (abbreviated OS3D), the OS-EM algorithm with 4D 

filtering with a Gaussian filter for smoothing in the spatial domain and then a Butterworth 

filter for smoothing in the time domain (abbreviated OS4D), and finally, a 4D RBI-MAP 

algorithm (LalushTsui, 1992) which incorporates different Gibbs priors for differential 

smoothing in the spatial and time domains (abbreviated RBM).  It is of great interest to 
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see how they compare at the task of reconstructing noisy gated SPECT images from 

obese patients and phantoms.  

2.2.1 3D Filtering   

 There are two basic types of filters used in SPECT imaging: smoothing and 

enhancement filters.  Smoothing filters are low-pass filters that allow the user the option 

of selecting a filter cutoff frequency where the filter rolls off, while the enhancement and 

restoration filters attempt to recover resolution by exceeding unity gain over a desired 

frequency band (Gilland et al., 1988).  The Hanning and Butterworth filters are 

smoothing filters, while the Metz filter is an enhancement filter. 

 The Nuclear Medicine clinic at UNC Hospital uses 3D Gaussian filters on gated 

SPECT images, so they were chosen for the purposes of this study.  The Gaussian filter is 

a low-pass filter specified by the sigma (σ) of the Gaussian convolution kernel in terms 

of number of pixels or millimeters (mm), and can be applied in either the spatial or 

frequency domains to the data.  The area of the spatial domain Gaussian is normalized to 

one to preserve total image intensity.  The equation of the isotropic Gaussian point 

response in 3D is: 
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where x, y, and z represent the distances from the origin in the three axes, while σ is the 

width parameter of the Gaussian distribution.  Gaussian blur is primarily used to decrease 

image noise by reducing the noise-dominated high-frequency components of an image, 

and could be useful in smoothing the noise in gated SPECT images. 
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2.2.2 4D Filtering 

 4D Linear filters are similar to 3D and 2D filters in how they work.  The 

smoothing filter is a low-pass filter that is applied to the 4D image, considering the image 

as a 3D image (in the spatial dimension), with an additional temporal dimension.  The 

cut-off frequencies are defined separately for the spatial and temporal domains.  In this 

dissertation, a 3D Gaussian filter will be used first for spatial domain filtering in x, y, and 

z, and then a one-dimensional Butterworth filter will be applied in the time domain. 

 The Butterworth filter defines its cutoff frequency as the point where the gain is 

down to 0.707, and it maintains a value close to 1 at low frequencies, with a steep rolloff 

that is determined by a parameter n.  It is defined in the frequency domain as follows: 
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where ν is the spatial frequency, and νc is the cutoff frequency.  As with any filter, there 

is a tradeoff between resolution and noise with different filter cutoffs – lower cutoffs 

result in smooth images with worse resolution while higher cutoffs lead to better 

resolution with more noise (Gilland et al., 1988). 

2.2.3 Ordered-Subsets Expectation-Maximization 

In contrast to simple filtering, iterative reconstruction algorithms are attractive for 

their ability to model image degrading effects such as attenuation, collimator-detector 

response and scatter, but may take time to converge to a solution if such compensations 

are applied.  Ordered-subset expectation-maximization (OS-EM) is one of the dominant 
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iterative reconstruction algorithms for its ability to suppress noise, its speed, and 

simplicity of implementation (LalushTsui, 2000). 

The OS-EM reconstruction algorithm may be written in the following form: 
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where pj denotes the projection data, i.e. the measured events in projection bin j, cji 

represents the probability of photons emitted in pixel i being detected in projection bin j, 

and xi represents the estimated intensity at pixel i.  Previous and new iterated estimates 

are indicated by the old and new superscripts.  The projection matrix elements, c, may be 

used to model non-uniform attenuation, detector response, or scatter. 

Backprojection is performed for a subset Sn of the projection bins, and with each 

subset, an update is made to the estimate.  All the subsets are thus used to generate the 

iteration, which is completed when all of the projection data have been used.  This 

process of backprojection and updating repeats, always starting with the first subset, to 

generate more iterations (HudsonLarkin, 1994).    

2.2.4 Rescaled Block-Iterative Maximum a Posteriori 

The rescaled block iterative maximum a posteriori (RBI-MAP) algorithm, a 

relative of the rescaled block-iterative expectation-maximization (RBI-EM) algorithm, 

was developed a few years earlier, in response to the need to have an algorithm where 

noise smoothing is applied to the 4
th

 dimension without a significant reconstruction time 

cost.  The RBI-MAP algorithm can be written as follows: 
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new

 and xi
old

 are the new and previously iterated estimates of the intensity at pixel 

i, cji represents the probability of photons emitted from pixel i being detected in bin j, 

P[x] is the prior density function, and tn is the step size, which is a scalar that is computed 

for each subset (LalushTsui, 1998).  The step size tn is given by: 
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The 4D RBI-MAP algorithm includes smoothing constraints in the form of 4D 

Gibbs priors (LalushTsui, 1996) that accomplish smoothing in the time dimension by 

extending the smoothing to ‘space-time voxels’ defined similarly to the relationships 

between voxels that are close spatially (LalushTsui, 1998; 1998), except that these voxels 

are part of a lattice that has 3 spatial dimensions with 1 temporal dimension.  The Gibbs 

priors are designed to retain edge features while smoothing noise, and this is what makes 

them very useful in gated SPECT studies, particularly when it comes to smoothing in the 

time domain.  Potential functions useful for time domain smoothing require that two 

neighboring voxels should have similar intensity levels; if the difference between the 

voxels is extreme and is supported by neighboring pixels, the difference is likely to 

represent an edge; these voxels are then decoupled from smoothing (LalushTsui, 1998).  

For the prior, the potential function for spatial-only cliques used in this study employed 
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the Green function (Green, 1990; LalushTsui, 1992), while the potential for time-space 

cliques was the generalized potential function (LalushTsui, 1996).   

 

 There are a few important parameters native to the potential functions used for 

smoothing, and their weighting is determined by the β parameter in the reconstruction 

procedure; under-weighting leads to noisy images while over-weighting a prior can result 

in image degradation (LalushTsui, 1992).  The properties of the smoothing by the 

potential function are determined by the parameters α, γ and δ, which determine the shape 

of the derivative potential function, shown in Figure 2.4.  Increasing the α parameter 

decreases the peak width, thus determining the selectivity of the algorithm in smoothing 

various intensity differences.  The parameter δ determines the location of the peak with 

respect to r, the difference in intensity values between neighboring pixels, and is the most 

important parameter in determining the properties of the smoothing applied.  The 

parameter has to be selected so as to place the peak of the function below image edges 

 
Figure 2.4:  The derivative potential function of the generalized prior (shown) 

determines the relative strength of smoothing pixel differences by the MAP-EM 

algorithm (LalushTsui, 1996). 
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that denote organ edges moving over time (LalushTsui, 1996).  The γ parameter 

determines the height of the tail and the convergence of the algorithm.   

 

2.3 Tools and Techniques Used in the Study 

 There are several important tools that will be used for the evaluation of the 

reconstruction methods in this study, and they are described below.  

2.3.1 4D Anthropomorphic Phantom 

One of the tools that is invaluable in this study, is the 4D Extended Non-Uniform 

Rational B-Splines-(NURBS)-based Cardiac Torso (formerly NCAT, now known as 

XCAT) phantom.  The XCAT phantom is a geometry-based computerized phantom 

which includes realistic models of cardiac and respiratory motion, allows for the 

modeling of perfusion and motion defects of the myocardium, for the modeling of 

different organ and body sizes, as well as for the modification of radioactivity uptake 

ratios and attenuation maps (Segars, 2001; Veress AI, 2006).  It is thus a very powerful 

tool that provides the researcher with a gold standard with which to evaluate medical 

imaging techniques and reconstruction methods. 

The beating heart motion in the original 4D NCAT phantom was based on cardiac 

motion documented in a set of gated tagged MRI data in a normal volunteer, which did 

not allow for realistic modifications to LV motion.  Recently, this problem was overcome 

by the incorporation of a physiologically-based finite-element mechanical heart model in 

the 4D NCAT that is capable of accurately simulating LV motion (Veress AI, 2006).   

The updated NCAT phantom with the finite-element model allows for the simulation of a 
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wide variety of motion abnormalities, and motion defects of any size and shape.  It will 

be used to generate a population of obese phantoms for the study that can be used to 

validate the differences between the EDV, ESV, and EF using the software analysis 

package on the clinical computer. 

 

  

2.3.2 Medical Image Format      

The National Electrical Manufacturer’s Association (NEMA) created the Digital 

Imaging and Communications in Medicine (Committee) Standard in the late 1980s to aid 

in a standard method for the transmission of medical images and associated information.  

The DICOM Standard defined the operation of Service Classes beyond the simple 

transfer of data, and created a mechanism for uniquely identifying Information Objects as 

they are acted upon across the network (Committee, 2008).   

 
Figure 2.5:  Image from (Veress AI, 2006) shows A) Anterior view of the 4D NCAT 

phantom, B) 3D model of the heart in the NCAT with branches of the coronary artery 

labeled, and C) 3D model of the left ventricle showing the inner and outer surfaces with 

coronary arteries overlaid, as well as simulated plaques and a defect.  
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A DICOM file consists of header or metadata (that stores information such as 

patient name, ID number, type of scan, date and time of scan, image dimensions, imaging 

modality, pixel size, etc.) as well as all of the image data, typically in grayscale format.  

Patient data from the clinic is usually in this standardized DICOM format, and must be 

converted to the .im format used with most of the reconstruction software programs used 

in the Laboratory for Emerging Imaging Technologies at UNC.   

The .im image format and a whole library of commands and subroutines built to 

handle images in this format, were developed by Zimmerman, Entenman, Fitzpatrick and 

Whang.  Version 2 of the library was furthered by John Gauch in 1987, revised by 

Graham Gash in 1989, and once again by Luc Florack in 2007 (Florack, 2007).  Images 

created and manipulated by the library are stored in standard UNIX files, and can be 

broken down into 3 sections including an image header, the pixel data of the image, and 

the image information field which has ASCII strings that describe various properties of 

the image (Florack, 2007).   

The image format of the .im image is sufficiently different from that of the 

DICOM image, and a conversion is necessary of the DICOM patient data to enable one to 

take advantage of all the reconstruction algorithms and other functions available in the 

.im image library.  Once the processing is completed, a re-conversion is necessary, to 

enable the import of the reconstructed data back onto the clinical workstations, so as to 

facilitate data analysis using the clinical software packages.   

2.3.3 Quantitative Analysis using Software Tools 

 There are several commercially available software analysis tools for working with 

4D gated SPECT images.  Emory Cardiac Toolbox (ECT), 4D-MSPECT, and 
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Quantitative Gated SPECT (QGS) are the most frequently used software packages, 

though there are others such as MultiDim (from Stanford University), the W-L CQ (from 

Yale University), the Left Ventricular Global Thickening Fraction (LVGTF) and the 

Perfusion and Functional Analysis for Gated SPECT (pFAST), from Sapporo Medical 

University in Japan (Sciagra, 2007).    

 The algorithms for calculating left ventricular function parameters in the Emory 

Cardiac Toolbox were developed in the late 1990s.  A new modeling method (in contrast 

to the geometric approximation or 3D surface detection techniques that were in use at the 

time) was introduced by the researchers that estimates the 3D endocardial and epicardial 

surfaces of the LV in gated perfusion tomograms for all frames through the cardiac cycle.  

The EDV and ESV are calculated from these boundaries, as well as the myocardial mass 

and the EF, and the volumes were validated using correlated MRI studies (Faber et al., 

1999).  Since then, further evaluations of the algorithms using FPRNA, ERNA, ECG, and 

gated blood pool have been conducted, and the conclusion was that ECT was good in 

terms of reproducibility and correlated well with the studies.  ECT was found to slightly 

overestimate EF in small hearts and patients without perfusion defects, however 

(Nakajima et al., 2001; Sciagra, 2007). 

