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Abstract

Division of the human cortex into distinct regions is of high importance to neuroscientific inquiry.

Fully-automated, multi-modal schemes of achieving such parcellation on an individual subject basis

are particularly advantageous, however difficulties in inter-modal and inter-subject registration of brain

images, as well as obstacles in preserving group-level correspondence of individual parcellation maps

have slowed progress in this area. In parallel, there exists a relative dearth of data-driven parcellation

schemes that incorporate high resolution structural connectivity metrics; the majority of widely-accepted

parcellation maps in the literature have primarily used functional connectivity. Here, a fully data-driven,

automated routine based on structural geometry and connectivity which achieves subject-specific cortical

parcellation maps while maintaining group-level correspondence of maps is presented and optimized.

Using high resolution white matter surface meshes and advanced fiber tracking techniques, a novel

vertex-wise structural connectivity graph is constructed for each of 10 unrelated subjects, and the first k

eigenvectors of the Laplacian Matrix of the graph’s adjacency matrix are calculated. These eigenvectors

represent the steady-state modes of vibration of the manifold described by this graph, and thus provide

subject-specific maps of modes of connectivity in white matter. In order to obtain parcellations at

varying levels of coarseness of the cortex from these eigenvectors, hierarchical agglomerative clustering

is then performed on the surface mesh, where each vertex’s feature vector is its profile in spectral space.

Further, a multi-layer graph of all subjects is constructed, and individual parcellations with group level

correspondence are obtained by agglomerative clustering of the eigenvectors of the laplacian matrix of

the multi-layer graph.
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1 Introduction

1.1 Modelling

When attempting to enumerate a theoretical framework governing the dynamics of complex systems, it is

advantageous to simplify the system of interest. Although the potential experienced by an electron orbiting

a proton is not solely described by the Coulomb interaction between the opposing charges, the wavefunctions

and associated energies obtained by solving the Schrodinger equation with this simplified Hamiltonian of

the Hydrogen atom are quite close to those obtained using degenerate perturbation theory and the full

Hamiltonian. The human brain contains over 100 billion neurons, with on the order of 73 connections per

neuron [1]. Aside from the reality that current empirical methods are not capable of accurately measuring the

geometry of these connections at all scales of detail, the sheer geometric and cytoarchitectural complexity of

this structure represent massive obstacles to bottom-up inference of the guiding principles of brain dynamics.

While individual neurons are capable of complex information processing, and their properties still con-

stitute an active and open area of research, it has been proposed that on the population level, their behavior

resembles that of tiny springs [2]. The model presented here draws on this simplification. We postulate that

this simplification is akin to the simplification of the Hamiltonian of an electron in a Hydrogen atom to only

its Coulomb interaction with the nucleus.

A proverbial tenant of biology states that the structure of biological systems underlies their function;

function is solely explained by structure. In simple small-scale biological systems, this has been increasingly

validated [3, 4, 5, 6]. There is more difficulty, however, in establishing this link in the human brain. While

there has been moderate success of studies seeking to identify correlation between the structure of the

brain and its temporal-spatial patterns of activation as measured by functional magnetic resonance imaging

(fMRI), there are relatively few successful attempts to predict function from structure [7, 8, 9, 10].

This work describes a simple, fully data-driven model and processing pipeline that, from structural brain

images, yields a complete, orthonormal basis of spatial patterns of functional activity on the human cortex.

These patterns are referred to as structural connectome normal modes, harmonics, and eigenvectors. By

virtue of its completeness and orthonormality, the basis of structural connectome normal modes is capable

of describing any pattern of functional activation on the surface of the human brain quantified at or below

the spatial resolution of the eigenfunctions. Further, we demonstrate that the information contained in a

very small fraction of this basis can be used to calculate neuroanatomically meaningful parcellations of the

cortex on the subject and group level at varying resolutions, and that calculated parcellations agree well

with those in the literature derived from a wide array of brain features, including functional connectivity.

