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Abstract

SEUNGGEUN LEE: Principal Component Analysis in High Dimensional
Data: Application for Genomewide Association Studies.
(Under the direction of Fei Zou and Fred A. Wright.)

In genomewide association studies (GWAS), population stratification (PS) is a ma-

jor confounding factor which causes spurious associations by inflating test statistics. PS

refers to differences in allele frequencies by disease status due to systematic differences

in ancestry, rather than causal association of genes with disease. PCA is commonly

used to infer population structure by computing PC scores, which are subsequently

used for control of population stratification.

Even though PCA is now widely used for PS adjustment, there are still challenges

for PCA based effective PS control. One common feature of the genomic data is the

strong local correlation among adjacent loci/markers caused by linkage disequilibrium

(LD). It is known that this local correlation can have a negative effect on estimated

PC scores and produce spurious PCs which do not truly reflect underlying population

structure. To address this problem, we have employed a shrinkage PCA approach where

coefficients are used to down-weight the contribution of highly correlated SNPs in PCA.

Another challenge in PC analysis is choosing which PCs to include as covariates

to adjust population stratification. While searching for a reasonable measure for PC

selection, we have found the precise relationship between genotype principal compo-

nents and inflation of association test statistics. Based on this fact, We propose a

new approach, called EigenCorr, which selects principal components based on both

their eigenvalues and their correlation with the (disease) phenotype. Our approach

tends to select fewer principal components for stratification control than does testing
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of eigenvalues alone, providing substantial computational savings and improvements in

power.

Under many circumstances, it is of interest to predict PC scores. Although PC score

prediction is commonly used in practice, characteristics of the predicted PC scores have

not been systematically studied. Under high dimensional settings we have found that

the näıve predicted PC scores are systematically biased toward 0, and this phenomenon

is largely due to the inconsistency of the sample eigenvalues and eigenvectors. We

have extended existing convergence results of sample eigenvalues and eigenvectors and

derived asymptotic shrinkage factors. Based on these asymptotic results, we propose

the bias-adjusted PC score prediction.
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Chapter 1

Overview

With development of single nucleotide polymorphism (SNP) microarray technology,

genome-wide association studies (GWAS) have emerged as an effective tool to unravel

genetic components of complex diseases. GWAS find associated genes by examining the

allele frequencies of SNPs across the disease phenotype. However, if there are system-

atic differences of allele frequencies among sub-populations, and each sub-population

has different disease prevalence, this confounding effect of population stratification (PS)

can cause false positive associations by inflating test statistics. There have been consid-

erable efforts to address PS. The method of genomic control (Devlin and Roeder, 1999;

Devlin, Roeder and Wasserman, 2001) was among the first attempts to address this

problem. It directly estimates the inflation of test statistics by computing the median

of chi-square test statistics and adjusts inflation of test statistics simply by dividing

the amount of estimated inflation. For this purpose, genomic control assumes that the

inflation of test statistics is constant for all SNPs, and estimates the inflation factor

from null SNPs, which are assumed not to be associated with the disease phenotype.

Genomic control works well in candidate gene studies; however, it does not produce sat-

isfactory results for GWAS because the constant inflation assumption is too strong to

be satisfied (Freedman et al., 2004; Marchini et al., 2004; Devlin, Bacanu and Roeder,



2004).

Another approach for addressing PS is through principal component analysis (PCA)

(Jolliffe, 2002), which was proposed by Price et al. (2006), and it has become very

popular. PCA directly estimates an ancestry of each sample by computing PC scores

from all SNPs, and adjusts PS using PC scores as ethnicity covariates. PCA has been

applied in many GWAS and has successfully adjusted PS. In several studies, PC scores

often reflect already known genetic structure (Price et al., 2008; Tian et al., 2008). One

great advantage of PCA is that it can utilize all SNP genotypes, and thus it can detect

even very subtle PS.

Even though PCA is now widely used for PS adjustment, there are still challenges for

PCA based effective PS control. First of all, current PCA is not designed to address the

linkage disequilibrium. Linkage disequilibrium, which causes strong local correlations

among adjacent SNPs, can affect negatively estimated PC scores. Also, it can produce

spurious PCs which do not truly reflect underlying population structure (Fellay et al.,

2007). For example, it has been observed that chromosome inverted regions of Chr8 and

Chr17 drived highly ranked PCs among European samples. To address this problem,

we have employed a weighted PCA approach (Greenacre, 1984) where coefficients are

used to down-weight the contribution of highly correlated SNPs. In simulation and real

data analysis, our Shrinkage PCA has successfully adjusted for LD and has been shown

to have better performance than competing population stratification control methods

such as SNP pruning and regression based method (Patterson, Price and Reich, 2006).

In the second topic, we develop a method for PC selection. After computing PCs,

we have PCs as many as the number of samples. Apparently, we cannot use all of those

PCs as covariate, and thus PC selection is necessary. Price et al. (2006) originally

suggested using the 10 PCs with the highest eigenvalues. Later, Patterson, Price and

Reich (2006) have proposed using the Tracy-Widom (TW) statistic (Johnstone, 2001)
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to assess statistical significance of eigenvalues in order to select PCs. These approaches

select PCs only based on eigenvalues, as a result, they may select PCs which does not

inflate test statistics. In Chapter 3, we first identify the precise relationship between

PCs to the inflation of test statistics, and it appears that the inflation of test statistics

is a joint function of eigenvalues and correlation coefficient between PC and outcome

phenotype. From this fact, we propose the EigenCorr method, which selects PCs

according to the compound score of the corresponding eigenvalue and correlation. In

simulation and real data analysis, we show that EigenCorr chooses a much smaller

number of PCs than does the Tracy-Widom test, while successfully controlling type I

error. As a result, EigenCorr reduces computation time substantially but has higher

statistical power and improves type I error control. In addition to these practical

advantages, our research has established the connection of PCs to the spurious inflation

of test statistics, thus providing a theoretical justification for employing PCA in PS

adjustment.

My third topic considers the PC score prediction. Under many circumstances, it is

of interest to predict PC scores. For GWAS, it is known that PC analysis with related

subjects tends to generate spurious PC scores which do not reflect the true underlying

population substructures. To overcome this problem, it is common in practice to ex-

clude some related samples and only apply the PC analysis to those remaining unrelated

samples. To use those excluded samples in downstream analysis, we need to predict

PC scores. The standard method to predict PC scores is multiplying the data vector of

the new sample with the loading coefficients from the PC analysis. However, we have

found that the predicted PC score from this standard method is systematically biased

toward 0, and this phenomenon is deeply related to the inconsistency of eigenvectors

of the sample covariance matrix to the eigenvalues of the population covariance. The

convergence of sample eigenvalues and eigenvectors has been studied under the Random
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Matrix context. With spiked model assumption, Baik and Silverstein (2006) has shown

the convergence of sample eigenvalues, and Paul (2007) has shown the convergence of

sample eigenvectors. Those theoretical results show that sample eigenvalues and eigen-

vectors are not consistent to the population eigenvalues and eigenvectors. In Chapter

4, we extend those existing theoretical results and derive asymptotic shrinkage factors

of predicted PC scores. Based on this theoretical result, we propose bias adjusted PC

scores. From numerical studies and real data analysis, we show that the shrinkage bias

appears in real data, and our approach can successfully adjust it.

4



Chapter 2

Control of Population Stratification

Using Correlated SNPs by

Shrinkage Principal Components

Association studies using unrelated individuals have become the most popular de-

sign for mapping complex traits. Among the major challenges of association mapping is

avoiding spurious association due to population stratification. Several approaches have

been proposed to handle population stratification using marker genotypes, including

genomic control, structured assessment of ancestry, principal component analysis and

partial least squares analysis of phenotype and genotypes. Among these approaches,

only genomic control and principal components can handle the high-dimensional data

encountered in genome-wide association studies. Empirical studies favor the principal

components approach for its power and error control properties. All of the stratification-

control methods impicitly assume that the markers are in linkage equilibrium, a condi-

tion that is rarely satisfied in genome scans. Moreover, the impact of linkage disequi-

librium on these methods for stratification control has not been carefully articulated or

examined. In this paper, we extend the principal components approach to all available



markers, regardless of the linkage disequilibrium patterns. We illustrate the behavior of

our approach using simulated and real data, and several practical issues are discussed.

2.1 Introduction

Over the past two decades, considerable effort has been expended to detect and map the

genetic loci contributing to complex diseases. Association and linkage studies are the

two main strategies for this purpose. Association studies using unrelated individuals

have become the dominant study design for genome-wise association scans (GWAS),

partly because accrual of patients and controls is easier than for family-based designs.

It has been argued that direct association mapping is more powerful than linkage anal-

ysis for identifying loci with small effects (Risch and Merikangas, 1996). Association

mapping is typically also more precise, because the assocation of genotypes with disease

drops rapidly in the vicinity of a risk locus, due to a large number of historical recombi-

nations for an ancient variant.(Cardon and Bell, 2001; Cardon and Palmer, 2003; Daly

and Day, 2001; Elston, 1998; Schulze, McMahon and Methods, 2002). Several success-

ful GWA studies have been reported recently, identifying genetic variants contributing

to Type 2 diabetes (Saxena et al., 2007; Scott et al., 2007; Sladek et al., 2007; Zeggini

et al., 2007), breast cancer (Easton et al., 2007), and numerous other diseases. How-

ever, it has long been discussed that association studies are susceptible to underlying

population stratification, which can produce spurious association (Cardon and Palmer,

2003). A number of techniques have been proposed to account for population substruc-

ture in designs using unrelated individuals. These techniques include using aggregate

summaries of association statistics to estimate the inflation produced by stratification

(genomic control of Devlin and Roeder (1999); Schork et al. (2001)). Other approaches

use marker genotypes to model the population structure directly, performing associ-

ation tests conditional on the inferred structure (structured assessment of Pritchard,
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Stephens and Donnelly (2000), Satten, Flanders and Yang (2001) and Zhu et al. (2002)

developed similar approaches which account for uncertainty in stratum classification.

Similarly, Zhang, Zhu and Zhao (2003) have proposed to use principal component anal-

ysis (PCA) to estimate genetic background covariates, which then are used in adjusted

tests of association. One limitation of the classical PCA methods is that the number

of markers cannot exceed the number of subjects. Price et al. (2006) exploited the

structure of rescaled genotype matrices to extend the PCA method to modern genome

scans, in which hundreds of thousands of SNPs are genotyped. Due to the popularity

of this approach (implemented in the software Eigensoft), we will refer to it as the

standard PCA approach.

A number of investigators have considered the number of markers required to iden-

tify and control for population stratification. Earlier efforts primarily envisioned strat-

ification at the level of continental populations (Bacanu, Devlin and Roeder, 2000;

Devlin and Roeder, 1999; Pritchard, Stephens and Donnelly, 2000), requiring as few

as 20-500 markers (Pritchard and Rosenberg, 1999). However, with so few markers,

sensitivity can be poor under moderate stratification (Freedman et al., 2004; Hao et al.,

2004). For this reason, modern PCA-based methods are appealing, because they can in

principle use the entire dataset for stratification control, ranging from moderate-scale

candidate gene studies to whole genome scans.

Unfortunately, the use of all available data presents a problem, as well. Except

for genomic control, all of the methods described above assume that the markers used

for stratification control are unlinked. Falush, Stephens and Pritchard (2003) pro-

posed a procedure to identify population structure using correlated markers, but their

method is limited and not applicable to situations with tightly linked markers. Price

et al. (2006) initially suggested that markers in linkage disequilibrium have little ef-

fect on PC-based stratification analysis, but subsequently proposed reducing marker
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linkage disequilibrium via regression (Patterson, Price and Reich, 2006). Fellay et al.

(2007) utilized a thinning approach in which only a subset of markers with low pair-

wise correlation was retained for stratification control. The use of thinning involves

discarding large and potentially informative portions of the data, and identification of

the low-correlation subset can involve considerable computation, and perhaps iteration.

Although the potential problems posed by dependent markers are increadingly recog-

nized, to our knowledge the consequences of using dependent markers has not been

carefully investigated.

In this paper, we demonstrate that LD patterns in genome-wide association datasets

can distort the techniques for stratification control, showing subpopulations that reflect

localized LD phenomena rather than plausible population structure. Further analysis

based on such spurious stratification may provide inadequate protection from genuine

stratification, and may reduce mapping power in key regions of the genome. To account

for the LD structure, we propose a simple modification of the standard PCA approach to

automatically adjust for the correlations among markers and accurately infer population

stratification. The usefulness of our approach is demonstrated by simulations and

application to candidate gene and genome-wide association studies.

2.2 Materials and Methods

When principal components are used to identify subpopulations, it is implicitly as-

sumed that all variables are of similar importance (Chatfield and Collins, 1981; Mor-

rison, 1976). In association mapping, some groups of SNPs may be highly correlated

(both positive and negative) due to localized LD, while other sets of SNPs may have

low correlation. PC analysis finds projections of the data with high variability. Corre-

lated SNPs will therefore have high loadings, because correlated random variables can

generate linear combinations with high variability. As we demonstrate, the net effect
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is to give higher weight to groups of correlated SNPs, although there is little reason

to believe that such SNPs will perform well in differentiating among subpopulations.

An intermediate goal, therefore, is to eliminate the distorting effect of the redundant

information provided by groups of highly correlated SNP genotypes. The weighted

PCA method of Greenacre (1984) was proposed for similar problems by using weights

or new PCA metrics. In time series applications, Diamantaras and Kung (1996) have

used weighted covariance matrices, with weights decreasing geometrically with the dis-

tance in time between observations. In atmospheric science, weights have been used to

account for uneven spacing between sampling locations (Cheng, 2002). Similar weight-

ing ideas might be used in GWAS analysis, as pronounced linkage disequilibrium is

largely a localized phenomenon on the genome. However, the extent of linkage dise-

quilibrium between loci is not a fixed function of physical distance (Maniatis et al.,

2002), and varies across subpopulations (Service et al., 2006). The use of data-driven

weighting would be preferred, to directly address the problematic effects of correlation

in the data at hand. In addition, any weighting scheme must be scalable up to the

common GWAS situation in which the number of variables (SNPs) is far larger than

the number of observations. Accordingly, we propose a unified shrinkage method that

deals with all markers simultaneously, effectively down-weighting SNPs that belong to

highly correlated groups, while leaving independent SNPs unchanged.

Our proposed shrinkage method is a modification of the PCA method of Price et al.

(2006). Let gij represent the (i,j )th element of the genotype matrix g, corresponding

to SNP i and individual j, i = 1...,M and j = 1, ..., N . By convention, gij is coded

numerically as the number of copies of a referent allele (the minor allele, say) for the

SNP. Each row i of g is first mean-centered around µi =
∑

j gij/N (missing entries are

excluded from the computation of µi and subsequently set to 0). Row i is then scaled by

dividing each entry by the standard deviation
√
pi(1− pi), where pi = (1+

∑
j gij))/(2+

9



2N) is the estimated allele frequency at SNP i. Denoting the resulting matrix X, Price

et al. (2006) define the kth axis of variation to be the kth eigenvector of C, where C =

XTX. The coordinate j of the kth eigenvector represents the ancestry of individual j

along the kth axis of variation. Unlike the classical application of principal components

(Jolliffe, 2002) which is based on the M ×M matrix D = XXT , standard PCA for

genome-wide studies (Price et al., 2006) uses the N × Nmatrix C, which is typically

of much smaller dimension in GWAS studies. The justification for this approach arises

from the close relationship between singular value decomposition and PCA when the

latter is performed on mean centered data (see, for example, Wall, Rechtsteiner and

Rocha (2003)). EigenSoft employs the singular value decompositionX = USV T , where

U is an M ×N matrix whose kth column contains coordinates uikof each SNP i along

the kth principal component, S is a diagonal matrix of singular values, and V is an

N ×N matrix whose kth column contains ancestries vjk of each individual j along the

kth principal component. It follows that XTX = V S2V T . Thus, the columns of V are

the eigenvectors of the matrix XTX. After PCA analysis, pairwise scatter plots of the

top few PC axes are often used to investigate potential population stratification. In

addition to the PCs, the loading coefficents associated with each PC can be calculated,

but are often overlooked. Loadings calculate the contribution of each SNP for a given

PC. When M ≤ N , the loadings can be uniquely determined; otherwise, they are not.

For a given PC k , at SNP i, uikis the loading coefficient for the SVD analysis at the

SNP. The loadings can be calculated as
∑

j vjkxij/
√
ek, where ek is the corresponding

eigenvalue of the PC k . These loadings are closely related to the gamma coefficients

γik =
∑

j vjkgij/
∑

j v
2
jk
∼=
∑

j vjkgij described in Price et al. (2006). We have
∑

j vjk =
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0 and
∑

j v
2
jk = 1 when there are no missing genotypes at SNP i, and we therefore have

γik =
∑
j

vjkgij =
∑
j

vjk

(
xij
√
pi(1− pi) + µi

)
=
√
pi(1− pi)

∑
j

vjkxij − µi
∑
j

vjk

= uik
√
ekpi(1− pi)

If some genotypes are missing at SNP i, the above equality remains approximately

correct, unless the rate of missing genotypes is high.

Eigensoft treats each SNP in an equal manner. However, as we demonstrate below,

the direct use of C in fact results in loadings that can be dominated by small groups

of correlated SNPs. To correct for this phenomenon, we propose a new approach to

weighted PC analysis. First, we define an M -vector w of SNP weights, and accompa-

nying diagonal matrix W with weights w on the main diagonal. Then we create a new

M × N matrix X̃ = WX, which is directly substituted for X in the PC analysis as

described in Price et al. (2006).

Our choice of weights follows the logic that linear combinations of genotypes (which

comprise the eigenvectors) should exert influence determined by the amount of inde-

pendent information. We heuristically choose weights wi = 1
/√

1 +
∑

i′ 6=i r
2
ii′ for SNP

i, where r2
ii′ is the observed squared Pearson correlation between ith and i′th SNPs. In

practice, our summation over SNPs i’ in calculating the weights is performed only in

the vicinity of i, in order to filter out the cumulative effect of random apparent correla-

tion across the genome. We will refer to the set of such SNPs as window [i ], and these

SNPs may range up to several hundred kb from SNP i, as chosen by the researcher and

appropriate to the platform. In addition, the effects of noise in the use of r2 (which

must always be positive) is reduced by requiring that r2 exceed a threshold c. Thus the

precise weighting scheme is wi = 1
/√

1 +
∑

i′ 6=i,i∈window[i] r
2
ii′I[r2

ii′ > c] . For this paper

we use c=0.2, but other choices are possible and remain under investigation.
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In this manner SNPs that are highly correlated with each other are down-weighted,

de-emphasizing their importance. Our choice of weights has the following desirable

characteristics.

