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ABSTRACT 

Daniel S. Oh 

Prediction of Outcome in Breast Cancer Patients Using Gene Expression Profiling 

(Under the Direction of Charles M. Perou) 

 

Breast cancer, the most common cancer diagnosed in women, is a complex and 

heterogeneous disease. In order to make the best treatment decision for a breast cancer 

patient, it is important to accurately determine that patient’s risk of recurrence and the 

therapy to which that patient’s tumor is most likely to respond. The prognostic and/or 

predictive factors currently accepted for use in primary breast cancer decision making 

(i.e. lymph node status, tumor size, nuclear grade, etc.) are not enough to accurately 

identify those patients who may require therapy and gives little information about what 

therapy they might best benefit from. Recent discoveries using gene expression profiling 

have greatly improved our understanding of the molecular pathogenesis of breast cancer. 

We believe that gene expression profiling may also improve the prognostication and/or 

prediction of breast cancer outcomes, and thus, the main objective of this work has been 

to develop and test gene expression-based predictors of outcome in breast cancer patients. 

First, we developed an expression-based predictor of outcome for Estrogen Receptor 

(ER) and/or Progesterone Receptor (PR)-positive breast cancer patients using biological 

differences among these tumors. Second, we developed a predictor for objectively 

classifying tumors into one of five intrinsic subtypes and validated this using multiple test 
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sets. Next, using a single patient dataset, we determined the concordance in outcome 

predictions made by several different gene expression profiles (developed on different 

platforms by different laboratories). Lastly, we developed gene expression-based 

predictors for response to neoadjuvant chemotherapy. In summary, this work shows that 

gene expression profiling holds great promise in being clinically useful in the treatment 

decision-making process for breast cancer patients.  
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CHAPTER 1:  INTRODUCTION 

Breast cancer, the most common cancer diagnosed and the second leading cause 

of cancer death among women in the US, is a complex and heterogeneous disease. It is 

critically important for clinicians to accurately determine which breast cancer patients are 

likely to show recurrence and what treatments they will best benefit from. Currently, the 

factors widely accepted for use in prognostication and/or prediction for breast cancer 

patients include axillary lymph node status, age, tumor size, estrogen and progesterone 

receptor status, and histologic grade1,2. Researchers have attempted to find other factors 

useful for predicting outcomes, but many of these have failed to become clinically useful. 

There is a need to improve on this set of factors currently used in breast cancer prognosis 

and prediction, as many patients are either being unnecessarily overtreated or being 

treated with toxic and expensive chemotherapeutics to which they will not show a 

response. For example, current guidelines recommend that most lymph node metastasis-

negative patients should undergo systemic adjuvant chemotherapy; however, a majority 

of these node-negative patients are being unnecessarily overtreated because if left 

systemically untreated, approximately only 20% would develop recurrence3.  

  Gene expression profiling using DNA microarrays has recently begun to be used 

to investigate the heterogeneous nature of breast cancer. It has allowed for a better 

understanding of the biological differences within breast cancer beyond the traditional 

methods of patient stratification (i.e. stratification by ER status)4. We believe it may also 
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provide a way to improve the outcome prediction and treatment decision-making for 

breast cancer patients. Gene expression profiling was used by Perou and colleagues to 

classify breast cancer into a luminal epithelial, basal-like, normal breast-like, and 

HER2+/ER- subtypes4, which were shown to have significant differences in patient 

outcome5,6 (Figure 1). This classification was done by hierarchical cluster analysis7 of 

tumors using an ‘intrinsic’ gene set, which consisted of genes with significantly greater 

variation in expression between tumors than between paired samples from the same 

tumor. The subtypes identified by Perou et al.4 were distinguished by extensive 

differences in expression of genes from the ‘intrinsic’ gene list (Figure 2). The luminal 

epithelial subtype of breast cancer was found to be mainly composed of ER+ and/or PR+ 

tumors and correlated with the high expression of a cluster of genes (luminal 

epithelial/ER+ gene cluster), which included ER and GATA3. In contrast, the basal-like 

subtype was found to have low expression of the ER+ gene cluster, but high expression 

of a cluster of genes that included cytokeratins 5, 6, and 17. The HER2+/ER- subtype 

also showed low expression of the ER+ gene cluster, but had high expression of HER2 

and other genes in the ERBB2 (HER2) amplicon such as GRB74. Thus, these analyses 

rediscovered important breast cancer biomarkers (i.e. ER and HER2) but also identified 

new “subtypes” of breast cancer. 

  

Estrogen Receptor Biology and Tamoxifen Resistance. The estrogen receptor 

(ER) belongs to the superfamily of nuclear hormone receptors that includes the 

progesterone receptor (PR) and thyroid hormone receptor. ER is essential for mammary 

gland differentiation and morphogenesis as evidenced by the dramatic phenotypes seen in 
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ER-knock-out mice8. Upon binding to estrogen, ER undergoes a conformational change 

that results in dissociation from an inhibitory heat shock protein complex, followed by 

receptor dimerization and phosphorylation9. The activated ER then binds to target gene 

promoters at specific palindromic sequence motifs called estrogen response elements 

(EREs)10, which leads to alterations in the transcription of these estrogen-regulated genes. 

Genes regulated by estrogen have diverse functions, including promotion of the cell cycle 

and proliferation, cell-cell interactions, angiogenesis, and inhibition of apoptosis11-14. In 

addition, it is postulated that estrogen-regulated genes include those involved in 

inhibition of tumor cell invasion and metastasis8.  

Positive regulation of estrogen-regulated genes is mediated by two different 

domains in ER, AF-1 and AF-2. AF-1 is located at the N-terminal of ER and is hormone-

independent, while AF-2 is located in the ligand-binding domain of ER and is hormone-

dependent10. Co-activator proteins such as SRC1, TIF2, and AIB1 form a complex with 

ER on the promoter to positively regulate transcription, partly through recruitment of 

histone-acetyltransferases to the promoter, which results in chromatin decondensation9. 

Negative regulation of transcription by ER is controversial and less well understood, and 

is thought to involve recruitment of corepressor proteins such as NCoR1 and NCoR2 

which in turn recruit histone-deacetylase complexes, which results in chromatin 

condensation15,16.  

Modulation of gene expression by ER has also been shown to occur at non-ERE 

sites such as AP-1 and SP-1 regulatory sequences9. At these regulatory sequences, ER 

does not directly bind to DNA, but rather is attached to the promoter complex by 

interaction with other DNA-bound transcription factors (TFs) such as c-jun and c-fos. ER 



 

  4 
 

modulates the activity of these TFs by stabilizing their DNA binding and/or recruiting 

additional coactivators to the complex17. In addition, it is believed that ER may also have 

non-genomic activity, in which ligand binding to membrane-bound or cytoplasmic ER 

causes it to interact with a variety of membrane-signaling molecules including key 

growth-factor receptors and/or growth-factor dependent kinases (i.e. IGF-1R, PI3K, 

MAPK, EGFR, and HER2)18,19. These kinases can then activate signaling cascades that 

may enhance the activity of nuclear ER and its coregulators via phosphorylation20. 

It is widely believed that estrogen, via the estrogen receptor, is involved in the 

pathogenesis of and sustains the growth of ER+ breast cancers. Thus, patients with ER+ 

breast cancer are given estrogen antagonists that block ER activity. The most widely used 

hormone antagonist is tamoxifen, a selective ER modulator (SERM) that binds ER and 

blocks its activity in the breast. Tamoxifen is the gold standard of treatment for ER+ 

breast cancer patients; however, up to 40% of these patients experience relapse despite 

receiving therapy21-23.  

Postulated tamoxifen resistance mechanisms include loss of ER 

expression/function and altered expression of a second ER (referred to as ERß) whose 

function in normal and malignant breast cells is poorly understood20. However, other 

postulated resistance mechanisms have received more attention and are believed to be 

more important: (1) alterations in co-regulatory proteins such as overexpression of the ER 

co-activator AIB1 and (2) the upregulation of growth factor signaling pathways such as 

those mediated by EGFR and HER2 that are believed to engage in cross-talk with ER 

signaling pathways as described earlier19,24. Clinical and laboratory studies suggest that 

high levels of AIB1 may enhance the partial agonistic effect of tamoxifen and therefore 
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contribute to tamoxifen resistance25,26. Clinical and experimental evidence indicate that 

overexpression of HER2 and/or EGFR is associated with and contributes to tamoxifen 

resistance27,28. It is hypothesized that one reason HER2 and/or EGFR overexpression 

contributes to tamoxifen resistance is that the subsequent increased activation of 

downstream kinases can activate and enhance ER activity by phosphorylating ER and its 

coregulators24. 

 

Outcome prediction in hormone-receptor positive breast cancer. Currently, 

the prognosis of a patient with ER+ and/or PR+ breast cancer can be highly variable. A 

subgroup of patients with this type of breast cancer (i.e. luminal) experiences disease 

relapse regardless of receiving therapy while other subsets do extremely well21-23. The 

“intrinsic” classification of Luminal A vs. Luminal B is predictive of outcomes in ER+ 

and/or PR+ patients; however, this distinction is correlated with grade and we believed it 

possible to develop a more biologically relevant predictor of outcomes for this patient 

subset. Not enough progress has been made in developing methods to predict which ER+ 

and/or PR+ patients are at risk or not at risk for experiencing relapse. Such a method of 

defining the prognosis of ER+ and/or PR+ breast cancer patients would be of significant 

value.  

Pathways under the control of estrogen signaling (mediated by the estrogen 

receptor) are involved in the growth and differentiation of the mammary gland and are 

widely believed to be important in ER+ and/or PR+ breast cancer biology8,9. Thus, we 

speculated that gene expression profiling of the ER pathway using cell line models might 

be useful in developing a clinically robust outcome predictor for ER+ and/or PR+ breast 
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cancer and lead to a better understanding of the biological differences within this breast 

cancer tumor type. Because of the widely believed importance of estrogen responsiveness 

and signaling in ER+ and/or PR+ breast cancer biology, we hypothesized that estrogen-

regulated genes might be useful in predicting outcome in this type of breast cancer, and 

therefore, we developed an ER-pathway based predictor for breast cancer patients that is 

described in Chapter 2. 

 

Microarray platform-independent validation of the “intrinsic” breast tumor 

subtypes. A major challenge for microarray studies, especially those with clinical 

implications, is validation29,30. Due to the practical barriers of cost and access to large 

numbers of fresh frozen tumor samples with associated clinical information, very few 

microarray studies have analyzed enough samples to allow promising initial findings to 

be sufficiently validated to justify the major investment required for clinical testing. An 

efficient approach would be to use public gene expression data repositories as test sets; 

however, it has been difficult to compare and/or combine data sets from independent 

laboratories due to differences in sample preparation, experimental design, and 

microarray platforms. Fortunately, the multivariate analysis tool Distance Weighted 

Discrimination (DWD) has recently been shown to successfully overcome this difficulty 

in comparing and/or combining datasets from independent laboratories31. DWD identifies 

systemic biases present in separate microarray datasets and makes a global adjustment to 

these datasets to compensate for these biases. If one considers each separate dataset as a 

multi-dimensional cloud of data points, DWD works by taking two such clouds and 

shifting one such that it more optimally overlaps the other. 
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The “intrinsic” subtypes identified by Perou and colleagues (described above) has 

not yet been validated as a predictor/prognosticator of breast cancer patient outcomes to 

the extent that other gene expression-based predictive/prognostic profiles have32,33. Thus, 

in Chapter 3 we used DWD to (1) validate the intrinsic subtypes on independent test 

datasets generated on differing microarray platforms and (2) constructed a method to 

objectively assign any given tumor to an intrinsic tumor subtype. 

 

Concordance of several different gene expression-based predictors. Many 

different laboratories have examined the prognostic and/or predictive utility of gene 

expression profiling for breast cancer. These predictors include the discovery of the 

“intrinsic” subtypes using supervised hierarchical clustering analysis as done by Perou 

and colleagues as described above. Independently, van’t Veer and colleagues identified a 

70-gene prognostic signature that classifies tumors into either a good or poor prognosis 

group34. This signature was obtained through a supervised analysis in which genes were 

selected according to correlation with patient outcome for a set of 78 node-negative 

breast cancer patients all less than 55 years of age at time of diagnosis. Genes involved in 

cell cycle, invasion and metastasis, angiogenesis, and signal transduction were found to 

be significantly upregulated in the poor prognosis signature34.  

Chang and colleagues35,36 characterized the transcriptional response of normal 

fibroblasts to serum and showed that this “wound-response signature” can predict 

outcomes in breast cancer patients. Patients whose tumors expressed the wound-response 

signature (“activated” tumors) had markedly poor overall survival and distant metastasis-

free survival compared to patients with tumors that did not express this signature 
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(“quiescent” tumors). The wound-response signature included induction of genes 

involved in the cell cycle, cell motility, extracellular matrix remodeling, and cell-cell 

signaling35. Lastly, two laboratories independently derived expression-based predictors of 

outcome in ER+ tamoxifen-treated patients. First, Paik and colleagues developed a qRT-

PCR-based 21-gene prognostic score (referred to as the “Recurrence score”) for node-

negative tamoxifen-treated breast cancers, and used it to successfully categorize patients 

as having a low, intermediate, or high risk of recurrence37. Second, Ma and colleagues 

determined that a 2-gene ratio (HOXB13:IL17BR) could predict disease-free survival in 

tamoxifen-treated patients: a high ratio indicated a poor clinical outcome compared to a 

low ratio38.  

These different gene expression-based predictors were developed by different 

laboratories, and a comparison of the gene lists from some of these predictors showed 

that they overlapped each other by only a modest amount, if at all. This lower than 

expected gene similarity between lists might be explained by differences in microarray 

platforms, cohort biases due to different patient selection criteria and sample size, and 

differences in statistical methods used to develop the predictors. An important and 

unanswered question is whether the lack in gene overlap between these predictors reflects 

an actual discordance in outcome predictions for the individual patient (i.e. do these 

different predictors actually disagree or agree concerning outcome predictions for the 

individual patient). To answer this question, in Chapter 4 we describe our studies where 

we performed an analysis of a single patient dataset on which the five 

prognostic/predictive gene expression-based predictors described above (intrinsic 

subtypes4, van’t Veer et al’s 70-gene predictor34, Chang et al’s Wound-Response 
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predictor35, the Recurrence score predictor37, and Ma et al’s 2-gene ratio predictor38) were 

simultaneously compared. 

 

Prediction of neoadjuvant chemotherapy response. The identification of 

biomarkers that predict chemotherapy response in breast cancer is an area of intense 

research, in large part because no such predictor currently exists. In some cases, cell 

proliferation index or TP53 somatic mutation status has been correlated with response, 

but these markers are not in standard use for patient stratification39-42. Recently, response 

studies have focused on using DNA microarrays to identify gene expression patterns 

predictive of chemotherapy response. Neoadjuvant chemotherapy (treatment before 

primary surgery) facilitates these response studies because it allows for the direct and 

timely observation of tumor response to treatment and allows access to primary tumor 

samples before and during treatment to develop and assess markers that might be 

predictive of response3.  

An additional reason why we may want to study neoadjuvant chemotherapy 

response is that it has been shown to be correlated with, and can be used as a surrogate 

marker, for improved long-term disease-free and overall survival43-49. For example, in a 

study of 372 patients given neoadjuvant chemotherapy, Kuerer et al.44 reported that the 5-

year overall and disease-free survival rates were significantly higher in those achieving 

Pathological Complete Response (pCR) compared to those who did not. Likewise, in a 

study of 158 patients, Chang et al.47 reported that good clinical response (defined by 

Chang et al. as clinical complete response or minimal residual disease) to neoadjuvant 

chemotherapy was significantly associated with decreased risk of relapse and death. 
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Thus, encouraged by these neoadjuvant studies, in Chapter 5 we determined whether 

gene expression patterns from pre-treatment tumor samples could predict response to 

neoadjuvant chemotherapy.  

In summary, this work builds on that of Perou and others regarding the 

heterogeneity of breast cancer. The overall aim of this work has been to use this 

knowledge about the heterogeneity of breast cancer to develop/analyze gene expression-

based predictors of outcome in breast cancer patients. In all of our aims, we were 

successful in developing expression-based predictors that provided added value, and thus, 

we believe that the results of our analyses will improve the outcomes of future breast 

cancer patients. 
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FIGURES 
 

 

Figure 1.1. Kaplan-Meier analysis of disease outcome in two patient cohorts stratified by 
intrinsic subtype. A. Time to development of distant metastasis in the 97 sporadic cases 
from van’t Veer et al. B. Overall survival for 72 patients with locally advanced breast 
cancer in the Norway cohort. Figure adapted from Sorlie et al.6 
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Figure 1.2. Hierarchical cluster analysis using the “intrinsic” gene set. Gene expression 
patterns of 85 experimental samples (78 carcinomas, 3 benign tumors, and four normal 
tissues) were analyzed by hierarchical clustering using the 476 cDNA intrinsic clone set. 
A. The tumor specimens were divided into subtypes based on differences in gene 
expression. The cluster dendrogram showing the subtypes of tumors are colored as: 
luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light blue; 
normal breast-like, green; basal-like, red; and ERBB2+, pink. B. Scaled-down 
representation of the complete cluster diagram. C. ERBB2 amplicon cluster. D. Novel 
unknown cluster. E. Basal epithelial cell-enriched cluster. F. Normal breast-like cluster. 
G. Luminal epithelial gene cluster containing ER. Figure adapted from Sorlie et al.5 
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ABSTRACT 

Purpose 

The prognosis of a patient with Estrogen Receptor (ER) and/or Progesterone Receptor 

(PR)-positive breast cancer can be highly variable. Therefore, we developed a gene 

expression-based outcome predictor for ER+ and/or PR+ (i.e. Luminal) breast cancer 

patients using biological differences among these tumors.  

 

Materials and Methods 

The ER+ MCF-7 breast cancer cell line was treated with 17β-estradiol to identify 

estrogen-regulated genes. These genes were used to develop an outcome predictor on a 

training set of 65 luminal epithelial primary breast carcinomas. The outcome predictor 

was then validated on three independent published datasets.  

 

Results 

The estrogen-induced gene set identified in MCF-7 cells was used to hierarchically 

cluster a 65 tumor training set into 2 groups, which showed significant differences in 
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survival (p=0.0004). Supervised analyses identified 822 genes that optimally defined 

these two groups, with the poor prognosis Group IIE showing high expression of cell 

proliferation and anti-apoptosis genes. The good prognosis Group IE showed high 

expression of estrogen and GATA3-regulated genes. Mean expression profiles (i.e. 

centroids) created for each group were applied to ER+ and/or PR+ tumors from three 

published datasets. For all datasets, Kaplan-Meier survival analyses showed significant 

differences in Relapse-Free and Overall Survival between Group IE and IIE tumors. 

Multivariate Cox analysis of the largest test dataset showed that this predictor added 

significant prognostic information independent of standard clinical predictors and other 

gene expression-based predictors. 

 

Conclusion 

This study provides new biological information concerning differences within hormone 

receptor-positive breast cancers and a means of predicting long-term outcomes in 

tamoxifen-treated patients. 
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INTRODUCTION 

Breast cancers are traditionally stratified into hormone receptor-positive and 

negative groups to guide patient management. This is because almost all hormone 

antagonist (i.e. tamoxifen)-responsive breast cancers are Estrogen Receptor (ER) and/or 

Progesterone Receptor (PR)-positive1. However, a subgroup of these patients experience 

disease relapse irrespective of standard therapy with tamoxifen2-4. In many cases the 

resistance mechanism(s) are unknown5-7. A method for identifying those ER+ and/or PR+ 

patients that do well in the presence of tamoxifen versus those that do poorly would be of 

significant value. 

