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ABSTRACT
Daniel S. Oh
Prediction of Outcome in Breast Cancer Patients Using Gene Expression Profiling

(Under the Direction of Charles M. Perou)

Breast cancer, the most common cancer diagnosed in women, is a complex and
heterogeneous disease. In order to make the best treatment decision for a breast cancer
patient, it is important to accurately determine that patient’s risk of recurrence and the
therapy to which that patient’s tumor is most likely to respond. The prognostic and/or
predictive factors currently accepted for use in primary breast cancer decision making
(i.e. lymph node status, tumor size, nuclear grade, etc.) are not enough to accurately
identify those patients who may require therapy and gives little information about what
therapy they might best benefit from. Recent discoveries using gene expression profiling
have greatly improved our understanding of the molecular pathogenesis of breast cancer.
We believe that gene expression profiling may also improve the prognostication and/or
prediction of breast cancer outcomes, and thus, the main objective of this work has been
to develop and test gene expression-based predictors of outcome in breast cancer patients.
First, we developed an expression-based predictor of outcome for Estrogen Receptor
(ER) and/or Progesterone Receptor (PR)-positive breast cancer patients using biological
differences among these tumors. Second, we developed a predictor for objectively

classifying tumors into one of five intrinsic subtypes and validated this using multiple test
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sets. Next, using a single patient dataset, we determined the concordance in outcome
predictions made by several different gene expression profiles (developed on different
platforms by different laboratories). Lastly, we developed gene expression-based
predictors for response to neoadjuvant chemotherapy. In summary, this work shows that
gene expression profiling holds great promise in being clinically useful in the treatment

decision-making process for breast cancer patients.
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CHAPTER 1: INTRODUCTION

Breast cancer, the most common cancer diagnosed and the second leading cause
of cancer death among women in the US, is a complex and heterogeneous disease. It is
critically important for clinicians to accurately determine which breast cancer patients are
likely to show recurrence and what treatments they will best benefit from. Currently, the
factors widely accepted for use in prognostication and/or prediction for breast cancer
patients include axillary lymph node status, age, tumor size, estrogen and progesterone
receptor status, and histologic gradel’z. Researchers have attempted to find other factors
useful for predicting outcomes, but many of these have failed to become clinically useful.
There is a need to improve on this set of factors currently used in breast cancer prognosis
and prediction, as many patients are either being unnecessarily overtreated or being
treated with toxic and expensive chemotherapeutics to which they will not show a
response. For example, current guidelines recommend that most lymph node metastasis-
negative patients should undergo systemic adjuvant chemotherapy; however, a majority
of these node-negative patients are being unnecessarily overtreated because if left
systemically untreated, approximately only 20% would develop recurrence’.

Gene expression profiling using DNA microarrays has recently begun to be used
to investigate the heterogeneous nature of breast cancer. It has allowed for a better
understanding of the biological differences within breast cancer beyond the traditional

methods of patient stratification (i.e. stratification by ER status)®. We believe it may also



provide a way to improve the outcome prediction and treatment decision-making for
breast cancer patients. Gene expression profiling was used by Perou and colleagues to
classify breast cancer into a luminal epithelial, basal-like, normal breast-like, and
HER2+/ER- subtypes’, which were shown to have significant differences in patient
outcome™® (Figure 1). This classification was done by hierarchical cluster analysis’ of
tumors using an ‘intrinsic’ gene set, which consisted of genes with significantly greater
variation in expression between tumors than between paired samples from the same
tumor. The subtypes identified by Perou et al.* were distinguished by extensive
differences in expression of genes from the ‘intrinsic’ gene list (Figure 2). The luminal
epithelial subtype of breast cancer was found to be mainly composed of ER+ and/or PR+
tumors and correlated with the high expression of a cluster of genes (luminal
epithelial/ER+ gene cluster), which included ER and GATA3. In contrast, the basal-like
subtype was found to have low expression of the ER+ gene cluster, but high expression
of a cluster of genes that included cytokeratins 5, 6, and 17. The HER2+/ER- subtype
also showed low expression of the ER+ gene cluster, but had high expression of HER2
and other genes in the ERBB2 (HER2) amplicon such as GRB7*. Thus, these analyses
rediscovered important breast cancer biomarkers (i.e. ER and HER2) but also identified

new “‘subtypes” of breast cancer.

Estrogen Receptor Biology and Tamoxifen Resistance. The estrogen receptor
(ER) belongs to the superfamily of nuclear hormone receptors that includes the
progesterone receptor (PR) and thyroid hormone receptor. ER is essential for mammary

gland differentiation and morphogenesis as evidenced by the dramatic phenotypes seen in



ER-knock-out mice®. Upon binding to estrogen, ER undergoes a conformational change
that results in dissociation from an inhibitory heat shock protein complex, followed by
receptor dimerization and phosphorylation’. The activated ER then binds to target gene
promoters at specific palindromic sequence motifs called estrogen response elements
(EREs)", which leads to alterations in the transcription of these estrogen-regulated genes.
Genes regulated by estrogen have diverse functions, including promotion of the cell cycle

and proliferation, cell-cell interactions, angiogenesis, and inhibition of apoptosis''™*. T

n
addition, it is postulated that estrogen-regulated genes include those involved in
inhibition of tumor cell invasion and metastasis".

Positive regulation of estrogen-regulated genes is mediated by two different
domains in ER, AF-1 and AF-2. AF-1 is located at the N-terminal of ER and is hormone-
independent, while AF-2 is located in the ligand-binding domain of ER and is hormone-
dependent'’. Co-activator proteins such as SRC1, TIF2, and AIB1 form a complex with
ER on the promoter to positively regulate transcription, partly through recruitment of
histone-acetyltransferases to the promoter, which results in chromatin decondensation’.
Negative regulation of transcription by ER is controversial and less well understood, and
is thought to involve recruitment of corepressor proteins such as NCoR1 and NCoR2
which in turn recruit histone-deacetylase complexes, which results in chromatin
condensation'>'°.

Modulation of gene expression by ER has also been shown to occur at non-ERE
sites such as AP-1 and SP-1 regulatory sequences’. At these regulatory sequences, ER

does not directly bind to DNA, but rather is attached to the promoter complex by

interaction with other DNA-bound transcription factors (TFs) such as c-jun and c-fos. ER



modulates the activity of these TFs by stabilizing their DNA binding and/or recruiting
additional coactivators to the complex'’. In addition, it is believed that ER may also have
non-genomic activity, in which ligand binding to membrane-bound or cytoplasmic ER
causes it to interact with a variety of membrane-signaling molecules including key
growth-factor receptors and/or growth-factor dependent kinases (i.e. IGF-1R, PI3K,
MAPK, EGFR, and HER2)'®""_ These kinases can then activate signaling cascades that
may enhance the activity of nuclear ER and its coregulators via phosphorylation®.

It is widely believed that estrogen, via the estrogen receptor, is involved in the
pathogenesis of and sustains the growth of ER+ breast cancers. Thus, patients with ER+
breast cancer are given estrogen antagonists that block ER activity. The most widely used
hormone antagonist is tamoxifen, a selective ER modulator (SERM) that binds ER and
blocks its activity in the breast. Tamoxifen is the gold standard of treatment for ER+
breast cancer patients; however, up to 40% of these patients experience relapse despite
receiving therapy” .

Postulated tamoxifen resistance mechanisms include loss of ER
expression/function and altered expression of a second ER (referred to as ER3) whose
function in normal and malignant breast cells is poorly understood®’. However, other
postulated resistance mechanisms have received more attention and are believed to be
more important: (1) alterations in co-regulatory proteins such as overexpression of the ER
co-activator AIB1 and (2) the upregulation of growth factor signaling pathways such as
those mediated by EGFR and HER?2 that are believed to engage in cross-talk with ER
signaling pathways as described earlier'>**. Clinical and laboratory studies suggest that

high levels of AIB1 may enhance the partial agonistic effect of tamoxifen and therefore



contribute to tamoxifen resistance”>*°. Clinical and experimental evidence indicate that
overexpression of HER2 and/or EGFR is associated with and contributes to tamoxifen

resistance’’*®

. It is hypothesized that one reason HER2 and/or EGFR overexpression
contributes to tamoxifen resistance is that the subsequent increased activation of

downstream kinases can activate and enhance ER activity by phosphorylating ER and its

24
coregulators™.

Outcome prediction in hormone-receptor positive breast cancer. Currently,
the prognosis of a patient with ER+ and/or PR+ breast cancer can be highly variable. A
subgroup of patients with this type of breast cancer (i.e. luminal) experiences disease
relapse regardless of receiving therapy while other subsets do extremely well*' 2. The
“intrinsic” classification of Luminal A vs. Luminal B is predictive of outcomes in ER+
and/or PR+ patients; however, this distinction is correlated with grade and we believed it
possible to develop a more biologically relevant predictor of outcomes for this patient
subset. Not enough progress has been made in developing methods to predict which ER+
and/or PR+ patients are at risk or not at risk for experiencing relapse. Such a method of
defining the prognosis of ER+ and/or PR+ breast cancer patients would be of significant
value.

Pathways under the control of estrogen signaling (mediated by the estrogen
receptor) are involved in the growth and differentiation of the mammary gland and are
widely believed to be important in ER+ and/or PR+ breast cancer biology™’. Thus, we
speculated that gene expression profiling of the ER pathway using cell line models might

be useful in developing a clinically robust outcome predictor for ER+ and/or PR+ breast



cancer and lead to a better understanding of the biological differences within this breast
cancer tumor type. Because of the widely believed importance of estrogen responsiveness
and signaling in ER+ and/or PR+ breast cancer biology, we hypothesized that estrogen-
regulated genes might be useful in predicting outcome in this type of breast cancer, and
therefore, we developed an ER-pathway based predictor for breast cancer patients that is

described in Chapter 2.

Microarray platform-independent validation of the “intrinsic” breast tumor
subtypes. A major challenge for microarray studies, especially those with clinical

implications, is validation®*~*°

. Due to the practical barriers of cost and access to large
numbers of fresh frozen tumor samples with associated clinical information, very few
microarray studies have analyzed enough samples to allow promising initial findings to
be sufficiently validated to justify the major investment required for clinical testing. An
efficient approach would be to use public gene expression data repositories as test sets;
however, it has been difficult to compare and/or combine data sets from independent
laboratories due to differences in sample preparation, experimental design, and
microarray platforms. Fortunately, the multivariate analysis tool Distance Weighted
Discrimination (DWD) has recently been shown to successfully overcome this difficulty
in comparing and/or combining datasets from independent laboratories’'. DWD identifies
systemic biases present in separate microarray datasets and makes a global adjustment to
these datasets to compensate for these biases. If one considers each separate dataset as a

multi-dimensional cloud of data points, DWD works by taking two such clouds and

shifting one such that it more optimally overlaps the other.



The “intrinsic” subtypes identified by Perou and colleagues (described above) has
not yet been validated as a predictor/prognosticator of breast cancer patient outcomes to
the extent that other gene expression-based predictive/prognostic profiles have®***. Thus,
in Chapter 3 we used DWD to (1) validate the intrinsic subtypes on independent test
datasets generated on differing microarray platforms and (2) constructed a method to

objectively assign any given tumor to an intrinsic tumor subtype.

Concordance of several different gene expression-based predictors. Many
different laboratories have examined the prognostic and/or predictive utility of gene
expression profiling for breast cancer. These predictors include the discovery of the
“intrinsic” subtypes using supervised hierarchical clustering analysis as done by Perou
and colleagues as described above. Independently, van’t Veer and colleagues identified a
70-gene prognostic signature that classifies tumors into either a good or poor prognosis
group’*. This signature was obtained through a supervised analysis in which genes were
selected according to correlation with patient outcome for a set of 78 node-negative
breast cancer patients all less than 55 years of age at time of diagnosis. Genes involved in
cell cycle, invasion and metastasis, angiogenesis, and signal transduction were found to

be significantly upregulated in the poor prognosis signature®.

Chang and colleagues’°

characterized the transcriptional response of normal
fibroblasts to serum and showed that this “wound-response signature” can predict
outcomes in breast cancer patients. Patients whose tumors expressed the wound-response

signature (“activated” tumors) had markedly poor overall survival and distant metastasis-

free survival compared to patients with tumors that did not express this signature



(“quiescent” tumors). The wound-response signature included induction of genes
involved in the cell cycle, cell motility, extracellular matrix remodeling, and cell-cell
signaling™. Lastly, two laboratories independently derived expression-based predictors of
outcome in ER+ tamoxifen-treated patients. First, Paik and colleagues developed a qRT-
PCR-based 21-gene prognostic score (referred to as the “Recurrence score”) for node-
negative tamoxifen-treated breast cancers, and used it to successfully categorize patients
as having a low, intermediate, or high risk of recurrence’’. Second, Ma and colleagues
determined that a 2-gene ratio (HOXB13:IL17BR) could predict disease-free survival in
tamoxifen-treated patients: a high ratio indicated a poor clinical outcome compared to a
low ratio®®.

These different gene expression-based predictors were developed by different
laboratories, and a comparison of the gene lists from some of these predictors showed
that they overlapped each other by only a modest amount, if at all. This lower than
expected gene similarity between lists might be explained by differences in microarray
platforms, cohort biases due to different patient selection criteria and sample size, and
differences in statistical methods used to develop the predictors. An important and
unanswered question is whether the lack in gene overlap between these predictors reflects
an actual discordance in outcome predictions for the individual patient (i.e. do these
different predictors actually disagree or agree concerning outcome predictions for the
individual patient). To answer this question, in Chapter 4 we describe our studies where
we performed an analysis of a single patient dataset on which the five
prognostic/predictive gene expression-based predictors described above (intrinsic

subtypes®, van’t Veer et al’s 70-gene predictor’?, Chang et al’s Wound-Response



predictor®, the Recurrence score predictor’’, and Ma et al’s 2-gene ratio predictor’™) were

simultaneously compared.

Prediction of neoadjuvant chemotherapy response. The identification of
biomarkers that predict chemotherapy response in breast cancer is an area of intense
research, in large part because no such predictor currently exists. In some cases, cell
proliferation index or TP53 somatic mutation status has been correlated with response,

but these markers are not in standard use for patient stratification**

. Recently, response
studies have focused on using DNA microarrays to identify gene expression patterns
predictive of chemotherapy response. Neoadjuvant chemotherapy (treatment before
primary surgery) facilitates these response studies because it allows for the direct and
timely observation of tumor response to treatment and allows access to primary tumor
samples before and during treatment to develop and assess markers that might be
predictive of response”.

An additional reason why we may want to study neoadjuvant chemotherapy
response is that it has been shown to be correlated with, and can be used as a surrogate
marker, for improved long-term disease-free and overall survival®*’. For example, in a
study of 372 patients given neoadjuvant chemotherapy, Kuerer et al.* reported that the 5-
year overall and disease-free survival rates were significantly higher in those achieving
Pathological Complete Response (pCR) compared to those who did not. Likewise, in a
study of 158 patients, Chang et al.*” reported that good clinical response (defined by

Chang et al. as clinical complete response or minimal residual disease) to neoadjuvant

chemotherapy was significantly associated with decreased risk of relapse and death.



Thus, encouraged by these neoadjuvant studies, in Chapter 5 we determined whether
gene expression patterns from pre-treatment tumor samples could predict response to
neoadjuvant chemotherapy.

In summary, this work builds on that of Perou and others regarding the
heterogeneity of breast cancer. The overall aim of this work has been to use this
knowledge about the heterogeneity of breast cancer to develop/analyze gene expression-
based predictors of outcome in breast cancer patients. In all of our aims, we were
successful in developing expression-based predictors that provided added value, and thus,
we believe that the results of our analyses will improve the outcomes of future breast

cancer patients.
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Figure 1.1. Kaplan-Meier analysis of disease outcome in two patient cohorts stratified by
intrinsic subtype. A. Time to development of distant metastasis in the 97 sporadic cases
from van’t Veer et al. B. Overall survival for 72 patients with locally advanced breast
cancer in the Norway cohort. Figure adapted from Sorlie et al.®
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Figure 1.2. Hierarchical cluster analysis using the “intrinsic” gene set. Gene expression
patterns of 85 experimental samples (78 carcinomas, 3 benign tumors, and four normal
tissues) were analyzed by hierarchical clustering using the 476 cDNA intrinsic clone set.
A. The tumor specimens were divided into subtypes based on differences in gene
expression. The cluster dendrogram showing the subtypes of tumors are colored as:
luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light blue;
normal breast-like, green; basal-like, red; and ERBB2+, pink. B. Scaled-down
representation of the complete cluster diagram. C. ERBB2 amplicon cluster. D. Novel
unknown cluster. E. Basal epithelial cell-enriched cluster. F. Normal breast-like cluster.
G. Luminal epithelial gene cluster containing ER. Figure adapted from Sorlie et al.’
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CHAPTER 2: Estrogen-regulated genes predict survival in hormone
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ABSTRACT

Purpose

The prognosis of a patient with Estrogen Receptor (ER) and/or Progesterone Receptor
(PR)-positive breast cancer can be highly variable. Therefore, we developed a gene
expression-based outcome predictor for ER+ and/or PR+ (i.e. Luminal) breast cancer

patients using biological differences among these tumors.

Materials and Methods

The ER+ MCF-7 breast cancer cell line was treated with 173-estradiol to identify
estrogen-regulated genes. These genes were used to develop an outcome predictor on a
training set of 65 luminal epithelial primary breast carcinomas. The outcome predictor

was then validated on three independent published datasets.

Results
The estrogen-induced gene set identified in MCF-7 cells was used to hierarchically

cluster a 65 tumor training set into 2 groups, which showed significant differences in



survival (p=0.0004). Supervised analyses identified 822 genes that optimally defined
these two groups, with the poor prognosis Group IIE showing high expression of cell
proliferation and anti-apoptosis genes. The good prognosis Group IE showed high
expression of estrogen and GATA3-regulated genes. Mean expression profiles (i.e.
centroids) created for each group were applied to ER+ and/or PR+ tumors from three
published datasets. For all datasets, Kaplan-Meier survival analyses showed significant
differences in Relapse-Free and Overall Survival between Group IE and IIE tumors.
Multivariate Cox analysis of the largest test dataset showed that this predictor added
significant prognostic information independent of standard clinical predictors and other

gene expression-based predictors.

Conclusion
This study provides new biological information concerning differences within hormone
receptor-positive breast cancers and a means of predicting long-term outcomes in

tamoxifen-treated patients.
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INTRODUCTION

Breast cancers are traditionally stratified into hormone receptor-positive and
negative groups to guide patient management. This is because almost all hormone
antagonist (i.e. tamoxifen)-responsive breast cancers are Estrogen Receptor (ER) and/or
Progesterone Receptor (PR)-positive'. However, a subgroup of these patients experience
disease relapse irrespective of standard therapy with tamoxifen®*. In many cases the
resistance mechanism(s) are unknown’”’. A method for identifying those ER+ and/or PR+
patients that do well in the presence of tamoxifen versus those that do poorly would be of
significant value.

