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ABSTRACT 

While genomic analysis of tumor cells is a mainstay in cancer research, there is 

growing interest in the characterization of the tumor microenvironment, comprised of 

nearby healthy somatic cells, most notably fibroblasts and invading immune cells. 

Studying the RNA expression profile of the tumor microenvironment provides a way to 

analyze local response to tumor growth and ultimately to better characterize bodily 

response to different stages or genetic subsets of cancer. The purpose of this research was 

to develop a tool that efficiently separates tumor sequence data from human xenograft 

mice (mice with genetically human tumors) into separate microenvironment and tumor 

expression profiles. While this separation was previously done by physically excising 

healthy tissue under a microscope using laser capture microdissection, performing this 

separation in silico allows for rapid analysis of hundreds of samples. Further, using this 

tool, we can re-examine tumor expression profiles after filtering out ‘contaminating’ 

microenvironment sequence, resulting in a more accurate RNA expression profile. 

 

INTRODUCTION 

Variation in gene and transcript expression in breast cancer has been studied using 

both cDNA microarrays and more recently, RNA-seq.  Perou et. al found that tumors can 

be classified into six subtypes, each distinguished by differences in gene expression 

patterns determined by hierarchical clustering(Perou et al.). The six subtypes identified 



by Perou et. al, luminal A, luminal B, ERBB2-enriched, basal-like, claudin-low and 

normal-like, respond differently to different therapeutic regimens.  For instance, basal-

like tumors are most frequently ‘triple-negative’, meaning they lack receptors to estrogen, 

progesterone, and HER2.  Many therapies target these receptor pathways as the 

mechanism of treatment.  For instance, the estrogen receptor blocker Tamoxifen has 

shown tremendous success for ER+ tumors(Abe et al.).  For this reason, basal-like tumors 

which lack all three major receptors, can be hardest to treat.  In contrast, luminal A 

cancers are estrogen receptor positive and treatable by endocrine therapies that act as 

estrogen receptor antagonists.  

Griffith and Griffith have found that molecular subtype alone is a predictor of 

therapeutic efficacy for more than 25% of therapeutics tested.  Including other data sets 

such as copy number aberration, methylation, and protein expression, however, resulted 

in prediction of therapeutic efficacy for more then 65% of the compounds tested(Griffith 

and Griffith).  To provide yet another dimension of useful data alongside characterization 

of the gene expression profile of the tumor itself, there is great interest in analyzing the 

healthy cells surrounding the tumor, known as the tumor microenvironment. Most 

notably, the tumor environment is comprised of blood vessels, and extracellular matrix 

that nourish the tumor as well as immune cells, which may invade and attack the tumor, 

or even be reprogrammed to promote tumor growth(Whiteside). Characterization of the 

tumor microenvironment may provide opportunities to design therapies that promote a 

microenvironment that is toxic to the tumor or to gain a clearer understanding of tumor-

tissue dynamics. 



In human tumors, it is possible to study the tumor microenvironment using a 

technique called laser-capture microdissection (LCM)(Espina et al.). Mounting a tissue 

sample on a glass slide and viewing under a microscope, an ultra-violet laser is used to 

excise healthy tissue surrounding clearly malignant or pre-malignant cells. However, 

LCM requires several hours of tedious microscope work for a single sample and as a 

result is ineffective for large-scale analysis. Furthermore, the formalin fixation prior to 

LCM may result in damage to RNA or proteins as well as low-yield. As the border 

between tumor cells and healthy somatic cells may be blurred or uneven and LCM relies 

on the ability to identify cells on morphological characteristics alone, this physical 

separation can pose considerable challenges(Espina et al.). 

 In addition to the motivation to separate microenvironment and tumor cells for 

analysis of the gene expression in the microenvironment, I hypothesize that standard 

tumor cell RNA-seq profiles contain an appreciable amount of non-cancerous 

microenvironment RNA. Thus, the gene expression profiles may be ‘contaminated’ by 

the presence of RNA from surrounding healthy tissues and immune cells. 

 The development of an in silico tool to separate non-cancerous microenvironment 

RNA from tumor RNA would allow researchers to address the efficiency bottlenecks of 

LCM as well as explore the extent of microenvironment contamination in tumor 

expression analysis. Bioinformatically separating microenvironment and tumor sequences 

will allow for tremendous gains in throughput—hundreds of samples could be analyzed 

in a matter of hours.  

