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ABSTRACT

DYLAN GLOTZER: Extreme value analysis, nonlinear random oscillators, and applications
to ship motions in irregular seas

(Under the direction of Vladas Pipiras)

This dissertation concerns several statistical problems arising in Naval Engineering which

relate to statistical uncertainty and characterizing rare events, and naturally involve a stochastic

component to be accounted for through statistical methods. Chapter 1 has been adapted from

Glotzer and Pipiras [43] and provides an overview of the problems to be discussed in later

chapters.

In Chapter 2, statistical inference of a probability of exceeding a large critical value is

studied in the peaks-over-threshold (POT) approach. The focus is on assessing the perfor-

mance of various confidence intervals for the exceedance probability, and several approaches to

uncertainty reduction are considered. This chapter has been published as Glotzer et al. [44].

Chapter 3 concerns the study of a single-degree-of-freedom random oscillator with a piece-

wise linear restoring force (experiencing softening after a certain point value of the response,

called a “knuckle” point), with the goal of understanding the structure of the distribution tail of

its response or (local) maximum. The random oscillator considered here serves as a prototypical

model for ship roll motion in beam seas. A theoretical analysis is carried out first by focusing

on the maximum and response after crossing the knuckle point, where explicit calculations can

be performed assuming standard distributions for the derivative at the crossing; and second

by considering the white noise random external excitation, where the stationary distribution

of the response is readily available from the literature. Both approaches reveal the structure

of the distribution tails where a Gaussian core is followed by a heavier tail, possibly having

a power-law form, ultimately resulting in a tail having a finite upper bound. The extent of

the light tail region is shown to be the result of conditioning on the system not reaching the

unstable equilibrium (associated with “capsizing”).
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In Chapter 4, the distributions of certain response rates of the above random oscillator are

investigated analytically and numerically. These include the minimum response rate leading

to capsizing, referred to as the critical response rate, and the split-time metric, which mea-

sures the closeness of an observed response rate to the critical response rate and is used to

assess the probability of capsizing. Three nonlinear restoring forces are considered: piecewise

linear (experiencing linearly softening stiffness above a knuckle point), doubly piecewise lin-

ear (experiencing piecewise linearly softening stiffness above a knuckle point), and the cubic

restoring force of the Duffing oscillator. Numerical simulation of the critical response rate and

split-time metric is proposed from a derived distribution in the first two cases; in the latter

case, the density of the critical response rate is approximated assuming white noise excitation.

The distribution of the split-time metric is found to have a “light” tail, motivating the use of

an exponential distribution or a Weibull distribution tail rather than the generalized Pareto

distribution for exceedances above threshold in the POT approach.

Finally, Chapter 5 considers inference for the mean and variance of a stationary continuous-

time stochastic process, for which the so-called long-run variances of the process and its square

play a central role. The well-known problem of estimating the non-zero long-run variances

is revisited here in the context of random oscillatory processes such as random (non-)linear

oscillators and related models. The less studied case of the zero long-run variance is also

considered. The approaches are extended to the situation where multiple independent records

of the stochastic process are available, by introducing an estimator of the long-run variance

which improves on other natural candidate estimators. A simulation study is provided to assess

the performance of the proposed methods in estimating the long-run variances and constructing

confidence intervals.
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CHAPTER 1

Statistical perspectives on some problems arising in Naval Engineering

1.1 Introduction

Statistical methods play important roles for many problems arising in Naval Engineering.

They are naturally called for when analyzing collected data, when incorporating random com-

ponents into physical models, or when understanding potentially intricate relationships between

variables of interest. The goal of this introductory chapter is to discuss several such problems

of relevance in Naval Engineering, which will be studied in greater detail in further chapters.

1.2 Extreme values

1.2.1 Probabilities of rare events

A general class of problems arising in Naval Engineering concerns extreme values (rare

events) and estimation of their probabilities. Two examples of rare events of interest are the

following:

Case 1. A ship motion (e.g. roll) exceeding a certain large angle (in either direction);

Case 2. Capsizing of a ship.

The goal is, generally speaking, to estimate the probabilities of such rare events given a time

history of a ship motion and perhaps additional information. As outlined in Chapter 2, this

can be done under the umbrella of the statistical methodology known as Extreme Value Theory

(EVT; e.g. Coles [23]). Additionally, qualitative stochastic dynamics models for ship motions

justify or refine the use of EVT, and interact with ship geometry and other relevant parameters.

This will be discussed in Chapters 3 and 4.

1



The first observation to make is that many of the problems on estimation of rare probabilities

could be recast into an estimation problem for the exceedance probability

P(Y > y∗), (1.1)

where Y is some variable related to the extreme event of interest and y∗ is some large critical

value. Moreover, this should be done from observations Y1, . . ., Yn of Y that can be assumed

to be independent. No values of Y1, . . ., Yn are typically larger than y∗. In Case 1 above, Y

can be taken as a suitable envelope peak of a ship motion, thus “declustering” possible time

dependent peak values of the motion – see Chapter 2 for details. In Case 2 above, Y is taken

as the so-called split-time metric (see Belenky et al. [14]), defined as

Y = Ẋ − Ẋcr + 1, (1.2)

where Ẋ is the crossing rate at some fixed intermediate threshold and Ẋcr is the critical rate,

that is, the smallest rate that would lead to capsizing. The split-time metric will be discussed

in more detail in Chapter 4. These quantities are computed through a ship motion simulator

(see Belenky et al. [14, 16] for more details). This corresponds to the exceedance probability

(1.1) with y∗ = 1, since capsizing is associated with the event that Ẋ > Ẋcr. Estimating the

probability in (1.1) thus concerns extrapolating into the tail where no data are available.

The extrapolation problem of estimating the probability in (1.1) is commonly tackled with

the peaks-over-threshold (POT) approach of EVT. In this approach, the probability in (1.1) is

expressed as

P (Y > y∗) = P (Y > u)P (Y > y∗|Y > u)

=: P (Y > u)Pu (Y > y∗) ,

(1.3)

where u (u < y∗) is an intermediate threshold with sufficiently many Yi’s above u and Pu

denotes a conditional probability. The probability P (Y > u) is estimated as the proportion

of data Yi > u, with the associated confidence interval set by binomial calculations. The

conditional probability Pu (Y > y∗), on the other hand, is approximated by the tail of the
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generalized Pareto distribution (GPD), namely, as

Pu (Y > y∗) ≈ F u,ξ,σ(y
∗), (1.4)

where

Fµ,ξ,σ(x) :=
(
1 +

ξ(x− µ)

σ

)−1/ξ

+
:=



(
1 + ξ(x−µ)

σ

)−1/ξ
, µ < x, if ξ > 0,

e−
x−µ
σ , µ < x, if ξ = 0,(

1 + ξ(x−µ)
σ

)−1/ξ
, µ < x < µ− σ

ξ , if ξ < 0,

(1.5)

with a threshold u, a scale parameter σ > 0 and a shape parameter ξ ∈ R. This approximation is

justified by the so-called second extreme value theorem (Pickands-Balkema-de Haan theorem;

Pickands [81]), which essentially states that the difference between the two probabilities in

(1.4) approaches 0 uniformly for y∗ > u as u → ∞. The right-hand side of (1.4) is used for

extrapolation into the tail.

Considerable literature in Statistics is devoted to estimating the parameters of the GPD

(whose estimation uncertainty is then propagated onto estimation of the tail probability in

(1.4)) as well as on setting a threshold. A typical method to estimate the GPD parameters

ξ, σ (for fixed u) is through maximum likelihood, and a variety of confidence intervals for the

exceedance probability are available (see Chapter 2 for details and further references). Among

threshold selection methods, visual tools are still commonly used. For example, Figure 1.1

depicts the shape parameter estimates ξ̂ against the varying threshold u for a Pareto random

variable Y satisfying P (Y > y) = y−3, y > 1, and hence (1.4), with ξ = 1/3; the normal

confidence intervals for ξ are also plotted. A threshold u in the approximation in (1.16) can be

selected as a threshold above which the estimates stabilize. The choice of a threshold is critical

and is the subject of ongoing research; see Scarrott and MacDonald [88] for a review. Details

are also provided in Chapter 2.

Several further observations need to be made regarding the approximation in (1.4). Which

random variables Y (or the corresponding probability distributions) are associated with which

shape parameter values ξ is well known in theory (e.g. de Haan and Ferreira [27]). More

specifically, the correspondence is:
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Figure 1.1: Shape parameter estimates and confidence intervals for a Pareto distribution as a function
of threshold.

• ξ > 0 : distributions having “heavy” (power-law) tails; essentially, P (Y > y) ∼ cy−1/ξ, as

y → ∞;

• ξ < 0 : distributions having “light” tails with finite upper bound y0; essentially, such that

P (Y > y) ∼ c(y0 − y)−1/ξ, as y → y0;

• ξ = 0 : most distributions having “light” tails with infinite upper bound, such as expo-

nential, Gaussian, Weibull and others.

From a practical perspective, the GPD provides a convenient parametric family that allows

modeling tails raging from light with finite upper bound to heavy. This could also be seen by

expressing the GPD tail as

F u,ξ,σ (y) = e−hu,ξ,σ(y), (1.6)

where hu,ξ,σ(y) depicted in Figure 1.2 allows for deviations from the straight line and hence the

exponential distribution (ξ = 0) towards heavier (ξ > 0) and lighter (ξ < 0) tails. Along similar

lines, for example, a negative value of ξ would be suggested for the lighter-than-exponential

Gaussian distribution (see Figure 1.3), even if in theory this distribution is associated with the

shape parameter ξ = 0.
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Figure 1.2: The function hu,ξ,σ(y) in (1.6) with u = 0, σ = 1 and several choices of ξ.

In practice, assessing the performance of the above POT methodology involves repeated

runs (replications), estimating the rare probability and constructing the associated confidence

interval for each run, as depicted in Figure 1.4. The true probability is added to the plot as

a horizontal line, after computing it analytically if possible or calculating it numerically from

a much larger data set. The methodology performs well if the confidence intervals include the

true probability for the proportion of times corresponding to the chosen confidence level (e.g.

95%).

One feature of these confidence intervals is their size, especially the average size above the

true probability. A related question of interest is whether the size of confidence intervals and

hence statistical uncertainty can be reduced. In some cases, this can be achieved by taking

the physical properties of the system into account. For example, in Chapter 2, the statistical

uncertainty will be reduced by fixing an upper bound in the situations when negative shape

parameter values were dominant.

1.2.2 Stochastic dynamics perspective

Despite some justification of the use of the POT approach discussed above and around

(1.4) in particular, the methodology might appear to be a black box, without any physical

insight. The latter will be provided in Chapters 3 and 4, with the methodology justified further
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Figure 1.3: Shape parameter estimates and confidence intervals against threshold for a Gaussian
distribution.

by examining its performance on and interactions with physical models for ship motions. One

such prototypical model for ship roll motion in beam seas is a random oscillator with a nonlinear

restoring force and random excitation, satisfying

ẍ(t) + 2δẋ(t) + r(x(t)) = z(t), (1.7)

where δ > 0 is the damping parameter, r(x) is the restoring force and z(t) is the zero-mean ran-

dom excitation. The excitation z(t) is commonly assumed to be a Gaussian stationary process,

with the spectral density suggested by e.g. the Bretschneider spectrum for wave elevations.

White noise excitation z(t) has also been assumed for analytic tractability and because inertia

plays a dominant role in ship motion, so high frequency content in the excitation is “filtered

out” naturally by the system.

A further simplification can be made by assuming a piecewise linear restoring force r(x),

given by

r(x) =


−k1ω

2
0 (x+ xm)− ω2

0xm, if x < −xm,

ω2
0x, if − xm ≤ x ≤ xm,

−k1ω
2
0 (x− xm) + ω2

0xm, if x > xm,

(1.8)
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Figure 1.4: Probability estimates (on a log vertical scale) with confidence intervals for 100 runs.

where ω0 is the natural frequency of the system, xm is referred to as the knuckle point (separat-

ing the linear and nonlinear regimes) and k > 0 enters into the negative slope of the nonlinear

part. The point xv > 0 such that r (xv) = 0 is called the point of vanishing stability.

A yet simpler case is obtained by assuming that the excitation is switched off above the

knuckle point. In this case, the solution of (1.7) above the knuckle point can be expressed as

x(t) = Aeλ1t +Beλ2t + xv, (1.9)

where xv is the point of vanishing stability, λ1 = −δ+
√
kω2

0 + δ2 > 0, λ2 = −δ−
√

kω2
0 + δ2 < 0,

and the constants

A =
ẋ1 + λ2(xv − xm)

λ1 − λ2
, B =

−λ1 (xv − xm) + ẋ1
λ1 − λ2

, (1.10)

depend on the rate ẋ1 at the upcrossing of the knuckle point xm. Capsizing is associated with

A > 0 and hence corresponds to ẋ1 > λ2(xv − xm). Otherwise, the path of x(t) has a peak

xmax with its value in the interval [xm, xv] given by a nonlinear transformation

G (ẋ1) = xv − C|B|
λ1

λ1−λ2 |A|
−λ2

λ1−λ2 (1.11)
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Figure 1.5: The density of the maximum value on the log vertical scale, with that for the linear system
in dashed.

for some constant C. This transformation will tend to have a “stretching” effect for the corre-

sponding probability distribution, compared to the linear case, which should not be surprising

given that the restoring force experiences softening after the knuckle point and hence the paths

of x(t) will take larger values for the same energy after the upcrossing. Figure 1.5 illustrates

this effect for parameter values motivated by a ship roll application, where the distribution of

ẋ1 is taken as Rayleigh in analogy to the corresponding distribution for a linear system, except

truncated from above to ensure that no capsizing occurs (that is, ẋ1 < λ2 (xv − xm) from the

discussion above).

In fact, the stretching effect can be so pronounced that a positive shape parameter of the

GPD would be estimated for the peaks data generated by the above system. Vice versa, the

distribution of the maximum collapses around the end point xv, so a negative shape parameter of

the GPD can be estimated as well, depending on the choice of the threshold and the availability

of the data in the collapsing tail. Since both positive and negative shape parameter estimates

are expected, the GPD seems a rational choice for a parametric distribution when working with

peaks of ship motion data.

The split-time metric, on the other hand, has properties that are quite different from those

of the extreme motion (peaks). This will be discussed in Chapter 4. By the discussion following

(1.10), the critical roll rate for the above system is constant and given by λ2(xv − xm). The
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split-time metric is then

Y = ẋ1 − λ2(xv − xm) + 1 (1.12)

and hence is a linear function of the rate ẋ1 of the upcrossing. As noted above, the distribution

of ẋ1 is taken as Rayleigh. From the perspective of the GPD, the Rayleigh distribution is in the

domain of attraction of the GPD with the shape parameter ξ = 0, though in practice negative

shape parameters would be estimated since the Rayleigh tail is lighter than the exponential

tail.

The analogous conclusion about the GPD distribution with the shape parameter ξ = 0

can be obtained for a number of systems extending the simplest case described above, includ-

ing the piecewise linear system with the excitation switched on above the knuckle point and

quite general nonlinear oscillators (e.g. the Duffing oscillator) driven by white noise excitation.

Motivated by these findings, the POT methodology has been applied to extrapolate the distri-

bution of the split-time metric by using the exponential distribution or the tail of the Weibull

distribution rather than the GPD to fit exceedances over a large intermediate threshold.

In both Cases 1 and 2 (see the beginning of Section 1.2.1), the distribution tail of the variable

of interest is related directly to the form of the restoring force, which itself is determined by

ship geometry.

1.3 Statistical uncertainty in parameter estimation

A common problem arising with random processes observed in Naval Engineering (such as

motions, loads, etc.) is estimation of quantities (parameters) of interest and setting related con-

fidence intervals that characterize statistical uncertainty in estimation. Parameters of interest

could be the mean, the standard deviation, the autocovariance and so on, as well as quantities

derived from these (such as single significant amplitude and others). A quite general statisti-

cal methodology to deal with this problem is outlined next and discussed in further detail in

Chapter 5. The basic difficulty in characterizing statistical uncertainty is to account for time

dependency in observed random processes that is naturally present due to e.g. ship motion

inertia and irregular seas.
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The first observation to make is that many parameters of interest could be expressed in

terms of means (expected values) of random processes. Here are a few examples. Let {Xt}t∈R

be a stationary process of interest. Suppose that its standard deviation σX =
√

Var(Xt) needs

to be estimated. Then,

σX =
√
E(X2

t )− (EXt)2, (1.13)

that is, it involves the means E(X2
t ) and EXt of the processes X2

t and Xt, respectively. Similarly,

suppose the autocovariance function γX (h) = Cov(Xt, Xt+h) at lag h > 0 is of interest. Then,

γX (h) = E (XtXt+h)− (EXt)
2 , (1.14)

that is, it involves the means E (XtXt+h) and EXt of the processes XtXt+h and Xt, respectively.

More generally, many quantities of interest can be expressed as

Q = g (EX1,t, . . .,EXk,t) =: g
(
EX(k)

t

)
, (1.15)

where g(x1, . . ., xk) is a known “smooth” function and X
(k)
t = (X1,t, . . ., Xk,t) is a k-variate

stationary process, expressed in terms of the observed process Xt. For example, Q = γX(h) in

(1.14) can be written as (1.15) with g (x1, x2) = x1 − x22 and X1,t = XtXt+h, X2,t = Xt.

A quantity Q expressed by (1.15), is estimated through

Q̂ = g
(
X1,T , . . ., Xk,T

)
=: g

(
X

(k)
T

)
, (1.16)

where X1,T , . . ., Xk,T are the sample means of the processes X1,t, . . ., Xk,t, computed from

observing the original process Xt on the time interval [0, T ]. It is expected that the sample

means are asymptotically normal, that is,

√
T
(
X

(k)
T − EX(k)

t

)
=

√
T
(
X1,T − EX1,t, . . ., Xk,T − EXk,t

)
d→ N(0,Π(k)),

(1.17)

where N(0,Π(k)) indicates a k-variate Gaussian (normal) distribution with a zero-mean vector

and a k × k covariance matrix Π(k) = (πij)i,j=1,...,k, and d→ indicates the convergence in dis-
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tribution. The covariance matrix Π(k) will be discussed again below. But supposing that the

relation (1.17) holds, the δ-method then yields

√
T (Q̂−Q)

d→ N(0, σ2
Q), (1.18)

where

σ2
Q = ∇g(EX(k)

t )′Π(k)∇g(EX(k)
t ) (1.19)

with ∇g (x1, . . ., xk) = (∂g/∂x1, . . ., ∂g/∂xk)
′ and the prime indicating a transpose. A normal

approximate confidence interval for Q is then

(
Q̂−

zασ̂Q√
T

, Q̂+
zασ̂Q√

T

)
, (1.20)

where σ̂Q is an estimator for σQ and zα is a critical value for the desired confidence level α (e.g.

zα = 1.96 for α = 95%). In view of (1.19), set

σ̂2
Q = ∇g(X

(k)
T )′Π̂(k)∇g(X

(k)
T ), (1.21)

where Π̂(k) is an estimator for Π(k). For example, for Q = γX(h) in (1.14) that can be written

as (1.15) with g (x1, x2) = x1 − x22 and X1,t = XtXt+h, X2,t = Xt, the quantity ∇g appearing

in (1.19) is ∇g (x1, x2) = (1,−2x2)
′ and hence σ2

Q = π11 − 4EX2,tπ12 + 4(EX2,t)
2π22.

In fact, the most delicate step in the approach described above is constructing an estimator

Π̂(k) for the covariance matrix Π(k). The covariance matrix Π(k) is defined as

Π(k) = (πij)i,j=1,...,k =

(∫ ∞

−∞
γXi,Xj (u) du

)
i,j=1,...,k

, (1.22)

where

γXi,Xj (u) = Cov(Xi,t, Xj,t+u) (1.23)

is the (cross) autocovariance function of the processes {Xi,t} and {Xj,t} at lag u. The matrix

Π(k) given by (1.22) is known as the long-run variance (matrix) of the k-variate stationary

process {X(k)
t } = {(X1,t, . . ., Xk,t)}. Possibly up to a multiplicative constant factor, the long-
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run variance Π(k) is also the spectral density matrix at zero frequency of the k-variate stationary

process {X(k)
t }.

A considerable literature in Statistics on developing suitable estimators for the long-run

variance Π(k) goes back at least to Parzen [78], in connection to estimation of a spectral density.

Time-domain approaches for discrete time series have been revisited in the seminal work of

Andrews [3]. The continuous-time framework presented here borrows from Lu and Park [64].

Thus, the long-run variance Π(k) is commonly estimated in the literature through an estimator

of the type

Π̂(k) = (π̂ij)i,j=1,...,k (1.24)

with

π̂ij =

∫ T

−T
K

(
u

ST

)
γ̂Xi,Xj (u) du, (1.25)

where ST (smaller than the sample size T ) is referred to as a bandwidth; K is a function,

known as a kernel function, which is symmetric, satisfies K (0) = 1 and may have additional

properties; and γ̂Xi,Xj (u) is the sample (cross) autocovariance function. The latter is defined

in a standard way as a sample autocovariance, although a multiplicative factor of 1/T (instead

of 1/(T − u) or another form) is used in the definition. An example of a commonly used kernel

is the Bartlett (or triangular) kernel defined as K (v) = 1−|v| if |v| < 1 and K (v) = 0 if |v|≥1.

The choice of the bandwidth ST in (1.25) is motivated by the so-called bias-variance trade-

off. The essential point here is that the bandwidth ST that balances the bias and the variance

depends on the underlying process itself and is commonly selected either by assuming a par-

ticular model for the underlying process or through a data-driven approach. See Chapter 5 for

details.
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CHAPTER 2

Confidence intervals for exceedance probabilities with application to extreme
ship motions

2.1 Introduction

We describe first the real-life application which sets the directions and frames the questions

pursued in this and the following chapters (Section 2.1.1). We then outline the contributions

and the structure of this chapter (Section 2.1.2).

2.1.1 Motivation

The work in this chapter is motivated by applications to ship motions and, more specifi-

cally, their stability in irregular seas. See, for example, Lewis [57], Benford [18], Belenky and

Sevastianov [11], Neves et al. [76] for more information on this research area. When it comes

to ship stability, the focus is on several variables characterizing the ship motion including roll

and pitch angles, which are, respectively, the rotational movements around longitudinal (stern-

to-bow) and lateral (starboard-to-port side or right-to-left side) axes, as well as vertical and

lateral accelerations in various locations on the ship. See Figure 2.1. The ship stability failures

are related directly to the exceedance of certain values by these variables. For example, the

exceedance of a certain roll angle can lead to a cargo shift (which then can lead to capsizing),

loss or damage of cargo in containers on deck, or down-flooding internal volumes of a ship. A

large enough acceleration can lead to serious injuries or even death of a crew and passengers, as

well as cargo damage. Such occurrences are well known not only among the researchers working

in the area but also often make it to the popular media.1

1Recent examples of accidents related to intact stability failures include: Ro/Ro Ferry Aratere on 3rd March
2006 (Maritime New Zealand, 2007), Cruise ship Pacific Sun on 30 July 2008 (Marine Accident Investigation
Branch, 2009), Ferry Ariake on 13 November, 2009 (Transportation Safety Board, 2011), to name but a few.
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Figure 2.1: The motions of the ship.

The measured variables of interest to stability are understandably affected by the geometry

and loading of the ship, the operational parameters and the surrounding sea. The operational

side includes the heading (the angle between the vector of ship speed and predominant direction

of wave propagation) and the value of speed of the ship. The state of the sea is usually described

by a spectrum of wave elevations. Note that a wide range of conditions (the values of the above

descriptors) are possible. What can be expected under a particular condition is often suggested

from the understanding of the dynamics governing the ship motion.

An appealing but also critical feature of the research area is the availability of computer

programs simulating ship motions, see the recent state-of-the-art review by Reed et al. [84]. In

this chapter, we use a fast volume-based ship motion simulation algorithm developed in Weems

and Wundrow [104]. The developed code does not incorporate finer hydrodynamics features of

ship motions such as the influence of a ship motion on wave pressure field (i.e. wave diffraction

and radiation; cf. Large Amplitude Motion Program or LAMP, see Lin and Yue [61]). But it is

considered qualitatively representative of ship motions and their extremes. Moreover, the code

is fast enough (in fact, the only such realistic method available) to be used in validation, where

very long time histories of ship motions are necessary (see Section 2.3 below).

Figure 2.2 depicts the time series of roll and pitch angles obtained by the above referenced

code for a 10 minute time window at 0.5 second measurement intervals. The ship geometry is

that of the ONR tumblehome top (Bishop et al. [19]). The heading is at 45 degrees, the speed is

6 knots, the waves are characterized by significant height of 9m and mean zero-crossing period

of 10.65s which corresponds to 15s of the modal period, using Bretschneider spectrum in open

ocean (Lewis [57]).
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Figure 2.2: The roll and pitch angle series for 10 minutes.

A basic problem is to estimate the probability of roll, pitch or other variable of interest

exceeding a critical value, as well as to provide a confidence interval. For example, in the

condition of Figure 2.2, one could be interested in the roll angle exceeding 60 degrees (in either

positive or negative direction). Inference would have to be made from the roll series of, for

example, 100 hours, which would typically not contain such extreme occurrences. Again, the

critical angle is often suggested from real-life considerations.

A method suggested for the problem above (and, more specifically, the associated confidence

intervals) can be assessed through a validation procedure. The computer code mentioned above

can be used to generate millions of hours of ship motion data which would contain exceedances

of the target of interest. The “true” exceedance probability can then be estimated directly

from this long history of the ship motion. In the validation procedure, the performance of the

suggested method could be checked against the “true” exceedance probability at hand. See

Section 2.3 for further details and a solution to the estimation problem.

2.1.2 Description of work and contributions

A natural mathematical framework to address the problem of estimating exceedance prob-

abilities described above is the peaks-over-threshold (POT) approach (see, for example, Em-

brechts et al. [37], Coles [23], Beirlant et al. [7], as well as de Carvalho et al. [25], Ferreira

and de Haan [39] for more recent related work). According to this approach, the probability of

exceeding a given target of interest is computed as the product of the probability of exceeding
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a smaller threshold and the (conditional) probability of exceeding the target above the thresh-

old. The former probability is estimated simply as the proportion of data above the chosen

threshold. The peaks over the threshold are modeled using the generalized Pareto distribution

(GPD), whose complementary distribution function has the form

Fµ,ξ,σ(x) :=
(
1 +

ξ(x− µ)

σ

)−1/ξ

+
:=



(
1 + ξ(x−µ)

σ

)−1/ξ
, µ < x, if ξ > 0,

e−
x−µ
σ , µ < x, if ξ = 0,(

1 + ξ(x−µ)
σ

)−1/ξ
, µ < x < µ− σ

ξ , if ξ < 0,

(2.1)

where ξ is the shape parameter, σ is the scale parameter and µ is a threshold. Note that the

GPD has an upper bound (−σ/ξ) (above the threshold) for a negative shape parameter ξ < 0.

When ξ = 0, the GPD is the usual exponential distribution.

We are interested here in what confidence intervals should be used for an exceedance prob-

ability. As indicated above, in the POT approach, this exceedance probability is the product of

two probabilities, one of them being the exceedance probability for GPD. The questions then is

what confidence intervals should be used for the exceedance probability in the GPD framework.

The probability of the GPD exceeding a fixed target c (above the threshold), and its estimator

are given by:

pc = pc(ξ, σ) =
(
1 +

ξc

σ

)−1/ξ
, p̂c = pc(ξ̂, σ̂) =

(
1 +

ξ̂c

σ̂

)−1/ξ̂
, (2.2)

where ξ̂ and σ̂ are some estimators of the shape and scale parameters, respectively. Somewhat

surprisingly, the question of confidence intervals for the exceedance probability in (2.2) has

apparently not been considered in much depth in the literature on extreme values. The paper

by Smith [90], which laid the mathematical foundations for the ML estimators of the GPD,

considers the problem of estimating the exceedance probability and provides the asymptotic

normality result for the probability estimator (Section 8 of Smith [90]). This can in turn be

used for confidence intervals but the normality assumption is not particularly appropriate (see

Section 2.2 below).

Estimation of exceedance probabilities has also been considered by others but with different

goals in mind. For example, Smith and Shively [91] are interested in trends for exceedance prob-
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abilities. Exceedance probabilities in the spatial context appear in Draghicescu and Ignaccolo

[34]. Considerable interest in exceedance (also sometimes referred to as failure) probabilities is

when working with multivariate extremes. See, for example, de Haan and Sinha [28], de Haan

and de Ronde [26], Heffernan and Tawn [49], Drees and de Haan [35].

Much of the focus in the extreme value analysis, on the other hand, has been on the re-

lated inverse problem of quantile estimation (see, for example, Embrechts et al. [37], Coles [23],

Beirlant et al. [7]). The quantiles have been of greater practical interest in many applications

driving the extreme value analysis, including finance (VaR calculations), insurance and hydrol-

ogy (1-in-T years event). A closer look at the confidence intervals for quantiles can be found

in Hosking and Wallis [51], Tajvidi [100] and also Section 4.3.3 of Coles [23], Section 5.5 of

Beirlant et al. [7].

In applications to ship motions, as indicated in Section 2.1.1, it is common to look at

the probabilities of exceeding a particular target rather than quantiles. Though perhaps not

surprisingly, the two perspectives are also complementary. In fact, one of our findings is that

the confidence intervals for exceedance probabilities perform well if constructed from those for

quantiles. Another reason to focus on probabilities rather than quantiles is that probabilities can

be aggregated naturally into “lifetime” probabilities, when integrated over a set of conditions

of interest (as discussed, for example, in Section 1 of Belenky and Sevastianov [11]).

We study a number of ways to construct confidence intervals for the exceedance probability

of the GPD and, more generally, in the POT framework in Section 2.2. We consider both

direct methods, which are based on the functional form of exceedance probability (2.2) and the

sampling distribution of the underlying estimators ξ̂, σ̂, and indirect (inverse) methods, which

construct confidence intervals from those for quantiles.

The application of the considered confidence intervals to ship motions can be found in

Section 2.3. In the validation procedure, the performance of the confidence intervals is analogous

to that found under the idealized GPD framework. In particular, the methods recommended

under the GPD framework also perform well and best in the application to ship motions.

It should also be noted that the proposed solution is the first to address satisfactorily the

estimation problem of the exceedance probabilities in ship stability. Some earlier attempts
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include Belenky and Campbell [10] who used the Weibull distribution (instead of the GPD) to

fit peaks over threshold, and McTaggart [68].

Finally, in Section 2.4, we discuss the issue of uncertainty (the size of confidence intervals)

and its reduction. Conclusions can be found in Section 2.5.

