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ABSTRACT 

Mary Elizabeth Nebel:  Functional Imaging of Central Mechanisms Underlying Human Pain 

Perception 

(Under the direction of Gregory Essick and Mark Tommerdahl) 

 

Investigations of human somatosensory perception have demonstrated robust 

interactions between the submodalities of pain and touch, and there is increasing recognition 

that the systematic assessment of somatosensory perception in disorders characterized by 

persistent pain such as Temporomandibular Disorder (TMD) would greatly aid diagnosis and 

evaluation of treatment efficacy.  To better understand the pathophysiological mechanisms 

underlying TMD, we investigated cortical processing interactions that occur between innocuous 

and noxious cutaneous input using functional magnetic resonance imaging (fMRI).  Innocuous 

vibrotactile stimulation and noxious skin heating were delivered separately and concurrently to 

the hand of women with TMD and to pain-free, gender-matched controls (HC).  Cortical 

responses evoked by innocuous vibrotactile stimulation alone differentiated TMDs from HCs, 

and the differences between the groups suggest cortical plasticity in TMD which primes areas to 

respond to innocuous vibrotactile input that normally would not, including parts of the pain 

matrix and auditory cortex.  In contrast, pain ratings and cortical responses to noxious heat 

alone did not differ significantly between TMDs and HCs.  However, additional group differences 

emerged in the cortical patterns characterizing interactions between somatosensory 

submodalities in subjects with and without TMD during concurrent stimulation that could not be
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explained exclusively by group differences in the response to innocuous vibrotactile stimulation.  

Some of these differences in the interaction of innocuous and noxious somatosensory inputs 

were correlated with the severity of the TMD patients’ clinical pain despite the fact that no 

significant correlations were observed between TMD pain and responses to vibrotactile or 

noxious heat stimulation alone.  This suggests that cortical processing interactions between 

somatosensory submodalities more closely reflect individual experiences of persistent clinical 

pain than does the unimodal processing of innocuous vibrotactile or noxious heat input alone. 
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CHAPTER 1 

A HISTORY OF PAIN 

Acute pain is of paramount importance to human vitality, warning one of harm and 

promoting healing of damaged tissues.  Despite its omnipotency, pain tends to seem remote to 

healthy individuals and often evokes skepticism rather than sympathy.  The development of 

maladaptive persistent pain states in response to tissue injury is common, with one in six adults 

suffering from a chronic pain condition [1]; however, these people are often dismissed as 

malingerers and hypochondriacs.  Even when pain is acknowledged and addressed, its remedy is 

generally insufficient because the mechanisms responsible for the initiation and persistence of 

pain are uncertain.  Current therapies have limited efficacy, with up to 50% of treated subjects 

receiving inadequate pain relief [2].   

Understanding what could cause pain to persist after an injury has healed requires 

knowledge of what causes pain at all.  Pain has a legacy of being attributed to the activities of 

supernatural forces, including gods, gremlins, and more recently, extraterrestrial aliens, which 

all suggest that the experience of pain is itself mystical.  The otherworldliness of pain has made 

it a longstanding preoccupation of philosophical, political, and religious musings.  For instance, 

the transcendence of pain is a central theme of Judeo-Christian teachings: endurance of pain is 

the test of faith in the story of Job and is the path to redemption through the Crucifixion.  In the 

utilitarian dialectic of the 18
th

 and 19
th

 centuries, pleasure was balanced against pain as a 

measure of the good of society [3].
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Pain has also been the subject of several centuries worth of legitimate scientific inquiry, 

and the advancement of our understanding of pain etiology has paralleled a great expansion in 

our understanding of how the nervous system functions in general.  René Descartes was one of 

the first philosophers to be influenced by the Scientific Revolution of the 17
th

 century.  

Impressed by the experimental methods pioneered by Galileo, Kepler, and others to understand 

physics, Descartes argued that because the body was machine-like, its function could be 

investigated using similar techniques.  In his work “De homine,” Descartes proposed one of the 

earliest concepts of modern physiology: a direct-line, static transmission system connecting 

injured tissues in the body to a pain center in the brain [4].   

The mechanisms underlying Descartes’ proposal were first seriously addressed in the 

19
th

 century, following a dramatic, cultural reconceptualization of pain.  Increasingly, pain was 

viewed as a consequence, not of supernatural forces, but of determinable causes, and the fear 

of interfering with God’s will by attempting to alleviate pain medically was replaced with a sense 

that determining a way to reduce pain for the greatest number of people was a positive good 

[3].  Investigations of spinal cord tracts revealed that distinct lesions resulted in separate and 

independent loss of tactile and pain-related perception.  The fact that certain lesions could 

destroy a person’s ability to detect touch while the ability to detect pain remained unchanged 

gave credence to the notion that a spinal pathway specifically designated for conducting painful 

input existed and led German physiologist Moritz Schiff to propose the specificity of pain, which 

claimed that pain was a sense independent of touch [5].  However, one objection to considering 

pain as an independent sense was that it could be elicited by different types of stimuli, which 

was not true of other accepted sensory modalities.  German neurologist Wilhelm Erb proffered 

an alternative explanation of pain, the pattern theory, which reasoned that nerve impulse 
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patterns underlying pain were produced by vigorous stimulation of non-specific receptors and 

pathways that are normally concerned with other sensory experiences [5]. 

Sir Charles Scott Sherrington, an English neurophysiologist who later won the Nobel 

Prize in Medicine, suggested labeling stimuli capable of tissue damage as “noxious” regardless of 

physical character and postulated that the signaling of noxious events was the function of sense 

organs responsible for pain (nociceptors) [6]. This concept endowed pain with coherent and 

definable peripheral stimuli.  Another critical conceptual step in understanding the mechanisms 

underlying pain perception was the recognition that the central nervous system is not a 

syncytium, but rather is composed of discrete cells that communicate with one another via 

functional connections, or synapses [7].  The discovery of functional connections between 

neurons allowed for the possibility that these connections could be altered and provided the 

basis of support for Sherrington’s preeminent theory that suppression of excitability in neural 

circuits is just as essential for integrative functioning as is excitability itself [8].   

As technology improved and allowed for more sophisticated investigations of the 

anatomy and function of the nervous system, the debate between specificity and pattern 

theories of pain persisted with both sides continuing to accumulate supporting evidence.  In 

1965, Canadian psychologist Ronald Melzack and British physiologist Patrick Wall published a 

theory which accounted for some aspects of both the specificity and pattern theories.  Their 

“gate control” theory of pain proposed a spinal cord mechanism that regulated the transmission 

of pain sensation between the periphery and the brain and a central control trigger, which could 

activate descending inhibitory fibers and influence afferent conduction [9].  The precise 

mechanisms of the gate control theory are still debated; however, according to Melzack, the 

most important contribution of the theory to biomedical science was not a specific mechanism 
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but the general idea that the central nervous system (CNS) is an essential component in pain 

processing and that the brain is “an active system that filters, selects, and modulates 

inputs”[10]. 

The gate control theory of pain is just one expression of the normal, competitive 

interactions that take place between different types of somatosensory information in the CNS.  

Complimentary to the gate control theory of pain is the gate control theory of touch, or the 

“touch gate,” which refers to the normal impairment of touch perception in response to 

activation of pain receptors within a spatially limited region on the body near the location of 

tactile stimulation [11, 12].  The convergence of pain and tactile processing in the CNS suggests 

that the experience of pain might not only be reflected in the processing of painful input, but 

might also be associated with modulation of somatosensory processing more generally.  One 

plausible explanation for the pathological persistence of pain and the concomitant, diffuse 

sensory abnormalities that are observed, may be the dysfunction of mechanisms in the CNS that 

normally regulate the intensive, temporal, and spatial dimensions of somatosensory experience.    

The overall aim of the work comprising this dissertation was to probe the operation of 

somatosensory regulatory mechanisms at the level of the cortex in healthy individuals and then 

to apply that knowledge to assess the functional status of these regulatory mechanisms in 

patients with persistent musculoskeletal pain.  An enhanced theoretical understanding of the 

functional status of the somatosensory system in patients with chronic pain could lead to 

improved methods for assessing the cerebral cortical health of these individuals and the efficacy 

of therapeutic interventions.   



 

 

CHAPTER 2 

TEMPOROMANDIBULAR DISORDER MODIFIES CORTICAL RESPONSE TO TACTILE 

STIMULATION 

A large portion of the work presented in this chapter was completed as a collaborative effort 

with the following researchers: Folger S, Tommerdahl M, Hollins M, McGlone F, and Essick G. 

2.1. Abstract  

Individuals with temporomandibular disorder (TMD) suffer from persistent facial pain 

and exhibit abnormal sensitivity to tactile stimulation.  To better understand the 

pathophysiological mechanisms underlying TMD, we investigated cortical correlates of this 

abnormal sensitivity to touch.  Using functional magnetic resonance imaging (fMRI), we 

recorded cortical responses evoked by low frequency vibration of the index finger in subjects 

with TMD and in healthy controls (HC).  Distinct subregions of contralateral SI, SII, and insular 

cortex responded maximally for each group.  Although the stimulus was inaudible, primary 

auditory cortex was activated in TMDs.  TMDs also showed greater activation bilaterally in 

anterior cingulate cortex and contralaterally in the amygdala.  Differences between TMDs and 

HCs in responses evoked by innocuous vibrotactile stimulation within SI, SII, and the insula 

paralleled previously reported differences in responses evoked by noxious and innocuous 

stimulation, respectively, in healthy individuals. This unexpected result may reflect a disruption 

of the normal balance between central resources dedicated to processing innocuous and 

noxious input, manifesting itself as increased readiness of the pain matrix for activation by even
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 innocuous input.  Activation of the amygdala in our TMD group could reflect the establishment 

of aversive associations with tactile stimulation due to the persistence of pain. 

Perspective:  This article presents evidence that central processing of innocuous tactile 

stimulation is abnormal in TMD.  Understanding the complexity of sensory disruption in chronic 

pain could lead to improved methods for assessing cerebral cortical function in these patients.   

2.2. Introduction 

A considerable body of evidence suggests that painful conditions are often accompanied 

by alterations in cutaneous sensory perception.  Nathan reported that localized pain due to 

peripheral or central lesions can impair the perception of tactile stimuli within the painful region 

[13]; similarly, provoking pain in patients with pathological pain (e.g., tennis elbow) increases 

tactile detection thresholds in the area of pain referral [14]. In some clinical conditions, 

widespread impairment of tactile sensitivity has been documented.  Patients with chronic 

cervicobrachialgia [15] and persistent patellofemoral pain[16] demonstrate systemic elevation 

of vibrotactile detection thresholds compared to healthy controls.  Although the clinical 

presentations of these conditions differ, there is increasing recognition that systematic 

assessment of somatosensory perception in disorders characterized by persistent pain would 

greatly aid diagnosis and evaluation of treatment efficacy.   

One condition in which local and widespread sensory disturbances have been examined 

is temporomandibular disorder (TMD), a non-specific diagnosis representing a constellation of 

conditions characterized by persistent facial pain and impaired oral function [17].  TMD, the 

most common chronic orofacial pain condition in the United States, impacts approximately 12% 

of the population [18].  Individuals with TMD frequently report pain in widespread body areas 

[19, 20], suggesting that central pathophysiological processes contribute to the persistence of 
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pain.  In addition, TMD is associated with several co-morbid functional syndromes including 

fibromyalgia (18%) [21], vulvar vestibulitis [22], and irritable bowel syndrome (64%) [23].  

Vibrotactile sensibility on the face of TMD patients is characterized by elevated 

detection threshold [24] and impaired frequency discrimination [25], a process shown to rely on 

intact somatosensory cortex [26]. Outside of the painful region, a marginal increase in 

vibrotactile detection threshold [25] is overshadowed by perceptual amplification of the 

intensity of suprathreshold tactile stimuli [27]. 

One interpretation of the association between persistent pain and abnormal tactile 

sensibility is that there is a disturbance in the normal balance between cortical noxious and non-

noxious processing.  Animal studies and neural network modeling indicate that regions of 

somatosensory cortex dominated by input from different spinal pathways interact 

disadvantageously when normal input is disrupted, for instance, by dorsal column transection 

[28]. Tissue injury and inflammation have also been shown to alter cortical responsivity to 

noxious and non-noxious stimulation in animal models of arthritis [29, 30].  In addition, 

neuroimaging studies of phantom limb pain reveal a correlation between cortical reorganization 

of somatic processing and the magnitude of pain experienced [31, 32]; however, pain coexists 

with extensive sensorimotor deafferentation which also contributes to cortical reorganization.  

Whether the vibrotactile perception impairments observed in individuals with TMD pain 

likewise reflect an abnormal topography of cortical somatosensory processing remains to be 

determined. 

The purpose of the present study was to determine, using functional magnetic 

resonance imaging (fMRI), whether the decreased sensitivity to touch observed in TMD is 

associated with alterations in the magnitude and location of brain activity evoked by low 

frequency skin vibration. 
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2.3. Materials and Methods 

Subjects 

Twenty-five women consented to a protocol approved by the Institutional Review Board 

at UNC-Chapel Hill Medical Center. The sample population was restricted to women because the 

prevalence of TMD is significantly higher in women; 2 to 1 in the general population and 8 to 1 

in the clinical setting [33].  Thirteen participants fulfilled Research Diagnostic Criteria (RDC) for 

TMD [17], average age (SD) was 28.7 (7.6) years; the other twelve participants were 

neurologically healthy controls whose average age was 28.8 (7.9) years.  Immediately prior to 

the imaging session, each participant completed the Short-form McGill Pain Questionnaire (SF-

MPQ) to assess her current level of pain [34].   

Stimulation 

 While in the MRI scanner, low frequency vibration (tactile flutter) was applied to the 

distal pad of the right index finger using a purpose-designed piezoelectric tactile stimulator (PTS) 

[35].  Tactile stimuli were applied to the hand rather than to the temporomandibular region to 

identify the presence of global abnormalities in central somatosensory processing that could not 

be attributed to abnormalities in stimulus-evoked afferent activity from the site of the patients’ 

pain complaints.  A static surround limited the stimulation to a region under the 8-mm diameter 

Teflon contactor, which was attached to the bender element.  Consistent with previous 

neuroimaging investigations of somatosensory cortex in primates, a 26 Hz sinusoidal stimulus 

with peak-to-peak amplitude of 400 µm was used.  Flutter stimulation near this frequency 

generates robust and repeatable optical intrinsic signal (OIS) responses within the post-central 

gyrus in squirrel monkeys[36] .  Flutter stimulus events were 4s in duration and repeated every 

32s to allow adequate observation of the hemodynamic response to each event. Subjects were 

instructed to keep their eyes closed and to focus attention on the presence of the stimulus.  
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Twenty-three of the 25 subjects participated in two imaging sessions during which two 

functional imaging series of tactile flutter were completed.  Each imaging series consisted of 14 

flutter stimulus presentations for a total of 56 events.  Two subjects (one TMD) completed a 

single imaging session for a total of 28 events.  At the end of each imaging series, subjects were 

asked to rate the average intensity of the flutter stimulus using a labeled magnitude scale with 

the following anchor points: felt nothing (0), barely detectable (1.5), weak vibration (5), 

moderate vibration (16), strong vibration (33), very strong (50), and most intense vibration 

imaginable (100).  Subjects were instructed to choose the most appropriate label range to 

describe the intensity of the stimulus and then convert that LABEL into a number.  Subjects were 

familiarized with the scale and presented with two test stimuli to rate before entering the 

scanner room. 

Imaging Parameters 

Scanning was performed on a Siemens Magnetom Allegra, head-dedicated 3.0T scanner 

system  Siemens AG, Erlangen, Germany) with 40 -mT/m gradients and a 30 cm radio frequency 

(RF) volume coil.  Subject head motion was restricted using foam cushions, and earplugs and 

earphones were worn by subjects to reduce scanner noise.  A total of 160 contiguous, high-

resolution images covering the entire brain were acquired using a magnetization prepared rapid 

gradient echo (MPRAGE) T1-weighted sequence (TR: 1700ms, Echo Time (TE): 4.38 ms, Flip 

angle: 8, 1mm isotropic sampling).  These structural images were aligned near-axially, parallel to 

the plane underlying the rostrum and splenium of the corpus callosum and were used for 

coregistration with the functional data.    Whole brain functional images consisted of 50 slices 

collected using a gradient echo pulse sequence sensitive to blood oxygenation level dependent 

(BOLD) contrast with echo planar k-space sampling at a repetition rate (TR) of 3000ms (TE: 

30ms, Flip angle: 90, Image matrix: 64 X 64, isotropic voxel size: 3mm
3
).  The functional images 
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were aligned similarly to the structural images.  A semi-automated, high-order shimming 

program ensured global field homogeneity.  Imaging series began with two discarded RF 

excitations to allow the change in net magnetization of the sample following excitation to reach 

steady state equilibrium. 

Image Data Analysis 

Before any statistical analyses were performed, the following preprocessing steps were 

applied to the fMRI data to remove task-independent variability using FMRIB Software Library 

(FSL) version 4.1.2 [37, 38]: (i) brain extraction for non-brain removal  [39], (ii) subject motion 

correction using MCFLIRT [40], (iii) temporal realignment to adjust for slice acquisition order 

using Fourier-space time-series phase shifting, (iv) spatial smoothing using a Gaussian filter with 

a FWHM 5mm kernel to boost the signal to noise ratio of the data, (v) grand-mean intensity 

scaling of the entire 4D dataset by a single factor,  and (vi) high-pass temporal filtering to 

remove low frequency artifacts.  Functional images of each subject were co-registered to 

structural images in native space, and structural images were warped into Montreal 

Neurological Institute (MNI) stereotaxic space to allow for intersubject comparison. The same 

transformation matrices used for structural-to-standard transformations were then applied to 

the co-registered functional images, and all registrations were performed using an intermodal 

registration tool (affine, 12 degrees of freedom).  Voxel-wise temporal autocorrelation was 

estimated and corrected using FMRIB's Improved Linear Model [41].   