Gene expression profiling is a powerful method for breast cancer prognostication. 

Using gene expression profiling, breast tumors can be classified into five molecular 

subtypes (Basal-like, HER2+/ER-, Normal Breast-like, and Luminal A and B) with 

significant differences in patient outcome8,9. The two Luminal subtypes are almost 

entirely composed of ER+ and/or PR+ tumors and are defined by the high expression of a 

gene set (luminal epithelial/ER+ set) that includes ER and GATA3. Compared to Luminal 

A tumors, Luminal B tumors have poor outcomes despite being clinically ER+8,9. 

To date, several laboratories have developed gene expression-based predictors for 

ER+ and/or PR+ patients. All used supervised analyses based upon patient 

outcomes/tumor response10-13. Here we developed a gene expression-based predictor 

using an approach based solely upon biological characteristics of the tumors. Because of 

the importance of estrogen signaling in breast epithelial cell biology, we hypothesized 

that differential expression of estrogen-regulated genes would be useful in predicting 

outcome.  
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MATERIALS AND METHODS 

Cell culture and collection of mRNA. MCF-7 cells were maintained as described 

previously14. Cells were plated in 150mm dishes and grown until 50% confluence.  

Media was changed and cells maintained for 48 hours in estrogen-free medium (phenol 

red-free RPMI-1640 with 10% charcoal-dextran-stripped FBS) before treating for 

2,4,8,or 24 hours with 10-6 M 17β-estradiol (Sigma). Cells were harvested, and mRNA 

isolated using a Micro-FastTrack kit (Invitrogen). A reference mRNA sample was 

harvested from cells maintained for 48 hours in estrogen-free medium (i.e. estrogen-

starved cells). 

 

Microarray Experiments.  Agilent Human whole-genome microarrays were hybridized 

according to manufacturer’s protocol with Cy3-CTP labeled cRNA from estrogen-starved 

cells (2μg/sample) and Cy5-CTP labeled cRNA from 17β-estradiol-treated cells 

(2μg/sample), with dye-flip replicates for each time point. Microarrays were scanned and 

image files analyzed as described previously15. All primary microarray data are available 

via the UNC Microarray Database (https://genome.unc.edu/) and the GEO with series 

number GSE2740 (GSM52882-GSM52909, GSM34423-GSM34568). 

 

Analysis of microarray data to identify GATA3 and estrogen-regulated genes. Data 

from microarray experiments were calculated as described15. Genes were excluded from 

data analysis if they did not have signal intensity ≥30 in both channels for ≥70% of the 

experiments. To identify estrogen-regulated genes, we used one-class Significance 

https://genome.unc.edu/
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Analysis of Microarrays (SAM) to identify genes that changed in all estrogen-treated 

time points (as a single class) relative to the estrogen-starved cells16 (Note: in our SAM 

analyses we did not use the fold-change cutoff option to avoid the fold-change associated 

complications/pitfalls described by Larsson et al.17). Using a false discovery rate (FDR) 

of 0.04%, SAM identified 383 estrogen-induced and 574 estrogen-repressed genes; for 

subsequent “estrogen-SAM” analyses, only the 383 induced genes were used. Average 

linkage hierarchical cluster analysis was conducted and the results visualized in 

Treeview18.  

GATA3-induced genes were identified by microarray experiments on 293T cells 

transfected with GATA3 gene constructs, as detailed in Usary et al.19. One-class SAM 

analysis (0.58% FDR) identified 407 genes that were induced in the GATA3 samples (as 

a single class) relative to empty vector controls. 

 
Analysis of primary breast tumor data using the estrogen-induced gene set. The 

primary breast tumor samples (collected with patient consent and UNC-CH Human 

Investigations Review Committee approval) used in the training dataset are described in 

Hu et al.20, except for 14 new tumor samples. A total of 118 fresh frozen breast tumor 

and 9 normal breast samples represented by 160 microarray experiments were analyzed 

using the 1300-gene “breast intrinsic” gene set developed by Hu et al.20, which identified 

65 tumors as belonging to the “Luminal subtype”. These “Luminal” tumors included 61 

ER+ and/or PR+ tumors according to immunohistochemistry, 3 ER- and PR-, and one not 

determined.  

The 383-gene MCF-7 estrogen-induced gene list was used to hierarchically 

cluster the 65 Luminal tumors resulting in two groups, which we called Groups I and II.  
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We used a two-class, unpaired SAM analysis (with 1% FDR) to identify 822 genes 

(referred to as the estrogen-SAM list) that optimally differentiated Group I versus Group 

II tumors21,22. The 65 Luminal tumors were then clustered using the 822 genes and two 

groups (Groups IE and IIE) were evident. 

By matching Unigene identifiers, data for as many as possible of the 822 

estrogen-SAM genes was obtained for ER+ and/or PR+ tumors (classified as provided in 

the primary publications) from three independent test datasets8,9,12,23. The Ma et al., 

Sorlie et al., and Chang et al. datasets consisted of 60, 90, and 250 ER+ and/or PR+ 

tumors respectively. Ma et al. tumors were uniformly treated with adjuvant tamoxifen 

alone. Sorlie et al. tumors received adjuvant tamoxifen, with some also receiving 

neoadjuvant chemotherapy. Chang et al. tumors were heterogeneously treated 

(http://www.pnas.org/cgi/content/abstract/0409462102v1); 24 of the 250 tumors we used 

for this dataset were published earlier24. 

To remove microarray platform/source systematic biases, we applied Distance 

Weighted Discrimination/DWD25 to the training and test datasets. From the DWD 

standardized Luminal tumor training dataset, centroids were created consisting of the 

average expression of the 822 estrogen-SAM genes for Groups IE and IIE. We then 

classified each ER+ and/or PR+ tumor in the test datasets as Group IE or IIE according to 

each sample’s nearest centroid as determined by Spearman correlation. 

 

Survival Analyses. Kaplan-Meier survival plots were compared using the Cox-Mantel 

log-rank test in Winstat for Excel (R. Fitch Software, Staufen, Germany). Two-way 

contingency table analysis was done using Winstat for Excel. For the Chang et al. 

http://www.pnas.org/cgi/content/abstract/0409462102v1
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dataset, multivariate Cox proportional hazards analysis was performed using SAS (Cary, 

NC).  

 

RESULTS 

Identification of estrogen-regulated genes. To identify estrogen-regulated genes, we 

used the ER+ human breast tumor-derived MCF-7 cell line as a model system.  A “one-

class” SAM supervised analysis16 with an FDR of 0.04% identified 383 induced and 574 

repressed genes in microarray experiments on MCF-7 cells treated with 17β-estradiol for 

2, 4, 8, or 24 hours (hierarchical clustering of these genes is shown in Figure 1). Many 

genes identified were previously known to be ER-regulated including CCND1, PR, 

RERG, CTSD, and PDZK126-29. Using the program EASE30, the Gene Ontology (GO) 

categories “sterol metabolism/biosynthesis”, “ribosome biogenesis/assembly”, and 

“cytoskeleton structural constituent” were over-represented relative to chance in the set 

of 383 estrogen-induced genes. 

 
Estrogen and GATA3-regulated genes are present in the Luminal/ER+ gene cluster. 

The Luminal/ER+ expression cluster is a gene set identified in many breast tumor 

profiling studies24,31-33, includes GATA3 and ER, and is expressed in the Luminal A and B 

tumor subtypes8,9. To determine whether estrogen-regulated genes are present in the 

Luminal/ER+ gene set, we first clustered 118 primary breast tumors using a 1300-gene 

“breast intrinsic” gene set developed by Hu et al.20 (Figure 2). Figure 2B shows that 

many of the estrogen-regulated genes from our in vitro MCF-7 experiments were present 

in the tumor defined Luminal/ER+ gene cluster. To further define relationships among 

genes in this cluster, we also ascertained the presence of genes regulated by GATA3, a 
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transcription factor with an important role in ER+ breast cancer biology19. Of the 407 

genes induced by GATA3 in vitro, many were present in the Luminal/ER+ gene cluster. 

Thus, genes identified as being regulated by ER and/or GATA3 in vitro also cluster near 

these transcription factors in vivo and help to define an expression pattern seen in many 

studies24,31,33,34. 

 

Analysis of Luminal tumors using estrogen-induced genes. We hypothesized that 

expression differences of estrogen-induced genes may define clinically relevant 

subgroups within clinically defined ER+ and/or PR+ tumors. To test this hypothesis, we 

clustered the 65 tumors identified as “Luminal” in Figure 2 (blue dendrogram branch) 

using the 383 MCF-7 estrogen-induced genes. Two main groups resulted (Groups I and 

II). Group I had higher expression of XBP1, PR, and TFF, which are all known ER 

targets. Group II had higher expression of a cluster of estrogen-induced genes that 

included CTPS, E2F6, and FANCA. Kaplan-Meier survival analysis showed that Group I 

patients had significantly better Relapse-Free Survival (RFS) outcomes than Group II 

(p=0.0004). 

To further characterize the differences between Group I and II tumors, we 

performed a supervised analysis (2-class SAM with 1% FDR) using the major 

dendrogram branch division that separated Group I and II tumors to define the two 

supervising groups. This analysis identified 822 genes for which Group I and II tumors 

showed significant differential expression. This gene set, called the “estrogen-SAM” list, 

was then used to hierarchically cluster the 65 Luminal tumors (Figure 3), which as 

expected, resulted in a very similar grouping of samples when compared to that using the 
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383 estrogen-induced genes. Kaplan-Meier analysis showed that using the estrogen-SAM 

list grouped the tumors into two groups (referred to as Group IE and IIE) that predicted 

RFS (p=0.019, Figure 4A).  

Group IE tumors showed high expression of XBP1, FOXA1, PR and many 

ribosomal genes (Figure 3B-E). According to EASE, the GO categories “transcriptional 

regulation”, “DNA binding”, and “extracellular” were over-represented relative to chance 

in Group IE tumors. Group IIE tumors showed the high expression of a prominent 

proliferation signature35,36 including Ki-67, MYBL2, Survivin, STK6, and CCNB2 (Figure 

3G); these first four genes plus CCNB1 form the basis for the proliferation portion of the 

Paik et al. “Recurrence Score” predictor13, which is a gene expression-based outcome 

predictor for ER+/node-negative, tamoxifen-treated patients. Recently Dai et al. 

performed a supervised analysis for genes that correlated with outcomes in patients with 

high ER expression relative to age and identified this same proliferation signature as the 

main determinant for predicting patient outcomes10; however, they identified few genes 

associated with good outcomes. 

Group IIE tumors also showed high expression of a cluster of MAGE-A genes 

(Figure 3F), which have been associated with an increased recurrence risk37 and poor 

tumor differentiation38. Figure 3H shows Group IIE tumors have high expression of 

genes with functions in the Interferon-pathway and apoptosis such as FLIP/CFLAR, 

which is an inhibitor of TNFR-mediated apoptosis39. Several anti-apoptosis genes 

including FLIP, AVEN, Survivin and BCL2A1 showed high expression in Group IIE, 

suggesting an impaired ability to undergo cell death. Recent reports have shown that high 

expression of FLIP40 or BCL2A141,42 can directly contribute to chemoresistance, 
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suggesting that functional inhibition of these proteins may provide a therapeutic target for 

Group IIE patients. According to EASE, the GO categories “cell cycle/mitosis”, “anti-

apoptosis”, and “MHC-I” were over-represented relative to chance in Group IIE.  

 

Group IE-IIE classification predicts outcome in ER+ and/or PR+ tumors. To test the 

Group IE-IIE classification as a clinically relevant outcome predictor, we analyzed ER+ 

and/or PR+ tumors from 3 published breast tumor microarray datasets9,12,23. We used a 

Single Sample Prediction algorithm to classify tumors in each test dataset, which 

involved creating Group IE and IIE centroids/average profiles from the training dataset 

(see Methods). Kaplan-Meier analysis (Figure 4B-D) showed that Group IE tumors had 

significantly better RFS in all test datasets. Figure 5 shows that the Group IE-IIE 

classification was also a significant predictor of Overall Survival (OS) for the test 

datasets in which OS data was available9,23. Furthermore, by decreasing the FDR in 

SAM, we were able to define Groups IE and IIE using a reduced estrogen-SAM list of 

113 genes without any loss of predictive ability (Table 1).  

 

Multivariate analysis. Multivariate Cox proportional hazards analysis was performed on 

the Chang et al. dataset (Table 2). Using RFS and OS as the endpoints, multivariate 

analysis showed that classifying tumors as Group IE or IIE provided significant 

prognostic power independent of standard clinical factors (p<0.0001 using RFS, p=0.001 

using OS). The Group IE-IIE designation had the strongest association of all variables 

with RFS and OS.  
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In multivariate analyses that included Chang et al.’s23 “wound-response” 

signature and van’t Veer et al.’s24 “70-gene signature” along with the clinical variables, 

the Group IE-IIE classification continued to provide significant prognostic power 

independent of other variables in the model (p=0.014 using RFS, p=0.042 using OS, 

Table 3). The performance of the 70-gene and wound-response signatures in this 

multivariate analysis may be optimistically high because a subset of the patients in the 

Chang et al. dataset was used to train/optimize these two signatures; therefore, the ability 

of the Group IE-IIE classification to show independent prognostic power in a model 

containing these two predictors indicates its usefulness in predicting outcomes. 

 

Group IE-IIE associations with clinical and biological parameters. To examine the 

hypothesis that Group IE may be more differentiated than Group IIE tumors, we 

determined whether an association existed between this classification and histological 

grade. Two-way contingency table analysis showed significant association between grade 

and Group IE-IIE class (Table 4), with grade 1 and 3 tumors more likely to be classified 

as Group IE and IIE, respectively. Cramer’s V statistic, which measures the strength of 

association between two variables in a contingency table, indicated a substantial 

association (Cramer’s V>0.36) between grade and Group IE-IIE class for all datasets. For 

the Sorlie et al. dataset, p53 mutation data was available and a two-way contingency table 

analysis showed a significant association between p53 status and Group IE-IIE class, 

with Group IIE more likely to be p53 mutant (p=0.0019; Cramer’s V=0.44). 
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Comparison of the Group IE-IIE classification to the Luminal A-B classification. 

We compared the Group IE-IIE classification to the Luminal A-B classification8,9. To 

identify Luminal A and B tumors in the three test datasets, we used the Single Sample 

Predictor developed in Hu et al.20, which employs centroids for each of the five breast 

tumor “intrinsic subtypes”. We then reclassified Luminal A and B tumors from each 

dataset as Group IE or IIE. Kaplan-Meier analyses showed that the Group IE-IIE 

classification did equally well or slightly better than the Luminal A-B classification in 

separating Luminal tumors into two groups with different survival outcomes (Table 5). 

 

DISCUSSION 

The search for markers that predict long-term outcomes in hormone receptor-

positive tamoxifen-treated patients has been an intense area of study. Genomic analyses 

have contributed to this area, with the development of several predictive gene sets and 

assays based upon the selection of genes that directly correlate with patient/tumor 

outcomes10-13,24. We took a different approach and selected genes using no knowledge of 

outcomes and instead, selected genes based upon regulation by estrogen and their natural 

patterns of expression in primary tumors. The 822-gene estrogen-SAM list identified 

many genes that may help explain the outcome differences seen in ER+ and/or PR+ 

patients. Good outcome group IE tumors tended to be more differentiated and highly 

expressed a subset of estrogen and GATA3-regulated genes. Conversely, poor outcome 

Group IIE tumors were more likely to be poorly differentiated. Association of the Group 

IE-IIE profile with grade is expected because grade includes a measure of proliferation, 

which is an important determinant of outcomes in ER+ and/or PR+ patients8,10,13,19. 
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However, because the Group IE-IIE distinction was significant in a multivariate analysis 

with grade included, this distinction adds prognostic information beyond what grade 

provides. 

We used three published datasets as test sets and confirmed that the Group IE-IIE 

classification was a significant predictor in ER+ and/or PR+ patients. We note, however, 

that the relapse rates differed between datasets and that the Group IE tumors showed 7-

40% relapse rates depending on the dataset (Figure 4). This underscores the fact that 

relapse rates are dependent upon the characteristics of the patient set used. For example, 

comparing relapse rates in the Chang et al. dataset to those observed in Paik et al. may 

not be valid because the Paik et al. dataset was comprised of tamoxifen-treated node-

negative patients, while the majority of the Chang et al. patients received no adjuvant 

therapy and many were node-positive. However, the multivariate analysis we performed 

on the Chang et al. dataset indicated that our predictor had significant prognostic value 

independent of standard clinical factors and other gene expression-based predictors, and a 

hazard ratio of 2.90 for Group IIE vs. IE indicates our predictor has potential clinical 

utility. By limiting the Chang et al. dataset to those patients who received adjuvant 

therapy and were Stage I+II, we observed a relapse rate for Group IE patients of 12% 

(Figure 5D, p=0.007) and significance for overall survival outcomes (data not shown). 

This indicates that given a patient population similar to Paik et al., our predictor’s “good 

group” can achieve outcomes similar to the Paik et al. “Low Risk” group. 

An important unanswered question is whether the Group IE-IIE distinction 

predicts pure prognosis, responsiveness to endocrine therapy, or both. From analyses of 

patient subsets in the Chang et al. dataset, it is clear that the Group IE-IIE distinction 
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predicts outcome in ER+ and/or PR+ patient subsets either receiving or not receiving 

adjuvant hormone therapy (data not shown). Paik et al. observed similar results for their 

predictor13. This is not surprising because half (8/16) of the Paik et al. genes were present 

in the “estrogen-SAM” gene set. However, an advantage of our analysis is that it provides 

additional biological information (e.g. anti-apoptosis genes) that the Paik et al. and other 

predictors did not. Paik et al.’s finding that their predictor also predicts benefit of 

chemotherapy43 may also apply to ours. Thus, the most pressing questions remaining 

regarding the Group IE-IIE classification are (1) whether Group IE and IIE gain similar 

benefits from chemotherapy, and (2) because Group IIE tumors do poorly in the presence 

of tamoxifen, might they do better if given alternative endocrine therapies. 
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TABLES 
 
Table 2.1. Summary of Kaplan-Meier Relapse-Free Survival analyses performed for each 
tumor dataset using the estrogen-induced or estrogen-SAM gene lists. 
 
  Training   Testing  
 
 
 
Gene list 

 Luminals 
 
(65 tumors, 
10 events) 
 

Ma et al.  
ER+ and/or 
PR+  
(60 tumors,  
28 events) 

Sorlie et al. 
ER+ 
and/or PR+
(90 tumors,  
45 events) 

Chang et al. 
ER+ and/or 
PR+ 
(250 tumors, 
86 events) 

383 estrogen- 
induced gene 
list 
 

p=0.0004 0.044  
 

0.0008 
 
 

8.1e-5 
 

822 gene 
estrogen-SAM 
list 
 

0.019 0.0006 
 

0.0007 
 

1.3e-5 
 

113 gene  
reduced 
estrogen-SAM 
list 
 

0.007 
 

0.008 
 

0.001 
 

6.6e-6 
 

Each cell in the table contains the p-value calculated using the log-rank test for the 
Kaplan-Meier relapse-free survival curves produced for the two tumor groups identified 
by each gene list in each tumor dataset. p-values <0.05 are in bold.  
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Table 2.2. Multivariate Cox proportional hazards analysis of various prognostic factors 
in relation to Relapse-Free Survival and Overall Survival for ER+ and/or PR+ tumors in 
the Chang et al. (2005) dataset. 
 

    Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
 
Group IIE vs. IE 
 
Age, per decade 
 
Size 
 
Tumor grade 2,3 vs. 1 
 
Node status  
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 

 
 
2.90 (1.71-4.92) 

0.48 (0.31-0.74) 

1.59 (1.01-2.48) 

1.80 (0.99-3.3) 
 
2.11 (1.08-4.11) 

0.36 (0.18-0.71) 

 
 
<0.0001 
 
0.001 
 
0.044 
 
0.056 
 
0.028 
 
0.003 
 

 
 
3.64 (1.67-7.95) 

0.53 (0.30-0.93) 

1.45 (0.80-2.64) 
 
3.57 (1.24-10.23) 

1.85 (0.74-4.61) 
 
0.47 (0.19-1.19) 

 
 
0.001 
 
0.028 
 
0.22 
 
0.02 
 
0.19 
 
0.11 
 

Size was a binary variable (0= diameter of 2cm or less, 1= greater than 2cm); node status 
was a binary variable (0= no positive nodes, 1= one or more positive nodes); age was a 
continuous variable formatted as decade-years. Tumors were classified as Group IE or 
IIE using the estrogen-SAM derived list. Variables found to be significant (p<0.05) in the 
Cox proportional hazards model are shown in bold.  
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Table 2.3. Multivariate Cox proportional hazards analysis for ER+ and/or PR+ tumors in 
the Chang et al. (2005) dataset using various prognostic factors including the Group IE-
IIE classification, the van’t Veer et al. (2002) 70-gene signature, and the Chang et al. 
(2005) Wound-Response signature. 
  

    Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
 
Group IIE vs. IE 
 
70-gene signature (poor vs. 
good) 
 
Wound-response signature 
(activated vs. quiescent) 
 
Age, per decade 
 
Size 
 
Tumor grade 2,3 vs. 1 
 
Node status  
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 

 
 
2.01 (1.15-3.49) 
 
2.76 (1.50-5.06) 
 
 
2.30 (1.09-4.85) 
 
 
0.56 (0.36-0.87) 
 
1.45 (0.93-2.28) 
 
0.93 (0.47-1.82) 
 
1.72 (0.89-3.33) 
 
0.37 (0.19-0.74) 

 
 
0.014 
 
0.001 
 
 
0.028 
 
 
0.010 
 
0.10 
 
0.82 
 
0.11 
 
0.005 

 
 
2.31 (1.03-5.19) 

4.17 (1.62-10.73) 

 
2.80 (0.82-9.55) 
 
 
0.64 (0.36-1.14) 
 
1.34 (0.74-2.45) 
 
1.62 (0.53-4.93) 
 
1.51 (0.62-3.70) 
 
0.46 (0.18-1.14) 

 
 
0.042 
 
0.003 
 
 
0.10 
 
 
0.13 
 
0.34 
 
0.40 
 
0.36 
 
0.095 
 

Tumor size, node status, age, and Group IE-IIE were defined as in Table 1. The 70-gene 
signature and the wound-response signature classifications were taken exactly as 
calculated in Chang et al. (2005), and their performances in multivariate analysis may be 
optimistic. Variables found to be significant (p<0.05) in the Cox proportional hazards 
model are shown in bold.  
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 Table 2.4. Association between tumor grade and the Group IE-IIE classification 
(estrogen-SAM derived list).   
 
                
 

 
65 luminal 
tumors from 
training set 
 

 
Ma et al. 
ER+/PR+ 
tumors 
 

 
Sorlie et al. 
ER+/PR+ 
tumors 
 

 
Chang et al. 
ER+/PR+ 
tumors 
 

 
       Group 
  IE          IIE 
 
(# of patients) 

     
      Group 
  IE        IIE 
 
(# of patients) 

     
      Group 
  IE       IIE 
 
(# of patients) 

 
      Group 
  IE      IIE 
 
(# of patients) 

Two-way 
contingency table 
 
 
Histologic grade    
 
        1 (well) 
        2 (intermediate) 
        3 (poor)  

 
11 
16 
9 

 
0 
12 
14 

 
3 
29 
6 

 
0 
10 
12 

 
10 
32 
16 

 
0 
11 
20 

 
50 
46 
13 

 
24 
49 
64 

Statistics for two-
way contingency 
table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
 
0.003 
 
0.43 

 
 
 
 
0.005 
 
0.42 

 
 
 
 
0.001 
 
0.39 

 
 
 
 
1.7e-9 
 
0.40 

† p-value calculated from Chi-square test on contingency table. †† Cramer’s V statistic 
(value can range from 0 to 1) measures the strength of association between the two 
variables analyzed in the contingency table, with 1 indicating perfect association and 0 
indicating no association.  
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Table 2.5. Comparison of the Group IE-IIE classification to the Luminal A-B 
classification in predicting RFS for three datasets of Luminal epithelial tumors. 
 

†When the Kaplan-Meier disease-specific survival curves were compared, the Group IE-
IIE classification scheme showed significantly different survival curves (p=0.031) 
whereas the Luminal A-B classification scheme did not (p=0.17).  
 
 
 

 
Classification 
method 

 
Survival analysis 
statistic 

Ma et al. 

(43 tumors, 
20 events) 

Sorlie et al. † 

(57 tumors, 20 
events) 

Chang et al. 

(194 tumors, 
62 events) 

Luminal A-B 
classification  
 

p-value 
 
Hazard ratio of B vs. A 
(95% CI) 

p=0.011 
                       
HR=3.1 (0.9- 10.6) 

0.14 
 
1.9 (0.7- 5.0)  

1.1e-9 
 
4.2 (2.4-7.5) 

Group I-II 
classification  
 

p-value 
 
Hazard ratio of II vs. I 
(95% CI) 

0.0002 
                            
4.9 (1.8- 13.0)  

0.076 
 
2.2 (0.8-5.8)  

1.3e-6 
 
4.0 (2.4-6.6)  
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FIGURES 
 

 
Figure 2.1. Hierarchical clustering analysis of the genes determined by 1-class SAM to 
be estrogen-induced (383 genes) or estrogen-repressed (574 genes). A. Scaled-down 
representation of the complete cluster diagram. B, C. Subsets of estrogen-induced genes 
with known estrogen-induced genes highlighted in red. For each gene, mRNA levels at 
the indicated time point are relative to the estrogen (E2)-starved control sample. 
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Figure 2.2. Genes regulated by estrogen and/or GATA3 in vitro are present in the 
primary tumor Luminal epithelial/ER+ gene cluster. A. Scaled-down representation of 
118 tumors hierarchically clustered using the 1300-gene intrinsic list developed by Hu et 
al.20 B. Luminal/ER+ gene cluster. The tumor sample dendrogram is colored as: 
blue=Luminal epithelial subtype, pink=HER2+/ER-, red=Basal-like, and green=Normal 
Breast-like.
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Figure 2.3. Hierarchical cluster analysis of the 65 Luminal tumors (identified in Figure 
2.1) using the 822-gene estrogen-SAM derived list. A. Scaled-down representation of the 
complete cluster diagram. Group IE and IIE tumors are indicated by blue and orange, 
respectively. Gene clusters containing B. XBP1, C. Ribosomal genes, D. Progesterone 
receptor, E. FOXA1, F. MAGE genes, G. Proliferation signature, and H. Apoptosis and 
interferon-response genes. 
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Figure 2.4. Kaplan-Meier survival curves of ER+ and/or PR+ tumors classified as 
Groups IE or IIE using the 822-gene estrogen-SAM derived list. Survival curves are 
shown for A. the 65 Luminal epithelial tumor training dataset, B. the Ma et al., C. Sorlie 
et al., and D. Chang et al. datasets. p-values calculated using the log-rank test. 
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Figure 2.5. Kaplan-Meier Overall Survival curves of tumors classified into Groups IE 
and IIE using the 113-gene estrogen-SAM derived list. Overall survival curves are shown 
for A. the Sorlie et al. and C. Chang et al. data sets. Disease specific survival curves are 
shown for B. the Sorlie et al. dataset. D. Relapse-free survival curves for Chang et al. 
Stage I + II patients only. p-values were calculated using the log-rank test. 
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ABSTRACT 

Background 

Validation of a novel gene expression signature in independent data sets is a critical step 

in the development of a clinically useful test for cancer patient risk-stratification. 

However, validation is often unconvincing because the size of the test set is typically 

small. To overcome this problem we used publicly available breast cancer gene 

expression data sets and a novel approach to data fusion, in order to validate a new breast 

tumor intrinsic list. 

 

Results 

A 105-tumor training set containing 26 sample pairs was used to derive a new breast 

tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation 

signature that was not present in previous breast intrinsic gene sets. We tested this list as 
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a survival predictor on a data set of 311 tumors compiled from three independent 

microarray studies that were fused into a single data set using Distance Weighted 

Discrimination. When the new intrinsic gene set was used to hierarchically cluster this 

combined test set, tumors were grouped into LumA, LumB, Basal-like, HER2+/ER-, and 

Normal Breast-like tumor subtypes that we demonstrated in previous datasets. These 

subtypes were associated with significant differences in Relapse-Free and Overall 

Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic 

subtype classifications added significant prognostic information that was independent of 

standard clinical predictors. From the combined test set, we developed an objective and 

unchanging classifier based upon five intrinsic subtype mean expression profiles (i.e. 

centroids), which is designed for single sample predictions (SSP).  The SSP approach 

was applied to two additional independent data sets and consistently predicted survival in 

both systemically treated and untreated patient groups. 

 

Conclusions  

This study validates the “breast tumor intrinsic” subtype classification as an objective 

means of tumor classification that should be translated into a clinical assay for further 

retrospective and prospective validation.  In addition, our method of combining existing 

data sets can be used to robustly validate the potential clinical value of any new gene 

expression profile. 
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INTRODUCTION 

The classification of human tumors using microarray data has been an area of 

intense research, but it remains a daunting task to validate a new profile and generate a 

clinically useful test. Many different gene expression-based predictors have been 

developed for breast cancer1-9, and two different gene expression predictors have reached 

the final step of prospective clinical trial testing10,11. Using cDNA microarrays, we 

previously identified five distinct subtypes of breast tumors arising from at least two 

distinct cell types (basal-like and luminal epithelial cells)1-3. This molecular taxonomy 

was based upon an “intrinsic” gene set, which was identified using a supervised analysis 

to select genes that showed little variance within repeated samplings of the same tumor, 

but which showed high variance across tumors1. We showed that an intrinsic gene set 

reflects the stable biological properties of tumors and typically identifies distinct tumor 

subtypes that have prognostic significance, even though no knowledge of outcome was 

used to derive this gene set3,12-14.   

A major challenge for microarray studies, especially those with clinical 

implications, is validation15,16. Due to the practical barriers of cost and access to large 

numbers of fresh frozen tumor samples with associated clinical information, very few 

microarray studies have analyzed enough samples to allow promising initial findings to 

be sufficiently validated to justify the major investment required for clinical testing. An 

efficient approach would be to use public gene expression data repositories as test sets; 

however, it has been difficult to compare and/or combine data sets from independent 

laboratories due to differences in sample preparation, experimental design, and 

microarray platforms. An accepted method for validation is to derive a 
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prognostic/predictive gene set from a “training set” and then apply it to a completely 

independent “test set”17.  The “purest” test sets are comprised of samples not generated 

by the primary investigators to remove any possibility of bias18. In this study, we 

illustrate the successful application of these principles by (1) deriving a new breast tumor 

intrinsic gene list that identifies the “intrinsic” biological features of breast tumors and 

(2) validating this predictor using a combined test set of 311 breast tumor samples 

compiled from the public domain. These analyses show that the breast tumor intrinsic 

subtypes are significant predictors of outcome when correcting for standard clinical 

parameters, and that common patterns of expression and outcome predictions can be 

identified in data sets generated by independent labs. 

 

MATERIALS AND METHODS 

Sample collection, RNA isolation and microarray hybridization. 105 fresh frozen 

breast tumor samples and 9 normal breast samples were obtained using IRB-approved 

protocols at 4 institutions: the University of North Carolina at Chapel Hill (UNC-CH), 

The University of Utah, Thomas Jefferson University, and the University of Chicago. 

This sample set represents an ethnically and geographically diverse cohort. Patients were 

heterogeneously treated according to the standard of care dictated by disease stage, ER 

and HER2 status.  

Total RNA was purified from each sample using the Qiagen RNAeasy Kit. RNA 

integrity was determined using the RNA 6000 Nano LabChip Kit and Agilent 2100 

Bioanalyzer. Total RNA amplification and labeling were done as previously described35. 

Microarray hybridizations were performed using Agilent Human oligonucleotide (1Av1, 
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1Av2 and custom designed 1Av1-based) microarrays using 2μg of Cy3-labeled common 

reference sample that is a modified version of the Stratagene Human Universal 

Reference36, and 2μg of Cy5-labeled experimental sample. Microarrays were hybridized 

overnight, washed, dried, and scanned as described35. The image files were analyzed with 

GenePix Pro 4.1 and loaded into the UNC-CH Microarray Database 

(https://genome.unc.edu/) where a Lowess normalization procedure was performed to 

adjust the Cy3 and Cy5 channels37. All primary microarray data associated with this 

study are available at https://genome.unc.edu/pubsup/breastTumor/ and in the GEO 

(http://www.ncbi.nlm.nih.gov/geo/) under the accession number of GSE1992, series 

GSM34424-GSM34568. 

 

Identification of the Intrinsic gene set. We derived a new breast tumor intrinsic gene 

set, referred to as the “Intrinsic/UNC” list, using a training set composed of the 105 

tumor samples described above, 9 normal breast samples, and 26 sample pairs (in total, 

represented by 146 microarrays). 15, 9, and 2 of the 26 sample pairs were different 

physical pieces of the same tumor (taken at the same time point), tumor-metastasis pairs 

and normal sample pairs, respectively. The background subtracted, Lowess normalized 

log2 ratio of Cy5 to Cy3 intensity values were first filtered to select genes that had a 

signal intensity of at least 30 units above background in both the Cy5 and Cy3 channels. 

Only genes that met these criteria in at least 70% of the 146 microarrays were included 

for subsequent analysis. Next, we performed an “intrinsic” analysis as described 

previously3 using the 26 sample pairs and 86 additional microarrays. An intrinsic analysis 

identifies genes showing low variability in expression within paired samples but high 

https://genome.unc.edu/
https://genome.unc.edu/pubsup/breastTumor/
http://www.ncbi.nlm.nih.gov/geo/
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variability in expression across different tumors; for each gene a ratio of “within-pair 

variance” to “between-subject variance” is computed. Genes with ratios below one 

standard deviation of the mean ratio were defined as “intrinsic”. This analysis resulted in 

1410 microarray elements representing 1300 genes being identified as “intrinsic”. In 

order to obtain an estimate of the number of false-positive intrinsic genes, we permuted 

the sample labels to generate 26 random pairs and 86 non-paired samples. This 

permutation was performed 100 times and the intrinsic scores were calculated for each. 

These permuted scores were used to determine a threshold on the intrinsic score 

corresponding to a false discovery rate (FDR) less than 1%. The selected threshold 

resulted in 1410 microarray features being called significant with a median FDR=0.3% 

and 90th percentile FDR=0.5%. (See Tusher et al. for a complete description of this 

calculation38). 

 

Creation and analyses of the combined test set. The independent test set was a 315-

sample “combined test set” consisting of three DNA microarray datasets (Sorlie et al. 

2001 and 20032,3, van’t Veer et al. 20025 and Sotiriou et al. 200319). To combine these 

datasets obtained from different microarray platforms, we performed the following pre-

processing methods. First, the R/G ratios in each dataset were log2 transformed and 

Lowess normalized37. Next, missing values were k-NN imputed39. Gene annotations from 

each dataset were converted into UniGene Cluster IDs (UCIDs, Build 161) using the 

SOURCE database40, and multiple occurrences of a UCID were collapsed by taking the 

median value for that ID within each experiment and platform, which resulted in ~2800 

genes having expression data in all three datasets. Next, Distance Weighted 



 

  51 
  

Discrimination20 was performed in a pair-wise fashion by first combining the Sorlie et al. 

and Sotiriou et al. datasets, and then combining this with the van’t Veer et al. dataset to 

make a single dataset. In the final pre-processing step, each microarray experiment was 

normalized such that each column/experimental sample was standardized to N(0,1), and 

each row/gene was median centered. 306 of the 1300 Intrinsic/UNC genes had 

microarray data present in the combined test set and were used in a two-way average-

linkage hierarchical cluster analysis41. Cluster results were visualized using the program 

“Treeview”. 

 

Derivation of the Single Sample Predictor. The Single Sample Predictor (SSP) is a 

Nearest Centroid-based method based upon the work of Hastie and Tibshirani3,42,43. Our 

SSP classifies an individual sample according to its nearest centroid as determined by 

Spearman correlation. To derive our SSP, we utilized the 315-sample combined test set 

from Figure 2 to create centroids for each of the five intrinsic subtypes (LumA, LumB, 

HER2+/ER-, Basal-like and Normal Breast-like). Please note that we did not create a 

centroid for the IFN group because it failed significance in multivariate testing, but did 

create a centroid for the Normal Breast-like group because we feel it is important to be 

able to identify true normal samples; an H&E examination of most tumor samples falling 

into the Normal Breast-like category shows that this is occurring mainly because of too 

much normal tissue contamination. 

  To create each intrinsic subtype centroid, we averaged the gene expression 

profiles for samples clearly assigned to each subtype (limiting the analysis to 249 of the 

315 samples) using the hierarchical clustering dendrogram as a guide (Figure 2). We then 
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applied the SSP to two independent test datasets: (1) the Ma et al. 60-sample ER+ 

tamoxifen-treated tumor dataset and (2) the Chang et al. 96-sample local only-treated 

tumor dataset. By matching UCIDs, microarray data for as many as possible of the 306 

Intrinsic/UNC genes was obtained from these 2 datasets. To remove microarray 

platform/source systematic biases, we applied DWD to the 2 test datasets relative to the 

combined test set. The SSP was then used to classify tumors by intrinsic subtype in these 

2 test datasets. Using similar methods, the SSP was also applied to the 105-sample 

training set used to derive the intrinsic/UNC gene set. 

 

Survival analyses. Kaplan-Meier survival plots were compared using the Cox-Mantel 

log-rank test in WinSTAT for Excel (R. Fitch Software). Two-way contingency table 

analysis and unpaired Student’s t-test were done using WinSTAT. For the “combined test 

set”, multivariate Cox proportional hazards analysis was performed using SAS (Cary, 

NC).  