2.2 Confidence intervals for exceedance probabilities

2.2.1 Methods for the GPD

We study and assess here several ways to construct confidence intervals for the exceedance

probability pc of the GPD given in (2.2). The probability is estimated through p̂c in (2.2) where

we use the ML estimators ξ̂ and σ̂ computed from the sample y1, . . . , yn of size n. The large

sample asymptotics of the ML estimators (Smith [90]) is the bivariate normal,

√
n
( ξ̂ − ξ0

σ̂ − σ0

)
d→ N (0,W−1), (2.3)

where ξ0, σ0 denote the true values and

W−1 =

 1 + ξ0 −σ0

−σ0 2σ2
0

 . (2.4)

In practice, the limiting covariance matrix can be estimated by replacing ξ0 and σ0 with their

respective estimators ξ̂ and σ̂. Another common choice is to approximate nW through the

observed information matrix

nŴ =

 − ∂2

∂ξ2
l(ξ, σ) − ∂2

∂ξ∂σ l(ξ, σ)

− ∂2

∂ξ∂σ l(ξ, σ) − ∂2

∂σ2 l(ξ, σ)


(ξ,σ)=(ξ̂,σ̂)

, (2.5)

where l(ξ, σ) =
∑n

i=1 ln fξ,σ(yi) is the log-likelihood and fξ,σ(y) denotes the density of the GPD.

Strictly speaking, the asymptotic result (2.3) holds for ξ > −1/2 only (Smith [90]). It should

also be noted that other estimation methods than the MLE are possible for ξ0 and σ0. See, for

example, a review paper by de Zea Bermudez and Kotz [29, 30] and references therein. Some of
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these estimators outperform the ML estimators for small samples. For the sample sizes relevant

to our problem of interest, the ML estimators seem to perform quite well and, in particular, to

be approximately normal as stated in (2.3), and will be used throughout this chapter.

The exceedance probability pc = pc(ξ, σ) in (2.2) is a function of ξ and σ, and is estimated

through (2.2) by replacing the two parameters ξ and σ by their ML estimates. A confidence

interval for pc can then naturally be obtained through the standard delta method, using the

asymptotic result (2.3). This is the approach seemingly adopted by Smith [90], Section 8.

However, we found the delta method to perform poorly, in part because pc can be very small

and the normal approximation of p̂c may be sufficiently wide to include negative values. We

have also tried the delta method for log pc but the normal approximation did not appear to

provide a good fit to log p̂c. Consequently, we consider below several, potentially more accurate

ways to construct confidence intervals for the exceedance probabilities: the normal and lognor-

mal methods, the boundary method, the bootstrap method, the profile likelihood method and

the quantile method. The terminology behind the normal, lognormal, boundary and quantile

methods are ours.

Normal method: The idea behind the normal method is still to use (2.3), which as

mentioned earlier provides a good approximation in practice, but not to linearize the function

pc(ξ, σ) (or log pc(ξ, σ)) as in the unsatisfactory delta method. In fact, assuming the bivariate

normal approximation for ξ̂ and σ̂ according to (2.3), we can derive the exact distribution of

p̂c as follows. Observe that the distribution function of p̂c is: for 0 ≤ z ≤ 1,

Fp̂c(z) = P
((

1 +
ξ̂c

σ̂

)−1/ξ̂
≤ z

)
= P

((
1 +

ξ̂c

σ̂

)−1/ξ̂
≤ z, 1 +

ξ̂c

σ̂
> 0

)
+ P

(
1 +

ξ̂c

σ̂
≤ 0

)
,

where we use the fact that p̂c = 0 if 1 + ξ̂c/σ̂ ≤ 0. This can further be expressed as

Fp̂c(z) = P
(
σ̂ ≤ ξ̂c

z−ξ̂ − 1
, σ̂ > −ξ̂c

)
+ P(σ̂ ≤ −ξ̂c),

if we assume that σ̂ takes only positive values. (Note also that ξ̂/(z−ξ̂ − 1) > 0 for both ξ̂ < 0

and ξ̂ > 0.) Note, however, that it is not possible to have σ̂ > ξ̂c/(z−ξ − 1) and σ̂ ≤ −ξ̂c.

Indeed, this is certainly not possible if ξ̂ > 0, since then −ξ̂c < 0 and ξ̂c/(z−ξ̂ − 1) > 0. If
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ξ̂ < 0, on the other hand, this is not possible since −ξ̂c ≤ ξ̂c/(z−ξ̂−1) or, equivalently, z−ξ̂ < 1.

Hence, we also have

Fp̂c(z) = P
(
σ̂ ≤ ξ̂c

z−ξ̂ − 1

)
=

∫
σ≤ξc/(z−ξ−1)

g
ξ̂,σ̂

(ξ, σ)dξdσ, (2.6)

where g
ξ̂,σ̂

(ξ, σ) denotes the bivariate normal density of the limit law (2.3) (replacing ξ0 and

σ0 by ξ̂ and σ̂). In practice, the distribution function Fp̂c(z) is computed numerically and the

100(1 − α)% confidence interval is set as (z1, z2) where zj = inf{z : Fp̂c(z) ≥ αj}, j = 1, 2,

where α1 = α/2 and α2 = 1− α/2. We use the generalized inverse in the last expression since

Fp̂c(z) can have a discontinuity (mass) at z = 0.

Lognormal method: In the normal method above, we assumed that σ̂ does not take neg-

ative values or that, from a practical perspective, the probability of σ̂ being negative according

to (2.3) is negligible. This may not be the case for smaller values of σ and sample sizes n. A

natural way to address this is by parameterizing the GPD through ξ and lnσ, instead of σ.

The difference is that lnσ now takes possibly negative values. The asymptotic normality result

then becomes
√
n
( ξ̂ − ξ0

l̂nσ − lnσ0

)
d→ N (0,W−1

1 ), (2.7)

where

W−1
1 = diag{1, σ−1

0 }W−1diag{1, σ−1
0 }. (2.8)

Arguing as in the normal method above, we have

Fp̂c(z) = P
(
l̂nσ ≤ ln

ξ̂c

z−ξ̂ − 1

)
=

∫
lnσ≤ln(ξc/(z−ξ−1))

g
ξ̂,l̂nσ

(ξ, lnσ)dξd lnσ, (2.9)

where g
ξ̂,l̂nσ

(ξ, lnσ) denotes the bivariate normal density of the limit law (2.7). The confidence

interval can then be computed as in the normal method above. We shall refer to this as the

lognormal method. A nice feature of the normal and lognormal methods is that they provide

confidence intervals even in the case when ξ̂ < 0 and the target is beyond the estimated support

bound (−σ̂/ξ̂).
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Boundary method: The normal and lognormal methods described above involve a rela-

tively intensive numerical computation of the integrals (2.6) and (2.9). An approximate confi-

dence interval which is fast to compute and easy to implement, can be constructed through the

following boundary method. That is, take the confidence interval as

(
min

j,k=1,2
pc(ξj , σk), max

j,k=1,2
pc(ξj , σk)

)
, (2.10)

where ξ1, ξ2 and σ1, σ2 are suitable critical values of the distributions of ξ̂ and σ̂, respectively.

If ξ̂ and σ̂ were asymptotically uncorrelated, it would be natural to consider ξj = ξ̂ ± C√
αse

ξ̂

and σk = σ̂ ± C√
αseσ̂, where se stands for standard error, Cβ denotes the 100(β/2)% quantile

of the standard normal distribution and (1 − α)% is the confidence level sought. To account

for the correlation between ξ̂ and σ̂, we take

 ξj

σk

 = V

 ξ0,j − ξ̂

σ0,k − σ̂

+

 ξ̂

σ̂

 , (2.11)

where n−1W−1 = V DV ′ with a diagonal D = diag{d1, d2} and ξ0,j = ξ̂ ± C√
α

√
d1 and σ0,k =

σ̂±C√
α

√
d2. Note that the confidence intervals obtained by the boundary method are expected

to be conservative. Indeed, the region determined by the points (ξj , σk) can be thought as the

100(1−α)% confidence region for the parameters ξ0 and σ0. But since pc(ξ, σ) is not a one-to-

one function, there are points (ξ, σ) outside the confidence region for which the value pc(ξ, σ)

falls inside the confidence interval (2.10).

Bootstrap method: The bootstrap method is somewhat standard with the confidence

interval determined by the 100(α/2)% and 100(1−α/2)% quantiles of the bootstrap distribution

of the exceedance probability.

Profile (likelihood) method: The profile (likelihood) method refers to another standard

method to construct confidence intervals based on the profile likelihood. This is achieved by

first expressing σ as a function of ξ and the exceedance probability pc,

σ =
ξc

p−ξ
c − 1

,
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then parameterizing the likelihood in terms of ξ and pc (instead of σ), and finally constructing

the confidence interval based on the profile likelihood in a standard way. (See Coles [23] for the

same approach when estimating a return level, instead of an exceedance probability.) Since the

exceedance probability is constrained to be nonnegative, the use of the profile likelihood may

be questionable.

Quantile method: Finally, the quantile method actually refers to a set of methods. The

basic idea is the following. Exceedance probabilities p (pc above) are associated with respective

return levels (quantiles) xp (c above) of the GPD distribution. A return level xp can be estimated

with a confidence interval x̂p ±mp. Any of the methods discussed above (normal, lognormal,

boundary, bootstrap and profile) can be adapted to construct a confidence interval for xp – the

difference being that the function (2.2) is now the return level

xp = xp(ξ, σ) =
σ

ξ

(
p−ξ − 1

)
. (2.12)

Moreover, the plot of (− ln p, x̂p) with added confidence intervals is known as a return level plot

(e.g. Coles [23]). To indicate the underlying method used to set confidence intervals for return

levels, we will refer to the quantile method as quantile-boundary, quantile-lognormal, etc. A

natural way to set a confidence interval for the exceedance probability pc of the level c is then

(p1, p2), (2.13)

where p1 = inf{p : x̂p + mp ≥ c} and p2 = inf{p : x̂p − mp ≥ c} (with inf{∅} = 0). See

Figure 2.3. For the parameter values considered below, the functions x̂p +mp and x̂p −mp are

increasing and continuous in the argument (− ln p). The quantile approach is appealing in that

it makes estimation of exceedance probabilities and return levels consistent.

In the reliability context and for a location-scale family of distributions, the quantile ap-

proach was studied in Hong et al. [50] (see also Section I-C therein for earlier uses of connections

between confidence intervals for quantiles and exceedance probabilities).
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Figure 2.3: The quantile method to set confidence intervals for exceedance probability.

2.2.2 Simulation study for the GPD

We examine here the confidence intervals proposed in Section 2.2.1 through a simulation

study. The empirical coverage frequencies of the confidence intervals (based on 500 Monte

Carlo replications) are reported in Tables 2.1 and 2.2 for the sample sizes n = 100 and n = 50,

respectively. The sample size of approximately n = 100 is a typical value that we encounter in

the application to ship motions described in Section 2.3 below. The results are also presented

for the smaller sample size n = 50, since in practice, one does not expect many peaks over a

threshold for which the GPD is used as a model.

The first four columns in the tables present the true values of the parameters ξ0, σ0, and

also the target c and the corresponding exceedance probability pc. The values of ξ0 = ±.1 are

some of the typical values encountered in our application of interest. When ξ0 = .6, the GPD

has infinite variance but finite mean. σ0 is just a scale parameter, which we fix at 1. For the

other two true parameters, we fix the exceedance probability pc and compute the respective

target c.

The other columns of the tables correspond to the methods considered. The normal, log-

normal and boundary methods use the limiting covariance matrix W−1/n in (2.3). It is ap-

proximated by the inverse of the observed information matrix (2.5), which we found to yield

better results than using, for example, the expression (2.4) (with ξ0, σ0 replaced by ξ̂, σ̂). The

bootstrap method is based on 500 bootstrap replications. Finally, for the quantile methods, we
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consider three ways to construct confidence intervals for the return levels: lognormal, boundary

and profile.

A number of observations can be drawn from Tables 2.1 and 2.2. The normal and lognormal

methods are slightly anti-conservative, with the lognormal method preferred. The reason for

the methods being anti-conservative is the estimation of the limiting covariance matrix W−1/n

in (2.3). The intervals have the expected coverage probability if the true covariance matrix (2.4)

is taken (the exact coverage probabilities not reported here). As claimed in Section 2.2.1, the

boundary method yields slightly conservative confidence intervals. The bootstrap and profile

methods do not work well, especially for the value of ξ0 close to zero or negative. Again,

we suspect that this is due to the fact that the probability cannot be negative. Issues with

bootstrap for the GPD were also reported and studied in Tajvidi [100].

Turning to the quantile methods, the quantile-lognormal method is slightly anti-

conservative, as is the direct lognormal method. The quantile-boundary method is, on the

other hand, slightly conservative. The quantile-profile method seems to perform best, with the

coverage probabilities consistently close to the nominal level. Note that the profile-likelihood

method for return levels does not have such pronounced limitation of the same method for

exceedance probabilities – although it is true that a return level cannot be negative, the con-

fidence interval would rarely reach zero. Note also that the results for n = 100 and n = 50

are comparable. One notable difference is that the quantile methods become slightly more

anti-conservative when the sample size is reduced from n = 100 to n = 50.

In conclusion, the quantile method based on profile likelihood seems to perform best among

the methods considered. The (log)normal and boundary methods, for both direct and indirect

(quantile) approaches, can also be recommended but keeping in mind their (anti)conservative

nature. Finally, we also note that the direct (log)normal and boundary methods are computa-

tionally less intensive compared to the indirect (quantile) methods.

2.2.3 The POT framework

Suppose now that x1, . . . , xN are i.i.d. observations of a general (i.e. non-GPD) random

variable X, and that we are interested in estimating the probability P(X > xcr) of the variable

X exceeding a critical value xcr. Again, in the peaks-over-threshold (POT) approach, the
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true values direct methods quantile methods
ξ0 σ0 c pc norm logn bound boot profl logn bound profl
−.1 1 6.02 10−4 90.4 90.8 96.2 68.2 76.2 92 97 95

6.84 10−5 95.2 95.6 97.6 65.6 78.8 88.8 96.6 94.6
7.49 10−6 94 94.6 96 74.6 80.8 91.2 96.8 94.2

.1 1 15.12 10−4 92.6 93.2 98 87 98.4 89.6 97 94.2
21.62 10−5 90.6 91.2 97.2 82.8 97.6 92.4 98.6 95.2
29.81 10−6 91.2 92.6 97.6 81.2 97.8 91.2 98.4 94.6

.3 1 49.5 10−4 91.8 92.4 98 89 97.2 89.4 97.4 92.2
102.08 10−5 88.8 89.2 98.4 86.6 97.6 92.2 97.8 95
206.99 10−6 93.4 94.2 99 91.8 98.6 92.6 98.4 94.4

.6 1 416.98 10−4 90.8 90.8 97.8 91 93.8 92.4 98.6 94.2
1665 10−5 92.8 93.2 98 92.6 95.6 92.6 98.4 94

6633.45 10−6 94 93.8 98.6 92 95.8 93.4 99.4 95.2

Table 2.1: Coverage frequencies for confidence intervals when n = 100

true values direct methods quantile methods
ξ0 σ0 c pc norm logn bound boot profl logn bound profl
−.1 1 6.02 10−4 90.2 91.8 96.2 65.8 78 83.6 94 92.8

6.84 10−5 96 96 94.4 69.8 71.8 89.6 95.4 93.4
7.49 10−6 95.4 95.8 93.8 74.4 75.4 88.2 94.4 92.2

.1 1 15.12 10−4 91.4 92.2 97.6 75.6 98.4 89.9 97.4 92.6
21.62 10−5 87.6 89 96.6 67 98.2 88.4 96.8 94
29.81 10−6 90.8 92.2 96.2 70 98.2 88.8 96.4 93

.3 1 49.5 10−4 88.2 91 96 88 99 90 97.2 95.8
102.08 10−5 85.8 87.8 94.4 82.6 98.6 90.2 96.8 93.4
206.99 10−6 88.4 90 96.8 85.4 98.2 90.8 96.6 93.8

.6 1 416.98 10−4 80.4 90.6 98.2 88 96.4 89.8 98.4 93.4
1665 10−5 80.8 91.4 97 89.8 98.2 89.4 96.8 93

6633.45 10−6 83.4 90.2 97.8 89.4 98 92.6 97.4 92.8

Table 2.2: Coverage frequencies for confidence intervals when n = 50

probability is written as

P(X > xcr) = P(X > u)P(X > xcr|X > u)

= P(X > u)P(X − u > xcr − u|X > u) =: Pnr · Pr, (2.14)

where u stands for an intermediate threshold, and the subscripts nr and r refer to the non-rare

and rare problems, respectively. The non-rare probability is estimated directly from the data

as the proportion of data above the threshold u, P̂nr =
∑N

j=1 1{xj>u}/N , with the respective

confidence interval based on standard binomial calculations. The rare probability is estimated

supposing that the peaks over threshold Y = X − u follow a GPD, and setting

P̂r = p̂xcr−u,
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Figure 2.4: Shape parameter, modified scale parameter and mean excess plots. The vertical dashed
line indicates the thresholds chosen with the corresponding (horizontal or arbitrary) lines passing through
the confidence intervals for the larger thresholds. The vertical solid line indicates the threshold choice
using the Reiss and Thomas method.

where p̂c is the exceedance probability (2.2) in the GPD framework, estimated from the data

yi = xi′ − u of the peaks exceeding the threshold. The confidence intervals for Pr = pxcr−u are

constructed by one of the methods of Section 2.2.1. The confidence interval for the original

exceedance probability P(X > xcr) is obtained by multiplying the respective endpoints of the

confidence intervals of Pnr and Pr.

Threshold selection has been discussed and studied by many authors (for example, a review

is given in Scarrott and MacDonald [88]) and is not the focus here. A special feature of the

application to ship motions discussed in Section 2.3 is that the threshold selection should be

automated, but with the possibility of closer examination if needed. The automatic selection is

naturally sought in the ship motion application because multiple records need to be analyzed

for the accuracy that is meaningful for practical applications.

In the automatic selection that we use, the threshold u is selected as the maximum of

the thresholds ush, ums, ume and urt chosen by the following four automatic procedures. The

thresholds ush, ums and ume are selected automatically from the commonly used shape param-

eter, modified scale parameter and mean excess plots, respectively. For example, the plot of the
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non-GPD direct quantile
model parameters N n c pc logn bound logn bound profl

Weibull (λ, τ) = (1, 1/2) 2000 126 132.5 10−5 90.0 99.2 97.0 99.6 95.0
123 190.9 10−6 92.2 99.4 94.8 98.8 93.4

(λ, τ) = (1, 2) 2000 194 3.4 10−5 94.6 96.4 90.0 96.4 94.4
195 3.7 10−6 94.4 97.2 86.8 94.2 93.2

Burr (β, τ, λ) = (1, 2, 2) 2000 221 17.8 10−5 95.6 99.2 90.4 97.2 92.8
210 31.6 10−6 96.4 99.6 87.4 94.8 92.4

Reverse (β, x+) = (0.1, 10) 2000 156.5 9.8 10−5 96.8 93 83.4 92.4 90.8
Burr (τ, λ) = (2, 2) 150 9.9 10−6 98.2 92.2 80.4 90.2 89.0

Table 2.3: Empirical coverage frequencies in the non-GPD context using the POT approach

estimated shape parameters with confidence intervals (against thresholds) should be about con-

stant over the range where GPD fit is appropriate. The threshold ush is chosen as the smallest

threshold for which the horizontal line drawn from the corresponding estimate passes through

the confidence intervals of the shape parameter for all the larger thresholds. The thresholds

ums and ume are chosen similarly except that the line in the mean excess plot does not need

to be horizontal. The choice of the three thresholds is illustrated in Figure 2.4, for one of the

data sets considered in Section 2.3 below.

The threshold urt, on the other hand, is selected following the Reiss and Thomas [86], p.

137, automatic procedure (see also Neves and Fraga Alves [75]). Let ξk,n be the estimates of

the shape parameter ξ based on the k largest values of yi (by using the moment estimation for

computational efficiency). Choose k∗ as the value that minimizes

1

k

∑
i≤k

iβ|ξk,n − med(ξ1,n, . . . , ξk,n)|,

where β = 1/2 (though other values of β < 1/2 can be considered as well) and med denotes the

median. In practice, after the suggestion of Reiss and Thomas, the function above is slightly

smoothed. The threshold urt is then chosen as the k∗ largest value of yi. It is depicted as a

vertical solid line in Figure 2.4 and probably better corresponds to a visually desired choice

of threshold. In our experience, the Reiss and Thomas choice most often provides the largest

(most conservative) value among the methods considered.

Table 2.3 presents the empirical coverage frequencies of the confidence intervals constructed

through the above POT approach for several non-GPDs. The distributions considered are: the
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Weibull distribution with the CDF

fxmax) = 1− e−λxτ
, x > 0,

with parameters λ > 0, τ > 0; the Burr distribution with the CDF

fxmax) = 1−
( β

β + xτ

)λ
, x > 0,

with parameters λ > 0, τ > 0, β > 0; and the reverse Burr distribution with the CDF

fxmax) = 1−
( β

β + (x+ − x)−τ

)λ
, x < x+,

with parameters λ > 0, τ > 0, β > 0. Two choices of the parameter τ are considered for the

Weibull distribution, with τ = 1/2 (τ = 2, resp.) providing heavier (lighter, resp.) tails than

exponential (but both associated with the shape parameter ξ = 0 in the POT framework). The

Burr distribution has a power-law tail, corresponding to the shape parameter ξ = 1/(τλ) in

the POT framework. Similarly, the reverse Burr distribution has a finite upper bound x+, and

corresponds to the negative shape parameter ξ = −1/(τλ) in the POT framework.

Under the direct approach in Table 2.3, the coverage probabilities are reported only for the

lognormal and boundary methods. The quantile methods use the proportion of data above the

threshold to estimate Pnr but do not take the estimation uncertainty of Pnr into account. Two

of the columns also give the sample size N and the average number of peaks over threshold n.

As before, pc is the exceedance probability and c is the corresponding critical target.

Our goal with Table 2.3 is not to provide an exhaustive study of the POT approach in

the non-GPD framework, but rather to make a few general comments. First, note from the

table that the approach works quite well. Second, note that the performance of the considered

methods is not as uniformly good as in the GPD context. Thus, the performance of the methods

for non-GPDs depends not only on the way to produce confidence intervals above a threshold

but also on the non-GPD itself, as well as the (automatic) choice of the threshold.
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Figure 2.5: The roll angle series with envelope for 5 minutes. Left: original roll series. Right: roll
series in absolute value.

2.3 Application to extreme ship motions

We shall use the POT approach outlined in Section 2.2.3 to estimate the probability of roll

and pitch angle exceeding a critical value. Several issues need to be addressed before we can

apply the methods for constructing confidence intervals discussed in Section 2.2.3. An important

and pressing issue is the presence of temporal dependence as clearly seen from Figure 2.2. A

related issue is also what is meant by an exceedance probability and how it relates to time.

The issue of temporal dependence is addressed through the following envelope approach.

Motivated by the periodic nature of a ship motion, the maxima and minima are first found

between consecutive zero crossings of the series. These are the positive and negative peaks

in the series of interest. The absolute values of the peaks are then connected by a piecewise

linear function producing an envelope of the series. This is depicted in Figure 2.5. The left

plot includes the original roll series for 5 minutes, with the positive and negative envelope. The

right plot depicts the absolute values of the roll and the positive envelope connecting linearly

the absolute values of the peaks.

After the envelope is found for the whole roll time series (not just the 5 minutes shown), its

average value is computed. Next, the maxima and minima are found in the envelope between

consecutive crossings of the average envelope value. These are the envelope peaks above/below

the envelope average. This is illustrated in Figure 2.6, where the envelope average is plotted
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Figure 2.6: Envelope peaks above/below envelope average. Left: 5 minutes. Right: 30 minutes.

as a horizontal line and the envelope peaks above/below the envelope average are indicated by

small black marks.

Note from Figure 2.6 that focusing on the envelope peaks (above the average) deals, at

least qualitatively, with temporal dependence. That is, the larger values close in time are

“clustered” and only the largest values in clusters are recorded as envelope peaks. (A closer

look at the decorrelation properties of the envelope peak series can be found in a report by

Belenky and Campbell [10].) In what follows, we shall work only with the envelope peaks. It is

also important to note that the envelope approach is automated. This is particularly convenient

when dealing with multiple conditions and many records.

Focusing on the envelope peaks also simplifies the notion of exceedance and the associated

exceedance probabilities. Note that the series of interest will exceed a large target when an

envelope peak will exceed the target. It is then natural to think of an exceedance probability

as that for the envelope peaks. This is the perspective adopted throughout this chapter.

We should also clarify what we mean by probabilities, which are now related to the envelope

peaks. Suppose a series contains 1, 000 envelope peaks of which 45 exceed a given threshold.

Then, the estimated probability is 45/1000 = .045 of exceeding the threshold. This probability

is not informative without a reference to time. Suppose the series is actually recorded over

15 minutes or 15 · 60 = 900 seconds. It is then more informative to consider the (probability)

rate of 45/900 = .05 envelope peaks (over the threshold) per second. Though we will continue
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referring to probabilities below, the results will be reported in terms of (probability) rates,

rather than probabilities themselves.

If x1, . . . , xN are the envelope peaks of the series at hand, the exceedance probability is

then estimated with a confidence interval as explained in Section 2.2.3. The performance of the

confidence intervals can be assessed through a validation procedure as follows. The computer

code (discussed in Section 2.1) can be used to generate significantly more series of ship motions,

which contain rare events of interest and from which exceedance probabilities can be estimated

by direct counting. More specifically, for the same condition used in Figures 2.2–2.6, the code

was used to generate 115, 000 hours of the ship motion. With the target roll angle of xcr = 60

degrees, the probability rate of exceedance obtained by direct counting based on rare events

from the available records is 7.25× 10−8 envelope peaks per second (that is, 30 envelope peaks

above 60 degrees in 115, 000 hours). This “true” rate estimate can be supplemented by the

confidence interval obtained by a standard binomial argument.

A typical given series (record) to make inference from covers only 100 hours and would not

contain rare events of interest. For each record, confidence intervals for exceedance probabilities

can be computed as in Section 2.2.3. The confidence intervals can then be assessed by their

coverage frequencies of the “true” exceedance probability. This could be examined graphically as

in Figure 2.7 where the lognormal, boundary, quantile-lognormal and quantile-profile confidence

intervals are presented for 100 records of the total length of 100 hours. The critical value of

interest is the roll of 60 degrees as above. Note that the vertical axis for the probability rate

is in the log scale, and that we truncated the confidence intervals and the probability (rate)

estimates at a practically negligible probability rate of 10−15. The horizontal dashed lines

indicate the confidence bounds for the “true” probability. The small circles are the probability

rate estimates.

For the roll and pitch motion at 45 and 30 degree headings, we also report the coverage

frequencies for the methods of Section 2.2 in Table 2.4, based on the results in 100 records. The

columns under ξ̂ and n provide the average estimates of the shape parameter and the number

of peaks over threshold. The standard errors are given in parentheses. In the parentheses

under the coverage probabilities, we provide the average of the sizes of the suggested confidence
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Figure 2.7: Confidence intervals for 100 records of length 100 hours. Roll series for 45◦ heading and
with critical roll angle of 60◦. Top left: lognormal method. Top right: boundary method. Bottom left:
quantile-lognormal method. Bottom right: quantile-profile method.

intervals above the true value (supposing it is contained), which will be discussed further in

Section 2.4 below.

Note from Table 2.4 that the performance of the confidence intervals is similar to those in

Sections 2.2.2 and 2.2.3. Target values are chosen based on available rare events in the large set

of records. The performance seems also satisfactory, validating the approach from a practical

perspective. The point of using such validation is to show that the approach works on the ship

motion data generated by a qualitatively correct computer code, before applying the methods

to real or experimental data (where a large number of records are naturally not available).

Or, put differently, had the methods not passed the validation, no applied researcher would be

confident in using them.

The approach to estimate the exceedance probabilities certainly works in part because of

the mathematical justification as outlined in Section 2.2.3. But this is not the whole story!
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series direct methods quantile methods
varble head ξ̂ n logn bound boot profl logn bound profl

roll 45 0.19 96.06 96 97 92 100 96 97 96
(0.13) (31.76) (1.19) (1.46) (1.15) (1.52) (1.18) (1.41) (1.40)

30 0.04 105.03 84 91 76 99 84 91 89
(0.13) (46.96) (0.82) (1.13) (0.87) (1.37) (0.82) (1.12) (1.07)

pitch 45 −0.06 107.06 99 100 95 98 99 100 100
(0.11) (50.92) (0.62) (0.73) (0.57) (0.73) (0.62) (0.73) (0.74)

30 −0.08 107.63 97 98 94 96 97 98 98
(0.11) (46.61) (0.43) (0.49) (0.41) (0.51) (0.43) (0.48) (0.51)

Table 2.4: Headings of 30 and 45 degrees. Roll: target is 60 at 45◦ and 35 at 30◦. Pitch: target is 10.

Another important component to success is related to the length of the record and the physics

of the ship motion. The 100–hour records are typical for Naval Architecture purposes. Our

results show that these records have sufficiently enough physics to allow one to extrapolate into

the tail using the POT framework.

2.4 Uncertainty reduction

An interesting but also practically important question is whether the uncertainty of the

estimators or, equivalently, the size of of the confidence intervals can be reduced. For example,

in Figure 2.7, the right (top) endpoints of the confidence intervals are about one order of

magnitude above the true value. One order seems acceptable from a practical perspective. But

we also encounter conditions where the uncertainty could be as high as two or three orders of

magnitude.

Can the uncertainty (or the size of confidence intervals) be reduced? It surely depends

on the approach and model used (that is, the POT approach with the two parameter GPD

above threshold), the sample size (that is, the number of exceedances above threshold), and

the efficiency of the estimation method used. Efficiency cannot be improved considerably since

the ML estimators of the GPD parameters are used. But several directions could be explored

when it comes to the first two points.

More specifically, in Section 2.4.1, we study the situation where it may be meaningful to fix

a right upper bound when a negative shape parameter is expected. A substantial uncertainty

reduction is achieved with this approach but it may not be promising to search for extensions

to positive shape parameters, or ways of fixing a bound. Section 2.4.2 contains a short and, in
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our view, informative account of several other possibilities that we tried but which did not lead

to much of the uncertainty reduction.

2.4.1 Fixing the upper bound

When the shape parameter of a GP distribution is negative, the distribution has a finite

upper bound. One direction for uncertainty reduction is to fix this upper bound before estima-

tion based on some physical considerations, e.g. limiting angle for roll after which ship capsizes.

Fixing the bound reduces the number of parameters from 2 to 1, so that the reduction of

uncertainty is expected.

In applications to ship stability, the pitch motion typically yields a negative shape param-

eter, as can already be seen from Table 2.4 (3rd column). There are physical reasons for this

phenomenon which, in technical terms, have to do with the form of the stiffness of the pitch

motion. Moreover, again for physical reasons, an upper bound for the pitch motion may be

expected at about 15◦–20◦, as roll stiffness of ONR Tumblehome becomes flat and does not

support any resonance excitation. Details of the physics of the pitch motion go beyond the

scope of this chapter.