1.2 Laplacian Eigenfunctions

The Laplacian operator, the divergence of the gradient, is a fundamental feature of a broad array of physical

theories including the Schrodinger equation, Maxwell’s equations, the heat equation, Einstein’s equations,
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the general wave equation, and many other successful descriptions of physical phenomena. Many currently

accepted explanations of complex physical systems owe their existence to the suitable formulation of a

differential equation involving the Laplacian operator. Perhaps the most glaring example of this is the

Schrodinger equation, which accurately predicts phenomena that were mystifying to the scientific community

prior to its existence, and which is capable of describing dynamics of systems with infinite dimension.

The eigenfunctions of the Laplacian operator imposed on a flat, one-dimensional domain form the extraor-

dinarily powerful Fourier basis, through which many of the most physically relevant dynamical paradigms

can be described. The Fourier basis is universally used in analysis of countless physical systems that can

be parameterized by one variable. Similarly, the orthonormal bases yielded by eigendecomposition of the

Laplacian imposed on more complex domains are in many instances particularly convenient for representing

physical dynamics parameterized by that domain [11, 12]. For instance: the steady-state modes of vibration

of an elastic membrane held still at its edge by a rigid circle are the Bessel functions- the eigenfunctions of

the Laplacian imposed on a circular, bounded domain. This basis can be used to efficiently represent all of

the possible dynamics of the head of a drum. Here, a novel discrete model of a graph that parameterizes

the structural geometry of the human cortex is presented, the eigenvectors of the Laplacian imposed on that

domain are graph are calculated, and the efficacy of these normal modes as meaningful biological patterns

is tested and verified. It is important to note that this model is largely based on that used by Atasoy

et. al [13], however several important differences in the present model including the density of sampling of

structural connectivity, the method of tractography used, the weighting of elements of the graph, and the

implementation of multi-layer graph methods all render this model distinct and more robust. Additionally,

the use of eigenvectors of the laplacian matrix of this graph model to parcellate the cortex into distinct

functional regions is entirely novel.

1.3 Cortical Parcellation

Cortical parcellation refers to the division of the human cortex into distinct functional regions. This is

important as neuroscience seeks to associate human behaviors and psychiatric pathologies with specific brain

regions. The first and most extensively referenced parcellation scheme was devised by Korbinian Brodmann,

and was based on a post-mortem examination of the cytoarchitecture of the brain. Research since then has

revealed that in many instances, the layout of cell types in the brain does not always directly correspond to

the layout of functional regions. Further, it is becoming increasingly clear that the organization of the brain

is is hierarchical; for any given region, there exist multiple sub-regions with distinct function. Based on this,

it is obvious that there might be no ground-truth division of the cortex, as there are a functionally unlimited

number of resolutions at which the brain can be parcellated. For this reason, it is difficult to establish a

consensus in the community on the best method of parcellation.

It has previously been shown that the eigenvectors of the discrete Laplacian, or Laplacian matrix imposed

on a polygonal mesh representing the surface of the cortex can be used to segment the cortex into its major
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distinct lobes [14]. This result shows that the vibrational modes of a membrane shaped like the surface of

the cortex are predictive of its large scale functional organization. Many previous studies have used measures

of long-range white matter connections to parcellate the cortex [15, 16, 17]. Although several of these have

achieved agreement with existing functional and histological measurements, to the author’s knowledge, all

previous work has relied on coarsely discretizing the cortex using prior anatomical information. In contrast,

this work does not employ any neuroanatomical priors, and discretizes the cortex and its long-range structural

connectivity at an unprecedented level of detail, resulting in unbiased, potentially more accurate, and more

detailed parcellations.

2 Methods

2.1 Data and Preprocessing

Anatomical or T1-weighted MRI scans provide high contrast between the brain’s white matter- the regions

of the brain comprised of long-range neuronal axon fibers- and the brain’s gray matter- the tissue comprising

the cortex (the outer layer involved in all high-level cognitive processes) containing a high density of neuronal

cell bodies. The white matter/ gray matter interface refers to the region separating these two types of tissue.

Figure 1: Example T1-weighted anatomical MR image for subject 1 from different view angles.