 

RESULTS 

Identification of the Intrinsic/UNC gene set. Our goals were to (1) create a new breast 

tumor intrinsic list, (2) validate this list on an independent dataset to show the clinical 

significance of the “intrinsic” classifications, and (3) to derive an objective “intrinsic 

subtype” classifier that could be used clinically (see Figure 1 for overview of analyses 

performed). An intrinsic analysis is a “within class” versus “across classes” analysis that 

identifies genes that show low variability within a group (i.e. a tumor-metastasis pair), 

but which show high variation in expression across different tumors; in essence, one is 
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selecting for genes that are consistently expressed when individual tumors are examined, 

but that vary in expression across different tumors. To develop a new breast tumor 

intrinsic gene set (Intrinsic/UNC), we assayed a training set of 105 breast tumor samples 

and 9 normal breast samples, which contained 26 sample pairs (146 microarray 

experiments in total), using Agilent oligo microarrays. Using the intrinsic analysis 

method as described in Sorlie et al. 20033, we identified an intrinsic gene set of 1410 

microarray elements representing 1300 genes. We felt it important to create a new 

intrinsic list because first, we wanted to take advantage of newer microarrays (Agilent 

arrays with 17,000 genes vs. 8,000 gene cDNA microarrays previously used3), and 

second, we wanted to use paired tumor samples that were not before-and-after 

chemotherapy pairs, but were instead pre-treatment tumor pairs. The Intrinsic/UNC gene 

set showed overlap with a previous breast tumor intrinsic gene set (108 genes in common 

with the Intrinsic/Stanford gene set of Sorlie et al. 20033), but also showed a significant 

increase in gene number likely due to the greater number of genes present on current 

microarrays.  

 

Validation of the Intrinsic/UNC gene list. To evaluate the Intrinsic/UNC gene set on an 

independent test dataset, we applied it to a “combined test set” of 315 breast samples 

(311 tumors and 4 normal breast samples) using hierarchical clustering methods as have 

been done previously1-3. The “combined test set” of 315 breast samples was a single data 

set created by combining together the data from Sorlie et al. 2001 and 2003 (cDNA 

microarrays)2,3, van’t Veer et al. 2002 (custom Agilent oligo microarrays)5 and Sotiriou 

et al. 2003 (cDNA microarrays)19. We created a single data table of these three sets by 
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first identifying the common genes present across all three microarray data sets (2800 

genes). Next, we used Distance Weighted Discrimination (DWD) to combine these three 

data sets together20. DWD is a multivariate analysis tool that is able to identify systematic 

biases present in separate data sets and then make a global adjustment to compensate for 

these biases; in essence, each separate data set is a multi-dimensional cloud of data 

points, and DWD takes two points clouds and shifts one such that it more optimally 

overlaps the other. Finally, we determined that 306 of the 1300 unique Intrinsic/UNC 

genes were present in the combined test set and performed a hierarchical clustering 

analysis of these 306 genes and 315 samples (Figure 2). We analyzed the combined test 

set instead of analyzing each of the 3 datasets separately because we believed this would 

provide more statistical power to perform multivariate analysis, and would yield more 

meaningful results because any finding would need to be shared/present across all 3 

datasets. Remarkably, despite the loss of genes in the Intrinsic/UNC list due to the 

requirement of having to be present on 4 different microarray platforms, the hierarchical 

clustering analysis in Figure 2 identified the five main subtypes/groups corresponding to 

the previously defined HER2+/ER-, Basal-like, LumA, LumB and Normal Breast-like 

tumor groups2,3. 

As shown in previous studies, a HER2+ expression cluster was observed in the 

cluster analysis of the “combined test set” and contained multiple genes from the 17q11 

amplicon including HER2/ERBB2 and GRB7 (Figure 2D). The HER2+ intrinsic subtype 

(pink dendrogram branch in Figure 2B) was predominantly ER-negative (i.e. HER2+/ER-

) as previously shown. A Basal-like expression cluster was also present and contained 

genes (i.e. c-KIT, FOXC1 and P-Cadherin) previously identified to be characteristic of 



 

  55 
  

basal epithelial cells (Figure 2F). Using the program EASE21, the Gene Ontology (GO) 

categories “extracellular space” and “extracellular region” were over-represented relative 

to chance in the Basal epithelial gene cluster. As shown in previous studies, a 

Luminal/ER+ expression cluster was present and contained ER, XBP1, FOXA1 and 

GATA3 (Figure 2C). GATA3 has recently been shown to be somatically mutated in some 

ER+ breast tumors, and some of the genes in Figure 2C are GATA3-regulated (FOXA1 

and TFF3)22, thus showing the functional clustering of a transcription factor and some of 

its direct targets. The Gene Ontology (GO) categories “transcription regulator activity” 

and “DNA binding” were over-represented relative to chance in the Luminal/ER+ gene 

cluster.  

The most significant difference between the previous Intrinsic/Stanford gene lists 

and the new Intrinsic/UNC gene list was that the latter contained a large proliferation 

signature (Figure 2G)23-25. As expected, EASE analysis showed that the GO categories 

“mitotic cell cycle” and “M phase” were over-represented relative to chance in the 

proliferation signature. The inclusion of proliferation genes in the Intrinsic/UNC gene set, 

but not in the Intrinsic/Stanford gene set, is likely due to the fact that the 

Intrinsic/Stanford lists were based upon before-and-after chemotherapy paired samples of 

the same tumor, while the Intrinsic/UNC list was based upon paired samples taken at the 

same time point with respect to chemotherapy (22/26 were pre-treatment pairs). This 

finding suggests that tumor cell proliferation rates do vary before and after 

chemotherapy, but that proliferation is a reproducible and intrinsic feature of a tumor’s 

expression profile.  
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A possible new tumor group (IFN) characterized by the high expression of 

Interferon (IFN)-regulated genes was observed in the combined test set analysis (Figure 

2E). According to EASE, the GO categories “immune response” and “defense response” 

were over-represented relative to chance in the interferon-regulated gene cluster. This 

cluster contained STAT1, which is thought to be the transcription factor responsible for 

mediating IFN-regulation of gene expression26,27. Genes in the IFN cluster have been 

linked to lymph node metastasis and poor prognosis7,13. In summary, the Intrinsic/UNC 

list contained more genes than previous lists, encompasses most features of the 

Intrinsic/Stanford list (i.e. Basal, Luminal/ER+, and HER2-amplicon gene clusters) and 

adds the biologically and clinically relevant proliferation signature.  

 

Tumor subtypes identified by the Intrinsic/UNC gene set are predictive of outcome. 

To determine how many biologically relevant tumor subtypes/groups might be present 

within the cluster in Figure 2, we used 3 criteria, which resulted in the identification of 6 

potential subtypes/groups. The first criteria was the simple and obvious dendrogram 

branching pattern (Figure 2B) suggesting six groups. Second was the observation that 

each of the six groups uniquely expressed distinct sets of known biologically relevant 

genes including the basal, luminal/ER+, HER2-amplicon, IFN-regulated, and 

proliferation-associated signatures. Third was our knowledge of the previous 

classifications made by the Sorlie et al. 2003 Intrinsic/Stanford list of the 

Stanford/Norway samples: there was a high concordance (78%) between the 

classification of these samples made using either the Sorlie et al. 2003 Intrinsic/Stanford 

list or the Intrinsic/UNC list (excluding the IFN samples). Therefore, the 311 
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tumors/patients were stratified into six groups, and we proceeded to look for differences 

in outcomes and associations with other clinical parameters between these six groups. 

The Intrinsic/UNC gene set identified tumor groups/subtypes that were predictive of 

Relapse-Free Survival (RFS, Figure 3A) and Overall Survival (OS, p=0.000001, data not 

shown) in Kaplan-Meier survival analysis on the combined test set. As previously seen in 

Sorlie et al.2,3, the LumA group had the best outcome while the HER2+/ER-, Basal-like, 

and LumB groups had significantly worse outcomes. The new IFN class had a Kaplan-

Meier survival curve similar to that of LumB, and both showed elevated proliferation 

rates when compared to LumA (Figure 2G).  

In the combined test set, the standard clinical parameters of ER status, node 

status, grade, and tumor size (note: data for clinical HER2 status was not available) were 

significant predictors of RFS using Kaplan-Meier analysis (Figure 4), thus showing that 

the act of combining three different patient sets together did not destroy the prognostic 

abilities of these standard markers. In a multivariate Cox proportional hazards analysis of 

the combined test set using these standard clinical parameters, size, grade and ER status 

were significant predictors of RFS (Table 1A).  

To further evaluate the prognostic/predictive value of the intrinsic subtype 

classification, we performed multivariate Cox proportional hazards analysis of the 

combined test set using the six intrinsic subtypes/groups defined above and the five 

standard clinical parameters with RFS, OS, or DSS as the endpoint (Table 1B shows 

analysis for RFS). The intrinsic subtypes, when added to the multivariate model 

containing the standard clinical variables, resulted in a model significantly more 

predictive of RFS, OS, and DSS (p=0.01, 0.009, and 0.04 respectively, by the likelihood-
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ratio test). In multivariate analysis for RFS (Table 1B), the Basal-like, LumB and 

HER2+/ER- subtypes had hazard ratios significantly greater than 1 (LumA served as the 

reference group), while the IFN and Normal Breast-like groups were not significant. 

Thus, the intrinsic subtypes classifications of LumA, LumB, Basal-like and HER2+/ER- 

add new and important prognostic information beyond what the standard clinical 

predictors provide.   

 

Associations of the Intrinsic subtypes with clinical and biological parameters. To 

further characterize and better understand the intrinsic subtypes, we determined whether 

an association existed between intrinsic subtype and grade, node status, ER status, age, 

and tumor size in the combined test set. Two-way contingency table analysis showed 

significant association between grade and subtype, with HER2+/ER- and Basal-like 

tumors more likely to be grade 3 (Table 2). The Cramer’s V statistic28, which measures 

the strength of association between two variables in a contingency table, indicated a 

substantial association (Cramer’s V>0.36) between grade and subtype. Two-way 

contingency table analysis did not show significant association between node status and 

subtype (p=0.44), but did show significant association between ER status and subtype 

(p<0.0001; Cramer’s V=0.72) and between tumor size and subtype (p=0.01; Cramer’s 

V=0.17). As would be expected, ER+ tumors were more likely to be LumA or LumB. As 

indicated by the low Cramer’s V (Cramer’s V<0.19 indicates a low relationship), tumor 

size and subtype were not strongly correlated.  

To determine association between age and subtype, we used an unpaired 

Student’s t-test to compare the average ages of diagnosis of each tumor subtype. 
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Interestingly, the average age of diagnosis for HER2+/ER- tumors was significantly less 

than that for all other tumor types. The average age of diagnosis for LumA tumors was 

significantly greater than that for LumB tumors. 

 

Derivation and application of a Single Sample Predictor.  A caveat to the above 

analyses is that our classifications were based upon hierarchical clustering, which is a 

powerful tool for intrinsic class discovery, but which is not suited for individual sample 

classification because to classify a new sample would require a reanalysis of all samples. 

Therefore, we wanted to create an unchanging and objective method to classify tumors 

according to intrinsic subtype that could be clinically applicable. To this end, we 

developed a Single Sample Predictor (SSP) using the combined test set hierarchically 

clustered using the 306 Intrinsic/UNC genes (Figure 1). For the SSP, a mean expression 

profile (i.e. centroid) was created for each subtype that was significant in the multivariate 

analysis (LumA, LumB, Basal-like, HER2+/ER-) and for the Normal Breast-like group 

using the combined test set (Figure 2). Next, any new sample is then compared to each 

Centroid and assigned by the SSP to the nearest subtype/centroid as determined by 

Spearman correlation (note: this SSP is based on methods developed by Tibshirani and 

colleagues3,29,30); thus, the SSP contains five different idealized profiles, and any new 

sample is compared to each of the five profiles and assigned a profile label (i.e. subtype 

name) based upon the single idealized profile it most resembled. 

To validate the SSP, we tested it on two additional datasets not used previously. 

The first was the 60-patient Ma et al. dataset, which represents a group of early stage 

ER+ tamoxifen-treated patients6. The SSP classified these samples as follows: 2 Basal-
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like, 2 HER2+/ER-, 12 Normal Breast-like, 34 LumA, and 9 LumB. The 2 Basal-like and 

2 HER2+/ER- assigned samples were excluded from a survival analysis because they 

were too few for a meaningful survival analysis and possibly were misclassified ER-

negative tumors. Among the remaining samples the SSP classification was a significant 

predictor of RFS (p=0.04, Figure 3B), due to the poor outcome of the LumB group. Next, 

we applied the SSP to a 96-sample test set of local only (surgery)-treated patients from 

Chang et al.31. The tumor groups identified by the SSP showed significant differences in 

RFS (Figure 3C, p=0.0006) and OS (p=0.001, data not shown) in Kaplan-Meier analysis, 

with the poor outcome groups as expected: LumB, Basal-like, and HER2+/ER-.  Thus, 

the SSP identified tumor groups that are truly prognostic and have significantly different 

outcomes as was seen before: namely, LumA always has the most favorable outcome, 

while LumB, Basal-like and HER2+/ER- do poorly2,3,9,19. 

We also applied the SSP onto the 105-sample dataset used to derive the 

Intrinsic/UNC gene list, which is technically not a test set for the SSP because it was used 

to derive the Intrinsic/UNC gene set. The tumor groups identified by the SSP showed 

significantly different RFS (Figure 3D, p=0.02) and OS (p=0.03, data not shown) in 

Kaplan-Meier analysis with the poor outcome groups again being LumB, Basal-like, and 

HER2+/ER-.  A subset of the 105-sample dataset (48 in total) had been previously 

characterized using an immunohistochemical (IHC) analysis32, which showed that (1) all 

18 Basal-like tumors were ER-negative and HER2-negative (defined as not having a 3+ 

score on HER2 IHC analysis), (2) all 18 luminal subtype tumors were ER-positive and 

HER2-negative, and (3) all 12 HER2+/ER- subtype tumors were ER-negative and 11 out 

of these 12 showed HER2-overexpression (defined as having a 3+ score on HER2 IHC 
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analysis). Thus, the SSP correlated with many standard clinical parameters, and was also 

able to identify clinically relevant groups (i.e. LumA vs. LumB) not identifiable using the 

standard clinical assays, thus indicating potential value as an objective classification 

method that should be developed further as a clinically applicable test. 

 

DISCUSSION 

The development and validation of gene sets for cancer patients requires 

significant resources because large training and test sets are required to achieve robust 

results. In fact, microarray studies are often criticized for a lack of rigorous validation due 

to small sample sizes17,18. Therefore, we utilized a previously described microarray data 

set combining method (Distance Weighted Discrimination) to create a large validation 

test set of over 300 tumors, and used it to validate a newly derived gene list for breast 

cancer prognostication and prediction. This approach allowed us to perform a 

multivariate analysis in which we show for the first time that the intrinsic subtype 

classification adds valuable information in the presence of five standard clinical 

parameters. We believe this combined test set is a valid test set for use in our analysis 

because after the multiple data sets were combined, the prognostic abilities of the 

standard clinical variables such as ER and grade remained intact.  

The remarkable power of our DWD-based approach is indicated by the fact that 

although samples came from different platforms, hierarchical clustering analysis of the 

combined data set managed to group samples and genes based upon biology, and not 

some artifact caused by combining the data sets together. Evidence that this grouping 

reflected biology and not some artifact comes from (1) the finding that various Gene 
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Ontology terms were significantly over-represented relative to chance in individual gene 

clusters seen in this analysis and (2) the groupings of the samples showed inter-dataset 

mixing and were significant predictors of outcome in univariate Kaplan-Meier and 

multivariate Cox analysis. It is also remarkable that this classification was successful in 

predicting outcome despite the fact that the Intrinsic/UNC gene set was reduced from 

1300 genes to 306 genes in the combined test set; this indicates the robust nature of the 

intrinsic subtypes as defined by the new Intrinsic/UNC gene list. 

One of the accomplishments of this manuscript was to develop an unchanging and 

objective intrinsic subtype predictor that could be used routinely in the clinical setting. 

This was accomplished by first identifying a new intrinsic gene set and then using this set 

to develop the Single Sample Predictor (SSP) that was shown here to be both prognostic 

on the local therapy-only patient subset from Chang et al.31 and predictive of outcomes 

on the ER+ tamoxifen-treated data set of Ma et al.6. Many other gene expression based 

predictors for breast cancer patients have been developed, and in a complementary 

publication33, we tested the intrinsic subtype SSP developed here, relative to those 

predictions made by four other previously published breast cancer prognostic/predictive 

gene sets using a single patient/tumor set of 295 cases; the four other expression-based 

predictors used were (1) the “70-gene” Good vs. Poor outcome predictor developed by 

van’t Veer and colleagues5,11, (2) the “Wound-Response” profile developed by Chang et 

al.31,34, (3) the “Recurrence Score (RS)” profile developed by Paik et al.10, and (4) the 2-

gene (HOXB13:IL17BR) ratio predictor developed by Ma et al.6. The results showed that 

of samples classified as Basal-like, HER2+/ER-, or LumB by the SSP, 93-100% were 

classified by the 70-gene, RS and Wound-Response predictors as being in each 
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predictor’s bad prognosis group. These data suggest that a high concordance exists across 

these multiple predictors, in particular the RS, 70-gene and Intrinsic Subtypes; thus, the 

new intrinsic gene list and classification method developed here, when compared to other 

predictors as accomplished in Fan et al.33, showed that a high concordance across 

predictors exists, which provides additional validation for each predictor.  

In summary, the results of this study advances our current knowledge of the 

intrinsic breast tumor subtypes and provides an objective method (SSP) for prospectively 

classifying tumors that could be used in the clinical setting. More broadly speaking, our 

findings show that while the individual brushstrokes (i.e. genes) may sometimes show 

discordance across data sets, the portraits created by the combined patterns of the 

individual brushstrokes is conserved and recognizable across datasets because of the 

similarities to the family portrait24. Moreover, these data show that the breast tumor 

intrinsic subtypes identified using the Intrinsic/UNC gene list can be generalized to many 

different patient sets, both treated and untreated. 
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TABLES 
 
Table 3.1. Multivariate Cox proportional hazards analysis for the 315-sample combined 
test set in relation to Relapse-Free Survival. Multivariate Cox proportional hazards 
analysis of (A) standard clinical factors alone, or with (B) the Intrinsic Subtypes. Size 
was a binary variable (0= diameter of 2cm or less, 1= greater than 2cm); node status was 
a binary variable (0= no positive nodes, 1= one or more positive nodes); age was a 
continuous variable formatted as decade-years. Hazard ratios for Intrinsic Subtypes were 
calculated relative to the Luminal A subtype. Variables found to be significant (p<0.05) 
in the Cox proportional hazards model are shown in bold.  
A.      Relapse-Free survival  
Variable 
 

Hazard Ratio 
(95% CI) 

p-value 

 
Age, per decade 
 
ER status 
 
Node status 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 

 
1.04 (0.90-1.20) 
 
0.59 (0.41-0.83) 
 
1.41 (0.98-2.04) 
 
2.41 (1.08-5.36) 
 
3.98 (1.80-8.82) 
 
1.60 (1.31-1.95) 

 
0.64 
 
0.003 
 
0.07 
 
0.032 
 
0.0007 
 
<0.0001 

B.      Relapse-Free survival  
Variable 
 

Hazard Ratio 
(95% CI) 

p-value 

 
Age, per decade 
 
ER status 
 
Node status 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
Basal-like vs. LumA 
 
HER2+/ER- vs. LumA 
 
LumB vs. LumA 
 
IFN vs. LumA 
 
Normal-like vs. LumA 

 
1.08 (0.94-1.24) 
 
0.69 (0.42-1.13) 
 
1.35 (0.92-1.98) 
 
1.88 (0.82-4.32) 
 
2.58 (1.08-6.12) 
 
1.59 (1.30-1.95) 
 
2.02 (1.05-3.90) 
 
3.47 (1.78-6.76) 
 
1.92 (1.07-3.45) 
 
1.40 (0.67-2.91) 
 
1.56 (0.59-4.16) 
 

 
0.29 
 
0.14 
 
0.13 
 
0.14 
 
0.03 
 
<0.0001 
 
0.036 
 
0.0003 
 
0.028 
 
0.37 
 
0.37 
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Table 3.2. Association between tumor histologic grade and intrinsic subtype in the 315-
sample combined test set. 
 
