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1 Introduction

Crystal surface diffusion refers to the way in which atoms on the surface of a crystal redistribute to
eventually settle into a configuration with minimal surface energy. Along with epitaxy, or crystal growth,
crystal surface diffusion is important to study due to the role it plays in the production of thin films, which
have wide-ranging applications in microelectronics. For example, the deformation of a crystal surface to an
equilibrium state plays a central role in fuel cells that rely on thin crystal films, as the conversion efficiency
of chemical energy to electricity depends on the surface configuration of the film. As is characteristic of
large microscopic systems, we can gain more insight into the nature of the dynamics of surface diffusion
by studying it at the macroscopic level than at the level of individual atoms. Since the physical process is
microscopic, however, a faithful mathematical model of the diffusion should describe it with microscopic
dynamics. Given a model of the microscopic dynamics, then, we are presented with the challenge of
deriving macroscopic dynamics in the limit as the number of particles approaches infinity. This is known
as a hydrodynamic, or scaling, limit; it is particularly appealing from the modeling perspective because the
input is the true, microscopic dynamics, while the output is a much easier to analyze continuum equation.
The main goal of this work is to derive such a scaling limit for a specific dynamics governing the microscopic
process of crystal surface diffusion.
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2 Background

One way to model a system of particles is to track the position and momentum of each one and use
equations of motion to predict the variables’ change over time. However, it is often more convenient
to take the statistical mechanics viewpoint, introducing randomness into the system. According to this
viewpoint, one divides the space into microscopically-sized cells and represents the system through field
variables, which measure the average number and momentum of particles in each cell. These variables are
taken to be random, to account for fluctuations resulting from particle movement between cells. Thus, the
state of a microscopic system is best viewed as a probability measure: the set of configurations and their
associated probabilities. For example, global equilibrium corresponds to the maximum entropy probability
distribution. This is the state of greatest disorder, which we should expect the distribution of particles of
the crystal surface to converge to with time (in accordance with the second law of thermodynamics).

As the number of cells approaches infinity, the microscopic system becomes increasingly well-represented
by a continuous, macroscopic system, and the random dynamics by a deterministic one (an evolution equa-
tion). The central principle that hydrodynamic limit proofs rely on to “smooth out” random fluctuations in
the limit is that microscopic systems quickly (on a macroscopic time scale) reach a local equilibrium state
(i.e. local equilibrium measure). In this state, the particles in small but macroscopic regions are distributed
according to a homogeneous equilibrium-like distribution that smoothly varies across space (see e.g. the
introduction of [2] for an illustration of this idea). Because the behavior is homogeneous in each region, we
may represent the local state by a single number without loss of information. This is the local analogue
of assigning single thermodynamic quantities like temperature or pressure to an entire gas in equilibrium.
However, determining this local equilibrium measure and rigorously justifying that the microscopic process
takes on this distribution is challenging. The measure is tied to a certain local surface tension function o,
which is particularly sensitive to the way the microscopic model is defined. This function also appears in
the PDE governing the macroscopic dynamics of surface diffusion processes, making it the link between
microscopic and macroscopic dynamics.



A macroscopic crystal surface will be represented by a height profile, i.e. a function h(z),z € T, where
T = [0,1] with endpoints identified. A microscopic surface will be represented by a function hn(j),j €
Z/NZ, ie. as N regularly spaced columns of atoms stacked above or below a substrate. The heights
may either be restricted to the integers (to model columns of integer numbers of atoms), or allowed to be
continuous. In [4], Marzuola restricts the heights to the integers, and models the diffusion as a Markov
jump process with transitions occuring when atoms jump to neighboring lattice sites. In [5], Nishikawa
considers continuous heights and models the microscopic diffusion with a stochastic differential equation.
Both obtain
Oh(t,x) = —Adiv [Vo(Vh(t, x))] (1)

as the PDE governing the evolution of the macroscopic profile h, albeit with differing definitions of o,
which will be discussed in this thesis.

This equation can be seen as a gradient descent in the free energy of the surface h(t, ) in H~*(T), which
turns out to be the natural space to consider such a diffusion process in. The inner product of the space
is given by (f,¢9)g—1 = ((=A)"1f, g)r2. Letting 6%5(;) represent the functional derivative of h in H~! and
¢ be a test function, we have

L 85(h) 55(h)
[ o — (2 ,¢)H1
S(h+ ed) — S(h)

= lim

e—0 € (2)
i [ 2V (@) + ed(x)) — o(V(A(x))

e—0 €

T
= / Vo(Vh(x)) - Vé(z)dr = — / div [Vo(Vh(x))] ¢(x)dz,
T T

from which we see that 5%2’” = Adiv [Vo(Vh(2))].

In this thesis, we consider the setup in [4] (discrete heights) but a different set of transition rates, and
derive the hydrodynamic limit. The transition rates we consider belong to a class of rates that depend
only on the energy difference from before to after the jump; such rates, known as Metropolis-type, are
important to study because they are commonly used by computational chemists in numerical simulations.
The basic framework of the PDE derivation follows that of Marzuola in [4]. Both this work and that of
Marzuola are based on the paper of Krug [3], who used physical arguments to derive PDEs such as (1)
based on both adatom and Metropolis rates.

The rest of the thesis is organized as follows. In Section 3, we describe the microscopic space and
microscopic dynamics. In Section 4, we explain the particular scaling limit we consider and derive the
PDE governing the continuum evolution, postponing some calculations to Section 6. In Section 5, we
present our numerical results and compare them with the theory.

3 The microscopic model

We index the microscopic spaces by IN; the Nth microscopic configuration space of crystal surfaces is
represented by height profiles of integer numbers of particles above and below the periodic lattice Z/NZ.
We will denote a generic profile by h = (hq, ..., hx). Since the total number of particles is preserved by a
diffusion process, we restrict the configuration space to

N
We={h:h€Zi=1,..N hi=mQN))}
=1

for some fixed m(N). The height gradients corresponding to a profile h are denoted by z; = h;41 — h;, i =
1,..., N (with circular indexing). The gradient values, rather than the heights themselves, play the key role
in driving the diffusion process to equilibrium, via the profile’s Hamiltonian,

N
H(h)=> 2.
i=1



We assume the system is in contact with a heat bath at constant temperature T'; thus, the ensemble on
Z7Y; representing thermal equilibrium is the canonical ensemble. It is given by

o~ K H(h)

po(h) = —z

where K = kﬁ%, kg is the Boltzmann constant, and Z is the normalization constant.

The diffusion on Z% is a Markov jump process; we denote it by h%, = (hy(t), ..., hn(t)). Transitions
between states occur when the top particle at a lattice site jumps to a neighboring lattice site with a certain
instantaneous transition probability, or rate. Such a transition can be represented via the operator Jik,
defined by

hG) -1 j=i
(JE)G) = JhG) +1 j=k (3)
h(j) J#ik
With this notation, the permissible transitions are

h— Jfh, |i — k| = 1.