The high resolution T1 weighted and diffusion weighted images, and associated files from the human

connectome project (HCP) preprocessing pipeline from 10 unrelated subjects aged 22-25 years old were

downloaded from the HCP 100 unrelated subjects release of the human connectome project [18, 19]. No

further preprocessing was performed. Of the additional files from the HCP preprocessing pipeline, only the

white matter surfaces, the volumetric segmentation and the spherically inflated white matter registration

files (used as described in 2.2.2 and 2.4) were used in subsequent analyses.
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2.2 Computation

All computations were performed locally on a laptop computer with a 6 core Intel i9 3.5 GHz processor

and 32GB of RAM. As the computational scope of this work is quite broad, in instances in which existing

open-source software packages were capable of achieving the computational processes or set of processes

efficiently, these packages were downloaded and used.

2.2.1 MRtrix

All algorithms used in the processing of diffusion weighted MRI images to produce tractograms of 2.8 million

fibers per subject (described in 2.3) are included in the open-source MRtrix3 software package, which is

extensively documented at https://mrtrix.readthedocs.io/en/latest/index.html. [20, 21, 22].

2.2.2 MATLAB+Paraview

All visualization was performed using ParaView [23]. Interfacing between Python and ParaView was achieved

by first writing relevant arrays from Python to text files, and then writing ParaView-compatible files using

the text files and an open-source MATLAB-wrapped package called mvtk.

2.2.3 SciPy

The matrices constructed in this work are too large to be stored and manipulated using standard numerical

data structures on the local machine with 32GB of RAM. The matrices are in general sparse, and therefor

special data structures designed for dealing with sparse matrices allowed for efficient manipulation. Specifi-

cally, methods within the scipy.sparse sub-library of SciPy- an open-source scientific programming library

included in most downloads of Python3- was used to construct, manipulate, and solve for the eigenvectors

and eigenvalues of the matrices [24].

Additionally, the calculation of dice score detailed in 5.1 was performed using the dice method of the

scipy.distance sub-library within SciPy.

2.2.4 SciKit-Learn

For the matching of the 2.8 million endpoint coordinates to their nearest neighboring of the 81,924 white

matter surface vertices (described in 3.1.2) and for the matching of white matter surface vertices lying on the

mid-brain structures to their nearest neighboring vertex on the opposite hemisphere (described in 3.1.1), an

efficient nearest-neighbors algorithm was necessary. Of the several different open-source algorithms tested,

the most efficient was determined to be the NearestNeighbors method from the neighbors sub-library of

SciKit-Learn open-source Python3 library [25].

The agglomerative hierarchical clustering approach described in 5 was also implemented using tools

available in SciKit-Learn, specifically using the AgglomerativeClustering method of the cluster sub-
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library. Additionally, the normalized mutual information score (described in 5.1) was calculated using the

normalized mutual info score method of the metrics sub-library of SciKit-Learn.

2.2.5 NumPy

All other data manipulations not explicitly mentioned in 2.2.1-2.2.4 were either performed directly using

methods available within the NumPy python library, or performed using Python functions heavily relying

on NumPy methods written by the author as detailed below.

Functions used in the construction of matrices and eigendecomposition thereof are contained in a script

called spectral graph.py. Functions used in the analysis of the vector spaces described by individual sets

of eigenvectors (described in 4.1) are contained in a script called SubjectAnalysis.py. Functions used to

perform spectral clustering are contained in a script called Clustering.py. Functions used to construct the

super-adjacency matrices described in 4.3 and to perform numerical analysis of the consistency of parcellation

results described in 5.1 are contained in a script called ClusterProcesses.py. Any and all of these scripts

are available upon request to the author. Any data manipulations not performed with functions included

in these scripts were performed in the iPython console and therefor are not explicitly documented, but

attempted descriptions by the author are available upon request.

2.3 Diffusion Tractography

The diffusion MRI scans used provide a measure of the diffusivity of water in 60 different directions at every

voxel (cube of side length 1.25mm) in the brain. Water diffuses more easily in the direction of white matter

axonal fiber bundles. Diffusion tractography seeks to estimate the orientation of white matter fibers based

on the diffusion magnetic resonance signal.