Using existing software, most notably MapSplice for RNA transcript alignment, 

in conjunction with purpose-built python scripts, we are able to implement an in silico 



separation of microenvironment and tumor RNA sequences. Using human xenograft 

mice, a mouse model which harbors a genetically human tumor, we leverage the genetic 

differences between mice and humans to separate the microenvironment sequences 

(which are genetically mouse) from the tumor sequences (which are genetically human). 

This work focuses primarily as a proof-of-principle for the METS 

(Microenvironment/Tumor Separation) software presented here as well as a preliminary 

analysis of tumor microenvironment heterogeneity across samples.  The ultimate goal of 

this project is to apply this workflow to a cohort of human xenograft mouse samples in 

order to search for intrinsic microenvironment subtypes, correlate microenvironment 

expression analysis with tumor expression analysis, and analyze tumor expression after 

removing contaminating microenvironment reads. 

 

METHODS 

Tumor Microenvironment Analysis 

 The RNA-seq data presented here comes from 8 human xenograft mouse samples, 

5 human controls from The Cancer Genome Atlas (TCGA) and 5 mouse controls. The 

samples were run on an Illumina Hi-Seq. In order to separate microenvironment 

sequences from tumor sequences, reads were first aligned to both human and mouse 

samples, then re-combined into a single BAM file with ‘mouse’ and ‘human’ read 

groups. Mapsplice version 2.1.4 was used to perform the alignments and Samtools 

version 0.1.19 to merge BAM files. 

 Next, the combined BAM file was parsed and converted into two separate BAM 

files: the first of reads which uniquely map to the mouse genome, the second of reads that 



uniquely mapped to the human genome, corresponding to the microenvironment and 

tumor respectively. Finally, the ambiguous reads that map to both the human and mouse 

reference genome were stored in a fastq file for further analysis.  The workflow also 

provides the option of outputting human and mouse reads as FASTQ files.  

In order to perform this separation, I wrote a python script called METS 

(Microenvironment/Tumor Separation) that is available to download directly from 

source. After partitioning the human xenograft mouse sequences into tumor and 

microenvironment sequences, transcript abundance was calculated using RSEM(Li and 

Dewey).   

Heat maps and hierarchical clustering of RNA expression data were produced 

using the statistical computing language R version 2.15.1(Team). The standard heat map 

coloring (green to red, from low to high) was not used in this paper.  Instead, a cyan to 

yellow heat map coloring was used in order to accommodate for those with red-green 

color blindness. 

Figure 1 shows an overview of the basic workflow described above. 



	
  

Figure 1. Three step workflow to convert human xenograft mouse sequencing data into microenvironment 
and tumor expression profiles. 
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 Reads from the human xenograft mouse samples that successfully align to both a 

human and mouse reference genomes, called ‘ambiguous reads’, were further analyzed. It 

is hypothesized that highly conserved regions of the human and mouse genome would be 

overrepresented in the ambiguous read group. 

 The ambiguous reads were again aligned to human and mouse reference genomes 

using Mapsplice version 2.1.4.  The alignments were converted to BED files and 

intersected with known human and mouse genome BED files in order to count the 

number of reads intersecting with each transcript. Next, I wrote a python script to count 

the number of reads intersecting each transcript, determine the number of hits per gene 

Microenvironment Analysis Workflow
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from this transcript list, and finally use the Jackson Lab Complete List of Mouse/Human 

Homologs(Blake et al.) to quantify the percentage of total reads that align to known 

homologous genes. 

 

RESULTS 

Alignment Statistics 

  Cross-alignment of human xenograft mouse reads to mouse and human reference 

genomes may result in alignment to the human genome only, to the mouse genome or 

may align to both genomes.  For our analysis, Figure 2 provides an example of unique 

alignment to a single genome, mouse or human.  The bottom sequence represents the 

sequence of the mouse and human references respectively and a letter in red indicates a 

mismatch with the sample read.  As paired-end reads are used in the analysis, Figure 2 is 

an oversimplification of the requirements of the workflow (that both pairs properly align) 

but is nonetheless illustrative of the method used. 

  

Figure 2. If a read aligns to the mouse genome, but not the human genome, the read is classified as 
microenvironment (left panel). If the converse is true, the read is classified as tumor (right panel).   
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For our analysis, sample reads fall into one of the three categories mentioned 

above.  Human xenograft mice analyzed have tumor cells that are genetically tumor cells, 

but somatic cells that are genetically mouse.  As a result, I hypothesize that reads that 

align uniquely to the human genome consist overwhelmingly of tumor sequences.  