         Intrinsic Subtype 
Two-way 
contingency table 
 
 

LumA 
 
 
(# of pts.) 

LumB 
 
 
(# of pts.) 

IFN 
 
 
(# of pts.) 

HER2+/ER- 
 
 
(# of pts.) 

Basal-like 
 
 
(# of pts.) 

Grade 
 
1 (well) 

 
 
29 

 
 
2 

 
 
1 

 
 
0 

 
 
1 

 
2 (intermediate) 

 
45 

 
26 

 
8 

 
6 

 
16 

 
3 (poor) 

 
15 

 
32 

 
16 

 
21 

 
67 

 
Statistics for two-way contingency table analysis 

 
p-value†                <0.0001 
 
Cramer’s V††         0.42 
 
† p-value calculated from Chi-square test on contingency table. †† Cramer’s V statistic 
(value can range from 0 to 1) measures the strength of association between the two 
variables analyzed in the contingency table, with 1 indicating perfect association and 0 
indicating no association.  
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FIGURES 
 
 

 
 
Figure 3.1. Overview of the analysis methods and datasets used.
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Figure 3.2. Hierarchical cluster analysis of the 315-sample combined test set using the 
Intrinsic/UNC gene set reduced to 306 genes. (A) Overview of complete cluster diagram. 
(B) Experimental sample-associated dendrogram. (C) Luminal/ER+ gene cluster with 
GATA3-regulated genes highlighted in pink. (D) HER2 and GRB7-containing expression 
cluster. (E) Interferon-regulated cluster containing STAT1. (F) Basal epithelial cluster. 
(G) Proliferation cluster. 
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Figure 3.3. Kaplan-Meier survival curves of breast tumors classified by intrinsic subtype. 
Survival curves are shown for (A) the 315-sample combined test set classified by 
hierarchical clustering using the Intrinsic/UNC gene set and (B) the 60-sample Ma et al., 
(C) 96-sample Chang et al., and (D) 105-sample (used to derive the Intrinsic/UNC gene 
set) datasets classified by the Nearest-Centroid predictor (Single Sample Predictor). 
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Figure 3.4. Kaplan-Meier survival curves using RFS as the endpoint, for the common 
clinical parameters present within the 315-sample combined test set. Survival curves are 
shown for (A) ER status, (B) node status, (C) histologic grade (1=well-differentiated, 
2=intermediate, 3=poor), and (D) tumor size (1= diameter of 2cm or less; 2=diameter 
greater than 2cm and less than or equal to 5cm; 3=diameter greater than 5cm; 4=any size 
with direct extension to chest wall or skin). 
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ABSTRACT 

Background. Gene expression profiling studies of primary breast tumors performed by 

different laboratories have resulted in the identification of many apparently different 

prognostic profiles/gene sets, which show little overlap in gene identity.  

Methods. In order to compare the individual sample predictions made by these different 

gene sets, we applied to a single dataset of 295 samples, five different gene expression-

based predictors: (1) Intrinsic Subtypes1, 2, (2) 70-gene Good vs. Poor3, 4, (3) Wound-

Response Activated vs. Quiescent5, 6, (4) Recurrence Score7, and (5) the 2-gene ratio 

profile for tamoxifen-treated patients8.  

Results. There was high concordance in outcome predictions across most of these 

different predictors when the outcome predictions on individual samples were compared. 

In particular, patients of the Basal-like, HER2+/ER- and Luminal B Intrinsic Subtypes 

were almost all 70-gene Poor, Wound-Response Activated, and had a High Recurrence 

Score. The 70-gene and Recurrence Score predictors, which are beginning to be used in 

the clinical setting, showed 77-81% agreement.  
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Conclusions. These data show that even though different gene sets are being used for 

prognostication on breast cancer patients, four of the profiles tested here showed 

significant agreement in outcome predictions on individual patients and are likely 

tracking a common set of biological phenotypes. 
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INTRODUCTION 

Many different gene expression studies have identified expression profiles/gene 

sets that are prognostic and/or predictive for breast cancer patients2-12. Comparison of the 

gene lists derived from some of these apparently similar studies show that they overlap 

with each other by a modest amount, if at all. The reasons for this lower-than-expected 

overlap are not completely known but must include differences in patient cohorts, 

microarray platforms and mathematical analysis methods. An important and unanswered 

question, however, is whether these predictors actually disagree or agree concerning 

outcome predictions for the individual patient. Here we describe an analysis of a single 

dataset on which five different prognostic/predictive gene expression-based predictors 

were simultaneously compared. This “across profile” analysis showed that different 

predictors had significant concordance when outcome predictions on individual patients 

were compared, despite the fact that these predictors had little gene overlap. 

 

MATERIALS AND METHODS 

Patient data set. For this study, we used a single dataset of 295 samples produced by 

researchers from the Netherlands Cancer Institute (NKI) using Agilent Oligo 

microarrays, and for which Relapse-Free Survival (RFS, scored as time to first event) and 

Overall Survival (OS) data were available3-5. The clinical information associated with 

these patients was obtained from the supporting website for the Chang et al. 2005 paper; 

this patient set contained predominantly Stage I and II patients who received either local 

therapy only (n=165), tamoxifen only (n=20), tamoxifen plus chemotherapy (n=20) or 

chemotherapy only (n=90).  
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Statistical methods. Five different prognostic/predictive gene sets (and methodologies) 

were tested on this single dataset and the results were recorded for each predictor on each 

patient (see Table 1 for a summary of the classifications made by the five predictors). The 

expression-based predictors used were (1) the “70-gene” Good vs. Poor outcome 

predictor developed by van’t Veer, van de Vijver and colleagues3, 4, (2) the “Wound-

Response” profile developed by Chang et al.5, 6, (3) the “Recurrence Score (RS)” profile 

developed by Paik, Shak et al.7, (4) the “Intrinsic Subtype” classifications developed by 

Perou, Sorlie and colleagues1, 2, 10, 13, and (5) the 2-gene (HOXB13:IL17BR) ratio 

predictor8. The RS and 2-gene ratio predictors were originally designed for outcome 

predictions on Estrogen Receptor (ER)-positive tamoxifen-treated patients7, 8, and we 

therefore performed analysis for the ER+ patient subset on its own, in addition to the 

complete set of ER+ and ER– samples combined. Many other prognostic profiles exist 

for breast cancer patients. We excluded some of these for a lack of sufficient numbers of 

genes, the expression of which was captured in the NKI data set, or because the 

description of the predictor was too vague to be confidently applied to a new data set. 

Additionally, it is beyond the scope of this work to test every possible published breast 

cancer predictor. 

For the 70-gene and Wound-Response predictions, we used the individual sample 

assignments provided by Chang et al.5. Briefly, the assignments made by the 70-gene and 

Wound-Response predictors were as follows: for the 70-gene predictor, a sample was 

classified according to the correlation of its expression levels of the 70 genes to a 

previously determined average centroid/profile of these genes in tumors from patients 
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with the “Good” prognosis profile. Patients with a correlation coefficient of >0.4 were 

classified as Good, and  ≤0.4 as Poor3, 4. For the Wound-Response predictor, a sample 

was classified according to the Pearson correlation of its expression levels of the “core 

serum response (CSR)” genes to the serum-activated fibroblast centroid. Patients with >-

0.15 correlation were classified as Wound-Response Activated, and  ≤-0.15 as Wound-

Response Quiescent5.  

We used a nearest centroid predictor1 to classify tumors according to “Intrinsic 

Subtype”.  Briefly, a new “intrinsic” gene set was developed as described in Sorlie et al. 

20032, using 24 new paired tumor samples assayed on Agilent Oligo microarrays, and 

105 tumors in total. Next, this gene list was used in a hierarchical clustering analysis on a 

311 tumor sample test set created by combining together the two-color DNA microarray 

data sets of Sorlie et al. 2001 and 20032, 10, van’t Veer et al.4 and Sotiriou et al.11. This 

cluster was then used as the starting point to create five Subtype Mean expression 

profiles/Centroids (Luminal A, Luminal B, HER2+/ER-, Basal-like and Normal-like) by 

averaging the gene expression profiles for the samples within each dendrogram 

branch/subtype. Finally, new samples like those in the Chang et al. dataset, are then 

individually compared to each centroid using the 306 intrinsic genes, and are assigned to 

the nearest centroid as determined by Spearman correlation. For more details on this 

nearest centroid predictor (also referred to as a Single Sample Predictor), the data and 

how to implement it, see https://genome.unc.edu/pubsup/breastTumor/.  

To classify tumors using the Recurrence Score predictor, we used the microarray 

data for all 21 RS-genes and applied the algorithm and scaling methods described in Paik 

et al. (2004). Briefly, the expression of the 16 target genes was normalized relative to the 

https://genome.unc.edu/pubsup/breastTumor/
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5 reference genes; next, the target genes were scaled as described for the qRT-PCR data, 

weighted averaging was performed and we then used these values and the RS algorithm 

to generate a Recurrence Score for each patient, which ranged from 0 to 100; scaling was 

done separately for the 295 patient group and for the 225 ER+ patient group. Using the 

cutoffs described in Paik et al. (0-18, 19-30, 31-100), we assigned each patient into the 

Low, Intermediate or High risk groups. Finally, we used the log-base-2 ratio of 

HOXB13:IL17BR as a means of patient stratification, using a cutoff of -0.15 as described 

in Ma et al.8 to classify patients as having either a High or Low 2-gene ratio.  

It should be noted that for the 70-gene, Wound-Response and Intrinsic Subtype 

profiles, a subset of the samples in this 295-sample dataset were used to train these 

predictors (75 of the 295 samples were previously published4 and used to train the 70-

gene profile, these same 75 samples were also part of the 311 tumor dataset used to 

derive the Intrinsic Subtype Centroid profiles1, and 148 of the 295 samples were 

randomly selected to train the Wound-Response profile5). Therefore, their performance in 

the Kaplan-Meier and multivariate analyses described below is positively biased. 

However, as this paper is focused on comparing the actual predictions themselves and is 

not focused on identifying the “best” predictor, we believed it best to include as many 

samples as possible in the analysis as opposed to removing subsets of samples due to 

training and test set issues (if we removed training set samples, the resulting test dataset 

would be greatly reduced — to fewer than 147 samples and possibly as few as 72 

samples). We acknowledge that the RS and 2-gene predictors are thus at a prognostic 

disadvantage relative to the other three because the 295 samples represent a true test set 
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for these two predictors; this point should be taken into consideration when interpreting 

the results of the survival analyses and hazard ratios from multivariate analyses. 

 

Survival Analyses. To evaluate the prognostic value of each gene expression-based 

predictor, we performed univariate Kaplan-Meier analysis using the Cox-Mantel log-rank 

test in WinSTAT for Excel (R. Fitch Software, Staufen, Germany). We also performed a 

multivariate Cox proportional hazards analysis (SAS, Cary, NC) of each predictor 

individually in a model that included ER status (positive vs. negative), grade (1 vs. 2, and 

1 vs. 3), node status (0 vs. 1-3 positive nodes, and 0 vs. >3 positive nodes), age (as a 

continuous variable), tumor size (≤2cm vs. >2cm), and treatment status (no adjuvant 

therapy vs. chemotherapy and/or hormonal therapy), with Relapse Free Survival (RFS, 

defined as time to first event) and Overall Survival (OS) as the endpoints (note: for 

multivariate analysis of the Intrinsic Subtypes and RS, ER status was not included as a 

variable because it was based upon the same microarray data that was used as part of 

these gene expression predictors). Two-way contingency table analyses and calculation 

of Cramer’s V statistic were performed using WinSTAT for Excel. The Cramer’s V 

statistic provides a quantitative measure of the strength of association between the two 

variables in a contingency table (which cannot be obtained from the p-value): Cramer’s V 

values range from 0 to 1, with 0 indicating no relationship and 1 indicating perfect 

association. Traditionally, values between 0.36 and 0.49 indicate a substantial 

relationship and values >0.50 indicate a very strong relationship. The V statistic is a 

generalization of the more familiar phi statistic to non 2x2 contingency tables, and for 

2x2 tables the V statistic is equal to the phi statistic14.  
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RESULTS 

Analysis of all 295 tumors. Each of the five predictors (except for the 2-gene ratio 

predictor), ER status, grade, tumor size (≤2cm  vs. >2cm) and node status (0 vs. 1-3 vs. 

>3 nodes) were statistically significant predictors of Relapse-Free (RFS) and Overall 

Survival (OS) using univariate Kaplan-Meier survival analyses (Figure 1 and Table 1 

shows a summary of how the five predictors classified the 295 samples). For the 2-gene 

ratio predictor, tumors with a High gene ratio were expected to be the poor outcome 

group (Figure 2 of Ma et al., 2004), but this was not observed in the 295-tumor dataset 

(Figure 1I, J). For the other four predictors, the poor outcome groups observed in the 295-

tumor dataset were as expected: (1) 70-gene Poor, (2) Wound-Response Activated, (3) 

High Recurrence Score, and (4) Basal-like, Luminal B, and HER2+/ER- Intrinsic 

Subtypes. To evaluate the prognostic value of each gene expression-based predictor, we 

next performed multivariate Cox proportional hazards analysis of each predictor 

individually in a model that included ER status, grade, node status, age, tumor size, and 

treatment status (Table 2). The Intrinsic Subtypes, 70-gene, Wound-Response and RS 

classification schemes were significant predictors in these models for both RFS and OS, 

showing that individually, each gene expression profile (except for the 2-gene predictor) 

adds new and important prognostic information beyond what the standard clinical 

predictors provide. In fact, the 70-gene, RS and Intrinsic Subtypes were the most 

predictive variables in each model as determined by the lowest nominal p-value. 

As a point of reference, we next analyzed each predictor relative to the Intrinsic 

Subtype assignments, which is an assignment that is largely based upon an 

“unsupervised” analysis of breast tumor gene expression profiles (Table 3). For the 53 
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Basal-like tumors, all were classified as RS High, 70-gene Poor, and 50/53 were Wound-

Response Activated. A nearly identical finding was also observed for the second ER-

negative subtype (HER2+/ER-), and for the poor outcome, clinically ER+, Luminal B 

tumor group. Conversely, the Normal-like and Luminal A subtype tumors showed 

significant heterogeneity in terms of how samples were classified by the other predictors; 

however, 62/70 RS Low samples were in the Luminal A subtype. These data suggest that 

if a sample is classified as Basal-like, HER2+/ER-, or Luminal B, then one should be 

able to infer with high accuracy, that it would be classed in the bad prognosis groups of 

the 70-gene, Wound-Response and RS predictors.  

We next compared the 70-gene, Wound-Response, RS and 2-gene predictor 

assignments to each other using two-way contingency table analyses (note: for these 

analyses, we combined the RS categories Low and Intermediate into a single group 

because they showed survival curves that were not significantly different [see Table 2E]). 

All comparisons yielded statistically significant correlations, with the least correlated 

profile being the 2-gene predictor. The RS, 70-gene and Wound-Response profiles were 

all highly correlated with each other (Table 4, Chi-square p-values <0.001). We then 

assessed the strength of correlation between the predictors using the Cramer’s V statistic. 

Comparing the 70-gene vs. RS gave a Cramer’s V=0.60 (indicates a strong relationship), 

RS vs. Wound-Response V=0.42 (substantial relationship), and the 70-gene vs. Wound-

Response V=0.36 (substantial relationship). Thus, most tumors classified as having poor 

outcome by one of these three predictors were also classified as such by the other two. By 

comparing these Cramer’s V values, the predictor showing the best agreement with the 

other two was the Recurrence Score (i.e. out of the three, the Recurrence Score was the 
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closest to functioning as a consensus predictor). To determine if combining the three 

predictors could result in a better predictor, we derived a predictor based on the majority 

vote of the three predictors. This predictor’s performance in Kaplan-Meier analysis was 

comparable to that of the three predictors individually, but was not noticeably better.  

Grade is an important clinical and biological feature of tumors, especially when 

one compares the clinical behavior of grade 1 vs. grade 3 breast tumors. Correlation with 

grade is an often-asked question regarding these new gene-expression based predictors. 

We therefore performed two-way contingency table analysis comparing each predictor to 

grade. Of the four predictors tested (70-gene, Wound-Response, 2-gene ratio, and RS as 2 

classes [Low + Intermediate vs. High]), all showed significant correlation with grade 

(p<0.001). The profile with the strongest correlation with grade was the 70-gene, which 

gave a Cramer’s V=0.52, next was RS (V=0.48), then Wound Response (V=0.35) and 

finally the 2-gene ratio (V=0.25). Thus, to varying degrees, all the predictors correlated 

with grade, however, it should be noted that because the 70-gene, RS, Intrinsic Subtypes 

and Wound-Response profiles were all significant predictors in the multivariate analyses 

that included grade, these predictors add prognostic information beyond that provided by 

grade. Moreover each of these predictors offers an assay that could be easily standardized 

across institutions and would be objective, quantitative, and automatable. 

The 70-gene3, 4 and RS7, 15 predictors are the most advanced in terms of validation 

and are beginning to be used in the clinical setting to assist in making treatment 

decisions. We therefore specifically compared these two predictors to one another. A 

simple way to compare their predictions is to call a RS “Low” and “Intermediate” 

equivalent to a 70-gene “Good”, a RS “High” equivalent to a 70-gene “Poor”, and 
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determine how many samples agreed. Using this criteria, there was agreement in 239/298 

(81%) of the cases. In particular, 81/103 RS “Low” and “Intermediate” patients were 

classified as 70-gene “Good”. It should be noted that here we compared the predictors for 

their capacity to predict recurrence of disease in a group of patients that were both lymph 

node negative and positive. These two predictors, however, were developed to predict 

distant metastasis-free survival in lymph node-negative patients only and are either meant 

to be used to predict prognosis without adjuvant treatment (70-gene predictor) or for 

tamoxifen-treated patients (RS).   

 

Analysis of ER+ tumors. Two of the five predictors (RS and 2-gene ratio) were 

specifically designed for ER+ patients only. We therefore performed similar analyses as 

described above (Table 1) on only those 225 patients in this dataset who were classified 

as ER+ (which was based on a gene expression-based cutoff using the mRNA for ER, see 

Chang et al.5). Again, all the gene expression-based predictors, except for the 2-gene 

ratio predictor, were significant predictors of RFS and OS in univariate Kaplan-Meier 

analysis (Figure 2). In multivariate Cox proportional hazards analyses in which each 

predictor was evaluated individually in a model that included the standard clinical 

variables, the 70-gene, Wound-Response, Intrinsic Subtypes Luminal A vs. B, and RS 

added significant prognostic information regarding RFS and OS; again, each gene 

expression predictor typically gave the lowest p-value when compared with the 

traditional clinical variables (Table 5). Interestingly, when samples within the ER+ 

patient subset were classified according to Intrinsic Subtype (Table 6), 7 were Basal-like 

and 18 were HER2+/ER-, suggesting that approximately 10% of ER+ samples fell into 
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tumor subtype categories that we consider to be “ER-negative” as determined by 

hierarchical clustering analysis. 