 The semi-automated 4D-MSPECT software developed at the University of 

Michigan’s Medical Center makes estimates of the ventricle from a two-dimensional 

gradient image, and uses a series of one-dimensional and two-dimensional weighted 

splines to refine the endocardial and epicardial surfaces (Ficaro et al., 1999; Schaefer 

WM, 2004).  An interactive quality assurance module allows the user to adjust the 

estimated basal plane when the algorithm does not adequately detect the estimated plane.  



 

23 

 

As in the case of ECT, the reliability of the algorithm was tested with comparisons to 

ERNA and MRI studies (Nakajima et al., 2001; Schaefer et al., 2005).  A few 

comparative papers (comparing analysis software) have reported no significant 

differences in EDV estimation between ECT and 4D-MSPECT (Nakajima et al., 2001; 

Schaefer et al., 2005) 

 This dissertation focuses solely on the QGS analysis package, however, as it is the 

one most frequently used in the Nuclear Medicine clinic at UNC.   QGS is a stand-alone 

application distributed by the Cedars-Sinai Medical Center.  It estimates boundaries by 

first determining the maximal-count mid-myocardial surface, subtending rays to it 

normally, and extracting count profiles for each ray.  Asymmetric Gaussian fits on the 

count profiles then aid in the detection of the endocardial and epicardial boundaries 

(Germano et al., 1995; Schaefer WM, 2004).  Initial validation was done with results 

from FPRNA, and subsequent ones with data from ERNA, ECG and MRI, and good 

correlation was found (Nakajima et al., 2001; Schaefer WM, 2004; Schaefer et al., 2005).  

QGS is reputed to have a high reproducibility in inter-institutional studies as well 

(Nakajima et al., 2001; NakajimaNishimura, 2006).  Comparison studies with other 

methods revealed however, that estimations of EDV by QGS are often lower than with 

4D-MSPECT or ECT (Schaefer et al., 2005).  Underestimation of chamber volumes was 

found to be particularly severe in small hearts, up to 75% for a 50 mL volume and 50% 

for a 37 mL volume chamber in one of the studies that explored this phenomenon 

(Nakajima et al., 2000). 

 QGS, as a software package, has several user-friendly features, including the 

automatic generation of left ventricle inner and outer surfaces, the ability to display the 
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datasets in both static and cine mode, the ability to display up to 4 datasets side-by-side, 

static or interleaved, the computation of the functional metrics EDV, ESV, EF, and left 

ventricular volume/time curves.  It also allows the user the option of manually fitting 

contours if the automatic segmentation is unable to accurately identify the endocardial 

and epicardial surfaces.  QGS has display modes that are quite sophisticated, including a 

Slice mode which displays a vertical long-axis (VLA) and horizontal long-axis (HLA) 

image, with three short-axis (SA) slices at specifiable locations on the VLA image, a 

Splash mode that displays a whole series of VLA, HLA and SA slices from each method, 

a Surface mode that displays a 3D rendered gated image of the left ventricle within a 

meshwork frame, and a Views mode which displays three different views of the 3D 

rendered gated image.  These are illustrated below in Figures 2.6 and 2.7 using 

reconstructed images from a patient in the study, where three datasets are shown, one 

from each of the three processing methods evaluated in this dissertation. 
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Figure 2.6: The screencaps above illustrate two display and analysis modes in QGS. The 

image at the top is a ‘Slice’ display mode showing images from 3 processing methods 

for a study patient at end-diastole, while the image on the bottom is the ‘Splash’ view 

where a series of SA, VLA and HLA slices can be seen from each method.   
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Figure 2.7: The images above illustrate two of the display and analysis modes in the 

QGS software. The image on the top is the ‘Surface’ mode that can be gated, as can the 

‘View’ mode on the bottom, which shows different orientations of the 3D rendered 

heart. 
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2.3.4 Preference Studies 

 When it comes to comparing two or more different imaging modalities or 

reconstruction algorithms, observer studies are routinely conducted with a set of data 

with known diagnoses, receiver operating characteristic (ROC) curves drawn up 

comparing the true positive fraction to the false positive fraction, and a judgment made as 

to the efficacy of the imaging or reconstruction methods under question.  Standard 

observer studies display 2D images, while a motion observer study which displays 4D 

images (that are a series of 3D images animated over the frames of the cardiac cycle) is 

better suited to viewing dynamic images.  A motion observer study was successfully 

performed a few years ago, to evaluate the differences in motion defect detection between 

8 frame gating and 16 frame gating (Lalush et al., 2005). 

 In gated myocardial SPECT, a key feature is the information that 4D data can 

provide, which is not gleaned from a myocardial perfusion SPECT study.  This data takes 

the form of chamber volumes provided by the clinical software packages, that the 

physicians may rely on to make diagnoses, as also cine-loop displays that depict the 

motion of the heart, which are useful in enabling them to distinguish attenuation artifacts 

from real motion defects that need to be treated.  

The bottom line of this study is to determine if the 4D reconstruction methods 

RBI-MAP and 4D filtering are able to improve the noise properties of the image 

adequately without resulting in a loss of temporal information, so the physician feels that 

it has solidly impacted the ability to make an accurate diagnosis, as compared to using 

images reconstructed with the 3D OS-EM algorithm with 3D smoothing filters.  The 
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preference of the physician is crucial and the best way to evaluate this intangible element 

is to do a preference study. 

These studies have professionals for observers (in this case, nuclear medicine 

physicians), employ a side-by-side review of pairs of images and subject the observer to 

using a discrete rating scale to record the preference.  Preference studies have been 

employed in radiology, in several studies on digital mammography to determine 

radiologists’ preferences for display and analysis methods (Good et al., 1999; Pisano ED, 

2000), but have not been used in nuclear medicine thus far. 

In a preference study, the observer is presented with the case history at the outset, 

asked to review the pairs of images side-by-side (if the design calls for it, or separately), 

and is then asked to rate which image of each pair s/he thinks was more useful in leading 

to the diagnosis.  The variance in the different methods among physicians can then be 

analyzed using an ANOVA technique described below. 

2.3.5 ANOVA 

The data from the preference study is analyzed by means of analysis of variance 

(ANOVA) techniques to determine whether the null hypothesis (that there is no 

difference among the techniques being compared) is to be accepted or rejected.  A one-

way, repeated-measures ANOVA will be used, as there is only one primary source of 

variance (i.e. the reconstruction method), and all the members of the population are 

reconstructed using the same methods (repeated measurements on one sample).   

 ANOVA is a widely used technique for separating the observed variance in a 

group of samples into portions that are traceable to different sources.  If all the samples 

are lumped together into one large sample, the observed variance will be partly due to the 
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differences between the individual members of the same original sample, and partly due 

to the effects of the different treatments.  The ANOVA method enables us to estimate 

how much of the variance is attributable to the one cause, and how much to the other, so 

as to enable a decision on whether the treatments have produced any significant effects 

(Keeping, 1995). 

The purpose of an ANOVA is to test for significant differences between 

population means by analyzing the variances.  The test assumes that the residuals are 

normally distributed, and that they have equal variances.  In a one-way analysis of 

variance, the total variance of a set of scores is partitioned into two components:  a 

between-groups component and a within-groups component.  The ratio of these two 

components (between-groups over within-groups) is the test statistic F.  If the null 

hypothesis (that there is no difference among the groups) is true, then F will have an 

expected value of about 1 and a random sampling distribution that is described by one 

member of the family of F-distributions.  If the null hypothesis is false, the expected 

value of F will be greater than 1, and the random sampling distribution of F is shifted to 

the right.  Using the appropriate F-distribution, we can calculate a p-value for the F-test, 

i.e. the probability of obtaining an F-value that is large or larger, given that the null 

hypothesis is true.  If the p-value is sufficiently low (.05 or less), we may reject the null 

hypothesis (Keeping, 1995; Montgomery, 1997).   



 

 

 

Chapter 3 

Methods 

3.1 Development of an Obese Phantom Population for Gated Myocardial SPECT 

Imaging with Tc-99m Tetrofosmin 

 

 Studies that compare reconstruction algorithms for use on clinical data are best 

done using patient data so that the impact of the study can be best judged within the 

context of its utility to clinical studies.  However, it is very time-consuming to 

accumulate adequate clinical data acquired under a desired set of conditions or 

parameters.  It is much more practical to have a mathematical tool as a gold standard that 

is useful for quick comparisons and large-scale studies not as easily possible with patient 

data.  Toward this end, it is proposed to build a standard obese male and female phantom 

that can be modified as desired for use in this study.  As the results of this study would be 

most useful when it is easily applicable to clinical data, it is desired to closely match the 

physical and physiological characteristics of the clinical population in the phantoms.  

Before the phantom population can be generated, some parameter optimization is 

required. 

 

3.1.1 Reconstruction Parameter Optimization Study 

 In a study where there are multiple reconstruction methods being compared, it is 

vital to choose the parameters native to each algorithm carefully in the interests of 

standardization, so there is some solid basis for comparison rather than a random 
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selection of parameters.  In this study, it was decided that the reconstruction parameters 

for each processing method (or combination of methods) would be chosen such that the 

noise standard deviation is the same for the final image from each method, as calculated 

from the same transaxial slice of blood pool images.   

 An obese male phantom was created (having a BMI of 40 with a body weight of 

122.6 kg spread over a 175 cm frame) with simulated Tc-99m tetrofosmin activity 

concentrated in the heart muscle and chambers (blood pool) and all other organs set to 

background activity.  Projection data including the effects of attenuation, detector 

response, and scatter, were generated from this phantom in a matrix of 64x64 with 64 

views over 180
o
 and a pixel size of 6.5913 mm, gated to 16 frames.  The volume of blood 

pool activity in a 10 cm section of the trunk including the heart was found to be 2.5 times 

the volume of total heart activity (in a typical tetrofosmin study where the uptake 

concentrates in the cardiac muscle), and so the counts in the noisefree data were scaled 

down accordingly, and Poisson noise was simulated.   

The projection data were reconstructed with each of the reconstruction methods as 

follows.  Comparable to clinical processing, the first method used was the iterative OS-

EM algorithm with 8 subsets, up to 6 iterations, followed by a 3D Gaussian filter with 

FWHMs of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 mm, applied to the 3
rd

, 4
th

 and 5
th

 iterations.  

The 1
st
 and 2

nd
 iterations were found to be too smooth while the 5

th
 and 6

th
 were found a 

bit too noisy, which is why the rest of the study focused on applying filters to the 3
rd

 and 

4
th

 iterations.  The second reconstruction method was the OS-EM algorithm with 8 

subsets, where the 3
rd

 and 4
th

 iterations were followed by a 3D Gaussian filter with 

FWHM of 16 mm, and order 8 Butterworth filter applied in the time domain, with filter 
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cutoffs of 0.2, 0.3, 0.325, 0.35, 0.4 cycles/pixel.  The third method explored the 

parameters native to the RBI-MAP algorithm (with 8 subsets and 6 iterations), including 

values of 1, 2, 3, 5, 10 for the spatial prior’s δ parameter with fixed time δ, spatial and 

time β parameters; values of 5, 10, 15 and 20 for the time δ (with all the other parameters 

fixed), values of 0.0015, 0.0020, 0.0025 for the spatial β (with everything else fixed), and 

values of 0.0007, 0.0015, 0.0022 for the time β parameter.  The spatial α and γ 

parameters were not varied as they were fixed at 1.0 and 0.50, respectively, while the 

time α and γ parameters were kept at 2.0 and 0.10, respectively.   

 After each of these processing methods were applied, the images were inspected 

visually for image-degrading artifacts that might rule out any set or sets of values, and for 

general image quality as compared to the other processing methods.  The noise standard 

deviation was also calculated on the same selected transaxial slice from each set of 

reconstructed data.  This study allowed a selection of parameters for each reconstruction 

method that resulted in very similar noise statistics in the reconstructed blood pool 

images. 

 

3.1.2 Patient Database 

A database of clinical gated SPECT data was created with patient projection data 

obtained from 28 obese patients in the Nuclear Medicine clinic at UNC Hospital.  Patient 

names and other protected health information were removed by authorized clinic 

personnel before the data transfer, and all procedures were approved by the institutional 

review board.  The patients had been administered technetium Tc-99m tetrofosmin, and 
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the images had been acquired in matrix sizes of 64x64 (with a pixel size of 6.5913 mm), 

with 64 views and gating into 16 frames.   