If all markers are independent and there exists no population stratification, r2
ii′
∼= 0

for all i′ and therefore X̃ ∼= X. If all pairs of m0 markers have r2 = 1 with each other

and zero correlation with other markers, then the weighting factor is 1
/√

m0, effectively

providing variance contributions of the m0 markers equivalent to that of a single marker.

Finally, if correlation among all pairs of markers is nonzero but approximately equal,

as would be produced in idealized models of population stratification, then the weights

will also be constant. Therefore X̃ ∼= cX for some c, and the net effect is that markers

are treated equally, as in standard PCA.

Plots of loading coefficients display the contribution of each SNP to a given PC,

but also present a global picture of the influence of SNPs in regions of high LD. Our

experience suggests that routinely checking plots of loading coefficients is very useful

in identifying regions with high influence on a PC.

2.3 Simulation Studies and Applications

We first show how LD affects PC analysis based on simulations of an association study

with 200 markers, such as might be performed in a candidate gene association study

or a follow-up to a GWAS study. We then show a simulated GWAS study with 100K

SNPs. In addition, we apply our proposed method to a real candidate gene association

study and to a GWAS study. Finally, we investigate the power and type I error issues

from the downstream analysis after the PCA analysis by simulated GWAS data.

Simulation 1 (candidate SNP analysis, independent markers): A stratified pop-

ulation with two sub-populations was simulated. A total of 400 individuals were sam-

pled, with 200 from each sub-population. 200 markers were simulated, each with 3
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possible genotypes and minor allele frequency ranging uniformly from 0 to 0.5. All

markers were unlinked and in linkage equilibrium within each sub-population. We ap-

plied both the standard PCA approach and our shrinkage PCA to the dataset. Scatter

plots of the top two PCs are presented in Figure 2.1. Clearly, when markers are in

linkage equilibrium, both PCA methods give similar results.

Simulation 2 (candidate SNP analysis, markers with varying correlation): Again

a stratified population was simulated, with the same number of individuals and markers

as in simulation 1. However, here two subsets of markers were chosen to be in high LD

with each other within each sub-population. The results of simulation 2 (some markers

in LD) are presented in Figure 2.2. Under the standard PCA (Figure 2.2 left panels),

the data points form groups that are mainly influenced by the SNPs in high LD. In this

manner, subjects may be misclassified, or unnecessary extra stratification performed.

Examination of the loadings for the first two PCs shows that they are dominated by the

blocks of markers in high LD. The shrinkage approach (Figure 2.2 right panels), in con-

trast, retrieves the original sub-populations successfully. Examination of the loadings

for the shrinkage PCA shows that the SNPs in the LD blocks have been downweighted

considerably.

Simulation 3 (GWAS data based on Hapmap Samples): We conducted GWAS

simulation to investigate the performance of the PCA methods on substantially strat-

ified populations. With HapSample software, we first simulated 450 CEU samples, 50

YRI samples, and 50 JP+CH samples respectively using the SNPs on the Affymetrix

100K array (Wright et al., 2007). HapSample generates data by resampling from exist-

ing phased Hapmap datasets and therefore preserves the observed local LD structure in

Hapmap samples. We then generated additional 225 individuals with mixed genomes

from the three populations, using our modified codes from HapSample. Specifically, we

generated 50 admixture samples of CEU and YRI, 50 admixture samples of CEU and
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JP+CH, and the reminder125 are admixture samples of the three populations. That

is, for the ith admixture sample, we have

(pi1, pi2, pi3) =


(u, 1− u, 0), i ≤ 50

(u, 0, 1− u), 51 ≤ i ≤ 100

(g1, g2, 1− g1 − g2), 101 ≤ i ≤ 225

where(pi1, pi2,pi3) are the corresponding CEU, YRI and JP+CH genome proportions,

respectively, u ∼ Unif(0, 1) and (g1, g2) ∼ Dirichlet(70, 15, 15). The final simulated

data has 775 samples and 109,723 SNPs. Figure 2.3 presents the scatter plots of the

top two PCs derived from the following four different methods: 1) Standard PCA

with no LD correction, 2) Shrinkage PCA, 3) Regression PCA (Patterson, Price and

Reich, 2006) in EigenSoft, and 4) Thinning PCA in plink which is based on pair-

wise correlation (Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar,

de Bakker and Daly, 2007). For the regression PCA, we followed the recommendation of

EigenSoft, where previous 2 SNPs were used in the regression analysis. For the thinning

PCA, we follow the setting “–indep-pairwise 1500 150 0.2” in Fellay et al. (2007), which

ended up with 49,823 SNPs for the PCA analysis. Clearly, for substantially stratified

populations where a large number of SNPs are available, all four methods perform

equally well.

Real data analysis 1 (candidate gene modifier study of Cystic Fibrosis): Here

we use a real example dataset from a candidate gene modifier study of Cystic Fibrosis

(CF) underway at the University of North Carolina and Case-Western Reserve Univer-

sity. Over 1000 SNPs have been genotyped in 263 severe CF patients and 545 mild

CF patients, using the Illumina 1536 platform. Among these SNPs, 81 were autosomal

ancestry-informative markers (AIMs), chosen as the most informative SNPs (in terms

of allele frequencies) from a list of 200+ potential AIMs provided by Illumina, Inc. in
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2006. These AIMs were genotyped for the express purpose of controlling population

stratification for the remaining candidate SNPs. Among the 808 patients, 782 were self-

reported Caucasians, 14 were Hispanic, 5 were African-American and the remaining 7

reported as belonging to other ethnicity groups.

The genotyped AIMs were carefully selected, with known high Fst values between

the Caucasians and West African popualtions. At the time, the effect of LD on pop-

ulation stratification control was not explicitly considered, and several sets of SNPs

exhibited appreciable correlation (2 SNPs on chromosome 1, 2 SNPs on chromosome 7

and 3 SNPs on chromsome 3). Standard PCA analysis (Figure 2.4, left panels) shows

that PCA analysis is highly influenced by the high LD SNPs, and similar results were

observed for STRUCTURE analysis (data not shown). The right panels of Figure 2.4

shows the PC results from shrinkage PCA, which is much less sensitive to the LD among

SNPs. The SNPs with high LD have loadings of large magnitude for PC1 in traditional

PCA analysis, while the shrinkage PCA analysis eliminates this artificial effect. The

results of our proposed method are clearly superior – the African-American and His-

panic subjects are more clearly distinguished from Caucasians on PC1 (Figure 2.4).

Interestingly, one of the subjects labeled as Caucasian (indicated by arrow in panel B),

was flagged as an outlier by our shrinkage PC analysis, but not by standard PCA. A

subsequent check of the recruitment database revealed a data entry error, and the sub-

ject was in fact a self-reported African-American. This example shows the utility of the

shrinkage PCA approach in candidate gene studies, in which perhaps several hundred

SNPs are genotyped. Despite the considerable attention generated by GWAS in recent

years, we anticipate that smaller scale candidate gene studies will remain popular, due

to cost considerations, or as follow-up studies to confirm results from genome scans.

Real data analysis 2 (Hapmap CEU amd TSI data) As shown by our Simu-

lation 2, substantial population stratification can be easily detected with any of the
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existing PCA methods. An important question is how those methods perform for

subtle population stratification. Below we address this issue by the Phase 3 CEU

and TSI Hapmap unrelated samples. The Plink formatted data was downloaded from

the Hapmap website (http://ftp.hapmap.org/phase 3/?N=D). We removed all children

whose parents are also Hapmap samples. Additionally we excluded one CEU subject

who has a very high estimated identical by descent (IBD) value (> 0.8) with another

CEU sample. The final dataset after the filtering contains total 185 samples (108 CEU

and 77 TSI samples respectively). The CEU samples are known to have the north-

ern and western European ancestry, while the TSI samples are Toscans from Italy.

Therefore the two groups represent the Northern-Western and Southern Europeans,

respectively. We restrict our analysis on SNPs from one chromosome (which is Chro-

mosome 15 for this example) as done in (Miclaus, Wolfinger and Czika, 2009) for further

comparison between our shrinkage PCA and other three existing LD correction meth-

ods described in Simulation 3 Section on their abilities in detecting subtle population

stratifications. SNPs with missing rate bigger than 0.1 or MAF less than 0.01 were

excluded, resulting in 38,711 SNPs. Again, for the regression PCA, we followed the

EigenSoft recommendation. For the thinning PCA, we used the setting in (Fellay et al.,

2007) which resulted in 3,218 SNPs. Figure 2.5 shows the scatter plots of the top 2 PCs

of all four methods. Clearly, our shrinkage PCA outperforms the other three methods

on differentiating the two groups. Figure 2.6 compares the ROC curves of using the

1st PC to classify the two sub-populations. Again, our shrinkage PCA beats the other

three methods. In addition, we tested the Hardy Weinberg Disequilibrium SNP selec-

tion method (Miclaus, Wolfinger and Czika, 2009), where SNPs were selected if their

associated p-value on Hardy Weinberg Equilibrium test is less than 0.01. Only 254

SNPs were selected based on this criterion, and the top two PCs derived from these

254 SNPs showed poor performance due to these limited number of SNPs.
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Real data analysis 3 (GWAS study of Schizophrenia): A third real dataset is

from a GWAS study of schizophrenia, obtained from the GAIN consortium. The filtered

version of the corresponding General Research Use (GRU) dataset consisted of 2,601

individuals of European ancestry with 729,454 SNPs, and was downloaded from the

dbGap database [Version 2, Accession number: phs000021.v2.p1]. We filtered out

highly related or duplicated samples, and markers with a high missingness rate (>

5%) or a low minor allele frequency (< 0.01). For simplicity, sex chromosome markers

were excluded, and the final data set used for stratification analysis had 2,559 samples

with genotypes (1152 cases, 1368 controls and 39 with missing case-control status) and

701,859 SNPs. For calculation of weights wi, the shrinkage PC method used 300 SNPs

in the vicinity of each i as the window, and c=0.2.

Scatter plots of the top 2 PCs from the two stratification analysis methods are pre-

sented in Figure 2.7. Standard PCA analysis using the original data provides results

with major groups that are almost certainly spurious. After the shrinkage PCA ap-

proach is applied, the result appears similar to previous analyses of populations with

mixed European ancestry (e.g., Figure 2 in Price et al. (2006) ). Plots of loading coef-

ficients for these analyses are given in Figure 2.7. The top 4 PCs from standard PCA

are highly influenced by a few genomic regions. The lactase gene region on 2q21-2q22

is highly influential for PC1, which is consistent with a northern-southern cline in hap-

lotype frequencies (Hollox et al., 2001). Interestingly, our shrinkage PCA preserves

this feature, and the correlation of PC1 from standard PCA and that of shrinkage

PCA is 0.98. However, regions with high loadings on PC2 (8p23), PC3 (2q21, 6p21-22,

17q21) and PC4 (6p21-22) from standard PCA have all disappeared after the shrinkage

PCA, suggesting that the high impact of those regions (except for lactase, captured

in PC1) is simply due to high regional LD. The regions 8p23 and 17q21 coincide with

17



two previously reported common inversions in European populations (, N.d.; Stefans-

son et al., 2005). The chromosome 8 inversion region has been similarly reported by

Fellay et al. (2007) in their GWAS study of HIV-1. These inversions have only been

discovered in the last several years, and it is in many ways remarkable that they be

detected so readily using GWAS genotypes. Presumably the LD is maintained by se-

lection against crossovers in such regions, but not necessarily indicative of ancestry if

well-mixed within the population. The 6p21 region coincides with the MHC region, for

which extensive linkage desiquilibrium has been described (de Bakker et al., 2006). We

conclude that the shrinkage PCA approach provides appropriate downweighting, so as

not to be unduly influenced by such regions, while retaining the influence of SNPs and

regions indicative of true stratification.

Type I and Power issues: In this simulation, a stratified population with two sub-

populations was simulated, with 1800 samples from population one and 200 samples

from population two. 50,000 independent markers were first simulated, with minor allele

frequency ranging uniformly from 0.05 to 0.5. In order to mimic realistic stratification,

Fst values were simulated by drawing from the density0.99×χ2
1/0.032+0.01×U(0, 0.05),

which is a mixture of a scaled chi-square distribution and the uniform distribution on [0,

0.05]. Previous studies have shown that even within European populations, SNPs with

Fst values ranging from 0.2 to 0.3 between northern and southeastern subpopulations

can be observed (Bauchet et al., 2007). Accordingly, we augmented the original Fst

values with an additional 20 SNPs with high Fst values uniformly distributed on [0.1,

0.3]. The minor allele frequencies of the sub-populations were simulated using the

Balding-Nichols model (Balding and Nichols, 1995a). To create LD blocks, we randomly

picked 2500 seed SNPs from the simulated 50,000 SNPs for constructing the blocks.

For each seed marker, an additional 20 SNPs were simulated, with correlations ranging

from 0.75 to 0.85 with the seed marker, resulting in a total of 100,000 SNPs. The
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net result was that half of the markers resided in highly correlated blocks and half

consisted of independent markers. Note that the simulation setup described here is

relatively favorable to standard PCA, as we did not incorporate extreme blocks of very

highly correlated markers that can dominate standard PCA analysis (illustrated in the

real data analyses below).

We applied both standard PCA and the proposed shrinkage PCA to the simulated

data. Scatter plots of the top two PCs from the two methods are presented in Figure

2.9. Clearly, standard PCA lacks power to identify the two sub-populations, while the

shrinkage PCs differentiate the two sub-populations successfully. To investigate if the

two methods properly control type I error, we simulated a case-control outcome variable

which was related to the sub-populations. Using z to denote the population (z=0 for

population one, z=1 for population two), we simulated the data using log P (Case|z)
P (Control|z) =

2.5 z. In other words, the sub-population status and case/control status were related

with a log odds ratio of 2.5, and the resulting datasets had average 1084 cases, 916

controls across the simulations. However, the case/control status was independent

of any SNP genotypes within each sub-population. To save computational time, we

computed the p-values of only the 20 SNPs with highest Fst, reasoning that these SNPs

make the greatest contribution to inflated Type I error. In this manner, by applying

genome-wide appropriate thresholds to these SNPs for each of 1000 simulations, we

obtained a lower bound for the overall Type I error. We emphasize that the actual

Fst values cannot be known to the researcher without knowledge of the subpopulation

indices, and so stratification control is an essential part of the analytic process.

The results of the simulations are given in Table 2.1. Clearly, the standard PCA

approach does not control the type I error properly. For 100,000 markers, even if

conservative Bonferroni family-wise error (FWER) thresholds are intended, the true

FWER is much higher. For example, p-value thresholds of 1X10−6 and 5X10−7provide
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intended FWER values of no greater than 0.10 and 0.05, repectively. However, Table

1 shows that the true Type I errors are at least 0.279 and 0.195 for this setup. In

contrast, our shrinkage method seems to control the Type I error adequately, since the

top 20 SNPs with the highest Fst have a negligible effect on the Type I error.

2.4 Discussion

The PCA approach can capture both subtle and extensive variation due to both genomic

and experimental features. With the availability of > 105 genetic markers, self-reported

race may no longer required as a proxy for ancestry. The principal components method

is computationally efficient and uses the genotype matrix to infer continuous axes of

genetic variation (eigenvectors) which then serve as covariates in the down-stream anal-

ysis. This method is widely used in GWAS studies to robustly control for stratification

effects, while preserving statistical power. However, PCA is highly influenced by sets

of SNPs with high LD. Using SNPs with high LD for PCA may distorts population

substructures, which is more true for data with subtle population stratification. To our

knowledge, this paper appears to be the first that carefully investigates LD structure

on PC analysis. Our shrinkage PCA approach has been shown to effectively remove

the artifactual effect of correlated SNPs, and so can successfully recovers underlying

population structure that is not apparent from standard PCA. The proposed method

is essentially a standard PCA approach on a shrunken genotype data, and much easier

to implement than other approaches, such as the regression based PCA of Patterson,

Price and Reich (2006).

Groups of SNPs in high LD may have an even greater effect on candidate gene

studies than on GWAS studies. Although GWAS studies are becoming a primary

design for studying complex traits, candidate studies remain important, and are often

employed for replication and validation. In this setting, a set of ancestry-informative
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markers is typically used, and our approach applies equally well as with GWAS studies.

We note that the shrinkage method intends to remove only the effects of local LD,

as subtle long-range LD (for example, across chromosomes) reflects true population

sub-structure, and our weighting scheme leaves the effects of long-range LD intact.

However, other weighting schemes are possible, and the most efficient weighting scheme

for elucidating population structure remains unknown and of great interest. Also, we

point out that substructure inference is not simply a matter of an error control, as

other types of procedures (such as genotype imputation at untyped SNPs) can depend

on accurate ancestry inference.
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2.5 Tables and Figures

Table 2.1: Rejection frequency of 20 high Fst SNPs under null genetic association

p-value Expected # No Known Standard Shrinkage Thinning Regression
threshold of rejections Adjustment Strata PCA PCA PCA PCA

10−5 2 10000 2 618 24 303 111
10−6 0.2 10000 0 142 5 62 21

5× 10−7 0.1 10000 0 95 1 34 11
10−7 0.02 10000 0 29 0 12 0
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Figure 2.1: Simulation 1 (independent markers). A stratified population with all SNPs
independent within each subpopulation. 200 markers for 400 individuals were simulated
as described in the text. The different subpopulations are indicated in gray and black.
Both standard PCA (left panel) and shrinkage PCA (right panel) effectively separate
individuals according to subpopulation.
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Figure 2.2: Simulation 1 (markers in LD) . Standard PCA (left panels) vs. shrinkage
PCA (right panels) in analysis of a stratified population with independent SNPs and
two groups of highly dependent SNPs. The different subpopulations are indicated in
gray and black. Distinct clumps appear in standard PCA (panel A) which might be
falsely interpreted as subpopulations. Panels A and B give the scatter plots of PC1 vs
PC2 for the two approaches, while C through F display the loadings of PC1 and PC2,
respectively. 1 and 2 are indicators of the original group of each subject.
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Figure 2.3: Simulation 2 (GWAS data). Scatter plots of the top two PCs of the four
PCA methods.
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Figure 2.4: Real data analysis 1. Scatter plots of the top two PCs of ancestry-
informative markers from the CF Candidate Gene Modifier Study. The left panels
are based on standard PCA, while the right panels are from shrinkage PCA.
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Figure 2.5: Real data analysis 2. Scatter plots of the top two PCs of 4 different methods
with different colors for CEU (black) and TSI (grey).
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Figure 2.6: Real data analysis 2. ROC curves of using the 1st PC to classify the two
sub-populations. 1st PCs were computed from 4 different methods: 1) Standard PCA,
2) Shrinkage PCA, 3) Regression PCA, and 4) Thinning PCA.
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Figure 2.7: Real data analysis 3. Scatter plots of the top two PCs. The left panel is
based on standard PCA, while the right panel is from shrinkage PCA.
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Figure 2.8: Real data analysis 3. Loadings of the top four PCs are displayed for standard
PCA (top four panels) and the shrinkage PCA (bottom four panles). The x-axis refers
to the serial SNP order on the genome rather than actual physical position.
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Figure 2.9: Type I and Power issues. Scatter plots of the top two PCs with and without
shrinkage. Panel A, standard PCA with no shrinkage. Panel B, shrinkage PCA. The
different subpopulations are indicated in gray and black.
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Chapter 3

Control of population stratification

by correlation-selected principal

components

In genome-wide association studies, population stratification is recognized as producing

inflated type I error due to the inflation of test statistics. Principal component-based

methods applied to genotypes provide information about population structure, and

have been widely used to control for stratification. Here we explore the precise relation-

ship between genotype principal components and inflation of association test statistics,

thereby drawing a connection between principal component-based stratification control

and the alternative approach of genomic control. Our results provide an inherent justifi-

cation for the use of principal components, but call into question the popular practice of

selecting principal components based on significance of eigenvalues alone. We propose

a new approach, called EigenCorr, which selects principal components based on both

their eigenvalues and their correlation with the (disease) phenotype. Our approach

tends to select fewer principal components for stratification control than does testing

of eigenvalues alone, providing substantial computational savings and improvements in



power. Analyses of simulated and real data demonstrate the usefulness of the proposed

approach.