Gene expression profiling is a powerful method for breast cancer prognostication.
Using gene expression profiling, breast tumors can be classified into five molecular
subtypes (Basal-like, HER2+/ER-, Normal Breast-like, and Luminal A and B) with
significant differences in patient outcome®’. The two Luminal subtypes are almost
entirely composed of ER+ and/or PR+ tumors and are defined by the high expression of a
gene set (luminal epithelial/ ER+ set) that includes ER and GATAS. Compared to Luminal
A tumors, Luminal B tumors have poor outcomes despite being clinically ER+*’.

To date, several laboratories have developed gene expression-based predictors for
ER+ and/or PR+ patients. All used supervised analyses based upon patient

10-13
outcomes/tumor response

. Here we developed a gene expression-based predictor
using an approach based solely upon biological characteristics of the tumors. Because of
the importance of estrogen signaling in breast epithelial cell biology, we hypothesized

that differential expression of estrogen-regulated genes would be useful in predicting

outcome.
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MATERIALS AND METHODS

Cell culture and collection of MRNA. MCF-7 cells were maintained as described
previously'*. Cells were plated in 150mm dishes and grown until 50% confluence.
Media was changed and cells maintained for 48 hours in estrogen-free medium (phenol
red-free RPMI-1640 with 10% charcoal-dextran-stripped FBS) before treating for
2,4,8.0r 24 hours with 10° M 17B-estradiol (Sigma). Cells were harvested, and mRNA
isolated using a Micro-FastTrack kit (Invitrogen). A reference mRNA sample was
harvested from cells maintained for 48 hours in estrogen-free medium (i.e. estrogen-

starved cells).

Microarray Experiments. Agilent Human whole-genome microarrays were hybridized
according to manufacturer’s protocol with Cy3-CTP labeled cRNA from estrogen-starved
cells (2pg/sample) and Cy5-CTP labeled cRNA from 173-estradiol-treated cells
(2ng/sample), with dye-flip replicates for each time point. Microarrays were scanned and
image files analyzed as described previously'”. All primary microarray data are available

via the UNC Microarray Database (https://genome.unc.edu/) and the GEO with series

number GSE2740 (GSM52882-GSM52909, GSM34423-GSM34568).

Analysis of microarray data to identify GATA3 and estrogen-regulated genes. Data
from microarray experiments were calculated as described'’. Genes were excluded from
data analysis if they did not have signal intensity >30 in both channels for >70% of the

experiments. To identify estrogen-regulated genes, we used one-class Significance
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Analysis of Microarrays (SAM) to identify genes that changed in all estrogen-treated
time points (as a single class) relative to the estrogen-starved cells'® (Note: in our SAM
analyses we did not use the fold-change cutoff option to avoid the fold-change associated
complications/pitfalls described by Larsson et al.'’). Using a false discovery rate (FDR)
of 0.04%, SAM identified 383 estrogen-induced and 574 estrogen-repressed genes; for
subsequent “estrogen-SAM” analyses, only the 383 induced genes were used. Average
linkage hierarchical cluster analysis was conducted and the results visualized in
Treeview' .

GATA3-induced genes were identified by microarray experiments on 293T cells
transfected with GATA3 gene constructs, as detailed in Usary et al.". One-class SAM
analysis (0.58% FDR) identified 407 genes that were induced in the GATA3 samples (as

a single class) relative to empty vector controls.

Analysis of primary breast tumor data using the estrogen-induced gene set. The
primary breast tumor samples (collected with patient consent and UNC-CH Human
Investigations Review Committee approval) used in the training dataset are described in
Hu et al.*’, except for 14 new tumor samples. A total of 118 fresh frozen breast tumor
and 9 normal breast samples represented by 160 microarray experiments were analyzed
using the 1300-gene “breast intrinsic” gene set developed by Hu et al.*’, which identified
65 tumors as belonging to the “Luminal subtype”. These “Luminal” tumors included 61
ER+ and/or PR+ tumors according to immunohistochemistry, 3 ER- and PR-, and one not
determined.

The 383-gene MCF-7 estrogen-induced gene list was used to hierarchically

cluster the 65 Luminal tumors resulting in two groups, which we called Groups I and II.
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We used a two-class, unpaired SAM analysis (with 1% FDR) to identify 822 genes
(referred to as the estrogen-SAM list) that optimally differentiated Group I versus Group

II tumors>"*

. The 65 Luminal tumors were then clustered using the 822 genes and two
groups (Groups IE and IIE) were evident.

By matching Unigene identifiers, data for as many as possible of the 822
estrogen-SAM genes was obtained for ER+ and/or PR+ tumors (classified as provided in
the primary publications) from three independent test datasets®”'***. The Ma et al.,
Sorlie et al., and Chang et al. datasets consisted of 60, 90, and 250 ER+ and/or PR+
tumors respectively. Ma et al. tumors were uniformly treated with adjuvant tamoxifen
alone. Sorlie et al. tumors received adjuvant tamoxifen, with some also receiving

neoadjuvant chemotherapy. Chang et al. tumors were heterogeneously treated

(http://www.pnas.org/cgi/content/abstract/0409462102v1); 24 of the 250 tumors we used

for this dataset were published earlier™*.

To remove microarray platform/source systematic biases, we applied Distance
Weighted Discrimination/DWD? to the training and test datasets. From the DWD
standardized Luminal tumor training dataset, centroids were created consisting of the
average expression of the 822 estrogen-SAM genes for Groups IE and IIE. We then
classified each ER+ and/or PR+ tumor in the test datasets as Group IE or IIE according to

each sample’s nearest centroid as determined by Spearman correlation.

Survival Analyses. Kaplan-Meier survival plots were compared using the Cox-Mantel

log-rank test in Winstat for Excel (R. Fitch Software, Staufen, Germany). Two-way

contingency table analysis was done using Winstat for Excel. For the Chang et al.
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dataset, multivariate Cox proportional hazards analysis was performed using SAS (Cary,

NO).

RESULTS

Identification of estrogen-regulated genes. To identify estrogen-regulated genes, we
used the ER+ human breast tumor-derived MCF-7 cell line as a model system. A “one-
class” SAM supervised analysis'® with an FDR of 0.04% identified 383 induced and 574
repressed genes in microarray experiments on MCF-7 cells treated with 173-estradiol for
2,4, 8, or 24 hours (hierarchical clustering of these genes is shown in Figure 1). Many
genes identified were previously known to be ER-regulated including CCND1, PR,
RERG, CTSD, and PDZK1***. Using the program EASE®, the Gene Ontology (GO)
categories “sterol metabolism/biosynthesis”, “ribosome biogenesis/assembly”, and

“cytoskeleton structural constituent” were over-represented relative to chance in the set

of 383 estrogen-induced genes.

Estrogen and GATAS3-regulated genes are present in the Luminal/ER+ gene cluster.
The Luminal/ER+ expression cluster is a gene set identified in many breast tumor
profiling studies***'*, includes GATA3 and ER, and is expressed in the Luminal A and B
tumor subtypes®’. To determine whether estrogen-regulated genes are present in the
Luminal/ER+ gene set, we first clustered 118 primary breast tumors using a 1300-gene
“breast intrinsic” gene set developed by Hu et al.*® (Figure 2). Figure 2B shows that
many of the estrogen-regulated genes from our in vitro MCF-7 experiments were present
in the tumor defined Luminal/ER+ gene cluster. To further define relationships among

genes in this cluster, we also ascertained the presence of genes regulated by GATAS3, a
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transcription factor with an important role in ER+ breast cancer biology'’. Of the 407
genes induced by GATA3 in vitro, many were present in the Luminal/ER+ gene cluster.
Thus, genes identified as being regulated by ER and/or GATAZ3 in vitro also cluster near
these transcription factors in vivo and help to define an expression pattern seen in many

. 24313334
studies”™ 77,

Analysis of Luminal tumors using estrogen-induced genes. We hypothesized that
expression differences of estrogen-induced genes may define clinically relevant
subgroups within clinically defined ER+ and/or PR+ tumors. To test this hypothesis, we
clustered the 65 tumors identified as “Luminal” in Figure 2 (blue dendrogram branch)
using the 383 MCF-7 estrogen-induced genes. Two main groups resulted (Groups I and
II). Group I had higher expression of XBP1, PR, and TFF, which are all known ER
targets. Group II had higher expression of a cluster of estrogen-induced genes that
included CTPS, E2F6, and FANCA. Kaplan-Meier survival analysis showed that Group I
patients had significantly better Relapse-Free Survival (RFS) outcomes than Group II
(p=0.0004).

To further characterize the differences between Group I and II tumors, we
performed a supervised analysis (2-class SAM with 1% FDR) using the major
dendrogram branch division that separated Group I and II tumors to define the two
supervising groups. This analysis identified 822 genes for which Group I and II tumors
showed significant differential expression. This gene set, called the “estrogen-SAM” list,
was then used to hierarchically cluster the 65 Luminal tumors (Figure 3), which as

expected, resulted in a very similar grouping of samples when compared to that using the
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383 estrogen-induced genes. Kaplan-Meier analysis showed that using the estrogen-SAM
list grouped the tumors into two groups (referred to as Group IE and IIE) that predicted
RFS (p=0.019, Figure 4A).

Group IE tumors showed high expression of XBP1, FOXA1, PR and many
ribosomal genes (Figure 3B-E). According to EASE, the GO categories “transcriptional
regulation”, “DNA binding”, and “extracellular” were over-represented relative to chance
in Group IE tumors. Group IIE tumors showed the high expression of a prominent
proliferation signature®*~° including Ki-67, MYBL2, Survivin, STK6, and CCNB2 (Figure
3G); these first four genes plus CCNB1 form the basis for the proliferation portion of the
Paik et al. “Recurrence Score” predictor™, which is a gene expression-based outcome
predictor for ER+/node-negative, tamoxifen-treated patients. Recently Dai et al.
performed a supervised analysis for genes that correlated with outcomes in patients with
high ER expression relative to age and identified this same proliferation signature as the
main determinant for predicting patient outcomes'’; however, they identified few genes
associated with good outcomes.

Group IIE tumors also showed high expression of a cluster of MAGE-A genes
(Figure 3F), which have been associated with an increased recurrence risk®’ and poor
tumor differentiation®®. Figure 3H shows Group IIE tumors have high expression of
genes with functions in the Interferon-pathway and apoptosis such as FLIP/CFLAR,
which is an inhibitor of TNFR-mediated apoptosis®’. Several anti-apoptosis genes
including FLIP, AVEN, Survivin and BCL2A1 showed high expression in Group IIE,
suggesting an impaired ability to undergo cell death. Recent reports have shown that high

expression of FLIP** or BCL2A1*"** can directly contribute to chemoresistance,
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suggesting that functional inhibition of these proteins may provide a therapeutic target for

Group IIE patients. According to EASE, the GO categories “cell cycle/mitosis”, “anti-

apoptosis”, and “MHC-I”” were over-represented relative to chance in Group IIE.

Group IE-IIE classification predicts outcome in ER+ and/or PR+ tumors. To test the
Group IE-IIE classification as a clinically relevant outcome predictor, we analyzed ER+
and/or PR+ tumors from 3 published breast tumor microarray datasets™'***. We used a
Single Sample Prediction algorithm to classify tumors in each test dataset, which
involved creating Group IE and IIE centroids/average profiles from the training dataset
(see Methods). Kaplan-Meier analysis (Figure 4B-D) showed that Group IE tumors had
significantly better RFS in all test datasets. Figure 5 shows that the Group IE-IIE
classification was also a significant predictor of Overall Survival (OS) for the test

datasets in which OS data was available’?*

. Furthermore, by decreasing the FDR in
SAM, we were able to define Groups IE and IIE using a reduced estrogen-SAM list of

113 genes without any loss of predictive ability (Table 1).

Multivariate analysis. Multivariate Cox proportional hazards analysis was performed on
the Chang et al. dataset (Table 2). Using RFS and OS as the endpoints, multivariate
analysis showed that classifying tumors as Group IE or IIE provided significant
prognostic power independent of standard clinical factors (p<0.0001 using RFS, p=0.001
using OS). The Group IE-IIE designation had the strongest association of all variables

with RFS and OS.
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In multivariate analyses that included Chang et al.’s> «

wound-response”
signature and van’t Veer et al.’s** “70-gene signature” along with the clinical variables,
the Group IE-IIE classification continued to provide significant prognostic power
independent of other variables in the model (p=0.014 using RFS, p=0.042 using OS,
Table 3). The performance of the 70-gene and wound-response signatures in this
multivariate analysis may be optimistically high because a subset of the patients in the
Chang et al. dataset was used to train/optimize these two signatures; therefore, the ability

of the Group IE-IIE classification to show independent prognostic power in a model

containing these two predictors indicates its usefulness in predicting outcomes.

Group IE-IIE associations with clinical and biological parameters. To examine the
hypothesis that Group IE may be more differentiated than Group IIE tumors, we
determined whether an association existed between this classification and histological
grade. Two-way contingency table analysis showed significant association between grade
and Group IE-IIE class (Table 4), with grade 1 and 3 tumors more likely to be classified
as Group IE and IIE, respectively. Cramer’s V statistic, which measures the strength of
association between two variables in a contingency table, indicated a substantial
association (Cramer’s V>0.36) between grade and Group IE-IIE class for all datasets. For
the Sorlie et al. dataset, p53 mutation data was available and a two-way contingency table
analysis showed a significant association between p53 status and Group IE-IIE class,

with Group IIE more likely to be p53 mutant (p=0.0019; Cramer’s V=0.44).
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Comparison of the Group IE-IIE classification to the Luminal A-B classification.
We compared the Group IE-IIE classification to the Luminal A-B classification™. To
identify Luminal A and B tumors in the three test datasets, we used the Single Sample
Predictor developed in Hu et al.”®, which employs centroids for each of the five breast
tumor “intrinsic subtypes”. We then reclassified Luminal A and B tumors from each
dataset as Group IE or IIE. Kaplan-Meier analyses showed that the Group IE-IIE
classification did equally well or slightly better than the Luminal A-B classification in

separating Luminal tumors into two groups with different survival outcomes (Table 5).

DISCUSSION

The search for markers that predict long-term outcomes in hormone receptor-
positive tamoxifen-treated patients has been an intense area of study. Genomic analyses
have contributed to this area, with the development of several predictive gene sets and
assays based upon the selection of genes that directly correlate with patient/tumor

outcomes'* '3

. We took a different approach and selected genes using no knowledge of
outcomes and instead, selected genes based upon regulation by estrogen and their natural
patterns of expression in primary tumors. The 822-gene estrogen-SAM list identified
many genes that may help explain the outcome differences seen in ER+ and/or PR+
patients. Good outcome group IE tumors tended to be more differentiated and highly
expressed a subset of estrogen and GATA3-regulated genes. Conversely, poor outcome
Group IIE tumors were more likely to be poorly differentiated. Association of the Group
IE-IIE profile with grade is expected because grade includes a measure of proliferation,

which is an important determinant of outcomes in ER+ and/or PR+ patients®'*!*"?,
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However, because the Group IE-IIE distinction was significant in a multivariate analysis
with grade included, this distinction adds prognostic information beyond what grade
provides.

We used three published datasets as test sets and confirmed that the Group IE-IIE
classification was a significant predictor in ER+ and/or PR+ patients. We note, however,
that the relapse rates differed between datasets and that the Group IE tumors showed 7-
40% relapse rates depending on the dataset (Figure 4). This underscores the fact that
relapse rates are dependent upon the characteristics of the patient set used. For example,
comparing relapse rates in the Chang et al. dataset to those observed in Paik et al. may
not be valid because the Paik et al. dataset was comprised of tamoxifen-treated node-
negative patients, while the majority of the Chang et al. patients received no adjuvant
therapy and many were node-positive. However, the multivariate analysis we performed
on the Chang et al. dataset indicated that our predictor had significant prognostic value
independent of standard clinical factors and other gene expression-based predictors, and a
hazard ratio of 2.90 for Group IIE vs. IE indicates our predictor has potential clinical
utility. By limiting the Chang et al. dataset to those patients who received adjuvant
therapy and were Stage I+11, we observed a relapse rate for Group IE patients of 12%
(Figure 5D, p=0.007) and significance for overall survival outcomes (data not shown).
This indicates that given a patient population similar to Paik et al., our predictor’s “good
group” can achieve outcomes similar to the Paik et al. “Low Risk” group.

An important unanswered question is whether the Group IE-IIE distinction
predicts pure prognosis, responsiveness to endocrine therapy, or both. From analyses of

patient subsets in the Chang et al. dataset, it is clear that the Group IE-IIE distinction
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predicts outcome in ER+ and/or PR+ patient subsets either receiving or not receiving
adjuvant hormone therapy (data not shown). Paik et al. observed similar results for their
predictor'®. This is not surprising because half (8/16) of the Paik et al. genes were present
in the “estrogen-SAM” gene set. However, an advantage of our analysis is that it provides
additional biological information (e.g. anti-apoptosis genes) that the Paik et al. and other
predictors did not. Paik et al.’s finding that their predictor also predicts benefit of
chemotherapy43 may also apply to ours. Thus, the most pressing questions remaining
regarding the Group IE-IIE classification are (1) whether Group IE and IIE gain similar
benefits from chemotherapy, and (2) because Group IIE tumors do poorly in the presence

of tamoxifen, might they do better if given alternative endocrine therapies.
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TABLES

Table 2.1. Summary of Kaplan-Meier Relapse-Free Survival analyses performed for each

tumor dataset using the estrogen-induced or estrogen-SAM gene lists.

Training Testing
Luminals | Maetal. Sorlieet al. | Chang et al.
ER+ and/or | ER+ ER+ and/or
(65 tumors, | PR+ and/or PR+ | PR+
Gene list 10 events) (60 tumors, | (90 tumors, | (250 tumors,
28 events) 45 events) 86 events)
383 estrogen- p=0.0004 0.044 0.0008 8.1e-5
induced gene
list
822 gene 0.019 0.0006 0.0007 1.3e-5
estrogen-SAM
list
113 gene 0.007 0.008 0.001 6.6e-6
reduced

estrogen-SAM
list

Each cell in the table contains the p-value calculated using the log-rank test for the
Kaplan-Meier relapse-free survival curves produced for the two tumor groups identified

by each gene list in each tumor dataset. p-values <0.05 are in bold.
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Table 2.2. Multivariate Cox proportional hazards analysis of various prognostic factors
in relation to Relapse-Free Survival and Overall Survival for ER+ and/or PR+ tumors in

the Chang et al. (2005) dataset.