Note that these transitions preserve the total number of particles m. The transition rates are defined by
1 ,
+ . - ¢ i1y, 110
ry(i,h) = }H% tP(hN = J; = h/hy = h).

To ensure that the process is reversible and invariant with respect to the equilibrium measure pg, the rates
must satisfy detailed balance, i.e. we must have

(4)

There are many rates that satisfy detailed balance; in [4], for example, Marzuola considers the so-called
adatom rates 77 (i) = 7 (i) = e 2K where n(i) is a so-called coordination number that quantifies
the energy it takes for the topmost atom at site ¢ to break the bonds with its nearest neighbors. While
the adatom rates are physically motivated, the rates we consider here are motivated by computational
convenience. They are defined by

P (i) = exp |G (O — H()

The generator Ay of the Markov process h; quantifies the instantaneous change in the average value
of an observable f of the process. Namely,

N

= S ) — S0 i) + (P B) — F)r (i)
- (5)

(An f)(h) = lim L) B = b] — /()

t—0 t

One can also show that .
) = F%) + [ (Aw ) )ds + .

where M}i is a zero-mean martingale.

4 Scaling limit

Establishing a hydrodynamic limit is typically achieved in two steps. First, assuming a limiting macroscopic
profile A(t,-) : T — R exists, one derives the PDE it satisfies. One then proves the solution to this PDE is
unique, and shows that the microscopic profile at each time ¢ (appropriately rescaled to some hy(¢,-)) does



indeed converge to h(t,-) as N — oo. The appropriate convergence regime is in H~!(T), i.e. one should
show that E||h%, — h(t,)||zz-1(r) — 0 as N — oo for each ¢, where the expectation is taken with respect to
the measure of the process at time t given a particular initial profile hy. Here, we will focus only on the
first step, that is, deriving the PDE under the assumption that a sufficiently smooth limit h exists.
Recall that hl, = (hy(t),..., hx(t)) and consider the rescaled process hy(t,-) : T — R, defined by

1
hy(t,z) = th] (N*),

where |y] is defined to mean the nearest integer to y. We have scaled down the distance between lattice
sites to live in the unit interval, and scaled the heights by % so that the total mass, m](VN), does not blow
up. The time scale was chosen to yield a meaningful limit. In particular, it reflects that microscopic events
occur at a very fast rate on the macroscopic time scale. The general structure of the derivation presented

in the following sections follows that of Marzuola in [4].

4.1 Window average framework

As described in Section 2, the standard technique that hydrodynamic limit proofs rely on is to show that
after a short amount of time on the macroscopic time scale, the microscopic system should reach a local
equilibrium state (we will provide numerical confirmation of this fact but do not provide proof). In order

to take advantage of this property, we can approximate hy (¢, z) by sliding window averages of the function

[N

over a small but macroscopic window centered at Tﬂ Specifically, define the sets

k6 k ¢
o=y N Ty

(where addition is modulo 1) and window averages

¢k75(t):§/s BN(t,x)dx:NiéN Z h;(Nt).

Letting k(z) = | Nz], we have that if 4 << 6 << 1, then
h(tv .’E) ~ BN(ta x) ~ ¢k(m),5(t)'

We therefore have

11 11 Nt
h(t, @) = h(0,2) = 1= Z hj(N‘lt)—hj(O):mﬁ Z /0 (Anj)(hn (s))ds + M;(N*t),

J: A7 €Sk(a) J: 37 €Sk(a)
(6)

where 7; is the projection operator onto h;. Using (5) with f = m;, we see that
(Aymj)(h) = (r{ (5 — L, h) = r{ (5, h) + (ry (5 + 1, h) =7y (j, b)) -
Substituting this into (6) and changing variables, we obtain

N3

t
3 / PG — 1, Ns) — 1 (j, N*s) 7 ( + 1, N's) — v~ (j, N*s)ds + M, (N*¢),
, 0

j:]WGSk(w)

(7)

where we have used the notation r*(k, ) in place of 7+ (k, hl;).

The random variables r*(N%s, j) are local, depending only on z; for i = j — 1,5,5 + 1. The local
equilibrium measure, which we describe in detail in the following section, varies smoothly along the do-
main. Thus, the random variables r*(N*s, j) for % € Sk(») have nearly the same distribution as that of



r+ (N*s,k(x)), the central point of the window Sk(x)- Moreover, they should have low correlation with one
another (also discussed in the following section), which implies that the M;(N*t) have low correlation with
one another as well. We thus expect a law of large numbers to hold, allowing us to replace the average of
Mj over j € Sk, by 0, its expectation, and to make the substitution

% D rEUNYS) = E [ (k(z), N's)] .

J: % €Sk

Also,

N% > G- LN ~E[r (k@) — 1L N"s)],

j:%ESk(m)

and similarly for r—(j + 1). We thus have

h(t,z) — h(0,z) ~ N3 /tE [rt(k(z) — 1, N*s) —rT(k(z), N*s) +r~ (k(z) + 1, N*s) — v~ (k(z), N's)] ds.
0
(®)

4.2 Local equilibrium measure

We now turn to characterizing the local equilibrium measure according to which the height profiles are
distributed at time N*s, for s away from 0. Such a measure is defined to have maximum entropy among all
measures that have certain prescribed local averages, which is equivalent to the measure whose Kullback-
Leibler divergence with respect to the global equilibrium measure pg is minimal among this subset of
measures. This idea is described in more generality and made rigorous by Roux and Weare in [8]. In our
case, these local averages should be the values of Vh(s, ﬁ), the surface gradient of the macroscopic profile

i
: N>
of the microscopic height gradients to cluster around Vh(s, +r). To be more precise, the local equilibrium

measure py - known as the optimal twist measure - is the solution to the constrained minimization problem

the microscopic process is converging to. This means that in a neighborhood of we expect the values

minimize K L(p||po)
P

subject to Y p(h) =1, > (hip1 — hi)p(h) = Vh(t, §)i=L. N
hezy hezy

We solve this problem using Lagrange multipliers. Defining p = (p(h))nezy (a sequence, since the state
space is countable), we have

N ‘

h 1

0=Vy, > —p(h)log p((h)) ta | D0 pm) =1+ N D (hier — hi)p(h) = V(L +2)
hezy Po hezy i=1 hezy

9)

N
= (—logp(h) +logpo(h) +a+ > Ai(hit1 — hi) — 1) '
i=1 hezZy

We thus see that

N N
pa(h) Po(h)eXP[Z Ai(hiv1 = hi)] o eXP[Z —K (hix1 = hi)? + Nihigr = hy)].
i=1 i=1

To find the A;’s we must solve the equation

- Chezg (hivr — h)exp[0L —K (hisr — hi)? + Ni(hips — )]

