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ABSTRACT 

 

 

KATHRYN ELIZABETH HAMILTON: Role of suppressor of cytokine 

signaling 3 in colorectal cancer 

(Under the direction of Dr. P. Kay Lund) 

 

Patients with inflammatory bowel diseases (IBD) have an increased 

lifetime risk of developing colorectal cancer (CRC). Suppressors of cytokine 

signaling (SOCS) are intracellular proteins that provide negative feedback on 

pro-inflammatory cytokine signaling. SOCS3 silencing in intestinal epithelial cells 

has previously been shown to promote tumorigenesis in the 

azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of 

inflammation-associated CRC. Mechanisms associated with this effect were 

increased activation of signal transducer and activator of transcription 3 (STAT3) 

and NFκB, and increased expression of TNFα receptor 2 (TNFR2). TNFR2 is 

increased in IBD and CRC, but how this receptor is regulated remains undefined. 

Studies in this dissertation tested the hypothesis that TNFR2 is induced by 

STAT3 and/or NFκB pathways, that SOCS3 limits TNFR2 expression, and that 

SOCS3 is a tumor suppressor in both sporadic and inflammation-associated 
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cancer.  Colon cancer cell lines were treated with IL-6 and TNFα in the presence 

of STAT3 or NFκB inhibitors. STAT3 inhibition dramatically decreased cytokine-

induction of TNFR2, implicating STAT3 as a critical mediator of TNFR2 induction. 

SOCS3 limited cytokine-induction of TNFR2, as well as STAT3 binding to 

consensus sequences within the TNFR2 promoter. SOCS3 also limited TNFR2-

mediated proliferation and anchorage-independent growth of colon cancer cells. 

Together these findings support the concept that SOCS3 exerts a tumor 

suppressor role in part by limiting the growth-promoting abilities of TNFR2. To 

test the whether low SOCS3 expression predicts risk of early stage CRC, 

biopsies of normal mucosa from colonoscopy patients with and without 

adenomas were assayed for SOCS3 mRNA. No significant difference in SOCS3 

mRNA was observed in normal mucosa of patients with and without adenoma.  

Thus SOCS3 silencing in normal mucosa does not predict adenoma risk. To test 

whether SOCS3 normally limits tumorigenesis in sporadic CRC, mice with IEC-

SOCS3 silencing were subjected to the AOM model of spontaneous, non-

inflammatory CRC. Mice with SOCS3 silencing exhibited a 75% increase in colon 

tumor incidence. Collectively, these data indicate that SOCS3 normally 

modulates multiple pro-tumorigenic pathways that contribute to both 

inflammation-associated and sporadic CRC. 
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A. Anatomy of the intestine 

The small intestine and colon are a continuous tube that primarily 

functions to digest and absorb nutrients while maintaining a protective barrier 

between the external environment and the underlying tissue. The mucosa 

interfaces directly with the lumen of the intestine. The mucosa comprises an 

epithelial layer directly facing the lumen, the lamina propria, and the muscularis 

mucosa. The lamina propria contains mesenchymal cells (fibroblasts, 

myofibroblasts, smooth muscle), as well as capillaries and nerve endings. In the 

small intestine, particularly ileum, lymphoid tissue within the lamina propria is 

found in Peyer’s patches. Peyer’s patches are surrounded by M-cells that 

transport antigens from the epithelium to the lymphoid tissue in order to elicit an 

immune response (1). In the colon, aggregates of lymphoid tissue within lamina 

propria are organized as lymphoid follicles (2). Immediately below the mucosa 

resides the loose connective tissue of the submucosa, which contains primarily 

support tissue, mesenchymal cells and connective tissue, and houses larger 

blood vessels.  Enveloping the submucosal layer, the muscularis externa is 

innervated by neurons of the myenteric plexus, which aid in the coordination of 

resident smooth muscle layers to produce peristaltic movement of luminal 

contents through the intestine. In most regions of the small and large intestine, 

the muscalaris externa is composed of an inner, circular smooth muscle layer 

and an outer, longitudinal layer. The outer-most intestinal layer is the serosa, 

which includes connective tissue and a layer of mesothelium (squamous 

epithelial cells) Figure 1.1) (3).  
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The mucosal layer of the small intestine consists of macroscopic folds of 

Kerckring, and then is further organized into microscopic villi and crypts of 

Lieberkühn. The villi protrude into the lumen and are surrounded by the glandular 

crypts. The villi are absent in the colon, which instead consists of surface 

epithelium and crypts (4). The macroscopic organization of the small intestine 

and colon function to provide maximal surface area of these organs, with the 

small intestine having a surface area of roughly 200 m2, and the colon 25 m2 (4).  

The surface area of the small intestine facilitates its absorption of roughly 6.5 

liters of dietary, salivary, gastric, pancreatic, and biliary fluid per day, with the 

colon absorbing another 2 liters per day (4).  

 

B. Renewal and homeostasis of the intestinal epithelium 

The intestinal epithelium is constantly and rapidly renewed. This process 

depends on production of new cells within the crypts, which balances constant 

loss of cells from the surface of the villi or colon. Current views indicate that this 

renewal depends on proliferation of long-lived stem cells, which reside in the 

crypts that give rise to faster proliferating and shorter-lived progenitor or transit 

amplifying cells (5-7). Stem cells are thought to reside at or near the base of the 

crypts in small intestine, and available evidence suggests that stem cells reside 

in the mid-crypt of the ascending colon, and at the base of the crypt in the 

descending colon (Figure 1.2) (8). Stem cells undergo asymmetrical division to 

maintain the stem cell and produce a new daughter cell (8). Symmetrical division 

to produce two stem cells occurs much less frequently under normal 
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physiological conditions (9). Daughter cells continue to proliferate up the crypt 

axis within the transit-amplifying region and then differentiate into one of the four 

major epithelial lineages (Figure 1.2) (7, 10, 11).  

The subsets of intestinal epithelial cells (IEC) are absorptive (enterocytes 

or colonocytes), or secretory (goblet, enteroendocrine, and Paneth cells). The 

distribution of these cell types varies along the length of the small intestine and 

colon based on the functional requirement of each segment. Enterocytes 

predominate the small intestine where dietary nutrients are absorbed. These 

cells have increased absorptive capabilities due to the presence of apical 

microvilli and are the most abundant of the IEC types. Goblet cells are 

interspersed among the enterocytes and increase in number from the duodenum 

to the colon. These cells secrete mucin to form a mucus layer, which contributes 

to the epithelial barrier and facilitates the movement of stool towards the rectum. 

Paneth cells are found at the crypt base in the small intestine and secrete anti-

microbial proteins. Enteroendocrine cells comprise less than 1% of the intestinal 

epithelium and represent a very diverse group of cells, which produce multiple 

gastrointestinal hormones (12, 13). Even though enteroendocrine cells represent 

less than1% of gut epithelial mass, they represent the largest endocrine organ of 

the human body. Enteroendocrine cell types and hormones secreted vary along 

the length of small intestine and colon. Functionally, hormones regulate a wide 

variety of activities ranging from appetite and motility, to gut, pancreas, and liver 

secretions.  
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  The high turnover rate of the epithelium requires a carefully coordinated 

balance of proliferation in the lower portion of the crypt, and differentiation and 

cell shedding on the villus or surface epithelium. This coordination and a balance 

between cell production and cell loss maintains the integrity of the mucosal lining. 

Once at the villus tip or surface epithelium, cells lose their attachment to the 

underlying basement membrane and undergo the apoptotic process of anoikis 

(14).  The balance of cell proliferation and shedding is achieved through 

sophisticated cross-talk between the mucosal layer, immune and mesenchymal 

cells, and the commensal microflora (15, 16).  

The Wnt/β-catenin pathway is a major proliferative pathway in the 

intestinal crypts. When Wnt signals are absent, β-catenin is degraded by the 

proteasome through direct binding to a complex of adenomatous polyposis coli 

(APC), glycogen synthase kinase 3β (GSK3β), and casein kinase I (CKI). In the 

presence of Wnt signaling, β-catenin is liberated from the destruction complex 

and is translocated to the nucleus, where it acts as a transcriptional co-activator 

of the T cell factor (TCF)/lymphocyte enhancer factor (LEF) family of transcription 

factors. Downstream targets of Wnt signaling promote cell proliferation, and 

various studies have lead to the model of a signaling gradient in which Wnt 

signaling is highest in the proliferative zone of the crypt (Figure 1.2) (17). Wnt 

activation is also a major component of intestinal tumorigenesis, which will be 

discussed later. 

 

C. Epithelial-immune interactions and physiological inflammation 
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 The epithelial barrier functions to protect underlying tissue from harmful 

agents present in the lumen. Insult to the epithelium, including pathogens and 

toxins, can compromise the integrity of the epithelial barrier and expose the 

lamina propria to antigens that elicit an acute inflammatory response. This is 

marked by neutrophil infiltration, macrophage activation, and induction of pro-

inflammatory cytokines. Mild damage, limited to superficial injury to the 

epithelium, can be resolved within hours due to rapid epithelial restitution. During 

this process, cells neighboring the wound flatten and migrate into the damaged 

area and form new cell:cell junctions to close the wound. During more extensive 

or deeper injury, or chronic insult, restoration of the epithelial barrier requires 

hyper-proliferation of crypt epithelial cells to regenerate the crypts and injured 

epithelium (18, 19).  

Aside from the ability to rapidly proliferate to restore the integrity of the 

intestinal barrier, the intestine is intrinsically “primed” to handle environmental 

challenge due to the presence of resident pools of immune cells within Peyer’s 

patches (small intestine) and lymphoid follicles (colon). Lymphocytes also reside 

within the epithelial and lamina propria layers (15, 20). The presence of these 

immune cells in normal intestine and the fact that these cells can exhibit a 

controlled inflammatory response has been termed “physiological inflammation” 

of the intestine. This term encompasses the fact that immune cells play a role in 

maintaining normal intestinal homeostasis (20).  Indeed, resident immune cells 

(specifically gamma delta T-cells, a subset of intra-epithelial lymphocytes) are 

thought to aid in IEC turnover under normal conditions (21) and promote repair of 
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the epithelium (22). Cross-talk between IECs and resident immune cells occurs 

through direct cell:cell interactions, as well as through chemokine and cytokine 

signaling (23-25) Through these same interactions, IECs can recruit leukocytes 

to sites of injury, where neutrophils and macrophages can phagocytose and 

destroy invading microbes or antigens and secrete pro-proliferative factors, 

including epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and 

keratinocyte growth factor (KGF) to promote epithelial healing (26-30). 

   

D. Tumor necrosis factor α (TNFα) and its receptors 

 In addition to growth factors, cytokines are secreted by immune cells and 

activate proliferative and/or anti-apoptotic signaling pathways within IECs to 

promote regeneration and repair. TNFα is synthesized as a 26kd membrane-

bound precursor that forms biologically active trimers and can be cleaved into its 

soluble form by TNF-converting enzyme (TACE, also known as ADAM-17).  It is 

secreted by a variety of immune cells, including macrophages, neutrophils, T and 

B cells (31-35). Low levels of TNFα mRNA transcripts have also been detected in 

the Paneth cells of the normal intestine (36). Other studies have shown that low 

levels of TNFα can be produced by cultured human IEC and the rat cell line IEC-

6 in response to lipopolysaccharide (LPS) stimulation (37). These studies 

showed that autocrine production of TNFα lead to growth restriction of these 

cells, and higher levels of exogenous TNFα-induced caspase-dependent 

apoptosis (37-39). In non-transformed mouse colonic epithelial cells, low doses 

of TNFα (0.1 and 1ng/mL) stimulated proliferation, while high doses (100 and 
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1000ng/mL) inhibited proliferation (40). TNFα has also been shown to decrease 

barrier function of the mucosal lining by altering tight junctions through down-

regulation of expression of ZO-1, an integral component of the tight junction (41, 

42). 

TNFα signals through two receptors: TNFR1 (p55TNFR) and TNFR2 

(p75TNFR). Early studies in mice showed that TNFR1 mediates cellular toxicity 

and TNFR2 mediates proliferation (43). However, other studies indicate that the 

two receptors may cooperate in certain contexts through ligand passing (44). 

TNFR1 contains an intracellular death domain that binds to several caspase-

recruiting proteins and mediates stress-induced apoptosis (45, 46). Signaling 

through TNFR1 has also been shown to activate the transcription factors NFκB 

and c-Jun (47). TNFR1-/- mice have accelerated skin wound healing after injury 

due to reduced immune infiltration, and exhibit decreased liver and lung 

metastases in cancer cell transplantation models (48-50). Recent studies have 

also shown that TNFR1-/- mice have decreased tumor incidence in the 

azoxymethane/dextran sodium sulfate (AOM/DSS) tumor model associated with 

a significant decrease in neutrophil and macrophage recruitment to the 

underlying lamina propria and submucosa (51). The same study showed that 

treatment with anti-TNFα monoclonal antibodies decreased tumor load in wild-

type mice in the AOM/DSS model (51). These findings suggest that TNFR1 is a 

critical mediator of immune cell recruitment in the context of inflammation-

associated colorectal cancer, and may contribute to increased local TNFα 

signaling. 
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TNFR2 does not have an intracellular death domain, but can activate 

NFκB through the adaptor protein TNF receptor-associated factor 2 (TRAF2) 

(52). Like TNFR1, TNFR2 can activate NFκB and AP-1, but in some settings 

activates other transcription factors, including STAT3 (53, 54). While TNFR1 is 

ubiquitously expressed in most tissues, TNFR2 expression is induced in the 

context of multiple cytokines, including IFNγ, or a combination of IL-6, TNFα, and 

IL-1β (55, 56). TNFR2 is required for TNFα-mediated myosin light chain kinase 

(MLCK)-dependent barrier dysfunction in vitro (55) and is up-regulated in the 

epithelium of mice and humans with inflammatory bowel diseases and colorectal 

cancer (56-58). Studies described in CHAPTER II of this dissertation assessed 

the mechanisms by which cytokines induce TNFR2.  

 

E. Interleukin-6 (IL-6) 

Interleukin-6 (IL-6) is a cytokine that is induced in some settings by other 

cytokines via mechanisms that involve NFκB (59-61). IL-6 activates a receptor 

heterodimer composed of IL-6Rα and gp130, a common subunit of multiple 

receptors that share some signaling mechanisms with IL-6 (62, 63). Ligand-

induced activation of IL-6Rα/gp130 leads to activation and phosphorylation of 

Janus kinases (JAKs). JAKs in turn activate signal transducers and activators of 

transcription (STATS) by recruiting them to the cytokine receptor/gp130 subunit 

and mediating phosphorylation of key tyrosine residues (64). Tyrosine 

phosphorylation of STATS leads to their dimerization and translocation to the 

nucleus where they bind to consensus STAT binding sites in DNA to mediate 
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transcriptional regulation of target genes (64). The IL-6Rα/gp130 potently 

activates STAT3, one of a family of STAT proteins. A major focus of this 

dissertation is on the regulation of IL-6/STAT3 signaling by suppressor of 

cytokine signaling 3 (SOCS3) (65-67). 

 

F. Suppressors of cytokine signaling (portions of this section are excerpted 

from (68)). 

Suppressors of cytokine signaling (SOCS) were discovered in the late 

1990’s as a family of proteins that exert negative feedback on cytokine receptor 

signaling through the JAK-STAT pathway (69-71).  Initial characterization of 

SOCS found that they comprise a family of eight structurally related proteins 

(SOCS1-7 and CIS) that have major roles to limit the extent of cytokine signaling 

in the immune system (72-74).  SOCS have since been implicated in a variety of 

other cell types, including IECs. 

 SOCS proteins share a similar structural organization with a COOH-

terminal SOCS box, an SH2 domain, and an NH2-terminal domain. The SOCS 

box is an approximately 40-residue motif showing strong homology across all 

SOCS family members. The SOCS box is essential for interactions with 

elonginBC and the E3 ubiquitin ligase scaffold cullin5, which targets SOCS-

bound proteins for poly-ubiquitination and proteasomal degradation (75-78). The 

SH2 domain of SOCS proteins is critical for interactions between SOCS and 

phospho-tyrosine residues of target signaling proteins (77). Additionally, SOCS1 
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and SOCS3 contain kinase-inhibitory regions (KIR) that can specifically target 

JAK activity (79, 80). 