Onset times of tactile flutter events were used to generate a regressor to model the 

hemodynamic response (HDR) to the stimulus.  Model fitting generated whole brain images of 

parameter estimates and variances, representing average signal change from baseline.  Group-

wise activation images were calculated by a mixed effects higher level analysis using FMRIB 

Local Analysis of Mixed Effects (FLAME), with a cluster mean threshold of z > 2.5 and a cluster 
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corrected significance of p < 0.05 [42]. Following statistical thresholding, mixed effects group 

contrast images were restricted to voxels in which a significant, cluster corrected HDR was 

evoked by skin flutter in either group composing the contrast.  The Jülich histologic atlas [43, 44] 

and the Harvard-Oxford cortical and subcortical structural atlases (Harvard Center for 

Morphometric Analysis, Charlestown, MA) were used to localize activation clusters.  The final 

fMRI analysis step consisted of extracting average BOLD time courses from functional regions of 

interest (ROIs) identified to differentiate groups based on whole-brain analyses described 

above.  Peak responses were compared between groups in these regions. 

2.4. Results 

Self-reported Present Pain 

On average, TMD subjects reported their present pain intensity on the day of testing to 

be 2.4 on a 10 cm visual analog scale with end labels of no pain (0) and worst possible pain (10).  

Control subjects reported an average present pain intensity of 0.16 out of 10 on the day of 

testing. 

Perceptual Ratings 

 On average, the TMD group rated the intensity of the flutter stimulation as 32.0 (SD = 

15.4), corresponding to a level of “strong” on the labeled magnitude scale while the control 

group rated the intensity of the same stimuli as only 19.2, on average (SD = 12.5), corresponding 

to moderately intense.  A t-test indicated that this difference in mean perceived intensity was 

significant (p=0.03). 

Imaging Data 

Individual Group Analysis 

 In a repeated measures analysis, no significant differences in the response to tactile 

flutter were observed between imaging sessions for either group; accordingly, for each subject 
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who completed two sessions, data from the two sessions were combined in subsequent 

analyses.  For both groups, skin flutter evoked significant hemodynamic responses in established 

somatosensory processing areas, namely contralateral primary somatosensory cortex (SI), 

bilateral secondary somatosensory cortex (SII) and bilateral insular cortex. In addition, robust 

responses were evoked in both groups in sensory association areas, bilateral anterior cingulate 

cortex (ACC) and ipsilateral inferior parietal lobule, as well as in ipsilateral middle frontal gyrus, 

an area associated with attention to transient targets.  Figure 1 illustrates the pattern of 

activation for each group in these regions, and Table 1 indicates the MNI coordinates of all 

significant activation clusters in the control group while Table 2 lists the coordinates of all 

significant activation clusters in the TMD group.  Up to four local maxima within each activation 

cluster are listed since several clusters span more than one cortical region. 

Between-group analyses  

 Different patterns of activation in response to skin flutter were observed for the TMD 

and control groups.  Direct comparison of (control – TMD) and (TMD  – control) flutter contrasts 

revealed areas within the above mentioned clusters in which one group demonstrated 

significantly greater activation than the other; Table 3 lists MNI coordinates of all active regions 

demonstrating a significant group effect.   

SI 

Both the control group and the TMD group displayed significant responses in 

contralateral SI and SII; however, Figure 2 illustrates the distinct patterns of activation within 

these regions for the two groups.  SI activation for the control group (“A” in Figure 2) was 

posterior and lateral to SI activation for the TMD group (“B” in Figure 2) according to the MNI 

coordinates listed in Table 3.  Figure 2 also indicates average hemodynamic time courses for 

both groups derived from contralateral SI voxels identified by the whole brain analysis to 
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differentiate between groups.  In the posterior region of area 1, the response of the control 

group was significantly greater than that of the TMD group 3-9 seconds after the onset of skin 

flutter stimulation (p < 0.01 for all three time points); see “A” in Figure 2.  In the more anterior 

portion of SI, the peak of the TMD HDR at 3 seconds was significantly greater than that of the 

controls (p < 0.04); see “B” in Figure 2.     

SII and primary auditory cortex (A1) 

Separation between groups also occurred in contralateral SII, with the mass of the 

control HDR (“C” in Figure 2) residing in parietal operculum subregions OP1 and OP4 [45, 46] 

and with the TMD group’s SII activation extending from OP1 (“D” in Figure 2) across the Sylvian 

fissure and into neighboring primary auditory cortex (“E” in Figure 2).  Local maxima were 

identified on either side of the Sylvian fissure in both TMD activation maps (Table 2) and TMD – 

control contrast maps (Table 3).  Using the Jülich histologic atlas, it was determined that 20% of 

the contralateral SII cluster listed in Table 3 resided in primary auditory cortex (A1) [47].  No 

statistical difference was observed between the time to or magnitude of peak TMD HDR in SII 

and A1.  On the ipsilateral side, no region of SII demonstrated greater activation to skin flutter in 

the control group than in the TMD group.  The TMD group showed greater activation than the 

control group in OP1 and again this activation extended into primary auditory cortex (Figure 3); 

approximately 24% of the cluster labeled ipsilateral SII in Table 3 was located in ipsilateral A1.  

SII and A1 are located adjacently on opposite banks of the Sylvian fissure, and previous 

research has suggested that extensive overlap may occur in fMRI responses evoked by tactile 

and auditory stimulation when data is combined across subjects due to their close anatomical 

proximity [48]. To verify that activation of primary auditory cortex was not caused by a mis-

registration of individual subject data onto the standard atlas, we inspected subject responses 

on their individual high-resolution anatomical images.  Activation of contralateral A1 was found 
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in all 13 TMD subjects and activation of ipsilateral A1 was found in 9 of 13 TMD subjects.  Figure 

4 contains fMRI activations evoked by tactile stimulation from two exemplary TMD subjects and 

one healthy control; activation clearly extends into A1 for both TMD subjects but remains in SII 

for the control subject. 

Insula, ACC & amygdala 

Figure 5 depicts brain areas outside of those regions traditionally associated with tactile 

processing in which the TMD group showed greater activation than controls.  Although both 

groups displayed bilateral ACC activation, the control group’s ACC HDR was surpassed in 

magnitude and spatial extent by the HDR of the TMD group; see “A” in Figure 5.  The between-

group flutter contrast also revealed a dissociation of the HDR in contralateral insular cortex.  The 

control group demonstrated greater evoked activity in an anterior region of the insula while 

conversely, the TMD group showed greater evoked activity in a more posterior region (“B” in 

Figure 5).  Unexpectedly, activation evoked by skin flutter was also greater for the TMD group in 

the contralateral amygdala; refer to “C” in Figure 5.   

2.5. Discussion  

To the best of our knowledge, the present report is the only examination of brain 

activity evoked by innocuous vibrotactile digit stimulation in TMD patients.  The gross 

morphology of cortical activation elicited by skin flutter in our controls was similar to patterns 

previously reported [35, 49-51], including contiguous activation of SI and SII [52].   The results 

are also consistent with the hypothesis that, in TMD, differences exist in the location and 

magnitude of cortical processing of vibrotactile stimulation, adding more evidence to our 

understanding of the disruption of the somatosensory system in a chronic pain condition.   

The finding that, on average, TMD subjects perceived flutter stimulation as more intense 

than controls is consistent with published reports of TMD patients experiencing perceptual 
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amplification of innocuous levels of pressure stimulation, rating weak pressures as more intense 

compared to controls [27].  These ratings should be interpreted with caution since we did not 

perform a rigorous calibration of the scale with each participant to minimize intersubject 

differences in its use. 

SI 

Group comparisons revealed differences between controls and TMDs in evoked activity 

within the hand region of SI.  The SI hand region is composed of a number of 

cytoarchitectonically defined subdivisions (areas 3a, 3b, 1, and 2) and the Jülich histologic atlas 

indicated that the SI cluster in which the control group demonstrated greater activation than the 

TMD group belonged to area 1, while the SI cluster in which the TMD group showed greater 

activation than controls was more anterior and medial (Table 3), and spanned areas 1 and 3b 

[53, 54].  Attempting to assign cytoarchitectonic labels to fMRI activation foci is prone to error 

due to substantial image processing and inter-subject variability [54]; however, areas 3b and 1 

are traditionally regarded as the SI core for processing input from cutaneous receptors.  The 

stability of the location and spatial extent of SI activity evoked by flutter of increasing intensity 

has been demonstrated by OIS[36] and fMRI monkey studies[55], suggesting that this group 

difference in the location of maximal response is not simply reflective of greater tactile intensity 

experienced by TMDs.  Painful and innocuous stimuli appear to drive different neuronal 

populations within somatosensory cortex, and the general orientation of the shift in maximal 

BOLD response between controls and TMDs is similar to the pattern of response observed when 

comparing activity evoked by innocuous and noxious stimulation of the hand in both healthy 

humans [56-58] and in squirrel monkeys [59-61]; the fringe of SI that responds to painful 

stimulation of the hand is anterior and medial to the core SI hand tactile locus. 
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Changes in SI tactile responsivity have been studied in patients with other persistently 

painful conditions with mixed results.  Using fMRI to study complex regional pain syndrome 

(CRPS), Pleger et al observed a reduction in SI activity evoked by tactile stimulation in CRPS 

compared to healthy controls [62] while the CRPS subjects in the magnetoencephalography 

(MEG) study of Vartiainen et al demonstrated enhanced SI responsivity to tactile stimulation 

compared to controls [63].  Accounting for methodological differences, we consider both of 

these results consistent with our findings.   The SI subregion in which our chronic pain group 

showed decreased activity compared to controls was located near the crown of the postcentral 

gyrus, making it difficult to detect using MEG which is intrinsically insensitive to radially oriented 

flow.  A weaker magnet in the Pleger study necessitated the use of larger voxels and increased 

spatial smoothing; partial volume effects could have caused blurring of activity within the two 

distinct SI subregions we identified to show opposing group effects, with the net effect being 

decreased evoked activity in the chronic pain state.  

SII & A1 

The group differences we observed in the SII response to flutter appear to be consistent 

with comparisons of SII responsiveness to innocuous versus noxious stimulation in healthy 

subjects.  The contralateral SII locus of activation for the control group was anterior to the SII 

locus of activation for the TMD group.  One of the earliest monkey electrophysiological studies 

suggested that anterior SII consisted of neurons responsive to tactile input while posterior SII 

included polysensory and nociceptive neurons [64].  In a more recent meta-analysis of reported 

SII activations from human functional imaging studies of hand stimulation, Eickhoff et al found 

that SII voxels associated with non-painful stimulation, situated at the border between 

cytoarchitectonically defined OP1 and OP4, were anterior to SII voxels in OP1 associated with 

pain-related activity [45].  Additionally, Ferretti et al demonstrated two distinct SII subregions of 
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activation in the anterior-posterior direction, with only the posterior subregion of activation 

exhibiting modulation due to pain intensity [65].  The activation of the posterior subregion of SII 

by innocuous stimulation in our TMD group further suggests that this stimulation engaged 

circuits normally reserved for processing noxious stimulation.   

Both groups exhibited a BOLD response in ipsilateral SII.  However, the response of the 

TMD group was greater in magnitude and spatial extent.  Pain-related activity has been shown 

to be more widely dispersed on both sides of the cortex than activity evoked by innocuous 

vibrotactile stimulation in pain-free subjects,[66, 67] and rat models of neuropathic pain have 

demonstrated bilateral increases in somatosensory cortex responsivity[68].  Thus, the 

recruitment of additional SII processing resources on the ipsilateral side in TMD further 

implicates an influence of TMD pain on the processing of the vibrotactile stimuli. 

Given that many activities that produce tactile sensations also produce sound, it is not 

surprising that a growing body of evidence suggests that tactile stimulation can activate auditory 

cortex [69-73] and that horizontal connections between auditory cortex and somatosensory 

cortex exist [73-75]. This close anatomical and physiological relationship between cortical 

regions nominally belonging to separate modalities may help to explain behavioral interactions 

between hearing and touch [76-78]. What is surprising is that our TMD group, using 

conservative spatial smoothing [70], showed greater activation in primary auditory cortex than 

our control group.  The results suggest that the posterior subregion of SII (activated in our TMD 

group) has readier access to A1, by reason of anatomical proximity, than does the anterior 

subregion of SII (activated in our HC group), raising the intriguing possibility that behavioral 

interactions between somatosensation and hearing might be more substantial in TMD patients 

than in controls and that auditory responses to some stimuli occur even when they are inaudible 

to the ear.  Indeed, somatosensory input can modulate the intensity and character of tinnitus 
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[79], the symptoms of which are more common in individuals with TMD than in the general 

population [80].  Further investigation of the connectivity between somatosensory and auditory 

cortex in the human brain is needed before any definite conclusions can be drawn. 

Insula, ACC & amygdala   

Also surprising was that flutter stimulation evoked activity in the contralateral amygdala 

of our TMD group.  To our knowledge, no neuroimaging investigation of innocuous tactile 

stimulation in humans has demonstrated a significant response in the amygdala; however, 

animal studies have provided evidence of amygdala sensitization following the induction of an 

inflammatory chronic pain state [81] and have emphasized the role of the amygdala [81, 82] as 

well as the insula [83] and ACC [84] in the modulation of pain behavior, all three of which 

showed greater activation in our TMD group than in our control group.  The amygdala plays a 

critical role in learning the association between aversive and neutral stimuli in classical 

conditioning [85], and amygdala activation in response to what should be an affectively neutral 

stimulus could be consistent with the hypothesis proposed by Apkarian that chronic pain is a 

state of continuous learning in which aversive associations are continuously made with 

incidental events, like innocuous tactile stimulation, due to the persistent presence of pain [86].  

Drawing conclusions about the emotional implications of amygdala activation is beyond the 

scope of this study, and given the association between TMD and hypervigilance[87], we must 

also recognize the possible influence of attentional differences on processing in the insula[88] 

and ACC[89]. However, the expectation of pain has been shown to increase the BOLD response 

evoked by nonpainful stimulation in the insula and ACC [90], and similar to the dissociation of 

group activations we observed within SI and SII, the subregion of the insula in which our TMD 

group showed maximal activity reportedly responds to noxious but not to innocuous stimuli 

[57].   
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A limiting factor of the present study is our sample size; although the number of 

subjects included in this study is comparable to many functional neuroimaging investigations, it 

may be small considering the heterogeneity in the clinical presentation of TMD.  Despite this 

heterogeneity, we detected a disruption in the cortical processing of innocuous vibrotactile digit 

stimulation in TMD, and considered together, these subtle, yet significant differences suggest 

cortical plasticity in TMD which primes areas to respond to innocuous vibrotactile input that 

normally would not, including parts of the pain matrix and auditory cortex.  Further 

investigation of how these processing differences are influenced by concurrent acute pain could 

help to explain their functional significance.  Improving our understanding of the complexity of 

sensory disruption in chronic pain could allow for the development of more accurate chronic 

pain models needed to test and improve the efficacy of therapeutic interventions.   
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Table 1. Regions activated by skin flutter in controls.  Only clusters with a mean threshold of z > 

2.5 and a cluster corrected significance of p < 0.05 are listed.  Up to four local maxima in each 

cluster are listed. C = side contralateral to the site of skin stimulation, I = side ipsilateral to the 

site of skin stimulation. 

 

Controls : 

 Montreal Neurologic 

Institute Coordinates 

(mm) 

Side Region 
Cluster size 

(voxels) 
X Y Z Zmax 

C SII OP1 3275 -50 -28 20 6.83 

 SII OP4  -46 -6 8 6.68 

 Insula  -40 -2 12 6.59 

 SI  -54 -24 56 6.08 

I Anterior Insula 106 40 6 4 3.82 

I Anterior Insula 45 38 22 4 3.82 

I Inferior Parietal Lobule 880 56 -40 56 5.75 

 SII OP1  64 -28 28 5.32 

I,C Anterior Cingulate 177 2 26 38 4.49 

I Middle Frontal Gyrus 340 38 46 22 4.66 

C Superior Frontal Gyrus 145 -34 54 12 4.26 
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Table 2. Regions activated by skin flutter in TMDs.  Only clusters with a mean threshold of z > 

2.5 and a cluster corrected significance of p < 0.05 are listed.  Up to four local maxima in each 

cluster are listed.  C = side contralateral to the site of skin stimulation, I = side ipsilateral to the 

site of skin stimulation.   

 

TMDs: 

  Montreal Neurologic 

Institute Coordinates 

(mm) 

Side Region 
Cluster size 

(voxels) 
X Y Z Zmax 

C SI 351 -52 -36 56 4.60 

 SI  -54 -18 54 4.57 

C SII OP1 623 -52 -20 14 5.73 

 A1  -48 -22 12 4.88 

I SII 204 50 -20 16 4.16 

 A1  46 -20 10 3.23 

C Anterior Insula 331 -34 14 4 5.28 

 Anterior Insula  -40 12 -10 4.16 

C Posterior Insula 286 -40 -10 -6 5.28 

 Amygdala  -24 -10 -12 4.46 

I Anterior Insula 201 36 18 2 4.53 

 Anterior Insula  32 26 2 4.28 

C Pallidium 147 -12 4 -4 4.72 

I Midbrain 558 6 -18 -16 4.61 

I Thalamus  4 -18 0 4.37 

C Thalamus  -16 -22 2 3.36 

I Planum Temporale 52 56 -32 18 4.10 

C Inferior Parietal Lobule 51 -40 -54 44 4.03 

I Inferior Parietal Lobule 186 58 -46 50 4.49 

C Paracingulate Gyrus 1154 -4 14 44 5.32 

I Paracingulate Gyrus  8 16 46 5.07 

I Anterior Cingulate  4 38 14 4.79 

C Anterior Cingulate  -6 32 18 4.24 

I Frontal Pole 37 38 46 2 3.83 

I Middle Frontal Gyrus 164 48 34 26 4.43 
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Table 3.  Flutter responsive regions demonstrating a significant group effect.  Only clusters 

with a mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 are listed.  Up to 

four local maxima in each cluster are listed.  C = side contralateral to the site of skin stimulation, 

I = side ipsilateral to the site of skin stimulation.   

