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ABSTRACT 

PRADEEP KOTA: Structural Basis for The Function and Regulation of the 
Epithelial Sodium Channel 

(Under the direction of Dr. Nikolay V. Dokholyan) 

 
Epithelial sodium channels (ENaC) mediate sodium transport across 

epithelia. Functional channels are assembled from three homologous α, β and γ 

subunits with ~30% similarity in amino acid sequence. Mutations in different 

subunits of this channel are responsible for diseases including Liddle’s syndrome 

and type I pseudohypoaldosteronism. ENaC is synthesized on the ER 

membrane, aquires complex N-linked glycosylation in the Golgi and is trafficked 

to the plasma membrane where it is activated upon cleavage by numerous 

membrane-anchored and/or soluble serine proteases secreted into the 

extracellular milieu. Although it has been established that exogenous expression 

of all three subunits in oocytes is required for robust channel activity, the number 

and stoichiometry of subunits comprising one functional channel remains 

unclear.  Different biophysical and electrophysiological studies have concluded 

that ENaC assembles as a trimer or a tetramer with possible larger molecular 

weight oligomers arising from higher order assembly of trimers or tetramers. Due 

to the lack of structural information on ENaC, the molecular aspects of channel 

activation and regulation of function remain less well understood. In the current 

study, using a battery of computational and experimental techniques, we address 
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specific questions concerning the structural aspects of regulation of channel 

activation and function by constructing a structural model of the channel. 

Significant advances through this study include determination of oligomerization 

state of ENaC using native gel electrophoresis and identification of allosteric 

communication within the channel and modulating channel activity by rational 

mutagenesis of the identified allosteric sites. In this study, we conclude that 

ENaC assembles as both trimers and tetramers in the same cell. The amount of 

tetramers correlates well with increase in function and more importantly, the 

gamma subunit plays a crucial role in the formation of tetramers in oocytes. We 

believe that the results presented here would be immensely helpful in the future 

for understanding the cellular aspects of channel regulation and function at the 

molecular level. 
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CHAPTER 1 

Introduction 

The epithelial sodium channel (ENaC) is a prototypic member of the 

DEG/ENaC superfamily of ion channels (Canessa et al., 1994b). The DEG/ENaC 

superfamily can be classified as, (i) amiloride-sensitive ENaCs involved in Na+ 

reabsorption in epithelia including the distal colon, distal nephron and sweat 

glands (Duc et al., 1994; Renard et al., 1995), (ii) voltage-independent brain Na+ 

channels (BNaC1 and BNaC2) (Garcia-Anoveros et al., 1997), (iii) degenerins 

(MEC-4, MEC-10 and DEG-1) that form part of a mechanotranduction complex 

for touch sensitivity in Caenorhabditis elegans (Driscoll and Tavernarakis, 1997; 

Garcia-Anoveros and Corey, 1997), and (iv) peptide neurotransmitter Phe-Met-

Arg-Phe-NH2 (FMRF) amide-gated sodium channels (FaNaCh) expressed in the 

ganglion of the snail Helix aspersa (Lingueglia et al., 1995). Other members of 

this superfamily include the acid-sensing ion channel (ASIC), dorsal root ganglia 

acid-sensing ion channel (DRASIC), and other mechanosensitive cation 

channels expressed in cochlear hair cells and oocytes (Benos et al., 1995; Corey 

and Garcia-Anoveros, 1996; Garty, 1994; Rossier et al., 1994). Due to its 

particularly crucial role in Na+ transport across the aldosterone-sensitive distal 

nephron, regulation of expression and function of ENaC is critical in control of 



2 

blood pressure. Hormones such as aldosterone, vasopressin and insulin as well 

as PKA/cAMP, PKC, Ca2+ and G-proteins tightly regulate ENaC expression and 

function in kidneys (Benos et al., 1995; Garty and Palmer, 1997). The 

pathophysiological importance of ENaC has been evidenced by the identification 

of mutations in the channel responsible for diseases like Liddle’s syndrome, an 

autosomal dominant variant of hypertension (Shimkets et al., 1994), and for type-

1 pseudohypoaldosteronism (PHA-1), a salt-losing syndrome (Chang et al., 

1996).   

1.1 Molecular architecture of ENaC 

ENaC is a heteromultimeric ion channel made of homologous (~30-40% 

sequence identity) α, β and γ glycoprotein subunits (75-90 kDa each) 

surrounding the channel pore (Canessa et al., 1993; Canessa et al., 1994b). The  

δ-subunit has functional similarities with the α-subunit, but its physiological role is 

less well-understood (Waldmann et al., 1995). All members of the DEG/ENaC 

superfamily share a common structural topology. Hydropathy analysis indicates 

that all ENaC subunits have two hydrophobic membrane-spanning regions 

separated by a large (~500 residues) hydrophilic loop (Canessa et al., 1994a). N- 

and C-termini are intracellular while the large hydrophilic loop is extracellular with 

highly conserved cysteine residues and multiple N-glycosylation sites (Canessa 

et al., 1994a; Snyder et al., 1994). α-subunits alone can assemble as channels at 

the plasma membrane, albeit of low conductance, while β and Υ subunits cannot 

form functional channels when expressed alone (Harris et al., 2008). Moreover, 
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α-subunits are hypothesized to chaperone the assembly and trafficking of the 

heteromultimer to the plasma membrane (Harris et al., 2008). 

1.2 Subunit stoichiometry of ENaC 

Genes encoding different subunits of ENaC have been cloned ~20 years 

ago and yet the subunit composition of function epithelial sodium channels 

remains unsettled. Many groups have addressed this important issue regarding 

the subunit stoichiometry of ENaC and related channels. Although the recently 

solved crystal structures of related ion channels and receptors (Gonzales et al., 

2009; Jasti et al., 2007; Kawate et al., 2009) suggest a trimeric organization of 

the channel, some groups propose a tetrameric structure (Anantharam and 

Palmer, 2007; Firsov et al., 1998; Kosari et al., 1998) while others suggest that 

functional ENaC channels are composed of three, six or nine subunits (Cheng et 

al., 1998; Snyder et al., 1998; Staruschenko et al., 2005; Staruschenko et al., 

2004; Stewart et al., 2011). Quantitative analysis of cell surface expression of 

ENaC showed that assembly follows fixed stoichiometry with the α-ENaC as the 

most abundant subunit.  

Firsov et al., provided several lines of evidence to argue that ENaC is a 

tetramer (Firsov et al., 1998). They developed a quantitative assay based on the 

binding of 125I-labeled M2 anti-FLAG monoclonal antibody directed against a 

FLAG reporter epitope introduced in the extracellular loop of different ENaC 

subunits (Firsov et al., 1996). Using this assay, they determined that channels 

have equal number of β and γ subunits and twice the number of α subunits, 

suggesting α2β1γ1 to be the most likely stoichiometry (Firsov et al., 1998; Firsov 
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et al., 1996). Kosari et al., independently concluded that ENaC is a tetramer by 

performing functional studies on Xenopus oocytes expressing mutant subunits 

(αS583C, βG525C, γG542C – based on the sequence of mouse ENaC subunits) 

with lower affinity to amiloride than the wildtype subunits (Kosari et al., 1998). 

Coscoy et al., performed sedimentation of the peptide-activated FaNaCh 

channels in sucrose gradients to determine subunit composition. They reported 

that FaNaCh was observed in the fraction corresponding to a molecular mass of 

~350 kDa (Coscoy et al., 1998). Based on the molecular weights of individual 

subunits, which ranges between 75 and 90 kDa, they concluded that FaNaCh is 

a tetramer (Coscoy et al., 1998). Given that FaNaCh is a close member of ENaC 

in the DEG/ENaC superfamily, they hypothesized that ENaC could be a tetramer. 

The heterotetrameric assembly is particularly attractive because of its four-fold 

symmetry around a central conducting pore; a hallmark feature of several 

potassium (K+) channels (Doyle et al., 1998).  

In contrast to the tetrameric architecture proposed by Firsov et al., and 

Kosari et al., Snyder et al., proposed that ENaC is formed by nine subunits, with 

a stoichiometry of α3β3γ3 (Snyder et al., 1998). Methanethiosulfonate (MTS) 

derivatives have been traditionally used to study the gating properties, 

accessibility and structure of ion channel pore regions (Akabas et al., 1992). The 

chemical modification of an introduced cysteine by a charged MTS reagent may 

produce a measurable change in the function of the ion channel/transport 

protein, which can be measured by electrical recording or isotope flux. Such data 

give information concerning the time-course, state dependance and membrane 
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sidedness of the accessibility of the cysteine (Akabas et al., 1992; Stauffer and 

Karlin, 1994).  Snyder et al., used the mutant γG537C (according to the 

sequence of rat ENaC), in which C537 can be modified by the positively charged 

MTS reagent MTSET ([2-(tri-methylammonium-Oethyl]methanethiosulfonate 

bromide). Modification by MTSET produces inhibition of the current of mutant 

channels but not of wild-type channels. They coexpressed several combinations 

of wildtype γ and the mutant γG537C subunits and measured the fraction of 

current blocked by MTSET. The reagent MTSET decreased ENaC currents in a 

much larger proportion than the fraction of injected mutant subunits. This result 

suggested that modification of γG537C produced a dominant effect and that 

there was more than one γ subunit per channel. The proportion of channels 

sensitive or resistant to MTSET modification can be correlated to the ratio of 

cRNA injected for the wildtype and mutant subunits using an approach originally 

applied for determination of stoichiometry of shaker K+ channels (MacKinnon, 

1991). Using this analysis approach, Snyder et al., determined that there are 

three γ subunits per functional ENaC channel. Similar experiments, using 

equivalent MTSET modifications on α583C and βG525C mutants, indicated the 

presence of three α and three β subunits per channel. Therefore, the model 

proposed by Snyder et al consists of nine subunits with the stoichiometry α3β3γ3. 

Cheng et al., performed sucrose gradient sedimentation experiments to conclude 

that ENaC is composed of nine subunits (Cheng et al., 1998). More recently, 

Staruschenko et al proposed higher order multimers with equal numbers of all 

three subunits (Staruschenko et al., 2005; Staruschenko et al., 2004). Stewart et 
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al., developed a method based on atomic force microscopy, using which, they 

visualize the complexes between isolated ENaC and antibodies/Fab fragments 

directed against specific epitope tags on different subunits. Their results indicate 

that pairs of antibodies decorate channels made of α, β and γ ENaC only at an 

angle of 120° with respect to each other. Using their method, they concluded that 

ENaC could form homo- and heterotrimers and higher order multimers with upto 

nine subunits (Stewart et al., 2011). 

In summary, it is clear from the studies discussed above that a consensus 

regarding the subunit stoichiometry of ENaC has not yet been reached. Until the 

structure of ENaC is solved, further studies using new approaches are necessary 

to resolve the controversy on the stoichiometry of the subunits. 

1.4 Activation of ENaC by proteases 

Limited proteolysis is the last step in the attainment of a functional form of 

many proteins of biological significance and perhaps the first step in protein 

degradation (Neurath and Walsh, 1976). This important regulatory phenomenon 

is frequently observed in activation of many enzymes, hormones, receptors, and 

other biologically active proteins and is conserved through evolution (Neurath, 

1984). ENaC is unique in its mode of regulation via cleavage by proteases, 

resulting in constitutive channel activation. Over the last decade it has become 

clear that an important determinant of ENaC activity is the extent of partial 

proteolysis of the channel subunits (Kleyman et al., 2009; Rossier and Stutts, 

2008). Serine proteases, that constitute a large gene family encompassing ~2% 

of the identified genes, activate ENaC by cleaving at multiple sites in the 
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extracellular domain (Hedstrom, 2002; Rossier and Stutts, 2008). Proteolytic 

regulation of ENaC includes selective cleavage by furin-like convertases during 

biosynthetic maturation as well as cleavage at the cell surface by proteases that 

can be membrane-associated or soluble. The membrane-associated proteases 

that activate ENaC are termed channel-activating proteases (CAPs). Vallet et al., 

obtained first evidence of an epithelial membrane protease activating ENaC in an 

autocrine fashion (Vallet et al., 1997). The cloned channel-activating protease 1 

(CAP-1), also called prostasin, from A6, a Xenopus kidney cell line, and 

established that it activaes ENaC when coexpressed in Xenopus oocytes (Vallet 

et al., 1997). Subsequently, two additional membrane-associated serine 

proteases, transmembrane protease serine 4 (TMPRSS4)/CAP2 and MT-

SP1/Matriptase/Epithin/CAP3 were identified and found to increase the activity of 

ENaC when coexpressed in oocytes (Vuagniaux et al., 2002). The open 

probability (PO) of near-silent ENaC channels can be increased upto 28-fold upon 

cleavage by trypsin or human neutrophil elastase (hNE) (Caldwell et al., 2004, 

2005). Activation of ENaC by proteases results from combinatorial processing of 

α and γ subunits (Hughey et al., 2004; Hughey et al., 2003). Hughey et al., 

reported that the basic amino acid sequence following the consensus K/R-X-X-R 

is required for cleavage by furin-like convertases (Hughey et al., 2004). Using 

site-specific mutagenesis of the C-terminal arginine (P1 site) to block cleavage, 

they showed that ENaC cleavage correlates with channel activity (Hughey et al., 

2004). Alternate approaches to study proteolytic processing of ENaC uncovered 

a 26 amino acid inhibitory tract in the α-subunit of ENaC, which when removed, 
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activated the channel (Carattino et al., 2008b). Until recently, the α-subunit was 

thought to play a dominant role in activation of ENaC. Recently, Carattino et al., 

achieved full activation of ENaC upon cleavage at the furin sites in the γ-subunit 

in a manner independent of cleavage of the equivalent sites in the α-subunit 

(Carattino et al., 2008a). This result shifted focus towards the γ-subunit and the 

current model for proteolytic regulation of ENaC is that the PO of the 

heteromultimer is determined by cleavage events, so far confined to its α and γ 

subunits. In general, channels made of uncleaved subunits exhibit a very low PO 

and a range of cleavage events increases PO. These cleavage events appear to 

be more prominent in the γ-subunit than the α-subunit (Carattino et al., 2008a). 