Relapse-Free survival

Overall survival

Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)

Group IIE vs. IE 2.90(1.71-4.92) | <0.0001 | 3.64 (1.67-7.95) | 0.001

Age, per decade 0.48 (0.31-0.74) | 0.001 0.53 (0.30-0.93) | 0.028

Size 1.59 (1.01-2.48) | 0.044 1.45(0.80-2.64) | 0.22

Tumor grade 2,3 vs. 1 1.80 (0.99-3.3) 0.056 3.57 (1.24-10.23) | 0.02

Node status 2.11(1.08-4.11) | 0.028 1.85 (0.74-4.61) | 0.19

Hormonal or chemotherapy | 0.36 (0.18-0.71) | 0.003
vs. no adjuvant therapy

0.47 (0.19-1.19) | 0.11

Size was a binary variable (0= diameter of 2cm or less, 1= greater than 2cm); node status
was a binary variable (0= no positive nodes, 1= one or more positive nodes); age was a
continuous variable formatted as decade-years. Tumors were classified as Group IE or
IIE using the estrogen-SAM derived list. Variables found to be significant (p<0.05) in the
Cox proportional hazards model are shown in bold.
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Table 2.3. Multivariate Cox proportional hazards analysis for ER+ and/or PR+ tumors in
the Chang et al. (2005) dataset using various prognostic factors including the Group IE-
IIE classification, the van’t Veer et al. (2002) 70-gene signature, and the Chang et al.
(2005) Wound-Response signature.

Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Group IIE vs. IE 2.01(1.15-3.49) | 0.014 2.31(1.03-5.19) | 0.042
70-gene signature (poor vs. | 2.76 (1.50-5.06) | 0.001 4.17 (1.62-10.73) | 0.003
good)
Wound-response signature | 2.30 (1.09-4.85) | 0.028 2.80(0.82-9.55) | 0.10
(activated vs. quiescent)
Age, per decade 0.56 (0.36-0.87) | 0.010 0.64 (0.36-1.14) | 0.13
Size 1.45(0.93-2.28) | 0.10 1.34 (0.74-2.45) | 0.34
Tumor grade 2,3 vs. 1 0.93(0.47-1.82) | 0.82 1.62 (0.53-4.93) | 0.40
Node status 1.72 (0.89-3.33) | 0.11 1.51(0.62-3.70) | 0.36
Hormonal or chemotherapy | 0.37 (0.19-0.74) | 0.005 0.46 (0.18-1.14) | 0.095
vs. no adjuvant therapy

Tumor size, node status, age, and Group IE-IIE were defined as in Table 1. The 70-gene
signature and the wound-response signature classifications were taken exactly as
calculated in Chang et al. (2005), and their performances in multivariate analysis may be
optimistic. Variables found to be significant (p<0.05) in the Cox proportional hazards
model are shown in bold.
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Table 2.4. Association between tumor grade and the Group IE-IIE classification
(estrogen-SAM derived list).

65 luminal Ma et al. Sorlie et al. Chang et al.
tumors from ER+/PR+ ER+/PR+ ER+/PR+
training set tumors tumors tumors
Two-way
contingency table Group Group Group Group
IE lHE IE lHE IE lHE IE IIE
Histologic grade (# of patients) (# of patients) | (# of patients) | (# of patients)
1 (well) 11 0 3 0 10 0 50 24
2 (intermediate) | 16 12 29 10 32 |11 46 |49
3 (poor) 9 14 6 12 16 20 13 64
Statistics for two-
way contingency
table analysis
p-valuet 0.003 0.005 0.001 1.7¢-9
Cramer’s V7 0.43 0.42 0.39 0.40

1 p-value calculated from Chi-square test on contingency table. 11 Cramer’s V statistic
(value can range from 0 to 1) measures the strength of association between the two

variables analyzed in the contingency table, with 1 indicating perfect association and 0
indicating no association.
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Table 2.5. Comparison of the Group IE-IIE classification to the Luminal A-B
classification in predicting RFS for three datasets of Luminal epithelial tumors.

Ma et al. Sorlieetal. t Chang et al.
Classification | Survival analysis
method statistic (43 tumors, (57 tumors, 20 (194 tumors,
20 events) events) 62 events)
Luminal A-B | p-value p=0.011 0.14 1.1e-9
classification
Hazard ratio of Bvs. A | HR=3.1 (0.9- 10.6) | 1.9 (0.7-5.0) 4.2 (2.4-17.5)
(95% CI)
Group I-11 p-value 0.0002 0.076 1.3e-6
classification
Hazard ratio of IT vs. I 4.9 (1.8-13.0) 2.2 (0.8-5.8) 4.0 (2.4-6.6)

(95% CI)

TWhen the Kaplan-Meier disease-specific survival curves were compared, the Group IE-
IIE classification scheme showed significantly different survival curves (p=0.031)
whereas the Luminal A-B classification scheme did not (p=0.17).
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Figure 2.2. Genes regulated by estrogen and/or GATA3 in vitro are present in the
primary tumor Luminal epithelial/ER+ gene cluster. A. Scaled-down representation of
118 tumors hierarchically clustered using the 1300-gene intrinsic list developed by Hu et

1.° B. Luminal/ER+ gene cluster. The tumor sample dendrogram is colored as:
blue=Luminal epithelial subtype, pink=HER2+/ER-, red=Basal-like, and green=Normal
Breast-like.

41



Group IE Group lIE i I VO N VO

ik aaeillEsl T retative 1o n:uam CXPressIon

in 2 XO0948

ilar to RIKEN 4933
sin VI NM_ 004999
arhinaphalangeal syndrom.
P domain, apoplosis -
binding motif prot :
MM U] 2002

M 014048

1 NNT_005080

E
MEL my
ibos y nulin 1 MM 001030
Spe 5 AsE0C 7 AF144487
thnumml 'prmr, 525 NM_001028
Ribosomal prote; 15a BCDO169T
| ] Riboso protein 1L.27 BOOO1700
c Xo9392
Ribosomal protein 1 like 1 BCO17360
Ribosomal protein $6 MNh_001010
Gilioma tumor suppressor candidate region gene 2 WAL 015710
l ABOGIE3
Ribosomal protein L31 BCO17343
Ribosomal protein L34 BC0O01773
Ribosomal protein NA_182777
- I .
ac

9F11 AK0O23156

e I NM_014112

Hypothetical protein FLI21827 BC012802
sociated protein 1 MNh_024793
01905
ced 2 NM_021785
receplor M
ontaining SOCS box protein S
£ NM_014714

SPRY doma
KIAADSS) pene produ,
histone acetyltrans K024102

145252

-3 BCOD7588

cotylglucosam
Hast cell factor C1 n.-k

Mabal ABO3T745
Chromosome 14 open, r\.nding frame 11 NAM_018453
/ ne in 21220

omosome 20 (srk.n rendis g rr-un-: 23 MNM_024704
cine m...pmr. beta BCO32
A-testis-expressed 1-like BCOODDGE

Phosphoinositide-3-kinase, catalytic, gamma polypeptide X83368

Molanome antigen, fam 2
i member 2 \1 0BOZ46
ol resistant associated protein 3 BCO0T228
2 NM_005367
CO17380

Me! o antig
a c 5 survivin BCOOOTS4
1 006607
; tumnor- :rlln-lnnmng AFOD5289
ns form M 004219
& ne/fhreonine kinase 6 NAM_003600
I Thi o ating ‘nf)l“\,l 20 T!c 016292
< A, 17KDa 43
nily member 20 \\I l)(lﬁx-lﬁ
I)|~.>,s Iﬂrg\! I!nlnnlﬂg 7 Drosophila NM_014750
M2 polyper NEO61R
\[\l A never in milosis gene a- r\:f d Kinase 2 WNM_002497
Kinesin family member 23 NM_ 138555
Polo-like k:n. se 4 Drosophila BOOGOT2
Antigen identified by monoclonal antibody Ki-67 X65550
Bloom syndrome NAM_000057
Kines NI 2
15 open reading frame 23 BC045730
2 @ omplement - A N 35
ans i wior 1 NM 005225
rine :m._m..m kinase 17b apoptosis-inducing MM_004226
B 18 induced gene 2 NM_00405]
pecific ll! phosphata 2 NM 004418
SPE and FADD- ||L- poplosis regulator 97075
pidl, 1_015907
karyotic trans on initiation factor 2, subunit 2 beta, M29536
Hypothetical protein FLIZTOT0 AKO74126
||\])U|J|I.NL‘!] protein FLIZ4389 MM 152649
prosome, E betat 10 BCO17198
SF1 A-associated via death domain NM_[ 53425
ron stimulated gene 20k,
H Ubigu onjugating Y 2L
helial stromal interaction | breast NAL 033255
Ll f duei NM_ 002053
s iption
Zin > | E] ‘\\[ 022750
2 ohgoadeny 5 &Y 3, 100kDa NM_006187
domain and R 5 2
srfers ble protein clone IF1-15K M13755
n 44 WA 006417
-(!llg!NI enylate synthetase 1, 40/46kDa NM_002534
tivator subunit 2 NN OD2B1E
P type, 8 NM 148919
2-microglobulin BCO
L A-G histocom patibility a mgu\ class 1, G MOOD6ES
X13114
MMajor histocom patibility complex, class 1. B ABOOR102
'\l.um histocom patibility complex, class I, F BCO09260
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2.1) using the 822-gene estrogen-SAM derived list. A. Scaled-down representation of the
complete cluster diagram. Group IE and IIE tumors are indicated by blue and orange,
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Figure 2.4. Kaplan-Meier survival curves of ER+ and/or PR+ tumors classified as
Groups IE or IIE using the 822-gene estrogen-SAM derived list. Survival curves are
shown for A. the 65 Luminal epithelial tumor training dataset, B. the Ma et al., C. Sorlie
et al., and D. Chang et al. datasets. p-values calculated using the log-rank test.
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Figure 2.5. Kaplan-Meier Overall Survival curves of tumors classified into Groups IE
and IIE using the 113-gene estrogen-SAM derived list. Overall survival curves are shown
for A. the Sorlie et al. and C. Chang et al. data sets. Disease specific survival curves are
shown for B. the Sorlie et al. dataset. D. Relapse-free survival curves for Chang et al.
Stage I + II patients only. p-values were calculated using the log-rank test.
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CHAPTER 3: The molecular portraits of breast tumors are conserved

across microarray platforms
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This work was published in BMC Genomics. 2006 Apr 27; 7:96.

ABSTRACT

Background

Validation of a novel gene expression signature in independent data sets is a critical step
in the development of a clinically useful test for cancer patient risk-stratification.
However, validation is often unconvincing because the size of the test set is typically
small. To overcome this problem we used publicly available breast cancer gene
expression data sets and a novel approach to data fusion, in order to validate a new breast

tumor intrinsic list.

Results

A 105-tumor training set containing 26 sample pairs was used to derive a new breast
tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation

signature that was not present in previous breast intrinsic gene sets. We tested this list as



a survival predictor on a data set of 311 tumors compiled from three independent
microarray studies that were fused into a single data set using Distance Weighted
Discrimination. When the new intrinsic gene set was used to hierarchically cluster this
combined test set, tumors were grouped into LumA, LumB, Basal-like, HER2+/ER-, and
Normal Breast-like tumor subtypes that we demonstrated in previous datasets. These
subtypes were associated with significant differences in Relapse-Free and Overall
Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic
subtype classifications added significant prognostic information that was independent of
standard clinical predictors. From the combined test set, we developed an objective and
unchanging classifier based upon five intrinsic subtype mean expression profiles (i.e.
centroids), which is designed for single sample predictions (SSP). The SSP approach
was applied to two additional independent data sets and consistently predicted survival in

both systemically treated and untreated patient groups.

Conclusions

This study validates the “breast tumor intrinsic” subtype classification as an objective
means of tumor classification that should be translated into a clinical assay for further
retrospective and prospective validation. In addition, our method of combining existing
data sets can be used to robustly validate the potential clinical value of any new gene

expression profile.
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INTRODUCTION

The classification of human tumors using microarray data has been an area of
intense research, but it remains a daunting task to validate a new profile and generate a
clinically useful test. Many different gene expression-based predictors have been
developed for breast cancer'”, and two different gene expression predictors have reached

the final step of prospective clinical trial testing'®'!

. Using cDNA microarrays, we
previously identified five distinct subtypes of breast tumors arising from at least two
distinct cell types (basal-like and luminal epithelial cells)'. This molecular taxonomy
was based upon an “intrinsic” gene set, which was identified using a supervised analysis
to select genes that showed little variance within repeated samplings of the same tumor,
but which showed high variance across tumors'. We showed that an intrinsic gene set
reflects the stable biological properties of tumors and typically identifies distinct tumor
subtypes that have prognostic significance, even though no knowledge of outcome was
used to derive this gene set®' >,

A major challenge for microarray studies, especially those with clinical

1316 Duye to the practical barriers of cost and access to large

implications, is validation
numbers of fresh frozen tumor samples with associated clinical information, very few
microarray studies have analyzed enough samples to allow promising initial findings to
be sufficiently validated to justify the major investment required for clinical testing. An
efficient approach would be to use public gene expression data repositories as test sets;
however, it has been difficult to compare and/or combine data sets from independent

laboratories due to differences in sample preparation, experimental design, and

microarray platforms. An accepted method for validation is to derive a
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prognostic/predictive gene set from a “training set” and then apply it to a completely
independent “test set”'’. The “purest” test sets are comprised of samples not generated
by the primary investigators to remove any possibility of bias'®. In this study, we
illustrate the successful application of these principles by (1) deriving a new breast tumor
intrinsic gene list that identifies the “intrinsic” biological features of breast tumors and
(2) validating this predictor using a combined test set of 311 breast tumor samples
compiled from the public domain. These analyses show that the breast tumor intrinsic
subtypes are significant predictors of outcome when correcting for standard clinical
parameters, and that common patterns of expression and outcome predictions can be

identified in data sets generated by independent labs.

MATERIALS AND METHODS

Sample collection, RNA isolation and microarray hybridization. 105 fresh frozen
breast tumor samples and 9 normal breast samples were obtained using IRB-approved
protocols at 4 institutions: the University of North Carolina at Chapel Hill (UNC-CH),
The University of Utah, Thomas Jefferson University, and the University of Chicago.
This sample set represents an ethnically and geographically diverse cohort. Patients were
heterogeneously treated according to the standard of care dictated by disease stage, ER
and HER?2 status.

Total RNA was purified from each sample using the Qiagen RNAeasy Kit. RNA
integrity was determined using the RNA 6000 Nano LabChip Kit and Agilent 2100
Bioanalyzer. Total RNA amplification and labeling were done as previously described”.

Microarray hybridizations were performed using Agilent Human oligonucleotide (1Av1,
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1Av2 and custom designed 1Av1-based) microarrays using 2ug of Cy3-labeled common
reference sample that is a modified version of the Stratagene Human Universal
Reference®®, and 2pg of Cy5-labeled experimental sample. Microarrays were hybridized

overnight, washed, dried, and scanned as described®. The image files were analyzed with
GenePix Pro 4.1 and loaded into the UNC-CH Microarray Database

(https://genome.unc.edu/) where a Lowess normalization procedure was performed to

adjust the Cy3 and Cy5 channels®’. All primary microarray data associated with this

study are available at https://genome.unc.edu/pubsup/breastTumor/ and in the GEO

(http://www.ncbi.nlm.nih.gov/geo/) under the accession number of GSE1992, series

GSM34424-GSM34568.

Identification of the Intrinsic gene set. We derived a new breast tumor intrinsic gene
set, referred to as the “Intrinsic/UNC” list, using a training set composed of the 105
tumor samples described above, 9 normal breast samples, and 26 sample pairs (in total,
represented by 146 microarrays). 15, 9, and 2 of the 26 sample pairs were different
physical pieces of the same tumor (taken at the same time point), tumor-metastasis pairs
and normal sample pairs, respectively. The background subtracted, Lowess normalized
log, ratio of Cy5 to Cy3 intensity values were first filtered to select genes that had a
signal intensity of at least 30 units above background in both the Cy5 and Cy3 channels.
Only genes that met these criteria in at least 70% of the 146 microarrays were included
for subsequent analysis. Next, we performed an “intrinsic” analysis as described
previously® using the 26 sample pairs and 86 additional microarrays. An intrinsic analysis

identifies genes showing low variability in expression within paired samples but high

49


https://genome.unc.edu/
https://genome.unc.edu/pubsup/breastTumor/
http://www.ncbi.nlm.nih.gov/geo/

variability in expression across different tumors; for each gene a ratio of “within-pair
variance” to “between-subject variance” is computed. Genes with ratios below one
standard deviation of the mean ratio were defined as “intrinsic”. This analysis resulted in
1410 microarray elements representing 1300 genes being identified as “intrinsic”. In
order to obtain an estimate of the number of false-positive intrinsic genes, we permuted
the sample labels to generate 26 random pairs and 86 non-paired samples. This
permutation was performed 100 times and the intrinsic scores were calculated for each.
These permuted scores were used to determine a threshold on the intrinsic score
corresponding to a false discovery rate (FDR) less than 1%. The selected threshold
resulted in 1410 microarray features being called significant with a median FDR=0.3%
and 90th percentile FDR=0.5%. (See Tusher et al. for a complete description of this

calculation®®).

Creation and analyses of the combined test set. The independent test set was a 315-
sample “combined test set” consisting of three DNA microarray datasets (Sorlie et al.
2001 and 2003*7, van’t Veer et al. 2002° and Sotiriou et al. 2003'%). To combine these
datasets obtained from different microarray platforms, we performed the following pre-
processing methods. First, the R/G ratios in each dataset were log, transformed and
Lowess normalized®’. Next, missing values were k-NN imputed™. Gene annotations from
each dataset were converted into UniGene Cluster IDs (UCIDs, Build 161) using the
SOURCE database*’, and multiple occurrences of a UCID were collapsed by taking the
median value for that ID within each experiment and platform, which resulted in ~2800

genes having expression data in all three datasets. Next, Distance Weighted
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Discrimination® was performed in a pair-wise fashion by first combining the Sorlie et al.
and Sotiriou et al. datasets, and then combining this with the van’t Veer et al. dataset to
make a single dataset. In the final pre-processing step, each microarray experiment was
normalized such that each column/experimental sample was standardized to N(0,1), and
each row/gene was median centered. 306 of the 1300 Intrinsic/UNC genes had
microarray data present in the combined test set and were used in a two-way average-
linkage hierarchical cluster analysis“. Cluster results were visualized using the program

“Treeview”.

Derivation of the Single Sample Predictor. The Single Sample Predictor (SSP) is a
Nearest Centroid-based method based upon the work of Hastie and Tibshirani****. Our
SSP classifies an individual sample according to its nearest centroid as determined by
Spearman correlation. To derive our SSP, we utilized the 315-sample combined test set
from Figure 2 to create centroids for each of the five intrinsic subtypes (LumA, LumB,
HER2+/ER-, Basal-like and Normal Breast-like). Please note that we did not create a
centroid for the IFN group because it failed significance in multivariate testing, but did
create a centroid for the Normal Breast-like group because we feel it is important to be
able to identify true normal samples; an H&E examination of most tumor samples falling
into the Normal Breast-like category shows that this is occurring mainly because of too
much normal tissue contamination.