Consistent with the discovery of SOCS proteins as cytokine-inducible, 

negative feedback inhibitors of cytokine receptor JAK-STAT signaling, a wealth 

of evidence suggests that the expression of one or more SOCS mRNAs and 

proteins is induced by activation of particular cytokine receptors. The SOCS 

proteins then exert their negative feedback effects through multiple mechanisms 

(Figure 1.3) depending on the particular SOCS protein (77, 81). These include: 

a) Direct inhibition of activated JAK, which has been demonstrated for 

SOCS1 and SOCS3 and relies on the presence of a KIR in these SOCS. 

b) Binding of SOCS to the cytokine receptor cytoplasmic domain via SH2 

domain interactions and subsequent inhibition of JAK activity. 

c)  Binding to SH2 domains of cytokine receptors and competitive inhibition 

of STAT binding to the cytokine receptor SH2 domains. 

d) Recruitment of the E3 ubiquitin ligase complex to the SOCS box motif 

leading to ubiquitination and degradation of receptors/signaling molecules 

associated with SOCS. 

Mice with targeted deletion of genes encoding particular SOCS proteins 

exhibit various phenotypes, including multi-organ inflammatory response 

(SOCS1), gigantism, altered growth hormone and insulin-like growth factor- 1 

signaling (SOCS2), and embryonic lethality (SOCS3) (77, 82-85). Because 

SOCS3-/- mice are not viable, cell-specific deletion models have been used to 

identify its role in regulating IL-6 signaling in specific cell types (86, 87). 
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G. Suppressor of cytokine signaling 3 

SOCS3 is an inhibitor of cytokines and receptors that share the gp130 

receptor subunit as a signaling molecule, including interleukin 6 (IL-6), leukemia 

inhibitory factor (LIF), oncostatin M (OSM), granulocyte colony-stimulating factor 

(G-CSF), interleukin 11 (IL-11), interleukin 23 (IL-23), and leptin (86-94). 

Mutational studies and identification of the crystal structure of murine SOCS3 

have lead to insights about the structure and function of specific SOCS3 protein 

domains (Figure 1.4A). Initial reports showed that SOCS3 binds JAK2 through its 

SH2 domain, and that the KIR is required for functional inhibition of JAK2 (79). 

The SH2 domain is also responsible for SOCS3 binding to the gp130 receptor, 

which is facilitated by an extended SH2, or ESS domain (95).  

As mentioned earlier, the C-terminal SOCS-box binds elongin BC and 

cullin5 to promote proteasomal degradation of SOCS3-bound proteins (75-78). In 

addition, the SOCS-box also permits ubiquitination and degradation of SOCS3 

itself, providing a mechanism that regulates SOCS3 protein turnover (96). 

SOCS3 turnover can also be regulated through its PEST (Pro/Glu/Ser/Thr-rich) 

domain, though this domain is not required for the STAT-inhibitory effects of 

SOCS3 (Figure 1.4A) (97). Inherent to SOCS3 function as a negative regulator of 

cytokine signaling are the characteristics that SOCS3 mRNA and protein are 

tightly controlled such that cytokine induction of SOCS3 mRNA is typically rapid 

and transient over the course of 30 minutes to 3 hours. In addition, the intrinsic 

structural determinants of the SOCS3 protein, the SOCS box and PEST 

sequence, allow for rapid regulation of SOCS3 at the protein level.   
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Available evidence suggests that the SOCS3 negative feedback loop has 

a particular role in attenuating STAT3 signaling, which mediates transcription of 

genes that elicit a multitude of context-specific, cellular effects (Figure 1.4B). In 

addition to genes involved in a pro-inflammatory response mediated by multiple 

cytokines (IL-6R, IL-11, IL-4R, IRF-1), STAT3 transcriptional targets include 

genes that mediate increased proliferation (c-Myc, cyclin D1), decreased 

apoptosis (survivin, Bcl-2, Bcl-XL), and angiogenesis (ADM, EPAS1) (98).  

SOCS3 has been implicated in various chronic, inflammatory diseases of the 

gastrointestinal tract, including inflammatory bowel diseases (IBD) and hepatitis 

(66, 99, 100). Very recent studies have explored the role of SOCS3 in cancer. 

Mounting evidence suggests that aberrant STAT3-activation resulting from 

SOCS3 silencing may be a key mechanism to promote tumorigenesis during 

gastrointestinal inflammation. Indeed, SOCS3 is known to be silenced by 

promoter hyper-methylation in lung, liver, and gastrointestinal cancers (101-105). 

Table 1.1 summarizes available information about SOCS3 methylation in human 

gastrointestinal cancers. 

 

H. Colorectal cancer 

 Within the literature, colorectal cancer (CRC) can be broadly classified as 

sporadic (spontaneously arising) or inflammation-associated (typically CRC that 

occurs in a setting of ongoing IBD) (106). Work by Vogelstein has provided a 

multi-step sequence of CRC development, which involves multiple mutations or 

‘hits’ within normal colon epithelial cells ultimately permitting the development of 
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invasive adenocarcinoma (107). These ‘hits’ can result from a combination of 

genetic and lifestyle-related factors (108). The CRC sequence involves an initial 

change in function of crypt epithelial cells such that a genetically aberrant cell 

evades normal apoptotic mechanisms that remove damaged cells. In addition, 

this cell proliferates to clonally expand the aberrant cell and fails to migrate to the 

colonic surface epithelium where it could be removed by the normal process of 

anoikis.  

The earliest aberrant lesions detectable are ‘aberrant crypt foci,’ or ACF, 

which have atypical morphology and hyper-proliferation (109). Not all ACFs have 

the potential to become precancerous and can be targeted by immune-

surveillance (109).  However, if ACFs survive and acquire additional mutations, 

they can expand to become precancerous, adenomatous lesions. Mutations that 

favor establishment and growth of adenomas, and survival to become large 

adenomas, include loss of tumor suppressors and mutations in oncogenes (107). 

Ultimately, late adenomas can transform to adenocarcinomas that grow and 

invade submucosal layers and can metastasize to lymph nodes and distant 

organs. In sporadic CRC, early mutations in APC and β-catenin are common in 

ACF and adenoma; adenoma and late adenomas acquire additional mutations in 

tumor suppressor genes such as TGFBR2 (transforming growth factor beta 

receptor 2) and TP53, and oncogenes such as KRAS, BRAF, and PI3KCA (107, 

110). Mutations in cell-cycle arrest and DNA repair genes commonly occur later 

in the sequence, within late adenoma or adenocarcinoma.   
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CRC can be an inherited condition that arises in individuals with either 

familial adenomatous polyposis (FAP) or hereditary non-polyposis colorectal 

cancer (HNPCC).  FAP is caused by an autosomal dominant mutation in the APC 

gene (111, 112). Clinically, FAP patients may present with several hundred 

adenomatous polyps in the colon during the mid-teens to early 20’s and develop 

CRC in the early 40’s if the colon is not removed. HNPCC is caused by mutations 

in mismatch repair (MMR) genes, including MLH and MSH2, and is also inherited 

in an autosomal-dominant fashion (110). These familial cancers account for 

~20% of the total CRC cases.  

Current evidence suggests that the sequence of IBD-associated cancer 

may differ from sporadic CRC in etiology and sequence of progression (Figure 

1.5). IBD-associated cancer involves earlier mutations in p53, while APC or β-

catenin mutations occur later in the sequence of dysplasia to colitis-associated 

cancer (Figure 1.5) (106). Furthermore, IBD-associated cancer can involve flat 

versus polypoid lesions. In IBD, the setting of chronic inflammation is thought to 

create a permissive tumor microenvironment characterized by DNA-damaging 

reactive oxygen and nitrogen species (ROS and RNS), along with induction of 

anti-apoptotic and growth-promoting cytokine signaling (106, 113, 114). Patients 

with IBD have an increased risk of CRC over a lifetime because of cumulative 

damage that results from repeated cycles of chronic inflammation and injury and 

healing (106). Chronic inflammation of the intestine is associated with persistent 

infiltration of immune cells into the mucosa, including neutrophils, macrophages, 
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and activated T-cells, which produce pro-inflammatory cytokines including IL-6, 

TNFα and IL-1β, among others.  

With this knowledge in mind, research in the Lund laboratory first 

addressed the role of SOCS3 in inflammation-associated colon cancer (115). 

Recent concepts suggest that inflammatory changes, milder in nature than IBD, 

may contribute to the risk of sporadic CRC, or at least of subset of CRC. 

Therefore other chapters assess whether there is an association between 

SOCS3 and sporadic precancerous adenoma in humans or mouse models. 

Mouse models relevant to this dissertation are summarized in Table 1.2. 

 

I. SOCS3 in colorectal cancer 

After initial discovery, a majority of studies focused on anti-inflammatory 

roles of SOCS3 in immune cells (116). Our laboratory hypothesized that because 

of its anti-inflammatory roles and negative regulation of STAT3, SOCS3 

expressed in IEC may have a tumor suppressor role. As an initial test of this 

hypothesis, Rigby et al. used Cre-recombinase (Cre) technology to generate a 

mouse model with specific disruption of both SOCS3 alleles in IEC (115). This 

was accomplished by crossing mice expressing a villin-Cre transgene with mice 

homozygous for LoxP modifications of the SOCS3 genes, and comparing these 

animals with littermates carrying LoxP modified, but intact SOCS3 alleles, or 

wild-type mice carrying the villin-Cre transgene.  

The IEC-SOCS3∆/∆ mice had no obvious phenotype in the basal state and 

so they were given two challenges. In one series of experiments they were given 
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a single cycle of 3% DSS for 5 days and were studied at the end of DSS and for 

3-7 days following DSS. DSS treatment causes acute inflammation, crypt loss, 

and mucosal injury, followed by a period of IEC hyper-proliferation, crypt 

regeneration and healing. At the end of DSS treatment, the IEC-SOCS3∆/∆ mice 

showed similar inflammation and crypt loss as mice with intact SOCS3 genes. 

However, during the healing and regeneration period, IEC-SOCS3∆/∆ showed 

dramatically enhanced crypt proliferation and crypt hyperplasia (115). This was 

the first in vivo demonstration that SOCS3 expressed in IEC normally restrained 

crypt proliferation.  

The AOM/DSS model was then used to assess if the loss of SOCS3 in 

IEC affected inflammation-associated colon cancer. AOM/DSS combines a 

chemical mutagen with multiple cycles of DSS to model chronic, reactivating 

inflammation. Mice with IEC-SOCS3 deletion had a four-fold increase in tumor 

load compared to controls, which reflected an increase in tumor number and 

tumor size (115). SOCS3 over-expression decreased proliferation of colon 

cancer cells lines, further supporting the role of SOCS3 as a suppressor of tumor 

cell growth (115). Colon and tumor tissue from AOM/DSS treated IEC-SOCS3∆/∆ 

mice were assessed for signaling pathways affected by IEC-SOCS3 deletion. As 

anticipated, loss of SOCS3 was associated with an increase in activated STAT3 

(115). In addition, these tumors showed an increase in NFκB activation.  

The increase in NFκB activation in IEC-SOCS3 deletion mutants was a 

critical finding, as a key role of NFκB had been demonstrated in the AOM/DSS 

model of inflammation-associated CRC.  This was accomplished by development 
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of mice with IEC- or macrophage-specific IKKβ deletion. IKKβ phosphorylates 

IκB, which is bound in the cytoplasm to NFκB sub-unit dimers (p65, c-Rel, and 

p50), targeting it for proteasomal degradation. This permits NFκB translocation to 

the nucleus, and transcription of multiple pro-inflammatory genes (117). Mice 

lacking IEC-IKKβ (and thus decreased NFκB activation) exhibited a decrease in 

incidence of AOM/DSS induced colon tumors associated with enhanced 

apoptosis, and this was irrespective of DSS-induced inflammation. Mice lacking 

macrophage-IKKβ also had a modest decrease in tumor incidence, but the most 

striking effect was the decrease in tumor size due to decreased expression of 

pro-inflammatory cytokines (117). This led to the conclusion that IEC-NFκB is 

essential for tumor initiation, while macrophage-NFκB promotes tumor growth 

through the up-regulation of paracrine factors.   

Other studies have shown that constitutive activation of NFκB promotes 

proliferation and prevents apoptosis in colon cancer cells (118). Additionally, 

activation of NFκB protects colon tumor cells from irradiation, thus promoting 

tumor survival (118). IL-6 activates NFκB in Caco-2 cells to induce ICAM, which 

can be reversed by over-expression of SOCS3 (65). SOCS3 has been shown to 

promote degradation of TRAF6 and TAK1, which are both downstream signaling 

molecules of NFκB (119). Data from our laboratory were, to our knowledge, the 

first to demonstrate that IEC-SOCS3 normally limits NFκB activation in vivo 

(115).  

These data provide preclinical evidence that SOCS3 normally acts as a 

tumor suppressor, and limits activation of STAT3, as well as NFκB. As discussed 
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below, increasing evidence points to STAT3 as a key mediator of CRC. Thus, 

identification of SOCS3 as an intrinsic inhibitor of both NFκB and STAT3 

pathways suggests that SOCS3 may represent a biomarker of CRC risk and 

potential target for therapies that might mimic SOCS3.  

 

J. IL-6/STAT3 in sporadic and inflammation-associated colorectal cancer 

A number of recent studies have highlighted the role of the IL-6/STAT3 

pathway in both sporadic and inflammation-associated CRC in mouse models 

and humans. This evidence, summarized below, underscores the importance of 

exploring the role of SOCS3 in sporadic neoplasia, as is addressed in 

CHAPTERS III and IV.  

Studies in the AOM/DSS model of colitis-associated cancer and the 

APCMin/+ model of spontaneous tumors showed that loss of IL-6 leads to 

decreased tumor load and this was associated with decreased tyrosine-

phosphorylation of STAT3 (120, 121). Prior studies in mice lacking macrophage-

IKKβ in the AOM/DSS model showed that myeloid production of IL-6 is a critical 

component in tumor initiation (117). Consistent with these findings, wild-type 

mice had increased IL-6 expression in infiltrating immune cells in adenomas of 

AOM/DSS-treated mice, with weaker IL-6 expression in the IEC (121). These 

studies suggest that IL-6 derived from immune cells may have paracrine actions 

to stimulate STAT3 activation in IEC and to promote tumor growth. Other studies 

suggest that IECs themselves can produce IL-6, and may therefore promote IL-6 

activation of STAT3 in an autocrine fashion (122, 123).  
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Mice with a Y757F mutation in the gp130 subunit of the IL-6 receptor 

(gp130 Y757F mice), which leads to constitutive gp130 activation, have enhanced 

ligand-dependent STAT3 activation due to the inability of SOCS3 to bind and 

inhibit phosphorylation of the gp130 subunit and therefore inhibit STAT3 

activation (124). These mice exhibit enhanced tumor incidence and size in the 

AOM/DSS model, and this is associated with increased IEC proliferation and also 

increased expression of the cell-cycle progression genes cyclin D1, cyclin B1, c-

Myc and cdc2 (125). These same mice showed an increase in tumor incidence in 

the APCMin/+ model as well (125). Interestingly, deletion of either IL-6 or IL-11 in 

gp130 Y757F mice did not affect the IEC hyper-proliferation seen in gp130 Y757F 

mice. However, deletion of both IL-6 and IL-11 in the gp130Y757F mutant led to a 

significant decrease in proliferation as measured by BrdU incorporation (125). 

This suggests functional redundancy between IL-6 and IL-11 with respect to 

regulation of proliferation of colon epithelial cells.  

Consistent with findings in the gp130Y757F mice, mouse models lacking 

IEC-STAT3 (Stat3ΔIEC) are highly resistant to development of AOM/DSS-

mediated tumors (121). This is despite the fact that Stat3ΔIEC mice had more 

severe DSS-induced colitis than control mice, implicating a protective role of 

STAT3 in inflammation. This could reflect the inability of Stat3ΔIEC mice to induce 

SOCS3, which would provide negative feedback of other pro-inflammatory 

pathways, such as NFκB (115). However, further studies must be done to look at 

the specific role of SOCS3 in Stat3ΔIEC mice under these conditions.  
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Similar to the effect seen in the AOM/DSS model, Stat3ΔIEC mice crossed 

with APCMin/+ mice exhibited a decrease in tumor number compared to wild-type 

APCMin/+ mice (126).  Interestingly, despite this affect, aged Stat3ΔIEC/APCMin/+ 

mice exhibited increased tumor size and a higher percentage of invasive 

carcinoma and lymph node metastases than their wild-type counterparts, with 

earlier death in mice lacking IEC-STAT3 (126).  Intriguingly, the invasive regions 

of Stat3ΔIEC/APCMin/+ tumors showed a decrease in phosphorylation of STAT3 on 

the key tyrosine 705 residue, compared to the main tumor mass, indicating that 

factors leading to the enhanced invasive phenotype may by independent of Tyr-

705-phophorylation of STAT3. However, this would be inconsistent with findings 

in human CRC that Tyr-705-phosphorylation of STAT3 is significantly correlated 

with tumor invasion (127). These studies collectively identify a seemingly 

paradoxical role of STAT3 as both a promoter of tumor initiation, yet an inhibitor 

of tumor progression. This possibility to date has been addressed in only the 

APCMin/+ model of spontaneous tumors and not in the colitis-associated 

AOM/DSS model. Further studies must be done to determine the underlying 

mechanism of the phenotypic switch of STAT3 from oncogene in early stages of 

sporadic CRC to anti-oncogene in later stage tumor progression.  

