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1 Introduction

Crystal surface diffusion refers to the way in which atoms on the surface of a crystal redistribute to
eventually settle into a configuration with minimal surface energy. Along with epitaxy, or crystal growth,
crystal surface diffusion is important to study due to the role it plays in the production of thin films, which
have wide-ranging applications in microelectronics. For example, the deformation of a crystal surface to an
equilibrium state plays a central role in fuel cells that rely on thin crystal films, as the conversion efficiency
of chemical energy to electricity depends on the surface configuration of the film. As is characteristic of
large microscopic systems, we can gain more insight into the nature of the dynamics of surface diffusion
by studying it at the macroscopic level than at the level of individual atoms. Since the physical process is
microscopic, however, a faithful mathematical model of the diffusion should describe it with microscopic
dynamics. Given a model of the microscopic dynamics, then, we are presented with the challenge of
deriving macroscopic dynamics in the limit as the number of particles approaches infinity. This is known
as a hydrodynamic, or scaling, limit; it is particularly appealing from the modeling perspective because the
input is the true, microscopic dynamics, while the output is a much easier to analyze continuum equation.
The main goal of this work is to derive such a scaling limit for a specific dynamics governing the microscopic
process of crystal surface diffusion.
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I would like to thank Professor Jeremy Marzuola for his guidance and dedication throughout the one and
a half years he has advised me. This thesis would not have come about if it weren’t for the many engaging
and helpful conversations we had about concepts ranging in scope from broad ideas to the nitty gritty
details of local limit theorem proofs. I owe my enthusiasm to this topic and to the research process as a
whole to Professor Marzuola. I would also like to thank Professor Budhiraja for discussions which helped
me understand the problem from a more probabilistic point of view.

2 Background

One way to model a system of particles is to track the position and momentum of each one and use
equations of motion to predict the variables’ change over time. However, it is often more convenient
to take the statistical mechanics viewpoint, introducing randomness into the system. According to this
viewpoint, one divides the space into microscopically-sized cells and represents the system through field
variables, which measure the average number and momentum of particles in each cell. These variables are
taken to be random, to account for fluctuations resulting from particle movement between cells. Thus, the
state of a microscopic system is best viewed as a probability measure: the set of configurations and their
associated probabilities. For example, global equilibrium corresponds to the maximum entropy probability
distribution. This is the state of greatest disorder, which we should expect the distribution of particles of
the crystal surface to converge to with time (in accordance with the second law of thermodynamics).

As the number of cells approaches infinity, the microscopic system becomes increasingly well-represented
by a continuous, macroscopic system, and the random dynamics by a deterministic one (an evolution equa-
tion). The central principle that hydrodynamic limit proofs rely on to “smooth out” random fluctuations in
the limit is that microscopic systems quickly (on a macroscopic time scale) reach a local equilibrium state
(i.e. local equilibrium measure). In this state, the particles in small but macroscopic regions are distributed
according to a homogeneous equilibrium-like distribution that smoothly varies across space (see e.g. the
introduction of [2] for an illustration of this idea). Because the behavior is homogeneous in each region, we
may represent the local state by a single number without loss of information. This is the local analogue
of assigning single thermodynamic quantities like temperature or pressure to an entire gas in equilibrium.
However, determining this local equilibrium measure and rigorously justifying that the microscopic process
takes on this distribution is challenging. The measure is tied to a certain local surface tension function σ,
which is particularly sensitive to the way the microscopic model is defined. This function also appears in
the PDE governing the macroscopic dynamics of surface diffusion processes, making it the link between
microscopic and macroscopic dynamics.
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A macroscopic crystal surface will be represented by a height profile, i.e. a function h(x), x ∈ T, where
T = [0, 1] with endpoints identified. A microscopic surface will be represented by a function hN (j), j ∈
Z/NZ, i.e. as N regularly spaced columns of atoms stacked above or below a substrate. The heights
may either be restricted to the integers (to model columns of integer numbers of atoms), or allowed to be
continuous. In [4], Marzuola restricts the heights to the integers, and models the diffusion as a Markov
jump process with transitions occuring when atoms jump to neighboring lattice sites. In [5], Nishikawa
considers continuous heights and models the microscopic diffusion with a stochastic differential equation.
Both obtain

∂th(t, x) = −∆div [∇σ(∇h(t, x))] (1)

as the PDE governing the evolution of the macroscopic profile h, albeit with differing definitions of σ,
which will be discussed in this thesis.

This equation can be seen as a gradient descent in the free energy of the surface h(t, ·) in H−1(T), which
turns out to be the natural space to consider such a diffusion process in. The inner product of the space

is given by (f, g)H−1 = ((−∆)−1f, g)L2 . Letting δΣ(h)
δh represent the functional derivative of h in H−1 and

φ be a test function, we have∫
T
(−∆)−1 δΣ(h)

δh
φ(x)dx =

(
δΣ(h)

δh
, φ

)
H−1

= lim
ε→0

Σ(h+ εφ)− Σ(h)

ε

= lim
ε→0

∫
T

σ(∇(h(x) + εφ(x)))− σ(∇(h(x)))

ε
dx

=

∫
T
∇σ(∇h(x)) · ∇φ(x)dx = −

∫
T

div [∇σ(∇h(x))]φ(x)dx,

(2)

from which we see that δΣ(h)
δh = ∆div [∇σ(∇h(x))].

In this thesis, we consider the setup in [4] (discrete heights) but a different set of transition rates, and
derive the hydrodynamic limit. The transition rates we consider belong to a class of rates that depend
only on the energy difference from before to after the jump; such rates, known as Metropolis-type, are
important to study because they are commonly used by computational chemists in numerical simulations.
The basic framework of the PDE derivation follows that of Marzuola in [4]. Both this work and that of
Marzuola are based on the paper of Krug [3], who used physical arguments to derive PDEs such as (1)
based on both adatom and Metropolis rates.

The rest of the thesis is organized as follows. In Section 3, we describe the microscopic space and
microscopic dynamics. In Section 4, we explain the particular scaling limit we consider and derive the
PDE governing the continuum evolution, postponing some calculations to Section 6. In Section 5, we
present our numerical results and compare them with the theory.

3 The microscopic model

We index the microscopic spaces by N ; the Nth microscopic configuration space of crystal surfaces is
represented by height profiles of integer numbers of particles above and below the periodic lattice Z/NZ.
We will denote a generic profile by h = (h1, ..., hN ). Since the total number of particles is preserved by a
diffusion process, we restrict the configuration space to

ZmN := {h : hi ∈ Z, i = 1, ..., N,

N∑
i=1

hi = m(N)},

for some fixed m(N). The height gradients corresponding to a profile h are denoted by zi = hi+1 − hi, i =
1, ..., N (with circular indexing). The gradient values, rather than the heights themselves, play the key role
in driving the diffusion process to equilibrium, via the profile’s Hamiltonian,

H(h) =

N∑
i=1

z2
i .

2



We assume the system is in contact with a heat bath at constant temperature T ; thus, the ensemble on
ZmN representing thermal equilibrium is the canonical ensemble. It is given by

p0(h) =
e−KH(h)

Z
,

where K = 1
kβT

, kβ is the Boltzmann constant, and Z is the normalization constant.

The diffusion on ZmN is a Markov jump process; we denote it by htN = (h1(t), ..., hN (t)). Transitions
between states occur when the top particle at a lattice site jumps to a neighboring lattice site with a certain
instantaneous transition probability, or rate. Such a transition can be represented via the operator Jki ,
defined by

(Jki h)(j) =


h(j)− 1 j = i

h(j) + 1 j = k

h(j) j 6= i, k

(3)

With this notation, the permissible transitions are

h 7→ Jki h, |i− k| = 1.

Note that these transitions preserve the total number of particles m. The transition rates are defined by

r±N (i,h) = lim
t→0

1

t
P (htN = J i±1

i h|h0
N = h).