To create each intrinsic subtype centroid, we averaged the gene expression
profiles for samples clearly assigned to each subtype (limiting the analysis to 249 of the

315 samples) using the hierarchical clustering dendrogram as a guide (Figure 2). We then
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applied the SSP to two independent test datasets: (1) the Ma et al. 60-sample ER+
tamoxifen-treated tumor dataset and (2) the Chang et al. 96-sample local only-treated
tumor dataset. By matching UCIDs, microarray data for as many as possible of the 306
Intrinsic/UNC genes was obtained from these 2 datasets. To remove microarray
platform/source systematic biases, we applied DWD to the 2 test datasets relative to the
combined test set. The SSP was then used to classify tumors by intrinsic subtype in these
2 test datasets. Using similar methods, the SSP was also applied to the 105-sample

training set used to derive the intrinsic/UNC gene set.

Survival analyses. Kaplan-Meier survival plots were compared using the Cox-Mantel
log-rank test in WinSTAT for Excel (R. Fitch Software). Two-way contingency table
analysis and unpaired Student’s t-test were done using WinSTAT. For the “combined test
set”, multivariate Cox proportional hazards analysis was performed using SAS (Cary,

NC).

RESULTS

Identification of the Intrinsic/lUNC gene set. Our goals were to (1) create a new breast
tumor intrinsic list, (2) validate this list on an independent dataset to show the clinical
significance of the “intrinsic” classifications, and (3) to derive an objective “intrinsic
subtype” classifier that could be used clinically (see Figure 1 for overview of analyses
performed). An intrinsic analysis is a “within class” versus “across classes” analysis that
identifies genes that show low variability within a group (i.e. a tumor-metastasis pair),

but which show high variation in expression across different tumors; in essence, one is
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selecting for genes that are consistently expressed when individual tumors are examined,
but that vary in expression across different tumors. To develop a new breast tumor
intrinsic gene set (Intrinsic/UNC), we assayed a training set of 105 breast tumor samples
and 9 normal breast samples, which contained 26 sample pairs (146 microarray
experiments in total), using Agilent oligo microarrays. Using the intrinsic analysis
method as described in Sorlie et al. 2003°, we identified an intrinsic gene set of 1410
microarray elements representing 1300 genes. We felt it important to create a new
intrinsic list because first, we wanted to take advantage of newer microarrays (Agilent
arrays with 17,000 genes vs. 8,000 gene cDNA microarrays previously used’), and
second, we wanted to use paired tumor samples that were not before-and-after
chemotherapy pairs, but were instead pre-treatment tumor pairs. The Intrinsic/UNC gene
set showed overlap with a previous breast tumor intrinsic gene set (108 genes in common
with the Intrinsic/Stanford gene set of Sorlie et al. 2003°), but also showed a significant
increase in gene number likely due to the greater number of genes present on current

microarrays.

Validation of the Intrinsic/UNC gene list. To evaluate the Intrinsic/UNC gene set on an
independent test dataset, we applied it to a “combined test set” of 315 breast samples
(311 tumors and 4 normal breast samples) using hierarchical clustering methods as have
been done previously' . The “combined test set” of 315 breast samples was a single data
set created by combining together the data from Sorlie et al. 2001 and 2003 (cDNA
microarrays)™’, van’t Veer et al. 2002 (custom Agilent oligo microarrays)’ and Sotiriou

et al. 2003 (cDNA microarrays)'’. We created a single data table of these three sets by
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first identifying the common genes present across all three microarray data sets (2800
genes). Next, we used Distance Weighted Discrimination (DWD) to combine these three
data sets together’’. DWD is a multivariate analysis tool that is able to identify systematic
biases present in separate data sets and then make a global adjustment to compensate for
these biases; in essence, each separate data set is a multi-dimensional cloud of data
points, and DWD takes two points clouds and shifts one such that it more optimally
overlaps the other. Finally, we determined that 306 of the 1300 unique Intrinsic/UNC
genes were present in the combined test set and performed a hierarchical clustering
analysis of these 306 genes and 315 samples (Figure 2). We analyzed the combined test
set instead of analyzing each of the 3 datasets separately because we believed this would
provide more statistical power to perform multivariate analysis, and would yield more
meaningful results because any finding would need to be shared/present across all 3
datasets. Remarkably, despite the loss of genes in the Intrinsic/UNC list due to the
requirement of having to be present on 4 different microarray platforms, the hierarchical
clustering analysis in Figure 2 identified the five main subtypes/groups corresponding to
the previously defined HER2+/ER-, Basal-like, LumA, LumB and Normal Breast-like
tumor glroupsz’3 .

As shown in previous studies, a HER2+ expression cluster was observed in the
cluster analysis of the “combined test set” and contained multiple genes from the 17q11
amplicon including HER2/ERBB2 and GRB7 (Figure 2D). The HER2+ intrinsic subtype
(pink dendrogram branch in Figure 2B) was predominantly ER-negative (i.e. HER2+/ER-
) as previously shown. A Basal-like expression cluster was also present and contained

genes (i.e. c-KIT, FOXC1 and P-Cadherin) previously identified to be characteristic of
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basal epithelial cells (Figure 2F). Using the program EASE*', the Gene Ontology (GO)
categories “extracellular space” and “extracellular region” were over-represented relative
to chance in the Basal epithelial gene cluster. As shown in previous studies, a
Luminal/ER+ expression cluster was present and contained ER, XBP1, FOXA1 and
GATAS (Figure 2C). GATAS has recently been shown to be somatically mutated in some
ER+ breast tumors, and some of the genes in Figure 2C are GATA3-regulated (FOXA1
and TFF3)*, thus showing the functional clustering of a transcription factor and some of
its direct targets. The Gene Ontology (GO) categories “transcription regulator activity”
and “DNA binding” were over-represented relative to chance in the Luminal/ER+ gene
cluster.

The most significant difference between the previous Intrinsic/Stanford gene lists
and the new Intrinsic/UNC gene list was that the latter contained a large proliferation
signature (Figure 2G)>. As expected, EASE analysis showed that the GO categories
“mitotic cell cycle” and “M phase” were over-represented relative to chance in the
proliferation signature. The inclusion of proliferation genes in the Intrinsic/UNC gene set,
but not in the Intrinsic/Stanford gene set, is likely due to the fact that the
Intrinsic/Stanford lists were based upon before-and-after chemotherapy paired samples of
the same tumor, while the Intrinsic/UNC list was based upon paired samples taken at the
same time point with respect to chemotherapy (22/26 were pre-treatment pairs). This
finding suggests that tumor cell proliferation rates do vary before and after
chemotherapy, but that proliferation is a reproducible and intrinsic feature of a tumor’s

expression profile.
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A possible new tumor group (IFN) characterized by the high expression of
Interferon (IFN)-regulated genes was observed in the combined test set analysis (Figure
2E). According to EASE, the GO categories “immune response” and “defense response”
were over-represented relative to chance in the interferon-regulated gene cluster. This
cluster contained STAT1, which is thought to be the transcription factor responsible for
mediating IFN-regulation of gene expression®**’. Genes in the IFN cluster have been
linked to lymph node metastasis and poor prognosis”">. In summary, the Intrinsic/UNC
list contained more genes than previous lists, encompasses most features of the
Intrinsic/Stanford list (i.e. Basal, Luminal/ER+, and HER2-amplicon gene clusters) and

adds the biologically and clinically relevant proliferation signature.

Tumor subtypes identified by the Intrinsic/lUNC gene set are predictive of outcome.
To determine how many biologically relevant tumor subtypes/groups might be present
within the cluster in Figure 2, we used 3 criteria, which resulted in the identification of 6
potential subtypes/groups. The first criteria was the simple and obvious dendrogram
branching pattern (Figure 2B) suggesting six groups. Second was the observation that
each of the six groups uniquely expressed distinct sets of known biologically relevant
genes including the basal, luminal/ER+, HER2-amplicon, IFN-regulated, and
proliferation-associated signatures. Third was our knowledge of the previous
classifications made by the Sorlie et al. 2003 Intrinsic/Stanford list of the
Stanford/Norway samples: there was a high concordance (78%) between the
classification of these samples made using either the Sorlie et al. 2003 Intrinsic/Stanford

list or the Intrinsic/UNC list (excluding the IFN samples). Therefore, the 311
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tumors/patients were stratified into six groups, and we proceeded to look for differences
in outcomes and associations with other clinical parameters between these six groups.
The Intrinsic/UNC gene set identified tumor groups/subtypes that were predictive of
Relapse-Free Survival (RFS, Figure 3A) and Overall Survival (OS, p=0.000001, data not
shown) in Kaplan-Meier survival analysis on the combined test set. As previously seen in
Sorlie et al.>*, the LumA group had the best outcome while the HER2+/ER-, Basal-like,
and LumB groups had significantly worse outcomes. The new IFN class had a Kaplan-
Meier survival curve similar to that of LumB, and both showed elevated proliferation
rates when compared to LumA (Figure 2G).

In the combined test set, the standard clinical parameters of ER status, node
status, grade, and tumor size (note: data for clinical HER2 status was not available) were
significant predictors of RFS using Kaplan-Meier analysis (Figure 4), thus showing that
the act of combining three different patient sets together did not destroy the prognostic
abilities of these standard markers. In a multivariate Cox proportional hazards analysis of
the combined test set using these standard clinical parameters, size, grade and ER status
were significant predictors of RFS (Table 1A).

To further evaluate the prognostic/predictive value of the intrinsic subtype
classification, we performed multivariate Cox proportional hazards analysis of the
combined test set using the six intrinsic subtypes/groups defined above and the five
standard clinical parameters with RFS, OS, or DSS as the endpoint (Table 1B shows
analysis for RFS). The intrinsic subtypes, when added to the multivariate model
containing the standard clinical variables, resulted in a model significantly more

predictive of RFS, OS, and DSS (p=0.01, 0.009, and 0.04 respectively, by the likelihood-
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ratio test). In multivariate analysis for RFS (Table 1B), the Basal-like, LumB and
HER2+/ER- subtypes had hazard ratios significantly greater than 1 (LumA served as the
reference group), while the IFN and Normal Breast-like groups were not significant.
Thus, the intrinsic subtypes classifications of LumA, LumB, Basal-like and HER2+/ER-
add new and important prognostic information beyond what the standard clinical

predictors provide.

Associations of the Intrinsic subtypes with clinical and biological parameters. To
further characterize and better understand the intrinsic subtypes, we determined whether
an association existed between intrinsic subtype and grade, node status, ER status, age,
and tumor size in the combined test set. Two-way contingency table analysis showed
significant association between grade and subtype, with HER2+/ER- and Basal-like
tumors more likely to be grade 3 (Table 2). The Cramer’s V statistic**, which measures
the strength of association between two variables in a contingency table, indicated a
substantial association (Cramer’s V>0.36) between grade and subtype. Two-way
contingency table analysis did not show significant association between node status and
subtype (p=0.44), but did show significant association between ER status and subtype
(p<0.0001; Cramer’s V=0.72) and between tumor size and subtype (p=0.01; Cramer’s
V=0.17). As would be expected, ER+ tumors were more likely to be LumA or LumB. As
indicated by the low Cramer’s V (Cramer’s V<0.19 indicates a low relationship), tumor
size and subtype were not strongly correlated.

To determine association between age and subtype, we used an unpaired

Student’s t-test to compare the average ages of diagnosis of each tumor subtype.
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Interestingly, the average age of diagnosis for HER2+/ER- tumors was significantly less
than that for all other tumor types. The average age of diagnosis for LumA tumors was

significantly greater than that for LumB tumors.

Derivation and application of a Single Sample Predictor. A caveat to the above
analyses is that our classifications were based upon hierarchical clustering, which is a
powerful tool for intrinsic class discovery, but which is not suited for individual sample
classification because to classify a new sample would require a reanalysis of all samples.
Therefore, we wanted to create an unchanging and objective method to classify tumors
according to intrinsic subtype that could be clinically applicable. To this end, we
developed a Single Sample Predictor (SSP) using the combined test set hierarchically
clustered using the 306 Intrinsic/UNC genes (Figure 1). For the SSP, a mean expression
profile (i.e. centroid) was created for each subtype that was significant in the multivariate
analysis (LumA, LumB, Basal-like, HER2+/ER-) and for the Normal Breast-like group
using the combined test set (Figure 2). Next, any new sample is then compared to each
Centroid and assigned by the SSP to the nearest subtype/centroid as determined by
Spearman correlation (note: this SSP is based on methods developed by Tibshirani and

3’29’30); thus, the SSP contains five different idealized profiles, and any new

colleagues
sample is compared to each of the five profiles and assigned a profile label (i.e. subtype
name) based upon the single idealized profile it most resembled.

To validate the SSP, we tested it on two additional datasets not used previously.

The first was the 60-patient Ma et al. dataset, which represents a group of early stage

ER+ tamoxifen-treated patients®. The SSP classified these samples as follows: 2 Basal-
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like, 2 HER2+/ER~, 12 Normal Breast-like, 34 LumA, and 9 LumB. The 2 Basal-like and
2 HER2+/ER- assigned samples were excluded from a survival analysis because they
were too few for a meaningful survival analysis and possibly were misclassified ER-
negative tumors. Among the remaining samples the SSP classification was a significant
predictor of RFS (p=0.04, Figure 3B), due to the poor outcome of the LumB group. Next,
we applied the SSP to a 96-sample test set of local only (surgery)-treated patients from
Chang et al.’'. The tumor groups identified by the SSP showed significant differences in
REFS (Figure 3C, p=0.0006) and OS (p=0.001, data not shown) in Kaplan-Meier analysis,
with the poor outcome groups as expected: LumB, Basal-like, and HER2+/ER-. Thus,
the SSP identified tumor groups that are truly prognostic and have significantly different
outcomes as was seen before: namely, LumA always has the most favorable outcome,
while LumB, Basal-like and HER2+/ER- do poorly**"?.

We also applied the SSP onto the 105-sample dataset used to derive the
Intrinsic/UNC gene list, which is technically not a test set for the SSP because it was used
to derive the Intrinsic/UNC gene set. The tumor groups identified by the SSP showed
significantly different RFS (Figure 3D, p=0.02) and OS (p=0.03, data not shown) in
Kaplan-Meier analysis with the poor outcome groups again being LumB, Basal-like, and
HER2+/ER-. A subset of the 105-sample dataset (48 in total) had been previously
characterized using an immunohistochemical (IHC) analysis”, which showed that (1) all
18 Basal-like tumors were ER-negative and HER2-negative (defined as not having a 3+
score on HER2 [HC analysis), (2) all 18 luminal subtype tumors were ER-positive and
HER2-negative, and (3) all 12 HER2+/ER- subtype tumors were ER-negative and 11 out

of these 12 showed HER2-overexpression (defined as having a 3+ score on HER2 THC
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analysis). Thus, the SSP correlated with many standard clinical parameters, and was also
able to identify clinically relevant groups (i.e. LumA vs. LumB) not identifiable using the
standard clinical assays, thus indicating potential value as an objective classification

method that should be developed further as a clinically applicable test.

DISCUSSION

The development and validation of gene sets for cancer patients requires
significant resources because large training and test sets are required to achieve robust
results. In fact, microarray studies are often criticized for a lack of rigorous validation due

to small sample sizes' "'

. Therefore, we utilized a previously described microarray data
set combining method (Distance Weighted Discrimination) to create a large validation
test set of over 300 tumors, and used it to validate a newly derived gene list for breast
cancer prognostication and prediction. This approach allowed us to perform a
multivariate analysis in which we show for the first time that the intrinsic subtype
classification adds valuable information in the presence of five standard clinical
parameters. We believe this combined test set is a valid test set for use in our analysis
because after the multiple data sets were combined, the prognostic abilities of the
standard clinical variables such as ER and grade remained intact.

The remarkable power of our DWD-based approach is indicated by the fact that
although samples came from different platforms, hierarchical clustering analysis of the
combined data set managed to group samples and genes based upon biology, and not

some artifact caused by combining the data sets together. Evidence that this grouping

reflected biology and not some artifact comes from (1) the finding that various Gene
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Ontology terms were significantly over-represented relative to chance in individual gene
clusters seen in this analysis and (2) the groupings of the samples showed inter-dataset
mixing and were significant predictors of outcome in univariate Kaplan-Meier and
multivariate Cox analysis. It is also remarkable that this classification was successful in
predicting outcome despite the fact that the Intrinsic/UNC gene set was reduced from
1300 genes to 306 genes in the combined test set; this indicates the robust nature of the
intrinsic subtypes as defined by the new Intrinsic/UNC gene list.

One of the accomplishments of this manuscript was to develop an unchanging and
objective intrinsic subtype predictor that could be used routinely in the clinical setting.
This was accomplished by first identifying a new intrinsic gene set and then using this set
to develop the Single Sample Predictor (SSP) that was shown here to be both prognostic
on the local therapy-only patient subset from Chang et al.*' and predictive of outcomes
on the ER+ tamoxifen-treated data set of Ma et al.®. Many other gene expression based
predictors for breast cancer patients have been developed, and in a complementary
publication®, we tested the intrinsic subtype SSP developed here, relative to those
predictions made by four other previously published breast cancer prognostic/predictive
gene sets using a single patient/tumor set of 295 cases; the four other expression-based
predictors used were (1) the “70-gene” Good vs. Poor outcome predictor developed by

van’t Veer and colleagues™'!

, (2) the “Wound-Response” profile developed by Chang et
al.*'** (3) the “Recurrence Score (RS)” profile developed by Paik et al.'’, and (4) the 2-
gene (HOXB13:IL17BR) ratio predictor developed by Ma et al.’. The results showed that
of samples classified as Basal-like, HER2+/ER-, or LumB by the SSP, 93-100% were

classified by the 70-gene, RS and Wound-Response predictors as being in each
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predictor’s bad prognosis group. These data suggest that a high concordance exists across
these multiple predictors, in particular the RS, 70-gene and Intrinsic Subtypes; thus, the
new intrinsic gene list and classification method developed here, when compared to other
predictors as accomplished in Fan et al.**, showed that a high concordance across
predictors exists, which provides additional validation for each predictor.

In summary, the results of this study advances our current knowledge of the
intrinsic breast tumor subtypes and provides an objective method (SSP) for prospectively
classifying tumors that could be used in the clinical setting. More broadly speaking, our
findings show that while the individual brushstrokes (i.e. genes) may sometimes show
discordance across data sets, the portraits created by the combined patterns of the
individual brushstrokes is conserved and recognizable across datasets because of the
similarities to the family portrait**. Moreover, these data show that the breast tumor
intrinsic subtypes identified using the Intrinsic/UNC gene list can be generalized to many

different patient sets, both treated and untreated.
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TABLES

Table 3.1. Multivariate Cox proportional hazards analysis for the 315-sample combined
test set in relation to Relapse-Free Survival. Multivariate Cox proportional hazards
analysis of (A) standard clinical factors alone, or with (B) the Intrinsic Subtypes. Size
was a binary variable (0= diameter of 2cm or less, 1= greater than 2cm); node status was
a binary variable (0= no positive nodes, 1= one or more positive nodes); age was a
continuous variable formatted as decade-years. Hazard ratios for Intrinsic Subtypes were
calculated relative to the Luminal A subtype. Variables found to be significant (p<0.05)
in the Cox proportional hazards model are shown in bold.