Recent evidence in humans revealed that IL-6 and STAT3 are increased, 

and SOCS3 is decreased, in tumors from both ulcerative colitis-associated and 

sporadic CRC. Moreover, low SOCS3 expression was attributed to DNA hyper-

methylation in inflammation-associated tumors (128). These same studies also 

indicated that while SOCS3 silencing occurs in tumors, its expression is not 
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decreased in pre-cancerous, inflamed tissue. This is consistent with our recent 

report in which SOCS3 expression did not differ significantly in the normal colonic 

mucosa of patients with adenoma versus adenoma-free patients (129). Also, 

logistic regression did not provide evidence that SOCS3 in normal mucosa had 

an independent predictive value for adenoma risk (129). These studies are 

described in detail in CHAPTER III. Together, the available information in 

humans suggests that loss of SOCS3 does not occur in normal mucosa, but its 

loss in adenoma may predispose to survival and continued progression of these 

lesions.  

Collectively, the studies in mice and humans indicate that de-regulated IL-

6/STAT3 signaling promotes intestinal tumorigenesis. SOCS3 functions as a 

tumor suppressor in the intestine and negatively regulates both STAT3 and 

NFκB, two key signaling pathways that appear integral to development of 

inflammation-associated CRC. The aforementioned mouse studies of the IL-

6/STAT3/SOCS3 pathway in intestinal tumorigenesis are summarized in Table 

1.3. As well as a role in CRC, accumulating evidence suggests a role of STAT3 

and SOCS3 in cancers of other regions of the GI tract as summarized below.   

 

K. SOCS3 in esophageal cancer 

To date, few studies have analyzed the potential role of SOCS in 

esophageal cancer. However, activated STAT3 is detected in the nuclei of 

dysplastic Barrett’s esophagus tissues (130). In addition, bile acids and low pH 

induce the IL-6/STAT3 pathway in Seg-1 esophageal adenocarcinoma cells 
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(130). Consistent with these findings, analysis of human tissue in various stages 

of Barrett’s adenocarcinoma revealed that SOCS3, and to a lesser extent 

SOCS1, is down-regulated by promoter hyper-methylation (131). This emerging 

evidence suggests a potential tumor suppressor role for SOCS3 in the 

pathogenesis of Barrett’s adenocarcinoma, but further studies, such as tissue-

specific SOCS3 silencing using the squamous esophageal-specific ED-L2 

promoter (132) would be useful to confirm this hypothesis.  

 

L. SOCS3 in stomach cancer 

Considerable evidence supports tumor-suppressor roles of SOCS3 in the 

stomach. A study of RGM-1 rat gastric mucosal cells showed that infection with 

H. pylori induced SOCS3 expression, while SOCS1 was not expressed and 

SOCS2 expression remained unchanged (133). This is intriguing as H. pylori 

infection is a factor associated with increased risk of gastric cancer. T3b (non-

classical major histocompatibility class 1 molecule) promoter-Cre recombinase 

mediating silencing of SOCS3 in the gastric epithelium and small and large 

intestines, resulted in spontaneous hyperplastic lesions in the stomach as early 

as three weeks of age, and gastric adenocarcinoma by 12-15 weeks (134). 

These effects of SOCS3 deletion were associated with increased nuclear STAT3, 

as well as nuclear accumulation of β-catenin in the gastric epithelium (134). 

The gp130Y757F mouse expresses mutant a gp130 receptor, which is 

unable to bind SOCS3. These mice have enhanced STAT3 and STAT1 

activation and developed spontaneous hyperplastic lesions in the stomach by 4 
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weeks of age (135). These effects were associated with dysregulated SHP2, Erk, 

and AP-1 transcription (135). Recent studies in the gp130Y757F mouse have 

highlighted IL-11, perhaps more so than IL-6, as pro-proliferative factors in the 

development of gastritis-associated gastric tumorigenesis (136). This is 

interesting because other inflammation-associated cancers in other regions of 

the GI tract appear to be mediated predominantly through IL-6 signaling. 

Importantly IL-11 can activate both STAT3 and STAT1, and inhibition of either of 

these STATS in the gp130Y757F mouse decreased gastric tumors and IL-11 

signaling (137).  

 

M. SOCS3 in liver and gall bladder cancers 

The nitrosodiethylamine (DEN) model of hepatocellular carcinoma (HCC) 

has been used by two independent groups to define the role of hepatocyte-

SOCS3.  Collectively, these studies showed that mice lacking hepatocyte-

SOCS3 had an increase in liver tumor incidence, number, and size when 

compared to mice with floxed, but intact SOCS3 alleles.  SOCS3 silencing led to 

increased cellular proliferation, increased STAT3 (and its target genes Bcl-XL, 

Bcl-2, c-Myc, cyclin D1), increased VEGF, increased ERK activation, and 

increased circulating IL-6 (105, 138). In a concanavalin-A model of hepatitis, 

mice lacking liver-SOCS3 had increased STAT3 and NFκB activation, with 

associated decreases in apoptosis (105). These findings strongly support the role 

of SOCS3 as a tumor suppressor in inflammation-associated carcinogenesis of 

the liver.  
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Several studies have shown that hepatitis B and C are major risk factors 

for the development of HCC in humans (139, 140). In a study of hepatitis C 

(HCV) patients, SOCS3 expression was found to be significantly elevated in non-

HCC-regions compared to HCC-regions, as well as compared to patients without 

HCV. Indeed, in non-HCC areas, HCV patients had significantly higher levels of 

local IL-6 and IFNγ expression and associated increases in STAT3 and STAT1. 

These data suggest that HCV patients exhibit a local inflammatory environment 

in which SOCS3 may become silenced, thus permitting tumor formation (105). 

Paradoxically, a different study of human HCC showed that SOCS3 expression 

was low in only a subset of HCC areas studied, and that high SOCS3 correlated 

with vascular invasion, an indicator of poor prognosis (141). A separate protein 

microarray analysis of HCC and normal liver tissues showed that both SOCS3 

and STAT3 were differentially up-regulated, and this was confirmed by western 

blot (142). These data suggest a disconnect in the STAT3/SOCS3 feedback loop 

in liver that promotes HCC, whereby available SOCS3 is insufficient to attenuate 

STAT3 activation. 

 Few studies have examined the role of SOCS proteins in gall bladder 

cancers. In a study looking at SOCS3 in human cholangiocarcinoma tissues and 

cell lines, there was an inverse correlation between tyrosine-phosphorylated 

STAT3 and SOCS3 protein levels, and SOCS3 was highly methylated in tumor 

compared to non-tumor tissue and in two cholangeocarcinoma cell lines (102, 

143). These data suggest that SOCS3 silencing leads to prolonged STAT3 

activation and subsequent tumorigenesis in the biliary tract.  
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N. Hypotheses tested by the studies presented in this dissertation 

 The aim of the studies in this dissertation was to contribute to the growing 

body of knowledge of SOCS3 as a tumor suppressor in inflammation-associated 

and sporadic CRC. In vitro studies assessed mechanisms of SOCS3 tumor 

suppression in the context of cytokines, while translational studies evaluated the 

potential of low SOCS3 expression as a biomarker of adenoma risk. Finally, 

preliminary studies in mice addressed the role of SOCS3 silencing in sporadic 

CRC. These studies are based on the following hypotheses: 

I. Basal or cytokine-induced TNFR2 expression is mediated by STAT3 

and suppressed by SOCS3. SOCS3 limits TNFR2-mediated growth of 

colon cancer cell lines. These studies are described in Chapter II. 

II. Low SOCS3 expression in biopsies of normal colonic epithelium 

correlates with adenoma risk. These studies are described in Chapter 

III. 

III. SOCS3 deletion in intestinal epithelial cells promotes tumor formation 

in the azoxymethane (AOM) mouse model of sporadic CRC. These 

studies are described in Chapter IV.  
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Table 1.1. SOCS3 methylation in gastrointestinal cancers 

Cancer SOCS3 
Methylation 
Pattern 

Tissues Studied Citations 

Barrett’s 
adenocarcinoma 

SOCS3 promoter 
hyper-methylated in 
74% of tissues 
studied 
 

Human Barrett’s 
adenocarcinoma (n=19), 
intraepithelial neoplasia 
(n=56), and precursor 
(n=30) or normal tissue 
(n= 20) 
 

(131) 

Colorectal 
adenocarcinoma 
 

SOCS3 is hyper-
methylated in 
ulcerative colitis-
associated colorectal 
cancer 
 

Human tissue, 
methylation in tumor 
versus non-tumor tissue 
(n=4) 
 

(103) 

SOCS3 hyper-
methylation in HCC 
subclass with poor 
survival 

Human HCC tissues with 
surrounding normal tissue 
(n=80), n=55 for cirrhosis-
associated, n=58 for poor 
survival (<3 years) group 

(144) 

Hepatocellular 
carcinoma 
(HCC) 
 

SOCS3 is hyper-
methylated in HCC 
cell lines and in 33.3% 
of primary HCC 
tumors; aberrant 
methylation of SOCS1 
in 67% of human HCC 
tumors; concomitant 
methylation of SOCS1 
and SOCS3 in 28% of 
human HCC tumors 

HuH2, Hap3B, HT17 
HCC cell lines; primary 
HCC tumors (n=18) 

(104) 

Cholangiocarcinoma 

SOCS3 hyper-
methylated in 
cholangiocarcinoma 
tissues and cell lines 

Human 
cholangiocarcinoma cell 
lines Mz-ChA-1 and 
CCLP1, ressected liver 
tissue with intrahepatic 
cholangiocarcinoma 
(n=26) 

(102, 143) 
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Table 1.2. Mouse models of intestinal cancer discussed in this dissertation 

Mouse Model Mechanisms Tumor Phenotype Citations 
Adenomatous 
polyposis coli- 
multiple intestinal 
neoplasia 
(APCMin/+) 

Heterozygous mutation 
in APC gene, loss of 
wild-type copy of APC 
gene leads to β-catenin 
activation and 
TCF/LEF-mediated cell 
cycle progression 

Hundreds of small 
intestinal polyps, small 
number of colon tumors 

(145-148) 

Azoxymethane 
(AOM) 

Mutations in APC and 
Ctnnb1 genes leads to 
β-catenin activation 
and TCF/LEF-mediated 
cell cycle progression 

Colon tumor development* (149-153) 

AOM/dextran 
sodium sulfate 
(AOM/DSS) 

β-catenin activation 
and TCF/LEF-mediated 
cell cycle progression, 
elevated COX-2 and 
iNOS expression in 
tumor lesions 

Colon tumor development* (154, 155) 

* Strain-dependent differences in tumor phenotype 
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Table 1.3. IL-6/STAT3/SOCS3 pathway in mouse models of intestinal cancer 

 Mutation Mouse 
Model 

Tumor 
Phenotype 

Mechanisms Citations 

IL-6-/- AOM/ 
DSS* 

 tumor load   proliferation  
 phospho-STAT3 
 cyclin-D1  
 COX-2  
 MMP9  
 Hsp70  
 Bcl-XL 

(121) 

IL-6 

IL-6-/- APCMin/+ **  tumor load  phospho- to total 
STAT3 ratio 

(120) 

gp130Y757F † AOM/ 
DSS 

 tumor 
incidence and 
size 

 proliferation  
 cyclin D1  
 c-Myc  
 cyclin B1  
 cdc2 

(125) 

gp130Y757F  APCMin/+  tumor 
incidence 

Unspecified Unpublish
ed data 
noted in 
(125) 

IEC-
STAT3Δ/Δ 

AOM/ 
DSS 

 tumor load   tumor multiplicity  
 tumor size 
 proliferation  
 apoptosis 

(121, 125) STAT3 

IEC-
STAT3Δ/Δ 

APCMin/+  tumor 
number, but 
 tumor size 
in aged mice 

 IEC proliferation, 
 nuclear β-
catenin  
 cyclin D1  
 ceacam1  

(126) 

IEC-
SOCS3Δ/Δ 

AOM/ 
DSS 

 tumor load  IEC proliferation 
 IL-6/STAT3 and 
TNFα/NFκB 
activation 

(115) 

SOCS3 
IEC-
SOCS3Δ/Δ 

AOM††  tumor 
incidence  

Not yet determined Chapter 
IV 

* Azoxymethane/dextran sodium sulfate model (inflammation-associated CRC) 
** Genetic model of spontaneous CRC 
† Causes STAT3 hyper-activation 
†† Chemically-induced model of spontaneous CRC 
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Figure 1.1. Schematic of intestinal layers and organization of small intestine and 
colon epithelium. (A) The intestine is comprised of multiple layers. (B & C) The small 
intestine is organized into crypts and villi, while the colon is comprised of crypts and 
surface epithelium.  
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Figure 1.2. Schematic of intestinal stem cell division and location of stem cell, 
proliferative, and differentation zones in the crypt. (A) Stem cells undergo 
asymmetric division to produce cells of all four intestinal epithelial lineages. Symmetric 
division occurs infrequently and can facilitate production of two stem cells. (B) Stem cells 
are thought to reside at the base of the crypt in the descending colon (and in the mid-
crypt in ascending colon). After stem cell division, daughter cells proliferate in the transit-
amplifying zone, and differentiate as they migrate towards the surface epithlium. The 
presence of Wnt signaling promotes proliferation in the stem cell and transit-amplifying 
zones, while Wnt signaling is thought to be “turned off” in the differentation zone (5-7). 
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Figure 1.3. General actions of SOCS proteins. (A) SOCS proteins inhibit JAK through 
direct binding or through binding to JAK docking sites on cytokine receptors. (B) SOCS 
proteins compete with STAT proteins for binding sites on cytokine receptors. (C) SOCS 
proteins target their binding proteins for proteasomal degradation through interactions 
with E3 ubiquitin ligases. 
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Figure 1.4. SOCS3 protein domains and general pathway. (A) SOCS3 binds other 
proteins through its SH2 and ESS (extended SH2) domains, and inhibits JAK 
phosphorylation through its kinase inhibitory region (KIR). Alternatively, SOCS3 can 
promote degradation of its binding partners through SOCS-box dependent binding to E3 
ubiquitin ligases. SOCS3 protein turnover is mediated through the PEST 
(Pro/Glu/Ser/Thr-rich) domain. (B) Upon IL-6 binding to its receptor, phosphorylated JAK 
binds to and phosphorylates STAT3, which then dimerizes and translocates to the 
nucleus. SOCS3 is induced by and subsequently inhibits STAT3 and the various cellular 
effects of STAT3 activation. 
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Figure 1.5. Initiating events and common mutations in progression of sporadic 
and inflammation-associated CRC. Both cancer types share common mutations, but 
differ in the point of progression in which such mutations occur. Adapted from (106, 107, 
110, 156, 157) 
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CHAPTER II 

 

CYTOKINE-INDUCTION OF TUMOR NECROSIS FACTOR RECEPTOR 2 

(TNFR2) IN COLON CANCER CELLS IS MEDIATED BY STAT3 AND 

SUPPRESSED BY SOCS3  
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 A. Introduction 

 Patients with inflammatory bowel diseases (IBD) such as Crohn’s disease 

and ulcerative colitis have an increased lifetime risk of developing inflammation-

associated colorectal cancer (CRC) (158-160). Chronic increases in proliferation 

of intestinal epithelial cells (IEC) driven by pro-inflammatory factors have been 

shown to promote tumorigenesis. The IL-6/STAT3 (121, 125, 161-164) and 

TNFα/ NFκB (117, 165, 166) pathways are both major mediators of inflammation-

associated CRC and recent studies show that a TNFα neutralizing antibody 

decreases intestinal tumor formation in mice (51, 57, 121).  