Vh(t |
ZheZ}\,’L exp[d;iny —K(hix1 — hi)2 + Xi(hiy1 — hy)]

= Ex[hit1 — hi]

)
7N)



It is helpful to change variables in the sum over profiles h € Z%} appearing in (10) and instead consider
gradient-tuples. The space of gradient profiles corresponding to the height profiles in Z%} is

N-1
VZR = {z = (21, 29, ..., 2y_1) € ZN 71 Z (N —d)zi=m mod N},
i=1
where the z;’s are defined as before, i.e. z; = hjp1 — hyyi = 1,..., N — 1 (note that zy = hy — hy =
— ZZ]\SI z;). To see why the modulus restriction is necessary, note that given an arbitrary N — 1-tuple z,
we have h; = h1 + 21 + ... + z;_1,7 > 1, so that

N N-1
m:Zhl =Nhy + Z(N—?:)Zi
=1 =1

has an integer solution h; if and only if ZfV:II(N —1i)z; =m mod N.

It can be shown by arguments similar to those appearing in Section 6.1 (i.e. by considering the sums
as expectations of a function of independent random variables Z, ..., Zy_2), that for large N, )\; is well-
approximated by the solution of
—Kn?4+X\in

i D onez €
Vh(ta 7) = E)\i [ZZ] = Z:EZZ e—Kn2+Ain ’

N

which is what (10) would reduce to if the z; were independent.
Consider the general inverse equation for A as a function of w:

- 22 u)z
Yo e T :ilogZ,\a

U= ZzeZ e~ K22+ (u)z d\

where Zy 1= Y, e K232 One can easily show that A(u) = Vop(u), where

o (u) = sup{nu — log Z,},
ner

the Legendre tranform of log Z,,. The function op is the surface tension obtained by Marzuola in [4]; we see
now the connection between it and the local equilibrium measure. Another way to think about the surface
tension is as follows: in the presence of a restorative force field Vop(u), the Hamiltonian of a “system”

of one height gradient becomes H(z) = 22 — w%(u)z, and the average value of the height gradient with

probability distribution p(z) oc e KH(2) is 4.
We now briefly recall the model considered by Nishikawa in [5] in which the heights are allowed to be

continuous. In this case, the change of variables

N
{(hl, ...,hN) eRY . Zh, = m} — {(21, ...,ZN,1) € RN_l}
i=1

is bijective. Since there is one less restriction on the relationship between the z;, we expect the solution to
the equation reduced to the single z; variable to be an even better approximation for A;, i.e.

—Kaz? 4z
B Jg e i

2
\ ( ’ )‘[Z] f]R e—Kz?+Xiz

- ()

which has solution A; = 2KVh(t, %). The function o¢(u) obtained in [5] is constructed analogously to
op(u), and is simply oc(u) = Ku?. We explore the relationship between op, oc, and K, at the end of
this section.

To summarize, the unnormalized optimal twist measure at time N*4s is given by

N .
pa(h) = exp l—H (h) + ) Aizi] i = Vop(Vh(s, ))-

=1

From now on, expectation with respect to the optimal twist measure will be denoted by (-) .



4.3 Rate expectation

We now return to computing the expectation of the rates in (8) with respect to the optimal twist measure.
We have

) B ZheZ}(} 7"+(j, h)py(h)
o ==

The summand in the numerator takes the form
7’+ (]7 h)pA (h)

N
=exp |—(H(JI"'h) — H(h))/2— H(h) + > )\izi]

N
=exp |—(H(JI ')+ H(h)/2+ ) /\z]

K
= exp 75((2]4_1 — 12422+ (2 + 2+ 27+ (41— 1)2 zfﬂ)}

N
xexp |—K Z 212 + Z)\,-zi
i=1

i#j—1,5,j+1
1 1 al
:exp[fK(zJQ-_lfzj_l+§+z?+2zj+2+z]2-+lfzj+1+§)fK Z zf+2)\lzl]
i#j—1,4,j+1 i=1
N
= exp[ — 3K — KZZIQ + (>\j—1 + K)Zj_l + (/\j — QK)Z]‘ + (/\j+1 + K)Zj_H + Z )\izi]
— i#j—1,5,4+1
Thus,
N 2 1
Yonezp XP2_in —K2Z + Aizi
(r (i) = e N 1

N )
Zhezg; eXp[Zi=1 *KZZ'Q + iz

where \j_1 = A\j_1 + K, \j = A\j — 2K, A\ji1 = M\j1 + K, and \; = \; for all other . Multiplying the

1 N

numerator and denominator by exp [_E i1 )\f], we obtain

_ 3K EheZ}(} expls; — KZi;&jfl,j’j+1(zi — Xi/2K)?]

o , 13
< (])>>\ Zhezm exp[—K Zi\,:l(zz - )\7,/2K)2] ( )

where

sj= =Kz 1+ (Mo + K)zjo1 -
2
— K22+ (N1 — 2K)z; — = (14)
A1
AK

— Kzi 4+ (N + Kz —



Completing each of the three squares in s; yields

N+ K\? N — 2K \? A K\?
sj:_K(zjl_mL> _K<Zj_ J ) _K(Zj+1_m)

2K 2K 2K
LN K A1 Ly —2K) A L K £ K A
41K 4K 4K 41K 41K 4K (15)
N+ K2 A — 2K\ ? i1+ K\?

3 1

Substituting this expression into (13), we obtain

N i
Zhez;(; exp[—K ;= (2 — (;\7;( +¢i))?]
N .
Yonezg exp[-K Y5, (2 — 5)?)

(r (s = expl-2 K + £ (Aj1 = 24 + Ag0)] o)

where ¢j_1 = ¢j41 = %, ¢j = —1, and ¢; = 0 for all other 3.

We now simplify the sums in this expression. Since they have the same form, we concentrate on the
sum in the denominator, and the numerator will be similar. As in the previous section, change variables
from h € ZY to z € VZ%;. Define p(z) := e‘K(Z_l)Q, l; .= 2’\5( Under the change of variables, the sum in
the denominator of (16) takes the form

N-1
Do (=D =) [ ou(z) (17)
hezy i=1 AN

We first work on computing the inner sum over zy_1. Define the variables Sy = Zf\:f zi and Ty =

N-2 . . .
Y ieq iz;. The variable zy_; can take values in

N-2
{Nj+m—> (N—i)zi:jeZy={Nj+m+Ty:jeL}
i=1

Substituting this second expression for zy_; into the part of the product in the summand that depends
on it, we obtain