From a statistical standpoint, deriving the GPD framework with a fixed upper bound is

straightforward. Suppose for notational simplicity that the threshold µ is 0, and denote a fixed

upper bound by ymax. When the shape parameter ξ of the GPD (2.1) is negative, the upper

bound is given by (−σ/ξ). Setting ymax = −σ/ξ, solving for ξ = −σ/ymax and substituting

this into (2.1) when ξ < 0, we obtain the complementary GPD function with the upper bound

ymax,

F σ(y) =
(
1− y

ymax

)ymax/σ
, 0 < y < ymax. (2.15)

Note that the function (2.15) depends only on the scale parameter σ (with the shape parameter

of the GPD being ξ = −σ/ymax).

The parameter σ in (2.15) can be estimated using ML. Given observations y1, . . . , yn (all

smaller than ymax), optimizing the log-likelihood

`(σ) =

n∑
i=1

log
( 1

σ

(
1− yi

ymax

)ymax/σ−1)
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leads to the ML estimator

σ̂ = −ymax

n

n∑
i=1

log
(
1− yi

ymax

)
. (2.16)

The inverse of the observed information matrix can easily be checked to be

(
− ∂2`

∂σ2

)−1∣∣∣
σ=σ̂

=
σ̂2

n
. (2.17)

A confidence interval for an exceedance probability pc = F σ0(c) can then be given by the

boundary method as (F σ1(c), F σ2(c)), where σ1 = σ̂ − Cασ̂/
√
n and σ2 = σ̂ + Cασ̂/

√
n are

two critical values for the distribution of σ̂ based on (2.17) (with as before, Cα denoting the

100(α/2)% quantile of the standard normal distribution).

Figure 2.8 compares the confidence intervals for the exceedance probability of the pitch

motion at the 30◦ heading (under the same condition as earlier) obtained through the lognormal

method as in Section 2.3, and the boundary method with the upper bound fixed at 15◦ as

explained above. The left plot in Figure 2.8 corresponds to the entry of Table 2.4 under

“pitch”, “30” degree heading and “logn” method, with the uncertainty measure of 0.43 in the

parentheses. The same measure for the right-plot of Figure 2.8 is 0.34. The reduction of

uncertainty is also evident from Figure 2.8 itself, with smaller variability of the estimators (red

circles) and the sizes of confidence intervals in the right plot.

It should also be noted that the results with the fixed upper bound are not sensitive to the

choice of the bound (suggested by physical considerations). For example, fixing the bound at 17◦

and 20◦ leads to the same coverage frequency of 99%, with the exception that the uncertainty

measure above becomes slightly larger, 0.36 and 0.38, respectively. The conclusions are the

same for the pitch motion at the 30◦ heading (not reported here).

Remark 2.4.1. Whether a similar approach can be developed for a positive shape parameter

remains an open question. One idea we entertained was to experiment with truncated GPD

models in the spirit of, for example, Aban et al. [1], Beirlant et al. [6]. (Truncation seems

natural because, for example, the roll and pitch angles are bounded by 180 degrees.) But the

truncated GPD models did not appear to fit the data well. In Chapter 3, we study extreme
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Figure 2.8: Confidence intervals for 100 records of length 100 hours. Pitch 30◦. Left: lognormal
method. Right: boundary method with fixed upper bound at 15◦.

value methods on mathematically tractable physical models mimicking ship motion dynamics

and gain further insight into the above issues from this approach.

2.4.2 Other possibilities

We explored or thought about several other possibilities for uncertainty reduction. One

natural possibility would be to view the variables describing different conditions as covariates

and then pool the data across different conditions by modeling covariates to reduce uncertainty.

This idea is particularly relevant in the application of interest here since naval engineers have to

take measurements regularly across a range of conditions. The idea also has a sound statistical

footing, as developed in Davison and Smith [24] and described, for example, in Chapter 6 of

Coles [23].

Following this approach, we have modeled records across a number of headings (e.g. 15◦,

22.5◦, 30◦, 37.5◦, 45◦ degrees). But we generally found the reduction in uncertainty small if

any. Some of this is due to a small reduction of uncertainty even under ideal situations (when

the model incorporating the covariates is known). The uncertainty in the underlying model for

the covariates (entering the POT framework) also plays a role.

Finally, another possibility might be to use some of the more advanced approaches in mod-

eling dependent peaks over threshold, as in e.g. Smith et al. [92]. The idea here is that this

would seemingly allow for a larger sample size to be considered. Even if the dependence struc-

ture is captured correctly by these approaches, we also expect them to lead to little uncertainty

36



reduction. As with the covariates above, we view these approaches as serving different purposes

and used to answer different questions.

2.5 Conclusions

In this chapter, we studied the various methods to construct confidence intervals for ex-

ceedance probabilities in the peaks-over-threshold approach. The performance of the confidence

intervals was assessed through several simulation studies, pointing to the superior performance

of some of the considered methods. The developed methods were applied to build confidence

intervals for the probabilities of extreme ship motions, leading to satisfactory results overall.

Finally, several uncertainty reduction approaches were considered, with a promising solution

when a negative shape parameter is expected. Whether uncertainty reduction can be achieved

in the case of a positive shape parameter remains an open question.
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CHAPTER 3

Distribution tail structure and extreme value analysis of constrained piecewise
linear oscillators

3.1 Introduction

Piecewise linear oscillators might seem to be exotic models for engineering applications as

most of the real-world forces are smooth. Nevertheless, they have proved useful on several

occasions, e.g. as in the classical problem of a dynamical system with dry friction (Andronov

et al. [4]). Another application area concerning ship motions will be discussed in more detail

below. Thus, consider a single-degree-of-freedom random oscillator given by

ẍ+ 2δẋ+ r(x) = y(t), (3.1)

where δ > 0 is a damping parameter, r(x) = ∇V (x) is a nonlinear restoring force (stiffness)

associated with a potential function V and y(t) is an external random excitation (forcing).

The potential function is characterized by the existence of a stable center and two symmetric

unstable saddle equilibrium points. The stiffness function associated with such potential is

assumed to have a piecewise linear form given by

r(x) =


−k1ω

2
0 (x+ xm)− ω2

0xm, if x < −xm,

ω2
0x, if − xm ≤ x ≤ xm,

−k1ω
2
0 (x− xm) + ω2

0xm, if x > xm,

(3.2)

where ω0 is a natural frequency in the linear regime (−xm, xm), −k1ω
2
0 < 0 is a negative slope

in the nonlinear regime |x| > xm and xm, called the “knuckle” point, defines the threshold

above which the system behaves nonlinearly, i.e. the point above which the restoring force is
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Figure 3.1: Left: a piecewise linear stiffness function r(x) (dash-dotted curve) and its associated
potential function V (x) (solid curve). The potential function for the linear stiffness function is also
shown (dashed curve), as are −xm, xm, −xv, xv (dashed vertical lines). Right: A phase portrait of the
system on the left.

decreasing. The corresponding potential for this case is given by

V (x) =


−1

2k1ω
2
0x

2 − (k1 + 1)ω2
0xmx− 1

2 (k1 + 1)ω2
0x

2
m, if x < −xm,

1
2ω

2
0x

2, if − xm ≤ x ≤ xm,

−1
2k1ω

2
0x

2 + (k1 + 1)ω2
0xmx− 1

2 (k1 + 1)ω2
0x

2
m, if x > xm.

(3.3)

Figure 3.1 provides the plots of a generic piecewise linear stiffness function (3.2), the associated

potential function (3.3) and the phase space (for the unforced, unperturbed system). The point

xv > 0 such that r(xv) = 0 corresponding to the unstable equilibrium is referred to as the point

of vanishing stability, and will play an important role below.

The model (3.1)–(3.3) is an attractive tool for a qualitative consideration of large roll mo-

tions of a ship in waves, including capsizing (understanding the latter as a transition to motion

near another stable equilibrium). Indeed, the piecewise linear function (3.2) is a schematic

model of an actual ship roll stiffness resulting from hydrostatic and hydrodynamic pressures
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over the submerged portion of the ship hull. While this model can be seen as a very simplistic

one, it retains most known nonlinear properties of an oscillator with a similar smooth stiffness,

including loss of isochronism, fold and flip bifurcations, as well as fractalization of the safe basin

(Belenky [9]). It also allows for a closed-form solution to the probability of capsizing within

a given time (Belenky [8]). The model has seen some further development and applications,

e.g. by Paroka and Umeda [77]. Another important outcome of the study of piecewise linear

oscillators was the so-called “split-time” approach to find the probability of capsizing by a novel

numerical simulation scheme; see Campbell et al. [21] for a review. This reference also contains

an updated and rectified closed-form solution for capsizing with a piecewise linear stiffness.

Ship stability accidents are not limited to capsizing. Encountering large (extreme) roll

angles can also have catastrophic impact, in terms of both human, cargo or machinery loss.

Indeed, probabilistic characterization of extreme values of ship roll has attracted much atten-

tion in Naval Architecture. A Weibull distribution is employed for wave loads, e.g. for vertical

bending moment (Lewis [56]). Significant nonlinearity of roll motion, however, prevents this

conventional approach for probabilistic characterization of dynamic stability. Some of the ap-

proaches, accounting for nonlinearity of roll motions, have been reviewed in Belenky et al. [13].

Recent works include further development of the critical wave group method by Malara et al.

[67], Anastopoulos et al. [2], and path integration method by Kougioumtzoglou and Spanos

[53], Chai et al. [22]. Modern simulation tools for probabilistic characterization are reviewed

in Reed et al. [84]. See also Reed and Zuzick [85] who focus specifically on accreditation for

regulatory applications.

Another standard statistical approach to characterizing extremes is the peaks-over-

threshold (POT) method based on fitting a generalized Pareto distribution (GPD) to data

above a suitably chosen threshold (e.g. Beirlant et al. [7], Coles [23], Embrechts et al. [37]).

The POT approach has been applied to ship motions and loads data (e.g. Guha et al. [47],

Campbell et al. [20, 21], Chapter 2 of this dissertation) and has generally been found to per-
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form well in characterizing extremes. The GPD density is expressed as

fµ,ξ,σ(x) =


1
σ

(
1 + ξ(x−µ)

σ

)−1/ξ−1
, µ < x, if ξ > 0,

1
σe

−x−µ
σ , µ < x, if ξ = 0,

1
σ

(
1 + ξ(x−µ)

σ

)−1/ξ−1
, µ < x < µ− σ

ξ , if ξ < 0,

(3.4)

where ξ is the shape parameter, σ is the scale parameter and µ is a threshold. The GPD has

an upper bound (−σ/ξ) (above the threshold) for a negative shape parameter ξ < 0. This

case shall be referred to as that of a light tail. When ξ = 0, the GPD is the usual exponential

distribution. When ξ > 0, on the other hand, the GPD density has a power-law tail behavior

Cx−1/ξ−1 with constant C > 0 and exponent −1/ξ−1. In this case, the tail is heavy, especially

compared to the tail of a Gaussian distribution. Unless specified otherwise, a heavy tail will

refer to a distribution tail that is heavier than that of a normal distribution, and the term

power-law tail or power-law heavy tail will refer to the tail behavior Cx−1/ξ−1 with ξ > 0.

The GPD is an asymptotic distribution, while ship roll data arise as a response of a strongly

nonlinear dynamical system. The available data does not necessarily provide sufficient informa-

tion about the system, and the approximation of the tail with GPD may not necessarily reflect

real limiting behavior of the nonlinear system. For example, if the available data on the response

of the system (3.1) does not include any transitions to another stable equilibrium (capsizing),

the POT method will not be able to predict it, unless some additional information is provided.

Thus, the solution has to be sought in complementing statistical analysis of the response with

mathematical models reflecting physics of particular nonlinear dynamical systems.

A practical step towards this objective is to try to relate a character of nonlinearity and a

type of statistical estimate of the response. Belenky and Sevastianov [11] described an influ-

ence of the initial form of the roll stiffness on the deviation of roll distribution from normal.

Mohamad and Sapsis [71] and Mohamad et al. [70] introduced a probabilistic decomposition

method to describe the influence of instabilities on the heavy-tailed statistics of general dy-

namical systems. Consideration of an intermittent resonance allows applying this approach

to parametric roll (Mohamad and Sapsis [72]), where it successfully reproduces a shape of a

distribution observed in high-fidelity numerical simulation (Belenky and Weems [12]). Another
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example is the introduction of a limiting upper bound to pitch motions (Chapter 2), reflecting

the fact that a ship loses sensitivity to wave excitation once pitch angle exceeds a certain value.

The result is a dramatic shrinkage of confidence intervals, i.e. the statistical uncertainty of an

extrapolated estimate is decreased by introducing additional physical information.

The goals of this study are, in broad terms, to examine the properties of the distribution

and its tail of the response (and local maxima) of the piecewise linear oscillator, to interpret

them from a physical standpoint whenever possible, and to understand their implications for

available extreme value techniques such as the POT approach. A more concrete question of

interest, for example, is why Campbell et al. [20, 21] systematically observed positive shape

parameters while fitting GPD to the roll peak data. At first glance, a negative shape parameter

and the distribution having an upper bound might be expected: observing a roll peak means a

ship returning to its stable equilibrium, and a limit is expected beyond which a ship would not

return (i.e. she will capsize).

The goals above are achieved by deriving and interpreting the distribution of the response

(and local maxima) of the piecewise linear oscillator in two complementary approaches: the

first approach for correlated excitation by taking advantage of the piecewise linear form of the

stiffness (see Section 3.2 below), and the second approach for white noise excitation based on

the Fokker-Planck-Kolmogorov equation (see Section 3.3 below). Both approaches reveal the

structure of the distribution tails where a Gaussian core is followed by a heavier tail, possibly

power-law heavy, which ultimately turns into a light tail with a finite upper bound. Some

implications of the findings on extreme value analysis using GPD are also discussed (Section

3.4 below). The study ends with a summary and conclusions (Section 3.5 below), and an

appendix (Appendix A) is included with details on the synthetic processes employed here. The

chapter extends earlier study in Belenky et al. [16].

3.2 Probabilistic response for system with piecewise linear stiffness and correlated
Gaussian excitation

The focus here is on the distributions of the response of the oscillator (3.1)–(3.2) and its

largest values (local maxima). Excitation is assumed to be a stationary ergodic correlated

Gaussian process (see Appendix A). The consideration is limited to the values exceeding the
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knuckle point x > xm. As the slope of the piecewise linear stiffness is negative for x ∈ [xm, xv],

the excitation may be “switched off” for x > xm. This assumption is based on the notion that

lightly-damped dynamical systems receive most of their energy for the excitation through the

resonance, while the latter is not possible when the slope of stiffness is negative (Belenky and

Sevastianov [11]).

3.2.1 Solution in the nonlinear regime and the case of absent excitation

When the excitation is switched off above the knuckle point, the solution of (3.1) above the

knuckle point x > xm is given by

x(t) = Aeλ1t +Beλ2t + xv, (3.5)

where

λ1 = −δ +
√
k1w2

0 + δ2 > 0, λ2 = −δ −
√
k1w2

0 + δ2 < 0 (3.6)

are the two eigenvalues associated with the linear oscillator (3.1) in the regime x > xm, and

A,B are constants determined by the initial conditions xm, ẋ1 of x, ẋ at the upcrossing of xm

by x, through

A =
ẋ1 + λ2(xv − xm)

λ1 − λ2
, B = −λ1(xv − xm) + ẋ1

λ1 − λ2
. (3.7)

The absence of capsizing now corresponds to the case A < 0 (see also Belenky [8]), and hence

ẋ1 < ẋcr with the critical value of the derivative at the upcrossing given by

ẋcr = −λ2(xv − xm). (3.8)

The constant B is always negative.

If no capsizing occurs, the solution (3.5) can also be expressed through the hyperbolic cosine

as

x(t) = He−δt cosh (ω1t+ ε) + xv, (3.9)
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where ω1 =
√
k1w2

0 + δ2, and the “magnitude” H and the “phase” ε are constants defined as

H = − 1

ω1

√
ω2
1(xm − xv)2 − (ẋ1 + δ(xm − xv))2, (3.10)

ε = tanh−1
( ẋ1 + δ(xm − xv)

ω1(xm − xv)

)
. (3.11)

For stationary Gaussian excitations, the probability density function (pdf) of the derivative

ẋ1 at the upcrossing is expected to be approximated by a Rayleigh distribution with density

z

σ2
ẋ

e−z2/2σ2
ẋ , z > 0, (3.12)

where σ2
ẋ = Eẋl(0)2 and xl(t) is the solution of (3.1) supposing the stiffness function of the

linear regime throughout the whole domain. Indeed, recall that the equation (3.12) describes

the pdf of a value of the first derivative of a stationary Gaussian process taken at the instant

of upcrossing of a given level (for example, Leadbetter et al. [54], p. 201; Lindgren [62], Section

8.4; Sólnes [96], pp. 161–162; Campbell et al. [21], Section 2.4). Supposing A < 0, the density

of ẋ1 can then be thought of as

fẋ1(z) =
ze−z2/2σ2

ẋ

σ2
ẋ(1− e−ẋ2

cr/2σ
2
ẋ)
, 0 < z < ẋcr. (3.13)

In fact, some caution needs to be exercised in using (3.12) for the purposes here. The

pdf (3.12) is that of the derivative ẋ1 at an upcrossing of a linear system, but this includes

all upcrossings. A response of the dynamical system is correlated, and one upcrossing is often

followed by another upcrossing, so that they appear in clusters. Consider the first upcrossing in

each cluster as a way to sample independent upcrossings. Then, the pdf of these independent

upcrossings might, in fact, be different from that in (3.12) for all upcrossings. Comparison

between an empirical pdf of the first upcrossings and the pdf of all upcrossings is shown in

the left plot of Figure 3.2. (The system parameters are given at the end of this section.) A

good agreement is obtained with (3.12) in the case of all upcrossings but not in the case of

first upcrossings. The value of the derivative at an upcrossing is related to the value of the

peak to follow this upcrossing. The higher peak comes with a larger derivative at the preceding
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Figure 3.2: Left: The empirical pdfs of ẋ(t) from 30,000 hours at the upcrossing of xm for all upcrossings
(dashed curve) and the first upcrossings (solid curve) per 30-minute record. Also, the Rayleigh pdf with
parameter σẋ = 0.13 rad/s (solid smooth curve) is plotted. Right: The same empirical pdfs of ẋ(t)
calculated for a piecewise linear system with the same Rayleigh distribution.

upcrossing. The first peak (the derivative at the first upcrossing, respectively) is not usually

the largest in a cluster, and the average first peak (the average derivative at the first upcrossing,

respectively) in a cluster will not necessarily be equal to the average of all peaks (derivatives,

respectively) above the upcrossing threshold. In fact, Figure 3.2, left plot, suggests that the

derivatives at the first upcrossings are smaller on average than the derivatives at all upcrossings.

The right plot of Figure 3.2 shows similar quantities for the piecewise linear system. The

empirical pdf of the derivatives at all upcrossings is no longer in agreement with the theoret-

ical pdf in (3.12). Each time the knuckle point is crossed, the oscillations (3.5) with natural

frequency are generated. If the piecewise linear system is lightly damped for x ∈ [−xm, xm],

the oscillations do not die out until the next crossing. As a result, the value of the derivative

at the upcrossing is altered compared to the linear system (where the oscillations with natural

frequency are present only at the initial transition).

Though no agreement is observed with (3.12) in the right plot of Figure 3.2, the Rayleigh

distribution still provides a good fit to the two empirical distributions of that figure. This is

illustrated in Figure 3.3. Its left plot shows the two Rayleigh fits (for the Rayleigh parameters

σ2
ẋ in (3.12) chosen through maximum likelihood). The right plot shows the same plot but on

the vertical log scale, where a slight disagreement can be seen in the tails of the empirical and

fitted distributions for first upcrossings – the empirical pdf seems slightly lighter in the tail
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curves), the fitted Rayleigh parameter is σ̂ẋ = 0.089 rad/s; for the first upcrossings, it is 0.084 rad/s.
Right: The same plot on a vertical log scale.

than the Rayleigh distribution. Since the Rayleigh fits are generally satisfactory in Figure 3.3,

the pdf of the derivative at the upcrossing in the case of the piecewise linear system will still

be assumed as (3.12), with the understanding that its parameter σ2
ẋ may need to be adjusted.

The excitation process y(t) and other parameters used in simulations throughout this chap-

ter are defined as follows. The process y(t) is assumed to be a zero mean Gaussian process

with the spectral density given and discussed in Appendix A. The plots in Figures 3.2 and 3.3

correspond to the significant wave height Hs = 9 m and the mean period T1 = 11.595 s. The

other parameter values in the system (3.1)–(3.2) are the damping parameter δ, the natural

frequency ω0, the knuckle point xm, and the slope parameter k1. For Figures 3.2 and 3.3, these

are ω0 = 0.6 rad/s, δ = 0.15ω0, xm = π/6 = 0.5236 rad and k1 = 1 but may change in other

simulations below.

3.2.2 The distribution of the maximum value

The solution (3.5) depends on only one random variable: the derivative value at upcrossing

ẋ1 with its distribution described by (3.12). Thus, the expression (3.5) can be seen as a

deterministic function of a random variable. Consider the distribution of the maximum value

of (3.5) first, as its derivation is easier than the distribution of all the points in the solution
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(3.5). In the absence of capsizing (A < 0), the time of maximum of (3.5) can be found by

setting the derivative of (3.5) to zero, which results in:

tmax =
1

λ1 − λ2
log

(
− λ2B

λ1A

)
. (3.14)

A zero value of the derivative of (3.5) at tmax allows expressing the constant B as B =

−(λ1/λ2)Ae(λ1−λ2)tmax , which leads the the following formula for the maximum value:

xmax = x(tmax) = xv −
(
1− λ1

λ2

)(
− λ2

λ1

) λ1
λ1−λ2 |B|

λ1
λ1−λ2 |A|−

λ2
λ1−λ2 =: G(ẋ1), (3.15)

where xm < G(ẋ1) < xv for 0 < ẋ1 < ẋcr. The density of the maximum value (3.15) is then

given by

fxmax(x) = fẋ1(G
−1(x))

∣∣∣ d
dx

G−1(x)
∣∣∣, xm < x < xv. (3.16)

The function G in (3.15) does not have an inverse expressible in closed form so that the

density (3.16) cannot be written in closed form either. The structure of the density can never-

theless be explored in at least two ways: its tail around the unstable equilibrium/endpoint xv,

and its form in the special case of no damping when δ = 0 (above xm).

3.2.2.1 Behavior of the density around unstable equilibrium

Consider the situation just short of capsizing, i.e. the solution (3.5) when the value of the

derivative at the upcrossing is just slightly below the critical value (3.8):

ẋ1 = ẋcr −∆ẋ, (3.17)

where ∆ẋ is small. The constants A and B can be expressed in terms of ∆ẋ as

A =
∆ẋ

λ1 − λ2
, B =

∆ẋ

λ1 − λ2
− (xv − xm) ≈ −(xv − xm). (3.18)
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Substitution of (3.17) and (3.18) into (3.15) yields the approximation of the distribution of the

maximum near capsizing, i.e. at the tail: as ẋ1 ↑ ẋcr (or ∆ẋ ↓ 0),

G(ẋ1) ≈ xv − C0(ẋcr − ẋ1)
− λ2

λ1−λ2 , (3.19)

where

C0 =
(
1− λ1

λ2

)(λ2

λ1
(xm − xv)

) λ1
λ1−λ2 (λ1 − λ2)

λ2
λ1−λ2 . (3.20)

The function (3.19) can be inverted in closed form: as x ↑ xv,

G−1(x) ≈ ẋcr −
(xv − x

C0

)−λ1−λ2
λ2 (3.21)

and hence

fxmax(x) ≈
(λ1 − λ2)fẋ1(xcr)

(−λ2)C
−(λ1−λ2)/λ2

0

(xv − x)
−λ1−λ2

λ2
−1

= C1(xv − x)
−λ1−λ2

λ2
−1

. (3.22)

Analysis of the tail structure based on the formula (3.22) is further discussed below.

3.2.2.2 Special case of no damping

The oscillator (3.1)–(3.2) is only an approximate qualitative model of large ship rolling.

While the roll damping actually increases at large roll angles because sharp edges of deck struc-

tures enter water, for the purposes of the present analysis, this can be neglected. The topology

of the phase plane is defined by the shape of stiffness. Also, the shape of the distribution near

the mean value is mostly defined by the initial shape of stiffness (Belenky and Sevastianov [11]),

so that the shape of the tail is also influenced by the stiffness more than by the damping.

In the case of no damping δ = 0, the functions G, G−1 and the density fxmax can be

expressed in closed form. Use of the hyperbolic form of the solution (3.9) is more convenient

here. When δ = 0, ω1 =
√
k1ω0 and hence

x(t) = H cosh(ω1t+ ε) + xv, (3.23)
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Figure 3.4: Left: The density fxmax of the maximum value on the log vertical scale. Right: The
density fxmax around the endpoint xv on the log-log scale.

where the magnitude and the phase shift are

H = − 1

ω1

√
ω2
1(xm − xv)2 − ẋ1

2, ε = tanh−1
( ẋ1
ω1(xm − xv)

)
. (3.24)

The maximum value is then

xmax = xv +H =: G(ẋ1) (3.25)

and hence

G−1(x) = ω1

√
(xv − xm)2 − (xv − x)2, xm < x < xv. (3.26)

Substituting (3.26) into (3.16) and using (3.13) leads to the density of the maximum value

(3.25) given by

fxmax(x) = C(xv − x)e

ω2
1

2σ2
ẋ

(xv−x)2

, xm < x < xv, (3.27)

where

C−1 =
σ2
ẋ

ω2
1

(e

ω2
1

2σ2
ẋ

(xv−xm)2

− 1)

is a normalizing constant. Since (λ1 − λ2)/λ2 = −2 in the case of no damping, the form (3.27)

is consistent with (3.22) as x ↑ xv.
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3.2.2.3 Tail without damping

The left plot, solid line, of Figure 3.4 depicts the density (3.27) on the log vertical scale, for

the parameter values δ = 0, σ2
ẋ = 0.0066, xm = π/6, xv = π/3, w0 = 0.6 and k1 = 1, which are

typical values for ship dynamics. For comparison, the density (in dashed line) of the maximum

value for the corresponding linear system is also included, supposing that the derivative at the

upcrossing is smaller than ẋcr in (3.8). (The calculation of the distribution in this case is similar

to that above and is omitted.) The density (3.27) has a heavier tail than that of the linear

system before collapsing at the endpoint xv. At the same time, the right upper bound of the

distribution is evident around xv = π/3.

The right plot of Figure 3.4 depicts the same density (3.27) on the log-log scale around the

unstable equilibrium/endpoint xv. For reference, a straight line is plotted whose slope is 1 as

predicted by (3.22). The first vertical line at xv − xmax = 5× 10−2 is approximately where the

the density is no longer linear in the log-log plot. The percentile corresponding to the value

xmax = xv − 5 × 10−2 is as high as 99.996. For example, the second vertical line corresponds

to the 99.9th percentile. These lines are meant to indicate that the power-law behavior around

the endpoint can begin very far into the tail of the density.

Figure 3.4 demonstrates the effects that motivated this study: observation of a heavier tail

of the peaks distribution of a response of a nonlinear dynamical system, while the presence of

an unstable equilibrium (and possibility of capsizing) indicates a right finite upper bound and

light tail. Analysis of peaks of the piecewise linear system with similar phase plane topology

reproduces this effect. The tail actually has both properties – it is heavy for most of the distance

to the unstable equilibrium, but it becomes light in the immediate vicinity of the end point.

The reasons why this is occurring and how topology of the phase plane defines the tail structure

is addressed in Section 3.3.

3.2.2.4 Transition to flat stiffness

Some aspects of dynamics of piecewise linear system with a flat portion of stiffness (i.e.

trapezoid) was examined by Belenky et al. [15] following the discussion by Reed [83].
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Consider the influence of a flat portion of the stiffness on the tail structure (the flat portion

of stiffness is extended to infinity after the knuckle point). Assume no damping and excitation

after the knuckle point. Take the density (3.27) and let k1 approach 0, while keeping xm fixed.

Note first that

xv = xm
1 + k1
k1

and xv − xm =
xm
k1

. (3.28)

Moreover, λ2 = w2
0k1. Then, the density (3.27) becomes

λ2(xv − x)e
λ2

2σ2
ẋ

(xv−x)2

σ2
ẋ(e

λ2

2σ2
ẋ

(xv−xm)2

− 1)

=
λ2(xv − x)e

λ2

2σ2
ẋ

[(xv−x)2−(xv−xm)2]

σ2
ẋ(1− e

− λ2

2σ2
ẋ

(xv−xm)2

)

=
λ2(xv − x)e

λ2

2σ2
ẋ

[(xv−xm+xm−x)2−(xv−xm)2]

σ2
ẋ(1− e

− λ2

2σ2
ẋ

(xv−xm)2

)

=
λ2(xv − x)e

λ2

2σ2
ẋ

[2(xv−xm)(xm−x)+(xm−x)2]

σ2
ẋ(1− e

− λ2

2σ2
ẋ

(xv−xm)2

)

=
w2
0(xm(1 + k1)− xk1))e

w2
0xm

σ2
ẋ

(xm−x)
e

w2
0k1

σ2
ẋ

(xm−x)2

σ2
ẋ(1− e

−
w2
0x

2
m

2σ2
ẋ
k1 )

→ w2
0xm
σ2
ẋ

e
−w2

0xm

σ2
ẋ

(x−xm)
, x > xm, as k1 ↓ 0, (3.29)

that is, the density converges to the exponential pdf with parameter w2
0xm

σ2
ẋ

. This is illustrated

in Figure 3.5. The slope −k1 of the decreasing part of the stiffness function is changed system-

atically from −1 to 0, as shown in the left plot of the figure. The right plot of the figure shows

the corresponding changes in the distribution of the maximum. The heavy part of the tail

becomes lighter, until it reaches the exponential distribution (3.29) for k1 = 0. The “inflection

point” moves to the right, until it eventually disappears when the position xv of the unstable

equilibrium goes to infinity.

The changes in the slope coefficient k1 translate into the changes in the shape of stiffness.

Thus, the shape of the stiffness function defines the shape of the tail after the knuckle point,

while the position xv of the unstable equilibrium defines the position of the inflection point.

The softening nonlinearity (k1 > 0) thus seems to be responsible for the “two-tails” (heavy and

light) structure of the tail. It disappears when k1 becomes zero.
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Figure 3.5: Left: The stiffness function for varying choices of k1. Right: The density fxmax of the
maximum value on the log vertical scale for varying choices of k1.