3.1 Introduction

In tests of genetic association among unrelated individuals, it is recognized that pop-

ulation stratification can result in test statistics with inflated apparent significance,

resulting in overall type I error that is far above the nominal level. The method of

genomic control (Devlin and Roeder, 1999; Devlin, Roeder and Wasserman, 2001; Ba-

canu, Devlin and Roeder, 2002) was among the first attempts to address this problem.

The principle of genomic control is very straightforward. For (chisquare) statistics at

numerous markers measuring association with phenotype, an estimate is obtained for

the inflation of test statistics beyond that expected under the null hypothesis and as-

suming no stratification. Then the test statistics are all adjusted by the inflation factor.

However, a typical genome-wide association scan (GWAS) tests a very large number

of SNP markers, requiring a stringent genome-wide significance threshold. In this set-

ting, genomic control can fail to properly control the type I error (Devlin, Bacanu and

Roeder, 2004; Marchini et al., 2004; Zhang, Wang and Deng, 2008), in part because of

violations of the assumption of constant variance inflation across the SNPs.

Alternatively, the principal component (PC) approach (Price et al., 2006) uses PCs

computed from all genotypes as covariates in phenotype-genotype regression or in strat-

ified analyses. Although the PC approach can be applied without explicit examination

of the underlying population substructure, results from numerous studies indicate that

the PC values often reflect known substructure and ancestry (Price et al., 2008; Tian

et al., 2008). One great advantage of the PC approach is its potential ability to detect

subtle population stratification, and to effectively adjust test statistics for only those
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markers contributing to the stratification. However, several challenges remain for ef-

fective PC-based stratification control. The primary challenge lies in choosing which

PCs to include as covariates. Clearly not all PCs can be included, as there are as many

PCs as there are individuals under study. Price et al. (2006) originally suggested to use

the 10 PCs with the highest eigenvalues. These investigators later proposed using the

Tracy-Widom (TW) statistic (Patterson, Price and Reich, 2006) to assess statistical

significance of eigenvalues in order to select PCs. However, this approach may detect

a very large number of PCs as significant, with uncertain impact on the association

analysis. Moreover, the precise contribution of each PC to the overall type I error

has not been established. As we shall see below, it is entirely possible for a relatively

low-ranked PC to have a greater impact on type I error than does a higher-ranked PC.

The paper is arranged as follows. In Section 3.2, we establish a relationship between

PCs and the average of the test statistics. Based on this relationship, we propose a

new method, EigenCorr, for selecting PCs based on their corresponding eigenvalues as

well as their correlations with the phenotype of interest. The explicit use of phenotypes

in stratification control has been anticipated in previous work, e.g. Epstein, Allen and

Satten (2007) and Kimmel et al. (2007). However, EigenCorr provides a more direct

connection to the type I error inflation introduced by PCs than other approaches of

which we are aware. A straightforward generalization of EigenCorr applies to situations

where only a subset of markers are used for stratification control. In Section 3.3, we

demonstrate the usefulness of EigenCorr via simulation and real GWAS analysis. In

Section 3.4, we conclude with a discussion of implications and future directions.
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3.2 Materials and Methods

Let gij be the genotype of SNP i and individual j, where i = 1, ...,M and j = 1, ...N .

We define a normalized genotype xij as

xij =
gij − gi.√∑N

j=1(gij − gi.)2/N
,

where gi. =
N∑
j=1

gij/N . Let X be the resulting M × N normalized genotype matrix,

and xi. the ith row of X. We have
∑N

j=1 xij = 0 and
∑N

j=1 x
2
ij = 1. For mathematical

precision in later development, the normalization used here is slightly different from

that used in Price et al. (2006). However, PCs derived from the two normalizations are

nearly identical. From the singular value decomposition (SVD) we obtain X = UDPT ,

where D is an N × N diagonal matrix of ordered singular values with jth diagonal

element dj, U is an M ×N loading matrix, and P is the N ×N normalized principal

component matrix. Let p.j be the jth column of P, (i.e.,the jth PC), for j ∈ {1, ..., N}.

Note that pT.jp.j = 1, pT.jp.k = 0 for k 6= j, and pT.j1 = 0 for j ∈ {1, .., N − 1} where

1 = {1, .., 1}. Finally, we use y to denote the vector of N phenotypes.

Theorem 1 Let γj = pT.jy. We have

M∑
i=1

(xTi.y)2 =
N∑
j=1

γ2
jλj,

where λj = d2
j is the jth eigenvalue of XTX.
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The proof is given in the Section 3.5.1. As γj is an inner product between the (normal-

ized) p.j and y, it is easy to show that

γj =

√√√√ N∑
k=1

(yk − y)2 × corr(p.j,y), (3.1)

where “corr” is the Pearson correlation coefficient. Thus γj is proportional to the

correlation between the phenotype y and the jth PC. We emphasize that the correlation

is a sample quantity which is observable from the data. Similarly, each term xTi.y in

the equality is proportional to the correlation between the genotype at SNP i and the

phenotype. The importance of the result lies in the explicit connection between these

M genotype-phenotype correlations to the N PC-phenotype correlations.

3.2.1 Relationship between Genomic Control and Principal

Components

Here we obtain explicit results for the relevant test statistics applied in genetic associa-

tion mapping. An exact correspondence to Theorem 1 technically applies to score test

statistics. However, as we demonstrate further below, the results also apply to other

common choices of test statistic.

Quantitative Traits

For continuous quantitative phenotype Y , we assume a simple linear regression

model at each SNP i:

yj = β0i + β1ixij + εj, εj ∼ N(0, σ2). (3.2)

To test an association of the SNP i with the phenotype, we can use the following score
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test (Lehmann and Romano, 2005):

Si =
(xTi.y)2

N∑
j=1

(yj − y)2/N

. (3.3)

Under the assumption of no genetic effect and no population stratification, Si is asymp-

totically distributed as χ2 with 1 degree of freedom, which has a mean 1. By Theorem

1,

1

M

M∑
i=1

Si =
(
M

N∑
j=1

(yj − y)2/N
)−1

N∑
j=1

γ2
jλj =

N

M

N∑
j=1

corr2(p.j,y) λj. (3.4)

The observed mean of all score test statistics across the M SNPs is then proportional

to the sum of the squared PC-phenotype correlations multiplied by their respective

eigenvalues.

In a justification of genomic control, it has been argued that under certain models

of population stratification, the inflation of test statistics should be similar across all

“null” SNPs (Devlin, Roeder and Wasserman, 2001). For this and related work (Devlin

and Roeder, 1999), the authors suggested comparing the sample median of test statistics

to the chi-square median value, for an estimated inflation factor τ̂ = median(S)/0.456.

This approach is intended to be robust to outlying test statistics which presumably

correspond to “alternative” SNPs. Other work (Reich and Goldstein, 2001; Devlin,

Bacanu and Roeder, 2004) suggests using the sample mean τ̂ = S̄ = (1/M)
∑M

i=1 Si

directly. In practice, the use of the median or mean typically gives similar results, as

the proportion of alternative SNPs is typically small. Using either approach, for each

i a new statistic S ′i = Si/τ̂ is then compared to χ2
1.

To summarize, the results above provide a direct relationship between the mean

version of the genomic control quantity τ̂ (left-hand side of (3.4)) and the PC-phenotype
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correlations and eigenvalues. This relationship is more than a simple curiosity. While

it is known that distinct subpopulations can be represented using PCs (Price et al.,

2008), we are not aware that a natural relationship has been previously established

between the PCs and the testing procedures. Moreover, (3.4) is exact, holding for

any X and y. In particular, this implies that the relationship holds regardless of the

underyling population substructure and the proportion of null vs. alternative SNPs.

Another point, perhaps more subtle, is that the result is not an expectation, but holds

for any realized dataset. Thus the right-hand side of (3.4) is subject to the same

sampling variation as S̄. Finally, we note that, to the extent that increases in S̄ above

1 determine overall inflation of type I error, the equation specifically highlights the terms

corr2(p.j,y) λj as contributors to this inflation. For a principal component to contribute

meaningfully to this inflation, it must have both an appreciable λj and a reasonably

large squared sample correlation corr2(p.j,y). Due to sampling variation, all PCs will

have observed corr2(p.j,y) > 0 for each j, even if the PCs are truly uncorrelated with

the population from which y is drawn. The eigenvalues λ1, ..., λN−1 are also non-zero.

Thus we must distinguish among terms according to their magnitude, and considering

sampling variation. Our general approach in the later sections will be to (i) re-rank the

PCs by the terms corr2(p.j,y) λj, (ii) test for the statistical significance of each of the

terms, and (iii) control for stratification using only those PCs with significant terms.

Case-Control Trait:

Before proceeding further, we establish that the relationships described above are

also applicable to case-control studies, with Y = 0 and Y = 1 corresponding to control

and case status, respectively. The data can be analyzed using the logistic regression

model (Agresti, 2002) for each SNP i:

log
(
P (Y = 1)/(1− P (Y = 1))

)
= β0i + β1ixij, (3.5)
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which is conditional on the sampling scheme. Denoting the number of cases as N1 and

the number of controls asN0, the score test statistic (Agresti, 2002) Si = (xTi.y)2/((N0N1)/N
2)

may be used. However, it is simple to show that ((N0N1)/N
2) =

∑N
j=1(yj− ȳ)2/N , and

so by comparison with (3.3), we see that (3.4) directly applies.

3.2.2 The influence of stratification on the test statistic at a

single SNP

In genomic control, the inflation of test statistics is effectively assumed to be constant

across all null SNPs. However, the inflation effect of PCs on the test statistics can be

investigated at the level of each SNP. The subsection is intended to be conceptual−

in practice we employ the PC-based procedure rather than attemping marker-specific

genomic control. For simplicity, we first assume that the individuals are sampled from

two subpopulations and the PC analysis fully recovers the two subpopulations via p.1.

That is, the “true” null model under population stratification is yj = η0+η1pj1+εj, with

εj ∼ N(0, σ2). Here η1 refers to the subpopulation effect on the phenotype. The test

statistic Si at the ith SNP does not acknowledge the stratification, and is approximately

distributed as

σ2

η2
1/N + σ2

χ2
1

(u2
i1η

2
1λ1

2σ2

)
(3.6)

where χ2
1(δ) is the non-central chi-square distribution with a noncentrality parameter

δ and 1 degree of freedom, and uij is the (i, j)th element of the loading matrix U (see

Section 3.5.2 for details). The expected value (i.e., the inflation) of Si can be shown

from this result to be (σ2 + u2
i1η

2
1λ1)/(σ

2 + η2
1/N).

If p.1 is included as a covariate in the analysis via the following model at each SNP

i,

yj = η0 + η1pj1 + βixij + εj,
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we should not expect inflation of the statistic for testing H0 : βi = 0. If there exist

K + 1 subpopulations in the data, which can be inferred from p.1, · · · ,p.K , then the

“true” null model can be expressed as

yj = η0 +
K∑
k=1

ηkpjk + εj,

and the inflation factor of Si is

σ2 +
K∑
k=1

u2
ikη

2
kλk

σ2 +
K∑
k=1

η2
k/N

,

which again is locus-specific. Similar conclusions are also applied to dichotomous trait

models, but the derivations are more complicated (see Section 3.5.3 for details).

3.2.3 EigenCorr : An Eigenvalue and Correlation-Based PC

Selection Procedure

Using the result that the effect of p.j on the mean test statistic is proportional to

γ2
jλj, we propose to select the most significant PCs associated with the population

stratification based on the γ2
jλj, which we call the EigenCorr scores. To determine the

significance of a given PC, we describe two procedures, which differ in their assumptions

concerning population stratification.

1) Method 1: EigenCorr1: We adopt the null hypothesis that the population cor-

relation of the PCs and phenotypes is zero. Furthermore, we assume that there is no

population substructure. Under these assumptions, we are able to directly estimate the

null distribution of the EigenCorr scores according to the Tracy-Widom distributional

approximation (Johnstone, 2001) and the Fisher z-transformation applied to sample
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correlations (Fisher, 1921). Specifically, after appropriate normalization the largest

eigenvalue λ1 approximately follows the Tracy-Widom distribution (Patterson, Price

and Reich, 2006). We compute (L1 − µ)/ξ, where

L1 =
(N − 1)λ1

N−1∑
k=1

λk

, µ =

(√
m′ − 1 +

√
N − 1

)2
m′

,

ξ =

(√
m′ − 1 +

√
N − 1

)
m′

(
1√

m′ − 1
+

1√
N − 1

)1/3

, and

m′ =

N

(
N−1∑
k=1

λk

)2

(
(N − 2)

N−1∑
k=1

λ2
k

)
−
(
N−1∑
k=1

λk

)2 .

For other eigenvalues, similar procedures can be followed (see (Patterson, Price and

Reich, 2006) for details).

The Fisher z-transformation (Fisher, 1921) provides a highly accurate approxima-

tion to the distribution of a correlation coefficient, with z∗ = 1
2

log(
1+rj
1−rj ) approximately

normal with mean 0 and variance 1
N−3

. Here rj is the correlation between the phe-

notype and p.j. Therefore, γj, which is proportional to rj, approximately follows the

distribution of √√√√ N∑
j=1

(yj − y)2
e2Z − 1

e2Z + 1
, (3.7)

where Z ∼ N(0, 1/(N − 3)). Using these approximations to the distributions of (in-

dependent) γ2
j and λj, we obtain null distributions for each γ2

jλj by simulation, which

are then used to compute a p-value for each EigenCorr score. The process proceeds

sequentially as follows. We simulate a random variable λ∗1 from the distribution of

(ξT + µ)

N−1∑
k=1

λk

N−1
, where T is a Tracy-Widom random variable, and simulate γ∗1 using the

Fisher z-transformation. These provide the null distribution of γ2
1λ1 from which we
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obtain the p-value. After excluding the first eigenvalue, we set N = N − 1, recompute

µ and ξ, and follow the same procedure sequentially to obtain p-values for each of the

remaining EigenCorr scores. We use these p-values to select a number of significant

PC covariates, acknowledging multiple comparisons by using the Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995) to control the false discovery rate (FDR)

to a specified value.

2) Method 2: EigenCorr2: In EigenCorr1, we made the assumption of no population

stratification. Although this assumption underlies the current Tracy-Widom testing

regimen (Patterson, Price and Reich, 2006), we can relax the assumption, recognizing

that significant eigenvalues alone are not sufficient to produce inflation of type I error.

For EigenCorr2, we assume only that the PCs are uncorrelated with the population

phenotype distribution. In order to perform testing, we treat the λj values as fixed,

and compute the p-values for high values of γ2
j , obtainable from Equation (3.7).

Although EigenCorr2 is simpler than EigenCorr1, and is shown to perform well in

later simulations, both approaches may have value in different situations. In partic-

ular, EigenCorr1 tests both eigenvalues and the PC-phenotpe correlations, and may

have an advantage in situations where few eigenvalues are truly signficant. For either

approach, our experience indicates that a relatively small number of PCs will be cho-

sen for stratification control, which is desirable for both computational and statistical

simplicity.

3.2.4 SNP thinning and weighted PC analysis

In the current practice of PC-based stratification control, investigators are often con-

cerned that the inclusion of SNPs in high linkage disequilibrium can produce misleading

results. Thus many investigators choose to “thin” out SNPs so that only a subset with

lower correlations is used to generate the PCs (e.g (Fellay et al., 2007)). It is easy
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to derive a more general approach as follows. Each SNP is given a weight wi, such

that groups of SNPs in high LD are given lower weight. Specific choices of weights are

described elsewhere, but we note that the special case of SNP thinning corresponds to

wi = 0 (SNP removed) and wi = 1 (SNP retained). Analysis proceeds by creating a

weighted genotype matrix X̃ = WX, where W is a diagonal M ×M matrix with ith

diagonal element wi. Then ordinary PC analysis proceeds using X̃ instead of X. Let

p̃.j be the jth principal component based on X̃, and λ̃j its corresponding eigenvalue.

By Theorem 1,
M∑
i=1

(x̃Ti.y)2 =
N∑
j=1

γ̃j
2λ̃j

2

where γ̃j = p̃T.jy. Since
M∑
i=1

(x̃Ti.y)2 =
M∑
i=1

w2
i (x

T
i.y)2, the weighted mean of score test

statistics is
M∑
i=1

w2
i Si =

1
N∑
j=1

(yj − y)2/N

N∑
j=1

γ̃j
2λ̃j

2
(3.8)

Here again the EigenCorr procedure can be applied, but to the EigenCorr scores based

on the weighted PCs.

In the special case of SNP thinning (weights of 0 or 1), the exact connection to

genomic control remains, provided that the genomic control τ̂ is obtained using only

the SNPs used for PC analysis. In practice, genomic control is usually performed using

all SNPs, while the PCs are calculated using a thinned set of SNPs. However, we

demonstrate in later simulations that the approximate relationship still holds.

3.3 Simulations and Real Data Analysis

We investigated the performance of the proposed EigenCorr approach in applications

to simulated data and a real GWAS data set.
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3.3.1 Simulation Studies

Simulation 1: We simulated 1000 samples from 5 subpopulations with 20,000 uncor-

related SNPs, with 210 samples from each of the first four subpopulations, and the

remaining 160 samples from subpopulation 5. For each SNP, the overall minor allele

frequency (MAF) was uniform from 0.05 to 0.5, and Fst was uniform from 0.01 to 0.04.

From these values, the MAF for each subpopulation was generated according to the

Balding-Nichols model (Balding and Nichols, 1995b). PC analysis showed that the top

4 PCs were significant according to the TW test, with p.4 specifically distinguishing

subpopulation 5 from the others.