 

Controls > TMDs: 

  Montreal Neurologic 

Institute Coordinates 

(mm) 

Side Region 
Cluster size 

(voxels) 
X Y Z Zmax 

C Insula 145 -44 -2 12 5.22 

 SII OP4  -48 -4 8 4.75 

C SII OP1 222 -60 -22 24 4.41 

C SI 54 -60 -26 46 3.82 

 SI area 1  -52 -30 56 3.63 

 

TMDs > Controls:     

C Thalamus 501 -8 -28 -2 4.91 

I Thalamus  12 -24 8 4.37 

C SI area 1 102 -54 -22 52 4.17 

 SI area 3b  -46 -18 52 3.91 

C  Planum Temporale 289 -54 -30 14 4.09 

 SII OP1  -50 -22 14 3.96 

 SII OP1  -44 -34 20 3.93 

 A1  -44 -24 8 3.44 

I A1 189 44 -22 6 4.57 

 SII OP1  48 -24 18 4.31 

C Insula 46 -48 -10 -8 3.86 

C Anterior Cingulate 731 -6 2 40 5.10 

I Anterior Cingulate  4 8 40 4.9 

C Amygdala 22 -24 -10 -12 3.94 

 



 

Figure 1.  Flutter Responsive Regions.  

control group only in yellow, the TMD group only in blue, and for both groups in green.   A 

cluster mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 we

Activation masks are overlayed on average anatomical images for all 25 subjects.
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Regions.  Masks of the main effect response to skin flutter for the 

control group only in yellow, the TMD group only in blue, and for both groups in green.   A 

cluster mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 we

Activation masks are overlayed on average anatomical images for all 25 subjects. 

Masks of the main effect response to skin flutter for the 

control group only in yellow, the TMD group only in blue, and for both groups in green.   A 

cluster mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 were used.  
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Figure 2. Comparison of mean percent signal change for controls and TMDs in subregions of 

somatosensory cortices contralateral to the stimulation site. (A) The subregion of SI in which 

controls showed greater activation than the TMD group was posterior to (B) the subregion of SI 

in which the peak of activation was greater for TMDs than controls.  (C) & (D) Similar 

dissociations in activation were found between the groups in SII with the greater evoked 

response in the TMD group extending to primary auditory cortex (E).  * indicates a statistically 

significant difference in the average percent signal change between groups at a particular time.  

Outlined regions are according to the Julich histological atlas. 

 



35 

 

Figure 3. Comparison of mean percent signal change in SII and primary auditory cortex 

ipsilateral to the site of skin stimulation.  The TMD group demonstrated greater activation in 

both (A) ipsilateral SII and (B) ipsilateral A1.  Unlike on the contralateral side, there was no 

subregion of ipsilateral SII in which controls exhibited greater activation than TMDs in response 

to skin flutter.  * indicates a statistically significant difference in the average percent signal 

change between groups at a particular time.  Outlined regions are according to the Julich 

histological atlas. 
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Figure 4. Representative fMRI of SII and A1 activations during finger stimulation in individual 

subjects.  The Sylvian fissure is denoted by a black line overlaying individual activation maps.  

The parietal operculum (SII) is located above the Sylvian fissure while the transverse temporal 

gyrus (A1) is located below the Sylvian fissure.  Only clusters with a mean threshold of z > 2.5 

and a cluster corrected significance of p < 0.05 are shown.  Skin flutter elicited BOLD activations 

on both sides of the Sylvian fissure in TMD subjects (A) and (B) but only in SII in controls (C).  HC 

= Healthy Control. 
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Figure 5. Comparison of mean percent signal change for controls and TMDS in (A & B) affective 

and (C) emotional processing areas.  * indicates a statistically significant difference in the 

average percent signal change between groups at a particular time. 

 

 

  



 

 

CHAPTER 3 

TOUCH-PAIN INTERACTIONS IN TMD:  THE EFFECT OF NOXIOUS HEAT ON RESPONSES IN 

SOMATOSENSORY CORTEX TO INNOCUOUS FLUTTER 

A large portion of the work presented in this chapter was completed as a collaborative effort 

with the following researchers: Folger S, Tommerdahl M, Pelphrey K, Kahn K, and Essick G. 

3.1. Abstract  

To better understand the pathophysiological mechanisms underlying 

temporomandibular disorders (TMD), a form of persistent musculoskeletal pain in the orofacial 

region, we investigated the impact of noxious heat on the cortical response to vibrotactile 

stimulation using functional magnetic resonance imaging (fMRI).  Innocuous vibrotactile 

stimulation and noxious skin heating were delivered separately and concurrently to the hand of 

subjects with TMD and to healthy controls (HC).  SI was identified as an area of convergence of 

these two somatosensory submodalities in both groups of subjects; however, the convergence 

differed between HCs and TMDs.  In HCs, SI responses evoked by concurrent stimulation of both 

submodalities were smaller than predicted by the sum of the unimodal SI responses as has been 

demonstrated in previous studies reported in the literature.  However, in TMDs, SI responses 

evoked by concurrent stimulation were larger than predicted by the sum of the SI responses to 

unimodal stimulation.  Furthermore, these superadditive SI responses in TMD subjects were 

correlated with the patients’ McGill present pain intensity scores.   Significant correlations 

between peak SI responses evoked by either innocuous vibrotactile stimulation or noxious skin
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 heating alone with present pain intensity scores in TMD subjects were not observed, suggesting 

that  interactions in the processing of innocuous vibrotactile and noxious heat input more 

closely reflect individual experiences of persistent clinical pain than the unimodal processing of 

innocuous vibrotactile or noxious heat input alone. 

Perspective: This article presents evidence that cortical mechanisms underlying the 

modulation of vibrotactile processing by noxious heat input are abnormal in TMD.  A potential 

neuromechanistic explanation for this abnormal processing may involve activity dependent 

interneurons connecting subregions of SI that are affected by persistent clinical pain. 

3.2.  Introduction 

  Investigations of human somatosensory perception have demonstrated robust 

interactions between the submodalities of pain and touch.  Apkarian et al reported the 

existence of a “touch gate,” a submodality interaction in which thermally induced pain elevates 

vibrotactile detection thresholds and increases the perceived intensity of suprathreshold 

vibrotactile stimuli in healthy individuals [11, 91]. Different types of experimentally evoked pain 

including that from capsaicin injection [92] and electrical stimulation [58] have also been shown 

to impair tactile perception in pain-free subjects.   

Information from nociceptors and mechanoreceptors is transmitted through the spinal 

cord and brain stem via distinct pathways; however, convergence between pain and touch 

pathways appears to occur at a relatively early stage of the somatosensory projection.   

Neurophysiological observations from non-human primates suggest that the responses evoked 

in primary somatosensory cortex (SI) by innocuous tactile stimulation and noxious skin heating 

are consistent with the published demonstrations of the effect of pain on touch in humans [59, 

60, 93].  Evidence from human neuroimaging also indicates that the neural correlate of the 
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perceptual decline of touch sensitivity induced by nociception may lie in somatosensory cortices 

[58, 94, 95].  

The convergence of pain and tactile processing in the cortex suggests that the 

experience of pain might not only be reflected in the processing of painful input, but might also 

be associated with modulation of somatosensory processing more generally.  Transection of the 

spinothalamic tract at a cervical level of the spinal cord in patients with chronic pain has been 

shown to be followed not only by pain relief but also by a rapid increase in SI responsivity to 

innocuous electrical stimulation without producing any detectable changes in spinal or 

brainstem responses [96].  In addition, tactile sensory impairments have been observed in 

association with several clinical pain states, including temporomandibular disorders (TMD) [24, 

97], a musculoskeletal condition characterized by persistent pain in the muscles of mastication, 

pain in the temporomandibular joint, and limited jaw function [17].  Individuals with TMD have 

exhibited degradation not only of the ability to detect vibrotactile stimuli compared to pain-free 

controls but also of the ability to discriminate between suprathreshold vibrotactile stimuli that 

differ only in frequency [25].  However, perceptual amplification of localized mechanical 

stimulation has also been observed in the presence of TMD pain [98], and the determination of 

a clear relationship between levels of either spontaneous or palpation-evoked pain in TMD 

patients and perceptual abnormalities remains elusive [25]. 

Observations disclosed in other human studies have demonstrated that the effect of 

pain on vibrotactile perception and the central nervous system processing of vibrotactile input 

are not explicable solely in terms of nociception-induced central inhibition even in pain-free 

subjects.  Depending on the parameters of the noxious stimulus, perceptual gain 

(“hyperalgesia”) as well as perceptual decline (“hypoesthesia”) of somatosensory stimuli can be 

evoked in healthy subjects following both intracutaneous capsaicin injection [92] and 
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conditioning electrical stimulation of C-nociceptors [58].  Whether fMRI activity in contralateral 

SI increases or decreases when noxious heat is applied to the hand has been shown to depend 

on the spatial properties of the stimulus even when stimulus temperatures were adjusted to 

evoke equivalent pain intensity ratings, suggesting that cortical fMRI activity patterns for 

seemingly constant perceptions are not necessarily constant [99]. 

In order to further our understanding of the complexity of somatosensory dysfunction 

associated with the persistence of TMD pain, we recently investigated how cortical processing of 

innocuous tactile stimulation applied to the hand is altered in TMD.  Responses in distinct 

subregions of contralateral SI, secondary somatosensory cortex (SII) and insular cortex 

differentiated TMD from healthy control (HC) subjects [100], and the differences between the 

groups in the responses  evoked within SI, SII, and the insula paralleled previously reported 

differences in responses evoked in healthy individuals by noxious and innocuous stimulation, 

respectively.  We suggested that these subtle, yet significant, differences may reflect cortical 

plasticity in TMD, manifesting itself as increased readiness for even non-orofacial cortical areas  

to respond to innocuous vibrotactile input that normally would not.  Given this difference in 

cortical responsivity, the purpose of the present study was to characterize the endogenous 

modulation of tactile processing by experimentally induced noxious stimulation. 

3.3.  Materials and Methods 

3.3.1. Subjects 

 Twenty-six women consented to a protocol approved by the Institutional Review Board 

at the UNC Chapel Hill. Thirteen participants fulfilled the Research Diagnostic Criteria (RDC) for 

TMD [17]; average age (SD) was 30.0 (9.8) years.   The remaining 13 participants were 

neurologically healthy, pain-free controls whose average age (SD) was 28.2 (8.1) years.  Twenty-
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four of these subjects (12 TMD) provided data for the investigation of psychophysical and BOLD 

responses to innocuous flutter stimulation, which were reported in a recent publication [100]. 

3.3.2. Stimulation 

To characterize the effect of noxious skin heating on the brain’s response to innocuous 

tactile input, three types of stimuli were presented: 1) innocuous, low frequency vibration of the 

skin referred to as flutter (F), 2) noxious skin heating (H), and 3) concurrent flutter and noxious 

heat (FH).  All stimuli were applied to the same dermatome of the hand.  A piezoelectric tactile 

stimulator (PTS) generated a 26Hz (400µ peak-to-peak amplitude) sinusoidal stimulus which was 

applied to the distal pad of the right index finger during flutter events; a static surround limited 

the stimulation to a region under the 8-mm diameter Teflon contactor.    Flutter events were 4 

seconds in duration and occurred every 32 seconds; 14 events comprised a single imaging series.  

Skin heating stimuli were delivered to the right thenar eminence using an MR-compatible peltier 

device with a contact area of 2.6cm
2
 (TSA-II, Medoc Advanced Medical Systems, Ramat Yishai, 

Israel).  A Velcro strap was used to secure the thermal probe to the hand throughout the 

imaging session. During skin heating events, the thermal probe ramped from a baseline level 

approximating skin temperature (32˚C) to a moderately noxious level (49˚C) at a rate of 6˚C/s.  

The probe remained at this temperature for 4s before ramping down to the baseline level at a 

rate of -6˚C/s.   Noxious skin heating events occurred every 62s to allow adequate observation 

of the hemodynamic response to each event, and seven events comprised an imaging series.  

The timing of FH events was similar to that of noxious skin heating with flutter being presented 

while the thermal probe was at 49˚C. 

3.3.3. Experimental Protocol   

All 26 subjects completed 12 fMRI scans divided over two imaging sessions to minimize 

subject fatigue.  Session A consisted of two scans of flutter stimulation and four scans of noxious 
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skin heating; session B consisted of two scans of flutter and four scans of concurrent flutter and 

heat.  Flutter scans were collected during both imaging sessions to evaluate intra-subject 

variability, and these data have been previously reported [100].  The order of imaging sessions 

for each subject and the order of scan types within each session were randomized.  Subjects 

were instructed to keep their eyes closed and to concentrate on the presence of the stimulus.   

Immediately prior to imaging, each participant completed the Short-form McGill Pain 

Questionnaire (SF-MPQ) to assess her current level of pain [34].  At the end of both F and FH 

scans, subjects were asked to rate the average intensity of skin flutter experienced using a 

labeled magnitude scale with the following anchor points: felt nothing (0), barely detectable 

(1.5), weak vibration (5), moderate vibration (16), strong vibration (33), very strong (50), and 

most intense vibration imaginable (100).  At the end of H scans, subjects rated the average 

intensity of heat pain experienced using a similar scale.  Subjects were instructed to choose the 

most appropriate label range to describe the intensity of the stimulus and then to convert that 

label range into a number.  Subjects were familiarized with the scale and presented with two 

test stimuli to rate before entering the scanner room.   

3.3.4. Imaging Parameters 

Scanning was performed on a Siemens Magnetom Allegra, head-dedicated 3.0T scanner 

system with 40 -mT/m gradients and a 30 cm radio frequency (RF) volume coil.  Foam cushions 

were used to restrict subject head motion, and earplugs and earphones were worn by subjects 

to reduce scanner noise.  A total of 160 contiguous, high-resolution images covering the entire 

brain were acquired using a magnetization prepared rapid gradient echo (MPRAGE) T1-weighted 

sequence (TR: 1700ms, Echo Time (TE): 4.38 ms, Flip angle: 8, 1mm isotropic sampling).  These 

structural images were aligned near-axially, parallel to the plane underlying the rostrum and 

splenium of the corpus callosum and were used for coregistration with the functional data.    
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Whole brain functional images consisted of 50 slices collected using a gradient echo pulse 

sequence sensitive to blood oxygenation level dependent (BOLD) contrast with echo planar k-

space sampling at a repetition rate (TR) of 3000ms (TE: 30ms, Flip angle: 90, Image matrix: 64 X 

64, isotropic voxel size: 3mm
3
).  The functional images were aligned similarly to the structural 

images.  A semi-automated, high-order shimming program ensured global field homogeneity.  

Imaging series began with two discarded RF excitations to allow the change in net magnetization 

of the sample following excitation to reach steady state equilibrium. 

3.3.5. Image Data Analysis 

The image analysis package FMRIB Software Library (FSL) version 4.1.2 [37, 38] was used 

for image processing and statistical analysis.  Functional data were temporally realigned to 

adjust for interleaved slice acquisition order, corrected for subject motion using MCFLIRT [40], 

and spatially smoothed using a Gaussian filter with a FWHM 5mm kernel.  A high-pass temporal 

filter with a cutoff period of 100 seconds was applied to remove low frequency artifacts from 

functional data, and each 4D dataset was scaled by its mean global intensity.  Functional and 

structural images were stripped of non-brain matter [39] to improve registration.  Functional 

images of each subject were then co-registered to structural images in native space, and 

structural images were warped into Montreal Neurological Institute (MNI) stereotaxic space and 

resampled to 2 X 2 X 2 mm
3
 voxels to allow for intersession and intersubject comparison. The 

same transformation matrices used for structural-to-standard transformations were then 

applied to the co-registered functional images, and all registrations were carried out using an 

intermodal registration tool (affine, 12 degrees of freedom).  Voxel-wise temporal 

autocorrelation was estimated and corrected using FMRIB's Improved Linear Model [41].   

Input functions representing the timing of each event type (F, H, FH) were convolved 

with a double γ function to construct the regressors for a voxel-by-voxel analysis within the 
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framework of the general linear model.   In a previously reported repeated measures analysis, 

no significant differences in the response to tactile flutter were observed between imaging 

sessions for either group [100]; accordingly, data for each participant were pooled over sessions 

using fixed-effects general linear modeling.  To ensure equal numbers of trials among the three 

event types, we randomly selected two of the four F scans to include in the subject-level, fixed-

effects model.  Within each subject, contrast images were created for each event type versus 

rest and for differences between the FH response observed (OFH) and the FH response 

predicted by the sum of the responses evoked by F and H alone (PFH), either superadditive (OFH 

>  PFH) or subadditive (PFH > OFH) to identify areas of information convergence. 