Further evidence to the importance of the γ-subunit comes from the study 

conducted by Garcia-Caballero et al., with CAP2 where they characterized 

cleavage of all three subunits of ENaC by CAP2/TMPRSS4. They reported that 

cleavage of the γ-subunit led to most increase in sodium current (INa) compared 

to cleavage of the other two subunits (Garcia-Caballero et al., 2008). 

1.5 Structural aspects of functional regulation of ENaC 

Function of ENaC is regulated by many factors including hormones, 

phosphoinositides and post-translational modifications. The N- and C-termini of 

ENaC are critical for such regulation of ENaC activity. The N- and C-termini of 

ENaC are ~60-100 amino acid fragments. The N-terminus has several key 

functions including but not limited to subunit assembly, gating, and endocytic 

retrieval and degradation of ENaC (Adams et al., 1997; Chalfant et al., 1999; 

Grunder et al., 1997; Prince and Welsh, 1998). It is challenging to understand the 
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combinatorial role of the N-termini from different subunits in modulating the 

regulation of ENaC. Early evidence for the importance of the N-termini in 

regulation of channel function came from studies with deletion mutants lacking 

the entire N-terminal fragments. Deletion of the entire N-temrinus of α-, β-, or γ-

ENaC completely eliminated amiloride-sensitive sodium currents in oocytes 

(Benos et al., 1995; Benos and Stanton, 1999).  Sequence analysis suggests the 

possibility of myristoylation at two potential sites in the N-terminus. Recent 

studies using fatty acid exchange chemistry demonstrated that the N- and C-

termini of the β and γ but not the α subunit are palmitoylated at more than one 

cysteine residue (Mueller et al., 2010). Site-specific mutagenesis of the 

palmitoylated cysteines and expression in Xenopus oocytes resulted in 

decreased amiloride-sensitive whole cell currents, enhanced sodium self 

inhibition and reduced single-channel PO, with no apparent effect on surface 

expression and membrane trafficking (Mueller et al., 2010). It is widely accepted 

that the short lifetime of ENaC at the cell surface is related to modification by 

ubiquitination and consequent degradation. Several conserved lysine residues in 

the N-termini of α- and γ-ENaC are targets for ubiquitination and consequent 

internalization and recycling (Staub et al., 1997). Mutation of these conserved 

lysines to arginines resulted in elevated channel function when expressed in 

oocytes (Staub et al., 1997). Using the quantitative assay developed by Firsov et. 

al., Staub et al., demonstrated that increase in ENaC activity is a consequence of 

increase in number of channels at the surface (Firsov et al., 1996; Staub et al., 

1997). Using yeast two-hybrid screen of the rat lung library of small peptide 
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fragments containing the PXXXY (PY-motif), frequently mutated or deleted in 

Liddle disease, Staub et al., identified Nedd4 as a ubiqutin ligase responsible for 

ubiquitination of ENaC (Hansson et al., 1995; Inoue et al., 1998; Shimkets et al., 

1994; Staub et al., 1996). The N-termini of ENaC are also important for channel 

gating. Grunder et al., demonstrated that site-specific substitutions at a highly 

conserved glycine (αG95S, βG37S, γG40S – according to the amino acid 

sequence of rat ENaC) in the N-terminus of all three subunits drastically 

decreases amiloride-sensitive sodium currents by decreasing the PO and altering 

the channel open and closed times (Chang et al., 1996; Grunder et al., 1997). 

The involvement of βG37S in the pathophysiology of PHA-1 highlights the 

importance of the N-termini of ENaC in channel gating. 

Besides post-translational modification of the N- and C-termini of ENaC, 

interaction with phosphoinositides has been shown to regulate native and 

expressed sodium channels. Anionic phospholipids, normally located in the inner 

leaflet of the plasma membrane interact with ENaC to modulate its function. 

Among the anionic phospholipids, phosphotidylinositol 4,5-bisphosphate, 

commonly known as PIP2, is a minority phospholipid that modulates functional 

regulation of many ion channels and membrane receptors (Suh and Hille, 2008). 

PIP2 has been shown to stimulate ENaC activity in A6 cells (Yue et al., 2002). 

Ma et al., demonstrated the dependence of function of ENaC on presence of 

anionic phospholipids (Ma and Eaton, 2005; Ma et al., 2002). Using patch clamp 

techniques, Ma et al., showed that addition of anionic phospholipids such as 

phosphatidylinositol (4,5)-bisphosphate (PIP2), phosphatidylinositol (3,4,5)-
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trisphosphate (PIP3) and phosphatidylserine (PS) to the cytoplasmic side of the 

patch increases sodium currents (Ma et al., 2002). Conversely, depletion of PIP2 

using various endeavors like chelation with anti-PIP2 antibody, hydrolysis with 

exogenous phospholipase C (PLC) or activation of endogenous PLC, activated 

channel rundown and decreased INa (Ma et al., 2002). Using lipid-protein overlay 

studies, Zhang et al., determined that anionic phospholipids differentially regulate 

the function of ENaC by interacting with the α, β and γ subunits (Zhang et al., 

2010). The basic amino acids immediately distal to the second transmembrane 

domain of β- and γ-ENaC have been identified as potential sites of interaction 

with PIP3, but not PIP2, resulting in channel activation (Booth et al., 2003; 

Pochynyuk et al., 2005; Pochynyuk et al., 2007). The highly conserved lysines in 

the N-terminus of β- and γ-subunits were hypothesized to interact with PIP2. 

Interestingly, these residues are common to two conflicting modes of regulation 

of ENaC; PIP2-mediated activation, ubiquitin-mediated degradation. Based on 

this observation, intracellular ubiquitination and extracellular cleavage were 

linked by a possible conformational change in the extracellular domain (Ruffieux-

Daidie et al., 2008; Ruffieux-Daidie and Staub, 2011). Based on these findings, 

one can envision a complex series of events, probably guided by intramolecular 

allosteric signal propagation mediating regulation of ENaC activity at the cell 
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surface.

 

Figure 1.1 Activation and regulation of epithelial sodium channels.  
Epithelial sodium channels are synthesized in the ER, trafficked to Golgi and to the 
apical plasma membrane, where they are activated by proteases either soluble or 
membrane-associated. Intracellular fragments interact with anionic phospholipids and 
mediate channel activation.  

1.6 Motivation 

In the current study, we addressed the structural basis for regulation of 

function of ENaC. Attempts to crystallize ENaC are averted by its 

transmembrane segments and dependence on expression levels of more than 

one subunit in the chosen expression system. Low-resolution structural studies 

are not as useful since understanding the functional aspects of a protein requires 

atomistic details of its structure. A promising alternative is homology based 
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model development, which has been used for successful drug screening and 

design in case of proteins that are difficult to crystallize, including the serotonin 

receptor (5-HT1A) and CCR3 (an entry co-receptor for HIV1) (Becker et al., 2003; 

Flower, 1999; Hillisch et al., 2004; Klabunde and Hessler, 2002; Patny et al., 

2006). Hence, we chose to build a homology model of ENaC based on the 3-

dimensional co-ordinates of the recently crystallized chicken acid-sensing ion 

channel (cASIC) (Jasti et al., 2007)– a close homolog of ENaC. We set out to 

construct structural models of trimeric and tetrameric assemblies of ENaC. To 

experimentally address the controversy regarding the subunit composition of 

ENaC, we used blue native and clear native polyacrylamide gel electrophoresis 

(BN-, CN-PAGE) and biochemically characterized the assembly of ENaC in its 

native conditions. 

Two specific gaps in understanding proteolytic activation of ENaC involve 

the dominant role of γ-ENaC in proteolytic regulation of the channel. First, studies 

of at least five ENaC activating proteases identify essential sites in γ-ENaC, 

despite accepted importance of furin-like cleavage sites in α-ENaC. Second, the 

structural and/or energetic features of the region of γ-ENaC (residues 130-200), 

that renders it susceptible to cleavage by multiple proteases, have not been 

investigated. Previous studies on membrane associated proteases (MAPs) 

including prostasin/CAP1 and TMPRSS4/CAP2 revealed an important role for γ-

ENaC in channel regulation via limited proteolysis (Adachi et al., 2001; Bruns et 

al., 2007; Garcia-Caballero et al., 2008). Additionally, the extracellular domain of 

γ-ENaC has been hypothesized to harbor an allosteric regulatory subdomain with 
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an important role in channel function (Winarski et al., 2010). Interestingly, 

proteolytic activity of CAP1 is not required for its stimulation of ENaC. This 

observation led to a suggestion that CAP1 may play a critical non-catalytic role in 

ENaC regulation, perhaps as part of a cascade of surface associated proteases 

(Vuagniaux et al., 2002). It was recently demonstrated that matriptase/CAP3 is a 

critical activator of CAP1 (List et al., 2007). Although CAP3 is believed to cleave 

and activate ENaC based on its homology to CAP1 and CAP2, the structural 

basis for such cleavage has not been studied. Here, we focus on the structural 

and energetic bases for activation of rat ENaC by CAP3-mediated cleavage of 

the γ subunit. 

The heteromultimeric organization of ENaC gives rise to a channel that 

spans tens of angstroms in the extracellular environment. From structural 

homology, it is clear that the protease cleavage sites in ENaC are located in the 

extracellular domain, perhaps distant from the ion-selective pore. A fundamental 

question concerning activation of ENaC is the mode of signal propagation from 

the extracellular cleavage sites to the pore and the molecular details involved in 

such long-range communication. We hypothesized that ENaC undergoes 

significant conformational change in the extracellular domain that would 

eventually lead to channel activation. Here, we have developed a computational 

method to map the residues involved in allosteric signal propagation in proteins. 

Using our approach, we have identified critical sites in ENaC that mediate such 

long-range communication within the channel. 
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Overall, using a combination of computational and experimental 

techniques, we have attempted to understand the molecular details underlying 

the regulation of function of ENaC. We believe that the scientific advance 

achieved through this study will benefit a finer understanding of the molecular 

aspects of epithelial sodium channel structure, function and regulation. 



 
CHAPTER 2 

Materials and methods 

2.1 Homology Model Building 

Medusa is a comprehensive protein design toolkit developed in our 

laboratory (Ding and Dokholyan, 2006). Medusa uses Monte-Carlo based 

procedure to optimize the side-chains for a given backbone. The major strength 

of Medusa over other homology-modeling servers is its ability to efficiently 

sample the rotamer and sub-rotamer spaces of amino acid side-chains. Medusa 

has been successfully used in the past to model the structure of CFTR (Serohijos 

et al., 2008), dynein (a cytoseletal motor protein) (Serohijos et al., 2006) and the 

pore of the Ryanodine receptor (Ramachandran et al., 2009). The details 

regarding the protocol used for minimization and the force field parameters are 

described previously (Ding and Dokholyan, 2006; Ramachandran and 

Dokholyan, 2011). 

2.2 Structure Refinement 

Generation of surface dots. We use our implementation of the algorithm 

originally proposed by Le Grand and Merz (Le Grand and Merz, 1993) to 

compute solvent accessible and molecular surface area of proteins. The 
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algorithm represents each atom as a set of dots placed on the surface of the 

atom. For improved accuracy, we used 4096 dots to represent the surface of 

each atom compared to 256 in the original implementation. For scale-up, we 

represent the dots as pairs of spherical angles θ and Φ. In our convention, 

θ=[0,π] and Φ=[0,2π). We first generated dots on the surface of a unit sphere by 

randomly choosing θ and Φ values within their respective domains. We then 

performed Monte Carlo-based simulated annealing to minimize the following cost 

function using the Metropolis criterion, 

€ 

W =
1
dij
2

i<j

N

∑
 (1) 

where N is the number of dots on the surface and dij is the Euclidian distance 

between the dots i and j. 

Solvent accessible surface area (SASA). We define the SASA of a protein as 

the area covered by the center of a solvent sphere, as it rolls over the protein 

surface. Considering the radius of the solvent sphere to be 1.4 Å (radius of one 

water molecule), we obtain SASA by calculating the surface area of the protein, 

when the radii of all its atoms are increased by 1.4 Å. We use our implementation 

of the algorithm proposed by LeGrand and Merz (Le Grand and Merz, 1993) for 

calculating SASA, where surface of each atom is represented by 4096 dots and 

boolean masks are used to delineate buried and exposed dots on each atom. 

The reported SASA of a protein therefore includes the surface area of the voids 

(if any) in the protein.  We have modified the algorithm to ensure uniform 
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distribution of masks on the surface of a unit sphere.  We define and use a metric 

hij given by, 

€ 

hij = 1− cosθ ij  (2) 

for generating masks instead of, 

€ 

dij = 2 1− cosθij( )
 (3) 

as proposed by LeGrand and Merz (Le Grand and Merz, 1993). We identify the 

dot closest to the point D on the line joining the centers of two atoms i and j and 

retrieve the appropriate mask to determine the fraction of surface of atom i not 

buried by atom j. We repeat this process for all atom pairs to determine the 

exposed surface of each atom. The surface area of the protein can then be 

computed by summing up the fractional surface areas contributed by individual 

atoms. 

Molecular surface area (MSA). We define the MSA of a protein as the area 

covered by the edge of a solvent sphere, as it rolls over the protein surface. MSA 

is represented as a sum of three components - contact, toric and reentrant 

surfaces (Connolly, 1983).   

Contact surface area: We compute the contact surface area using the same 

algorithm that we use for computing SASA, but without increasing the radii of 

atoms by the radius of the solvent. The contact surface area of the protein can be 

formally defined as: 
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€ 

Ac =
ni
D
(4π

i=1

N

∑ ri
2 )

 (4) 

where ni and ri are the number of exposed dots, and the radius of atom i, 

respectively, and D is the total number of dots on the atom, set to be 4096.  Ac 

includes the contact surface area of voids (if any) in the protein core. 