To simulate population stratification, we generated a disease phenotype from logistic

regression with log(odds ratio)=1.6 between the samples from subpopulation 5 and

the remaining samples. Therefore, increases in type I error resulting from population

stratification arise entirely from the differing disease prevalence between subpopulation

5 and the remaining samples. Figure 3.1 shows eigenvalues and EigenCorr scores of

the first 10 PCs. The TW test selected the top 4 PCs as significant at p < 0.01,

since its selection is entirely eigenvalue based, while only p.4 was identified, correctly,

by EigenCorr. This simulation is illustrative of the intended advantage of the use of

EigenCorr scores.

Simulation 2: simulations based on a real dataset. To investigate type I error and

power associated with PC-based methods, we simulated phenotypes based on a real

schizophrenia GWAS study from the GAIN consortium [Version 2, Accession num-

ber: phs000021.v2.p1] (Sanders et al., 2008). In this manner we intended to reflect

the genetic complexity encountered in real studies. The filtered General Research Use

(GRU) African American data consists of 1904 samples with 845,814 SNPs, and was

downloaded from dbGap at NCBI (ncbi.nlm.nih.gov). We first filtered out highly re-

lated or duplicated samples, obtaining 1847 samples. Markers with a high rate of
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missing values (> 0.05), or a low minor allele frequency (< 0.01), were excluded from

the analysis. In addition, markers on sex chromosomes were excluded, resulting in a

final total of 810,264 markers.

To alleviate the effects of linkage disequilibrium among markers, we thinned out

SNPs based on pairwise correlation, such that no pair of SNPs had r2 > 0.1. After

such SNP thinning, 96,346 SNPs remained. We further removed outliers based on

computed PCs. Using TW statistics, we found that 98 PCs had p-values smaller than

0.01. Among these, the first two PCs exhibited a clear clustering indicative of the

stratification structure, and we did not use these two PCs to identify outliers. For

the remaining 96 PCs, we applied the standard 6× SD rule to identify outliers (Luca

et al., 2008), and total 12 subjects were removed. After recalculation, 91 PCs had TW

p-values smaller than 0.01.

We used p.1,p.2,p.5, and p.10 to generate association of strata with a simulated

phenotype. For quantitative traits, under the null hypothesis that no SNP is associated

with the phenotype, we simulated phenotypes according to

yj = η1pj1 + η2pj2 + η5pj5 + η10pj10 + εj.

Under the alternative hypothesis where there is a disease SNP associated with the

phenotype, we used

yj = βx+ η1pj1 + η2pj2 + η5pj5 + η10pj10 + εj

for SNP genotype x and β = 0.15. For both models, the εj were generated from a normal

distribution with mean 0 and variance 1, η1, η2, η5, η10 were generated as independent

and identically normally distributed so as to contribute the half of the variability of

y under the null model, and the same distribution of η was used for the alternative
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model. The results were analyzed by linear regression.

Similarly, for a dichotomous phenotype, we used the model

log
(
P (Yj = 1)/(1− P (Yj = 1))

)
= η1pj1 + η2pj2 + η5pj5 + η10pj10

and

log
(
P (Yj = 1)/(1− P (Yj = 1))

)
= βx+ η1pj1 + η2pj2 + η5pj5 + η10pj10

under the null and alternative hypotheses respectively, with β = 0.47. The coefficients

η1, η2, η5, η10 were randomly generated from the normal distribution to make the vari-

ance of log odds ratio 4.0 under the null model, and the same distribution of η was used

for the alternative model. The choice of genotype effect β corresponds to a relatively

strong allelic odds ratio of 1.6. The results were analyzed by logistic regression and

testing by maximum likelihood ratios.

The TW test selected 91 PCs at FDR level 0.1, the same PCs having TW p-values <

0.01. Note that the genotypes were fixed, but the phenotypes, and therefore the results

of EigenCorr1 and EigenCorr2, varied across simulations. On average, EigenCorr1

and EigenCorr2 selected 3.52 and 3.51 PCs at FDR level 0.1 among the first 200

PCs, respectively, with most of them overlapping and typically reflecting the true PC

stratification.

Table 3.1 provides empirical type I errors for the quantitative and case-control data,

separately for the 5 different approaches: 1) no adjustment for population stratification;

2) adjustment by the variables p.1,p.2,p.5 and p.10 representing the true population

stratification; 3) adjustment by the 91 PCs selected by the TW test; 4) adjustment by

the PCs selected by EigenCorr1, and 5) adjustment by EigenCorr2. Method 2 can be

viewed as a gold standard, where the true population stratification is assumed known
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and modeled. P -values were computed using a likelihood ratio test (LRT). The same

simulations with values from the score test are given in Table 3.2.

From the tables we can see that adjustment of population stratification is necessary

to control the type I error. Adjustment by the known confounding PCs controls for

type I error, as expected. Adjustment by the 91 top PCs controls type I error for the

quantitative trait, as would be expected in a linear model in which the normal model

assumptions hold. However, adjustment by the TW PCs results in somewhat inflated

type I error for the dichotomous trait. In practice, investigators might be reluctant to

fit so many covariates, but the absence of a principled alternate procedure based solely

on eigenvalues makes it difficult to prescribe an alternative, when so many eigenvalues

are clearly significant. In contrast, both Eigencorr methods provide proper type I error

control.

In terms of statistical power, both Eigencorr methods are comparable to knowing

the true confounding PCs, and are more powerful than PC selection based on the TW

test.

Table 3.3 describes the estimated genetic effect β for the five methods. All five

methods give essentially unbiased estimates of the genetic effect for the quantitative

trait. The logistic regression estimates, however, are biased below the true value under

no adjustment, and upwardly biased when the TW PCs are used. The presence of both

bias and poorly-controlled type I error is a well-known consequence of the inclusion of

unnecessary covariates in logistic regression (Lubin, 1981). Finally, we mention that

simulations for the setups in Tables 3.1 and 3.3 were also performed for the situation

where (i) no SNPs were thinned for PC analysis, (ii) no outlier detection was performed,

and (iii) a simple testing criterion for EigenCorr was performed, including any Eigen-

Corr scores/ correlations with nominal p-values < 0.01. The results (not shown) were

all qualitatively similar to the results described here. Although it is not possible to
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cover every scenario, we believe the results are relatively robust to reasonable choices

for data pre-treatment and PC covariate testing.

Simulation 3: stringent testing thresholds. Genome scans typically use very strin-

gent testing thresholds in order to control the overall family-wise error rate. To investi-

gate type I errors under such stringent thresholds, we conducted additional simulations

of 109 p-values for each setup described above for simulation 2 on the schizophrenia

dataset, using thinned PCs and for which outliers had been removed. To do so, we

largely followed the null simulation procedure described for simulation 2. However, in

order to make the computation feasible, we divided the genotypes into 16 portions, each

with approximately 50,000 SNPs. For each portion, we randomly generated y under

the null and performed the regressions as described, and continued until a total of 109

p-values were obtained. This approach is unbiased, but retains modest correlation of

p-values within the portions. For these simulations we computed results from the score

tests only, as this approach does not require estimating parameters under the alterna-

tive, and thus faster computation can be performed. The results are given in Table 3.4

for a series of thresholds, down to 10−7. The results show that the large number of PCs

from the TW test inflates type I error for the dichotomous trait. For nominal (SNP-

specific) p-value thresholds of 10−6 and 10−7, which are of the order used in genome

scans, the type I error is inflated to twice the nominal level. Note also that for the di-

chotomous trait, adjustment by the known confounding PCs is somewhat conservative,

which occurs due to the extreme threshold and the finite sample size. Using results

from the known confounding PCs as a gold standard, both EigenCorr1 and EigenCorr2

show proper type I error, and are slightly conservative when compared to the nominal

intended threshold.
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3.3.2 The GAIN Schizophrenia Data

We next applied the EigenCorr methods to the schizophrenia data, using the actual

dichomotous case-control phenotype and logistic regression. PCs were computed using

the same procedures for obtaining thinned PCs and excluding outliers as described for

simulation 2. Among the first 200 PCs EigenCorr1 selected 2 PCs at FDR = 0.1, and

EigenCorr2 selected 4 PCs at this level, including the 2 PCs selected by EigenCorr1.

Importantly, some of the PCs with significant EigenCorr scores had relatively low-

ranking eigenvalues, which would not have been captured under simple prescriptions

such as using PCs with the top 10 eigenvalues. For the top 91 PCs selected by the TW

test, Figure 3.2 displays their eigenvalues, their correlations with the trait, and their

EigenCorr scores. Clearly many PCs are essentially uncorrelated with the trait. We

tested the association of each genetic marker with the trait using the logistic regression

LRT and all methods described in the earlier simulation section, except that the “known

confounding PCs” method was not possible. Figure 3.3 shows a QQ plot of the −log10

(p-value) (observed vs. expected) from the 4 methods with the 95% prediction band

(Stirling, 1982). The QQ plot with no population stratification adjustment deviates

dramatically from the diagonal. The QQ plot using the TW adjustment also shows

deviation from the diagonal, likely caused by a large number of unnecessary PCs in the

model. In contrast, QQ plots from both EigenCorr1 and EigenCorr2 suggest proper

type I error control, and no SNP reached genome-wide significance.

The inclusion of unnecessary covariates can also have a substantial computational

cost, involving optimization and matrix inversion for large numbers of parameters.

Using the 91 PCs selected by TW, computation of LRT for the whole dataset took 9.1

hours using R (http://www.r-project.org/) on 11 node Linux clusters, where each node

operates at 2.6 GHz with 8 gb RAM. In contrast, analysis with the 2-4 selected PCs

from EigenCorr took approximately 1 hour.
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To illustrate the impact of outliers and LD for each method, we computed PCs

without SNP pruning and outlier exclusion, and selected PCs based on TW test and

EigenCorr scores. Among the first 200 PCs and using an FDR threshold of 0.1, the

TW test selected the first 164 PCs, while EigenCorr1 selected 7 PCs and EigenCorr2

selected 8 PCs, including the 7 PCs selected by EigenCorr1. QQ plots are shown in

Figure 3.4. The figure shows that EigenCorr can control type I error while selecting a

reasonably small number of PCs, even in the presence of LD and outliers.

3.3.3 An empirical comparison of association statistics, and

the impact of SNP thinning

In the main result of this paper, we showed that the mean of the score test statistics

is proportional to the sum of the EigenCorr scores. Among of the most fundamental

results in statistics is the asymptotic equivalence of score statistics, likelihood ratio

statistics, and Wald statistics in a suitable neighborhood of the null (Lehmann and

Romano, 2005). To illustrate the applicability of our results to other choices of statistic,

we compared the standard score statistics for SNP effect for the GAIN consortium

schizophrenia dataset to the likelihood ratio and Wald statistics with no additional

covariates. In addition, we performed 10 permutations of the phenotypes relative to

the genotypes and recomputed the entire set of statistics across all SNPs for each

permutation. Figure 3.5 (panel A) shows that in both the original and permuted

datasets the mean score statistic indeed follows the equality in equation (3.3). For this

plot, the sum of EigenCorr scores was computed without thinning, to illustrate the

exact match to the mean of the score test statistics for all SNPs. In addition, the mean

of the other two statistics is also very nearly on the unit line. Note that the mean

of the three statistics follow each other across the simulations, even though there is

considerable variation across the simulations. Note that the actual data (grey symbols
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on plot) shows more extreme summed EigenCorr scores than the permutations, as is

expected for data with true stratification. Furthermore, the median of each of the

three statistics follows the same pattern (Figure 3.5, panel B), adhering closely to the

predicted line with slope 0.456, corresponding the median of a χ2
1 distribution.

As we have described, PC computation is usually applied after SNP thinning. We

compared the mean and median of the test statistics for the thinned SNPs vs. these

quantities for all SNPs (Figure 3.5, panels C and D). Interestingly, the mean and

median of the test statistics for the thinned SNPs closely track those for all SNPs, even

though the thinned set represents only 12% of all SNPs. We believe this result follows

from the fact that the thinned SNPs represent the overall PCs well, and thus also the

correlations of phenotypes to PCs. We conclude that, in addition to motivation based

on asymptotics, our comparison to the genomic control inflation factor is appropriate

for the most common choices of test statistics, with sample sizes and numbers of SNPs

encountered in practice.

3.4 Discussion

In this paper we have shown that the average inflation of test statistics is determined by

genotype PCs according to their eigenvalues and their correlations with the phenotype.

We specifically highlight the EigenCorr scores, γ2λ, as the quantities of interest for

PC-based stratification control, and have clarified that PCs that are uncorrelated with

the phenotype are of little concern. The explicit connection to genomic control provides

insight into the advantages of PC-based stratification control. Moreover, the results

provide a natural motivation for the use of PC-based control that does not depend on

specific population assumptions. In addition to the statistical advantages of EigenCorr,

the reduced computational time achieved by focusing on only the problematic PCs is

an important advantage. This will be especially true for GWAS analyses involving
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larger number of markers and samples, and in which the data are analyzed for gene-

gene interactions. The reduction in computation afforded by EigenCorr may not be

substantial for the score test, since it does not require fitting the alternative model.

In our analyses, EigenCorr1 and EigenCorr2 produced similar results. However,

we believe that EigenCorr1 is theoretically more desirable, as it uses the EigenCorr

score directly as a test statistic. However, EigenCorr1 does assume that the sample

eigenvalues follow the TW distribution. The null distribution of the statistic may

not be accurate for the largest eigenvalues, which may depart sharply from the null.

Nonetheless, the role of the genotype-phenotype correlations γ2 still provides a hedge

against fitting an excessive number of PCs.

EigenCorr is not the first approach in which the phenotype information has been

used to identify or construct genotype-based covariates. Epstein, Allen and Satten

(2007) described a general stratification score approach, with the use of partial least

squares (PLS) of phenotype on a number of markers as one approach to construct such

a score. Lee et al. (2008) have pointed out that PLS can result in overfitting and reduce

power, because PLS is designed to maximize the fit to phenotypic variation. However,

Epstein, Allen and Satten (2007) and the rejoinder (Epstein, Allen and Satten, 2008)

provide important clarification that desirable stratification control should explain some

of the true variability in phenotype. This fact was also recognized by Kimmel et al.

(2007), who described initial correction of phenotype by a small number of PC clusters

before proceeding with a permutation approach for signficance testing by genotype.

Zhao, Rebbeck and Mitra (2009) have computed a propensity score using (genetic)

covariates to predict genotype at a test locus before inclusion in phenotype-genotype

model. This approach, although implemented with relatively few genetic covariates

(serving a role analogous to our PCs), potentially avoids the problem of overfitting in
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selecting covariates associated with the phenotype. However, it is potentially suscepti-

ble to the influence of an excessive number of genetic covariates, which we have shown

can be a problem with logistic regression.

Viewed in this light, the EigenCorr approach may be seen as generally similar to that

advocated by Epstein, Allen and Satten (2007), using PC-based phenotype adjustment

in the form of regression covariates. However, the EigenCorr procedure, with a fixed

number of PCs to choose from, is much less flexible than procedures such as PLS, and

the FDR testing procedure provides a natural penalty against overfitting. Moreover,

in contrast to other procedures, the EigenCorr motivation and approach is explicitly

connected to the source of test statistic inflation. The fact that genotype must also be

associated with population stratum in order to create confounding is also implicit in

EigenCorr, because each informative marker has an influence on, and will be associated

with, at least one eigenvector. We feel that EigenCorr offers an efficient filter to identify

the confounding variables of greatest influence.

3.5 Proofs

3.5.1 Proof of Theorem 1

Since p.j, j = 1, .., N are the orthonormal basis of RN space, y can be expressed as the

linear combination of these vectors, y =
N∑
l=1

alp.l, where al is a coefficient of each vector

p.l. However, γl = pT.ly = alp
T
.lp.l = al, resulting in y =

N∑
l=1

γlp.l.

Now since xi. =
N∑
k=1

ekuikp.k, we get

xTi.y =
N∑
k=1

ekuikp
T
.k

(
N∑
l=1

γlp.l

)
=

N∑
k=1

ekuikγk and
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M∑
i=1

(xTi.y)2 =
M∑
i=1

(
N∑
k=1

ekuikγk

)2

=
M∑
i=1

N∑
k=1

e2ku
2
ikγ

2
k + 2

M∑
i=1

N∑
k<l

ekeluikuilγkγl

=
M∑
i=1

N∑
k=1

e2ku
2
ikγ

2
k + 2

N∑
k<l

ekelγkγl

M∑
i=1

uikuil

=
M∑
i=1

N∑
k=1

e2ku
2
ikγ

2
k =

N∑
k=1

e2kγ
2
k

M∑
i=1

u2
ik =

N∑
k=1

e2kγ
2
k

=
N∑
k=1

γ2
kλk,

since the loading matrix U is orthogonal, that is
M∑
i=1

u2
ik = 1 for all k and

M∑
i=1

uikuil = 0

for k 6= l.

3.5.2 Quantitative Trait

Let us assume that the true model of y is yj = η0 + η1pj1 + εj, where εj ∼ N(0, σ2) for

j ∈ {1, · · · , N}. The score test statistic for SNP i is

Si =
(xTi.y)2

N∑
j=1

(yj − y)2/N

The numerator of the score test statistic is

1

σ2
(xTi.y)2 =

1

σ2
(xTi. (y−η01))2 =

1

σ2
(y−η01)T (xi.x

T
i. )(y−η01) =

1

σ2
(η1p.1+ε)

T (xi.x
T
i. )(η1p.1+ε).

(3.9)

where ε = {εj}. Since xi.x
T
i. is an idempotent matrix with rank 1, 1

σ2 (xTi.y)2 follows

as noncentral chi-square distribution with 1 degrees of freedom and the noncentrality
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parameter

µ =
(η1p.1)

T (xi.x
T
i. )(η1p.1)

2σ2
=
η2

1(pT.1xi.)
2

2σ2

=
η2

1u
2
i1λ1

2σ2

The denominator of the score test statistic is

1

N

N∑
j=1

(yj − y)2 =
1

N

N∑
j=1

(η1pj1 + εj − ε)2

=
1

N

N∑
j=1

η2
1p

2
j1 +

1

N

N∑
j=1

(εj − ε)2 +
2

N

N∑
j=1

η1pj1(εj − ε)

=
η2

1

N
+

1

N

N∑
j=1

(εj − ε)2 +
2

N

N∑
j=1

η1pj1εj (3.10)

By the law of large numbers, 1
N

N∑
j=1

(εj−ε)2 converges in probability to σ2 and 1
N

N∑
j=1

η1pj1εj

converges to 0. By (3.9) and (3.10),

Si ∼
σ2

η2
1/N + σ2

χ2
1(
η2

1u
2
i1λ1

2σ2
)

3.5.3 Case-Control Trait

For a dichotomous trait, we need the moderate population effect assumption, which

is also required for the genomic control. Let us assume that the true model of Y is

log
(
P (Y = 1)/(1− P (Y = 1))

)
= η0 + η1pj1. The score test statistic Si of SNP i is

Si =

(
N∑
j=1

yjxij)
2

r(1− r)
(3.11)
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where r = N1/N . By the Lindberg Feller CLT,
N∑
j=1

yjxij follows the normal distribution.