Conventional voxel-by-voxel mixed-effects analyses were used to assess each of the 

contrasts across individuals and groups.  Group-wise z statistic images were thresholded using 

clusters determined by  z > 2.3 and a cluster corrected significance of p < 0.05 [42]. Following 

statistical thresholding, mixed-effects group contrast images of integration effects were 

restricted to voxels in which a significant, cluster corrected response was evoked by any one of 

the three event types in either group.  The Harvard-Oxford cortical and subcortical structural 

atlases (Harvard Center for Morphometric Analysis, Charlestown, MA) and the Jülich histologic 

atlas were used to localize activation clusters [43, 44].  Average BOLD time courses were 

extracted from functional regions of interest (ROIs) identified to differentiate groups based on 

whole-brain analyses described above to help visualize the interaction between innocuous and 

noxious responses in these areas.  Peak parameter estimates were then extracted from these 

regions and converted to percent change values using the featquery utility within FSL.  Finally, to 

investigate individual differences regarding the influence of clinical and experimental pain on 

the brain’s response to flutter input, multiple regression analyses between fMRI data and 

reported pain intensity ratings were performed within these ROIs. 
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3.4.  Results 

Analyses of psychophysical and cortical BOLD responses to the innocuous flutter 

stimulation were described in the previous publication of this series of reports [100].  In this 

paper, we focus on group responses to noxious heat and differences in the interaction in the 

concurrent processing of the flutter stimuli and noxious heat. 

3.4.1. Self-reported Present Pain 

On average, TMD subjects reported their present pain intensity on the day of imaging 

session A to be 2.3 on a 10 cm visual analog scale with end labels of no pain (0) and worst 

possible pain (10). TMD subjects reported an average present pain intensity of 2.8 out of 10 on 

the day of imaging session B.  Control subjects reported an average present pain intensity of 

0.14 out of 10 on the day of session A and 0.18 out of 10 on the day of session B.  A paired t-test 

indicated that the difference in present pain intensity between the two sessions was not 

significant for either group (Figure 6).  When we combined pain reports for both sessions, the 

TMD group reported significantly more pain on the day of testing than the HC group (p < 0.001). 

3.4.2. Response to noxious skin heating 

3.4.2.1. Perceptual Ratings 

The subjective experience of pain intensity evoked by the 49˚C stimulus applied to the 

hand differed markedly across individuals in both the control and TMD groups (Figure 7A). On 

average, the TMD group rated the intensity of pain as 37.0 (SD = 18.0), corresponding to a level 

between  “strong” and “very strong” on the labeled magnitude scale while the control group 

rated the intensity of the same stimuli as 34.0, on average (SD = 14.0), corresponding to a level 

of “strong.”  This small difference in mean perceived intensity was not statistically significant (p 

< 0.18).  Average heat pain ratings were not significantly correlated with the present pain 
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intensity ratings of the TMD subjects (Figure 7B), indicating that subjects’ clinical pain did not 

affect their ratings of the noxious heat. 

3.4.2.2. Imaging Data 

 Individual Group Analysis 

 Analysis of fMRI data revealed a common network of evoked pain related activity in 

controls and TMDs.  For both groups, noxious heat evoked statistically significant, positive 

hemodynamic responses throughout the lateral pain system including bilateral SII [44, 46], 

anterior insular cortex, and the pallidum.  Both groups also demonstrated evoked activity in 

components of the medial pain system including bilateral anterior insula, anterior cingulate 

cortex (ACC), and posterior mid-cingulate cortex (pmCC).  Contralateral middle frontal gyrus 

(MFG) and bilateral inferior parietal lobule (IPL) were also engaged by noxious heat in HCs and 

TMDs.  Table 4 indicates the MNI coordinates of all significant activation clusters by group, and 

Figure 8A illustrates the pattern of activation for each group in these regions. 

 Between Group Analyses 

 Evaluation of (control – TMD) and (TMD – control) heat pain contrasts revealed no areas 

in which the two groups demonstrated a statistically significant difference in their response to 

noxious heat. 

3.4.2.3. Relationship between perceptual and cortical responses to noxious heat 

 We found a statistically significant, positive correlation between heat pain ratings and 

peak percent change parameter estimates for H responses in SII in both groups (Figure 9).  

3.4.3. Effect of noxious skin heating on innocuous flutter stimulation 

3.4.3.1. Perceptual Ratings 

 Healthy controls rated the intensity of flutter stimulation in the presence of heat 

producing pain as 16.2, on average (SD=11.5), which corresponded to “moderately intense.”  
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Compared to perceived flutter intensity ratings reported by HCs in the absence of heat 

producing pain [100], these ratings were 17.7% lower, on average (SD=5.4%).  TMD subjects 

rated the intensity of flutter in the presence of heat producing pain as 31.8 (17.5), on average, a 

rating that corresponded to a level between “moderately intense” and “strong.”   Although  five 

of 13 TMD subjects perceived a decrease in flutter stimulation intensity with the addition of 

concurrent noxious heat,  the TMD group on average reported a 10.7% (SD=37.2%) increase in 

perceived flutter intensity in the presence of heat producing pain (Figure 10).  The difference 

between groups in the heat pain-evoked change in flutter ratings was statistically significant 

(p<0.01).   

3.4.3.2. Imaging Data 

Individual Group Analysis 

For both groups, concurrent flutter and noxious heat stimulation of the hand elicited 

statistically significant BOLD responses in somatosensory processing areas, namely SI, SII, and 

insular cortex.  In addition, HCs and TMDs demonstrated robust responses bilaterally in ACC, 

pmCC, and the inferior parietal lobule, which are sensory association areas.  Table 5 lists the 

coordinates of all significant FH activations for HCs; Table 6 lists significant FH clusters in TMDs, 

and Figure 8B illustrates the pattern of activation for each group in these regions.   

A number of these regions also exhibited statistically significant differences between the 

FH response observed and the FH response predicted by the sum of the responses evoked by F 

and H alone within each group, suggesting that flutter and noxious heat input to these areas 

interacted.  For the control group, subadditive responses (PFH > OFH) were identified in 

contralateral SI, bilateral SII, and bilateral insula.  No statistically significant superadditive 

responses (OFH > PFH) were identified.  For the TMD group, superadditive responses were 

found bilaterally in SI and pmCC. No statistically significant subadditive responses were 
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observed.  Table 7 lists the coordinates of all clusters showing significant differences between 

predicted and observed BOLD responses evoked by concurrent flutter and noxious heat 

stimulation. 

Between Group Analyses 

 Evaluation of (HC – TMD) and (TMD – HC) contrasts revealed several regions in which 

one group demonstrated a greater difference between the predicted and observed response 

evoked by concurrent stimulation.  Consistent with the individual group analyses, HCs exhibited 

greater subadditive responses than TMDs in contralateral SI and IPL (Figure 11A) while TMDs 

showed greater superadditive responses than HCs in contralateral SI and bilateral pmCC (Figure 

6B).  The subadditive classification is relatively nonspecific since a voxel in SI that shows the 

same percent signal change in response to each condition, e.g., (F, H, FH) = (.3%, .3%, .3%), 

would be classified as subadditive because FH < (F + H) even though the voxel responded equally 

well to the uni- and bi-modal stimulation.  Extracting HDRs from SI voxels labeled subadditive 

that did not show a significant response to FH in HCs, we observed that the addition of noxious 

heat almost entirely suppressed any positive BOLD response (Figure 11C).  This is in contrast 

with the remaining SI subadditive voxels, which responded similarly for all three stimulation 

conditions (Figure 11D), suggesting that flutter and noxious heat input converged in these voxels 

without interacting.  The classification of superadditive is more specific, indicating a level of 

response enhancement beyond that which can be explained by two non-interactive information 

streams.  In the TMD group, the peak of the SI response to FH was greater than the sum of the 

peaks for flutter and noxious heat alone (Figure 11E).  Flutter and noxious heat evoked 

reciprocal responses in these superadditive SI voxels, but when combined, the SI response was 

augmented.       
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3.4.3.3. Relationship between changes in flutter perception and cortical processing  

 A strong, negative correlation was observed in HCs between peak percent change values 

for subadditive responses in SI and changes in the perceived intensity of flutter stimulation in 

the presence of noxious heat (R
2
 = 0.79, p < 0.0004, Figure 12, solid line).  In other words, upon 

application of noxious heat, the perceived intensity of flutter stimulation decreased as the 

difference between the predicted and observed SI FH response increased among HCs but not 

among TMDs (Figure 12, dashed line). 

SI superadditive responses were found to be positively correlated with McGill present 

pain intensity scores for TMD subjects (R
2
=0.72, p < 0.0003); TMDs who experienced greater 

levels of clinical pain on the day of imaging demonstrated greater augmentation of observed SI 

FH responses with respect to predicted SI FH responses (Figure 13A, dashed line).  No such 

significant correlation between peak percent change responses for either F or H in SI and 

present pain intensity scores (Figure 13B), suggesting that processing interactions between F 

and H input are more closely related to individual experiences of ongoing clinical pain than the 

processing of F or H input alone. 

3.5.  Discussion 

To the best of our knowledge, the present report is the first examination of brain 

activity associated with the interaction between flutter and noxious skin heating input in 

individuals with persistent musculoskeletal pain.  The results highlight several main findings:  (1) 

Within the processing network common to unimodal and bimodal stimulation, differences 

emerged in the cortical patterns characterizing interactions between somatosensory 

submodalities in subjects with and without TMD.  (2) These differences in the interaction of 

innocuous and noxious input are related to the severity of the TMD patients’ clinical pain and 
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emerge despite the fact that pain ratings and cortical responses to noxious heat alone did not 

differ significantly between TMD patients and control subjects.   

Common cortical network 

Concurrent flutter and noxious heat engaged a network that included all areas 

responsive to noxious heat alone plus areas reported to be responsive to flutter stimulation 

alone in these same subjects [100].  The cortical network of activation elicited by noxious heat in 

both groups was similar to patterns previously reported by various investigators.  First, SII is 

commonly activated bilaterally in heat pain studies [67, 101-104].  Second, anterior cingulate 

[57, 105], mid-cingulate [106, 107], and insular cortices [57, 104, 105] are all components of the 

limbic system, are all routinely activated during PET and fMRI studies involving heat-evoked 

pain, and have all been implicated in processing the affective dimension of pain.  Third, 

prefrontal cortical areas have also been shown to be activated by heat pain and may be related 

to cognitive variables such as memory, stimulus evaluation, or pain catastrophizing [67, 108, 

109]. 

Interactions between innocuous and noxious input 

SI was identified as an area of submodality convergence in both groups.  In HCs, flutter 

alone evoked a positive BOLD response in SI voxels exhibiting convergence while noxious heat 

alone evoked no response or a small, negative BOLD response in these voxels.  In TMDs, flutter 

alone similarly evoked a positive BOLD response in SI voxels identified as integrative while 

noxious heat evoked a negative BOLD response.   When flutter and noxious heat were delivered 

concurrently, the two groups of subjects differed in the effect of submodality convergence both 

on tactile perception and on SI responsiveness. 

Consistent with published psychophysical evidence of a touch-gate in healthy individuals 

[11, 12, 91], all 13 HCs perceived a reduction in the intensity of flutter stimulation in the 
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presence of heat producing pain.  Since SI is critical for tactile sensation and the magnitude of 

response evoked in SI has been shown to depend on the intensity of tactile stimulation [36, 55, 

110], it would be reasonable to expect that the diminished perception of flutter reported by HCs 

would reflect a suppression of the SI response evoked by flutter with the addition of concurrent 

noxious heat.  In fact, we observed a close correlation between the magnitude of noxious heat 

induced changes in the perception of flutter intensity and noxious heat induced changes in SI 

responsivity.  In HCs, SI was identified as a region in which the interaction of innocuous and 

noxious processing produced a response that was smaller than predicted by the sum of the 

responses to unimodal stimulation.  Since the response to concurrent FH stimulation more 

closely resembled the response to H alone, this difference appeared to be due to a suppression 

of the flutter response by noxious heat, a finding that corroborates evidence from previous 

human neuroimaging studies indicating that experimentally evoked pain can inhibit SI [58, 59, 

94, 95] and that the magnitudes of SI inhibition and sensory perceptual decline are correlated 

[58].  In addition, optical intrinsic signal (OIS) imaging data from squirrel monkeys suggest that 

inhibitory interneurons connecting subregions of SI may be responsible for this modulation of SI 

responsivity to tactile stimulation by noxious heat [59, 60];  noxious heat evokes reciprocal 

optical intrinsic signal changes in subregions 3b/1 and 3a of SI, and correlation analysis of the 

time courses of these changes indicates that activity evoked by noxious heat in the fringe of SI 

(3a/2) suppress activity in the core (3b/1).   It has also been demonstrated that stimulus evoked 

decreases of the BOLD signal represent, at least in part, a reduction of neuronal activity itself 

[111], further suggesting that neuronal inhibition contributed to the decreases in SI BOLD signals 

observed during concurrent FH stimulation. 

In contrast to HCs, SI information convergence in TMDs produced BOLD responses to FH 

stimulation that were larger than would be predicted by the sum of the responses to unimodal 
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stimulation.  This enhancement of SI responsiveness was consistent with the perceived increase 

in flutter intensity reported on average in the TMD group in the presence of heat producing 

pain.  Evidence from intracellular microelectrode recordings in squirrel monkeys points to a 

possible neuromechanistic explanation for the opposing effects of noxious heat on tactile 

perception and processing that we observed between TMDs and HCs.  The action of 

corticocortical connections between subregions of SI that respond to innocuous and noxious 

input may depend on the level of rapidly adapting (RA) neuron activity; when SI RA neuron 

activity is weak, nociceptor afferent drive makes it weaker, decreasing mean firing rate (MFR) 

and the degree to which RA neurons entrain to flutter stimulation, but when SI RA neuron 

activity is strong, nociceptor afferent drive either has no effect or enhances SI activity, 

increasing MFR and entrainment [93].  We reported in a previous publication that BOLD 

responses evoked by innocuous flutter stimulation alone in these TMD subjects were enhanced 

in a subregion of SI compared to controls [100]. As an indirect measure of neuronal activity, 

enhanced BOLD responses indicate that the stimulus-evoked RA neuron activity in SI is stronger 

than normal, and consistent with the stimulus-dependent polarity theory, stronger RA neuron 

activity was made stronger still when delivered in the presence of noxious heat.   

The activity dependence of the effect of nociceptor afferent drive on SI responsivity may 

also explain the variable effect we observed within the TMD group of noxious heat on flutter 

intensity ratings.  On average, flutter intensity ratings increased in the presence of noxious heat 

in the TMD group; however, for 5 of the 13 TMD subjects, flutter intensity ratings decreased in 

the presence of noxious heat.  A post hoc analysis comparing SI BOLD responses to flutter alone 

in TMD subjects reporting a reduction in flutter intensity to those reporting an increase in flutter 

intensity in the presence of noxious heat revealed that, on average, TMD subjects whose flutter 
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intensity ratings decreased, demonstrated a weaker peak percent signal change response in SI 

than did TMD subjects whose flutter intensity ratings increased (Figure 14). 

Also in contrast to HCs, no significant correlation was found in the TMD group between 

the amplitude of noxious heat induced changes in the perception of flutter intensity and noxious 

heat induced changes in SI responsivity despite the fact that flutter intensity ratings increased 

on average and superadditive responses were evoked within SI.  Even when we subdivided the 

TMD group by the effect of noxious heat on the flutter intensity ratings, we still did not detect a 

correlation between noxious heat induced changes in flutter intensity ratings and changes in SI 

responsivity.  It is possible that the emergence of superadditive responses in SI during 

concurrent FH stimulation reflected changes in the perception of the noxious heat.  

Electrophysiological data from squirrel monkeys have demonstrated that the magnitude of spike 

firing in SI nociresponsive neurons associated with a short-duration noxious heat stimulus 

increases linearly with the temperature of the stimulus [61]. Observations from human studies 

also suggest that BOLD responses in SI reflect the perceived intensity of evoked pain both in 

healthy controls [112] and chronic pain patients [113, 114].  Since we did not also collect data 

during concurrent stimulation with the subjects’ attention directed towards the noxious heat 

stimulus, we cannot know with certainty if the emergence of superadditive responses reflected 

changes in TMD subjects’ perception of the noxious heat.  It is also possible that both sensory 

inputs may have influenced the subjects’ ratings of flutter during concurrent FH scans even 

though subjects were instructed to direct their attention exclusively towards the flutter 

stimulus.   

Relation to ongoing clinical pain 

Although noxious heat induced superadditive responses in SI were not correlated with 

noxious heat induced changes in flutter intensity ratings in the TMD group, noxious heat 
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induced superadditive responses in SI were correlated with the subjects’ McGill present pain 

intensity scores.  This contrasts to the lack of a significant correlation between peak BOLD 

responses evoked by either F or H alone in SI and the present pain intensity scores in TMD 

subjects, suggesting that processing interactions between F and H input more closely reflect 

individual experiences of clinical pain than the processing of F or H input alone.  A relationship 

between persistent pain and SI responsiveness has been observed in other chronic pain 

populations.  As examples,  cortical reorganization in SI has been shown to increase  with the 

intensity of phantom limb pain [31] and can be reversed when phantom pain is eliminated [32].  

In chronic regional pain syndrome patients, pain relief associated with a combination of 

morphine and an NMDA-receptor antagonist therapy was related to suppression of SI during 

movement [115].  Whether the superadditive SI responses observed in the present study would 

be reduced with the reduction of clinical pain is a question that remains for future investigation.   