Toric surface area: We analytically calculate the toric surface area covered by 

the solvent probe on a pair of atoms i and j, using the following equation: 

€ 

At = At,ij =
i≠ j

N

∑ 2π τ ij (ri + rw )sinθij
π
2
−θij

 

 
 

 

 
 − rw cosθij

 

 
 

 

 
 

i≠ j

N

∑
 (5) 

where τij is the fraction of the torus around the overlapping atoms i and j that is 

accessible to the solvent probe,  ri and rw represent the radii of the atom i and the 

probe respectively, and θij is the angle subtended by the atom j at the center of 

atom i.  We compute τij using edge masks as described by Bystroff (Bystroff, 

2002). The solvent probe may roll over itself causing singularities in the toric 

surface.  We treat such cases by computing the toric surface area by atoms i and 

j using the following equation when (ri+rw)sinθij < rw: 

€ 

At ,ij = 2πτ ij

(ri + rw )sinθij
π
2
−θij − arccos

(ri + rw )sinθij
rw

 

 
 

 

 
 

 

 
 

 

 
 

−rw cos θij + arccos
(ri + rw )sinθij

rw

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 
 (6) 
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We use this algorithm to compute the toric surface area of all atom pairs 

including those forming voids (if any) in the protein core. Further details on the 

mathematical formulation are reported elsewhere (Bystroff, 2002).  

Reentrant surface area: We apply the Gauss-Bonnet theorem to calculate the 

total reentrant curvature of the protein.  Gauss-Bonnet theorem states that the 

total Gaussian curvature integrated over a closed manifold equals 2π times the 

Euler characteristic of the manifold. This theorem is applicable only if a normal 

can be generated unambiguously at every point on the surface of the manifold 

(orientable surface).  Protein surfaces are orientable and hence the Gauss-

Bonnet theorem can be used to calculate the Gaussian curvature of a protein.  

Since the Euler characteristic is geometrically invariant, the Gaussian curvature 

integral of a closed 3D surface, i.e. the Connolly molecular surface of a protein, is 

the same as that of a sphere and is equal to 4π. The total Gaussian curvature of 

the protein can be denoted as a sum of contact, toric and reentrant curvatures. 

However, proteins may contain voids, which are isolated continuous surfaces in 

the protein core. Each such void, if present, must be considered as an 

independent orientable manifold. Therefore, the reentrant curvature of the protein 

is given as 

€ 

Kr = 4mπ − Kc − Kt  (7) 

where Kr is the total reentrant curvature integral and Kc, Kt represent the total 

contact and toric curvature integrals respectively. m represents the total number 
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of manifolds in the system including the solvent accessible surface and all the 

voids. The total contact curvature integral, Kc, can be obtained using, 

€ 

Kc = 4π ni
Di=1

N

∑
 (8) 

and total toric curvature integral Kt can be calculated by, 

€ 

Kt = kt ,ij =
i≠ j

N

∑ − 2π τ ij cosθij
i≠ j

N

∑
 (9) 

Here, the curvature integral of toric surface is negative and we do not need to 

consider the overlapping of toric surfaces. Kr can be derived accordingly, which 

corresponds to the total reentrant curvature of the protein and voids since the 

contact and toric curvatures already take the corresponding curvatures from 

voids in the protein into account. We cluster all the exposed dots on the surface 

of all exposed atoms to obtain the number of independent manifolds within the 

protein. Our approach is different from that employed by MASKER (Bystroff, 

2002) in that we derive the total re-entrant surface analytically using the global 

Gauss-Bonnet theorem instead of computing individual re-entrant surfaces, 

which have additional sources of errors. The reentrant surface area of the protein 

is then given by 

€ 

Ar = Krrw
2
 (10) 

Void volume. We define voids as those internal cavities in the protein core that 

are inaccessible to the bulk solvent, but feature a volume greater than or equal to 
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at least one solvent molecule. We define void volume as the volume of such 

internal cavities inaccessible to the bulk solvent.  To compute void volume, we 

first use our modified implementation of the algorithm proposed by LeGrand and 

Merz, to obtain all the dots on the surface of each atom that is not buried by other 

atoms.  These exposed dots could either belong to the surface or internal voids 

in the protein.  We identify voids by performing single-linkage clustering on these 

exposed dots using the distance between them as the clustering criterion.  This 

process yields one large cluster corresponding to the solvent accessible surface 

and zero or more small clusters each corresponding to an internal void 

(Supplementary Figure S2). Since we increase the radius of each atom by the 

radius of a water molecule (1.4 Å) before void identification, the minimum volume 

of the identified voids is equal to the molecular volume of water. We delineate the 

volume of each identified void into i) solvent excluded volume – the region from 

the surface of the atoms to the surface traced out by the center of the solvent 

sphere as it rolls on the atoms lining the void and ii) solvent accessible volume – 

which is accessible to the solvent, should a solvent molecule be able to approach 

this space within the protein. 

(i) Solvent excluded volume: The solvent excluded volume is composed of three 

components: the contact volume (fractional volume accessible to the solvent 

probe touching only one atom), the toric volume (fractional volume inaccessible 

to the probe touching two atoms at a time) and the reentrant volume (fractional 

volume inaccessible to the probe when it touches three atoms simultaneously). 
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The fractional volume accessible to the probe touching only one atom can be 

mathematically computed using, 

€ 

Vc =
4π
3

ni
D
(ri + rw )

3 − (ri )
3( )

i

N

∑
 (11) 

v where Vc is the total contact volume, D represents the number of dots on the 

atom i, ni is the number of exposed dots facing the void, N is the number of 

atoms lining the void, ri is the radius of atom i and rw is the radius of the probe.  

To calculate the toric volume of the void, we performed analytical integration to 

arrive at the following equation: 

€ 

Vt = 2π Vt,ij
i≠ j

N
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 
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 
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N

∑
 (12) 

where the terms represent the same quantities as in At.  To account for 

singularities, we used different lower limits for integration when (ri+rw)sinθij < rw, 

generating the following equation.  

€ 

Vt, ij = τ ij

(ri + rw )sinθ ij
π
2
−θ ij − arccos
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 (13) 

We compute the total reentrant curvature for each identified void as described 

above.  The reentrant volume can then be computed using 



24 

€ 

Vr =
4π
3
rw
3Kr

 (14) 

where Kr is the total reentrant curvature for the void. Since the void is a single 

orientable manifold, we do not perform manifold correction in calculation of void 

volume, as we perform while calculating the molecular surface area. 

(ii) Accessible void volume: We calculate the accessible void volume by 

numerical integration: we iteratively increment the radii of all the atoms (starting 

from atom radius plus solvent radius) forming the void by 0.01 Å and sum up the 

surface area of these voids times 0.01 at each increment till the area converges 

to zero. The total void volume is then obtained by summation of the independent 

components of solvent excluded volume and accessible void volume. 

Unsatisfied hydrogen bond donor/acceptor. We define a polar 

nitrogen/oxygen atom as an unsatisfied hydrogen bond donor/acceptor if it is 

buried from the solvent and is not involved in a hydrogen bond. If a polar atom 

belongs to a residue whose total SASA is zero, it is marked as buried. On the 

other hand, if the polar atom itself is buried, but the residue it belongs to features 

a non-zero SASA, rotamer changes/side chain dynamics could expose the polar 

atom, and thus, the polar atom is classified as being in the shell: an intermediate 

layer between buried and solvent accessible regions of the protein. We first build 

all hydrogen bonds in a given protein structure using Medusa’s directional 

hydrogen-bond potential (Ding and Dokholyan, 2006; Yin et al., 2007b), and then 

list all the buried/shell polar atoms that do not form hydrogen bonds.  
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Bond lengths, angles, torsions and side chain rotamers. To ensure the 

robustness of the covalent geometry of the input protein structure, we also 

calculate bond lengths, angles, backbone torsions and side chain rotamers to 

detect outliers. For side chain integrity, the nearest rotamer in the Dunbrack 

library (Dunbrack and Cohen, 1997) for a given side chain is determined, and 

then, the p-values of each of the applicable chi-angles of the given side chain 

with respect to the identified standard rotamer is calculated. A p-value less than 

0.05 is reported as an outlier and presented in the output for a protein structure 

on the web server. The bond lengths for all standard bonds were calculated from 

our high resolution dataset, and the mean and standard deviation from the 

resulting distributions were used in determining p-values for bond lengths of the 

input structure. For bonds with standard deviation less than 2.5% of the mean (as 

calculated from the standard distribution), we reset the standard deviation as 

2.5% of the mean. We reset the standard deviation because the force constants 

for the bonded term in the MD force fields allow between 2.5-4% deviations in 

bond lengths at 300K. Thus, to report realistic outliers in modeled structures, we 

require the standard deviation to be at least 2.5% of the mean. Similar analysis 

was performed for angles and the omega dihedral of the protein backbone. For 

the Φ-ψ dihedrals, a two-dimensional histogram with bin width of 2° was 

constructed combining all amino acid types excluding proline and glycine. A 

separate histogram was constructed for proline. In the input structure, residues 

whose Φ-ψ values belong to a lowly populated bin (roughly less than 2.5% of the 

population) are designated as outliers. The outliers in terms of Φ-ψ dihedrals in 
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an input structure are plotted on top of the heat map of the two-dimensional 

histogram. 

Definition of steric clashes and the acceptable clash-score. We define a 

steric clash in a protein as any atomic overlap resulting in Van der Waals 

repulsion energy greater than 0.3 kcal/mol (0.5 kBT), except i) when the atoms 

are bonded, ii) when the atoms form a disulfide bond or a hydrogen bond (i.e. the 

heavy atoms are involved in the hydrogen bond; we assign the Van der Waals 

radius of hydrogen to be zero), iii) when the atoms involved are backbone atoms 

and have separation of 2 residues (in order to accommodate the formation of 

tight turns). We calculate the Van der Waals repulsion energy using the non-

bonded parameters from the CHARMM19 force field, which are identical to CNS 

parameters except for carboxyl oxygen atoms.  Since clashes are local structural 

artifacts, we reduce the search time and space by restricting the search to the 

local environment of a given atom. We determine clashes using the above 

definition by constructing a grid around the protein with the dimension of each 

cell larger than the largest Van der Waals interaction distance between any two 

atom pairs (~4.5 Å) and walking along the chain to check if the overlap of the 

atom under consideration with the heavy atoms in the same or adjacent cells 

leads to a clash. We then define ‘contacts’ as the number of such overlaps 

tested. The clash-energy of a protein is the sum of Van der Waals repulsion 

energy of all the clashes in the protein’s structure. In order to arrive at a 

descriptor independent of protein size, we define the clash-score, which is the 

clash-energy divided by the number of contacts. Thus, clash-score describes the 
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clashes present in a protein-structure, but is independent of the size of the 

protein. To estimate the permissible Van der Waals repulsion in a given 

structure, we determine the clash-scores of high-resolution crystal structures 

(see below). The distribution of these clash-scores indicates the extent of clashes 

permissible in proteins as a consequence of tight packing. A clash-score that is 

deviant from the distribution for high-resolution structures would then point to 

clashes that are artifacts of model building rather than those inherent to the 

protein structure.  Clash-score is acceptable if it is less than one standard 

deviation away from the mean on the higher side of the distribution of clash-score 

of high-resolution dataset of structures (which would include ~84% of the proteins 

in the dataset). From the distribution of clash scores of structures from the high-

resolution dataset, we calculate the acceptable clash-score to be 0.02 kcal.mol-

1.contact-1. 

Protein datasets. In order to understand the extent of clashes in protein 

structures and arrive at an acceptable clash-score, we constructed datasets of 

protein structures of various resolutions. We obtained two sets of protein 

structures from the Protein Data Bank (PDB)(Berman et al., 2000) and one set of 

protein structures from Swiss-model repository. The sets obtained from PDB 

correspond to a high-resolution set (0-2.5 Å) and a low-resolution set (2.5-3.5 Å). 

The high-resolution set was used to arrive at the acceptable clash-score. Our 

high-resolution dataset comprises protein structures determined by X-ray 

crystallography with a reported resolution less than 2.5 Å. Other than protein 

chains, these structures did not contain any other biomolecules (i.e. 
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ligands/DNA/RNA). We then split these structures into individual peptide chains 

and clustered them based on sequence similarity. We used individual chains 

because we wanted clash statistics of globular proteins and not interfaces. We 

considered only one representative chain from each cluster of sequences that 

were at least 80% similar to each other, thus creating a dataset of 4495 unique 

chains. We further filtered the dataset based on radius of gyration to remove non-

globular peptides/proteins from the dataset. The final dataset consisted of 4311 

single chains at least 25 residues long. We used Medusa to accurately place any 

missing side-chain atoms in these structures. 

We obtained a low-resolution dataset from PDB in order to explore if 

clash-score was worse in low-resolution structures compared to high-resolution 

structures (Results). The lower-resolution dataset contains 2942 unique protein 

structures determined using X-ray crystallography with a resolution between 2.5Å 

and 3.5Å. In addition to these two datasets, we obtained a set of 1000 homology 

models from the Swiss-model repository of random swiss-model entries (using 

the CGI-perl script provided by expasy: http://www.expasy.org/cgi-bin/get-

random-entry.pl?S). We filtered these structural models based on radius of 

gyration resulting in a final dataset of 931 structural models. 

2.3 Computational Methods 

Minimization using DMD. The DMD simulation methodology is described in 

detail elsewhere (Ding, 2008; Dokholyan et al., 1998). DMD is a special type of 

molecular dynamics (MD) algorithm, which uses square-well potentials instead of 

continuous potentials. Thus, in DMD we seek to solve the ballistic equations of 
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motion instead of Newtonian equations of motion in a system of particles. We 

use CHARMM19 non-bonded potentials, EEF1 implicit solvation parameters 

(Lazaridis and Karplus, 1999) and geometry-based hydrogen bond potentials in 

DMD (Ding, 2008) to model various macromolecular interactions. The time unit of 

the all-atom DMD simulations is ~50 femtosecond (fs) and the temperature is 

maintained using Anderson’s thermostat. The rate of velocity rescaling (for 

maintaining temperature) depends on the simulation we perform; in the present 

study we used either 200 ps-1 or 4 ps-1 as the rescaling rate. 