Let α = 1/exp(η0), then we can approximate the mean of
N∑
j=1

yjxij by the first order

talyor expansion.

E(
N∑
j=1

yjxij) =
N∑
j=1

exp(η0 + η1pj1)

1 + exp(η0 + η1pj1)
xij ≈

N∑
j=1

xij(
1

α + 1
+

α

(α + 1)2
η1pj1)

=
α

(α + 1)2
η1ui1e1 (3.12)

Since we assumed moderate population effect, approximation by the first order taylor

expansion can be hold. Variance of
N∑
j=1

yjxij is

V ar(
N∑
j=1

yjxij) =
N∑
j=1

x2
ijV ar(yj) =

N∑
j=1

x2
ij(

exp(η0 + η1pj1)

1 + exp(η0 + η1pj1)
)(

1

1 + exp(η0 + η1pj1)
)

≈
N∑
j=1

x2
ij(

1

α + 1
+

α

(α + 1)2
η1pj1)(

α

α + 1
− α

(α + 1)2
η1pj1)

=
α

(α + 1)2
+

α2 − α
(α + 1)3

η1

N∑
j=1

x2
ijp1j −

α2

(α + 1)4
η2

1

N∑
j=1

x2
ijp

2
1j (3.13)

Let ζ = α
(α+1)2

and ci1 = − α2−α
(α+1)3

η1

N∑
j=1

x2
ijp1j + α2

(α+1)4
η2

1

N∑
j=1

x2
ijp

2
1j, then (3.13) is ζ − ci1.

Next, we show r is approximately asymptotically same as 1
α+1

. It is clear that r is

the asymptotically same as E(r). By the Taylor series approximation,

E(r) = E(
1

N

N∑
j=1

yj) =
1

N

N∑
j=1

exp(η0 + η1pj1)

1 + exp(η0 + η1pj1)
≈ 1

α + 1

.
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By (i) and (ii), the approximated asymptotic distribution of Si is

ζ − ci1
ζ

χ2
1(
ζη1ui1e1

2(ζ − ci1)
),

and mean of Si is

ζ + ζ2η2
1u

2
ilλ1 − ci1
ζ

(3.14)

3.6 Tables and Figures

57



T
ab

le
3.

1:
P

er
fo

rm
an

ce
of

th
e

m
et

h
o
d
s

fo
r

10
,0

00
G

W
A

S
si

m
u
la

ti
on

s.
V

al
u
es

in
th

e
ta

b
le

re
p
re

se
n
t

ty
p

e
I

er
ro

r
(f

or
th

e
n
u
ll

si
m

u
la

ti
on

s
)

an
d

p
ow

er
(f

or
th

e
al

te
rn

at
iv

e
si

m
u
la

ti
on

s)
fr

om
L

R
T

.
T

h
e

si
m

u
la

ti
on

se
tu

p
s

ar
e

d
es

cr
ib

ed
in

”S
im

u
la

ti
on

s
an

d
R

ea
l

D
at

a
A

n
al

y
si

s”
. Si

m
ul

at
io

n
N

om
in

al
N

o
K

no
w

n
T

ra
it

T
yp

e
Si

gn
ifi

ca
nc

e
α

A
dj

us
tm

en
t

C
ou

nf
ou

nd
in

g
P

C
s

T
W

E
ig

en
C

or
r1

E
ig

en
C

or
r2

Q
ua

nt
it

at
iv

e

N
U

L
L

0.
05

0.
12

44
0.

04
94

0.
05

05
0.

05
02

0.
05

05
10
−

2
0.

05
07

0.
01

05
0.

01
03

0.
01

06
0.

01
11

A
lt

er
na

ti
ve

10
−

2
0.

62
94

0.
72

17
0.

69
72

0.
71

99
0.

71
96

10
−

4
0.

29
59

0.
37

17
0.

33
51

0.
36

94
0.

36
88

10
−

6
0.

11
61

0.
13

47
0.

11
15

0.
13

31
0.

13
24

C
as

e
C

on
tr

ol

N
U

L
L

0.
05

0.
16

42
0.

04
86

0.
05

6
0.

04
88

0.
04

93
10
−

2
0.

07
65

0.
00

95
0.

01
20

0.
00

96
0.

00
98

A
lt

er
na

ti
ve

10
−

2
0.

72
91

0.
85

45
0.

84
83

0.
85

37
0.

85
26

10
−

4
0.

46
39

0.
63

58
0.

62
33

0.
63

34
0.

63
33

10
−

6
0.

26
63

0.
40

24
0.

39
11

0.
39

91
0.

39
83

58



T
ab

le
3.

2:
P

er
fo

rm
an

ce
of

th
e

m
et

h
o
d
s

fo
r

10
,0

00
G

W
A

S
si

m
u
la

ti
on

s.
V

al
u
es

in
th

e
ta

b
le

re
p
re

se
n
t

ty
p

e
I

er
ro

r
(f

or
th

e
n
u
ll

si
m

u
la

ti
on

s
)

an
d

p
ow

er
(f

or
th

e
al

te
rn

at
iv

e
si

m
u
la

ti
on

s)
fr

om
S
co

re
T

es
t.

T
h
e

si
m

u
la

ti
on

se
tu

p
s

ar
e

d
es

cr
ib

ed
in

”S
im

u
la

ti
on

s
an

d
R

ea
l

D
at

a
A

n
al

y
si

s”
.

Si
m

ul
at

io
n

N
om

in
al

N
o

K
no

w
n

T
ra

it
T

yp
e

Si
gn

ifi
ca

nc
e
α

A
dj

us
tm

en
t

C
ou

nf
ou

nd
in

g
P

C
s

T
W

E
ig

en
C

or
r1

E
ig

en
C

or
r2

Q
ua

nt
it

at
iv

e

N
U

L
L

0.
05

0.
16

61
0.

05
01

0.
04

99
0.

05
08

0.
05

08
10
−

2
0.

07
82

0.
01

04
0.

01
06

0.
01

04
0.

01
05

A
lt

er
na

ti
ve

10
−

2
0.

68
71

0.
72

21
0.

69
83

0.
72

01
0.

71
91

10
−

4
0.

39
01

0.
37

43
0.

33
88

0.
37

08
0.

37
03

10
−

6
0.

18
77

0.
13

69
0.

11
55

0.
13

46
0.

13
34

C
as

e
C

on
tr

ol

N
U

L
L

0.
05

0.
16

4
0.

04
85

0.
05

53
0.

04
88

0.
04

92
10
−

2
0.

07
63

0.
00

94
0.

01
20

0.
00

96
0.

00
98

A
lt

er
na

ti
ve

10
−

2
0.

72
76

0.
85

30
0.

84
64

0.
85

23
0.

85
15

10
−

4
0.

46
06

0.
63

27
0.

62
07

0.
63

08
0.

63
01

10
−

6
0.

26
26

0.
39

63
0.

38
50

0.
39

39
0.

39
35

59



Table 3.3: Genetic effect estimates for candidate SNPs from 10,000 simulations. Each
entry shows the mean coefficient estimate, followed by the standard error in parentheses.

No Known
true β Adjustment Counfounding PCs TW EigenCorr1 EigenCorr2

Quantitative 0.15 0.148 (0.0799) 0.149 (0.0542) 0.149 (0.0565) 0.148 (0.0540) 0.148 (0.0543)
Case-Control 0.47 0.327 (0.1704) 0.472 (0.1367) 0.502 (0.1502) 0.471 (0.1366) 0.471 (0.1367)

Table 3.4: Performance of the methods for 109 GWAS simulations. Values in the
table represent type I error from score test. The simulation setups are described in
”Simulations and Real Data Analysis”.

Nominal No Known
Trait Significance α Adjustment Counfounding PCs TW EigenCorr1 EigenCorr2

Quantitative

0.05 0.166 0.0500 0.0500 0.0499 0.0504
10−4 0.0162 9.95× 10−5 9.98× 10−5 9.85× 10−5 1.02× 10−4

10−6 0.00526 1.03× 10−6 1.03× 10−6 1.01× 10−6 1.09× 10−6

10−7 0.00327 9.76× 10−8 1.03× 10−7 9.25× 10−8 1.01× 10−7

Case Control

0.05 0.159 0.0483 0.0552 0.0483 0.0487
10−4 0.0144 9.42× 10−5 1.50× 10−4 9.40× 10−5 9.69× 10−5

10−6 0.00393 8.59× 10−7 1.81× 10−6 8.70× 10−7 9.05× 10−7

10−7 0.00218 7.70× 10−8 2.01× 10−7 7.78× 10−8 7.70× 10−8

60



Figure 3.1: Illustration of the EigenCorr scores. The right panel presents the first 10
eigenvalues and the left panel presents the first 10 Eigencorr scores.
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Figure 3.2: Eigenvalues, correlations and EigenCorr scores of PCs selected by the TW
method, in schizophrenia dataset. Filled triangles represent PCs selected by either one
of EigenCorr methods.
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Figure 3.3: −log10 QQ plots of observed vs. expected p-values for the schizophrenia
data. The dashed lines indicate 95% prediction bands.
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Figure 3.4: −log10 QQ plots of observed vs. expected p-values for the schizophrenia
data. PCs were computed without SNP thinning and outlier exclusion. The dashed
lines indicate 95% prediction bands.
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Figure 3.5: Comparison among score(circle), Wald(square), and likelihood ratio (dia-
mond) test statistics vs. EigenCorr scores, based on 10 permuted outcomes (no color)
and the real data (gray color). Panel A shows the mean of each test statistics vs. the
appropriately scaled sum of EigenCorr scores. Note the good agreement for both per-
muted and real data. Panel B shows the median test statistics vs. the scaled EigenCorr
scores, and again shows agreement with the theoretical line with slope 0.456. Panel C
and D show mean and median test statistics of all SNPs vs. thinned SNPs.
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Chapter 4

Convergence and Prediction of

Principal Component Scores for

High-Dimensional Matrices

A number of settings arise in which it is of interest to predict Principal Component

(PC) scores for new observations using data from an initial sample. In this paper, we

demonstrate that naive approaches to PC score prediction can be substantially biased

towards 0 in the analysis of large matrices. This phenomenon is largely related to known

inconsistency results for sample eigenvalues and eigenvectors as both dimensions of the

matrix increase. For the spiked eigenvalue model for random matrices, we expand the

generality of these results, and propose bias-adjusted PC score prediction. In addition,

we compute the asymptotic correlation coefficient between PC scores from sample and

population eigenvectors. Simulation and real data examples from the genetics literature

show the improved bias and numerical properties of our estimators.



4.1 Introduction

Principal component analysis (PCA) (Jolliffe, 2002) is one of the leading statistical tools

for analyzing multivariate data. It is especially popular in genetics/genomics, medical

imaging, and chemometrics studies where high-dimensional data is common. PCA is

typically used as a dimension reduction tool. A small number of top ranked principal

component (PC) scores are computed by projecting data onto spaces spanned by the

eigenvectors of sample covariance matrix, and are used to summarize data characteris-

tics that contribute most to data variation. These PC scores can be subsequently used

for data exploration and/or model predictions. For example, in genome-wide associa-

tion studies (GWAS), PC scores are used to estimate ancestries of study subjects and as

covariates to adjust for population stratification (Price et al., 2006; Patterson, Price and

Reich, 2006). In gene expression microarray studies, PC scores are used as synthetic

“eigen-genes” or “meta-genes” intended to represent and discover gene expression pat-

terns that might not be discernible from single-gene analysis (Wall, Rechtsteiner and

Rocha, 2003).

Although PCA is widely applied in a number of settings, much of our theoretical

understanding rests on a relatively small body of literature. Girshick (1936) introduced

the idea that the eigenvectors of sample covariance matrix are maximum likelihood

estimators. Here a key concept in a population view of PCA is that the data arise as

p-variate values from a distinct set of n independent samples. Later, the asymptotic

distribution of eigenvalues and eigenvectors of the sample covariance matrix (i.e., the

sample eigenvalues and eigenvectors ) were derived for the situation where n goes to

infinity and p is fixed (Girshick, 1939; Anderson, 1963). With the development of

modern high-throughput technologies, it is not uncommon to have data where p is

comparable in size to n, or substantially larger. Under the assumption that p and n

grow at the same rate, that is p/n → γ > 0, there has been considerable effort to
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establish convergence results for sample eigenvalues and eigenvectors (see review (Bai,

1999)). The convergence of the sample eigenvalues and eigenvectors under the “spiked

population” model proposed by Johnstone (2001) has also been established(Baik and

Silverstein, 2006; Paul, 2007; Nadler, 2008). For this model it is well known that the

sample eigenvectors are not consistent estimators of the eigenvectors of population

covariance (i.e., the population eigenvectors ) (Johnstone and Lu, 2007; Paul, 2007;

Nadler, 2008). Furthermore, Paul (2007) has derived the degree of discrepancy in

terms of the angle between the sample and population eigenvectors, under Gaussian

assumptions for 0 < γ < 1. More recently, Nadler (2008) has extended the same result

to the more general γ > 0 using a matrix perturbation approach.

These results have considerable potential practical utility in understanding the be-

havior of PC analysis and prediction in modern datasets, for which p may be large. The

practical goals of this paper focus primarily on the prediction of PC scores for samples

which were not included in the original PC analysis. For example, gene expression data

of new breast cancer patients may be collected, and we might want to estimate their

PC scores in order to classify their cancer sub-type. The recalculation of PCs using

both new and old data might not be practical, e.g. if the application of PCs from gene

expression is used as a diagnostic tool in clinical applications. For GWAS analysis, it

is known that PC analysis which includes related individuals tends to generate spuri-

ous PC scores which do not reflect the true underlying population substructures. To

overcome this problem, it is common practice to include only one individual per fam-

ily/sibship in the initial PC analysis. Another example arises in cross-validation for PC

regression, in which PC scores for the test set might be derived using PCA performed

on the training set (Jackson, 2005). For all of these applications, the predicted PC

scores for a new sample are usually estimated in the “naive” fashion, in which the data

vector of the new sample is multiplied by the sample eigenvectors from the original PC

68



analysis. Indeed, there appears to be relatively little recognition in the genetics or data

mining literature that this approach may lead to misleading conclusions.

For low dimensional data, where p is fixed as n increases or otherwise much smaller

than n, the predicted PC scores are nearly unbiased and well-behaved. However, for

high-dimensional data, particularly with p > n, they tend to be biased and shrunken

towards 0. The following simple example of a stratified population with three strata

illustrates the shrinkage phenomenon for predicted PC scores. We generated a training

data set with n = 100 and p = 5000. Among the 100 samples, 50 are from stratum 1, 30

are from stratum 2 and the rest from stratum 3. For each stratum, we first created a p-

dimensional mean vector µk (k = 1, 2, 3). Each element of each mean vector was created

by drawing randomly with replacement from {−0.3, 0, 0.3}, and thereafter considered

a fixed property of the stratum. Then for each sample from the kth stratum, its

p covariates were simulated from the multivariate normal distribution MVN(µk, 4I),

where I is the p × p identity matrix. A test dataset with the same sample size and

µk vectors was also simulated. Figure 4.1 shows that the predicted PC scores for the

test data are much closer to 0 compared to the scores from the training data. This

shrinkage phenomenon may create a serious problem if the predicted PC scores are

used to classify new test samples, perhaps by similarity to previous apparent clusters

in the original data. In addition, the predicted PC scores may produce incorrect results

if used for downstream analyses (e.g., as covariates in association analyses).

In this paper, we investigate the degree of shrinkage bias associated with the pre-

dicted PC scores, and then propose new bias-adjusted PC score estimates. As the

shrinkage phenomenon is largely related to the limiting behavior of the sample eigen-

vectors, our first step is to describe the discrepancy between the sample and population

eigenvectors. To achieve this purpose, we follow the assumption that p and n both are

large. By applying and extending results from random matrix theory, we establish the
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convergence of the sample eigenvalues and eigenvectors under the spiked population

model. We generalize Theorem 4 of Paul (2007), which describes the asymptotic an-

gle between sample and population eigenvectors, to non-Gaussian random variables for

any γ > 0. We further derive the asymptotic angle between PC scores from sample

eigenvectors and population eigenvectors, and the asymptotic shrinkage factor of the

PC score predictions. Finally we construct estimators of the angles and the shrinkage

factor. The theoretical results are presented in Section 4.2.2. In Setion 4.2.3, we ex-

tended our theoretical results to the case that p is substantially larger than n, and thus

p/n→∞.

In section 4.3, we report simulations to assess the finite sample accuracy of the

proposed asymptotic angle and shrinkage factor estimators. We also show the potential

improvements in prediction accuracy for PC regression by using the bias adjusted PC

scores. In Section 4.4, we apply our PC analysis to a real genome-wide association

study, which demonstrates that the shrinkage phenomenon occurs in real studies and

that adjustment is needed.

4.2 Materials and Methods

4.2.1 General Setting

Throughout this paper, we use T to denote matrix transpose,
p→ to denote convergence

in probability, and
a.s→ to denote almost sure convergence. Let Λ = diag(λ1, λ2, . . . , λp),

a p×p matrix with λ1 ≥ λ2 ≥ · · · ≥ λp, and E = [e1, . . . , ep], a p×p orthogonal matrix.

Define the p× n data matrix, X as [x1, . . . ,xn], where xj is the p-dimensional vec-

tor corresponding to the jth sample. For the remainder of the paper, we assume the

following:
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Assumption 1. X = EΛ1/2Z, where Z = {zij} is a p × n matrix whose elements

zijs are i.i.d random variables with E(zij) = 0, E(z2
ij) = 1 and E(z4

ij) <∞.

Although the zijs are i.i.d, Assumption 1 allows for very flexible covariance struc-

tures for X, and thus the results of this paper are quite general. The population

covariance matrix of X is Σ = EΛET . The sample covariance matrix S equals

S = XXT/n = EΛ1/2ZZTΛ1/2ET/n.

The λks are the underlying population eigenvalues. The spiked population model

defined in (Johnstone, 2001) assumes that all the population eigenvalues are 1, except

the first m eigenvalues. That is, λ1 ≥ λ2 · · · ≥ λm > λm+1 = · · · = λp = 1. The spectral

decomposition of the sample covariance matrix is

S = UDUT ,

where D = diag(d1, d2, . . . , dp) is a diagonal matrix of the ordered sample eigenvalues

and U = [u1, . . . ,up] is the corresponding p × p sample eigenvector matrix. Then the

PC score matrix is P = [p1,p2, . . . ,pn], where pTv = uTv X is the vth sample PC score.

For a new observation xnew, its predicted PC score is similarly defined as UTxnew with

the vth (PC) score equal to qv = uTv xnew.