From the multi-shell, high resolution, registered diffusion MRI scans of each subject, the b=1000 mm
s2

shell was extracted for each subject and the response function of the diffusion signal was estimated using the

Tournier algorithm with the default parameters. Next, the fiber orientation distribution was calculated from

the diffusion signal and estimated response function using the constrained spherical deconvolution algorithm

with the default parameters. 10 million fiber tracts were then generated for each subject from the fiber

orientation distribution using the iFOD2 probabilistic tractography algorithm. The seeding and termination

of tracks was constrained to the white matter-gray matter boundary using the ‘anatomically constrained

tractography’ option in the track generation algorithm, where the FreeSurfer segmentation file included in

the data release was used to determine the gray matter white matter interface. Each tractogram of 10 million

fibers was sifted to 2.8 million fibers using the fiber orientation distribution and the SIFT algorithm, and

the spatial coordinates and connections of the endpoints of each tractogram were stored.
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Figure 2: Example tractogram of subject 1 with 100,000 tracks. A lower number of tracks are shown for

visualization purposes, as individual fibers are not visible in the tractograms of 2.8 million fibers. Fibers are

colored according to direction.

2.4 White Matter Surfaces

The high resolution white matter surface mesh containing approximately 120,000 vertices, per hemisphere

included in the data release were resampled to an equal number of vertices for each subject using barycentric

interpolation, and were registered to a common space using the spherical demons method.
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Figure 3: Resampled and registered white matter surface mesh of subject 1 from different view angles. ”L”

and ”R” refer to left and right. ”A” and ”P” refer to anterior (front) and posterior (back).

The spatial coordinates of the vertices and the connections defining the polygonal mesh were extracted

and stored for each subject. For a given subject, these vertices are given by

V = {vi|i ∈ 0..1...Nvert},

vi = (xi, yi, zi)
(1)

where Nvert =82,924.

3 Graph Formulation of Structural Connectome

3.1 Graphs

A graph G is defined by a collection of vertices V and the edges E between those vertices, given by

E = {eij |(vi, vj) ∈ (V × V )}. (2)

Although the vertices V may be embedded space in a particular way, the connectivity of G and all of its

topological properties can be described by its adjacency matrix Â, which is populated by

Âi,j = Âj,i =

wi,j if (i, j) ∈ E

0 otherwise,
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(3)

where wi,j is the weight of the connection between vertices i and j.

Importantly, it has been shown that for a graph whose vertices are a sampling of a Riemannian manifold,

in the limit of Nvert →∞, many of the properties of that graph approach their continuous analogs [26].

3.1.1 Surface Adjacency Matrix

By benefit of the vertex-vertex correspondence of the white matter surfaces achieved by the process described

in 2.5, the indices of connected vertices are identical for all subjects, although the spatial embedding of

vertices is variable. As graphs and their adjacency matrices are invariant to the spatial embedding of their

vertices, only one adjacency matrix Âmesh is necessary to represent the surface mesh of all subjects.

For the surface mesh with Nvert, its adjacency matrix Âmesh is of size (Nvert ×Nvert). Here, the spatial

resolution of Nvert=81,924 represents an unprecedented level of resolution for studies seeking to construct

graph models of the structural connectivity of the cortex. Âmesh is populated according to equation 3, where

the edges are between vertices connected by the polygonal connections that define the mesh, and the edge

weights ws
i,j are all equal to 1.

It is important to note that Âmesh describes both hemispheres of the brain and as a result, there are two

fully-connected regions (the left and right hemisphere) of G(Âmesh). This is a result of the fact that current

standard methods of constructing cortical surfaces from T1 weighted MR images- including those used to

construct the surfaces used in this analysis- are only equipped to do so on a per hemisphere basis. When

the two hemispheres are represented in a single graph, there exists a physiologically erroneous disconnection

between them.

In order to correct for the fictitious division between the two hemispheres, an inter-hemisphere connection

adjacency matrix ÂIC was constructed by connecting all vertices lying on the midline structures (Corpus

callosum, brain stem, thalamus, etc) of the surface of each hemisphere to their nearest neighboring vertex on

the opposite hemisphere with edge weight wIC
i,j =1. The full surface adjacency matrix Âs was then calculated

as Âs = Âmesh + ÂIC .