The projection data were reconstructed with the OS-EM and RBI-MAP 

reconstruction algorithms, each of them with 8 subsets, up to 5 iterations.  The data 

reconstructed with the OS-EM algorithm were further processed with 3D and 4D filters.  

A 3D Gaussian filter with FWHM of 18 mm was used (similar to the Gaussian with 

FWHM of 17 mm used in the clinic) as one post-processing method, while the 4D 

filtering was accomplished with a 3D Gaussian filter with FWHM of 16 mm followed by 

an order 8 Butterworth filter applied in the time dimension with a filter cutoff of 0.325 

cycles/pixels.  These cutoffs were determined from a separate study described in the 

previous section.   

The projection data and reconstructed data were analyzed to derive relative 

distributions of quantitative uptake ratios for various organs.  Noise levels and noise 

standard deviations were calculated for 9.89 cm (or 15 slices, each with 6.5913 x 6.5913 

x 6.5913 mm
3
 voxels) sections of the torso including the heart from each frame of 16 

frames of projection data for each of the 28 patients in the study.  The average counts per 

slice in those 15 frames (around 61,440 pixels) came to around 123,000 counts, while the 

average counts in the noisier datasets was around 85,000 counts.   

 

3.1.3 Phantom Simulation 

Anthropometric data was used to obtain a distribution of body dimensions across 

populations that included people of both genders from different races and ethnic 

backgrounds (Pheasant, 1996).  This information was used to determine appropriate body 
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sizes to use in building obese male and female NCAT phantoms.  The phantoms were 

modeled at heights considered average for the Americans in the anthropometric study, 

which worked out to 175 cm (or 5 feet, 9 inches) for the male, and 163 cm (or 5 feet, 4 

inches) for the female (Pheasant, 1996).  Since it is desired to study the effects of the 

extent of obesity on the comparison of the performance of the reconstruction methods, it 

was decided to model two different body sizes for each gender of obese phantom.  A 

BMI of 40 was selected for the morbidly obese variant, and a BMI of 34 for the 

moderately obese variant.  This translated to weights of 122.6 kg (or 270.3 lbs) and 106.4 

kg (or 234.6 lbs) for the morbidly obese male and female phantoms, and 104 kg (or 229.3 

lbs) and 90.4 kg (or 199.3 lbs) for the moderately obese male and female phantoms, as 

seen in Table 1 below.  An average noise level of 120,000 counts per slice in the heart 

region (as determined from the patient database) was chosen for the simulation, with 

three noise realizations of Poisson noise simulated for each phantom. 

Table 3.1:  Body sizes of the obese male and female phantoms 

Phantom BMI Height (cm) Weight (kg) 

Morbidly Obese Male 40 175 122.6 

Morbidly Obese Female 40 163 106.4 

Moderately Obese Male 34 175 104 

Moderately Obese Female 34 163 90.4 

 

Once body sizes were selected, the heart sizes were scaled to fit the body sizes for 

each of the phantoms, and the breasts in the female phantoms were also simulated to be 

realistic in size and orientation to mimic patients lying supine on pallets.   

A couple of different motion defects were also generated in addition to a 

physiologically normal case for each phantom (with an EF of 60%).  There were two 

hypokinetic variations simulated in the form of a motion defect in the chamber walls of 

the phantoms.  The more severe variant was designed to yield an EF of around 28%, 
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while the milder variant was designed to be borderline with an EF of around 44%.  The 

table below shows the parameters of the defect simulation. 

Table 3.2:  Physical characteristics of the motion defect phantom models 

Parameter Less Hypokinetic Very Hypokinetic 

Chamber Walls Affected by Motion Defect Lateral Anterior, Lateral, Inferior 

Radial Extent of Each Defect (deg) 60 120 

Width along long-axis (mm) 40 80 

Fraction of outer wall transgressed 1.0 1.0 

Lesion motion (% of normal) 0 0 

 

Using the knowledge gleaned from the analysis on patient projection and 

reconstructed data, and published literature on tetrofosmin uptake kinetics(Higley et al., 

1993), several uptake distributions were modeled in the organs of the obese 4D NCAT 

phantoms.  Tetrofosmin uptake ratios were then modeled in the obese phantoms, and 

projection data including the effects of non-uniform attenuation, detector response and 

scatter, were generated from the obese male and female phantoms, in matrix sizes of 

64x64, with 64 views over 180
o
 (from the Right Anterior Oblique (RAO) to the Left 

Posterior Oblique (LPO)), in 16 bins representing the phases of the cardiac cycle, with 

pixel sizes of 6.5913 mm, in the interests of mimicking clinical study settings.  The 

noisefree projection data generated were scaled to 120,000 counts (in the stack of 15 

transaxial slices including the heart), and Poisson noise was simulated to create noisy 

data.  Six different random seeds were used to generate three noise realizations of noisy 

data for every phantom in the study.  The noisy data were reconstructed with OS-EM 

with 3D and 4D filters, with no correction for attenuation, detector response or scatter as 

in the clinic, and 4D RBI-MAP; the parameters for the reconstruction matched the 

optimal results as determined in the study in 3.1.1.   

The projection data and reconstructed data from the patients were compared to 

those from the phantoms, and the images reconstructed with 3D OS-EM were compared 
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to those reconstructed with 4D RBI-MAP, to evaluate subjectively the image quality in 

terms of image contrast and noise.  

From each of the reconstructed sets of images of the patient and the phantom, the 

central slice of the heart image was extracted, and the same views from each of the 16 

time frames were compiled into a movie in audio video interleave (AVI) format. These 

were then subjectively compared to judge the fidelity of cardiac motion preserved by the 

different reconstruction methods. 

 

3.2 Evaluation of Quantitative Accuracy and Motion Fidelity 

The next step to the evaluation of the reconstruction methods for gated studies is 

to judge the accuracy of the parameters calculated by clinical software packages.  One 

basis of comparison is the qualitative, using clinical patient data reconstructed with the 

different types of methods and analyzing them visually for differences in resolution, 

contrast, noise, and smoothness of motion.  This does not provide any information as to 

the quantitative accuracy of the methods however.  To be able to compare the 

quantitative accuracy, a gold standard must be used in the form of a computerized 

phantom with known/calculable heart chamber volumes.  A clinical software package 

that has robust algorithms to calculate the chamber volumes is also required.  The one 

that was selected for this purpose has been already described in a previous section; it is 

the QGS application distributed by Cedars-Sinai.   

3.2.1 Conversion of Images to DICOM Format 

 This next step is intended to derive a method to convert the reconstructed images 

into a format that may be uploaded onto clinical workstations and loaded into the clinical 
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software package, QGS.  Images of patient data that have been acquired from the clinic 

are typically in DICOM format, NEMA’s standard format.  These images are converted 

to the real .im format using MATLAB programs, and image processing is done on the 

LINUX systems using image reconstruction algorithms coded in the C language.   

 It is necessary to convert reconstructed images of phantom and patient data from 

the .im format back to the grayscale 16-bit DICOM format with all the associated 

metadata changed to reflect the type of reconstructed image it is.  A few DICOM 

converters were tested and found wanting, so a program written for MATLAB (by DS 

Lalush) was used to accomplish the conversion. 

 The following method was used for the conversion.  Each of the patient datasets 

had been imported with a reconstructed FBP image in DICOM format.  That file was 

used as a template where the new data was written into.  It was found that these DICOM 

files included only the pertinent 30-35 transaxial slices with the heart.  So the first step 

was to extract out the corresponding 30-35 transaxial slices from the reconstructed 

images for each time slot for the patient.  With patient images, it was necessary to reorder 

the reconstructed images so they were oriented from feet to head within the file, while the 

phantom images had the correct orientation to begin with.  The images were then 

restacked so that all the time frames for each transaxial slice were stacked together, 

before the next transaxial slice, and so on (i.e. the ordering was x, y, z, t).  The image had 

to be further reshaped as MATLAB reads the pixels in a different order than programs 

written in C.  A MATLAB program was then used to read in the array of pixels from the 

reconstructed .im image, convert them to a 16-bit array, open the FBP DICOM-format 
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image, and replace each of the image pixels of the old FBP image with the new 

reconstructed image pixels, and output back to a DICOM file.   

 This .DCM file was imported into the Siemens patient database, and renamed so 

as to change the header information to reflect the processing mode.  A Siemens program 

to reorient the images into short-axis slices was then used to save the image files in a 

format recognizable by QGS.  Images with hot spots that could degrade the image were 

put through an additional step of masking that blacked out all areas surrounding a Region 

of Interest (ROI) drawn around the heart.  It was then possible to load all three sets of 

reconstructed data (i.e. from the different reconstruction methods) into QGS at the same 

time, so they could be viewed simultaneously in a so-called triple mode, whether as stills 

or in cine format.  QGS could be used to analyze the data in one of several different 

modes, labeled Slice, Splash, Surface, Views, each of which also displays the calculated 

EDV, ESV, and EF.  In several cases, it was found that the contours approximated around 

the epicardial surfaces of the left ventricle were not a proper fit, especially when it came 

to identifying the base of the LV.  This was easily rectified with a tab page that allowed 

for manual curve fitting to be done; reprocessing the data with the new contours also 

yielded new EDV, ESV and EF values. 

3.2.2 QGS Evaluation of Patient Data 

 Each of the 28 patients in the database had images reconstructed with each of the 

three processing methods, OS-EM with the 3D Gaussian filter, OS-EM followed by a 3D 

Gaussian and a 4D Butterworth filter, and the 4D RBI-MAP algorithm.  Each set of 

reconstructed images was converted to the DICOM format, thus yielding 3 separate 

DICOM files for every patient, that were then imported onto the clinical system.  Some 
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of them had hot spots that required the images to be masked, but most could just be 

reoriented and imported into QGS.  Manual fitting was done in every case, to ensure 

uniformity of epicardial contour fitting especially in the case of smaller hearts or larger 

hearts than is the norm.  It made a big difference in cases where the images were very 

noisy, where the pre-fit and post-fit quantitative values were vastly different.   

  The quantitative values calculated by the program, such as ejection fraction (EF), 

end diastolic volume (EDV), and end systolic volume (ESV) were recorded for each 

patient, for each reconstruction method.   The data were compared using the paired t-test 

(which assumes that the differences between pairs are normally distributed), with the null 

hypothesis that the mean difference between the different pairs is zero (McDonald 2008).  

The methods were compared as follows:  the OS-EM with 3D filtering, OS-EM with 4D 

filtering, and the 4D RBI-MAP algorithm, for each of the EDV, ESV, and EF parameters 

(even though EF is dependent on the EDV and ESV parameters, it is an important 

indicator of cardiac health used by physicians and thus worthy of being considered 

separately here).  The paired t-tests yielded p-values that were used to accept or reject the 

null hypothesis.   

 QGS was also used to compare the three methods qualitatively across the entire 

database, and observations were recorded on the static and interleaved images.   

3.2.3 QGS Evaluation of Phantom Data 

The reconstructed phantom data from the moderately and morbidly obese male 

and female phantoms were also converted to DICOM as in the case of the patient data.  

They were imported onto the clinical workstation, hot spots masked, reorientation of the 

heart accomplished, and analyzed with QGS finally.  The EDV, ESV and EF were 
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recorded from the QGS analysis.  As the phantom provides a gold standard, it was 

possible to compare the actual left ventricular volumes and ejection fraction of the heart 

with what was calculated in QGS.  The EDV and ESV were apparent in the log file 

generated during phantom creation, and the EF was calculated using the formula 

described earlier.  Once the data were collected, each of the three parameters were 

compared across phantoms to the truth, and the percent error was computed in each case.   

 The cine mode in the QGS package enables one to view the three sets of 

reconstructed image side-by-side for comparison of wall motion.  As with the patients, 

the phantom data were compared qualitatively in QGS, and observations were made on 

the motion.  The EDV, ESV and EF values were compared across phantom populations 

for the three reconstruction methods, and correlation coefficients were calculated to 

determine if there was a relationship among the parameters in each population.  Paired t-

tests were done within populations to determine if there were differences between the 

methods, as in the patient study. 