A. Relapse-Free survival
Variable Hazard Ratio | p-value
(95% CI)
Age, per decade 1.04 (0.90-1.20) | 0.64
ER status 0.59 (0.41-0.83) | 0.003
Node status 1.41 (0.98-2.04) | 0.07
Tumor grade 2 vs. 1 2.41 (1.08-5.36) | 0.032
Tumor grade 3 vs. 1 3.98 (1.80-8.82) | 0.0007
Size 1.60 (1.31-1.95) | <0.0001
B. Relapse-Free survival
Variable Hazard Ratio | p-value
(95% CI)
Age, per decade 1.08 (0.94-1.24) | 0.29
ER status 0.69 (0.42-1.13) | 0.14
Node status 1.35(0.92-1.98) | 0.13
Tumor grade 2 vs. 1 1.88 (0.82-4.32) | 0.14
Tumor grade 3 vs. 1 2.58 (1.08-6.12) | 0.03
Size 1.59 (1.30-1.95) | <0.0001
Basal-like vs. LumA 2.02 (1.05-3.90) | 0.036
HER2+/ER- vs. LumA 3.47 (1.78-6.76) | 0.0003
LumB vs. LumA 1.92 (1.07-3.45) | 0.028
IFN vs. LumA 1.40 (0.67-2.91) | 0.37
Normal-like vs. LumA 1.56 (0.59-4.16) | 0.37

68



Table 3.2. Association between tumor histologic grade and intrinsic subtype in the 315-
sample combined test set.

Intrinsic Subtype

Two-way LumA LumB IFN HER2+/ER- Basal-like
contingency table

(# of pts.) | (#ofpts.) (# of pts.) (# of pts.) (# of pts.)
Grade
1 (well) 29 2 1 0 1
2 (intermediate) 45 26 8 6 16
3 (poor) 15 32 16 21 67

Statistics for two-way contingency table analysis

p-valuet

Cramer’s Vi

<0.0001

0.42

1 p-value calculated from Chi-square test on contingency table. 11 Cramer’s V statistic
(value can range from 0 to 1) measures the strength of association between the two

variables analyzed in the contingency table, with 1 indicating perfect association and 0
indicating no association.
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FIGURES

Training Set

A dataset of 105 breast tumor samples, 9 normal breast samples,
and 26 sample pairs (each pair of samples is taken from

the same patient), represented by 146 arrays, is used to

derive the 1300-gene "Intrinsic/UNC" gene set.

<+

Combined Test Set

Atest set of 311 tumors and 4 normal breast

samples represented by 315 arrays and 2800 genes in
common, was created by combining the datasets of
Sorlie et al. (2001; 2003), van't Veer et al. (2002) and
Sotiriou et al. (2003). This "combined test set" was
analyzed by hierarchical clustering using the subset

of "Intrinsic/lUNC" genes that were present within

the combined test set (306 genes).

~

Single Sample Predictor (SSP)

The hierarchical clustering of the "combined test set" is
used to create 5 Subtype Mean expression profiles
(i.e. Centroids) based upon the expression of the

306 Intrinsic/UNC genes. New samples are then assigned
to the nearest subtype/centroid as determined by
Spearman correlation.

+

Validation of the SSP using 2 test datasets i
The SSP is used to make subtype predictions on P = =
2 test sets of homogenously treated patients. ——
The resulting classifications were then analyzed B
using Kaplan-Meier Survival plots. k

n

Figure 3.1. Overview of the analysis methods and datasets used.
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Figure 3.2. Hierarchical cluster analysis of the 315-sample combined test set using the
Intrinsic/UNC gene set reduced to 306 genes. (A) Overview of complete cluster diagram.
(B) Experimental sample-associated dendrogram. (C) Luminal/ER+ gene cluster with
GATA3-regulated genes highlighted in pink. (D) HER2 and GRB7-containing expression
cluster. (E) Interferon-regulated cluster containing STAT1. (F) Basal epithelial cluster.
(G) Proliferation cluster.
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Figure 3.3. Kaplan-Meier survival curves of breast tumors classified by intrinsic subtype.
Survival curves are shown for (A) the 315-sample combined test set classified by
hierarchical clustering using the Intrinsic/UNC gene set and (B) the 60-sample Ma et al.,
(C) 96-sample Chang et al., and (D) 105-sample (used to derive the Intrinsic/UNC gene
set) datasets classified by the Nearest-Centroid predictor (Single Sample Predictor).
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Figure 3.4. Kaplan-Meier survival curves using RFS as the endpoint, for the common
clinical parameters present within the 315-sample combined test set. Survival curves are
shown for (A) ER status, (B) node status, (C) histologic grade (1=well-differentiated,
2=intermediate, 3=poor), and (D) tumor size (1= diameter of 2cm or less; 2=diameter
greater than 2cm and less than or equal to Scm; 3=diameter greater than Scm; 4=any size
with direct extension to chest wall or skin).
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ABSTRACT

Background. Gene expression profiling studies of primary breast tumors performed by
different laboratories have resulted in the identification of many apparently different
prognostic profiles/gene sets, which show little overlap in gene identity.

Methods. In order to compare the individual sample predictions made by these different
gene sets, we applied to a single dataset of 295 samples, five different gene expression-
based predictors: (1) Intrinsic Subtypes' 2, (2) 70-gene Good vs. Poor™*, (3) Wound-
Response Activated vs. Quiescent™ °, (4) Recurrence Score’, and (5) the 2-gene ratio
profile for tamoxifen-treated patients®.

Results. There was high concordance in outcome predictions across most of these
different predictors when the outcome predictions on individual samples were compared.
In particular, patients of the Basal-like, HER2+/ER- and Luminal B Intrinsic Subtypes
were almost all 70-gene Poor, Wound-Response Activated, and had a High Recurrence
Score. The 70-gene and Recurrence Score predictors, which are beginning to be used in

the clinical setting, showed 77-81% agreement.



Conclusions. These data show that even though different gene sets are being used for
prognostication on breast cancer patients, four of the profiles tested here showed
significant agreement in outcome predictions on individual patients and are likely

tracking a common set of biological phenotypes.
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INTRODUCTION

Many different gene expression studies have identified expression profiles/gene
sets that are prognostic and/or predictive for breast cancer patientsz'lz. Comparison of the
gene lists derived from some of these apparently similar studies show that they overlap
with each other by a modest amount, if at all. The reasons for this lower-than-expected
overlap are not completely known but must include differences in patient cohorts,
microarray platforms and mathematical analysis methods. An important and unanswered
question, however, is whether these predictors actually disagree or agree concerning
outcome predictions for the individual patient. Here we describe an analysis of a single
dataset on which five different prognostic/predictive gene expression-based predictors
were simultaneously compared. This “across profile” analysis showed that different
predictors had significant concordance when outcome predictions on individual patients

were compared, despite the fact that these predictors had little gene overlap.

MATERIALS AND METHODS

Patient data set. For this study, we used a single dataset of 295 samples produced by
researchers from the Netherlands Cancer Institute (NKI) using Agilent Oligo
microarrays, and for which Relapse-Free Survival (RFS, scored as time to first event) and
Overall Survival (OS) data were available®. The clinical information associated with
these patients was obtained from the supporting website for the Chang et al. 2005 paper;
this patient set contained predominantly Stage I and II patients who received either local
therapy only (n=165), tamoxifen only (n=20), tamoxifen plus chemotherapy (n=20) or

chemotherapy only (n=90).
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Statistical methods. Five different prognostic/predictive gene sets (and methodologies)
were tested on this single dataset and the results were recorded for each predictor on each
patient (see Table 1 for a summary of the classifications made by the five predictors). The
expression-based predictors used were (1) the “70-gene” Good vs. Poor outcome
predictor developed by van’t Veer, van de Vijver and colleagues™*, (2) the “Wound-
Response” profile developed by Chang et al.>®, (3) the “Recurrence Score (RS)” profile
developed by Paik, Shak et al.’, (4) the “Intrinsic Subtype” classifications developed by
Perou, Sorlie and colleagues" 21013 "and (5) the 2-gene (HOXB13:IL17BR) ratio
predictor®. The RS and 2-gene ratio predictors were originally designed for outcome
predictions on Estrogen Receptor (ER)-positive tamoxifen-treated patients” ®, and we
therefore performed analysis for the ER+ patient subset on its own, in addition to the
complete set of ER+ and ER— samples combined. Many other prognostic profiles exist
for breast cancer patients. We excluded some of these for a lack of sufficient numbers of
genes, the expression of which was captured in the NKI data set, or because the
description of the predictor was too vague to be confidently applied to a new data set.
Additionally, it is beyond the scope of this work to test every possible published breast
cancer predictor.

For the 70-gene and Wound-Response predictions, we used the individual sample
assignments provided by Chang et al.”. Briefly, the assignments made by the 70-gene and
Wound-Response predictors were as follows: for the 70-gene predictor, a sample was
classified according to the correlation of its expression levels of the 70 genes to a

previously determined average centroid/profile of these genes in tumors from patients
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with the “Good” prognosis profile. Patients with a correlation coefficient of >0.4 were
classified as Good, and <0.4 as Poor’*. For the Wound-Response predictor, a sample
was classified according to the Pearson correlation of its expression levels of the “core
serum response (CSR)” genes to the serum-activated fibroblast centroid. Patients with >-
0.15 correlation were classified as Wound-Response Activated, and <-0.15 as Wound-
Response Quiescent”.

We used a nearest centroid predictor’ to classify tumors according to “Intrinsic
Subtype”. Briefly, a new “intrinsic” gene set was developed as described in Sorlie et al.
20037, using 24 new paired tumor samples assayed on Agilent Oligo microarrays, and
105 tumors in total. Next, this gene list was used in a hierarchical clustering analysis on a
311 tumor sample test set created by combining together the two-color DNA microarray
data sets of Sorlie et al. 2001 and 2003* '°, van’t Veer et al.* and Sotiriou et al.!'. This
cluster was then used as the starting point to create five Subtype Mean expression
profiles/Centroids (Luminal A, Luminal B, HER2+/ER-, Basal-like and Normal-like) by
averaging the gene expression profiles for the samples within each dendrogram
branch/subtype. Finally, new samples like those in the Chang et al. dataset, are then
individually compared to each centroid using the 306 intrinsic genes, and are assigned to
the nearest centroid as determined by Spearman correlation. For more details on this
nearest centroid predictor (also referred to as a Single Sample Predictor), the data and

how to implement it, see https://genome.unc.edu/pubsup/breastTumor/.

To classify tumors using the Recurrence Score predictor, we used the microarray
data for all 21 RS-genes and applied the algorithm and scaling methods described in Paik

et al. (2004). Briefly, the expression of the 16 target genes was normalized relative to the
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5 reference genes; next, the target genes were scaled as described for the qRT-PCR data,
weighted averaging was performed and we then used these values and the RS algorithm
to generate a Recurrence Score for each patient, which ranged from 0 to 100; scaling was
done separately for the 295 patient group and for the 225 ER+ patient group. Using the
cutoffs described in Paik et al. (0-18, 19-30, 31-100), we assigned each patient into the
Low, Intermediate or High risk groups. Finally, we used the log-base-2 ratio of
HOXBI13:IL17BR as a means of patient stratification, using a cutoff of -0.15 as described
in Ma et al.” to classify patients as having either a High or Low 2-gene ratio.

It should be noted that for the 70-gene, Wound-Response and Intrinsic Subtype
profiles, a subset of the samples in this 295-sample dataset were used to train these
predictors (75 of the 295 samples were previously published* and used to train the 70-
gene profile, these same 75 samples were also part of the 311 tumor dataset used to
derive the Intrinsic Subtype Centroid profiles', and 148 of the 295 samples were
randomly selected to train the Wound-Response profile’). Therefore, their performance in
the Kaplan-Meier and multivariate analyses described below is positively biased.
However, as this paper is focused on comparing the actual predictions themselves and is
not focused on identifying the “best” predictor, we believed it best to include as many
samples as possible in the analysis as opposed to removing subsets of samples due to
training and test set issues (if we removed training set samples, the resulting test dataset
would be greatly reduced — to fewer than 147 samples and possibly as few as 72
samples). We acknowledge that the RS and 2-gene predictors are thus at a prognostic

disadvantage relative to the other three because the 295 samples represent a true test set
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for these two predictors; this point should be taken into consideration when interpreting

the results of the survival analyses and hazard ratios from multivariate analyses.

Survival Analyses. To evaluate the prognostic value of each gene expression-based
predictor, we performed univariate Kaplan-Meier analysis using the Cox-Mantel log-rank
test in WinSTAT for Excel (R. Fitch Software, Staufen, Germany). We also performed a
multivariate Cox proportional hazards analysis (SAS, Cary, NC) of each predictor
individually in a model that included ER status (positive vS. negative), grade (1 vs. 2, and
1 vs. 3), node status (0 vs. 1-3 positive nodes, and 0 vs. >3 positive nodes), age (as a
continuous variable), tumor size (<2cm VS. >2cm), and treatment status (no adjuvant
therapy vs. chemotherapy and/or hormonal therapy), with Relapse Free Survival (RFS,
defined as time to first event) and Overall Survival (OS) as the endpoints (note: for
multivariate analysis of the Intrinsic Subtypes and RS, ER status was not included as a
variable because it was based upon the same microarray data that was used as part of
these gene expression predictors). Two-way contingency table analyses and calculation
of Cramer’s V statistic were performed using WinSTAT for Excel. The Cramer’s V
statistic provides a quantitative measure of the strength of association between the two
variables in a contingency table (which cannot be obtained from the p-value): Cramer’s V
values range from 0 to 1, with 0 indicating no relationship and 1 indicating perfect
association. Traditionally, values between 0.36 and 0.49 indicate a substantial
relationship and values >0.50 indicate a very strong relationship. The V statistic is a
generalization of the more familiar phi statistic to non 2x2 contingency tables, and for

2x2 tables the V statistic is equal to the phi statistic'*.
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RESULTS
Analysis of all 295 tumors. Each of the five predictors (except for the 2-gene ratio
predictor), ER status, grade, tumor size (<2cm VS. >2cm) and node status (0 vs. 1-3 vs.
>3 nodes) were statistically significant predictors of Relapse-Free (RFS) and Overall
Survival (OS) using univariate Kaplan-Meier survival analyses (Figure 1 and Table 1
shows a summary of how the five predictors classified the 295 samples). For the 2-gene
ratio predictor, tumors with a High gene ratio were expected to be the poor outcome
group (Figure 2 of Ma et al., 2004), but this was not observed in the 295-tumor dataset
(Figure 11, J). For the other four predictors, the poor outcome groups observed in the 295-
tumor dataset were as expected: (1) 70-gene Poor, (2) Wound-Response Activated, (3)
High Recurrence Score, and (4) Basal-like, Luminal B, and HER2+/ER- Intrinsic
Subtypes. To evaluate the prognostic value of each gene expression-based predictor, we
next performed multivariate Cox proportional hazards analysis of each predictor
individually in a model that included ER status, grade, node status, age, tumor size, and
treatment status (Table 2). The Intrinsic Subtypes, 70-gene, Wound-Response and RS
classification schemes were significant predictors in these models for both RFS and OS,
showing that individually, each gene expression profile (except for the 2-gene predictor)
adds new and important prognostic information beyond what the standard clinical
predictors provide. In fact, the 70-gene, RS and Intrinsic Subtypes were the most
predictive variables in each model as determined by the lowest nominal p-value.

As a point of reference, we next analyzed each predictor relative to the Intrinsic
Subtype assignments, which is an assignment that is largely based upon an

“unsupervised” analysis of breast tumor gene expression profiles (Table 3). For the 53
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Basal-like tumors, all were classified as RS High, 70-gene Poor, and 50/53 were Wound-
Response Activated. A nearly identical finding was also observed for the second ER-
negative subtype (HER2+/ER-), and for the poor outcome, clinically ER+, Luminal B
tumor group. Conversely, the Normal-like and Luminal A subtype tumors showed
significant heterogeneity in terms of how samples were classified by the other predictors;
however, 62/70 RS Low samples were in the Luminal A subtype. These data suggest that
if a sample is classified as Basal-like, HER2+/ER-, or Luminal B, then one should be
able to infer with high accuracy, that it would be classed in the bad prognosis groups of
the 70-gene, Wound-Response and RS predictors.

We next compared the 70-gene, Wound-Response, RS and 2-gene predictor
assignments to each other using two-way contingency table analyses (note: for these
analyses, we combined the RS categories Low and Intermediate into a single group
because they showed survival curves that were not significantly different [see Table 2E]).
All comparisons yielded statistically significant correlations, with the least correlated
profile being the 2-gene predictor. The RS, 70-gene and Wound-Response profiles were
all highly correlated with each other (Table 4, Chi-square p-values <0.001). We then
assessed the strength of correlation between the predictors using the Cramer’s V statistic.
Comparing the 70-gene vs. RS gave a Cramer’s V=0.60 (indicates a strong relationship),
RS vs. Wound-Response V=0.42 (substantial relationship), and the 70-gene vs. Wound-
Response V=0.36 (substantial relationship). Thus, most tumors classified as having poor
outcome by one of these three predictors were also classified as such by the other two. By
comparing these Cramer’s V values, the predictor showing the best agreement with the

other two was the Recurrence Score (i.e. out of the three, the Recurrence Score was the
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closest to functioning as a consensus predictor). To determine if combining the three
predictors could result in a better predictor, we derived a predictor based on the majority
vote of the three predictors. This predictor’s performance in Kaplan-Meier analysis was
comparable to that of the three predictors individually, but was not noticeably better.

Grade is an important clinical and biological feature of tumors, especially when
one compares the clinical behavior of grade 1 vs. grade 3 breast tumors. Correlation with
grade is an often-asked question regarding these new gene-expression based predictors.
We therefore performed two-way contingency table analysis comparing each predictor to
grade. Of the four predictors tested (70-gene, Wound-Response, 2-gene ratio, and RS as 2
classes [Low + Intermediate vs. High]), all showed significant correlation with grade
(p<0.001). The profile with the strongest correlation with grade was the 70-gene, which
gave a Cramer’s V=0.52, next was RS (V=0.48), then Wound Response (V=0.35) and
finally the 2-gene ratio (V=0.25). Thus, to varying degrees, all the predictors correlated
with grade, however, it should be noted that because the 70-gene, RS, Intrinsic Subtypes
and Wound-Response profiles were all significant predictors in the multivariate analyses
that included grade, these predictors add prognostic information beyond that provided by
grade. Moreover each of these predictors offers an assay that could be easily standardized
across institutions and would be objective, quantitative, and automatable.