3.2.3 The distribution of the response

Section 3.2.2 concerned the distribution of the maximum value of the solution (3.5). Here,

the focus is on the density of the response (3.5) itself, that is, the distribution of the excursion

values of x(t) above xm over time 0 < t < t0, where x(t0) = xm. This density can be expressed

as

fx(t)(x) = C1

∫ ẋcr

G−1(x)
g(x, ẋ1)fẋ1(ẋ1)dẋ1, xm < x < xv, (3.30)

where ẋcr is given by (3.8), fẋ1(ẋ1) appears in (3.13), G−1 is the inverse of the function G in

(3.15) and

g(x, ẋ1)
−1 = |x′(t)|

∣∣∣
t:x(t)=x

, (3.31)

emphasizing the dependence on ẋ1 in the notation g(x, ẋ1). The role of g(x, ẋ1) is illustrated

in Figure 3.6, left plot. The normalizing constant can be expressed as

C−1
1 =

1

2

∫ ẋcr

0
t0(ẋ1)fẋ1(ẋ1)dẋ1, (3.32)

where t0 = t0(ẋ1) > 0 satisfies x(t0) = 0 as above.
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3.2.3.1 Special case of no damping

The density (3.30) can be evaluated more explicitly in the case of no damping. In this case,

the function G−1(x) is given by (3.26). The function g(x, ẋ1)
−1 can be expressed as

g(x, ẋ1)
−1 = H sinh(λt+ ε)

∣∣∣
t= 1

λ
(cosh−1(xv−x

−H
)−ε)

= H sinh
(
cosh−1

(xv − x

−H

))

= H

√(xv − x

−H

)2
− 1 =

√
ẋ21 − λ2((xv − xm)2 − (xv − x)2) = λ−1

√
ẋ21 −G−1(x)2,

since −H = 2(AB)1/2 =
√
(xv − xm)2 − ẋ21/λ

2. Then, letting G−1(x) = a, the density (3.30)

becomes, after a series of changes of variables,

fx(t)(x) = C

∫ ẋcr

a

ze
− z2

2σ2
ẋ

√
z2 − a2

dz = C ′
∫ ẋ2

cr

a2

e
− w

2σ2
ẋ

√
w − a2

dw

= C ′e
− a2

2σ2
ẋ

∫ ẋ2
cr−a2

0

e
− u

2σ2
ẋ

√
u

du = C ′′e
− a2

2σ2
ẋ

∫ √
ẋ2

cr−a2

0
e
− v2

2σ2
ẋ dv.

By recalling that a2 = G−1(x)2 = λ2((xv −xm)2− (xv −x)2) and using the fact that ẋ2cr − a2 =

λ2(xv − x)2, the density can be expressed as

fx(t)(x) = C0erf
(λ(xv − x)√

2σẋ

)
e

λ2

2σ2
ẋ

(xv−x)2

, xm < x < xv, (3.33)

where erf(u) = 2√
π

∫ u
0 e−z2dz is the error function and C0 is a normalizing constant.

The difference between the densities of the response and the maximum in (3.33) and (3.27),

respectively, is only in the terms erf(λ(xv − x)/
√
2σẋ) in (3.33) and xv − x in (3.27). The two

densities are depicted in Figure 3.6, right plot, for the same parameter values as in Figure 3.4.

3.2.4 Power-law tail

Further insight can be gained from Figure 3.7 where the densities of the response and the

maximum are depicted in the log-log plot. The densities now appear almost linear, especially

that of the maximum density, over a wide range of values. This suggests a power-law behavior

of the densities, that is, the behavior f(x) ≈ Cx−α−1 over a range of values x, with α > 0.
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Figure 3.6: Left: Illustration of the role of g(x, ẋ1). Right: The densities fx(t) and fxmax of the
response and the maximum value on the log vertical scale.

On the other hand, the power-law behavior is not apparent from the analytic expressions of

the densities of the response and the maximum in (3.33) and (3.27). This can nevertheless be

explained through the following argument. Consider the case of the density of the maximum in

(3.27). This density should appear linear at least around the value x = xm in the log-log plot

(which it does according to Figure 3.7), supposing that a certain condition holds.

Indeed, by considering the log of the density (3.27) around x = xm and keeping track of

the first and second order terms only in the approximations below, observe that

log fxmax(x) = c1 + log(xv − x) +
λ2

2σ2
ẋ

(xv − x)2

= c2 + log
(
1− x− xm

xv − xm

)
+

λ2

2σ2
ẋ

(xv − xm)2
(
1− x− xm

xv − xm

)2

≈ c3 −
x− xm
xv − xm

− 1

2

( x− xm
xv − xm

)2
− λ2

σ2
ẋ

(xv − xm)(x− xm) +
λ2

2σ2
ẋ

(x− xm)2

= c3 −
( 1

xv − xm
+

λ2

σ2
ẋ

(xv − xm)
)
xm

( x

xm
− 1

)
+
( λ2

2σ2
ẋ

− 1

2(xv − xm)2

)
x2m

( x

xm
− 1

)2
≈ c3 − (α+ 1) log

x

xm
, (3.34)

provided for the last approximation that

α+ 1 ≈
( 1

xv − xm
+

λ2

σ2
ẋ

(xv − xm)
)
xm ≈ 2

( λ2

2σ2
ẋ

− 1

2(xv − xm)2

)
x2m. (3.35)
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Figure 3.7: The densities fx(t) and fxmax of the response and the maximum value in the log-log plot.

The exponent α+ 1 then defines the slope of the line in the log-log plot of the density around

x = xm. The power-law behavior is analyzed further in Section 3.4.2.

3.3 White noise excitation and interpretation of the tail structure

In this section, the system (3.1) is considered again but now subjected to white noise

excitation, y(t) = sẆ (t), where W is a standard Brownian motion and s is the intensity of

the white noise excitation. Despite the broadband character of the stochastic forcing, which

is not realistic for the description of wave excitation, its mathematical structure allows for the

derivation of closed-form expressions for the non-Gaussian pdf of the response. One of the

objectives of this chapter is to understand whether the derived results, based on white noise

excitation, can be related to the corresponding results when the excitation is correlated. Such

a conjecture follows from the observation that in ship motion, inertia plays a dominant role,

and therefore high frequency content in the excitation is “filtered out” naturally by the system.

That would immediately imply that the primary factor defining the properties of the pdf tail is

not the correlation structure of the excitation, but rather the intrinsic dynamics of the system

(in this case the restoring force). Such a conclusion will help interpreting the non-Gaussian

properties of the tail (for both white and colored noises) and directly relating its form with the

phase portrait of the unforced and undamped dynamical system.
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For single-degree-of-freedom systems like (3.1), the full (unconditional) pdf can be found

for the statistical steady state by direct solution of the associated Fokker-Planck-Kolmogorov

(FPK) equation. More specifically, the pdf in the statistical steady state is given by

f∞(x, ẋ) = Ce−
4δ
s2

H(x,ẋ), (3.36)

where

H(x, ẋ) =
1

2
ẋ2 + V (x)

is the Hamiltonian of the system, and C is a normalizing constant (e.g. Sobczyk [94], Theorem

1.6, p. 34 or p. 334). Based on the unconditional pdf (3.36), the constrained pdf for the response

x can now be expressed inside the separatrix, that is, within the two heteroclinical orbits that

enclose the stable center and connect the two unstable equilibria in the phase space as in

Figure 3.1. Denote the locus of the separatrix points by (xs, ẋs). This separatrix is defined

implicitly through the Hamiltonian function if the unstable equilibria ±xv is known:

H(xs, ẋs) = H(±xv, 0) ≡ H∗. (3.37)

The last equation can be solved explicitly for ẋs:

ẋs(x) = ±
√
2 (H∗ − V (x)). (3.38)

In this way, the conditional pdf within the separatrix is obtained as

fs (x) = C

∫ +ẋs(x)

−ẋs(x)
f∞ (x, ẋ) dẋ, −xv < x < xv, (3.39)

where C is another normalizing constant. Although the analysis is valid for a general potential

function V (x), for the sake of presentation, the focus is on the special case of the piecewise

linear system considered in Section 3.2.

In Figure 3.8 (upper left plot), the potential of the system is presented and compared

to the corresponding linear system (i.e. the one characterized by a linear restoring function

r(x) = w2
0x). In the same figure, the pdf of the response (under the condition of non-capsizing,
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(i) (ii) (iii)

Figure 3.8: Upper left: Potential function for the piecewise linear system (solid curve) and the corre-
sponding linear system (dashed curve); Lower left: Phase portrait for the piecewise linear system and
the linear system; Right: Probability density function fs(x) for both systems considered with the three
regions (i), (ii) and (iii). Dotted lines indicate ±xm throughout.

i.e. non-crossing of the separatrix) is also presented and compared to the Gaussian pdf that

corresponds to the same system but with linear restoring function. As can be observed, the tail

of the constrained nonlinear oscillator consists of three different regimes:

(i) a Gaussian core,

(ii) a heavy-tail region, and

(iii) a light-tail region.

A detailed interpretation of this pdf form in connection with the dynamical properties of the

system is provided below.

3.3.1 Gaussian core and heavy-tail regime

The phase portraits for the two systems are shown in the lower left plot of Figure 3.8. For

|x| < xm the two systems are identical resulting in (at the statistical level) the presence of a
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Gaussian “core” for the nonlinear system, which dominates the response statistics close to the

stable equilibrium.

When moving to higher energies, trajectories begin to depart from the linear regime and

enter the nonlinear regime, with a deformation of the linear-system phase portrait due to

the presence of softening nonlinearity. The softening nonlinearity results in stretching of the

trajectories to higher values of x compared with the trajectories of the linear system with equal

energy. At the same time, the probability of occurrence of each of those nonlinear trajectories

is governed by the Gaussian core, which is fairly identical for the two systems, i.e. trajectories

having the same energy have equal probability of occurrence in the two systems. From these

two observations, the phase space stretching of the nonlinear system will be reflected in the

response pdf through increase of the probability for higher values of x.

Indeed, as observed in the right plot of Figure 3.8 where the pdfs of the two systems are

shown, when moving away from the Gaussian core, i.e. for values |x| > xm the pdf exhibits a

heavy tail structure. This heavy tail is a direct manifestation of the deformation (stretching)

of the phase space (due to the presence of nonlinearity) which has the following characteristics:

it is zero or negligible for small values of |x| so that the Gaussian core of the statistics is not

influenced, and it is more pronounced for larger values of |x| leading to larger responses of high

energy trajectories compared to the linear system. In this sense, the nonlinearity of the system

acts so that it does not change the probability of occurrence of each trajectory (or of each

energy level) but only their shape, giving higher probability to larger responses.

3.3.2 Light-tail regime

As discussed in Section 3.3.1, suitable nonlinearity can lead to the formation of heavy tails.

However, the heavy tail must turn light at a certain point as more and more trajectories lead

to the second stable equilibrium. Thus, for the conditional response pdf, a saturation point

exists where the heavy-tail behavior ceases to exist and light tails emerge eventually. This is

the transition from the region (ii) to (iii) in the right plot of Figure 3.8. To understand this

transition better, the conditional pdf is expressed in terms of the system characteristics. By
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the relations (3.36) and (3.39),

fs (x) = Cxe
− 4δ

s2
V (x)

∫ +ẋs(x)

−ẋs(x)
Cẋe

− ẋ2

2σ2
ẋ dẋ, (3.40)

where

σ2
ẋ =

s2

4δ
(3.41)

and Cx, Cẋ are the normalizing constants for the two corresponding marginals.

The first term in the above product expresses the contribution of the nonlinear restoring

force and contains information about the deformation of the phase space. It is the term that

results in the heavy tail character of the distribution away from the Gaussian core. The second

term is related exclusively to the conditioning that is imposed so that the system response

does not cross the separatrix. For system energy where σẋ is small, compared with the vertical

separatrix radius, the integral term is approximately equal to 1. This is because the integral

extends over the full effective support of the Gaussian distribution for the velocity.

However, when moving closer to the unstable equilibria ±xv, i.e. the value of x becomes

large, the integral term deviates from 1 since the local width of the separatrix becomes com-

parable with or even smaller than the effective support of the velocity marginal. The integral

term becomes much smaller, thereby reducing significantly the pdf value. This is the underlying

reason for the eventual formation of light tails when approaching the unstable equilibria.

3.3.2.1 Estimation of the light-tail domain

To quantify a distance from xv where the influence of the second term in (3.40) becomes

important, the local width of the separatrix ẋs(x) around xv is compared to the effective

support of the ẋ marginal, measured through the standard deviation σẋ. First, approximate

ẋs(x) around xv by a Taylor expansion:

ẋs(x) = ẋs(x
∗) +

∂ẋs
∂x

(xv)(x− xv) +O
(
(x− xv)

2
)
. (3.42)
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Clearly, ẋs(xv) = 0 and now the slope of the separatrix close to the unstable equilibrium has

to be estimated. From the relation (3.37) that defines the separatrix,

∂H
∂x

dx+
∂H
∂ẋ

dẋ = 0,

which implies that
∂ẋs
∂x

= − lim
x↑xv

∂H
∂x
∂H
∂ẋ

.

Substitution of the Hamiltonian and application of L’Hopital’s rule yield

∂ẋs
∂x

= − lim
x↑xv

∂V
∂x

ẋs
= −

∂2V
∂2x
∂ẋs
∂x

.

Therefore, (
∂ẋs(xv)

∂x

)2

= − ∂2V (xv)

∂2x
. (3.43)

By the expression (3.43), the separatrix in the vicinity of the unstable equilibrium can be

approximated as follows. The integral term in the conditional pdf becomes important when the

width of the separatrix is comparable (i.e. sufficiently small) with the standard deviation for

the velocity σẋ. In particular,

ẋs(x) ∼ σẋ. (3.44)

By the Taylor expansion (3.42) for the separatrix and the relation (3.43), the condition (3.44)

takes the form √
−∂2V (xv)

∂2x
∆x ∼ σẋ, (3.45)

where ∆x = x− x∗ is the size of the layer over which the light tail is formed. This yields

∆x ∼ σẋ√
−∂2V (xv)

∂2x

. (3.46)

The derivation of (3.46) relies on the smoothness of the separatrix as well as the Gaussian

distribution of the velocity marginal. To this end, the analysis is valid also for systems of the

same form where the excitation is a correlated stochastic process (see Section 3.3.2.2 below).

For the special case of white noise considered here, σẋ is given by (3.41) and hence (3.46)
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becomes

∆x ∼ s√
−4δ ∂2V (xv)

∂2x

. (3.47)

3.3.2.2 Connection to piecewise linear system with correlated excitation

As indicated above, the derivation leading to (3.46) is expected to work for nonlinear systems

driven by correlated excitations. Indeed, this is illustrated here on the piecewise linear system

(3.1)–(3.3) considered in Section 3.2. For the potential function V (x) of the piecewise linear

system given in (3.3), the width of the light-tail regime (3.46) is given by

∆x ∼ σẋ√
k1ω2

0

. (3.48)

For the case of no damping and no excitation above the knuckle point, this can be expressed as

∆x ∼ σẋ
λ

(3.49)

On the other hand, consider the pdf of the maximum value given by (3.27). The logarithm

of the pdf (3.27) has an inflection point given by

xinfl = xv −
σẋ
λ
. (3.50)

Thus, even from the perspective of (3.27) and the location of the inflection point, the light tail

width can be thought as σẋ
λ , which is exactly the same as the right-hand side of (3.49). In the

next section, the role of the light-tail region on the POT approach in extreme value analysis is

examined.

3.4 Extreme value analysis using generalized Pareto distribution

As the distributions of response and maxima of the piecewise linear oscillator (3.1)–(3.3) are

known, a question of interest here is how standard extreme value analysis based on the POT and

the GPD (3.4) performs on the data generated by (3.1)–(3.3). Comparing features of the known

distribution tail to the results of the POT analysis (Chapter 2 of this dissertation, Campbell et
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al. [21]) should lead to a better understanding about the performance of the approach applied

to ship motions, as well as to other oscillator-like systems.

The POT approach and the GPD fits are studied below for the random oscillator (3.1)–(3.3)

from several angles. In Section 3.4.1, the behavior of the estimates of the shape parameter as

a function of threshold for a range of values of the oscillator model is examined. In Section

3.4.2, the power-law behavior of the distribution tail of the oscillator noted in Section 3.2.4

is revisited. In Section 3.4.3, the question is when the point of vanishing stability xv can be

estimated through the POT approach, which relates the findings to the light-tail region of the

oscillator discussed in Sections 3.2 and 3.3.

3.4.1 Shape parameter estimates

The definition (3.4) of the GPD and the discussion following it point to the special role

played by the shape parameter ξ. In particular, the cases of positive and negative shape

parameters are quite different. A negative shape parameter ξ < 0 corresponds to the GPD

having a finite endpoint at x = µ+ σ/(−ξ). The distribution of the maximum or the response

of the oscillator (3.1)–(3.3) derived in Section 3.2 naturally has such an endpoint at the point

of vanishing stability xv. Moreover, ξ > 0 is associated with the power-law behavior of the

GPD pdf with the exponent −1/ξ− 1 around the endpoint. In view of (3.22), for the oscillator

(3.1)–(3.3),

−1

ξ
− 1 = −λ1 − λ2

λ2
− 1,

that is,

ξ =
λ2

λ1 − λ2
∈ (−1, 0). (3.51)

In the case of no damping above the knuckle point,

ξ = −1

2
. (3.52)

Despite the distribution of the maximum or the response of the oscillator (3.1)–(3.3) always

having an endpoint at xv, a negative shape parameter ξ < 0 will not necessarily be estimated

from data. As already observed in Section 3.2.4, a power-law tail is expected in some cases.
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Figure 3.9: Average shape parameter estimates as function of threshold, for σẋ = 0.03 rad/s, 0.08
rad/s, 0.13 rad/s and k1 = 0.5, 1, 2.

The power-law tail with the exponent α as in Section 3.2.4 is associated with the positive shape

parameter value ξ = 1/α > 0 of the GPD. From another perspective, as discussed in Section

3.2.2.2, the region of the power-law behavior around the endpoint can occur too far into the

tail from a practical standpoint.

For simplicity, focusing on the pdf (3.27) of the oscillator maximum response in the case of

no damping above the knuckle point, characterized by the shape parameter ξ in (3.52), the pdf

can be examined through the lens of the GPD as follows. In Figure 3.9, the plots of the average

estimated shape parameter values are presented as functions of threshold, as explained in greater

detail below. (The estimates are obtained through the maximum likelihood estimation as in

Campbell et al. [21] and Chapter 2 of this dissertation.) A varying threshold is considered since

in practice it is selected through a data driven method.

The underlying oscillator parameters are the same as those used at the end of Section 3.2.1

except that a range of the parameters σẋ and k1 is considered: the first plot of Figure 3.9

corresponds to σẋ = 0.03 rad/s, the second plot to σẋ = 0.08 rad/s, and the third plot to

σẋ = 0.13 rad/s. In each of these plots, three different values of k1 are considered: k1 = 0.5,

1 and 2. Thresholds µ are taken above the knuckle point xm = π/6 = 0.5236 rad but below

0.95xv, where xv = xm(1 + k1)/k1 is the point of vanishing stability in (3.28). For each set

of the fixed parameters of the oscillator model and a threshold, 100 datasets of length 400

are generated above the threshold according to the pdf (3.27) and the average value of the

shape parameter estimates over these 100 datasets are plotted. The vertical lines in the plots
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correspond to the points of vanishing stability xv (dashed lines) and the inflection points xinfl

(dotted lines) calculated according to (3.50).

The average value of the shape parameter estimates grows and then falls sharply with the

increase of the threshold for σẋ = 0.03 rad/s; this tendency is observed for all three values of

the slope k1 when σẋ = 0.03 rad/s. The effect of the stretching phase plane in Figure 3.8 is

stronger with larger amplitude of the response. Increasing the threshold excludes small peaks

and leaves large ones. Thus, the increased influence of the effect of phase plane stretching leads

to an increase in the shape parameter estimate until the population of larger peaks starts to

drop because of a transition to another stable equilibrium (“capsizing”).

Continuing consideration of the case with σẋ = 0.03 rad/s, the decrease of the slope coeffi-

cient k1 does not change the shape of the curve, but stretches and shifts it to the right. This is

expected as the position of the unstable equilibrium xv moves to the right with the decrease of

the slope coefficient k1; see Figure 3.5. In the limit of k1 = 0, the distribution of peaks becomes

exponential (see (3.29)), from which zero values of the shape parameter estimates are expected

for all the thresholds. On the other hand, Figure 3.5 shows a heavier tail when k1 increases;

this makes the shape parameter estimates grow faster for smaller thresholds, which is also seen

in the left plot of Figure 3.9.

Consider now the effect of increasing σẋ from 0.03 to 0.08 rad/s on the curve corresponding

to k1 = 0.5, shown in the first two plots of Figure 3.9. Increase of the standard deviation of

the velocities corresponds to the increase of the excitation, and hence to larger velocities at the

crossing of the knuckle point. Naturally, this leads to the growth of the population of larger

peaks and is reflected in the faster increase of the shape parameter estimates. Indeed, with the

increase of excitation, capsizing is more probable, so its influence is “felt” for smaller thresholds.

Regarding the effect of increasing k1, similarly to above, the curve is shrunk and shifted to the

left; however, shrinkage seems to be prevalent. Finally, the case σẋ = 0.13 rad/s (the last plot

in Figure 3.9) can be seen as a part of this tendency, only the increase has been “shadowed”

by the knuckle point. The behavior of the curves corresponding to k1 = 1 and k1 = 2 does not

contradict this description.

The inflection point (represented by dotted lines for the various cases) seems to be over-

estimated by (3.50), as negative parameters are estimated for lower thresholds. This means
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that the capsizing influence starts to affect the distribution before the vertical distance to the

separatrix decreases to σẋ (see Section 3.3.2.1). The inflection point was searched from the

condition of comparability, i.e. with the accuracy of up to a constant. The numerical relation-

ship of the position of the inflection point and σẋ still needs to be studied. For a threshold

in the light-tail region of the distribution (that is, larger than the inflection point), the shape

parameter estimates are quite close to the value −0.5, which is expected according to (3.52) as

discussed above.

In general, the plots of Figure 3.9 illustrate the fact that depending on the underlying

oscillator parameters and the likelihood of the transition to another stable equilibrium, the

structure of the pdf (3.27) is quite different.

3.4.2 Power-law tail behavior revisited

Recall from Section 3.2.4 that the distribution of the maximum or the response of the

oscillator (3.1)–(3.3) can appear to have a power-law tail. In the POT framework, a power-

law tail corresponds to the GPD with a positive shape parameter ξ > 0, with a larger ξ > 0

corresponding to a heavier power-law tail. In particular, Figure 3.9 in Section 3.4.1 shows that

depending on the choice of a threshold and the underlying oscillator parameters, a positive shape

parameter can be estimated. Several basic questions related to the power-law tail behavior are

of interest here. How large ξ > 0 can be observed with the oscillator (3.1)–(3.3)? What system

parameter values are associated with the largest ξ > 0?

To answer these questions, random samples are generated from the pdf (3.27) of the maxi-

mum value of the oscillator in the case of no damping above the knuckle point over a range of

parameter values σẋ = 0.03 rad/s, 0.08 rad/s and 0.13 rad/s, and 0 ≤ k1 ≤ 10 with step-size

0.005. (The rest of the oscillator parameters are the same as at the end of Section 3.2.1.)

Both positive and negative shape parameters can be estimated for many different values

of σẋ and k1 in Figure 3.10. The largest values of ξ̂ in the figure are around 0.1. From the

GPD perspective, a distribution tail with ξ = 0.1 is not very heavy: such distribution has all

its moments finite up to order 10.

Examination of the figure in view of the discussion in Section 3.2.4 is also interesting. The

equality of the right two expressions of (3.35) yields a relationship between k1 and σẋ, with the
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Figure 3.10: Estimated shape parameters from samples of 400 data points from the GPD fitted to
fxmax in (3.27), for σẋ = 0.03 rad/s, 0.08 rad/s and 0.13 rad/s. Circles correspond to the values of k1
satisfying the equality of the right two expressions in (3.35).

corresponding value of α in (3.35) and hence 1/α = ξ. For the three choices of σẋ in Figure 3.10,

the corresponding values of k1 (making the right two expressions of (3.35) equal) are depicted

by circles in the figure. Note that the estimated values of ξ̂ at the circles are not necessarily

positive (nor necessarily the largest values of ξ̂ observed for a fixed value of σẋ). That is, the

analysis carried out in Section 3.2.4 is not sufficient to observe a power-law behavior (estimate a

positive shape parameter). As argued in the next section, observing a power-law behavior also

depends on the scope of the light-tail region. Finally, Figure 3.10 is consistent with Figure 3.9.

For example, for k1 = 2, the estimate of ξ in Figure 3.9 with the knuckle point as the threshold

is negative for σẋ = 0.13 rad/s.

3.4.3 Estimating the point of vanishing stability

As discussed in Section 3.4.1, the distribution of the maximum or the response of the

oscillator (3.1)–(3.3) derived in Section 3.2 is associated with the GPD having a negative shape

parameter ξ < 0 in (3.51) (and ξ = −0.5 in (3.52) in the case of no damping above the knuckle

point). Moreover, Figure 3.9 of that section shows clearly that a negative shape parameter is

not necessarily estimated in practice. The basic question is then: when will a negative shape

parameter be in fact estimated from data? As Figure 3.9 already suggests, this might be related
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Figure 3.11: Proportion of negatively estimated shape parameters in 150 to 300 records of the oscillator
data. Left: Hs = 9 m; right: Hs = 10 m. Blue: 50 hours; purple: 100 hours; red: 200 hours.

to the light-tail region, which is the region above the inflection point (3.50) discussed in Sections

3.2 and 3.3.

To address these issues, the frequency of the estimation of the negative shape parameters

is examined on the data simulated from the oscillator (3.1)–(3.3). For each of the values of the

significant wave height Hs = 6 m, 9 m and 10 m, and the slope k1 = 0.5, 1, 1.5, 2, 2.5, 3 and 4,

30,000 hours of the data from the oscillator (3.1)–(3.3) are generated. The values of Hs = 6

m, 9 m and 10 m correspond to σẋ = 0.0632 rad/s, 0.0948 rad/s and 0.105 rad/s, respectively,

which are comparable to the values of σẋ considered in Figures 3.9 and 3.10 for the pdf (3.27).

(Unlike in Sections 3.4.1 and 3.4.2, the data here were actually generated from the oscillator.)

The data were then split into shorter records; either 600 records of 50 hours each, 300 records

of 100 hours each, or 150 records of 200 hours each. Within each record, the POT approach

was applied to estimate the shape parameter ξ. Threshold values were selected automatically

as in Chapter 2 and Campbell et al. [21], and the maximum likelihood estimate for the shape

parameter ξ̂ was calculated, as well as the length of the data above the inflection point (3.50).

In the latter expression, the theoretical values of σẋ listed above were employed (see Section

3.2.1).

Figure 3.11 summarizes the results by comparing the mean number (across all records of

a given set of oscillator parameters) of points above the inflection point to the proportion of

records which estimated a negative shape parameter. Notably, enough information in the record

to correctly estimate a negative shape parameter is contained at around 10 data points above the
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inflection point. For records with very few points above the inflection point, shape parameters

are estimated positively and negatively with close to equal proportion, which is consistent with

an exponential fit (i.e. with ξ = 0). This was the case when Hs = 6 m (not shown) and for

the lower slopes when Hs = 9 m or 10 m. In conclusion, a primary indicator of the ability

to estimate a negative shape parameter and, in turn, a finite endpoint of the maximum of the

oscillator is the presence of data above the inflection point (that is, in the light-tail region).

In particular, parameters which give a pdf that has a shorter region from xm to the inflection

point relative to the region from the inflection point to xv contribute to estimating a negative

shape parameter, due to the greater probability above the inflection point.

3.5 Summary and conclusions

To understand the structure of the tail of a nonlinear dynamical system, the oscillator

(3.1)–(3.3) with a piecewise linear restoring force was considered. This oscillator is known to

model most principal properties of a dynamical system with softening nonlinearity (Belenky

[9]).

The response of (3.1)–(3.3) below or above the knuckle point was expressed in closed form.

This allows solving for the response pdf (3.30) above the knuckle point if the excitation above

the knuckle point is neglected. The influence of the excitation above the knuckle point is small

anyway, as the resonance is not possible there (Belenky and Sevastianov [11]). If damping above

the knuckle point is also neglected, the response pdf can be expressed in closed form; see (3.33).

Analogously, a closed form solution was derived for the maxima of the response for the

no-damping case; see (3.27). If the damping is present, the maxima pdf can be expressed

by (3.16). However, a closed form solution is still available in the vicinity of the unstable

equilibrium, described by the relation (3.22).

The other simplification used in this study is neglecting correlation in the excitation, by

modeling it as white noise and thus assuming that the response distribution tail structure

is mostly the result of nonlinearity of the oscillator rather than internal dependence on the

excitation. The pdf of the response becomes available as a solution of the associated FPK

equation; see (3.36).
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Analysis of the pdf of the response and its maxima above the knuckle point using both

approaches has shown that the tail first becomes heavy because of stretching of the phase plane

and then becomes light because more and more trajectories lead to capsizing. The following

arguments are presented to support this conclusion:

(i) The computed pdf of the response maxima is above the pdf of the corresponding linear

system. It is described by a heavy-tail (possibly power-law) region and then a collapse

towards the unstable equilibrium (a light-tail region) – see Section 3.2.2 and Figure 3.4,

in particular.

(ii) Similar findings apply to the pdf of the response – see Section 3.2.3 and Figure 3.6, in

particular.

(iii) Changing the shape of stiffness changes the tail: decrease of the slope after the knuckle

point makes the tail lighter, with a limit of exponential tail for a flat restoring term – see

Section 3.2.2.4 and Figure 3.5, in particular.

(iv) The distribution of a white noise-excited system shows a heavy tail above the knuckle

point due to the phase plane stretching – see Section 3.3.1 and Figure 3.8, in particular.

(v) The probability of a non-capsizing trajectory is dramatically decreased when approaching

the unstable equilibrium, where the distance to the separatrix becomes comparable with

the conditional standard deviation of the derivative of the response; the latter condition

is used to estimate a position of the inflection point, where the tail switches from heavy

to light – see Section 3.3.2.

(vi) Monte Carlo simulated samples were used to fit the GPD parameters; the combination

of positive and negative values of the shape parameter estimates were found where heavy

and light tails were expected – see Section 3.4, Figures 3.9 and 3.10, in particular.

In other words, softening nonlinearity leads to a heavy and light tail combination for the non-

capsizing response and its maxima.

What are implications and practical importance of this conclusion?
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(i) The question posed at the end of Section 3.1 was answered: observing heavy tails when

light tail may be expected while extrapolating roll peak data is natural and related to the

fact that ship rolling is described by softening nonlinear system (as a ship usually has a

limited range of stability).

(ii) Statistical uncertainty associated with extrapolation of practical volume of ship motion

samples is rather large (e.g. Smith and Zuzick [93]). As shown in Chapter 2, introducing a

physical information by relating the GPD parameters allows a significant decrease of the

confidence intervals. To do this, the structure of the distribution tail should be known.

Where can this work be taken from here?

(i) More study is needed on the inflection point; while the principle is clear, the accuracy of

the prediction needs to be improved.

(ii) In Chapter 2, we have related shape and scale parameters for the case of the light tail by

postulating the upper bound of the distribution. How can this be done for the heavy tail

where an upper bound does not exist?