As was done for the 295-sample set, we did a pair-wise comparison of the 70-

gene, Wound-Response, RS and 2-gene predictor assignments for the 225 ER+ patients 

using two-way contingency table analyses. All comparisons yielded statistically 

significant correlations except for the 2-gene predictor (Table 7). The RS, 70-gene and 

Wound-Response profiles were highly correlated with each other (p<0.001); the observed 

Cramer’s V values were 0.54 for 70-gene vs. RS (very strong relationship), 0.38 for RS 

vs. Wound-Response (substantial relationship), and 0.34 for 70-gene vs. Wound-

Response (moderate relationship). From the Cramer’s V values, we again see that the 

predictor showing the best agreement with the other two predictors was the Recurrence 

Score. We again derived a predictor based on the majority vote of the three predictors and 

as was seen before, its performance in Kaplan-Meier analysis was comparable to the 

three individual predictors, but was not noticeably better.  

When RS “Low” and “Intermediate” vs. “High” classification was compared to 

the 70-gene “Good” vs. “Poor”, 173/225 samples (77%) showed agreement. In particular, 

of the 105 RS “Low” or “Intermediate” patients, 83 were classified as 70-gene “Good”. 

Finally, we did not perform any multivariate Cox proportional hazards analyses using all 

predictors simultaneously to identify the “optimal model” because we believe that this 

would not be a fair test for either of those predictors (RS and 2-gene ratio) for which this 

was a true test set, or for those that were derived using a different platform (RS, 2-gene 

and Intrinsic Subtypes). 
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DISCUSSION 

A plethora of gene expression-based prognosticators are being developed for 

outcome predictions in breast cancer patients. In this study, we took advantage of a single 

dataset that had enough genes assayed to allow the simultaneous analysis of five different 

gene expression-based predictors and determined that most of these assays were making 

similar predictions; that is, if one predictor assigned a sample to its “poor outcome” 

group, then another predictor also assigned that same sample to its “poor outcome” 

group. In the case of tumors of the Intrinsic Subtype classes Basal-like, HER2+/ER- and 

Luminal B, the assignments made by the 70-gene, RS and Wound-Response predictors 

were almost homogeneously into the relevant poor outcome groups (regardless of ER 

status). It is only within the Luminal A and Normal-like Intrinsic Subtypes where 

variability in outcome predictions was found. Of the five predictors analyzed in this 

report, only the 2-gene predictor failed to identify statistically significant outcome 

differences on this dataset; Reid et al. also reported that on their independent dataset of 

ER+ tamoxifen-treated patients, the 2-gene predictor failed to detect outcome 

differences16.  

When the 70-gene, Wound-Response, RS and 2-gene predictors were compared in 

a pair-wise fashion, it was determined that the 70-gene, Wound-Response and RS 

classifications were highly concordant. When the 70-gene and RS predictors were 

compared relative to each other, they agreed on sample predictions for 77% (ER+) and 

81% (ER+ and ER-) of the patients. These analyses suggest that even though there is very 

little gene overlap (the 70-gene and RS overlap by only one gene: SCUBE2), and 

different algorithms are used, the majority of breast cancer patients would receive similar 
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outcome predictions when these different methods and models are used. It is also likely 

that the RS predictor, originally developed for only ER+ patients, “worked” on all 

patients because we can see that almost all (69/70) ER-negative patients were classified 

as being in the poor outcome RS High group (and they in fact do show poor outcomes). 

The outcome predictions by the different methods (with the exception of the 2-gene 

predictor) largely overlap when evaluated by the multivariate Cox proportional hazards 

analyses (95% Confidence Intervals of Hazard Ratios in Table 2). The proportion of 

patients identified as “poor outcome” or “good outcome” as outlined above is also highly 

similar. The discordance of up to 20% of the patients in different categories leads to 

slight differences in outcome prediction and underlines the need of further validations. In 

the coming years a NCI (PACCT), as well as an European Union (TRANSBIG-

MINDACT) randomized clinical trial will prospectively address the power of the RS and 

70-gene test respectively. 

We believe that despite the lack of gene overlap, the different gene sets/profiles 

are making similar predictions largely because they are tracking common cellular 

phenotypes that are reflective of the dominant biology of breast tumors, which 

encompasses the consistent differences seen in ER-positive (i.e. Luminal) vs. ER-

negative breast cancers (Basal-like and HER2+/ER-). While these distinctions are 

correlated with grade, which is another common biological phenotype that these gene 

profiles are tracking, it is also clear that these profiles are providing additional 

information beyond that provided by grade, as evidenced by their significance in Cox 

regression analyses. These findings also show that prognostic profiles can be readily 

detected by a great number of genes, and any sufficiently representative subset of these 
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genes could potentially be used as a predictor. This phenomenon has been observed in 

normal tissues: Son et al. reported that approximately 19,000 genes are differentially 

expressed between different organs, and any sufficiently large (approximately 100) 

randomly selected subset could reproduce the hierarchical clustering pattern produced 

when using the full gene set17. An important implication of these findings is that when 

comparing two “profiles”, overlap in gene identity is not a good measure of 

reproducibility and that individual sample classifications is the relevant measure of 

concordance. 

We find these results encouraging and interpret them to mean that although 

different gene sets are being used, they are each tracking a common set of biological 

characteristics that are present across different breast cancer patient sets and are making 

similar outcome predictions. The next question to ask is what outcome predictor(s) should 

be used and why. The answer cannot be determined based upon the analyses in this 

report, but the guiding principle should be to use the predictor(s) that will predict patient 

outcomes and assist in making therapeutic decisions (i.e. predictive assays) within a 

specified group. For example, if a patient is determined to be of the Intrinsic Subtypes of 

Basal-like, HER2+/ER- or Luminal B, or “poor outcome” by the RS or 70-gene test, then 

there is, as yet, little need to perform the other assays because they would all indicate a 

poor prognosis. Thus, future studies should focus on developing assays that can 

prognosticate within HER2+/ER-, Basal-like, and Luminal B patients. For patients of the 

Luminal A and Normal-like Intrinsic Subtypes, the RS, 70-gene and Wound-Response 

profiles provided additional information (Tables 3 and 6) that may be useful in guiding 

treatment decision. For example, Luminal A patients with a Low RS might be selected to 
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receive only hormone therapy because a Low RS is associated with good outcomes in 

tamoxifen-treated patients and little benefit from chemotherapy7, 15. Retrospective and 

prospective studies must now be done to determine which is the “best” predictor, but it is 

likely that the “best” predictor may be a combination of two or more different predictors.  
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TABLES 

 
Table 4.1. Summary of the classifications of the NKI patient dataset using five different 
gene expression-based profiles. 
 
Dataset 
 
Classification Method 

295-sample dataset 
 
number of patients (%) 

ER+ 225-sample dataset 

number of patients (%) 
Intrinsic Subtype 

Luminal A 
Luminal B 
Normal-like 
HER2+/ER- 
Basal-like 

 
 
123 (41.7%) 
55 (18.6%) 
29 (9.8%) 
35 (11.9%) 
53 (18.0%) 

 
 
121 (53.8%) 
55 (24.4%) 
24 (10.7%) 
18 (8.0%) 
7 (3.1%) 

Recurrence Score 

Low 
Intermediate 
High 

 
 
70 (23.7%) 
33 (11.2%) 
192 (65.1%) 

 
 
87 (38.7%) 
18 (8.0%) 
120 (53.3%) 

70-gene 
 
Good 
Poor 

 
 
115 (39.0%) 
180 (61.0%) 

 
 
113 (50.2%) 
112 (49.8%) 

Wound Response 

Quiescent 
Activated 

 
 
67 (29.8%) 
228 (77.3%) 

 
 
60 (26.7%) 
165 (73.3%) 

2-gene ratio 

Low 
High 

 
 
137 (46.4%) 
158 (53.6%) 

 
 
122 (54.2%) 
103 (45.8%) 
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Table 4.2. Multivariate Cox proportional hazards analysis for the 295-sample Chang et 
al. 2005 dataset in relation to Relapse-Free Survival and Overall Survival. Multivariate 
Cox proportional hazards analysis of (A) standard clinical prognostic factors alone, or 
with (B) the 70-gene predictor, (C) Wound-response predictor, (D) Ma et al. 2-gene ratio 
predictor, (E) Recurrence Score, or (F) Intrinsic Subtypes in relation to Relapse-Free 
Survival and Overall Survival. Size was a binary variable (0= diameter of 2cm or less, 1= 
greater than 2cm); age was a continuous variable formatted as decade-years; hazard ratios 
for Intrinsic Subtypes were calculated relative to the Luminal A subtype. Variables found 
to be significant (p<0.05) in the Cox proportional hazards model are shown in bold. 
 
 
A.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
ER status 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 

 
0.59 (0.43-0.82) 
 
0.65 (0.42-0.99) 
 
2.45 (1.33-4.50) 
 
2.53 (1.35-4.74) 
 
1.40 (0.96-2.05) 
 
1.32 (0.72-2.41) 
 
2.24 (1.12-4.49) 
 
0.56 (0.31-1.01) 

 
0.001 
 
0.045 
 
0.004 
 
0.004 
 
0.083 
 
0.37 
 
0.023 
 
0.055 

 
0.67 (0.45-0.98) 
 
0.44 (0.27-0.71) 
 
4.31 (1.49-12.47) 
 
5.96 (2.06-17.21) 
 
1.52 (0.94-2.43) 
 
1.06 (0.48-2.36) 
 
1.85 (0.78-4.38) 
 
0.81 (0.38-1.74) 
 

 
0.042 
 
0.001 
 
0.007 
 
0.001 
 
0.086 
 
0.88 
 
0.16 
 
0.59 
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B.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
ER status 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
70-gene predictor  
(poor vs. good) 

 
0.64 (0.46-0.88) 
 
0.86 (0.56-1.31) 
 
1.57 (0.82-2.97) 
 
1.32 (0.68-2.59) 
 
1.44 (0.99-2.11) 
 
1.20 (0.66-2.18) 
 
2.19 (1.07-4.47) 
 
0.54 (0.30-0.99) 
 
 
3.44 (1.98-5.99) 
 

 
0.006 
 
0.47 
 
0.17 
 
0.41 
 
0.059 
 
0.55 
 
0.032 
 
0.048 
 
 
<0.001 

 
0.71 (0.48-1.05) 
 
0.59 (0.36-0.95) 
 
2.55 (0.86-7.63) 
 
2.84 (0.94-8.54) 
 
1.58 (0.98-2.53) 
 
1.01 (0.46-2.21) 
 
1.97 (0.81-4.79) 
 
0.75 (0.34-1.62) 
 
 
4.71 (2.02-11.00) 
 

 
0.085 
 
0.031 
 
0.093 
 
0.064 
 
0.058 
 
0.97 
 
0.14 
 
0.46 
 
 
<0.001 

 
 
C.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
 
Age, per decade 
 
ER status 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
Wound-response signature 
(activated vs. quiescent) 

 
 
0.56 (0.40-0.77) 
 
0.69 (0.45-1.06) 
 
1.89 (1.02-3.52) 
 
1.92 (1.02-3.62) 
 
1.39 (0.95-2.03) 
 
1.19 (0.65-2.17) 
 
1.74 (0.85-3.57) 
 
0.58 (0.32-1.07) 
 
 
2.88 (1.50-5.52) 
 

 
 
<0.001 
 
0.089 
 
0.045 
 
0.045 
 
0.090 
 
0.58 
 
0.13 
 
0.080 
 
 
0.002 

 
 
0.62 (0.41-0.92) 
 
0.46 (0.28-0.76) 
 
3.32 (1.13-9.71) 
 
4.46 (1.53-13.00) 
 
1.52 (0.95-2.44) 
 
0.96 (0.43-2.12) 
 
1.48 (0.61-3.59) 
 
0.84 (0.39-1.81) 
 
 
3.25 (1.27-8.27) 
 

 
 
0.019 
 
0.002 
 
0.028 
 
0.006 
 
0.083 
 
0.92 
 
0.38 
 
0.65 
 
 
0.014 
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D.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
ER status 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
Ma et al. 2-gene ratio 
(high vs. low) 

 
0.60 (0.43-0.82) 
 
0.63 (0.41-0.98) 
 
2.43 (1.32-4.47) 
 
2.57 (1.37-4.82) 
 
1.40 (0.96-2.05) 
 
1.32 (0.72-2.42) 
 
2.26 (1.13-4.54) 
 
0.55 (0.30-1.00) 
 
 
0.91 (0.61-1.34) 

 
0.001 
 
0.040 
 
0.004 
 
0.003 
 
0.082 
 
0.36 
 
0.022 
 
0.051 
 
 
0.62 

 
0.67 (0.45-0.98) 
 
0.44 (0.26-0.72) 
 
4.31 (1.49-12.48) 
 
5.96 (2.06-17.23) 
 
1.52 (0.94-2.43) 
 
1.06 (0.48-2.36) 
 
1.85 (0.78-4.38) 
 
0.81 (0.38-1.74) 
 
 
1.00 (0.61-1.63) 

 
0.042 
 
0.001 
 
0.007 
 
0.001 
 
0.086 
 
0.88 
 
0.16 
 
0.59 
 
 
0.99 

 
 
E.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
Intermediate vs. Low 
recurrence score 
 
High vs. Low  
recurrence score 

 
0.57 (0.42-0.79) 
 
1.61 (0.85-3.04) 
 
1.50 (0.79-2.86) 
 
1.51 (1.03-2.20) 
 
1.24 (0.68-2.26) 
 
2.10 (1.04-4.25) 
 
0.54 (0.30-0.98) 
 
 
1.81 (0.70-4.68) 
 
 
4.27 (2.05-8.92) 

 
<0.001 
 
0.14 
 
0.21 
 
0.035 
 
0.48 
 
0.039 
 
0.044 
 
 
0.22 
 
 
<0.001 

 
0.63 (0.42-0.94) 
 
2.95 (0.99-8.73) 
 
3.81 (1.30-11.1) 
 
1.66 (1.03-2.67) 
 
0.95 (0.43-2.09) 
 
1.59 (0.66-3.82) 
 
0.80 (0.37-1.73) 
 
 
1.81 (0.39-8.27) 
 
 
6.14 (1.84-20.4) 
 

 
0.023 
 
0.051 
 
0.014 
 
0.036 
 
0.90 
 
0.30 
 
0.57 
 
 
0.45 
 
 
0.003 
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F.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy  
 
Luminal B 
 
Normal-like 
 
Her2+/ER- 
 
Basal-like 

 
0.59 (0.42-0.82) 
 
1.80 (0.96-3.39) 
 
1.80 (0.92-3.50) 
 
1.55 (1.05-2.29) 
 
1.20 (0.65-2.21) 
 
2.01 (0.96-4.21) 
 
0.49 (0.26-0.92) 
 
 
3.79 (2.17-6.61) 
 
2.86 (1.49-5.50) 
 
3.16 (1.61-6.18) 
 
2.45 (1.33-4.51) 

 
0.002 
 
0.068 
 
0.087 
 
0.027 
 
0.55 
 
0.064 
 
0.025 
 
 
<0.001 
 
0.002 
 
<0.001 
 
0.004 

 
0.67 (0.45-1.00) 
 
3.51 (1.19-10.36) 
 
4.47 (1.48-13.49) 
 
1.55 (0.96-2.51) 
 
1.01 (0.45-2.28) 
 
1.81 (0.73-4.50) 
 
0.69 (0.31-1.54) 
 
 
2.55 (1.25-5.22) 
 
2.00 (0.76-5.31) 
 
3.54 (1.59-7.85) 
 
3.05 (1.49-6.27) 

 
0.051 
 
0.023 
 
0.008 
 
0.076 
 
0.98 
 
0.20 
 
0.37 
 
 
0.010 
 
0.16 
 
0.002 
 
0.002 
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Table 4.3. Comparison of predictors for all 295 samples. 

Intrinsic 
Subtype # Recurrence Score 70-gene Wound-Response 2-gene 

Low 0 good 0 Quiescent 3 Low 11 
Intermediate 0             

Basal-like 53 high 53 poor 53 Activated 50 high 42 
Low 62 good 87 Quiescent 45 Low 78 
Intermediate 25             

Luminal A 123 high 36 poor 36 Activated 78 high 45 
Low 1 good 9 Quiescent 4 Low 30 
Intermediate 4             

Luminal B 55 high 50 poor 46 Activated 51 high 25 
Low 0 good 3 Quiescent 0 Low 7 
Intermediate 0             

HER2+/ER- 35 high 35 poor 32 Activated 35 high 28 
Low 7 good 16 Quiescent 15 Low 11 
Intermediate 4             

Normal-like 29 high 18 poor 13 Activated 14 high 18 
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Table 4.4. Two-way contingency table analysis measuring the association between the 
70-gene, Wound-response, and Recurrence Score predictors in the 295-sample dataset.  
 
A.  

 
  Wound-Response  
 
  Quiescent        Activated 
             (# of patients) 

Two-way contingency table 
 
 
 
 
70-gene predictor  
               Good 
                Poor 

 
48 
19 

 
67 
161 

Statistics for two-way 
contingency table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
<0.001 
 
0.36 

 
 
B.  

 
  Recurrence Score  
 
  Low or Int.        High 
          (# of patients) 

Two-way contingency table 
 
 
 
 
70-gene predictor  
               Good 
                Poor 

 
81 
22 

 
34 
158 

Statistics for two-way 
contingency table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
<0.001 
 
0.60 
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C. 

 
  Recurrence Score  
 
  Low or Int.        High 
          (# of patients) 

Two-way contingency table 
 
 
 
 
Wound Response  
                Quiescent 
                Activated 

 
48 
55 

 
19 
173 

Statistics for two-way 
contingency table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
<0.001 
 
0.42 

† p-value calculated from Chi-square test on contingency table. †† Cramer’s V statistic 
(value can range from 0 to 1) measures the strength of association between the two 
variables analyzed in the contingency table, with 1 indicating perfect association and 0 
indicating no association. 
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Table 4.5. Multivariate Cox proportional hazards analysis for the 225 ER+ samples in the 
Chang et al. 2005 dataset in relation to Relapse-Free Survival and Overall Survival. 
Multivariate Cox proportional hazards analysis of (A) standard clinical prognostic factors 
alone or with (B) the 70-gene predictor, (C) Wound-response predictor, (D) Ma et al.’s 2-
gene predictor, (E) Recurrence Score predictor, or (F) intrinsic subtypes in relation to 
Relapse-Free Survival and Overall Survival. Size was a binary variable (0= diameter of 
2cm or less, 1= greater than 2cm); age was a continuous variable formatted as decade-
years; hazard ratios for intrinsic subtypes were calculated relative to the Luminal A 
subtype. Variables found to be significant (p<0.05) in the Cox proportional hazards 
model are shown in bold. 