N-1
Pin_y (2N-1)D1y (- > Zi) = Pix_1 (2v—1)D1y (SN — 2N -1) (18)
i=1
=exp[-K(Nj+m+Ty— In_1)2 = K(Nj+m+Ty + Sy + lN)Q)]
Now we make use of the identity
aicy + asco 2 C1C2 2
ci(z+a 2+c T+ a 2:c+c x + a; —a
1( 1)” 4 o 2)” = (c1 4+ e2)( P C1+02( 1 — as)
with © = Nj + m + T to reexpress (18) as
K ) In —In_ S
fi(Sn,Tn) :=exp [_Q(SN +in_1+In)? —2K(Nj+m+ % + Ty + TN)Q . (19)

Defining f(Sn,Tn) := ZjeZ [i(Sn,Tn), and noting that 21, ..., zy_2 can range freely over Z, we thus have

N—-1 00 00 N—-2
Z plN(i Z ZZ) H pli(zi) - Z Z H pli(zi)f(SNaTN)'
hezZy i=1 i#=N 21=—00 zZN-_2=—00 i=1



Defining the integer-valued random variables Z;, with P(Z; = n)  p;,(n),n € Z, we thus see that

N-1
Z plN(— Z Zi) H pli(zi) =ZE [f(SN(Zl7 ...,ZN,Q),TN(Zl, ceey ZN,Q))}
heZ?y} i=1 i#=N

where the Z;’s are independent and
—2

Z= H pi(n)

1=1 n€eZ

is the normalization factor of the distribution of (Z1, ..., Zn_2).
Similarly, the numerator in (16) takes the form

ZYE [f(SN(Z{, . 25 _0), TN (2T, ., 25 5))]

where P(Z;" =n) o pi,4¢;(n),n € Z, and Z7 is the normalization factor of the distribution of (Z;", ..., Z§_,)
(the + indicates we are computing r*). Note that, because of the product structure in the normalization

factors, and the fact that ¢; = 0 for all but three values of 1, % will reduce to

Zt ZnGZpljflJr%(n) Znezplj—l(n) ZnGZplj+1+%(n)

Z B ZnEZpljfl(n) ZnGZplj (n> ZnGZplj+1 (n)
ZnEZ eiK(niljilié)g ZHEZ eiK(niljJrli%f
B ZnGZ eiK(niljil)z ZnGZ eiK(niljJrl)Q

The middle term cancelled because a shift by one does not change the sum. Letting ET be the expec-
tation in the numerator, we have thus shown that

(20)

ZTET

=5 (21)

. _3 1
(= e exp | 3051~ 20y 4 A
We now compute (r~(j + 1)), as it is very similar in form to (r*(j))x. To do so, we simply change
zj—1 —1,2; + 2,zj41 — 1 in the third line of (12) to z;—1 +1,2; — 2,241 + 1, respectively, and continue
changing — to + and vice versa throughout the derivation. We end up with

1 Z-E~
(r=(j+ 1)) = e Fexp [—2()\1‘1 =20+ )\j+1)] = 5 (22)
Note that Z+ = Z~, because the change from [;_1 + % to lj_1 — % is equivalent to a shift of n by 1 in
the sum (the same goes for {;11).
We now show that ET = E~. These expectations differ only in the probability mass functions of the
variables Z,':’_J{: =Jj—1,j,j+1. We have that Z,_, = Z]tl -1, Z; = Z;r +2,and Z;,, = Zj++1 —1lin
distribution. To see this, note for example that

N e—K(n—(lj—l-i-%))2 e—K(n—l—(lj—l—%))2 B
py-1(n) = S e KLoK= )7 =Pl —1).
Thus,
Sv= > Zi+(Z/,-1)+(Zf +2)+ (2}, -1) =5}
i#j—1,5,5+1
and
Ty = >, iZi+(G-D)(Z - )+4i(Z +2)+ G+ 12}, -1) =T}
i#j—1,5,5+1

Hence, since the expectations are a function of Sy and T only, they must be equal.



4.4 The PDE

We substitute the formulas obtained for (r*), into (8), letting Z; denote %, E; denote % and D; denote
Aj—1 —2XAj 4+ Ajy1. Recall that \; actually depends on s, i.e. Aj(s) = Vop(Vh(s, %))

¢
h(t,z) — h(0,2) ~ N3/ engZjEj em3Di _e3Di| engZj_lEj_l em2Dim e%Df*I] ds
0

t
~ N3 —6_%KZJ‘EJ‘DJ‘ —l—e_%KZj,lEj,le,lds (23)

= N | —e 2 [(B; = B;-1)Z;D; + (2;D; — Z;-1D;1) Ej 1] ds

/

t
J
Now, for N large,

D; ~ N202Vop(Vh(t, %)),

and Z; ~ Z%(\;) = Z*(Vop(Vh(t, +)), where

—K(n—XA—1)2
ZnEZ € 5
—K(n—X\)2
ZnEZ € ( )

We will show in the appendix that E; — 1 for all 4, and N(E; — Ej_1) — 0. Thus, N3 times the first
summand in the integral above will vanish, while N? times the second summand will approach

Z(\) =

0. [2*(Vop(Vh(t,x)92Vop(Vh(t,z))] .
We thus arrive at

Bih(t,x) = —e~2%0, [22(Vop(Vh(t, £))02Vop(Vh(t,z))] . (24)

Note that this equation does not immediately fit into the framework of gradient descent in surface free
energy described in Section 2. This suggests that the “true” surface tension o that is appropriate for these
rates is not in fact op, but a small correction on op that depends on Z(A). This is not implausible; indeed,
recall that the \; computed using the Legendre transformation were only approximations of the parameters
A that resulted in the distribution closest to pg.

4.5 Dependence on K

The inverse temperature K affects the PDE through Z and Vop. The sums appearing in Z can be
expressed through the 63 function as follows:

3 o~ K(E=N? _ \/\/;93(77/\,@_%2) - \/\/; > e~ "R cos2mn. (25)

Z=—00 n=—oo

Thus, for small K we have

oo 7\,2
Z e K(=N? o VT (14 2e™ K cos2m)).

Z=—00

SS

The second term is an exponentially small correction, so

Sz KA

ZneZ e—K(n—X\)2

for all A, and one can also see that its derivative is approaching 0.

Z(\) = ~1




Moreover, we can show that Vop — Voo as K — 0: We have

S (oo e-KEn _ L4 SN koA
Z_z_:oo(z Ne *QKdA[Z;X)e ]
- o0 - (26)
- 2 )\] —l— Z ne” K- sm27m)\
2K d)\ Z e cos2mn KVE 2~
Thus, using A\(u) to denote W%K(“), we have
NP DN EE ol R vy R sin 2mn)
u— Au) = = — = —-
PRI Sl K Yo e =2 cos 2mn\ (27)

77 2(6_% sin27\+..) -2«
KlJrQ(e_LK2 cos2mA + ...) K

L
e~ K sin2mwA.

Thus we have the implicit equation for Vop(u),
Vop(u) ~ 2Ku—|—47reiw7 sin (%Vop(u)) .