TNFα signals through two receptors: TNFR1 and TNFR2. TNFR1 exerts 

pro-apoptotic functions due to its intracellular death domain (167). TNFR2, which 

lacks a death domain, promotes proliferation of IEC and colon cancer cells (56, 

168). This supports a concept that TNFR2 may mediate pro-tumorigenic effects 

of TNFα. The role of TNFR2 in inflammation-associated cancer is a topic of 

increasing interest, as recent studies indicate that TNFR2 is up-regulated in IBD 

and in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of 

inflammation-associated cancer (56-58). In vitro studies have shown that TNFR2 

is induced in colon cancer cells treated with both TNFα and IL-6, but neither 

cytokine alone (56). Other studies have demonstrated TNFR2 induction by IFNγ 

(55). These findings suggest that the STAT pathways activated by IL-6 or IFNγ 

and/or NFκB pathways typically activated by TNFα may interact to induce TNFR2 

expression. In support of this possibility, the human TNFR2 promoter contains 

two consensus STAT binding sites and two consensus NFκB binding sites (169).  
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Suppressors of cytokine signaling (SOCS) proteins limit cytokine signaling 

(170). IEC-specific SOCS3 gene deletion increased tumor load in the AOM/DSS 

model of colitis-associated CRC (115). This effect was associated with enhanced 

activation of both STAT3 and NFκB (115). In vitro, SOCS3 over-expression 

reduced proliferation of colon cancer cell lines and inhibited both IL-6-induced 

STAT3 activation and TNFα-induced NFκB activation (115). SOCS3 genes are 

silenced by promoter hyper-methylation in various human cancers, including 

CRC (171-174). Together these data provide strong evidence that SOCS3 

normally acts as a suppressor of inflammation-associated colorectal cancer. The 

current study tested the hypothesis that SOCS3 limits the expression and 

growth-promoting actions of TNFR2 in colon cancer cells. We show that SOCS3 

over-expression decreases TNFR2 expression, as well as the ability of STAT3 to 

bind to the TNFR2 promoter. We also demonstrate that TNFR2 over-expression 

increases (and TNFR2 silencing decreases) proliferation. TNFR2 over-

expression has modest but significant effects to increase anchorage-independent 

growth of colon cancer cells. Together, these findings provide to our knowledge 

the first direct evidence that increased TNFR2 expression promotes tumor 

growth. SOCS3 over-expression dramatically reduces proliferation and 

anchorage-independent growth of colon cancer cells. This provides direct 

evidence that SOCS3 is a potent suppressor of colon cancer cell growth and may 

act in part by limiting TNFR2.   

 

B. Materials and Methods 
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Cell culture and cytokine treatments 

SW480 and COLO205 cells were used in this study because both express 

low levels of endogenous SOCS3. SW480 cells were used for the majority of 

experiments because our prior studies demonstrated that these cells are 

responsive to both IL-6 and TNFα, which robustly activate STAT3 and NFκB, 

respectively (115). COLO205 cells were used as an independent cell line to 

confirm cytokine induction of TNFR2. Since COLO205 cells grow well in soft agar 

they were also used to address effects of TNFR2 and SOCS3 on anchorage-

independent growth. SW480 and COLO205 cells were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA). Cells were grown in 

RPMI 1640 media (Gibco, Carlsbad, CA) supplemented with 10% heat-

inactivated fetal bovine serum, 50U/mL penicillin, and 50mg/mL streptomycin. 

Given prior findings that both IL-6 and TNFα were required to induce TNFR2 

(56), cells were treated with recombinant human IL-6 and/or TNFα (Peprotech, 

Rocky Hill, NJ) at 50ng/mL in serum-free medium. Cells were harvested at 

various times after cytokine treatment for evaluation of TNFR2 mRNA and 

protein, or STAT3 and NFκB binding to consensus regions in the TNFR2 

promoter. 

 

Semi-quantitative real time PCR analyses 

Total RNA was extracted from cell lines using the RNeasy Mini Kit 

(Qiagen, Valencia, CA) according to manufacturer’s instructions. Reverse-

transcription was performed using AMV-RT (Promega, Madison, WI). PCR and 
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analyses were completed on the Rotorgene 2000 (Qiagen) using Invitrogen 

(Carlsbad, CA) Platinum qPCR Supermix-UDG and the following Taqman primer-

probe sets (Applied Biosystems, Carlsbad, CA): human TNFR2 

Hs00961755_m1, human IL-6 (Hs00985639_m1), human ICAM-1 (positive 

control as NFκB-induced gene). Hydroxymethylbilane synthase (human HMBS) 

Hs00609297_m1 was used as an invariant control. Non-reverse transcribed (no 

RT) samples were used as negative controls. Gene expression was calculated 

using the R = 2-[delta][delta]Ct method, where changes in Ct values for the genes of 

interest were normalized to HMBS. In all cases, gene expression for particular 

treatment groups was expressed as fold change versus mean values for no 

treatment control. Real time PCR reactions were performed in triplicate and 

replicated in at least three independent experiments. 

 

ELISA for TNFR2 

Soluble TNFR2 levels in cell supernatants were measured using 

Quantikine ELISA system (R&D Systems, Minneapolis, MN) according to 

manufacturer’s instructions. Samples were normalized to total protein as 

measured by BCA protein assay (Pierce, Rockford, IL). 

 

Flow cytometric analysis of surface TNFR2 expression 

 Cell surface expression of TNFR2 was assessed using flow cytometry as 

previous described (56). SW480 cells (1X105 cells per condition) were 

trypsinized, washed with serum-free RPMI 1640 media (Gibco) and incubated 
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with IL-6 and TNFα at 50ng/mL for 10 hours at 37°C with rotation in 15mL conical 

tubes. Cells were then resuspended in wash buffer (phosphate-buffered saline 

supplemented with 1% bovine serum albumin and 1mg/mL DNase (Roche, Palo 

Alto, CA), and Fc-blocked with 1µg human IgG (R&D Systems) for 15 minutes. 

Cells were then incubated with fluorescein-conjugated anti-TNFR2 (R&D 

Systems) or isotype control (BD Pharmingen, Franklin Lakes, NJ) for 45 minutes 

at 4°C. Following antibody incubation, cells were washed and resuspended in 2% 

paraformaldehyde. Flow cytometric analysis of surface TNFR2 was then 

performed using a CyAn flow cytometer (Beckman-Coulter-Dako, Brea, CA). 

Effect of cytokine treatment on TNFR2 surface expression was measured based 

on fluorescein intensity. 

 

STAT3 and NFκB inhibition 

 To test if cytokine-induced TNFR2 mRNA induction requires STAT3 

and/or NFκB activation, SW480 cells were treated with the STAT3 inhibitor 

Cucurbitacin I (Tocris, Ellisville, MO) at 20µM, or IκB kinase inhibitor Bay 11-

7082 at 5µM. Bay 11-7082 was kindly provided by Dr. Albert Baldwin (University 

of North Carolina, Chapel Hill, NC). Inhibitor doses were based on maximum 

effective doses used in prior studies (175, 176).  SW480 cells were seeded in 

complete media, grown for 24 hours, and treated with inhibitors and IL-6, TNFα, 

or both cytokines at 50ng/mL for 10 hours prior to mRNA extraction. No 

treatment controls were treated with vehicle (dimethyl sulfoxide (DMSO). ICAM-

1, which was previously shown to be regulated by cytokine-induction of NFκB 
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(65), was measured by Taqman qRT-PCR to confirm effectiveness of Bay 11-

7082. 

 

Chromatin immunoprecipitation (ChIP) to assess STAT3 and NFκB binding 

to the TNFR2 promoter 

 For ChIP, SW480 cells were serum-deprived overnight followed by 

treatment with IL-6, TNFα, or both cytokines (50ng/mL) for 5-60 minutes. After 

treatment, cells were cross-linked with 1% formaldehyde for 10 minutes. 

Subsequent steps were performed as specified in the ChIP-IT Express (Active 

Motif, Carlsbad, CA) user manual. Briefly, cross-linked cells were lysed and 

sonicated, followed by overnight immunoprecipitation with anti-STAT3 (SC-483x) 

and anti-p65 NFκB (SC-372) (Santa Cruz Biotechnology, Santa Cruz, CA), or 

Negative Control IgG antibody (Active Motif). Eluted, reverse cross-linked 

protein:DNA complexes were treated with proteinase K for 1 hour, followed by 

column purification (QIAquick PCR Purification Kit, Qiagen) and then PCR with 

primers specific to STAT3 and NFκB-binding elements within the TNFR2 

promoter. Oligomers to amplify these binding sites were purchased from Sigma 

and sequences are shown in Table 2.1. Densitometry was performed to quantify 

the PCR amplified transcription factor binding sites. 

 

Western blot for activated STAT3 in nuclear extracts 

 Western blots were performed on nuclear extracts from SW480 cells to 

determine whether IL-6 combined with TNFα enhances STAT3 activation and 
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nuclear STAT3. Nuclear extracts were prepared as previously described (177). 

Briefly, SW480 cells were grown to confluence, serum-deprived overnight, and 

treated with IL-6 and TNFα (50 ng/mL) for 30 minutes. Cells were then pelleted in 

lysis buffer containing 10mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM 

EGTA, 1 mM dithiothretol (DTT), 2 µg/mL aprotonin and 1 mM 

phenylmethylsulfonyl fluoride (PMSF).  Nuclei were obtained by adding 10% 

NP40 and centrifuging for 5 minutes at 15,000 x g. Pellets were then 

resuspended in buffer containing 20 mM Hepes pH 7.9, 400 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1 mM DTT, and 1 mM PMSF to release nuclear proteins. 

The nuclear suspension was centrifuged at 15,000 x g for 5 minutes, and 

supernatants containing nuclear extracts were then subjected to 

immunoprecipitation and immunoblot with the following antibodies: anti-phospho-

tyrosine STAT3: rabbit polyclonal pTyr705 (#9131, Cell Signaling, Danvers, MA); 

anti-STAT3 (total): rabbit polyclonal SC-7179 (Santa Cruz Biotechnologies). 

Coomasie-stained protein gels verified equivalent amounts of nuclear protein in 

samples used for immunoprecipitation. 

 

Constitutive activation of STAT3 

 Constitutively-active STAT3 (CA-STAT3) adenovirus was kindly provided 

by Dr. Christian Jobin. This vector is constitutively activated due to C661A and 

C663N mutations and has been functionally characterized in prior studies (54, 

178). SW480 cells were treated with CA-STAT3 at 50 MOI or with IL-6 and TNFα 

for 10 hours prior to mRNA extraction for evaluation of TNFR2 expression. 
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SOCS3 and TNFR expression constructs 

 Cell treated with SOCS3 and/or TNFR2 expression constructs were used 

to evaluate effects of SOCS3 on cytokine-induced TNFR2 mRNA, proliferation, 

and anchorage-independent growth. Plasmid pBIG2i expressing human SOCS3 

or empty vector were kindly provided by Drs. Richard Furlanetto and Peter 

Nissley and used to generate adenovirus expressing human SOCS3 as 

previously described (115). Adenoviruses were used at a multiplicity of infection 

(MOI) of 100. Cells were treated with adenovirus for 24-48 hours in complete 

media and switched to serum-free media overnight prior to cytokine stimulation. 

Adenovirus-mediated over-expression of SOCS3 was confirmed by Northern blot 

and qRT-PCR (data not shown).  

 Retroviral expression vector pQCXIP containing c-myc-tagged human 

TNFR2 was kindly provided by Dr. Daniella Männel (University of Regensburg, 

Regensburg, Germany). Empty vector pQCXIP was obtained from BD 

Biosciences Clontech (Mountain View, CA). HEK293 cells were co-transfected 

with retroviral vectors and packaging vector as previously described (179) using 

jetPei (Polyplus Transfection, West Chester, PA) according to manufacturers 

instructions. Media containing TNFR2 retrovirus was collected from transfected 

HEK293 cells and used to treat SW480 or COLO205 cells for 24-48 hours. 

TNFR2 over-expression was confirmed using western immunoblot (data not 

shown). 
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TNFR2 silencing 

SW480 or COLO205 cells were grown to approximately 50-70% 

confluence in RPMI 1640 medium (Gibco, with 10% FBS, plus antibiotics).  Cells 

were trypsinized and counted. 1 x 106 cells of each cell line were then transfected 

using nucleofector technology according to manufacturers instructions (Kit V for 

SW480, Kit T for COLO205, Lonza, Conshohocken, PA) with 100 pmoles of each 

of 3 different siRNAs: oligonucleotides encoding TNFR1 and TNFR2, or 

scrambled control (Applied Biosystems).  Each transfected cell culture was 

divided into 2 parts: one was seeded for subsequent RNA isolation; the other into 

24-well culture plates for a tritiated-thymidine incorporation/proliferation assay.  

RNA was isolated after 24 hour incubation in serum-containing medium.  Cells in 

the 24-well plate were incubated for 24 hours in serum-containing medium, then 

switched to serum-free medium containing tritiated-thymidine (2 uCi/mL, 

PerkinElmer, Waltham, MA).  After 24 hours, labeled cells were washed once 

with 1XPBS, fixed in 10% trichloroacetic acid for 10 minutes, harvested in 0.2N 

NaOH/0.1% SDS, collected and counted by liquid scintillation counting (Packard 

model 1600).   

 

Analysis of cell proliferation and anchorage-independent growth 

Assays of [3H]thymidine incorporation into DNA were used as a measure 

of cell proliferation and were performed as previously described (180). SW480 

cells were plated in 24-well plates at a density of 1 x 104 cells per well and 

treated with SOCS3 and/or TNFR2 expression constructs for 24 hours.  Medium 
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was then supplemented with 2 µCi/mL [3H]thymidine overnight and thymidine 

incorporation was measured using scintillation counting. Values are expressed 

as fold change compared to empty vector control.  

COLO205 cells, which show robust colony formation in soft agar, were 

used to test the effects of SOCS3 or TNFR2 on anchorage-independent growth . 

Cells were treated with empty vector, SOCS3, TNFR2 or both SOCS3 and 

TNFR2 expression constructs. COLO205 cells were trypsinized and suspended 

in complete culture media supplemented with 0.3% agar followed by plating in 6-

well culture dishes coated with 5% agar. Cells were treated with expression 

constructs at Days 1, 7, and 14. At day 21, viable cells were stained with 3-(4,5-

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) for 4 hours and 

colonies quantified using NIH ImageJ (181). 

 

Statistics 

Values are expressed as mean + standard error (S.E.). Comparisons 

between cell treatments were analyzed using one-way analysis of variance 

followed by post-hoc, pair-wise comparisons using Fisher’s PLSD. A p-value of 

<0.05 was considered statistically significant for all experiments. 

 

C. Results 

IL-6 and TNFα induce TNFR2 in SW480 and COLO205 cells 

Prior studies in colon cancer cells indicate that TNFR2 expression is 

increased by combined IL-6 or TNFα treatment, with only modest effects due to 
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either cytokine alone (56). Figure 2.1A and B confirm increased TNFR2 mRNA 

levels upon combined treatment with IL-6 and TNFα in SW480 and COLO205 

cells.  Evaluation of TNFR2 protein by ELISA and flow cytometry (Figure 2.1C, D, 

and E) verifies these data. Surprisingly, SW480 cells treated with TNFα alone 

exhibit a similar magnitude of induction as treatment with both cytokines. We 

therefore tested if TNFα-treated cells had increased IL-6 mRNA levels, indicating 

that these cells may be exhibiting autocrine IL-6 stimulation, an emerging 

concept seen in other cancers (123, 182, 183). Figure 2.1F demonstrates that 

TNFα treatment leads to induction of IL-6 mRNA in SW480 cells, which suggests 

that TNF-induced IL-6 may contribute to the induction of TNFR2 by TNFα to 

similar levels as observed in cells treated with both IL-6 and TNFα.  

 

STAT3 inhibitors more potently inhibit TNFR2 expression than NFκB 

inhibitors 

To functionally assess the role of STAT3 or NFκB in regulating TNFR2 

expression, we examined the effects of a STAT3 (cucurbitacin) or NFκB (Bay 11-

7082) inhibitors on basal and cytokine-induced TNFR2 mRNA. Based on 

published and pilot studies, we used maximally effective doses of 20µM 

cucurbitacin or 5µM Bay 11-7082. Cucurbitacin significantly decreased both 

basal- and cytokine-induced TNFR2 mRNA (Figure 2.2A). Bay 11-7082 

treatment had no significant effect on basal or IL-6 mediated TNFR2 mRNA 

levels, but decreased TNFα-induced TNFR2, and modestly although non-

significantly decreased TNFR2 mRNA in cells treated with both IL-6 and TNFα. 
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Importantly the inhibitory effects of cucurbitacin combined with Bay 11-7082 on 

basal or cytokine-induced TNFR2 did not differ significantly from STAT3 inhibitor 

alone, indicating a primary role for STAT3 in mediating basal or cytokine-induced 

TNFR2 expression (Figure 2.2A). Since it has been established that cytokines 

induce ICAM-1 through NFκB-dependent mechanisms, we verified the efficacy of 

Bay 11-7082 by showing that IL-6 and TNFα induced a 4.4 ± 0.6-fold increase in 

ICAM-1 mRNA, and treatment with Bay 11-7082 potently inhibited this effect 

(Figure 2.2B). Thus, the modest effects of NFκB inhibitor versus STAT3 inhibitor 

on TNFR2 expression were not due to a lack of effective Bay 11-7082 dosing. 