Enzyme-peptide Docking. We represented γ-ENaC cleavage sites tentatively 

identified by mutagenesis by 8-mer peptides with the putative wild type P4-P1 

cleavage sequence contained in the first four residues. We constructed three 

linear 8-mer peptides from rat γ-ENaC (Seq1: 135-RKRREAGS; Seq2: 178-

RKRKISGK; Seq3: 132-KESRKRRE) such that the P1 site is between the fourth 

and fifth residues. We chose the initial configuration for the peptide by random 

placement at sites distant from the active site of either enzyme. We imposed two 

distance constraints – one between the epsilon nitrogen atom (NE2) of active site 

histidine and backbone amine of the P1’ site on the peptide and the other 

between the gamma oxygen atom (OG) of active site serine and carbonyl oxygen 

of the P1 site – to draw the peptide close to the active pocket. In order not to bias 

the configuration of the peptide in the active site of the enzyme, we placed the 

peptide at ten different, randomly chosen starting positions and with different 

orientations with respect to one another. We performed replica exchange DMD 

simulations of each such initial configuration with eight replicas in a temperature 
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range of 0.35 to 0.75 reduced units at increments of 0.035 units (Ding, 2008). 

The total simulation time was 106 DMD time units. Each DMD time unit is 

approximately 50 fs in real time, accounting for a total simulation time of 50 ns 

per replica. The relationship between DMD time unit and real time is discussed 

elsewhere (Sharma et al., 2007). DMD uses Medusa, a CHARMM-based 

forcefield to treat interactions between atoms in the macromolecule. We used 

EEF1, an implicit solvation model to treat the solvation of the simulation system 

(Lazaridis and Karplus, 1999). Energy minimization of the crystal structure of 

furin and matriptase was performed using Chiron prior to replica exchange 

simulations (Ramachandran et al.). Proteases were maintained static during 

simulations allowing movement of only the loops surrounding the active site. We 

selected snapshots across simulation trajectories of all replicas that satisfied both 

the distance constraints and clustered them based on pair wise root mean 

square deviation (RMSD) of Cα atoms. We selected the representative structures 

from five such clusters and performed side-chain optimization using the fixed 

backbone custom design protocol from the Medusa suite (Ding and Dokholyan, 

2006). 

Peptide Disorder Prediction. We used Disopred2 

(http://bioinf.cs.ucl.ac.uk/disopred) to analyze the peptide sequences of alpha, 

beta and gamma subunits of rat ENaC. We used the sequences L150-L290 from 

rat α-ENaC, K117-P240 from rat β-ENaC and K91-S222 from rat γ-ENaC. 
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2.4 Biochemical Characterization 

Crude membrane preparation. MDCK or 3T3 Cells expressing ENaC were 

grown to ~95% confluency in 15 cm dishes, washed twice with ice cold PBS and 

scraped using a cell scraper in lysis buffer containing 2x protease inhibitor 

cocktail and incubated on ice for 10 min. Cells were then lysed using a Dounce 

homogenizer by applying 2-6 strokes depending on the cell type. Lysis was 

monitored using trypan blue stain and hemocytometer under a microscope. After 

50-70% of lysis was achieved, equal volume of 0.5 M sucrose solution was 

added to the homogenizer. Lysates were centrifuged in an ultra centrifuge at 

5000 rpm using an SW28 rotor for 15 min to remove the cell debris and 

organelles. The supernatant was centrifuged at 25000 rpm for 1 hr at 4 0C, the 

pellet was resuspended in ice cold buffer with protease inhibitors, aliquoted and 

stored at -80 0C until further use. 

Detergent solubilization. Crude membrane fractions were thawed on ice and 

protein content was estimated using a Bradford assay. Membrane fractions were 

solubilized in solubilization buffer (150 mM NaCl, 50 mM Tris-HCl at pH 7.4) 

containing 2x protease inhibitors and 1% detergent of choice, incubated on an 

end-on-end rocker for 1 hr at 4 0C. The mixture was centrifuged in a tabletop 

ultracentrifuge using a TLA-100.2 rotor for 1 hr. Supernatants were collected and 

the pellets were resuspended in the solubilization buffer. Efficiency of 

solubilization was estimated by subjecting the supernatant and resuspended 

pellet to SDS-PAGE separation followed by western blot analysis. 

Native Polyacrylamide Gel Electrophoresis (Native-PAGE) 
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Crude membrane fractions isolated from MDCK/3T3 cells or oocytes were 

solubilized in LPG prior to separation by native PAGE. ~5 – 10 ng of solubilized 

protein were mixed with 1X native buffer (Invitrogen) and 0.25% G-250 

(Invitrogen) and was loaded onto Bis-Tris 4-16% gradient gels (Invitrogen) and 

subject to electrophoresis at 150 V for 150-180 minutes at 4 0C. Proteins were 

transferred onto a 0.22 micron PVDF membrane (Millipore Immobilon-P) for 150 

minutes at 4 0C prior to recognition using subunit specific antibodies. Antibodies 

against alpha, beta and gamma subunits of ENaC were purchased from 

Stressmarq. 

Plasmid Preparation.  For biochemical analyses of ENaC subunit proteolysis, 

cDNAs encoding rat α,β and  γ-ENaC with HA-N-terminal (HA-NT) and V5-C-

terminal (V5-CT) epitope tags were generated. Wild type and mutant constructs 

(α-ENaC; R205A/R231A, β-ENaC, γ-ENaC; R135Q/K136Q/R137Q/R138Q, 

R135Q/K136Q/R137Q/R138; R135Q/K136Q/R137/R138Q; R135Q/K136/R137Q/

R138Q; R135/K136Q/R137Q/R138Q,    hepatocyte growth factor activator 

inhibitor 1 and 2 (HAI-1, HAI2) and CAP3 were generated by PCR and cloned 

into pCR-BluntII-TOPO (Invitrogen), linearized (HindIII) and in vitro transcribed 

using T7 RNA polymerase. A PolyA tail was added after transcription (Ambion).  

Mutations were done with the Quikchange multi site-directed mutagenesis kit 

(Stratagene). The WT ENaC plasmids were generously provided by Dr. Bernard 

Rossier. The sequence of all plasmids was verified at the University of North 

Carolina sequencing facility. Plasmid preparation was performed by Yan Dang in 

Dr. Stutts’ laboratory. 
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Western Blot Analysis. Proteins were extracted from oocytes as described 

above. Biotinylated and total proteins were solubilized by boiling in Laemmli 

sample buffer for 10 min prior to loading onto 4-12% SDS-PAGE gels.  Western 

blots were performed with anti-V5 (Invitrogen), anti-HA (Covance), anti-CAP3 

(Bethyl, Laboratories, Inc.) and anti-actin (Chemicon International) antibodies. 

Functional Studies of ENaC in Xenopus oocytes. V-VI stage healthy oocytes 

were harvested as described previously (Donaldson et al., 2002) and maintained 

in modified Barth’s solution (MBS) at 18°C. Animals were maintained and studied 

under protocols approved by the University of North Carolina Institutional Animal 

Care and Use Committee. Oocytes expressing the desired combinations of 

ENaC subunits and CAP3 were obtained as before (Garcia-Caballero et al., 

2008). Briefly, cRNAs encoding wild-type (WT) of both untagged and HA-NT/V5-

CT epitope tagged subunits or mutant HA-NT/V5-CT tagged subunits of rat  α, β 

and γ-ENaC (0.3 ng each) and CAP3 cRNA (typically 1 ng) were co-injected into 

oocytes.  Twenty-four hr after injection, two-electrode voltage clamping was 

performed using a Genclamp amplifier (Axon Instruments) in a constant 

perfusion system.  Currents were measured in the presence and absence of 10 

µM amiloride, with membrane voltage clamped to -100 mV.  Currents were 

digitized and recorded using a Digidata 1200 A/D converter (Axon Instruments) 

and Axoscope software.  After basal amiloride sensitive current (INa) was 

recorded by washing out amiloride, oocytes were superfused with amiloride 

containing buffer and trypsin or hNE (2-20 µg/ml) for 5 m, followed by a second 

determination of INa. All results are expressed as the mean ± S.E. or as fold 
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stimulation by CAP3 or hNE. The means of two groups were tested for significant 

difference using an unpaired Student’s t test, differences between three or more 

groups were evaluated using ANOVA analysis (GraphPad Prism software).  

Proteins extracted from control and injected oocytes were analyzed by Western 

blots to verify expression of ENaC and actin. Functional measurements were 

conducted by Yan Dang and Hong He in Prof. Jackson Stutts’ laboratory. 

Surface labeling.  Xenopus oocytes were injected with desired combinations of 

WT or mutant double epitope (HA/V5) tagged α, β ,  and  γ rat ENaC subunits 

(0.3 ng each) and with or without CAP3 cRNA (1 ng).  After 24 hrs, 70 oocytes 

per experimental condition were pre-chilled on ice for 30 minutes and labeled 

with 0.7 mg/ml sulfo-NHS-biotin in MBS-Ca++ (mM), 85 NaCl, 1 KCl, 2.4 

NaHCO3, 0.82 MgSO4, 0.41 CaCl, 0.33 Ca(NO3), 16.3 hepes titrated to pH 8.0 

with NaOH, while tumbling gently for 20 min at 4°C.  Oocytes were washed twice 

with chilled MBS-Ca++ buffer and incubated in MBS-Ca2+ buffer with 100 mM 

glycine for 10 min at 4°C to quench free biotin.  Oocytes were washed again 

three times with chilled MBS-Ca++ buffer, then lysed with lysis buffer (in mM; 20 

Tris, 50 NaCl, 50 NaF, 10 β-glycerophosphate, 5 Na4P2O7 pyrophosphate, 1 

EDTA, pH 7.5 containing protease inhibitors (complete, Roche), aprotinin 

(Sigma)).  Cell lysates were prepared by passing oocytes through a 27G1/2 

needle twice and by centrifugation at 3,600 rpm for 10 minutes at 4°C.  

Supernatants were transferred to new tubes and samples were spun at 14,000 

rpm for 20 minutes at 4°C.  Supernatants were discarded and pellets were 

solubilized in solubilization buffer (in mM; 50 Tris, 100 NaCl, 1% triton X-100, 1% 



35 

NP-40, 0.2% SDS, 0.1% Na deoxycholate, 20 NaF, 10 Na4P2O7 pyrophosphate, 

10 EDTA + protease inhibitor cocktail, pH 7.5).  Total inputs were taken from 

whole cell samples representing 4% of total protein.  Solubilized proteins were 

incubated with 100 µl of neutravidin beads (Pierce) overnight while tumbling at 

4°C.  Samples were washed twice with (mM) 500 NaCl 50 Tris pH 7.5 buffer and 

once with 150 NaCl 50 Tris pH 7.5 buffer.  Laemmli buffer was added and 

samples were loaded on a 4-12% gradient Tris-glycine gel after incubation for 10 

minutes at 96°C.  Samples were transferred to 0.45 µm polyvinylidene difluoride 

(PVDF) membranes (Millipore) and Western blot analysis was performed using 

an anti-V5 (Invitrogen), anti-HA (Covance) and anti-actin (Chemicon 

International) monoclonal antibodies. Surface ENaC biotinylated fragments were 

quantified using the metamorph imaging 4.5 program (Hooker Microscopy 

Facility, University of North Carolina). Densitometry of selected bands was 

performed, using uninjected oocyte samples as background signal. Surface 

labeling studies were performed by Dr. Martina Gentzsch. 



 
CHAPTER 3  

Structural modeling and biochemical 
characterization 
 

3.1 Homology model building of ENaC  

The three subunits of ENaC share ~30% sequence similarity among 

themselves and nearly 35% with ASIC. We generated a sequence alignment of 

ENaC with ASIC using ClustalW2  (Larkin et al., 2007). The generated alignment 

was not satisfactory because the program failed to align many cysteine residues 

highly conserved across the DEG/ENaC superfamily. We obtained amino acid 

sequences for different subunits of ENaC from various species to construct a 

more extensive sequence alignment. We obtained sequences from 15 species 

and aligned them using ClustalW2. The alignment was then manually adjusted in 

low complexity regions to ensure that insertions avoid any secondary structural 

elements in ASIC. An excerpt from the final alignment used for model building is 

shown in Figure 3.1. 

The alignment thus generated was used for model building using Medusa. 

The three-dimensional atomic coordinates from the crystal structure of ASIC 

were used as a template to build the homology model of the α subunit of ENaC 
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(Figure 3.2). The stretches of amino acids present in ENaC but not in ASIC 

(insertions) were included as loops using Modeler (Fiser et al., 2000; Fiser and 

Sali, 2003). The amino acids present in ASIC but not in ENaC (deletions) were 

removed and the resulting ends were computationally connected using short 

DMD simulations. The side chains for all amino acids were repacked 1000 times 

using Medusa to fix the optimal rotamers for all the residues, and the model with 

least total energy was chosen. Similar models were generated for the beta and 

gamma subunit of ENaC.  

 
Figure 3.1: Sequence alignment of rat alpha, beta and gamma ENaC with chicken 
ASIC. 
Sequence alignment was generated using ClustalW. The conserved cysteine residues 
are highlighted yellow. 

The structure of the monomer is analogous to a hand holding a ball. As 

shown in figure 3.2A, the green helices form the thumb domain. Disulphide 
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bonds primarily contribute for the stability of this region of each subunit. The 

yellow beta strands form the palm domain and the red helices form the wrist 

domain. The helices colored purple and magenta form the fingers of the hand 

while the helices in teal form the knuckle domain. The orange beta twisted beta 

sheet in the middle of the protein is analogous to a ball and hence is called the 

beta ball domain. The three monomers were then assembled by aligning them 

structurally to their corresponding templates from cASIC. 