Conversely, I hypothesize that reads that align uniquely to the mouse genome are likely 

microenvironment sequences.  Analyzing human xenograft samples alongside human and 

mouse controls allows us to test these hypotheses. 

Comparing the alignment statistics of human xenograft mouse reads to human and 

mouse control sets in Figure 3, it is clear that substantial amounts of both human and 

mouse RNA can be found in the human xenograft mouse data while the level of mouse 

RNA in the human control and the level of human RNA in the mouse control were 

effectively zero. Finally, the number of ambiguous reads stayed constant across all three 

groups. This final point drives the hypothesis that evolutionarily conserved genes that are 

common to both the mouse and human reference genome are likely highly represented in 

the ambiguous set. 



 

Figure 3. Only the xenograft reads (cyan bar) show a substantial number of reads in all three categories. 
The human control set yielded only human-aligning and ambiguous reads, while the mouse control set 
yielded only mouse-aligning and ambiguous reads.  Xenograft (N=19), Human (N=5), Mouse (N=5) 
 

 The mouse-aligning reads from the human xenograft samples serve as our target 

for RNA-expression analysis.  As uniquely mouse-aligning reads are essentially zero in 

the human control, we have strong evidence that the subset of human xenograft reads that 

align only to the mouse genome are in fact genetically mouse, and therefore part of the 

tumor microenvironment. 

 

Microenvironment Expression Analysis 

Figure 4 provides an example of RNA expression quantification for the mouse-

aligning reads from the human xenograft mice.  Using expression values from 483 genes 



with the highest standard deviation, we can construct a heat map ranging from blue 

(lowest expression) to yellow (highest expression).  The colored labels correspond to the 

known molecular subtype of the human tumor that the microenvironment samples 

analyzed here were derived from (Black = Basal, Purple = Her2, Cyan = LumA, Yellow 

= LumB).  Importantly, the genes with the highest variation in the microenvironment do 

not match those of highest variation for the tumor sample.  If the highest varying genes 

matched between the two sets, we would in fact see clustering of the colored molecular 

subtype tags.  As a result, an RNA expression pattern for the breast cancer 

microenvironment, if found, will be in wholly different genes than the patterns 

discovered for molecular subtype by Perou et. al.  This analysis must be done on a larger 

cohort of samples in order to test for the existence of microenvironment subtypes. 



 

Figure 4. Heatmap of gene expression in 483 mouse genes for 31 samples.  Genes used were those with the 
highest standard deviation across the 31 samples.  Expression data was normalized to [0,1] scale and colors 
range from blue (zero expression) to yellow (highest expression). 

 

As the molecular subtype of the tumor associated with each human xenograft 

mouse microenvironment presented above is known, we can use an analysis of variance 

(ANOVA) to test for significance difference in mean microenvironment expression level 

for every gene.  While the hierarchical clustering provides an analysis of global changes 

in expression, using ANOVA allows us to identify genes for which expression differs 
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drastically between known molecular subtypes derived from the pam50 assay(Prat et al. 

2012).  

This ANOVA test allows us to search for any variation in microenvironment 

genes that may correlate with tumor molecular subtype.  A histogram of p-values for the 

ANOVA test is presented in Figure 5.  The large peak on the left (below p < 0.05) 

implies that there are a large number of genes for which different molecular subtype 

samples have statistically different expression values.  If there were no relationship, we 

would expect the histogram to be essentially flat, reflecting p-values equally between 

zero and one.  Investigating the genes with the highest statistical difference (lowest p-

value) will be a target of ongoing investigation.  If the genes in this group prove to be 

different than those driving the phenotype itself (e.g. the genes in the PAM50 gene set), 

there may be a tumor-microenvironment interaction that can be more closely studied. 

 



 

Figure 5. The large peak with p<0.05 indicates that there are a substantial number of genes for which 
microenvironment RNA expression is different between known tumor molecular subtypes.  
 