4.2.2 When p/n→ γ <∞

Sample Eigenvalues and Eigenvectors

Under the classical setting of fixed p, it is well known that the sample eigenvalues and

eigenvectors are consistent estimators of the corresponding population eigenvalues and
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eigenvectors (Anderson, 2003). Under the “large p, large n” framework, however, the

consistency is not guaranteed. The following two lemmas summarize and extend some

known convergence results.

Lemma 1 Let p/n→ γ ≥ 0 as n→∞.

i) When γ = 0,

dv
a.s→

 λv, for v ≤ m

1, for v > m;
(4.1)

ii) When γ > 0,

dv
a.s→

 ρ(λv), for v ≤ k

(1 +
√
γ)2, for v = k + 1,

(4.2)

where k is the number of λv greater than 1 +
√
γ, and ρ(x) = x(1 + γ/(x− 1)).

The result in ii) is due to Baik and Silverstein (2006), while the proof of i) can

be found in section (4.6.2). The result in i) shows that when γ = 0, the sample

eigenvalues converge to the corresponding population eigenvalues, which is consistent

with the classical PC result where p is fixed. The result in ii) shows that for any non-

zero γ, dv is no longer a consistent estimator of λv. However, a consistent estimator of

λv can be constructed from Equation (4.2). Define

ρ−1(d) =
d+ 1− γ +

√
(d+ 1− γ)2 − 4d

2
.

Then ρ−1(dv) is a consistent estimator of λv when λv > 1 +
√
γ. Furthermore, Baik,

Ben Arous and Peche (2005) have shown the
√
n-consistency of dv to ρ(λv), and Bai

and Yao (2008) have shown that dv is asymptotically normal.

Lemma 2 Suppose p/n→ γ ≥ 0 as n→∞. Let < ., . > be an inner product between

two vectors. Under the assumption of multiplicity one,
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i) if 0 < γ < 1, and the zijs follow the standard normal distribution, then

| < ev,uv > |
a.s→

 φ(λv), if λv > 1 +
√
γ

0, if 1 < λv ≤ 1 +
√
γ

(4.3)

ii) removing the normal assumption on the zijs, the following weaker convergence

result holds for all γ ≥ 0

| < ev,uv > |
p→

 φ(λv), if λv > 1 +
√
γ

0, if 1 < λv ≤ 1 +
√
γ.

(4.4)

Here φ(x) =
√

(1− γ
(x−1)2

)/(1 + γ
x−1

).

The inner product between unit vectors is the cosine angle between these two. Thus,

Lemma 2 shows the convergence of the angle between population and sample eigen-

vectors. For i), Paul (2007) proved it for γ < 1; while Nadler (2008) obtained the

same conclusion for γ > 0 using the matrix perturbation approach under the Gaussian

random noise model. We relax the Gaussian assumption on z and prove ii) for γ ≥ 0

in section 4.6.3. The result of ii) is general enough for the application of PCA to, for

example, genome-wide association mapping, where each entry of X is a standardized

variable of SNP genotypes, which are typically coded as {0, 1, 2}, corresponding to

discrete genotypes.

Sample and Predicted PC Scores

In this section, we first discuss convergence of the sample PC scores, which forms the

basis for the investigation of the shrinkage phenomenon of the predicted PC scores. For

the sample PC scores, we have
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Theorem 2 Let gTv = eTv X/
√

nλv, the normalized vth PC score derived from a corre-

sponding population eigenvector, ev, and p̃v = pv/
√
dv, the normalized vth sample PC

score. Suppose p/n→ γ ≥ 0 as n→∞. Under the multiplicity one assumption,

| < gv, p̃v > |
p→


√

1− γ
(λv−1)2

, if λv > 1 +
√
γ

0, if 1 < λv ≤ 1 +
√
γ.

(4.5)

The proof can be found in section 4.6.4. In PC analysis, the sample PC scores are

typically used to estimate certain latent variables (largely the PC scores from population

eigenvectors) that represent the underlying data structures. The above result allows

us to quantify the accuracy of the sample PC scores. Note that here < gv, p̃v > is the

correlation coefficient between gv and p̃v. Compared to Equation (4.3) in Lemma 2,

the angle between the PC scores is smaller than the angle between their corresponding

eigenvectors.

Before we formally derive the asymptotic shrinkage factor for the predicted PC

scores, we first describe in mathematical terms the shrinkage phenomenon that was

demonstrated in the Introduction. Note that the first population eigenvector e1 satisfies

e1 = argmax
a:aT a=1

E((aTx)2)

for a random vector x that follows the same distribution of the xjs. For the data matrix

X, its first sample eigenvector u1 satisfies

u1 = argmax
a:aT a=1

n∑
j=1

(aTxj)
2.
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Assuming that u1 and the new sample xnew are independent of each other, we have

E((uT1 xnew)2)) = E(E(uT1 xnewxTnewuT1 |u1)) = E(uT1E(xnewxTnew)uT1 )

= E(uT1 ΣuT1 ) ≤ eT1 Σe1 = E((eT1 xnew)2). (4.6)

Since the uT1 xjs (j = 1, . . . , n) follow the same distribution,

nE((eT1 xj)
2) = E(

n∑
j=1

(eT1 xj)
2) ≤ E(

n∑
j=1

(uT1 xj)
2) = nE((uT1 xj)

2). (4.7)

By (4.6) and (4.7), we can show that

E((uT1 xnew)2) ≤ E((eT1 xnew)2) = E((eT1 xj)
2) ≤ E((uT1 xj)

2),

which demonstrates the shrinkage feature of the predicted PC scores. The amount of

the shrinkage, or the asymptotic shrinkage factor, is given by the following theorem:

Theorem 3 Suppose p/n → γ ≥ 0 as n → ∞, λv > 1 +
√
γ. Under the multiplicity

one assumption,

√
E(q2

v)

E(p2
vj)

n→∞→ λv − 1

λv + γ − 1
(4.8)

where pvj is the jth element of pv.

The proof is given in section 4.6.5. We call (λv − 1)/(λv + γ − 1), the (asymptotic)

shrinkage factor for a new subject. As shown, the shrinkage factor is smaller than 1 if

γ > 0. Quite sensibly, it is a decreasing function of γ and an increasing function of λv.

The bias of the predicted PC score can be potentially large for those high dimensional

data where p is substantially greater than n, and/or for the data with relatively minor

underlying structures where λv is small.
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Rescaling of sample eigenvalues

The previous theorems are based on the assumption that all except the top m eigen-

values are equal to 1. Even under the spiked eigenvalue model, some rescaling of the

sample eigenvalues may be necessary with real data.

For a given data, let its ordered population eigenvalues Λ∗ = {ζλ1, . . . , ζλm,

ζ, . . . , ζ}, where ζ 6= 1, and its corresponding sample eigenvalues D∗ = {d∗1, . . . , d∗n}.

We can show that Equations (4.4), (4.8), and (4.5) still hold under such circumstances.

However, ρ−1(d∗v) is no longer a consistent estimator of λv, because

d∗v
a.s→ ζλv(1 +

γ

λv − 1
) = ζρ(λv).

To address this issue, Baik and Silverstein (2006) have proposed a simple approach

to estimate ζ. In their method, the top significant large sample eigenvalues are first

separated from the other grouped sample eigenvalues. Then ζ is estimated as the ratio

between the average of the grouped sample eigenvalues and the mean determined by the

Marchenko-Pastur law (Marčenko and Pastur, 1967). To separate the eigenvalues, they

have suggested to use a screeplot of the percent variance versus component number.

However, for real data, we may not be able to clearly separate the sample eigenvalues

in such a manner and readily apply the approach. Thus we need an automated method

which does not require a clear separation of the sample eigenvalues.

The expectation of the sum of the sample eigenvalues when ζ = 1 is

E(

p∑
v=1

dv) = E(trace(S)) = trace(E(S)) = trace(Σ) =

p∑
v=1

λv,

Thus, the sum of the rescaled eigenvalues is expected to be close to (
m∑
v=1

λv + p −m).

Let rv = d∗v/

(
p∑
v=1

d∗v

)
and d̂v be a properly rescaled eigenvalue, then d̂v should be very
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close to rv(
m∑
v=1

λv + p − m). Note that p/(
m∑
v=1

λv + p−m) → 1 for fixed m and λv.

Thus prv is a properly adjusted eigenvalue. However, for finite n and p, the difference

between p and (
m∑
v=1

λv + p−m) can be substantial, especially when the first several λvs

are considerably larger than 1. To reduce this difference, we propose a novel method

which iteratively estimates the (
m∑
v=1

λv + p−m) and d̂v.

1. Initially set d̂v,0 = prv

2. For the lth iteration, set λ̂v,l = ρ−1(d̂v,l−1) for d̂v,l−1 > (1 +
√
γ)2, and λ̂v,l = 1 for

d̂v,l−1 ≤ (1 +
√
γ)2. Define kl as the number of λ̂v,ls that are greater than 1, and let

d̂v,l =

(
kl∑
v=1

λ̂v,l + p− kl

)
rv.

3. If
kl∑
v=1

λ̂v,l + p− kl converges, let

d̂v = d̂v,l

and stop. Otherwise, go to step 2.

The consistency of d̂v to ρ(λv) is shown in the following theorem.

Theorem 4 Let d̂v be the rescaled sample eigenvalue from the proposed algorithm.

Then, for λv > 1 +
√
γ with multiplicity one,

d̂v
p→ ρ(λv)

Since ρ−1(d̂v)
p→ λv, φ(ρ−1(d̂v))

2 is a consistent estimator of φ(λv)
2. Combining this
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fact with Theorems 1 and 2, we can obtain the bias adjusted PC score q∗v

q∗v = qv
ρ−1(d̂v) + γ − 1

ρ−1(d̂v)− 1

and the asymptotic correlation coefficient between gv and p̃v

√
(1− γ

(ρ−1(d̂v)− 1)2
).

4.2.3 When p/n→∞

Convergence of sample eigenvalues, eigenvectors and PC scores

One of the main assumptions of previous theoretical results is the same increment rate

of p and n, and thus p/n→ γ <∞. For many modern data, however, p is substantially

larger than n. As a result, this same increment rate assumption may not be satisfied for

those ultra high dimensional data. In this section, we investigate asymptotic behaviors

of sample eigenvalues, eigenvectors and PC scores with γ →∞.

Define γ̂p,n = p/n and assume γ̂p,n → ∞ as both p and n grow to ∞. In previous

sections, λv is assumed to be fixed. However, it is obvious that if λv is fixed under

new asymptotic setting, true signal would be overwhelmed by noise. Thus, we allow λv

increases as p increases. In particular, we set

λv,p = cv,p,nγ̂p,n,

for v ≤ m, where cv,p,n can go to ∞ and to 0. For notational simplicity, we suppress

subscripts p and n.

Before introducing main results, we define symbols for further use. Suppose ap and

bp are two sequences. We denote ap � bp as ap = O(bp) and bp = O(ap), ap � bp as
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bp/ap = o(1), and ap � bp as ap/bp = o(1). Below theorem shows the convergence of

sample eigenvalues under the new setting.

Theorem 5 Suppose γ̂ → ∞ as both p and n → ∞. Let λv = cvγ̂ for v ≤ m with

c1 � . . . � cm, and λv = 1 for v > m. zijs satisfy Assumption 1, then with multiplicity

1,

i) When cv is bounded away from zero,

dv
λv
− cv + 1

cv

a.s→ 0, for v ≤ m

dv
γ̂

a.s→ 1, for v > m

ii) When cv = o(1),

dv
γ̂

a.s→ 1, for all v

A proof can be found in Section 4.6.7. Theorem 5 shows that spiked eigenvalues are

separated from the bulk when cv is bigger than zero. If cv = o(1), we cannot recover

the signal of spiked population eigenvalues from sample eigenvalues. Theorem 5 also

presents that sample eigenvalues are not consistent to the population eigenvalues for

the finite cv. This conclusion coincides with the previous results based on the finite γ.

When cv →∞, and then (cv + 1)/(cv)→ 1, which indicates the consistency of sample

eigenvalues to population eigenvalues.

Theorem 6 Suppose γ̂ → ∞ as both p and n → ∞. Let λv = cvγ̂ for v ≤ m with

c1 � . . . � cm, and λv = 1 for v > m. zijs satisfy Assumption 1, then with multiplicity

1,

i) When cv is bounded away from zero,

| < ev,uv > | −
√

cv
cv + 1

p→ 0, for v ≤ m
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ii) When cv = o(1),

| < e1,u1 > |
p→ 0

A proof is given in Section 4.6.8. This theorem shows that the consistency or

inconsistency of sample eigenvectors are determined by the increment rate of cv. If

cv →∞, and then cv/(cv+1)→ 1, which means the vth sample eigenvector is consistent

to the corresponding population eigenvector. When cv is finite but bigger than zero, the

vth sample eigenvector is not consistent and is not perpendicular to the corresponding

population eigenvector. In the case of cv = o(1), vth sample eigenvector is perpendicular

to the corresponding population eigenvector. It can be notified that the case of the finite

cv corresponds to the previous results.

Theorem 7 Suppose γ̂ → ∞ as both p and n → ∞. Let λv = cvγ̂ for v ≤ m with

c1 � . . . � cm, and λv = 1 for v > m. zijs satisfy Assumption 1, and λv has multiplicity

1. When cv is bounded away from zero,

| < gv, p̃v > |
p→ 1,

where v ≤ m.

See a proof of Theorem 7 in Section 4.6.9. One striking feature is that the inner

product between gv and p̃v converges to 1 when cv is larger than zero, although the

corresponding sample eigenvector is not consistent. As shown in Theorem 5, spiked

eigenvalues can be identified whenever cv is bigger than zero. Combining Theorem

5 and Theorem 7, we can conclude that p̃v can accurately estimate gv whenever its

corresponding sample eigenvalue is separated from the bulk. This very interesting result

presents why PCA is very successful in many high dimensional data.

80



Theorem 8 Suppose γ̂ → ∞ as both p and n → ∞. Let λv = cvγ̂ for v ≤ m with

c1 � . . . � cm, and λv = 1 for v > m. zijs satisfy Assumption 1, and λv has multiplicity

1. When cv is bounded away from zero,

√
E(q2

v)

E(p2
vi)
− cv
cv + 1

p→ 0,

where v ≤ m.

A proof is given in Section 4.6.10. This theorem shows that the shrinkage bias

occurs in the ultra-high dimensional scenario.

Relation to the finite γ asymptotics

Under finite γ asymptotics, spiked eigenvalues are separated from the bulk, and an

angle of sample and population eigenvectors is bigger than zero but smaller than π/2

when the corresponding population eigenvalue is bigger than 1+
√
γ. If λv is increasing

as p → ∞, it can be easily shown that the dv/λv → 1 and < ev, dv >→ 1. These

observations suggest that the fixed λv is equivalent to cv = O(1) and the increasing λv

is equivalent to cv � O(1).

The asymptotic results in Section 4.2.3 can be derived from the finite γ asymptotics,

by substituting λv to cvγ̂ and increasing γ̂ to ∞. For example,

dv
γ̂
→ λv

γ̂
(1 +

γ̂

λv − 1
),

for fixed γ̂. Substitute λv to cvγ̂, then

dv
γ̂
→ cv(1 +

γ̂

cvγ̂ − 1
) ≈ cv

1 + 1/cv
,

for large γ̂.
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The same conclusion can be made for an angle between sample and population

eigenvectors, an angle between PC scores from sample and population eigenvectors,

and a shrinkage factor of predicted PC score. It shows that the asymptotic results

of sample eigenvalues, eigenvectors, and PC scores in both finite and infinite γ cases

are nearly identical for large γ, which justifies using the results from Section 4.2.2 to

ultra-high dimensional data.

4.3 Simulation

First, we applied our bias adjustment process to the simulated data described in the

Introduction. Our estimated asymptotic shrinkage factors are 0.465 and 0.329 for the

first and second PC scores, respectively. The scatter plot of the top two bias adjusted

PC scores is given in Figure 4.2. After the bias adjustment, the predicted PC scores

of the test data are comparable to those of the training data. This indicates that our

method is effective in correcting for the shrinkage bias.

Next, we conducted a new simulation to check the accuracy of our estimators. For

the jth sample (j = 1, . . . , n), its ith variable was generated as

xij =


λ1zij i = 1

λ2zij i = 2

zij i > 2

where λ1 > λ2 > 1 and zij ∼ N(0, 22). Under this setting, λ1 and λ2 are the first and

the second population eigenvalues. The first and second population eigenvectors are

e1 = {1, 0, . . . , 0} and e2 = {0, 1, 0, . . . , 0} respectively. We set the standard deviation

of zij to 2 instead of 1, which allows us to test whether the rescaling procedure works

properly. We tried different values of γ and n, but set λ1 and λ2 to 4(1 +
√
γ) and
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2(1 +
√
γ), respectively.

We split the simulated samples into test and training sets, each with n samples.

We first estimated the asymptotic shrinkage factor based on the training samples. We

then calculated the predicted PC scores on the test samples. To assess the accuracy of

shrinkage factor estimator for each PC, we empirically estimated the shrinkage factor by

the ratio of the mean predicted PC scores of the test samples to the mean PC scores of

the training samples. That is, for the vth PC, the empirical shrinkage factor is estimated

by

√
n∑
i=1

q2
vi/

n∑
k=1

p2
vk. On the training samples, we also estimated the empirical angle

between the sample and (known) population eigenvectors, as well as the empirical

angle between PC scores from sample and population eigenvectors. The asymptotic

theoretical estimates were also calculated. Tables 4.1 and 4.2 summarize the simulation

results. Our asymptotic estimators provide accurate estimates for the angles and the

shrinkage factor.

Finally, we conducted simulation to demonstrate an application of the bias adjusted

PC scores in PC regression. PC regression has been widely used in microarray gene-

expression studies (Bovelstad et al., 2007). In this simulation, we let p = 5, 000, and

our set up is very similar to the first simulation of Bair et al. (2006). Let xij denote

the gene expression level of the ith gene for the jth subject. We generated each xij

according to

xij =


3 + ε i ≤ g, j ≤ n/2

4 + ε i ≤ g, j > n/2

3.5 + ε i > g

and the outcome variable yj as

yj =
2

g

g∑
i=1

xij + εy,

where n is the number of samples, g is the number of genes that are differentially
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expressed and associated with the phenotype, ε ∼ N(0, 22) and εy ∼ N(0, 1). A total

of eight different combinations of n and g were simulated. For the training data, we

fit the PC regression with the first PC as the covariate and computed the mean square

error (MSE). For the test samples with the same configuration of the training samples,

we applied the PC model built on the training data to predict the phenotypes using the

un-adjusted and adjusted PC scores. The results are presented in Table 4.3. We see

that the MSE of the test set without bias adjustment is appreciably higher than that

of the test set with bias adjustment, and the MSE of the test set with bias adjustment

is comparable with the MSE of the training set.