2
Since |Vop(u) — 2Ku| < 4me™® << 1, we may substitute 2Ku for Vop(u) on the righthand side to
obtain

™

2
Vop(u) =~ 2Ku + 4me™ K sin(27mu).
For small K therefore, the PDE starts to look like (1) with o¢, i.e.

Oh(t,x) = —2Ke 3K0Mh(t, ).

5 Numerical Simulations and Discussion

To check whether our derivation is correct, we used the Kinetic Monte Carlo (KMC) algorithm to simulate
the evolution of the rescaled microscopic process up to time N*T for a given T. The algorithm takes in
the initial profile hg at ty = 0 and proceeds as follows, until ¢, exceeds N4T:

1. Given t;, and h(ty,-), compute Ry := {r* (i, h(ty,)}.

2. Draw dt from the Tp, ~ Exp(}_ r) distribution and set txy; = t + dt.

reRy,

3. Choose an ry from the distribution P(r = r;) = %, and define h(ty+1,-) to be the result of the
transition from h(tg,-) associated to rg.

This is an accurate simulation of the Markov process because for small dt we have

P(hevar = J= hlhy = h) rE(i, h) P(T}, < dt)
dt - Y, h) + = (iy b)) dt
B r(i, h) 1—exp[—>,(rT(i,h) +r (i, h))dt]
= ST+ G R) 7 r (i h) + o(1)
(28)

We used hg(z) = sin(272) in all of our simulations. The signature of the microscopic dynamics is best
discerned by looklng at the change in the profile after a short amount of time. Figure 1 shows a plot of the
average of h™V"t — hO over many sample runs of KMC, next to a plot of h(T),-) — h(0, ), where h(¢,x) is the
solution to the PDE we have derived. The KMC plot was generated by averaging over about 107 sample
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trajectories, with a crystal of size N = 1500. We see that the two plots are very different; the reason we
compare the two profiles at slightly different times will be explained below.

%10

Figure 1: hp — hy from KMC and PDE

KMC: h_ - h  for K=1.5,T=2E-9

| |

a5 =1

05 predicted PDE: h_ - h for K=1.5,7=1.0326x2E-9

Since computing the rate expectation was the most involved part of the derivation, we investigate
whether it was the source of error. We do so by computing the average over many runs of the rates
associated to each site of the profile obtained from KMC at time 7" = 2 x 102 and comparing to the
formulas for (r*(j)), that we obtained. The plots comparing the rate expectations from KMC and from
the theory are shown in Figure 2.

0.113

0112 ¢

0111 ¢

0.1

0.109

0.108

0,107 1

0106 [

0,105 |

0.104

Figure 2: Rate expectations from KMC vs. theory

K=1.5: expectation of r*

—KMC

predicted |

0.112

011

o1

0.109

0.108

0.107

0.106

0.105

0.104

K=1.5: expectation of r”

—KMC
predicted | 4

The plots in Figure 3 seem to suggest that the rates we computed are off only by a multiplicative
constant.
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Figure 3: Empirical rate expectations from KMC compared to scaled rate expectations from theory

K=1.5: expectation of r* K=1.5: expectation of r”

0.113 T T T 0.112 T T T T
——KMC ——KMC
0112 F — 1.0326 x predicted | 4 0111 — 1.0326 x predicted | |
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0.1
0.11 [}
0.108
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0.108 [
0.108 b
0.107 [
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0.106 . 0108 1
0.105 . . . . . . . . . 0.105 . . . . . . . . .
0 01 02 0.3 04 05 06 07 08 0.9 1 0 0.1 02 0.3 04 05 0.6 07 0.8 09 1

But this cannot be true, since such a scaling error would simply lead to a time scaling difference in the
solution to the PDE, and we see this is not the case from the plots of hp — kg in Figure 1. One possible
explanation for the discrepancy between the predicted and computed rate expectation is that the height
profiles were not distributed according to the local equilibrium measure at macroscopic time 7' = 2 x 1079,
Figure 4 compares the empirical distribution of z; = h;;1 — h; based on 2 x 10 simulated paths of the
microscopic process with K = 1.5 and T = 2 x 107 to the expected distribution,

Ai \2

P(z; = n) < exp(—Kn® + \in) o« exp(—K(n

where \; = Vop(Vh(T, ﬁ)) Specifically, we plot n vs P(z; = n) for those n such that the probability is
nonnegligible.

Figure 4: Height gradient distribution comparison
empirical distribution of Z , i=250

difference between empirical, predicted pdf of Z,i=250

0.8

0.015

0.01p

0.005

-0.005
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empirical distribution of ZI, i=500 102 diff. between empirical, predicted pdf of Zl,i=5l)l)
x
0.7 T T T T T T 4 T T T T T T

This slight discrepancy in the measure of the marginal distributions of Z; may arise because \; does
not equal Vop(Vh(t, %)) exactly.

We carried out all of these numerical simulations for the process driven by the adatom rates studied
in [4] as well. Interestingly, as Figure 5 shows, the difference between the empirical and predicted height
gradient distributions was on the same order and had the same shape as that of the process driven by the
Metropolis type rates.

Figure 5: Height gradient distribution comparison for process driven by adatom rates
empirical distribution of ZI, i=250 102 diff. between empirical, predicted pdf of Zl,i=250
b

empirical distribution of ZI, i=500 diff. between empirical, predicted pdf of Zl,i=500
0.7 T T T : . T 6 : T : : T .

Moreover, the rate expectation also did not coincide exactly with the formula obtained for it in [4],
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(r(iHs = %e_(’\j”‘jfl) (see Figure 6), while the fluxes hy — hy from KMC and the derived PDE nearly
coincided (see Figure 7).

Figure 6: Adatom rate expectations from KMC vs. theory

K=1.5: adatom rate expectation
0.65 T T T T T

T T
—KMC
predicted

06

0.55 |

@

il L‘Mr ! )

05 | I

oas| 'l'|rw-mﬂl|ur i

0.4

Figure 7: hp — hy from KMC and PDE for adatom rate driven process

10° K=1.5: h_-h, for T=2E-9

L | I ! | 4
M ==
predicted
. L L L L . L

I L
o 01 02 03 04 05 08 07 08 08 1

For the adatom rates, the discrepancy in the rate average may indeed be due only to a small multiplica-
tive constant. Note, in particular, that the formula for the expectation does not have the Z(\) term that
the Metropolis-type rate expectation formula has. These rates’ additional dependence on A\ could make
the rate expectation more sensitive to error in A.