Lack of significant group differences in the perception of noxious heat 

We observed the differences described above in the effect of noxious heat stimulation 

on tactile perception and on cortical patterns of somatosensory submodality integration in HCs 

and TMDs despite not detecting significantly different perceptual or cortical responses to 

noxious heat alone between groups, further suggesting that only the interaction between 

innocuous and noxious input differs for the two group of subjects.  We predicted that TMD 

subjects would perceive the heat pain stimulus as more intense than controls; rather, we 

observed only that the subjective experience of pain intensity evoked by a 49˚C stimulus to vary 

widely across individuals in both the HC and TMD groups.  Thus, the small group difference that 

was observed in subjective pain perception was not statistically significant.  TMD represents a 

heterogeneous constellation of painful conditions, and patients experience TMD pain both with 

and without concurrent altered sensitivity to painful modalities such as heat.  Some 
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psychophysical studies have provided evidence for generalized hyperalgesia in TMD, reporting 

lowered ischemic and heat pain thresholds in TMD patients within the clinically painful region as 

well as outside of it [116-119]; however, other investigations have reported normal pain 

perception in TMD subjects [120, 121].  Because pain is a complex, personal experience 

influenced by multiple interactive biopsychosocial processes, identical noxious stimuli can 

produce different experiences of pain across individuals.  Possible group differences between 

control and TMD subjects’ sensitivity to thermal pain could have been confounded by the high 

within-group variability in thermal pain perception and by intersubject differences in the use of 

the rating scale since we did not perform a rigorous calibration of the scale with each 

participant. 

Lack of significant group differences in the cortical response to noxious heat 

That we observed no significant group difference in the patterns of activation evoked by 

H alone is consistent with the fact that we observed no significant group difference in subjective 

pain perception.  Neuroimaging investigations of other chronic pain conditions such as 

fibromyalgia (FM) and chronic low back pain have demonstrated that group differences in 

central pain processing emerge when subjective pain perception is unequal in control and 

chronic pain groups; when subjective pain perception is equated, painful stimuli evoke 

activation throughout a similar network of brain regions in subjects with and without chronic 

pain [113, 114, 122].  In addition, Coghill et al demonstrated that varying perceptual responses 

to heat pain in healthy individuals are accompanied by differential central processing of noxious 

input and are not simply the result of response bias or measurement error [123].  In fact, we 

found a positive correlation between heat pain ratings and peak percent signal change 

responses in SII in both groups, which is consistent with reports indicating a role for SII in the 

sensory-discriminative aspect of pain perception [67, 102, 103].  
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The fact that we failed to detect a significant SI response to noxious heat in either group 

is also not unprecedented; meta-analyses of neuroimaging studies using various imaging 

modalities and types of painful stimuli also reported inconsistent activation of SI [107, 124].  It is 

unlikely that the absence of a significant SI response was due to the relatively short duration of 

our noxious heat stimuli since it has been shown that the magnitude of  BOLD percent signal 

changes evoked by short (3-4s) and long duration heat pain stimuli is similar [125]; however, 

several neurophysiological and anatomical considerations could account for this inconsistency.  

The size of an uninterpolated functional volume element (voxel) in this study was 3 X 3 X 3 mm
3
 

and the use of much larger voxels is common; thus, the signal obtained from each voxel was 

influenced by hundreds of thousands of neurons.  Although nociresponsive neurons are known 

to exist in SI, their numbers are far fewer than the number of SI neurons identified to encode 

tactile input [126, 127].  As has been mentioned, evidence from animal studies indicates the 

presence of corticocortical inhibitory interactions between subdivisions of SI [59, 60]; the 

precise somatotopic organization of SI and the probable mixture of excitatory and inhibitory 

effects of nociceptive input to SI may lead to focal activations which are degraded by anatomic 

variability when averaging across subjects.  In single-unit physiology, multisensory integrative 

response amplification is greater with weaker stimuli [128] and it is possible that our inability to 

detect responses to noxious heat stimulation alone on the group level helped strengthen the 

group differences we observed in submodality integrative responses within SI. 

A limiting factor of the present study is our sample size; although the number of 

subjects included in this study is comparable to many functional neuroimaging investigations, it 

may be small considering the heterogeneity in the clinical presentation of TMD.  Despite this 

heterogeneity, we detected a disruption in the cortical convergence of innocuous and noxious 

input in TMD which manifested itself as a reversal in the effect of noxious heat input on SI 
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responsivity to innocuous flutter compared to controls.  The cortical dynamics evoked by 

concurrent innocuous and noxious skin stimulation appear to be more closely coupled with 

individual pain experience than the responses evoked by innocuous or noxious skin stimulation 

alone.  Further investigation of how these differences in submodality convergence affect the 

endogenous modulation of pain by touch would continue to improve our understanding of the 

complexity of sensory disruption in chronic pain.   
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Table 4. Regions activated by noxious skin heating in control and TMD groups.  Only significant 

clusters of activation corrected for multiple comparisons (p<0.05) are listed.  Up to three 

significant peak activations in each cluster are listed.  C = side contralateral to the site of skin 

stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

Controls     

Insula, Pallidum, SII I 5986 6.07 40, 10, -4 

   5.63 40, 0, 4 

   5.17 14, 6, -6 

   4.87 46, 0, 0 

Insula, Pallidum, SII OP1 C 4409 6.13 -38, 14, -8 

   4.61 -10, 2, -6 

   4.60 -40, -20, 12 

Posterior mid-cingulate, ACC I,C 3099 6.77 4, -24, 26 

   6.13 4, 26, 30 

   5.82 -6, -22, 28 

   4.93 0, 30, 34 

Frontal pole, Middle frontal gyrus C 1073 4.67 -36, 46, 8 

   3.76 -40, 34, 20 

Inferior parietal lobule PFm C 734 4.34 -52, -46, 46 

Inferior parietal lobule PFm I 382 4.33 58, -42, 52 

 

TMDs 
    

Insula, Middle frontal gyrus, 

Pallidum, Precentral gyrus BA44 I 6456 6.64 38, 20, -2 

   6.53 42, 38, 20 

   5.94 14, 2, -6 

   5.76 54, 6, 16 

Pallidum, Insula, Middle frontal 

gyrus, Insula Id1 
C 4143 6.91 -12, 8, -4 

   5.8 -34, 18, -10 

   5.69 -42, 34, 18 

   4.85 -38, -16, -2 

Paracingulate gyrus, ACC I, C 1997 6.94 6, 18, 48 

   5.59 6, 14, 38 

   4.81 -10, 24, 32 

Inferior parietal lobule PF I 1073 6.3 52, -38, 48 

Cerebellum C 977 5.70 -34, -62, -38 

Inferior parietal lobule PF/PFm C 759 4.91 -54, -44, 44 

Posterior mid-cingulate C, I 725 5.97 -4, -22, 26 

   5.88 6, -26, 26 

SII C 532 4.70 -60, -18, 18 

Thalamus I 470 4.80 12, -16, 6 
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Table 5. Regions activated by concurrent flutter and noxious skin heating in HCs.  Only 

significant clusters of activation corrected for multiple comparisons (p<0.05) are listed.  Up to 

three significant peak activations in each cluster are listed.  C = side contralateral to the site of 

skin stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

Insula, frontal pole, Inferior frontal 

gyrus I 4870 6.86 38, 20, 4 

   6.21 44, 18, -4 

   5.63 42, 48, 4 

   5.44 58, 10, 12 

Inferior parietal lobule PF, SII OP1 I 2951 5.81 54, -36, 44 

   5.62 68, -28, 26 

   5.24 60, -26, 28 

Cerebellum I 1075 5.86 22, -68, -50 

Pallidum, Thalamus I 1044 4.75 20, 2, 0 

   4.60 16, -10, 14 

Insula, Posterior insula, Putamen C 4214 6.91 -40, 14, -4 

   6.49 -38, 0, 8 

   5.83 -40, -16, 10 

   5.18 -26, 0, -8 

Inferior parietal lobule PFm/Pga, SI C 2284 5.83 -54, -52, 48 

   5.81 -68, -28, 28 

   4.51 -56, -32, 54 

Paracingulate gyrus, ACC C, I 1391 5.13 -6, 30, 34 

   4.89 4, 26, 32 

   4.49 -2, 28, 26 

SII OP1, A1 C 1144 6.37 -48, -20, 16 

   5.72 -44, -18, 8 

Cerebellum C 1049 4.93 -32, -58, -36 

Posterior mid-cingulate C, I 782 5.74 -2, -28, 30 

   5.47 6, -26, 28 

Frontal pole C 778 5.47 -36, 48, 10 
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Table 6. Regions activated by concurrent flutter and noxious skin heating in TMDs.  Only 

significant clusters of activation corrected for multiple comparisons (p<0.05) are listed.  Up to 

three significant peak activations in each cluster are listed.  C = side contralateral to the site of 

skin stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

Insula, Insula Id2, Thalamus, 

Putamen C 3817 7.87 -34, 16, 2 

   6.29 -40, -14, -2 

   5.89 -16, -14, 8 

   5.47 -26, 2, -6 

Cerebellum C 2479 5.95 -36, -52, -38 

Inferior parietal lobule PF, SI, 

Angular gyrus C 2136 5.68 -58, -46, 48 

   4.94 -54, -32, 52 

   4.79 -48, -58, 40 

ACC C, I 2004 6.08 -10, 26, 26 

   5.70 6, 26, 34 

Frontal pole C 974 5.32 -36, 52, 16 

Posterior mid-cingulate  C, I 885 5.5 -4, -30, 24 

SII OP1 C 414 5.46 -54, -30, 22 

   5.0 -48, -22, 18 

Insula, Frontal pole, Putamen, 

Middle frontal gyrus I 6754 7.49 44, 12, -4 

   6.91 46, 38, 22 

   5.85 16, 12, -2 

   5.7 42, 26, 34 

Inferior parietal lobule PF/PFm, 

Anterior intra-parietal sulcus hlP1, 

SII OP1 I 2964 5.47 58, -40, 52 

   4.9 38, -56, 36 

   4.52 60, -18, 16 

Cerebellum I 993 5.32 18, -66, -52 

Superior parietal lobule 7M I 313 5.79 10, -72, 38 
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Table 7. Regions of innocuous flutter and noxious heat convergence in HCs and TMDs.  Only 

significant clusters of activation corrected for multiple comparisons (p<0.05) are listed.  Up to 

three significant peak activations in each cluster are listed.  C = side contralateral to the site of 

skin stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

HC PFH > OFH      

SII OP4, OP1, Insula C 1395 4.59 -46, -4, 8 

   4.11 -60, -24, 18 

   3.66 -42, -4, -4 

Insula, Putamen, SII OP4 I 1063 4.26 42, 2, -2 

   3.69 18, 10, -2 

   3.31 50, 0 , 10 

SI C 489 3.93 -56, -28, 50 

 

TMD OFH < PFH  
    

SI C 1413 4.05 -32, -36, 54 

   4.00 -34, -40, 54 

Posterior mid-cingulate I,C 1590 3.56 8, -2, 40 

 

  



 

Figure 6.  Average pain on the day of testing

not differ significantly between session A and B within groups but did differ significantly 

between the healthy control (HC) group and the TMD group.
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Average pain on the day of testing.  Clinical pain experienced on the day of testing did 

not differ significantly between session A and B within groups but did differ significantly 

healthy control (HC) group and the TMD group. 

 

Clinical pain experienced on the day of testing did 

not differ significantly between session A and B within groups but did differ significantly 



 

Figure 7.  Experimentally-evoked and present clinical pain.  

pain intensity ratings demonstrates that the subjective experience of pain intens

49˚C stimulus differed across individuals in both control and TMD groups.  The solid horizontal 

line indicates the mean for all 26 subjects.

not correlated with reports of their present 
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evoked and present clinical pain.  (A) The distribution of average heat 

pain intensity ratings demonstrates that the subjective experience of pain intensity evoked by a 

˚C stimulus differed across individuals in both control and TMD groups.  The solid horizontal 

line indicates the mean for all 26 subjects.  (B) Heat pain intensity ratings in TMD subjects were 

not correlated with reports of their present clinical pain levels.  

The distribution of average heat 

ity evoked by a 

˚C stimulus differed across individuals in both control and TMD groups.  The solid horizontal 

Heat pain intensity ratings in TMD subjects were 

 

 



 

Figure 8.  Activity evoked by noxious heat alone and by concurrent flutter and noxious heat.

Masks of significant clusters of activation evoked by

and heat for the control group only in yellow, the TMD group only in blue, and for both groups 

in green.   A cluster mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 

were used.  Activation masks are overlayed o

Insula activation is circled.  ACC = Anterior Cingulate Cortex, Ins = Insula, MFG = Middle Frontal 

Gyrus, PC = posterior Mid-Cingulate Cortex, Pd = Pallidum, PF = Inferior parietal lobule PF, SII = 

Secondary Somatosensory Cortex, Thal = Thalamus
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Activity evoked by noxious heat alone and by concurrent flutter and noxious heat.

Masks of significant clusters of activation evoked by (A) noxious heat and (B) concurrent flutter 

and heat for the control group only in yellow, the TMD group only in blue, and for both groups 

in green.   A cluster mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 

were used.  Activation masks are overlayed on average anatomical images for all 26 subjects.  

Insula activation is circled.  ACC = Anterior Cingulate Cortex, Ins = Insula, MFG = Middle Frontal 

Cingulate Cortex, Pd = Pallidum, PF = Inferior parietal lobule PF, SII = 

y Somatosensory Cortex, Thal = Thalamus 

Activity evoked by noxious heat alone and by concurrent flutter and noxious heat.  

concurrent flutter 

and heat for the control group only in yellow, the TMD group only in blue, and for both groups 

in green.   A cluster mean threshold of z > 2.5 and a cluster corrected significance of p < 0.05 

n average anatomical images for all 26 subjects.  

Insula activation is circled.  ACC = Anterior Cingulate Cortex, Ins = Insula, MFG = Middle Frontal 

Cingulate Cortex, Pd = Pallidum, PF = Inferior parietal lobule PF, SII = 



 

Figure 9.  Relationship between reported heat pain intensity and brain response in SII

was a positive correlation between peak responses evoked in SII by noxious heat and 

heat pain intensities reported among HCs and TMDs. 
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Relationship between reported heat pain intensity and brain response in SII

was a positive correlation between peak responses evoked in SII by noxious heat and 

heat pain intensities reported among HCs and TMDs.  

 

Relationship between reported heat pain intensity and brain response in SII.  There 

was a positive correlation between peak responses evoked in SII by noxious heat and average 



 

Figure 10.  Effect of noxious heat on perceived flutter intensity.

control group (HC) perceived flutter to be 17.7% less intense in the presence of heat producing 

pain.  Although five of 13 TMD subjects perceived a decrease in flutter stimulation intensity with 

the addition of concurrent noxious 

in perceived flutter intensity in the presence of heat producing pain.
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Effect of noxious heat on perceived flutter intensity.  On average, the healthy 

control group (HC) perceived flutter to be 17.7% less intense in the presence of heat producing 

pain.  Although five of 13 TMD subjects perceived a decrease in flutter stimulation intensity with 

the addition of concurrent noxious heat, on average, the TMD group reported a 10.7% increase 

in perceived flutter intensity in the presence of heat producing pain. 

On average, the healthy 

control group (HC) perceived flutter to be 17.7% less intense in the presence of heat producing 

pain.  Although five of 13 TMD subjects perceived a decrease in flutter stimulation intensity with 

heat, on average, the TMD group reported a 10.7% increase 



 

Figure 11.  Group dissociation in innocuous and noxious interactions.  (A)

areas (in orange) in which the observed FH response was significantly less than the response 

predicted by responses to F and H separately (subadditive responses).  

areas (in blue) in which the observed FH response was significantly greater than

FH response (superadditive responses).  

demonstrated a reduction in the magnitude of response to F in the presence of noxious heat 

while (D) the remaining subadditive voxels showed no signifi

response to F with or without noxious heat.  

demonstrated reciprocal responses to F and H alone, but during concurrent FH stimulation, their 

responses were augmented.  A cl

significance of p < 0.05 were used.  Activation masks are overlayed on average anatomical 

images for all 26 subjects. 
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Group dissociation in innocuous and noxious interactions.  (A) HCs only showed 

orange) in which the observed FH response was significantly less than the response 

predicted by responses to F and H separately (subadditive responses).  (B) TMDs only showed 

areas (in blue) in which the observed FH response was significantly greater than the predicted 

FH response (superadditive responses).  (C) A subset of voxels labeled subadditive in HCs 

demonstrated a reduction in the magnitude of response to F in the presence of noxious heat 

the remaining subadditive voxels showed no significant difference in the magnitude of 

response to F with or without noxious heat.  (E) All SI voxels labeled superadditive in TMDs 

demonstrated reciprocal responses to F and H alone, but during concurrent FH stimulation, their 

responses were augmented.  A cluster mean threshold of z > 2.3 and a cluster corrected 

significance of p < 0.05 were used.  Activation masks are overlayed on average anatomical 

 

 

HCs only showed 

orange) in which the observed FH response was significantly less than the response 

TMDs only showed 

the predicted 

A subset of voxels labeled subadditive in HCs 

demonstrated a reduction in the magnitude of response to F in the presence of noxious heat 

cant difference in the magnitude of 

All SI voxels labeled superadditive in TMDs 

demonstrated reciprocal responses to F and H alone, but during concurrent FH stimulation, their 

uster mean threshold of z > 2.3 and a cluster corrected 

significance of p < 0.05 were used.  Activation masks are overlayed on average anatomical 



 

Figure 12.  Relationship between effects of noxious heat on 

processing.  In controls, with the addition of noxious heat, the perceived intensity of flutter 

stimulation decreased as the difference between the predicted and observed SI FH

increased.  In TMDs, no significant correlation was observed between the magnitude of 

nociception-induced changes in flutter perception and SI processing.
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Relationship between effects of noxious heat on flutter perception and cortical 

with the addition of noxious heat, the perceived intensity of flutter 

stimulation decreased as the difference between the predicted and observed SI FH

In TMDs, no significant correlation was observed between the magnitude of 

induced changes in flutter perception and SI processing.   