 

3.3 Study of Physician Preference for Reconstruction Method 

 Studies of this nature are most relevant when the diagnosticians’ preferences are 

taken into account, as it is they who have to evaluate clinical gated SPECT images to 

make diagnoses.  Toward this end, an observer preference study was performed with four 

physicians including three Nuclear Medicine physicians and one cardiologist.   

3.3.1 Preference Study     

 The patient database with reconstructed data from 28 patients (processed with the 

OS-EM with 3D filtering, OS-EM with 4D filtering, and 4D RBI-MAP algorithm), was 



 

41 

 

used for this study.  There were 18 female patients and 10 male patients, and 20 patients 

were diagnosed as normal while 8 cases were read as abnormal.  The images were 

converted to DICOM format, imported onto the clinical workstations, and reoriented as 

described before.  The resultant files were labeled Method A, Method B and Method C 

for the three methods (so the physicians were blinded as to which method was which), 

and the three files were simultaneously displayed in QGS with those labels.   

 Instructions were provided to each physician prior to the study.  The radiology 

report for each of the patients was made available before beginning the reading for that 

patient, which included a brief history of the patient’s condition and the results of any 

other diagnostic procedures performed prior to the gated SPECT study.  The three 

datasets were then loaded in QGS simultaneously with the gating option turned on, so the 

physicians viewed interleaved images in the “Slice” display mode of QGS.  The question 

posed was to consider which of the three reconstructed datasets most improved his 

confidence in the diagnosis, and each dataset was graded on a seven-point scale as being 

much worse, somewhat worse, slightly worse, the same, slightly better, somewhat better, 

and much better (-3, -2, -1, 0, +1, +2, +3 respectively) than each of the other datasets.  

The physicians were encouraged to use QGS as they normally would, and in a manner 

that most enabled them to make a decision, which included switching to other QGS 

display modes, the option to change color maps if they so chose (the cool metal color 

map was used as default), and the grayscale display settings.  The sessions were kept to 

an hour on average, to limit the effects of fatigue, and it took 2 sessions on average per 

reader, to get through the entire database of images.  In all, the physicians viewed 84 

images (28 patients x 3 processing methods), though one patient dataset was missed due 



 

42 

 

to an initial glitch in the images that prevented proper viewing by the first two physicians 

to complete the study. 

3.3.2 ANOVA  

 The data from the preference study were analyzed using a one-way ANOVA, 

which was performed using a MATLAB program.  The null hypothesis of the study is 

that there is no difference in means among the three reconstruction methods tested 

(judged by physician preference), and a significance level of 0.05 was used.  The 

standard ANOVA table was generated by the MATLAB program, as well as a plot of the 

spread of the ratings by method. 



 

 

 

Chapter 4 

Results 

4.1 Development of an Obese Phantom Population for Gated Cardiac SPECT 

Imaging using Tc-99m Tetrofosmin 

 

4.1.1 Reconstruction Parameter Optimization Study 

 The obese male blood pool phantom used in the parameter optimization study is 

depicted below, with a selected transaxial slice of activity and attenuation maps shown in 

Figure 4.1.  The heart is seen prominently, and it was this slice that was compared 

through the reconstructed images, to judge image quality. 

 

 Projection data (the same view from 4 time frames), and OS-EM-reconstructed 

images of the blood pool are shown in Figures 4.2 and 4.3.  The projection data were 

generated in 16 time frames, matrices of 64x64 with 64 views over 180
o
 and pixel size of 

6.59 mm.  After the addition of Poisson noise, the noisy projection data from each of the 

time frames were individually reconstructed with OS-EM. 

 
Figure 4.1:  Selected transaxial slice of the activity and attenuation map of a blood pool 

image of the obese male phantom in a matrix size of 64x64, with pixel size of 0.659 cm 
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 The 3D processing method is shown next in Figure 4.4, where the projection data 

from the blood pool phantom was reconstructed with OS-EM, and the 4
th

 iteration was 

further processed with a 3D Gaussian filter with FWHM of 2, 4, 6, 8, 10, 12, 14, 16, 18, 

and 20mm.  It is apparent that increasing the spread of the Gaussian function leads to 

greater smoothing.   

 

 
Figure 4.2:  Selected angular views showing blood pool projection data from time 

frames 0, 4, 8, and 12, in the morbidly obese male phantom in a matrix size of 64x64, 

with 64 views, pixel size of 0.659 cm, and 16 time slots over the cardiac cycle 

 
Figure 4.3:  Selected transaxial slices of OS-EM-reconstructed images of the blood pool 

phantom in a matrix size of 64x64, with pixel size of 0.659 cm.  Iterations 2, 3, 4, and 5 

are shown, and no post-processing filter was applied to these images. 

 
Figure 4.4:  Selected transaxial slices of OS-EM-reconstructed images of the blood pool 

phantom, that were processed with the 3D Gaussian filter with FWHM of 2, 4, 6, 8 and 

10 mm (shown in the top row), and 12, 14, 16, 18, 20 mm (shown in the bottom row) 
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 The 4D processing method, where the iteration 4 of the OS-EM-reconstructed 

image was followed by a 3D Gaussian filter with 16 mm FWHM, then various filter 

cutoffs for an order 8 1D Butterworth filter, is depicted in Figure 4.5.  The image is 

smoother at lower cutoffs with less noise, with better resolution and higher noise at 

higher filter cutoffs. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5:  Selected transaxial slices of OS-EM-reconstructed images of the blood pool 

phantom, that were processed with the 3D Gaussian filter with 16 mm FWHM, followed 

by an order 8 1D Butterworth filter with cutoffs of 0.20, 0.30, 0.35, and 0.40 

cycles/pixel, respectively 

 
Figure 4.6:  Selected transaxial slices of RBI-MAP-reconstructed images from the 4

th
 

iteration of the 0
th

, 2
nd

 and 10
th

 time slots.  The three rows show transaxial slices from 

the 3 time slots reconstructed with the spatial δ parameter set to 3, the time δ parameter 

set to 12, the time β parameter fixed at 0.0015, while the spatial β parameter in the top 

row is 0.0015, in the middle row; 0.0020, and in the bottom row, 0.0025. 
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 The parameters of the 4D processing method using the RBI-MAP algorithm were 

the next to be tested.  As described in section 3.1.1, the spatial and time δ parameters and 

spatial and time β weighting parameters were tested in turn, and in each test case, 3 

parameters were kept constant while one was varied, to judge the effects of the parameter 

on both noise statistics and standard deviation.  Figure 4.6 shows the effect of varying the 

spatial β weighting parameter; there does not seem to be a marked effect on image 

quality, though certain point artifacts (points of greater intensity than surrounding tissue) 

are more apparent at lower values of the spatial β than the higher one (i.e. where there is 

less smoothing).  Figure 4.7 addresses the effects of varying the time β weighting 

parameter while keeping the others constant.  In the images shown, the sharp point 

artifacts seem even more pronounced than in the latter case, and there is a greater 

variance in image quality.  The higher time β weighting parameter is able to suppress the 

point artifact due to greater smoothing in that dimension.  Figure 4.8 depicts the effect of 

varying the spatial δ parameter with the others constant, and in this trio of images from 

different time slots, one can see that the lower spatial δ values lead to smoother images 

while leaving point artifacts of high frequency, while the higher spatial δ value results in 

noisier images all around.  The middle value appears to be the best compromise there.     
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Figure 4.7:  Selected transaxial slices of RBI-MAP-reconstructed images from the 4

th
 

iteration of the 0
th

, 2
nd

 and 10
th

 time slots.  The three rows show transaxial slices from 

the 3 time slots reconstructed with the spatial δ set to 3, the time δ set to 12, the spatial β 

fixed at 0.0020, while the time β in the top row is 0.0007, in the middle row; 0.0015, 

and in the bottom row, 0.0022. 

 
Figure 4.8:  Selected transaxial slices of RBI-MAP-reconstructed images from the 4

th
 

iteration of the 0
th

, 2
nd

 and 10
th

 time slots.  The three rows show transaxial slices from 

the 3 time slots reconstructed with the spatial β fixed at 0.0025, the time β set to 0.0015,  

the time δ set to 10, and the spatial δ varying from 1 in the top row, to 3 in the middle 

row, and 5 in the bottom row. 
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 Varying the time δ parameter (seen in Figure 4.9) seems to have an effect on 

image quality that is not largely noticeable, except when one considers the point artifacts 

again.  They are once again apparent in all of the values tested, but one must bear in mind 

that this could be a factor of the other δ and β values used.  So, other combinations of 

values for β weighting and the δ parameter were tested similarly, and the noise statistics 

comparison also factored heavily into the choice of parameters for RBI-MAP. 

 Ultimately, it was found that 4
th

 iteration images from the 3D method using the 

OS-EM algorithm (with 8 subsets) combined with a Gaussian filter with 18 mm FWHM, 

compared well with images from the first 4D processing method that used the OS-EM 

algorithm (with 8 subsets) followed by a 3D Gaussian filter with 16 mm FWHM, and 

then a 4D order 8 Butterworth filter with cutoff of 0.325 cycles/pixel.  Both of these 

methods had similar noise statistics to the RBI-MAP processing method with spatial β 

value set to 0.0020, time β set to 0.0022, spatial δ set to 3 and time δ set to 12.  Visually, 

images from the 3 methods compared well also, as seen in Figure 4.10. 
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Figure 4.9:  Selected transaxial slices of RBI-MAP-reconstructed images from the 4

th
 

iteration of the 0
th

, 2
nd

 and 10
th

 time slots.  The three rows show transaxial slices from 

the 3 time slots reconstructed with the spatial β fixed at 0.0025, the time β set to 0.0015, 

the spatial δ set to 1, and the time δ varying from 5 in the top row, to 10 in the top 

middle row, 15 in the bottom middle row, and 20 in the bottom row. 

 
Figure 4.10:  Selected transaxial slices of reconstructed images showing the visual 

appearance of images reconstructed using the optimal parameters found.  The first 

image was generated by filtering a 4
th

 iteration OS-EM-reconstructed image with a 3D 

Gaussian filter with 18 mm FWHM, while the second was generated by filtering a 4
th

 

iteration OS-EM-image with a 3D Gaussian filter with 16 mm FWHM and then a 4D 

order 8 Butterworth filter with cutoff at 0.325 cycles/pixel.  The third image is from an 

RBI-MAP reconstruction with spatial and time β parameters set to 0.0020 and 0.0022, 

while the spatial and time δ were set at 3 and 12, respectively. 
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4.1.2 Patient Database 

Projection data were collected from 28 obese patients imaged at UNC Hospital for 

the study (in matrices of 64x64 with 64 views over 180
o
 and 16 time frames), though 

several tens of others were collected outside of the official study datasets, with some 

being gated to only 8 frames.  The projection data were in DICOM format, and needed to 

be converted to the .im format first; this was accomplished with a MATLAB program.  

The .im format projection data were then reconstructed, one time frame at a time, using 

each of the three methods being studied, at the parameters that were chosen as optimal for 

each of the methods. 

Figures 4.11, 4.15, and 4.19 depict sample projection datasets from three patients, 

where selected views are seen from a selected frame of the cardiac cycle.  Key features 

are the heightened tetrofosmin uptake in the intestines with less activity in the other 

organs in the chest and abdomen, reflecting the biokinetic properties of the tetrofosmin.  

The heart shows up prominently in the dataset with the lowest noise level, but is not so 

visible in the noisier datasets.  Figure 4.11 depicts the lower noise level case, while 

Figure 4.15 illustrates the average noise level case, and Figure 4.19 is from the patient 

with the highest noise level among all the study patients in the database.    
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Figure 4.12:  Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 09) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the 

image reconstructed with the iterative OS-EM algorithm. This image was further filtered 

by a 3D Gaussian filter with FWHM of 18mm.  The 11
th

 frame of 16 is seen, and the 

noise level is on the higher side. 

  
Figure 4.11:  Selected views of projection data from the stress image of an obese patient 

(identified as GCPS 09) who was administered Tc-99m-Tetrofosmin; this dataset shows 

the eight frame of the cardiac cycle, out of 16 time frames. This dataset illustrates what 

the projection data looks like at lower noise levels. 
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Figure 4.14: Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 09) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the 

image reconstructed with the 4D RBI-MAP algorithm; the 11
th

 frame of 16 is seen.  The 

noise level is on the higher side. 