The inclusion of ÂIC improved both the left-right symmetry of structural connectome normal modes and

the symmetry of resulting parcellations. It is important to note that the construction and inclusion of ÂIC is

an entirely novel feature of this model; in the model presented by Atasoy et. al- the only other study seeking

to calculate connectome harmonics- no attempt to correct for the false disconnection between hemispheres

of white matter surface meshes was made.
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3.1.2 Long-Range White Matter Fiber Adjacency Matrix

All long-range white matter connectivity information relevant to this model is encapsulated by the spatial

coordinates of the endpoints of each fiber and indices of endpoints that belong to the same fiber. Although the

seeding and termination of tracts was constrained to the white matter/gray matter interface, the location of

seeds was randomly sampled from a continuous domain representing this interface. Therefore, fiber endpoints

are not in general at the precise location of the white matter surface mesh vertices.

In order to encode the connectivity information contained by the fiber endpoints in the space parameter-

ized by the white matter surface mesh , each endpoint was associated with its nearest neighboring surface

mesh vertex using SciLearn’s kd-tree nearest neighbors algorithm, where Euclidean distance was the metric.

The average distance between fiber endpoints and their identified nearest neighboring surface vertex is less

than the average spacing of surface vertices, indicating an effective matching.

The white matter fiber adjacency matrix Âm
f for each subject is formed identically to Âmesh, except that

its edges wf
i,j correspond to white matter surface vertices connected by long-range white matter fibers, and

is equal to 0.1. The lower magnitude of wf
i,j was determined through exploratory analysis of several different

weighting strategies. This weighting strategy was determined to give the most physiologically meaningful

representation of structural connectivity.

3.1.3 Total Adjacency Matrix

The number of nonzero elements of Âm
f , Âmesh, and ÂIC are 2,860,971 (group-average), 491,520, and 9,636

respectively. The structural connectome graph proposed is described by its adjacency matrix Âm. For

subject m, Âm is given by

Âm = Âm
mesh + ÂIC + Âf . (4)

It is worth noting that certain elements of G(Âm) have weight 1.1 due to its definition as a sum of matrices,

however it is overwhelmingly the case that the edges defined by Âm
f are not between the same vertices as

those defined by Âmesh and ÂIC , and vice versa. This is shown by the fact that the number of nonzero

elements in Âm is approximately 3.22 million, whereas the sum of nonzero elements in each of Âm
f , Âmesh,

and ÂIC is approximately 3.36 million.

4 Normal Modes of the Structural Connectome

The Laplacian matrix L̂ of graph G(Â) is defined as

L̂(Ĝ) = D̂1/2ÂD̂1/2, (5)

where

D̂i,i =

Nvert∑
j=0

Ai,j . (6)
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As stated in 3.1, in the continuous limit of graph representations of manifolds, the Laplacian matrix

approaches the continuous Laplace-Beltrami operator. This implies that, given a graph formed by a dense

sampling of a manifold, the eigenvectors of the Laplacian matrix of that graph give the steady state vi-

brational modes of that manifold [11, 27]. That is, the eigenvectors correspond to the spatial patterns of

motion and the eigenvalues correspond to the energy or frequency associated with those patterns. Here, large

Nvert gives a good approximation of the continuous Laplacian. Further, the number of fiber connections (2.8

million) gives a dense sampling of structural connectivity in comparison with the only other study seeking

to calculate connectome harmonics [13].

The physical interpretation of the eigenvectors of this graph is somewhat ambiguous; although the present

model seeks to parameterize the human brain, which is continuous, our graph model could also describe a

collection of masses connected in a network by springs. N masses connected by a network of springs with

effective spring constants ksi,j between masses i and j can be represented by a graph whose adjacency matrix

Âspring is populated according to equation 3, where the edge weights are ksi,j . The normal modes of vibration

of the physical system described by Âspring are the eigenvectors ψk of the laplacian matrix L̂(Âspring), given

by

L̂ψk = λkψk. (7)

Notably, this formulation is identical to the present formation of the structural connectivity graph, where

the ‘ effective spring constants’ are 1 for vertices connected by the surface mesh, and .1 for vertices connected

by long range fiber connections. We set up these parameters in light of the assumption that local coupling

of the cortex (through short fibers and other short-range connections) is stronger than coupling due to

long range fibers (association, projection and commissural fibers). The high level of heterogeneity in whole

brain functional connectivity profiles under various task regimes gives evidence that this assumption is valid.