4.4 Real data example

Here we demonstrate that the shrinkage phenomenon appears in real data, and can be

adjusted by our method. For this purpose, genetic data on samples from unrelated in-

dividuals in the Phase 3 HapMap study [http://hapmap.ncbi.nlm.nih.gov/] were used.

HapMap is a dense genotyping study designed to elucidate population genetic differ-

ences. The genetic data are discrete, assuming the values 0, 1, or 2 at each genomic

marker (also known as SNPs) for each individual. Data from CEU individuals (of

northern and western European ancestry) were compared with data from TSI individ-

uals (Toscani individuals from Italy, representing southern European ancestry).

Some initial data trimming steps are standard in genetic analysis. We first removed

apparently related samples, and removed genomic markers with more than a 10% miss-

ing rate, and those with frequency less than 0.01 for the minor genetic allele. To avoid

spurious PC results, we further pruned out SNPs that are in high linkage disequlibrium

(LD) (Fellay et al., 2007). Lastly, we excluded 7 samples with PC scores greater than 6

standard deviations away from the mean of at least one of the top significant PCs (i.e.,

with Tracy-Widom (TW) Test p-value < 0.01) (Price et al., 2006; Patterson, Price and
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Reich, 2006). The final dataset contained 178 samples (101 CEU, 77 TSI) and 100,183

markers. We mean-centered and variance-standardized the genotypes for each marker

(Price et al., 2006). The screeplot of the sample eigenvalues is presented in Figure 4.3.

The first eigenvalue is substantially larger than the rest of the eigenvalues, although

the TW test actually identifies two significant PCs. Figure 4.3 suggests that our data

approximately satisfies the spiked eigenvalue assumption.

We estimated the asymptotic shrinkage factor and compared it with the following

jackknife-based shrinkage factor estimate. For the first PC, we first computed the scores

of all samples. Next, we removed one sample at a time and computed the (unadjusted)

predicted PC score. We then calculated the jackknife estimate as the square root

of the ratio of the means of the sample PC score and the predicted PC score. The

jackknife shrinkage factor estimate is 0.319, which is close to our asymptotic estimate

0.325. Figure 4.4 shows the PC scores from the whole sample, the predicted PC score

of an illustrative excluded sample, and its bias-adjusted predicted score. Clearly, the

predicted PC score without adjustment is very biased towards zero, while the bias

adjusted PC score is not.

4.5 Discussion and conclusions

In this paper we have identified and explored the shrinkage phenomenon of the predicted

PC scores, and have developed a novel method to adjust these quantities. We also have

constructed the asymptotic estimator of correlation coefficient between PC scores from

population eigenvectors and sample eigenvectors. In simulation experiments and real

data analysis, we have demonstrated the accuracy of our estimates, and the capability

to increase prediction accuracy in PC regression by adopting shrinkage bias adjustment.

For achieving these, we consider asymptotics in the large p, large n framework, under

the spiked population model.
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Although the results from the spiked model are useful, it is likely that observed data

has more structure than allowed by the model. Recently, several methods have been

suggested to estimate population eigenvalues under more general scenarios (El Karoui,

2008; Rao et al., 2008). However, no analogous results are available for the eigenvectors.

In data analysis, jackknife estimators, as demonstrated in the real data analysis section,

can be used. However, resampling approaches are very computationally intensive, and

it remains of interest to establish the asymptotic behavior of eigenvectors in a variety

of situations.

We note that inconsistency of the sample eigenvectors does not necessarily imply

poor performance of PCA. For example, PCA has been successfully applied in genome-

wide association studies for accurate estimation of ethnicity (Price et al., 2006), and

in PC regression for microarrays (Ma, Kosorok and Fine, 2006). However, for any

individual study we cannot rule out the possibility of poor performance of the PC

analysis. Our asymptotic result on the correlation coefficient between PC scores from

sample and population eigenvectors provides us a measure to quantify the performance

of PC analysis.

For the CEU/TSI data, SNP pruning was applied to adjust for strong LD among

adjacent SNPs. Such SNP pruning is a common practice in the analysis of GWAS

data, and has been implemented in the popular GWAS analysis software Plink (Purcell,

Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar, de Bakker, Daly et al.,

2007). The primary goal of SNP pruning is to avoid spurious PC results unrelated to

population substructures. Technically, our approach does not rely on any independence

assumption of the SNPs. However, strong local correlation may affect eigenvalues

considerably. Thus the value in SNP pruning may be viewed as helping the data better

accord with the assumptions of the spiked population model. From the CEU/TSI data

and our experience in other GWAS data, we have found that the most common pruning
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procedure implemented in Plink is sufficient for us to then apply our methods.

4.6 Proofs

Note that EΛ1/2ZZTΛ1/2ET and Λ1/2ZZTΛ1/2 have the same eigenvalues, and ETU is

the eigenvector matrix of Λ1/2ZZTΛ1/2. Since eigenvalues and angles between sample

and population eigenvectors are what we concerned about, without loss of generality

(WLOG), in the sequel, we assume Λ to be the population covariance matrix.

4.6.1 Notations

We largely follow notations in Paul (2007). We denote ϕv(S) as the vth largest eigen-

value of S. Let suffice A represent the first m coordinates and B represent the remaining

coordinates. Then we can partition S into

S =

 SAA SAB

SBA SBB


We similarly partition the vth eigenvector uTv into (uA,v,uB,v) and ZT into [ZT

A,Z
T
B].

Define Rv as ||uB,v|| and let av = uA,v/
√

1−R2
v, then we get ||av|| = 1.

Applying singular value decomposition (SVD) to ZB/
√
n, we get

1√
n

ZB = VM1/2HT , (4.9)

where M = diag(µ1, . . . , µp−m) is a (p − m) × (p − m) diagonal matrix of ordered

eigenvalues of SBB, V is a (p−m)×(p−m) orthogonal matrix, and H is an n×(p−m)

matrix. For n ≥ p−m, H has full rank orthogonal columns. When n < p−m, H has

more columns than rows, hence it does not have full rank orthogonal columns. For the
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later case, we make H = [Hn, 0] where Hn is an n× n orthogonal matrix.

Propositions

We introduce two propositions for later use. The proofs of the 2 propositions can be

found in section 4.6.3 and 4.6.3.

Proposition 1: Suppose Y is an n×m matrix with fixed m and each entry of Y is

i.i.d random variable which satisfies the moment condition of zij in Assumption 1. Let

C be an n× n symmetric non-negative definite random matrix and independent of Y.

Further assume ||C|| = O(1). Then

1

n
YTCY − 1

n
trace(C)I

p→ 0

as n→∞

Proposition 2: Suppose y is an n dimensional random vector which follows the

same distribution of the row vectors of Y and independent of SBB. Let f(x) be a

bounded continuous function on [(1 − √γ)2, (1 +
√
γ)2] and f(0) = 0. Suppose F =

diag(f(µ1), . . . , f(µp−m)), where {µi}p−mi=1 are ordered eigenvalues of M which is defined

on (4.9), then

1

n
yTHFHTy − γ

∫
f(x)dFγ(x)

p→ 0

as n → ∞, where Fγ(x) is a distribution function of Marchenko-Pastur law with pa-

rameter γ (Marčenko and Pastur, 1967).
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4.6.2 Proof of Part i) of Lemma 1

When p is fixed

By the strong law of large numbers, S
a.s→ Λ. Since eigenvalues are continuous with

respect to the operator norm, the lemma follows after applying continuous mapping

theorem.

When p→∞

For every small ε > 0, there exist p̃(n) and γε such that p̃(n)/n → γε > 0, λv(1 +

γε/(λv − 1)) < λv + ε for all v ≤ m, (1 +
√
γε)

2 < 1 + ε, and (1 −√γε)2 > 1 − ε. For

simplicity, we denote p̃(n) as p̃. Suppose Zp̃ is a p̃×n matrix that satisfies the moment

condition of zij in Assumption 1. Define an augmented data matrix X̃T = [ZTΛ,ZT
p̃ ]T

and its sample covariance matrix S̃ = X̃X̃T . Let S be a p× p upper left submatrix of

S̃. We also let Ŝ be an (m+ 1)× (m+ 1) upper left submatrix of S̃. For v ≤ (m+ 1),

by the interlacing inequality ( Theorem 4.3.15 of Horn and Johnson (1990) ),

ϕv(Ŝ) ≤ ϕv(S) ≤ ϕv(S̃).

Since ϕv(Ŝ)
a.s→ λv, ϕv(S̃)

a.s→ λv(1 + γε/(λv − 1)) < 1 + ε for v ≤ m, and ϕv(S̃)
a.s→

(1 +
√
γε)

2 < 1 + ε for v = m+ 1, we have

λv − o(1) ≤ λv(S) < λv + ε+ o(1), for v ≤ m+ 1.

Thus,

ϕv(S)
a.s→ λv, for v ≤ m+ 1. (4.10)
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Similarly by the interlacing inequality, we get

ϕp̃(S̃) ≤ ϕp(S) ≤ ϕm+1(S).

Since ϕm+1(S)
a.s→ 1, and ϕp̃(S̃)

a.s→ (1−√γε)2 > 1− ε, we conclude that

ϕp(S)
a.s→ 1. (4.11)

The part i) of Lemma 1 follows by (4.10) and (4.11)

4.6.3 Proof of Part ii) of Lemma 2

Our proof of Lemma 2 (ii) closely follows the arguments in Paul (2007). From (Paul,

2007), it can be shown that

(SAA +
1

n
Λ

1/2
A ZAHM(dvI−M)−1HTZT

AΛ
1/2
A )av = dvav (4.12)

and

aTv (I +
1

n
Λ

1/2
A ZAHM(dvI−M)−2HTZT

AΛ
1/2
A )av =

1

1−R2
v

(4.13)

where ΛA = diag {λ1, . . . , λm}.

When λv > 1 +
√
γ

We can show that

〈av, eA,v〉
p→ 1 (4.14)
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and

1

n
zTAvHM(dvI−M)−2HTzAv

p→

 γ
∫

x
(ρv−x)2dFγ(x) for γ > 0

0 for γ = 0,
(4.15)

where eA,v is a vector of the first m coordinates of the vth population eigenvector ev,

ρv is λv

(
1 + γ

λv−1

)
, and zAv is a vector of vth row of ZA. The proofs can be found in

4.6.3. Note that ev is a vector with 1 in its vth coordinate and 0 elsewhere. WLOG,

we assume that 〈ev,uv〉 ≥ 0. Since 〈ev,uv〉 =
√

1−R2
v 〈eA,v, av〉, 〈ev,uv〉

p→
√

1−R2
v.

By (4.13) and (4.15) , we can show that

1

1−R2
v

p→

 1 + λvγ
∫

x
(ρv−x)2dFγ(x) for γ > 0

1 for γ = 0.
(4.16)

From Lemma B.2 of (Paul, 2007),

∫
x

(ρv − x)2
dFγ(x) =

1

(λv − 1)2 − γ
. (4.17)

Thus √
1−R2

v

p→


√

(1− γ
(λv−1)2

)/(1 + γ
λv−1

) for γ > 0

1 for γ = 0.
(4.18)

It concludes the proof of the first part of Lemma 2 ii).

When 1 < λv ≤ 1 +
√
γ

Here we only need to consider γ > 0 because no eigenvalue satisfies this condition when

γ = 0. We first show that Rv
p→ 1, which implies uA,v

p→ 0, hence 〈ev,uv〉
p→ 0. For
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any ε > 0 and x ≥ 0, define

(x)ε =

 x if x > ε

ε if x ≤ ε

and

Gε = diag(dv/((dv − µ1)
2)ε, . . . , dv/((dv − µp−m)2)ε),

then by Propositions 1 and 2,

1

n
zTAvHGεH

TzAv
p→ γ

∫
x

((ρv − x)2)ε
dFγ(x) (4.19)

By monotone convergence theorem,

γ

∫
x

((ρv − x)2)ε
dFγ(x)

ε→0−→ γ

∫
x

(ρv − x)2
dFγ(x) (4.20)

RHS of (4.20) is ∫ b

a

√
(b− x)(x− a)

2π(ρv − x)2
dx (4.21)

where a = (1−√γ)2 and b = (1 +
√
γ)2. Since (4.21) equals ∞ for any a ≤ ρv ≤ b, we

conclude that

1

n
zTAvHM(dvI−M)−2HTzAv

p→∞ (4.22)

Therefore, Rv
p→ 1, which proves the second part of Lemma 2 ii).

Proof of (4.14) and (4.15)

Define

Rv =
m∑
k 6=v

λv

ρv(λk−λv)
eA,ke

T
A,k, Dv = SAA + SAB(dvI− SBB)−1SBA − (ρv/λv)ΛA,

αv = ||RvDv||+ |dv − ρv|||Rv||, and βv = ||RvDveA,v||.
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With the exactly same argument of (Paul, 2007), it can be shown that

av − eA,v = −RvDveA,v + rv

where rv = −(1−〈eA,v, av〉)eA,v−RvDv(av−eA,v)+(dv−ρv)Rv(av−eA,v). By Lemma

1 of (Paul, 2005), rv = op(1), if αv = op(1) and βv = op(1).

When γ = 0, SAA − (ρv/λv)ΛA
p→ 0 and the remainder of Dv is

SAB(dvI− SBB)−1SBA =
1

n
Λ

1/2
A ZAHM(dvI−M)−1HTZT

AΛ
1/2
A . (4.23)

Since dv
a.s→ λv and µ1

a.s→ 1,

||HM(dvI−M)−1HT || a.s→ 1/(λv − 1)

By Proposition 1,

0 ≤ ||(4.23)|| ≤ λ1
pµ1

n(dv − µ1)
+ op(1) = op(1), (4.24)

hence Dv = op(1).

When γ > 0, Dv can be written as

Dv = [SAA −ΛA]

+ [Λ
1/2
A (

1

n
ZAHM(ρvI−M)−1HTZA −

1

n
trace(M(ρvI−M)−1)I)Λ

1/2
A ]

+ [(
1

n
trace(M(ρvI−M)−1)− γ

∫
x

ρv − x
dFγ(x))ΛA]

+ [(ρv − dv)
1

n
Λ

1/2
A ZAHM(ρvI−M)−1(dvI−M)−1HTZAΛ

1/2
A ] (4.25)

The first term of RHS is op(1) by the weak law of large number. The second and third
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terms are op(1) by Propositions 1 and 2. For the fourth term, ρv − dv = op(1) and its

remainder part is Op(1). Therefore, Dv = op(1). By combining the above results and

Rv = Op(1) plus dv − ρv = op(1), we prove the Equation (4.14).

For (4.15): When γ = 0, (4.15) can be proved by the exactly same way used to show

(4.24). When γ > 0, dv
a.s→ ρv, and µ1

a.s→ (1 +
√
γ)2 < ρv, hence ||C|| a.s→ (1+

√
γ)2

(ρv−(1+
√
γ)2)2

.

Therefore, the result follows according to Propositions 1 and 2.

Proof of Proposition 1

Let µ1 ≥ µ2 ≥ · · · ≥ µn be the ordered eigenvalues of C, and cij be the (i, j)th element

of C. Suppose ys is the sth column of Y, and yij is the (i, j)th element of Y. We

further define ψ(s, s) = 1
n
yTs Cys − 1

n
trace(C) and ψ(s, t) = 1

n
yTs Cyt for s 6= t. The

conditional mean of ψ(s, s) given C is

E(ψ(s, s)|C) = E(
1

n

∑
i,j

cijyisyjs|C)− 1

n

n∑
i=1

µi

=
1

n

n∑
i=1

ciiE(y2
is) +

2

n

n∑
i<j

cijE(yisyjs)−
1

n

n∑
i=1

µi

=
1

n

n∑
i=1

cii −
1

n

n∑
i=1

µi = 0 (4.26)

Thus, E(ψ(s, s)) = E(E(ψ(s, s)|C)) = E(0) = 0.
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Next, the conditional variance of ψ(s, s) given C is

V ar(ψ(s, s)|C) =
1

n2
V ar(

∑
i,j

cijyisyjs|C)

=
1

n2

n∑
i,j,l,q=1

cijclqCov(yisyjs, ylsyqs)

=
4

n2

n∑
i,j=1

c2ijV ar(yisyjs)

≤ 4α

n2

n∑
i,j=1

c2ij =
4α

n2
trace(C2) =

4α

n2

n∑
i=1

µ2
i (4.27)

where α = max(1, E(y4
is) − 1). Since ||C|| = O(1), µ2

i ≤ ||C||2 = O(1). Therefore,

V ar(ψ(s, s)|C) ≤ O(1/n) and V ar(ψ(s, s)) = V ar(E(ψ(s, s)|C))+E(V ar(ψ(s, s)|C)) ≤

0 +O(1/n)→ 0 as n→∞. By Chebyshev inequality, we can conclude that

ψ(s, s)
p→ 0.

We can similarly show ψ(s, t)
p→ 0, which we omit here.

Proof of Proposition 2

Consider an expansion

1

n
yTHFHTy − γ

∫
f(x)dFγ(x)

= [
1

n
yTHFHTy − 1

n
trace(F)]

+[
1

n
trace(F)− γ

∫
f(x)dFγ(x)]

= (a) + (b)

We show that both (a) and (b) converge to 0 in probability.

(a) : Since µ1
a.s.→ (1+

√
γ)2, µmin(p−m,n)

a.s.→ (1−√γ)2, µk = 0 for k > min(p−m,n),
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and f(x) is continuous and bounded on [(1−√γ)2, (1 +
√
γ)2], there exists K > 0 such

that supi |f(µi)| < K a.s. Let C = HFHT , then trace(C) = trace(F). By Proposition

1, (a) = op(1).

(b) : Let Fp−m be an empirical spectral distribution of SBB, then

1

n
trace(F) =

p−m
n

∫
f(x)dFp−m(x),

and
∫
f(x)dFn(x)

p→
∫
f(x)dFγ(x) (Marčenko and Pastur, 1967; Bai, 1999). Thus

p−m
n

∫
f(x)dFp−m(x)

p→ γ

∫
f(x)dFγ(x),

which shows that (b) = op(1).

Combining (a) and (b), we finish the proof.

4.6.4 Proof of Theorem 2

WLOG we assume 〈gv, p̃v〉 ≥ 0. Let ev = {eA,v, eB,v}, then eA,v is the vector with 1 in

vth coordinate and 0 elsewhere, and eB,v is the zero vector. Since SAAuA,v +SABuB,v =

dvuA,v, we have

< gv, p̃v > =
1

n
√
dvλv

eTv XXTuv

= eTA,vSAAuA,v/
√
dvλv + eTA,vSABuB,v/

√
dvλv

=
dv√
dvλv

eTA,vuA,v =

√
dv
λv

eTv uv

p→


√

(1− γ
(λv−1)2

) for λv > 1 +
√
γ

0 for 1 < λv ≤ 1 +
√
γ.