 

 
Figure 4.13:  Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 09) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the 

image reconstructed with the iterative OS-EM algorithm. The image was post-processed 

first with a 3D Gaussian filter with FWHM of 16mm, then a 4D order 8 Butterworth 

filter with cutoff of 0.325 cycles/pixel. The 11
th

 frame of 16 is seen, and the noise level 

is on the higher side. 
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Figure 4.16:  Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 19) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the 

image reconstructed with the iterative OS-EM algorithm. This image was further filtered 

by a 3D Gaussian filter with FWHM of 18mm.  The 11
th

 frame of 16 is seen, and the 

noise level is at the group average. 

 
Figure 4.15:  Selected views of projection data from the stress image of an obese patient 

(GCPS 19) who was administered Tc-99m-Tetrofosmin; this dataset shows the eight 

frame of the cardiac cycle, out of 16 time frames. This dataset is a noisier dataset, which 

was closer to the average noise level. 
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Figure 4.18: Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 19) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the 

image reconstructed with the 4D RBI-MAP algorithm; the 11
th

 frame of 16 is seen.  The 

noise level is at the group average. 

 

 
Figure 4.17:  Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 19) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the 

image reconstructed with the iterative OS-EM algorithm. The image was post-processed 

first with a 3D Gaussian filter with FWHM of 16mm, then a 4D order 8 Butterworth 

filter with cutoff of 0.325 cycles/pixel. The 11
th

 frame of 16 is seen, and the noise level 

is at the group average. 
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 Figures 4.12, 4.16, and 4.20 show transaxial slices of reconstructed data from the 

three obese patients (illustrating low noise, average, and high noise cases), where OS-EM 

with 3D filtering was used.  The heart is most prominently seen in the low noise case 

where the chamber surfaces appear clearly outlined, while the high noise case shows a 

blob-like structure to the noise, which obscures the chamber surfaces a bit.  The images 

appear smooth.   

 Figures 4.13, 4.17, and 4.21 depict transaxial slices of reconstructed data from the 

same three obese patients, where OS-EM with 4D filtering was used.  The same features 

can be noted about the noise when comparing these images, as in the previous case.  

Visually, the images reconstructed with 4D filtering appear similar to the ones 

reconstructed with 3D filtering included.  Considering that the main difference between 

the two methods is the added filtering along the time dimension in the latter, it follows 

that this 2D medium would be limited in depicting any differences that may be present in 

the time domain comparison. 

 Figures 4.14, 4.18, and 4.22 have the transaxial slices of reconstructed data from 

the obese patients, using the 4D RBI-MAP reconstruction algorithm.  Visually, these 

images show better resolution and less noise degradation than images reconstructed with 

the OS-EM algorithm.  It appears that in the high noise case, due to the differing noise 

structure brought about by the application of the smoothing priors used, this algorithm is 

able to bring about smoother images of the heart than the OS-EM methods.  The 

difference in the time domain smoothing will have to be judged by means of moving 

images. 
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Figure 4.20:  Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 2) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the image 

reconstructed with the iterative OS-EM algorithm. This image was further filtered by a 

3D Gaussian filter with FWHM of 18mm.  The 2
nd

 frame of 16 is seen, and the noise 

level is the highest of all patients in the study. 

 
Figure 4.19:  Selected views of projection data from the stress image of an obese patient 

(GCPS 2) who was administered Tc-99m-Tetrofosmin; this dataset shows the second 

frame of the cardiac cycle, out of 16 time frames. This dataset had the highest noise 

level out of all the patients in the study. 
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 It is difficult to draw too many conclusions about the images from a 2D 

comparison, since 2D media are limited in displaying motion.  Observations of 

interleaved AVI loops of the images, however, revealed that RBI-MAP seems to provide 

 
Figure 4.22: Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 2) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the image 

reconstructed with the 4D RBI-MAP algorithm; the 2
nd

 frame of 16 is seen.  The noise 

level is highest out of all patients in the study. 

 

 
Figure 4.21:  Selected transaxial slices of reconstructed images from an obese patient 

(GCPS 2) who was administered Tc-99m-Tetrofosmin, showing iteration 4 of the image 

reconstructed with the iterative OS-EM algorithm. The image was post-processed first 

with a 3D Gaussian filter with FWHM of 16mm, then a 4D order 8 Butterworth filter 

with cutoff of 0.325 cycles/pixel. The 2
nd

 frame of 16 is seen, and the noise level is the 

highest out of all patients in the study. 
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a more contiguous representation of the myocardium as compared to the noisy 

appearance of the non-MAP results, especially in the higher noise cases.  It was also 

noted that though the noise variances were set comparably, the noise textures still differ a 

fair bit between the OS-EM-reconstructed images and the RBI-MAP-reconstructed 

images. 

4.1.3 Phantom Simulation 

 Table 4.1 shows relative uptake ratios of various organs in a Tc-99m tetrofosmin 

model of the XCAT phantom, which attempts to model the biokinetics of the tracers in 

the fast blood and liver clearance, combined with high intestinal uptake. 

 Selected transaxial slices of attenuation maps and tetrofosmin activity 

distributions of the physiologically normal morbidly and moderately obese male and 

female phantoms are shown below in Figures 4.23, 4.24, 4.25 and 4.26.  The heart sizes 

were scaled to be realistic in proportion to the body size, and the same was done with the 

breasts in the female phantoms. 

Table 4.1:  Tc-99m uptake ratios for the XCAT phantom that simulate a tetrofosmin 

activity distribution 

Organ Relative Activity Units (/voxel) 

Left Ventricle Myocardium 20 

Left Atrium Myocardium 20 

Right Ventricle 
Myocardium 

18 

Right Atrium Myocardium 18 

Blood Pool 2 

Lung 2 

Liver 2 

Gall Bladder 2 

Stomach 2 

Body 2 

Bone 2 

Intestine 80 

Other pelvic organs 2 
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Figure 4.23:  Selected transaxial slices showing the attenuation (left) and activity maps 

(right) of the morbidly obese male phantom, modeling a Tc-99m tetrofosmin activity 

distribution in a matrix size of 64x64, and a pixel size of 0.65913 cm; the average 

activity map (of 16 bins) is shown. 

  
Figure 4.24:  Selected transaxial slices showing the attenuation (left) and activity maps 

(right) of the morbidly obese female phantom, modeling a Tc-99m tetrofosmin activity 

distribution in a matrix size of 64x64, and a pixel size of 0.65913 cm; the average 

activity map (of 16 bins) is shown 
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Figure 4.26: Selected transaxial slices showing the attenuation (left) and activity maps 

(right) of the moderately obese female phantom, modeling a Tc-99m tetrofosmin 

activity distribution in a matrix size of 64x64, and a pixel size of 0.65913 cm; the 

average activity map (of 16 bins) is shown 

  
Figure 4.25: Selected transaxial slices showing the attenuation (left) and activity maps 

(right) of the moderately obese male phantom, modeling a Tc-99m tetrofosmin activity 

distribution in a matrix size of 64x64, and a pixel size of 0.65913 cm; the average 

activity map (of 16 bins) is shown 
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 Figures 4.27 through 4.29 show selected transaxial slices of the activity map of 

the three different physiological states of the phantoms, as depicted in the morbidly obese 

male.  Figure 4.27 depicts the motion of the left ventricle in the normal heart, while 

Figure 4.28 shows the mildly hypokinetic case where the lateral wall was affected.  In 

Figure 4.29, very little left ventricle motion is apparent, due to the fact that the lateral, 

anterior and inferior walls were fixed (i.e. no motion) in the model simulating the 

severely hypokinetic case.   

 Figures 4.30 and 4.31 depict selected views of noisy projection data from the 

morbidly obese male phantom and the moderately obese female phantom, respectively.  It 

 
Figure 4.29:  Selected transaxial view of the activity map of the severely hypokinetic, 

morbidly obese male phantom simulating Tc-99m tetrofosmin uptake. The 1
st
, 5

th
, 9

th
 

and 13
th

 time frames of 16 are shown. 

 

 
Figure 4.28:  Selected transaxial view of the activity map of the mildly hypokinetic, 

morbidly obese male phantom simulating Tc-99m tetrofosmin uptake. The 1
st
, 5

th
, 9

th
 

and 13
th

 time frames of 16 are shown. 

 

 
Figure 4.27:  Selected transaxial view of the activity map of the physiologically normal, 

morbidly obese male phantom simulating Tc-99m tetrofosmin uptake. The 1
st
, 5

th
, 9

th
 

and 13
th

 time frames of 16 are shown. 
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is noted that they are very similar in appearance to the projection data from the patient in 

terms of organ radiopharmaceutical uptake.  There is heightened uptake in the intestines 

combined with rapid clearance from the liver as is typical for tetrofosmin studies.  The 

noise level was set to 120,000 counts, as it was the average noise level in the patient 

study.  Six noise realizations were simulated for each of the phantoms in the study.  

 

 Reconstructed images from the morbidly obese male phantom are depicted in 

Figures 4.32 to 4.34. Similar to the patient reconstructed images, these images 

reconstructed with the 4D RBI-MAP algorithm show better image resolution and less 

noise degradation, than images reconstructed with OS-EM methods with 3D and 4D 

filtering.  As in the case of the patients, it is not easy to distinguish differences between 

 
Figure 4.30:  Selected views of simulated projection data from the physiologically 

normal morbidly obese male phantom simulating Tc-99m tetrofosmin uptake. The 

image was scaled to 120,000 counts before adding noise; the first noise realization is 

shown. 
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the 3D and 4D filtered images from the OS-EM method, due to the limitations of the 2D 

display.  

 

 

 
Figure 4.31:  Selected views of simulated projection data from the physiologically 

normal morbidly obese female phantom simulating Tc-99m tetrofosmin uptake. 

  
Figure 4.32:  Selected transaxial slices of reconstructed images from the morbidly obese 

male phantom. The image was processed with the OS-EM algorithm, and the 4
th

 

iteration was further filtered with a 3D Gaussian filter with FWHM of 18mm. The 7
th

 

time slot is shown here. 
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 Observation of the AVI loops reveals that RBI-MAP provides a more contiguous  

 

4.2 Evaluation of Quantitative Accuracy and Motion Fidelity 

 

 This next study was meant to investigate the quantitative accuracy and motion 

fidelity of the three reconstruction methods, using patient studies and phantoms. 

 
Figure 4.33:  Selected transaxial slices of reconstructed images from the morbidly obese 

male phantom. The 4
th

 iteration OS-EM image shown was processed with a 3D 

Gaussian with FWHM of 16mm, followed by an order 8 4D Butterworth filter with a 

filter cutoff of 0.325 cycles/pixel.  The 7
th

 time slot is shown here. 

 
Figure 4.34:  Selected transaxial slices of reconstructed images from the physiologically 

normal morbidly obese male phantom.  The image was processed with the 4D RBI-

MAP algorithm with the same parameters as the patient image.  The 4
th

 iteration of time 

slot 7 is shown here. 
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4.2.1 Conversion of Images to DICOM Format 

 The reconstructed images of the patients and the phantoms were converted to 

DICOM using a MATLAB program, by copying the pixel data into existing DCM files.  

Upon importing to the clinical workstation, the metadata/headers were changed to reflect 

the reconstruction method actually used.  The reorientation program on the clinical 

workstation was used to reorient the heart data to clearly display the VLA, HLA and SA 

slices.  Masking was done in some cases if a hot spot nearby required it, and all of these 

operations resulted in a set of 3 files labeled Method A, B, and C in the clinical patient 

database list view.  These files were then selected to import into QGS, and were able to 

be viewed simultaneously.  

4.2.2 QGS Evaluation of Patient Data 

 Projection data from all 28 patients in the database were reconstructed with each 

of the three methods; OS-EM with the 3D smoothing filter, OS-EM with the 4D 

smoothing filter, and the RBI-MAP algorithm with different spatial & time priors for 

differential smoothing in those dimensions.  The conversion to DICOM was 

accomplished as described before, and the data were imported onto the clinical 

workstation, and into QGS after a few operations described in the last section.  The QGS 

software generated a set of quantitative parameters, the EDV, ESV, and LVEF, and these 

were further honed with manual contour fitting around the epicardial surface of the left 

ventricle, to ensure accuracy of fit.  There was no option to fit the endocardial surface.  