To ensure that the process is reversible and invariant with respect to the equilibrium measure p0, the rates
must satisfy detailed balance, i.e. we must have

r+
N (i,h)p0(h) = r−N (i+ 1, J i+1

i h)p0(J i+1
i h),

r−N (i,h)p0(h) = r+
N (i− 1, J i−1

i h)p0(J i−1
i h).

(4)

There are many rates that satisfy detailed balance; in [4], for example, Marzuola considers the so-called
adatom rates r+(i) = r−(i) = e−2Kn(i), where n(i) is a so-called coordination number that quantifies
the energy it takes for the topmost atom at site i to break the bonds with its nearest neighbors. While
the adatom rates are physically motivated, the rates we consider here are motivated by computational
convenience. They are defined by

r±N (i,h) = exp

[
−K

2
(H(J i±1

i h)−H(h))

]
.

The generator AN of the Markov process htN quantifies the instantaneous change in the average value
of an observable f of the process. Namely,

(ANf)(h) := lim
t→0

E[f(htN )|h0
N = h]− f(h)

t
=

N∑
i=1

(f(J i+1
i h)− f(h))r+(i,h) + (f(J i−1

i h)− f(h))r−(i,h).

(5)
One can also show that

f(htN ) = f(h0
N ) +

∫ t

0

(ANf)(hsN )ds+M t
f ,

where M t
f is a zero-mean martingale.

4 Scaling limit

Establishing a hydrodynamic limit is typically achieved in two steps. First, assuming a limiting macroscopic
profile h(t, ·) : T→ R exists, one derives the PDE it satisfies. One then proves the solution to this PDE is
unique, and shows that the microscopic profile at each time t (appropriately rescaled to some h̄N (t, ·)) does
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indeed converge to h(t, ·) as N → ∞. The appropriate convergence regime is in H−1(T), i.e. one should
show that E||h̄tN − h(t, ·)||H−1(T) → 0 as N →∞ for each t, where the expectation is taken with respect to
the measure of the process at time t given a particular initial profile h0. Here, we will focus only on the
first step, that is, deriving the PDE under the assumption that a sufficiently smooth limit h exists.

Recall that htN = (h1(t), ..., hN (t)) and consider the rescaled process h̄N (t, ·) : T→ R, defined by

h̄N (t, x) =
1

N
hbNxe(N

4t),

where bye is defined to mean the nearest integer to y. We have scaled down the distance between lattice

sites to live in the unit interval, and scaled the heights by 1
N so that the total mass, m(N)

N , does not blow
up. The time scale was chosen to yield a meaningful limit. In particular, it reflects that microscopic events
occur at a very fast rate on the macroscopic time scale. The general structure of the derivation presented
in the following sections follows that of Marzuola in [4].

4.1 Window average framework

As described in Section 2, the standard technique that hydrodynamic limit proofs rely on is to show that
after a short amount of time on the macroscopic time scale, the microscopic system should reach a local
equilibrium state (we will provide numerical confirmation of this fact but do not provide proof). In order
to take advantage of this property, we can approximate h̄N (t, x) by sliding window averages of the function

over a small but macroscopic window centered at bNxeN . Specifically, define the sets

Sk,δ = (
k

N
− δ

2
,
k

N
+
δ

2
)

(where addition is modulo 1) and window averages

φk,δ(t) =
1

δ

∫
Sk

h̄N (t, x)dx =
1

Nδ

1

N

∑
j: jN ∈Sk

hj(N
4t).

Letting k(x) = bNxe, we have that if 1
N << δ << 1, then

h(t, x) ≈ h̄N (t, x) ≈ φk(x),δ(t).

We therefore have

h(t, x)− h(0, x) ≈ 1

Nδ

1

N

∑
j: jN ∈Sk(x)

hj(N
4t)− hj(0) =

1

Nδ

1

N

∑
j: jN ∈Sk(x)

∫ N4t

0

(ANπj)(hN (s))ds+Mj(N
4t),

(6)

where πj is the projection operator onto hj . Using (5) with f = πj , we see that

(ANπj)(h) =
(
r+
N (j − 1,h)− r+

N (j,h)
)

+
(
r−N (j + 1,h)− r−N (j,h)

)
.

Substituting this into (6) and changing variables, we obtain

h(t, x)− h(0, x) ≈ N3

Nδ

∑
j: jN ∈Sk(x)

∫ t

0

r+(j − 1, N4s)− r+(j,N4s) + r−(j + 1, N4s)− r−(j,N4s)ds+Mj(N
4t),

(7)

where we have used the notation r±(k, t) in place of r±(k,htN ).
The random variables r±(N4s, j) are local, depending only on zi for i = j − 1, j, j + 1. The local

equilibrium measure, which we describe in detail in the following section, varies smoothly along the do-
main. Thus, the random variables r±(N4s, j) for j

N ∈ Sk(x) have nearly the same distribution as that of
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r±(N4s, k(x)), the central point of the window Sk(x). Moreover, they should have low correlation with one
another (also discussed in the following section), which implies that the Mj(N

4t) have low correlation with
one another as well. We thus expect a law of large numbers to hold, allowing us to replace the average of
Mj over j ∈ Sk(x) by 0, its expectation, and to make the substitution

1

Nδ

∑
j: jN ∈Sk(x)

r±(j,N4s) ≈ E
[
r±(k(x), N4s)

]
.

Also,
1

Nδ

∑
j: jN ∈Sk(x)

r+(j − 1, N4s) ≈ E
[
r+(k(x)− 1, N4s)

]
,

and similarly for r−(j + 1). We thus have

h(t, x)− h(0, x) ≈ N3

∫ t

0

E
[
r+(k(x)− 1, N4s)− r+(k(x), N4s) + r−(k(x) + 1, N4s)− r−(k(x), N4s)

]
ds.

(8)

4.2 Local equilibrium measure

We now turn to characterizing the local equilibrium measure according to which the height profiles are
distributed at time N4s, for s away from 0. Such a measure is defined to have maximum entropy among all
measures that have certain prescribed local averages, which is equivalent to the measure whose Kullback-
Leibler divergence with respect to the global equilibrium measure p0 is minimal among this subset of
measures. This idea is described in more generality and made rigorous by Roux and Weare in [8]. In our
case, these local averages should be the values of ∇h(s, iN ), the surface gradient of the macroscopic profile

the microscopic process is converging to. This means that in a neighborhood of i
N , we expect the values

of the microscopic height gradients to cluster around ∇h(s, iN ). To be more precise, the local equilibrium
measure pλ - known as the optimal twist measure - is the solution to the constrained minimization problem

minimize
p

KL(p||p0)

subject to
∑

h∈ZmN

p(h) = 1,
∑

h∈ZmN

(hi+1 − hi)p(h) = ∇h(t,
i

N
), i = 1, ..., N.

We solve this problem using Lagrange multipliers. Defining p = (p(h))h∈ZmN (a sequence, since the state
space is countable), we have

0 = ∇p

∑
h∈ZmN

−p(h) log
p(h)

p0(h)
+ α

 ∑
h∈ZmN

p(h)− 1

+

N∑
i=1

λi

 ∑
h∈ZmN

(hi+1 − hi)p(h)−∇h(t,
i

N
)


=

(
− log p(h) + log p0(h) + α+

N∑
i=1

λi(hi+1 − hi)− 1

)
h∈ZmN

.

(9)

We thus see that

pλ(h) ∝ p0(h)exp[

N∑
i=1

λi(hi+1 − hi)] ∝ exp[

N∑
i=1

−K(hi+1 − hi)2 + λi(hi+1 − hi)].