 

perception and cortical 

with the addition of noxious heat, the perceived intensity of flutter 

stimulation decreased as the difference between the predicted and observed SI FH responses 

In TMDs, no significant correlation was observed between the magnitude of 



 

Figure 13.  Relationship between present clinical pain and 

SI processing.  (A) TMD subjects who experienced greater pain on the day of testing also 

demonstrated greater interaction between flutter and noxious heat input within SI; however, 

(B) pain on the day of testing was not si

responses to flutter (F) or noxious heat 
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Relationship between present clinical pain and nociception-induced modulation of 

TMD subjects who experienced greater pain on the day of testing also 

demonstrated greater interaction between flutter and noxious heat input within SI; however, 

pain on the day of testing was not significantly correlated with peak SI signal change 

or noxious heat (H) stimulation alone.  

induced modulation of 

TMD subjects who experienced greater pain on the day of testing also 

demonstrated greater interaction between flutter and noxious heat input within SI; however, 

gnificantly correlated with peak SI signal change 

 

 

 



 

Figure 14.  Peak SI percent signal change evoked by flutter in TMD subgroups.  

whose flutter intensity ratings decreased in the presence of noxious heat demonstrated a 

smaller peak SI percent signal change response to flutter alone than did TMD subjects whose 

flutter intensity ratings increased in the presence of noxious heat.  This difference bet

subgroups was significant (p < 0.04).
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Peak SI percent signal change evoked by flutter in TMD subgroups.  TMD subjects 

intensity ratings decreased in the presence of noxious heat demonstrated a 

smaller peak SI percent signal change response to flutter alone than did TMD subjects whose 

flutter intensity ratings increased in the presence of noxious heat.  This difference bet

subgroups was significant (p < 0.04). 

 

TMD subjects 

intensity ratings decreased in the presence of noxious heat demonstrated a 

smaller peak SI percent signal change response to flutter alone than did TMD subjects whose 

flutter intensity ratings increased in the presence of noxious heat.  This difference between TMD 



 

 

CHAPTER 4   

TOUCH PAIN INTERACTIONS IN TMD:  THE EFFECT OF INNOCUOUS VIBRATION ON 

CORTICAL RESPONSES TO NOXIOUS HEAT 

A large portion of the work presented in this chapter was completed as a collaborative effort 

with the following researchers: Folger S, Tommerdahl M, Coghill R, and Essick G. 

4.1 Abstract 

To further our understanding of the extent of somatosensory disruption in 

temporomandibular disorders (TMD), we investigated the impact of high frequency vibration on 

cortical responses to painful skin heating using functional magnetic resonance imaging (fMRI).  

Innocuous high frequency vibration and noxious skin heating were delivered separately and 

concurrently to the hand of subjects with TMD and to healthy controls (HCs).  Cortical 

somatosensory submodality convergence was differentially localized in HCs and TMDs.  In HCs, 

SI responses evoked by concurrent submodality stimulation were smaller than predicted by SI 

responses to unimodal stimulation as has been demonstrated in previous studies reported in 

the literature.  However, in TMDs, ACC responses evoked by concurrent submodality stimulation 

were larger than predicted by ACC responses to unimodal stimulation.  Furthermore, these 

superadditive responses in the ACC were correlated with McGill present pain intensity scores in 

TMD subjects.  This contrasts with the lack of a significant correlation between peak ACC 

responses evoked by either vibration or noxious skin heating alone and present pain intensity 

scores in TMD subjects, suggesting that processing interactions between innocuous vibration
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 and noxious heat input more closely reflect individual experiences of persistent clinical pain 

than the processing of innocuous vibrotactile or noxious heat input alone. 

Perspective: This article presents evidence that cortical mechanisms underlying the 

modulation of painful heat processing by innocuous, high frequency vibration are abnormal in 

TMD.  A potential neuromechanistic explanation for this abnormal processing may involve 

connections between the medial thalamus and the ACC that may be affected by ongoing clinical 

pain. 

4.2. Introduction 

The analgesic effect of vibratory stimulation of the skin has been observed in both 

clinical [129-131] and experimental settings [9, 132, 133].  The ability of vibration to attenuate 

pain perception has most often been explained in terms of the Gate Control Theory described 

by Melzack and Wall [9], which postulates that activity conducted through large, myelinated 

afferent fibers can block activity conducted through small, mostly unmyelinated afferent fibers.  

Although still accepted in principle, the details of the gating mechanism remain in question.  The 

idea that touch in general inhibits pain fails to account for the fact that pain suppression has 

been shown to be limited to dynamic tactile stimulation [134], and the rapid onset of vibration-

induced gating in the dorsal horn does not explain the gradual enhancement of the effect of 

vibration observed with the passage of time following its onset [132, 135].   

The effect of vibration on pain perception and on central nervous system (CNS) 

processing of noxious input are not explicable solely in terms of vibration-induced central 

inhibition even in pain-free individuals.  As an example, Watanabe et al observed no significant 

change in either perceived pain intensity or peak-to-peak amplitude of evoked potentials in 

response to noxious electrical stimulation in the presence of innocuous vibration [136].  In 
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addition, while many persistent pain patients demonstrate vibratory analgesia, some exhibit the 

opposite effect; vibration increases their spontaneous pain [135, 137]. 

One chronic pain condition in which substantial individual differences in the effect of 

vibration on pain have been observed is temporomandibular disorder (TMD), a non-specific 

diagnosis representing a constellation of conditions characterized by persistent facial pain and 

impaired oral function [17].  Continuous visual analog scale recordings of perceived pain 

intensity demonstrate that some subjects experience a decrease in pain following vibration 

onset while others experience an increase, and in some cases, an initial decrease in pain 

intensity is followed by a gradual increase, suggesting that both inhibitory and excitatory 

processes are at work [131].  However, the factors that determine the predominant response 

(i.e., vibratory analgesia or vibratory hyperalgesia) have not been identified. 

Supra-spinal mechanisms could contribute to the individual variability observed in the 

effect of vibration on pain.  Nearly ten times as many fibers project from primary somatosensory 

cortex (SI) to the thalamus as project from thalamus to cortex [138].  The presence of these 

corticoefferent fibers presents SI with a path through which to shape the nature of its own input 

dynamically [139], and descending inhibitory processes have been recognized to play a role in 

vibration-induced changes in pain perception [140].  Wang et al observed opposing modulatory 

effects of SI activity on nociception in animal models of acute and chronic pain states and 

suggested that a functional switch may exist for SI at different stages of pain disease [141].  In 

addition, we recently detected a disturbance in the cortical convergence of innocuous and 

noxious input in TMD that manifested itself as a reversal in the effect of noxious heat on SI 

responsivity to innocuous low frequency vibration compared to healthy controls (HCs), and the 

extent of the SI processing disruption was closely coupled with the severity of ongoing clinical 

pain [142].  Given this difference in the cortical convergence of innocuous and noxious input in 
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TMD, the purpose of the present study was to characterize the modulation of nociception by 

innocuous high frequency vibration of the skin.   

4.3. Materials and Methods 

4.3.1. Subjects 

Twenty-three women consented to a protocol approved by the Institutional Review 

Board at University of North Carolina at Chapel Hill.  Twelve participants fulfilled Research 

Diagnostic Criteria (RDC) for TMD [17]; average age (SD) was 28.3 (7.8) years.  The remaining 11 

participants were neurologically healthy controls whose average age (SD) was 28.3 (8.8) years.  

Immediately prior to imaging, each participant completed the Short-form McGill Pain 

Questionnaire (SF-MPQ) to assess her current level of pain [34].   

4.3.2 Stimulation 

To characterize the effect of vibrotactile stimulation on the brain’s response to painful 

input, three types of stimuli were presented: 1) noxious skin heating (H), 2) innocuous, high 

frequency skin vibration (V), and 3) concurrent skin heating and vibration (HV).  All stimuli were 

applied to the same dermatome of the hand.  Skin heating stimuli were delivered to the right 

thenar eminence using an MR-compatible peltier device with a contact area of 2.6cm
2
 (TSA-II, 

Medoc Advanced Medical Systems, Ramat Yishai, Israel).  A Velcro strap was used to secure the 

thermal probe to the hand throughout the imaging session. During skin heating events, the 

thermal probe ramped from a level approximating skin temperature (32˚C) to a moderately 

noxious level (49˚C) at a rate of 6˚C/s.  The probe remained at the noxious temperature for 4s 

before ramping down to the baseline level at a rate of -6˚C/s.  Noxious skin heating events 

occurred every 62s to allow adequate observation of the hemodynamic response to each event 

during the interstimulus interval, and seven events comprised an imaging series.  A piezoelectric 

tactile stimulator (PTS) was used to apply a 200Hz (200µ peak-to-peak amplitude) sinusoidal 
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stimulus to the distal pad of the right index finger; a static surround limited the stimulation to a 

region under the 8-mm diameter Teflon contactor.  High frequency vibrotactile stimulation was 

chosen because animal studies have shown that 200Hz vibration preferentially evokes activity in 

secondary somatosensory cortex while reducing the spatial extent of activity in primary 

somatosensory cortex in the same hemisphere [143].  Vibration events were 4 seconds in 

duration and occurred every 32 seconds; 14 events comprised a single imaging series.  The 

timing of HV events was similar to that of noxious skin heating with vibration being presented 

for 4s while the thermal probe was at 49˚C.   

4.3.3. Experimental Protocol 

All 23 subjects completed 10 fMRI scans divided over two imaging sessions to minimize 

subject fatigue.  Session A consisted of four scans of noxious skin heating; session B consisted of 

two scans of skin vibration and four scans of concurrent heat and vibration.  The order of 

imaging sessions for each subject and the order of scan types within each session were 

randomized.  Subjects were instructed to keep their eyes closed and to concentrate on the 

presence of the stimulus.  At the end of both H and HV scans, subjects were asked to rate the 

average intensity of heat pain experienced using a labeled magnitude scale with the following 

anchor points: felt nothing (0), barely detectable (1.5), weak pain (5), moderate pain (16), strong 

pain (33), very strong (50), and most intense pain imaginable (100).  At the end of V scans, 

subjects rated the average intensity of vibration experienced using a similar scale.  Subjects 

were instructed to choose the most appropriate label range to describe the intensity of the 

stimulus and then to convert that label range into a number.  Subjects were familiarized with 

the scale and presented with two test stimuli to rate before entering the scanner room.   
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4.3.4. Imaging Parameters 

Scanning was performed on a Siemens Magnetom Allegra, head-dedicated 3.0T scanner 

system with 40 -mT/m gradients and a 30 cm radio frequency (RF) volume coil.  Foam cushions 

were used to restrict subject head motion, and earplugs and earphones were worn by subjects 

to reduce scanner noise.  A total of 160 contiguous, high-resolution images covering the entire 

brain were acquired using a magnetization prepared rapid gradient echo (MPRAGE) T1-weighted 

sequence (TR: 1700ms, Echo Time (TE): 4.38 ms, Flip angle: 8, 1mm isotropic sampling).  These 

structural images were aligned near-axially, parallel to the plane underlying the rostrum and 

splenium of the corpus callosum and were used for coregistration with the functional data.  

Whole brain functional images consisted of 50 slices collected using a gradient echo pulse 

sequence sensitive to blood oxygenation level dependent (BOLD) contrast with echo planar k-

space sampling at a repetition rate (TR) of 3000ms (TE: 30ms, Flip angle: 90, Image matrix: 64 X 

64, isotropic voxel size: 3mm
3
).  The functional images were aligned similarly to the structural 

images.  A semi-automated, high-order shimming program ensured global field homogeneity.  

Imaging series began with two discarded RF excitations to allow the change in net magnetization 

of the sample following excitation to reach steady state equilibrium. 

4.3.5. Image Data Analysis 

The image analysis package FMRIB Software Library (FSL) version 4.1.2 [37, 38] was used 

for image processing and statistical analysis.  Functional data were temporally realigned to 

adjust for interleaved slice acquisition order, corrected for subject motion using MCFLIRT [40], 

and spatially smoothed using a Gaussian filter with a FWHM 5mm kernel.  A high-pass temporal 

filter with a cutoff period of 100 seconds was applied to remove low frequency artifacts from 

functional data, and each 4D dataset was scaled by its mean global intensity.  Functional and 

structural images were stripped of non-brain matter [39] to improve registration.  Functional 
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images of each subject were then co-registered to structural images in native space, and 

structural images were warped into Montreal Neurological Institute (MNI) stereotaxic space and 

resampled to 2 X 2 X 2 mm voxels to allow for intersession and intersubject comparison. The 

same transformation matrices used for structural-to-standard transformations were then 

applied to the co-registered functional images, and all registrations were carried out using an 

intermodal registration tool (affine, 12 degrees of freedom).  Voxel-wise temporal 

autocorrelation was estimated and corrected using FMRIB's Improved Linear Model [41].   

The three event types (H, V, and HV) were modeled as separate explanatory variables; 

onset times of stimulation events were convolved with a double γ function to model the 

hemodynamic response (HDR).  Data for each participant were pooled over sessions using fixed-

effects general linear modeling, and within each subject, contrast images were created for each 

event type versus rest and for differences between the HV response observed (OHV) and the HV 

response predicted by the sum of the responses evoked by H and V alone (PHV), either 

superadditive (OHV > PHV) or subadditive (PHV > OHV).   

Conventional voxel-by-voxel mixed-effects analyses were used to assess each of the 

contrasts across individuals and groups.  Group-wise z statistic images were thresholded using 

clusters determined by z > 2.3 and a cluster corrected significance of p < 0.05 [42]. Following 

statistical thresholding, mixed-effects group contrast images were restricted to voxels in which a 

significant, cluster corrected HDR was evoked by the condition of interest in either group 

composing the contrast.  The Harvard-Oxford cortical and subcortical structural atlases (Harvard 

Center for Morphometric Analysis, Charlestown, MA) and the Jülich histologic atlas were used to 

localize activation clusters [43, 44].  Average BOLD time courses were extracted from functional 

regions of interest (ROIs) identified to differentiate groups based on whole-brain analyses 

described above to help visualize the interaction between the responses to innocuous and 
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noxious stimuli in these areas.  Peak parameter estimates were then extracted from these 

regions and converted to percent change values using the featquery utility within FSL.  Finally, to 

investigate individual differences regarding the influence of clinical pain and the presence of 

innocuous vibration on the brain’s response to experimental pain input, multiple regression 

analyses between fMRI data and reported pain intensity ratings were performed within these 

ROIs. 

4.4. Results 

In the two previous papers of this series, we described between-group differences in 

intensity ratings and central nervous system (CNS) BOLD responses to innocuous vibrotactile 

flutter stimuli [100] and noxious skin heating[144].  In this report, we focus on group responses 

to innocuous high frequency vibration and differences in the group interaction between noxious 

heat and vibration. 

4.4.1. Self-reported Present Pain 

On average, TMD subjects reported their present pain intensity on the day of imaging 

session A to be 2.56 on a 10 cm visual analog scale with end labels of no pain (0) and worst 

possible pain (10). TMD subjects reported an average present pain intensity of 2.13 out of 10 on 

the day of imaging session B.  Control subjects reported an average present pain intensity of 

0.16 out of 10 on the day of session A and 0.01 out of 10 on the day of session B.  A paired t-test 

indicated that the difference in present pain intensity during the two sessions was not 

significant for either the TMD or control group (Figure 15); however, the TMD group reported 

significantly more pain on the day of testing than the HC group (p < 0.001). 
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4.4.2. Response to high frequency skin vibration 

4.4.2.1. Perceptual Ratings 

On average, the HC group rated the intensity of the high frequency vibration as 23.7 (SD 

= 10.9), corresponding to a level of “moderately intense” on the labeled magnitude scale while 

the TMD group rated the intensity of the same stimuli as 42.8, on average (SD = 24.0), 

corresponding to a level between “strong” and “very strong.”  This difference in mean perceived 

intensity was statistically significant (p=0.02).  Average ratings of vibration intensity were not 

affected by the present pain intensity ratings of the TMD subjects (Figure 16A). 

4.4.2.2. Imaging Data 

Individual Group Analysis 

Analysis of fMRI data revealed a common network of vibration evoked activity in 

controls and TMDs.  For both groups, high frequency vibration elicited statistically significant, 

positive hemodynamic responses in somatosensory processing areas, namely bilateral SII and 

insular cortex.  Both groups also demonstrated robust responses bilaterally in posterior mid-

cingulate cortex (pmCC) and inferior parietal lobule (IPL).  In addition, the HC group 

demonstrated bilateral BOLD responses in SI. Table 8 indicates the MNI coordinates of all 

significant activation clusters by group, and Figure 17A illustrates the pattern of activation for 

each group in these regions. 

Between Group Analyses 

 Evaluation of (HC – TMD) and (TMD – HC) contrasts revealed several regions in which 

innocuous vibration evoked a larger BOLD response in the TMD group than in the HC group, 

including the thalamus and IPL. Table 9 lists MNI coordinates for all vibration-responsive clusters 

in which the TMD response exceeded the HC response.  No regions were identified in which 

innocuous vibration elicited a greater BOLD response in HCs than in TMDs. 
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4.4.3. Effect of high frequency vibration on noxious skin heating 

4.4.3.1 Perceptual Ratings 

Healthy controls rated the intensity of heat pain in the presence of high frequency skin 

vibration as 24.0, on average (SD=10.4), which corresponded to a level between “moderately 

intense” and “strong.”  Compared to heat pain intensity ratings reported by HCs in the absence 

of innocuous skin vibration [144], these ratings were 25.0% lower, on average (SD=16.7%).  TMD 

subjects rated the intensity of heat pain in the presence of high frequency skin vibration as 39.9 

(20.3), on average, a rating that corresponded to a level between “strong” and “very strong.”  