 
 

A.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 

 
0.54 (0.35-0.82) 
 
2.11 (1.12-3.98) 
 
2.83 (1.49-5.38) 
 
1.41 (0.88-2.26) 
 
2.11 (1.06-4.21) 
 
2.92 (1.26-6.73) 
 
0.37 (0.18-0.73) 

 
0.005 
 
0.021 
 
0.002 
 
0.15 
 
0.034 
 
0.012 
 
0.004 

 
0.56 (0.31, 0.99) 
 
3.28 (1.08, 9.94) 
 
7.36 (2.51, 21.5) 
 
1.33 (0.71, 2.49) 
 
2.11 (0.81, 5.53) 
 
2.16 (0.69, 6.72) 
 
0.52 (0.20, 1.32) 
 

 
0.047 
 
0.035 
 
<0.001 
 
0.36 
 
0.13 
 
0.18 
 
0.17 
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B.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
70-gene predictor  
(poor vs. good) 

 
0.65 (0.42-0.99) 
 
1.24 (0.63-2.44) 
 
1.20 (0.59-2.48) 
 
1.45 (0.91-2.31) 
 
1.73 (0.88-3.40) 
 
2.70 (1.12-6.49) 
 
0.37 (0.18-0.74) 
 
 
3.88 (2.15-7.02) 

 
0.047 
 
0.53 
 
0.61 
 
0.12 
 
0.11 
 
0.027 
 
0.005 
 
 
<0.001 

 
0.68 (0.38, 1.22) 
 
1.75 (0.55, 5.55) 
 
2.72 (0.85, 8.66) 
 
1.41 (0.76, 2.61) 
 
1.81 (0.71, 4.60) 
 
2.32 (0.69, 7.80) 
 
0.47 (0.18, 1.22) 
 
 
5.47 (2.13, 14.1) 
 

 
0.20 
 
0.34 
 
0.091 
 
0.28 
 
0.21 
 
0.17 
 
0.12 
 
 
<0.001 

 
 
C.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy  
 
Wound-response  
(activated vs. quiescent) 

 
0.50 (0.32-0.78) 
 
1.60 (0.83-3.05) 
 
2.10 (1.09-4.05) 
 
1.39 (0.87-2.21) 
 
1.87 (0.94-3.73) 
 
2.19 (0.92-5.20) 
 
0.39 (0.20-0.78) 
 
 
2.95 (1.42-6.14) 
 

 
0.002 
 
0.16 
 
0.026 
 
0.17 
 
0.076 
 
0.075 
 
0.008 
 
 
0.004 
 

 
0.49 (0.27, 0.90) 
 
2.41 (0.78, 7.39) 
 
5.24 (1.76, 15.6) 
 
1.32 (0.71, 2.46) 
 
1.85 (0.71, 4.82) 
 
1.61 (0.50, 5.17) 
 
0.56 (0.22, 1.45) 
 
 
4.03 (1.20, 13.5) 
 

 
0.022 
 
0.12 
 
0.003 
 
0.38 
 
0.21 
 
0.42 
 
0.23 
 
 
0.024 
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D.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy  
 
Ma et al. 2-gene ratio  
(high vs. low) 

 
0.54 (0.35-0.84) 
 
2.08 (1.10-3.93) 
 
2.99 (1.55-5.74) 
 
1.42 (0.89-2.26) 
 
2.15 (1.08-4.29) 
 
2.99 (1.29-6.92) 
 
0.36 (0.18-0.72) 
 
 
0.81 (0.51-1.29) 

 
0.006 
 
0.023 
 
0.001 
 
0.14 
 
0.030 
 
0.010 
 
0.004 
 
 
0.38 

 
0.56 (0.31, 0.99) 
 
3.28 (1.08, 9.92) 
 
7.42 (2.51, 21.9) 
 
1.34 (0.72, 2.49) 
 
2.12 (0.80, 5.55) 
 
2.16 (0.69, 6.70) 
 
0.52 (0.20, 1.32) 
 
 
0.97 (0.52, 1.79) 

 
0.048 
 
0.036 
 
<0.001 
 
0.36 
 
0.13 
 
0.18 
 
0.17 
 
 
0.91 

 
 
E.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
Intermediate vs. Low 
recurrence score 
 
High vs. Low  
recurrence score 

 
0.49 (0.32-0.75) 
 
1.42 (0.72, 2.79) 
 
1.69 (0.83, 3.41) 
 
1.52 (0.96, 2.42) 
 
1.97 (1.00, 3.87) 
 
3.10 (1.32, 7.26) 
 
0.40 (0.20, 0.80) 
 
 
0.82 (0.27, 2.46) 
 
 
2.59 (1.44, 4.65) 

 
0.001 
 
0.32 
 
0.15 
 
0.073 
 
0.049 
 
0.009 
 
0.009 
 
 
0.72 
 
 
0.001 
 

 
0.50 (0.28, 0.90) 
 
1.83 (0.58, 5.77) 
 
3.26 (1.04, 10.2) 
 
1.54 (0.83, 2.86) 
 
1.75 (0.68, 4.47) 
 
2.06 (0.66, 6.39) 
 
0.62 (0.24, 1.58) 
 
 
1.42 (0.27, 7.50)  
 
 
4.95 (1.82, 13.4) 
 

 
0.021 
 
0.30 
 
0.042 
 
0.17 
 
0.24 
 
0.21 
 
0.32 
 
 
0.68 
 
 
0.002 
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F.       Relapse-Free survival   Overall survival 
Variable 
 

Hazard Ratio 
(95% CI) 

p-value Hazard Ratio 
(95% CI) 

p-value 
 

 
Age, per decade 
 
Tumor grade 2 vs. 1 
 
Tumor grade 3 vs. 1 
 
Size 
 
1-3 vs. 0 positive nodes 
 
>3 vs. 0 positive nodes 
 
Hormonal or chemotherapy 
vs. no adjuvant therapy 
 
Luminal B 
 
Normal-like, HER2+/ER-, 
or Basal-like 

 
0.52 (0.33, 0.81) 
 
1.40 (0.72, 2.71) 
 
1.62 (0.82, 3.18) 
 
1.66 (1.03, 2.65) 
 
1.82 (0.92, 3.59) 
 
2.34 (0.96, 5.68) 
 
0.34 (0.16, 0.68) 
 
 
4.40 (2.47, 7.84) 
 
2.51 (1.38, 4.58) 
 

 
0.004 
 
0.32 
 
0.16 
 
0.036 
 
0.085 
 
0.061 
 
0.003 
 
 
<0.001 
 
0.003 
 

 
0.57 (0.31, 1.04) 
 
2.48 (0.80, 7.70) 
 
4.92 (1.62, 14.9) 
 
1.51 (0.80, 2.82) 
 
1.89 (0.73, 4.89) 
 
1.98 (0.60, 6.54) 
 
0.49 (0.18, 1.29) 
 
 
2.81 (1.33, 5.91) 
 
1.92 (0.84, 4.37) 
 

 
0.065 
 
0.12 
 
0.005 
 
0.20 
 
0.19 
 
0.26 
 
0.15 
 
 
0.006 
 
0.12 
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Table 4.6. Comparison of predictors for 225 ER+ patients. 
 
Intrinsic 
Subtype # Recurrence Score 70-gene Wound-Response 2-gene 

Low 1 good 0 Quiescent 0 Low 1 
Intermediate 1             

Basal-like 7 high 5 poor 7 Activated 7 high 6 
Low 68 good 87 Quiescent 45 Low 77 
Intermediate 13             

Luminal A 121 high 40 poor 34 Activated 76 high 44 
Low 2 good 9 Quiescent 4 Low 30 
Intermediate 2             

Luminal B 55 high 51 poor 46 Activated 51 high 25 
Low 1 good 2 Quiescent 0 Low 5 
Intermediate 0             

HER2+/ER- 18 high 17 poor 16 Activated 18 high 13 
Low 15 good 15 Quiescent 11 Low 9 
Intermediate 2             

Normal-like 24 high 7 poor 9 Activated 13 high 15 
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Table 4.7. Two-way contingency table analysis measuring the association between the 
70-gene, Wound-response, and Recurrence Score predictors in the ER+ 225-sample 
dataset. 
 
A.  

 
  Wound-Response  
 
  Quiescent        Activated 
             (# of patients) 

Two-way contingency table 
 
 
 
 
70-gene predictor  
               Good 
                Poor 

 
47 
13 

 
66 
99 

Statistics for two-way 
contingency table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
<0.001 
 
0.34 

 
B.  

 
  Recurrence Score  
 
  Low or Int.        High 
          (# of patients) 

Two-way contingency table 
 
 
 
 
70-gene predictor  
               Good 
                Poor 

 
83 
22 

 
30 
90 

Statistics for two-way 
contingency table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
<0.001 
 
0.54 
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C. 

 
  Recurrence Score  
 
  Low or Int.        High 
          (# of patients) 

Two-way contingency table 
 
 
 
 
Wound Response  
                Quiescent 
                Activated 

 
47 
58 

 
13 
107 

Statistics for two-way 
contingency table analysis  
 
p-value† 
 
Cramer’s V†† 
 

 
 
 
<0.001 
 
0.38 

† p-value calculated from Chi-square test on contingency table. †† Cramer’s V statistic 
(value can range from 0 to 1) measures the strength of association between the two 
variables analyzed in the contingency table, with 1 indicating perfect association and 0 
indicating no association. 
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FIGURES 
 

 
Figure 4.1. Survival analysis of the 295 patients stratified according to 5 different gene 
expression based predictors. Kaplan-Meier survival plots for Relapse Free Survival (left 
panels) and Overall Survival (right panels) are shown for the 295 patients stratified 
according to Intrinsic Subtypes (A, B), Recurrence Score (C, D), 70-gene profile (E, F), 
Wound-Response (G, H) and 2-gene ratio predictor (I, J). All reported p-values are based 
upon a log-rank test. 
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Figure 4.2. Survival analysis of the 225 ER+ patients stratified according to 5 different 
gene expression based predictors. Kaplan-Meier survival plots for Relapse Free Survival 
(left panels) and Overall Survival (right panels) are shown for the 225 ER+ patients 
stratified according to Intrinsic Subtypes (A, B), Recurrence Score (C, D), 70-gene 
profile (E, F), Wound-Response (G, H) and 2-gene ratio predictor (I, J). All reported p-
values are based upon a log-rank test. 
 



 

 

 

CHAPTER 5:  Expression profiles can predict response to neoadjuvant 

chemotherapy in breast cancer patients 

 

ABSTRACT 

Background 

The identification of markers predictive of neoadjuvant chemotherapy response would be 

an important advance. Therefore, we sought to identify gene expression profiles 

predictive of neoadjuvant response. 

 

Methods 

DNA microarray analysis was performed on pre-treatment core biopsies from locally 

advanced breast cancer patients receiving four cycles of neoadjuvant doxorubicin plus 

cyclophosphamide (AC) followed by four cycles of paclitaxel (T) or paclitaxel and 

trastuzumab (TH). In total, 44 patients receiving chemotherapy yielded successful pre-

treatment core biopsy and microarray.  

 

Results 

Ten-fold cross-validated supervised analyses using the pre-treatment microarray data 

identified gene expression patterns that accurately predicted (1) clinical response after 

four cycles of treatment, (2) clinical response after successful completion of all eight 
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cycles of treatment, and (3) overall clinical response for these 44 patients. In contrast, no 

significant association was detected between any of the response outcomes measured and 

the standard clinical parameters of ER status, node status, or grade.  

 

Conclusions 

These results suggest that gene expression profiling may lead to clinically useful 

predictors of neoadjuvant chemotherapy response. The gene expression patterns reported 

here may provide the means of selecting patients for AC-T(H) neoadjuvant therapy.  
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INTRODUCTION 

Neoadjuvant chemotherapy (treatment before primary surgery) has been widely 

used as a component of the standard of care for locally advanced breast cancer patients. 

Although neoadjuvant and adjuvant chemotherapy have similar efficacy in terms of 

disease-free and overall survival rates, neoadjuvant chemotherapy has been shown to 

improve breast-conserving operability in locally advanced breast cancers1. Another 

advantage of neoadjuvant chemotherapy is that it allows for the direct and timely 

observation of tumor treatment response. Response (pathologic complete response [pCR] 

or clinical complete response) to neoadjuvant chemotherapy has been correlated with 

improved long-term disease-free and overall survival1-7. Currently, there is no clinically 

useful predictor of neoadjuvant chemotherapy response. Such a predictor would be of 

significant value; by identifying patients unlikely to benefit from therapy, it would spare 

them from treatment-associated toxicities and allow them to be more efficiently selected 

to receive alternative approaches.  

Recently, studies have focused on using gene expression profiling to identify 

expression patterns predictive of chemotherapy response8-13. Using gene expression 

profiling shows promise in identifying patterns predictive of chemotherapy response as it 

has already allowed the classification of breast tumors into five molecular subtypes 

(Luminal A, Luminal B, Basal-like, HER2+/ER- and Normal Breast-like) that show 

significant differences in patient outcome14,15. Therefore, we determined if pre-treatment 

gene expression patterns could predict response to the following neoadjuvant 

chemotherapy regimen: doxorubicin plus cyclophosphamide followed by paclitaxel with 

or without trastuzumab. 
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MATERIALS AND METHODS 

Patients and study design.  A phase II study run at UNC-CH (Trial L9819; Trial PI: 

Lisa Carey) of the neoadjuvant administration of four cycles of doxorubicin plus 

cyclophosphamide (AC), followed by four cycles of paclitaxel (T) or paclitaxel plus 

trastuzumab (TH) was performed on a set of locally advanced operable breast cancer 

patients (for complete details see Carey et al.16). Patients received AC-TH if their tumors 

showed HER2-positivity as defined by Carey et al.16 The main purpose of this phase II 

study was to determine the cardiotoxicity of neoadjuvant doxorubicin plus 

cyclophosphamide followed by paclitaxel plus trastuzumab. As part of this study, 

pretreatment core biopsies were obtained from patients; RNA from these biopsies was 

used for our prediction of response analysis described here. Clinical response to 

neoadjuvant therapy was evaluated after the first four cycles of treatment and after all 

eight cycles of treatment, following Response Evaluation Criteria in Solid Tumors 

(RECIST), with complete response (CR) defined as no clinical evidence of tumor, partial 

response (PR) as ≥30% decrease in the longest diameter, progression (PD) as ≥20% 

increase in the longest diameter, and stable disease (SD) as all other tumor responses17. 

Pathologic response in the post-neoadjuvant chemotherapy surgical specimen was 

defined by residual disease in the breast or axillary lymph nodes according to the revised 

2003 AJCC TNM staging system.  

 

RNA isolation and microarray hybridization. Total RNA samples from the 

pretreatment biopsies were prepared using Qiagen RNAeasy kits. An Agilent Bioanalyzer 

was used to determine sample quality. Only those samples giving ≥1μg Total RNA and 
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discernable 18S and 28S peaks were used for microarray analysis. Total RNA 

amplification and labeling were done as previously described18. Microarray 

hybridizations were performed on Agilent Human microarrays using 2μg of Cy3-labeled 

common reference sample19 and 2μg of Cy5-labeled experimental sample. Microarrays 

were hybridized overnight, washed, dried, and scanned as described18. Microarray image 

files were analyzed with GenePix Pro 4.1 and loaded into the UNC-CH Microarray 

Database (https://genome.unc.edu/).  

 

Microarray analysis and prediction of response.  Data from microarray experiments 

were calculated as described18. Genes were excluded from data analysis if they did not 

have signal intensity ≥30 in both channels for ≥70% of the experiments. To predict 

response, the gene expression data for the 44 pre-treatment samples was used and the 

“supervising parameters” were clinical response after cycles 4 and 8, overall clinical 

response, and pathologic complete response (pCR). The difference between overall 

clinical response and clinical response after cycle 8 is that for a patient to be evaluated for 

the latter, she would had to have completed all 8 therapy cycles. In contrast, overall 

clinical response is evaluated after the last successfully completed therapy cycle (not 

necessarily cycle 8).  

Four statistical classification methods were used to predict chemotherapy 

response using the pre-treatment gene expression data: a k-Nearest Neighbor Classifier 

(k-NN with k=1, 3, 5, or 7) with either Euclidean distance or one-minus-Spearman-

correlation as the distance function and a Class Nearest Centroid (CNC) classifier with 

either Euclidean distance or one-minus-Spearman-correlation as the distance function20. 

https://genome.unc.edu/
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To evaluate prediction accuracy, each of the four prediction methods underwent 10-fold 

cross validation (CV); in a given round of CV, each predictor using n genes (how the n 

genes were selected is described below) was trained on 90% of the samples and used to 

make predictions on the remaining 10%, with this procedure repeated 9 more times such 

that every sample was “left out” exactly once. The prediction accuracies for each of the 

10 iterations were averaged together and this average prediction accuracy was recorded 

for each prediction method with n genes. n was increased for subsequent rounds of CV. 

For each response variable, the set of n genes that gave the highest average prediction 

accuracy during CV was determined and reported for each prediction method (Table 3).  

Each prediction method required a gene/feature selection step to identify genes 

associated with each “class” (i.e. CR vs. PR+SD). For all 4 prediction methods, we used 

a gene selection method first described by Dudoit et al.21; the genes were identified in the 

training set according to the ratio of between-class to within-class sums of squares. The 

top n-ranked genes were used during each round of CV. The number of cases in our study 

was relatively small (44), therefore, we did not break our data into training and test sets 

but instead, performed 10-fold CV using the four statistical prediction methods to avoid 

over-fitting caused by using a single prediction method or fortuitous training and test set 

randomizations.  

 

RESULTS 

Patient characteristics and response rates. 44 patients enrolled in the L9819 study 

gave a successful pre-treatment core biopsy and microarray. Patient characteristics are 

summarized in Table 1. Of these 44 patients, 24 and 11 successfully completed AC-T and 
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AC-TH therapy, respectively. The patient subgroups receiving AC-T or AC-TH did not 

significantly differ from each other in age, grade, stage, ER or PR status. Clinical 

response data for the 44 patients is summarized in Table 2. Patient subgroups receiving 

AC-T or AC-TH did not significantly differ from each other in response rates (overall 

clinical response, clinical response after 4 and 8 treatment cycles, and pCR).  

 

Analysis of tumor samples using the breast intrinsic gene set. Chemotherapy response 

is likely a multi-factorial process, therefore, we examined whether gene expression 

patterns were able to capture response-associated biological features. To investigate the 

gene expression data, we first hierarchically clustered22 the 44 pre-treatment samples 

using the 1300-gene “breast intrinsic” gene set (developed by Hu et al.23) that identifies 

the intrinsic breast tumor subtypes (Luminal, HER2+/ER-neg, Basal-like). The results 

show that the main intrinsic subtypes (Figure 1) were identifiable in this patient dataset. 

As seen in previous studies23, the proliferation gene cluster was found to have the highest 

expression in Basal-like tumors. 

 

Association of response with clinical parameters and breast intrinsic subtype. We 

explored how conventional clinical parameters performed in predicting response. Using 

either (1) all 44 patients, (2) just those receiving AC-T, or (3) just those receiving AC-

TH, neither ER status, PR status, node status, grade, or tumor size were significantly 

correlated with pCR or any other response variable according to Chi-squared analysis. 

Other studies have also found that the standard clinical parameters show weak to no 

association with neoadjuvant chemotherapy response24.  
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We next examined response rates within the intrinsic molecular subtypes. Rouzier 

et al.25 reported a strong association (p=0.002) between pCR rate and the Basal-like and 

HER2+/ER- subtypes. In the L9819 study, using either (1) all 44 patients, (2) just those 

receiving AC-T, or (3) just those receiving AC-TH, we did not see a statistically 

significant association between subtype and pCR or any other response variable (overall 

clinical response, clinical response after 4 and 8 treatment cycles). Among all 44 patients, 

2/11 (18.2%) basal-like, 2/15 (13.3%) HER2+/ER-, and 2/16 (12.5%) luminal tumors 

showed pCR. Among all 44 patients, the association between subtype and clinical 

response after 4 treatment cycles was not significant (p=0.17), but a trend was evident: 

10/12 (83.3%) basal-like, 8/16 (50%) HER2+/ER-, and 9/16 (56.3%) luminal tumors 

showed response (complete or partial) after 4 treatment cycles, which mimics the finding 

of Rouzier et al.25 in that the highest response rates were seen in the Basal-like subtype. 