The error in the predicted rate average and flux was smaller for K = 0.5; for example, the ratio
of the rate average from KMC to the predicted rate average is about 1.0094. Since for smaller K the
microscopic system behaves more like its continuous analog, where assuming independence of the Z; seems
more justifiable, this suggests that the delicate calculation of the \;s or of % for finite N and integer
distributions lies at the heart of these errors. Figures 8 and 9 were generated by averaging over about 10%
trajectories, with a crystal of size N = 1000. The flux hxmc(T, ) — h(0,-) in Figure 9 was smoothed by
convoluting with a Gaussian filter using a window of 30 lattice sites.
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Figure 8: Rate expectations from KMC vs. theory

K=0.5: expectation of r* K=0.5: expectation of r”
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Figure 9: hp — hy from KMC and PDE

<108 K=0.5: h_-h , T=2E-9

——KMC T
predicled

o 0.1 02 0.3 0.4 0.5 0.6 07 0.8 09 1

6 Limit Computations

This section contains the calculations of limits appearing in the derivation of the PDE. The limits required
estimation of the distribution of a sum of integer random variables with unbounded variance; since this is
not a standard result in the literature, we prove it in the local limit theorems of Section 3. The second
local limit theorem was thought to be necessary for the limit calculations, but turned out to be less useful
than the first. We include it because the ideas of its proof were the basis for the proof of the first local
limit theorem.

6.1 Proving E/E — 1

Recall that E* and E are expectations of a function of Sy = YN Z; and Ty = Y1, iZ;, where the Z;’s
are independent integer-valued random variables with distribution given by P(Z; = n) o« e™ & (n—(li+e:))?
and P(Z; = n) « e K(=1)% pegpectively. The function f is given by

16



N S
(SN+Z)2:| Z exp|:—2K(Nj+M+TN+2N)2 ’

j=—c0

f(SN,Tn) =exp {—[2(

where we have let | = Iy +Iny_1 and M =m + % for brevity.
Note that the value of the sum depends only on Ty + STN mod N or equivalently, 27y + Sy mod 2N.
Define g(k) = 3_; exp [—2K (M + £ + Nj)?] |k € Zon and h(m) = exp [ % (m +1)?]. Then

2N -1
E[f(Sn,Tw)] = Y g(k) > hm)P(Sy =m, Ty = n)
k=0 (m,n):m+2n=k mod 2N (29)
2N -1 k—m
= g(k) > h(m)P(Sy =m, Ty = 5 mod N)
k=0 mez
Using Theorem 1 of Section 6.3, there exists a ¢ € (0,1) such that
1
P(Sy =m, Ty =k mod N) = NP(Ssz)—i—e(k;,m) (30)

and |e(k,m)| < ¢V for all k € Zy and m € Z.
Substituting this expression for the probability and noting that k£ and m must have the same parity for
the probability to be nonzero, we arrive at

EfSv. )= Y o) Y hmPSy=mt Y gk) Y hm)P(Sy =m)

k€Zon ,k odd meZ,m odd k€Zon ,k even meEZ,m even
k—m
Y gmhmem, T
k€Zon ,mEZ,k=m mod 2
(31)
Note that
N-1 1 1
_ . / 2\ __ _ 2
S oglk) = Z > exp(—2K(Nj+k +m+ sy —Iv-1))%) = > exp(—2K (n+ 5 (v —Iv-1))%),
k€Zan ,k even JEZ k'=0 nez

where we have used that m, the sum of all the heights, is an integer. Since Iy —Iy_1 — 0 as N — oo, we

have
Z g(k) — Ze‘zK"Z =:¢g.
kE€Zan ,k even n€e”Z
Similarly,
ST gh) = e O =g, (32)
k€Zan ,k odd nez

Further, we can employ a local limit theorem [7] to write P(Sy = m) as

1

P(Sy = -~ ,—(m—Mn)?/(2BN) : 33
( N m) \/me + enm ( )
where My = Z;\;ZEZJ-,BN - Z;\’:?Vaij, and sup,, |em| = o(\/%N). Note that By = O(N) and

My = O(1). Indeed, recall that the \; were chosen so that EZ; = h/(+4,¢) where h is the PDE solution.
Using the periodicity of h, we have

1 N 1 N j 1
¥ LB = 5 0 - [ Wl
=1 j=1

17



which is on the order of 4 if, for example, A’ is Lipschitz continuous. Thus My is O(1).
Substituting (33) and (32) into (31) yields

1
E[f(Sn,Tn)] = \/W Z o= K (m+N)? o~ (m—My)?/2Bx
N meoz
Z x (m+)\)26—(m—MN)2/QBN
N v QWBN me2zZ+1 (34)
34
" 00;01 Z 6_7(m+/\)2em
meZ
k—m
k)e™ 2N e, =),
- S e e(m, ")

k€Zon ,mEZ,k=m mod 2

Since A is O(1) and e~(m=M~)*/2B~ is O(1) in any finite neighborhood of m = 0, the first two terms are

of order ﬁO(l) = O(N—\l/ﬁ), while the third term is of order o( N\l/ﬁ) Also, we have

k—
Z g(k)e= F N ¢(m, Tm) < N(co+e1) Z e~ EmEN? _ No(),
k€Zon ,mEZ,k=m mod 2 meZ

which is negligible compared to the other terms.

Thus, we may only leave the first two terms of (34) in the numerator and denominator of % The only

variables depending on the values of the \;s are My and By. But exp(%) — 1 as N — oo for any

finite m, both in the numerator and denominator. Hence, for large N,

E+ |B
f Bﬁ—)lasN—)oo

because only VarZ;,i = j — 1,4, j + 1 are different in the summands that make up Bj;.

6.2 Proving N(E; —E;_1) =0

Let S§ = Ditjotggr1 Zit 21 Z; (the random variable factoring in to the expectation in the
numerator of £, and similarly for j —1. Let Siy =37, o ;.1 Zi, Xj = S}V - Sy, Xjo1 = va L5y
We use (30) to write

oY oz e FTV(P(SE =m) — P(SE ' =m) + 1 X campr € 2 TV (P(Sh = m) —

P(SK =

m))

BB —
7 0 mean € T MENVP(Sy =m) + a1 Y eaz i e F TV P(Sy = m)

(35)
where we have disregarded the remainder terms because they are negligible in comparison to the other
terms. Now, we have

Pk =m) = 5 [ dsy (Do, (e,

and similarly for j — 1. Thus,

1

P(ng =m)— P(ngfl =m) = o | ¢S’ (t)(ox,(t) — ¢Xj,1(t))€_itmdt.

By the lemma in the next section, we can find ¢ € (0,1) such that sup; sup |y« [¢z (t)| < c. Thus, since
b5y, (t) =ILizj—a,. j+1 02 (1), there exists a positive constant A such that

1

27 e<|t|<m

dsr, (1) (dx, (1) — dx,_, (t)e "™ dt] < AcN.