Although five of 12 TMD subjects, similar to the HCs, perceived a decrease in the intensity of 

heat pain with the addition of concurrent vibration; the TMD group on average reported a 17. 

9% (SD=42.7%) increase in perceived heat pain intensity in the presence of vibration (Figure 18).  

The difference between groups in the vibration-evoked change in heat pain ratings was 

statistically significant (p<0.01).  Although a trend is suggested, the present clinical pain intensity 

ratings of the TMD subjects were not significantly correlated with the magnitude of changes in 

the perceived intensity of heat pain upon application of vibration (Figure 16B).   

4.4.3.2. Imaging Data 

Individual Group Analysis 

 Brain areas that responded to concurrent noxious skin heating and innocuous vibration 

of the hand were similar to areas engaged by vibration and noxious heat stimulation delivered 

separately.  In both groups, positive BOLD responses were evoked bilaterally in SII and insular 

cortex.  In addition, HCs and TMDs demonstrated robust responses bilaterally in ACC, pmCC, and 

the inferior parietal lobule, which are sensory association areas.  Table 10 lists the MNI 

coordinates of all significant activation clusters by group, and Figure 17B illustrates the pattern 

of activation for each group in these regions. 
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A number of the regions activated by either concurrent HV stimulation or by one of the 

unimodal stimulus conditions exhibited statistically significant differences between the HV 

response observed and the HV response predicted by the sum of the responses evoked by H and 

V alone, suggesting that processing of noxious heat and vibration inputs to these areas 

interacted.  For the control group, subadditive responses (PHV > OHV) were identified in 

bilateral SI, SII, and insula, and no statistically significant superadditive responses were 

observed.  For the TMD group, superadditive responses were found bilaterally in caudal ACC, 

and no statistically significant subadditive responses were identified.  None of the areas in which 

TMDs demonstrated a greater response than HCs to vibration alone demonstrated 

superadditive responses to concurrent HV stimulation, suggesting that the superadditive 

responses were not due simply to a greater response to the vibration. Table 11 lists the 

coordinates of all clusters showing significant differences between predicted and observed 

BOLD responses evoked by concurrent noxious heat and vibration stimulation. 

Between Group Analyses 

 Evaluation of (HC – TMD) and (TMD – HC) contrasts revealed several regions in which 

one group demonstrated a greater difference between the predicted and observed response 

evoked by concurrent stimulation.  Consistent with the individual group analyses, HCs exhibited 

greater subadditive responses than TMDs in ipsilateral SI and SII (red areas, Figure 19A) and 

TMDs showed greater superadditive responses in caudal ACC (Figure 20A).   

Imaging data from the TMD group was then subdivided into two groups:  (1) TMD 

subjects who, like the HCs, demonstrated a pain-attenuating (“pain-gate”) effect, i.e., reported a 

decrease in heat pain intensity ratings with the addition of high frequency vibration and (2) TMD 

subjects who demonstrated a pain-enhancing effect, i.e., reported an increase in heat pain 

intensity ratings with the addition of high frequency vibration.  Additional differences were 
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found between HCs and TMDs who reported a pain-enhancing effect that were not observed 

between HCs and the entire TMD group.  Table 12 lists MNI coordinates for all differences in 

convergence patterns observed between subgroups of TMD subjects.  In addition to differences 

in subadditive responses observed on the ipislateral side in HCs as compared to the entire group 

of TMD subjects, differences in subadditive responses in contralateral SI and SII emerged 

between HCs and the TMDs who reported a pain-enhancing effect (blue areas, Figure 19A), 

suggesting that the cortical responses in TMD subjects who reported a pain-enhancing effect 

differed more greatly from those of HCs than did the entire group of TMD subjects.  Extracting 

HDRs from contralateral SI voxels labeled subadditive in HCs, we observed that noxious heat and 

high frequency vibration delivered separately evoked weak, positive BOLD responses in HCs, but 

when delivered concurrently, they evoked negative responses (Figure 19B).  This is in contrast 

with the SII voxels labeled subadditive, which, on average, responded similarly for all three 

stimulation conditions (Figure 19C), suggesting that noxious heat and vibration input converged 

in SII without interacting.  In TMD participants who reported a pain-enhancing effect of the 

vibration, noxious heat and vibration elicited either no response or a negative response in SI 

delivered separately, but when delivered concurrently, they evoked a positive BOLD response 

(Figure 19D).  The effect of SI submodality convergence in TMDs who reported a pain-

attenuating effect of vibration fell in between HCs and TMDs who exhibited pain-enhancement: 

the SI response to concurrent HV stimulation closely matched the sum of the SI responses to 

noxious heat and vibration delivered separately (Figure 19E).  Moreover, no cortical areas were 

found in which the HC group differed more greatly from these TMD subjects than from the 

TMDs who reported enhancement of experimental pain with the application of concurrent 

vibration. 
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In caudal ACC (Figure 20A), average superadditive responses for the entire TMD group 

(Figure 20B) appeared to be driven by the TMD subgroup that reported a pain-enhancing effect 

of vibration.  In these subjects, noxious heat and high frequency vibration both elicited small 

positive responses when delivered separately, but when delivered concurrently, the evoked 

response was larger than predicted by the sum of the unimodal responses (Figure 20C).  In 

contrast, in both HCs and TMDs who reported a pain-attenuating effect of vibration (Figure 20D 

and 20E, respectively), there was no significant difference among the peaks of the responses 

evoked by noxious heat, vibration and concurrent stimulation in the ACC. 

4.4.3.3. Relationship between changes in pain perception and cortical processing  

 A negative correlation was observed in HCs between peak percent change values for 

subadditive responses in SI and changes in the perceived intensity of heat pain in the presence 

of high frequency vibration (R
2
 = 0.55, p < 0.01; Figure 21A, solid line).  In other words, upon 

application of high frequency vibration, the perceived intensity of heat pain decreased 

systematically as the difference between the predicted and observed SI HV responses increased 

among HCs.  In TMDs who reported a pain-enhancing effect of the vibration, a trend suggested 

that subjects within this subgroup who demonstrated smaller subadditive responses in SI 

reported greater pain enhancement; however, this trend did not reach a level that was 

statistically significant (R
2
 = 0.23, p < 0.06; Figure 21A, dashed line).   

 No correlation was found between ACC superadditive responses in TMDs and changes in 

the perceived intensity of heat pain in the presence of high frequency vibration (Figure 21B).  

However, ACC superadditive responses were found to be positively correlated with McGill 

present pain intensity scores for TMD subjects who experienced an enhancement of pain with 

the addition of vibration (R
2
=0.63, p < 0.03) but not for TMD subjects who experienced an 

attenuation of pain (Figure 22, solid line).  TMDs who experienced greater levels of clinical pain 
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on the day of imaging and who rated their experimentally-induced pain as more intense in the 

presence of vibration demonstrated greater augmentation of observed ACC HV responses with 

respect to predicted ACC HV responses (Figure 22, dashed line). 

4.5. Discussion 

To the best of our knowledge, the present report is the first examination of brain 

activity associated with the influence of high frequency vibration on noxious skin heating in 

individuals with TMD.  The results highlight several main findings:  (1) in healthy controls, 

interactions between noxious heat and vibration were consistent with the pain-gate effect, and 

the suppression of noxious processing occurred, at least in part, in the cortex.  (2) In contrast, 

two subgroups emerged within the TMD group; TMDs who experienced vibration-induced pain 

attenuation similar to HCs and TMDs who experienced vibration-induced pain enhancement. 

Vibration-induced attenuation of pain perception and processing 

Consistent with published psychophysical evidence of vibration-induced analgesia in 

healthy individuals [9, 132, 133], all 11 HCs reported a reduction in the intensity of heat pain in 

the presence of high frequency vibration.  Although activity in dorsal horn nociresponsive 

neurons has been shown to be modulated under various experimental conditions including 

segmental sensory stimulation [145], thalamic stimulation [146], and dorsal column stimulation 

[147], our results indicate that vibration-induced modulation of noxious input also occurs in the 

cortex.  We observed a vibration-induced suppression of SI responsiveness to noxious heat 

stimulation.  Inui et al also reported MEG evidence that SI is critical in the gating of nociceptive 

information processing [148].  Utilizing the superior temporal resolution of MEG, Inui et al 

observed that nociceptive processing in SI was equally inhibited by innocuous, tactile 

stimulation when the innocuous stimulation was delivered concurrently (as in our experiment) 



86 

 

or when the contribution of peripheral and spinal mechanisms were minimized by delaying the 

innocuous tactile stimulation with respect to the noxious stimulation.  

We also observed a moderate correlation in HCs between the magnitude of vibration-

induced changes in the perception of heat pain intensity and vibration-induced changes in SI 

responsivity,   Similar to the role we observed SI to play in the interaction between low 

frequency flutter and noxious heat in the same HCs [144], SI was again identified as a region in 

which the interaction of innocuous and noxious processing produced responses that were 

smaller than predicted by the sum of the responses to unimodal stimulation.  However, the 

subregion of SI in which the response to noxious heat was reduced in the presence of 

concurrent high frequency vibration was slightly anterior and medial to the subregion of SI in 

which the response to low frequency flutter was reduced in the presence of concurrent noxious 

heat.  This finding is complimentary to animal neuroimaging data suggesting that noxious and 

innocuous stimuli drive different neuronal populations within SI [59, 60, 149]; the subregion of 

SI that responds to noxious stimulation of the hand, and thus the subregion in which we would 

expect to observe a pain-gating effect, was anterior and medial to the core hand tactile locus 

within SI in which we would expect to observe a touch-gating effect. 

Cortical somatosensory information processing takes place in spatially distributed and 

reciprocally interconnected regions.  Given that inhibitory corticocortical projections linking 

subdivisions of SI [59, 60, 93] may underlie the suppression of SI responsiveness to flutter in the 

presence of noxious heat, it seems possible that similar reciprocal connections among 

subdivisions of SI could be responsible for the suppression of SI responsiveness to noxious heat 

in the presence of vibration.  However, high frequency vibration preferentially evokes activity in 

SII while reducing the spatial extent of activity in SI in the same hemisphere [143], which makes 
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reciprocal connections between SI and SII a more likely neuromechanistic candidate for the 

suppression of SI responsiveness to noxious heat. 

Vibration-induced enhancement of pain perception and processing 

 In contrast to HCs, only 5 of 12 TMD participants reported a reduction in heat pain 

intensity in the presence of high frequency vibration.  The remaining 7 TMD participants 

demonstrated a pain-enhancing effect and reported an increase in heat pain intensity with the 

addition of vibration.  Roy et al also observed the effect of vibration on perceived pain intensity 

visual analog scale ratings to vary among individuals with TMD [131].   

Although we observed SI contributions to pain-attenuation in HCs, we did not observe a 

statistically significant SI contribution to pain-attenuation or pain-enhancement in TMDs.  The 

only brain region that demonstrated statistically significant, somatosensory submodality 

processing convergence in TMDs was a caudal region of the ACC.  In TMDs, vibration enhanced 

the response of caudal ACC to noxious stimulation.  Buffington et al also reported an enhanced 

response to pain in the ACC that was specific to individuals with osteoarthritis, another 

persistent musculoskeletal pain condition [150].  Moreover, the differences we observed in 

processing within the ACC were more pronounced when the TMD group was subdivided based 

on the effect of vibration on perceived heat pain.  In TMD subjects who reported vibration-

induced pain enhancement, noxious heat and high frequency vibration both elicited small 

positive responses when delivered separately, but when delivered concurrently, the evoked 

response was larger than predicted by the sum of the unimodal responses.  In contrast, ACC 

responses evoked in TMDs who reported a pain-attenuating effect of vibration more closely 

resembled those of the HC group; whether presented separately or concurrently, noxious heat 

and vibration elicited small, positive responses in the ACC.   
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Because caudal ACC activity has been shown to respond preferentially to the processing 

of pain affect in humans more than to the processing of sensory discriminative information 

regarding pain [151, 152], it is not surprising that the magnitude of superadditive responses 

elicited in caudal ACC were not correlated with the magnitude of vibration-induced changes in 

heat pain intensity perception.  However, the magnitude of caudal ACC superadditive responses 

correlated with the intensity of ongoing clinical pain.  TMD subjects who experienced greater 

pain on the day of testing also demonstrated greater augmentation of the ACC response to 

noxious heat with the addition of concurrent vibration of the skin.   

The cortical areas in which we observed superadditive responses in TMDs (caudal ACC) 

did not include any of the brain areas in which we observed a heightened response to innocuous 

vibration compared to controls.  We did, however, observe augmented thalamic responses to 

vibration in the TMD group, and accumulating evidence suggests a functional link between the 

medial thalamus and the ACC in the modulation of pain affect [153-155].  High frequency 

stimulation of the medial thalamus results in reports of intense pain and unpleasantness in 

humans [156] while medial thalamic lesions have been shown to block evoked activity in the 

ACC [157].  In addition, the fact that the level of clinical pain on the day of testing was correlated 

with the magnitude of enhanced nociceptive processing and not with changes in the perception 

of vibration intensity suggests that the ability to control somatosensory input through gating 

mechanisms may be more critical to the persistence of clinical pain than the primary 

representation of somatosensory input in the brain.  Whether an intervention designed to 

reduce clinical pain would also reduce the superadditive ACC responses observed in the present 

study is a question that remains for future investigation. 

It should be mentioned that the ACC is activated by other experimental conditions such 

as during the performance of the Stroop task [158],and pain-associated activations may 
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represent non-pain specific effects (i.e., attention).  However, there is evidence suggesting that 

pain- and attention-related activations in the ACC are not co-localized in individual participants 

even when group results indicate that they overlap [159], which suggests that group-level ACC 

activation reflects both pain specific and non-pain specific effects.  Because we did not have a 

control task to localize attention-related activations, we cannot rule out the possibility that 

TMDs were more distracted from the heat pain by vibration than were HCs.  Such attentional 

differences could have contributed to the vibration-induced, superadditive responses we 

observed in TMDs; however, it is unlikely that they were the result of attention effects 

exclusively. 

One limitation of the present report is our sample size; although the number of subjects 

included in this study is comparable to many functional neuroimaging investigations, it may be 

small considering the heterogeneity in the clinical presentation of TMD.  Indeed, two subgroups 

emerged within our TMD sample.  Despite this heterogeneity, we detected a disruption in the 

modulation of noxious heat by innocuous vibration.  The cortical convergence of noxious heat 

and innocuous vibration was not co-localized with the cortical convergence of innocuous flutter 

and noxious heat previously reported in these same HCs and TMDs [144].  The cortical dynamics 

evoked by concurrent noxious heat and innocuous vibration appear to be more closely coupled 

with individual clinical pain experience than the responses evoked by noxious skin heating 

alone.  Normal interaction with the environment requires that relevant sensory information is 

identified and extracted from a vast array of concurrent inputs.  Inability to combine inputs 

could influence sensorimotor or perceptual ability even in the presence of an intact primary 

sensory representation. 
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Table 8. Regions activated by high frequency vibration in control and TMD groups.  Only 

significant clusters of activation corrected for multiple comparisons (p<0.05) are listed.  Up to 

three significant peak activations in each cluster are listed.  C = side contralateral to the site of 

skin stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

Controls     

SII, posterior insula, inferior parietal 

lobule, SI C 4190 5.34 -58, -20, 16 

   5.33 -38, -24, -4 

   5.19 -60, -26, 16 

Posterior insula, anterior insula, 

putamen I 1406 4.62 40, -12, -8 

   4.6 32, 22, 6 

   4.36 20, 8, -6 

Cerebellum I 526 5.22 22, -64, -52 

Inferior parietal lobule, SII, SI  I 496 4.62 66, -30, 34 

   3.83 58, -16, 22 

Posterior mid-cingulate gyrus C, I 392 4.0 -4, -20, 28 

   3.94 6, -36, 22 

 

TMDs 
    

Putamen, Thalamus C, I 7406 5.12 -16, 2, -12 

   4.97 -2, -12, 6 

   4.92 16, 6, -12 

   4.82 18, -16, 10 

Cerebellum I 2650 5.42 26, -66, -52 

Cerebellum C 2133 4.99 -34, -64, -32 

SII, Inferior parietal lobule C 1902 4.92 -56, -22, 16 

   4.57 -54, -42, 46 

Inferior parietal lobule,  I 818 5.1 58, -36, 54 

SII I 667 4.52 48, -28, 22 

Planum polare, insula C 655 4.94 -42, -4, -20 

   4.18 -42, -14, -2 

Frontal pole I 436 4.13 48, 40, 10 
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Table 9. Vibration responsive regions demonstrating a significant group effect.  Only significant 

clusters of activation corrected for multiple comparisons (p<0.05) are listed.  Up to three 

significant peak activations in each cluster are listed.  C = side contralateral to the site of skin 

stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

TMDs > Controls     

Thalamus I, C 1199 3.98 18, -22, 10 

   3.50 -6, -10, 0 

Cerebellum C 1128 3.96 -10, -70, -46 

Cerebellum I 1066 3.88 26, -48, -28 

Superior parietal lobule 7A/Inferior 

parietal lobule I 970 4.66 38, -60, 58 

Anterior intra-parietal 

sulcus/Inferior parietal lobule C 876 3.9 -40, -48, 34 

Inferior frontal gyrus I 585 3.99 52, 6, 16 

Cerebellum I 512 3.91 0, -72, -22 

Frontal Pole I 487 4.81 48, 38, 10 
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Table 10. Regions activated by concurrent noxious skin heating and innocuous vibration in 

controls and TMDs.  Only significant clusters of activation corrected for multiple comparisons 

(p<0.05) are listed.  Up to three significant peak activations in each cluster are listed.  C = side 

contralateral to the site of skin stimulation, I = side ipsilateral to the site of skin stimulation.   