 

Figure. 3.2: Structural model of a-ENaC 
a. Color scheme for domains is the same as used by Jasti et. al. for representing ASIC. 
TM helices are colored red. The palm domain is colored yellow; thumb colored green, 
finger colored purple, and the beta-ball is shown in orange. b. Structural model of the 
ENaC trimer. Individually modeled subunits were overlaid with the structure of ASIC to 

a. b. 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generate the structure of the trimer of ENaC. Shown in green is α-ENaC, while β- and γ-
ENaC are colored cyan and magenta respectively. 

The three monomers in ASIC assemble using their palm domains to make 

asymmetric contacts with the thumb domain of the adjacent subunit. The 

structure of each subunit of ENaC differs from that of ASIC in that it forms an 

additional beta strand in the beta ball domain. Such strand formation in ENaC 

could impart additional stability to the structure of each subunit and also 

contribute to the stability of the trimer. Structural mapping of the precise cleavage 

sequence in the extracellular domains of different subunits suggests that the 

cleavage site in ENaC is present in the loop shown in magenta in figure 3.2 and 

is exposed to the solvent. In summary, we have built the structural model for the 

all three subunits of rat ENaC. Preliminary observations suggest that the 

structure of the alpha subunit recapitulates certain key features that have been 

previously observed experimentally.  

3.2 Structual models of the N- and C-terminal segments 

The N- and C-termini of each subunit of ENaC are indispensible for 

functional regulation of ENaC. Deletion of the termini has been shown to have 

adverse effects on channel activation and function. Recent studies have linked 

the N- and C-termini to the extracellular proteolytic processing of ENaC in an 

allosteric manner. Therefore, understanding the structural features of the N- and 

C-termini of ENaC is critical to understanding the molecular mechanisms 

involving the termini th activation of the channel. As described earlier, the N- and 

C-termini of all subunits of ENaC are of different lengths, intracellular and are 

relatively flexible compared to the rest of the protein. These fragments were 
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truncated in the constructs used by Jasti et al., for crystallographic studies of 

chicken ASIC (Jasti et al., 2007). In order to find a template structure to model 

the structures of these segments, we used the position-specific iterative basic 

local alignment search tool (PSI-BLAST) to search through the PDB database. 

We did not find any structures with a significant sequence similarity (at least 

15%) to these segments. We modeled the structures of these segments ab initio 

using replica exchange DMD simulations (See methods). The outcomes of these 

simulations are reported in figure 3.3.  

 

Figure 3.3. Structural models of N-terminal segments of ENaC 
Shown here are the representative structures across eight replicas after ab initio folding 
simulations of N-terminal segments of alpha, beta and gamma ENaC. These structures 
are shown in panels a, b and c respectively. 

The N-terminus of the beta subunit is mostly alpha helical while that of the 

gamma subunit is made of beta strands. The N-terminus of the alpha subunit 

features a mix of alpha helices and beta strands with a small three-strand beta 

sheet. In the reported model, the cysteines in the γ-subunit are surface-exposed 

and amenable for palmitoyl modification as observed by Mueller et al (Mueller et 

al., 2010). Furthermore, the cysteines are structurally close to the C-terminus of 

a. b. c. 



41 

the N-terminal fragment, such that the palmitoyl moiety can insert itself into the 

lipid bilayer in the fully assembled heteromultimer. Using circular dichroism 

spectroscopy and tryptophan fluorescence studies, Ismailov et al., showed that 

the C-terminal tails of β- and γ-ENaC have a propensity to form beta sheet 

structures (Ismailov et al., 1999). As predicted, we did not observe well-formed 

secondary structural elements in the C-terminal tails of ENaC, perhaps due to the 

presence of the proline-rich sequences forming the PY-motif. 

3.3 Refinement of the structural model of ENaC 

Steric clashes are one of the structural artifacts commonly seen in protein 

structural models. Current state-of-the-art tools for protein quality control identify 

clashes qualitatively, precluding an understanding of their possible energetic 

effects on protein structure. For instance, WHAT_CHECK (Hooft et al., 1996; 

Vriend and Sander, 1993) and Molprobity (Davis et al., 2007), commonly used in 

protein quality control, report a steric clash based on distances between two 

atoms with a distance cutoff for overlap set to 0.4 Å. However, the energetic 

penalty of such an overlap varies widely depending on the types of atoms 

involved in the clash (0-10 kcal/mol). We observe that low energy clashes are 

present even in high-resolution structures, however the number of severe 

clashes is very low. Thus, in order to correctly identify severe clashes, it is 

important to develop a quantitative measure to evaluate the effect of clashes 

present in a protein, and also it is necessary to benchmark the effectiveness of 

the measure by comparing against the extent of clashes seen in high-resolution 

crystal structures. 
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Several tools have emerged for resolution of such clashes upon 

identification. Steepest descent/Conjugate gradient minimization using all-atom 

Molecular Mechanics force fields is the most widely used method to resolve 

clashes in a protein structure before using the structure for further studies. 

However, minimization using Molecular Mechanics may not resolve severe 

clashes in some cases hampering subsequent Molecular Dynamics simulations. 

Molecular modeling tools like Rosetta are the alternate avenues for refining 

structures with severe clashes. These tools use knowledge-based potentials and 

small backbone moves to resolve clashes. However, these methods work best 

with smaller proteins (less than 250 residues in size) (Kaufmann et al.). Tools like 

MMTSB (Feig et al., 2004) and PULCHRA (Rotkiewicz and Skolnick, 2008) have 

emerged for structure refinement and for reconstruction of all-atom 

representation of proteins from Cα traces, which includes removal of clashes 

during refinement. We have developed an automated method for quantitative 

estimation and if required, resolution of clashes in a given protein structure. To 

accomplish the above, we developed a protocol using DMD simulations (Ding, 

2008; Dokholyan et al., 1998). We also demonstrated that our protocol is more 

robust in comparison to other state-of-the-art tools widely used by the protein 

structural modeling community (Ramachandran et al., 2011). Using this method, 

we refined the structural model of ENaC and resolved steric clashes introduced 

during homology modeling building maintaining the backbone fixed (Figure 3.2b). 
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3.4 ENaC appears as both trimers and tetramers on the 

mammalian cell surface 

 

Figure 3.4 Detergent solubilization of ENaC 
ENaC from MDCK or 3T3 cells was solubilized in six different detergents. The western 
blot was probed for alpha (green) and beta (red) subunits of ENaC. Samles from 
MDCK/3T3 cells without any observed ENaC expression were used as controls. 
Supernatant (S) and resuspended pellet (P) from all detergents were analyzed. 
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In order to determine the subunit composition of functional ENaC, we set 

out to study the protein in its native environment. As a first step, we intended to 

solubilize the heteromultimer in an appropriate detergent to maintain native 

interactions between subunits. Surprisingly, we did not find much evidence from 

the literature regarding the appropriate detergent for solubilization of ENaC. We 

studied the solubilization efficiency of ENaC in six different detergents and found 

that lysophosphatidylglycerol (LPG) and Fos-Choline solubilize ENaC more 

efficiently than the others (Figure 3.4). Unless otherwise specified, we solubilized 

ENaC in LPG for experimental characterization. Following solubilization, 5 ng of 

total solubilized protein was subject to native gel electrophoresis followed by 

western blotting. We studied the oligomerization states of native complexes by 

adding an increasing amount of SDS to the samples (Figure 3.5).  

 

Figure 3.5 Oligomerization state of ENaC in 3T3 cells 
(Left) Membrane fractions from 3T3 cells were isolated and solubilized in 1% LPG before 
loading on to a Bis-Tris 4-16% gradient native gel. Western blotting was performed 
following electrophoretic separation and the blot was probed using anti alpha ENaC 
antibody. (Right) Ferguson plot representing the relative mobility of the bands on the 
molecular weight marker on a log scale.  
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On a native gel, proteins are separated based on mass/charge ratio as 

well as the configuration in the species being separated. Therefore, the 

molecular weight of the protein does not change linearly as a function of the 

position on the gel. 
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Figure 3.6 Oligomerization state of ENaC in Xenopus oocytes 
Oocytes were injected with cRNA encoding different subunits of ENaC and solubilized 
membrane fractions were subject to native PAGE and western blot analysis. The blot 
was probed for alpha (top), beta (middle) and gamma (bottom) ENaC subunits using the 
respective antibodies. 

To estimate molecular weights, we plotted the relative mobility of each 

band on the molecular weight marker as a function of its distance from one end 

of the gel (ferguson plot) (marked by the corners in Figure 3.5 – left panel). From 

the ferguson plot, we estimated the molecular weights of the two bands at 2% 

SDS to be 443.54 kDa and 312.07 kDa respectively.  

Given that the molecular weights of the monomers are in the range of ~75-

90 kDa, these molecular weights correspond to those to trimeric and tetrameric 

oligomeric states of ENaC. The additional constant (~40 kDa) in the molecular 

weight of the complex corresponds to that of the detergent micelle in which the 

complex is solubilized. At low SDS concentrations, we noticed higher order 

species probably corresponding to tertiary interactions between two or more 

trimers or tetramers. These interactions are weak and do not sustain treatment 

with higher concentrations of SDS. 

 In order to determine the functional oligomerization state of ENaC, we 

expressed different subunits in Xenopus oocytes. Before we measure function, 

we set out to determine whether ENaC appears in the same oligomeric states in 

oocytes as it does in mammalian cells (MDCK and 3T3). We injected equal 

amounts of cRNA for rat α, β and γ ENaC into oocytes and incubated the oocytes 

for 24 hrs or 48 hrs before measuring amiloride-sensitive whole cell sodium 

currents. Biochemical analysis of membrane samples (see Methods) from 

oocytes using native PAGE and western blotting revealed that ENaC exists as 
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both trimers and tetramers in oocytes (Figure 3.6). Interestingly, the total amount 

of gamma subunit is the least among all three subunits, suggesting that the 

expression of the gamma subunit is the limiting factor in assembly of ENaC, as 

reported previously. 

3.5 Tetramers are more functional than the trimers 

To evaluate the importance of each subunit on total ENaC-mediated 

whole cell currents, we injected cRNA encoding α-ENaC, α,β-ENaC, α,γ-ENaC, 

β,γ-ENaC or α,β,γ-ENaC into oocytes. We measured whole cell amiloride-

sensitive currents 24h post injection and found that currents were maximal when 

all three subunits were co-expressed. This result is in agreement with previous 

reports (Harris et al., 2008) indicating the requirement for expression of all 

subunits for robust activation by proteases. 
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Figure 3.7 All three subunits are required for functional recapitulation 
Amiloride-sensitive whole cell sodium currents were measured 24 h post injection of 
cRNAs encoding α, β, γ ENaC and the combinations thereof. Gray bars represent basal 
current, before treatment with trypsin. Black bars represent activated currents, post 
trypsin treatment. 

To biochemically characterize the oligomeric states responsible for whole 

cell currents when all three subunits are expressed, we performed native PAGE 

separation of solubilized membrane fractions from occytes expression the afore-

mentioned combinations of subunits. Interestingly, appearance of tetramers 

correlates with the presence of all three subunits (Figure 3.8). In order to quantify 

the amount of total tetramer to the total trimer for each case, we computed the 

total intensity of the gray pixels in the western blot using ImageJ. The ratio of 

tetramers to trimers increases from 0.2 for α,β alone to 1.39 for co-expression of 

all three subunits indicating an enrichment of tetramer population only in the 

presence of all subunits (Figure 3.8, 3.9). Comparing the biochemical data to the 

outcomes from whole cell current measurements, formation of tetramers is 

clearly dependent on the presence of all three subunits. 

 

Figure 3.8 Correlation between tetramer formation and expression of subunits 

0.6 0.2 0.60 1.39 
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(Left) Expression of all three subunits is required for tetramer formation (left – arrow). 
Trimers are formed even without one of the subunits (left – arrow head). The ratio of 
tetramer to trimer increases with expression of all three subunits. The western blot was 
probed for alpha-ENaC (Right) Profile for pixel intensity along the molecular weight axis. 
Peaks represent higher intensity. Right most peak represents monomer. The dotted line 
in the middle represents trimer and the one at a distance of 0.5 inches from the top of 
the blot represents the tetramer. 

3.6 Expression of γ-ENaC is critical for formation of tetramers 

Previous studies have clearly indicated that cleavage of γ-ENaC is critical 

for activation of the channel. We have demonstrated that the presence of all 

three subunits is critical for obtaining maximal activation of ENaC. Since 

cleavage and function of ENaC are tightly regulated, we hypothesized that the 

expression levels of the gamma subunit might directly translate to efficiency of 

assembly of tetramers. In order to understand the role of γ-ENaC in tetramer 

assembly, we co-injected different amounts of cRNA (0-0.6 ng) encoding γ-ENaC 

with equal amounts of cRNA (0.3 ng) encoding the α and β subunits in Xenopus 

oocytes. 
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Figure 3.9 Modulation of γ-ENaC levels modulates whole cell currents 
Amiloride-sensitive sodium current (INa) was measured using a two-electrode clamp from 
oocytes expressing increasing levels of rat gamma ENaC. The amount of cRNA (in ng) 
injected into oocytes is mentioned in parentheses. Gray bars represent whole cell 
current before activation by trypsin and the black bars represent activated currents after 
trypsin stimulation. Basal currents increase with increase in the gamma subunit. 