Another principal issue is related to the modeling of excitation. The spectral-based model

(see Appendix A for details), while conventional in Naval Architecture (St. Denis and Pierson

[99], Longuet-Higgins [63]), is known to work up to the second moments. The adequacy of this

model is not clear for the extreme value problems. One of the alternatives is the autoregressive

model (ARM) that has seen wide application in other engineering fields, and while it was

considered for modeling waves in the 1980s (Spanos [97]), the interest was renewed recently

(Degtyarev and Gankevich [31], Weems et al. [103]). Degtyarev and Reed [32] have shown that

ARM reproduces nonlinear properties embedded in its auto-covariance function, so it may work

well for extreme events.
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CHAPTER 4

Distributions and extreme value analysis of critical response rate and split-
time metric in nonlinear random oscillators

4.1 Introduction

The focus of this chapter is on certain questions related to a single-degree-of-freedom non-

linear random oscillator given by

ẍ(t) + 2δẋ(t) + r(x(t)) = y(t), (4.1)

with a softening restoring force (stiffness) r(x) that is characterized by an unstable equilibrium,

as e.g. in the special cases of piecewise linear restoring forces depicted in Figure 4.1. In (4.1),

δ > 0 is a damping parameter and y(t) is an external random excitation (forcing). Both suitable

correlated and white noise excitations will be considered below.

Nonlinear oscillators (4.1), both random and non-random, play a central role in a wide

range of areas and applications, as canonical models for oscillatory phenonema. See e.g. Nayfeh

and Mook [73], Belenky and Sevastianov [11], or Hayashi [48]. Our primary interest behind

(4.1) relates to its use as a prototypical qualitative model of roll motion of a ship in irregular

(random) beam seas. The model (4.1) incorporates the possibility of capsizing, understood

as the transition through the unstable equilibrium (to another stable equilibrium). See e.g.

Belenky [8] for a closed form solution to the capsizing probability of the model (4.1) with a

piecewise linear restoring force.

A numerical method to compute (estimate) capsizing probabilities for the model (4.1) and

also for more realistic and analytically intractable systems (such as the actual dynamics of

a ship) was proposed by Belenky et al. [14] and coined split-time. See also Belenky et al.

[16] for an up-to-date review of the method. In the split-time approach, calculation of the

capsizing probability is reduced to two separate less complex problems: one, the so-called non-
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rare problem, involves the rate of the upcrossing of an intermediate level of a roll motion and,

second, the so-called rare problem that focuses on capsizing after an upcrossing. In the latter

(rare) problem, a roll rate leading to capsizing is computed numerically at each upcrossing,

called a critical response rate. A split-time metric of the likelihood of capsizing is then formed

as the difference between the observed and the critical response rates, with a positive difference

corresponding to capsizing. The probability of capsizing after upcrossing can then be found by

extrapolating the tail of the distribution of the split-time metric using the generalized Pareto

distribution (GPD) as suggested by Extreme Value Theory (see e.g. Coles [23]). The form of

the GPD is recalled in (4.11) below. The key advantage of the split-time method is that it

lends itself to reproducing a rare phenomenon such as capsizing, which would be too costly

to simulate directly with a code of reasonable fidelity. The split-time method was applied to

another rare event, the so-called broaching-to in Belenky et al. [17].

One striking feature of the GPD use is that it commonly suggests the distribution of the

critical response rate (and the split-time metric) having “light” tails, characterized by a negative

or zero shape parameter of the GPD. In contrast, the distribution of the response itself often

has a “heavy” right tail, especially in rough seas, characterized by a positive shape parameter of

the GPD. The latter phenomenon and, more generally, the tail structure of the distribution of

the response itself in the model (4.1) was studied and clarified in Chapter 3, in the case of both

correlated and white noise excitations. In particular, a heavier distribution tail was the result

of softening nonlinearity. In this chapter, we attempt to provide an analysis similar to that

of Chapter 3 but for the distributions of the critical response rate (rather than the response

itself) and split-time metric. More specifically, our goals are to: (i) Confirm the light character

of the distribution tail of the critical response rate and split-time metric for some forms of the

nonlinear oscillator (4.1), for both correlated and white noise excitations, (ii) Provide insight

into the structure of the distribution tail of the critical response rate and split-time metric,

and (iii) Understand implications of the findings on extreme value analysis of the considered

distributions. To the best of our knowledge, this is the first work to take a closer look at the

distribution of the critical response rate in a nonlinear oscillator (4.1) and its distribution tails.

Regarding the third point above, our theoretical and empirical analysis suggests that the

distribution of the split-time metric is in the domain of maxima attraction of the GPD with zero
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shape parameter, that is, the exponential distribution. This motivates the use of the exponential

distribution, rather than the GPD, for exceedances above threshold in extreme value analysis.

We investigate this approach for the derived distributions of the split-time metric, by using

threshold selection methods based on goodness-of-fit tests and the prediction error. In fact,

the exponential distribution was used for peaks over threshold in Hydrology before the GPD

was adopted as a more flexible model, though threshold selection was made based on other

considerations (e.g. Rosbjerg et al. [87], Todorevic and Zelenhasic [102]). Finally, for a more

refined examination of a distribution tail in the domain of maxima attraction of the exponential

distribution, we suggest the use of the Weibull distribution tail, which was previously considered

in the literature for various data fits.

The rest of this chapter is organized as follows. Section 4.2 includes some preliminaries,

specifying the exact cases of the model (4.1) considered in this chapter, and also recalling the

GPD and its use in Extreme Value Theory and in working with the split-time metric. The

considered models are piecewise linear and doubly piecewise linear oscillators with a correlated

excitation, and a softening Duffing oscillator with a white noise excitation. The distribution

and its tails for the critical response rate (and the split-time metric) in these models are studied

in Section 4.3. Section 4.4 contains some numerical results. Section 4.5 concerns the use of

the exponential distribution and the distribution with a Weibull tail for peaks over threshold.

Section 4.6 concludes.

4.2 Preliminaries

4.2.1 Description of models

We are interested in a single-degree-of-freedom nonlinear oscillator x(t) satisfying (4.1),

where δ > 0 is the damping parameter, y(t) is a random, mean zero excitation process and

r(x) is the restoring force. More specifically, two forms of random excitation are considered:

correlated and white noise. The correlated excitation is assumed to be a mean zero, stationary

Gaussian process with the spectral density motivated by the ship rolling application, namely,

sy(ω) = ω4
0

(
ω2

g

)2

sw(ω), ω > 0, (4.2)
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where ω is wave frequency, ω0 is a natural frequency (both frequencies in rad/s), and g = 9.807

rad/s is gravitational acceleration. The Bretschneider spectral density sw(ω) is taken for wave

elevation:

sw(ω) =
A

ω5
e−

B
ω4 , ω > 0, (4.3)

where A = 173H2
sT

−4
1 and B = 691T−4

1 both depend on significant wave height, Hs (in meters),

and the period corresponding to mean frequency of waves, T1 (in seconds). See also Appendix

A. The white noise excitation, on the other hand, can be viewed as a (generalized) derivative

of the Wiener process, that is, y(t) = σfẆ (t), and as having a constant spectral density

sy(ω) = σ2
f , (4.4)

where σf > 0 determines the strength of the excitation. Though the broadband nature of

the white noise forcing is certainly not realistic for describing wave excitation, its use in the

ship rolling application is still relevant, since the ship roll motion is dominated by ship motion

inertia. Working with the white noise excitation will allow for more analytic calculations with

the model (4.1) that cannot be carried out assuming correlated excitation.

In the case of correlated excitations, two types of the nonlinear restoring force are consid-

ered. The piecewise linear restoring force is given by

r(x) =


−kw2

0 (x+ xm)− w2
0xm, if x < −xm,

w2
0x, if − xm ≤ x ≤ xm,

−kw2
0 (x− xm) + w2

0xm, if x > xm,

(4.5)

where w0 is a natural frequency in the linear regime (−xm, xm), −kw2
0 < 0 is a negative slope

in the nonlinear regime |x| > xm and xm, called the “knuckle” point, defines the threshold

above which the system behaves nonlinearly, i.e. the point above which the restoring force is

decreasing. We shall refer to the oscillator associated with the restoring force (4.5) as piecewise

linear (PWL). We also considered the PWL model in Chapter 3.
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The doubly piecewise linear restoring force is given by: for x > 0,

r(x) =


w2
0x, if 0 < x ≤ xm,

−kw2
0 (x− xm) + w2

0xm, if xm < x ≤ xm,1,

−k1w
2
0 (x− xm,1)− kw2

0 (xm,1 − xm) + w2
0xm, if xm,1 < x,

(4.6)

and r(−x) = r(x). It thus makes the decreasing linear part of the piecewise linear restoring

force to be piecewise linear itself. We shall refer to the oscillator associated with the restoring

force (4.6) as doubly piecewise linear (DPWL).

We denote the respective points of vanishing stability, that is, the points for which the

restoring force becomes zero, by xν for the PWL oscillator, and by xν,1 for the DPWL oscilla-

tor. The restoring forces and the introduced notation for the PWL and DPWL oscillators are

depicted in Figure 4.1.

Though the use of a piecewise linear restoring force may seem unnatural in connection to

real-life forces, this turns out to be a useful idealization that allows for analytic arguments in the

case of correlated excitation, and also retains most known nonlinear properties of an oscillator

with a similar smooth stiffness. See Belenky [9] and, for additional references, Belenky et al.

[17]. We consider the DPWL oscillator to assess how our findings for the PWL system are

affected by further nonlinearity in the restoring force.

In the case of the white noise excitation (4.4), we shall consider the restoring force

r(x) = kx− cx3, k > 0, c > 0, (4.7)

associated with a softening Duffing oscillator. Our arguments though are general enough to

accommodate other nonlinear restoring forces, but possible at the expense of tractable calcula-

tions. An oscillator with a white noise excitation was also considered in Chapter 3.

4.2.2 Split-time metric and its extrapolation through GPD

In the context of ship motions, the split-time metric gives a way to describe how close

one came to capsizing, even when capsizing did not occur, conditioned on having crossed an
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Figure 4.1: The PWL (left plot) and DPWL (right plot) restoring forces.

intermediate threshold (that is commonly taken to be large). It is defined as

dst = 1 + ẋ1 − ẋcr, (4.8)

where ẋ1 is an observed response rate at the moment of upcrossing of the threshold, and

ẋcr is the critical response rate which would lead to capsizing. The value of the metric gives a

“distance” to capsizing. In particular, dst ≥ 1 corresponds to capsizing, and dst < 1 corresponds

to not capsizing. The probability of capsizing is then expressed as

P(capsizing) = P(crossing threshold)P(dst > 1|crossing threshold)

=: P(crossing threshold)P∗(dst > 1).

(4.9)

To estimate P(capsizing), a system of interest (e.g. (4.1)) is simulated until a chosen inter-

mediate threshold is crossed, at which point the simulation is paused and the critical rate is

found through a step search, after which the procedure is continued till multiple values of dst are

collected and multiple crossings have occurred. The probability P(crossing threshold) can be

estimated directly from the crossing frequency. On the other hand, the probability P∗(dst > 1)

is estimated by applying techniques from Extreme Value Theory, as no observed values of dst

would typically be bigger than 1. More specifically, the peaks-over-threshold (POT) approach
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(see e.g. Chapter 2 of this dissertation or Coles [23]) is used, by writing first

P∗(dst > 1) = P∗(dst > u)P∗(dst > 1|dst > u), (4.10)

where u is an intermediate threshold of dst (smaller than 1 and for which there are dst > u).

The so-called non-rare probability P∗(dst > u) is estimated as the observed proportion of dst’s

exceeding u. The rare probability P∗(dst > 1|dst > u) is estimated by fitting a generalized

Pareto distribution to dst above u and using it to extrapolate to the capsizing value dst = 1.

It is well known that under general conditions the distribution of exceedances above a

sufficiently large threshold from a sequence of i.i.d. random variables is well approximated by a

generalized Pareto distribution (GPD; see e.g. Pickands [81] or Coles [23]). Its complementary

distribution function is

Fµ,ξ,σ(x) =



(
1 + ξ(x−µ)

σ

)−1/ξ
, µ < x, if ξ > 0,

e−
x−µ
σ , µ < x, if ξ = 0,(

1 + ξ(x−µ)
σ

)−1/ξ
, µ < x < µ− σ

ξ , if ξ < 0,

(4.11)

where the parameters are ξ (shape), and σ (scale), and µ (threshold, equal to u in (4.10)). The

sign of the shape parameter determines whether the tail of the GPD is light (ξ ≤ 0) or heavy

(ξ > 0). A GPD with a light tail has an upper bound at µ+(−σ/ξ) when ξ < 0, while a heavy

tail has a power-law form. When ξ = 0, the GPD is the exponential distribution.

We also note that in theory, distributions having a power-law tail are approximated (are

in the domain of attraction) of the GPD with positive shape parameter ξ > 0. Likewise, the

domain of attraction of GPD with negative shape parameter ξ < 0 are distributions having

an upper finite bound and a suitable power-law behavior at that bound. In fact, most other

light distributions (normal, Weibull, etc.) are in the domain of attraction of an exponential

distribution, that is, the GPD with ξ = 0. In practice, the situation is a bit “murkier.” For

example, estimated shape parameters for a normal distribution would typically be negative,

since the normal tail is lighter than the exponential tail. From this more practical perspective,

the GPD can be thought as a flexible family of models for distribution tails, whose nature can

range from power laws (i.e. very heavy) to bounded from above (i.e. very light). Though we
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also emphasize that this view is too simplistic, since the GPD arises naturally in Extreme Value

Theory as the distribution to use for exceedances above large thresholds.

4.3 Distributions of response rates

We study here the distributions of the critical response rate and the split-time metric for

the models listed in Section 4.2.1: the PWL and DPWL oscillators with correlated excitation

(Sections 4.3.1 and 4.3.2 below) and the Duffing oscillator with white noise excitation (Section

4.3.3 below).

4.3.1 PWL oscillator with correlated excitation

We are interested here in a critical response rate, that is, the rate needed to capsize at the

upcrossing of the process x(t) of the level xm. We denote the value of the critical response rate

as ẋcr. The crossing level is naturally taken as the knuckle point xm since the system transitions

into a nonlinear regime above this point.

For the PWL oscillator, the solution after the upcrossing of the process of the level xm is

given by

x(t) = Aeλ1t +Beλ2t + xν , (4.12)

when the excitation is switched off after the upcrossing, and

x(t) = Aeλ1t +Beλ2t + xν + pu(t), (4.13)

when the excitation is present. Switching off excitation above the knuckle point is natural since

most of the excitation is expected to be received through resonance which is not possible when

the stiffness is decreasing (see e.g. Belenky and Sevastianov [11]). Here, A and B are constants

determined by the initial conditions x(0) = xm and ẋ(0) = ẋ1,

λ1 = −δ +
√

kw2
0 + δ2 > 0, λ2 = −δ −

√
kw2

0 + δ2 < 0, (4.14)
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and pu(t) is a particular solution after the upcrossing, that is, the process satisfying

p̈u(t) + 2δṗu(t)− kw2
0pu(t) = y(t) (4.15)

and such that at time 0, the process x(t) satisfying the linear equation

ẍ(t) + 2δẋ(t) + w2
0x(t) = y(t) (4.16)

upcrosses xm. For later reference, we also let p(t) be the process satisfying

p̈(t) + 2δṗ(t)− kw2
0p(t) = y(t), (4.17)

without conditioning on the upcrossing of x(t).

With the excitation switched off, we have

A =
ẋ1 + λ2(xν − xm)

λ1 − λ2
, B = −λ1(xν − xm) + ẋ1

λ1 − λ2
(4.18)

and with the excitation on,

A =
ẋ1 − ṗ1 + λ2(xν + p1 − xm)

λ1 − λ2
, B = −λ1(xν + p1 − xm) + ẋ1 − ṗ1

λ1 − λ2
, (4.19)

where p1 = pu(0) and ṗ1 = ṗu(0). The system capsizes when A > 0, leading to the following

critical response rates: with the excitation switched off,

ẋcr = −λ2(xν − xm) (4.20)

and with the excitation on,

ẋcr = −λ2(xν − xm + p1) + ṗ1. (4.21)

Note that ẋcr is constant when the excitation is switched off. To understand the distribution

of ẋcr when the excitation is switched on, we need to characterize the joint distribution of p1

and ṗ1. We shall make a simplifying assumption that before the upcrossing of xm, the process
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x(t) behaves as a Gaussian process, satisfying the equation (4.16). This simplifying assumption

is often made in the literature (e.g. Mohamad and Sapsis [71]), and has been studied closer in

Belenky et al. [17], and in Chapter 3.

By using a standard argument (e.g. Lindgren [62], Section 8.3; Sólnes [96], pp. 161-162),

the density of ẋ1, p1 and ṗ1 at the upcrossing of xm is given by

C0ẋfµ0,Σ0(xm, ẋ, p, ṗ), (4.22)

where C0 is a normalizing constant, fµ,Σ denotes the multivariate normal density with mean µ

and variance Σ, and

µ0 =



0

0

0

0


, Σ0 =



σ2
x σxẋ σxp σxṗ

σẋx σ2
ẋ σẋp σẋṗ

σpx σpẋ σ2
p σpṗ

σṗx σṗẋ σṗp σ2
ṗ


(4.23)

with the entries in Σ0 denoting the corresponding covariances of the processes satisfying (4.16)

and (4.15). In particular, σxẋ = 0, σpṗ = 0 and σxṗ = −σẋp. Let Σ0,ẋpṗ denote the 3 × 3

submatrix of Σ0 associated with the variables ẋ, p and ṗ, Σ0,ẋpṗ|x denote the 3 × 1 vector

(σxẋ σxp σxṗ) consisting of covariances for ẋ, p, ṗ and x, respectively, Σ0,x = σ2
x and µ0,ẋpṗ

denote the 3 × 1 zero vector of the means associated with ẋ, p and ṗ, and µ0,x = 0. Through

conditioning on the first variable x (see e.g. Timm [101], Section 3.3a), one can rewrite the

density (4.22) as

C1ẋfµ1,Σ1(ẋ, p, ṗ), (4.24)

where

µ1 = µ0,ẋpṗ +Σ0,ẋpṗ|xΣ
−1
0,x(xm − µ0,x) =


0

σpx

σ2
x
xm

σṗx

σ2
x
xm

 =:


0

p̄

¯̇p

 , (4.25)
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Σ1 = Σ0,ẋpṗ − Σ0,ẋpṗ|xΣ
−1
0,xΣ

′
0,ẋpṗ|x =


σ2
ẋ σẋp σẋṗ

σpẋ σ2
p −

σ2
px

σ2
x

−σpxσṗx

σ2
x

σṗẋ −σpxσṗx

σ2
x

σ2
ṗ −

σ2
ṗx

σ2
x

 . (4.26)

By using another conditioning but now on the variable ẋ and the notation analogous to above,

we can express the density (4.24) as

ẋ

σ2
ẋ

e−ẋ2/(2σ2
ẋ)fµ2(ẋ),Σ2

(p, ṗ), (4.27)

where

µ2(ẋ) = µ1,pṗ +Σ1,pṗ|ẋΣ
−1
1,ẋ(ẋ− µ1,ẋ) =

 p̄+
σpẋ

σ2
ẋ
ẋ

¯̇p+
σṗẋ

σ2
ẋ
ẋ

 =

 σpx

σ2
x
xm +

σpẋ

σ2
ẋ
ẋ

σṗx

σ2
x
xm +

σṗẋ

σ2
ẋ
ẋ

 , (4.28)

Σ2 = Σ1,pṗ − Σ1,pṗ|ẋΣ
−1
1,ẋΣ

′
1,pṗ|ẋ =

 σ2
p −

σ2
px

σ2
x
− σ2

pẋ

σ2
ẋ

−σpxσṗx

σ2
x

− σpẋσṗẋ

σ2
ẋ

−σpxσṗx

σ2
x

− σṗxσṗẋ

σ2
ẋ

σ2
ṗ −

σ2
ṗx

σ2
x
− σ2

ṗẋ

σ2
ẋ

 . (4.29)

The expression (4.27) for the density of ẋ1, p1 and ṗ1 shows that, as expected, ẋ1 follows

the Rayleigh distribution with parameter σ2
ẋ, and that conditionally on ẋ1, the distribution of

p1 and ṗ1 is bivariate normal with mean vector µ2(ẋ1) and covariance matrix Σ2. Note that

only the mean depends on ẋ1.

These findings suggest that in practice, a sample of independent copies of the vector (p1, ṗ1)′

can be generated easily, and then substituted into (4.21) to get a sample of independent copies

of ẋcr, whose distribution can then be examined using available exploratory tools. This is

pursued further in Section 4.4.

We note that an explicit expression for the density of p1 and ṗ1 can also be obtained, after

integrating out the variable ẋ in (4.27). But its form is quite lengthy and will not be presented

here. The same could also be said about the distribution of the critical response rate. In fact, as

illustrated in Section 4.4 below, the distribution of the latter is close to a normal distribution.

This perhaps should not be that surprising since the distribution of p1 and ṗ1 is (conditionally)

normal. In particular, the distribution tails of ẋcr are determined by the normal distribution

tails of p1 and ṗ1.
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The arguments presented above extend naturally to the split-time metric defined in (4.30),

that is,

dst = 1 + ẋ1 − ẋcr =

 1 + ẋ1 + λ2(xν − xm), with excitation off,

1 + ẋ1 + λ2(xν − xm + p1)− ṗ1, with excitation on,
(4.30)

in view of (4.16) and (4.21). Thus, with excitation off, the distribution of the metric is just a

shifted Rayleigh distribution. That is, the distribution of the metric and its tail are completely

determined by those of the response rate at the upcrossing. When excitation is on, a sample

of independent copies of the metric dst can be generated efficiently in the same way as for

ẋcr discussed above and examined through available exploratory tools. The latter is pursued

further in Section 4.4 below.

In fact, the asymptotic behavior of the distribution tail of dst with turned on excitation can

be derived easily. It follows from (4.27)–(4.29) that the density of dst is

fdst(y) =

∫ ∞

0
dẋ

∫
R
dp

ẋ

σ2
ẋ

e−ẋ2/(2σ2
ẋ)fµ2(ẋ),Σ2

(p, ẋ+ λ2p− y), y ∈ R. (4.31)

Indeed, both integrals can be evaluated analytically. First, we rewrite the multivariate normal

density as a univariate normal density in p (only) by completing the square, i.e. writing

fµ2(ẋ),Σ2
(p, ẋ+ λ2p− y) ∝ e−

1
2
(Ap2−2Bp+C) = e−

A
2
(p−B

A
)2 e

− 1
2

(
C−B2

A

)
,

where ∝ denotes “proportional to,” and B and C depend on ẋ and y, while A is a constant

with respect to both. This allows writing the density as

fdst(y) ∝
∫ ∞

0
dẋ ẋe

− ẋ2

2σ2
ẋ e

− 1
2

(
C−B2

A

) ∫
R
fB

A
, 1
A
(p)dp

=

∫ ∞

0
dẋ ẋe

− ẋ2

2σ2
ẋ

− 1
2

(
C−B2

A

)
, y ∈ R,

(4.32)

where fµ,σ2 denotes the univariate normal density as in the multivariate case. It can be seen

that the exponent of the exponential function is quadratic in both ẋ and y. A second application
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of completing the square allows rewriting the exponential term with ẋ only, i.e.

fdst(y) ∝ e
− 1

2

(
C0−

B2
0

A0

) ∫ ∞

0
dẋ ẋe

−A0
2

(
ẋ+

B0
A0

)2

, y ∈ R, (4.33)

where A0 is a constant, B0 is linear in y, and C0 is quadratic in y.

Next, we evaluate the remaining integral by a simple change of variables. In particular,

∫ ∞

0
dẋ ẋe

− 1
2
A0

(
ẋ+

B0
A0

)2

=
1

A0

[
e
− B2

0
2A0 +B0

√
π

2A0

(
erf

(
B0√
2A0

)
− 1

)]
,

where erf(x) = 2√
π

∫ x
0 e−u2

du. Hence,

fdst(y) ∝ e
− 1

2

(
C0−

B2
0

A0

) [
e
− B2

0
2A0 +B0

√
π

2A0

(
erf

(
B0√
2A0

)
− 1

)]

= e−
C0
2 +

√
π

2A0
B0e

− 1
2

(
C0−

B2
0

A0

)(
erf

(
B0

2
√
A0

)
− 1

)
, y ∈ R.

Letting B′
0 :=

B0√
2A

, we can rewrite this as

fdst(y) ∝ e−
C0
2

[
1 +

√
πB′

0e
B′2

0
(
erf

(
B′

0

)
− 1

)]
, y ∈ R. (4.34)

Now,
√
πxex

2
(erf(x) − 1) → −1, as x → ∞. Hence, the term in the square brackets in

(4.34) behaves like a constant asymptotically. Since C0 is quadratic in y, the right tail of

fdst(y) behaves like a (non-standard) normal distribution, so it is in the domain of attraction

for the GPD with shape parameter ξ = 0 (see e.g. De Haan and Ferreira (2007), pp. 11-12).

4.3.2 DPWL oscillator with correlated excitation

We now turn to the DPWL oscillator, and suppose that the excitation is present in the

regime xm < x < xm,1 but is switched off in the regime x > xm,1. As in (4.20), we know that

the critical response rate in the regime x > xm,1 is

ẋcr,1 = −λ2,1(xν,1 − xm,1), (4.35)
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where as in (4.14),

λ1,1 = −δ +
√
k1w2

0 + δ2 > 0, λ2,1 = −δ −
√
k1w2

0 + δ2 < 0. (4.36)

Since the solution in the regime xm < x < xm,1 is still given by (4.13), the critical response

rate for the DPWL oscillator should now satisfy: with ẋ = ẋcr and t = tcr, A(ẋ)eλ1t +B(ẋ)eλ2t + xν + pu(t) = xm,1,

λ1A(ẋ)eλ1t + λ2B(ẋ)eλ2t + pu′(t) = −λ2,1(xν,1 − xm,1),
(4.37)

where A = A(ẋ) and B = B(ẋ) are given in (4.19).

We are interested in solving (4.37) numerically. In order to do so, we need to understand

the structure of the process pu(t). By arguing as for the PWL system in Section 4.3.2, one can

show that conditionally on ẋ = ẋ1, the process pu(t) is Gaussian with mean

µpu(t) =
γxp(t)

σ2
x

xm +
γẋp(t)

σ2
ẋ

ẋ (4.38)

and covariance function

γpu(t1, t2) = γp(t1 − t2)−
γxp(t1)γxp(t2)

σ2
x

− γẋp(t1)γẋp(t2)

σ2
ẋ

, (4.39)

where

γp(t) = Ep(0)p(t), γxp(t) = Ex(0)p(t), γẋp(t) = Eẋ(0)p(t)

and x(t) satisfies the linear equation (4.16), and p(t) satisfies the linear equation (4.17). Thus,

one can write

pu(t) =
γxp(t)

σ2
x

xm +
γẋp(t)

σ2
ẋ

ẋ+ κ(t), (4.40)

where κ(t) is a Gaussian zero mean process with the same covariance as pu(t), that is,

Eκ(t1)κ(t2) = γp(t1 − t2)−
γxp(t1)γxp(t2)

σ2
x

− γẋp(t1)γẋp(t2)

σ2
ẋ

, (4.41)
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This representation is known as the Slepian model for the particular solution p(t) after the

upcrossing of x(t) of the level xm. See e.g. Lindgren [62], Section 8.4. The next elementary

lemma clarifies the structure of the process κ(t).

Lemma 1. With the above notation, we have the following representation:

κ(t) = p(t)− γxp(t)

σ2
x

x(0)− γẋp(t)

σ2
ẋ

ẋ(0). (4.42)

Proof. The proof is elementary by checking that the process on the right-hand side of (4.42)

has the covariance function (4.39). �

By using (4.42), the representation (4.40) of the particular solution pu(t) can also be ex-

pressed as

pu(t) =
γxp(t)

σ2
x

(xm − x(0)) +
γẋp(t)

σ2
ẋ

(ẋ− ẋ(0)) + p(t). (4.43)

This representation of pu(t) is most convenient when generating pu(t) in practice.

Several approximations of pu(t) can be tried when substituting (4.43) into (4.37). One

approximation is

pu,app,1(t) =
γxp(0) + γ′xp(0)t

σ2
x

(xm − x(0)) +
γẋp(0) + γ′ẋp(0)t

σ2
ẋ

(ẋ− ẋ(0)) + p(0) + p′(0)t

=
σxp + σxṗt

σ2
x

(xm − x(0)) +
σẋp + σẋṗt

σ2
ẋ

(ẋ− ẋ(0)) + p(0) + p′(0)t. (4.44)

As illustrated in Section 4.4, this approximation is accurate till about t = 1. Another approxi-

mation is

pu,app,2(t) =
γxp(t)

σ2
x

(xm − x(0)) +
γẋp(t)

σ2
ẋ

(ẋ− ẋ(0)) + p(0) (4.45)

(or without p(0)). This approximation does not appear accurate for larger t – keep in mind

that the process p(t) is stationary and its magnitude does not seem negligible. See Section 4.4.

In Section 4.4, we will report on the distributions of the critical response rate ẋcr when

solving (4.37) numerically, and also the distribution of the resulting split-time metric. The

findings are similar to those for the PWL oscillator.
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Figure 4.2: A phase portrait of the Duffing oscillator, restricted to the heteroclinical orbit connecting
the unstable equilibria ±

√
k/c.

4.3.3 Duffing oscillator with white noise excitation

We now turn to the Duffing oscillator with the restoring force r(x) in (4.7) and the white

noise excitation y(t) = σfẆ (t) characterized by (4.4). Figure 4.2 depicts a qualitative phase

portrait of the (undamped, unforced) system, limited to the heteroclinical orbit connecting the

two unstable equilibria xν = ±
√
k/c. The point of upcrossing x(0) = xm and the upcrossing

response rate ẋ(0) = a are also marked in the plot.

We define capsizing as crossing the heteroclinical orbit connecting the two unstable equi-

librium without later coming back to it and again are interested in a critical response rate ẋcr.

Note that the rate ẋcr depends only on a future realization of white noise (and the upcrossing

threshold xm). Capsizing, on the other hand, will also depend on the rate at the upcrossing.

In our calculations, we shall make the simplifying assumption that capsizing is “monotone” in

the rate, that is, if a given rate leads to capsizing, then so would any larger rate (for a given

future realization of white noise).

Since the critical response rate is defined as the rate leading to capsizing, note that

Pxm(ẋcr ≤ a) = Pxm(capsize|ẋ(0) = a), (4.46)

where Pxm denotes a probability with respect to a future realization of white noise, conditioned

on x(0) = xm. The white noise realizations in the two events of (4.46) are the same: if a white

noise realization is such that ẋcr ≤ a, then by monotonicity, one should be capsizing with any

larger velocity, including ẋ(0) = a; vice versa, if one is capsizing for a white noise realization

with ẋ(0) = a, then by monotonicity, this also means that ẋcr ≤ a for such a realization.
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In the rest of this section, we focus on computing the CDF of the critical response rate

ẋcr using the right-hand side of (4.46). Strictly speaking, our calculations will be approximate

and expected to be accurate only in certain regions. More specifically, to evaluate the capsiz-

ing probability of interest, we consider only short time intervals, which allows one to remove

damping for its insignificant role and to assume a small variance of the excitation. A short time

interval can be assumed if one is close to the heteroclinical orbit or if an initial displacement

x(0) = xm is large. Two cases must be handled separately, according to whether the initial

conditions a, xm are within or beyond the heteroclinical orbit.