18
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To compute the remaining part of the integral, we first write ¢57 (t) = dsy —nry, (t)e iMyt where My =ES),

EX? | )
bx,(t) =1+ iEX;t — Tjt + o(t?),

J
and similarly for ¢y, ,. Substituting these expressions into the integral, we obtain

1 EX2 EX?

P(S4 =m)—P(837 =m) ~ o ¢S, ary (D((EX;~EX;_y)it— 5 I=Li2 4 o(£2))eHm=MN) gy
T

Now,

ospon = II oncutr= [ 0= %40

#5241 i#j =2, 1

2 (36)
= exp [Zl: log(1 — %tQ + 0(t2))] = exp l it o 2+ Z (t?) ]
We now change variables to t = f which yields
VN 2 2 2
: - 1 S o ¢ EX2-EX
P(S3, =m)—P(Si ' =m) ~ ex {— ’Zx2+ol] EX; —EX, 1)i—me — —3 =1
(Sx ) (Sn ) 27T\/N_€\/Np IN (1] (EX; Jl)\/ﬁ IN
x e TR MM gy
(37)
Let 0% = 221]\‘,7 ‘. Using the formulas
/ xe—ax2+bxd$ — \/ibe%i’ / x2e—ax2+bxdx — ﬁ(2a + b2) ei—i
R 2a2 R 4daz
(the part of the integral outside [—ev/N, ev/N] is exponentially small), we obtain
P(S%, =m)—P(S§ " =m)~
1 Vo (m — My)* ,y_ EXF-BXP, o (m— ML)
— EX, —EX,_ —My) — 1-—
2/ N Nog P { 2No% (EX; j=1)(m = My) 2 ( NoZ,
(38)

Now, recall from the previous section that m — M}, = O(1) for any fixed m,and

1 (m—MN)2
exXp |—f————"| -
\/27TBN QBN

We can simply replace the exponential in the probabilities with 1. Note that By is of order N, so that

P(SN:m) ~

EX?-EX?
j—1
7) +a ZmEQZ—l-l

— K (m+)2

€0 Y mezz e ¥ (BX; —EX;-1)(m — My) -

N(EﬂiEJ—l)QJ"O(]') 7%(m+/\)2

Co ZmE?Z € ta Zm€2l+1 €

We now show that EX; —EX;_; and IEXJ2 — JEXJ?_1 go to 0 as N — oo, which will conclude the proof.
Let u()\) be the expectation and 0?()\) the variance of the discrete random variable Z with parameter
A. Then

1

1
1= ) () + (A1 — 5

5= 0y 2)

1
EXj=p(-2)+pAj-1=5) +ud+1) +p(Ae =5
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Similarly,

1
+ 14 p(Xj—1) + 1A = 5) + 1(Xj4)-

1
EXj1=pN-—2—5 5

2 )
Thus,

BX;-BXpm1 = (0y-2) = -2 = ) )+ (051 = 5) = -0 )+ () = 3 = ) )+ (slrsr -

But as N — oo, the A;s, 4 = j—2,j—1, j, j+1 all approach the same value, so we see that EX; —FEX;_1 — 0.
Similarly,

VarX; — VarX;_; = (02(Aj2) —o*(Ajo2 — ;)> + (02()\j1 - %) - 02()\]‘1)) 59)

# (0= 205 = ) + (P05 - ) - ) 0

as N — oo, because 0%(\; + 1) = 02()\;) (appearing in X;) and 0%(\j_1 + 1) = 02()\;_1) (appearing in
X;_1). It follows that

EX? —EX; | =VarX; — VarX;_ + (EX;)* — (EX;_1)* = 0.

j—1 =

6.3 Lattice Local Limit Theorems
Theorem 1. Let Sy = Y7, Z; and Ty = Y 7_, jZ;, where P(Z; = n) e Km=2)* it n € Z and 0
otherwise, and (A1, ..., A\y) € RN. Then there exists c € (0,1) such that

|P(Sy =m,Tn =n mod N) — %P(S’N =m)| <N

forallmeZ,n=0,...,N —1.

Lemma 1. Define ¢(\,t) = E(e'?>t), where Zy is the integer-valued random variable for which P(Zy =
n) o e K=Y* ¢ Z. Then
sup (A 1)| <1

AER,e<|t|<m
for any € € (0, 7).
Proof. We have 2 |
o8| = | Znez e KT g el e K
Lnez e Y > ez e KO

Letting m = n — [ A] and summing over m in the numerator and denominator, we obtain

imt ,— K (m—(A—[A]))?
|p(A, 1) = | 2mez© —eI((m—()\—L/\J))2 |
ZmGZe

= |¢p(A mod 1,1)|.

Thus, we can replace the supremum with A ranging over R to A € [0,1]. It is not difficult to show that ¢
is jointly continuous in (¢, ) on the compact set {\ € [0,1],e < |t| < 7}, so it attains a maximum at some
(Mo, to). But for any fixed A, |¢p(A,¢)| < 1 whenever 0 < |t| < 7, so the supremum must be strictly less
than 1. O

Proof. Note that
1
1{SN:m,TNEn} = (%

/Tr eit(SN—m)dt) (% Z zTN—n),

- z€Un
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where Uy is the set of Nth roots of unity. Similarly expressing 1;g,—p,} and taking expectations, we
obtain

P(Sy =m, Ty =n mod N) — %P(SN =m)

= %E[(/w eit(sN—m)dt)(% D v %)] — %LN]E[(/_W (S g (3 S Twem]

-T 2€UnN 77 zeUN,Z7é1
N—-1 N-1
1 i T ; nik ; 1 i 2rky ‘
_ v (e%)fn [W Efe eszTN]efztmdt _ SN (esz)in [W exp Z (t+ L‘]))]efztmdt
k=1 k=1 j=1
N-1 N .
1 2mik \ g 2k —itm
=2 (e*F") / H¢Zj(t+T‘7)e tmt.
k=1 T =1
(40)
Taking absolute values yields
1
|P (SN—mTN_nmodN)fﬁP( =m)]
N-1 . N— (41)
1 27rk'j 1 27Tk]
—Z/ H|¢z Jat< L3 s H|¢z 214y,
N N h—1 te[—m 71']
Fix 0 < € << 1 and cover the torus [—m, 7] (with endpoints identified) by disjoint intervals Iy, ...,In of

length 27 so that [—e, €] lies entirely within some N (¢) intervals. By the lemma, there exists ¢ < 1 such that

|pz,(t)] < cforall jande < [t| < 7. Now, fixtg € [-m, 7] and 1 <k < N—1. Let d = ged(k, N). Then the

27rk

points tg + ..., to + 27k take each of % values d times, with distance % between neighboring values.

Now, if 274 > 26, then at most one of these values can be in the interval [—e, €], and thus to + 27;\],” ¢ [—e, €]
for at least N —d js. Since ged(k, N) < &, it follows that

2mwkj
H|¢Z (to+ =) < c%.