As hypothesized, the basal current from oocytes injected with 0.6 ng of γ-

ENaC is higher compared to the other batches of oocytes expressing equal or 

lower amounts of gamma ENaC, suggesting that expression level of the gamma 

subunit is the limiting factor for obtaining maximal activation of ENaC. However, 

interestingly, the activated current does not increase significantly with increase in 

the amount of co-expressed gamma subunit. It is tempting to speculate that the 

observed effect is due to increased access to the proteolytic cleavage sites in 

ENaC, upon formation of the tetramer, leading to increased basal current. To 

ensure that the gamma subunit is indeed expressed in excess upon injection of 
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increased amount of cRNA, we extracted crude membranes from the oocytes 

and solubilized them for biochemical analysis. Western blotting for all three 

subunits followed by SDS-PAGE separation revealed that the level of expression 

of gamma subunit increases steadily with increase in the amount of injected 

cRNA (Figure 3.10). Further, proteolytic processing of the gamma subunit is 

substantial at higher levels of expression (Figure 3.10 middle panel). The higher 

molecular weight bands, approximately at double the molecular weights of 

individual subunits correspond to dimers of the respective pairs. The fact that the 

intensity of this higher molecular weight band decreases with increase in the 

amount of co-expressed gamma ENaC suggests that the dimers assemble into 

higher order complexes (trimers and/or tetramers) and are processed. The 

doublet seen in case of β-ENaC corresponds to the mature, complex 

glycosylated form. In summary these results indicate that increase in gamma 

ENaC expression levels increases the amount of proteolytically processed, 

functional protein in oocytes. 
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 IB: αENaC IB: γENaC IB: βENaC 

Figure 3.10 Gamma subunit expression levels regulate maturation 
~10 ng of solubilized membranes from oocytes expressing different levels of gamma 
ENaC were subject to SDS-PAGE separation followed by western blot analysis. Full 
length, unprocessed ENaC migrates as a monomer between ~75 and 90 kDa. Lower 
molecular weight fragments represent proteolytically processed forms (see middle panel) 
and higher molecular weight species represent glycosylated forms (see right panel). 

We performed native PAGE analysis to determine whether the increase in 

function upon increased expression of the gamma subunit correlates with 

increase in tetramer assembly. We observed that increase in expression level of 

gamma ENaC leads to increase in the amount of mature form of ENaC (Figure 

3.10) and the amount of tetrameric complexes in oocytes (Figure 3.11). 
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 IB: αENaC   IB: γENaC 

Figure 3.11 Increase in γENaC expression level promotes tetramer assembly 
Crude membranes from oocytes expressing increasing levels of the gamma subunit of 
rat ENaC were solubilized in LPG and subject to native PAGE. Tetramer assembly is 
promoted by increased expression level of gamma subunit (red box).  

In summary, expression of all three subunits of ENaC is required for 

robust channel activation and function. This result is in agreement with previous 

reports. ENac appears as trimers and tetramers on the cell surface when 

expressed in oocytes. The function of ENaC correlates with expression of 

tetramers, suggesting that the tetramers are more functional than trimers or other 

higher order multimers. Furthermore, expression level of the gamma subunit 

correlates with formation of tetramers in oocytes. 



 
CHAPTER 4 

Energetic and structural basis for activation of 
ENaC 
 

To uncover the energetic basis for activation of ENaC upon cleavage, we 

performed computational analyses on peptides from ENaC that are susceptible 

to proteolysis by serine proteases. We performed discrete molecular dynamics 

(DMD) simulations to elucidate the structural and energetic bases for ENaC 

peptide recognition by CAP3. Our computational studies of various peptide-

binding configurations to CAP3 establish the structural and energetic bases for 

CAP3 activity. Using potential of mean force (PMF) analyses, we determined the 

energetic basis for substrate recognition and cleavage by CAP3. We compared 

the results to those obtained via similar analyses for furin and elucidate the 

energetic basis for the lower sequence specificity of CAP3 compared to furin. We 

designed experimental studies to identify CAP3-mediated cleavage sites in 

ENaC that lead to channel activation. We conclude that CAP3, with less stringent 

sequence requirements than furin, robustly activates ENaC by cleaving at 

multiple basic residues in the extracellular domain. Using computational and 

experimental studies, we show that a site upstream of the traditional furin site in 

γ-ENaC is a potential substrate for CAP3. 
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4.1 CAP3 has less stringent sequence requirement for cleavage 

than furin 

To assess the accessibility of the known protease cleavage tracts of 

different subunits of ENaC, we computed residue-wise disorder probability in the 

respective segments using Disopred2 (Figure 4.1) (Ward et al., 2004).  
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Figure 4.1 Disorder prediction for the hypervariable region in rat ENaC subunits 
Residue-wise disorder was predicted using Disopred2 
(http://bioinf.cs.ucl.ac.uk/disopred/). The ‘filter’ curve (continuous black line) represents 
the predicted probability of disorder for the corresponding amino acid. The horizontal 
dashed line represents the order/disorder threshold for the default false positive rate of 
5%. The ‘output’ curve (dashed curve) represents the level of confidence in prediction of 
disorder for the corresponding amino acid. A, B, C) Disorder prediction for corresponding 
regions in α-, β- and γ-ENaC respectively. 

To eliminate any bias in the prediction, we considered segments (α: V151-

L290; β: K117-P240; γ: K91-S222) such that most of the cleavage sites are 

enclosed but are not near either end of the segment. Interestingly, the regions 

susceptible to cleavage by furin-like convertases in α- and γ-subunits (α: 202-

RSSR, 228-RTAR; γ: 135-RKRR, 178-RKRK) of rat ENaC are intrinsically 

disordered (Figure 4.1A, C). The two peaks in the disorder plot for γ-ENaC 

correspond to the traditional furin site (135-RKRR-138) and the polybasic tract 

(178-RKRK-181) identified as cleavage sites for complete activation by furin and 

CAP1 (Bruns et al., 2007) (Figure 4.1C). This observation is in agreement with 

previous computational analyses reporting preference for intrinsic structural 

disorder in cleavage by serine proteases (Hubbard et al., 1991). 

To elucidate the structural basis for substrate recognition and activation of 

ENaC by CAP3, we performed replica exchange DMD simulations (Ding, 2008; 

Dokholyan et al., 1998) of three peptide sequences (Seq1, 2, 3) from rat γ-ENaC 

(Materials and Methods) to study peptide binding to the active pocket of furin and 

CAP3 starting with the unbound state (Figure 4.2A, B). Using RMSD as the 

clustering criterion, we selected five final structures for each enzyme-substrate 

combination (Figure 4.2C). We found that the maximum RMSD between 

structures of peptide complexes with either furin or CAP3 is 1.5 Å. The final 
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substrate-bound configurations of both furin and CAP3 satisfy the distance 

constraints imposed during simulations (Materials and Methods, Figure 4.3A, C). 

 

Figure 4.2. Simulation system and protocol 
A, B) Starting conformations of CAP3 and furin respectively, with peptide Seq1 (colored 
green) placed at random positions at least 10Å away from the active site residues 
(colored blue and shown in stick representation). Portion of each protease shown in grey 
is maintained static during simulation while the loops shown in red are left flexible. Active 
site residues are static during the simulation. C) The steps outlined in the flowchart were 
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followed for modeling the enzyme-substrate complexes. Eight replicas were used for 
modeling with a starting temperature of 0.5 and a step of 0.035. 

The peptide-bound configurations also portray the differences in the size, 

shape and charge distribution of the active sites of furin and CAP3 (Figure 4.3B, 

D).  

 

Figure 4.3. Structural models of peptides from γ-ENaC bound to furin and CAP3 



59 

A) Final docked configuration of peptide Seq1 in the active pocket of CAP3. Inset shows 
the distances between amine of the P1’ site from the NE2 of active site histidine and that 
of the carbonyl oxygen of the P1 site from the OG of active site serine. B) Electrostatic 
surface representation of CAP3 with the side chains of residues in peptide Seq1 shown 
as sticks. The guanidium group of the arginine at the P1 site docks into a negatively 
charged groove in the enzyme. C) Final docked configuration of the peptide Seq1 in the 
active pocket of furin. Inset shows the distances between amine of the P1’ site from the 
NE2 of the active site histidine and that of the carbonyl oxygen of the P1 site from the 
OG site of active site serine. D) Electrostatic surface representation of furin with the side 
chains of residues in peptide Seq1 shown as sticks. The guanidium group of arginine at 
P1 site docks into a negatively charged groove in the enzyme. 

In our models, the residue at the P1 site of Seq1 is positioned in charge 

complementary pockets of both furin and CAP3 as observed in the 

corresponding crystal structures with bound inhibitors (Figure 4.3B, D) (Friedrich 

et al., 2002; Henrich et al., 2003). We conclude based on these observations that 

the peptides adopt similar final configurations dominated by electrostatic 

interactions between the enzyme and the peptide regardless of their initial 

configurations.  

To establish the energetic basis for substrate recognition, we computed 

the two-dimensional potential of mean force (2D-PMF) with respect to E 

(normalized energy) and d (distance in Å between active site residues and the 

P1, P1’ sites on the peptide). We observe from the 2D-PMF contours that Seq1 

features low energy basins at a distance of ~3Å from the active site of both CAP3 

and furin (Figure 4.4A, B). Similarly, the polybasic tract consisting of the alternate 

furin cleavage site (178-RKRK) presents a low energy basin at a distance of 3 Å 

or less from the active site of both furin and CAP3 suggesting that binding of 

Seq2 to either enzyme is energetically favorable (Figure 4.4C, D; black arrows). 

Takeuchi et al. proposed that the lysine residue (K132) upstream of the 
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traditional furin site could be the P4 site of a bona fide consensus cleavage motif 

(132-KESR) for CAP3 (Takeuchi et al., 2000).  

 

Figure 4.4. Energetic basis for peptide binding to furin and CAP3 
2D-PMF as a function of normalized energy of enzyme-substrate complex and distance 
between the active site and respective peptides. Black arrows represent low energy 
basins in respective 2D-PMF plots. The peptide is colored red and the enzyme is colored 
grey in the accompanying models representing the minimum energy configurations for 
the corresponding enzyme-peptide combinations. A, B) 2D-PMF of Seq1 binding to 
CAP3 and furin respectively. C, D) 2D-PMF of Seq2 binding to CAP3 and furin 
respectively. Seq2 is trapped in an energy minimum at the surface loops of furin while it 
reaches the active site of CAP3. E, F) 2D-PMF of Seq3 binding to CAP3 and furin 
respectively. 

To verify whether this sequence is susceptible to cleavage by CAP3, we 

performed simulations with Seq3 approaching the active sites of CAP3 and furin. 

We observe low energy configurations for Seq3 in the active site of CAP3 in 

simulations (Figure 4.4E). Surprisingly, none of the configurations from the 

simulation with Seq3 in presence of furin satisfied the distance constraints for 
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recognition, suggesting that binding of Seq3 to furin is energetically less 

favorable (Figure 4.4F). Interestingly, the plot for furin with Seq3 does not 

present a low energy basin at a distance of 3 Å from the active site while a low 

energy basin is observed for CAP3 (compare Figure 4.4E, F). These results 

indicate that CAP3 is more effective than furin at stimulating ENaC containing γ-

ENaC 132KESR. Our computational results suggest low stringency sequence 

requirements for CAP3-mediated cleavage and presence of less ideal furin 

substrates in this region of γ-ENaC. 

4.2 Catalytic activity of matriptase is required for activation of 

ENaC 

To biochemically characterize the sequence requirements of CAP3, we 

first established that the catalytic activity of CAP3 is required for activation of 

ENaC. The motivation for this study arose from the fact that the catalytic activity 

of CAP1, a GPI-anchored membrane serine protease, is not required for its 

regulation of ENaC (Vuagniaux et al., 2002). We found that co-expression of 

CAP3 with ENaC for 24 h robustly increased basal amiloride-sensitive sodium 

current (INa), typically in the range of 3-5 fold (Figure 4.5A). Moreover, unlike the 

basal INa generated by ENaC alone, the larger basal INa with CAP3 co-expression 

was not further increased by application of trypsin (Figure 4.5A) or hNE. The 

decrement of INa sometimes seen following exposure of CAP3-expressing 

oocytes to exogenous protease (Figure 4.5A, ENaC+CAP3, black bar) reflects 

run down of the stimulated INa. We observed that CAP3 stimulation of ENaC is 

inhibited by co-expressed hepatocyte activator inhibitor-1 (HAI-1) (Figure 4.5B). 
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HAI-1 is a Kunitz-type serine protease inhibitor identified as the physiologic 

cognate inhibitor of CAP3 catalytic activity (Szabo et al., 2007). Western blots of 

CAP3 in lysates of the injected oocytes show that CAP3 was robustly expressed 

in its active form, as indicated by the expected fragmentation pattern of this self-

activating protease (Figure 4.5C) (Benaud et al., 2001).  

 

Figure 4.5. Catalytic activity of matriptase/CAP3 is required for stimulation of 
ENaC 
A, B) Coexpression of the Kunitz domain containing inhibitor, HAI-1 blocks stimulation of 
ENaC.  Oocytes were co-injected with 0.3 cRNA of α, β and γ-ENaC alone (Panel A), or 
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in combination with 1 ng cRNA of HAI-1 (Panel B). After 24 h incubation, amiloride-
sensitive current (INa) was recorded before (gray bars) and following (black bars) 5 min 
exposure to 2 µg/ml trypsin. C) Expression and autocleavage of matriptase/CAP3, and 
effect of HAI-1. Oocyte lysates from (A) and (B). were studied by Western blotting using 
anti-CAP3 antibody. D) CAP3 stimulation of ENaC was blocked by co-expressed HAI-2 
or by mutating serine 805 of the catalytic triad. Experiments were repeated on 2-4 
batches of oocytes, with a total of 12-26 oocytes per condition. *Trypsin stimulated INa 
different from basal INa. **Basal INa different from ENaC alone. ANOVA, p < 0.05. 

Furthermore, co-expression of HAI-1 with CAP3 prevented cleavage 

associated with CAP3 activation. Co-expression of HAI-2, a related Kunitz-type 

inhibitor, also completely prevented CAP3 stimulation of ENaC (Figure 4.5D) 

(Szabo et al., 2008). Finally, CAP3 inactivated by mutation of S805 of the 

catlaytic triad had no effect on INa of co-expressed ENaC (Figure 4.5D) (Miyake 

et al., 2009). Thus, ENaC co-expressed with CAP3 is fully activated through a 

mechanism that requires catalytic activity of CAP3. 
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Figure 4.6. CAP3 coexpression stimulates ENaC containing mutant furin sites 
A) Control experiment with wildtype ENaC and CAP3. B) Mutation of two α-ENaC furin 
sites (FM: R205,231A) reduced basal INa, as expected, but did not prevent full proteolytic 
stimulation of INa by co-expressed CAP3. C, D) Two mutations of the furin site identified 
in γ-ENaC had no effect on CAP3 stimulation of  ENaC. Methods, replications and 
analysis similar as described for Figure 4.5. 