We first consider the case of starting within the orbit. Under the assumptions above, we

shall find the mean and the variance of the maximum response which will lead to the probability

of interest by conditioning on the maximum response being above the unstable equilibrium

xν =
√

k/c. Figure 4.3, left plot, illustrates our approach.

Under the assumptions above, the equation for the mean x(t) of the process is

ẍ(t) + kx(t)− cx(t)3 = 0; ẋ(0) = a, x(0) = xm. (4.47)

By conservation of energy, the mean xmax of the maximum response conditional on ẋ(t) = 0

satisfies

kx2max −
1

2
cx4max = a2 + kx2m − 1

2
cx4m =: 2E(a, xm). (4.48)

Solving this equation gives

xmax =

√√√√−k +
√
k2 − 2(a2 + kx2m − 1

2cx
4
m)c

−c
, (4.49)

which depends in a direct way on the initial conditions a, xm. On the heteroclinical orbit,

E(a, xm) = k2

2c , so (4.49) simplifies to xmax = xν .

Similarly, we can calculate the variance. The period of the nonlinear oscillator can be

computed as follows. Note that, over a quarter of a period T0(a, xm), we should have x(t) go
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Figure 4.3: The path of x(t) to xmax(a, xm) and its variability characterized by σ2
x∗

∣∣
xmax

, for choices
of a within (left) and beyond (right) the heteroclinical orbit connecting the two unstable equilibria.

from 0 to xmax. Then,

T0(a, xm)

4
=

∫ xmax

0

dx√
2E(a, xm)− kx2 + 1

2cx
4
. (4.50)

For each choice of a, xm, to make calculations tractable, substitute the nonlinear oscillator

with a linear one having the same natural period of oscillation:

ẍ∗(t) + ω2
0(a, xm)x∗(t) = σfẆ (t), ω0(a, xm) =

2π

T0(a, xm)
, (4.51)

where x∗(t) is the fluctuation around the mean x(t) which is due to white noise. For this system,

we have

σ2
x∗(t) := Ex∗(t)2 =

σf t

ω2
0(a, xm)

−
σf (sin 2ω0(a, xm)t)

2ω3
0(a, xm)

(4.52)

(see e.g. Gitterman [42], Section 8.2; p. 85). The time it takes for the system to go from

(x(0), ẋ(0)) = (a, xm) to (xmax, 0) is

Tmax(a, xm) =

∫ xmax

xm

dx√
2E(a, xm)− kx2 + 1

2cx
4
. (4.53)

This time has to be relatively small for our analysis to be valid. Thus,

σ2
x∗
∣∣
xmax

=
σfTmax(a, xm)

ω2
0(a, xm)

−
σf (sin 2ω0(a, xm)Tmax(a, xm))

2ω3
0(a, xm)

. (4.54)

88



In view of the developments above, we conclude that, under the heteroclinical orbit,

Pxm(capsize|ẋ(0) = a) =

∫ ∞

xν

ϕ(u;xmax, σ
2
x∗
∣∣
xmax

)du, (4.55)

where ϕ(u;µ, σ2) is the density of a normal distribution with mean µ and variance σ2. Note

that both xmax and σ2
x∗
∣∣
xmax

depend on a and xm. After a change of variables, and by (4.46),

we can write the CDF of the critical rate (under the heteroclinical orbit) as

Fẋcr(a) = Φ((xν − xmax)/σx∗
∣∣
xmax

), (4.56)

where Φ(z) = P(N(0, 1) > z) is the tail of the CDF of the standard normal distribution.

We now turn to the case of initial conditions being above the heteroclinical orbit. This

approach is illustrated in Figure 4.3, right plot. Here, capsizing occurs for trajectories which

remain outside the heteroclinical orbit. Since x(t) has no maximum in this case, we consider

its variability when ẋ(t) is minimized. It is straightforward to see from (4.48) that

ẋ(t) =

√
2E(a, xm)− kx(t)2 +

1

2
cx(t)4, (4.57)

which is minimized when x(t) = xν , hence

ẋmin =

√
2E(a, xm)− 1

2

k2

c
. (4.58)

We assume that the time it takes for x(t) to go from 0 to xν is a quarter of a period, i.e.

(4.50) and (4.53) still apply, with xmax replaced by ẋmin. Thus, the variability, characterized

by σ2
x∗
∣∣
ẋmin

, is computed as in (4.54). The probability of capsizing additionally depends on the

(horizontal) distance from (x(t), ẋ(t)) = (xν , ẋmin) to (xhet, ẋmin), where xhet = xhet(a, xm) is

on the heteroclinical orbit. From (4.57), we find

xhet =

√√√√k −
√
2cẋ2min − k2

c
, (4.59)
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and

Fẋcr(a) = Φ((xhet − xν)/σx∗
∣∣
xmax

). (4.60)

Calculations involved in differentiating to compute the density of the critical rate have proven

unwieldy. Simulation for the distributions (4.56) and (4.60) are discussed in Section 4.4 below.

An argument can be extended to generate observations of ẋ, ẋcr and hence those of the

split-time metric. Since ẋ1 depends on a past realization of white noise and ẋcr depends on the

future, the joint density of the rate and critical rate is given by

fxm(ẋ1 = b, ẋcr = a) = fxm(ẋ1 = b)fxm(ẋcr = a), (4.61)

where the density of ẋ(0) is known explicitly from the Fokker-Planck-Kolmogorov equation,

yielding

fxm(ẋ(0) = a) = Ce
− 2δ

σ2
f

a2

, (4.62)

where C is a normalizing constant. See e.g. Chapter 3, (3.36), or Sobczyk [94], Theorem 1.6,

p. 34 or p. 334. It follows that the density of the split-time metric dst is

fxm(dst = z) = fxm(ẋ1 − ẋcr = z − 1) =

∫ ∞

0
fxm(ẋ1 = u+ z − 1)fxm(ẋcr = u)du.

By equations (4.56) and (4.3.3), and using integration by parts, we can write

fxm(dst = z) =

∫ ∞

0
Ce

− 2δ

σ2
f

(u+z−1)2

dFẋcr(u) = C2

∫ ∞

0
Fẋcr(u)(u+z−1)e

− 2δ

σ2
f

(u+z−1)2

du, (4.63)

where C2 is a normalizing constant.

4.4 Numerical results

We shall examine here the distributions of the critical response rate and the split-time

metric for the PWL and DPWL systems and the Duffing oscillator through some available

exploratory tools.
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Parameter PWL simulation DPWL simulation
w0 0.6 0.6
δ 0.15w0 = 0.09 0.09
xm 30π/180 = 0.52 0.52
xm,1 - xm + 1

2 (xν − xm)
k 0.5 0.5
k1 - 1.5
Hs 9 9
Tm 15 15

Table 4.1: Parameter values for simulations

4.4.1 PWL and DPWL oscillators

We generated 500, 000 independent copies of the critical response rates for the PWL oscilla-

tor, and 5, 000 for the DPWL oscillator, from the distributions and through the methods found

in Sections 4.3.1 and 4.3.2. The parameter values for either set of the simulations are given in

the middle columns of Table 4.1, and are identical with the exception of the linear segments of

the restoring forces. See Figure 4.1.

Figure 4.4 depicts several exploratory plots for the critical response rate generated from

the PWL oscillator. Clockwise from upper left these are: the histogram and fitted normal

density, the standard normal quantile plot, and the shape parameter plots for the left and right

distribution tails. The histogram appears normal. The quantile plot shows little deviation from

normal quantiles, except perhaps with slightly lighter tails. The shape parameter plots for both

the left and right tails estimate a shape parameter of about ξ = −0.1, although ξ = 0 is not

outside the confidence bounds, especially for the left tail, which is consistent with the estimated

shape parameter from the normal distribution. Thus, all four plots suggest agreement that the

distribution of the critical response rate is close to normal.

Similar exploratory plots for the split-time metric generated from the PWL oscillator are

depicted in Figure 4.5. These include, clockwise from upper left, a histogram of the split-time

metric with a density estimated from kernel smoothing, the shape parameter plot for the right

tail, the standard normal quantile plot, and a histogram of values above the median with a fitted

half-normal density. The left tail is not considered as it corresponds to values of the metric far

from capsizing. A small deviation from the normal distribution is seen in the quantile plot and

histogram plots, toward slightly heavier tails. Similar to that of the critical response rate in
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Figure 4.4: The PWL oscillator: Top left: histogram of the critical response rates with a fitted normal;
Top right: the QQ-plot of the critical response rates; Bottom left: the shape parameter plot for the right
tail; Bottom right: the shape parameter plot for the left tail.

Figure 4.4, the shape parameter plot estimates a shape parameter near ξ = −0.1, but ξ = 0

remains in the confidence bounds as well, suggesting the distribution of the split-time metric is

also close to normal.

Considering the DPWL oscillator, four realizations of the particular solutions pu(t) and its

two approximations discussed in Section 4.3.2 are depicted in Figure 4.6. These illustrate that

the first approximation (linearizing p, in green) is reasonable, typically until approximately

t = 1. The second approximation (linearizing r, in blue) is not quite as good, although it is

still often accurate until around t = 1.

By using the parameter values above, we generated 5000 independent copies of the critical

response rates for the DPWL oscillator. Figure 4.7 depicts the histogram, the normal quantile

plot, and the shape parameter plots for the left and right tails, as in Figure 4.4. The results of

the exploratory analysis are not too different from those for the PWL oscillator. In particular,
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Figure 4.5: The split-time metric generated from the PWL oscillator: Top left: histogram of the
split-time metric with a density estimated from kernel smoothing; Top right: the shape parameter plot
for the right tail; Bottom left: histogram of values above the median, with fitted half-normal density;
Bottom right: the QQ-plot of the metric with the right-tail of a standard normal distribution.

the distribution of the critical response rate is close to normal: the histogram appears normal,

and the quantile plot may indicate a lighter tail on the left, and a heavier tail on the right, as

compared to the normal distribution. However, the shape parameter plots for both the left and

right tails estimate a shape parameter of about ξ = −0.2, and although ξ = 0 is not outside

the confidence bounds, especially for the left tail, which is consistent with the estimated shape

parameter from the normal distribution. Thus, all four plots suggest that the distribution of

the critical response rate is close to normal.

4.4.2 Duffing oscillator

We compare the above oscillators to the Duffing oscillator with white noise excitation

discussed in Section 4.3.3. We generated 10,000 independent copies of the critical response rate
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Figure 4.6: The particular solution (after the upcrossing of the process) and its approximations. The
four plots are for four realizations.

for the Duffing oscillator with restoring force as in (4.7) with k = 1 and c = 3, and spectral

density for the excitation as in (4.4) with σf = 0.0730, chosen so as to produce upcrossings of

xm = 0.3 at a similar frequency as upcrossings of the knuckle point in the simulation of the

PWL oscillator.

The CDF of the critical rate was numerically calculated from (4.46) for values of a from 0

to 3 with a stepsize of 0.0005, with the density computed through differencing and depicted in

Figure 4.8 (top right). The sample is generated from this density through rejection sampling,

and its histogram with a density estimated from kernel smoothing is depicted in Figure 4.8

(top left). The bottom plots show the shape parameter plots for both the right and left tails;

negative shape parameters are estimated in both cases.

An additional 10,000 independent copies of the sample of the split-time metric was gen-

erated directly from independent samples of the rate (taken from a half-normal distribution)
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Figure 4.7: The DPWL oscillator: Top left: histogram of the critical response rates; Top right: the
QQ-plot of the critical response rates; Bottom left: the shape parameter plot for the right tail; Bottom
right: the shape parameter plot for the left tail.

and critical rate, and following equation (4.8). Exploratory plots are depicted in Figure 4.9,

including a histogram with density estimated from kernel smoothing, histogram of the right

tail with a fitted half-normal density, a shape parameter plot for the right tail, and a QQ-plot

for the right tail only. As in the cases of the PWL and DPWL oscillator discussed in Section

4.4.1, a shape parameter value of ξ = 0 is within confidence bounds, consistent with a normal

tail, although the QQ-plot also indicates some deviations.

4.5 Implications for extreme value analysis

We discuss here briefly several statistical implications of the findings in the previous sec-

tions, namely, concerning the uses of the exponential distribution (Section 4.5.1) and of the

distribution with a Weibull tail (Section 4.5.2) in the POT approach.
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Figure 4.8: The Duffing oscillator: Top left: histogram of the critical response rates with a density
estimated from kernel smoothing; Top right: density of the critical rate numerically calculated from
(4.46); Bottom left: the shape parameter plot for the right tail; Bottom right: the shape parameter plot
for the left tail.

4.5.1 POT approach with exponential distribution

The results of Sections 4.3 and 4.4 suggest (and in some cases show) that the distribution

of the split-time metric for the considered models is in the domain of maxima attraction of

the GPD with the shape parameter ξ = 0, that is, the exponential distribution. A natural

question then is whether the POT approach described in Section 4.2.2 could be used with the

exponential distribution for extrapolation above threshold, instead of the GPD. In fact, the POT

approach has originated in Hydrology with using the exponential distribution for POT (e.g. see

Ekanyake and Cruise [36], Madsen et al. [65] and references therein) though the setting in these

early works is slightly different from that considered here (e.g. a threshold is selected based on

the exceedance times following a Poisson process). We also note that fitting the exponential
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Figure 4.9: The split-time metric generated from the Duffing oscillator: Top left: histogram of the
split-time metric with a numerically estimated density; Top right: histogram of the largest 50% of split-
time metric values with a fitted half-normal density; Bottom left: the shape parameter plot for the right
tail; Bottom right: the QQ-plot of the metric with the right-tail of a standard normal distribution.

distribution above threshold is essentially equivalent to fitting the Gumbel distribution (one of

the three extreme value distributions) to block maxima (e.g. see Gomes and Guillou [45]).

In attempting to use the POT approach with the exponential distribution, the choice of a

threshold (denoted u in (4.10)) is critical. The methods of threshold selection that we have been

using are based on either the goodness-of-fit tests for the exponential distributions (Spinelli and

Stephens [98]) or a prediction error criterion (Mager [66]). In the first approach, for a range

of intermediate thresholds, we would test if the data above a given threshold is consistent

with the exponential distribution (at some significance level α) and then choose the smallest

threshold for which this consistency holds (the null hypothesis not rejected), including all larger

thresholds. But we also found that for this method to work, the significance level should be

quite large (say α = 30% or 40%), that is, one should be quite sure of the fit of the exponential
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distribution. Choosing large α will lead to larger selected threshold and fewer observations

above the threshold, and thus also larger associated uncertainty (wider confidence intervals).

In the second approach, a threshold is chosen based on a prediction error criterion. More

specifically, let Xn,n ≤ ... ≤ X1,n be the order statistics of a variable of interest, for example,

the split-time metric dst. A threshold u = Xk+1,n or the index k is then selected as

k̂ = argmin
k

Γ̂(K). (4.64)

Here, the minimum is searched over some range of values k, with Mager [66] suggesting to use

k ∈ [min(40, 0.02n), 0.2n], though in simulations for synthetic distributions, we sometimes find

the results to be sensitive to the choice of upper bound. The quantity Γ̂(k) is defined as

Γ̂(k) = σ̂−2
k∑

i=1

(
k + 1

i
− 1

)−1(
Xi,n − u+ σ̂ log

(
i

k + 1

))2

+
2

k

k∑
i=1

(
k + 1

i
− 1

)−1

log2
(

i

k + 1

)
− 1,

(4.65)

where σ̂ is the scale parameter estimate of the exponential distribution based on Xi,n − u,

i = 1, ..., k. See Mager [66], bottom of p. 64.

Figure 4.10 illustrates the POT approaches based on the GPD (left plot) and the exponential

distribution (right plot), applied to extrapolating the distribution of the absolute value of the

standard normal random variable with sample size n = 1000. A threshold for both methods

is selected automatically by using the prediction error criterion mentioned above and found

in Mager [66]. Each vertical line corresponds to a separate independent replication, with the

circle indicating the estimate of the exceedance probability P(|N(0, 1)| > 4.056) = 5 × 10−5

and the line corresponding to the associated 95% confidence interval, all on a log vertical scale.

The horizontal line shows the target probability 5 × 10−5. As expected, about 95% of the

vertical lines include the true probability in both GPD and exponential cases. But note that

that confidence intervals for the exponential case are narrower, which might be an appealing

feature for using the POT approach with the exponential distribution in practice – again this

is assuming the knowledge that the data is from the distribution in the domain of attraction
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Figure 4.10: The POT approaches based on the GPD (left plot) and the exponential distribution
(right plot).

of the exponential distribution, as suggested e.g. for the split-time metric through the models

analyzed above.

4.5.2 POT approach for distribution with Weibull tail

Instead of using the POT approach with the exponential distribution, another interesting

alternative is to use a POT approach for a distribution having a Weibull tail. More specifically,

supposing X is a variable of interest (say positive), it is said to have a Weibull tail if

P(X > x) = e−L(x)x1/θ
, x > 0, (4.66)

where θ is a parameter and L(x) is a slowly varying function at infinity. Distributions with

Weibull tails are of interest here for several reasons. First, the split-time metric in the models

considered in Section 4.3 was either proved or strongly suggested to have a Weibull tail (with θ =

0.5). Second, from the GPD perspective, a distribution with a Weibull tail falls in the domain

of attraction of the GPD with zero shape parameter, that is, the exponential distribution.

Distributions with Weibull tails then provide an interesting flexible family of distribution tails

for extrapolation when in such a domain of attraction. Third, the parameter θ and its existence

are informative on their own. Fourth, as noted below, there is an analogous POT approach for

distributions with Weibull tails.
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Indeed, numerous works in Extreme Value Analysis concern estimation of θ and related

questions. See, for example, Gardes and Girard [40], Gardes and Girard [40], Diebolt et al.

[33], Asimit et al. [5], Gardes et al. [41]. The POT approach for a distribution with a Weibull

tail is based on the observation that, for some critical value of interest xcr,

logP(X > xcr) = logP(X > u)
logP(X > xcr)

logP(X > u)

= logP(X > u)
L(xcr)x

1/θ
cr

L(u)u1/θ
≈ (logP(X > u))

(xcr
u

)1/θ
,

(4.67)

where u is an intermediate threshold and we used (4.66). As with the usual POT approach

involving GPD, the “non-rare” probability is estimated directly from the data as a suitable

sample proportion. The rest of the procedure involves estimation of θ with a confidence interval

and also setting a threshold u.

The issue of threshold selection is seemingly not quite resolved in the literature. See, in

particular, Asimit et al. [5], Statement 1, and also Mercadier and Soulier [69], Section 4. The

approach that we use adapts an ad hoc approach of Reiss and Thomas for GPD (see Neves

and Fraga Alves [75]), wherein the usual bias-variance tradeoff in estimation is exploited. More

specifically, an index k in u = Xk+1,n (as in Section 4.5.1, Xi,n, i = 1, ..., n denotes the order

statistic) is chosen as

k̂ = argmin
k

1

k

k∑
i=1

iβ
∣∣∣θ̂k − median

(
θ̂1, ..., θ̂k

)∣∣∣ , (4.68)

where β ∈ (0, 12 ] is fixed and θ̂k is an estimate of θ based on Xi,n, i = 1, ..., k. Moreover, the

minimum is often considered for k ≥ K for some fixed K (e.g. K = 20). Figure 4.11 presents

a plot analogous to those in Figure 4.10 but based on the POT approach for a Weibull-tailed

distribution. The results of the POT approach for a Weibull-tailed distribution are comparable

to the POT approach based on the exponential distribution.
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Figure 4.11: The POT approach based on the distribution with a Weibull tail.

4.6 Conclusions

In this chapter, we have examined the distributions of the critical response rate and split-

time metric of the nonlinear random oscillator given in (4.1). We considered several forms of

the restoring force, including piecewise linear and doubly piecewise linear stiffness functions, as

well as the cubic one from the Duffing oscillator; and both correlated and white noise excita-

tions. The distributions were examined analytically in some cases and also numerically, using

techniques from extreme value theory such as the POT approach. Due to the nature of the

observed tail of the distributions of both the critical response rate and the split-time metric, we

considered modifying the POT approach to fit either an exponential distribution or a Weibull

tail for peaks above threshold.
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CHAPTER 5

Statistical inference for mean and variance of oscillatory processes

5.1 Introduction

Let {Xt}t∈R be a stationary continuous-time stochastic process with mean µ(X) = EXt

and variance σ2(X) = Var(Xt). We are interested here in the processes representing random

oscillatory systems, with a number of examples (linear random oscillators, etc.) discussed

in Appendix B. The motivating real applications of our particular interest include processes

related to ship motions (e.g. ship roll, pitch and yaw dynamics, bending moments, etc.), but

potential applications would naturally arise in a range of other areas where random oscillatory

systems play a fundamental role (see e.g. Gitterman [42], Neimark and Landa [74], Liang and

Lee [58]). The basic problem addressed in this chapter is providing confidence intervals for the

mean µ(X) and the variance σ2(X) (and consequently for the standard deviation σ(X) as well)

from the observed continuous-time sample Xt, t ∈ [0, T ], or the corresponding discrete sample

X∆k, k = 1, . . . , T/∆. Though it should be kept in mind that the approach discussed here also

applies to other quantities of possible interest, e.g. autocovariance at a given lag (see Remarks

5.3.1 and 5.3.2 below).

Focusing on the continuous-time sample Xt, t ∈ [0, T ], and on estimating the mean µ(X),

consider the sample mean

XT =
1

T

∫ T

0
Xsds. (5.1)

Its normalized asymptotic variance is

lim
T→∞

T Var(XT ) =

∫ ∞

−∞
ΓX(u)du =: Π(X), (5.2)

where Γ(u) = EX0Xu − µ(X)2 is the autocovariance function. The quantity Π(X) is known as

the long-run variance of the process X = {Xt}t∈R. For example, its estimator would naturally
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enter into the approximate normal confidence intervals for the mean µ(X). Similarly, define

the sample variance

σ̂2
T (X) =

1

T

∫ T

0
(Xs −XT )

2ds =
1

T

∫ T

0
X2

sds− (XT )
2 = X2

T − (XT )
2 (5.3)

and set

lim
T→∞

T Var
(( XT

X2
T

))
=

 ∫∞
−∞ ΓX(u)du

∫∞
−∞ ΓX,X2(u)du∫∞

−∞ ΓX,X2(u)du
∫∞
−∞ ΓX2(u)du



=:

 Π(X) Π(X,X2)

Π(X,X2) Π(X2)

 =: Π(2)(X,X2), (5.4)

where ΓX,X2(u) = EX(0)X(u)2 − µ(X)µ(X2). One then expects (see Section 5.3 for details)

that

lim
T→∞

T Var(σ̂2
T (X)) = Π(X2)− 4µ(X)Π(X,X2) + 4µ(X)2Π(X). (5.5)

The matrix quantity Π(2)(X,X2) in (5.4) is the long-run variance of the vector process

(X,X2)′ = {(Xt, X
2
t )

′}t∈R. Here and throughout the chapter, the prime indicates a trans-

pose. The long-run variances are also equal to (possibly up to a multiplicative constant) the

spectral densities of the processes at the origin.

Estimation of the long-run variances, such as Π(X) and Π(2)(X,X2) above, is a well-

studied problem, especially for discrete-time processes (series) X. The often cited seminal

reference is Andrews [3], though the pioneering work in the parallel problem of estimating the

spectral density of the process goes back at least to Parzen [78] and others. In this chapter,

we shall refer often to Lu and Park [64] who focused on continuous-time stochastic processes

satisfying a stochastic differential equation and estimation issues from discrete samples. Other

approaches not investigated here involve e.g. resampling (see e.g. Politis and Romano [82]) and

self-normalization (see e.g. Shao [89].

One of the goals of this work is to revisit estimation of the long-run variances according

to the proposed methods, and to assess their performance on the processes associated with

oscillatory systems. The case of the inference of the mean is considered in Section 5.2, and that

of the variance in Section 5.3. The numerical results are reported in Section 5.7. Aside from
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some natural adaptations specific to oscillatory systems, this part of the work is rather of the

informative nature, especially to those unfamiliar with the relevant literature.

Several other aspects of this work, however, are more novel. Estimation of the long-run

variance referenced above assumes implicitly that the long-run variance is non-zero. In Section

5.4, we also study the case when the long-run variance is zero, which is quite plausible with

oscillatory systems and is also the case in the considered data application (Section 5.7.2). As

shown, perhaps somewhat surprisingly, inference about the mean in the case of zero long-run

variance is in fact conceptually simpler than that in the case of non-zero long-run variance. In

practice, as we argue below, the so-called unit root tests can be used to decide on whether given

data are consistent with the hypotheses of non-zero long-run variance.

As another novel aspect of the general problem of estimation of long-run variance, we also

study the case when a number of independent records of the same process are available. See

Section 5.5. This is a quite common situation in several applications, for example, related to

ship motions, where multiple records would correspond to different experimental runs in an

actual model basin, or be obtained by using a computer generation. When considering multiple

records, two natural estimators of the long-run variance can be considered: first, the average

of the long-run variance estimators of the individual records, and second, the long-run variance

estimator deduced from the sample variance of the sample means of individual records. In this

regard, we introduce here an estimator that generally outperforms these two natural estimators

of the long-run variance, and explain its improved performance.

Throughout this chapter, for the sake of clarity, we focus on the case when a sample of

the process is available in the continuous time. Some issues behind using discrete samples

of the process, which is the more realistic scenario in practice, are discussed in Section 5.6.

Finally, as noted above, Section 5.7 contains numerical results assessing the performance of the

methods described in this chapter, and Appendix B details a number of processes associated

with oscillatory systems that are considered here.
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5.2 Estimation of mean

As in Section 5.1, consider a continuous-time stationary process X = {Xt}t∈R with mean

µ(X) = EXt and finite variance σ2(X) = Var(Xt). Suppose given a continuous-time sample

Xt, t ∈ [0, T ], from which one would like to estimate the mean µ(X) by using the sample mean

XT in (5.1). The approximate normal confidence intervals for µ(X) would include the long-run

variance Π(X) in (5.2), which needs to be estimated from data. In defining the estimator of

the long-run variance, the so-called kernel function plays a key role.

A kernel K is a function K : R → R such that it is symmetric, K(0) = 1 and
∫
RK(x)2dx <

∞. (In some instances, additional assumptions are made.) Let

Kr = lim
x→0

1−K(x)

|x|r
, r ∈ Z+, (5.6)

and ν = max{r : Kr < ∞}. The quantity ν measures smoothness of the kernel K(x) at x = 0.

Examples of commonly used kernels are Quadratic Spectral (QS): K(x) = 25
12π2x2

(
sin(6πx/5)

6πx/5 −

cos(6πx/5)
)

, Bartlett: K(x) = (1− |x|)1{|x|≤1}, Truncated: K(x) = 1{|x|≤1}. (The notation 1A

stands for the indicator function of the set A, that is, 1A(x) = 1 if x ∈ A, and = 0 otherwise.)

For QS kernel, ν = 2 and K2 ≈ 1.4212. For Bartlett kernel, ν = 1 and K1 = 1.

Following the main approach found in the literature, the estimator of the long-run variance

Π(X) in (5.2) is then defined as

Π̂T (X) =

∫ T

−T
K
( u

ST

)
Γ̂T (u)du, (5.7)

where ST (which is smaller than T ) is known as the bandwidth, and

Γ̂T (u) =
1

T

∫ T−u

0
(Xs+u −XT )(Xs −XT )ds, Γ̂T (−u) = Γ̂T (u), 0 < u < T, (5.8)

estimates the autocovariance function of the process X.
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The optimal value of the bandwidth, balancing the asymptotic bias and variance of the

estimator Π̂T (X), was derived by Lu and Park [64], and is given by

Sopt,T =
(νK2

νCν(X)2∫
K(x)2dx

T
)1/(2ν+1)

, (5.9)

where Kν and ν are associated with the kernel K and defined in (5.6) and following (5.6),

respectively,

Cν(X) =
Λν(X)

Π(X)
(5.10)

and

Λν(X) =

∫
R
|u|νΓX(u)du, ν ∈ Z+. (5.11)

Remark 5.2.1. If SX is the spectral density of the process X satisfying (by convention)

SX(w) =

∫ ∞

−∞
ΓX(u) cos(wu)du, ΓX(h) =

1

2π

∫ ∞

−∞
SX(w) cos(hw)dw, (5.12)

then for even ν,

Λν(X) = (−1)ν/2
dνSX(w)

dwν

∣∣∣
w=0

.

As mentioned above, we also have Π(X) = SX(0).

Note that the constant Cν(X) in (5.10) depends on the underlying process X. Several ways

of estimating this constant have been suggested. The most popular method seems to be model-

driven. For this method, a model would be fitted to data and the constant Cν(X) would be

calculated based on the fitted model. For example, Lu and Park [64] focus on continuous-time

Ornstein-Uhlenbeck (mean reversion) type models. In the context of oscillatory systems, it

seems natural to fit to the data a linear oscillator with white noise excitation (see Appendix

B). Several ways and references for performing this task from discrete sample are discussed in

Section 5.6.

Another method for estimating Cν(X) in (5.10) is data-driven. In this method, the idea

is to use kernel-based estimators of Π(X) (as defined in (5.7) above) and Λν(X) (as in (5.7)

but replacing Γ̂T (u) by |u|νΓ̂T (u)) with some crude choice of the bandwidth ST . In Section
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5.7 below, we use the bandwidth ST =
√
T when estimating Π(X) and Λν(X) for the constant

Cν(X) (but see also Remark 5.6.2). The model-driven approach is often cited in the literature

as being more stable than the data-driven approach, but our simulation study suggests that

the data-driven method is often as good, if not superior.

Finally, for the considered estimator Π̂T (X) of the long-run variance, an approximate nor-

mal confidence interval for the mean is defined as

(
XT − zα

√
V̂ar(XT ), XT + zα

√
V̂ar(XT )

)
, (5.13)

where

V̂ar(XT ) =
Π̂T (X)

T
(5.14)

and zα is the critical value for the standard normal distribution associated with a confidence

level α.

5.3 Estimation of variance

We now turn to inference for the variance σ2(X) of a continuous-time stationary process

X = {Xt}t∈R, through the sample variance σ̂2
T (X) defined in (5.3). As indicated around (5.3)–

(5.5) in Section 5.1, the long-run variance Π(2)(X,X2) of the bivariate process (X,X2)′ =

{(Xt, X
2
t )

′}t∈R in (5.4) now plays a central role. It can be estimated similarly to the long-run

variance Π(X), as outlined next.