The manual contour fitting made a difference in the noisier datasets, where the QGS left 

ventricle segmentation fared poorly.  The EF, EDV and ESV values were recalculated 

after the manual-fit contours were processed, and the values were carefully recorded in 



 

66 

 

Tables 4.2, 4.3 and 4.4 below, that also capture the gender and the diagnosis recorded in 

the radiology report. 

 

 

Table 4.2:  Table showing the LVEF values yielded by QGS on the study patients in the 

database.  The gender and diagnosis are also recorded here. 

 LVEF Values in QGS (%) Gender Diagnosis 

Patient OS4-3D OS4-4D RBM-4D     

GCPS 01 55 67 40 Male Normal 

GCPS 02 65 69 52 Female Normal 

GCPS 03 80 87 69 Female Abnormal 

GCPS 04 49 59 49 Female Abnormal 

GCPS 05 65 73 55 Male Normal 

GCPS 06 95 89 145 Female Abnormal 

GCPS 07 42 48 45 Female Normal 

GCPS 08 44 45 44 Female Normal 

GCPS 09 60 74 56 Male Normal 

GCPS 10 68 78 64 Female Normal 

GCPS 11 66 72 60 Male Normal 

GCPS 12 23 30 16 Male Abnormal 

GCPS 13 43 42 39 Male Normal 

GCPS 14 63 72 57 Female Normal 

GCPS 15 63 85 66 Female Normal 

GCPS 16 68 72 60 Female Normal 

GCPS 18 63 61 52 Male Abnormal 

GCPS 19 36 45 43 Female Abnormal 

GCPS 20 67 73 61 Female Normal 

GCPS 21 53 57 51 Female Normal 

GCPS 22 63 74 59 Male Normal 

GCPS 23 55 61 50 Female Normal 

GCPS 24 28 35 26 Male Abnormal 

gcp0016 37 44 36 Male Normal 

gcp0017 63 78 53 Female Normal 

gcp0018 47 36 56 Female Abnormal 

gcp0019 49 56 42 Female Normal 

gcp0021 29 34 30 Female Normal 
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Table 4.3:  Table showing the end-diastolic volumes recorded for each of the patients in 

the database, for each of the reconstruction methods used. 

 EDV Values in QGS (mL) 

Patient OS4-3D OS4-4D RBM-4D 

GCPS 01 105 88 114 

GCPS 02 57 94 59 

GCPS 03 33 52 34 

GCPS 04 99 80 92 

GCPS 05 62 105 65 

GCPS 06 95 89 145 

GCPS 07 171 159 154 

GCPS 08 115 100 102 

GCPS 09 102 78 95 

GCPS 10 102 86 92 

GCPS 11 98 90 105 

GCPS 12 352 288 387 

GCPS 13 157 143 157 

GCPS 14 91 81 89 

GCPS 15 82 56 60 

GCPS 16 83 69 84 

GCPS 18 126 121 147 

GCPS 19 176 148 148 

GCPS 20 84 70 80 

GCPS 21 138 131 132 

GCPS 22 98 79 91 

GCPS 23 82 63 71 

GCPS 24 183 152 173 

gcp0016 155 129 139 

gcp0017 28 46 31 

gcp0018 105 106 92 

gcp0019 115 97 111 

gcp0021 181 156 182 
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Table 4.4:  Table showing the end-systolic values for each of the reconstruction methods 

used on each set of patient data 

 ESV Values in QGS (mL) 

Patient OS4-3D OS4-4D RBM-4D 

GCPS 01 47 29 68 

GCPS 02 20 29 28 

GCPS 03 6 7 10 

GCPS 04 50 33 47 

GCPS 05 22 28 30 

GCPS 06 47 39 94 

GCPS 07 99 82 85 

GCPS 08 65 55 57 

GCPS 09 41 20 41 

GCPS 10 33 19 33 

GCPS 11 33 26 42 

GCPS 12 270 203 327 

GCPS 13 90 83 96 

GCPS 14 34 23 38 

GCPS 15 30 8 21 

GCPS 16 27 19 34 

GCPS 18 47 47 72 

GCPS 19 112 81 84 

GCPS 20 28 19 31 

GCPS 21 65 57 64 

GCPS 22 36 21 37 

GCPS 23 37 25 36 

GCPS 24 133 99 129 

gcp0016 98 72 89 

gcp0017 10 10 14 

gcp0018 56 68 41 

gcp0019 58 43 65 

gcp0021 128 103 127 

 

 The paired t-tests that were performed, comparing the EDV, ESV, and EF values 

between OS-EM with 3D filter (OS3D), OS-EM with 4D filter (OS4D), and RBI-MAP 

(RBM), yielded a set of p values shown in Table 4.5 below; significant values are 

italicized.  The null hypothesis, as stated before, is that the mean difference between 

paired groups is zero, and a significance level of 0.05 was used.  The p values resulting 

from comparisons of OS3D with OS4D were very small, and thus the null hypothesis can 

be rejected as the two methods are very different.  The p values yielded by comparisons 
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of OS3D with RBM were much larger, and in this case, the null hypothesis cannot be 

rejected.  Comparing the values between OS4D and RBM yielded p values that did not 

follow a trend; the ESV and EF comparisons resulted in the rejection of the null 

hypothesis in favor of the alternative, while the EDV comparison did not give clear 

reason to reject the null hypothesis. 

Table 4.5:  P-values from paired t-test comparing pairs of the three methods, are shown 

below.  The significance level used was 0.05. 

p value OS3D vs. OS4D OS3D vs. RBM OS4D vs. RBM 

EDV 0.007731 0.608302 0.054858 

ESV 0.000090 0.202980 0.001066 

EF 0.000016 0.318878 0.006731 

 

 The results from the paired t-test suggest that the OS4D method is very different 

from both the OS3D and the RBI-MAP methods.  On average, the EDV and ESV values 

calculated by QGS on the OS4D method tended to be lower than the others, while the 

LVEF values were comparable.  This may be due to the 4D filtering in the OS4D method 

produces images that throw off the contour-finding algorithms in QGS, or it is possible 

that the contour fit is better on the OS4D images than the other two.  The lack of 

knowledge about the true chamber volumes in these patients makes it difficult to draw a 

conclusion.   

 Comparing the images qualitatively brought a whole new set of considerations 

into the equation.  At lower noise levels, all three images seemed very similar in 

appearance to one another when viewed in QGS, as supported by Figure 4.35 below.  The 

cine mode however hinted at subtle differences between the methods.  While the motion 

of the OS3D and OS4D images seemed very similar to each other, the RBM image 
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seemed to have smoother motion that was more realistic than in the previous two 

methods, which is probably due to better smoothing in the time domain.  

 

 When viewing noisier images, more differences between the methods were 

revealed.  Image 4.36 depicts the same ‘Slice’ comparison in a patient with a noisier 

dataset, where the high noise level translates into images where the entire heart is not 

visible, especially in the apical region.  The OS3D and OS4D appear similar to one 

another, nearly indistinguishable, while the RBM image shows a striping artifact.  The 

artifact is likely a function of the β parameter used to weight the spatial prior.  While 

viewing the images in cine mode, it seemed once again that the motion of the RBM-

reconstructed image was much smoother and more realistic as compared to the OS3D and 

OS4D images, which were similar to each other.  

 
Figure 4.35:  ‘Slice’ display mode in QGS comparing the OS3D-, OS4D- and RBM-

reconstructed images for study patient GCPS09 from the database; this illustrates the 

low noise situation, where the static images are all very similar in appearance. 
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 Having compared the images in high-noise and low-noise situations, one must 

also view the average situation to be able to draw conclusions.  Figure 4.37 shows the 

average-noise situation, where the striping artifact is once again visible in the RBM 

images.  The images compared similarly as in the previous situations, with the OS3D and 

OS4D images behaving alike both spatially and temporally, while the RBM image 

seemed to perform better temporally with smoother motion.   

 
Figure 4.36:  ‘Slice’ display mode in QGS comparing the OS3D-, OS4D- and RBM-

reconstructed images for study patient GCPS12 from the database; this illustrates the 

higher noise situation, where OS3D and OS4D images are similar to one another, 

while the RBM image shows a striping artifact in the horizontal direction 
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This study illustrates the importance of the noise level on the perceived 

differences between the reconstruction methods in patients.  It is thus of much interest to 

investigate which of the methods is more quantitatively accurate through the phantom 

study.  

4.2.3 QGS Evaluation of Phantom Data 

 The phantom study employed the 72 phantoms generated (2 body sizes x 2 

genders x 3 different LV motion states x 6 noise realizations), from which projection data 

were simulated.  Six noise realizations of Poisson noise were simulated in the noisefree 

datasets after scaling to 120,000 counts in the heart region for all the phantoms.  The 

noisy data were reconstructed with each of the three reconstruction methods being tested, 

as with the patient data.  The reconstructed images were converted from .im to DICOM 

 
Figure 4.37:  ‘Slice’ display mode in QGS comparing the OS3D-, OS4D- and RBM-

reconstructed images for study patient GCPS19 from the database; this illustrates the 

average noise situation, where OS3D and OS4D images are similar to one another, 

while the RBM image shows a striping artifact in the horizontal direction  
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format, and imported onto clinical workstations.  The process of reorienting and optional 

masking of hot spots was followed with the phantom data, before the images were loaded 

into the QGS software.   

 

Table 4.6:  LVEF values recorded from the QGS analysis of phantom data; the values for 

each phantom come from an average of the values for the 6 noise realizations 

  EF Values EF Values in QGS (%) 

Phantom TRUE (mL) OS4-3D OS4-4D RBM-4D 

Morbidly Obese, Normal Male 59.98 40 37 34 

Mod. Obese, Normal Male 59.78 44 43 40 

Morbidly Obese, Normal Female 59.74 38 39 36 

Mod. Obese, Normal Female 59.01 54 49 45 

Morbidly Obese, Mildly Hypo. Male 44.32 17 19 16 

Mod. Obese, Mildly Hypo. Male 43.74 22 22 21 

Morbidly Obese, Mildly Hypo. Female 43.89 22 22 18 

Mod. Obese, Mildly Hypo. Female 43.12 21 20 20 

Morbidly Obese, Very Hypo. Male 27.81 6 6 4 

Mod. Obese, Very Hypo. Male 27.3 8 10 8 

Morbidly Obese, Very Hypo. Female 27.46 7 8 6 

Mod. Obese, Very Hypo. Female 26.75 12 13 11 

 

 

 

Table 4.7:  EDV values recorded from the QGS analysis of phantom data; the values for 

each phantom reflect an average from the 6 noise realizations 

  EDV Values EDV Values in QGS (mL) 

Phantom TRUE (mL) OS4-3D OS4-4D RBM-4D 

Morbidly Obese, Normal Male 155.71 103 125 120 

Mod. Obese, Normal Male 112.22 74 78 70 

Morbidly Obese, Normal Female 119.56 92 93 86 

Mod. Obese, Normal Female 85.66 49 53 51 

Morbidly Obese, Mildly Hypo. Male 155.71 124 118 118 

Mod. Obese, Mildly Hypo. Male 112.22 85 85 82 

Morbidly Obese, Mildly Hypo. Female 119.56 88 101 98 

Mod. Obese, Mildly Hypo. Female 85.66 55 53 50 

Morbidly Obese, Very Hypo. Male 155.71 126 121 126 

Mod. Obese, Very Hypo. Male 112.22 80 83 78 

Morbidly Obese, Very Hypo. Female 119.56 80 88 84 

Mod. Obese, Very Hypo. Female 85.66 57 56 48 
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Table 4.8:  ESV values recorded from the QGS analysis of phantom data; the values for 

each phantom reflect an average from the 6 noise realizations 

  ESV Values ESV Values in QGS (mL) 

Phantom TRUE (mL) OS4-3D OS4-4D RBM-4D 

Morbidly Obese, Normal Male 62.32 63 80 80 

Mod. Obese, Normal Male 45.14 42 44 42 

Morbidly Obese, Normal Female 48.14 58 57 55 

Mod. Obese, Normal Female 35.14 23 27 33 

Morbidly Obese, Mildly Hypo. Male 86.7 103 96 99 

Mod. Obese, Mildly Hypo. Male 63.14 67 66 65 

Morbidly Obese, Mildly Hypo. Female 67.08 69 79 80 

Mod. Obese, Mildly Hypo. Female 48.72 43 43 42 

Morbidly Obese, Very Hypo. Male 112.4 119 115 122 

Mod. Obese, Very Hypo. Male 81.58 74 76 72 

Morbidly Obese, Very Hypo. Female 86.73 75 81 79 

Mod. Obese, Very Hypo. Female 62.75 51 49 43 

 

The EF, EDV and ESV values were recorded for each phantom, for each noise 

realization, and the average values (from the noise realizations) are tabulated above in 

Tables 4.6 through 4.8.  The OS-EM with 3D filtering method tended to yield EDV, ESV 

and EF values that were closer to the true values than the other methods, though there 

were fluctuations in individual cases that did not always follow this trend, due to 

differing noise structures.  This is possibly due to the noise structure of OS-EM-

reconstructed images, which may allow QGS to more precisely identify the endocardial 

surface contours.  The algorithms in QGS may be written to work with a certain type of 

noise structure.  