If 224 < 2¢, then at most [22Y] < ¥ 41 of these values belong in [—¢, €], s0 to + 2552 ¢ [—¢, ] for at least

N — d(;[zlf +1) > N(3 — £) js. Combining with the previous case, we see that

2rkj 1.
H‘QSZ t0+Lj)|§CN(§—?)

for all ty and k. Thus

1 1 €
|P(Sy =m, Ty =n mod N) — NP(SN = m)| < BN,

as desired.
O

Theorem 2. Let Z;,j = 1,..,N be i.i.d random variables taking integer values such that KZ, = p, VarZ, =
o2. Further, assume that there exist no m,n € Z, n > 1, such that Z, € m +nZ. Let Sy = Zjvzl JiZ;.

Then
1 V3

Pl =m) =578 Varo

e~ zons (m=Nw? | o(1)).
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Proof. Since Sy takes only integer values,

P(Sy =m) = / bsy (e ™dt = o / H¢Z (jt)e~"mtdt

(42)
1
= (it it(Np—m) gy

o H bz;-u(it)e
From now on, we will use ¢ to denote ¢z, . Let t = N\]}N. Then, changing variables,

1 1 *NVN N .

P(Sy =m w:(N,u, m)/N\/idI,
( N ) 27T N\/ﬁ 771—N\/7H¢

We now study the product of characteristic functions, @y (t) := H;*v:;l o(jt) for t = N\"”/ﬁ and z fixed.

Taylor expanding log ¢(t) to second order about ¢t = 0, we get

02
log B(t) = 73t2 + o(t?).

Thus,

N .
oy (=) = =5 (5 L 32) + X ol

j=1 j=1

Carrying out the sum of squares, we see that @y ( ) — e=57°%" as N — 0o. We will use this to show

that

1 TNVN . 1 o0 2 2
7/ (I)N(L)e“’(N“*m)/N\/Nda: = —/ e 692" gia(Nu=m)/NVN g0 4 o(1), (43)
2w —nNVN N\/N 2

which is sufficient because the integral on the right comes out to

\/g e 2(,23]\,3 (mpr‘)2

)
2ro

as desired. First note that, since the integral on the right in (43) is finite over R, it is sufficient to show

that Uy
TNV N
X 1.2 2
| ( )—e 67 % |dx — 0.
/,WN,ﬁN NvVN

Since we have pointwise convergence, we can apply the Lebesgue Dominated Convergence Theorem once

we find an integrable function f such that |<I>N(N\”/N)\ < f(x) for all N and all z € [-7NVN,7NV/NJ.
It will be convenient to let 27t = Nf/ﬁ’ so that ¢ ranges over [—%, 5} We split the domain into three sets

and bound |® | by an integrable function on each of these domains.
First consider the domain Dy := {€ < [t| < 3} for some € small, corresponding to Df := {2rNv/Ne <
|z| < tNV/N}. Note that

|62, u(271)| = |62,(2m1)| = | > > P(Z; = n)| <1,
nez

with equality holding iff €™ = e>™™ whenever P(Z; = n) > 0,P(Z; = m) > 0. By the assumption
on the values that the Z; take, this implies that equality holds iff ¢ = k € Z. Thus, by continuity and
periodicity of |¢(2nt)|, there exists ¢ < 1 such that

1 1
|p(27t)| < cforallt € A := U[k—i,k—e]u[k+e,k+§]:{t:tmodle[e,l—e]}
kEZ
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We will give a uniform bound on |®y(27t)| = vazl ¢(2mjt) for all t € A (which contains Dq).To obtain
this bound, we estimate the number of j’s less than N for which jt € A.

Define a cycle as a block of consecutive j’s such that jt traverses A and A® once, ending when jt enters
A again. Note that since ¢ mod 1 > e = O(1), a cycle takes O(1) steps (i.e. will contain O(1) consecutive
j§’s). Hence there will be O(N) cycles, so jt will land in both A and A O(N) times. If ¢ is irrational,
by the ergodicity of the transformation = € [0,1] — z + ¢ mod 1, there will be approximately (1 — 2¢)N
j’s for which jt € A. If ¢ is rational, there will still be at least % such j’s (where rN is the number of
cycles) because in each cycle, jt € A at least once and in A® at most twice (since ¢ mod 1 > ¢). Thus,
|®x (27t)| < ¢35 for t € Dy. Switching back to x, we can find a § such that

x rN

)
N St S ey

[P (

for all € Dj.

Next, consider the region Dy = {15 < [t| < €} corresponding to D} = {2rNVNigE < |z| <
27NV Ne}. From the symmetry of the set A with respect to 0, we will obtain the same bound for ¢
positive and negative, so we restrict ourselves to t positive. Note that, unlike ¢ € Dy, there may not be
O(N) cycles through A and A for t € Dy, so we have to more carefully estimate the number of j’s for
which jt € A. jt will fall in A for j € Sy, = {[2=1¢] +1,..., | =]}, m = 1, ... until these values exceed
N. Let k be the maximum m for which S,, C {1,2,..., N}. Note that k > 1, since 1t < e and Nt > 1 —e.
We have

m—1+eJ21—2e
t

1— 2
t

We now bound this count from below by a value depending only on N.
From the definition of k, it follows that

Sl = =1 = | =1,

S0
[{j: it e A} = k(

) — k.

k—c¢ k—ce¢ k+1—¢ k+1—¢

— 1< SN < | < — (44)
From the left side of (44), we deduce
FTC e k< (N 42, (45)
N+1
where we have used that ¢ < e. From the right side of (44), we obtain
k(1 - 2 5 - Jj —(1-20N > 12__2661\7, (46)
where we have used that k£ > 1. Combining (45) and (46) gives
k(L ;26) k> (12__2: — )N — 2.
Hence,
|y (27t)] < (¢72€) 2N
for roy = 12:265 — € > 0 if, for example, € < i. Switching back to x, we can bound |<I>N(NLW)| on D), with

the same function as on D} (perhaps with a different constant §).
Finally, consider the domain D3 = {0 < [¢| < 1<}, corresponding to D} = {0 < |z| < 27NV N1} Since
o(t)y=1-— ‘772152 + o(t?), we can find § > 0 such that

p(2mt)| <1 — @R <e

@ra)? 2
B
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for all |t| < 6. For all t € D3 and j < jp := LIEENJ, we have |jt| < §. Choose ¢ > 0 such that jo > ¢N.
Then
J
< " 1| < o= (2m0)%joio+1) (2jo+1)t% /24  ,—(270)?j5t7 /12 ~ ,—(270)2 P N312 /12
[on(2mt)| < | ] l0(2mjt)| < e <e <e :
j=1
Substituting 27t =

T
m7 we get .

NVN

for x € Df. We have bounded |®y( N\“”/ﬁ)| by an integrable function over each of the domains, and can

now apply LDCT to finish the proof.

|(I)N( )‘ < e—azc3:c2/12

O
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