 

Prediction of neoadjuvant chemotherapy response. We performed “supervised 

analyses” on the pretreatment gene expression data and determined the 10-fold Cross 

Validation (CV) error rates for predicting (1) pCR, (2) overall response, (3) response 

after 4 treatment cycles, and (4) response after 8 treatment cycles. Table 3 shows that 10-

fold CV analyses using the Class Nearest Centroid and k-Nearest Neighbor classification 

methods yielded gene expression profiles/predictors that accurately classified tumors 

according to (1) overall response: clinical complete response (CR) vs. non-CR (75-77% 

accuracy), (2) clinical response (partial or complete) vs. non-response after cycle 4 (73-

77% accuracy), and (3) CR vs. non-CR after cycle 8 (79-83% accuracy). We could not 

accurately classify tumors according to pCR (<60% accuracy), which we speculate is due 
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to the fact that the low number of samples showing pCR (n=6) was not enough to 

generate a reliable predictor. Each of the four prediction methods achieved similar 

accuracies when used to predict a given response variable (Table 3). Prediction of ER 

status is included as a positive control for our gene expression-based predictors; it 

represents the upper threshold of how good a predictor can be (86-89% accuracy) on this 

dataset, providing a benchmark against which the chemotherapy response predictors can 

be judged.  

Using the gene lists identified in 10-fold CV as being predictive of response 

(Table 3, highlighted in blue), we hierarchically clustered22 the pretreatment biopsy 

samples to better understand the predictive genes and their relationships to each other. 

Figure 2 shows the hierarchical clustering of tumors using the 54-gene set predictive of 

response after treatment cycle 4 (75% accuracy, 78% sensitivity, 71% specificity in 10-

fold CV analysis using the Euclidean nearest centroid method) (Note: the classification of 

samples into clusters and the associated accuracies observed in Figures 2-4 are different 

from those observed in the 10-fold CV analysis shown in Table 3. The clusters are for 

illustrative purposes/better understanding of the predictive gene sets only). Using the 

program EASE26, the Gene Ontology (GO) categories “DNA binding” and 

“nucleotide/nucleic acid metabolism” were over-represented relative to chance in the 

gene set highly expressed in tumors showing response at cycle 4 (Figure 2, top gene 

dendrogram branch).  

Figure 3 shows the hierarchical clustering of tumors using the 70-gene set 

predictive of overall response (75% accuracy, 72% sensitivity, 77% specificity in 10-fold 

CV analysis using the Euclidean nearest centroid method). Interestingly, the complete 
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responders in Figure 3 showed high expression of caspase-9, which promotes apoptosis27-

29. According to EASE, the GO category “ATP-dependent helicase activity” was over-

represented relative to chance in the gene set highly expressed in tumors showing overall 

complete response.  

Figure 4 shows the hierarchical clustering of tumors using the 72-gene set 

predictive of response after 8 treatment cycles (79% accuracy, 80% sensitivity, 79% 

specificity in 10-fold CV analysis using the Euclidean nearest centroid method). EASE 

showed that the GO categories “apoptosis/programmed cell death” and “positive 

regulation of apoptosis” were over-represented relative to chance in the gene set highly 

expressed in tumors showing complete response at cycle 8. Some of the pro-apoptotic 

genes highly expressed in complete responders relative to non-complete responders 

included caspases 4 and 5 and PACAP. These results suggest that in the pre-treatment 

samples, the high expression of proapoptotic genes are associated with and may partly 

explain chemotherapy response. 

 

DISCUSSION 

In this work, we examined whether pre-treatment gene expression patterns could 

predict response to AC-T(H) neoadjuvant therapy. 10-fold CV analysis identified gene 

expression patterns with prediction accuracy rates of 75-77% for overall response, 73-

77% for response after cycle 4, and 79-83% for response after cycle 8 (Table 3). The 

accuracy rates achieved are encouraging and warrant further validation.  

 We speculate that the 72-gene set predictive of response after 8 treatment cycles 

may represent a general mechanism of chemotherapy response. This gene set was 
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significantly enriched for pro-apoptotic genes. Findings from other studies indicate that 

apoptosis genes may be important in a general chemotherapy response; several reports 

studying breast tumor response to different chemotherapy regimens all indicate that in 

pretreatment samples, the high expression of apoptosis-related genes is associated with 

response9,10,30-32. Currently, we are testing the hypothesis that our 72-gene set may 

represent a general predictor of chemotherapy response using additional data sets of 

neoadjuvantly treated patients. 

 To date, three other published studies have attempted to predict neoadjuvant 

chemotherapy response using gene expression8,10,11. The prediction accuracies achieved 

by our gene expression-based predictors are similar to those achieved by the predictors 

developed by Chang et al.10 and Ayers et al.8: their predictors showed accuracies of 88% 

for predicting docetaxel clinical response and 78% for predicting pCR to paclitaxel + 

fluorouracil + doxorubicin + cyclophosphamide, respectively. In contrast, Hannemann et 

al.11 could not find a gene expression pattern from pretreatment FNAC samples that was 

capable of predicting pCR for patients receiving doxorubicin and cyclophosphamide or 

doxorubicin and docetaxel. Clearly, additional studies are needed with larger sample 

sizes, however, some common themes in the predictive gene expression patterns are 

evident, including apoptosis as an important feature. It is encouraging that genes 

identified in the predictors make biological sense and suggest our predictors are 

appropriately tracking response. 

Our results indicate that gene expression profiling may lead to clinically useful 

predictors of neoadjuvant chemotherapy response. Information regarding the intrinsic 

subtypes may also contribute to prediction assay development. We believe that the gene 
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expression-based predictors identified here have the potential to be clinically useful and 

warrant further validation using additional datasets as they emerge. 
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TABLES 

Table 5.1. Patient characteristics of the L9819 dataset.  
 

  
L9819 dataset (n=44) 
 
No. of pts (%) 
 

Age 
        Median (range) 

 
47 (30 to 79) 

Stage 
         I 
        IIA 
        IIB 
        IIIA 
        IIIB 
        IIIC 
        IV 

 
0 (0%) 
5 (11.4%) 
10 (22.7%) 
18 (40.9%) 
7 (15.9%) 
1 (2.3%) 
3 (6.8%) 

ER status 
        + 
        - 
        n.a. 

 
21 (48%) 
23 (52%) 
- 
 

Grade 
       1 
       2 
       3 
       n.a. 

 
5 (11.4%) 
7 (15.9%) 
25 (56.8%) 
7 (15.9%) 
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Table 5.2.  Neoadjuvant Chemotherapy Response data for the L9819 dataset.  
 
  

Response after 4 
cycles 

 
Response after 8 
cycles 
 
 

 
Overall response 

 
pCR 

 
Response data 
for all 44 pts. 
 

 
8 CR    (18.2%) 
19 PR   (43.2%) 
15 SD   (34.1%) 
2 PD     (4.5%) 

 
10 CR   (34.5%) 
12 PR    (41.4%) 
6 SD      (20.7%) 
1 PD      (3.4%) 
 

 
18 CR    (40.9%) 
16 PR    (36.4%) 
9 SD      (20.5%) 
1 PD      (8.3%) 

 
6 pCR                      (13.6%) 
36 non-pCR             (81.8%) 
2 n.a.                        (4.5%) 

 
Abbreviations: pCR=pathologic complete response; CR=clinical complete response; 
PR=partial response; SD=stable disease; PD=progressive disease. 
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Table 5.3. Accuracy (as determined by 10-fold cross validation) of various classification 
methods for the 44 tumor samples that yielded pre-treatment microarray data from the 
L9819 study. Classification methods were used to predict (A) response at cycle 4, (B) 
response after completion of all 8 treatment cycles, (C) overall response, and (D) ER 
status. 
 
A. Prediction of Response at Cycle 4 (27 responders [8 CRs and 19 PRs] vs. 17 non-
responders [15 SDs and 2 PDs]) 

Classification 
method 

gene 
# acc. 

True 
+ 

True 
- 

False 
+ 

False 
- sens. spec. PPV NPV 

Spearman 
Nearest 
Centroid 53 0.727 20 12 5 7 0.741 0.706 0.800 0.632 
Euclidean 
Nearest 
Centroid 54 0.75 21 12 5 6 0.778 0.706 0.808 0.667 
Spearman  
k-NN (k=7) 37 0.727 21 11 6 6 0.778 0.647 0.778 0.647 
Euclidean 
k-NN (k=7) 53 0.773 21 13 4 6 0.778 0.765 0.840 0.684 
 
Average  0.744     0.769 0.706 0.806 0.657 

 
 
B. Prediction of Response at Cycle 8 (10 CRs vs. 19 non-CRs [12 PRs, 6 SDs, and 1 PD]) 

Classification 
method 

gene 
# acc. 

True 
+ 

True 
- 

False 
+ 

False 
- sens. spec. PPV NPV 

Spearman 
Nearest 
Centroid 55 0.793 8 15 4 2 0.800 0.789 0.667 0.882 
Euclidean 
Nearest 
Centroid 72 0.793 8 15 4 2 0.800 0.789 0.667 0.882 
Spearman  
k-NN (k=5) 76 0.793 8 15 4 2 0.800 0.789 0.667 0.882 
Euclidean 
k-NN (k=5) 63 0.828 8 16 3 2 0.800 0.842 0.727 0.889 
 
Average  0.802     0.800 0.803 0.682 0.884 
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C. Prediction of Overall Response (18 CRs vs. 26 non-CRs [16 PRs, 9 SDs, and 1 PD]) 

Classification 
method 

gene 
# acc. 

True 
+ 

True 
- 

False 
+ 

False 
- sens. spec. PPV NPV 

Spearman 
Nearest 
Centroid 54 0.75 14 19 7 4 0.778 0.731 0.667 0.826 
Euclidean 
Nearest 
Centroid 70 0.75 13 20 6 5 0.722 0.769 0.684 0.800 
Spearman  
k-NN (k=5) 55 0.773 14 20 6 4 0.778 0.769 0.700 0.833 
Euclidean 
k-NN (k=5) 37 0.75 12 21 5 6 0.667 0.808 0.706 0.778 
 
Average  0.756     0.736 0.769 0.689 0.809 

 
 
D. Prediction of ER status (21 ER+ vs. 23 ER-) 

Classification 
method 

gene 
# acc. 

True 
+ 

True 
- 

False 
+ 

False 
- sens. spec. PPV NPV 

Spearman 
Nearest 
Centroid 50 0.864 19 19 4 2 0.905 0.826 0.826 0.905 
Euclidean 
Nearest 
Centroid 50 0.864 19 19 4 2 0.905 0.826 0.826 0.905 
Spearman  
k-NN (k=3) 50 0.886 19 20 3 2 0.905 0.870 0.864 0.909 
Euclidean 
k-NN (k=3) 50 0.864 19 19 4 2 0.905 0.826 0.826 0.905 
 
Average  0.870     0.905 0.837 0.835 0.906 

 
Note: Accuracies, etc. highlighted in blue are for the gene lists used to cluster tumors in 
Figures 2-4. Average accuracies, etc. across the prediction methods are highlighted in 
red. “True +” refers to number of responders correctly identified. “True –” refers to 
number of non-responders correctly identified. “False +” refers to number of non-
responders incorrectly identified. “False –” refers to number of responders incorrectly 
identified. 
 
Abbreviations: acc.=accuracy; sens.=sensitivity; spec.=specificity; PPV=positive 
predictive value; NPV=negative predictive value; k-NN=k-nearest neighbors; 
CR=clinical complete response; PR=partial response; SD=stable disease; PD=progressive 
disease. 
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FIGURES 

 
 
Figure 5.1. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the 
1300-gene “intrinsic breast” gene set developed by Hu et al. groups tumors into the 
intrinsic subtypes. A. Scaled-down representation of the complete cluster diagram. B. 
Basal epithelial, C. Proliferation, D. HER2+, and E. Luminal gene clusters.  
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Figure 5.2. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the 
54-gene set predictive of clinical response after 4 treatment cycles. Blue and yellow 
dendrogram branches indicate responders (complete or partial) and non-responders 
(stable or progressive disease), respectively. 
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Figure 5.3. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the 
70-gene set predictive of overall response. Blue and yellow dendrogram branches 
indicate complete and non-complete overall responders, respectively.   
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Figure 5.4. Hierarchical cluster analysis of L9819 pre-treatment tumor samples using the 
72-gene set predictive of clinical response after completion of all 8 treatment cycles. Blue 
and yellow dendrogram branches indicate complete and non-complete responders, 
respectively. 
 



 

 

 

CHAPTER 6:  DISCUSSION 

 Currently, many breast cancer patients are being given lengthy and expensive 

treatments associated with significant toxicity and morbidity. Some of these patients will 

receive no benefit in survival while others would have achieved good outcomes without 

additional treatments. This work has aimed to remedy this situation using gene 

expression profiling. First, we developed an expression-based predictor of outcome for 

Estrogen Receptor (ER) and/or Progesterone Receptor (PR)-positive breast cancer 

patients using biological differences among these tumors. Second, we used a recently 

developed multivariate analysis tool (DWD) to validate and objectively define the 

“intrinsic” subtypes as a predictor/prognosticator of breast cancer patient outcomes by 

using independent datasets generated on differing microarray platforms. Third, using a 

single patient dataset, we determined that there was significant concordance in outcome 

predictions made by several different gene expression profiles (developed on different 

platforms by different laboratories), which showed little overlap in gene identity. Lastly, 

we developed gene expression-based predictors for response to neoadjuvant 

chemotherapy using pre-treatment microarray data. 

From the results of this work, we propose the following decision tree for how to 

treat breast cancer patients (Figure 1), which will of course, need much more validation 

and testing before routine clinical use. First, using the intrinsic subtype single sample 

predictor (SSP) introduced in Chapter 3, the patient would be objectively classified as 



 

  133 
  

having either luminal, HER2+/ER-, or basal-like breast cancer. If the patient’s tumor 

were determined to be of the luminal subtype, we would then apply the Group IE-IIE 

predictor introduced in Chapter 2. If the tumor is classified as Group IE, we hypothesize 

that all that is needed for treatment would be hormone therapy (i.e. tamoxifen), and that 

this patient might be spared the chemotherapy regimen that they would normally be 

prescribed. If the tumor is classified as Group IIE, we would then first examine the 

tumor’s HER2 status to determine whether trastuzumab (monoclonal antibody that binds 

to HER2) should be part of the treatment regimen (i.e. HER2+ tumors will receive 

trastuzumab). Regardless of HER2 status, if the tumor is classified as Group IIE, we 

would also apply the L9819 72-gene chemotherapy response predictor (introduced in 

Chapter 5), which we believe can be used to predict general chemotherapy response. If 

the tumor is predicted to respond to chemotherapy by the L9819 predictor, we would 

include (neo)adjuvant chemotherapy and tamoxifen in the treatment regimen for these 

patients (however, the data suggests that Group IIE tumors are resistant to tamoxifen, 

which must be formally tested in randomized trials). If the tumor is predicted to not 

respond to chemotherapy by the L9819 predictor, the patient would be given an 

alternative therapy and perhaps be considered for entry into trials containing new 

biological agents. The hope is that these patients unlikely to benefit from conventional 

chemotherapy regimens will in addition to avoiding unnecessary chemotherapy-

associated morbidity, have the opportunity to benefit from exposure to potentially 

effective novel agents.  

If the patient’s tumor were determined to be of the HER2+/ER- subtype, the 

patient will receive trastuzumab (currently some HER2+/ER- tumors are believed to be 
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resistant to trastuzumab, but no predictor to determine resistance yet exists). In addition, 

we would use the L9819 general chemotherapy response predictor to determine if 

conventional (neo)adjuvant chemotherapy should be added to the treatment regimen in 

the case of those predicted to respond, and for those predicted to not respond, alternative 

regimens with novel agents might be considered. Finally, if the patient’s tumor were 

determined to be of the Basal-like subtype, at present we believe the best course of action 

would be to use the L9819 general chemotherapy response predictor to determine if 

(neo)adjuvant chemotherapy should be given to the patient, and again, those predicted not 

to respond might be offered therapies containing novel biological agents like HER1 

inhibitors. We hope that with improved understanding of the basal-like subtype, novel 

therapies tailored to this particular subtype of breast cancer will be developed to 

complement or perhaps supplant chemotherapy as the treatment of choice. For example, 

recent studies suggest that this subtype may benefit from therapy targeting the epidermal 

growth factor receptor (HER1) and/or the pathway it regulates1,2. Clinical trials are 

currently underway to determine the efficacy of HER1 inhibitors (i.e. cetuximab, 

gefitinib, and erlotinib) in basal-like tumors3.  

As stated earlier, the decision tree in Figure 1 will require rigorous validation and 

testing before routine clinical use. These validation studies should be done using cohorts 

with large enough sample size so that (1) the full diversity of the target population will be 

represented and (2) the study will have the necessary statistical power to determine if the 

predictor in question does indeed improve current treatment decision-making strategies. 

When possible, randomized controlled trials should be used in the validation process4. 

For example, to test our hypothesis discussed earlier that Group IE tumors may benefit 
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from tamoxifen but not benefit significantly from chemotherapy, we could use a clinical 

trial in which patients classified as Group IE are randomly assigned to receive either 

tamoxifen or tamoxifen and chemotherapy. The survival outcomes of those receiving 

tamoxifen alone or tamoxifen with chemotherapy would be compared. To test our 

hypothesis that Group IIE tumors do not benefit from tamoxifen but may benefit 

significantly from chemotherapy, we could use a clinical trial in which patients classified 

as Group IIE are randomly assigned to receive either tamoxifen alone, chemotherapy 

alone, or both tamoxifen and chemotherapy. The survival outcomes of these three 

treatment groups would then be compared, and our expected result would be that Group 

IIE patients receiving tamoxifen plus chemotherapy would have the same outcomes as 

those receiving chemotherapy alone. Other clinical trial designs as described by Sargent 

et al.4 could also be used to test these same hypotheses. When randomized clinical trials 

are not possible, retrospective case-control studies may be considered. 

We acknowledge that before gene expression-based predictors or prognosticators 

can be introduced to the clinic, the current expenses and required training involved need 

to be made less prohibitory for routine clinical use. The requirement for fresh frozen 

material for microarray analysis is also prohibitory. However, we are confident that these 

difficulties can be overcome in time with technological advances. For example, recent 

progress has been made to use formalin fixation and paraffin-embedded (FFPE) tissue 

samples to amplify RNA for microarray analysis5. In addition, RT-PCR (real-time 

reverse transcriptase polymerase chain reaction) assays can be used as an alternative to 

microarrays for the simultaneous analysis of hundreds of genes and can be employed to 

validate “expression signatures” initially identified in microarray analysis. Importantly, 
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RT-PCR assays can examine gene expression using limited amounts of RNA extracted 

from FFPE sections. 

In summary, this work has advanced the current knowledge of the heterogeneity 

of breast cancer and provides a means for improved prediction and prognostication for 

breast cancer patients. This work has shown that gene expression profiling can and will 

be clinically useful and will improve the treatment decision-making process for breast 

cancer patients. Provided that properly designed and rigorous validation studies are 

performed, we are confident gene expression profiling will be accepted for routine 

clinical use.  
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FIGURES 
 

 

 
Figure 6.1. Proposed decision tree to determine therapy for the newly diagnosed breast 
cancer patient. This decision tree makes use of three different gene expression-based 
predictors discussed in this work: (1) the Intrinsic Subtype Predictor (SSP) introduced in 
Chapter 3, (2) the Group IE-IIE predictor introduced in Chapter 2, and (3) the general 
chemotherapy response predictor (from the L9819 clinical study) introduced in Chapter 
5.  
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