The 70-gene™ * and RS™ '° predictors are the most advanced in terms of validation
and are beginning to be used in the clinical setting to assist in making treatment
decisions. We therefore specifically compared these two predictors to one another. A
simple way to compare their predictions is to call a RS “Low” and “Intermediate”

equivalent to a 70-gene “Good”, a RS “High” equivalent to a 70-gene “Poor”, and
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determine how many samples agreed. Using this criteria, there was agreement in 239/298
(81%) of the cases. In particular, 81/103 RS “Low” and “Intermediate” patients were
classified as 70-gene “Good”. It should be noted that here we compared the predictors for
their capacity to predict recurrence of disease in a group of patients that were both lymph
node negative and positive. These two predictors, however, were developed to predict
distant metastasis-free survival in lymph node-negative patients only and are either meant
to be used to predict prognosis without adjuvant treatment (70-gene predictor) or for

tamoxifen-treated patients (RS).

Analysis of ER+ tumors. Two of the five predictors (RS and 2-gene ratio) were
specifically designed for ER+ patients only. We therefore performed similar analyses as
described above (Table 1) on only those 225 patients in this dataset who were classified
as ER+ (which was based on a gene expression-based cutoff using the mRNA for ER, see
Chang et al.”). Again, all the gene expression-based predictors, except for the 2-gene
ratio predictor, were significant predictors of RFS and OS in univariate Kaplan-Meier
analysis (Figure 2). In multivariate Cox proportional hazards analyses in which each
predictor was evaluated individually in a model that included the standard clinical
variables, the 70-gene, Wound-Response, Intrinsic Subtypes Luminal A vs. B, and RS
added significant prognostic information regarding RFS and OS; again, each gene
expression predictor typically gave the lowest p-value when compared with the
traditional clinical variables (Table 5). Interestingly, when samples within the ER+
patient subset were classified according to Intrinsic Subtype (Table 6), 7 were Basal-like

and 18 were HER2+/ER-, suggesting that approximately 10% of ER+ samples fell into
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tumor subtype categories that we consider to be “ER-negative” as determined by
hierarchical clustering analysis.

As was done for the 295-sample set, we did a pair-wise comparison of the 70-
gene, Wound-Response, RS and 2-gene predictor assignments for the 225 ER+ patients
using two-way contingency table analyses. All comparisons yielded statistically
significant correlations except for the 2-gene predictor (Table 7). The RS, 70-gene and
Wound-Response profiles were highly correlated with each other (p<0.001); the observed
Cramer’s V values were 0.54 for 70-gene vs. RS (very strong relationship), 0.38 for RS
vs. Wound-Response (substantial relationship), and 0.34 for 70-gene vs. Wound-
Response (moderate relationship). From the Cramer’s V values, we again see that the
predictor showing the best agreement with the other two predictors was the Recurrence
Score. We again derived a predictor based on the majority vote of the three predictors and
as was seen before, its performance in Kaplan-Meier analysis was comparable to the
three individual predictors, but was not noticeably better.

When RS “Low” and “Intermediate” vs. “High” classification was compared to
the 70-gene “Good” vs. “Poor”, 173/225 samples (77%) showed agreement. In particular,
of the 105 RS “Low” or “Intermediate” patients, 83 were classified as 70-gene “Good”.
Finally, we did not perform any multivariate Cox proportional hazards analyses using all
predictors simultaneously to identify the “optimal model” because we believe that this
would not be a fair test for either of those predictors (RS and 2-gene ratio) for which this
was a true test set, or for those that were derived using a different platform (RS, 2-gene

and Intrinsic Subtypes).
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DISCUSSION

A plethora of gene expression-based prognosticators are being developed for
outcome predictions in breast cancer patients. In this study, we took advantage of a single
dataset that had enough genes assayed to allow the simultaneous analysis of five different
gene expression-based predictors and determined that most of these assays were making
similar predictions; that is, if one predictor assigned a sample to its “poor outcome”
group, then another predictor also assigned that same sample to its “poor outcome”
group. In the case of tumors of the Intrinsic Subtype classes Basal-like, HER2+/ER- and
Luminal B, the assignments made by the 70-gene, RS and Wound-Response predictors
were almost homogeneously into the relevant poor outcome groups (regardless of ER
status). It is only within the Luminal A and Normal-like Intrinsic Subtypes where
variability in outcome predictions was found. Of the five predictors analyzed in this
report, only the 2-gene predictor failed to identify statistically significant outcome
differences on this dataset; Reid et al. also reported that on their independent dataset of
ER+ tamoxifen-treated patients, the 2-gene predictor failed to detect outcome
differences'®.

When the 70-gene, Wound-Response, RS and 2-gene predictors were compared in
a pair-wise fashion, it was determined that the 70-gene, Wound-Response and RS
classifications were highly concordant. When the 70-gene and RS predictors were
compared relative to each other, they agreed on sample predictions for 77% (ER+) and
81% (ER+ and ER-) of the patients. These analyses suggest that even though there is very
little gene overlap (the 70-gene and RS overlap by only one gene: SCUBEZ2), and

different algorithms are used, the majority of breast cancer patients would receive similar
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outcome predictions when these different methods and models are used. It is also likely
that the RS predictor, originally developed for only ER+ patients, “worked” on all
patients because we can see that almost all (69/70) ER-negative patients were classified
as being in the poor outcome RS High group (and they in fact do show poor outcomes).
The outcome predictions by the different methods (with the exception of the 2-gene
predictor) largely overlap when evaluated by the multivariate Cox proportional hazards
analyses (95% Confidence Intervals of Hazard Ratios in Table 2). The proportion of
patients identified as “poor outcome” or “good outcome” as outlined above is also highly
similar. The discordance of up to 20% of the patients in different categories leads to
slight differences in outcome prediction and underlines the need of further validations. In
the coming years a NCI (PACCT), as well as an European Union (TRANSBIG-
MINDACT) randomized clinical trial will prospectively address the power of the RS and
70-gene test respectively.

We believe that despite the lack of gene overlap, the different gene sets/profiles
are making similar predictions largely because they are tracking common cellular
phenotypes that are reflective of the dominant biology of breast tumors, which
encompasses the consistent differences seen in ER-positive (i.e. Luminal) vs. ER-
negative breast cancers (Basal-like and HER2+/ER-). While these distinctions are
correlated with grade, which is another common biological phenotype that these gene
profiles are tracking, it is also clear that these profiles are providing additional
information beyond that provided by grade, as evidenced by their significance in Cox
regression analyses. These findings also show that prognostic profiles can be readily

detected by a great number of genes, and any sufficiently representative subset of these
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genes could potentially be used as a predictor. This phenomenon has been observed in
normal tissues: Son et al. reported that approximately 19,000 genes are differentially
expressed between different organs, and any sufficiently large (approximately 100)
randomly selected subset could reproduce the hierarchical clustering pattern produced
when using the full gene set'’. An important implication of these findings is that when
comparing two “profiles”, overlap in gene identity is not a good measure of
reproducibility and that individual sample classifications is the relevant measure of
concordance.

We find these results encouraging and interpret them to mean that although
different gene sets are being used, they are each tracking a common set of biological
characteristics that are present across different breast cancer patient sets and are making
similar outcome predictions. The next question to ask is what outcome predictor(s) should
be used and why. The answer cannot be determined based upon the analyses in this
report, but the guiding principle should be to use the predictor(s) that will predict patient
outcomes and assist in making therapeutic decisions (i.e. predictive assays) within a
specified group. For example, if a patient is determined to be of the Intrinsic Subtypes of
Basal-like, HER2+/ER- or Luminal B, or “poor outcome” by the RS or 70-gene test, then
there is, as yet, little need to perform the other assays because they would all indicate a
poor prognosis. Thus, future studies should focus on developing assays that can
prognosticate within HER2+/ER-, Basal-like, and Luminal B patients. For patients of the
Luminal A and Normal-like Intrinsic Subtypes, the RS, 70-gene and Wound-Response
profiles provided additional information (Tables 3 and 6) that may be useful in guiding

treatment decision. For example, Luminal A patients with a Low RS might be selected to
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receive only hormone therapy because a Low RS is associated with good outcomes in
tamoxifen-treated patients and little benefit from chemotherapy” °. Retrospective and
prospective studies must now be done to determine which is the “best” predictor, but it is

likely that the “best” predictor may be a combination of two or more different predictors.
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TABLES

Table 4.1. Summary of the classifications of the NKI patient dataset using five different
gene expression-based profiles.

Dataset

Classification Method

295-sample dataset

number of patients (%)

ER+ 225-sample dataset

number of patients (%)

Intrinsic Subtype

Luminal A 123 (41.7%) 121 (53.8%)
Luminal B 55 (18.6%) 55 (24.4%)
Normal-like 29 (9.8%) 24 (10.7%)
HER2+/ER- 35 (11.9%) 18 (8.0%)
Basal-like 53 (18.0%) 7 (3.1%)

Recurrence Score

Low 70 (23.7%) 87 (38.7%)
Intermediate 33 (11.2%) 18 (8.0%)
High 192 (65.1%) 120 (53.3%)
70-gene

Good 115 (39.0%) 113 (50.2%)
Poor 180 (61.0%) 112 (49.8%)
Wound Response

Quiescent 67 (29.8%) 60 (26.7%)
Activated 228 (77.3%) 165 (73.3%)
2-gene ratio

Low 137 (46.4%) 122 (54.2%)
High 158 (53.6%) 103 (45.8%)
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Table 4.2. Multivariate Cox proportional hazards analysis for the 295-sample Chang et
al. 2005 dataset in relation to Relapse-Free Survival and Overall Survival. Multivariate
Cox proportional hazards analysis of (A) standard clinical prognostic factors alone, or
with (B) the 70-gene predictor, (C) Wound-response predictor, (D) Ma et al. 2-gene ratio
predictor, (E) Recurrence Score, or (F) Intrinsic Subtypes in relation to Relapse-Free
Survival and Overall Survival. Size was a binary variable (0= diameter of 2cm or less, 1=
greater than 2cm); age was a continuous variable formatted as decade-years; hazard ratios
for Intrinsic Subtypes were calculated relative to the Luminal A subtype. Variables found
to be significant (p<0.05) in the Cox proportional hazards model are shown in bold.

A Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.59 (0.43-0.82) | 0.001 0.67 (0.45-0.98) | 0.042
ER status 0.65 (0.42-0.99) | 0.045 0.44 (0.27-0.71) | 0.001
Tumor grade 2 vs. 1 2.45(1.33-4.50) | 0.004 4.31 (1.49-12.47) | 0.007
Tumor grade 3 vs. 1 2.53(1.35-4.74) | 0.004 5.96 (2.06-17.21) | 0.001
Size 1.40 (0.96-2.05) | 0.083 1.52(0.94-2.43) | 0.086
1-3 vs. 0 positive nodes 1.32(0.72-2.41) | 0.37 1.06 (0.48-2.36) | 0.88
>3 vs. 0 positive nodes 2.24 (1.12-4.49) | 0.023 1.85(0.78-4.38) | 0.16
Hormonal or chemotherapy | 0.56 (0.31-1.01) | 0.055 0.81(0.38-1.74) | 0.59
vs. no adjuvant therapy
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B. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.64 (0.46-0.88) | 0.006 0.71 (0.48-1.05) | 0.085
ER status 0.86 (0.56-1.31) | 0.47 0.59 (0.36-0.95) | 0.031
Tumor grade 2 vs. 1 1.57 (0.82-2.97) | 0.17 2.55(0.86-7.63) | 0.093
Tumor grade 3 vs. 1 1.32 (0.68-2.59) | 0.41 2.84 (0.94-8.54) | 0.064
Size 1.44 (0.99-2.11) | 0.059 1.58 (0.98-2.53) | 0.058
1-3 vs. 0 positive nodes 1.20 (0.66-2.18) | 0.55 1.01(0.46-2.21) | 0.97
>3 vs. 0 positive nodes 2.19(1.07-4.47) | 0.032 1.97 (0.81-4.79) | 0.14
Hormonal or chemotherapy | 0.54 (0.30-0.99) | 0.048 0.75(0.34-1.62) | 0.46
vs. no adjuvant therapy
70-gene predictor 3.44 (1.98-5.99) | <0.001 4.71 (2.02-11.00) | <0.001
(poor vs. good)
C. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.56 (0.40-0.77) | <0.001 0.62 (0.41-0.92) | 0.019
ER status 0.69 (0.45-1.06) | 0.089 0.46 (0.28-0.76) | 0.002
Tumor grade 2 vs. 1 1.89(1.02-3.52) | 0.045 3.32(1.13-9.71) | 0.028
Tumor grade 3 vs. 1 1.92(1.02-3.62) | 0.045 4.46 (1.53-13.00) | 0.006
Size 1.39 (0.95-2.03) | 0.090 1.52 (0.95-2.44) | 0.083
1-3 vs. 0 positive nodes 1.19 (0.65-2.17) | 0.58 0.96 (0.43-2.12) | 0.92
>3 vs. 0 positive nodes 1.74 (0.85-3.57) | 0.13 1.48 (0.61-3.59) | 0.38
Hormonal or chemotherapy | 0.58 (0.32-1.07) | 0.080 0.84 (0.39-1.81) | 0.65
vs. no adjuvant therapy
Wound-response signature | 2.88 (1.50-5.52) | 0.002 3.25(1.27-8.27) | 0.014
(activated vs. quiescent)
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D

Relapse-Free survival

Overall survival

Variable

Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.60 (0.43-0.82) | 0.001 0.67 (0.45-0.98) | 0.042
ER status 0.63(0.41-0.98) | 0.040 0.44 (0.26-0.72) | 0.001
Tumor grade 2 vs. 1 2.43(1.32-4.47) | 0.004 4.31(1.49-12.48) | 0.007
Tumor grade 3 vs. 1 2.57(1.37-4.82) | 0.003 5.96 (2.06-17.23) | 0.001
Size 1.40 (0.96-2.05) | 0.082 1.52(0.94-2.43) | 0.086
1-3 vs. 0 positive nodes 1.32(0.72-2.42) | 0.36 1.06 (0.48-2.36) | 0.88
>3 vs. 0 positive nodes 2.26 (1.13-4.54) | 0.022 1.85(0.78-4.38) | 0.16
Hormonal or chemotherapy | 0.55 (0.30-1.00) | 0.051 0.81(0.38-1.74) | 0.59
vS. no adjuvant therapy
Ma et al. 2-gene ratio 0.91 (0.61-1.34) | 0.62 1.00 (0.61-1.63) | 0.99
(high vs. low)
E. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.57 (0.42-0.79) | <0.001 0.63(0.42-0.94) | 0.023
Tumor grade 2 vs. 1 1.61 (0.85-3.04) | 0.14 2.95(0.99-8.73) | 0.051
Tumor grade 3 vs. 1 1.50(0.79-2.86) | 0.21 3.81(1.30-11.1) | 0.014
Size 1.51(1.03-2.20) | 0.035 1.66 (1.03-2.67) | 0.036
1-3 vs. 0 positive nodes 1.24 (0.68-2.26) | 0.48 0.95(0.43-2.09) | 0.90
>3 vs. 0 positive nodes 2.10 (1.04-4.25) | 0.039 1.59 (0.66-3.82) | 0.30
Hormonal or chemotherapy | 0.54 (0.30-0.98) | 0.044 0.80(0.37-1.73) | 0.57
vs. no adjuvant therapy
Intermediate vs. Low 1.81 (0.70-4.68) | 0.22 1.81(0.39-8.27) | 0.45
recurrence score
High vs. Low 4.27 (2.05-8.92) | <0.001 6.14 (1.84-20.4) | 0.003
recurrence score
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F. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.59 (0.42-0.82) | 0.002 0.67 (0.45-1.00) | 0.051
Tumor grade 2 vs. 1 1.80 (0.96-3.39) | 0.068 3.51(1.19-10.36) | 0.023
Tumor grade 3 vs. 1 1.80 (0.92-3.50) | 0.087 4.47 (1.48-13.49) | 0.008
Size 1.55 (1.05-2.29) | 0.027 1.55(0.96-2.51) | 0.076
1-3 vs. 0 positive nodes 1.20 (0.65-2.21) | 0.55 1.01(0.45-2.28) | 0.98
>3 vs. 0 positive nodes 2.01 (0.96-4.21) | 0.064 1.81(0.73-4.50) | 0.20
Hormonal or chemotherapy | 0.49 (0.26-0.92) | 0.025 0.69 (0.31-1.54) | 0.37
vs. no adjuvant therapy
Luminal B 3.79(2.17-6.61) | <0.001 2.55(1.25-5.22) | 0.010
Normal-like 2.86 (1.49-5.50) | 0.002 2.00 (0.76-5.31) | 0.16
Her2+/ER- 3.16 (1.61-6.18) | <0.001 3.54 (1.59-7.85) | 0.002
Basal-like 2.45(1.33-4.51) | 0.004 3.05 (1.49-6.27) | 0.002
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Table 4.3. Comparison of predictors for all 295 samples.

Intrinsic

Subtype # Recurrence Score 70-gene Wound-Response | 2-gene
Low 0 | good 0 | Quiescent 3 Low 11
Intermediate 0

Basal-like 53 | high 53 | poor 53 | Activated 50 | high 42
Low 62 | good 87 | Quiescent 45 | Low 78
Intermediate 25

Luminal A 123 | high 36 | poor 36 | Activated 78 | high 45
Low 1 | good 9 | Quiescent 4 Low 30
Intermediate 4

Luminal B 55 | high 50 | poor 46 [ Activated 51 | high 25
Low 0 | good 3 | Quiescent 0 Low 7
Intermediate 0

HER2+/ER- | 35 | high 35 | poor 32 | Activated 35 | high 28
Low 7 | good 16 | Quiescent 15 | Low 11
Intermediate 4

Normal-like | 29 | high 18 | poor 13 | Activated 14 | high 18
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Table 4.4. Two-way contingency table analysis measuring the association between the
70-gene, Wound-response, and Recurrence Score predictors in the 295-sample dataset.

A.

Two-way contingency table
Wound-Response

Quiescent Activated

(# of patients)
70-gene predictor
Good 48 67
Poor 19 161

Statistics for two-way
contingency table analysis

p-valuet <0.001
Cramer’s V§T 0.36
B.

Two-way contingency table
Recurrence Score

Low or Int. High

(# of patients)
70-gene predictor
Good 81 34
Poor 22 158
Statistics for two-way
contingency table analysis
p-valuet <0.001

Cramer’s V§T 0.60
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C.