Together these findings suggest a predominant role of STAT3 in mediating 

cytokine-induced TNFR2 expression. 

To confirm a role for STAT3 in TNFR2 expression, we treated SW480 

cells with a constitutively-active STAT3 (CA-STAT3) adenovirus. Expression of 

CA-STAT3 in the absence of cytokine treatment induced TNFR2 mRNA levels to 

the same degree as observed with combined IL-6 and TNFα treatment (Figure 

2.2C). Together, the data with STAT3 inhibitor and constitutively activated 

STAT3 suggest that STAT3 is necessary and sufficient for basal and IL-6/TNFα-

induced TNFR2 expression. 

 

IL-6 and TNFα induce STAT3, but not NFκB binding to the TNFR2 promoter 

Given that our prior data suggested a predominant role of STAT3 versus 

NFκB in mediating increased TNFR2 expression in response to IL-6 and TNFα, 

we used ChIP to more directly assess the effect of cytokines on binding of 
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STAT3 and NFκB to putative binding elements in the TNFR2 promoter (Figure 

2.3A). Using antibodies specific to STAT3 or NFκB, we performed ChIP assays 

followed by PCR amplification of the putative STAT3 and NFκB binding sites. 

Combined IL-6 and TNFα treatment induced binding of STAT3 to both of the 

putative STAT binding sites, with maximal binding at 30 and 60 minutes for -364 

and -1578 sites, respectively (Figure 2.3B). Densitometry revealed that IL-6 and 

TNFα induced 2.0 ± 0.4-fold and 3.8 ± 1.6-fold and increases in STAT3 binding 

to the -364 and -1578 sites, respectively. There was a small degree of basal 

NFκB binding, but surprisingly, this was not enhanced by IL-6 and TNFα 

treatment.  

To delineate the individual contribution of IL-6 and TNFα on STAT3 

binding to the TNFR2 promoter, we treated cells with either cytokine alone or in 

combination and performed ChIP for STAT3 as described above. IL-6 and TNFα 

alone modestly induced STAT3 binding to the -1578 STAT binding site, while 

both cytokines combined induced dramatic increases in STAT3 binding to this -

1578 element (Figure 2.3C). Putative STAT3 binding site -364 differed in that IL-

6 alone, but not TNFα induced STAT3 binding and combined cytokines had 

similar effects as IL-6 alone. Thus, the cooperative effects of IL-6 and TNFα to 

activate STAT3 appear selective for the -1578 STAT3 binding site.  

Because combined IL-6 and TNFα led to a dramatic increase in STAT3 

binding to the -1578 STAT3 binding site in the TNFR2 promoter, we assessed 

whether the two cytokines in combination enhanced tyrosine phosphorylation of 

STAT3 relative to IL-6 or TNFα alone. Western blot on nuclear extracts revealed 
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that IL-6 increased phosphorylated and total STAT3 in the nucleus, whereas 

TNFα alone has no effect (Figure 2.3D). Both cytokines together did not 

dramatically augment tyrosine phosphorylation of STAT3 or total nuclear STAT3. 

Thus, enhanced tyrosine phosphorylation of STAT3 does not appear to account 

for the combinatorial effects of IL-6 and TNFα on STAT3 binding to the -1578 

STAT3 binding site. It is noteworthy that the treatment time points used to 

examine TNFα effects on STAT3 binding by CHIP and STAT3 tyrosine 

phosphorylation are much shorter than the times (10 hours) needed for TNFα to 

induce IL-6 mRNA.  

 

SOCS3 inhibits cytokine-induced TNFR2 expression and STAT3 binding to 

the -1578 STAT3 site 

Negative regulation of STAT3 by SOCS3 is well established (66, 86, 87). 

To test whether SOCS3 inhibits TNFR2 expression, we treated SW480 cells with 

SOCS3 adenovirus or empty vector control and examined TNFR2 mRNA. As 

anticipated, SOCS3 over-expression significantly inhibited cytokine-induced 

TNFR2 (Figure 2.4A). ChIP assay also revealed that SOCS3 over-expression 

dramatically inhibited cytokine-induced STAT3 binding to the -1578 site, but had 

variable and non-significant effects on STAT3 binding to the -364 site (Figure 

2.4B).  

 

TNFR2 over-expression increases proliferation 
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Prior in vivo studies suggest that TNFR2 null mice show reduced crypt 

proliferation during intestinal inflammation (56). To directly test the effects of 

TNFR2 on cancer cell proliferation, and whether SOCS3 can inhibit this effect, 

we over-expressed TNFR2 and/or SOCS3 in SW480 cells and measured 

[3H]thymidine incorporation into DNA. TNFR2 increased [3H]thymidine 

incorporation into DNA, and SOCS3 markedly inhibited basal and TNFR2-

induced proliferation of SW480 cells (Figure 2.5A). To assess whether 

endogenous TNFR2 mediates colon cancer cell proliferation, we silenced TNFR2 

using siRNA (Figure 2.5B). TNFR2 expression was decreased 45% using 

TNFR2-targeted siRNA, and TNFR1 mRNA was unaffected. A control TNFR1 

siRNA had no effect on TNFR2 mRNA but inhibited TNFR1 by 80%. Western 

blots verified that TNFR2 protein levels were decreased by 40% with TNFR2-

specific siRNA  (data not shown).  TNFR2 silencing modestly, but significantly 

decreased [3H]thymidine incorporation (Figure 2.5C). Together, these results 

demonstrate that TNFR2 directly promotes proliferation of SW480 cells. 

 

SOCS3 over-expression limits TNFR2-mediated anchorage-independent 

growth 

The ability of cancer cell lines to exhibit anchorage-independent growth in 

soft agar is indicative of phenotypic transformation towards unregulated growth. 

We used COLO205 cells to test the effect of TNFR2 and SOCS3 on anchorage-

independent growth. We first confirmed that SOCS3 over-expression limits 

TNFR2 expression in these cells (Figure 2.6A). Next, COLO205 cells were plated 
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in soft agar and treated with empty vector, TNFR2, and/or SOCS3 expression 

constructs. Cells over-expressing TNFR2 showed a small, but significant 

increase in colony formation when compared to empty vector controls. SOCS3 

over-expression dramatically decreased (>70%) colony formation compared to 

empty vector control and SOCS3 also dramatically decreased colony formation in 

cells over-expressing TNFR2 (Figure 2.6B & C).  

  

D. Discussion 

The etiology of inflammation-associated CRC is based strongly on the 

model that chronically up-regulated cytokines drive excessive proliferation of 

intestinal epithelial cells, tumor initiation and progression. TNFR2 has recently 

emerged as a pro-proliferative factor that is up-regulated in IBD and in the 

AOM/DSS model of IBD-associated cancer (56, 57). Mechanisms regulating 

TNFR2 expression in IBD or CRC are not fully defined, although prior studies 

suggest that combined effects of IL-6 and TNFα promote TNFR2 expression 

(56). The current study provides novel evidence that IL-6 and TNFα act 

predominantly through STAT3 to induce TNFR2 in CRC (Figure 2.7). We also 

demonstrate that SOCS3 inhibits cytokine induction of TNFR2 and STAT3 

binding to the TNFR2 promoter, and can limit the ability of TNFR2 to promote 

proliferation or anchorage-independent growth of colon cancer cells. 

 Mizoguchi and colleagues provided the first evidence for up-regulation of 

TNFR2 during intestinal inflammation by demonstrating that TNFR2 was 

increased during acute DSS-colitis, and this was preceded by IL-6/STAT3 
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activation. They also demonstrated that TNFR2 disruption led to decreased IEC 

proliferation in the T-cell receptor α (TCRα) null model of colitis (56).   

Furthermore, TCRα mice with disruption of both IL-6 alleles showed reduced 

colitis severity and decreased TNFR2 expression compared to TCRα mice with 

intact IL-6 (56). While these studies suggested an association between IL-

6/STAT3 and TNFR2, the ability of STAT3 to directly regulate TNFR2 expression 

has not been tested. Prior in vitro studies indicated that both IL-6 and TNFα are 

required to induce TNFR2 in CRC cells, potentially reflecting a physiological 

micro-environment of induction of multiple cytokines, as found in IBD or IBD-

associated CRC. The current study confirmed induction of TNFR2 mRNA and 

protein by combined IL-6 and TNFα in two different colon cancer cell lines and 

provides novel and direct evidence for predominant role of STAT3 in TNFR2 

induction. We also provide evidence that TNFα induces IL-6 in SW480 cells 

suggesting that autocrine effects of TNFα-induced IL-6 contribute to the ability of 

TNFα and IL-6 to cooperatively stimulate TNFR2 expression.  

 The TNFR2 promoter contains two putative STAT binding sequences and 

NFκB binding sequences (169). Since TNFα typically activates NFκB and IL-6 

typically activates STAT3, we hypothesized that IL-6 and TNFα induction of 

TNFR2 would be mediated by activation of both of these transcription factors. We 

provide several independent pieces of evidence to indicate that STAT3, rather 

than NFκB, is the predominant mediator of TNFR2 induction by IL-6 and TNFα. 

Specifically, a STAT3 inhibitor reduces basal TNFR2 expression and completely 

reverses the induction of TNFR2 by IL-6 and TNFα. In contrast, NFκB inhibitor 
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had no effect on basal TNFR2 expression and only modestly and non-

significantly reduced induction of TNFR2 by combined IL-6 and TNFα. This was 

despite data verifying that the NFκB inhibitor potently and completely reverse 

cytokine induction of ICAM-1 mRNA, whose expression is known to be 

dependent on NFκB. Importantly combined STAT3 and NFκB inhibitors did not 

reduce basal or cytokine-induced TNFR2 expression compared with STAT3 

inhibitor alone and constitutively activated STAT3 was able to induce TNFR2 to a 

similar extent as IL-6 and TNFα. Together these findings indicate a predominant 

role of STAT3 in mediating TNFR2 induction and demonstrate that STAT3 

activation alone is sufficient to mimic cytokine effects on TNFR2 expression. 

ChIP assays also confirmed that IL-6 and TNFα induced STAT3 binding to two 

putative STAT3 binding sites, but had no effect on NFκB binding. This was in 

spite of the fact that TNFα is known to induce phosphorylation of NFκB in this 

same cell system (115). It is also notable that combined IL-6 and TNFα more 

potently induced STAT3 binding to the  -1578 binding site in the TNFR2 promoter 

than the -364 site. Interestingly, the -1578 STAT3 binding site also showed 

dramatic cooperative effects of IL-6 and TNFα to induce STAT3 binding while 

alone only modestly induced STAT3 binding to this site.  

Collectively, these observations provide compelling evidence that IL-6 and 

TNFα interact to promote maximal STAT3 binding to the TNFR2 promoter and 

TNFR2 induction, and that this cooperative effect appears to occur primarily at 

the -1578 STAT binding site. While we cannot rule out the possibility that NFκB 

binds to other regions in the TNFR2 gene, observations that IL-6 and TNFα did 
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not induce NFκB binding to consensus NFκB sites and the minimal effects of 

NFκB inhibitor on TNFR2 expression support a novel mechanism of TNFα and 

IL-6 interaction to induce TNFR2 by predominant effects on STAT3.  

A number of recent studies implicate TNFR2 as a mediator of colitis-

associated cancer. TNFR2 has been shown to increase proliferation and 

migration of colon cancer cell lines and is up-regulated in mouse models and 

patients with inflammatory bowel diseases. Additionally, disruption of TNFR2 

genes decreased proliferation of crypt epithelial cells (56, 168). Recent studies in 

the AOM/DSS model of inflammation-associated CRC revealed that TNFR2 is 

preferentially up-regulated over TNFR1 and that treatment with the anti-TNFα 

mAb MP6-XT22 reduced the number and size of tumors, although colitis severity 

was unchanged (57).  In a separate study, anti-TNFα antibodies given at late 

stages of the AOM/DSS model reduced tumor load (121). To our knowledge, a 

direct effect of TNFR2 on CRC proliferation or transformed phenotype has not 

been demonstrated. Our current study used TNFR2 over-expression in two 

different colon cancer cell lines to demonstrate that TNFR2 directly enhances 

proliferation and anchorage independent growth of colon cancer cells. This 

strongly supports a direct effect of TNFR2 on colon cancer cell proliferation and 

supports the concept that TNFR2 is a key pro-tumorigenic factor. 

SOCS3 silencing has been implicated in risk of lung, liver, and squamous 

cell cancers (101, 104, 105, 184, 185). Our previous study showed that IEC-

specific deletion of SOCS3 led to an increase in tumor load in the AOM/DSS 

model, supporting the hypothesis that SOCS3 may act as a suppressor of colitis-
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associated cancer (115). This same study revealed that loss of IEC-SOCS3 

resulted in enhanced activation of both STAT3 and NFκB. We report here that 

SOCS3 over-expression limits TNFR2 expression in colon cancer cell lines and 

limits STAT3 binding to the TNFR2 promoter. Importantly, SOCS3 limits basal 

and TNFR2-induced proliferation of colon cancer cells and dramatically 

decreases anchorage-independent growth. Together, these findings support a 

direct role of SOCS3 as an inhibitor of colon cancer cell growth and indicate that 

loss of SOCS3 may promote colon tumors at least in part by promoting increases 

in TNFR2 expression.  

Anti-TNFα therapies are widely used in the treatment of human IBD (186-

190). However, the effect of anti-TNFα therapy on risk of colitis-associated 

cancer is not well defined. These studies are seemingly difficult to perform due to 

the incidence of bowel resection in patients with IBD. However, reports of using 

anti-TNFα therapies in renal cell carcinoma showed promising results to prevent 

tumor progression in established disease (236). Anti-TNFα would reduce 

activation of both TNFR1 and TNFR2 by TNFα. Our findings that TNFR2 directly 

promotes CRC growth and that TNFα plays a role in TNFR2 induction suggest 

that TNFR2 may provide a useful biomarker of effects of anti-TNFα on risk of 

colitis-associated cancer, or represent a specific target to decrease colon cancer 

risk in IBD. Furthermore, the fact that STAT3 is a mediator of TNFR2 induction 

by combined TNFα and IL-6 adds to the growing evidence for STAT3 as a key 

mediator of colitis-associated cancer (121, 125).  
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Table 2.1. Oligomers used in chromatin immunoprecipitation assays 

TNFR2 Promoter SIte Oligomers Product 
Size (bp) 