To find the λi’s we must solve the equation

∇h(t,
i

N
) = Eλ[hi+1 − hi] =

∑
h∈ZmN

(hi+1 − hi)exp[
∑N
i=1−K(hi+1 − hi)2 + λi(hi+1 − hi)]∑

h∈ZmN
exp[

∑N
i=1−K(hi+1 − hi)2 + λi(hi+1 − hi)]

. (10)
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It is helpful to change variables in the sum over profiles h ∈ ZmN appearing in (10) and instead consider
gradient-tuples. The space of gradient profiles corresponding to the height profiles in ZmN is

∇ZmN := {z = (z1, z2, ..., zN−1) ∈ ZN−1 :

N−1∑
i=1

(N − i)zi ≡ m mod N},

where the zi’s are defined as before, i.e. zi = hi+1 − hi, i = 1, ..., N − 1 (note that zN = h1 − hN =

−
∑N−1
i=1 zi). To see why the modulus restriction is necessary, note that given an arbitrary N − 1-tuple z,

we have hi = h1 + z1 + ...+ zi−1, i > 1, so that

m =

N∑
i=1

hi = Nh1 +

N−1∑
i=1

(N − i)zi

has an integer solution h1 if and only if
∑N−1
i=1 (N − i)zi ≡ m mod N .

It can be shown by arguments similar to those appearing in Section 6.1 (i.e. by considering the sums
as expectations of a function of independent random variables Z1, ..., ZN−2), that for large N , λi is well-
approximated by the solution of

∇h(t,
i

N
) = Eλi [Zi] =

∑
n∈Z ne

−Kn2+λin∑
n∈Z e

−Kn2+λin
,

which is what (10) would reduce to if the zi were independent.
Consider the general inverse equation for λ as a function of u:

u =

∑
z∈Z ze

−Kz2+λ(u)z∑
z∈Z e

−Kz2+λ(u)z
=

d

dλ
logZλ,

where Zλ :=
∑
z∈Z e

−Kz2+λz. One can easily show that λ(u) = ∇σD(u), where

σD(u) = sup
η∈R
{ηu− logZη},

the Legendre tranform of logZη. The function σD is the surface tension obtained by Marzuola in [4]; we see
now the connection between it and the local equilibrium measure. Another way to think about the surface
tension is as follows: in the presence of a restorative force field ∇σD(u), the Hamiltonian of a “system”

of one height gradient becomes H(z) = z2 − ∇σD(u)
K z, and the average value of the height gradient with

probability distribution p(z) ∝ e−KH(z) is u.
We now briefly recall the model considered by Nishikawa in [5] in which the heights are allowed to be

continuous. In this case, the change of variables

{(h1, ..., hN ) ∈ RN :

N∑
i=1

hi = m} 7→ {(z1, ..., zN−1) ∈ RN−1}

is bijective. Since there is one less restriction on the relationship between the zj , we expect the solution to
the equation reduced to the single zi variable to be an even better approximation for λi, i.e.

∇h(t,
i

N
) = Eλ[zi] =

∫
R xe

−Kx2+λix∫
R e
−Kx2+λix

, (11)

which has solution λi = 2K∇h(t, iN ). The function σC(u) obtained in [5] is constructed analogously to
σD(u), and is simply σC(u) = Ku2. We explore the relationship between σD, σC , and K, at the end of
this section.

To summarize, the unnormalized optimal twist measure at time N4s is given by

pλ(h) = exp

[
−H(h) +

N∑
i=1

λizi

]
, λi = ∇σD(∇h(s,

i

N
)).

From now on, expectation with respect to the optimal twist measure will be denoted by 〈·〉λ.
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4.3 Rate expectation

We now return to computing the expectation of the rates in (8) with respect to the optimal twist measure.
We have

〈r+(j)〉λ =

∑
h∈ZmN

r+(j,h)pλ(h)∑
h∈ZmN

pλ(h)
.

The summand in the numerator takes the form

r+(j,h)pλ(h)

= exp

[
−(H(Jj+1

j h)−H(h))/2−H(h) +

N∑
i=1

λizi

]

= exp

[
−(H(Jj+1

j h) +H(h))/2 +

N∑
i=1

λizi

]

= exp

[
−K

2
((zj−1 − 1)2 + z2

j−1 + (zj + 2)2 + z2
j + (zj+1 − 1)2 + z2

j+1)

]

× exp

−K ∑
i 6=j−1,j,j+1

z2
i +

N∑
i=1

λizi


= exp

[
−K(z2

j−1 − zj−1 +
1

2
+ z2

j + 2zj + 2 + z2
j+1 − zj+1 +

1

2
)−K

∑
i6=j−1,j,j+1

z2
i +

N∑
i=1

λizi
]

= exp
[
− 3K −K

N∑
i=1

z2
i + (λj−1 +K)zj−1 + (λj − 2K)zj + (λj+1 +K)zj+1 +

∑
i 6=j−1,j,j+1

λizi
]

(12)

Thus,

〈r+(j)〉λ = e−3K

∑
h∈ZmN

exp[
∑N
i=1−Kz2

i + λ̃izi]∑
h∈ZmN

exp[
∑N
i=1−Kz2

i + λizi]
,

where λ̃j−1 = λj−1 + K, λ̃j = λj − 2K, λ̃j+1 = λj+1 + K, and λ̃i = λi for all other i. Multiplying the

numerator and denominator by exp
[
− 1

4K

∑N
i=1 λ

2
i

]
, we obtain

〈r+(j)〉λ = e−3K

∑
h∈ZmN

exp[sj −K
∑
i 6=j−1,j,j+1(zi − λi/2K)2]∑

h∈ZmN
exp[−K

∑N
i=1(zi − λi/2K)2]

, (13)

where

sj = −Kz2
j−1 + (λj−1 +K)zj−1 −

λ2
j−1

4K

−Kz2
j + (λj−1 − 2K)zj −

λ2
j

4K

−Kz2
j+1 + (λj+1 +K)zj+1 −

λ2
j+1

4K
.

(14)
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Completing each of the three squares in sj yields

sj = −K
(
zj−1 −

λj−1 +K

2K

)2

−K
(
zj −

λj − 2K

2K

)2

−K
(
zj+1 −

λj+1 +K

2K

)2

+
(λj−1 +K)2

4K
−
λ2
j−1

4K
+

(λj − 2K)2

4K
−

λ2
j

4K
+

(λj+1 +K)2

4K
−
λ2
j+1

4K

= −K
(
zj−1 −

λj−1 +K

2K

)2

−K
(
zj −

λj − 2K

2K

)2

−K
(
zj+1 −

λj+1 +K

2K

)2

+
3

2
K +

1

2
(λj−1 − 2λj + λj+1)

(15)

Substituting this expression into (13), we obtain

〈r+(j)〉λ = exp[−3

2
K +

1

2
(λj−1 − 2λj + λj+1)]

∑
h∈ZmN

exp[−K
∑N
i=1(zi − ( λi2K + ci))

2]∑
h∈ZmN

exp[−K
∑N
i=1(zi − λi

2K )2]
, (16)

where cj−1 = cj+1 = 1
2 , cj = −1, and ci = 0 for all other i.

We now simplify the sums in this expression. Since they have the same form, we concentrate on the
sum in the denominator, and the numerator will be similar. As in the previous section, change variables
from h ∈ ZmN to z ∈ ∇ZmN . Define pl(z) := e−K(z−l)2 , li := λi

2K . Under the change of variables, the sum in
the denominator of (16) takes the form

∑
h∈ZmN

plN (−
N−1∑
i=1

zi)
∏
i 6=N

pli(zi) (17)

We first work on computing the inner sum over zN−1. Define the variables SN =
∑N−2
i=1 zi and TN =∑N−2

i=1 izi. The variable zN−1 can take values in

{Nj +m−
N−2∑
i=1

(N − i)zi : j ∈ Z} = {Nj +m+ TN : j ∈ Z}.