 

Human Tumor Expression Analysis 

 While the microenvironment sequences are unable to be distinguished from tumor 

sequences in human sequencing data, the METS workflow allows for tumor gene 

expression analysis with ‘contaminating’ microenvironment sequences removed.  The 

heat maps in Figure 6 were constructed using hierarchical clustering on 63 human 

xenograft mouse samples.  The left panel shows a “naïve” analysis resulting from RNA 

expression quantification by RSEM on human xenograft data aligned to the human 

genome.  The right panel presents the same data analyzed by the METS protocol.  The 

same gene sets (y axis) and samples (x axis) were used to construct both heat maps.  
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Figure 6. Heatmap colors range from blue (lowest expression) to yellow (highest expression).  Colored bars on 
the of the heatmap mark known molecular subtype (Black = Basal, Purple = Her2, Cyan = LumA, 
Yellow = LumB). 

 

The METS-processed data is marked with known PAM50 molecular subtype (see Figure 

6 legend). Comparing the clustering between the left panel (unprocessed tumor sample) 

and the right panel (METS processed tumor sample), we can see that the known PAM50 

subtypes are more faithfully recovered in the METS processed sample (mouse-aligning 

microenvironment reads and ambiguous reads removed).  This variation may be 

reflective of the removal of reads that are included in the naïve implementation, but 

removed as microenvironment in the METS workflow. 

 

Homology of Ambiguous Reads 
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In order to test the hypothesis that the ambiguous read group would contain a 

proportionally larger number of highly conserved mouse and human homologs, a second 

python script was written to analyze the ambiguously aligned reads, quantify the number 

of reads per gene, then use the Jackson Lab Complete List of Mouse/Human 

Homologs(Blake et al.) to parse this quantification for mouse/human homologs. The 

same workflow was applied to the mouse-only and human-only alignments generated by 

the METS workflow in order to serve as a control.  

 

Figure 7. There is no statistical difference between the percentage of reads that align to homology regions 
between unambiguous and ambiguous reads for either the mouse or human genome. 
 

The proportion of ambiguous reads aligned to the mouse genome which fall in 

homologous regions can be compared to the proportion of unambiguous mouse-aligning 

reads falling in homologous regions.  Likewise, the proportion of ambiguous reads 

aligned to the human genome which fall in homologous regions can be compared to the 



proportion of unambiguous human-aligning reads falling in homologous regions. This 

analysis is presented in Figure 7 above.  The analysis above (n=21 samples) indicates that 

the hypothesis that ambiguous reads contain proportionately greater homologous gene-

mapping reads may not be supported by the data. 

 

DISCUSSION 

The work presented here primarily serves as a proof of principle that human 

xenograft mice can be used as a model system to study the tumor microenvironment and 

that an effective in silico workflow that leverages genetic differences to study the mouse 

microenvironment can be designed.  In particular, the METS workflow presented here 

provides advantages in throughput and specificity as the separation of tumor and 

microenvironment is done in silico, removing the necessity of time-consuming 

microscope work used in laser-capture microdissection. While it is still an open question 

whether analysis of a cohort of human xenograft mouse data will yield clinically relevant 

information, the opportunity to use this tool to further study the microenvironment will 

undoubtedly prove relevant. 

One major drawback of this method is that insights into the microenvironment 

will be drawn from analysis of the mouse microenvironment rather than the human 

microenvironment and thus may not be immediately translationally applicable.  Despite 

this drawback, pathways controlling vasculature, canonical inflammatory pathways, and 

immune pathways in mouse models may be conserved between mouse and human and 

can be analyzed for insight into the human microenvironment.  Furthermore, a validation 

of microenvironment subtypes in mouse would imply a high likelihood that similar 



phenomena could be observed in humans, providing an impetus and direction for further 

research. 

This workflow will be applied to a much larger cohort of human xenograft mice 

samples, allowing de novo subtype discovery by hierarchical clustering to be 

implemented.  Furthermore, links between microenvironment and tumor heterogeneity 

can be explored by cross-referencing tumor microenvironment expression with the 

known molecular subtype of the tumors. Greater understanding of microenvironment 

heterogeneity will provide yet another dimension of biological data to improve 

therapeutic efficacy. 

As discussed in the introduction, using multiple sources of descriptive data has 

been shown to drastically improve clinical outcomes over the use of molecular subtype 

alone(Griffith and Griffith).  Expanded research into the tumor microenvironment 

provides yet another dimension to this analysis.  Furthermore, while transcriptional 

signatures and genetic aberrations tend to be cancer specific, (for instance, the PAM50 

assay for breast cancer) insight into the microenvironment may be more expansive and 

generally applicable to a broad spectrum of cancers. 
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