STAT3 (-1578) F-5’-CTGCAGTGAGCTATGGGTGA-3’ 
R-5’-GAGGGTGTGGCTGGTATGAC-3’ 223 

STAT3 (-364) F-5’-CTGCAGTGAGCTATGGGTGA-3’ 
R-5’-GGGTGAGGCACTAATTTGGA-3’ 172 

NFκB (-1890) F-5’-TTGAATTCGTTCCCAGGATG-3’ 
R-5’-CTAGTTGTCCCCCACACACC-3’ 171 

NFκB (-1517) F-5’-AAGGCTCTGTGGGTCATACCAG-3’ 
R-5’-GGCTGCCTGAAGAGGTACAG-3’ 228 
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Figure 2.1. Induction of TNFR2 mRNA and protein by IL-6 and TNFα. (A and C) 
Histograms show levels of TNFR2 mRNA in COLO205 and  SW480 cells treated 
50ng/mL IL-6 plus TNFα for 10 hours. TNFR2 mRNA was normalized to HMBS and all 
values are expressed as fold change (mean ±SE) versus mean levels in untreated 
controls. TNFR2 mRNA was significantly increased by IL-6 and TNFα treatment in both 
cell lines, and by TNFα in SW480. (B and D) COLO205 and SW480 cells were treated 
with 50ng/mL IL-6 plus TNFα for 10 hours followed by ELISA on cell supernatants to 
measure TNFR2 protein levels. Samples were normalized to total protein. Consistent 
with findings for TNFR2 mRNA, protein levels of soluble TNFR2 were significantly 
increased with IL-6 and TNFα treatment. (*p ≤ 0.05 compared to no treatment). (E) 
Representative figure showing cell surface expression of TNFR2 using flow cytometry. 
Treatment with IL-6 and TNFα increased TNFR2 surface expression. (F) Induction of IL-
6 mRNA in SW480 cells treated with TNFα, or IL-6 combined with TNFα for 10 hours. IL-
6 mRNA was normalized to HMBS and values are expressed as fold change (mean 
±SE) versus mean levels in untreated controls. 
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Figure 2.2. Regulation of TNFR2 by STAT3 Inhibition or Constitutive STAT3 
Activation. (A) Histogram shows levels of TNFR2 mRNA in SW480 cells treated with 
vehicle or IL-6, TNFα, or both cytokines in the absence (-) or presence (+) of 20µM of 
the STAT3 inhibitor cucurbitacin or 5µM of the NFκB inhibitor Bay 11-7082. Note the 
dramatic inhibitory effect of cucurbitacin on both basal and cytokine-induced TNFR2 
compared with Bay 11-7082. (*p ≤ 0.05 compared to vehicle, no cytokine; **p ≤ 0.05 
compared to vehicle, cytokine-treated cells). (B) ICAM-1 mRNA was measured in 
SW480 cells treated with IL-6 and TNFα in the presence or absence of Bay 11-7082. 
Note the complete inhibition of cytokine-induced ICAM-1 mRNA by Bay 11-7082. (*p ≤ 
0.05 compared to vehicle; ** p ≤0.05 compared to cytokine-treated cells). (C) SW480 
cells were treated with adenovirus to over-express constitutively-active STAT3 (CA-
STAT3) for 10 hours followed by mRNA collection. Expression of CA-STAT3 significantly 
increased TNFR2 mRNA levels to the same level as that found with IL-6 and TNFα 
treatment. (*p ≤ 0.05 compared to empty vector). 
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Figure 2.3. IL-6 and TNFα induce STAT3 binding to the TNFR2 promoter. (A) 
Schematic shows the locations of two putative STAT3 binding sites and two putative 
NFκB binding sites in the human TNFR2 promoter. (B) PCR products from ChIP assays 
of STAT3 or NFκB binding to consensus STAT3 or NFκB sites in untreated cells or cells 
treated with IL-6 and TNFα for the indicated times. IL-6 and TNFα treatment lead to a 
time-dependent increase in STAT3 binding at both consensus sites. Cytokine treatment 
has no effect on NFκB binding. Densitometric analysis revealed a 3.75 ± 1.62-fold and 
2.02 ± 0.43-fold increase in overall STAT3 binding at -1578 and -364 sites, respectively. 
(*p ≤ 0.05 compared to no treatment). (C) PCR products from ChIP assays in SW480 
cells. IL-6 or TNFα alone or in combination for 30 minutes had an additive effect on 
STAT3 consensus binding for -1578, but this effect is not seen for the -364 site. (D) 
Western immunoblots on nuclear extracts from SW480 cells treated with IL-6, TNFα, or 
both cytokines. Upper panels show immunoblots for tyrosine-phosphorylated (pY) and 
total STAT3. IL-6 treatment induced pY-STAT3 and increased total nuclear STAT3, 
while TNFα alone had no detectable effect, and IL-6 and TNFα combined gave a similar 
effect as IL-6 alone. Equal protein loading was confirmed with Coomasie-stained protein 
gels on nuclear extracts. 
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Figure 2.4. SOCS3 over-expression decreases TNFR2 expression and STAT3 
binding to TNFR2 promoter. (A) Histogram shows levels of TNFR2 mRNA in SW480 
cells in the absence (-) or presence (+) of IL-6 and TNFα and/or SOCS3 adenovirus. 
Cytokine treatment significantly increased TNFR2 mRNA, and SOCS3 over-expression 
attenuated this effect. (*p ≤ 0.05 compared to empty vector; **p ≤ 0.05 compared to 
cytokine treatment). (B) Upper panel shows PCR products from ChIP assays of SW480 
cells stimulated with IL-6 and TNFα for 30-60 minutes. Histograms indicate fold change 
in STAT3 binding with SOCS3 over-expression compared to empty vector. SOCS3 
decreased STAT3 binding to the TNFR2 promoter at the -1578 site and had variable 
effects on binding at the -364 site. (*p ≤ 0.05 compared to empty vector).  
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Figure 2.5. SOCS3 over-expression limits TNFR2-mediated [3H] incorporation. (A) 
Histogram of [3H] incorporation into DNA as a measure of SW480 cell proliferation after 
24-hour over-expression of TNFR2, SOCS3 or both. TNFR2 over-expression increased 
cell proliferation, and SOCS3 over-expression dramatically limited this effect. (*p ≤ 0.05 
compared to empty vector; **p ≤ 0.05 compared to TNFR2-treated cells). (B) TNFR2 
mRNA levels are decreased by 45% using siRNA specific to TNFR2, while TNFR1 
expression is not effected. (*p ≤ 0.05 compared to control siRNA). (C) Histogram of [3H] 
incorporation with TNFR2 siRNA treatment. Knock-down of endogenous TNFR2 using 
siRNA lead to a modest, but significant decrease in [3H] incorporation into DNA. (*p ≤ 
0.05 compared to control siRNA). 
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Figure 2.6. SOCS3 over-expression limits anchorage-independent growth of 
COLO205 cells. (A) Histogram shows levels of TNFR2 mRNA in COLO205 cells in the 
absence (-) or presence (+) of IL-6 and TNFα and/or SOCS3 adenovirus. SOCS3 over-
expression limits IL-6 and TNFα induction of TNFR2 in COLO205 cells. (*p ≤ 0.05 
compared to empty vector). (B) Representative photographs of individual wells from a 6-
well plate containing COLO205 cells grown in 0.3% soft agar and over-expressing 
TNFR2 and/or SOCS3. Images are representative of at least three total experiments. (C) 
Colonies were stained with MTT and quantified using NIH ImageJ. Cells treated with 
TNFR2 retrovirus exhibited a modest, but significant increase in colony number, and 
treatment with SOCS3, or SOCS3 combined with TNFR2, caused a dramatic, >70% 
decrease in colony number. (*p ≤ 0.05 compared to empty vector).   
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Figure 2.7. Schematic of STAT3-mediated induction of TNFR2 expression by IL-6 
and TNFα. IL-6 and TNFα induce STAT3 binding to the -1578 site of the TNFR2 
promoter to induce TNFR2 expression. In SW480 cells, TNFα can induce IL-6 
expression, which may then promote autocrine actions of IL-6 to cooperatively up-
regulate TNFR2 expression with TNFα. SOCS3 limits TNFR2 expression and the 
proliferative effects of TNFR2 in CRC cells. 
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CHAPTER III 

 

SOCS3 IS NOT AN INDEPENDENT BIOMARKER OF ADENOMA RISK 
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The contents of the following chapter were originally published by the open 
access publisher Biomed Central (66).
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A. Introduction 

Recent evidence in mice and humans suggest that the anti-inflammatory 

protein Suppressor of cytokine signaling 3 (SOCS3) may act as a tumor 

suppressor in the colon (115, 128). Specific silencing of SOCS3 expression in 

intestinal epithelial cells (IEC) increased tumor load in the azoxymethane/dextran 

sodium sulfate (AOM/DSS) mouse model of inflammation-associated CRC (115). 

Furthermore, SOCS3 expression is low or silenced by promoter hyper-

methylation in other cancers, including lung, liver, and squamous cell carcinoma 

(101, 104, 185).  

Prior studies from our group demonstrated that increased systemic levels 

of pro-inflammatory cytokines IL-6 and TNFα correlate with risk of colorectal 

adenoma (191).  SOCS3 has been shown to limit the actions of both of these 

cytokines as well as their downstream targets STAT3 and NFκB, which are 

frequently activated in humans and mouse models of CRC (57, 65, 66, 86, 125, 

128, 192). Based on these studies, we investigated SOCS3 mRNA expression in 

the normal mucosa of patients undergoing routine colonoscopy screening to 

determine if low SOCS3 expression predisposes to adenoma and could thus be 

considered an early biomarker of CRC risk.  

 

B. Methods 

Study population and data collection 

All eligible subjects provided written, informed consent. Consenting 

participants were enrolled in Diet and Health Study IV at University of North 
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Carolina Hospitals as previously described (193). Briefly, subjects undergoing 

routine colonoscopy provided rectal biopsies and blood samples for the study. 

Subjects also consented to a follow-up interview to collect diet and lifestyle 

information. High quality RNA from 322 subjects (93 with adenoma, 229 without 

adenoma, with complete information on plasma IL-6 and TNFα, age, race, sex, 

waist hip ratio (WHR), family history and use of non-steroidal anti-inflammatory 

drug (NSAIDs)) was assayed for SOCS3. Patients in the adenoma group were 

defined as having one or more adenomas by the study pathologist based on 

standard criteria. The study was approved by the University of North Carolina 

School of Medicine Institutional Review Board. 

 

RNA extraction and real-time qRT-PCR 

RNA from four pooled, normal colon biopsies per subject was extracted 

using Qiagen’s RNeasy kit (Valencia, CA) and reverse transcribed with AMV-

Reverse Transcriptase (Promega, Madison, WI) as previously described (193).  

SOCS3 mRNA abundance was determined using the ABI Prism 7900HT 

(Applied Biosystems, Foster City, CA) and Platinum Quantitative PCR SuperMix-

UDG (Invitrogen, Carlsbad, CA). Human SOCS3 (NM_003955.3) was quantified 

using Applied Biosystem primer/probe set targeting exon 2. The housekeeping 

gene hydroxymethylbilane synthase (HMBS, NM_000190.3) was chosen as a 

low-abundance, invariant control. Standard curves for each primer/probe set 

were generated using gel-isolated, sequence-confirmed PCR products. Cycling 

included initial denaturation at 95°C for 5 minutes followed by 45 cycles of 95°C 
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denaturation for 15 seconds and 60°C annealing for 45 seconds.  Threshold 

cycles analysis was performed using Applied Biosystem SDS v2.2.2 software 

and values are expressed as copy number relative to HMBS. All PCR runs 

included standards and inter-run calibrator controls (pooled sample cDNA), as 

well as non-reverse transcribed (no-RT) and water controls. Samples were run in 

triplicate. 

 

Statistical analysis 

 Means and standard errors were generated for continuous variables, and 

frequencies and percentages were generated for categorical variables. T-tests 

and Mann-Whitney tests were used to compare cases with controls on 

continuous variables.  SOCS3 values were log-transformed to normalize the 

distribution.  Chi-Square tests were used to compare cases and controls on 

categorical variables. Logistic regression was used to test for an association 

between case/control status and SOCS3. Levels of SOCS3 were categorized 

into tertiles based on control values.  Age, race, sex, WHR, NSAIDS, IL-6, TNFα, 

and family history were assessed as potential confounders of SOCS3-adenoma 

association. Each variable was put into a model separately with SOCS3, and if 

one of the two dummy variables for SOCS3 changed by at least 15% compared 

to when only SOCS3 was in the model, then that co-variable passed the first 

stage for being a confounder.  All such variables were then entered into a model 

with SOCS3 and a backwards, stepwise regression was done with the SOCS3 

variable being forced into the model.  Only age and sex met these criteria for 
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confounding factors and thus they were included in the final model.  

 

C. Results 

Descriptive characteristics of the population in the SOCS3-adenoma study 

are shown in Table 3.1. Consistent with results from our prior reports for the 

study population, subjects with adenomas were older, more likely to be male, had 

higher waist-hip ratios and increased plasma IL-6 (191, 193).  There was no 

difference in median SOCS3 expression between individuals with or without 

adenomas.  

To determine if low SOCS3 expression was associated with having an 

adenoma, odds ratios and 95% confidence intervals were generated using 

logistic regression analysis (Table 3.2). There was no difference in odds ratios in 

subjects in the lower tertiles of SOCS3 values, indicating that low levels of local 

SOCS3 expression were not associated with adenoma risk. 

 

D. Discussion 

Identifying local factors that predispose patients to early, pre-cancerous 

lesions may make it possible to stratify screening based on risk, but risk factors 

that occur early in CRC development are not well defined. Our group has shown 

that patients with adenoma have reduced apoptosis in their normal mucosa, 

demonstrating a field effect that predisposes the individual to a higher risk of 

developing precancerous adenomas (194, 195). We hypothesized that SOCS3 
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might be a promising biomarker of colorectal neoplasia risk, but contrary to 

expectation the study was negative. 

Patients with inflammatory bowel diseases (Crohn’s disease or ulcerative 

colitis) have an increased risk of developing CRC, which is associated with the 

degree and duration of intestinal inflammation (reviewed in (196)). In addition, 

recent data suggest that individuals with chronic, low levels of inflammation (such 

as increased circulating IL-6 and TNFα) have increased odds of having adenoma 

and thus increased CRC risk (191). SOCS3 is an anti-inflammatory protein that 

limits IL-6 induction of STAT3, as well as TNFα induction of NFκB. IEC-specific 

silencing of SOCS3 leads to a dramatic increase in tumor load in a mouse model 

of inflammation-associated CRC (115). Furthermore, recent studies show that 

STAT3 activation is increased, and SOCS3 is silenced in tumors of patients with 

ulcerative colitis-associated and sporadic CRC (128, 163). The current study 

tested the hypothesis that patients with adenoma may have lower SOCS3 in the 

normal mucosa than patients without adenoma, thus contributing to a permissive 

environment for aberrant growth. However, our study found that low or silenced 

SOCS3 expression does not occur in the normal mucosa of patients with 

colorectal adenoma.  

One potential limitation of the study is possible effect of standard bowel 

preparation on SOCS3 expression. While we have not directly tested this for 

SOCS3, similar studies of other genes have shown that there is no significant 

change in mucosal gene expression in patients using bisacodyl or polyethylene 

glycol bowel preparations (197). Another possible limitation is that SOCS3 mRNA 
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levels do not reflect changes in SOCS3 phosphorylation, which targets SOCS3 

for proteasomal degradation (198). However, other studies show that SOCS3 is 

silenced by DNA hyper-methylation in CRC tumors (128), indicating that 

evaluating changes in gene expression is an appropriate measure of SOCS3 in 

this study. Finally, while our results could indicate that SOCS3 is more important 

in the underlying pathogenesis of inflammation-associated rather than sporadic 

CRC, recent studies comparing SOCS3 expression in both ulcerative colitis-

associated and sporadic tumors found that SOCS3 was decreased and there 

was no significant difference between the two groups for SOCS3 (128). Taken 

together these studies suggest that SOCS3 silencing occurs later in the 

progression from adenoma to adenocarcinoma, and is not an independent, early 

biomarker of CRC risk in the normal mucosa. 
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Table 3.2. Adjusted association between local SOCS3 levels and adenoma 

Tissue SOCS3  Case / Control* OR (95% CI) † 

Tertile 3 (36.4-180.7)‡ 28 / 69 1.0 (Reference) 

Tertile 2 (13.8-36.4) 27 / 72 0.9 (0.5, 1.7) 

Tertile 1 (0.6-13.8) 29 / 69 1.0 (0.5, 1.8) 

 *   Adjusted for age and sex  
 †  Odds ratio (OR) and 95% confidence interval (CI); odds of having colorectal   
     adenomas 
 ‡  Tertile cut-offs based on distribution of SOCS3 among control subjects; tertile       
     3 was used as reference 
 

 



 

 

 

CHAPTER IV 

 

DELETION OF SOCS3 GENES IN THE INTESTINAL EPITHELIUM 

INCREASES TUMOR INCIDENCE IN THE AZOXYMETHANE (AOM) MODEL 

OF SPORADIC COLORECTAL CANCER 
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A. Introduction 

Suppressor of cytokine signaling 3 (SOCS3) is commonly known as an 

inhibitor of the IL-6/STAT3 pathway, and it is silenced in tumors of several 

cancers, including colorectal cancer (CRC) (66, 79, 86, 104, 174, 185, 199). In 

the azoxymethane/dextran sodium sulfate (AOM/DSS) model of inflammation-

associated CRC, mice with intestinal epithelial cell (IEC)-SOCS3 deletion had a 

four-fold increase in tumor burden (accounting for increased tumor number and 

size) compared to control mice  (115). STAT3 and NFκB activation were 

enhanced in IEC-SOCS3Δ/Δ mice, and in vitro studies showed that SOCS3 over-

expression reduced IL-6 or TNFα-mediated activation of both pathways (115). 

While these studies support the hypothesis that SOCS3 normally acts as a tumor 

suppressor in inflammation-associated CRC, it is unclear whether SOCS3 

prevents tumorigenesis in sporadic CRC.  

Sporadic CRC is characterized by genomic instability associated with 

mutations or loss function of tumor suppressor genes, including APC. Loss of 

APC function leads to cytoplasmic and nuclear accumulation of β-catenin, which 

activates TCF-regulated growth regulatory genes (148). The APCMin/+ mouse 

model of spontaneous CRC was developed as a pre-clinical model to study the 

consequence of such mutations. These mice have enhanced β-catenin activation 

and develop tens to hundreds of adenomas in the small intestine and multiple 

colon adenomas in the absence of overt intestinal inflammation. Few studies 

have explored inflammatory pathways in β-catenin driven tumorigenesis in the 

intestine, but recent evidence suggests that STAT3 and NFκB pathways may 
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play a role. Kawada et al showed a correlation between poor CRC prognosis and 

nuclear staining of both STAT3 and β-catenin as compared with patients without 

co-localized staining (164). This same study demonstrated that dominant-

negative STAT3 caused β-catenin to move out of the nucleus in colon cancer cell 

lines (164). A similar study in human esophageal squamous cell carcinomas 

showed that STAT3 staining correlated with nuclear β-catenin accumulation, and 

that TCF4 binding enhanced STAT3 expression and transcriptional activity, 

indicating that STAT3 is a downstream target of β-catenin/TCF4 (200).  