Substituting this second expression for zN−1 into the part of the product in the summand that depends
on it, we obtain

plN−1
(zN−1)plN

(
−
N−1∑
i=1

zi

)
= plN−1

(zN−1)plN (−SN − zN−1)

= exp
[
−K(Nj +m+ TN − lN−1)2 −K(Nj +m+ TN + SN + lN )2)

] (18)

Now we make use of the identity

c1(x+ a1)2 + c2(x+ a2)2 = (c1 + c2)(x+
a1c1 + a2c2
c1 + c2

)2 +
c1c2
c1 + c2

(a1 − a2)2

with x = Nj +m+ TN to reexpress (18) as

fj(SN , TN ) := exp

[
−K

2
(SN + lN−1 + lN )2 − 2K(Nj +m+

lN − lN−1

2
+ TN +

SN
2

)2

]
. (19)

Defining f(SN , TN ) :=
∑
j∈Z fj(SN , TN ), and noting that z1, ..., zN−2 can range freely over Z, we thus have

∑
h∈ZmN

plN (−
N−1∑
i=1

zi)
∏
i 6=N

pli(zi) =

∞∑
z1=−∞

...

∞∑
zN−2=−∞

N−2∏
i=1

pli(zi)f(SN , TN ).
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Defining the integer-valued random variables Zi, with P (Zi = n) ∝ pli(n), n ∈ Z, we thus see that

∑
h∈ZmN

plN (−
N−1∑
i=1

zi)
∏
i 6=N

pli(zi) = ZE [f(SN (Z1, ..., ZN−2), TN (Z1, ..., ZN−2))]

where the Zi’s are independent and

Z =

N−2∏
i=1

∑
n∈Z

pli(n)

is the normalization factor of the distribution of (Z1, ..., ZN−2).
Similarly, the numerator in (16) takes the form

Z+E
[
f(SN (Z+

1 , ..., Z
+
N−2), TN (Z+

1 , ..., Z
+
N−2))

]
,

where P (Z+
i = n) ∝ pli+ci(n), n ∈ Z, and Z+ is the normalization factor of the distribution of (Z+

1 , ..., Z
+
N−2)

(the + indicates we are computing r+). Note that, because of the product structure in the normalization

factors, and the fact that ci = 0 for all but three values of i, Z
+

Z will reduce to

Z+

Z
=

∑
n∈Z plj−1+ 1

2
(n)∑

n∈Z plj−1
(n)

∑
n∈Z plj−1(n)∑
n∈Z plj (n)

∑
n∈Z plj+1+ 1

2
(n)∑

n∈Z plj+1
(n)

=

∑
n∈Z e

−K(n−lj−1− 1
2 )2∑

n∈Z e
−K(n−lj−1)2

∑
n∈Z e

−K(n−lj+1− 1
2 )2∑

n∈Z e
−K(n−lj+1)2

.

(20)

The middle term cancelled because a shift by one does not change the sum. Letting E+ be the expec-
tation in the numerator, we have thus shown that

〈r+(j)〉λ = e−
3
2Kexp

[
1

2
(λj−1 − 2λj + λj+1)

]
Z+

Z
E+

E
. (21)

We now compute 〈r−(j + 1)〉λ, as it is very similar in form to 〈r+(j)〉λ. To do so, we simply change
zj−1 − 1, zj + 2, zj+1 − 1 in the third line of (12) to zj−1 + 1, zj − 2, zj+1 + 1, respectively, and continue
changing − to + and vice versa throughout the derivation. We end up with

〈r−(j + 1)〉λ = e−
3
2Kexp

[
−1

2
(λj−1 − 2λj + λj+1)

]
Z−

Z
E−

E
. (22)

Note that Z+ = Z−, because the change from lj−1 + 1
2 to lj−1 − 1

2 is equivalent to a shift of n by 1 in
the sum (the same goes for lj+1).

We now show that E+ = E−. These expectations differ only in the probability mass functions of the
variables Z+,−

k , k = j − 1, j, j + 1. We have that Z−j−1 = Z+
j−1 − 1, Z−j = Z+

j + 2, and Z−j+1 = Z+
j+1 − 1 in

distribution. To see this, note for example that

p+
j−1(n) =

e−K(n−(lj−1+ 1
2 ))2∑

n e
−K(n−(lj−1+ 1

2 ))2
=

e−K(n−1−(lj−1− 1
2 ))2∑

n e
−K(n−1−(lj−1− 1

2 ))2
= p−j−1(n− 1).

Thus,

S−N =
∑

i 6=j−1,j,j+1

Zi + (Z+
j−1 − 1) + (Z+

j + 2) + (Z+
j+1 − 1) = S+

N

and
T−N =

∑
i6=j−1,j,j+1

iZi + (j − 1)(Z+
j−1 − 1) + j(Z+

j + 2) + (j + 1)(Z+
j+1 − 1) = T+

N .

Hence, since the expectations are a function of SN and TN only, they must be equal.
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4.4 The PDE

We substitute the formulas obtained for 〈r±〉λ into (8), letting Zj denote Z
±

Z , Ej denote E±
E and Dj denote

λj−1 − 2λj + λj+1. Recall that λj actually depends on s, i.e. λj(s) = ∇σD(∇h(s, jN )).

h(t, x)− h(0, x) ≈ N3

∫ t

0

e−
3
2KZjEj

[
e−

1
2Dj − e 1

2Dj
]
− e− 3

2KZj−1Ej−1

[
e−

1
2Dj−1 − e 1

2Dj−1

]
ds

≈ N3

∫ t

0

−e− 3
2KZjEjDj + e−

3
2KZj−1Ej−1Dj−1ds

= N3

∫ t

0

−e− 3
2K [(Ej − Ej−1)ZjDj + (ZjDj − Zj−1Dj−1)Ej−1] ds

(23)

Now, for N large,

Di ≈ N−2∂2
x∇σD(∇h(t,

i

N
)),

and Zi ≈ Z2(λi) = Z2(∇σD(∇h(t, iN )), where

Z(λ) :=

∑
n∈Z e

−K(n−λ− 1
2 )2∑

n∈Z e
−K(n−λ)2

.

We will show in the appendix that Ei → 1 for all i, and N(Ej − Ej−1) → 0. Thus, N3 times the first
summand in the integral above will vanish, while N3 times the second summand will approach

∂x
[
Z2(∇σD(∇h(t, x))∂2

x∇σD(∇h(t, x))
]
.

We thus arrive at

∂th(t, x) = −e− 3
2K∂x

[
Z2(∇σD(∇h(t, x))∂2

x∇σD(∇h(t, x))
]
. (24)

Note that this equation does not immediately fit into the framework of gradient descent in surface free
energy described in Section 2. This suggests that the “true” surface tension σ that is appropriate for these
rates is not in fact σD, but a small correction on σD that depends on Z(λ). This is not implausible; indeed,
recall that the λi computed using the Legendre transformation were only approximations of the parameters
λ that resulted in the distribution closest to p0.

4.5 Dependence on K

The inverse temperature K affects the PDE through Z and ∇σD. The sums appearing in Z can be
expressed through the θ3 function as follows:

∞∑
z=−∞

e−K(z−λ)2 =

√
π√
K
θ3(πλ, e−

π2

K ) =

√
π√
K

∞∑
n=−∞

e−
π2n2

K cos2πnλ. (25)

Thus, for small K we have
∞∑

z=−∞
e−K(z−λ)2 ≈

√
π√
K

(1 + 2e−
π2

K cos2πλ).

The second term is an exponentially small correction, so

Z(λ) =

∑
n∈Z e

−K(n−λ− 1
2 )2∑

n∈Z e
−K(n−λ)2

≈ 1

for all λ, and one can also see that its derivative is approaching 0.
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Moreover, we can show that ∇σD → ∇σC as K → 0: We have

∞∑
z=−∞

(z − λ)e−K(z−λ)2 =
1

2K

d

dλ

[ ∞∑
z=−∞

e−K(z−λ)2
]

=
1

2K

d

dλ

[ √π√
K

∞∑
n=−∞

e−
π2n2

K cos2πnλ
]

= − π
K

√
π√
K

∞∑
n=−∞

ne−
π2n2

K sin2πnλ.