Two-way contingency table
Recurrence Score

Low or Int. High

(# of patients)
Wound Response
Quiescent 48 19
Activated 55 173
Statistics for two-way
contingency table analysis
p-valuet <0.001

Cramer’s VTt 0.42

T p-value calculated from Chi-square test on contingency table. T Cramer’s V statistic
(value can range from 0 to 1) measures the strength of association between the two
variables analyzed in the contingency table, with 1 indicating perfect association and 0
indicating no association.
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Table 4.5. Multivariate Cox proportional hazards analysis for the 225 ER+ samples in the
Chang et al. 2005 dataset in relation to Relapse-Free Survival and Overall Survival.
Multivariate Cox proportional hazards analysis of (A) standard clinical prognostic factors
alone or with (B) the 70-gene predictor, (C) Wound-response predictor, (D) Ma et al.’s 2-
gene predictor, (E) Recurrence Score predictor, or (F) intrinsic subtypes in relation to
Relapse-Free Survival and Overall Survival. Size was a binary variable (0= diameter of
2cm or less, 1= greater than 2cm); age was a continuous variable formatted as decade-
years; hazard ratios for intrinsic subtypes were calculated relative to the Luminal A
subtype. Variables found to be significant (p<0.05) in the Cox proportional hazards
model are shown in bold.

A. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.54 (0.35-0.82) | 0.005 0.56 (0.31,0.99) | 0.047
Tumor grade 2 vs. 1 2.11(1.12-3.98) | 0.021 3.28(1.08,9.94) | 0.035
Tumor grade 3 vs. 1 2.83 (1.49-5.38) | 0.002 7.36 (2.51,21.5) | <0.001
Size 1.41 (0.88-2.26) | 0.15 1.33(0.71,2.49) | 0.36
1-3 vs. 0 positive nodes 2.11(1.06-4.21) | 0.034 2.11(0.81,5.53) | 0.13
>3 vs. 0 positive nodes 2.92(1.26-6.73) | 0.012 2.16 (0.69,6.72) | 0.18
Hormonal or chemotherapy | 0.37 (0.18-0.73) | 0.004 0.52(0.20, 1.32) | 0.17
Vvs. no adjuvant therapy
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B. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.65 (0.42-0.99) | 0.047 0.68 (0.38,1.22) | 0.20
Tumor grade 2 vs. 1 1.24 (0.63-2.44) | 0.53 1.75 (0.55,5.55) | 0.34
Tumor grade 3 vs. 1 1.20 (0.59-2.48) | 0.61 2.72 (0.85, 8.66) | 0.091
Size 1.45(0.91-2.31) | 0.12 1.41(0.76,2.61) | 0.28
1-3 vs. 0 positive nodes 1.73 (0.88-3.40) | 0.11 1.81(0.71,4.60) | 0.21
>3 vs. 0 positive nodes 2.70 (1.12-6.49) | 0.027 2.32(0.69,7.80) | 0.17
Hormonal or chemotherapy | 0.37 (0.18-0.74) | 0.005 0.47(0.18,1.22) | 0.12
vs. no adjuvant therapy
70-gene predictor 3.88 (2.15-7.02) | <0.001 5.47(2.13,14.1) | <0.001
(poor vs. good)
C. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% ClI)
Age, per decade 0.50 (0.32-0.78) | 0.002 0.49 (0.27,0.90) | 0.022
Tumor grade 2 vs. 1 1.60 (0.83-3.05) | 0.16 2.41(0.78,7.39) | 0.12
Tumor grade 3 vs. 1 2.10 (1.09-4.05) | 0.026 5.24(1.76,15.6) | 0.003
Size 1.39 (0.87-2.21) | 0.17 1.32(0.71,2.46) | 0.38
1-3 vs. 0 positive nodes 1.87 (0.94-3.73) | 0.076 1.85(0.71,4.82) | 0.21
>3 vs. 0 positive nodes 2.19(0.92-5.20) | 0.075 1.61 (0.50,5.17) | 0.42
Hormonal or chemotherapy | 0.39 (0.20-0.78) | 0.008 0.56 (0.22,1.45) | 0.23
vs. no adjuvant therapy
Wound-response 2.95(1.42-6.14) | 0.004 4.03 (1.20,13.5) | 0.024
(activated vs. quiescent)
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D. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.54 (0.35-0.84) | 0.006 0.56 (0.31,0.99) | 0.048
Tumor grade 2 vs. 1 2.08 (1.10-3.93) | 0.023 3.28(1.08,9.92) | 0.036
Tumor grade 3 vs. 1 2.99 (1.55-5.74) | 0.001 7.42(2.51,21.9) | <0.001
Size 1.42 (0.89-2.26) | 0.14 1.34(0.72,2.49) | 0.36
1-3 vs. 0 positive nodes 2.15(1.08-4.29) | 0.030 2.12(0.80,5.55) | 0.13
>3 vs. 0 positive nodes 2.99 (1.29-6.92) | 0.010 2.16 (0.69, 6.70) | 0.18
Hormonal or chemotherapy | 0.36 (0.18-0.72) | 0.004 0.52(0.20, 1.32) | 0.17
vs. no adjuvant therapy
Ma et al. 2-gene ratio 0.81(0.51-1.29) | 0.38 0.97 (0.52,1.79) | 0.91
(high vs. low)
E. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.49 (0.32-0.75) | 0.001 0.50 (0.28,0.90) | 0.021
Tumor grade 2 vs. 1 1.42(0.72,2.79) | 0.32 1.83(0.58,5.77) | 0.30
Tumor grade 3 vs. 1 1.69 (0.83,3.41) | 0.15 3.26 (1.04,10.2) | 0.042
Size 1.52(0.96,2.42) | 0.073 1.54(0.83,2.86) | 0.17
1-3 vs. 0 positive nodes 1.97 (1.00, 3.87) | 0.049 1.75(0.68, 4.47) | 0.24
>3 vs. 0 positive nodes 3.10(1.32,7.26) | 0.009 2.06 (0.66, 6.39) | 0.21
Hormonal or chemotherapy | 0.40 (0.20, 0.80) | 0.009 0.62 (0.24, 1.58) | 0.32
vs. no adjuvant therapy
Intermediate vs. Low 0.82(0.27,2.46) | 0.72 1.42 (0.27,7.50) | 0.68
recurrence Score
High vs. Low 2.59 (1.44,4.65) | 0.001 4.95(1.82, 13.4) | 0.002
recurrence SCore
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F. Relapse-Free survival Overall survival
Variable Hazard Ratio | p-value | Hazard Ratio | p-value
(95% CI) (95% CI)
Age, per decade 0.52(0.33,0.81) | 0.004 0.57 (0.31, 1.04) | 0.065
Tumor grade 2 vs. 1 1.40 (0.72,2.71) | 0.32 2.48 (0.80,7.70) | 0.12
Tumor grade 3 vs. 1 1.62 (0.82,3.18) | 0.16 4.92 (1.62,14.9) | 0.005
Size 1.66 (1.03,2.65) | 0.036 1.51(0.80,2.82) | 0.20
1-3 vs. 0 positive nodes 1.82(0.92,3.59) | 0.085 1.89 (0.73,4.89) | 0.19
>3 vs. 0 positive nodes 2.34(0.96, 5.68) | 0.061 1.98 (0.60, 6.54) | 0.26
Hormonal or chemotherapy | 0.34 (0.16, 0.68) | 0.003 0.49 (0.18,1.29) | 0.15
vs. no adjuvant therapy
Luminal B 4.40 (2.47,7.84) | <0.001 2.81(1.33,5.91) | 0.006
Normal-like, HER2+/ER-, | 2.51 (1.38,4.58) | 0.003 1.92 (0.84,4.37) | 0.12
or Basal-like
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Table 4.6. Comparison of predictors for 225 ER+ patients.

Intrinsic

Subtype # Recurrence Score 70-gene Wound-Response | 2-gene
Low 1 | good 0 | Quiescent 0 | Low 1
Intermediate 1

Basal-like 7 high 5 | poor 7 | Activated 7 | high 6
Low 68 | good 87 | Quiescent 45 | Low 77
Intermediate 13

Luminal A 121 | high 40 | poor 34 | Activated 76 | high 44
Low 2 | good 9 | Quiescent 4 | Low 30
Intermediate 2

Luminal B 55 | high 51 | poor 46 | Activated 51 | high 25
Low 1 | good 2 | Quiescent 0 | Low 5
Intermediate 0

HER2+/ER- | 18 | high 17 | poor 16 | Activated 18 | high 13
Low 15 | good 15 | Quiescent 11 | Low 9
Intermediate 2

Normal-like | 24 | high 7 | poor 9 | Activated 13 | high 15
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Table 4.7. Two-way contingency table analysis measuring the association between the
70-gene, Wound-response, and Recurrence Score predictors in the ER+ 225-sample
dataset.

A.

Two-way contingency table
Wound-Response

Quiescent Activated

(# of patients)
70-gene predictor
Good 47 66
Poor 13 99

Statistics for two-way
contingency table analysis

p-valuet <0.001
Cramer’s V§T 0.34
B.

Two-way contingency table
Recurrence Score

Low or Int. High

(# of patients)
70-gene predictor
Good 83 30
Poor 22 90
Statistics for two-way
contingency table analysis
p-valuet <0.001

Cramer’s VTt 0.54
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C.

Two-way contingency table
Recurrence Score

Low or Int. High

(# of patients)
Wound Response
Quiescent 47 13
Activated 58 107
Statistics for two-way
contingency table analysis
p-valuet <0.001

Cramer’s VTt 0.38

T p-value calculated from Chi-square test on contingency table. T Cramer’s V statistic
(value can range from 0 to 1) measures the strength of association between the two
variables analyzed in the contingency table, with 1 indicating perfect association and 0
indicating no association.
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Figure 4.1. Survival analysis of the 295 patients stratified according to 5 different gene
expression based predictors. Kaplan-Meier survival plots for Relapse Free Survival (left
panels) and Overall Survival (right panels) are shown for the 295 patients stratified
according to Intrinsic Subtypes (A, B), Recurrence Score (C, D), 70-gene profile (E, F),
Wound-Response (G, H) and 2-gene ratio predictor (I, J). All reported p-values are based
upon a log-rank test.
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Figure 4.2. Survival analysis of the 225 ER+ patients stratified according to 5 different
gene expression based predictors. Kaplan-Meier survival plots for Relapse Free Survival
(left panels) and Overall Survival (right panels) are shown for the 225 ER+ patients
stratified according to Intrinsic Subtypes (A, B), Recurrence Score (C, D), 70-gene
profile (E, F), Wound-Response (G, H) and 2-gene ratio predictor (I, J). All reported p-
values are based upon a log-rank test.
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CHAPTER 5: Expression profiles can predict response to neocadjuvant

chemotherapy in breast cancer patients

ABSTRACT

Background

The identification of markers predictive of neoadjuvant chemotherapy response would be
an important advance. Therefore, we sought to identify gene expression profiles

predictive of neoadjuvant response.

Methods

DNA microarray analysis was performed on pre-treatment core biopsies from locally
advanced breast cancer patients receiving four cycles of neoadjuvant doxorubicin plus
cyclophosphamide (AC) followed by four cycles of paclitaxel (T) or paclitaxel and
trastuzumab (TH). In total, 44 patients receiving chemotherapy yielded successful pre-

treatment core biopsy and microarray.

Results
Ten-fold cross-validated supervised analyses using the pre-treatment microarray data
identified gene expression patterns that accurately predicted (1) clinical response after

four cycles of treatment, (2) clinical response after successful completion of all eight



cycles of treatment, and (3) overall clinical response for these 44 patients. In contrast, no
significant association was detected between any of the response outcomes measured and

the standard clinical parameters of ER status, node status, or grade.

Conclusions
These results suggest that gene expression profiling may lead to clinically useful
predictors of neoadjuvant chemotherapy response. The gene expression patterns reported

here may provide the means of selecting patients for AC-T(H) neoadjuvant therapy.
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INTRODUCTION

Neoadjuvant chemotherapy (treatment before primary surgery) has been widely
used as a component of the standard of care for locally advanced breast cancer patients.
Although neoadjuvant and adjuvant chemotherapy have similar efficacy in terms of
disease-free and overall survival rates, neoadjuvant chemotherapy has been shown to
improve breast-conserving operability in locally advanced breast cancers'. Another
advantage of neoadjuvant chemotherapy is that it allows for the direct and timely
observation of tumor treatment response. Response (pathologic complete response [pCR]
or clinical complete response) to neoadjuvant chemotherapy has been correlated with
improved long-term disease-free and overall survival'”’. Currently, there is no clinically
useful predictor of neoadjuvant chemotherapy response. Such a predictor would be of
significant value; by identifying patients unlikely to benefit from therapy, it would spare
them from treatment-associated toxicities and allow them to be more efficiently selected
to receive alternative approaches.

Recently, studies have focused on using gene expression profiling to identify
expression patterns predictive of chemotherapy response®. Using gene expression
profiling shows promise in identifying patterns predictive of chemotherapy response as it
has already allowed the classification of breast tumors into five molecular subtypes
(Luminal A, Luminal B, Basal-like, HER2+/ER- and Normal Breast-like) that show

. . . . 14.15
significant differences in patient outcome ™

. Therefore, we determined if pre-treatment
gene expression patterns could predict response to the following neoadjuvant

chemotherapy regimen: doxorubicin plus cyclophosphamide followed by paclitaxel with

or without trastuzumab.
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MATERIALS AND METHODS

Patients and study design. A phase II study run at UNC-CH (Trial L9819; Trial PI:
Lisa Carey) of the neoadjuvant administration of four cycles of doxorubicin plus
cyclophosphamide (AC), followed by four cycles of paclitaxel (T) or paclitaxel plus
trastuzumab (TH) was performed on a set of locally advanced operable breast cancer
patients (for complete details see Carey et al.'®). Patients received AC-TH if their tumors
showed HER2-positivity as defined by Carey et al.'® The main purpose of this phase II
study was to determine the cardiotoxicity of neoadjuvant doxorubicin plus
cyclophosphamide followed by paclitaxel plus trastuzumab. As part of this study,
pretreatment core biopsies were obtained from patients; RNA from these biopsies was
used for our prediction of response analysis described here. Clinical response to
neoadjuvant therapy was evaluated after the first four cycles of treatment and after all
eight cycles of treatment, following Response Evaluation Criteria in Solid Tumors
(RECIST), with complete response (CR) defined as no clinical evidence of tumor, partial
response (PR) as >30% decrease in the longest diameter, progression (PD) as >20%
increase in the longest diameter, and stable disease (SD) as all other tumor responses’ .
Pathologic response in the post-neoadjuvant chemotherapy surgical specimen was
defined by residual disease in the breast or axillary lymph nodes according to the revised

2003 AJCC TNM staging system.
RNA isolation and microarray hybridization. Total RNA samples from the

pretreatment biopsies were prepared using Qiagen RNAeasy kits. An Agilent Bioanalyzer

was used to determine sample quality. Only those samples giving >1pug Total RNA and
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discernable 18S and 28S peaks were used for microarray analysis. Total RNA
amplification and labeling were done as previously described'®. Microarray
hybridizations were performed on Agilent Human microarrays using 2ug of Cy3-labeled
common reference sample'’ and 2pug of Cy5-labeled experimental sample. Microarrays
were hybridized overnight, washed, dried, and scanned as described'®. Microarray image
files were analyzed with GenePix Pro 4.1 and loaded into the UNC-CH Microarray

Database (https://genome.unc.edu/).

Microarray analysis and prediction of response. Data from microarray experiments
were calculated as described'®. Genes were excluded from data analysis if they did not
have signal intensity >30 in both channels for >70% of the experiments. To predict
response, the gene expression data for the 44 pre-treatment samples was used and the
“supervising parameters” were clinical response after cycles 4 and 8, overall clinical
response, and pathologic complete response (pCR). The difference between overall
clinical response and clinical response after cycle 8 is that for a patient to be evaluated for
the latter, she would had to have completed all 8 therapy cycles. In contrast, overall
clinical response is evaluated after the last successfully completed therapy cycle (not
necessarily cycle 8).

Four statistical classification methods were used to predict chemotherapy
response using the pre-treatment gene expression data: a k-Nearest Neighbor Classifier
(k-NN with k=1, 3, 5, or 7) with either Euclidean distance or one-minus-Spearman-
correlation as the distance function and a Class Nearest Centroid (CNC) classifier with

. . . . . . . 20
either Euclidean distance or one-minus-Spearman-correlation as the distance function™.
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To evaluate prediction accuracy, each of the four prediction methods underwent 10-fold
cross validation (CV); in a given round of CV, each predictor using n genes (how the n
genes were selected is described below) was trained on 90% of the samples and used to
make predictions on the remaining 10%, with this procedure repeated 9 more times such
that every sample was “left out” exactly once. The prediction accuracies for each of the
10 iterations were averaged together and this average prediction accuracy was recorded
for each prediction method with n genes. n was increased for subsequent rounds of CV.
For each response variable, the set of n genes that gave the highest average prediction
accuracy during CV was determined and reported for each prediction method (Table 3).
Each prediction method required a gene/feature selection step to identify genes
associated with each “class” (i.e. CR vs. PR+SD). For all 4 prediction methods, we used
a gene selection method first described by Dudoit et al.?'; the genes were identified in the
training set according to the ratio of between-class to within-class sums of squares. The
top n-ranked genes were used during each round of CV. The number of cases in our study
was relatively small (44), therefore, we did not break our data into training and test sets
but instead, performed 10-fold CV using the four statistical prediction methods to avoid
over-fitting caused by using a single prediction method or fortuitous training and test set

randomizations.

RESULTS
Patient characteristics and response rates. 44 patients enrolled in the L9819 study
gave a successful pre-treatment core biopsy and microarray. Patient characteristics are

summarized in Table 1. Of these 44 patients, 24 and 11 successfully completed AC-T and
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AC-TH therapy, respectively. The patient subgroups receiving AC-T or AC-TH did not
significantly differ from each other in age, grade, stage, ER or PR status. Clinical
response data for the 44 patients is summarized in Table 2. Patient subgroups receiving
AC-T or AC-TH did not significantly differ from each other in response rates (overall

clinical response, clinical response after 4 and 8 treatment cycles, and pCR).

Analysis of tumor samples using the breast intrinsic gene set. Chemotherapy response
is likely a multi-factorial process, therefore, we examined whether gene expression
patterns were able to capture response-associated biological features. To investigate the
gene expression data, we first hierarchically clustered® the 44 pre-treatment samples
using the 1300-gene “breast intrinsic” gene set (developed by Hu et al.>) that identifies
the intrinsic breast tumor subtypes (Luminal, HER2+/ER-neg, Basal-like). The results
show that the main intrinsic subtypes (Figure 1) were identifiable in this patient dataset.
As seen in previous studies™, the proliferation gene cluster was found to have the highest

expression in Basal-like tumors.