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

Controls     

SII, Insula, Thalamus, Putamen C 7076 5.18 -58, -26, 18 

   4.84 -40, 12, -6 

   4.83 -36, 0, 12 

   4.71 -18, -20, 12 

Insula, Putamen, Caudate,  I 5618 5.49 36, 16, 4 

   4.84 18, 8, -2 

   4.72 12, 10, 6 

Paracingulate gyrus, ACC I, C 1441 4.67 4, 28, 46 

   4.43 4, 32, 24 

   4.09 -6, 32, 30 

Cerebellum C 966 3.87 -34, -56, -40 

Inferior parietal lobule, SII I 822 4.47 58, -38, 48 

   3.30 60, -28, 28 

Frontal pole, middle frontal gyrus I 554 4.80 38, 46, 22 

   4.37 38, 36, 26 

Frontal pole C 527 4.37 -46, 42, 18 

Posterior mid-cingulate C, I 393 4.96 -4, -22, 30 

   4.89 4, -20, 32 

Cerebellum I 236 4.34 2, -36, -52 

TMDs     

Insula, Planum polare, SII  C 2990 4.70 -36, 8, 0 

   4.70 -40, -4, -14 

   4.29 -64, -24, 16 

Cerebellum C 2318 4.38 -38, -60, -48 

Thalamus, Pallidum, Amygdala C 2216 4.51 -18, -18, 10 

   4.06 -12, 6, -2 

   3.75 -14, -6, -10 

Frontal pole, middle frontal gyrus I 1920 5.12 44, 38, 22 

   4.21 36, 36, 24 

Inferior parietal lobule I 1809 5.48 50, -48, 54 

Insula, Planum polare I 1797 4.53 36, 2, 8 

   4.39 42, -10, -8 

Paracingulate gyrus, ACC I, C 1622 5.09 4, 14, 48 

   4.81 8, 16, 36 

   3.9 -10, 14, 32 

Inferior parietal lobule C 1551 4.7 -54, -44, 42 

Cerebellum I 1503 4.37 46, -60, -30 

Middle frontal gyrus C 714 4.81 -42, 34, 14 
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Table 11. Regions in which the processing of noxious heat is modulated by vibration in HCs 

and TMDs.  Only significant clusters of activation corrected for multiple comparisons (p<0.05) 

are listed.  Up to three significant peak activations in each cluster are listed.  C = side 

contralateral to the site of skin stimulation, I = side ipsilateral to the site of skin stimulation.   

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

HC PHV > OHV      

A1, SII, Insula, SI C 3082 3.96 -52, -20, 10 

   3.94 -50, -32, 18 

   3.93 -42, -6, -4 

   3.77 -48, -24, 62 

Inferior frontal gyrus, insula I 1565 3.87 56, 12, 0 

   3.83 40, -2, 4 

SII, SI I 985 4.72 56, -16, 14 

   3.57 58, -16, 46 

 

TMD OHV > PHV  
    

ACC C, I 284 3.55 -2, 20, 32 
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Table 12. Regions in which HCs dissociated from TMDs in vibration-induced modulation of 

nociception.  Up to three significant peak activations in each cluster are listed.  C = side 

contralateral to the site of skin stimulation, I = side ipsilateral to the site of skin stimulation.  

TMD1 = pain-enhancing TMDs, TMD2 = pain-attenuating TMDs. 

 

Region Side Cluster 

Size 

Peak 

Voxel Z 

MNI 

Coordinates 

x,y,z (mm) 

HC – (TMD1 & TMD2) PHV > OHV      

SI, SII I 266 3.65 54, -18, 40 

   3.1 54, -14, 12 

HC – TMD1 PHV > OHV     

A1, SII, Insula C 710 3.55 -56, -16, 6 

   3.36 -44, -2, -8 

SI C 66 2.73 -50, -24, 44 

TMD1 – (HC & TMD2) OHV > PHV     

ACC I, C 263 3.80 4, 20, 32 

  



 

Figure 15. Average clinical pain on the day of 

testing did not differ significantly between session A and B within groups but did differ 

significantly between the healthy control (HC) group and the TMD group.
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Average clinical pain on the day of testing.  Clinical pain experienced on the day of 

testing did not differ significantly between session A and B within groups but did differ 

significantly between the healthy control (HC) group and the TMD group. 

 

 

Clinical pain experienced on the day of 

testing did not differ significantly between session A and B within groups but did differ 



 

Figure 16. Effect of ongoing clinical pain on the perception of experimental stimuli.  (A)

Average vibration intensity ratings reported by TMD subjects were not significantly correlated 

with present clinical pain intensity ratings.

of vibration induced changes in heat pain ratings were also not significantly correlated with 

clinical pain experienced on the day of testing.
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Effect of ongoing clinical pain on the perception of experimental stimuli.  (A)

Average vibration intensity ratings reported by TMD subjects were not significantly correlated 

with present clinical pain intensity ratings.  (B)  Although a trend was suggested, the magnitude 

of vibration induced changes in heat pain ratings were also not significantly correlated with 

clinical pain experienced on the day of testing. 

 

Effect of ongoing clinical pain on the perception of experimental stimuli.  (A) 

Average vibration intensity ratings reported by TMD subjects were not significantly correlated 

d, the magnitude 

of vibration induced changes in heat pain ratings were also not significantly correlated with 



 

Figure 17. Regions responding to vibration alone and

vibration.  Masks of significant clusters of activation evoked by 

(B) concurrent noxious heat and vibration for the control group only in yellow, the TMD group 

only in blue, and for both groups in green.

corrected significance of p < 0.05 were used.  Insula activation is 

Cingulate Cortex, Ins = Insula, MFG = Middle Frontal Gyrus, PC = posterior Mid

IPL = Inferior parietal lobule, SII = Secondary Somatosensory Cortex, 

Cortex,Thal = Thalamus 
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Regions responding to vibration alone and to concurrent noxious heat and 

Masks of significant clusters of activation evoked by (A) high frequency vibration and 

concurrent noxious heat and vibration for the control group only in yellow, the TMD group 

only in blue, and for both groups in green.   A cluster mean threshold of z > 2.3 and a cluster 

corrected significance of p < 0.05 were used.  Insula activation is outlined.  ACC = Anterior 

Cingulate Cortex, Ins = Insula, MFG = Middle Frontal Gyrus, PC = posterior Mid-Cingulate Cortex, 

or parietal lobule, SII = Secondary Somatosensory Cortex, SI = Primary Somatosensory 

 

noxious heat and 

high frequency vibration and 

concurrent noxious heat and vibration for the control group only in yellow, the TMD group 

A cluster mean threshold of z > 2.3 and a cluster 

.  ACC = Anterior 

gulate Cortex, 

SI = Primary Somatosensory 

 



 

Figure 18. Effect of vibration on perceived heat pain intensity.

(HC) ratings of heat pain intensity decreased 25.0% in the presence of vibration.  Although five 

of 11 TMD subjects perceived a decrease in heat pain intensity with the addition of concurrent 

vibration, on average, the TMD group reported a 24.4% increase in perceived heat pain i

in the presence of vibration.
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. Effect of vibration on perceived heat pain intensity.  On average, healthy control 

in intensity decreased 25.0% in the presence of vibration.  Although five 

of 11 TMD subjects perceived a decrease in heat pain intensity with the addition of concurrent 

vibration, on average, the TMD group reported a 24.4% increase in perceived heat pain i

On average, healthy control 

in intensity decreased 25.0% in the presence of vibration.  Although five 

of 11 TMD subjects perceived a decrease in heat pain intensity with the addition of concurrent 

vibration, on average, the TMD group reported a 24.4% increase in perceived heat pain intensity 



 

Figure 19.  Group dissociation in subadditive responses.  (A)

the observed response to HV was significantly less than the response predicted by responses to 

H and V delivered separately.  Significant subadditive responses compared to the entire TMD 

group are in red while significant su

subjects who demonstrated a pain

shown in blue.  Average hemodynamic responses were extracted 

all three stimulation conditions and are illustrated for 

enhancing effect, and (E) for TMDs who demonstrated a pain attenuating effect of vibration.  A 

cluster mean threshold of z > 2.3 and a cluster corrected significance of p < 0.

Average hemodynamic responses extracted from blue SII voxels in HCs are shown for 

comparison with SI responses. 
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Group dissociation in subadditive responses.  (A) HCs only showed areas in which 

the observed response to HV was significantly less than the response predicted by responses to 

H and V delivered separately.  Significant subadditive responses compared to the entire TMD 

group are in red while significant subadditive responses compared only to the subset of TMD 

subjects who demonstrated a pain-amplifying effect in their heat pain intensity ratings are 

shown in blue.  Average hemodynamic responses were extracted from SI voxels labeled blue for

ation conditions and are illustrated for (B) HCs, (D) for TMDs who showed a pain

for TMDs who demonstrated a pain attenuating effect of vibration.  A 

cluster mean threshold of z > 2.3 and a cluster corrected significance of p < 0.05 were used.

Average hemodynamic responses extracted from blue SII voxels in HCs are shown for 

 

 

HCs only showed areas in which 

the observed response to HV was significantly less than the response predicted by responses to 

H and V delivered separately.  Significant subadditive responses compared to the entire TMD 

badditive responses compared only to the subset of TMD 

amplifying effect in their heat pain intensity ratings are 

om SI voxels labeled blue for 

for TMDs who showed a pain-

for TMDs who demonstrated a pain attenuating effect of vibration.  A 

05 were used.  (C) 

Average hemodynamic responses extracted from blue SII voxels in HCs are shown for 



 

Figure 20.  Group dissociation in superadditive responses.  (A)

which the observed HV response was significantly greater than the predicted HV response 

outside of traditional somatosensory areas

evoked by all three conditions were extracted from 

all TMDs, (C) TMDs who demonstrated a pain

demonstrated a pain gate, and 

corrected significance of p < 0.05
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Group dissociation in superadditive responses.  (A) TMDs only showed areas in 

which the observed HV response was significantly greater than the predicted HV response 

outside of traditional somatosensory areas (green region).  Average hemodynamic responses 

were extracted from the green voxels and are illustrated for 

TMDs who demonstrated a pain-enhancing effect of vibration, (D) TMDs who 

demonstrated a pain gate, and (E) HCs.  A cluster mean threshold of z > 2.3 and a cluster 

corrected significance of p < 0.05 were used.   

 

TMDs only showed areas in 

which the observed HV response was significantly greater than the predicted HV response 

.  Average hemodynamic responses 

illustrated for (B) 

TMDs who 

HCs.  A cluster mean threshold of z > 2.3 and a cluster 



 

Figure 21.  Relationship between effects of vibration on experimental pain perception and 

cortical processing.  (A) In healthy controls (HCs, solid line), 

decreased with the addition of vibration as the difference between the predicted and observed 

SI HV responses increased.  A trend between the effects of vibration on experimental pain and SI 

processing was also observed in the TMD subgroup that reported pain enhancement with the 

addition of vibration (dashed line).  Within this TMD subgroup, subjects who demonstrated 

greater subadditive responses in SI reported less pain enhancement.  

found between superadditive ACC responses observed in TMDs and the effect of vibration on 

heat pain perception. 
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Relationship between effects of vibration on experimental pain perception and 

In healthy controls (HCs, solid line), the perceived intensity of heat pain 

decreased with the addition of vibration as the difference between the predicted and observed 

SI HV responses increased.  A trend between the effects of vibration on experimental pain and SI 

in the TMD subgroup that reported pain enhancement with the 

addition of vibration (dashed line).  Within this TMD subgroup, subjects who demonstrated 

greater subadditive responses in SI reported less pain enhancement.  (B) No correlation was 

superadditive ACC responses observed in TMDs and the effect of vibration on 

 

Relationship between effects of vibration on experimental pain perception and 

the perceived intensity of heat pain 

decreased with the addition of vibration as the difference between the predicted and observed 

SI HV responses increased.  A trend between the effects of vibration on experimental pain and SI 

in the TMD subgroup that reported pain enhancement with the 

addition of vibration (dashed line).  Within this TMD subgroup, subjects who demonstrated 

No correlation was 

superadditive ACC responses observed in TMDs and the effect of vibration on 



 

Figure 22.  Relationship between present clinical pain and 

ACC responsiveness to noxious heat

testing also demonstrated greater interaction between vibration and noxious heat input within 

the ACC. 
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Relationship between present clinical pain and vibration-induced modulation of 

ACC responsiveness to noxious heat.  TMD subjects who experienced greater pain on the day of 

testing also demonstrated greater interaction between vibration and noxious heat input within 

 

induced modulation of 

.  TMD subjects who experienced greater pain on the day of 

testing also demonstrated greater interaction between vibration and noxious heat input within 

 



 

 

Chapter 5 

GENERAL DISCUSSION 

 It has long been established that robust interactions occur between the somatosensory 

submodalities of pain and touch.  Two complimentary expressions of the normal, competitive 

interactions that take place between pain and touch in the CNS are the gate control theory of 

touch [11, 12] and the gate control theory of pain [9].  The convergence of pain and tactile 

processing in the CNS suggests that the experience of pain might not only be reflected in the 

processing of painful input, but might also be associated with modulation of somatosensory 

processing more generally, and examination of the processing interactions that occur between 

pain and touch can reveal processes that would not be apparent when considering each 

submodality in isolation.  In the experiments reported in this dissertation, we investigated how 

cortical processing interactions that occur between innocuous and noxious somatosensory 

stimulation contribute to persistent TMD pain. 

In the first experiment, we investigated whether the abnormalities in vibrotactile 

perception reported in the literature it be associated with TMD reflect an abnormal topography 

of cortical somatosensory processing in the absence of experimentally evoked pain.  We 

observed that responses in distinct subregions of contralateral SI, secondary somatosensory 

cortex (SII) and insular cortex differentiated TMD from HCs [100], and the differences between 

groups in these subregions paralleled previously reported differences in responses evoked in 

healthy individuals by noxious and innocuous stimulation, respectively.  We suggested that 
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these subtle, yet significant, differences may reflect cortical plasticity in TMD, manifesting itself 

as increased readiness for non-orofacial cortical areas to respond to innocuous vibrotactile input 

that normally would not.   

Having established that cortical responsivity to non-painful tactile stimulation is 

abnormal in TMD, we then investigated whether the endogenous modulation of tactile 

processing by experimentally induced heat pain was also disrupted in TMD.  Within the 

processing network common to unimodal and bimodal somatosensory stimulation, differences 

emerged in the cortical patterns characterizing interactions between submodalities in subjects 

with and without TMD.  While noxious heat interfered with innocuous vibrotactile processing 

within SI in HCs, noxious heat appeared to facilitate innocuous vibrotactile processing within SI 

in TMDs.  A potential neuromechanistic explanation for this abnormal processing may involve 

activity dependent interneurons connecting subregions of SI that are affected by persistent 

clinical pain.  Furthermore, we found that the enhancement of vibrotactile processing by 

nociception was related to the severity of the TMD patients’ clinical pain and emerged despite 

the fact that pain ratings and cortical responses to noxious heat alone did not differ significantly 

between TMD patients and control subjects. 

In the third experiment, we investigated whether the endogenous modulation of 

noxious heat processing by innocuous tactile processing was also disrupted in TMD.  In contrast 

to the first two experiments, we utilized high frequency vibrotactile stimulation because it has 

been shown to be more effective at alleviating pain than low frequency flutter [131].  In healthy 

controls, interactions between noxious heat and vibration were consistent with the pain-gate 

effect, and the suppression of noxious processing occurred, at least in part, in the cortex.  

Similar to the role we observed SI to play in the second experiment, SI was again identified as a 
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region in which the interaction of innocuous and noxious processing produced responses that 

were smaller than predicted by the sum of the responses to unimodal stimulation.  However, 

vibration-induced suppression of the SI response to noxious heat was not co-localized with the 

nociceptive-induced suppression of the SI response to flutter, which is consistent with evidence 

from other human and animal neuroimaging experiments suggesting that noxious and 

innocuous stimuli drive different neuronal populations within SI [59, 60, 149].  In contrast to 

HCs, two subgroups emerged within the TMD group; TMDs who experienced vibration-induced 

pain attenuation similar to HCs and TMDs who experienced vibration-induced pain 

enhancement.  The cortical areas in which we observed superadditive responses in TMDs 

(caudal ACC) did not include any of the brain areas in which we observed a heightened response 

to innocuous vibration compared to controls.  We did, however, observe augmented thalamic 

responses to vibration in the TMD group, and accumulating evidence suggests a functional link 

between the medial thalamus and the ACC in the modulation of pain affect [153-155].  A 

potential neuromechanistic explanation for this abnormal processing may involve connections 

between the medial thalamus and the ACC that may be affected by ongoing clincal pain. 

TMDs and HCs responded differently to both low and high frequency innocuous 

vibrotactile stimulation.  By comparing the observed response to concurrent stimulation to the 

response predicted by the sum of the responses to unimodal stimulation, we were able to 

establish that the group differences we observed in processing interactions between innocuous 

and noxious input were not solely due to the group differences in cortical responsivity to 

vibrotactile stimulation alone.  Some of these differences in the interaction of innocuous and 

noxious somatosensory inputs were correlated with the severity of the TMD patients’ clinical 

pain despite the fact that no significant correlations were observed between TMD pain and 

responses to vibrotactile or noxious heat stimulation alone.  This suggests that cortical 
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processing interactions between somatosensory submodalities more closely reflect individual 

experiences of persistent clinical pain than does the unimodal processing of innocuous 

vibrotactile or noxious heat input alone.  Whether the enhancement of cortical responsivity we 

observed in the second and third experiments would be reduced with the reduction of clinical 

pain is a question that remains for future investigation.
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