(26)

Thus, using λ(u) to denote ∇σD(u)
2K , we have

u− λ(u) =

∑∞
z=−∞(z − λ)e−K(z−λ)2∑∞

z=−∞ e−K(z−λ)2
= − π

K

∑∞
n=−∞ ne−

π2n2

K sin 2πnλ∑∞
n=−∞ e−

π2n2

K cos 2πnλ

= − π
K

2(e−
π2

K sin 2πλ+ ...)

1 + 2(e−
π2

K cos 2πλ+ ...)
≈ −2π

K
e−

π2

K sin 2πλ.

(27)

Thus we have the implicit equation for ∇σD(u),

∇σD(u) ≈ 2Ku+ 4πe−
π2

K sin
( π
K
∇σD(u)

)
.

Since |∇σD(u) − 2Ku| ≤ 4πe−
π2

K << 1, we may substitute 2Ku for ∇σD(u) on the righthand side to
obtain

∇σD(u) ≈ 2Ku+ 4πe−
π2

K sin(2πu).

For small K therefore, the PDE starts to look like (1) with σC , i.e.

∂th(t, x) = −2Ke−
3
2K∂4

xh(t, x).

5 Numerical Simulations and Discussion

To check whether our derivation is correct, we used the Kinetic Monte Carlo (KMC) algorithm to simulate
the evolution of the rescaled microscopic process up to time N4T for a given T . The algorithm takes in
the initial profile h0 at t0 = 0 and proceeds as follows, until tk exceeds N4T :

1. Given tk and h(tk, ·), compute Rk := {r±(i, h(tk, ·)}.

2. Draw dt from the Thk ∼ Exp(
∑
r∈Rk r) distribution and set tk+1 = tk + dt.

3. Choose an rk from the distribution P (r = ri) = ri
Rk

, and define h(tk+1, ·) to be the result of the

transition from h(tk, ·) associated to rk.

This is an accurate simulation of the Markov process because for small dt we have

P (ht+dt = J i±1
i h|ht = h)

dt
=

r±(i, h)∑
i(r

+(i, h) + r−(i, h))

P (Th ≤ dt)
dt

=
r±(i, h)∑

i(r
+(i, h) + r−(i, h))

1− exp [−
∑
i(r

+(i, h) + r−(i, h))dt]

dt
= r±(i, h) + o(1)

(28)

We used h0(x) = sin(2πx) in all of our simulations. The signature of the microscopic dynamics is best
discerned by looking at the change in the profile after a short amount of time. Figure 1 shows a plot of the
average of hN

4t−h0 over many sample runs of KMC, next to a plot of h(T, ·)−h(0, ·), where h(t, x) is the
solution to the PDE we have derived. The KMC plot was generated by averaging over about 107 sample
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trajectories, with a crystal of size N = 1500. We see that the two plots are very different; the reason we
compare the two profiles at slightly different times will be explained below.

Figure 1: hT − h0 from KMC and PDE

Since computing the rate expectation was the most involved part of the derivation, we investigate
whether it was the source of error. We do so by computing the average over many runs of the rates
associated to each site of the profile obtained from KMC at time T = 2 × 10−9 and comparing to the
formulas for 〈r±(j)〉λ that we obtained. The plots comparing the rate expectations from KMC and from
the theory are shown in Figure 2.

Figure 2: Rate expectations from KMC vs. theory

The plots in Figure 3 seem to suggest that the rates we computed are off only by a multiplicative
constant.
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Figure 3: Empirical rate expectations from KMC compared to scaled rate expectations from theory

But this cannot be true, since such a scaling error would simply lead to a time scaling difference in the
solution to the PDE, and we see this is not the case from the plots of hT − h0 in Figure 1. One possible
explanation for the discrepancy between the predicted and computed rate expectation is that the height
profiles were not distributed according to the local equilibrium measure at macroscopic time T = 2×10−9.
Figure 4 compares the empirical distribution of zi = hi+1 − hi based on 2 × 105 simulated paths of the
microscopic process with K = 1.5 and T = 2× 10−9 to the expected distribution,

P (zi = n) ∝ exp(−Kn2 + λin) ∝ exp(−K(n− λi
2K

)2),

where λi = ∇σD(∇h(T, iN )). Specifically, we plot n vs P (zi = n) for those n such that the probability is
nonnegligible.

Figure 4: Height gradient distribution comparison
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This slight discrepancy in the measure of the marginal distributions of Zi may arise because λi does
not equal ∇σD(∇h(t, iN )) exactly.

We carried out all of these numerical simulations for the process driven by the adatom rates studied
in [4] as well. Interestingly, as Figure 5 shows, the difference between the empirical and predicted height
gradient distributions was on the same order and had the same shape as that of the process driven by the
Metropolis type rates.

Figure 5: Height gradient distribution comparison for process driven by adatom rates

Moreover, the rate expectation also did not coincide exactly with the formula obtained for it in [4],
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〈r(j)〉λ = 1
2e
−(λj−λj−1) (see Figure 6), while the fluxes hT − h0 from KMC and the derived PDE nearly

coincided (see Figure 7).

Figure 6: Adatom rate expectations from KMC vs. theory

Figure 7: hT − h0 from KMC and PDE for adatom rate driven process

For the adatom rates, the discrepancy in the rate average may indeed be due only to a small multiplica-
tive constant. Note, in particular, that the formula for the expectation does not have the Z(λ) term that
the Metropolis-type rate expectation formula has. These rates’ additional dependence on λ could make
the rate expectation more sensitive to error in λ.

The error in the predicted rate average and flux was smaller for K = 0.5; for example, the ratio
of the rate average from KMC to the predicted rate average is about 1.0094. Since for smaller K the
microscopic system behaves more like its continuous analog, where assuming independence of the Zi seems

more justifiable, this suggests that the delicate calculation of the λis or of E±
E for finite N and integer

distributions lies at the heart of these errors. Figures 8 and 9 were generated by averaging over about 108

trajectories, with a crystal of size N = 1000. The flux hKMC(T, ·) − h(0, ·) in Figure 9 was smoothed by
convoluting with a Gaussian filter using a window of 30 lattice sites.
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Figure 8: Rate expectations from KMC vs. theory

Figure 9: hT − h0 from KMC and PDE

6 Limit Computations

This section contains the calculations of limits appearing in the derivation of the PDE. The limits required
estimation of the distribution of a sum of integer random variables with unbounded variance; since this is
not a standard result in the literature, we prove it in the local limit theorems of Section 3. The second
local limit theorem was thought to be necessary for the limit calculations, but turned out to be less useful
than the first. We include it because the ideas of its proof were the basis for the proof of the first local
limit theorem.

6.1 Proving E+/E→ 1

Recall that E+ and E are expectations of a function of SN =
∑N−2
i=1 Zi and TN =

∑N−2
i=1 iZi, where the Zi’s

are independent integer-valued random variables with distribution given by P (Zi = n) ∝ e−K(n−(li+ci))
2

and P (Zi = n) ∝ e−K(n−li)2 respectively. The function f is given by
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f(SN , TN ) = exp

[
−K

2
(SN + l)2

] ∞∑
j=−∞

exp

[
−2K(Nj +M + TN +

SN
2

)2

]
,

where we have let l = lN + lN−1 and M = m+ lN−lN−1

2 for brevity.

Note that the value of the sum depends only on TN + SN
2 mod N or equivalently, 2TN +SN mod 2N .