The data were also analyzed by means of computing the percent error between 

known values of EDV, ESV and calculated EF, and measured values using QGS.  From 

the % error calculations for the EDV, ESV, and EF values across the phantom 

populations, it was seen that the RBI-MAP method (abbreviated RBM) tended to yield 

lower EF values on the average than the other two methods.  It may be that the different 
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noise structure of the RBI-MAP algorithm challenges the ability of the QGS software 

algorithm to identify the endocardial surface accurately.  It was not possible to rectify this 

as the manual fit in QGS can be applied only to the epicardial surface of the left ventricle.   

The % error values for the EF tended to be consistently high as compared to those for the 

EDV and ESV values, probably due to the dependence of that parameter on the other 

two.   

Figures 4.38 through 4.40 depict the variance of EDV across members of the 

normal and two hypokinetic populations.  Every one of charts shows an underestimation 

of EDV by the QGS software, ranging from 40-80 mL.  In general, the values estimated 

by the three methods are clustered together on the chart, all showing roughly the same 

amount of underestimation of chamber volume.  The RBI-MAP method varied slightly 

differently from the other two, as seen in Figure 4.39, and this can be attributed to the 

different noise structure having an effect on the accurate identification of the endocardial 

surface by QGS.   
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Figure 4.39:  Chart showing the EDV values calculated by QGS plotted against the 

true values, for the mildly hypokinetic obese phantom population. Error bars indicate 

+/- one standard error.  

 
Figure 4.38:  Chart showing the EDV values calculated by QGS plotted against the 

true values, for the physiologically normal obese phantom population. Error bars 

indicate +/- one standard error. 
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Figure 4.41:  Chart showing the ESV values calculated by QGS plotted against the 

true values, for the physiologically normal obese phantom population. Error bars 

indicate +/- one standard error. 

 
Figure 4.40:  Chart showing the EDV values calculated by QGS plotted against the 

true values, for the severely hypokinetic obese phantom population. Error bars 

indicate +/- one standard error. 
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Figure 4.43:  Chart showing the ESV values calculated by QGS plotted against the 

true values, for the severely hypokinetic obese phantom population. Error bars 

indicate +/- one standard error. 

 
Figure 4.42:  Chart showing the ESV values calculated by QGS plotted against the 

true values, for the mildly hypokinetic obese phantom population. Error bars indicate 

+/- one standard error. 

  



 

79 

 

 Figures 4.41 through 4.43 show the variance of ESV values across each of the 

phantom populations, plotted against the true value as calculated from the phantom.  

QGS appears to have fared much better in estimating ESV values, as the estimated values 

all vary about the true value, with differences being between 5-20 mL, in contrast to the 

EDV values.  The reason could be that endocardial contours were easier to find for the 

algorithm at end-systole where counts are concentrated, as opposed to end-diastole when 

the counts are spread out so there are fewer counts per pixel in the heart.  Figure 4.47 

illustrates the contour fit in QGS, where it is apparent the endocardial surface fit seems to 

be clearly erroneous.  The methods once again seemed to differ by roughly equal 

amounts from the true values, and while there was not a clear distinction, OS-EM with 

3D filtering appears to yield values slightly closer to the truth.   

 

 
Figure 4.44:  Chart showing the EF values calculated by QGS plotted against the true 

values, for the physiologically normal obese phantom population. Error bars indicate 

+/- one standard error. 
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Figure 4.46:  Chart showing the EF values calculated by QGS plotted against the true 

values, for the severely hypokinetic obese phantom population. Error bars indicate 

+/- one standard error. 

  

 
Figure 4.45:  Chart showing the EF values calculated by QGS plotted against the true 

values, for the mildly hypokinetic obese phantom population. Error bars indicate +/- 

one standard error. 
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 Figures 4.44 through 4.46 show QGS-calculated EF values versus true values 

across the phantom populations in the study.  It was in the case of the EF calculation that 

the greatest % error values were obtained, and that is seen in the chart.  The calculated EF 

values were underestimated in every case, and ranged from 20-30% lower than the true 

value on average.  EF is calculated from the EDV and ESV values, and the size of the 

error in this case clearly reflects the compounding of the error in the estimation of the two 

other parameters.  The RBI-MAP algorithm seemed to yield the lowest EF values among 

the three methods, as noted before. 

 Finally, paired t-tests as in the case of the patient data, were done with the data 

from the phantom study for each of the quantitative parameters.  Tables 4.9 through 4.11 

show the breakdown by population (i.e. normal, mildly hypokinetic, and severely 

hypokinetic); the significant p-values are italicized.   

Table 4.9:  Results of the paired t-test comparing EDV, ESV, and EF values for the 

physiologically normal obese phantom population 

p value OS3D vs. OS4D OS3D vs. RBM OS4D vs. RBM 

EDV 0.009603 0.417106 0.000943 

ESV 0.017900 0.051034 0.755848 

EF 0.106890 0.000787 0.000023 

 

Table 4.10:  Results of the paired t-test comparing EDV, ESV, and EF values for the 

mildly hypokinetic obese phantom population 

p value OS3D vs. OS4D OS3D vs. RBM OS4D vs. RBM 

EDV 0.743742 0.678355 0.482481 

ESV 0.976096 0.727803 0.761771 

EF 0.595362 0.009037 0.009856 

 

Table 4.11:  Results of the paired t-test comparing EDV, ESV, and EF values for the 

severely hypokinetic obese phantom population 

p value OS3D vs. OS4D OS3D vs. RBM OS4D vs. RBM 

EDV 0.628799 0.446347 0.189593 

ESV 0.695743 0.841861 0.561316 

EF 0.049713 0.025494 0.000043 
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 The null hypothesis for the paired t-tests was that the mean difference between 

paired groups is zero, and a significance level of 0.05 was used.  It was noted that in both 

the hypokinetic populations, most of the p values were large (except in the case of the EF 

values, which are derived from the EDV and ESV), indicating that there is no reason to 

reject the null hypothesis.  By contrast, the p values yielded by the comparison in the 

normal population revealed significant differences between the 3D OS-EM method and 

4D OS-EM method, as well as the 4D OS-EM method and RBI-MAP.  Only the EF value 

was significantly different in the 3D OS-EM and RBI-MAP methods, but due to it being 

a derived value, it is perhaps not that significant after all.  Overall, it appears that the OS-

EM method with 4D filtering stands out, as it did in the patient study.  There also appears 

to be a trend in decreasing p-value with decreasing severity of motion defect.  These 

results suggest that the choice of reconstruction method is more important when there is 

greater heart motion, alluding to the differences being due to the varied time dimension 

processing parameters.  The processing method thus has the potential to have a greater 

effect on the diagnosis in the normal or borderline cases, than in cases that may be far 

gone in terms of disease progression.   

 

 Visually, the phantom images appeared similar to the patient images in QGS, as 

seen in Figures 4.48 and 4.49.  The OS-EM with 3D and 4D filtering methods yield 

images that appeared similar to one another spatially, while the RBI-MAP method had a 

different noise structure.  The striping artifact observed with the patient data was not seen 

here, however, and this is thought to be due to the fact that the RBI-MAP parameters 
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were optimized for this particular noise level (calculated as the average noise level in the 

patient study), and no such noise correlations occurred with the optimization.   

 

 
Figure 4.47:  ‘Slice’ display mode in QGS comparing the OS3D-, OS4D- and RBM-

reconstructed images for a severely hypokinetic morbidly obese female phantom.  

The contours generated by the QGS program to the endocardial and epicardial 

surfaces of the heart are seen here.  While the epicardial surface fit may be manually 

modified, there is no such option for the endocardial surface fit. 
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Figure 4.48:  ‘Slice’ display mode in QGS comparing the OS3D-, OS4D- and RBM-

reconstructed images for a severely hypokinetic morbidly obese female phantom; this 

illustrates the average noise level. The OS3D and OS4D images are similar to one 

another, while the RBM image does not show the striping artifact as unlike the 

patient images. 
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4.3 Study of Physician Preference for Reconstruction Method 

4.3.1 Preference Study 

 

 The physician preference study factored in the input of the 4 physicians into the 

evaluation of the reconstruction methods.  Two to three one-hour sessions were 

scheduled with the physicians for completing the study over a two to three week period.  

The physicians were provided the patient’s radiology report prior to the reading of each 

patient dataset in QGS, and reminded of the task at hand, which was to consider which of 

the images (from the 3 reconstruction methods) gave them the most confidence in the 

diagnosis.  They were encouraged to make full use of the rating scale; however, it was 

noted that they were all reluctant to use the extremes of the scale (i.e. much worse and 

 
Figure 4.49:  ‘Slice’ display mode in QGS comparing the OS3D-, OS4D- and RBM-

reconstructed images for a severely hypokinetic moderately obese male phantom; 

this illustrates the average noise level. The OS3D and OS4D images are similar to 

one another, but in this case, the RBM image does not show the striping artifact as 

unlike the patient images. 
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much better).  In several cases, the physicians were hard-pressed to decide which of the 

images was better, and opted to go with a rating of 0 (to indicate they were the same).  Of 

all the display and analysis modes available in QGS, it was noted that they tended to 

choose either the ‘Slice’ or the ‘Splash’ modes as the basis of their diagnoses almost 

exclusively, perhaps because the display is most efficient in layout, displaying the VLA, 

HLA and SA slices simultaneously.  They occasionally used the ‘Blur’ mode to smooth 

out the noise in the spatial dimension, and very rarely, the ‘Smear’ mode that did 

temporal smoothing.  The physicians paid no attention to the calculated EDV, ESV, and 

EF values output by the QGS program.   

 In the low-noise situations, the physicians tended to rate the 3 methods as being 

‘the same’, and sometimes preferred the OS-EM with 3D filtering or OS-EM with 4D 

filtering to the other methods.  It is likely that they preferred the smoother appearance of 

the OS-EM images (spatially) to the RBI-MAP images when the images were not terribly 

degraded by noise.  However, in high-noise datasets, when all 3 images displayed 

incompletely in QGS (with missing apices or other parts of the heart), they tended to 

choose the RBI-MAP method over the others.  It is hypothesized that the smoother 

motion of the RBI-MAP might help the eye average the slices, even with the missing 

data, to provide a more complete picture of both the perfusion and motion information.  

 

4.3.2 ANOVA 

 

 An analysis of variance helped determine if the population means among the 

physician ratings of the different reconstruction methods were different.  
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The one-way ANOVA performed in MATLAB yielded the results shown in 

Figure 4.50.  The standard ANOVA table is seen, with columns displaying the source of 

variability, the sum of squares (SS) due to each source, the degrees of freedom (df) 

associated with each source, the mean squares (MS) for each source (which is the ratio 

SS/df), the F-statistic, which is the ratio of the mean squares, and finally, the p-value, 

which is derived from F.  The p value is very high in this case, resulting in the conclusion 

that there is not a significant difference among the physican ratings for the 3 processing 

 
Figure 4.50:  Results of the ANOVA exploring the differences between the ratings 

for the OS3D, OS4D and RBM methods (1, 2, 3, respectively). Group 1 shows the 

physician ratings comparing OS3D and OS4D, group 2 shows ratings between OS3D 

and RBM, while the last group compares the two 4D methods.  The red lines depict 

the means of the groups, while the whisker lines lead to the 25
th

 and 75
th

 percentiles. 
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methods.  Thus, there is not enough reason to reject the null hypothesis.  What this 

translates to, is that the physician preference study revealed no preference in particular 

for any of the three methods over the other.   