As in Section 5.2, define the kernel-based estimator of the long-run variance Π(2)(X,X2) as

Π̂
(2)
T (X,X2) =

∫ T

−T
K
( u

ST

)
Γ̂
(2)
T (u)du, (5.15)

where ST is the bandwidth, and

Γ̂
(2)
T (u) =

1

T

∫ T−u

0

( Xs+u −XT

X2
s+u −X2

T

)( Xs −XT

X2
s −X2

T

)′
ds, Γ̂

(2)
T (−u) = Γ̂

(2)
T (u), 0 < u < T, (5.16)
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estimates the autocovariance matrix function of the bivariate process (X,X2)′. This also nat-

urally yields the estimators Π̂T (X), Π̂T (X
2) and Π̂T (X,X2) of the components Π(X), Π(X2)

and Π(X,X2) of the long-run variance matrix Π(2)(X,X2) in (5.4). The optimal value of

the bandwidth, balancing the asymptotic bias and variance of the estimator Π̂
(2)
T (X,X2), was

derived by Lu and Park [64], and is given by

Sopt,T =
(νK2

νCν(X,X2)2∫
K(x)2dx

T
)1/(2ν+1)

, (5.17)

where Kν and ν are associated with the kernel K and defined in (5.6) and following (5.6),

respectively,

Cν(X,X2) =
(Λ2

ν(X) + Λ2
ν(X

2)

Π2(X) + Π2(X2)

)1/2
(5.18)

and Λν(·) is defined in (5.11). (In fact, the optimal bandwidth derived by Lu and Park [64]

allows for different weights in balancing the asymptotic bias and variance of the components of

the matrix estimator Π̂
(2)
T (X,X2); the bandwidth given above corresponds to equal “diagonal”

weights in the weighing scheme.) In practice, the constant Cν(X,X2) is estimated through

either the model- or data-driven approaches in the same way as discussed in Section 5.2 following

Remark 5.2.1.

Finally, with the estimator Π̂
(2)
T (X,X2) =: (Π̂T (X) Π̂T (X,X2); Π̂T (X,X2) Π̂T (X

2)) of the

long-run variance matrix given by (5.15)–(5.16), an approximate normal confidence interval for

the variance is defined as

(
σ̂2
T (X)− zα

√
V̂ar(σ̂2

T (X)), σ̂2
T (X) + zα

√
V̂ar(σ̂2

T (X))
)
, (5.19)

where

V̂ar(σ̂2
T (X)) =

Π̂T (X
2)− 4XT Π̂T (X,X2) + 4(XT )

2Π̂T (X)

T
(5.20)

and zα is the critical value for the standard normal distribution associated with confidence level

α. The numerator in (5.20) is motivated by the form of the asymptotic variance of σ̂2
T (X) in

(5.5). The latter form itself is a consequence of the delta method applied to the right-hand side

of (5.3) and using (5.4).
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Remark 5.3.1. A similar application of the delta method to the sample standard deviation

σ̂T (X) = (σ̂2
T (X))1/2 yields an approximate normal confidence interval for the standard devia-

tion σ(X) of the process, defined as

(
σ̂T (X)− zα

√
V̂ar(σ̂T (X)), σ̂T (X) + zα

√
V̂ar(σ̂T (X))

)
, (5.21)

where zα is as in (5.19) and

V̂ar(σ̂T (X)) =
Π̂T (X

2)− 2(XT )
2Π̂T (X)− 4(XT )

2Π̂T (X,X2)

T (4(X2
T − (XT )2))

. (5.22)

Remark 5.3.2. The inference approach outlined above can also be applied to estimating quan-

tities of interest other than the mean, the variance or the standard deviation. For example, the

autocovariance of a process X at lag h > 0, defined as

γX(h) = EX0Xh − µ(X)2 = E(X0 − µ(X))(Xh − µ(X)),

is naturally estimated through

γ̂T (h) = (XX ·+h)T − (XT )
2,

where

(XX ·+h)T =
1

T

∫ T−h

0
(Xs+h −XT )(Xs −XT )

2ds.

In this case, the long-run variance matrix of the bivariate process (X,XX ·+h)
′ =

{(Xt, XtXt+h)
′, t ∈ R} is relevant and could be estimated similarly to (5.15).

5.4 Degenerate case

The discussion in Sections 5.2 and 5.3 assumes implicitly that the long-run variance Π(X) 6=

0. What happens in the case

Π(X) = 0 (equivalently, SX(0) = 0), (5.23)

109



where SX is the spectral density of the process X defined in Remark 5.2.1? This case is

known as degenerate (e.g. Lee [55], pp. 1-22). Having zero long-run variance is quite plausible

for processes associated with oscillatory systems, since their autocovariance function exhibits

naturally an oscillating pattern and thus can integrate to 0.

In the degenerate case, since SX(0) = 0 and SX(w) is even and often smooth at w = 0, it

is expected that ∫ ∞

−∞

SX(w)

|w|2
dw < ∞. (5.24)

Under this assumption, one can write

∫ t

0
(Xs − µ(X))ds = Vt − V0, (5.25)

where {Vt}t∈R is a stationary process with zero mean. Indeed, by writing Xs in the spectral

domain as Xs−µ(X) =
∫∞
−∞ eisw

√
SX(w)Z(dw) with a complex-valued random measure Z(dw)

having orthogonal increments and E|Z(dw)| = dw2/(2π), note that

∫ t

0
(Xs − µ(X))ds =

∫ ∞

−∞

(∫ t

0
eiswds

)√
SX(w)Z(dw)

=

∫ ∞

−∞
eitw

√
SX(w)

iw
Z(dw)−

∫ ∞

−∞

√
SX(w)

iw
Z(dw),

that is, the stationary process Vt can be taken as
∫∞
−∞ eitw(

√
SX(w)/iw)Z(dw) and has the

spectral density SX(w)/|w|2. It follows from (5.25) that

T (XT − µ(X)) =

∫ T

0
(Xs − µ(X))ds

d
= VT − V0. (5.26)

Note that, compared to (5.2), the convergence rate of Var(XT ) is then T 2, and not T . Note

also that VT − V0 does not need to be Gaussian.

Thus, in view of (5.25), the integrated process
∫ t
0 (Xs − µ(X))ds is nearly stationary itself,

especially as t increases (since dependence between Vt and V0 is then expected negligible). In

particular, we expect that, for large T ,

T (XT − µ(X)) ≈ V ′
0 − V0, (5.27)
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where V ′
0 is an independent copy of V0, and an approximate (not necessarily normal) confidence

interval can be constructed as

(
XT −

̂tα(V ′
0 − V0)

T
,XT +

̂tα(V ′
0 − V0)

T

)
, (5.28)

where tα(V
′
0−V0) denotes the (1+α)/2 quantile of V ′

0−V0 and the hat its estimator. Note that,

in practice, the value (−V0) can be estimated as the sample mean of
∫ t
0 (Xs−XT )ds, 0 < t < T ,

and then removed from Vt − V0 to obtain a realization of Vt. The latter realization can then be

used to estimate the corresponding quantile of V ′
0 − V0: in practice, we use resampling from a

realization of Vt to obtain a sample of the values of V ′
0 −V0, from which we then select a desired

quantile.

We also note that from a practical perspective, a decision needs to be made on whether

the underlying process is in the degenerate case or, equivalently, whether the integrated process∫ t
0 (Xs − µ(X))ds can be viewed stationary. As discussed in Section 5.7 below, this can be

achieved by using one of the available so-called unit root tests.

Finally, the discussion above concerns the case of estimating the mean. Turning to esti-

mation of the variance, recall that it involves estimation of the mean of the square process

X2. If X can be expected to fall in the degenerate case, we do not expect this to be the case

with the square process X2. For example, if X is Gaussian, then ΓX2(h) = 2(ΓX(h))2 and

Π(X2) =
∫∞
−∞ ΓX2(h) 6= 0. If X falls in the degenerate case but X2 does not, then

lim
T→∞

T Var(σ̂2
T (X)) = Π(X2),

since the rate of convergence of (XT )
2 to µ(X)2 is faster than

√
T . Hence, only the long-run

variance of the process X2 needs to be estimated.

5.5 The case of multiple records

Consider a number of records X
(r)
t , t ∈ [0, Tr], r = 1, . . . , R, that are independent across r.

Suppose that

Tr = CrT with Cr ∈ (0, 1),
∑
r

Cr = 1. (5.29)
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Thus,
∑

r Tr = T . For example, the case of the records of equal length corresponds to

Cr = 1/R and Tr = T/R.

Considering inference for the mean first, it can be estimated through

XT =
∑
r

CrX
(r)
Tr

, (5.30)

that is, as the appropriately weighted average of the sample means of the R records. Note that

T Var(XT ) = T
∑
r

C2
r Var(X(r)

Tr
) =

∑
r

CrTr Var(X(r)
Tr

) →
∑
r

CrΠ(X) = Π(X). (5.31)

For confidence intervals, the long-run variance Π(X) thus again needs to be estimated, but this

time from R records. We focus in this section on the non-degenerate case when the long-run

variance is non-zero.

We note first that several natural estimators of the long-run variance can be introduced

in the case of multiple records. First, there is the weighted average of the estimators of the

long-run variance across the records, defined as

Π̂ave,T (X) =
∑
r

CrΠ̂
(r)
Tr

(X) =
∑
r

Cr

∫ Tr

−Tr

K
( u

STr

)
Γ̂
(r)
Tr

(u)du, (5.32)

where Π̂
(r)
Tr

(X) is the estimator of the long-run variance for the rth record. Second, a direct

estimator of the long-run variance can be defined as a properly normalized sample variance of

the sample means across the records. Indeed, consider the case of equal length records and

recall that Π(X) approximately equals Tr Var(XTr). But since one now has R sample means

XTr , r = 1, . . . , R, one can naturally estimate Var(XTr) through the sample variance of XTr ,

r = 1, . . . , R, and then normalize it by Tr to get the estimator of the long-run variance. In the

case of equal length records, this direct estimator is

Π̂dir,T (X) =
Tr

R

∑
r

(
XTr −XT

)2
= T

∑
r

1

R2

(
XTr −XT

)2
. (5.33)
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This motivates the following definition in the general case,

Π̂dir,T (X) = T
∑
r

C2
r

(
XTr −XT

)2
. (5.34)

Note that this definition is also consistent with the expressions in (5.31) where Var(X(r)
Tr

) is

replaced by a “naive” estimator (XTr −XT )
2. Note also that the estimator Π̂dir,T (X) is unique

to the case of multiple records.

Which of the estimators, Π̂ave,T (X) or Π̂dir,T (X), should be preferred? The simulation

results in Section 5.7 suggest that Π̂ave,T (X) is superior to Π̂dir,T (X) in terms of the variance,

but that it can also be inferior in terms of the bias. In fact, another estimator can be introduced

which enjoys both advantages of the two natural estimators. To motivate the definition of the

new estimator, we shall rewrite the estimator Π̂dir,T (X) in a different form as follows.

Observe that

Π̂dir,T (X) = T
∑
r

C2
r

( 1

Tr

∫ Tr

0
X(r)

s ds−XT

)2
= T

∑
r

C2
r

T 2
r

(∫ Tr

0
(X(r)

s −XT )ds
)2

=
∑
r

Cr

Tr

∫ Tr

0

∫ Tr

0
(X(r)

s −XT )(X
(r)
t −XT )dsdt =

∑
r

Cr

∫ Tr

−Tr

Γ̂
(r)
0,Tr

(u)du, (5.35)

where

Γ̂
(r)
0,Tr

(u) =
1

Tr

∫ Tr−u

0
(X

(r)
s+u −XT )(X

(r)
s −XT )ds, Γ̂

(r)
0,Tr

(−u) = Γ̂
(r)
0,Tr

(u), 0 < u < Tr. (5.36)

There are two key differences between the average estimator (5.32) and the direct estimator

(5.35): first, the average estimator uses a kernel function to down weigh the effects of the

estimator of the autocovariance function at large lags (and thus to reduce the variance), and

second, the direct estimator employs the mean across the records in estimating the autocovari-

ance function (and thus reducing the bias). In view of these differences, it natural to introduce

the following estimator of the long-run variance,

Π̂T (X) =
∑
r

Cr

∫ Tr

−Tr

K
( u

STr

)
Γ̂
(r)
0,Tr

(u)du =:
∑
r

CrΠ̂
(r)
0,Tr

(X), (5.37)
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that is, defined as the average of the estimators of the long-run variance for the R records which

use the mean across all records in the estimation of the autocovariance function. As shown in

Section 5.7, this estimator generally outperforms the average and the direct estimators of the

long-run variance.

Finally, we note that the superiority of the estimator in (5.37) is more apparent when X

is replaced by the square process X2, which is relevant when estimating the variance σ2(X) of

the process (Section 5.3 above).

5.6 Discretization and other issues

In Sections 5.2–5.5, we assumed that a continuous-time sample (or multiple samples) of the

analyzed process is available. In practice, however, a discrete(-time) sample of the process is

given, namely, Xk∆, k = 1, . . . , T/∆, where ∆ > 0 is the discretization step and we assume for

simplicity that
T

∆
= n (5.38)

is an integer. We examine here a number of issues behind using a discrete sample rather than

a continuous-time one, when estimating the process mean and the process variance. Our goal

is not to provide any formal proofs (as e.g. in Lu and Park [64] concerning estimation of the

long-run variance through discrete sample) but rather to guide a practitioner through a number

of issues that arise from the practical perspective.

5.6.1 Discretizing proposed estimators

The various estimators of long-run variances introduced above (see (5.7), (5.15), (5.32),

(5.34) and (5.37)) involve integrals in continuous time which can be discretized when working

with discrete samples. For example, the discrete version of the estimator (5.7) of the long-run
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variance is defined as

Π̂T,∆(X) =

(T−∆)/∆∑
j=−(T−∆)/∆

K
( j∆

ST,∆

)
Γ̂T,∆(j∆)∆

= ∆

n−1∑
j=−(n−1)

K
( j

m

)
Γ̂n(j) =: ∆ · Ωn, (5.39)

where

m =
ST,∆

∆
(5.40)

is referred to as the bandwidth for the discrete sample with some discrete version ST,∆ of the

continuous-time bandwidth ST ,

Γ̂T,∆(j∆) =
1

T

(T−j∆)/∆∑
k=1

(X(k+j)∆ −XT,∆)(Xk∆ −XT,∆)∆

=
1

n

n−j∑
k=1

(X(k+j)∆ −XT,∆)(Xk∆ −XT,∆)

= : Γ̂n(j), j = 0, 1, . . . , n− 1, (5.41)

and Γ̂T,∆(−j∆) = Γ̂T,∆(j∆), Γ̂n(−j) = Γ̂n(j), and

XT,∆ =
1

T

T/∆∑
k=1

Xk∆∆ =
1

n

n∑
k=1

Xk∆. (5.42)

The expressions following the first equality signs in (5.39), (5.41) and (5.42) are written as to

emphasize that the integrals in the corresponding continuous-time estimators are discretized.

The quantity Ωn in (5.39) is the usual estimator of the long-run variance

Π(X∆) =
∞∑

k=−∞
ΓX∆

(k) with ΓX∆
(k) = EX0Xk∆ − µ(X)2 = ΓX(k∆),

of the discrete time series X∆ = {Xk∆}k∈Z. Note that it is meaningful to multiply Ωn by ∆ in

(5.39) when estimating the long-run variance Π(X) of the continuous time process X = {XT }t∈R

since

∆ ·Π(X∆) =

∞∑
k=−∞

ΓX(k∆)∆ ≈
∫
R
ΓX(u)du = Π(X). (5.43)
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The discrete versions of other introduced estimators, namely, (5.15), (5.32), (5.34) and (5.37),

are defined in an analogous fashion by discretizing all the integrals involved.

5.6.2 Model-driven bandwidth selection

The discrete version Π̂T,∆ of the estimator of the long-run variance defined in (5.39) uses

the bandwidth m in (5.40), which requires a discrete version of ST,∆ of the continuous-time

bandwidth ST defined in (5.9). We focus here on the optimal continuous-time bandwidth Sopt,T

in (5.9). In Section 5.2, we discussed two ways of computing Sopt,T and, more specifically, the

constant Cν(X) entering Sopt,T : the data-driven and the model-driven approaches. The data-

driven approach for discrete sample is discussed in Section 5.6.3 below. For the model-driven

approach, it was suggested to use a linear oscillator with white noise excitation (see Appendix

B) as an underlying model. The question then is how to fit such continuous-time model given

a discrete sample.

The problem of fitting a linear oscillator with white noise excitation from discrete sample

has been studied quite extensively in the literature (in fact, not just for a linear oscillator but for

the more general class of the so-called continuous AR models). See e.g. Soderstrom et al. [95],

Fan et al. [38], Kirshner et al. [52], Lin and Lototsky [59, 60], Pham [80]. As discussed in these

references, there are delicate issues in how a discrete version of a linear oscillator is formulated

and fitted to the data (assuming the linear oscillator is indeed the underlying model). For

example, a scheme that works is to use the following discretization of the derivatives at t = k∆,

Ẍt :
Xt+3∆ − 2Xt+2∆ +Xt+∆

∆2
=: (∆2X)t,

Ẋt :
Xt+∆ −Xt

∆
=: (∆X)t, (5.44)

and to estimate the coefficients of the model by regressing (∆2X)t on −(∆X)t and −Xt. See

Soderstrom et al. [95], Example 3.3 on page 662. An estimator of the coefficient σ controlling

the strength of the white noise excitation (see Appendix B) can also be given. Other “valid”

discretization schemes are available as well, but in our simulations, we use the discretization

scheme (5.44) only.
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5.6.3 Connections to discrete time analysis

We noted following the relation (5.42) that the quantity Ωn in (5.39) is a commonly used

estimator of the long-run variance Π(X∆) of the discrete-time series X∆ = {Xk∆}k∈Z. It

is naturally multiplied by ∆ in (5.39) in view of (5.43). From the perspective of confidence

intervals (5.13)–(5.14), note that the standard error of the sample mean used in the intervals is

√
Π̂T,∆(X)

T
=

√
∆ · Ωn

T
=

√
Ωn

n
, (5.45)

which is exactly the same if the whole analysis is carried out for the discrete sample itself,

without any reference to the continuous-time process.

Despite the latter conclusion, however, a more delicate issue concerns the choice of the

bandwidth m when used with the discrete sample Xk∆, k = 1, . . . , n. The bandwidth m was

defined in (5.40) by relating it to a discrete version ST,∆ of the continuous-time bandwidth

ST , but it can also be defined with the reference to the underlying discrete-time series X∆ =

{Xk∆}k∈Z alone. For a discrete-time series X∆, the optimal bandwidth is defined as (Lu and

Park [64])

mopt =
(νK2

νCν(X∆)
2∫

K(x)2dx
n
)1/(2ν+1)

, (5.46)

where ν and Kν are associated with a kernel function K as in Section 5.2,

Cν(X∆) =
Λν(X∆)

Π(X∆)
(5.47)

and

Λν(X∆) =

∞∑
k=−∞

|k|νΓX∆
(k), Π(X∆) =

∞∑
k=−∞

ΓX∆
(k) (5.48)

with ΓX∆
(h) = EX0Xh∆ − µ(X)2. It is not immediate to see but the two optimal bandwidths

(5.46) and (5.9) are, in fact, connected in a natural way, as we explain next.
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5.6.3.1 The case of the data-driven approach

To understand the relationship between the optimal bandwidths (5.46) and (5.9), consider

first the case of the data-driven approach. In this approach and with discrete sample, the

constant Cν(X∆) in (5.47) is estimated as

Ĉν(X∆) =
Λ̂ν(X∆)

Π̂(X∆)
, (5.49)

where

Π̂(X∆) =
n−1∑

j=−(n−1)

K
( j

m0

)
Γn(j), Λ̂ν(X∆) =

n−1∑
j=−(n−1)

K
( j

m0

)
|j|νΓn(j) (5.50)

and m0 is some preliminary crude estimate of the bandwidth. But note that

∆ · Π̂(X∆) =

(T−∆)/∆∑
j=−(T−∆)/∆

K
( j∆

m0∆

)
ΓT (j∆)∆ =: Π̂T,∆(X), (5.51)

∆ν+1 · Λ̂ν(X∆) =

(T−∆)/∆∑
j=−(T−∆)/∆

K
( j∆

m0∆

)
|j∆|νΓT (j∆)∆ =: Λ̂ν,T,∆(X). (5.52)

The quantities Π̂T,∆(X) and Λ̂T,∆(X) are the discrete-time estimators of the constants Π(X)

and Λν(X) when using the bandwidth S0,T = m0∆, and would similarly appear in the data-

driven discrete-time estimator of the constant Cν(X) in (5.10), that is,

Ĉν,∆(X) =
Λ̂ν,T,∆(X)

Π̂T,∆(X)
. (5.53)

The relations (5.51) and (5.52) show that

Ĉν,∆(X) = ∆ν+ 1
2 Ĉν(X∆) (5.54)

as long us the underlying bandwidths satisfy

S0,T = m0∆. (5.55)
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The relation (5.54) then implies that (the discrete estimator of) the optimal bandwidth Sopt,T

in (5.9) and (the estimator of) the optimal bandwidth mopt in (5.46) are related as

Sopt,T = mopt∆. (5.56)

Thus, in view of (5.45) and in the case of the data-driven approach, when the optimal band-

widths are used with the underlying bandwidths satisfying (5.55), inference about the sample

mean is exactly the same when applying the discrete time series analysis to the series X∆ and

when the analysis is based on the assumption of the underlying continuous-time process X.

5.6.3.2 The case of the model-driven approach

Turning to the relationship between the optimal bandwidths (5.46) and (5.9) in the model-

driven approach, the situation is more delicate and we shall make just a few points through a

concrete example.

For discrete-time series, commonly chosen underlying models for the bandwidth calculation

are the AR series (Andrews [3], Lu and Park [64]). For example, for the AR(2) series Y =

{Yn}n∈Z satisfying Yn −φ1Yn−1 −φ2Yn−2 = σZZn with white noise series {Zn} and coefficients

φ1, φ2, σZ , and when ν = 2, one has

Π(Y ) =
σ2
Z

2π

1

(1− φ1 − φ2)2
, Λ2(Y ) =

σ2
Z

2π

8φ2 + 2φ1 − 2φ1φ2

(1− φ1 − φ2)4

(e.g. Andrews [3]). Then,

C2(Y ) =
8φ2 + 2φ1 − 2φ1φ2

(1− φ1 − φ2)2
(5.57)

and in the model-driven approach, this constant would be estimated as

Ĉ2(Y ) =
8φ̂2 + 2φ̂1 − 2φ̂1φ̂2

(1− φ̂1 − φ̂2)2
, (5.58)

where φ̂1, φ̂2 are the AR(2) parameters estimated from a discrete sample. Since the AR(2) series

can exhibit oscillatory behavior, this series also seems natural to consider for discrete-time series

Y = X∆.
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On the other hand, there is an analogous constant C2(X) for the model-driven approach in

the continuous time supposing a linear oscillator with white noise excitation, defined by (B.1)

and (B.2) in Appendix B and characterized by the parameters δ, w2
0 and σ. For this model (see

Appendix B),

Π(X) =
σ2

w4
0

, Λ2(X) =
4(2δ2 − w2

0)σ
2

w8
0

,

so that

C2(X) =
4(2δ2 − w2

0)

w4
0

. (5.59)

What is the relationship between the constant Ĉ2(Y ) in (5.58) when Y = X∆ and the constant

C2(X), assuming that a linear oscillator with the white noise excitation is the underlying

continuous-time model?

To answer this question, let φ̂1, φ̂2 be the AR(2) coefficients estimated from the sample

Xk∆, k = 1, . . . , n. These are the regression coefficients when regressing X(k+2)∆ on X(k+1)∆

and Xk∆, respectively. On the other hand, let −2δ̂1 and −ŵ2
1,0 be the regression coefficients

when regressing (X(k+2)∆ − 2X(k+1)∆ +Xk∆)/∆
2 (which can be thought as a discrete version

of Ẍk∆) on (X(k+1)∆ −Xk∆)/∆ (which can be thought as a discrete version of Ẋk∆) and Xk∆.

By comaring the two regressions, note that

φ̂1 = 2− 2δ̂1∆, φ̂2 = −1 + 2δ̂1∆− ŵ2
1,0∆

2. (5.60)

Then, substituting these expressions into (5.58), we obtain that

Ĉ2(X∆) =
4(2δ̂21 − ŵ2

1,0 − δ̂1ŵ
2
1,0∆)

ŵ4
1,0

(5.61)

It is known (see Soderstrom et al. [95], Example 3.3 on page 662) that

δ̂1
p→ 2

3
δ, ŵ2

1,0
p→ w2

0, (5.62)

as ∆ → 0, where p→ denotes the convergence in probability. Thus,

Ĉ2(X∆)
p→ 4(2(2/3)2δ2 − w2

0)

w4
0

6= 4(2δ2 − w2
0)

w4
0

= C2(X). (5.63)

120



That is, the two constants in the limit of ∆ → 0 are slightly different, and the two analyses,

the discrete-time series analysis for the series X∆ and the continuous-time process analysis for

X, would give slightly different results in the model-driven approach.

Remark 5.6.1. In the regression above, we used the discretization scheme

Ẍt :
Xt+2∆ − 2Xt+∆ +Xt

∆2
,

Ẋt :
Xt+∆ −Xt

∆
, (5.64)

for the underlying oscillator but it did not lead to the consistent estimators as noted in (5.62).

A discretization scheme leading to consistent estimators was given in (5.60). Since this scheme

involves Xt+3∆, Xt+2∆, Xt+∆ and Xt, it may appear to correspond to fitting an AR(3) series

to the discrete sample Xk∆, k = 1, . . . , n. But note that the regression of (∆2X)t on (−∆X)t

and (−Xt) for t = k∆ has the coefficient equal exactly to 2 at Xt+2∆ since Xt+2∆ appears

with a factor of (−2) in (∆2X)t and not in (−∆X)t, nor in (−Xt). Thus, using the consistent

discretization scheme would not be equivalent to fitting the AR(3) series to the discrete sample

Xk∆, k = 1, . . . , n.

5.6.4 Range of discretization step ∆

As the discretization step ∆ approaches 0, the discrete version Π̂T,∆ of the estimator of the

long-run variance converges to Π̂T (X), which itself converges to the long-run variance under

suitable assumptions (e.g. Lu and Park [64]). Thus, the estimator Π̂T,∆ should stabilize as ∆

becomes small. On the other hand, as ∆ increases, we should see deviations of Π̂T,∆ from Π̂T

and hence also from the long-run variance itself. For what values of ∆ do these deviations

occur?

From numerical simulations across a range of oscillatory processes, we find that the esti-

mator Π̂T,∆ is quite stable up to about

∆max =
Tm

4
, (5.65)
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Figure 5.1: Estimated long-run variance Π̂T,∆ against different choices of ∆. Five estimates are plotted
for each ∆, using the data-driven approach with the QS kernel (see Section 5.2). Estimates are made for
long-run variance of the original series Π̂T,∆(X) (top row), the squared series Π̂T,∆(X

2) (bottom row),
under both white noise (left column) and correlated excitations (right column). Model parameters are
as in Section 5.7.1, and the models are defined in Appendix B. Solid (horizontal) line gives true long-run
variance; dashed (vertical) line marks Tm

4 .

where Tm is the modal period of the oscillation associated with the frequency at which the

spectrum is largest. This is illustrated in Figure 5.1 where the estimates Π̂T,∆(X) (top row)

and Π̂T,∆(X
2) (bottom row) are plotted for several realizations of a linear oscillator with white

noise excitation (left panel) and correlated excitation (right panel). The model parameters

are the same as used in Section 5.7.1 below, and the models are defined in Appendix B. The

value of ∆max in (5.65) is indicated by a vertical dashed line, and the true value of the long-run

variance by a horizontal. (Note that the long-run variance Π(X) is zero in the case of correlated

excitation, in which case the corresponding plot only serves to show similar variability of the

estimates up to ∆max.)

Note also that ∆max in (5.65) is natural in the sense that
∫ u0+Tm

u0
ΓX(u)du (that is, the

integral of ΓX(u) over its one approximate period of oscillation, as part of the long-run variance

Π(X)) is expected to be approximated well enough by the integral discretized at step ∆, as long

as ∆ ≤ ∆max. The latter is not meant as a rigorous statement. Note that if ∆ > ∆max, e.g.
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∆ = Tm/2 or Tm, then the discretization of the above integral could “pick up” only e.g. time

points where ΓX(u) crosses zero (so that the discrete approximation will no longer be expected

to be good).

5.6.5 Choice of time scale

Another practical issue, although not directly related to discretization, is the choice of a

time scale. That is, whereas for discrete samples, the index scale is always the set of integers,

a time scale for continuous-time process is subject to the practitioner’s choice. For example,

half an hour of data can be associated with T = 1, 800 seconds (the time scale of seconds), as

well as T = 1/2 hour (the time scale of hours). The practitioner should be aware of several

implications of the choice of a time scale on the analysis presented in this chapter.

We shall add a subscript, 1 or 2, to the quantities below to refer to the time scale 1 or 2,

respectively (e.g. T1 = 1, 800 seconds and T2 = 1/2 hours). The key observation here is that

the value of the long-run variance Π(X) in (5.2) actually depends on the chosen time scale.

Indeed, note that

Π2(X) =

∫
R
Γ2,X(u2)du2 =

T2

T1

∫
R
Γ2,X

(T2

T1
u1

)
du1 =

T2

T1

∫
R
Γ1,X(u1)du1 =:

T2

T1
Π1(X), (5.66)

since the relation between the two time scales is u1 = (T1/T2)u2. But observe also that the time

scale does not affect the variance of the sample mean, which would be used in the confidence

intervals (see (5.13) and (5.14)), since

Π2(X)

T2
=

Π1(X)

T1
.

The choice of a time scale affects similarly the estimators of the long-run variance. Indeed,

note that, by arguing similarly as above,

Π̂2,T2(X) =

∫ T2

−T2

K
( u2
ST2

)
ΓT2(u2)du2 =

T2

T1

∫ T1

−T1

K
( u2
ST2(T1/T2)

)
ΓT1(u1)du1 =

T2

T1
Π̂1,T1(X),
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since ST2(T1/T2) = ST1 for optimal bandwidths ST1 = Sopt,1,T1 and ST2 = Sopt,2,T2 . The latter

relation follows by observing similarly that

C2,ν(X) =
Λ2,ν(X)

Π2(X)
=

(T2/T1)
ν+1Λ1,ν(X)

(T2/T1)Π1(X)
=

(T2

T1

)ν
C1,ν(X)

and hence indeed

Sopt,2,T2 =
(νK2

νC
2
2,ν(X)∫

K(x)2dx
T2

)1/(2ν+1)
=

(νK2
νC

2
1,ν(X)∫

K(x)2dx

(T2

T1

)2ν+1
T1

)1/(2ν+1)
=

T2

T1
Sopt,1,T1 .

Remark 5.6.2. The choice of a time scale does, however, affect one aspect of our analysis. The

data-driven approach for estimating Π(X) and Λν(X) in the constant Cν(X) in (5.10) (see the

discussion following Remark 5.2.1) involves a preliminary choice of the bandwidth ST , which was

suggested as
√
T . Note that the latter choice depends on the time scale. Moreover, the choice

of
√
T was motivated by the fact that

√
T should be smaller than T and that

√
T/T → 0,

as T → ∞. A downside is that
√
T is a meaningless choice in the case when T < 1 (e.g.