(4.28)
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4.6.5 Proof of Theorem 3

First, we show the square of the denominator converges to ρ(λv). Since pvj = uTv xj,

and E(p2
vi) = E(p2

vj) for i 6= j,

E(p2
vj) =

1

n
E(

n∑
j=1

p2
vj) =

1

n
E(

n∑
j=1

(uTv xj)
2)

= E(uTv XXTuv/n) = E(dv)
a.s→ ρ(λv) (4.29)

Next we show the square of numerator converges to φ(λv)
2(λv − 1) + 1. Define u⊥v :=

1√
1−(uT

v ev)2
(I − eve

T
v )uv, then uv can be expressed as

uv = (uTv ev)ev +
√

1− (uTv ev)2u⊥v

Partition u⊥v =
{
u⊥A,v,u

⊥
B,v

}
. From (4.14), av

p→ eA,v, therefore u⊥A,v
p→ 0 and

u⊥TB,vu
⊥
B,v

p→ 1. Since xnew and uv are independent, we have

E(q2
v |uv) = E((uTv xnew)2|uv) = uTvE(xnewxTnew|uv)uv = uTv Λuv

= (uTv ev)
2eTv Λev + (1− (uTv ev)

2)u⊥Tv Λu⊥v + 2uTv ev
√

1− (uTv ev)2eTv Λu⊥v

= (uTv ev)
2λv + (1− (uTv ev)

2)(u⊥TA,vΛAu⊥A,v + u⊥TB,vu
⊥
B,v)

+ 2uTv ev
√

1− (uTv ev)2eA,vΛAu⊥A,v

p→ φ(λv)
2(λv − 1) + 1. (4.30)

From (4.29) and (4.30),

√
E(q2

v)

E(p2
vi)
→

√
φ(λv)2(λv − 1) + 1

ρ(λv)
=

(λv − 1)

(λv + γ − 1)
. (4.31)
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4.6.6 Proof of Theorem 4

Since ρ−1(prv)→ λv for v ≤ k, WLOG we assume that k0 = k, where k is the number

of λv bigger than 1 +
√
γ. Set

h(x) =
k∑
v=1

ρ−1(rvx) + p− k − x (4.32)

The first and second partial derivatives of h(x) are

∂h(x)

∂x
=

1

2

k∑
v=1

rv +
1

2

k∑
v=1

(xrv − (1 + γ))rv√
(xrv − (1 + γ))2 − 4γ

− 1 (4.33)

∂2h(x)

∂x2
= 2

k∑
v=1

−r2
vγ

((xrv − (1 + γ))2 − 4γ)3/2
< 0, (4.34)

so h(x) is a concave function of x given rv. From the fact that ρ−1(rvp) > 1 for v ≤ k,

we know h(p) > 0. Because of the concave nature of this function, h(x) = 0 has an

unique solution τ on [p,∞), which
kl∑
v=1

λ̂v,l +p−ml converges to. Thus d̂v = τrv. Define

d̃v = rvω where ω =
k∑
v=1

λv + p − k, and set dv as the sample eigenvalue when σ2 = 1.

The sum of all dv is

p∑
v=1

dv =
1

n
trace(ZZTΛ) =

1

n

p∑
i=1

n∑
j=1

λiz
2
ij, (4.35)

thus

E


p∑
v=1

dv

ω

 =

m∑
v=1

λv + p− k

ω
→ 1, and (4.36)

V ar


p∑
v=1

dv

ω

 =
1

n

p∑
v=1

λ2
v

ω2
(E(z4

11)− 1)→ 0. (4.37)
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By (4.36) and (4.37)
p∑
v=1

dv/ω = 1 + op(1). (4.38)

Since dv → ρ(λv) for v ≤ k,

d̃v = dvω/

p∑
v=1

dv = dv(1 + op(1))
p→ ρ(λv). (4.39)

Now, we show that τ = ω + op(1). Plugging ω into h(x) and combining the fact that

ρ−1(d̃v) = λv + op(1), we get

h(ω) =
k∑
v=1

ρ−1(d̃v)−
k∑
v=1

λv = op(1). (4.40)

From the facts that h(x) is a continuous concave function, ω > p, and h(p) > 0, we

conclude that

ω = τ + op(1). (4.41)

Therefore,

d̂v = rvτ = rv(ω + op(1)) = d̃v + op(1)
p→ ρ(λv) (4.42)

for v ≤ k, which concludes the proof.

4.6.7 Proof of Theorem 5

The vth eigenvalue of the sample covariance matrix S is

dv = ϕv(S) = ϕv(Λ
1/2ZZTΛ1/2/n) = ϕv(Z

TΛZ/n)

= ϕv(Z
T
AΛAZA/n+ ZT

BZB/n)
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From Proposition 1,

ϕv(Z
T
BZB/n)/γ̂ − 1 = o(1), (4.43)

for all v = 1, . . . , n.

First, we consider cv � o(1). By the strong law of large number,

ZAZT
A/n− Im×m = o(1),

and by the same increment rate of spiked population eigenvalues,

||ΛA/λv|| = O(1),

for v ≤ m. Therefore,

∥∥∥Λ1/2
A ZAZT

AΛ
1/2
A /nλv −ΛA/λv

∥∥∥ =
∥∥∥Λ1/2

A (ZAZT
A/n− I)Λ

1/2
A /λv

∥∥∥
= o(1) (4.44)

By the continuity of eigenvalues,

ϕv(Z
T
AΛAZA/n)

λv
− 1 =

ϕv(Λ
1/2
A ZAZT

AΛ
1/2
A /n)

λv
− 1 = 1 + o(1)− 1

= o(1) (4.45)

for v ≤ m, and

λv(Z
T
AΛAZA/n) = 0, (4.46)

for v > m, because the rank of ZT
AΛAZA/n is m. By Weyl’s inequality (Bhatia, 1997)

ϕv(S) ≤ ϕv(Z
T
AΛAZA/n) + ϕ1(Z

T
BZB/n) and ϕv(S) ≥ ϕv(Z

T
AΛAZA/n) + ϕ1(Z

T
BZB/n).
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Thus,

dv
λv
− cv + 1

cv
= o(1)

for v ≤ m, and

dv
γ̂

a.s→ 1

for v > m. Now, we consider cv = o(1). It can be easily shown

ϕ1(Z
T
AΛAZA/n)

γ̂

a.s→ 0.

Thus,

dv
γ̂

a.s→ 1,

which concludes the proof.

4.6.8 Proof of Theorem 6

1) When cv is bounded away from zero and v ≤ m: Define

ηv =
cv + 1

cv
(4.47)

R∗v =
m∑
k 6=v

λv
ηv(λk − λv)

eA,ke
T
A,k, (4.48)

and

D∗v =
1

λv
(SAA + SAB(dvI− SBB)−1SBA − ηvΛA), (4.49)

where eA,k is the first m elements of ev. From (4.12),

(
ηv
λv

ΛAA − ηvI
)

= −D∗vav +

(
dv
λv
− ηv

)
av (4.50)
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Since

R∗v
(
ηv
λv

ΛAA − ηvI
)

=
m∑
k 6=v

(
λv

ηv(λk − λv)
eA,ke

T
A,k −

λv
λk − λv

eA,ke
T
A,k

)

=
m∑
k 6=v

eA,ke
T
A,k, (4.51)

it can be shown

(I− eA,ve
T
A,v)av = −R∗vD∗vav +

(
dv
λv
− ηv

)
R∗vav (4.52)

(4.52) indicates av − ev = op(1), if both ||R∗vD∗v|| and |dv/λv − ηv|||R∗v|| are op(1). For

l = 1, . . . ,m,

R∗vD∗veA,l =
m∑
k 6=v

λv
ηv(λk − λv)

eTA,kD∗veA,l (4.53)

and

eTA,kD∗veA,l = eTA,kSAAeA,l/λv

+ eTA,kSAB(dvI− SBB)−1SBAeA,l/λv

− ηveTA,kΛAeA,l/λv

(4.54)

The first term is

1

λv
eTA,kSAAeA,l =

λ
1/2
k λ

1/2
l

λv

1

n
zTA,kzA,l =


λ
1/2
k λ

1/2
l

λv
op(1) ,if k 6= l

λk

λv
(1 + op(1)) ,if k = l,

. (4.55)
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The second term is

1

λv
eTA,kSAB(dvI− SBB)−1SBAeA,v =

λ
1/2
k λ

1/2
l

λv

1

n
zTA,kHM(dvI−M)−1HTzA,l (4.56)

From the Proposition 1,

1

n
zTA,kHM(dvI−M)−1HTzA,l = op(1)

for l 6= k, and

1

n
zTA,kHM(dvI−M)−1HTzA,l =

1

n
trace(M(dvI−M)−1) + op(1)

for l = k. Since trace(M(dvI −M)−1)/n < µ1/(dv − µ1), trace(M(dvI −M)−1)/n >

µn/(dv − µn), and both µ1/γ̂ and µn/γ̂ are o(1),

1

n
trace(M(dvI−M)−1) =

µ1/γ̂

dv/γ̂ − µ1/γ̂
+ o(1)

=
1 + o(1)

cv + cvo(1)
+ o(1). (4.57)

Hence,

(4.56) =


λ
1/2
k λ

1/2
l

λv
op(1) ,if k 6= l

λk

λv

(
1+o(1)

cv+cvo(1)
+ op(1)

)
,if k = l

. (4.58)

The third term is

ηv
λv

eTA,kΛAeA,l =

 0 ,if k 6= l

ηv

λv
λk ,if k = l,

. (4.59)

Combining (4.55), (4.56), and (4.59), it can be shown

eTA,kD∗veA,l =
λ

1/2
k λ

1/2
l

λv
op(1) (4.60)

103



for l, k = 1, . . . ,m. Thus, ||R∗vD∗v|| = op(1). Since ||R∗v|| = O(1),

∣∣∣∣dvλv − ηv
∣∣∣∣ ||R∗v|| = op(1) (4.61)

Hence,

av − ev = op(1) (4.62)

By the exactly same logic used in (4.57),

λv
n

zTAvHM(dvI−M)−2HTzAv =
1 + o(1)

cv + cvo(1)
+ op(1) =

1

cv
+ op(1) (4.63)

From (4.62)

(4.15) = (ev + op(1))T (I +
1

n
Λ

1/2
A ZAHM(dvI−M)−2HTZT

AΛ
1/2
A )(ev + op(1))

= 1 +
1

cv
+ op(1). (4.64)

The result follows by combining (4.62) and (4.64).

2) When cv = o(1) : Since eT1 u1 <
√

1−R1, we only need to show R1 → 1. By the

definition of sample eigenvalues and eigenvectors,

d1 = uT1 Su1

= uTA,1SAAuA,1 + 2uTA,1SABuB,1 + uTB,1SBBuB,1 (4.65)

The first term of (4.65) is

uTA,1SAAuA,1 = uTA,1Λ
1/2
AAZAZT

AΛ
1/2
AAuA,1/n

≤ (1−R2
1)λ1(Λ

1/2
AAZAZT

AΛ
1/2
AA/n) ≤ (1−R2

1)λ1(1 + o(1)) (4.66)
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The second term of (4.65) is

uTA,1SABuB,1 = uTA,1Λ
1/2
AAZAZT

BuB,1/n (4.67)

Since uB,1/R1 is an unit vector, zTv ZT
BuB,1/n ≤ R1

√
zTv ZT

BZBzv/n2, where zv is the vth

row of Z. Hence,

(4.67) ≤ R1

√√√√λ1(1−R2
1)

m∑
v=1

zTv ZT
BZBzv/n2 = R1

√√√√λ1γ̂(1−R2
1)

m∑
v=1

zTv ZT
BZBzv/np

= R1

√
λ1γ̂(1−R2

1)Op(1) (4.68)

The third term of (4.65) is

uTB,1SBBuB,1 < R2
1µ1 (4.69)

From (4.66), (4.68) and (4.69),

d1 − µ1

γ̂
≤ (1−R2

1)c1(1 + o(1)) +R1

√
1−R2

1

√
c1Op(1) + (R2

1 − 1)(1 + o(1))

By the interlacing inequality ( Theorem 4.3.15 of Horn and Johnson (1990) ), d1−µ1 ≥

0. Combining the fact that cv = o(1), we can conclude that R1 → 1, which complete

the proof.
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4.6.9 Proof of Theorem 7

WLOG we assume 〈gv, p̃v〉 ≥ 0. Since SAAuA,v + SABuB,v = dvuA,v,

〈gv, p̃v〉 =
gTv p̃v√
gTv gv

=
1

n
√
dvλv

eTv XXTuv

=
1

n
√
dvλv

eTA,vSAAuA,v +
1

n
√
dvλv

eTA,vSABuB,v

=
dv

n
√
dvλv

eTA,vuA,v

=

√
dv
λv

eTv uv (4.70)

Since eTv uv
p→
√
cv/(cv + 1) and dv/λv → (cv + 1)/cv, (4.70) converges to 1 in proba-

bility, which completes the proof.

4.6.10 Proof of Theorem 8

Using the exactly same argument in section 4.6.5, it can be shown that

E(p2
vj)

λv
=
E(dv)

λv
→ cv + 1

cv
(4.71)

and

E(q2
v |uv)
λv

= (uTv ev)
2 +

1

λv
(1− (uTv ev)

2)(u⊥TA,vΛAu⊥A,v + u⊥TB,vu
⊥
B,v)

+
2

λv
uTv ev

√
1− (uTv ev)2eA,vΛAu⊥A,v

p→ cv
1 + cv

(4.72)

From (4.71) and (4.72) √
E(q2

v)

E(p2
vi)
→ cv

1 + cv
(4.73)
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which concludes the proof.
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4.7 Tables and Figures

Table 4.1: Cosine angle estimates of eigenvectors and PC scores based on 1000 simula-
tions. “Angle” indicates the theoretical asymptotic cos(angle), “Estimate1” indicates
the empirical cos(angle) estimator, ‘Estimate2” indicates the asymptotic cos(angle)
estimator. For each estimator, each entry represents mean of 1, 000 simulation results
with standard error in parentheses.

PC 1 PC 2
Angle Angle Angle Angle

γ n Angle Estimate1 Estimate2 Angle Estimate1 Estimate2

Eigenvectors
1 100 0.93 0.93(0.013) 0.91(0.027) 0.82 0.81(0.053) 0.80(0.052)

200 0.93(0.009) 0.92(0.014) 0.81(0.030) 0.81(0.032)

20 100 0.70 0.69(0.037) 0.70(0.031) 0.51 0.50(0.053) 0.50(0.058)
200 0.69(0.023) 0.70(0.022) 0.51(0.036) 0.51(0.041)

100 100 0.53 0.53(0.034) 0.53(0.031) 0.37 0.35(0.043) 0.35(0.047)
200 0.53(0.024) 0.53(0.024) 0.36(0.029) 0.36(0.033)

500 100 0.38 0.38(0.029) 0.38(0.028) 0.25 0.24(0.033) 0.24(0.037)
200 0.38(0.020) 0.38(0.020) 0.25(0.021) 0.25(0.024)

PC Scores
1 100 0.99 0.99(0.004) 0.98(0.016) 0.94 0.93(0.036) 0.91(0.048)

200 0.99(0.003) 0.99(0.006) 0.94(0.019) 0.93(0.024)

20 100 0.98 0.97(0.083) 0.98(0.008) 0.89 0.86(0.105) 0.87(0.055)
200 0.97(0.055) 0.98(0.005) 0.88(0.073) 0.88(0.036)

100 100 0.97 0.97(0.079) 0.97(0.009) 0.88 0.85(0.109) 0.86(0.060)
200 0.97(0.058) 0.97(0.006) 0.86(0.076) 0.87(0.039)

500 100 0.97 0.96(0.084) 0.97(0.010) 0.87 0.83(0.117) 0.84(0.069)
200 0.96(0.058) 0.97(0.007) 0.86(0.076) 0.86(0.038)
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Table 4.2: Shrinkage factor esimates based on 1000 simulation. “Factor” indicates
the theoretical asymptotic factor, “Estimate1” indicates the empirical shrinkage factor
estimator, ‘Estimate2” indicates the asymptotic shrinkage factor estimator. For each
estimator, each entry represents mean of 1, 000 simulation results with standard error
in parentheses.

PC 1 PC 2
Factor Factor Factor Factor

γ n Factor Estimate1 Estimate2 Factor Estimate1 Estimate2

1 100 0.88 0.88(0.017) 0.87(0.076) 0.75 0.75(0.044) 0.76(0.063)
200 0.88(0.013) 0.87(0.054) 0.75(0.027) 0.75(0.044)

20 100 0.51 0.51(0.037) 0.51(0.038) 0.33 0.34(0.033) 0.32(0.038)
200 0.51(0.025) 0.51(0.026) 0.34(0.022) 0.33(0.028)

100 100 0.30 0.30(0.024) 0.30(0.030) 0.17 0.17(0.019) 0.17(0.023)
200 0.30(0.017) 0.30(0.023) 0.18(0.013) 0.17(0.017)

500 100 0.16 0.15(0.014) 0.16(0.020) 0.08 0.08(0.010) 0.08(0.013)
200 0.15(0.010) 0.16(0.014) 0.08(0.007) 0.08(0.009)
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Table 4.3: Mean Square Error(MSE) of the PC regression based on gene-expression
microarray data simulation with and without shrinkage adjustment. 1,000 simulation
were conducted. Each entry in the table represents mean of the MSE with standard
error in parentheses

Test Data Test Data
n g without Adjustment with Adjustment Training Data

100 150 1.97(0.256) 1.70(0.284) 1.61(0.284)
100 300 1.63(0.230) 1.17(0.167) 1.12(0.158)
100 500 1.43(0.204) 1.07(0.157) 1.03(0.147)
100 1000 1.22(0.182) 1.03(0.148) 0.99(0.142)
200 150 1.73(0.159) 1.33(0.133) 1.30(0.131)
200 300 1.39(0.139) 1.08(0.105) 1.07(0.110)
200 500 1.24(0.131) 1.04(0.105) 1.01(0.101)
200 1000 1.10(0.114) 1.02(0.101) 1.00(0.101)
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Figure 4.1: Simulation results for p=5000 and n=(50,30,20). Different symbols rep-
resent different groups. White background color represents the training set and grey
background color represents the test set. A) First 2 PC score plot of all simulated
samples. B) Center of each group.
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Figure 4.2: Shrinkage Adjusted PC scores of the data in Figure 1. Different symbols
represent different groups. White background color represents the training set and grey
background color represents the test set. A) plots of all simulation samples. B) Center
of each group.
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Figure 4.3: Scree plot of the first 30 sample eigenvalues, CEU+TSI dataset
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Figure 4.4: An instance with and without shrinkage adjustment, performed on Hapmap
CEU(*) and TSI(+). “*” and “+” represent PC scores using all data. The 161th

sample was excluded from PCA, and PC score for it was predicted. The grey rectangle
represents the predicted PC score without shrinkage adjustment and the grey circle
represents the predicted PC score after the shrinkage adjustment
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