 From the plot showing the range of values for the 3 methods, it is apparent that 

the ratings comparing the OS-EM with 3D filtering and OS-EM with 4D filtering 

methods, and the ratings for the OS-EM with 3D filtering and RBI-MAP methods had 

similar means and smaller spreads than the ratings comparing the two 4D methods, where 

there was much more variance above and below the mean.  The greater variation in the 

latter case is probably due to the response to the 4D images being more subjective, with 

ratings reflective of individual preference, and perhaps some variance on a case-by-case 

basis.   

 

 

 



 

 

 

 

 

Chapter 5 
 

Conclusions 

 
 This chapter attempts to tie in all the results from the studies in this dissertation, 

and draw conclusions from them.  The goal of this project has been to evaluate 3D versus 

4D reconstruction methods for reconstructing noisy gated SPECT images from obese 

patients, namely OS-EM with 3D filtering, OS-EM with 4D filtering, and the RBI-MAP 

algorithm employing different Gibbs priors for spatial and time domain smoothing.   

 

5.1 Development of Obese Phantom Population 

 The first step toward the evaluation studies was the optimization of reconstruction 

parameters in an attempt to standardize the methods being compared.  Blood pool SPECT 

images were simulated using an obese male phantom, and filter cutoffs with different 

iteration numbers of the OS-EM algorithm were tested for the 3D Gaussian filter and the 

4D Butterworth filter.  The prior weighting parameters and other parameters influencing 

the shape of the derivative potential functions of the RBI-MAP algorithm were evaluated 

simultaneously.  The result was a set of filter cutoffs for the OS-EM method with 3D and 

4D filters, and fixed parameters for the RBI-MAP algorithm, which allowed for some 

standardization despite the fact that it was not possible to select the most optimal set of 

parameters that would allow the methods to perform at their best under a given set of 

circumstances.   
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 Patient data were collected from patients imaged with Tc-99m tetrofosmin in the 

clinic for the study database and the projection data were reconstructed.  The data were 

used in conjunction with anthropomorphic data, and a duo of body sizes and organ sizes 

(primarily the heart, and breasts in the female) were chosen for the phantoms in the study.  

Motion defects were also created to simulate phantoms with left ventricle moving either 

at normal speed or one of two hypokinetic speeds.  Noise levels assessed in the patients, 

were used to generate realistic noisy projection data from the phantoms for a total of 

three noise realizations per phantom, and reconstruction was performed using the 3 

methods being evaluated in the study.  Comparisons of patient data to phantom data 

revealed that the phantoms make for a realistic model of Tc-99m tetrofosmin uptake in 

obese patients, and would provide a solid vehicle for further studies. 

 

5.2 Quantitative Accuracy and Motion Fidelity 

The next step in the process involved the conversion of the reconstructed data 

from the .im format (which was used for reconstruction) to the standard DICOM format 

to enable the use of the clinical Quantitative Gated SPECT software (distributed by 

Cedars-Sinai and commonly used in the clinic) for the analysis of the images.  Once this 

method was developed, the reconstructed images in the patient database and the phantom 

database were all converted to DICOM format and imported to the clinical workstations.   

The quantitative parameters describing the function of the left ventricle, namely 

the end-diastolic volume, end-systolic volume and ejection fraction, were recorded for 

each of the sets of images for the patients and phantoms in the study.  Analysis of the 

quantitative factors in the patient study suggested that there is a difference in ‘population’ 
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means when comparing the OS-EM with 3D filtering to OS-EM with 4D filtering, while 

OS-EM with 3D filtering seemed to be very similar to the RBI-MAP images.  There were 

conflicting results comparing OS-EM with 4D filtering and RBI-MAP.  OS-EM with 4D 

filtering stood out from the other two methods in the paired t-tests; it produced slightly 

more precise results.  The qualitative analysis of the patient images did not uncover much 

at the lower noise level, where all three methods produced images that appeared similar 

in the QGS viewer spatially.  When viewed in interleave mode, the images demonstrated 

smoother motion with the RBI-MAP algorithm as compared to the OS-EM methods, but 

this was a subtle difference.  At higher noise levels that caused portions of the heart to be 

missing, the OSEM 3D- and 4D-filtered images appeared similar to one another and 

smoother than the RBI-MAP image which demonstrated a striping artifact thought to be 

caused by the weighting of the spatial prior.  The heart motion appeared smoother and 

more realistic with the RBI-MAP algorithm once again.   

 The results from the phantom study revealed that QGS tends to severely 

underestimate the EDV parameter, thus also affecting the EF value calculated by the 

algorithm in the software.  QGS performed better at estimating ESV, possibly due to the 

easier identification of the endocardial and epicardial LV surfaces with higher counts 

concentrated in the heart region at end-systole.  QGS, while providing the user the option 

of manually correcting the fit of the epicardial contours, does not allow the same for the 

fit to the endocardial surface.  This limits the ability of the user to improve quantitation in 

QGS.   

Other analyses on the phantom study data revealed that, on average, the EDV, 

ESV and EF values calculated by QGS for each of the three methods were very similar to 
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each other (across methods and across populations), though it was noted that the EF 

values calculated for the RBI-MAP reconstructed-images were slightly lower while the 

OS-EM with 3D filtering method appeared to have slightly greater accuracy than the 

other two methods at estimating the quantitative parameters.  It is thought that this is due 

to the differing noise structures between the OS-EM and the RBI-MAP reconstructed 

images, which can affect the identification of the LV surfaces by QGS.   

Paired t-tests on the phantom data, again calculated for the different populations 

(classified by physiological states) yielded interesting results.  It appeared that for the 

hypokinetic populations, there are no significant differences in EDV, ESV, and EF values 

among reconstruction methods, unlike in the normal population.  The results suggest that 

for those obese patient populations who are normal or borderline diseased, the choice of 

reconstruction method may make a greater difference.  As in the patient study, the OS-

EM method with 4D filtering stood out from the other two methods.  

 Visually, the images compared similarly as in the patient study.  However, no 

striping artifact as in the case of the RBI-MAP reconstructed patient images, were seen in 

the phantom study.  This is due to the optimization of the RBI-MAP parameters for the 

noise level selected for the phantom study, while the patient study illustrated the 

performance of that algorithm under very different noise condition. 

 

5.3 Physician Preference for Reconstruction Method 

 The images in the patient database were masked as to the method of 

reconstruction, and read by 4 physicians who participated in a preference study that set 

out to evaluate which of the methods provided images that gave them the most 
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confidence in their diagnoses.  While the ANOVA technique analyzing the results of this 

preference study indicated that there was no method that was preferred over the other by 

the physicians, the mechanics of doing the study with the experts was revealing.  

Reinforcing the results of the prior studies, it was found that the physicians were hard-

pressed in low-noise cases to choose one method over another (due to their similar 

appearance), and in several such cases, they actually preferred the OS-EM images with 

3D or 4D filters to the RBI-MAP ones.  This may well be due to their preference for 

images they are used to working with on a regular basis (as OS-EM with the 3D Gaussian 

filter is frequently employed in the clinic).  It is also possible that in doing a controlled 

study of this nature (where the physicians were not provided the projection data nor the 

ungated data they compare the gated datasets to while reading the cases in the clinic), the 

emphasis was subtly shifted from the temporal value of the methods to the spatial 

appearance and smoothness of the images, until a high-noise case shifted the emphasis 

back.  In such cases, they generally tended to prefer the RBI-MAP method for its 

smoother motion that seems able to make up for the missing image content despite the 

spatial artifacts, due to temporal averaging by the eye.  This theory would have to be 

tested further with psychophysical studies, to be substantiated. 

 

5.4 Concluding Remarks 

  This dissertation was a foray into the complexities surrounding the type of 

reconstruction method that would be the best choice for processing noisy images from 

gated cardiac SPECT studies in obese patients.  It revealed that the choice of 

reconstruction method may affect the images of patients who are normal or borderline 
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hypokinetic much more than patients who are further along in disease stage.  The results 

of the patient and phantom study lead us to conclude that the OS-EM method with 4D 

filtering may make the greatest difference to the quantitation of LV chamber volumes, as 

compared to the other methods.  However, it is clear that the RBI-MAP method brings 

very different advantages into the mix as compared to the other methods.  The preference 

study indicated that though there was no clear preference for one method over the other, 

that the response to the 4D algorithms was very subjective, and highly variable as 

compared to the response to the OS-EM methods.   

Further work should aim to explore this in more detail.  A pilot observer study 

would be of benefit in optimizing parameters native to the reconstruction methods, in the 

interests of comparing the best performing incarnation of each one to the others, as 

opposed to selecting parameters that may place one or more methods at a disadvantage.  

The RBI-MAP algorithm parameters in particular should be optimized for various noise 

levels.  A motion observer study utilizing those parameters and methods might then 

provide concrete answers to the question of which processing method will provide the 

physician of the obese patient with the best tools for diagnosis and treatment planning, 

ultimately improving the patient prognosis. 
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Chapter 6 
 

Appendix A 
 

MATLAB CONVERSION CODE (DICOM TO .IM) 

 

function return_value = Convert_dcm_to_im() 

 

% Converts a 4D 16 frame DICOM fileset to a series of .im files (16, one for 

% each frame of the cardiac cycle) 

 

% Read the DICOM fileset 

image = dicomread('Pat9.strs.prj.dcm'); 

 

% Convert to single precision: 

image2 = single(image); 

 

% Reshape into 32 views and 32 gates-cameras: 

image2 = reshape(image2, 64, 64, 32, 32); 

 

% Split into cameras: 

cam1 = image2(:, :, :, 1:16); 

cam2 = image2(:, :, :, 16:32); 

 

% Combine cameras and frames by concatenating in the proper direction: 

for i = 1:16 

    frame (:,:,:,i) = cat(3, cam1(:,:,:,i), cam2(:,:,:,i)); 

end 

 

% Compose filenames and write out in .im format: 

for i = 1:16 

    writeimfile(frame(:,:,:,i), strcat('Pat9.strgtd.prj.',num2str(i))); 

end 

 

return_value=0; 

return 

 

 

MATLAB CONVERSION CODE (.IM TO DICOM) 

 

function return_value = Convert_im_to_dicom(im_input, dicom_prefix, output_prefix) 

 

% Converts a 3D .im file to a DICOM fileset by borrowing header 

%  from an existing DICOM fileset 

 

% Read the input image 
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image = readimfile(im_input); 

 

% Find number of slices (z * t) 

numslices = size(image,3); 

 

% Convert to 16-bit array 

image2 = int16(image); 

 

% Get dicom info fields 

info = dicominfo([dicom_prefix,'.dcm']); 

 

% Find header length 

header_length = info.StartOfPixelData + 12; 

 

% Open dicom file 

filein = fopen([dicom_prefix,'.dcm'],'r'); 

     

% Read header 

header = fread(filein, header_length, 'uint8'); 

 

% Close file 

fclose(filein); 

       

% Open output file 

fileout = fopen([output_prefix,'.dcm'],'w'); 

 

% Write header 

count = fwrite(fileout, header, 'uint8'); 

if (count ~= header_length) 

   error('Problem writing header in Convert_im_to_dicom'); 

end 

 

% For each slice 

for i = 1:numslices 

     

    % Extract the slice and transpose 

    imagetemp = image2(:,:,i); 

     

    % Write pixels 

    count = fwrite(fileout, image2(:,:,i)', 'int16'); 

    if (count ~= prod(size(image(:,:,i)))) 

        error('Problem writing pixels in Convert_im_to_dicom'); 

    end 

   

end 
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% Close file 

fclose(fileout); 

     

return_value=0; 

return 
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