4.3 CAP3 cleaves γENaC at an alternate site N-terminal to the 

furin site 

We studied the role of γ-ENaC in stimulation by CAP3, by co-expressing 

the furin site mutants of α-ENaC with WT β- and γ-ENaC in oocytes. CAP3 

robustly activated ENaC without the furin sites in the α-subunit suggesting 

predominant cleavage of the γ-subunit (Figure 4.6A, B). In γ-ENaC, we 

specifically examined the importance of the basic P1 residue (R138) in the 135-
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RKRR tract recognized as the furin site. Co-expressed CAP3 robustly stimulated 

ENaC containing γ-subunit furin resistant mutant R138K and the CAP2 

insenstive furin mutant R138A (Figure 4.6C, D) (Garcia-Caballero et al., 2008) 

indicating that CAP3 activates ENaC by a mechanism involving cleavage at a 

site distinct from γ-R138. Although the consensus sequences for convertases 

(R/K-X-X-R) and CAPs (R/K-X-X-R/K) overlap, some studies have reported 

distinct preferences at individual residue positions (Bugge et al., 2009; Thomas, 

2002). Therefore, we asked if extensive mutagenesis of the 135-RKRR tract in γ-

ENaC to 135-QQQQ would affect the action of CAP3 toward ENaC. Co-

expressed CAP3 did not stimulate this mutant ENaC, even though subsequent 

trypsin exposure lead to significant stimulation (Figure 4.7B). Further 

mutagenesis revealed that the presence of R135 is sufficient for CAP3-mediated 

cleavage of γ-ENaC (Figure 4.8). 
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Figure 4.7. CAP3 mediates neither activation nor cleavage of γ-135QQQQ ENaC 
A) WT ENaC was expressed alone or with CAP3. INa was recorded 24 hr after cRNA 
injection, before (gray bars) and after (black bars) a 5 min trypsin exposure. B) ENaC 
containing the mutant γ135QQQQ was expressed alone or with CAP3. INa was recorded as 
in A. C) ENaC made of WT subunits or containing the mutant γ-135QQQQ were expressed 
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alone or with CAP3. After 24 h, uninjected (U.I.) oocytes and oocytes from each 
treatment group were surface biotinylated and the surface protein pool was captured on 
streptavidin beads. Full length and fragments of HA/V5 γ-ENaC were recognized by 
blotting for V5 (C-terminal epitope) or HA (N-terminal epitope). FL = full length; FF = furin 
fragment; DF =distal fragment. D) Oocytes were injected with αFM,β and either 
γ135RQQQ (left) or γ135KQQQ (right). Each of these ENaC combinations was 
expressed alone or co-expressed with furin or CAP3, and studied after 24 h. Basal INa 
was recorded before and following 5 min exposure to 2 µg/ml hNE. Basal INa as raw 
current (left ordinate) or as a percent of maximum INa following elastase (right ordinate) 
is shown. Mean values were compared by ANOVA and Tukey’s test applied. a = 
different from mutant γ alone, b = different from mutant γ + furin, p < 0.01. 

To biochemically characterize CAP3-mediated cleavage of γENaC, we 

performed Western blot analysis of biotinylated surface protein pool captured on 

streptavidin beads (Materials and Methods). We characterized the HA/V5 double 

epitope labeled γ-ENaC by the pattern of anti-V5 (C-terminal tag) and anti-HA (N-

terminal tag) staining on Western blot (Figure 4.7C). In oocytes expressing WT 

ENaC subunits, V5-tagged γ-ENaC at the cell surface exists as a mixture of full 

length (“FL”, ~93 kD band) and furin fragments (“FF”, ~75 kD band) (Figure 4.7C, 

top panel). Under basal conditions, HA-label was found in a complementary ~18 

kD band (Figure 4C, lower panel) and in a FL band (not shown). With co-

expression of CAP3, a more rapidly migrating fragment of ~70 kD (“DF”, distal 

fragment) replaces the FF band, a result now seen as characteristic of 

proteolysis of γ-ENaC at a site 20-40 residues downstream of the furin site 

(Bruns et al., 2007; Harris et al., 2007; Passero et al., 2008). The 18 kD anti-HA 

reactive (N-terminal) fragment indicates that cleavage at the traditional furin site 

is not affected. As predicted, mutant γ-ENaC containing the 135-QQQQ tract 

shows no FF, either V5- or HA-labeled, when co-expressed with α- and β-ENaC 

alone (Figure 4.7C, lane 4). However, when co-expressed with CAP3, the 

proportion of FL V5-labeled γ-135-QQQQ at the cell surface decreases, with a 
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significant increase in the intensity of the DF fragment (Figure 4.7C, lane 5). A 

complementary N-terminal HA-labeled mutant γ-ENaC fragment of ~23 kD 

appears at the surface of CAP3 co-expressing cells (Figure 4.7C, lower panel, 

lane 5). These results indicate that cleavage within the 135-138 furin site is 

blocked in γ-135-QQQQ while CAP3 induces cleavage C-terminal to the furin 

site. In addition, we conclude that cleavage within residues 135-138 is essential 

for CAP3 stimulation of ENaC. 

Based on previous reports and our computational analyses, we 

hypothesized that K132 could be part of a bona fide consensus motif (132-

KESR) targeted by transmembrane serine proteases (TSPs) or furin-like 

convertases (Kishi et al., 2001; Takeuchi et al., 2000). To test this hypothesis, we 

generated γ-ENaC with 132-HESRQQQ, which associates with WT α- and β-

ENaC to produce reduced INa that responds briskly to hNE (2 µg/ml) or trypsin 

(20 µg/ml) (Figure 4.8, black bars). Although the presence of 132-KESR is 

evidently not optimal for endogenous convertases, we reasoned that over-

expressed furin might recognize this site. Because the preference of furin at the 

P1 residue is strong for arginine over lysine (Matthews et al., 1994), while CAP3 

is reported to tolerate lysine at P1 (Takeuchi et al., 2000), we compared the 

ability of co-expressed human furin and CAP3 to stimulate the γ-ENaC mutants 

135-RQQQ and 135-KQQQ. To simplify interpretation, we expressed these 

mutant γ-subunits with WT β-ENaC and with α-ENaC furin site mutant (Figure 

4.7D). Interestingly, co-expressed human furin partially activated ENaC 

containing γ-132-KESRQQQ, to 35% of maximum stimulated INa, albeit less 
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efficiently than CAP3 which led to 60% of maximum stimulated INa (Figure 4.7D, 

left panel). Co-expressed furin did not stimulate ENaC with a lysine at position 

135 (Figure 4.7D, right panel) while CAP3 stimulated this mutant, albeit to a 

lesser extent than the mutant with R135 preserved. These results suggest that 

CAP3, due to its less stringent sequence requirements, can target basic residues 

in the 132-138 tract of γ-ENaC that are more resistant to endogenous 

convertases and over-expressed furin. 

 

Figure 4.8.  Residue 135R in γ-ENaC can form a CAP3-sensitive cleavage site with 
132K 
Oocytes were injected with 0.3 ng each of WT α- and α-subunits and γ-subunits bearing 
the 132..135-138 residues indicated above. CAP3 was co-expressed in each group. INa 
was recorded after 24 hr expression (grey bars). Following 5 min exposure to 20 µg/ml 
trypsin or 2 µg/ml hNE, INa was recorded again (black bars). The proteolytic stimulation of 
INa by co-expressed CAP3 was maximal with WT γ-ENaC. CAP3 partially stimulated 
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132KESRQQQ and 132KESKQQQ to a lesser degree. This stimulation was ablated by a 
non-basic residue at 135 or by Histidine at residue 132. 

4.4 CAP3 cleaves ENaC at multiple sites C-terminal to the furin 

site 

A candidate site for cleavage events responsible for the broadly staining 

DF (~70 kD) (Figure 4.7C) is the tract 178-RKRK, as this polybasic region is 

required for cleavage of γ-ENaC by CAP1 (Bruns et al., 2007), and shares the 

same minimal sequence requirements for cleavage with CAP3 (Shipway et al., 

2004). DMD simulations revealed that CAP3/furin binding at this site is 

energetically favorable. Surprisingly, however, γ-ENaC with 178-QQQQ was 

stimulated by co-expressed CAP3 to about the same extent as ENaC containing 

WT γ-subunit (Figure 4.9A). The CAP3-stimulated basal current in either WT or 

mutant channel groups was not further increased by hNE, indicating that CAP3 

attained full proteolytic stimulation of mutant ENaC at the surface. In addition, the 

patterns of C-terminal V5-labeled fragments of WT or mutant γ-ENaC contained 

in the cell surface pool of each expression group were affected similarly by co-

expressed CAP3, each showing a shift from a mixture of FL or FF to a population 

dominated by DFs, consistent with CAP3-induced cleavage at sites downstream 

from the furin site (Figure 4.9A, lower panel). While these results do not refute 

the fact that 178-RKRK is a potential cleavage site, the data indicate that other 

potential cleavage sites exist in the vicinity of this basic tract. 
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Figure 4.9.  The basic tract 178-RKRK in γ-ENaC is not essential for CAP3 
stimulation of INa 
A) WT HA/V5-γ-ENaC or HA/V5-γ-RKRK(178-181)QQQQ cRNA was co-injected with 
WT α- and β-ENaC cRNA (0.3 ng/subunit). Half of each group was also injected with 1 
ng cRNA for CAP3. INa was recorded after 24 h, before and following 5 min of exposure 
to 2 µg/ml hNE (upper panel, N = 10-12 oocytes per condition from two batches). 30-60 
oocytes per condition were surface biotinylated, as described elsewhere. WT and mutant 
γ-ENaC fragments present in the cell surface pool were analyzed by Western blot (lower 
panel). B) WT α- and β-ENaC subunits were expressed for 24 h with WT or mutant (8Q) 
HA/V5 γ-ENaC, with or without CAP3 (see text for description of mutant 8Q). INa was 
recorded before and following 5 min exposure to 20 µg/ml trypsin (a = different from WT 
basal; b = different from 8Q basal, p < 0.01) Surface biotinylated proteins from the same 
injection groups were analyzed by anti-V5 Western blotting are shown in lower panel. FL 
= Full Length; FF + Furin Fragment; DF = Distal Fragment; IF = Intermediate Fragment. 

As mutation of the polybasic tract 178-RKRK has no effect on CAP3-

mediated stimulation or banding pattern of γ-ENaC fragments, we tested the 

contribution of flanking basic residues in the region from residues 172 to 202. We 

investigated the importance of 172R, 185K, 189K and 201K, 202K, individually, 

and in various combinations with 178-QQQQ. We observed no significant effects 

of mutating any single basic residue in this region on CAP3 cleavage and 

stimulation of ENaC. However, from a threshold of mutating 6-7 basic residues, 

up to 9 basic residues in this region replaced by glutamine, we observed 
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progressively decreased CAP3-mediated stimulation of INa, staining density of 

DF, and resting whole cell Po. Particularly, ENaC containing mutant γ-subunits 

with eight glutamines substituted for basic residues within the 172-202 tract 

(“8Q”) was only partially stimulated by co-expressed CAP3 (Figure 4.9B). 

Western blot analysis of the C-terminal V5-tagged fragments of 8Q γ-ENaC on 

the cell surface suggests that in this extensively mutated channel, CAP3 

generates an intermediate fragment (IF) that migrates between FF and DF, 

characteristic of WT γ-ENaC (Figure 4.9B). Thus, CAP3 cleaves ENaC at 

multiple basic sites including those that do not conform to the furin consensus 

sequence requirements.   These results are in agreement with our conclusion 

that CAP3 has less stringent sequence requirements for cleavage than furin. It is 

likely that the local structure of the protein is altered upon extensive 

mutagenesis, thereby hampering cleavage. Assuming that the structure of ENaC 

is intact, our results suggest that CAP3 cleaves γ-ENaC at multiple sites C-

terminal to the furin site resulting in robust channel activation. 



 
CHAPTER 5 

Allosteric signal propagation within ENaC 

Protein allostery is a ubiquitous mechanism central to the regulation of 

many cellular processes including enzyme catalysis and signal transduction 

(Changeux and Edelstein, 2005; Goodey and Benkovic, 2008). This 

phenomenon, often mediated by conformational rearrangement, refers to change 

at one site (allosteric site) affecting a distal site, resulting in functional modulation 

of corresponding proteins or protein complexes (Changeux and Edelstein, 2005). 

For instance, G-protein coupled receptors trigger downstream signaling 

cascades via a multitude of allosteric changes upon ligand binding at an 

extracellular site (May et al., 2007). One of the emerging views of protein 

allostery is that allosteric change is a redistribution of a protein’s conformational 

ensemble upon ligand binding or mutation (Goodey and Benkovic, 2008; 

Gunasekaran et al., 2004).  Therefore, it is feasible to convert a traditionally non-

allosteric protein into an allosteric protein by shifting the conformational 

distribution toward or away from the functionally-relevant conformations with 

appropriate ligand binding and rational mutagenesis (Gulnik et al., 2000; Rose et 

al., 1998; Santamaria et al., 2002). Recent NMR studies of dynamic coupling 

between residues in proteins support the idea that allostery may be a common 
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intrinsic property of many proteins (Fuentes et al., 2006; Gunasekaran et al., 

2004; Popovych et al., 2006). However, the molecular mechanism governing 

protein allostery remains one of the fundamental unanswered questions 

pertaining to protein biophysics. 