Studies in transgenic mice over-expressing IEC-progastin (Fabp-PG), 

which exhibit enhanced intestinal proliferation and β-catenin accumulation, 

showed that treatment with the NFκB inhibitor NEMO (NFκB essential modulator) 

peptide reduced proliferation and β-catenin levels in the proximal colon (201). 

This suggests that NFκB activation may be upstream of β-catenin-mediated 

proliferation in the intestine. Other studies in colon cancer cell lines showed that 

β-catenin over-expression caused a reduction in NFκB activation, and that 

expression of its downstream target Fas was inversely correlated with β-catenin 

in colon and breast cancer tissues (202). Furthermore, β-catenin and the NFκB 

subunits p50 and p65 are thought to directly interact, likely in complex with GSK-

3β, as inhibition of GSK-3β suppressed NFκB activation in colon cancer cell lines 

(203). More studies must be performed to fully understand the interaction 

between NFκB and β-catenin in the context of CRC.  

Based on these prior studies and our findings that SOCS3 negatively 

regulates both STAT3 and NFκB in colitis-associated cancer, the goal of the 
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present study was to determine if SOCS3 plays a role in sporadic tumorigenesis, 

possibly through its ability to limit STAT3 and NFκB activation. Our laboratory 

has recently shown that another SOCS family member, SOCS2, normally acts as 

a tumor suppressor in the APCMin/+ mouse model (204). However, SOCS2 is 

primarily linked to negative regulators of the growth hormone/insulin-like growth 

factor 1 axis rather than pro-inflammatory signaling. In the present study we used 

the AOM model of sporadic tumorigenesis in order to provide a direct comparison 

to our prior studies with IEC-SOCS3Δ/Δ mice using AOM/DSS (115, 149). AOM 

causes sporadic colon tumors and this is most commonly linked to APC or β-

catenin mutations (149, 205). Here we show preliminary evidence that AOM-

treated IEC-SOCS3Δ/Δ mice have increased tumor incidence compared to wild-

type mice. Ongoing studies will determine specific mechanisms affected by loss 

of SOCS3 in this model. We will also utilize fluorescence molecular tomography 

to visualize tumors in ProSense® 680- treated mice, in order to detect flat or 

otherwise difficult to detect lesions. 

 

B. Methods 

Generation of study mice 

All mice are on the inbred C57BL6 background and are maintained in 

conventional, but specific-pathogen free (SPF) conditions. Mice with villin-Cre 

excised SOCS3 alleles have been derived using the villin-promoter-Cre system 

that selectively disrupts the SOCS3 gene and ablates SOCS3 expression in IEC 

(115). Study mice are denoted as IEC-SOCS3Δ/Δ and compared to age-matched, 
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wild-type mice . For mouse imaging with molecular probes, GI tract auto 

fluorescence was eliminated by maintaining animals on liquid diet (Nestle 

Nutrition) (Nutren 1.0 Fiber: dH2O=1:1) for 4 days before the imaging. The diet 

was prepared fresh everyday and served ad libitum in mouse feeding bottles 

(Bio-serv, Frenchtown, NJ) suspended from the cage walls with special holders 

(Bio-serv, Frenchtown, NJ). Water was supplied during the liquid diet feeding. 

These studies were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina.  

 

Azoxymethane model and sample collection 

Littermate pairs were treated with a modified protocol azoxymethane 

(AOM) as previously described (206). Briefly, 8-10 week-old study and control 

mice were given an intraperitoneal injection of 10 mg/kg AOM once per week, for 

four consecutive weeks. Animals were harvested 80-90 days after initial AOM 

injection, depending on visualization of colon tumors using colonoscopy. Colon 

samples were collected and fixed in 10% zinc-buffered formalin for subsequent 

immunohistochemical staining. 

 

Murine colonoscopy 

Animals were screened by colonoscopy to follow tumor development. 

Colonic tumors were visualized in vivo starting at 12 weeks after initial AOM 

injection using the "Coloview System" (Karl Storz Veterinary Endoscopy) as 

previous described (207). Mice were fasted overnight prior to the procedure and 
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anesthetized with 1.5% to 2% isoflurane prior to visualization. The colonoscopic 

procedures were digitally recorded on an AIDA Compaq PC.  

 

Molecular imaging methodology 

A commercially available cathepsin-activatable NIR imaging probe, 

ProSense® 680 (VisEn Medical, Inc., Bedford, MA), was given via intravenous 

injection to all imaged animals as indicated. The dose used was 2nmol/150µL in 

1 X PBS (phosphate buffered saline) which is the recommended for adult mice.  

Both in vivo and ex vivo imaging were performed 24 hours after injection of the 

probe. 

 

In vivo tissue imaging 

All planar and tomographic optical imaging studies were performed using 

a fluorescence molecular tomography system (FMT 2500™ LX) (VisEn Medical 

Inc).  For in vivo imaging, mice were anaesthetized, positioned in the imaging 

cassette, and placed into the imaging chamber, where they were maintained on 

inhaled isofluorane anaesthesia, as previously described (208).  A NIR laser 

diode trans-illuminated each mouse (i.e. passed light through the body of the 

animal), with signal detection occurring via a thermoelectrically cooled CCD 

camera placed on the opposite side of the imaged animal. Appropriate optical 

filters allowed collection of both fluorescence and excitation datasets, and the 

fluorescence datasets were normalized to the laser excitation data. The entire 

image acquisition sequence took approximately 3-5 min per mouse. FMT 2500™ 
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LX 2D fluorescence reflectance imaging (FRI) was also routinely performed prior 

to each tomographic imaging session using built-in LED front illuminators and 

collection of single camera images. These whole body FRI images were 

represented as controls for tomographic datasets.  FMT has been effectively 

used for non-invasive detection of tumors in other organs (209, 210) using the 

680 nm laser channel.   

The fluorochrome quantification within the GI region of each mouse was 

determined using 3D region of interest (ROI) analysis. Briefly, images were 

displayed as rotatable reconstructed three-dimensional datasets, allowing views 

in transverse, sagittal and coronal planes. The target 3D region was defined by 

ROI placement in all three viewing planes to enclose appropriate regions of 

fluorescence within the imaging dataset. A threshold was applied to all animals 

equal to 30% of the mean GI fluorescence of the control mice.   Fluorochrome 

concentration in the target tissue was then automatically calculated from the 

reconstructed images using FMT’s TrueQuant Imaging Software (Ver. 2.0.0.19) 

using pre-acquired calibrations for the specific probe.  Data are expressed as 

absolute pmol fluorescence per region. 

 

Ex Vivo tissue imaging 

To confirm the fluorescent signal detected by in vivo imaging originates 

from distal colon; mice were dissected under isofluorane immediately after live 

imaging. Colon tissues were flushed with ice cold 1 X PBS and imaged ex vivo 
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by FRI and FMT. Relative fluorescence unit intensity was calculated based on 

FRI image and the total amount of fluorescence was calculated as described.  

 

Signaling pathway analyses  

Activation of STAT3 and NFκB-p65 were evaluated by western 

immunoblotting for tyrosine phosphorylated (pY) and total protein. Activation of 

these mediators were quantified as the ratio of phosphorylated proteins to total 

protein. β−actin were used as loading control. Immunohistochemistry (IHC) 

provided qualitative/semi-quantitative data to establish if major differences in 

activation of particular mediators are specific to IEC, regions of dysplasia, or 

tumors. IHC tested for cytoplasmic and nuclear accumulation of β-catenin. 

Additional studies used gene microarray to define if STAT3 and/or NFκB (and 

their downstream targets) are up-regulated in this model in the absence of IEC-

SOCS3. 

 

Statistics  

Data are expressed as mean ± standard error and will be analyzed by 

Student’s t-test or ANOVA for an effect of IEC-SOCS3Δ/Δ. Post-hoc, pair-wise 

comparisons compared individual groups. Statistical significance was set at 

p<0.05. 

 

C. Results 
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To date we have examined four IEC-SOCS3Δ/Δ mice and four age and 

sex-matched wild-type controls. Three out of four IEC-SOCS3Δ/Δ mice had visible 

tumors on colonoscopy and verified by visual inspection under dissecting 

microscope (Figure 4.1A, E). None of the wild-type mice had visible tumors at the 

same time point. IEC-SOCS3Δ/Δ  mice had decreased total body weight prior to 

and after AOM treatment (Figure 4.1B), despite the increase in colon size in IEC-

SOCS3Δ/Δ  mice (Figure 4.1C). In vivo colonoscopy of study mice allowed for 

tumor surveillance prior to mouse necropsy. A representative image from 

colonoscopy on IEC-SOCS3Δ/Δ mice is shown in Figure 4.1D. Imaging with a 

dissecting microscope was used for visual confirmation of large tumors (Figure 

4.1E).  Figure 4.2A and B represent proof-of-principle ex vivo and in vivo 

experiments in which AOM-induced tumors are imaged in KK/HIJ mice injected 

with ProSense 680. 

 

D. Discussion 

Pathophysiological inflammation has emerged as a considerable driving 

force in intestinal tumorigenesis, highlighting the potential role of anti-

inflammatory therapeutics in colorectal cancer (CRC) prevention. Until recently, 

sporadic and colitis-associated CRC have been characterized by distinct 

etiologies and genetic events occurring in the progression from pre-cancerous 

lesions to carcinoma. Patients with Crohn’s disease and ulcerative colitis who 

exhibit dramatic intestinal inflammation have an increased lifetime risk of 

developing CRC. New evidence suggests that other conditions in which patients 
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exhibit low, but chronic levels of circulating cytokines such as IL-6, TNFα, and 

CRP, including patients with obesity, have a higher risk of developing CRC (191). 

Further evidence for a role of inflammatory pathways in sporadic CRC is that the 

use of non-steroidal anti-inflammatory drugs (NSAIDS) or non-NSAID COX-2 

inhibitors has been shown to be protective against the development of sporadic 

CRC. However, the prophylactic use of NSAIDS use remains controversial due to 

gastrointestinal or cardiovascular side-effects (194, 211-214). Together these 

studies suggest that inflammation-associated and sporadic CRC represent a 

continuum of disease risk relative to levels of inflammation or activation of 

inflammatory pathways.   

Initial studies exploring inflammatory factors such as STAT3 and NFκB as 

oncogenes were performed in the AOM/DSS model (117, 121, 125). These 

studies confirmed that both STAT3 and NFκB facilitate tumorigenesis in the 

context of inflammation. Recent studies in APCMin/+ mice showed that loss of IEC-

STAT3 led to a decrease in tumor load, providing the first direct in vivo evidence 

of a functional role for STAT3 in sporadic tumorigenesis (126). Our findings 

suggest that SOCS3, an intrinsic modulator of inflammation, may normally 

prevent tumors in the AOM model of sporadic CRC, which is typically driven by 

APC/β-catenin mutations and is not associated with grossly evident inflammation. 

The finding that IEC-SOCS3Δ/Δ  mice  had decreased body weight compared to 

controls is consistent with findings in the T3b-SOCS3 knockout mouse of 

spontaneous gastric tumorigenesis (134). Studies in this model showed that T3b-

SOCS3 knock-out mice had enlarged stomachs, which is also consistent with our 
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findings that IEC-SOCS3Δ/Δ  mice  had increased colon size compared to wild-

type. The decreased body weight observed in T3b-SOCS3 mice was attributed to 

decreased feeding, however it is unclear if decreased feeding is the reason for 

lower body weight in our studies (134).  
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Figure 4.1 Mice with IEC-SOCS3 silencing have increased tumor incidence in the 
AOM model. (A) Mice lacking IEC-SOCS3 (SOCS3Δ/Δ) have a 75% increase in colon 
tumor incidence compared to wild-type mice. (B) SOCS3Δ/Δ mice have decreased body 
weight compared to wild-type mice. (C) SOCS3Δ/Δ mice have increased colon size 
compared to wild-type mice. (D) Image taken from colonoscopy of SOCS3Δ/Δ mouse. 
Red arrows indicate tumor lesions. (E) Image of colon tumor from SOCS3Δ/Δ mouse 
under dissecting scope. 
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Figure 4.2 Imaging of AOM-injected KK/HIJ mice with ProSense 680. 2-3 month old 
KK/HIJ background mice received AOM injections once a week for four weeks to induce 
colonic tumors. Mice were imaged at 20 weeks after first AOM injection. ProSense 680 
was injected 24 hours before imaging. (A) Ex vivo imaging of tumors in distal colon. (B) 
In vivo detection of colon tumors with ProSense 680. 
 

 

 

 



 

 

 

CHAPTER V 

 

GENERAL DISCUSSION 
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A. Cellular traits in colorectal cancer   

 In 2000, Hanahan and Weinberg described the six cellular traits that 

define most, if not all, human cancers. These include self-sufficient growth, 

evasion of apoptosis, insusceptibility to growth inhibitory signals, angiogenesis, 

and limitless replication (immortalization) (215). The potential contribution of 

inflammation to cancer development was observed as early as 1863, when 

Rudolph Virchow described the presence of immune cells within tumor tissues 

(216). However, studies within the past several decades have elucidated the 

involvement of inflammation in cancer at the cellular and molecular levels. 

Indeed, cancer-related inflammation (CRI), as it refers to the inflammatory tumor 

microenvironment as well as inflammation-associated genetic instability, has 

recently been proposed as the seventh hallmark of cancer (157). This concept is 

important to long-held views that sporadic and inflammation-associated cancer 

have different etiologies. Indeed a growing consensus is that they may, at least in 

some instances, reflect a continuum.  

 

B. Convergent STAT3 and NFκB pathways in colorectal cancer 

STAT3 and NFκB are transcription factors that can be activated by pro-

inflammatory mediators and have both been implicated in the pathogenesis of 

inflammation-associated CRC.  Emerging data suggest that these pathways may 

also contribute to sporadic CRC. Activation of NFκB leads to IL-6 production 

(117, 120, 121, 217, 218). IL-6 can elicit paracrine effects on tumor cells when 

produced by cancer-associated immune cells, or can exert autocrine effects 
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when produced by IEC or cancer epithelial cells (60, 121, 123, 219). IL-6 has 

been shown to stimulate proliferation of some, but not all, cancer cell lines (121, 

220-222). Findings in this dissertation suggest that the outcome of IL-6 action in 

CRC may depend on interactions with other cytokines and induction of 

proliferative or pro-tumorigenic receptors such as TNFR2. IL-6 produced by 

immune cells in the lamina propria has also been shown to protect normal and 

pre-neoplastic IEC cells from apoptosis (121).  

One of the major downstream pathways induced by IL-6 is the STAT3 

pathway, which is hyper-activated in a variety of cancers including CRC (174). 

TNFα, which potently activates NFκB in colon cancer cells, is also increased in 

the tumor microenvironment (157). Since both STAT3 and NFκB can serve as 

mitogens, this has led to a recent concept of an NFκB/IL-6/STAT3 signaling 

cascade, in which STAT3 and NFκB activation lead to the perpetual activation of 

oncogenes, such as c-Myc, Cyclin D1 and Bcl-2, amongst several others. This 

mechanism, coupled with the presence of mutated DNA repair genes and 

silencing of tumor suppressors, contribute to genomic instability and proliferation 

of tumor cells (121, 157). Defining intrinsic molecules that control both STAT3 

and NFκB pathways is of considerable importance to understanding mechanisms 

of CRC and for the development of new therapies. This dissertation focused on 

SOCS3 and its role in regulating TNFR2.  

 

C. Mechanisms of TNFR2 induction by IL-6 and TNFα  
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At the outset of the current studies, it was known that TNFR2 is receptor 

that promotes proliferation of IEC, is up-regulated during intestinal inflammation, 

and is induced by a combination of pro-inflammatory cytokines such as IL-6 and 

TNFα  (56). Interest in TNFR2 in promoting colon cancer cell growth is increasing 

(57). Our study in CHAPTER II addressed the molecular mechanisms by which 

IL-6 and TNFα induce TNFR2 (223). Our study shows that STAT3 has a key role 

in TNFR2 induction, and provides direct evidence that TNFR2 over-expression 

induces proliferation and modestly promotes anchorage-independent growth of 

colon cancer cells. It has been shown in other systems that TNFα activates NFκB 

via TNFR2 (54, 57, 224). Thus, STAT3-mediated induction of TNFR2 could 

provide a novel link between STAT3 and NFκB pathways, which would be 

expected to amplify activation of both pathways. The activation of TNFR2 by 

STAT3 adds to growing evidence that STAT3 inhibitors should be explored as 

therapy for CRC.  