In parallel, the high proportion of edges defined by fiber connections implies that much of the geometric

complexity of the human brain is contained in its white matter geometry, which is trivially obvious.

4.1 Individual

Nharm structural connectome normal modes, ψ0 . . . ψk . . . ψNharm
and λ1 < λ2 < . . . < λNharm

, for each

subject m were calculated according to equation 7, with L̂ = L(Âm) .

Here, Nharm=99. ψ0 is the trivial solution to the eigen-problem, contains no meaningful information,

and is thus excluded from the set of eigenvectors. Several exploratory analyses of the relationship between

the eigenvectors of different subjects were conducted. Each subject’s set of eigenvectors is self orthogonal:

{i 6= j|0...Nharm},

〈ψi, ψj〉 = 0,
(8)

but the they represent only a small subset of the complete set of Nvert eigenvectors. Since each Am is
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populated according to a different set of 2.8 million long range white matter connections, there is no guarantee

that the subspaces described by each subject’s calculated set of eigenvectors are equivalent. Visual inspection

of the eigenvectors of different subjects color mapped onto the white matter surface reveals that similarity

between across subjects degrades for wavenumber k > 10 . Figure 4 demonstrates this by the decay in the

normalized dot product between corresponding eigenvectors for a pair of subjects.

Figure 4: Normalized dot product of corresponding eigenvectors of subjects 1 and 3

In order to investigate the similarity of the subspaces represented by each subject’s eigenvectors, we

define subject n’s reconstruction quality Ωn,m
k of eigenvector k of subject m as:

Ωn,m
k = 〈ωn

k , ψ
m
k 〉 , (9)

where

ωn,m
k =

Nharm∑
j=1

〈ψn
j , ψ

m
k 〉ψn

j . (10)
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Figure 5: Overlap of subspaces. Ω3,1
k is plotted versus k. The reconstruction quality is high throughout

the spectrum, with few individual exceptions and a slight decay near k = 85. This indicates a high degree

of overlap between the subspace represented by subject 3’s eigenvectors with the subspace of subject 1’s

eigenvectors.

4.2 Group Average

In addition to calculating connectome harmonics from each subject’s L̂(Am), Nharm group average harmonics,

ψk ,were calculated from L = L(A), where

A =
1

Nsub

Nsub∑
m=1

Âm, (11)

where in this study, the number of subjects Nsub = 10. Figures 6 and 7 display selected average eigenvec-

tors color mapped onto the averaged and smoothed white matter surface. There are no large qualitative

disagreements between individual subject eigenvectors and group average eigenvectors, however there is not

in general correspondence between individual and average eigenvectors of the same wavenumber.
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Figure 6: Selected group-average connectome harmonics viewed in −z direction. Red indicates positive

values and blue indicates negative values.

Figure 7: Selected group-average connectome harmonics viewed in +z direction. Red indicates positive

values and blue indicates negative values.
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4.3 Multi-Layer Graph

Given M graphs G(Am), each with N vertices, a multi-layer graph can be represented by the super-adjacency

matrix A, a block-diagonal matrix whose diagonal blocks of size (N × N) are the adjacency matrices Am,

and all other blocks are the identity matrix multiplied by an inter-layer weighting strength γ.

When the vertices of the subgraphs G(Am) represent the same features, and properties common to all M

are of interest , G(Am) provides useful information regarding both the common features and the differences

between the set of G(Am)’s [28]. Multi-layer approaches have been employed in many neuroimaging studies,

including in the work of Lefevre et al [14], which uses spectral clustering of the eigenvectors of the laplacian

matrix of a fully surface-based graph to coarsely parcellate the cortex into 5 major regions. These studies

demonstrate the efficacy of multi-layer approaches to establish group-level correspondence between features

of individuals while preserving individual differences [28, 14].