T = 1/2 hour). As another possibility which does not have this problem and adapts naturally

to the chosen time scale, a preliminary choice of ST can be determined from the “decorrelation”

method. This is an ad hoc method sometimes used in practice with ST chosen as a time point

where the sample autocorrelation function falls below a certain level (see Section 5.7.1 for a

more detailed description).

5.7 Numerical results

In this section, we examine the methods proposed in Sections 5.2-5.6 through a simulation

study (Section 5.7.1) and applications to real data (Section 5.7.2).

5.7.1 Simulation study

The simulation results presented in this section concern several synthetic processes often

used in modeling oscillatory phenomena: a linear oscillator defined by (B.1) and (B.2), and

a nonlinear (piecewise linear) oscillator defined by (B.1) and (B.3), in both cases with either

a white noise excitation having a spectral density (B.4) or the correlated excitation having
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a spectral density (B.5). In the case of a linear oscillator, the parameters used are ω0 = 0.6,

δ = 0.09, and σ = 0.07 (the white noise excitation), σ = 0.7, Hs = 9, T1 = 11.595 (the correlated

excitation). In the case of a piecewise linear oscillator, we take ω0 = 0.6, δ = 0.09, k1 = 0.1, xm =

π/6, and the same parameters for the white noise and correlated excitations as in the linear

case.

Tables 5.1–5.4 present simulation results for the linear and nonlinear oscillators with white

noise and correlated excitations: Table 5.1 concerns the linear oscillator with white noise exci-

tation, Table 5.2 concerns the linear oscillator with correlated excitation, Table 5.3 is for the

piecewise linear oscillator with white noise excitation, and Table 5.4 is for the piecewise linear

oscillator with correlated excitations. The first column in the tables indicates the length of

the record (that is, T = 50 or 100 hours), with the associated simulated process sampled at

∆ = 1/2 second. The considered record lengths are typical to ship rolling applications. The

second column indicates the kernel used in the estimation: QS for the Quadratic Spectral and

B for the Bartlett kernel (see Section 5.2). The third column refers to the method used for

estimation: “data” for data-driven approach, “model” for model-driven approach, “fixed” for

estimation with a fixed bandwidth ST =
√
T , and “decor.” for decorrelation method. The

latter is an ad hoc method sometimes used in practice where the bandwidth ST is chosen as the

cutoff point where an envelope of the autocorrelation function of the process crosses the level

0.05 (that is, 5% of the sample autocovariance) for the first time.

The next three columns in the tables present results when estimating the long-run variances

Π(X), Π(X2), and Π(X,X2). There are two entries in each box associated with a particular

estimation scheme: the top entry gives the bias in estimation and the bottom entry gives the

standard deviation in estimation, computed from 100 replications. We also note that the true

value of Π(X), Π(X2), and Π(X,X2) can be computed through explicit formulae in the case of

a linear oscillator (see Appendix B), but that this is not the case for a piecewise linear oscillator,

in which case we use an estimate from a record of 10,000 hours.

The fifth column of the tables presents the empirical coverage proporitons of the proposed

95% confidence intervals for the mean µ(X) (the top entry in each box associated with a

particular estimation scheme) and the standard deviation σ(X) (the bottom entry in each box).

As with the long-run variances above, the true standard deviation σ(X) can be computed for
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data 7.27e-02 1.29e+00 2.38e-01 0.96 1.29e-02

4.97e-01 1.28e+01 1.88e+00 0.91 1.44e-02
50 QS model 7.74e-02 -3.41e+00 6.66e-02 0.95 1.29e-02

1.48e-01 5.45e+00 6.01e-01 0.93 1.42e-02
50 QS fixed -7.09e-02 -2.49e+00 -1.84e-01 0.95 1.28e-02

5.13e-01 1.20e+01 2.03e+00 0.96 1.42e-02
50 QS decor. 2.90e-01 -1.10e+01 3.48e-02 0.98 1.31e-02

1.02e-01 4.56e+00 3.84e-01 0.92 1.39e-02
50 B data 4.96e-01 -1.26e+01 1.49e-01 0.97 1.32e-02

5.93e-01 1.17e+01 6.00e-01 0.95 1.38e-02
50 B model 1.89e-01 -5.62e+00 -5.67e-03 0.96 1.30e-02

1.99e-01 5.85e+00 7.69e-01 0.95 1.41e-02
50 B fixed 6.59e-02 -2.31e+00 -9.29e-02 0.98 1.29e-02

4.08e-01 1.06e+01 1.59e+00 0.95 1.42e-02
50 B decor. 1.00e+00 -2.50e+01 -6.63e-03 0.98 1.36e-02

1.18e-01 3.86e+00 3.70e-01 0.94 1.33e-02
100 QS data 7.21e-02 4.34e-01 -1.69e-01 0.93 9.11e-03

4.40e-01 9.59e+00 1.67e+00 0.93 1.02e-02
100 QS model 7.10e-02 -2.00e+00 -1.63e-02 0.95 9.12e-03

1.14e-01 4.04e+00 4.23e-01 0.93 1.01e-02
100 QS fixed 1.71e-02 -7.73e-02 2.27e-02 0.98 9.08e-03

3.78e-01 9.48e+00 1.69e+00 0.95 1.01e-02
100 QS decor. 2.91e-01 -1.09e+01 -5.00e-03 0.96 9.24e-03

8.37e-02 3.02e+00 2.69e-01 0.93 9.83e-03
100 B data 3.56e-01 -8.54e+00 2.57e-02 0.96 9.28e-03

3.44e-01 8.46e+00 4.74e-01 0.98 9.89e-03
100 B model 1.11e-01 -3.11e+00 5.07e-02 1.00 9.14e-03

2.07e-01 4.87e+00 5.78e-01 0.96 1.01e-02
100 B fixed -2.52e-02 -2.40e+00 6.85e-02 0.97 9.06e-03

3.58e-01 7.88e+00 1.13e+00 0.96 1.01e-02
100 B decor. 9.99e-01 -2.60e+01 5.46e-03 0.99 9.64e-03

7.41e-02 2.33e+00 2.57e-01 0.94 9.38e-03

Table 5.1: Simulation results for the linear oscillator with white noise excitation. See Section 5.7.1 for
discussion.

the linear oscillator, but not for the nonlinear oscillator, in which case we use an estimate from

a record of 10,000 hours. Finally, the last column of the tables gives the average half length of

the corresponding confidence intervals (for the mean on the top, and for the standard deviation

on the bottom). We also note that in Table 5.2, the last two rows report on the empirical

coverages of the confidence intervals using quantiles, following Section 5.4.

Several conclusions can be drawn from Tables 5.1–5.4. First, the decorrelation method

seems to be the worst in general, both in terms of estimating long-run variances and coverages

of confidence intervals. Second, the model-driven approach seems to perform best in general in

terms of estimating long-run variances, in both linear and nonlinear cases. The performances

of the data-driven and fixed approaches are difficult to discern, as are the confidence intervals
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data 1.47e-07 1.07e-04 -2.25e-08 1.00 1.57e-06

1.55e-07 1.72e-05 1.97e-07 0.95 5.38e-04
50 QS model 1.58e-07 9.83e-05 -4.84e-09 1.00 1.63e-06

1.42e-07 6.52e-06 8.54e-08 0.96 5.27e-04
50 QS fixed 1.27e-07 1.10e-04 -1.59e-09 1.00 1.44e-06

1.26e-07 1.62e-05 1.88e-07 0.94 5.42e-04
50 QS decor. 1.23e-07 8.73e-05 -1.44e-09 1.00 1.43e-06

1.24e-07 5.57e-06 4.63e-08 0.95 5.12e-04
50 B data 5.53e-05 1.04e-04 2.20e-08 1.00 3.43e-05

2.26e-06 1.40e-05 1.71e-07 0.96 5.35e-04
50 B model 1.14e-04 1.02e-04 -4.13e-10 1.00 4.94e-05

1.02e-06 1.10e-05 9.69e-08 0.93 5.31e-04
50 B fixed 5.72e-05 1.03e-04 1.47e-08 1.00 3.49e-05

6.44e-07 1.38e-05 1.10e-07 0.95 5.33e-04
50 B decor. 1.01e-03 6.35e-05 -1.14e-08 1.00 1.47e-04

3.08e-05 4.52e-06 2.87e-07 0.95 4.80e-04
100 QS data 7.61e-08 1.09e-04 1.06e-08 1.00 8.29e-07

6.20e-08 1.19e-05 1.14e-07 0.88 3.82e-04
100 QS model 6.92e-08 1.00e-04 -1.76e-09 1.00 7.86e-07

5.23e-08 4.98e-06 2.84e-08 0.89 3.74e-04
100 QS fixed 6.79e-08 1.07e-04 -1.96e-08 1.00 7.59e-07

6.99e-08 1.32e-05 1.05e-07 0.90 3.81e-04
100 QS decor. 6.15e-08 8.64e-05 4.90e-10 1.00 7.12e-07

6.22e-08 4.60e-06 1.98e-08 0.88 3.62e-04
100 B data 4.34e-05 1.06e-04 -9.07e-09 1.00 2.15e-05

1.35e-06 1.01e-05 8.62e-08 0.96 3.80e-04
100 B model 9.05e-05 1.04e-04 2.29e-10 1.00 3.11e-05

5.86e-07 8.02e-06 7.00e-08 0.98 3.78e-04
100 B fixed 4.05e-05 1.05e-04 -5.15e-10 1.00 2.08e-05

2.90e-07 9.86e-06 1.29e-07 0.93 3.78e-04
100 B decor. 1.01e-03 6.31e-05 9.26e-09 1.00 1.04e-04

2.15e-05 4.00e-06 2.23e-07 0.91 3.39e-04
50 - quantile - - - 0.943 1.70e-08
100 - quantile - - - 0.955 8.47e-09

Table 5.2: Simulation results for the linear oscillator with correlated excitation. See Section 5.7.1 for
discussion.

among all 3 methods: model-driven, data-driven and fixed. Third, as expected, the confidence

intervals for the mean µ(X) have 100% coverage in Table 5.2 – the appropriate shorter confi-

dence intervals based on the quantile method have coverage close to 95%. Fourth, regarding

the use of different kernels, estimation using the QS kernel seems generally superior to that for

the Bartlett kernel, at least when the model-driven approach is used.

Tables 5.5–5.6 present simulation results in estimation of long-run variance when multiple

records are given. Table 5.5 is for a linear oscillator, and Table 5.6 is for a piecewise linear

oscillator. The oscillator parameters are the same as those used in Tables 5.1–5.4. For both

cases, R = 10 records of length Tr = 5 hours each are considered. Three different methods of
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data 2.84e-05 2.15e-03 -1.22e-04 0.92 9.29e-04

2.76e-03 3.41e-03 1.73e-03 0.95 2.09e-03
50 QS model 5.01e-04 -5.76e-04 -4.41e-06 0.97 9.35e-04

8.56e-04 1.73e-03 8.94e-04 0.96 2.02e-03
50 QS fixed 3.43e-06 2.52e-03 4.08e-04 0.99 9.29e-04

2.61e-03 3.52e-03 1.99e-03 0.94 2.10e-03
50 QS decor. 5.39e-04 -1.64e-04 6.31e-05 0.91 9.36e-04

8.91e-04 1.76e-03 7.66e-04 0.94 2.03e-03
50 B data 4.17e-03 -1.49e-03 -1.53e-04 0.97 9.76e-04

2.73e-03 3.04e-03 8.73e-04 0.94 1.99e-03
50 B model 1.84e-03 1.22e-04 -8.53e-05 0.94 9.50e-04

1.42e-03 2.47e-03 1.22e-03 0.95 2.04e-03
50 B fixed 7.85e-04 2.07e-03 2.21e-05 0.93 9.38e-04

2.29e-03 3.00e-03 1.62e-03 0.97 2.08e-03
50 B decor. 6.52e-03 -4.16e-03 -1.44e-05 0.98 1.00e-03

8.30e-04 1.61e-03 7.75e-04 0.95 1.92e-03
100 QS data -1.22e-04 2.79e-03 3.64e-04 0.93 6.56e-04

2.54e-03 2.71e-03 1.79e-03 0.96 1.49e-03
100 QS model 4.45e-04 1.57e-04 -5.03e-05 1.00 6.61e-04

7.17e-04 1.39e-03 5.33e-04 0.98 1.44e-03
100 QS fixed 1.85e-04 2.14e-03 -9.14e-05 0.88 6.59e-04

2.01e-03 3.03e-03 1.67e-03 0.94 1.48e-03
100 QS decor. 5.40e-04 -4.02e-04 -6.01e-05 0.97 6.62e-04

6.51e-04 1.43e-03 5.87e-04 0.94 1.43e-03
100 B data 2.78e-03 -3.98e-04 6.14e-05 0.95 6.79e-04

1.79e-03 2.12e-03 6.34e-04 0.96 1.43e-03
100 B model 9.84e-04 1.57e-03 -4.11e-05 0.97 6.65e-04

1.19e-03 1.65e-03 7.90e-04 0.94 1.47e-03
100 B fixed 5.89e-04 2.63e-03 1.95e-04 0.96 6.62e-04

1.78e-03 2.19e-03 1.49e-03 0.96 1.48e-03
100 B decor. 6.71e-03 -4.33e-03 -4.11e-05 0.95 7.10e-04

5.82e-04 1.23e-03 4.92e-04 0.94 1.35e-03

Table 5.3: Simulation results for the piecewise linear oscillator with white noise excitation. See Section
5.7.1 for discussion.

estimating Π(X) (corresponding to Xt in the first column) and Π(X2) (X2
t in the first column)

are examined: the proposed new (“mean-all”), the average (“separate”) and the direct methods

(see Section 5.5). The Kernel and Method columns are the same as in Tables 5.1–5.4, except

that the decorrelation method is excluded. The entries in each box associated with a particular

estimation scheme now indicate the bias (top entry), the standard deviation (middle entry),

and the mean-squared error (bottom entry). The entries with the smallest mean-squared errors

are indicated in bold.

It can be seen from Tables 5.5–5.6 that the proposed estimator (mean-all) has superior

performance in the largest number of cases and always performs better when the model-based
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data -1.43e-03 2.81e-03 1.07e-05 0.94 5.35e-05

1.59e-05 4.17e-03 1.63e-04 0.93 2.38e-03
50 QS model -1.43e-03 -1.64e-03 -1.49e-05 0.98 5.51e-05

1.27e-05 2.22e-03 1.17e-04 0.93 2.28e-03
50 QS fixed -1.43e-03 3.61e-03 1.50e-05 0.91 5.36e-05

1.64e-05 4.42e-03 1.93e-04 0.90 2.40e-03
50 QS decor. -1.43e-03 -8.01e-04 -4.33e-06 0.96 5.49e-05

1.42e-05 2.15e-03 1.26e-04 0.91 2.30e-03
50 B data 2.03e-03 -1.19e-03 1.49e-07 1.00 2.75e-04

8.72e-04 2.69e-03 1.13e-04 0.98 2.28e-03
50 B model -3.22e-04 1.14e-03 -3.63e-07 1.00 1.63e-04

2.26e-05 2.91e-03 1.37e-04 0.98 2.34e-03
50 B fixed -7.23e-04 1.83e-03 2.60e-05 1.00 1.34e-04

2.16e-05 3.58e-03 1.39e-04 0.99 2.36e-03
50 B decor. 5.29e-03 -6.35e-03 -5.88e-06 1.00 3.82e-04

2.84e-04 1.99e-03 1.09e-04 0.91 2.16e-03
100 QS data -1.43e-03 2.61e-03 1.18e-05 0.94 3.79e-05

1.16e-05 3.35e-03 1.44e-04 0.95 1.68e-03
100 QS model -1.43e-03 -6.35e-04 2.70e-06 0.97 3.89e-05

9.01e-06 1.43e-03 7.49e-05 0.97 1.63e-03
100 QS fixed -1.43e-03 2.19e-03 2.59e-05 0.95 3.79e-05

1.24e-05 3.74e-03 1.19e-04 0.93 1.67e-03
100 QS decor. -1.43e-03 -7.20e-04 2.40e-05 0.96 3.89e-05

9.19e-06 1.42e-03 8.64e-05 0.91 1.63e-03
100 B data 1.37e-03 -8.13e-04 -1.46e-06 1.00 1.76e-04

7.78e-04 1.89e-03 7.93e-05 0.96 1.62e-03
100 B model -5.51e-04 1.62e-03 -9.09e-06 1.00 1.04e-04

1.44e-05 2.35e-03 9.87e-05 0.94 1.66e-03
100 B fixed -9.26e-04 2.44e-03 -3.13e-06 1.00 8.27e-05

1.46e-05 3.07e-03 1.22e-04 0.90 1.68e-03
100 B decor. 5.27e-03 -6.09e-03 -1.43e-06 1.00 2.70e-04

1.78e-04 1.26e-03 8.96e-05 0.94 1.53e-03

Table 5.4: Simulation results for the piecewise linear oscillator with correlated excitation. See Section
5.7.1 for discussion.

approach and the QS kernel are used. This approach/kernel was suggested above as superior

for single records.

5.7.2 Data applications

We illustrate here the proposed methodology on the data generated by a high-fidelity ship

motion simulation code (more specifically, Large Amplitude Motion Program or LAMP of Lin

and Yue [61]). The data in question concerns loads at a particular point of a ship. The time

plot of the data is depicted in Figure 5.2 (left). The duration of the record is T = 819 seconds

(with the first 20 seconds discarded), and we consider a sampling rate ranging from ∆ = 0.02
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Series Kernel Method Separate Mean-all Direct
Xt QS data -0.6492 0.0002 1.4624

0.0410 0.0614 11.1956
0.4624 0.0614 13.3342

Xt QS model -0.7979 -0.2130 2.0293
0.0087 0.0125 8.9627
0.6453 0.0578 13.0807

Xt QS fixed -0.0885 0.0168 1.6874
0.0746 0.1122 7.5065
0.0825 0.1125 10.3537

Xt B data -0.7729 -1.2907 1.9251
0.3506 0.2105 9.5462
0.9480 1.8765 13.2522

Xt B model -0.0540 -0.4557 1.5672
0.0291 0.0191 9.3266
0.0320 0.2267 11.7828

Xt B fixed 0.0735 -0.1111 1.7914
0.0733 0.0494 8.7393
0.0787 0.0618 11.9486

X2
t QS data 1.8409 0.7258 3.4816

45.1346 44.7539 8442.4808
48.5234 45.2807 8454.6025

X2
t QS model 11.4759 11.2818 9.0762

18.6724 18.7036 6326.1594
150.3685 145.9823 6408.5360

X2
t QS fixed 3.4290 1.8819 -6.6153

66.8617 67.4763 8543.4466
78.6199 71.0178 8587.2089

X2
t B data 33.3687 32.0303 -10.4373

58.4451 56.7885 6685.3033
1171.9130 1082.7290 6794.2412

X2
t B model 13.8039 13.4828 10.6049

27.7812 27.8504 5690.6623
218.3299 209.6351 5803.1269

X2
t B fixed 4.5421 3.2672 -12.0358

44.0204 44.0750 6730.3875
64.6511 54.7495 6875.2490

Table 5.5: Simulation results for multiple records of the linear oscillator with white noise excitation.
See Section 5.7.1 for discussion.

to ∆ = 0.16 seconds. We are interested in providing confidence intervals for the mean and the

standard deviation of the underlying process.

As a first step, we need to decide whether the data points to the degenerate case. As

discussed in Section 5.4, the degenerate case is associated with the fact that the process
∫ t
0 (Xs−

µ(X))ds is stationary (and vice-versa, the non-degenerate case with the process being non-

stationary). The time plot of the sample analogue of the process, namely, the discrete version

of
∫ t
0 (Xs−XT )ds, is given in Figure 5.2 (right). To see whether the non-degenerate case can be

assumed, we postulate it as a null hypothesis to be tested. We use the well-known augmented
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Series Kernel Method Separate Mean-all Direct
Xt QS data -8.9125e-03 -4.8590e-04 -1.7689e-04

7.4359e-06 3.3759e-06 3.4772e-04
8.6869e-05 3.6120e-06 3.4775e-04

Xt QS model -1.0305e-02 -1.1530e-03 7.1772e-04
3.6025e-07 4.5355e-07 2.5875e-04
1.0655e-04 1.7830e-06 2.5927e-04

Xt QS fixed -1.6811e-03 -5.9613e-05 -7.3207e-04
1.3867e-06 2.1663e-06 3.2782e-04
4.2126e-06 2.1699e-06 3.2835e-04

Xt B data -6.0523e-03 -1.3383e-02 2.6429e-04
3.1945e-05 2.9260e-05 3.5582e-04

6.8575e-05 2.0835e-04 3.5589e-04
Xt B model -1.7149e-04 -3.5594e-03 -3.1205e-03

1.1444e-06 7.8580e-07 4.0284e-04
1.1738e-06 1.3455e-05 4.1258e-04

Xt B fixed -4.9586e-05 -2.2208e-03 6.2363e-04
2.2776e-06 1.4943e-06 2.8804e-04

2.2800e-06 6.4264e-06 2.8843e-04
X2

t QS data -1.4019e-03 -1.6416e-03 -4.0445e-04
4.4542e-06 4.5681e-06 4.6088e-04

6.4195e-06 7.2628e-06 4.6104e-04
X2

t QS model 3.4570e-03 3.3914e-03 -3.9850e-03
2.1546e-06 2.1500e-06 2.6057e-04
1.4106e-05 1.3652e-05 2.7645e-04

X2
t QS fixed -1.6560e-03 -2.0158e-03 -5.6502e-03

6.1992e-06 6.4010e-06 3.9172e-04
8.9414e-06 1.0464e-05 4.2365e-04

X2
t B data 8.1631e-03 7.7285e-03 -7.1866e-03

6.3211e-06 6.3417e-06 4.3724e-04
7.2957e-05 6.6071e-05 4.8889e-04

X2
t B model 3.4164e-03 3.3269e-03 1.6838e-03

3.1475e-06 3.2081e-06 3.4893e-04
1.4819e-05 1.4276e-05 3.5176e-04

X2
t B fixed -4.1757e-04 -6.8928e-04 -3.2341e-03

4.0635e-06 4.1038e-06 3.3397e-04
4.2379e-06 4.5789e-06 3.4443e-04

Table 5.6: Simulation results for multiple records of the piecewise linear oscillator with correlated
excitation. See Section 5.7.1 for discussion.

Dickey-Fuller (ADF) test for the null hypothesis – see e.g. Chapter 3 in Pfaff [79]. The test

statistic value is -24.3202, and the critical value is -2.58 at α = 1% (-1.95 at α = 5%). Based

on these values, we reject the null hypothesis, i.e. conclude that the data is consistent with the

degenerate case.

Proceeding with the methods proposed in the degenerate case, the sample mean of the pro-

cess with ∆ = 0.02 (the smallest available) is 313739.6, and the corresponding 95% confidence

intervals for the mean for several choices of ∆ are shown in Figure 5.3 (left).

131



Figure 5.2: Time series data simulated from LAMP. Left: the series itself with ∆ = 0.02. Right: the
discrete version of

∫ t

0
(Xs −XT )ds.

To construct confidence intervals for the standard deviation for the LAMP series, we need

only look at the squared series to estimate its long-run variance (see Section 5.4). The squared

series and its integrated series are plotted in Figure 5.4. The ADF test gives a test statistic

value of -2.3433; as expected, we consider the squared series to be non-degenerate and proceed

with the methods proposed in Section 5.3, using the QS kernel and a fixed bandwidth of
√
T .

The sample standard deviation of the process with ∆ = 0.02 is 28119779, and the corresponding

95% confidence intervals are shown in Figure 5.3 (right).

5.8 Conclusions

The focus of this chapter has been on inference (i.e. confidence intervals) for the mean and

variance of random oscillatory processes by making use of estimation of the long-run variance of

the system. We consider processes with both positive long-run variance, as well as the “degen-

erate case” with zero long-run variance; such analysis requires different estimation techniques.

Additionally, we examine the case of multiple independent records of the same stochastic pro-

cess, from which we develop a more promising method of estimation. We present numerical

results of the proposed methods through a simulation study, demonstrating the performance of

these estimators.
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Figure 5.3: Confidence intervals for the mean from the LAMP series for different sampling rates. Left:
confidence intervals for the mean. Right: confidence intervals for the standard deviation.
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Figure 5.4: Time series data simulated from LAMP and squared. Left: the squared series itself with
∆ = 0.02. Right: the discrete version of

∫ t

0
(X2

s −X2
T )ds.
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APPENDIX A: CORRELATED EXCITATION AND ITS SPECTRAL
DENSITY

We describe the parameters in use for the single-degree-of-freedom random oscillator given

by (3.1). The Bretschneider spectral density given by

sw(ω) =
A

ω5
e−

B
ω4 , ω > 0, (A.1)

is taken for the wave elevation. Because excitation of waves acts on a ship through the slope,

the spectral density of the excitation y(t) is taken as

sy(ω) = ω4
0

(
ω2

g

)2

sw(ω), ω > 0, (A.2)

where ω is wave frequency. The parameters include A = 173H2
sT

−4
1 and B = 691T−4

1 , where Hs

is significant wave height, i.e. twice the amplitude in meters of the highest one-third of waves,

and T1 is the period corresponding to mean frequency of waves; g = 9.807 is gravitational

acceleration and ω0 is as in (3.1). The range of ω is trucated to 0.65ωmax ≤ ω ≤ 0.65ωmax +

2ωmax, where ωmax is the peak frequency. Throughout this chapter, unless stated otherwise, the

values taken are A = 0.775, B = 0.038,Hs = 9, T1 = 11.595 and ωmax = 0.419. By convention,

the autocovariance function γ(t) is related to the spectral density through the Fourier transform

as

γ(t) =

∫ ∞

0
s(ω) cos(ωt)dω, t ∈ R. (A.3)

We also mention that the spectral density of the solution of the linear system (3.1) with

r(x) = ω2
0x is given by

sl(ω) =
sg(ω)

(ω2
0 − ω2)2 + (2δω)2

=
ω4
0

(
ω2

g

)2
A
ω5 e

− B
ω−4

(ω2
0 − ω2)2 + (2δω)2

. (A.4)
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Hence, the variance σ2
ẋ can be computed as

∫ ∞

0
ω2

 ω4
0

(
ω2

g

)2
A
ω5 e

− B
ω−4

(ω2
0 − ω2)2 + (2δω)2

 dω. (A.5)

In (A.4) and (A.5), the damping parameter δ affects the oscillations of the system and the

natural frequency parameter ω0 represents the frequency of oscillations for an undamped (δ = 0)

system.
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APPENDIX B: OSCILLATORY SYSTEMS OF INTEREST

We describe here several oscillatory processes that are used and referred to in Chapter 5.

In the simulations of Section 5.7.1, we consider the oscillator Xt satisfying the general equation

Ẍt + 2δẊt + r(Xt) = Zt. (B.1)

Here, δ > 0 is the damping parameter, r(x) is the restoring force and Zt is an external excitation.

A linear oscillator corresponds to the linear restoring function

r(x) = w2
0x, (B.2)

where w0 is the natural frequency parameter. A nonlinear oscillator is associated with a

nonlinear restoring force. In Section 5.7.1, we use a piecewise linear oscillator with the restoring

force

r(x) =


−k1w

2
0(x+ xm)− w2

0xm, x < −xm,

w2
0x, −xm < x < xm,

−k1w
2
0(x− xm) + w2

0xm, x > xm,

(B.3)

that is, where the restoring force has a negative slope (−k1w
2
0) in the nonlinear regime |x| > xm.

Though other nonlinear oscillators (e.g. the Duffing oscillator) could be considered as well.

Two forms of the external excitation are considered. First, there is a white noise excitation

Zt = σẆt, where Wt is a standard Brownian motion and σ > 0 is the parameter controlling

the strength of the excitation. Its spectral density can be thought as

SZ(w) = σ2. (B.4)

Second, motivated by ship rolling applications, we also consider the stationary Gaussian exci-

tation having the spectral density

SZ(w) = w4
0

(w2

g

)2 A

w5
e−

B
w4 , w > 0, (B.5)
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where w0 is as in (B.2) and (B.3) and g = 9.807 is the gravitational acceleration. The parameters

A and B are taken as A = 173H2
sT

−4
1 and B = 691T−4

1 , where Hs is significant wave height,

i.e. twice the amplitude in meters of the highest one-third of waves, and T1 is the period

corresponding to the mean frequency of waves.

We also note that the spectral density of the linear oscillator with excitation Z is given by

SX(w) =
SZ(w)

(w2
0 − w2)2 + (2δw)2

. (B.6)

Since SZ(0) = 0 for the correlated excitation with the spectral density (B.5), we have SX(0) = 0

for the linear oscillator with the correlated excitation. Thus, in view of (5.23), this oscillator

falls into the degenerate case.

A convenient fact about a linear oscillator with white noise excitation is that its auto-

covariance function can be computed explicitly as follows. In view of (5.12) and (B.6), we

have

ΓX(h) =
1

2π

∫
R
cos(hw)SX(w)dw =

σ2

π

∫ ∞

0

cos(hw)

(w2
0 − w2)2 + (2δw)2

dw

=
σ2

π

∫ ∞

0

cos(hw)

w4 + 2w2
0w

2(2(δ/w0)2 − 1) + w4
0

dw =
σ2

π

∫ ∞

0

cos(hw)

w4 + 2w2
0w

2 cos(2t) + w4
0

dw,

where cos(2t) = 2(δ/w0)
2 − 1 with 0 < t < π/2, assuming that

δ < w0.

Then, by using Formula 3.733.1 in Gradshteyn and Ryzhik [46], p. 428,

ΓX(h) =
σ2

2w3
0 sin(2t)

e−hw0 cos(t) sin(t+ hw0 sin(t))

=
σ2

4w0δ
√

w2
0 − δ2

e−hδ sin(t+ h
√

w2
0 − δ2) (B.7)

by using the facts that w0 cos(t) = δ and w0 sin(t) =
√
w2
0 − δ2. This also allows one to compute

explicitly the long-run variance of the process as: by using Formula 3.893.1 in Gradshteyn and
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Ryzhik [46], p. 486,

Π(X) =

∫ ∞

0
ΓX(h)dh =

σ2

w3
0 sin(2t)

∫ ∞

0
e−hw0 cos(t) sin(t+ hw0 sin(t))dh

=
σ2

w3
0 sin(2t)

· 1

w2
0 cos

2(t) + w2
0 sin

2(t)

(
w0 sin(t) cos(t) + w0 cos(t) sin(t)

)
=

σ2

w4
0

. (B.8)

Note that this is also the same as SX(0). One can also compute Λ2(X) in (5.10)–(5.11) explicitly

(see Remark 5.2.1) as

Λ2(X) = (−1)
d2SX(ω)

dω2

∣∣∣
w=0

=
4σ2(2δ2 − ω2

0)

ω8
0

. (B.9)

In the Gaussian case which we assume for a linear oscillator with white or uncorrelated

excitation, long-run variances associated with the squares of the process can be calculated by

using the well-known relations

ΓX2(h) = 2(ΓX(h))2, ΓX,X2(h) = 0. (B.10)

For nonlinear oscillators (with any excitation), no explicit formulae are known for either

the spectral density or the autocovariance function.
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