Define g(k) =
∑
j exp

[
−2K(M + k

2 +Nj)2
]
, k ∈ Z2N and h(m) = exp

[
−K2 (m+ l)2

]
. Then

E [f(SN , TN )] =

2N−1∑
k=0

g(k)
∑

(m,n):m+2n≡k mod 2N

h(m)P (SN = m,TN = n)

=

2N−1∑
k=0

g(k)
∑
m∈Z

h(m)P (SN = m,TN ≡
k −m

2
mod N)

(29)

Using Theorem 1 of Section 6.3, there exists a c ∈ (0, 1) such that

P (SN = m,TN ≡ k mod N) =
1

N
P (SN = m) + ε(k,m) (30)

and |ε(k,m)| ≤ cN for all k ∈ ZN and m ∈ Z.
Substituting this expression for the probability and noting that k and m must have the same parity for

the probability to be nonzero, we arrive at

E [f(SN , TN )] =
1

N

∑
k∈Z2N ,k odd

g(k)
∑

m∈Z,m odd

h(m)P (SN = m) +
1

N

∑
k∈Z2N ,k even

g(k)
∑

m∈Z,m even

h(m)P (SN = m)

+
∑

k∈Z2N ,m∈Z,k≡m mod 2

g(k)h(m)ε(m,
k −m

2
)

(31)

Note that∑
k∈Z2N ,k even

g(k) =
∑
j∈Z

N−1∑
k′=0

exp(−2K(Nj+ k′+m+
1

2
(lN − lN−1))2) =

∑
n∈Z

exp(−2K(n+
1

2
(lN − lN−1))2),

where we have used that m, the sum of all the heights, is an integer. Since lN − lN−1 → 0 as N →∞, we
have ∑

k∈Z2N ,k even

g(k)→
∑
n∈Z

e−2Kn2

=: c0.

Similarly, ∑
k∈Z2N ,k odd

g(k)→
∑
n∈Z

e−2K(n+ 1
2 )2 =: c1. (32)

Further, we can employ a local limit theorem [7] to write P (SN = m) as

P (SN = m) =
1√

2πBN
e−(m−MN )2/(2BN ) + εM , (33)

where MN =
∑N−2
j=1 EZj ,BN =

∑N−2
j=1 VarZj , and supm |εm| = o( 1√

BN
). Note that BN = O(N) and

MN = O(1). Indeed, recall that the λj were chosen so that EZj = h′( jN , t) where h is the PDE solution.
Using the periodicity of h, we have

| 1

N

N∑
j=1

EZj | = |
1

N

N∑
j=1

h′(
j

N
, t)−

∫ 1

0

h′(x, t)dx|,
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which is on the order of 1
N if, for example, h′ is Lipschitz continuous. Thus MN is O(1).

Substituting (33) and (32) into (31) yields

E [f(SN , TN )] =
1

N

c0√
2πBN

∑
m∈2Z

e−
K
2 (m+λ)2e−(m−MN )2/2BN

+
1

N

c1√
2πBN

∑
m∈2Z+1

e−
K
2 (m+λ)2e−(m−MN )2/2BN

+
c0 + c1
N

∑
m∈Z

e−
K
2 (m+λ)2εm

+
∑

k∈Z2N ,m∈Z,k≡m mod 2

g(k)e−
K
2 (m+λ)2ε(m,

k −m
2

).

(34)

Since λ is O(1) and e−(m−MN )2/2BN is O(1) in any finite neighborhood of m = 0, the first two terms are
of order 1

N
√
BN

O(1) = O( 1
N
√
N

), while the third term is of order o( 1
N
√
N

). Also, we have∣∣∣∣∣∣
∑

k∈Z2N ,m∈Z,k≡m mod 2

g(k)e−
K
2 (m+λ)2ε(m,

k −m
2

)

∣∣∣∣∣∣ ≤ cN (c0 + c1)
∑
m∈Z

e−
K
2 (m+λ)2 = cNO(1),

which is negligible compared to the other terms.

Thus, we may only leave the first two terms of (34) in the numerator and denominator of Ẽ
E . The only

variables depending on the values of the λjs are MN and BN . But exp( (m−MN )2

2BN
)→ 1 as N →∞ for any

finite m, both in the numerator and denominator. Hence, for large N ,

E+

E
≈

√
BN

B+
N

→ 1 as N →∞,

because only VarZi, i = j − 1, j, j + 1 are different in the summands that make up B+
N .

6.2 Proving N(Ej − Ej−1)→ 0

Let SjN =
∑
i 6=j−1,j,j+1 Zi +

∑
i=j−1,j,j+1 Z̃i (the random variable factoring in to the expectation in the

numerator of Ej , and similarly for j−1. Let S′N =
∑
i 6=j−2,j−1,j,j+1 Zi, Xj = SjN −S′N , Xj−1 = Sj−1

N −S′N .
We use (30) to write

Ej−Ej−1 =
c0
∑
m∈2Z e

−K2 (m+λ)2(P (SjN = m)− P (Sj−1
N = m)) + c1

∑
m∈2Z+1 e

−K2 (m+λ)2(P (SjN = m)− P (Sj−1
N = m))

c0
∑
m∈2Z e

−K2 (m+λ)2P (SN = m) + c1
∑
m∈2Z+1 e

−K2 (m+λ)2P (SN = m)
,

(35)
where we have disregarded the remainder terms because they are negligible in comparison to the other
terms. Now, we have

P (SjN = m) =
1

2π

∫ π

−π
φS′N (t)φXj (t)e

−itmdt,

and similarly for j − 1. Thus,

P (SjN = m)− P (Sj−1
N = m) =

1

2π

∫ π

−π
φS′N (t)(φXj (t)− φXj−1

(t))e−itmdt.

By the lemma in the next section, we can find c ∈ (0, 1) such that supi supε<|t|<π |φZi(t)| < c. Thus, since
φS′N (t) =

∏
i 6=j−2,...,j+1 φZi(t), there exists a positive constant A such that

| 1

2π

∫
ε<|t|<π

φS′N (t)(φXj (t)− φXj−1
(t))e−itmdt| ≤ AcN .
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To compute the remaining part of the integral, we first write φS′N (t) = φS′N−M ′N (t)eiM
′
N t, whereM ′N = ES′N ,

φXj (t) = 1 + iEXjt−
EX2

j

2
t2 + o(t2),

and similarly for φXj−1
. Substituting these expressions into the integral, we obtain

P (SjN = m)−P (Sj−1
N = m) ≈ 1

2π

∫ ε

−ε
φS′N−M ′N (t)((EXj−EXj−1)it−

EX2
j − EX2

j−1

2
t2+o(t2))e−it(m−M

′
N )dt.

Now,

φS′N−M ′N (t) =
∏

i 6=j−2,...,j+1

φZi−µi(t) =
∏

i 6=j−2,...,j+1

(1− σ2
i

2
t2 + o(t2))

= exp

[∑
i

log(1− σ2
i

2
t2 + o(t2))

]
= exp

[
−
∑
i σ

2
i

2
t2 +

∑
i

o(t2)

]
.

(36)

We now change variables to t = x√
N

, which yields

P (SjN = m)− P (Sj−1
N = m) ≈ 1

2π
√
N

∫ ε
√
N

−ε
√
N

exp

[
−
∑
i σ

2
i

2N
x2 + o(1)

]
((EXj − EXj−1)i

x√
N
−

EX2
j − EX2

j−1

2N
x2 + o(

x2

N
))

× e−i
x√
N

(m−M ′N )
dt.

(37)

Let σ2
N =

∑
i σ

2
i

2N . Using the formulas∫
−R

xe−ax
2+bxdx =

√
πb

2a
3
2

e
b2

4a ,

∫
−R

x2e−ax
2+bxdx =

√
π(2a+ b2)

4a
5
2

e
b2

4a

(the part of the integral outside [−ε
√
N, ε
√
N ] is exponentially small), we obtain

P (SjN = m)− P (Sj−1
N = m) ≈

1

2π
√
N

√
2π

Nσ3
N

exp

[
− (m−M ′N )2

2Nσ2
N

](
(EXj − EXj−1)(m−M ′N )−

EX2
j − EX2

j−1

2
(1− (m−M ′N )2

Nσ2
N

)

)
.