Here, a super adjacency matrix of size (819, 240 × 819, 240) was constructed using the individual adja-

cency matrices Am. The eigenvectors of the super adjacency matrix A, ψ, are of length Nvert × 10. A

subject’s, individual multi-layer eigenvectors ψ̃m
k are defined as the length Nvert sections of ψk with indices

correponding to those of that subject’s Am within A. In contrast to the individual eigenvectors, there is

high similarity between ψ̃m
k across m. In subsequent analyses, the effect of varying the inter-layer weighting

strength γ is explored. As expected, the magnitude of γ was found to correspond to the degree of coherence

of eigenvectors across subjects.

5 Clustering and Parcellation

As a test of the hypothesis that the eigenvectors of the Laplacian matrix of the present graph model of

the structural connectomes reflect physiologically meaningful spatial patterns of the function of the human

cortex, vertices of the white matter surface were hierarchically clustered by their ‘eigenprofile’, or spectral

coordinates. We define the eigenprofile of vi as xi, where

xi = [ψ1(vi), ψ2(vi), . . . , ψNharm(vi)]. (12)

Hierarchical clustering of vertices based on their spectral coordinates was performed using SciKit-Learn’s

Agglomerative clustering algorithm. The matrix Âm
mesh + ÂIC was also inputted to the algorithm to speed

the tree construction initialization. The output of the algorithm when initialized with Nclust clusters is a

cluster label vector c of length Nvert, with indices identical to the vertex indexing, and with an integer valued

entries (labels) between 0 and Nclust indicating the cluster to which the vertex was assigned.

Clustering was carried out for each set of individual eigenvectors, ψm, for the group-average eigenvectors,

ψ , and for the super eigenvectors ψ calculated using 6 different inter-layer weighting strengths. In each

case, the clustering was performed at various levels of coarseness. Also in each case, vertices lying within the

mid-brain structures were not included in the clustering, and are given a uniform and distinct cluster label.
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5.1 Metrics of Variability

To measure the similarity between different clustering results, we employ two different metrics of similarity:

the normalized mutual information score and the dice score. Mutual information between pairs of cluster

label vectors was calculated as described in 2.2.4 with the two cluster label vectors as input. Dice score

between two clusters was calculated by first binarizing the cluster labels, and calculating the dice score as

described in 2.2.3 with the two binary cluster vectors as input. Both of these metrics take on a value between

0 and 1.

Dice score was used to investigate the distribution of similarity between pairs of clustering results across

clusters, which is only meaningful when there is correspondence between the location of vertices given a

particular label between the two clustering results being compared. Because the clustering algorithm was

initialized independently for the clustering of individual eigenvectors, the resulting labels are not spatially

coherent across subjects, and therefor the dice score was not used to evaluate their consistency.

5.2 Color Mapping

It is of interest to view parcellation results on the cortical surface in order to qualitatively compare them to

existing parcellations in the literature. The scalar values representing cluster labels contained in given cluster

label vectors are agnostic to the spatial distribution of the clusters on the cortex, as they are calculated solely

from the spectral coordinates given by the set of xi’s. Therefor, if the scalar values are directly mapped to

the white matter surface, each scalar value must be assigned a color through some method. For a relatively

small number of clusters, it is not overly time-consuming to manually construct the color map (as is done in

figure 8), however for large Nclust this method becomes implausible.

In order to efficiently assign cluster labels to a color based on spatial criteria, an python script called

ColorMap.py (available upon request to the author) that assigns each cluster label a unique red, green,

blue (R,G,B) coordinate was written and employed for parcellation results where Nclust > 80. ColorMap.py

works by assigning each cluster label an (R,G,B) coordinate based on its barycentric coordinates, where the

reference simplex (here, a triangle) is defined by three ”major lobe centers” corresponding to the approximate

cartesian centers of the frontal, temporal, and parietal lobes of the cortex. Under this formulation, clusters

that are closer to or within the frontal lobe are more red, clusters closer to the parietal lobe are more green,

and clusters closer to the temporal lobe are more green. In order to allow for better visual discrimination

between clusters, each (R,G,B) coordinate for each cluster was modulated by a small factor determined using

a random number generator.
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5.3 Individual and Group-Average Parcellation

Figure 8: Parcellation result calculated using ψ’s with Nclust = 80 manually color-mapped onto the a) left

hemisphere and b) right hemisphere of the smoothed group average white matter surface.
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Figure 9: Parcellation result calculated using ψ’s with Nclust = 120 color-mapped using barycentric coor-

dinates onto manually color-mapped onto the a) left hemisphere and b) right hemisphere of the smoothed

group average white matter surface. Parcel borders appear in black.