Association of response with clinical parameters and breast intrinsic subtype. We
explored how conventional clinical parameters performed in predicting response. Using
either (1) all 44 patients, (2) just those receiving AC-T, or (3) just those receiving AC-
TH, neither ER status, PR status, node status, grade, or tumor size were significantly
correlated with pCR or any other response variable according to Chi-squared analysis.
Other studies have also found that the standard clinical parameters show weak to no

.. . . 24
association with neoadjuvant chemotherapy response™.
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We next examined response rates within the intrinsic molecular subtypes. Rouzier

etal.”

reported a strong association (p=0.002) between pCR rate and the Basal-like and
HER2+/ER- subtypes. In the L9819 study, using either (1) all 44 patients, (2) just those
receiving AC-T, or (3) just those receiving AC-TH, we did not see a statistically
significant association between subtype and pCR or any other response variable (overall
clinical response, clinical response after 4 and 8 treatment cycles). Among all 44 patients,
2/11 (18.2%) basal-like, 2/15 (13.3%) HER2+/ER-, and 2/16 (12.5%) luminal tumors
showed pCR. Among all 44 patients, the association between subtype and clinical
response after 4 treatment cycles was not significant (p=0.17), but a trend was evident:
10/12 (83.3%) basal-like, 8/16 (50%) HER2+/ER-, and 9/16 (56.3%) luminal tumors

showed response (complete or partial) after 4 treatment cycles, which mimics the finding

of Rouzier et al.*” in that the highest response rates were seen in the Basal-like subtype.

Prediction of neoadjuvant chemotherapy response. We performed “supervised
analyses” on the pretreatment gene expression data and determined the 10-fold Cross
Validation (CV) error rates for predicting (1) pCR, (2) overall response, (3) response
after 4 treatment cycles, and (4) response after 8 treatment cycles. Table 3 shows that 10-
fold CV analyses using the Class Nearest Centroid and k-Nearest Neighbor classification
methods yielded gene expression profiles/predictors that accurately classified tumors
according to (1) overall response: clinical complete response (CR) vs. non-CR (75-77%
accuracy), (2) clinical response (partial or complete) vs. non-response after cycle 4 (73-
77% accuracy), and (3) CR vs. non-CR after cycle 8 (79-83% accuracy). We could not

accurately classify tumors according to pCR (<60% accuracy), which we speculate is due
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to the fact that the low number of samples showing pCR (n=6) was not enough to
generate a reliable predictor. Each of the four prediction methods achieved similar
accuracies when used to predict a given response variable (Table 3). Prediction of ER
status is included as a positive control for our gene expression-based predictors; it
represents the upper threshold of how good a predictor can be (86-89% accuracy) on this
dataset, providing a benchmark against which the chemotherapy response predictors can
be judged.

Using the gene lists identified in 10-fold CV as being predictive of response
(Table 3, highlighted in blue), we hierarchically clustered” the pretreatment biopsy
samples to better understand the predictive genes and their relationships to each other.
Figure 2 shows the hierarchical clustering of tumors using the 54-gene set predictive of
response after treatment cycle 4 (75% accuracy, 78% sensitivity, 71% specificity in 10-
fold CV analysis using the Euclidean nearest centroid method) (Note: the classification of
samples into clusters and the associated accuracies observed in Figures 2-4 are different
from those observed in the 10-fold CV analysis shown in Table 3. The clusters are for
illustrative purposes/better understanding of the predictive gene sets only). Using the
program EASE?, the Gene Ontology (GO) categories “DNA binding” and
“nucleotide/nucleic acid metabolism” were over-represented relative to chance in the
gene set highly expressed in tumors showing response at cycle 4 (Figure 2, top gene
dendrogram branch).

Figure 3 shows the hierarchical clustering of tumors using the 70-gene set
predictive of overall response (75% accuracy, 72% sensitivity, 77% specificity in 10-fold

CV analysis using the Euclidean nearest centroid method). Interestingly, the complete
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responders in Figure 3 showed high expression of caspase-9, which promotes apoptosis®’
¥ According to EASE, the GO category “ATP-dependent helicase activity” was over-
represented relative to chance in the gene set highly expressed in tumors showing overall
complete response.

Figure 4 shows the hierarchical clustering of tumors using the 72-gene set
predictive of response after 8 treatment cycles (79% accuracy, 80% sensitivity, 79%
specificity in 10-fold CV analysis using the Euclidean nearest centroid method). EASE
showed that the GO categories “apoptosis/programmed cell death” and “positive
regulation of apoptosis” were over-represented relative to chance in the gene set highly
expressed in tumors showing complete response at cycle 8. Some of the pro-apoptotic
genes highly expressed in complete responders relative to non-complete responders
included caspases 4 and 5 and PACAP. These results suggest that in the pre-treatment
samples, the high expression of proapoptotic genes are associated with and may partly

explain chemotherapy response.

DISCUSSION

In this work, we examined whether pre-treatment gene expression patterns could
predict response to AC-T(H) neoadjuvant therapy. 10-fold CV analysis identified gene
expression patterns with prediction accuracy rates of 75-77% for overall response, 73-
77% for response after cycle 4, and 79-83% for response after cycle 8 (Table 3). The
accuracy rates achieved are encouraging and warrant further validation.

We speculate that the 72-gene set predictive of response after 8 treatment cycles

may represent a general mechanism of chemotherapy response. This gene set was
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significantly enriched for pro-apoptotic genes. Findings from other studies indicate that
apoptosis genes may be important in a general chemotherapy response; several reports
studying breast tumor response to different chemotherapy regimens all indicate that in
pretreatment samples, the high expression of apoptosis-related genes is associated with
response:g’l()’3()'3 2, Currently, we are testing the hypothesis that our 72-gene set may
represent a general predictor of chemotherapy response using additional data sets of
neoadjuvantly treated patients.

To date, three other published studies have attempted to predict neoadjuvant

. . 8,10,11
chemotherapy response using gene expression””

. The prediction accuracies achieved
by our gene expression-based predictors are similar to those achieved by the predictors
developed by Chang et al.'® and Ayers et al.®: their predictors showed accuracies of 88%
for predicting docetaxel clinical response and 78% for predicting pCR to paclitaxel +
fluorouracil + doxorubicin + cyclophosphamide, respectively. In contrast, Hannemann et
al."' could not find a gene expression pattern from pretreatment FNAC samples that was
capable of predicting pCR for patients receiving doxorubicin and cyclophosphamide or
doxorubicin and docetaxel. Clearly, additional studies are needed with larger sample
sizes, however, some common themes in the predictive gene expression patterns are
evident, including apoptosis as an important feature. It is encouraging that genes
identified in the predictors make biological sense and suggest our predictors are
appropriately tracking response.

Our results indicate that gene expression profiling may lead to clinically useful

predictors of neoadjuvant chemotherapy response. Information regarding the intrinsic

subtypes may also contribute to prediction assay development. We believe that the gene
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expression-based predictors identified here have the potential to be clinically useful and

warrant further validation using additional datasets as they emerge.
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TABLES

Table 5.1. Patient characteristics of the 1.9819 dataset.

L9819 dataset (n=44)

No. of pts (%)

Age
Median (range) 47 (30 to 79)
Stage
I 0 (0%)
A 5(11.4%)
1B 10 (22.7%)
1A 18 (40.9%)
1B 7 (15.9%)
ic 1(2.3%)
v 3 (6.8%)
ER status
+ 21 (48%)
- 23 (52%)
n.a -
Grade
1 5(11.4%)
2 7 (15.9%)
3 25 (56.8%)
n.a 7 (15.9%)
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Table 5.2. Neoadjuvant Chemotherapy Response data for the L9819 dataset.

Response after 4 | Response after 8 | Overall response | pCR
cycles cycles
Response data | 8 CR (18.2%) 10 CR (34.5%) | 18 CR (40.9%) | 6 pCR (13.6%)
forall 44 pts. | 19 PR (43.2%) | 12PR (41.4%) | 16 PR (36.4%) | 36 non-pCR (81.8%)
15SD (34.1%) | 6SD (20.7%) | 9SD  (20.5%) | 2n.a. (4.5%)
2PD (4.5%) 1PD  (3.4%) 1PD  (8.3%)

Abbreviations: pCR=pathologic complete response; CR=clinical complete response;
PR=partial response; SD=stable disease; PD=progressive disease.
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Table 5.3. Accuracy (as determined by 10-fold cross validation) of various classification
methods for the 44 tumor samples that yielded pre-treatment microarray data from the
L9819 study. Classification methods were used to predict (A) response at cycle 4, (B)
response after completion of all 8 treatment cycles, (C) overall response, and (D) ER
status.

A. Prediction of Response at Cycle 4 (27 responders [§ CRs and 19 PRs] vs. 17 non-
responders [15 SDs and 2 PDs])

Classification | gene True | True | False | False

method # acc. + - + - sens. | spec. | PPV | NPV
Spearman

Nearest

Centroid 53] 0.727 20 12 5 71 0.741 | 0.706 | 0.800 | 0.632
Euclidean

Nearest

Centroid 541 0.5 21 12 5 6] 0778 | 0.706 | 0.808 | 0.667
Spearman

k-NN (k=7) 37| 0.727 21 11 6 6| 0.778 | 0.647 | 0.778 | 0.647
Euclidean

k-NN (k=7) 531 0.773 21 13 4 6] 0.778 | 0.765 | 0.840 | 0.684
Average 0.744 0.769 | 0.706 | 0.806 | 0.657

B. Prediction of Response at Cycle 8 (10 CRs vs. 19 non-CRs [12 PRs, 6 SDs, and 1 PD])

Classification | gene True | True | False | False

method # acc. + - + - sens. | spec. | PPV | NPV
Spearman

Nearest

Centroid 55| 0.793 8 15 4 2| 0.800 | 0.789 | 0.667 | 0.882
Euclidean

Nearest

Centroid 72 | 0.793 8 15 4 2| 0.800 | 0.789 | 0.667 | 0.882
Spearman

k-NN (k=5) 76 | 0.793 8 15 4 2| 0.800 | 0.789 | 0.667 | 0.882
Euclidean

k-NN (k=5) 63 | 0.828 8 16 3 2| 0.800 | 0.842 | 0.727 | 0.889
Average 0.802 0.800 | 0.803 | 0.682 | 0.884
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C. Prediction of Overall Response (18 CRs vs. 26 non-CRs [16 PRs, 9 SDs, and 1 PD])

Classification | gene True | True | False | False

method # acc. + - + - sens. | spec. | PPV | NPV
Spearman

Nearest

Centroid 54| 0.75 14 19 7 41 0778 | 0.731 | 0.667 | 0.826
Euclidean

Nearest

Centroid 70 0.75 13 20 6 51 0.722 | 0.769 | 0.684 | 0.800
Spearman

k-NN (k=5) 55| 0.773 14 20 6 41 0.778 | 0.769 | 0.700 | 0.833
Euclidean

k-NN (k=5) 37 0.75 12 21 5 6| 0.667 | 0.808 | 0.706 | 0.778
Average 0.756 0.736 | 0.769 | 0.689 | 0.809

D. Prediction of ER status (21 ER+ vs. 23 ER-)

Classification | gene True | True | False | False

method # acc. + - + - sens. | spec. | PPV | NPV
Spearman

Nearest

Centroid 50 | 0.864 19 19 4 2| 0905 | 0.826 | 0.826 | 0.905
Euclidean

Nearest

Centroid 50 | 0.864 19 19 4 21 0.905 | 0.826 | 0.826 | 0.905
Spearman

k-NN (k=3) 50 | 0.886 19 20 3 21 0.905 | 0.870 | 0.864 | 0.909
Euclidean

k-NN (k=3) 50 | 0.864 19 19 4 21 0.905 | 0.826 | 0.826 | 0.905
Average 0.870 0.905 | 0.837 | 0.835] 0.906

Note: Accuracies, etc. highlighted in blue are for the gene lists used to cluster tumors in
Figures 2-4. Average accuracies, etc. across the prediction methods are highlighted in
red. “True +” refers to number of responders correctly identified. “True — refers to
number of non-responders correctly identified. “False +” refers to number of non-
responders incorrectly identified. “False — refers to number of responders incorrectly
identified.

Abbreviations: acc.=accuracy; sens.=sensitivity; spec.=specificity; PPV=positive
predictive value; NPV=negative predictive value; k-NN=k-nearest neighbors;
CR=clinical complete response; PR=partial response; SD=stable disease; PD=progressive
disease.
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Figure 5.1. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the
1300-gene “intrinsic breast” gene set developed by Hu et al. groups tumors into the
intrinsic subtypes. A. Scaled-down representation of the complete cluster diagram. B.
Basal epithelial, C. Proliferation, D. HER2+, and E. Luminal gene clusters.
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Figure 5.3. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the
70-gene set predictive of overall response. Blue and yellow dendrogram branches
indicate complete and non-complete overall responders, respectively.
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Figure 5.4. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the
72-gene set predictive of clinical response after completion of all 8 treatment cycles. Blue
and yellow dendrogram branches indicate complete and non-complete responders,
respectively.
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CHAPTER 6: DISCUSSION

Currently, many breast cancer patients are being given lengthy and expensive
treatments associated with significant toxicity and morbidity. Some of these patients will
receive no benefit in survival while others would have achieved good outcomes without
additional treatments. This work has aimed to remedy this situation using gene
expression profiling. First, we developed an expression-based predictor of outcome for
Estrogen Receptor (ER) and/or Progesterone Receptor (PR)-positive breast cancer
patients using biological differences among these tumors. Second, we used a recently
developed multivariate analysis tool (DWD) to validate and objectively define the
“Intrinsic” subtypes as a predictor/prognosticator of breast cancer patient outcomes by
using independent datasets generated on differing microarray platforms. Third, using a
single patient dataset, we determined that there was significant concordance in outcome
predictions made by several different gene expression profiles (developed on different
platforms by different laboratories), which showed little overlap in gene identity. Lastly,
we developed gene expression-based predictors for response to neoadjuvant
chemotherapy using pre-treatment microarray data.

From the results of this work, we propose the following decision tree for how to
treat breast cancer patients (Figure 1), which will of course, need much more validation
and testing before routine clinical use. First, using the intrinsic subtype single sample

predictor (SSP) introduced in Chapter 3, the patient would be objectively classified as



having either luminal, HER2+/ER-, or basal-like breast cancer. If the patient’s tumor
were determined to be of the luminal subtype, we would then apply the Group IE-IIE
predictor introduced in Chapter 2. If the tumor is classified as Group IE, we hypothesize
that all that is needed for treatment would be hormone therapy (i.e. tamoxifen), and that
this patient might be spared the chemotherapy regimen that they would normally be
prescribed. If the tumor is classified as Group IIE, we would then first examine the
tumor’s HER2 status to determine whether trastuzumab (monoclonal antibody that binds
to HER2) should be part of the treatment regimen (i.e. HER2+ tumors will receive
trastuzumab). Regardless of HER?2 status, if the tumor is classified as Group IIE, we
would also apply the L9819 72-gene chemotherapy response predictor (introduced in
Chapter 5), which we believe can be used to predict general chemotherapy response. If
the tumor is predicted to respond to chemotherapy by the L9819 predictor, we would
include (neo)adjuvant chemotherapy and tamoxifen in the treatment regimen for these
patients (however, the data suggests that Group IIE tumors are resistant to tamoxifen,
which must be formally tested in randomized trials). If the tumor is predicted to not
respond to chemotherapy by the L9819 predictor, the patient would be given an
alternative therapy and perhaps be considered for entry into trials containing new
biological agents. The hope is that these patients unlikely to benefit from conventional
chemotherapy regimens will in addition to avoiding unnecessary chemotherapy-
associated morbidity, have the opportunity to benefit from exposure to potentially
effective novel agents.

If the patient’s tumor were determined to be of the HER2+/ER- subtype, the

patient will receive trastuzumab (currently some HER2+/ER- tumors are believed to be
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resistant to trastuzumab, but no predictor to determine resistance yet exists). In addition,
we would use the L9819 general chemotherapy response predictor to determine if
conventional (neo)adjuvant chemotherapy should be added to the treatment regimen in
the case of those predicted to respond, and for those predicted to not respond, alternative
regimens with novel agents might be considered. Finally, if the patient’s tumor were
determined to be of the Basal-like subtype, at present we believe the best course of action
would be to use the L9819 general chemotherapy response predictor to determine if
(neo)adjuvant chemotherapy should be given to the patient, and again, those predicted not
to respond might be offered therapies containing novel biological agents like HER1
inhibitors. We hope that with improved understanding of the basal-like subtype, novel
therapies tailored to this particular subtype of breast cancer will be developed to
complement or perhaps supplant chemotherapy as the treatment of choice. For example,
recent studies suggest that this subtype may benefit from therapy targeting the epidermal
growth factor receptor (HER 1) and/or the pathway it regulates'. Clinical trials are
currently underway to determine the efficacy of HER1 inhibitors (i.e. cetuximab,
gefitinib, and erlotinib) in basal-like tumors®.

As stated earlier, the decision tree in Figure 1 will require rigorous validation and
testing before routine clinical use. These validation studies should be done using cohorts
with large enough sample size so that (1) the full diversity of the target population will be
represented and (2) the study will have the necessary statistical power to determine if the
predictor in question does indeed improve current treatment decision-making strategies.
When possible, randomized controlled trials should be used in the validation process"”.

For example, to test our hypothesis discussed earlier that Group IE tumors may benefit
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from tamoxifen but not benefit significantly from chemotherapy, we could use a clinical
trial in which patients classified as Group IE are randomly assigned to receive either
tamoxifen or tamoxifen and chemotherapy. The survival outcomes of those receiving
tamoxifen alone or tamoxifen with chemotherapy would be compared. To test our
hypothesis that Group IIE tumors do not benefit from tamoxifen but may benefit
significantly from chemotherapy, we could use a clinical trial in which patients classified
as Group IIE are randomly assigned to receive either tamoxifen alone, chemotherapy
alone, or both tamoxifen and chemotherapy. The survival outcomes of these three
treatment groups would then be compared, and our expected result would be that Group
IIE patients receiving tamoxifen plus chemotherapy would have the same outcomes as
those receiving chemotherapy alone. Other clinical trial designs as described by Sargent
et al.* could also be used to test these same hypotheses. When randomized clinical trials
are not possible, retrospective case-control studies may be considered.

We acknowledge that before gene expression-based predictors or prognosticators
can be introduced to the clinic, the current expenses and required training involved need
to be made less prohibitory for routine clinical use. The requirement for fresh frozen
material for microarray analysis is also prohibitory. However, we are confident that these
difficulties can be overcome in time with technological advances. For example, recent
progress has been made to use formalin fixation and paraffin-embedded (FFPE) tissue
samples to amplify RNA for microarray analysis’. In addition, RT-PCR (real-time
reverse transcriptase polymerase chain reaction) assays can be used as an alternative to
microarrays for the simultaneous analysis of hundreds of genes and can be employed to

validate “expression signatures” initially identified in microarray analysis. Importantly,
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RT-PCR assays can examine gene expression using limited amounts of RNA extracted
from FFPE sections.

In summary, this work has advanced the current knowledge of the heterogeneity
of breast cancer and provides a means for improved prediction and prognostication for
breast cancer patients. This work has shown that gene expression profiling can and will
be clinically useful and will improve the treatment decision-making process for breast
cancer patients. Provided that properly designed and rigorous validation studies are
performed, we are confident gene expression profiling will be accepted for routine

clinical use.
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