(38)

Now, recall from the previous section that m−M ′N = O(1) for any fixed m,and

P (SN = m) ≈ 1√
2πBN

exp

[
− (m−MN )2

2BN

]
.

We can simply replace the exponential in the probabilities with 1. Note that BN is of order N , so that

N(Ej − Ej−1) ≈ O(1)
c0
∑
m∈2Z e

−K2 (m+λ)2
(

(EXj − EXj−1)(m−M ′N )− EX2
j−EX

2
j−1

2

)
+ c1

∑
m∈2Z+1 . . .

c0
∑
m∈2Z e

−K2 (m+λ)2 + c1
∑
m∈2Z+1 e

−K2 (m+λ)2
.

We now show that EXj − EXj−1 and EX2
j − EX2

j−1 go to 0 as N →∞, which will conclude the proof.

Let µ(λ) be the expectation and σ2(λ) the variance of the discrete random variable Z with parameter
λ. Then

EXj = µ(λj−2)+µ(λj−1−
1

2
)+µ(λj +1)+µ(λj+1−

1

2
) = µ(λj−2)+µ(λj−1−

1

2
)+1+µ(λj)+µ(λj+1−

1

2
).
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Similarly,

EXj−1 = µ(λj−2 −
1

2
) + 1 + µ(λj−1) + µ(λj −

1

2
) + µ(λj+1).

Thus,

EXj−EXj−1 =

(
µ(λj−2)− µ(λj−2 −

1

2
)

)
+

(
µ(λj−1 −

1

2
)− µ(λj−1)

)
+

(
µ(λj)− µ(λj −

1

2
)

)
+

(
µ(λj+1 −

1

2
)− µ(λj+1)

)
.

But as N →∞, the λis, i = j−2, j−1, j, j+1 all approach the same value, so we see that EXj−EXj−1 → 0.
Similarly,

VarXj −VarXj−1 =

(
σ2(λj−2)− σ2(λj−2 −

1

2
)

)
+

(
σ2(λj−1 −

1

2
)− σ2(λj−1)

)
+

(
σ2(λj)− σ2(λj −

1

2
)

)
+

(
σ2(λj+1 −

1

2
)− σ2(λj+1)

)
→ 0

(39)

as N → ∞, because σ2(λj + 1) = σ2(λj) (appearing in Xj) and σ2(λj−1 + 1) = σ2(λj−1) (appearing in
Xj−1). It follows that

EX2
j − EX2

j−1 = VarXj −VarXj−1 + (EXj)
2 − (EXj−1)2 → 0.

6.3 Lattice Local Limit Theorems

Theorem 1. Let SN =
∑n
j=1 Zj and TN =

∑n
j=1 jZj, where P (Zj = n) ∝ e−K(n−λj)2 if n ∈ Z and 0

otherwise, and (λ1, . . . , λN ) ∈ RN . Then there exists c ∈ (0, 1) such that

|P (SN = m,TN ≡ n mod N)− 1

N
P (SN = m)| ≤ cN

for all m ∈ Z, n = 0, . . . , N − 1.

Lemma 1. Define φ(λ, t) = E(eiZλt), where Zλ is the integer-valued random variable for which P (Zλ =

n) ∝ e−K(n−λ)2 , n ∈ Z. Then
sup

λ∈R,ε≤|t|≤π
|φ(λ, t)| < 1

for any ε ∈ (0, π].

Proof. We have

|φ(λ, t)| =
|
∑
n∈Z e

inte−K(n−λ)2 |∑
n∈Z e

−K(n−λ)2
=
|
∑
n∈Z e

i(n−bλc)te−K(n−λ)2 |∑
n∈Z e

−K(n−λ)2
.

Letting m = n− bλc and summing over m in the numerator and denominator, we obtain

|φ(λ, t)| =
|
∑
m∈Z e

imte−K(m−(λ−bλc))2 |∑
m∈Z e

−K(m−(λ−bλc))2 = |φ(λ mod 1, t)|.

Thus, we can replace the supremum with λ ranging over R to λ ∈ [0, 1]. It is not difficult to show that φ
is jointly continuous in (t, λ) on the compact set {λ ∈ [0, 1], ε ≤ |t| ≤ π}, so it attains a maximum at some
(λ0, t0). But for any fixed λ, |φ(λ, t)| < 1 whenever 0 < |t| ≤ π, so the supremum must be strictly less
than 1.

Proof. Note that

1{SN=m,TN≡n} =
( 1

2π

∫ π

−π
eit(SN−m)dt

)( 1

N

∑
z∈UN

zTN−n
)
,
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where UN is the set of Nth roots of unity. Similarly expressing 1{SN=m} and taking expectations, we
obtain

P (SN = m,TN ≡ n mod N)− 1

N
P (SN = m)

=
1

2π
E
[( ∫ π

−π
eit(SN−m)dt

)( 1

N

∑
z∈UN

zTN−n − 1

N

)]
=

1

2πN
E
[( ∫ π

−π
eit(SN−m)dt

)( ∑
z∈UN ,z 6=1

zTN−n
)]

=
1

2πN

N−1∑
k=1

(e
2πik
N )−n

∫ π

−π
E[eitSN e

2πik
N TN ]e−itmdt =

1

2πN

N−1∑
k=1

(e
2πik
N )−n

∫ π

−π
E
[
exp
( N∑
j=1

iZj(t+
2πkj

N
)
)]
e−itmdt

=
1

2πN

N−1∑
k=1

(e
2πik
N )−n

∫ π

−π

N∏
j=1

φZj (t+
2πkj

N
)e−itmdt.

(40)

Taking absolute values yields

|P (SN = m,TN ≡ n mod N)− 1

N
P (SN = m)|

≤ 1

2πN

N−1∑
k=1

∫ π

−π

N∏
j=1

|φZj (t+
2πkj

N
)|dt ≤ 1

N

N−1∑
k=1

sup
t∈[−π,π]

N∏
j=1

|φZj (t+
2πkj

N
)|.

(41)

Fix 0 < ε << 1 and cover the torus [−π, π] (with endpoints identified) by disjoint intervals I1, . . . , IN of
length 2π

N so that [−ε, ε] lies entirely within some N(ε) intervals. By the lemma, there exists c < 1 such that
|φZj (t)| ≤ c for all j and ε ≤ |t| ≤ π. Now, fix t0 ∈ [−π, π] and 1 ≤ k ≤ N−1. Let d = gcd(k,N). Then the

points t0 + 2πk
N , . . . , t0 + 2πk take each of N

d values d times, with distance 2πd
N between neighboring values.

Now, if 2πd
N > 2ε, then at most one of these values can be in the interval [−ε, ε], and thus t0 + 2πkj

N /∈ [−ε, ε]
for at least N − d js. Since gcd(k,N) ≤ N

2 , it follows that

N∏
j=1

|φZj (t0 +
2πkj

N
)| ≤ cN2 .

If 2πd
N ≤ 2ε, then at most d 2εN

2πd e ≤
εN
πd + 1 of these values belong in [−ε, ε], so t0 + 2πkj

N /∈ [−ε, ε] for at least

N − d( εNπd + 1) ≥ N( 1
2 −

ε
π ) js. Combining with the previous case, we see that

N∏
j=1

|φZj (t0 +
2πkj

N
)| ≤ cN( 1

2−
ε
π )

for all t0 and k. Thus

|P (SN = m,TN ≡ n mod N)− 1

N
P (SN = m)| ≤ c( 1

2−
ε
π )N ,

as desired.

Theorem 2. Let Zj , j = 1, .., N be i.i.d random variables taking integer values such that EZ1 = µ,VarZ1 =

σ2. Further, assume that there exist no m,n ∈ Z, n > 1, such that Z1 ∈ m + nZ. Let SN =
∑N
j=1 jZj .