In order to quantitatively evaluate the consistency of individual parcellation results, the mutual information

between each subject’s cluster label vector and the group average cluster label vector was calculated for 4

values of Nclust (figure 10).
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Figure 10: Mutual information between individual cluster label vectors cm and group-average cluster label

vector c.

As expected, the similarity between individual parcellations and the group average parcellations decreases

with increasing Nclust

5.4 Multi-Layer Parcellation

Clustering of the super eigenvectors gives a super cluster label vector c of length Nvert × 10, and like the

multi-layer individual eigenvectors, the individual multi-layer cluster labels c̃m are given by the length N

sections of the super clustering label corresponding to the positions of the individual adjacency matrices in

the super adjacency matrix.
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Figure 11: Consensus parcellation calculated using ψ̃’s with Nclust = 500 and γ = 0.8 color-mapped using

barycentric coordinates onto the a) left hemisphere and b) right hemisphere of the smoothed group average

white matter surface. Vertices for which all c̃m do not agree are colored black.

In contrast to individual cluster labels cm, there is spatial correspondence between cluster labels across

m for the individual multi-layer clustering results c̃m. To evaluate the effect of varying Nclust and γ on

the consistency of clusters both across subjects and across clusters, we first compute the consensus cluster

labelling for a given set of individual multi-layer clustering results. The consensus labelling of a vertex is

given a particular label only if the labels of that vertex agree across all subjects. Otherwise, it is given a

label outside of the range of 0- Nclust designated as the disagreement label. Figure 12 demonstrate the effect

of inter-layer weight γ and number of clusters on the cluster-wise agreement between individual multi-layer

clustering results c̃m and the consensus cluster labelling. As expected, agreement decreases with both γ and

with Nclust.
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Figure 12: Mutual information with consensus parcellation for varying number of parcels and varying

interlayer weighting strength.

The consistency of parcellation results was also evaluated for the multi-layer clustering results on a per-

parcel basis using the dice score. Figure 13 displays the bottom half of the cross-subject average distribution

of per-parcel dice scores with the consensus parcellation for Nclust = 80 and Nclust = 500.
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Figure 13: Group average per-parcel dice score with consensus parcellation for a) 40 parcels with lowest

average dice score from clustering with Nclust = 80 b) 250 parcels with lowest average dice score from

clustering with Nclust = 500. Different values of γ are plotted as separate lines, with the legend indicating

the color of the line and the value of γ.

From figure 13, it can be seen that for high values of γ, there is high similarity between all parcels and

the consensus parcels, and that for lower values of γ, there are individual multi-layer clusters with little or

no similarity to the consensus parcels of the same label. The number of these minimally-overlapping parcels

increases with increasing Nclust and with decreasing γ. This suggests that the value of γ can be varied in

order to obtain a desired level of group-level correspondence of parcellations, and that the optimal value of

γ depends on the desired Nclust

5.5 Qualitative Comparison with Existing Parcellations

All calculated parcellations show qualitative similarity with various existing parcellations in the literature,

including but not limited to those in [29, 30, 18]. This similarity is variable across Nclust, which literature

parcellation is used as reference, and the particular clusters that show similarity. In general, higher Nclust is

necessary to achieve similarity with literature between frontal-lobe parcels than for temporal, parietal, and

occipital lobe parcels. Conversely, at high Nclust, it is almost always possible to achieve similarity between

combinations of calculated parcels with larger parcels in literature parcellations.

Taken together, these results indicate the model presented in this work produces structural connectome
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normal modes that meaningfully reflect brain function.

Figure 14: Left hemisphere parcellation result calculated using ψ’s with Nclust = 80 manually color-mapped

and labelled to resemble the MarsAtlas parcellation [30].
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