Although conformational rearrangements involved in allostery can be 

detected, understanding how changes in structure translate to those in function 

remains a challenge. Specifically, determination of inter-residue interaction 

networks coupling distant sites and identification of “hot spot” sites or hubs with 

highest impact on the propagation of such coupling is essential to uncover the 

molecular origin of protein allostery (Hardy and Wells, 2004). Previous efforts 

have focused on identifying possible mechanisms governing protein allostery and 

searching for new allosteric sites (Hardy and Wells, 2004).  X-ray crystallography 

studies of both the bound and unbound structures offered us an important 

structural insight into allosteric regulation.  However, the analysis of static 

structures cannot provide a complete picture of the inter-residue interactions that 

result in allostery.  NMR studies of protein dynamics have been pivotal in 

identifying “hidden” networks of residues with strong dynamic coupling (Fuentes 

et al., 2006; Tzeng and Kalodimos, 2009).  Thermodynamic mutation cycles 

(Schreiber and Fersht, 1995), which measure the coupling between two mutation 

sites by their mutual contribution to protein stability, provide a direct method to 

systematically probe such relations between protein sites.  However, due to 

experimental limitations and practical considerations, these methods make large-

scale studies of proteins laborious and time consuming.   
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Various computational methods have also been proposed to probe the 

coupling of amino acids and to identify the networks of residues important for 

protein conformational changes.  Sequence-based approaches have been 

applied to reveal the allosterically important residues in proteins, based on the 

argument that energetically/functionally coupled (allosteric) residues also co-

evolve (Lockless and Ranganathan, 1999; Socolich et al., 2005; Suel et al., 

2003; Zheng et al., 2006).  However, the application of sequence-based 

approaches is limited by the availability of homologous sequences, and is 

complicated by the fact that evolutionary conservation is driven by factors other 

than function, such as stability and folding kinetics (Ding and Dokholyan, 2006).  

Motivated by the observation that a protein’s dynamics to a large extent is often 

determined by its structure (Okazaki et al., 2006; Plaxco et al., 1998), structure-

based local thermodynamic analyses (Freire, 2000; Pan et al., 2000), normal 

mode analysis (Changeux and Edelstein, 2001; Van Wynsberghe and Cui, 2006; 

Zheng et al., 2006) and Gaussian-network models (Tehver et al., 2009; Temiz 

and Bahar, 2002; Xu et al., 2003) have been used to study allostery in several 

proteins.  These experimental and computational studies share the view that the 

communication between distal residues within the protein is mainly determined 

by complex interaction networks in the protein structure (Chang et al., 1993; Go, 

1983; Onuchic and Wolynes, 2004). 

Recently, we have demonstrated that function of the cystic fibrosis 

causing mutant chloride channel is modulated by allostery within one of its 

nucleotide binding domains (Aleksandrov et al., 2010; Aleksandrov et al., 2012) 
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[Kota et al., submitted 2012]. Here, we applied this method to understand 

allosteric signal transduction within ENaC. 

5.1 Role of the N-terminus in activation of ENaC 

Mounting evidence suggests that the positive charges in the N-terminus of 

different subunits of ENaC interact with anionic phospholipids in the inner leaflet 

of the plasma membrane. Putting the results from these reports in context of 

proteolytic activation of ENaC, we were motivated to understand how interaction 

of intracellular domains with PIP2 translates to proteolytic cleavage of the 

extracellular domain and result to channel activation. We therefore mutated the 

positive charges in the N-terminus of the β- and γ- subunits of rat ENaC to study 

their effect on channel function. 
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Figure 5.1 N-terminal basic stretch is critical for channel function 
(Top left) Co-expression of WT ENaC subunits representing characteristic basal currents 
(black) that can be increased upon activation of the channel both by MTSET (blue) and 
trypsin (red). (Top right) Co-expression of matriptase increases basal currents with no 
apparent increase in trypsin-mediated or MTSET recovered currents. (Bottom left) Co-
expression of WT αENaC with β- and γ-subunits lacking the N-terminal positive charges 
in oocytes indicates significant decrease in recovery by MTSET and trypsin. (Bottom 
right) Co-expression of matriptase does not improve basal currents, with only meager 
improvement in total stimulated currents using trypsin or MTSET. 

The top left panel of Figure 5.1 shows a characteristic pattern of basal 

currents from oocytes expressing ENaC, which can be activated upon treatment 

with MTSET or trypsin. The top right panel of figure 5.1 shows a similar response 

to co-expressed matriptase where ENaC is proteolytically processed before 

reaching the plasma membrane, indicated by a marked increase in basal 

currents, with no significant improvement upon treatment with trypsin or MTSET. 

Interestingly, mutation of the N-terminal positive charges decreased basal 

currents and the maximal trypsin-mediated or MTSET-recovered currents (Figure 

5.1 – bottom left). This result suggests that the positive charges in the N-terminus 

are important for interaction with PIP2. Strikingly, however, when WT αENaC 

was co-expressed with N-terminal mutants of β- and γ-ENaC in presence of 

matriptase, the basal currents could not be recovered by matriptase, suggesting 

that the accessibility of the protease cleavage sites is decreased upon mutation 

of the positive charges in the N-terminus. These results provide evidence for a 

conformational change in the extracellular domain upon interaction of the N-

termini with PIP2, thereby revealing the protease cleavage sites involved in 

robust channel activation. 
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5.2 Long-range interaction networks within γENaC 

Our experiments with mutant forms of the β and γ subunits provided 

evidence for allosteric communication between the N-termini and the proteolytic 

cleavage sites in ENaC. Since the γ subunit is the most cleaved subunit, we 

focused on the effect of mutation of the N-terminus in γENaC on proteolytic 

activation of the channel. Using the method we have proposed to study allosteric 

coupling networks within macromolecules, we have identified networks of 

interacting residues within the gamma subunit of ENaC. 
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Figure 5.2 Allosteric networks in gamma ENaC 
Structural model of gamma ENaC is shown in cartoon representation with the alpha 
carbon atoms shown as spheres. The network of interactions originating from the 
intracellular side to the protease cleavage site is colored red. The residue in the hinge 
between the transmembrane helices and the extracellular domain is show in stick 
representation (inset). 

Based on our structural model, we hypothesized that the hinge between 

the transmembrane and the extracellular domains is critical for signal 

propagation across the protein. We therefore rationally mutated the hinge residue 

(Y370 – rat sequence numbering), to other possible amino acids using Eris (Yin 

et al., 2007a). We hypothesized that stabilization of the hinge residue would 

uncouple the allosteric sites involved in PIP2 binding and those involved in 

proteolytic cleavage. We identified two potential substitutions using Eris; Y370K 

and Y370N. We then performed site-specific mutagenesis of the chosen position 

to K or N and expressed the mutant ENaC subunit with WT ENaC subunits. We 

tested the effect of these mutations in context of the well-known degenerin 

mutant (β518C) to understand the mechanism of action of the chosen mutations. 

The chosen mutants in the gamma subunit decreased trypsin-mediated currents 

while MTSET mediated currents were unaffected. Y370K was more effective in 

decreasing the trypsin response compared to Y370N. These results suggested 

that the mechanism of channel opening by MTSET is independent of the 

mechanism of action of trypsin in increasing ENaC activity (Figure 5.3 – Top). To 

understand whether MTSET recovery can be intercepted by this manouver, we 

made a site-specific substitution in beta ENaC at a position equivalent to Y370 in 

the gamma subunit. We co-injected oocytes with cRNA encoding the degenerin 

mutant and wildtype alpha, gamma subunits. The equivalent substitution in the 
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beta subunit dramatically decreased both MTSET and trypsin recovery of whole 

cell currents in oocytes (Figure 5.3 – bottom). 

 

Figure 5.3 Y370 is a critical residue mediating allosteric propagation within ENaC 
(Top) Oocytes were injected with cRNA encoding α,βS518C,γ ENaC, 
α,βS518C,γY370KENaC, α,βS518C,γY370NENaC and amiloride-sensitive sodium 
currents were measured 24 h post-injection. Black bars represent basal currents from 
oocytes. Red bars represent MTSET activated currents and the blue bars represent 
trypsin mediated currents. (Bottom) Oocytes were injected with cRNA encoding 
α,βS518C,γ ENaC, α,βS518C/Y370K,γENaC, α,βS518C/Y370N,γENaC and amiloride-
sensitive sodium currents were measured 24 h post-injection. Left half of the plot 
corresponds to MTSET recovery of whole cell currents, while the right half represents 
trypsin recovery. 
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5.3 Interaction of the N-terminus with PIP2 

As described earlier, the N-terminus of beta and gamma subunits of ENaC 

interact with PIP2 in the inner leaflet of the plasma membrane. In order to 

understand the structural aspects of the N-terminus in presence of PIP2, we 

performed DMD simulations of the N-terminal fragment in the presence of PIP2.  

 

Figure 5.4 N-terminus of γENaC forms an α/β fold in presence of PIP2 
Ab initio folding simulations of the N-terminus of gamma ENaC in presence of PIP2 
impart stable secondary structures to the fragment. The protein is color cyan and PIP2 is 
represented as balls connected by sticks. The gray surface represents a hypothetical 
membrane surface to which the protein and PIP2 are constrained during the simulation. 

We also imposed electrostatic constraints between the peptide and PIP2, 

to enable coulombic attraction/repulsion between the charged groups. The C-

terminal amino acid of the peptide fragment was constrained to a plane, along 

with the head groups of PIP2, mimicking the native interaction at the membrane-

cytosol interface. The positions of PIP2 on the plane were minimized before 

performing folding simulations. The peptide interacts with PIP2 such that the 

lysine’s and arginines participate in electrostatic interactions with the head group 



82 

of the lipid molecule. The positive charges do not form any structural motifs to 

interact with PIP2. In order to verify experimentally, that the peptide interacts with 

PIP2 directly, we performed tryptophan fluorescence studies.  
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Figure 5.5. N-terminus changes secondary structural content upon binding PIP2 
(a) Change in emission upon interaction with PIP2 is plotted as a function of 
concentration of lipid. Solid lines indicate fitted values for the experimental data. Higher 
the difference in emission, more shift towards the blue end of the visible spectrum. (b) 
Circular dichroism spectroscopy of the peptide in presence and absence of PIP2. Peaks 
at 220 and 208 nm indicate alpha helical content, while peaks below 200 nm indicate 
predominance of loops and unstructured regions. The peptide gains alpha helical 
content upon interaction with PIP2. 

Pure peptide was synthesized and provided by Dr. Jan Kubelka and Dr. 

Ginka Buchner. Tryptophan fluorescence assay directly reflects changes in the 

environment of the target tryptophan in the protein under investigation. In our 

studies, we show that the tryptophan in the N-terminus of gamma ENaC 

undergoes more blue-shift in presence of PIP2 than in its absence, suggesting 

that the environment of the tryptophan becomes more hydrophobic in the 

presence of PIP2 (Figure 5.5A). This result can be interpreted in two ways; the 

tryptophan might directly be interacting with the hydrophobic tail of PIP2 or the 

peptide might change configuration and adopt a folded form in which the 

tryptophan is buried in the core of the folded domain. To determine whether the 

peptide undergoes change in secondary structural content upon interaction with 

PIP2, we determined the mean ellipticity of each amino acid in the peptide using 

circular dichroism (CD) spectroscopy (Figure 5.5B).  From CD studies, we 

conclude that the N-terminus of the gamma subunit of rat ENaC gains alpha 

helical content upon interaction with PIP2.      



 
CHAPTER 6 

Conclusions and future directions

The study presented here focuses on the structural, biochemical and 

biophysical aspects of expression, activation and regulation of function of 

epithelial sodium channels. ENaC is a multimeric ion channel protein with a 

debatable subunit stoichiometry. Based on our results, we conclude that ENaC 

can form both trimers and tetramers, with the tetramer species being the more 

dominant and functional when all three subunits are expressed together. 

Interestingly, oligomerization state of ENaC is influenced by the expression level 

of the gamma subunit. Using biochemical and computational techniques, we 

believe that we marked the beginning of the end of a 20-year old controversy 

converning the subunit makeup of the channel. Further analysis regarding the 

biosynthetic processing and trafficking of ENaC would advance the field in 

understanding critical assembly steps involved in making of the tetramers. 

ENaC is activated by a multitude of proteases both inside the cell and at 

the plasma membrane. Although the roles of alpha and gamma subunits of 

ENaC have been shown to be dominant in mediating channel activation via 

proteolytic cleavage, the structural and energetic aspects of activation remain 
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unclear. In this study, we focused on this aspect of channel activation and our 

results shed light on the structural aspects of channel activation via cleavage of 

the extracellular domain. Further analysis of the accessibility of the cleavage 

sites using substituted-cysteine accessibility method (SCAM) will provide insights 

into the conformational changes involved in proteolytic cleavage and channel 

activation. 

 

Figure 6.1 Model for regulation of ENaC activation 
We propose an allosteric model for activation of ENaC upon interaction with PIP2. The 
trimeric assembly of ENaC with the structural models of the N-termini of beta and 
gamma subunits is shown in panel a. The N-terminus of alpha ENaC is hidden for clarity. 
We hypothesize that interaction of the N-terminal domains with PIP2 in the inner leaflet 
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leads to conformational change in the extracellular domain resulting in cleavage and 
channel activation (panel b- top), while mutations that abolish PIP2 binding hamper 
channel activation due to inaccessibility of the extracellular cleavage sites. 

Using extensive computational simulations, we discovered long-range 

communication within ENaC that likely explains the mechanistic details of 

channel activation and regulation via interaction with PIP2. Based on our analysis 

of the N-terminal lysine residues and the hinge residue in gamma ENaC, we 

provide a putative model for activation of ENaC upon interaction of the N-

terminus with PIP2 (Figure 6.1). Further work is needed to validate our 

hypothesis depicted in Figure 6.1. We believe that this study provide the 

essential framework to understand the allosteric aspects of ion channel activation 

in general and that of ENaC in particular. Furthermore, we believe that the results 

presented here are coherent with existing literature and aid in resolving existing 

controversies and providing new directions for understanding the molecular 

details of epithelial sodium channel structure, function and regulation. 
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