Then

P (SN = m) =
1

N
√
N

(

√
3√

2πσ
e−

3
2σ2N3 (m−Nµ)2 + o(1)).
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Proof. Since SN takes only integer values,

P (SN = m) =
1

2π

∫ π

−π
φSN (t)e−imtdt =

1

2π

∫ π

−π

N∏
j=1

φZj (jt)e
−imtdt

=
1

2π

∫ π

−π

N∏
j=1

φZj−µ(jt)eit(Nµ−m)dt.

(42)

From now on, we will use φ to denote φZj−µ. Let t = x
N
√
N

. Then, changing variables,

P (SN = m) =
1

2π

1

N
√
N

∫ πN
√
N

−πN
√
N

N∏
j=1

φ(
j

N

x√
N

)eix(Nµ−m)/N
√
Ndx.

We now study the product of characteristic functions, ΦN (t) :=
∏N
j=1 φ(jt) for t = x

N
√
N

and x fixed.

Taylor expanding log φ(t) to second order about t = 0, we get

log φ(t) = −σ
2

2
t2 + o(t2).

Thus,

log ΦN (
x

N
√
N

) = −σ
2

2

( 1

N

N∑
j=1

(
j

N
)2
)
x2 +

N∑
j=1

o(
1

N
).

Carrying out the sum of squares, we see that ΦN ( x
N
√
N

)→ e−
1
6σ

2x2

as N →∞. We will use this to show

that
1

2π

∫ πN
√
N

−πN
√
N

ΦN (
x

N
√
N

)eix(Nµ−m)/N
√
Ndx =

1

2π

∫ ∞
−∞

e−
1
6σ

2x2

eix(Nµ−m)/N
√
Ndx+ o(1), (43)

which is sufficient because the integral on the right comes out to

√
3√

2πσ
e−

3
2σ2N3 (m−Nµ)2 ,

as desired. First note that, since the integral on the right in (43) is finite over R, it is sufficient to show
that ∫ πN

√
N

−πN
√
N

|ΦN (
x

N
√
N

)− e− 1
6σ

2x2

|dx→ 0.

Since we have pointwise convergence, we can apply the Lebesgue Dominated Convergence Theorem once
we find an integrable function f such that |ΦN ( x

N
√
N

)| < f(x) for all N and all x ∈ [−πN
√
N, πN

√
N ].

It will be convenient to let 2πt = x
N
√
N

, so that t ranges over [− 1
2 ,

1
2 ]. We split the domain into three sets

and bound |ΦN | by an integrable function on each of these domains.
First consider the domain D1 := {ε ≤ |t| ≤ 1

2} for some ε small, corresponding to D′1 := {2πN
√
Nε ≤

|x| ≤ πN
√
N}. Note that

|φZj−µ(2πt)| = |φZj (2πt)| = |
∑
n∈Z

e2πitnP (Zj = n)| ≤ 1,

with equality holding iff e2πitn = e2πitm whenever P (Zj = n) > 0, P (Zj = m) > 0. By the assumption
on the values that the Zj take, this implies that equality holds iff t = k ∈ Z. Thus, by continuity and
periodicity of |φ(2πt)|, there exists c < 1 such that

|φ(2πt)| < c for all t ∈ A :=
⋃
k∈Z

[k − 1

2
, k − ε] ∪ [k + ε, k +

1

2
] = {t : t mod 1 ∈ [ε, 1− ε]}
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We will give a uniform bound on |ΦN (2πt)| =
∏N
j=1 φ(2πjt) for all t ∈ A (which contains D1).To obtain

this bound, we estimate the number of j’s less than N for which jt ∈ A.
Define a cycle as a block of consecutive j’s such that jt traverses A and AC once, ending when jt enters

A again. Note that since t mod 1 ≥ ε = O(1), a cycle takes O(1) steps (i.e. will contain O(1) consecutive
j’s). Hence there will be O(N) cycles, so jt will land in both A and AC O(N) times. If t is irrational,
by the ergodicity of the transformation x ∈ [0, 1] 7→ x + t mod 1, there will be approximately (1 − 2ε)N
j’s for which jt ∈ A. If t is rational, there will still be at least rN

3 such j’s (where rN is the number of
cycles) because in each cycle, jt ∈ A at least once and in AC at most twice (since t mod 1 ≥ ε). Thus,

|ΦN (2πt)| ≤ c rN3 for t ∈ D1. Switching back to x, we can find a δ such that

|ΦN (
x

N
√
N

)| ≤ c rN3 ≤ δ

x2
1{|x|≥1}

for all x ∈ D′1.
Next, consider the region D2 = { 1−ε

N ≤ |t| ≤ ε} corresponding to D′2 = {2πN
√
N 1−ε

N ≤ |x| ≤
2πN

√
Nε}. From the symmetry of the set A with respect to 0, we will obtain the same bound for t

positive and negative, so we restrict ourselves to t positive. Note that, unlike t ∈ D1, there may not be
O(N) cycles through A and AC for t ∈ D2, so we have to more carefully estimate the number of j’s for
which jt ∈ A. jt will fall in A for j ∈ Sm = {bm−1+ε

t c+ 1, ..., bm−εt c},m = 1, ... until these values exceed
N . Let k be the maximum m for which Sm ⊂ {1, 2, ..., N}. Note that k ≥ 1, since 1t ≤ ε and Nt ≥ 1− ε.
We have

|Sm| = b
m− ε
t
c − bm− 1 + ε

t
c ≥ 1− 2ε

t
− 1,

so

|{j : jt ∈ A}| ≥ k(
1− 2ε

t
)− k.

We now bound this count from below by a value depending only on N .
From the definition of k, it follows that

k − ε
t
− 1 ≤ bk − ε

t
c ≤ N < bk + 1− ε

t
c ≤ k + 1− ε

t
. (44)

From the left side of (44), we deduce

k − ε
N + 1

≤ t =⇒ k ≤ (N + 2)ε, (45)

where we have used that t < ε. From the right side of (44), we obtain

k(1− 2ε)

t
≥ k

k + 1− ε
(1− 2ε)N ≥ 1− 2ε

2− ε
N, (46)

where we have used that k ≥ 1. Combining (45) and (46) gives

k(
1− 2ε

t
)− k ≥ (

1− 2ε

2− ε
− ε)N − 2ε.

Hence,
|ΦN (2πt)| ≤ (c−2ε)cr2N

for r2 = 1−2ε
2−ε − ε > 0 if, for example, ε < 1

4 . Switching back to x, we can bound |ΦN ( x
N
√
N

)| on D′2 with

the same function as on D′1 (perhaps with a different constant δ).
Finally, consider the domainD3 = {0 ≤ |t| ≤ 1−ε

N }, corresponding toD′3 = {0 ≤ |x| ≤ 2πN
√
N 1−ε

N }.Since

φ(t) = 1− σ2

2 t
2 + o(t2), we can find δ > 0 such that

|φ(2πt)| ≤ 1− (2πσ)2

4
t2 ≤ e−

(2πσ)2

4 t2
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for all |t| < δ. For all t ∈ D3 and j ≤ j0 := b δ
1−εNc, we have |jt| < δ. Choose c > 0 such that j0 ≥ cN .

Then

|ΦN (2πt)| ≤
j0∏
j=1

|φ(2πjt)| ≤ e−(2πσ)2j0(j0+1)(2j0+1)t2/24 ≤ e−(2πσ)2j30t
2/12 ≤ e−(2πσ)2c3N3t2/12.

Substituting 2πt = x
N
√
N

, we get

|ΦN (
x

N
√
N

)| ≤ e−σ
2c3x2/12

for x ∈ D′3. We have bounded |ΦN ( x
N
√
N

)| by an integrable function over each of the domains, and can

now apply LDCT to finish the proof.
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