 

D. SOCS3 limits STAT3-mediated TNFR2 expression and actions, and 

provides a novel link between the STAT3 and NFκB pathways in 

inflammation-associated colorectal cancer  

 Prior work by our laboratory demonstrated that loss of SOCS3 in IECs led 

to an increase in tumor load in the AOM/DSS model of inflammation-associated 

CRC (115). This work also reported in vivo evidence that loss of IEC-SOCS3 led 

to up-regulation of both STAT3 and NFκB pathways. Chapter II of this 

dissertation reports that loss of IEC-SOCS3 leads to up-regulation of TNFR2 
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staining. Collectively, our studies support a concept in which SOCS3 limits CRC-

promoting pathways, directly and indirectly:  

1) SOCS3 normally provides negative feedback on IL-6/STAT3-

mediated growth (66, 86, 87, 96, 225). 

2) Through its ability to limit STAT3 activation, SOCS3 decreases 

cytokine-induction of the pro-tumorigenic TNFR2, and limits 

proliferation and anchorage-independent growth (CHAPTER II). 

The ability of SOCS3 to limit TNFR2 expression may be one way 

in which NFκB activation is normally attenuated. 

Our working model demonstrates the potential interactions between the 

STAT3 and NFκB pathways in CRC, and how SOCS3 normally limits these 

pathways to prevent tumorigenesis (Figure 5.1). 

 

E. STAT3 activation and SOCS3 silencing may represent a common 

pathway between inflammation-associated and sporadic colorectal cancer 

 STAT3 and β-catenin/Wnt pathways share common downstream targets 

c-Myc and cyclin D1 (226-229). This supports a theory that STAT3 may have 

roles in the β-catenin/Wnt-driven sporadic CRC, or that β-catenin/Wnt may 

impact on STAT3 (Figure 5.2). CRC patients with nuclear co-localization of 

STAT3 and β-catenin have poorer prognoses (164).  STAT3 staining positively 

correlated with nuclear β-catenin accumulation in human esophageal squamous 

cell carcinomas (200).  APCMin/+ mice, in which β-catenin is constitutively active, 

exhibit decreased tumor incidence when crossed with IEC-STAT3Δ/Δ mice (126). 
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Mice with hyper-active STAT3 (gp130Y757F mice) display activating mutations in 

β-catenin within colon tumors in the AOM/DSS model (125).  

Preliminary gene microarray data from our lab demonstrated that SOCS3 

expression is decreased in tumors of APCMin/+ mice compared to non-tumor 

tissue, indicating that low SOCS3 expression may promote spontaneous 

tumorigenesis in this model. In this thesis work, we attempted to test this 

hypothesis, by generating mice with IEC-SOCS3 silencing on the APCMin/+ 

background.  However, after sixteen months of breeding, we were unable to 

obtain study mice with IEC-SOCS3 deletion and the APCMin/+ mutation. Mice with 

global SOCS3 gene disruption die at embryonic day 11-13 due to placental 

defects (85), so it is therefore feasible that the combination of IEC-SOCS3 gene 

disruption with the alterations in Wnt/β-catenin pathway found in APCMin/+ mice 

might lead to embryonic lethality. To determine if this were the case, we would 

need to employ a series of timed pregnancies to identify at which point the pups 

were dying. However, we opted to assess the role of SOCS3 silencing in a 

different model of sporadic CRC mediated by multiple injections of AOM.  

The AOM model results in spontaneous colon tumors that have frequent 

mutations in APC or β-catenin (205, 230). Our studies in CHAPTER IV provide 

preliminary data that mice with IEC-SOCS3 silencing have a 75% increase in 

tumor incidence in the AOM model. To our knowledge, this is the first evidence 

that SOCS3 is a tumor suppressor in a model of sporadic CRC. Follow-up 

studies must be performed to confirm these observations and assess the levels 

of STAT3 and NFκB activation in tumors from these mice, as well as define 
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expression of downstream targets affected by SOCS3, including TNFR2 

expression. The study in CHAPTER IV used colonoscopy to monitor tumor 

development in the AOM model. This provides a useful approach to biopsy 

tissues over the course of tumor progression to define early and late targets of 

SOCS3. Our laboratory is currently taking this approach in mice with IEC-SOCS3 

deletion and controls in both AOM and AOM/DSS models so that common or 

different targets of SOCS3 in inflammation-associated versus sporadic CRC may 

be identified.  

 

F. Anti-TNFα therapy in cancer 

In studies of isolated APCMin/+-IEC co-cultured with intra-epithelial 

lymphocytes isolated from wild-type C57BL6 mice, TNFα production was 

dramatically increased in the culture supernatants. In addition, co-culturing 

APCMin/+-IEC with intra-epithelial lymphocytes led to a dramatic increase in 

TNFR2 expression, whereas IEC isolated from wild-type mice did not exhibit this 

increase. These studies indicate that loss of APC in IEC promotes TNFα-induced 

increases in TNFR2 (231), and provides further evidence for looking at anti-TNFα 

therapies in sporadic CRC. 

Anti-TNFα drugs were developed in the late 1990’s and are currently 

utilized for a number of diseases including Crohn’s disease and rheumatoid 

arthritis (232, 233). There are currently three types of FDA-apporoved anti-TNFα 

agents: infliximab (chimeric monoclonal antibody); adulimumab (recombinant 

human monoclonal antibody); and etenercept (TNFR2:Fc fusion protein) (234). 
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All three agents neutralize the effects of soluble and membrane-bound TNFα, but 

may also have additional cellular effects (234). Studies in mice have shown that 

infliximab treatment reduces immune cell recruitment and pro-inflammatory 

cytokine production, while inducing apoptosis in macrophages residing in the 

lamina propria in mouse models of Crohn’s disease (235). 

Recent pre-clinical studies in mouse models of inflammation-associated 

CRC showed that treatment with the anti-TNFα monoclonal antibody MP6-XT22 

decreased tumor load associated with enhanced NFκB activation (57).  Another 

study showed that anti-TNFα treatment in established, late-stage inflammation-

associated CRC lead to decreased tumor load as well as decreased local IL-6 

expression, supporting the NFκB/IL-6/STAT3 signaling cascade hypothesis 

(121). At present, it is not known if anti-TNFα affects sporadic CRC. One way to 

test if inflammatory pathways linked to TNFα may contribute to spontaneous 

CRC would be to treat APCMin/+ or AOM-treated mice with anti-TNFα drugs and 

assess tumor onset, size, and number as well as expression of IL-6 and TNFα 

and activation of STAT3 and NFκB.  

To date, anti-TNFα drugs have not been used clinically with the specific 

goal of prevention or treatment of CRC. Recent phase II clinical trials in patients 

with renal cell carcinoma (RCC) showed that anti-TNFα prevented increases in 

tumor number, albeit in a small cohort of patients. In this study, RCC patients in 

two separate groups were given 5mg/kg (Group 1) or 10mg/kg (Group 2) 

infliximab at time 0, 2, and 6 weeks, then every 8 (Group 1) or 4 weeks (Group 2) 

until further disease progression was observed. Group 1 exhibited 16% partial 
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response (PR, defined as a decrease in tumor size or extent), and 16% had 

stable disease (SD, no new tumors), with median duration of disease response to 

treatment at 7.7 months (ranging from 5 to 40 months) (236). Group 2 had 61% 

of patients reach SD, with median response of 6.2 months (ranging from 3.5 to 

24 months) (236). Together these results suggest that anti-TNFα drugs may be 

useful in preventing disease progression, especially at higher doses, though 

there was no significant change in tumor size (236). There is also no evidence as 

to why patients eventually did reach a point of disease progression, indicating 

that while anti-TNFα therapy shows promise for cancer treatment, future studies 

must be done to improve its efficacy and potential for longer-term treatment.  

Based on studies in other cancers and pre-clinical studies in CRC, 

evaluating the role of anti-TNFα drugs in CRC should be of utmost importance 

because these therapeutics are already FDA-approved, and could therefore 

benefit patients sooner. IBD-associated CRC is an obvious first starting point 

since Crohn’s disease patients are already being treated with anti-TNFα. 

However, it is important to keep in mind that immune surveillance has a 

protective role in cancer, even though inflammation may promote cancer (237, 

238). Anti-TNFα drugs can have considerable side effects, including severe 

infection and risk of developing hematological malignancies, and may have 

adverse effects in cancer patients who have already received immune-

suppressing drugs (239). Thus, drugs targeted at specific inhibition of TNFR2 

would be advantageous, however there are currently no such drugs available. 

Alternatively, TNFR2 expression could be used as a specific cell-surface marker 
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in targeted therapy approaches. Based on recent studies, including those 

presented in this dissertation, new therapies aimed at mimicking or restoring the 

function of the tumor suppressor SOCS3 may also be beneficial for the 

prevention or treatment of CRC. There is considerable merit in development of 

drugs that mimic intrinsic tumor suppressors as they may have fewer adverse 

effects than current cancer therapies.  

 

G. Potential therapeutic strategies for SOCS3 in colorectal cancer (portions 

of this section are excerpted from (68)). 

To date, the mechanisms regulating SOCS3 promoter hyper-methylation 

are unknown. One study demonstrated that IL-6 regulates the transcription factor 

Fli-1, which is required for expression and activity of DNA methyltransferase 

enzyme 1 (dnmt-1) (240). Additional studies showed that IL-6 directly contributes 

to aberrant methylation of the tumor suppressor p53 by dnmt-1  (241). IL-6-

mediated hyper-methylation of SOCS3 could be a mechanism in which 

continuous, unregulated IL-6 signaling potentiates a permissive tumor 

environment where inflammatory signaling is left unchecked by SOCS3. The 

prevalence of SOCS3 hyper-methylation in GI cancers (CHAPTER I) highlights 

the importance of developing epigenetic therapies to reverse the silencing of 

tumor suppressor genes such as SOCS3. In cholangiocarcinoma cell lines that 

exhibit SOCS3 promoter methylation, treatment with the demethylating agent 5-

aza-2’-deoxycytidine (DAC) reversed SOCS3 silencing and decreased STAT3 

activation, providing exciting pre-clinical data on the prospect of using DAC to 
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restore SOCS3 expression in cancer cells (102).  One problem with drugs such 

as DAC is that they are non-specific and so more specific therapies are 

desirable.  

In addition to epigenetic therapies, small molecule SOCS agonists may be 

useful therapies to restore SOCS actions in cancer. JAK inhibitors are currently 

being tested for a variety of myeloproliferative disorders, but may have broader 

implications for other cancers where aberrant cytokine or STAT signaling occurs, 

such as those GI cancers where one or more SOCS proteins are silenced (242). 

The SOCS1 mimetic Tkip (tyrosine kinase inhibitor protein) binds to the 

autophosphorylation site of JAK2 and inhibits STAT3 activation in prostate 

cancer cells (243). However, this compound has not yet been tested in CRC. 

A cell-permeant, recombinant mouse SOCS3 protein (CP-SOCS3) was 

generated by attaching the 12 amino acid hydrophobic signaling sequence of 

fibroblast growth factor (FGF) to facilitate membrane translocation. Mice under 

staphylococcal enterotoxin B or lipopolysaccharide challenge that were given 

CP-SOCS3 were protected from the increased IL-6 and TNFα levels seen in 

control mice, providing promising pre-clinical data for intracellular SOCS3 protein 

therapies (244). However, no additional studies using CP-SOCS3 have been 

reported thus far. Our laboratory has attempted to test the CP-SOCS3 construct 

with little success. Small molecule, permeant SOCS3 mimetics could be 

alternative approaches and these proteins may not be as susceptible to 

proteasomal degradation as endogenous SOCS3 (245). 
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H. SOCS3 as a biomarker for colorectal cancer 

Both SOCS3 and STAT3 are up-regulated in IBD tissues form patients 

and mouse models of IBD (66, 128). It is thought that the high levels of SOCS3 

seen concurrent with hyper-activated STAT3 in chronic inflammation reflects the 

inability of SOCS3 to overcome STAT3 activation levels under these conditions, 

due in large part to constitutive IL-6 induction of STAT3 (66). In contrast, SOCS3 

is silenced in CRC, although this has been shown in only a few patients (128). 

We therefore sought to evaluate if SOCS3 expression is decreased in the normal 

mucosa of adenoma patients to determine if low SOCS3 may promote CRC risk. 

Studies in CHAPTER IV describe our findings that low SOCS3 expression does 

not correlate with patients who have adenoma(s) as we had hypothesized, 

indicating that SOCS3 silencing likely does not occur prior to the adenoma stage 

in CRC progression (129). However, it is not known if SOCS3 silencing occurs 

during the adenoma stage, and may be a possibility considering STAT3 hyper-

activation is seen in this stage in CRC (127). Future studies looking at SOCS3 

expression or hyper-methylation in adenoma versus normal tissue are needed to 

determine if SOCS3 silencing occurs prior to or as a result of malignant 

transformation in the colon. 

Another possible approach that has yet to be explored is whether or not 

SOCS3 hyper-methylation can be detected in DNA from fecal samples. The 

ability to detect DNA methylation from fecal samples is a novel screening tool 

that could circumvent the clinical hurdles of low sensitivity of fecal occult blood 
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tests and the non-compliance with colonoscopy screening (246). Studies looking 

at other genes known to be hyper-methylated in CRC, including HIC1 (hyper-

methylated in cancer 1), vimentin, SFRP2 (secreted frizzled-related protein gene 

2), HPP1 (hyperplastic polyposis protein gene), and MGMT (O6- 

methylguanine-DNA methyltransferase gene), amongst others, have been able to 

detect aberrant methylation of DNA in stool from patients who were diagnosed at 

various stages in CRC progression, including hyperplastic polyps (246-248). 

While it is not likely that any single gene will hold the key to early detection by 

this method, it will be important for SOCS3 to be included as panels of hyper-

methylated genes are developed. 

 

I. Summary  

 The studies in this dissertation promote the concept that SOCS3 is a 

tumor suppressor in CRC and reveals mechanisms underlying this role. STAT3 

and NFκB are two key pathways that are up-regulated in inflammation-

associated CRC, and emerging studies suggest these same pathways may be 

involved in sporadic CRC as well. Through its ability to directly limit STAT3 

activation, SOCS3 decreases cytokine-induction of the proliferative TNFα 

receptor, TNFR2, in colon cancer cells. These studies not only highlight the 

possibility of utilizing FDA-approved anti-TNFα agents for CRC treatment, but 

also support the premise that specific TNFR2 antagonists or SOCS3 mimetics 

should be developed as novel therapeutic approaches. Such mimetics could be 

useful in the treatment of both inflammation-associated and sporadic CRC, as 
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our preliminary findings in the AOM model of spontaneous tumorigenesis showed 

that mice with IEC-SOCS3 silencing had a 75% increase in tumor incidence. 

Finally, while we have found that evaluating SOCS3 expression in the normal 

colonic mucosa is not an independent biomarker of adenoma risk in humans, 

future studies will determine if SOCS3 is indeed silenced in pre-cancerous 

adenomas, which could contribute a new biomarker for early stage CRC and be 

a useful biomarker in newly emerging non-invasive technologies for assessing 

CRC risk. 
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Figure 5.1. Model of NFκB/IL-6/STAT3 signaling cascade in epithelial cells and the 
inhibitory effects of SOCS3. NFκB activation leads to IL-6 up-regulation, which in turn 
promotes STAT3 signaling in IEC. IL-6 is also produced by local immune cells, along 
with TNFα, which leads to up-regulation of STAT3-mediated TNFR2 expression, which 
can in turn promote TNFα activation of NFκB. SOCS3 elicits anti-tumor activity by 
inhibiting the JAK/STAT3 signaling cascade and its downstream targets, including 
TNFR2, which can in turn lead to decreased NFκB activation. Dashed lines indicate 
gene transcription, solid lines indicate stimulation or activation.
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Figure 5.2.  STAT3, and its endogenous repressor SOCS3 represent a common 
pathway in the pathogenesis of sporadic and inflammation-associated CRC. 
Emerging studies suggest that STAT3 is hyper-activated in tumors of both types of CRC, 
but the role for SOCS3 in sporadic CRC has yet to be defined. Our preliminary data 
shows a 75% increase in tumor incidence in mice with loss of IEC-SOCS3 in the AOM 
model of spontaneous CRC.  
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